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Editorial on the Research Topic

Robots for learning

Introduction

In the last decade the interest in applying Human-Robot Interaction research to

education and learning has boomed. While robots were traditionally used to enthuse

learners about STEM subjects, it is now clear that robots can serve to teach subjects

beyond STEM, such as languages or handwriting. Researchers have investigated the

potential of robots to act as learning or teaching companions for children in

classrooms or at home, for elderly people to help maintain their cognitive and

physical abilities, and for learners with deficiencies by adapting content to their

capabilities. Similarly to Intelligent Tutoring Systems (ITS), robots could have the

potential to improve learning gains by personalising content and delivery to the

learner. Beyond ITS, robots have a physical presence and can be used for kinaesthetic

interaction and embodied learning. Finally, the social capabilities of certain robots

could be used to provide adaptive empathic feedback and to engage the learner and to

motivate her during the learning task.

While robots for learning is an applied topic of HRI, the context of learner-robot

interaction is one of the most challenging and interesting for HRI research. Indeed the

research in robots for learning often requires us to work with challenging populations

(e.g., children, people with disabilities), it also requires challenging technical

integration, and has very clear performance outcomes (i.e., learning gains). In

some settings it even requires us to address robot-group interaction, autonomous

decision making, joint attention, affective computing. Aiming to go beyond individual

interfaces or projects, this Research Topic aimed to attract contributions that enable

the generation of guidelines and principles for the design of learner-robot interaction.

This Research Topic focuses on social robotics research, showcasing novel

algorithms and computational modeling that are applied within the context of
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learning. Special focus was given to contributions proposing

novel theories, models, and methods for learning with robots.

We also welcomed original technical contributions presenting

technical systems, algorithms, and computational methods

that are tailored to learner-robot interaction. In particular, we

were interested in contributions demonstrating the

specificities of learner-robot interaction compared to

classical human-robot interaction systems.

Research Topic formation

This Research Topic emerged from a series of workshops

and research projects involving the editors, Dr Wafa Johal,

Professor Tony Belpaeme and Professor Mohammed

Chetouani. Each in our own way, we were drawn to the

challenge and promise of using robots in education, and were

united in our fascination for the subject and potential to be

one of the most impactful applications of social robotics.

Contents of the Research Topic

Design of robots for learning

Several stakeholders can be involved in the design of

robots for learning: students, their parents, teachers or even

organisations. In Lin et al., the authors look into the attitudes

of parents towards storytelling robots for children. They

present the challenges and opportunities of robots as

storytelling companions and highlight the importance of

well-being and attention for quality of life of parents

when designing robot companions for their children. Johal

et al. envision the role of social drones in education taking

the perspective of students. They found novel opportunities

for drones to potentially support group work but also several

challenges that should be addressed in future research on

social drone in education. In Smakman et al., the authors

interviewed school teachers to examine whether social

robots in primary education might compromise the social-

emotional development of children, a fear often expressed by

teachers and parents who have no experience with robots.

Their studies indicate that robots pose little threat, and that

on the contrary they might be a preferred educational

technology for children with special needs.

Effectiveness and affectiveness in robots
for learning

A key aspect of any educational technology is its impact on

learning and learners. Not only are they designed to support

teachers, but they need to show their effectiveness in allowing

students to learn. In their paper, Kanero et al. use both

affective and learning measures to evaluate whether a robot

presented over video or a disembodied voice would be more

effective at teaching vocabulary in a second language, but

found no significant difference. Fischer et al. evaluated

whether a robot’s speaking style during second language

learning mattered and found that a charismatic delivery

resulted in increased learning gains.

Robots for physical learning

The fact that robots are physical devices has long been

touted as important to their use in education. Most often

reference is made to their tangible social presence, but robots

can also offer a physical experience without necessarily

offering a social experience. Kianzad et al. show how

physical robots can be deployed in education and present a

framework dubbed Physically Assisted Learning (PAL) for

learning through haptic support.

Individual differences in learning with
robots

Several studies found that there are significant individual

differences in the way students interact and learn with

robots. Song et al. report that the level of expertise of the

learners (novice or advanced) influenced the potential role

and task of a robot supporting the learning of a musical

instrument. van den Berghe et al. found in their study that

the background knowledge of students influenced their

learning experience with a robot tutor. Tolksdorf et al.

studied the influence of shyness on robot-learner

interaction and found that shyness influenced the affective

and the learning aspects.

Co-learning and adaptation in learning
and teaching

Real-time adaptation is also crucial in educational

settings. Lee et al. investigated the use of Inverse

Reinforcement learning for robots to become better

teachers, while Van Zoelen et al., studied how robots could

adapt to become better co-leaner in a human-robot teamed

search and rescue task.

Conclusion

Robotics in education, while new, offers plenty of scope

and opportunity, which results in a very broad, diverse and
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rewarding research landscape. Testament to this are the

papers collected in this Research Topic. The results

presented show that there still is scope to further explore

the pedagogy of using robots in education: a one-size-fits-all

approach is unlikely to be effective, but how the robot

should tailor its responses to maximise the learner’s well-

being and learning gains still remains an open question.

Beyond the how and why of introducing robots in education,

there remains the formidable technical challenge of building

a concerted interactive experience with robots. From

building robots that can robustly operate in the

challenging environment of the classroom, to robots that

automatically generate responses that empower the learner,

the technical challenges abound. However, the promise and

potential of robots in a supporting role are significant and

well warrant the formidable research efforts of which this

collection is but a sample.
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Parent–child story time is an important ritual of contemporary parenting. Recently, robots
with artificial intelligence (AI) have become common. Parental acceptance of children’s
storytelling robots, however, has received scant attention. To address this, we conducted
a qualitative study with 18 parents using the research technique design fiction. Overall,
parents held mixed, though generally positive, attitudes toward children’s storytelling
robots. In their estimation, these robots would outperform screen-based technologies for
children’s story time. However, the robots’ potential to adapt and to express emotion
caused some parents to feel ambivalent about the robots, which might hinder their
adoption. We found three predictors of parental acceptance of these robots: context
of use, perceived agency, and perceived intelligence. Parents’ speculation revealed an
uncanny valley of AI: a nonlinear relation between the human likeness of the artificial agent’s
mind and affinity for the agent. Finally, we consider the implications of children’s storytelling
robots, including how they could enhance equity in children’s access to education, and
propose directions for research on their design to benefit family well-being.

Keywords: artificial intelligence, design fiction, parent-child storytelling, social robotics, technology acceptance,
uncanny valley

INTRODUCTION

“Once upon a time” is more than an opening line to children’s stories. For many, it is a tender phrase
from their fondest childhood memories, suffused with parental love. Story time has life-long
implications for both children and parents. Parent–child storytelling shapes the family’s identity
(Kellas, 2013), culture (Kellas and Trees, 2013), rituals (Fiese andWinter, 2009), and cohesion (Frude
and Killick, 2011). From their first words, children learn conversational skills through turn-taking,
joint attention, and the facial expressions of their parents or others conversing (Casillas et al., 2016;
Casillas and Frank, 2017). In brief, children’s story time is often a critical practice in parenting,
enculturation, and education. To make the most of children’s story time, parents have used
technologies including digital books, interactive games, and talking toys.

In recent years, robots controlled by artificial intelligence (AI) have emerged as an exciting
innovation for education (Fabiane, 2012; Toh et al., 2016), entertainment (Hoffman and Ju, 2014),
cognitive therapy (Dautenhahn andWerry, 2004; Chang and Sung, 2013), and healthcare (Broadbent
et al., 2009; Shibata and Gerontology, 2011; De Graaf et al., 2015). During the COVID-19 pandemic,
the potential for deploying robots in real life was promoted (Yang et al., 2020). As Gates had
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predicted, robotic devices could become ubiquitous—“a robot in
every home” (Gates, 2007). Thus, it is worth considering the
potential acceptance and use of robots for children’s story time in
the home.

Domain experts have started discussions on topics including
human preferences regarding decisions made bymachines (Awad
et al., 2018), trust in robots (Hancock et al., 2011), explanations of
robot behaviors (De Graaf and Malle, 2019), and so on. However,
to ensure robots fit their context of use, their design principles
should be derived from the study of their intended social ecology
(Šabanović, 2010). With notable exceptions (De Graaf and Ben
Allouch, 2013), few studies have analyzed sociocultural influences
affecting the acceptance of robotic technology for children’s story
time. This study begins to fill this gap.

As parental beliefs and values about children’s technology
inform their views on appropriate use (Eagle, 2012), our research
questions were as follows: 1) To what extent do parents accept
children’s storytelling robots in the home? 2) How do parents
envision these robots in the future? 3) What aspects of the robots
could support or hinder their acceptance among parents? To
address these questions, we conducted semi-structured interviews
with 18 parents of children, age 2 to 5. We used design fiction, a
research technique for participants to envision the use of a
fictitious technology (Blythe, 2014; Lindley and Coulton, 2015).

Our main findings were as follows: 1) Despite concerns,
parents were generally willing to accept children’s storytelling
robots. 2) Some parents viewed the robot as their replacement, a
“parent double.” By contrast, they viewed screen-based
technologies as a way to keep their children occupied when
they are busy with other things. 3) Parents valued a robot’s
ability to adapt and express emotion but also felt ambivalent
about it, which could hinder their adoption. 4) The context of use,
perceived agency, and perceived intelligence of the robot were
potential predictors of parental acceptance. 5) Parents’
speculation revealed an uncanny valley of AI: a nonlinear
relation between the perceived human likeness of the artificial
agent’s mind and affinity for the agent. Two issues that could elicit
cognitive dissonance were discussed: affordances of AI and mind
perception of robots. Finally, we propose research directions for
designing robots that enhance family wellness and meet the needs
of parents and their children in everyday home settings.

BACKGROUND

Our study connects with four bodies of work. We examine
children’s story time with parents, review the design of story-
time technology, investigate the role of parents in their children’s
technology use, and revisit the pros and cons of existing protocols
for evaluating technology acceptance.

Children’s Story Time With Parents
Storytelling is a common way for families to spend time together.
It occurs as a form of family communication in either a discursive
or unified fashion. Children are exposed to 1,000 to 2,000 words
every hour from parents who talk as they go about their daily
activities (Hart and Risley, 1999). Regular exposure to stories

promotes language acquisition (Soundy, 1993), emergent literacy
(Allison and Watson, 1994; Speaker, 2000), and intellectual
development (Kim, 1999). Exposure to stories helps children
acquire a first language while maturing and developing
(Chomsky, 1972). Parental storytelling can promote reading
readiness, positive attitudes, and achievement (Silvern, 1985).
Through stories told orally, children acquire syntax and listening
comprehension, which later support reading comprehension
(Shanahan and Lonigan, 2013).

Story time helps children learn how to make sense of their
experiences and relate to other people (Wells, 1986). Children’s
language acquisition occurs in the “social context of discourse, in
the miniaturized culture that governs the communicative
interaction of children and adults” (Bruner, 1981). The social
nature of story time can support and extend children’s social life.
Stories help children develop an understanding of human
behavior and the world through imagination (Benton and Fox,
1985).

According to narrative performance theory, storytelling is a
way of performing family identity (Langellier and Family, 2006);
family storytelling constitutes children’s particular identities
through content-ordering—for example, by drawing on and
distinguishing social and cultural resources, such as class, race,
and culture.

Bronfenbrenner’s ecological model (1979) emphasizes the
centrality of the family and especially the parents in a child’s
development. The ways children experience storytelling depend
heavily on parental beliefs and involvement. For instance, parents
may spend less time with their children as societal values shift
toward individualism (Whitehead, 1991). Moreover, the goals
parents set for their children’s development can influence how
they interact with them (Schneider et al., 1997).

Parent–child interactions during story time, such as turn-
taking, do more to support children’s language development than
mere exposure to speech (Romeo et al., 2018). Additionally,
parent–child attachment enhances the quality of children’s
involvement in story time (Bus et al., 1997). However, Bergin
(2001) found that shared reading may not be beneficial if parents
are hostile and critical of their children.

In sum, story time can play a crucial role in a child’s
upbringing. The efficacy of children’s story time may differ
widely because of parental attitudes and involvement, resulting
in complex and unequal opportunities among children.

Technology for Children’s Story Time
The use of artifacts during story time is not uncommon. In
prehistoric times, parents may have told their children stories
around campfires, employing props like stones, branches, bones,
and so on. In ancient times, parents read stories from papyrus. In
the 15th century, the printing press enabled the spread of books,
which eventually led to a flowering of children’s books, especially
in the second half of the 19th century. In the 20th century, parents
would sometimes use a record, CD player, or television program
during children’s story time. At the advent of the 21st century,
new technologies have been reshaping children’s experience. For
instance, children can access storytelling with the click of a
hyperlink thanks to the personal computer and the Internet.
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Researchers in academia and industry have been using various
technologies to facilitate and understand children’s story time.
For example, stories “read” by an iPod Shuffle were found to
engage and motivate K–12 students (Boeglin-Quintana and
Donovan, 2013). Using videoconferencing, researchers found
ways to create children’s story time for families separated by
long distances (Ballagas et al., 2010). Interactive literature on
smartphones and tablets has helped children improve their
reading comprehension through role-playing (Borgstrom,
2011). Researchers have used 3D virtual narratives to explore
children’s understanding of stories (Porteous et al., 2017).
Recently, virtual assistants like Alexa were found to engage
parents with their children in story time through a voice
interface (Beneteau et al., 2020).

For children’s story time, one technology stands out in the
progression from artifact to agent: social robots. Robotic
storytellers are also part of a historical progression. The first
talking dolls date back to 1890; they were made possible by the
invention of the phonograph in 1871 (Plowman, 2004). In 1959,
Chatty Cathy appeared as a pull-string talking doll. In 1985,
Teddy Ruxpin, introduced as “the world’s first animated talking
toy,” could move its mouth and eyes while “reading” stories
played on a tape deck in its back. In 2002, Cindy Smart was
marketed as the first doll that could recognize 650 words in
English and some foreign words.

Despite warnings that electronic toys might inhibit children’s
short- and long-term development (e.g., Levin and Rosenquest,
2001), AI-enabled storytelling robots have helped children learn
in various ways. For instance, robots supported children’s
language acquisition as learning companions in a storytelling
game (Kory-Westlund and Breazeal, 2014). Affectively
personalized robots can assume the role of a tutor for
children’s second language learning through storytelling
(Gordon et al., 2016). In recent years, Codi, Trobo, and other
storytelling robots have been marketed as providing
developmental support outside of the classroom. Nevertheless,
the influence of these robots requires investigation.

Parental Mediation of Technology Use
Novel technologies challenge most parents (Bowman, 2012). By
letting children form more contacts outside the home, they can
make it harder to establish family norms and sanctions (Lynd and
Lynd, 1929). Although most parents consider educational robots
beneficial, they lack confidence in their ability to join the
child–robot interaction (Lin et al., 2012). Parents’ control of
technology use influences the child’s development and the
parent–child relationship (Giles and Price, 2008).

The way parents view technology has always been complex.
For example, parents value cell phones for letting them keep in
touch with their children but also worry about their effects (Boyd,
2014). Parents typically mediate their children’s use of
technology, including television, video games computers, and
the Internet. They implement strategies like co-using and
restrictions with filters and monitoring software (Livingstone
and Helsper, 2008).

A parent’s beliefs about children’s technology use could be
shaped by the parent’s age, education, employment history,

geographical location (Haight et al., 1999), and childhood
(Plowman, 2015). Moreover, parents’ and children’s behavioral
patterns can affect each other in various ways. Regardless of their
involvement in child–technology interaction, parents provide
support and guidance to their children, which in turn affect
children’s behavior patterns and attitudes toward technology
(Lauricella et al., 2015).

Owing to the increasing complexity of the technology
landscape, traditional parental mediation theories need to be
revisited (Jiow et al., 2017). So far, these theories have mainly
examined social and psychological media effects and information
processing (Clark, 2011). A common theme in this literature is
that parental mediation of children’s technology use reflects their
effort to mitigate its perceived adverse effects. Therefore,
assessments of social acceptance of children’s technology,
especially social robots designed for the home, should not
overlook parental attitudes and family dynamics.

Technology Acceptance
Technology acceptance denotes a user’s willingness to adopt a
system and that system’s social and practical acceptability
(Nielsen, 1993). A practically acceptable system may not be
socially acceptable. Examples of social opposition include
movements to ban nuclear power and genome editing. The
rationale for social opposition may reflect a complex mixture
of concerns, including morals, religion, political ideologies,
power, economics, physical safety, and psychological well-
being (Otway and Von Winterfeldt, 1982).

Researchers have been formulating various theoretical models
to assess user acceptance of technology, beginning with the
technology acceptance model (TAM, Davis et al., 1989).
Venkatesh and colleagues compared eight prominent models
to extend TAM, empirically validating the unified theory of
acceptance and use of technology (UTAUT, Venkatesh et al.,
2003). Due to the increasingly complicated context of use,
researchers have been revising acceptance models for recent
technologies, such as multi-touch displays (Peltonen et al.,
2008), gestural interfaces (Montero et al., 2010), and speech
interfaces (Efthymiou and Halvey, 2016). With the
development of AI technologies, the ethics of adopting novel
technologies are gaining more attention (e.g., Awad et al., 2018;
Malle and Scheutz, 2018).

Social acceptance of robots could predict comfort with being
in contact with them regularly. To succeed a social robot must be
emotionally acceptable (De Graaf and Ben Allouch, 2013).
Popular technology acceptance models like TAM and UTAUT
were found to be limited for social robots. A study of Polish
professionals’ acceptance of a humanoid robot for children with
atypical development found attitudes toward technology were
only a weak predictor of intention to use (Kossewska and
Kłosowska, 2020). De Graaf and colleagues’ study showed the
role normative beliefs play in the acceptance of social robots in
the home (De Graaf et al., 2017).

Evaluating the social acceptance of robots is challenging. First,
social robots are not merely a new form of technology. They
embody human values through their humanlike presentation. In
Japan, for example, robots were deployed in ways that reify
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“traditional” values, such as the patriarchal extended family and
sociopolitical conservatism (Robertson, 2007). Moreover, various
factors can challenge the validity, reliability, and practical
applicability of evaluation methods (Lindblom and
Andreasson, 2016). For example, the high cost of
manufacturing sturdy robots that can function and survive in
a home setting may compel researchers to rely on laboratory
studies.

METHODS

To explore parental acceptance of children’s storytelling robots,
we conducted a qualitative study employing design fiction, which
is a form of speculative design that opens up discussions on the
use of emerging technologies and their ethical and social
implications (Dunne and Raby, 2013; Hales, 2013; Malpass,
2013; Cheon and Su, 2017). This activity let parents speculate
on the future of children’s robots and their expectations and
concerns.

Participants
Participants received an invitation by email, campus forum, local
Reddit community, or word of mouth. Inclusion criteria were
adult parent of at least one child, age 2 to 5. The study focuses on
preschool-aged children because they are more likely than older
children to be cared for at home and because robots designed for
this age group are less studied. These criteria provided a new
baseline for comparing robot acceptance because previous
research focused on interactions between social robots and
older children (e.g., Tazhigaliyeva et al., 2016).

Eighteen parents from a midwestern city in the United States
and its environs participated in the study. For the method used,
we believe the sample size of 18 parent–child dyads reached
saturation because, in the last few interviews, no new themes were
observed. Guest and colleagues found that for interview studies
saturation usually occurs within the first twelve interviews, and
basic elements for metathemes emerge as early as the sixth
interview (Guest et al., 2006).

Fourteen participants (77%) were mothers.1 Parents ranged in
age from 24 to 38 (M � 32, SD � 4) and had a range of education
levels from some college to a doctoral degree. Twelve were White,
two were Black or African American, one was American Indian or
Alaska Native, one was Asian, and two were another race or
ethnicity. Half of the participants were full-time employees, two
were part-time employees, four were students, and three were
unemployed. Throughout the paper, we attribute quotes to a
specific participant by usingM for mother or F for father followed
by a number.

This study was approved by Indiana University’s Office of
Research Administration (February 16, 2018, No. 1801962828).
Informed consent was obtained from all participants. Study
protocols complied with federal, state, and university
standards, policies, and regulations.

Robots
To help parents imagine potential robot features and to inspire
them to brainstorm, we searched for commercial robots that can
read or tell stories. Two robots, Luka and Trobo,2 served as probes
for design fiction (Schulte et al., 2016). We selected these robots
because they vary in form (zoomorphic vs. humanoid), voice
(human vs. robotic), materials (hard vs. fluffy), degree of
autonomy, and ability to express emotions. Luka interacts with
users autonomously. It can speak several sentences (e.g., “I am
bored”) or blink to express emotions and attract attention. Luka
has touch sensors distributed on its body. A small camera is
mounted in Luka’s eye area, which enables it to “read” books.
Trobo, by contrast, looks like a stuffed toy though with the shape
of a humanoid robot. Trobo uses Bluetooth to read e-books on its
phone application. To make Trobo appear to read physical books,
we used theWizard of Oz technique (Green andWei-Haas, 1985).
A researcher controlled Trobo’s reading pace remotely while the
participants turned the pages.

Procedure
Parents provided demographic information on their family and
their experience with robots via an online survey. Then, the
researcher met with parents and their child at their home or in
the lab.

Upon meeting, the researcher showed parents how to use the
robots and asked them to use the robots for their child’s story
time. Parents were free to choose which robot to use first and how
to be involved in the two child–robot interaction sessions. For
example, some parents helped their child turn the pages of the
storybook, while others encouraged the child to have story time
with each robot independently. Each session lasted until the story
finished (about 5 min) or was terminated by the parents when
their child was too antsy or inattentive.

After the sessions, parents were interviewed for 20–50 min and
were audio-recorded for transcription. During the interview, the
child was given toys and a drawing kit to stay occupied. Some
parents also brought a tablet computer or their partner to keep
their child occupied so the interview could proceed
uninterrupted.

The interviews were semi-structured. Parents were asked to
reflect on their motivations, routines, and the technologies they
used, if any, for children’s story time. Then, we introduced the
prompt for design fiction, which was a narrative of their own
creation: “a robot designed to read or tell children stories for daily
use in the home” (Stanley and Dillingham, 2009). Parents were
asked to envision the context of use, the features of a robot they
would accept, and their related thoughts (Supplementary
material S1). During the interviews, we avoided bringing up
any specific topics, such as privacy, security, and so on. In
addition, we reminded parents that they were imagining a
futuristic robotic concept rather than evaluating any particular
robot, including the two they had just interacted with. If the
parents had more than one child, they were asked to think only of

1In the U.S., 83% of primary caregivers are mothers (Laughlin, 2013).

2Manufacturer’s website for Luka, https://luka.ling.ai/, and Trobo, https://
mytrobo.com/.
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their 2–5-year-old child throughout the study. Parents received a
$25 Amazon gift card as compensation.

Data Analysis
To code the interviews, we employed grounded theory (Glaser,
1978). The first author analyzed the interview data using open,
axial, and selective coding in MAXQDA (vers. 18.0.7). The other
authors evaluated the trends and validity of themes. We extracted
570 excerpts from the transcripts. Through iterative memoing
and refinement of categories (Corbin and Strauss, 2008), we
developed three overarching themes: Story time experiences,
envisioned storytelling robots, and attitudes toward using
robots. Within these themes we developed further categories
(Table 1).

FINDINGS

This section describes parents’ experience of children’s story time,
their attitudes toward storytelling robots, their context of use,
their vision for robot features, and their concerns. It also relates
these descriptions to the literature.

Parent–Child Story Time
Parent–child storytelling is distinguished from other family
activities by its combination of instructional value for the
child’s literacy and its entertainment value for both parent and
child. In F2’s words, story time was special because it was
“education and playing at the same time.” Parents commonly
started reading for their children by their eighth or ninth month,
if not earlier.

Motivation for Parent–Child Storytelling
Parents often linked storytelling to literacy education. They
reasoned that story time stimulates children’s curiosity,
imagination, and creativity and builds their vocabulary, all of
which benefit brain development and language acquisition. M9, a
children’s librarian, stated, “All the brain synapses and
connections are made in those first three years. So, it’s really

important to read to them and tell them stories and have them
learn as many words as possible because their brains are like
sponges; they soak up everything.”M3, amother of a daughter who
had apraxia (i.e., motor-speech disorder), explained, “It was hard
to get her to speak because what was going on in here was processed
differently. Reading out loud is very good for her because it’s
teaching her lots of words.”

Some parents avoided telling their children stories because
they thought it might harm their literacy. F1 explained, “I’m really
bad at phonetics, because I’m really bad about adding letters. So,
I’d feel bad if he walked into school and said whatever word it was,
and people made fun of him. That would stink.” This indicates
how some parents tried to balance being a help or hindrance to
their child’s development of literacy.

Parent–child story time was often valued as a family tradition
and time for bonding. M8 stated, “My dad did it for me, and so it
kind of reminds me of that time when I was a kid and my dad was
lying in bed with me reading to me. Like a cultural tradition.” F3
explained, “I grew up on them. It’s kind of a staple of growing up,
having stories read to you by your parents.” Story time builds
closeness and is one of the joys of parenthood. M11 said, “We
cuddle, so we sit close together, and I’ll put my arm around her, and
it’s just kind of a bonding time.” Some parents simply enjoyed
story time. F1 stated, “It’s fun. We kind of lie in bed together and
look at the pages and talk about it.” In other words, watching
children get excited about stories and learn things was a treasured
part of parenthood:

I like watching the look on her face, ‘cause sometimes
she’s confused, and I see her eyebrows go up and down
and see her cock her head to the side. I just enjoy seeing
her reaction and how curious she is. She’s curious, cocks
her head, moves her eyebrows. It’s like I can see the
wheels turnin’. I don’t know what they’re doing up there,
but she’s definitely thinking. [M14]

Some parents use story time to set up their child’s evening
routine. As part of a bedtime ritual, parents use storytelling to
help the child regulate affect (e.g., to settle down). M3 stated,

TABLE 1 | Data themes and examples

Themes Subthemes Excerpt Sample statement

Story time experiences Approach 67 We’ll sit and read on my phone if we’re out somewhere.
Motivation 30 It’s important for her development, for language development, imagination, and bonding.
Emotion 19 I really don’t like reading some of those books over and over and over again.
Content 17 We tell stories from books. If we make up stories, it’s just characters he knows, like daniel tiger or

from PBS kids.
Envisioned storytelling
robots

Robot–child interaction 108 It looks more like having a friend, having a second person than having just toys everywhere.
Robot appearance 36 Maybe a size as big as a human being can be... if it is possible.
Robot intelligence 13 If the child is talking back while they’re reading, the robot should be able to interact with the child.
Robot-delivered content 13 Probably, no UFO stories or anything weird.

Attitudes toward using
robots

Concern 93 I’m afraid she would lose her interpersonal skills and knowing how to interact with humans.
Positive attitude 88 If he (her child) would pay attention to the robot and sit there, then I could get something else done.

That would be nice.
Robot-related experience 65 . . . cause alexa doesn’t understand the kids all the time.
Using robot vs. other
technology

21 The robot is made for a kid, and it had kid’s content, whereas iPads are not just made for kids.
There’s lots of other stuff.
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“When it’s story time, she’s not up running around and playing.
And she knows that story time is the progression in going to bed.”
This ritual could also give children a sense of being part of a
family and help to maintain the parent–child bond (Franklin and
Bankston, 1999). Other parents hoped that their children would
form healthy long-term habits through an early attachment to
books. M14 explained, “We want her to be curious and learn, and
we know that it starts at a young age. So, by reading stories to her
now, we hope she’s going to continue to want to read and continue
to want to learn.” These examples reveal storytelling as a way of
parenting.

Stories took various forms. Some parents read fairytales or
short stories because they fit their children’s attention spans.
Other parents told family stories. Their children enjoyed hearing
about what happened before they were born. In particular,
parents tended to involve younger children in the storytelling
process, such as setting a scene, developing characters, creating a
plot, and so on. In other words, they created stories with their
children, instead of for them. This made story time a venue for
self-expression as well as social interaction, which situated the
children as active agents in constructing their sense of self (Korn,
1998):

Sometimes, she’ll say, ‘Mom, tell me a story,’ and I’ll say,
‘Okay, once upon a time there was a princess named
Charlie [her daughter’s name],’ and then I’ll say, ‘And
then what happened?’ and then she’ll say, ‘Oh a big
dragon came and took her away,’ and so we just kind of
create stories doing that. As she got a little older, we
would read books more [M11].

In sum, parent–child storytelling could serve multiple
goals, involve dynamic interactions, and nurture mutual
well-being. Balancing its contribution to a child’s literacy
with potential adverse effects could pose a challenge to some
parents.

The Role of Technology in Story Time
Most parents preferred the use of physical books to technology.
M4 stated that, although using physical books is “old-fashioned,”
it is something children “have to get used to, though things are
becoming more and more digitized.” A recurring reason screen-
based devices were not favored was that parents doubted young
children could benefit from stories played on such a passive
medium. M14 explained that “at her age, she’s having fun [playing
with a smart device], but she’s not learning anything.” She
emphasized that during story time children should physically
“experience things” like turning pages. Similarly, F1 observed that
his son didn’t look at the pictures in the book while listening to
the story on a phone application. In this case, F1 mentioned, “I try
to make him pause and look at the scene that’s on the page and
kind of get an idea of reading comprehension, I guess, so that
these words go with this picture.” Indeed, brain connectivity in
children increased with time spend reading books and decreased
with time spend using screen-based media (Horowitz-Kraus and
Hutton, 2018).

Nevertheless, some parents valued smartphones and tablet
PCs such as Kindles and iPads for providing quick access to a
large supply of reading material. M8 stated, “We do actually read
on my phone a lot. We’ve got one of those Kids Zone type apps, and
it’s got different books in there. We’ll sit and read on my phone if
we’re out somewhere. It’s just easier than dragging three or four
books around.” Some parents used multimedia, such as online
videos and TV programs, as a replacement for story time to
relieve the stress of parenting. M9 explained, “The screens are the
only thing that can take his attention to the point where he won’t
keep asking me questions. Because he’s an only child, it’s just me
and him in the house. And he wants to interact with someone.”
M5, an exhausted mother, said, “I don’t have time to tell him a
story. Those programs are already on the TV. Basically, I would
rather have him once in a while sit down and listen to stories.”
These accounts reflect how parents employed technology in
“digital parenting” (Mascheroni et al., 2018).

Positive Attitudes Toward Children’s
Storytelling Robots
This section reports parents’ vision of children’s storytelling
robots and the robot’s context of use. Parents generally held
positive attitudes toward the robots, especially compared with
screen-based technologies.

Parents’ positive attitudes were exhibited by their vision of the
robot’s role and suitability for children. Parents envisioned a
storytelling robot as a “parent double.” For instance, M4 stated,
“If I had an especially busy night, and my husband wasn’t home,
and it was time to do story time. You know, that would maybe give
me 10 min to pack their lunches while they listen to their story from
the robot.” Moreover, parents reported a desire to have a
storytelling robot deal with “boring tasks” like rereading a
book. M12 stated, “If she gets to a point where she does want
to do the same book, you know. Finish it and start right back over,
a robot would definitely do that. I would not want to.” Indeed,
developmental studies suggested that requesting repetition in
book reading is common for young children (Sulzby, 1985).
Having the same book read to children repeatedly can increase
their enjoyment and helps them learn new words (Horst, 2013).
M10 also expected a robot to do something she didn’t enjoy doing
during story time: “My older one is almost doing chapter books. It
would be awesome if [the robot] read chapter books because that’s
what I hate—reading out loud.” These examples show how
parents value a robot contributing to children’s story time and
reducing their stress.

Some parents wished to delegate tasks involving emotional
support. M4 explained that when children need to study, “it
would be nice to have an automated thing that could do that with
them, and say, ‘Hey, that’s right!’ or ‘No, that’s wrong.’ You do the
boring stuff, robot, and I do the fun stuff.” Surprisingly, some
parents wanted the robots to cover difficult topics like sex and
death. M3 remarked, “She was just watching Daniel Tiger, and
they were talking about death, so [the robot] could cover topics that
are hard to discuss [or] at least start the conversation.” These
findings show the need for robots to perform social support.
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Parents thought the robot could facilitate children’s story time
in many ways, most of which relate to their perception of a robot
as social. M13 explained, “[The robot] would probably keep [my
son’s] interest a bit longer. He might think, ‘It’s a person. I have to
stay here because it’s reading to me.’ He might be more fascinated
with it too.” Parents speculated that robots would engage children
in social interaction while reading: “an advantage is that your
child is hearing somebody else talk.” Parents envisioned robots
acting as an educational peer. M3 observed, “I could see that being
useful when they’re learning to read just because it would be a
buddy to practice with, and it could maybe help her if she got stuck
on a word.” Similarly, M4 looked forward to robots that could
reinforce her children’s foreign language learning at home. F1,
who was not confident with phonetics, said, “If I’m stuck on a
word going, ‘I’m not sure buddy,’ then we could be with the robot
and put him in front of it and he could read the paragraph. That
would be really nice.” Some parents suggested that robots could be
an authoritative social mediator:

Sometimes, when I’m reading with my five-year-old, she
doesn’t believe that a word is pronounced the way that
I’mpronouncing it, and so I have gone on dictionary.com
and had to play it for her. And, I’m like, ‘See? Right here.’
And, she’s like, ‘No, no, no. You’re just doing that.’
So, I’m kind of like, ‘Well, see the robot said this is
how you pronounce the word.’ And, she might be like,
‘Oh, okay.’ [M10]

Parents indicated that robots would be more child-friendly
than televisions, tablets, smartphones, and other devices because
a robot’s predetermined content was controllable and
trustworthy. M4 explained, “I would kind of trust a pre-
programmed thing made for kids, whereas something like
YouTube, they could go down a wrong path and see things that
they shouldn’t be seeing.” As such, parents preferred a robot that,
unlike today’s Internet (Nikken and Jansz, 2014), would not
require their direct supervision. Some parents envisioned
interacting with a robot would benefit children’s development
by reducing their screen time, which is “bad for their eyes” (M10).
Moreover, robots were seen as addressing usability issues that
impede children’s technology adoption. M13 mentioned, “He gets
upset because he doesn’t understand how to control the phone. A
robot would be easier for kids to interact with.” This example
shows how parents envisioned it being immediately apparent
how to use the robots. In other words, they expected them to have
highly salient affordances.

Children’s Storytelling Robots:
Expectations and Concerns
Despite the perceived usefulness of children’s storytelling robots,
we observed a series of technical and social challenges that would
affect parental acceptance and adoption. Previous studies indicate
that people expect robots to have social traits that help them
empathize with people (Breazeal, 2004). The present study found
that parents expect storytelling robots to have social intelligence.
However, a mechanical robot possessing this human quality

might give parents cognitive dissonance. This psychological
pain arises from inconsistent cognitions (Festinger, 1957), such
as perceiving the robot as a social being while knowing it is just a
machine. We identified two key factors impacting cognitive
dissonance: a robot’s 1) adaptive capability and its 2) affective
capability. Parents expected a storytelling robot to be competent
at both, though their acceptance of storytelling robots could be
hindered by ethical concerns and by the uncanniness of robots
that seem to be electromechanical yet possess conscious
experience.

Adaptive Capability
We define adaptive capability as the ability to adapt
autonomously to a real-world context. Parents doubted
whether the adaptive capability of robots could meet the
challenges of children’s storytelling. A major concern was
impromptu conversations between the child and the robot. In
particular, parents expected robots to respond to questions from
children automatically. Enhancing the robot’s autonomy would
likely increase its perceived usefulness and thus acceptance
(Thrun, 2004).

Prior research indicates that conversational interactions
during story time lead to children’s literacy success (Berk,
2009). These interactions happen naturally during
parent–child storytelling. For example, as M6 explained,
“When you are reading to children, they want to talk. They
will not just sit and not talk as you’re reading. Most times, they
want to talk like ‘Oh am I flying? Am I ...?’” Thus, she envisioned
the robot interacting in real time to help children engage with the
story. “[Children] usually have questions when they are reading,
and if the robot is not answering the questions, they can’t even
think about their questions and all.” Discussions could help
children interpret the story, including the character’s facial
expressions. M13 suggested, “The discussion is definitely
important because she needs to be able to look at somebody
and know if they’re angry or if they’re sad.” Parents talking to
their children would help them develop literacy and a love of
reading (Burns et al., 1999).

Additionally, parents mentioned that a robot would need to
recognize a toddler’s voice. M4 said, “We have an Echo up there,
and so, a lot of times when we ask Alexa questions, she’s like, ‘Oh, I
don’t understand you. I don’t understand you,’ especially with the
kids.” She further explained that a child’s voice is “so different and
high-pitched, or they don’t pronounce words right, so I could see
that being really frustrating for a kid if the robot’s not
understanding them.” The robot would need a system for
understanding a child’s speech.

Another challenge was whether storytelling robots could
maintain children’s engagement to guide their attention. In
real life, parents often use linguistic skills, emotional
expression, and gestures to increase engagement. For example,
M5 added rhyme so that the story is “not going to be so boring”
and to keep her child on track with the story. She insisted that the
skill of storytelling is unique to “human beings.” Some parents
upheld that humans were naturally better storytellers than robots
because they can gauge the child’s reactions and decide what
information is important to convey. Another common concern
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was that the robot’s synthesized voice with its flat intonation and
monotonous rhythm would hamper reading comprehension.
Indeed, a storytelling robot’s intonation and emotion predict
concentration and engagement (Kory-Westlund et al., 2017).

Paradoxically, some parents preferred a robot with a low level
of autonomy to converse with their child on security and ethical
grounds. Parents feared that children trusting the robot could put
them at risk if someone hacked the robot or recorded their
conversations. F3 noted, “If the robot was like, ‘What’s your
dad’s social security number?’ I might freak out.” F2 pointed
out that some questions (e.g., sexual orientation) were too
sensitive for young children to discuss, even with parents. M7
thought a robot with a high level of autonomy would be
threatening: “I don’t want something that’s going to take over
my house. I don’t want her to become reliant on a robot.” Given
these concerns, parents suggested that stories requiring limited
turn-taking would befit robot–child storytelling. Specifically,
alphabet books and nursery rhymes are good candidates
because they are easy to follow without a back-and-forth
conversation.

A few parents found the idea of a robot talking with a human
spooky. M9 remarked, “It’d be like ‘Hello Emily, how are you?’
And I’d be like ‘No! Stop talking to me.’ But it’s just because I
watched too many scary movies when I was a kid, where things
that weren’t supposed to talk started talking.” Some parents
recounted their impressions of early talking toys:

You remember those Furbies? Those things would just
start talking out of nowhere, and it scared people. If the
robot could just wake up and start telling a story in the
middle of the night, if it started talking on its own out of
nowhere, I think I would be scared of it. [M8]

Some parents wondered how storytelling robots could flexibly
adapt to complex surroundings. M14 noted that a typical story
time for children would be at bedtime in dim light. The robot may
be unable to “see” the book. Or, if a robot could only read in the
sunroom, it could cause frustration because the sunroom might
be occupied. The children might have to choose between being
with the robot or being with their parents, and “sometimes they
just want to be close to mommy and daddy. They don’t want to be
left alone” [M14]. In other words, the adaptive capability of a
robot could affect its actual use and even make humans
accommodate to it.

Affective Capability
We define affective capability as the robot’s ability to express
emotion appropriately, to influence the user’s emotional
engagement with the robot and topic or story, and to arouse
the user’s affection. To these ends, parents expected the robot to
employ various features, such as appearance, emotion contagion,
empathy, and social engagement.

Parents generally expected the appearance of a storytelling
robot to be anthropomorphic, for example, “having head and
body, such as R2D2 in Star Wars” [F3]. Some parents thought
having arms and legs could differentiate a robot from other
devices. In particular, robots with eyes were believed to help

children take their reading time seriously. M5 reasoned, “I like the
fact that the robot has got eyes, because it looks like, ‘Okay, we are
looking at each other, so what are we talking about?’ And then you
could say, ‘No, that’s not a toy.’” M11 expected the robot to have
hands to hold up a physical book and turn pages so children “have
to stay engaged.” Parents tended to imagine the robot resembling
a human to support social engagement.

However, some parents felt threatened by the idea of the robot
having a humanlike appearance because the child might treat it as
an alternative parent. M11 was concerned that a child would
think a humanoid robot was the one “to get reading from or to
spend time with.”M13, who thought of reading as mothering her
child, explained that if the robot were not humanlike, she
wouldn’t feel it was taking her spot. Furthermore, several
parents pointed out that robots would be creepy if they were
too lifelike. One mentioned Teddy Ruxpin, an animatronic toy in
the form of a talking bear: “It’s just trying too hard to be human. I
would like the toy to acknowledge that it’s a toy. I would want it to
have some kind of a toy appearance” [M12]. In particular, a parent
expressed her eerie feeling when Teddy Ruxpin rolls its eyes and
moves its mouth while talking:

They were scary. I never wanted to own one, because it
was just like these big eyes that moved around and this
tiny mouth. It was like ‘Hi, I’mTeddy Ruxpin.’And I was
like, no you’re possessed by the Devil. [M9]

Parents expected storytelling robots to act expressively. They
emphasized that the manner of expression was critical. In M5’s
words, “Robots should be able to express stories while they are
saying them.” This aligns with Bauman’s “performance-centered
conception of verbal art,” which holds that “the formal
manipulation of linguistic features is secondary” (Bauman,
1977). Specifically, parents envisioned storytelling robots as
being able to express emotions through body language,
gestures, eye gaze, and so on. Such communication would help
make concepts easily understood by young children. Children
should not be “just like sitting, watching something on a screen, or
just like listening to a tape play” [M9]. A typical example would be
indicating with the hands an object’s size or shape.

Moreover, parents anticipated that emotions serve shared
psychological and physiological functions, which are critical in
the context of storytelling. For example, humor can hook children
into story time, enhance learning, spark social interactions, and
establish rapport (Savage et al., 2017). However, some parents
indicated that, because humans and robots lack a shared social
grounding, they would not be able to share in each other’s
emotions. F3 reasoned that humor could give different people
different perceptions. He provided an example where a robot was
reading a picture book where characters were waving long arms:
“He can’t necessarily ask the robot why the arms are so long and
squiggly or laugh with it that the arms look squiggly and funny.
That’s something that humans would be like, from one person to
another, subjective, but long, squiggly arms are funny. So, you can’t
really have that emotional interaction with the robot.” In sum, an
emotional exchange requires social grounding, which remains a
nearly insurmountable challenge for social robotics.
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The affective capability of the robot led to another struggle
concerning the relationship between robot and child. Some
parents wanted the robot to have the affective capability to
engage children in social interaction beyond story time. Unlike
another device that might just be left on a shelf, they proposed
children could carry the robot around, talk with it, and cuddle
with it while going to sleep. However, parents worried whether
interacting with the robot would impede the development of
social skills or cause social dysfunction. M7 was reluctant to use
the robot “because I’m afraid she would lose interpersonal skills
and knowing how to interact with humans.” M11 highlighted
human–human interactions: “that cuddling, that hug, I think
that’s important when they’re young.” Parents commonly noted
that, for young children to learn social cues and how to engage
with others, real people were irreplaceable.

The idea of social robots that simulated human warmth
perturbed some parents. In particular, some busy parents
worried that leaving children to such robots might create a
gulf between parent and child. The child might prefer the
robot to the parents and spend more time hugging and
cuddling with the robot. In this case, young children could
switch their attachment from their parents to their robot. M4
worried that if she left her son with a robot, “he might just get
addicted to it and want to spend more time. He might find the
robot’s stories more interesting than your stories, even when you
have the time to tell him stories.” M5 worried that using a robot
could reduce time spent with children and chances to get to know
them: “So, they may have imaginations that you cannot know
because you are not the one telling them the story.” These parents
viewed affectively capable robots as a threat to parenthood.

Some parents disliked the idea of children’s storytelling
robots. They considered story time a unique part of
parenting that should never be handed over to an AI-enabled
robot. F1 explained, “I think [story time] is my bonding time, this
is my time to spend with my kid. So, I don’t want people to use
them to separate themselves, because I feel that raising a kid is
very personal.” M9 insisted that she would never give up any
story time with her child, “I love telling stories to him, and I love
reading books to him. It is my job at home.” F4 discussed stories
as a way to shape his children’s morality, stating, “I don’t want to
get to the point where robots are informing my child on topics. It’s
a parents’ job to parent and be responsible for their kid. I don’t
ever want that responsibility to be on a school or a robot or
anything but my wife and me.” These quotes underscore how
some parents consider parent–child story time to be an activity
exclusively for family members.

DISCUSSION

In this section, we discuss parental acceptance of children’s
storytelling robots in the home. We argue that parents’
expectations and concerns reflect an uncanny valley of AI,
which may be interpreted using the metaphor of the castle in
the air. Finally, we explore the implications of designing
children’s storytelling robots and propose directions for future
research.

Parental Acceptance of Children’s
Storytelling Robots
Our findings indicate that, despite reservations, parents would
generally accept storytelling robots in their home. Their
acceptance relates to how they valued children’s story time.
Parents emphasized their three main goals: literacy education,
family bonding, and habit cultivation. Correspondingly, parents
valued storytelling robots for pedagogy, felt they could threaten
parenthood, and struggled with their potential effect on child
development through daily use.

Parents also viewed parent–child story time as personally
fulfilling and beneficial to their family. This explains the
reluctance of some parents (e.g., M9, F1, and F4) to use a
storytelling robot: It might steal from family time and weaken
family cohesion. This concern is not without merit. Previous
studies indicate task persistence reinforces attachment (Bergin,
2001). In other words, family cohesion increases with the time
parents spend telling stories to their children. Family bonding
during parent–child story time includes talking, cuddling, and
joint attention, all occurring in a physically and socially shared
space. Beyond giving comfort, parent–child touch could enhance
prosocial behavior. To replicate this between child and robot is
challenging (Willemse et al., 2017). In addition, storytelling gives
parents a chance to start discussions that teach their children
values. Thus, it supports family cohesion and shapes family
identity.

According to parents’ narratives, a storytelling robot may
require intentional agency, which assumes a strong AI position
(Searle, 1980). The robot might then be able to establish an
intricate microsocial environment for human children in the
home. Although some parents viewed this conception as utopian
(Segal, 1986), the context of children’s storytelling touched a
nerve. The theory of Ba proposes that a living system maintains
self-consistency by the contingent convergence of the separated
self and the non-separated self (Robertson, 2007). Here, futuristic
child–robot storytelling is a Ba that involves a dynamic tension
between a roughly human storyteller and a developing human
child. Some parents seemed disturbed by the thought of a robot
guiding a child through emergent, uncertain states of
development. Their concern runs counter to the expectation
that a storytelling robot serve as parent double. These
conflicting cognitions elicit the psychological discomfort of
cognitive dissonance. Storytelling as the context of use could
be a critical factor in parents’ ambivalence regarding robots for
children.

We interpreted a parent’s expectation as reflecting different
perspectives on a robot’s ontological status—whether it could
exhibit human likeness, agency, and emotions. In the storytelling
context, parents spontaneously imagined the robot as
anthropomorphic and anthropopathic. Parents tended to
imagine child–robot interactions as mirroring human–human
interactions such as turning the pages of a physical book. By
contrast, screen-based technology typically involves a graphical
or voice interface. These interfaces are often not child-friendly,
which frustrates parents (e.g., McFarlin et al., 2007). Thus, a robot
was deemed more suitable. Parents went on to envision scenarios
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where the robot acts as a peer or mediator. Parents thought a
physical robot could engage socially with children and forge a
relationship with them, which could benefit children’s overall
development. Thus, parents’ perception of robot agency
heightened their expectations of the future of child–robot
interaction relative to other technologies.

However, some parents were also disturbed by the scenario of
a robot simulating human interactions. Nevertheless, parents
seemed optimistic about the ability of futuristic robots to
reduce their parenting stress by serving as a “parent double”
in performing “boring” or “difficult” tasks. They expected a
robotic storyteller to simulate a human storyteller’s physical
autonomy and social intelligence. Successful storytelling would
involve verbal and nonverbal interactions laden with affect. In
other words, to be effective, a storytelling robot needs to respond
dynamically to young children, whose communication involves
various resources, such as gestures, vocalizations, facial
expressions, body movements, and so on (Flewitt, 2006).
However, parents’ ambivalent, paradoxical feelings may have
been sharpened by the robot’s perceived intelligence. They
struggled with its adaptive and affective capability. Parents
worried children would trust the robot and follow its
instruction, which could be a security threat if, for example,
another person took control of it. Thus, perceived intelligence
could be a third influential predictor of parents’ acceptance of
storytelling robots.

In sum, the context of use, perceived agency, and perceived
intelligence of a robot were promising predictors of parental
acceptance. Designers of children’s storytelling robots should
consider these factors in the design and evaluation process.

A Projection of the Uncanny Valley of
Artificial Intelligence
We argue that the two factors impacting parents’ cognitive
dissonance, a robot’s adaptive capability and its affective
capability, are a projection of the uncanny valley of AI. Why
did some parents envision a children’s robot telling stories in a
humanlike way—flipping storybook pages, pointing out
illustrations, acting out scenes, and responding to disinterest
or spontaneous questions—yet preferred the robot to have a
low level of autonomy? Why did some parents feel weird when
greeted by a robot but not when it told their children stories?

Consider the Chinese idiom castle in the air. It denotes the
impractical dream of building a magnificent third floor before the
first two floors are complete. Imagine building a three-story castle
of a robot’s intelligence. The ground floor is weak AI. The robot
combines bottom-up processes, each designed for a particular
task. For example, a robot obeying the command read a story out
loud or open the window might just be simulating some
disconnected aspects of human behavior. The next floor is
strong AI. The robot has—or at least simulates—general
human intelligence. It can apply top-down processing to figure
out what to do in new situations. For example, the storytelling
robot may be able to infer disengagement when the child
responds slowly in a low voice. The top floor is social
intelligence. The robot creates the feeling of being in the

presence of a living soul—with free will or whatever being
human entails. For example, if the child lost interest in a
story, the robot would be able to respond like a real person.
Science fiction has dramatized the top floor. In the 2001 film AI.
Artificial Intelligence, David, the robotic boy, felt desperate about
his human mother abandoning him and set out to find out why.

As the floors of the castle of a robot’s intelligence are
constructed, and as its human characteristics increase, human
perception begins to apply a model of a human other to the robot.
If the bottom or middle floor is perceived as incomplete, the top
floor becomes a castle in the air. It is unconvincing and even
creepy. These perceptions reflect an uncanny valley of AI: a
nonlinear relation between affinity and the perceived
humanness of an artificial agent’s mind (Figure 1).

Our proposal is a bit different from Mori’s original concept of
the uncanny valley of human likeness—that is, outward
resemblance (Mori, 2012). Specifically, as the intelligence of an
artificial agent increases, it becomes more likable, up to the point
at which its perceived intelligence begins to approach human
intelligence. For example, an embodied storytelling robot capable
of conversation while flipping pages, is more appealing than
Roomba, the cleaning robot, because the former is capable of
social interaction. However, when a robot’s intelligence seems
more human, but is still distinguishable from human, it could
elicit an eerie feeling. This could explain why some parents
preferred a robot with a low level of autonomy. For a more
extreme example, Edward Scissorhands’ human intelligence is
betrayed by his atypical way of thinking and behaving, which
makes audiences see him as uncomfortably deviant (Clarke,
2008). This uneasy feeling disappears when a robot’s perceived
intelligence becomes indistinguishable from a real human (e.g.,
when an AI passes the total Turning test, Harnad, 1991; Saygin
et al., 2000; Turing, 1950).

Researchers have proposed different explanations of the
uncanny valley (for a review, see Kätsyri et al., 2015; Wang
et al., 2015). Most theories focus on how imperfect human
appearance or movement triggers eeriness (Ishiguro and Dalla
Libera, 2018; Paetzel et al., 2020). For example, when a robot’s

FIGURE 1 | The Uncanny Valley of AI.
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human resemblance exceeds a certain point, the expectation of
human performance eclipses the robot’s ability to perform
(MacDorman and Ishiguro, 2006). Indeed, the idea of
androids alarmed some parents (e.g., M9 and M12).

However, just as a real human being can be evaluated from the
standpoint of mind or awareness, a robot’s intelligence could play
a role distinct from its appearance. People might be unsettled by
AI-enabled voice assistants like Amazon’s Alexa, although the
shape of the device is just a black cylinder (Thakur, 2016). Factors
other than a humanlike appearance influence mind perception
(Gray et al., 2007; Gray et al., 2012). To extend Mori’s
observation, the uncanny valley of AI predicts that 1) a certain
level of intelligence facilitates social interaction between humans
and robots and 2) artificial intelligence that is similar to, but still
distinguishable from, human intelligence could create the
uncanniness of a castle in the air.

Perceptual issues with the first two floors of a robot’s
intelligence could lead to this. For example, why did a parent
(M8) mention that it was creepy for Furbies to suddenly start
talking? There could be at least two reasons. One is the lack of
transparency of the first two floors (Kory-Westlund et al., 2016;
Wallkötter et al., 2020). The affordances for engaging with the
robot’s intelligence are unclear. For example, ordinary people
have a limited understanding of the structure of the second floor
(i.e., the robot’s perceived capability for top-down processing),
which makes it difficult for them to establish a mental model of
how a robot with a social capability operates (i.e., the top floor).
As such, robots with the appearance of social intelligence could
create an illusion. When our brain tries to falsify the illusion but
fails, our expectations falter, our brain’s prediction errors
accumulate, and our feeling of a social connection with that
robot oscillates between what Quinton (1955) called perceptual
presence and pure thought. One practical way to relieve a user’s
weird feelings about a robot with high intelligence should be to
make its AI understandable (Wang et al., 2019).

The other issue underlying the creepy feeling of a robot that
suddenly starts talking could relate to mind perception, namely,
the eerie feeling caused by the attribution of mind to a machine
(Gray andWegner, 2012; Appel et al., 2020). People may perceive
mind along two dimensions: experience, the capacity to feel and
sense, and agency, the capacity to act and do (Gray et al., 2007). In
our findings, parents’ linguistic use reflects these two dimensions
of mind: adaptive capability relates to agency and affective
capability relates to experience. A robot with weak AI is
perceived as being low in experience but high in agency. The
increasing perception of a robot’s experience and agency tend to
reinforce each other, creating a halo effect (Nisbett and Wilson,
1977).

For example, when a storytelling robot starts talking
spontaneously, perhaps merely due to a bug in its program, it
can create an illusory experience: The robot appears to be more
than it is (i.e., the ground floor where a robot tells stories).
Contradictory perceptions and cognitions cause cognitive
dissonance. The robot seems to have the capacity to act and to
do something unknown (i.e., the top floor). Parents are especially
unsettled by unpredictable actions as they relate to their children.
Because the middle floor of the robot’s intelligence (i.e., strong

AI) does not yet exist, people construct the top floor as a castle in
the air, which is unnerving. However, more empirical research is
needed to examine the interaction between a robot’s perceived
experience and agency.

Children’s Storytelling Robots: Implications
and Future Directions
Although the development of robots as a parent double still faces
technical and design challenges, their social and economic value is
clear. Not every child has a caregiver with leisure time for
storytelling. Across the globe, we find social crises involving
children: children in orphanages and other institutions—and
sometimes refugee camps—without parental love and
nurturance; children in foster care, perhaps separated from
abusive or neglectful parents; children whose parents are
illiterate, blind, deaf, or mute; children with autism who find it
easier to interact with a robot, and so on (Scassellati et al., 2012).
While artificial love may never replace human love, storytelling
robots could lessen inequality by simulating parental warmth
during early development.

The prospect of leading educational activities in the home
causes some parents stress (Deniz Can and Ginsburg-Block,
2016). Alternatives, such as having relatives or babysitters read
to their children or placing their children in literacy programs,
may raise issues of trust or pose a financial burden. Sometimes a
human assistant may be unavailable, such as during the lockdown
period of a pandemic. Thus, robots acting as a parental double
during story time could help relieve parental stress.

Using storytelling robots to address the social crises
mentioned above is not whimsical. Robots have been used to
address social crises elsewhere. For example, Japan’s government
identified robotics as a solution to its looming demographic crisis
caused by a lack of young people to care for older adults. Robots
are also used in Japan to care for children, to provide
companionship, and to perform chores (Robertson, 2007).
Robots were preferred as home healthcare workers to Asian
foreigners. They were considered less likely to violate cultural
norms or interpret history in a way that could cause conflict
(Robertson, 2007). However, social acceptance of robots could
vary with religious and cultural history, personal and human
identity, economic structure, professional specialization, and
government policy (MacDorman et al., 2009). Thus,
crosscultural issues should inform future studies on the
acceptance of children’s storytelling robots.

Nevertheless, envisioning a storytelling robot has raised
concerns (e.g., for M9, F1, F4). For example, a robot could
become a threat to parenthood or parental identity if a child
shifted attachment to the robot. A young child could develop a
closer relationship with the robot through even boring activities
like reading a book repeatedly (Sharkey and Sharkey, 2010; Kory-
Westlund et al., 2018). The embodiment and voice of a
robot could be powerful indicators of social presence (Reeves
and Nass, 1996). Therefore, interacting with a robot during story
time could give a young child the illusion of rapport (Turkle,
2007). However, child–robot rapport is unlikely to threaten
child–parent attachment. Children are predisposed to be
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attached to their mother, attachment has survival value (Bowlby,
1977), and begins in utero (Sullivan et al., 2011).

Future directions for designing children’s storytelling robots
include research on how to create educational and affective
experiences for at-risk young children, how to promote the
well-being and quality of life of parents, and design principles
for healthy human–robot relationships (MacDorman and
Cowley, 2006; Miklósi et al., 2017). Moreover, as both children
and parents are stakeholders, their individual differences and
interaction patterns could predict the success of storytelling
robots. One critical variable is parenting style, which correlates
with children’s technology use (Chou and Fen, 2014). In addition,
to evaluate parental acceptance of children’s storytelling robots
more accurately and to explore how the robots would be brought
into the family, longitudinal studies are needed. Finally, more
generalizable studies to support the proposal of the uncanny
valley of AI could come from future work, including surveys,
replications with a broader sample, and laboratory experiments.

CONCLUSION

The present exploratory study investigated parental acceptance of
storytelling robots for young children in the home, a subject that
has received scant attention. Using design fiction as a research
technique, we found that household storytelling robots are more
than a new type of technology for children. They provide an
intricate testing ground for studies on cognitive perception,
family dynamics, and human–robot interaction design.

Our findings showed that parents had ambivalent though
generally positive attitudes toward storytelling robots and were
willing to accept them in the home. Parents valued storytelling for
their child’s literacy education, habit cultivation, and family
bonding. These goals provide a framework for assessing the
usefulness of storytelling robots. Likely predictors of robot
acceptance include context of use, perceived agency, and
perceived intelligence. Parents both valued and felt concern
about the robot’s adaptive and affective capability.

We discussed possible mental models and cognitive
mechanisms behind parental expectations. Unlike screen-based
technologies, parents could see a storytelling robot as a parent
double, which could relieve them of boring and stressful aspects

of parenting but could also threaten parenthood. We also
introduced the concept of an uncanny valley of AI to explain
some of the parents’ ambivalent views. Parents found it difficult
to establish a mental model of how a robot with a social capability
operates, which creates cognitive dissonance and a feeling of
uncanniness. This feeling might be mitigated by making its AI
more transparent and understandable. Finally, we explored the
implications of using robots for children’s story time, including
their potential influence on parental well-being, and suggested
directions for future research.
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Šabanović, S. (2010). Robots in Society, Society in Robots. Int. J. Soc. Robotics. 2 (4),
439–450. doi:10.1007/s12369-010-0066-7

Savage, B. M., Lujan, H. L., Thipparthi, R. R., and DiCarlo, S. E. (2017). Humor,
Laughter, Learning, and Health! A Brief Review. Adv. Physiol. Education. 41 (3),
341–347. doi:10.1152/advan.00030.2017

Saygin, A. P., Cicekli, I., and Akman, V. (2000). Turing Test: 50 Years Later.Minds
and Machines. 10 (4), 463–518. doi:10.1023/A:1011288000451

Scassellati, B., Henny Admoni, H., and Matarić, M. (2012). Robots for Use in
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Do Shy Preschoolers Interact
Differently When Learning Language
With a Social Robot? An Analysis of
Interactional Behavior and Word
Learning
Nils F. Tolksdorf *, Franziska E. Viertel and Katharina J. Rohlfing

Faculty of Arts and Humanities, Psycholinguistics, Paderborn University, Paderborn, Germany

Temperamental traits can decisively influence how children enter into social interaction with
their environment. Yet, in the field of child–robot interaction, little is known about how
individual differences such as shyness impact on how children interact with social robots in
educational settings. The present study systematically assessed the temperament of 28
preschool children aged 4–5 years in order to investigate the role of shyness within a
dyadic child–robot interaction. Over the course of four consecutive sessions, we observed
how shy compared to nonshy children interactedwith a social robot during aword-learning
educational setting and how shyness influenced children’s learning outcomes. Overall,
results suggested that shy children not only interacted differently with a robot compared to
nonshy children, but also changed their behavior over the course of the sessions. Critically,
shy children interacted less expressively with the robot in general. With regard to children’s
language learning outcomes, shy children scored lower on an initial posttest, but were able
to close this gap on a later test, resulting in all children retrieving the learned words on a
similar level. When intertest learning gain was considered, regression analyses even
confirmed a positive predictive role of shyness on language learning gains. Findings
are discussed with regard to the role of shyness in educational settings with social robots
and the implications for future interaction design.

Keywords: child–robot interaction, temperament, shyness, early childhood education, social robot, personality and
behavior, word learning, individual differences

INTRODUCTION

Recent years have seen a substantial growth in the applicability of social robots in educational
learning environments with young learners. Examples are therapeutic settings (Boccanfuso et al.,
2017; Cao et al., 2019), science learning (Causo et al., 2016; Park et al., 2017; Ioannou and Makridou,
2018), or language learning (van den Berghe et al., 2019; Vogt et al., 2019). More specifically, with the
benefits of an embodied agent (Belpaeme et al., 2018), social robots offer versatile possibilities to
engage children systematically in social interaction. Indeed, current research suggests that children
accept social robots as trustworthy social actors from whom they can obtain reliable information
(Breazeal et al., 2016; Vollmer et al., 2018; Oranç and Küntay, 2020). However, whereas these
findings consider the demonstrated behavior displayed by children on average, individual differences
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in child–robot interactions have received little attention.
Nonetheless, the way children enter into social interaction
with their environment is mediated crucially by their
individual temperament—specifically, by their shyness (Coplan
and Evans, 2009). In fact, past research has demonstrated that a
child’s shyness significantly influences her or his social behavior
in familiar and unfamiliar contexts (Reddy, 2000; Evans, 2001;
Coplan and Weeks, 2009; Crozier and Badawood, 2009; Feinberg
et al., 2012; Colonnesi et al., 2014; Smith Watts et al., 2014).
Additionally, shyness has a substantial impact on children’s
performance in educational settings, insofar as shy children
can either struggle to demonstrate their abilities in such
situations or implicitly reduce their learning opportunities
because they avoid social interaction (Evans, 2001; Spere et al.,
2004; Smith Watts et al., 2014). Although some work has focused
on how individual personality traits of adults affect interaction
with a robot (Walters et al., 2005; Salter et al., 2006; Salam et al.,
2017), research accounting for children’s behavior lags behind.
Thus, our aim is to raise awareness in the area of child–robot
interaction about how children’s personality traits such as
shyness are reflected in their behavior when interacting with a
social robot. Specifically, we aim to understand how the behavior
of shy children might develop over a long-term interaction and
influence learning gains with a social robot.

Extensive past research underlines the prevalence of shyness,
indicating that up to 90% of the population experience shyness at
some point in their lives with about 15% of individuals displaying
a shyness that emerges in early development and remains stable
across contexts (Zimbardo et al., 1975; Kagan, 1994; Schmidt
et al., 2020). Shyness in children can be conceptualized as an
increased and persistent behavioral inhibition in unfamiliar social
situations or during perceived social evaluation that can result in
withdrawal from interaction (Putnam et al., 2006; Rubin et al.,
2009; Barker et al., 2014; see Schmidt and Buss, 2010, for a
review). In developmental research, the effects of shyness are well
documented, showing that the behavior of shy children toward
their environment is reflected in both their verbal (Coplan and
Weeks, 2009; Crozier and Badawood, 2009; Smith Watts et al.,
2014) and nonverbal behavior (Reddy, 2000; Evans, 2001;
Putnam et al., 2006; Feinberg et al., 2012; Colonnesi et al.,
2014). For example, shy children are less talkative in familiar
and unfamiliar contexts (Asendorpf and Meier, 1993; Evans,
1996; Crozier and Badawood, 2009) and display shyness
through their facial expressions (e.g., by showing coy smiles)
or their gaze behavior (e.g., duration of eye contact or gaze and
head aversion; see Reddy, 2005; Colonnesi et al., 2014; Colonnesi
et al., 2017). Importantly, recent research emphasizes that such
expressions of shyness provide a positive and socially adaptive
function for shy children within an interaction that enables them
to regulate their emotions in unknown situations while also
increasing prosociality and trust (Reddy, 2005; Colonnesi
et al., 2013; Colonnesi et al., 2020).

Beyond the fact that shyness is reflected in children’s behavior
toward an interaction partner, shyness also has an effect on the
measured learning performance in educational contexts and
particularly in the domain of language learning. Spere et al.
(2004) and Spere and Evans (2009) have demonstrated that

temperamentally shy preschoolers perform more poorly on
both expressive and receptive vocabulary tests compared to
nonshy children. Similarly, Hilton and Westermann (2017),
recently investigated shy children’s retention abilities for
learned word–object mappings and compared their learning
outcomes with those of nonshy children. They looked at long-
term word learning processes when the children were engaged in
a word learning task: After a 5 min break, shy children did not
retain any novel word they had formed during the learning
situation; less shy children, in contrast, were able to retain the
trained words. In line with work indicating that shy children are
less likely to take risks in situations that are unknown or in which
they are being evaluated (Addison and Schmidt, 1999; Levin and
Hart, 2003), the authors suggested that shy children rely less on a
guess in their responses, and that this might be detrimental in a
situation in which they have to retrieve a novel word with
ambiguous referents (Hilton and Westermann, 2017).
Additionally, they argued that shyness may affect not only
performance during an evaluation situation but also the
immediate learning process—that is, due to shy children’s
aversion to the unfamiliar, they might be less inclined to use
novelty as a cue to the appropriate referent of a novel label when
familiar/competitor objects are present. However, in this respect,
it has been suggested that these differences in learning
achievements could be context-dependent and not genuine,
and that they should disappear under conditions that
minimize anxiety or fear of evaluation (Spere et al., 2004;
Hilton and Westermann, 2017). Along these lines, it should be
borne inmind that conducting an experiment typically represents
a fundamentally unfamiliar social situation for a child through,
for instance, being exposed to unfamiliar people and unfamiliar
settings. Thus, and against the background of evidence that shy
children tend to show difficulties in experimental tasks (Crozier
and Hostettler, 2003), it can be argued that the unfamiliar
contextual environment during the testing situation might
have influenced the recall abilities of shy children.
Furthermore, Hilton and Westermann (2017), did not assess
children’s general linguistic skills, although research has shown
that existing linguistic knowledge should be considered when
measuring word-learning processes (Stelmachowicz et al., 2004;
McMurray et al., 2012). Therefore, investigations that include
children’s linguistic abilities, are extended over a longer period of
time, and are not limited to a single occasion could increase
familiarity with the contextual environment and shed a more
nuanced light on shy children’s learning outcomes in comparison
to their nonshy peers. In sum, the currently available evidence
shows that shy children’s behavior and learning is highly sensitive
to contextual changes that may be particularly pronounced in
social interactions such as in unfamiliar face-to-face encounters
or during testing situations (Spere et al., 2004; Putnam et al., 2006;
Matsuda et al., 2013).

Turning to the area of child–robot interaction, only a few
attempts have been made to explore shy children’s behavior
during interaction with a social robot, although possible
implications of shyness for child–robot interaction in
educational contexts are acknowledged (Baxter and Belpaeme,
2016; Baxter et al., 2017). Instead, most studies dealing with
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personality traits in this field examine approaches to provide the
robotic system with the ability to automatically estimate the
personality of a child based on predefined behavioral
characteristics (Abe et al., 2014; Abe et al., 2017; Schodde
et al., 2017; Abe et al., 2020; Sano et al., 2020) or to equip the
robot itself with certain personality traits (Fischer et al., 2019;
Calvo-Barajas et al., 2020). One of the few studies to address
shyness in child–robot interaction investigated preschooler’s
perceptions during a free-play situation in a kindergarten
setting (Abe et al., 2014). In this study, parents evaluated their
children’s shyness on a 5-point scale before estimating the social
relationship between their child and the robot after a single “one-
off” interaction. The study found that shyness clearly affected the
relationship with the robot; and, according to the parents, one
third of the shy children lacked a friendly relationship with the
robot, whereas almost all nonshy children were friendly with the
robot (Abe et al., 2014). Although examining parental reports
about an experienced child–robot interaction is a proven
methodological approach to assess and contextualize a child’s
behavior (Tolksdorf and Rohlfing, 2020), how shy children
actually behave within a child–robot interaction setting
remains an open question. Additionally, given that familiarity
with a situation strongly influences shyness (Rimm-Kaufman and
Kagan, 2005), there is a general lack of a perspective that would
include the long-term effects over multiple interactions.

Other studies that consider the effects of children’s
individual personality traits are based on more implicit
findings: Vogt et al. (2019) reported that in an educational
child–robot interaction, certain preschoolers dropped out of the
entire interaction due to shyness, or they needed additional
support from the caregiver to successfully interact with the
robot because they were reluctant or anxious even after an initial
introduction to it. Shiomi et al. (2016) made a similar
observation, showing that in a free-play situation, almost one
quarter of the children hesitated to interact with the robot or
avoided interaction entirely. The authors explained this
rejection behavior as a result of the inhibition of these
children (Shiomi et al., 2016). However, because they did not
assess the children’s temperament, it is not clear whether their
behavior can be linked to their shyness.

In a more recent work, Tolksdorf et al. (2020b) were the first to
investigate which expressions of shyness are displayed by a child
during an educational child–robot interaction. Their pilot study
measured preschool children’s shyness with a standardized and
validated questionnaire (Zentner, 2011) and analyzed children’s
expressions of shyness toward the social robot across three
sessions. In interaction with the robot, shy children not only
behaved differently, but also changed their behavior over the
course of the sessions: Although they showed significantly less
positive behavior in the first interaction compared to the nonshy
children, these differences disappeared in subsequent sessions.
The authors argued that this could be explained in terms of
increasing familiarity with the novel interaction partner, and that
shy children might be able to overcome their reluctance to
interact with a robotic system. In fact, these results are in line
with work suggesting that young children react with uncertainty
when facing a robot for the first time, and that they rely on an

adequate introduction by a familiar caregiver to establish a
beneficial learning environment (Rohlfing et al., 2020).

Taken together, these few studies indicate clearly that
individual differences in the behavioral style toward a social
robot exist in children, and they can be related to children’s
shyness. However, any generalization across previous reports on
the relation between shyness and children’s interaction behavior
toward a robot is difficult because of the differences in the precise
operationalization and assessment of shyness. Importantly,
considering that social robots are being evaluated increasingly
as learning partners, we do not know how far temperamental
characteristics such as shyness might influence a child’s learning
gain. Furthermore, although earlier studies evidenced that some
behavioral effects in shy children’s behavior disappear when they
are given the opportunity to familiarize themselves with the
situation (Evans, 2001; Rimm-Kaufman and Kagan, 2005;
Arbeau et al., 2010), the literature lacks a perspective focusing
on how the behavior of shy children develops during a long-term
child–robot interaction over multiple points in time and
including multiple exposures to a test situation. Therefore,
following up on our previous work, the current study aimed
to address this research gap: We investigated the impact of
shyness during an educational child–robot interaction by
systematically examining children’s learning performance as
well as their interaction behavior in terms of shyness markers
and their signals of pleasure and distress toward the robot over
the course of a long-term study on language learning.

In the present study, preschool-age children took part in a
child–robot interaction over three consecutive learning situations
followed by two test situations within a time period of two weeks.
In line with recent accounts arguing that young children react
with uncertainty when initially encountering a robot (Vogt et al.,
2017; Rohlfing et al., 2020), we assumed that all children would
interact with a certain reluctance at the beginning of the long-
term interaction because they were faced with a novel and
unfamiliar situation. Our main research interest was to explore
how shy children’s behavior and language learning would develop
with increasing familiarity during the sessions. We formulated
the following hypotheses:

1. (H1) Based on the aforementioned work demonstrating
shy children’s behavioral inhibition in unfamiliar social
situations (Evans, 1996; Reddy, 2000; Putnam et al., 2006;
Feinberg et al., 2012; Abe et al., 2014; Colonnesi et al.,
2014; Vogt et al., 2019; Tolksdorf et al., 2020b), we
expected that shy children would show less positive
reactions (H1a) and more negative reactions (H1b) than
nonshy children in both the learning situations and the test
situations with the social robot just like they would be
expected to do in human–human face-to-face interactions.

2. (H2) We also expected that negative reactions would
decrease and positive reactions would increase with the
repetition of a situation, especially among the shy
children—both when there was a repetition of the
learning situation (H2a) as well as when the test
situation was repeated (H2b). This was because prior
research has shown that the repetition of an interaction

Frontiers in Robotics and AI | www.frontiersin.org May 2021 | Volume 8 | Article 6761233

Tolksdorf et al. Shy Children’s Interactional- and Learning Behavior

24

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


leads to an environment that becomesmore predictable for
a child while also increasing familiarity with the situation
(Bruner, 1983; Rohlfing et al., 2016), and this might result
in more positive expressions and minimize children’s
social discomfort during the interaction (Colonnesi
et al., 2014).

3. (H3) With regard to children’s language learning, we
hypothesized that shy children would display lower
learning achievements compared to nonshy children.
This hypothesis is consistent with work indicating that
shy children tend to perform on a lower level when their
linguistic knowledge is tested in unfamiliar social
situations (Spere et al., 2004; Hilton and Westermann,
2017). However, if growing familiarity with the testing
environment allows shy children to feel more comfortable
(Hilton et al., 2019), we expected that in the second test
situation, the gap between shy and the nonshy children in
displayed learning outcomes would decrease or disappear.

MATERIALS AND METHODS

Participants
Thirty preschool children participated in the study. The data
from two children were excluded because they did not participate
in all sessions. This left 28 children (11 female, 17 male) aged
4.00–5.83 years (mean age � 4.98, SD � 0.48) for the final
analysis. The children and their parents came from relatively
high socioeconomic status backgrounds and were recruited from
the wider Paderborn region (North Rhine-Westphalia,
Germany). Recruitment was conducted in local kindergartens
and libraries or through newspapers and our database of families
willing to participate in our research studies. In addition, we
assessed the level of parental education. None of the children or
the parents had ever seen the robot before the experiment. Prior
to their children’s participation, parents provided written consent
and filled out a questionnaire on their child’s general and
language development. Criteria for inclusion in the sample
were: a) age between 4 and 6 years; b) normal general
development such as normal sensory and cognitive skills; and
3) no developmental language delays. Additionally, detailed
information regarding children’s language skills was obtained
by measuring their receptive language abilities with a subtest of
the standardized SETK 3–5 (Grimm et al., 2001) and their
expressive vocabulary with the AWST-R (Kiese-Himmel,
2005). Parents were present during all interactions, but did
not participate actively in the interaction. Children also
provided verbal assent prior to taking part in the interaction,
and the interaction could be discontinued at any time at no
disadvantage to the child. Moreover, each child received stickers
and a toy to thank them for their participation.

Experimental Procedure
The children and their parents were invited to visit our laboratory
at Paderborn University for four sessions within a period of two
weeks. Each session lasted around 20–35 min, and all sessions
were recorded on video. Each participating child was

accompanied by one parent. Figure 1 displays the seating
arrangement. The experimenter operated the robot, avoiding
any interaction with either parent or child. In addition,
parents were instructed to avoid talking to their child during
the experimental part of the child’s interaction with the
social robot.

Based on previous work and ethical considerations (Vogt et al.,
2019; Tolksdorf et al., 2020a; Tolksdorf and Mertens, 2020), we
conducted a warm-up phase with each child and her or his parent
before the learning situation with the robot. This introduced the
robot to the children in a comfortable way with their caregiver as
an available resource (Manner et al., 2018; Tolksdorf et al., 2020a)
and reduced the novelty effect (Kanero et al., 2018). During the
warm-up, the experimenter first introduced the robot in a
powered-off state to the child and parent and explained its
functions. For example, it was explained that the robot can
talk and move with the help of small motors, because a pilot
study had shown that some children were surprised when they
heard that the robot’s movements were loud. In a second step,
children and parents were further familiarized with the
capabilities of the robot: The robot introduced itself and
performed a short game by imitating animal movements and
asking the child, the parent, and the experimenter to repeat the
movements. Although the experimenter structured the situation
and was the main interaction partner for the child, parental
involvement was considered as an important element during the
warm-up phase, because prior work has demonstrated that young
children may rely on the emotions with which their familiar
caregiver interprets the ongoing situation, especially during first
encounters with a social robot (Rohlfing et al., 2020; Tolksdorf
et al., 2021). After the game was completed, the robot said
goodbye for the moment and announced that it had prepared
a story that it wanted to share with the child. Subsequently, the
experiment started and the script for the first learning situation
was launched.

When designing the learning situation, we were guided by
theoretical concepts of learning postulating that interaction
partners jointly co-construct the communicative situation in a
goal-oriented way (Rohlfing et al., 2016; Rohlfing et al., 2019).
Therefore, we chose a setting that included activities with which
preschoolers are familiar. Specifically, the robot told the child a
story that had been created to frame the learning situation. The
story contained the plot of the robot’s trip to Paderborn
University and the things it had seen on its journey. This
narrative served as the context in which the children
encountered six novel words (color adjectives) during the
interaction. The referents of the novel words were presented
as pictures hanging on the wall. They were covered by a small
cloth, and the robot asked the child to uncover them one by one
over the course of the interaction (see Figure 2A). This context
was also chosen because past work has shown that the context of a
story is particularly conducive to children’s learning of new words
(Horst, 2013; Nachtigäller et al., 2013).

Furthermore, in order to render the robot’s interaction
behavior child-oriented and to fulfill the important role of
multimodal joint activities (Rohlfing et al., 2019; Tolksdorf
and Mertens, 2020), the robot also performed a number of
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actions such as accompanying the novel words with pointing
gestures to coordinate the child’s attention and establish a shared
reference. In the same way, the robot coordinated its gaze
between the child and the referents of the target words.
Additionally, after naming the first four target words, the
robot also walked with the child to the two remaining target
referents in order to make the situation more natural and to take
advantage of the physical presence of the robot (van den Berghe
et al., 2019). Once the robot had finished the story, it thanked the
child and said goodbye.

Subsequently, in the second and third sessions, a similar
learning situation with the robot took place again in which the
robot shared the story, and the children were exposed to the
novel words.

Following the third learning situation in the third session and
a 5 min break, children’s learning achievements were assessed by
testing their ability to generalize the acquired knowledge. In this
generalization task, comprehension was defined as the child’s
ability to extend or transfer the target words to new objects, and
whether they were able to transfer the learned pattern of word
formation to new colors when presented with separated units of a

compound. This method ensured assessment of whether the
children were able to transfer their knowledge to other objects
and whether their knowledge was stable. We used a routinized
activity for children and embedded the test procedure within a
shared picture book reading situation (Grimminger and Rohlfing,
2017). In this test, the child was asked to turn the pages while the
robot talked about the pictures with the child and elicited the
trained words (see Figure 2B).

Two to three days later, the last, fourth session was conducted,
in which a delayed test using the same procedure was
administered to assess the children’s knowledge again.

Stimuli
Our study used the Nao robot from Softbank Robotics. This is a
small, toy-like, humanoid robot used widely in child–robot
interaction studies (Belpaeme et al., 2018). It is 58 cm high
with 25 degrees of freedom. Teleoperation was employed to
enable the robot to act contingently (Kennedy et al., 2017).
We implemented the behaviors in the NAO robot by using
Choregraphe and used the integrated text-to-speech production
of the robot with German language enabled and speech reduced

FIGURE 1 | Setup of the study.

FIGURE 2 | The learning situation (A) and test situation (B).
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to 85% speed to achieve a more natural pronunciation. The target
words imparted by the robot were spoken at a speed of 75% in
order to emphasize them verbally. The target items consisted of
six morphologically complex words (noun–adjective compounds
such as “quince yellow [quittengelb]”) that represented different
colors as features of different objects. Each item was presented on
a picture measuring 14.8 × 21.0 cm.

Coding of Children’s Behavior
Because we were interested in children’s behavior during all the
learning and testing situations with the social robot, we followed
Colonnesi et al. (2013) and Colonnesi et al. (2014) and coded
positive as well as negative reactions with and without signs of
aversion such as body or head aversion. Positive behaviors of the
children were measured by, for example, smiling identified by
raising the corners of the lips, constriction of the eyes, raising of
the cheeks, or opening of the mouth. Negative behaviors were
frowning or sad facial expressions. When these behaviors were
accompanied by an aversion (of gaze, head, and body), they fell
into the category of positive or negative expressions of shyness.
We measured this behavior across the time period of the
interaction during which the robot a) shared the story and
taught the new words (learning situation T 1–3) and 2) tested
the child within the shared picture book situation (Test 1 and Test
2), (see Figure 3).

We decided to analyze this sequence because, at this stage, all
children had already achieved a certain familiarity with the new
interaction partner, and our focus was on investigating
development across different sessions. Additionally, the
analyzed sequence represented the main part of the
interaction, whereas a welcome or farewell situation would
reflect a different social situation with its own contextually
appropriate social behaviors (Vaughn and La Greca, 1992).
Examining this sequence is particularly relevant, because it
provides an opportunity to understand how shy children
interact during a learning situation with a social robot.
Because the duration of the interactions varied slightly
between children, children’s behavior was expressed in
proportion per minute. To evaluate coding reliability, two
coders independently coded a random subset of 15% of the
data. We used Cohen’s Kappa to measure the agreement
between the coders for positive and negative reactions,
expressions of shyness, and children’s aversion. The mean

Kappa values were between 0.88 and 0.94, indicating a high
level of internal consistency.

Assessment of Naming Performance
Following recent methodological accounts (Rohlfing and
Grimminger, 2019), we chose to assess children’s word-
learning performance in detail on different linguistic layers
rather than in a binary way (e.g., only correct or incorrect).
To provide a measure of word learning, we created a composite
score by averaging each of the children’s naming performances in
percentages on a phonological, morphosyntactic, and
pragmatic–semantic level. Thus, on a phonological level, we
calculated the proportion of correctly produced syllables of a
target word. On a morphosyntactic level, and independent of the
semantic meaning, we assessed the sophistication with which the
children constructed a noun–adjective compound and
distinguished between no compounding, partial compounding,
and fully correct compounding. Finally, we evaluated each child’s
response on a pragmatic–semantic level, differentiating between
no response, a semantically adequate response, a partial retrieval
of the target word, and a fully correct retrieval. The maximum
composite score that could be achieved in each test session was 3,
which would reflect a fully accurate performance on each of the
three linguistic levels.

Assessment of Shyness and Shyness
Questionnaire
To assess the children’s degree of shyness, we used the Inventory
on Integrative Assessment of Child Temperament (German:
IKT—Inventar zur integrativen Erfassung des Kind-
Temperaments, Zentner, 2011). This is a standardized
questionnaire that is widely used in clinical practice and is
specifically designed for the age group addressed. The IKT has
been validated with a normative sample of over 4,400 children,
possesses convergent validity with equivalent English-language
temperament diagnostics (e.g., the CBQ by Rothbart et al., 2001),
and measures the temperament of 2- to 8-year-olds on five levels
based on the integrative approach of Zentner and Bates (2008).
With their approach, the authors pursue the goal of overcoming
the manifold conceptions of child temperament research and
providing a questionnaire that is valid across theories (Zentner
and Bates, 2008). The levels comprise shyness (behavioral
inhibition), susceptibility to frustration, activity level, attention
span/task persistence and perceptual sensitivity. In our study,
caregivers were asked during the first session (T1) to fill out the
questionnaire and to estimate how often their child shows a
described behavior using a 6-point Likert scale ranging from 1
(never) to 6 (always). This included behavioral aspects such as
“hides behind her mother when she meets strangers.” Based on
the raw scores obtained from the responses to the questions, the
evaluation procedure of the test requires a conversion into
percentile ranks to allow an adequate interpretation of the
child’s temperament according to age and gender in relation
to the normative sample of the test. The higher the percentile rank
value, the shyer the child, with the minimum andmaximum value
being 0 and 100 respectively. In this vein, the IKT allows children

FIGURE 3 | Sequence of the interaction during sessions and annotated
section.
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to be considered as notably shy if they have a clearly above-
average score of over 75. Additionally, the shyness scale used in
the test procedure provides a good internal consistency (α � 0.81).
In the normative sample, the agreement of both parents as a
measure of interrater reliability was clearly above average (r �
0.73) and thus highest on the shyness level compared to the other
levels (Zentner, 2011). Finally, in accordance with the evaluation
procedure and based on the percentile ranks obtained, we
grouped our sample into two levels: nonshy (n � 18) and
shy (n � 10).

RESULTS

Table 1 presents an overview of all demographic data as well as
the group means and standard deviations of the language and
temperament measures.

Positive and Negative Shyness Reactions
A statistical analysis of shyness markers was not possible, because
values tended toward zero in almost all training and testing
periods. Therefore, we focused on analyzing the behavioral
markers indicating pleasure and distress described in the
following. In the Limitations section, we shall discuss some
issues that may have led to the very rare occurrence of typical
shyness reactions.

Expression of Pleasure
First, we wanted to know how far positive reactions were more
likely in the nonshy group. We also assumed that due to the
familiarity of the situation, positive reactions would increase over
time in both groups, but especially in the shy group that would
start off being more reserved but become more uninhibited over
the course of the sessions.

Parametric statistical tests could not be used to analyze this
dependent variable due to nonnormally distributed data and the
small sample size. Therefore, we used the ANOVA type statistic
(ATS)—a nonparametric equivalent of a mixed ANOVA (Akritas
et al., 1997)—performed with the software R (package: nparLD,
Noguchi et al., 2012). The ATS is regarded as a distribution-free
test, but is mathematically more appropriate than classical rank-
sum statistics such as Wilcoxon’s rank-sum test. The test statistic

is quite similar to ANOVA’s F tests and exactly meets the α level
while being conservative. It has been applied in developmental
studies (Viertel, 2019; Tolksdorf et al., 2021). In addition, the ATS
can tolerate unequal group sizes in the sample and is robust when
studying longitudinal data because it considers their progression
over time rather than comparisons between groups at each
timepoint that may inflate type I error. The relative treatment
effect (RTE) is a measure of the effect size and is estimated based
on the actual sample. It can be determined for main effects as well
as for interaction effects—that is, even for multifactorial designs
with repeated measurements (Noguchi et al., 2012) as in the
present study. The value of the relative effect RTE ranges between
0 and 1, whereby the occurrence of 0 and 1 means completely
different conditions (e.g., for the shy and nonshy group); 0.5
indicates that the conditions do not differ at all (Brunner and
Munzel, 2002; Noguchi et al., 2012).

A significant main effect demonstrated that nonshy children
(Mdn � 1.14, IQR � 1.67, RTE � 0.57) used positive behaviors
significantly more often than their shy peers (Mdn � 0.50, IQR �
1.37, RTE � 0.37), F(1.00, 17.33) � 6.51, p < 0.05, regardless of the
situation (learning and testing). This supported Hypothesis H1a.

Additionally, the ATS revealed a highly significant main effect
of time, F(3.00, ∞) � 7.77, p < 0.001. Positive reactions were
highest at the beginning of the training of novel words (T1: Mdn
� 1.71, IQR � 1.54, RTE � 0.61), decreased steadily over the course
of training (T2: Mdn � 1.27, IQR � 1.06, RTE � 0.56; T3: Mdn �
0.63, IQR � 0.97, RTE � 0.40), and then remained relatively stable
in both tests (Test 1:Mdn � 0.55, IQR � 1.15, RTE � 0.39; Test 2:
Mdn � 0.60, IQR � 1.03, RTE � 0.40). Post hoc tests were applied
with Bonferroni corrections. A significant decrease of positive
reactions was detected from training T1 to Test 1 (difference �
34.0) and Test 2 (difference � 38.0) respectively, χ2(4) � 15.86, p <
0.01. In all cases, the critical difference was 33.21. This observed
development of positive reactions contradicted Hypotheses H2a
andH2b that positive reactions would increase with the repetition
of a learning or test situation.

Moreover, contrary to our hypotheses, there was no
interaction between time and shyness level, F(3.00, ∞) � 0.65,
p � 0.58. Hence, shy children remained reserved over time by
demonstrating fewer positive reactions such as smiles over the
course of both the learning and the testing situations.

Expression of Distress
In a further step, we asked how far the frequency of negative
reactions differed between shyness groups and training
conditions depending on the time of training and testing
situation. We hypothesized that the shy group would show
negative reactions more frequently (H1b), but that these
would decline more rapidly among the shy group than among
the nonshy group in both the training situation (H2a) and the
testing situation (H2b). Again, we refrained from using
parametric statistics and used the ATS.

The ATS revealed a highly significant effect of time, F(3.34,∞)
� 14.22, p < 0.001. It was evident that negative reactions were
stable across the first two training sessions (T1: Mdn � 0.45, IQR
� 1.04, RTE � 0.58; T2: Mdn � 0.51, IQR � 0.75, RTE � 0.56),
decreased during last training (T3: Mdn � 0.00, IQR � 0.32,

TABLE 1 | Mean participant characteristics for shy and nonshy children and
standard deviation (SD).

Independent variable Total (N = 28)

Nonshy (n = 18) Shy (n = 10)

Age in years 5.0 (0.5) 5.0 (0.4)
Parental education level1 4.7 (1.0) 4.1 (1.3)
Gender
Female 7 (39%) 4 (40%)
Male 11 (61%) 6 (60%)

SETK 3–5 sentence comprehension2 53.9 (8.2) 46.3 (8.3)
AWST-R expressive vocabulary 60.1 (11.8) 51.9 (10.6)
IKT shyness score2 40.4 (24) 87.2 (6.3)

1Level of parental education on a scale from 1 (lowest) to 6 (highest).
2Converted raw values into percentile ranks.
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RTE � 0.29), briefly increased during the first test (Test 1:Mdn �
0.57, IQR � 1.00, RTE � 0.62), and finally, flattened in the second
test (Test 2: Mdn � 0.19, IQR � 0.20, RTE � 0.35).

There was also a trend toward a significant difference between
shyness groups, with shy children (Mdn � 0.16, IQR � 0.50, RTE �
0.42) demonstrating negative reactions less frequently than
nonshy children (Mdn � 0.33, IQR � 0.64, RTE � 0.55) in all
training and test situations, F(1.00, 18.21) � 3.33, p � 0.07.
Therefore, we rejected Hypothesis H1b.

However, both factors need to be interpreted in relation to
each other, because there was a significant interaction effect
between time and shyness group, F(3.34, ∞) � 2.58, p < 0.05.
Post hoc tests showed that shy children expressed negative
reactions less frequently, especially during the second
training (Mdn � 0.24, IQR � 0.46, RTE � 0.41) as well as
during the second test (Mdn � 0.12, IQR � 0.17, RTE � 0.26)
compared to nonshy children (T2:Mdn � 0.66, IQR � 1.43, RTE
� 0.71; Test 2:Mdn � 0.26, IQR � 0.19, RTE � 0.45). Differences
during training (W � 144.5, p < 0.01, r � −0.49) and testing (W �
146.5, p < 0.01, r � −0.51) were both very significant. Thus, the
result that only shy children showed negative reactions
significantly less often when a situation was repeated
supported Hypotheses H2a and H2b.

Additionally, in the shy group, multiple comparisons across
time revealed that negative reactions decreased significantly from
first to third training (T1 vs. T3: χ2(4) � 16.17, p < 0.01), with the
observed difference of 20.5 exceeding the critical difference of
19.85. In the nonshy group, a significant reduction of negative
reactions from T2 to T3 could be identified in the training
situations, χ2(4) � 19.34, p < 0.001. The observed difference
was 30.5 and thus higher than the critical difference of 26.63.
Surprisingly, in the group of nonshy children, there was a
significant increase in negative reactions from the last training
session (T3) to the first testing session (Test 1) with an observed
difference of 29.5. In the shy group, a tendency toward an increase
was identified based on the observed difference of 19.5 (critical
difference: 19.85). In conclusion, over the course of the training
phase for novel words (T1–T3), negative reactions decreased in
both groups, but this familiarization effect occurred more rapidly
in the group of shy children.

Summarizing the frequency of both positive and negative
reactions in the learning and test situations, it can be
concluded that the group of shy children was generally less
expressive compared to the group of less shy peers.

Shyness Score and Condition as Predictors
of Word Learning
Finally, we focused on shy children’s word learning, which we
assumed would be less successful than that of nonshy
children––but only during the first test session (H3).
Children’s word learning was measured based on the
calculated linguistic composite score (0–3) reflecting their
performance during the test tasks (cf. section Assessment of
Naming Performance). As hypothesized, a strong trend could
be observed during the first test, and shy children (Mdn � 0.51,
IQR � 0.36, range � 0–1.52) tended to be less successful in

retrieving the taught words than their nonshy peers (Mdn �
0.64, IQR � 0.27, range � 0–2.54), W � 122, p � 0.06, r � −0.35.
Furthermore, also as hypothesized, both groups (shy:Mdn � 0.48,
IQR � 0.27, range � 0–2.54; nonshy: Mdn � 0.72, IQR � 0.72,
range � 0–2.06) did not differ significantly in their success at
retrieving the words during the second test session (W � 119.5,
p � 0.16, r � −0.26), which was a repetition of the first test a few
days later.

Last of all, we wanted to go beyond the dichotomous group
comparison and ask how the entire range of the shyness spectrum
as an influencing factor predicted a gain in word learning when
the children were already familiarized with the experienced
testing situation during Test 1. As described, the testing
situation took place in two different sessions (Test 1 and Test
2). Thus, we calculated the gain in word learning by measuring
the difference scores between the first and the second test as a
metric of learning gain. As a predictor variable, we did not use the
categories nonshy and shy, but the calculated percentile ranks
taken from the IKT described above (cf. section Assessment of
Shyness and Shyness Questionnaire) that represented the full
shyness spectrum and would allow us to take a closer look at
the link between temperamental characteristics and word-
learning processes.

Therefore, our hierarchical regression model included the
shyness score as a predictor of a gain in word learning (first
step). Moreover, when measuring children’s word learning, it is
known from the literature that existing linguistic knowledge
should be taken into account because it contributes to word
learning success (Stelmachowicz et al., 2004; McMurray et al.,

FIGURE 4 | Scatterplot with linear regression line (including 95%
confidence interval) illustrating the predictive relation between level of shyness
and gain in word learning (difference scores of word learning between T2 and
T1). Receptive linguistic skills are integrated as converted
percentile ranks.
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2012). Therefore, in the second step, we integrated a language
measure of children’s receptive linguistic abilities (SETK 3–5
subtest sentence comprehension, cf. Table 1).

In Step 1, the model did not differ significantly from zero, F(1,
26) � 2.72, p � 0.11, with shyness level accounting for 9.48% of the
variance in learning gain. In Step 2, the model approached
statistical significance and accounted for an increased portion
of gain in word learning, F(2, 25) � 3.18, p � 0.06, and could
explain 20.28% of the variance. Shyness scores related
significantly to a gain in word learning (B � 0.005, t � 2.18,
p � 0.04) and uniquely contributed 14.63% to the total variance of
our dependent variable (see Figure 4). The shyer the children
were, the higher their growth of learning as suggested by the
significant positive semipartial correlation (r � 0.38, p � 0.05). In
terms of receptive linguistic abilities, we detected a nonsignificant
trend (B � 0.01, t � 1.84, p � 0.08) toward a positive association
between children’s receptive language and word learning gain (r �
0.33, p � 0.09), whereas language abilities independently
accounted for 10.96% of the variance. A comparison of both
models confirmed that in Step 2, R2 tended to change, F(1, 25) �
3.38, p � 0.08.

Finally, we checked whether other factors, which had not been
considered in the multiple regression model before, were
associated with word learning. Neither age (r � 0.12, p � 0.27,
one-sided) nor expressive vocabulary collected by the AWST-R (r
� −0.02, p � 0.55, one-sided) related significantly to a gain in word
learning. In summary, this means that shy children showed
greater gains in word learning than children who were less to
moderately shy, but only when their receptive skills were
considered in the model as well.

DISCUSSION

The present study examined how shy children, compared to
nonshy children, enter into and maintain social interaction with
a social robot during a word-learning educational setting, and
how children’s learning outcomes relate to their temperament.
The study was motivated by previous research suggesting that
shy children exhibit marked differences in their learning and
social behavior toward interaction partners including social
robots. In this respect, the contribution of our study is
twofold: First, despite the importance of shy children’s
familiarization with a situation (Evans, 2001; Rimm-Kaufman
and Kagan, 2005; Arbeau et al., 2010), we could not find any
research investigating the behavior of shy children over a long-
term interaction with a social robot. Therefore, we
systematically assessed children’s personality trait of shyness
and investigated their behavior. More specifically, we specified
markers of shyness and their signals of pleasure and distress
toward the robot during multiple learning situations and during
repeat testing situations in which children’s learning was
evaluated. Second, this study expands previous research by
identifying different learning trajectories linked to the effects
of shyness on children’s learning performance. Whereas some
work in human–human interaction indicates that shy children
tend to perform more poorly in unfamiliar test procedures

(Spere et al., 2004; Hilton and Westermann, 2017), findings
on the impact of shyness on learning outcomes in the field of
child–robot interaction are scarce.

Overall, results show that shy children not only interact
differently with a robot compared to nonshy children, but also
change their behavior over the course of the sessions. In fact, shy
children interacted significantly less expressively with the robot in
general. With regard to children’s learning outcomes, shy
children tended to score significantly lower on the first test,
although they were able to close this gap during the second
test, resulting in all children retrieving the learned words on a
similar level. Surprisingly, we could even observe that once a
certain familiarization with the test procedure was established,
shyness related significantly to a gain in word learning when the
receptive linguistic abilities were taken into account at the same
time. In the following subsections, we shall interpret our findings
one at a time.

Children’s Expressions of Pleasure and
Distress Toward the Robot
As expected, and in accordance with previous literature (Reddy,
2000; Putnam et al., 2006; Feinberg et al., 2012; Abe et al., 2014;
Vogt et al., 2019; Tolksdorf et al., 2020b), we found that shy
children were more reserved in their positive reactions toward the
robot compared to their nonshy peers in all learning and testing
situations. This lower level of positive reactions could be
explained by the typical expressive pattern of shyness in novel
social situations (Reddy, 2000; Colonnesi et al., 2014)—that is,
shy children tend to display reduced emotional reactions and be
more inhibited in unfamiliar social interactions (Poole and
Schmidt, 2019). Surprisingly, we did not find support for our
hypothesis that the number of positive reactions would increase
with the repetition of a situation and increasing familiarity.
Instead, our results revealed an opposite trend. Overall, the
frequency of occurrences of positive reactions was most
pronounced in the first two learning situations and then
decreased steadily, reaching its lowest level in the final two
test situations. With regard to the nonshy children, the results
might be explained by the fact that precisely the novelty of the
situation (e.g., the novel interaction partner and storytelling
setting as suggested in Kanero et al., 2018) led to higher levels
of engagement that were reflected in more positive reactions. In
this vein, our results corroborate existing research in the area of
child–robot interaction demonstrating that with the increasing
duration of an interaction and repetitive behavior of a robot,
children’s engagement in terms of enjoyment could drop (de Wit
et al., 2020). Thus, the repeated sessions with the robot might
have led to a habituation effect and resulted in decreasing positive
reactions. However, we could not observe a significant change in
the expressiveness of the shy children’s positive reactions over the
course of the sessions, suggesting that their display of enjoyment
of the situation remained constant on a low level, even during the
learning situations.

Regarding the negative reactions as an expression of
discomfort in a new situation, results show that behaviors
such as frowning or narrowing the eyes reduced significantly
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more quickly over time in the group of shy children, probably due
to the fact that they had become accustomed to the learning and
testing situation. In particular, when the shy children were
already familiarized with a specific setting (first learning
situation or first test), reactions of distress were significantly
lower in comparison to nonshy children. A decrease in reactions
of distress also occurred in the nonshy children–but at a slower
rate. In addition, in the latter group, the significant increase in
negative reactions stood out when the setting (from learning to
testing) and the associated demands on the children changed.

This finding has strong implications not only for studies
evaluating social robots as interaction partners in educational
settings, but also for studies examining word learning processes
or other cognitive abilities in young children in general. Negative
reactions (of distress) relate positively to general and social
anxiety (Colonnesi et al., 2014), and negative shy reactions are
associated with physiological changes that can activate the fight-
or-flight system (Colonnesi et al., 2020) that consequently inhibit
adaptive behavior and cognitive processes. During learning with
others, they are often inhibited, which is reflected in deviant
attentional processes (Hilton et al., 2019) as well as infrequent eye
gaze to the other (Putnam et al., 2006). Thus, in our view, a warm-
up that usually takes place a few minutes before the training or
testing may not be sufficient for a specific population such as very
shy children. Considering the fact that especially nonshy children
expressed the highest proportion of reactions of distress during
the first two learning sessions (T1 and T2), our conclusion is not
exclusively of relevance for shy children, but also for children with
different temperament traits.

Children’s Word Learning
Our third hypothesis addressed how word learning in shy
children differs from that in their nonshy peers at different
time points. Motivated by the literature (Hilton and
Westermann, 2017), we assumed that shy children would be
less successful at retrieving the learned words than nonshy
children, especially in the first test situation. We further
hypothesized that the difference between groups would decline
during the second test due to familiarization with the test
procedure. At first impression, the performance of both shy
and nonshy children in the word learning tests seems to be in
line with our hypothesis, because in both tests, shy children were
less successful in retrieving the trained words. Although the
difference was marginally significant in the first test session, it
disappeared in the second session. However, we considered that a
further, more nuanced approach was needed, because there could
be legitimate objections to our categorization into shy and
nonshy. In particular, because children who were not at all
shy fell into the same category as children who were on the
threshold of being very shy (according to the questionnaire), we
regarded our dichotomization as not being precise enough.
Therefore, we conducted a regression analysis to determine the
relation between the degree of shyness and word learning.
Moreover, our multilevel model also took into account the
children’s linguistic knowledge, and we were able to show that,
in addition to a shy temperament, the children’s receptive abilities
also tend to contribute to a success in word learning. Surprisingly,

past studies on learning words with shy children (Hilton and
Westermann, 2017; Hilton et al., 2019) or language learning
studies with robots (Vogt et al., 2019) have not considered
these linguistic abilities; therefore, our study marks another
novelty in this field.

Interestingly, the children who were the shyest according to
their parents made the largest gains in word learning, whereas
those with the lowest shyness scores remained stable or even
scored lower on the second test. This contrasts with results
obtained in studies concluding that shy children are a) less
likely to learn and retain new words (Hilton and Westermann,
2017) or b) have poorer productive vocabularies (e.g., Crozier and
Hostettler, 2003). Additionally, these prior studies drew their
findings from a single test—that is, word learning or vocabulary
of shy children is typically assessed in a new environment with
unknown people without any prior familiarization with the
situation. This raises the question whether the shy children’s
test performance would be similar to that of nonshy children if
they were already familiar with the situation (as realized in our
study). As described above, shy children are afraid of being
evaluated in unfamiliar situations, which consequently inhibits
their performance, as evidenced by studies that a) examine
vocabulary less invasively, for example by parents or in
familiar school settings (Spere and Evans, 2009); or 2) in more
anonymous group settings (Crozier and Hostettler, 2003); but
also by studies that 3) determine the receptive vocabulary (Evans,
1996). These studies conclude that the linguistic performance of
shy children does not differ from that of nonshy children.
Therefore, based on our data, we assume that the shy children
were more confident during the second testing and verbally
expressed themselves more often once they were familiarized
with the exact procedure and the demands of the test situation.

As well as the repetition of the testing situation, another
possible reason could contribute to a short familiarization: the
pragmatic frame of the situation of joint book reading that is
structurally anchored in the test situation (Rohlfing et al., 2016).
Accordingly, we can assume that the test situation recedes into
the background or is not perceived as such by the children, so that
their cognitive abilities can unfold (Rohlfing et al., 2016).
Additionally, because our robot was introduced as a coequal
peer (KoryWestlund et al., 2016; Vogt et al., 2017), it might not be
perceived as an authoritative character, as other examiners are
often perceived to be by shy children, but rather as an interaction
partner who elicits learned words or, in general, verbal responses
in a familiar situation. Therefore, shy children may feel less
evaluated during an interaction with a robot, especially in
terms of their performance, and this could lead them to be
less cognitively inhibited and more confident when attempting
to guess an answer.

LIMITATIONS

Finally, it is worth discussing why shyness markers appeared so
rarely during training and testing that we were unable to carry out
any analysis on this basis, but instead concentrated on behaviors
expressing the children’s emotionality of pleasure and distress but
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without any aversion. In 4-year-olds, state shyness is measured
differently than in our study: Children are asked to sing a song on a
stage in an unfamiliar location in front of a small group of strangers
and their caregivers––the so-called performance task (Colonnesi
et al., 2017). This scenario differs clearly from our setting in which
the child is neither required to perform nor is her performance
exposed to the other’s attention. Hence, one objection might
therefore be that the setting applied in our study failed to elicit
shy reactions (Colonnesi et al., 2014). On the other hand, many
factors triggering shyness reactions existed in our setting such as
unknown interaction partners (and among them a robot), a new
situation with novel words in an unfamiliar location, and the recall
of a previously taught object of learning. Interestingly, the age of the
children, which ranged from 48 to 70 months, may have
contributed to the fact that (in particular negative) shyness
reactions were rare–even in shy children. In this context,
Colonnesi et al. (2020, p. 49) discuss their results with 72-
month-olds: “A possible explanation is that later individual
socio-cognitive development (e.g., advanced social cognition,
social skills) and effortful control are responsible for less
frequent and more regulated shy reactions.” Instead,
preschoolers express their shyness by reactions of distress and
avoidance as well as ambivalence in their behavior–a pattern we
were able to identify in our study as well. In this respect, Colonnesi
et al. (2014) demonstrated that positive and negative reactions
correlated positively with the corresponding shyness markers, thus
concluding that they represent expressions of the same emotion but
with a different emotional valence. In this context, it should be
emphasized that we used a parental assessment of trait shyness
based on a questionnaire. We regarded this as being the most
reliable and valid for our study design rather than concentrating
merely on state shyness measured in a specific situation. Finally, it is
also important to recognize that one limitation of this study is its
relatively small sample size. However, we wish to highlight that
according to recent methodological findings, conducting long-term
studies with small samples over multiple sessions while repeatedly
measuring the variable of interest over time enhances replicability
and robustness (Smith and Little, 2018). In this vein, the approach
adopted here allows a particularly nuanced view of children’s
behavioral development. Additionally, the statistical procedures
used were rather conservative in terms of determining significant
effects and tolerant of both small sample sizes and unequal groups
(Noguchi et al., 2012). Lastly, although the sample size used is
consistent with previous studies utilizing a similar paradigm
(McGregor et al., 2009) and we found clear differences between
groups, more research is needed to further validate our findings.

CONCLUSIONS AND FUTURE
CONSIDERATIONS

In conclusion, the results presented here offer new input for not
only research with social robots in educational settings and the
design of future learner–robot interactions but also for evaluating
and measuring children’s achieved learning outcomes. In fact,
most past research in child–robot interaction has tested
hypotheses by comparing average effects across the sample but

ignored that effects may vary across individuals depending on
existing intrinsic factors such as shyness. In this vein, the present
study provides evidence that shy children do indeed demonstrate
a distinctive behavior in terms of their interactions with a robot as
well as their language learning. Our findings show that it is
important to include the learner’s temperamental characteristics,
such as shyness, during child–robot interactions to inform the use
of robots in the educational field. In this regard, current research
strongly suggests the need to consider children’s temperament in
everyday practice in institutional settings such as kindergarten or
school and provide a supportive climate for a variety of children
and temperament types (Ann Sealy et al., 2021). Whereas
approaches to automatically assessing a child’s personality
based on predefined behavioral traits have made substantial
progress (Abe et al., 2017; Abe et al., 2020; Sano et al., 2020),
the present study has taken first steps to determine which
behaviors can actually be observed in shy children and how
they develop in the long term over a period of several sessions.

From our results, we can derive some crucial aspects for
designing future interactions with child-oriented social robots:
On the one hand, testing shy children requires a greater
familiarity with the situation, and this can be achieved by a
prior acquaintance with the interaction partner, the location, and
the items. For example, an extended warm-up session in advance
of a learning and testing situation could be a solution in future
interaction designs. This could be conducted individually in
addition to carrying out an introduction in a group of
children. Additionally, based on our data, we also suggest that
future studies examining learning processes such as word
learning should create scenarios in which children are tested
at multiple time points, because this allows for a more precise
focus on the specific learning processes, especially in shy children.
On the other hand, given the high incidence of shyness as a
normal variation in human personality in the overall population
(Zimbardo et al., 1975; Kagan, 1994; Schmidt et al., 2020), our
results also demonstrate that a nuanced assessment of shyness
(e.g., parental assessment via a standardized questionnaire) is
preferable, especially when it is central to the research question.
In this vein, it is worth noting that temperamental characteristics
are rarely collected in studies, and tests assessing children’s
linguistic and cognitive abilities are often administered by
(almost) unfamiliar interaction partners.

We postulate that addressing children’s individual differences
and taking into account the personality of the interacting child
can further guide future digital technologies and facilitate their
integration into the educational landscape. However, at this
point, we would like to be clear in our objective: We also see
it as an ethical challenge to clarify whether future technologies
should make automatic inferences about a child’s temperament.
Instead, it is important to gain further insights into how
children’s interactions with digital technologies such as social
robots depend on their individual differences in order to enable
educators and teachers to design future learning scenarios that
allow all children to participate.

In future work, it would also be of interest to explore the effects
of other dimensions of temperamental traits on interaction
behavior such as susceptibility to frustration or attention span/
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task persistence. This would shed further light on how individual
adaptation to the learner and appropriate learning environments
can be designed in the digital world of the future.
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Machine Teaching for Human Inverse
Reinforcement Learning
Michael S. Lee*, Henny Admoni and Reid Simmons

Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, United States

As robots continue to acquire useful skills, their ability to teach their expertise will provide
humans the two-fold benefit of learning from robots and collaborating fluently with them.
For example, robot tutors could teach handwriting to individual students and delivery
robots could convey their navigation conventions to better coordinate with nearby human
workers. Because humans naturally communicate their behaviors through selective
demonstrations, and comprehend others’ through reasoning that resembles inverse
reinforcement learning (IRL), we propose a method of teaching humans based on
demonstrations that are informative for IRL. But unlike prior work that optimizes solely
for IRL, this paper incorporates various human teaching strategies (e.g. scaffolding,
simplicity, pattern discovery, and testing) to better accommodate human learners. We
assess our method with user studies and find that our measure of test difficulty
corresponds well with human performance and confidence, and also find that favoring
simplicity and pattern discovery increases human performance on difficult tests. However,
we did not find a strong effect for our method of scaffolding, revealing shortcomings that
indicate clear directions for future work.

Keywords: inverse reinforcement learning, learning from demonstration, scaffolding, policy summarization,
machine teaching

1 INTRODUCTION

As robots become capable in tasks once accomplished only by humans, the extent of their influence
will depend in part on their ability to teach and convey their skills. From the youngest of us learning
to handwrite (Sandygulova et al., 2020; Guneysu Ozgur et al., 2020) to practitioners of crafts such as
chess, many of us stand to benefit from robots that can effectively teach their mastered skill.
Furthermore, our ability to collaborate fluently with robots partly depends our understanding of their
behaviors. For example, workers at a construction site could better coordinate with a new delivery
robot if the robot could clearly convey its navigation conventions (e.g. when it would choose to go
through mud over taking a long detour).

While demonstrations are a natural method of teaching and learning behaviors for humans, its
effectiveness still hinges on conveying an informative set of demonstrations. The literature on how
humans generate and understand behaviors provides insight into what makes a demonstration
informative. Cognitive science suggests that humans oftenmodel one another’s behavior as exactly or
approximately maximizing a reward function (Jern et al., 2017; Jara-Ettinger et al., 2016; Lucas et al.,
2014), which they can infer through reasoning resembling inverse reinforcement learning (IRL) (Ng
and Russell, 2000; Jara-Ettinger, 2019; Baker et al., 2009; Baker et al., 2011). Furthermore, humans are
often able to obtain a behavior that (approximately) maximizes a reward function through planning,
which can be modeled as dynamic programming or Monte Carlo tree search (Shteingart and
Loewenstein, 2014; Wunderlich et al., 2012).
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Putting these insights together, we can often expect humans to
be able to model others’ behaviors once equipped with their
reward functions.1 For example, upon seeing a new worker
consistently arrive on time to each workday, a manager will
infer that the worker places high values on punctuality and
consistency and will arrive promptly at other work-related
functions. Thus, the problem of conveying a behavior or skill
can be reduced to conveying the underlying reward function, and
the informativeness of a demonstration can be quantified by how
much information it reveals regarding the reward function
using IRL.

Though IRL offers a principled measure of a demonstration’s
informativeness, human learning is multi-faceted and is also
influenced by other factors, such as the simplicity of
explanations (Lombrozo, 2016). Thus, unlike prior work on
machine teaching that optimizes solely for IRL (Brown and
Niekum, 2019), this paper incorporates insights on how
humans effectively learn to further accommodate human
learners.

In this work, we explore whether augmenting IRL with
insights from human teaching improves human learning over
optimizing for IRL alone. We first employ scaffolding from social
constructivism (learning theory) to encourage demonstrations
that are not just informative but also comprehensible. Specifically,
we assume a general human learner without prior knowledge, and
sequence demonstrations that incrementally increase in
informativeness and difficulty. Noting the cognitive science
literature that suggests humans favor simple explanations that
follow a discernible pattern (Lombrozo, 2016; Williams et al.,
2010), we also optimize for visual simplicity and pattern discovery
when selecting demonstrations. Finally, toward effective testing of
the learner’s understanding, we show that the measure of a
demonstration’s informativeness during teaching can be
inverted into a measure of expected difficulty for a human to
predict that exact demonstration during testing.

Two user studies strongly correlate our measure of test
difficulty with human performance and confidence, with low,
medium, and high difficulty tests yielding high, medium, and low
performance and confidence respectively. Study results also show
that favoring simplicity and pattern discovery significantly
increases human performance on difficult tests. However, we
do not find a strong effect for our method of scaffolding, revealing
shortcomings that indicate clear directions for future work.

2 RELATED WORK

2.1 Policy Summarization and Machine
Teaching
The problem of policy summarization considers which states and
actions should be conveyed to help a user obtain a global
understanding of a robot’s policy (i.e. behavior or skill) (Amir
et al., 2019). There are two primary approaches to this problem.

The first relies on heuristics to evaluate the value of
communicating certain states and actions, such as entropy
(Huang et al., 2018), differences in Q-values (Amir and Amir,
2018), and differences between the policies of two agents (Amitai
and Amir, 2021).

We build on the second approach, which follows the machine
teaching paradigm (Zhu et al., 2018). Given an assumed learning
model of the student (e.g. IRL to learn a reward function), the
machine teaching objective is to select the minimal set of teaching
examples (i.e. demonstrations) that will help the learner arrive at
a specific target model (e.g. a policy). Though machine teaching
was first applied to classification and regression (Zhu, 2015; Liu
and Zhu, 2016), it has also recently been employed to convey
reward functions from which the corresponding policy can be
reconstructed. Huang et al. (2019) selected informative
demonstrations for humans modeled to employ approximate
Bayesian IRL for recovering the reward. This technique
requires the true reward function to be within a candidate set
of reward functions over which to perform Bayesian inference,
and computation scales linearly with the size of the set. Cakmak
and Lopes (2012) instead focused on IRL learners and selected
demonstrations that maximally reduced uncertainty over all
viable reward parameters, posed as a volume removal
problem. Brown and Niekum (2019) improved this method
(particularly for high dimensions) by solving an equivalent set
cover problem instead with their Set Cover Optimal Teaching
(SCOT) algorithm. However, SCOT is not explicitly designed for
human learners and this paper builds on SCOT to address
that gap.

2.2 Techniques for Human Teaching
Human teaching and learning is a multifaceted process that has
been studied extensively. Thus, we also take inspiration from
social constructivism (learning theory) and cognitive science in
informing how a robot may teach a skill to a human learner so
that the learner may correctly reproduce that skill in new
situations.

Scaffolding: Scaffolding is a well-established pedagogical
technique in which a more knowledgeable teacher assists a
learner in accomplishing a task currently beyond the learner’s
abilities, e.g. by reducing the degrees of freedom of the problem
and/or by demonstrating partial solutions to the task (Wood
et al., 1976). Noting the benefits seen by automated scaffolding to
date [e.g. Sampayo-Vargas et al. (2013)], we implement the first
recommendation made by Reiser (2004) for software-based
scaffolding, which is to reduce the complexity of the learning
problem through additional structure. Specifically, we
incorporate this technique when teaching a skill by providing
demonstrations that sequentially increase in informativeness and
difficulty.

Simplicity and Pattern Discovery: Studies on explanations
preferred by humans indicate a bias toward those that are simpler
and have fewer causes (Lombrozo, 2016). Furthermore, Williams
et al. (2010) found that explanations can be detrimental if they do
not help the learner to notice useful patterns or even mislead
them with false patterns. Together, these two works support the
idea that explanations should minimize distractions that

1Ng and Russell (2000) suggest that “the reward function, rather than the policy, is
the most succinct, robust, and transferable definition of the task.”
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potentially inspire false correlations and instead highlight and
reinforce the minimal set of causes. We thus also optimize for
simplicity and pattern discovery when selecting demonstrations
that naturally “explain” the underlying skill.

Testing: Effective scaffolding requires an accurate diagnosis of
the learner’s current abilities to provide the appropriate level of
assistance throughout the teaching process (Collins et al., 1988).
A common diagnostic method is presenting the learner with tests
of varying difficulties and assessing their understanding of a skill.
Toward this, we propose a way to quantify the difficulty of a test
that specifically assesses the student’s ability to predict the right
behavior in a new situation.

3 TECHNICAL BACKGROUND

3.1 Markov Decision Process
The robot’s environment is represented as an instance (indexed
by i) of a deterministic2 Markov decision process,
MDPi :� (Si,A,Ti,R, c, S0i ), where Si and A denote the state
and action sets, Ti : Si ×A→Si the transition function, R : S ×
A→R the reward function, c ∈ [0, 1] the discount factor, and S0i
the initial state distribution, and S : ∪iSi the union over the states
of all related instances of MDPs, which we call a domain (to be
described in the following paragraphs).

Finally, the robot has an optimal policy (i.e. a skill) π*i : Si →A
that maps each state in anMDP to the action that will optimize the
reward in an infinite horizon. A sequence of (si, a, s′i) tuples obtain
by following π* gives rise to an optimal trajectory (i.e. a
demonstration) ξ*, where si, s′i ∈ Si, a ∈ A. We assume that R
can be expressed as a weighted linear combination of l reward
features3 ϕ : S ×A→Rl , i.e. R � w*u ϕ (s, a, s′) (Abbeel and Ng,

2004). We also assume that the human is aware of all aspects of an
MDP (including the reward features) but not the weights w*.

Let a domain refer to a collection of related MDPs that share
A,R, c but differ in Si, Ti and S0i . Take for example the delivery
domain, which modifies the Taxi domain (Dietterich, 1998) by
adding mud (see Figure 1). The robot is rewarded for
efficiently delivering the package to the destination while
avoiding the mud if the detour is not too costly. Though
MDPs in this domain may vary in the number and
locations of mud patches and subsequently offer a diverse
set of demonstrations (e.g. see Figure 2), they importantly
share the same reward function R.

Because instances of a domain share R, the various
demonstrations all support inference over the same w*
through IRL. Thus, we overload the notation π* to refer to
any policy of a domain instance that optimizes a reward with
w*. Furthermore, while a demonstration strictly consists of both
an optimal trajectory ξ* (obtained by following π*) and the
corresponding MDP (minus w*), we will refer to a
demonstration only by ξ* in this work for notational simplicity.

Having represented the robot’s environment and policy, we
now define the problem of generating demonstrations for
teaching that policy through the lens of machine teaching.

3.2 Machine Teaching for Policies
As formalized by Lage et al. (2019), machine teaching for policies
seeks to convey a set of demonstrations D of size n (i.e. the
allotted budget for teaching set) that will maximize the similarity
ρ between π* and the policy π̂ recovered using a model M on D

arg max
D∈Ξ

ρ(π̂(D,M), π*) s.t. |D| � n (1)

where Ξ is the set of all optimal demonstrations of π* in a domain.
We assume that the M employed by humans to approximate the
underlying w* is IRL. Once w* (and the subsequent reward
function) is approximated, we assume that human learners are
able to arrive at π*, i.e. the skill, through planning on the
underlying MDP.

FIGURE 1 | (A) A demonstrationD of an optimal policy π in the delivery domain. Agent aims to deliver the package to the destination while avoiding walls and avoiding
mud if the detour is not too costly. (B) The left demonstration can be translated into a set of half-space constraints on the underlying policy reward weights using Eq. 4. The
darker shaded region is where all constraints (the red and light blue lines) hold true, which corresponds to the behavior equivalence class BEC(D|π), see Section 3.3.

2Though we assume a deterministic MDP, the methods described here naturally
generalize to MDPs with stochastic transition functions and policies.
3This assumption can be made without loss of generality as the reward features can
be nonlinear with respect to states and actions and be arbitrarily complex.
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Thus, the teaching objective reduces to effectively conveying
w* through well-selected demonstrations.4 In order to quantify
the information a demonstration provides on w*, we leverage the
idea of behavior equivalence classes.

3.3 Behavior Equivalence Class
The behavior equivalence class (BEC) of π is the set of (viable)
reward weights under which π is still optimal. The larger the
BEC(π) is, the greater the potential uncertainty over w* that is
underlying the robot’s optimal policy.

BEC(π) � {w ∈ Rl
∣∣∣∣ π optimal w.r.t. R � wuϕ(s, a, s′)} (2)

The BEC(π) can be calculated as the intersection of the
following half-space constraints generated by the central IRL
equation (Ng and Russell, 2000)

wu(μ(s,a)π − μ(s,b)π )≥ 0
∀a ∈ argmax

a′∈A
Q*(s, a′), b ∈ A, s ∈ S (3)

where μ(s,a)π � E [∑∞
t�0 c

tϕ(st)
∣∣∣∣∣π, s0 � s, a0 � a] is the vector of

expected reward feature counts accrued from taking action a in s,

then following π after, andQ*(s, a) refers to the optimal Q-value in a
state and a possible action (Watkins and Dayan, 1992).

Brown and Niekum (2019) proved that the BEC(D|π) of a set
of demonstrations D of a policy π can be formulated similarly as
the intersection of the following half-spaces

wu(μ(s,a)π − μ(s,b)π )≥ 0, ∀(s, a) ∈ D, b ∈ A. (4)

Using the Eq. 4, every demonstration can be translated into a
set of constraints on the viable reward weights.

Consider an example in the delivery domain with A � {up,
down, left, right, pick up, drop, exit}, w* � [26,−3,−1]5 and binary
reward features ϕ � [dropped off package at destination, entered
mud, action taken]. The demonstration in the left image of
Figure 1 corresponds to the constraints in the right image.
With a unit cost for each action, the constraints on viable
reward weights intuitively indicate that 1) w*0 ≥ 10 since a total
of 10 actions were taken in the demonstration and that 2)w1*≤ − 2
as the detour around the mud took two actions.

3.4 Set Cover Optimal Teaching (SCOT)
SCOT (Brown and Niekum, 2019) allows a robot to select the
minimum number of demonstrations that results in the smallest
BEC area (i.e. the intersection of the constraints) for an IRL learner.
As it only considers IRL, it serves as a baseline method to the
techniques proposed in this work that augment SCOT with human
teaching strategies.

FIGURE 2 | (A) Sample demonstrations exhibiting scaffolding, simplicity, and pattern discovery.We scaffold by showing demonstrations that incrementally decrease in
BEC area (which appears to correlate inversely with informativeness and difficulty). Simplicity is encouraged by minimizing visual clutter (i.e. unnecessary mud patches).
Pattern discovery is encouraged by holding the agent and passenger locations constant while highlighting the single additional toll between demonstrations that changes the
optimal behavior. (B) Histogram of BEC areas of the 25,600 possible demonstrations in the delivery domain. Cluster centers returned by k-means (k � 6) are shown as
red circles along the x-axis. Demonstrations from every other cluster are selected and shown in order of largest to smallest BEC area for scaffolded machine teaching.

4In principle, a robot could simply convey w* explicitly to a human. However, it can
be nontrivial for humans to map precise numerical reward weights to the
corresponding optimal behavior through planning, especially if there is large
number of reward features. Thus, providing demonstrations that inherently
carry information regarding w* and directly conveying the optimal behavior
can be more a effective teaching method for human learners.

5In practice, we also require that ‖w‖1 � 1 to circumvent the scaling invariance of
IRL solutions and to eliminate the degenerate all-zero reward function (Brown and
Niekum, 2018). We convey the non-normalized w here for intuition.
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The SCOT algorithm is summarized here for completeness.
The robot first translates all possible demonstrations of its policy
in a domain into a corresponding set of BEC constraints. After
taking a union of these constraints, redundant constraints are
removed using linear programming (Paulraj and Sumathi, 2010).
These non-redundant constraints together form the minimal
representation of BEC(π*). SCOT now iteratively runs through
all possible demonstrations again and greedily adds to the
teaching set D the demonstration that covers as many of the
remaining constraints in BEC(π*), until all constraints are
covered.6 These steps correspond to lines 2–13 in Algorithm 1.

4 PROPOSED TECHNIQUES FOR
TEACHING HUMANS

4.1 Scaffolding
The SCOT algorithm efficiently selects the minimum number of
demonstrations that results in the smallest BEC area for a pure IRL
learner (Brown and Niekum, 2019). Such a learner is assumed to
fully grasp these few highly nuanced examples that delicately
straddle decision-making boundaries and find any other
demonstrations redundant. However, we posit that the BEC area
of a demonstration not only inversely corresponds to the amount of
information it contains about the possible values of w*, but also
inversely corresponds to the effort required for a human to extract
that information. Thus humans will likely benefit from additional
scaffolded examples that ease them in and incrementally relax the
degrees of freedom of the learning problem.

We develop a scaffolding method for a learner without any
prior knowledge, outlined as follows. First, obtain the SCOT
demonstrations that contains the maximum information on w*.
If space remains in the teaching budget n for additional
demonstrations, begin scaffolding by sorting all possible
demonstrations in a domain according to their BEC areas.
Then cluster them using k-means into twice as many clusters as
the remaining budget to ensure that no two consecutive
demonstrations are nearly identical in BEC area (see Figure 2).
Randomly draw m candidate demonstrations from every other
cluster. Finally from these n pools of candidate demonstrations,
select the ones that best optimize visuals for the teaching set D (as
described in the next section). See lines 16–21 in Algorithm 1. In
this paper, the algorithm always divided the BEC areas into 6
clusters, considering every other cluster to correspond to “low”,
“medium”, and “high” information respectively.

4.2 Simplicity and Pattern Discovery
Though the BEC area of a demonstration provides an unbiased,
quantitative measure of the information transferred to a pure IRL
learner, human learners are likely also influenced by the medium
of the demonstration, e.g. visuals, and the simplicity and patterns it

affords. For example, visible differences between sequential
demonstrations can highlight relevant aspects, while visual
clutter that does not actually influence the robot’s behavior
(e.g. extraneous mud not in the path of the delivery robot)
may distract or even mislead the human.

We perform a greedy sequential optimization for pattern discovery
and then for simplicity. We first encourage pattern matching by
considering candidates from different BEC clusters (which often
exhibit qualitatively different behaviors) that are most visually
similar to the previous demonstration.7 The aim is to highlight a
change in environment (e.g. a newmud patch) that caused the change
in behavior (e.g. robot takes a detour) while keeping all other elements
constant. We then optimize for simplicity. A measure of visual
simplicity is manually defined for each domain (e.g. the number of
mud patches in the delivery domain), and out of the scaffolding
candidates, the visually simplest demonstration is selected.

The proposed methods for scaffolding and visual optimization
come together in Algorithm 1.8 Since the highest information
SCOT demonstrations are selected first then demonstrations are
selected via k-means clustering from high to low information, the
algorithm concludes by reversing the demonstration list to order
the demonstrations from easiest to hardest (line 28).9 N̂[·]
denotes the operation of extracting unit normal vectors
corresponding to a set of half-space constraints, and ∖ denotes
set subtraction. An example of a sequence of demonstrations that
exhibits scaffolding, simplicity, and pattern discovery can be
found at the top of Figure 2.

4.3 Testing
An optimal trajectory’s BEC area intuitively captures its
informativeness as a teaching demonstration. The smaller the
area, the less uncertainty there is regarding the value of w*.

We propose a complementary and novel idea: that the BEC
area can be inverted as a measure of a trajectory’s difficulty as a
question during testing, i.e. when a human is asked to predict the
robot’s trajectory in a new situation. Intuitively, a large BEC area
indicates that there are many viable reward weights for a
demonstration, and thus the human does not need to precisely
understand w* to correctly predict the robot’s trajectory. We can
also use this measure to scaffold tests of varying difficulties to
gauge the human’s understanding of w* and subsequently π*.

6Instead of greedily adding the first demonstration that covers the most remaining
constraints of BEC(π*) at each iteration, one can enumerate all possible
combinations of demonstrations that cover BEC(π*) and optimize for
simplicity and pattern discovery here as well.

7We measure the visual similarity of two states by defining a hash function over a
domain’s state space and calculating the edit distance between the two
corresponding state hashes.
8An implementation is available at https://github.com/SUCCESS-MURI/machine-
teaching-human-IRL.
9In theory, one could order SCOT and k-means demonstrations jointly by BEC
area and potentially allowing them to mix in order. However, a SCOT
demonstration that contributes a maximally informative constraint of BEC(π*)
may in fact have a large BEC area. Thus, showing this SCOT demonstration early
on may actually render a later k-means demonstration as uninformative (i.e. the
SCOT demonstration’s BEC(π*) constraint may cause a later k-means
demonstration’s constraints to be redundant). Instead, showing k-means
demonstrations that iteratively decrease in BEC area, then showing SCOT
demonstrations ensures that the learner receives non-redundant constraints on
w* at each step.
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Algorithm 1 Machine Teaching for Human Learners.

5 USER STUDIES

We ran two online user studies that involved participants
watching demonstrations of a 2D agent’s policy and predicting
the optimal trajectory in new test environments.10 The studies
were designed to evaluate the following hypotheses.

H1: The BEC area of a demonstration correlates 1) inversely to
the expected difficulty for a human to correctly predict it during
testing, and 2) directly to their confidence in that prediction.

H2: The BEC area of a demonstration also correlates 1)
inversely to the information transferred to a human during
teaching and 2) inversely to the subsequent test performance.

H3: Forward scaffolding (demonstrations shown in increasing
difficulty) will result in better qualitative assessments of the
teaching set and better participant test performance over no
scaffolding (only high difficulty demonstrations shown) and
backward scaffolding (demonstrations shown in decreasing
difficulty), in that order.

H4: Positive visual optimization will result in better qualitative
assessments of the teaching set and better test performance over

negative visual optimization (with positive and negative visual
optimization corresponding to the maximization and minimization,
respectively, of both simplicity and pattern discovery).

The two user studies jointly tested H1. The first study tested
H2 and the second study tested H3 and H4.

5.1 Domains
Three simple gridworld domains were designed for this study (see
Figure 3). The available actions were {up, down, left, right, pick
up, drop, exit}. Each domain consisted of one shared reward
feature of unit action cost, and two unique reward features as
follows.

Delivery domain: The agent is rewarded for bringing a
package to the destination and penalized for moving into mud.

Two-goal domain: The agent is rewarded for reaching one of
two goals, with each goal having a different reward.

Skateboard domain: The agent is rewarded for reaching the
goal. It is penalized less per action if it has picked up a skateboard
(i.e. riding a skateboard is less costly than walking).

To convey an upper bound on the positive reward weight, the
agent exited from the game immediately if it encountered an
environment where working toward the positive reward would
yield a lower overall reward (e.g. too much mud along its path).
The semantics of each domain were masked with basic geometric
shapes and colors to prevent biasing human learners with priors.

10Code for the user studies, videos of teaching and testing demonstrations, and the
collected data are available at https://github.com/SUCCESS-MURI/psiturk-
machine-teaching.
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All domains were implemented using the simple_rl framework
(Abel, 2019).

5.2 Study Design
The first and second user studies (US1 and US2, respectively)
used the same domains, procedures, and measures, though they
differed in which variable was manipulated.

US1 explored how BEC area of demonstrations correlates with a
human’s understanding of the underlying policy. Thus, the
between-subjects variable was information class, with three
levels: low, medium, and maximum (i.e. SCOT). The low and
medium information demonstrations were selected from the fifth
and third BEC clusters respectively (see Figure 2). When selecting
multiple demonstrations from a single cluster, we optimized for
visual simplicity and dissimilarity as diversity11 of demonstrations
has been shown to improve human learning (Amir and Amir,
2018; Huang et al., 2019). The number of demonstrations shown in
each domain was set to equal the number of SCOT demonstrations
for fair comparison (2 for delivery and skateboard, 3 for two-goal).

US2 explored how incorporating human learning strategies
impacts a human’s understanding of the underlying policy.
Specifically, it examined how the presence and direction of
scaffolding, and optimization of visuals, would impact the
human’s test performance. The between-subjects variables
were scaffolding class (none, forward, and backward), and
visual optimization (positive and negative). For scaffolding
class, forward scaffolding showed demonstrations according to
Algorithm 1, backward scaffolding showed forward scaffolding’s
demonstrations in reverse, and no scaffolding showed all high
informative examples from the 1st BEC cluster (Figure 2). Five
demonstrations were shown for each domain, always ending with
demonstrations determined by SCOT.

Both US1 and US2 had two additional within-subject
variables: domain (delivery, two-goal, and skateboard,
described in Section 5.1) and test difficulty (low, medium, and
high, determined by the BEC area of the test).

For both user studies, participants first completed a series of
tutorials that introduced them to the mechanics of the domains
they would encounter. In the tutorials, participants learned that
the agent would be rewarded or penalized according to key events
(i.e. reward features) specific to each domain. They were then
asked to generate a few predetermined trajectories in a practice
domain with a live reward counter to familiarize themselves with
the keyboard controls and a practice reward function. Finally,
participants entered the main user study and completed a single
trial in each of the delivery, two-goal, and skateboard domains.
Each trial involved a teaching portion and a test portion. In the
teaching portion, participants watched videos of optimal
trajectories that maximized reward in that domain, then
answered subjective questions about the demonstrations (M2-
M4, see Section 5.3). In the subsequent test portion, participants
were given six new test environments and asked to provide the
optimal trajectory. The tests always included two low, two
medium, and two high difficulty environments shown in
random order. For each of the tests, participants also provided
their confidence in their response (M5). The teaching videos for
each condition were pulled from a filtered pool of 3 exemplary
sets of demonstrations proposed by Algorithm 1 to control for
bias in the results. The tests were likewise pulled from a filtered
pool of 3 exemplary sets of demonstrations for each of the low,
medium, and high difficulty test conditions.

Finally, though the methods described in this paper are designed
for a human with no prior knowledge regarding any of the weights,
the agent in our user studies assumed that the human was aware of
the step cost and only needed to learn the relationship between the
remaining two weights in each domain. This simplified the problem
at the expense of a less accurate human model and measure of a
demonstration’s informativeness via BEC area. However, the effect
was likely mitigated in part by the clustering and sampling in
Algorithm 1, which only makes use of coarse BEC areas.

5.3 Measures
The following objective and subjective measures were recorded to
evaluate the aforementioned hypotheses.

M1. Optimal response: For each test, whether the participant’s
trajectory received the optimal reward or not was recorded.

FIGURE 3 | Three domains were presented in the user study, each with a different set of reward weights to infer from demonstrations using inverse reinforcement
learning. (A) delivery, (B) two-goal, C: skateboard.

11Note that Algorithm 1 already achieves diversity by scaffolding demonstrations
across different BEC clusters and thus benefits instead from visual similarity.
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M2. Informativeness rating: 5-point Likert scale with prompt
“How informative were these demonstrations in understanding
how to score well in this game?”

M3. Mental effort rating: 5-point Likert scale with prompt
“How much mental effort was required to process these
demonstrations?”

M4. Puzzlement rating: 5-point Likert scale with prompt
“How puzzled were you by these demonstrations?”

M5. Confidence rating: 5-point Likert scale with prompt
“How confident are you that you obtained the optimal score?”

6 RESULTS

One hundred and sixty two participants were recruited using
Prolific (Palan and Schitter, 2018) for the two user studies.
Participants’ ages ranged from 18 to 57 (M � 26.07, SD �

8.35). Participants self-reported gender (roughly 67% male,
30% female, 2% non-binary, and 1% preferred to not disclose).
Each of the nine possible between-subjects conditions across the
two user studies were randomly assigned 18 participants (such
that US1 and US2 contained 54 and 108 participants
respectively), and the order of the domains presented to each
participant was counterbalanced.

The three domains were designed to vary in the difficulty of
their respective optimal trajectories. We calculated an intraclass
coefficient (ICC) based on a mean-rating (k � 3), consistency-
based, 2-way mixed effects model (Koo and Li, 2016) to evaluate
the consistency of each participant’s performance across
domains. A low ICC value of 0.37 (p< .001) indicated that
performance in fact varied considerably across domains for
each participant. We subsequently average each participant’s
scores across the domains in all following analyses, potentially
yielding results that are representative of domains with a range of
difficulties.

H1: We combine the test responses from both user studies
as they shared the same pool of tests. A one-way repeated
measures ANOVA revealed a statistically significant difference

FIGURE 4 | Participants were significantly more confident of their responses as test difficulty decreased.

FIGURE 5 | The information class of demonstrations only significantly
influences their perceived informativeness, ironically decreasing from low to
maximum information class. This suggests that a demonstration’s intrinsic
information content (as measured by its BEC area) does not always
correlate with the information transferred to human learners. No significant
effects were found between information class andmental effort or puzzlement.

FIGURE 6 | Though the three scaffolding conditions perform similarly in
aggregate across all tests, “no scaffolding” significantly increases
performance for high difficulty tests.
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in the percentage of optimal responses (M1) across test
difficulty (F(2, 322) � 275.35, p< .001). Post-hoc pairwise
Tukey analyses further revealed significant differences
between each of the three groups, with the percentage of
optimal responses dropping from low (M � 0.89), to
medium (M � 0.68), to high (M � 0.36) test difficulties
(p< .001 in all cases).

Spearman’s rank-order correlation further showed a
significant inverse correlation between test difficulty and
confidence (M5, rs � −.40, p< .001,N � 486). See Figure 4 for
the raw confidence data.

Objective and subjective results both support H1, that BEC area
can indeed be used as a measure of difficulty for testing. We thus
proceed with the rest of the analyses with “test difficulty” as a
validated independent variable.

H2: A two-way mixed ANOVA on percentage of optimal
responses (M1) did not reveal a significant effect of information
class of the teaching set (F(2, 51) � 1.23, p � .30), though test
difficulty had a significant effect consistent with the H1 analysis
(F(2, 102) � 118.58, p< .001). There was no interaction between
information class and test difficulty (F(4, 102) � 0.67, p � .61).

Spearman’s correlation test only found a significant negative
correlation between information class and perceived
informativeness (M2, rs � −0.28, p � .04,N � 54). Neither
mental effort (M3, p � .08) nor puzzlement (M4, p � .36) were
found to have significant correlations with information class. See
Figure 5 for the raw subjective ratings.

The data failed to support H2. The data suggests that IRL alone
is indeed an imperfect model of human learning, motivating the
use of human teaching techniques to better accommodate human
learners.

There was no correlation between information class and test
performance, likely a result of two factors. First, the number of
demonstrations provided (two or three) across the conditions in
US1 were likely too few for human learners, who are not pure IRL
learners and can sometimes benefit from “redundant” examples
that reinforce a concept. Second, as will be discussed under the

scaffolding subsection in Section 7.2, BEC area is likely an
insufficient model of a demonstration’s informativeness to a
human and warrants further iteration.

Accordingly, maximum information demonstrations provided
by SCOT (M � 0.61) failed to significantly improve the
percentage of optimal responses compared to medium
(M � 0.65) and low (M � 0.67) information demonstrations as
IRL would have predicted. The subjective results further indicate
that people ironically found the maximally informative
demonstrations least informative. We hypothesize that
participants struggled to digest the information contained
within SCOT’s demonstrations all at once, motivating the use
of scaffolding to stage learning into mangeable segments.

H3: A two-way mixed ANOVA on percentage of optimal
responses (M1) revealed a significant interaction effect between
scaffolding and test difficulty (F(4, 210) � 2.79, p � .03). Tukey
analyses showed that no scaffolding (M � 0.46) yielded
significantly better test performance than forward scaffolding
(M � 0.34) for high difficulty tests (p � .05). Though not
statistically significant, a trend of forward and backward
scaffolding outperforming no scaffolding on low
(M � 0.89, 0.89, 0.85 respectively) and medium difficulty tests
(M � 0.69, 0.69, 0.62 respectively) can be observed as well (see
Figure 6).

A two-way mixed ANOVA surprisingly did not reveal a
significant effect from scaffolding (F(2, 105) � 0.02, p � .98)
but did find a significant effect for test difficulty
(F(2, 210) � 167.63, p< .001) on percentage of optimal
responses (M1) as expected.

A Kruskal–Wallis test did not find differences between the
informativeness (H(2) � 5.18, p � .07), mental effort
(H(2) � 1.16, p � .56), or puzzlement (H(2) � 0.59, p � .74)
ratings (M2–M4) of differently scaffolded teaching sets.

The data largely failed to support H3. Forward and backward
scaffolding surprisingly led to nearly identical test performance.
Though no scaffolding performed similarly overall, it yielded a
significant increase in performance specifically for high difficulty

FIGURE 7 | (A) Optimizing teaching demonstration visuals does not significant affect performance on low and medium difficulty tests, but leads to a significant
improvement on high difficulty tests. (B) Ratings on mental effort and puzzlement surprisingly increased for positive visual optimization, likely an artifact of unforeseen
study design effects. No significant effects were found for ratings on informativeness.
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tests. These two surprising results are addressed in the discussion.
The subjective measures did not indicate any clear relationships.

H4: A two-way mixed ANOVA on percentage of optimal
responses (M1) revealed significant effects of test difficulty
(F(2, 212) � 169.21, p< .001) and an interaction effect between
optimized visuals and test difficulty (F(2, 212) � 5.61, p � .004).
Exploring the interaction effect with Tukey analyses revealed that
visual optimization had no effect on test performance on low
(p � .24) and medium (p � .90) difficulty tests, but led to a
significant improvement in performance in high (p< .001)
difficulty tests for positive visual optimization (M � 0.45) over
negative (M � 0.31), see Figure 7. The two-way mixed ANOVA
did not reveal a significant from optimized visuals
alone (F(1, 106) � 2.27, p � .13).

A Mann–Whitney U test surprisingly found that ratings for
mental effort (U(Nneg � 54,Npos � 54) � 1131.5, p � .03) and
puzzlement (U(Nneg � 54,Npos � 54) � 1082.5, p � .02) (M3
and M4) increased for positive visual optimization.
Informativeness ratings were not found to differ significantly
between the two visual optimizations (p � .11).

The data partially supports H4. Optimizing visuals improved
test performance for high difficulty tests. However, optimizing
visuals also yielded counterintuitive results for the subjective
measures on mental effort and puzzlement, which we address
in the following section.

7 DISCUSSION

7.1 Learning Styles
Analyzing the free-form comments provided by participants
throughout the user studies revealed unexpected insights about
their learning styles. Though this paper assumed that participant
learning would only resemble IRL, we discovered it sometimes
resembled imitation learning12, which models humans as
learning the optimal behavior directly from demonstrations (as
opposed to through an intermediate reward function like IRL)
(Daw et al., 2005; Lage et al., 2019). For example, one participant
expounded upon their mental effort Likert rating (M3) with
following description of IRL-style learning: “You need to make
a moderate amount of mental effort to understand all the rules

and outweight [sic] everything and see what is worth it or not in
the game.” In contrast, another expounded upon their used
mental effort rating with the following description of IL-style
learning: “The primary ‘mental effort’ was in memorizing the
patterns of each level/stage and matching the optimal movements
for them.”

To better understand the types of learning employed by our
participants, we analyzed their optional responses to the
following questions: “Feel free to explain any of your
selections above if you wish:” (asked in conjunction with
prompts for ratings of informativeness, mental effort, and
puzzlement of demonstrations in each domain, i.e. up to three
times) and “Do you have any comments or feedback on the
study?” (asked after the completion of the full study, i.e. once).
Similar to Lage et al. (2019), we coded relevant responses from
participants regarding their thought process as resembling IRL
(e.g. “So, the yellow squares should be avoided if possible and they
possibly remove two points when crossed but I’m not sure”) or as
resembling IL (e.g. “I did not understand the rule regarding
yellow tiles. It seems they should be avoided, but not always.
Interesting. . .”), or as “unclear” (e.g. “After some examples I feel
like I’m understanding way better these puzzles.”). A second
coder uninvolved in the study independently labeled the same set
of responses, assigning the same label to 79% of the responses. A
Cohen’s kappa of 0.64 between the two sets of codings further
indicates moderate to substantial agreement (Landis and Koch,
1977; Altman, 1990; McHugh, 2012). Please refer to the
Supplementary Material for the responses, labels, and further
details on the coding process.

As Table 1 conveys, both coders agreed that more responses
resembled IRL than IL and “unclear” combined, suggesting that
people perhaps employed IRL more often than not. However, we
note that the way the tutorials introduced the domains may have
influenced this result. For example, explicitly conveying each
domain’s unique reward features and clarifying that a trajectory’s
reward is determined by a weighting over those features may have
encouraged participants to first infer the reward weights from
optimal demonstrations (e.g. through IRL) and then infer the
optimal policy (as opposed to directly inferring the optimal policy
e.g. through IL).

Examining the percentage of each response across the two
user studies reveals another interesting trend. Responses were
far more likely to be coded as IRL in US2, where participants got
to see five demonstrations as opposed to US1, where
participants only got to see two or three demonstrations.
This echoes the observation of Lage et al. (2019) that people
may be more inclined to use IL over IRL in less familiar
situations, which may be moderated in future studies

TABLE 1 | Coding of qualitative participant responses as resembling inverse reinforcement learning (IRL) or imitation learning (IL), or “unclear.”

Learning style Raw counts (across user studies) Percentages (across coders)

Coder 1 Coder 2 User study 1 (%) User study 2 (%)

IRL 25 27 32 68
IL 7 9 27 12
Unclear 15 11 41 20

12Note that the term “behavior cloning” is sometimes used instead to refer to the
process of directly learning the optimal behavior. Accordingly, “imitation learning”
is sometimes used to refer to the broad class of techniques that learn optimal
behavior from demonstrations, encompassing both behavior cloning and IRL (Osa
et al., 2018).
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through more extensive pre-study practice and/or additional
informative demonstrations that better familiarize the
participant to the domains.

Finally, out of 15 participants who provided more than one
response, coders agreed that eight appeared to employ the same
learning style throughout the user study (e.g. participants 129 and
142 in US2 only provided responses resembling IRL), four
appeared to have changed styles through the user study (e.g.
participants 59 in US1 and 20 in US2 provided various responses
that resembled IL, IRL, or were unclear), and three were
ambiguous (i.e. one coder coded a consistent learning style
while the other did not). Though we controlled for learning
effects by counterbalancing the order of the domains, participants
likely found the domains to vary in the difficulty of their
respective optimal trajectories (as suggested by the ICC score).
Furthermore, certain conditions led to significant differences in
subjective and objective outcomes (e.g. maximum information
demonstrations were ironically perceived to be least informative
(H2) and positive visual optimization improved performance for
high difficulty tests (H4)). We thus hypothesize that the varying
difficulties in domains and conditions non-trivially influenced the
learning styles at different times [e.g. by moderating familiarity
(Lage et al., 2019)].

Future work: The multi-faceted nature of human learning can
be described by a number of models such as IRL and IL. Lage et al.
(2019) show post hoc that tailoring the teaching to the human’s
favored learning style can improve the learning outcome. Thus,
predicting a human’s current learning style a priori or in situ (e.g.
by using features such as the human’s familiarity of the task or
domain) and matching the teaching appropriately in real time
will be an important direction of future work.

7.2 Scaffolding
Though BEC area is a well-motivated preliminary model of a
demonstration’s informativeness to a human, backward
scaffolding’s unexpected on-par performance with forward
scaffolding suggests that it is insufficient and our scaffolding
order likely was not clear cut in either direction. In considering
possible explanations, we note that Eq. 4 presents a
computationally elegant method of generating BEC constraints
via sub-optimal, one-step deviations from the optimal trajectory.
However, these suboptimal trajectories do not always correspond
to the suboptimal trajectories in the human’s mind (e.g. which
may allow more than one-step deviations). This sometimes leads
to a disconnect between a demonstration’s informativeness as
measured by BEC area and its informativeness from the point of
view of the human.

Furthermore, forward and backward scaffolding (each
comprised of low, medium, and high information
demonstrations) yielded higher performance for low and
medium difficulty tests, and no scaffolding (comprised of only
high information demonstrations) yields significantly higher
performance for high difficulty tests. Improved performance
when matching the informativeness and difficulty of teaching
and testing demonstrations respectively (which yields similar
demonstrations) further suggests that IL-style learning may
have also been at play.

Finally, participants across each condition never achieved a
mean score of greater than 0.5 for high difficulty tests, indicating
that they were largely unable to grasp the more subtle aspects of
the agent’s optimal behavior. While the five demonstrations
shown in US2 should have conveyed the maximum possible
information (in an IRL-sense), they were not as effective in
reality. One reason may be that human cognition is
constrained by limited time and computation (Griffiths,
2020), and at times may opt for approximate, rather than
exact, inference (Vul et al., 2014; Huang et al., 2019).
Approximate inference (and even IL-style learning) indeed
would have struggled with high difficulty tests whose optimal
behavior could often only be discerned through exact
computation of rewards. In addition to potentially showing
more demonstrations (including “redundant” demonstrations
that reinforce concepts and are still useful for approximate
IRL), we believe that more effective scaffolding that further
simplifies the concepts being taught while simultaneously
challenging human’s current knowledge will be key to
addressing this gap, as we discuss next.

Future work: We propose two directions for future work on
scaffolding. First, we note that our selected demonstrations often
revealed information about multiple reward weights at once,
which could be difficult to process. Instead, we can further
scaffold by teaching about one weight at a time, when
possible. Second, Reiser (2004) suggests that scaffolding should
not only provide structure that reduces problem complexity but
at times induce cognitive conflict to challenge and engage the
learner. The current method of scaffolded teaching assumes that
the learner has no prior knowledge when calculating a
demonstration’s informativeness (e.g. Algorithm 1 considers a
repeat showing of a demonstration to a learner to be equally as
informative as the first showing). But when filtering for teaching
and testing sets for the user studies, we sometimes observed and
accounted for the fact that demonstrations with the same BEC
area could further vary in informativeness or difficulty to
different learners based on whether it presented an expected
behavior or not. We believe that providing demonstrations which
incrementally deviate from the human’s current model will be
more informative to a human and would be better suited to
scaffolding.

7.3 Simplicity and Pattern Discovery
Optimizing visuals improved test performance, but only for
high difficulty tests. This suggests that simplicity and pattern
discovery could produce a meaningful reduction in complexity
for only high information demonstrations (which contain the
insights necessary to do well on the high difficulty tests), while
those of low and medium information were already
comprehensible.

We found counterintuitive results on mental effort or
puzzlement ratings (M3–M4) for H4, where ratings for mental
effort and puzzlement increased from negative to positive visual
optimizations. One factor may have been the open-ended
phrasing of the corresponding Likert prompts that failed to
always elicit the intended measure. For example, one
participant expounded upon their mental effort rating by
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saying “it takes a bit of efford [sic] remembering that you can quit
at any time,” referencing the difficulty of remembering all
available actions rather than the intended difficulty of
performing inference over the optimal behavior.

Similarly, the open-ended prompt for puzzlement failed to
always query specifically for potential puzzlement arising from
(a potentially counterintuitive) ordering of the demonstrations.
Instead it sometimes invited comments such as ‘I think i [sic]
saw the same distance to the objective 2 times and 2 differnt [sic]
outcomes,’ and interestingly informed us of possible unforeseen
confounders on puzzlement such as limited memory. As
participants were not allowed to rewatch previous
demonstrations to enforce scaffolding order, similar
demonstrations (in correspondingly similar environments)
were sometimes mistaken to have shown different behaviors
in the same environment.

Future work: Future iterations would benefit from
“marking critical features” that “accentuates certain
features of the task that are relevant”, as suggested by
Wood et al. (1976). For example, imagine showing two
side-by-side demonstrations in the delivery domain, one
where the robot exits because of the many mud patches in
its path and one where the robot completes the delivery
because of one fewer mud patch in its path. Outlining the
presence and absence of the critical mud patch with a salient
border in the two demonstrations respectively would help
highlight the relevant cause for the change in robot behavior
to the learner.

7.4 Testing
Objective and subjective results strongly support BEC area as a
measure of test difficulty for human learners. Following studies
may thus use tests of varying BEC areas and difficulties to evaluate
and track the learner’s understanding throughout the learning
process.

Future work: Effective scaffolding is contingent on
maintaining an accurate model of the learner’s current
abilities. Though this work assumed disjoint teaching and
testing phases, learning is far more dynamic in reality. Future
work should therefore explore how to select an initial set of tests
that can accurately discern the learner’s current knowledge, and
also to know when to switch between teaching and testing
throughout the learning process.

7.5 Real-world Applicability
Though the proposedmethod of machine teaching is theoretically
general, there are additional considerations that must be
addressed for real-world applicability.

First, a robot’s policy may be a function of many
parameters. Though performing IRL in a high-dimensional
space may sometimes be warranted, humans naturally exhibit
a bias toward simpler explanations with fewer causes
(Lombrozo, 2016) and can only effectively reason about a
few variables at once (e.g. Halford et al. (2005) suggest
the limit to be around four). Thus, future work may
examine approximating a high-dimensional policy with a

low-dimensional policy that can be conveyed instead with
minimal loss. Additionally, scaffolding methods that
explicitly convey only a subset of the reward weights at a
time should be developed as previously noted.

Second, a robot’s entire trajectory will not always be necessary
or reasonable to convey if it is lengthy. Thus techniques that
extract and convey only the informative segments along with
sufficient context will be important. For segments that are
infeasible to convey in the real world (e.g due to necessary
preconditions not being met), demonstrations may be given in
simulation instead.

8 CONCLUSION

As robots continue to gain useful skills, their ability to teach
them to humans will benefit those looking to acquire said
skills and also facilitate fluent collaboration with humans. In
this work, we thus explored how a robot may teach by
providing demonstrations of its skill that are tailored for
human learning.

We augmented the common model of humans as inverse
reinforcement learners with insights from learning theory and
cognitive science to better accommodate human learning.
Scaffolding provided demonstrations that increase in
informativeness and difficulty, aiming to ease the learner into
the skill being taught. Furthermore, simple demonstrations that
conveyed a discernible pattern were favored to minimize
potentially misleading distractions and instead highlight
critical features. Finally, a measure for quantifying the
difficulty of tests was proposed toward effective evaluation of
learning progress.

User studies strongly correlated our measure of test difficulty
with human performance and confidence. Favoring simplicity
and pattern discovery when selecting teaching demonstrations
also led to a significant increase in performance for high difficulty
tests. However, scaffolding failed to produce a significant effect on
the test performance, informing both the shortcomings of the
current implementation and the ways it can be improved in
future iterations. Finally, though this work assumed disjoint
teaching and testing phases with a static human model,
effective scaffolding requires the teacher query, maintain, and
leverage a dynamic model of the student to tailor the learning
appropriately. We leave this as an exciting direction for
future work.
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When Even a Robot Tutor Zooms: A
Study of Embodiment, Attitudes, and
Impressions
Junko Kanero1*, Elif Tutku Tunalı 1, Cansu Oranç2, Tilbe Göksun3 and Aylin C. Küntay3

1Faculty of Arts and Social Sciences, Sabancı University, Istanbul, Turkey, 2MPRG iSearch, Max Planck Institute for Human
Development, Berlin, Germany, 3Department of Psychology, Koç University, Istanbul, Turkey

This study used an online second language (L2) vocabulary lesson to evaluate whether
the physical body (i.e., embodiment) of a robot tutor has an impact on how the learner
learns from the robot. In addition, we tested how individual differences in attitudes
toward robots, first impressions of the robot, anxiety in learning L2, and personality
traits may be related to L2 vocabulary learning. One hundred Turkish-speaking young
adults were taught eight English words in a one-on-one Zoom session either with a
NAO robot tutor (N � 50) or with a voice-only tutor (N � 50). The findings showed that
participants learned the vocabulary equally well from the robot and voice tutors,
indicating that the physical embodiment of the robot did not change learning gains
in a short vocabulary lesson. Further, negative attitudes toward robots had negative
effects on learning for participants in the robot tutor condition, but first impressions did
not predict vocabulary learning in either of the two conditions. L2 anxiety, on the other
hand, negatively predicted learning outcomes in both conditions. We also report that
attitudes toward robots and the impressions of the robot tutor remained unchanged
before and after the lesson. As one of the first to examine the effectiveness of robots as
an online lecturer, this study presents an example of comparable learning outcomes
regardless of physical embodiment.

Keywords: human-robot interaction, second language learning (L2 learning), embodiment, attitudes, impressions

INTRODUCTION

Social robots, robots that interact and communicate with humans by following the behavioral norms
of human-human interactions (e.g., Bartneck and Forlizzi, 2004; Kanero et al., 2018), are becoming
abundant across a variety of settings such as homes, hospitals, and schools. A particularly interesting
application of social robots is language education because of the significance of the topic as well as the
unique characteristics of social robots. Language education is critical for people of all ages. For
children, language abilities are known to predict future academic achievement and social skills (Hoff,
2013; Milligan et al. 2007); for adults, language skills can broaden social and occupational
opportunities (e.g., Paolo and Tansel, 2015). Learning another language can also contribute to
the development of cognitive skills in children (Kovács and Mehler, 2009), and the attainment of
them in older adults (Bialystok et al., 2004). Importantly, a wealth of research in psychology and
education suggests that learning both first (L1) and second language (L2) requires interactions (Verga
and Kotz, 2013; Konishi et al., 2014; Lytle and Kuhl, 2017). As a social agent with a physical body, a
robot can play the role of a tutor through vocal, gestural, and facial expressions to provide an
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interactive learning experience (Han et al., 2008; Kennedy et al.,
2015; Kanero et al., 2018). The current study focuses on
embodiment and examines whether and how important it is
for L2 learners to interact with a robot tutor with a physical body.

The general bodily affordances of social robots were suggested
to improve the learning experience as they can engage with the
learners’ physical world and elicit social behaviors from them
(Belpaeme et al., 2018). For instance, when teaching a new word,
robots can perform gestures with their hands to depict the target
object or direct the learner’s attention to the object with their eyes,
both of which are an integral part of interacting and learning with
robots (Admoni and Scassellati, 2017; Kanero et al., 2018). Some
studies indicate that interacting with a robot in person or through
a screen may not have much of a difference in terms of learning
(e.g., Kennedy et al., 2015), and studies on language learning with
intelligent virtual agents provide support to this (Macedonia et al.,
2014). In fact, a study on second language learning found
participants performing worse after interacting with a
physically present robot as opposed to its virtual version or a
voice-only tutor, speculatively because it was too novel and
interesting, hence distracting, for the participants (Rosenthal-
von der Pütten et al., 2016). On the other hand, there is also
research suggesting that interacting with a physically present
robot may yield better outcomes. For instance, one study found
that adults performed better in solving logic puzzles when they
were partnered off with a physically present robot as opposed to a
disembodied voice or a video of a robot (Leyzberg et al., 2012),
though solving a logic puzzle is inherently different from learning
a language.

Embodiment has been defined in many different ways partially
because the term is used in various disciplines including
philosophy, psychology, computer science, and robotics (see
Deng et al., 2019). One of the clear definitions provided by
roboticists is that of Pfeifer and Scheier (1999): “In artificial
systems, the term refers to the fact that a particular agent is
realized as a physical robot or as a simulated agent” (p. 649).
Focusing on the social aspect, Barsalou et al. (2003) states that
embodiment is the “states of the body, such as postures, arm
movements, and facial expressions, [which] arise during social
interaction and play central roles in social information
processing” (p. 43). In human-robot interaction, Li (2015)
made a distinction between what he calls physical presence and
physical embodiment to systematically evaluate the different
bodily affordances of robots. According to Li (2015), physical
presence differentiates a robot in the same room with the user and
a robot appearing on the screen. On the other hand, physical
embodiment differentiates a (co-present or telepresent)
materialized robot and a virtual agent (e.g., a computer-
generated image of a robot).

The review by Li (2015) concluded that the physical presence
of the robot, but not its embodiment, has a positive influence on
social interactions. Critically, however, the conclusion was drawn
based on four studies from three publications only. Overall, while
previous research provides valuable insights into how different
dimensions of physicality influence human-robot interaction,
they fall short in revealing the difference between having and
not having a body and face on learning outcomes. Although their

appearance can simulate different animate agents such as a
human or an animal, all social robots have a body and face.
How does this influence people’s learning, as opposed to not
having either? Following the distinctions drawn by Li (2015), we
compare a robot tutor (embodied but not physically present) with
a voice-only tutor (not embodied nor physically present) in an
online lesson to understand the effects of physical embodiment.

Research also suggests that embodiment may have different
implications for different people, as in individuals with Autism
Spectrum Disorder struggling with understanding the emotions
of a virtual agent than a real agent, whether it is a robot or a
human, in contrast to typically developed individuals (Chevalier
et al., 2017). People’s varying attitudes toward robots may also
influence their preference for a physical or virtual robot (Ligthart
and Truong, 2015). Another study with children also suggests
that age and experience may diminish the effect of physical
presence, as it found that younger children with hearing
impairments learned more words in sign language when they
interacted with a physically present robot than a video of it,
whereas older children with more experience in sign language
equally benefited from both (Köse et al., 2015). Therefore, the
current study further explores interrelations among individual
differences (specifically attitudes toward robots, first impressions
of the robot tutor, anxiety about learning a second language, and
personality traits) and learning outcomes across different degrees
of embodiment.

Although not much is known specifically about the effects of
individual differences in learning with robots, some studies have
explored how attitudes and personality are related to the ways in
which a person interacts with a robot. For example, the patterns
of speech and eye gaze were observed while adults built an object
with a humanoid robot (Ivaldi et al., 2017). The study found that
individuals with negative attitudes toward robots tended to look
less at the robot’s face and more at the robot’s hands. In another
study, when approached by a robot, individuals with high levels of
negative attitudes toward robots and the personality trait of
neuroticism kept a larger personal space between the robot
and themselves (Takayama and Pantofaru, 2009).

In the case of language learning, Kanero et al. (2021) were first
to examine how attitudes toward robots, anxiety about learning
L2, and personality may predict the learning outcomes of a robot-
led L2 vocabulary lesson. The study found that negative attitudes
measured through the Negative Attitudes toward Robots Scale
(NARS; Nomura et al., 2006) as well as anxiety about learning L2
measured through the Foreign Language Classroom Anxiety
Scale (FLCAS; Horwitz et al., 1986) predicted the number of
words participants learned in an in-person vocabulary lesson with
a robot tutor. The results also showed that the robot was an
effective language tutor, akin to a human tutor. However, it is
unclear whether the tutor robot is as effective when it is not
physically present, and whether individual differences such as
attitudes toward robots and L2 anxiety predict the learning
outcomes for a telepresent robot tutor.

In addition to the individual difference measures used in the
previous study (Kanero et al., 2021), the current study also
assesses the learners’ impressions of robots, which are
expected to affect their engagement in the long run. Previous

Frontiers in Robotics and AI | www.frontiersin.org June 2021 | Volume 8 | Article 6798932

Kanero et al. Robot Tutor on Zoom

51

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


studies in human-human interaction suggest that the first
impression is formed very quickly after just seeing a picture of
an individual and might remain unchanged even after meeting
and interacting with the same individual in person (e.g.,
Gunaydin et al., 2017; see also Willis and Todorov, 2006).
However, it is unclear whether the same principle applies to
commercial social robots (e.g., NAO), which are inanimate
objects with a homogeneous appearance shared across
individuals. Therefore, in the current study, we included an
additional measure to examine if the impressions of the robot
have a role in robot-led learning. Further, we evaluate whether the
impressions of the robot tutor as well as attitudes toward robots
change before and after interacting with the robot tutor.

In summary, this study explores the impact of having a body in
robot-led language lessons by comparing a robot tutor and a
voice-only tutor in terms of learning outcomes as well as the
influence of attitudes, impressions, L2 anxiety, personality. We
also report the details of the learner’s general attitudes toward
roborts, impressions of the robot tutor, and preferences to the
specific type of tutor (robot vs. voice vs. human). In the
Discussion, we also compare our data to the data of the
previous study (Kanero et al., 2021) to address whether the
physical presence in robot-led language lessons would affect
these factors.

METHODS

Participants
The dataset consisted of 100 native Turkish-speaking young
adults: 50 in the robot tutor condition (age range �
18–32 years; Mage � 23.49 years; SD � 2.53; 33 females, 17
males), and 50 in the voice tutor condition (age range �
18–35 years; Mage � 24.15 years; SD � 3.62; 33 females, 16
males, 1 other). We relied on a convenience sample, and
participants were recruited through advertisements on social
media as well as word of mouth. Before the lesson, the
average English test score of participants (Quick Placement
Test; University of Cambridge Local Examinations Syndicate
[UCLES], 2001) was 39.68 out of 60 in the robot tutor
condition (score range � 16–58; SD � 9.07) and 37.64 in the
voice tutor condition (score range � 20–55; SD � 9.25).
Participants had no known vision or hearing impairments.
One participant in the robot tutor condition did not show up
for the second session, and thus the two delayed language tests and
the post-lesson survey were not administered to this participant. In
addition, one participant in the robot tutor condition was not
taught one of the eight vocabulary words due to a technical error,
and thus the test data for that word were not used. Participants
were given a gift card for their participation.

Materials and Procedures
The experiment was completed via the online video call software
Zoom (https://zoom.us) in two sessions. In the first session,
participants first filled out a demographic form. They then
completed a short English language test (Quick Placement Test;
UCLES, 2001), and a questionnaire assessing their attitudes toward

robots, L2 anxiety, personality traits, and their impression of the robot
or voice tutor. The test and questionnaires were administered using
the online survey platform Qualtrics (https://www.qualtrics.com).
Then, participants received a one-on-one English lesson either
from the robot or the voice tutor. For the lesson, participants were
sent to a breakout room1, and participants were alone with the tutor.
Immediately after the lesson, participants in both conditions
completed two measures of learning (i.e., immediate production
and receptive tests). The second session took place one week later,
and participants connected via Zoom again and completed the same
vocabulary tests (i.e., delayed production and receptive tests). The
same set of tests and surveys were administered in the robot tutor and
voice tutor conditions, but in the voice tutor condition, the term “voice
assistant”was used in place of “robot” for the surveys on the attitudes,
impressions, and preference (see Figure 1 for a schematic
representation of the procedure, and Figure 2 for the appearance
of the robot and voice-only tutors).

Negative Attitudes Toward Robots
Negative Attitudes toward Robots Scale (NARS; Nomura et al.,
2006) was used to assess attitudes toward robots. The NARS
consists of 14 questions divided into three subordinate scales:
negative attitude toward interacting with robots (S1), negative
attitude toward the social influence of robots (S2), and negative
attitude toward emotions involved in the interaction with robots
(S3). The Turkish version of the NARS (Kanero et al., 2021) was
used. Participants rated how well each of the statements
represented their attitudes toward robots on a scale of 1–5 (1:
I strongly disagree/Kesinlikle katılmıyorum, 2: I disagree/
Katılmıyorum, 3: Undecided/Kararsızım, 4: I agree/
Katılıyorum, 5: I strongly agree/Kesinlikle katılıyorum). In the
voice tutor condition, the word “robot” on the NARS scale was
replaced by “voice assistant.”

Impressions of the Robot Tutor
To assess participants’ impressions of the robot/voice tutor, we
administered an impression survey with 17 questions used by
Gunaydin and her colleagues (2017; available publicly at https://
osf.io/nhmtw/?view_only�9f6efafeba4b48dc9b6a73b6a3d145ee).
The survey shows a photograph of the robot or voice tutor, depending
on the condition, and consists of two parts: The first eight questions
ask participants to rate their willingness to engage and interact with
the target in the future (e.g., This robot/voice assistant seems like a
robot/voice assistant I would like to get to know/Tanımak istediğim
bir robot/sesli asistan gibi gözüküyor) on a scale of 1–7 (1: I fully
disagree/Hiç katılmıyorum, 2: I disagree/Katılmıyorum, 3: I
somewhat disagree/Kısmen katılmıyorum, 4: I neither agree nor
disagree/Ne katılıyorum ne de katılmıyorum, 5: I somewhat agree/
Kısmen katılıyorum, 6: I agree/katılıyorum, 7: I fully agree/Tamamen
katılıyorum). The next nine questions ask participants to rate how

1Breakout room is a feature in Zoom that allows the host to split one Zoom session
into multiple separate subsessions whereby participants in separate breakout
rooms do not see each other. We put the participant into a separate breakout
room away from the Experimenter and the tutor so that participants do not need to
feel watched or pressured.
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their interactionwill be with the robot/voice assistant (e.g., Howmuch
do you think you will like this robot/voice assistant?/Bu robotu/sesli
asistanı ne kadar seveceğinizi düşünüyorsunuz?) on a scale of 1–7 (1:
Not at all/Hiç, 7: Very much/Çok fazla). After the lesson, participants
rated the same items but were told to rate the statements based on
their interactions with their tutor. The original survey in English was
translated into Turkish by the second author and research assistants
who are native speakers of Turkish. To adapt to our study, the word
“person” was replaced with “robot” for the robot tutor condition and
“voice assistant” for the voice tutor condition.

L2 Anxiety
The Turkish version of the Foreign Language Classroom Anxiety
Scale (FLCAS; Horwitz et al., 1986) translated by Aydın et al. (2016)
was administered. The FLCAS consists of 33 statements (e.g., I never
feel quite sure of myself when I am speaking in my foreign language
class/Yabancı dil derslerinde konuşurken kendimden asla emin
olamıyorum.) to be rated on a scale of 1–5 (1: I fully disagree/
Hiç katılmıyorum, 2: I disagree/Katılmıyorum, 3: I neither agree nor
disagree/Ne katılıyorum ne de katılmıyorum, 4: I agree/Katılıyorum,
5: I fully agree/Tamamen katılıyorum).

Personality Traits
The Turkish version of a personality inventory was used to test the
five personality traits – openness to experience, conscientiousness,
extroversion, agreeableness, and neuroticism (Demir and Kumkale,
2013). This survey included 44 questions addressing each of the five
traits – 7 items for conscientiousness (e.g., I stick to my plans/

Yaptığımplanlara sadık kalırım); 10 items for neuroticism (e.g., I am
depressed/Depresifimdir); 9 items for each of openness to experience
(e.g., My interests are very diverse/İlgi alanlarım çok çeşitlidir),
extroversion (e.g., I am talkative/Konuşkanımdır), and agreeableness
(e.g., I am helpful/Yardımseverimdir). Participants rated how well
each of the statements represented their personality on a scale of 1–5
(1: I strongly disagree/Kesinlikle katılmıyorum, 2: I disagree/
Katılmıyorum, 3: I neither agree nor disagree/Ne katılıyorum, ne
de katılmıyorum, 4: I agree/Katılıyorum, 5: I strongly agree/
Kesinlikle katılıyorum).

Post-Lesson Vocabulary Tests
Immediately after the lesson, we first administered the production
vocabulary test (hereafter the immediate production test), and then
the receptive vocabulary test (hereafter the immediate receptive test).
To assess to what extent vocabulary was retained over time,
participants completed the same measures again after a delay of
one week (delayed post-lesson tests). The definitions of the target
words used in the production test were the same as the definitions
used in the lesson. In the receptive test, the pictures from the Peabody
Picture Vocabulary Test, Fourth Edition (PPVT-4; Dunn and Dunn,
2007), which correspond to the target words, were used. In the
production test, the experimenter provided the definitions of the
learned English words one by one in a randomized order, and the
participant was asked to say the corresponding English word. In the
receptive test, the participant heard the learned English word and was
asked to choose a picture that matched the word from four options.
The delayed post-lesson tests were conducted via Zoom seven days

FIGURE 1 | The procedure of the lesson from the participant’s perspective. In the voice-only tutor condition, the voice sound spectrum appeared instead of the
robot (see Figure 2 and Supplementary Material). Step 4 (Production and Receptive Tests) was repeated one week later.

FIGURE 2 | The appearance of the robot tutor (A) and the voice tutor (B). See Supplementary Material for the videos of the robot and voice tutors).
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after the lesson. Due to schedule conflicts, however, three participants
in the robot tutor condition and two participants in the voice tutor
condition completed these tests after six days, while four participants
in each condition completed the tests after eight days. Also, three
participants in the voice tutor condition completed the test after nine
days.

Tutor Preference
After the delayed post-lesson tests, we also asked participants to
rate how much they want to learn English from a human, a robot,
and a voice assistant. A scale of 1–5 was used (1: I certainly do not
want/Kesinlikle istemem, 2: I do not want/İstemem, 3: I neither
want nor not want/Ne isterim ne istemem, 4: I want/İsterim, 5: I
certainly want/Kesinlikle isterim).

English Lesson With the Robot or Voice Tutor
Following the previous study (Kanero et al., 2021), participants
were taught eight English nouns – upholstery, barb, angler, caster,
dromedary, cairn, derrick, and cupola (see Table 1; see Kanero
et al. (2021) for the details of the word selection process).

In both tutor conditions, the robot or voice tutor briefly
chatted with the participant and explained the structure of the
lesson first, and then introduced the words one by one. Each
target word was taught in four steps:

1) The tutor introduced the target L2 (English) word and asked
the participant whether the participant already knew the word
(Note that none of the participants knew any of the words).

2) The tutor introduced the definition of the target word in L1
(Turkish, see Table 1).

3) The tutor asked the participant to utter the target word
following the tutor, three times.

4) The tutor again defined the word and asked the participant to
repeat the definition.

After learning every two target words, the participant was
given a mini quiz in which the tutor provided the definitions of
the target words and asked the participant for the corresponding
word. The lesson lasted for about 15 min. At the end of the lesson,

the robot or the voice tutor asked the participant to return to the
previous room and find the experimenter they met prior to the
lesson. The human experimenter administered the immediate
production and receptive vocabulary tests.

To use the same voice in English and Turkish speech, we
recorded the speech of a female bilingual experimenter and
added sound effects to make the speech sound robot-like. The
same set of speech sounds were used for both the robot and
voice tutors. The visuals of both tutors were presented as a series
of seamlessly transitioning videos on Zoom. The movements of the
robot tutor were filmed (see Figure 2A), whereas the soundwaves of
the voice tutor were created using Adobe After Effect (https://www.
adobe.com/products/aftereffects.html; Figure 2B).

The robot tutor provided no facial expressions but moved its
head and arms during the lesson to keep the participant engaged.
Most actions were chosen from the Animated Speech library of
SoftBank Robotics (http://doc.aldebaran.com/2-1/naoqi/audio/
alanimatedspeech_advanced.html), although some were created
by the first author to better suit the lesson.2 While pronouncing
the target L2word and its definition, the robot stood still without any
movements to avoid the motor sound of the robot hindering the
hearing. There were unavoidable behavioral differences between the
two tutors (e.g., the motor sound of the robot), but otherwise, the
differences between the two tutors were kept minimal.

RESULTS

Robot vs. Voice Tutor
We first examined if participants in the robot tutor and voice tutor
conditions differed in their post-lesson test scores. We compared the
two tutor conditions across all four learning outcome measures:
immediate production test, immediate receptive test, delayed
production test, and delayed receptive test. We conducted simple
Generalized Linear Mixed Models (GLMMs) on each post-lesson
test with Tutor Type (robot vs. voice) as a fixed effect and Word as
random intercepts.3 In thismodel, we also added the pre-lessonEnglish
test scores as an additional fixed effect to control for the difference in
English proficiency between the conditions. As shown in Figure 3,
participants did not differ in terms of learning outcomes across
conditions (immediate production test, B � 0.01, SE � 0.16, Z �
0.04, p� 0.968; delayed production test, B� -0.29, SE� 0.20,Z � -1.44,
p � 0.149; immediate receptive test, B � 0.04, SE � 0.18, Z � 0.20, p �

TABLE 1 | The target words and their definitions used in the study.

Word Definition

Upholstery Bu kelime döşemelik kumaş anlamına gelir
(This word means fabric used to make a soft covering)

barb Bu kelime çengel ya da kanca anlamına gelir
(This word means the tip of an arrow or fishhook)

Angler Bu kelime olta ile balık tutan kimse anlamına gelir
(This word means a person who fishes with hook and line)

Caster Bu kelime bir şeye takılan küçük tekerlek anlamına gelir
(This word means a little wheel attached to something)

Dromedary Bu kelime tek hörgüçlü deve anlamına gelir
(This word means a one-humped camel)

Cairn Bu kelime taş yığını anlamına gelir
(This word means a mound of stones)

Derrick Bu kelime petrol kuyusu üzerindeki kule anlamına gelir
(This word means a tower over an oil well)

Cupola Bu kelime bir çatı üstüne inşa edilen küçük kubbe benzeri yapı
anlamına gelir
(This word means a rounded vault-like structure built on top of a roof)

2The gestures used in the lesson were mostly generic except that, when the
participant repeated the target word following the robot tutor, the robot made
the “pinched fingers” gesture where all fingers were put together with the palm side
up and the hand was moved up and down. This conventional gesture means “very
good” in the Turkish culture.
3We used GLMMs in these analyses, because our data are not normally distributed,
and because they allow us to analyze the responses of participants without
averaging across trials (Jaeger, 2008). As the outcome (the scores of the four
post-lesson tests) was a binary variable (correct vs. incorrect), logit (log-odds) was
used as the link function. GLMMs were generated in R (R Development Core
Team, 2016) using the lme4.glmer function (Bates, 2015). In all models, we
included the random effect of item (e.g., L2 words) as some L2 vocabulary
words may be inherently more difficult to learn than others. All models were
fit by maximum likelihood using adaptive Gauss-Hermite quadrature (nAGQ � 1).
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0.845; or the delayed receptive test, B � -0.26, SE � 0.16, Z � -1.64, p �
0.101).

Predicting the Learning Outcomes With
Individual Difference Factors
Next, we examined whether some participants learned better
or worse from robots depending on their attitudes toward
robots, the first impression of the robot or voice tutor, anxiety
in L2 learning, and personality traits. As indicated by
Cronbach’s alphas in Table 2, each of these variables was
measured reliably. Therefore, items measuring each construct
were averaged to create relevant indices. For NARS, L2 anxiety,
and personality, values ranged between 1 and 5. Higher values
for NARS indicated having more negative attitudes toward
robots; similarly, higher values for L2 Anxiety indicated having
greater anxiety. For the impression survey, the values ranged
between 1 and 7 and higher values indicated a more positive
first impression.

Negative Attitudes Toward Robots
We built four separate GLMMs, one for each post-lesson test
(immediate production, immediate receptive, delayed
production, and delayed receptive), with Word as a random
intercept to examine whether negative attitudes toward robots
and voice assistants predicted the number of words participants
learned. As shown in Table 3, in line with the previous study
(Kanero et al., 2021), negative attitudes toward robots predicted
the learning outcomes in a robot-led vocabulary lesson, though
only in the delayed tests. Negative attitudes did not predict
learning in the voice tutor condition.

First Impressions of the Robot
To evaluate the relation between the first impressions of the tutor
and the learning outcomes, we followed the same steps and built
GLMMs separately for the two tutor conditions. As shown in
Table 4, there was no significant relation between learning
outcomes and first impression in either condition.

L2 Anxiety and Personality Traits
The influence of L2 learning anxiety was similarly examined by
building a GLMM for each post-lesson test for the robot tutor and
voice tutor conditions with Word as a random intercept. In the
robot tutor condition, L2 Anxiety predicted the scores of most
tests except the immediate receptive test; in the voice tutor
condition, the significance was found in the delayed
production and receptive tests (Table 5).

We also built four GLMMs for each post-lesson test to evaluate
the relevance of personality traits. In concert with the previous
study (Kanero et al., 2021), the personality traits were not reliable
predictors of the learning outcomes of the robot-led L2 lesson. In
the robot tutor condition, extroversion was positively correlated
with the immediate receptive test scores (B � 0.41, SE � 0.17, Z �
2.35, p � 0.019), and agreeableness was positively correlated with

FIGURE 3 |Mean number of correct answers in the robot tutor and voice tutor conditions in the four post-lesson tests. N � 100 for the immediate production and
receptive tests; N � 99 for the delayed production and receptive tests. The highest possible score for each test was eight. The error bars indicate the standard errors.

TABLE 2 | Descriptive statistics for the individual difference measures.

Robot tutor Voice tutor

α Mean SD Mean SD

NARS (14) 0.88 2.71 0.71 2.55 0.63
L2 anxiety (33) 0.95 2.57 0.79 2.48 0.69
Personality (44)
Openness (9) 0.76 4.13 0.55 4.15 0.47
Conscientiousness (7) 0.81 3.20 0.74 3.22 0.59
Extroversion (9) 0.92 3.64 0.87 3.86 0.82
Agreeableness (9) 0.77 3.94 0.52 3.85 0.58
Neuroticism (10) 0.86 3.37 0.75 3.35 0.71

Impression (17) 0.92 4.19 1.27 3.51 1.02

N � 100. The number in parenthesis indicates the number of items in the scale.
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the delayed receptive scores (B � 0.65, SE � 0.23, Z � 2.77, p �
0.006).

Attitudes, Impressions, and Preferences
Attitudes Toward Robots
With the purpose of assessing the change in attitudes after the
interaction with the robot or voice tutor, the normality
assumption of the data was first examined. In comparing the
attitude scores between the two tutor conditions or between the
pre- and post-lesson surveys, we performed a Shapiro-Wilk’s test
of normality. We then used t-tests when the two compared data
are both normally distributed, and Wilcoxon Signed-Ranks Tests
when the normality assumption was violated. The difference
between the tutor conditions was not significant in either
before (Z � 0.97, p � 0.334) nor after the lesson [t (97) � 1.17,
p � 0.244]. Negative attitudes toward robots/voice assistants did
not change before and after the lesson in the robot tutor condition
(Z � 1.10, p � 0.267), nor the voice tutor condition [t (49) � 1.65,
p � 0.105]. In other words, interacting with the tutor did not
improve learners’ attitudes toward the specific tutor (Figure 4).

Impressions of the Robot Tutor
A paired sample t-test on the impression survey indicated that, in
the robot condition, participants’ impressions of the robot before

and after the lesson did not significantly change [t (48) � -0.22,
p � 0.407]. In the voice tutor condition, on the other hand, the
ratings were significantly higher after than before the lesson [t
(49) � -3.78, p < 0.001]. In addition, independent paired t-tests
demonstrated, that whereas the difference in the pre-lesson
impression scores between the two tutor conditions was
significant [t (98) � 2.89, p � 0.005], the two did not differ
significantly in the post-lesson impression scores [t (97) � -0.06,
p � 0.954]. These results indicate that, although the expectation
was different for the two tutors, the impressions became
comparable after having an actual interaction (see Figure 5).

Preference of Tutors
Wilcoxon Signed-Ranks tests suggest that participants in the
robot tutor condition preferred a human tutor to a robot (Z �
5.30, p < 0.001) or a voice tutor (Z � 5.52, p < 0.001), but did not
differ in their preference for a robot tutor and a voice tutor (Z �
1.07, p � 0.286; see Figure 6). In the voice tutor condition,
participants also preferred a human tutor to a robot tutor (Z �
5.59, p < 0.001), and to a voice tutor (Z � 5.39, p < 0.001); and they
also preferred a robot tutor to a voice tutor (Z � 2.15, p � 0.031).
Participants in both tutor conditions did not significantly differ in
their preference for human tutor (Z � -1.27, p � 0.206), robot
tutor (Z � -0.85, p � 0.397) or voice tutor (Z � -0.28, p � 0.778).

TABLE 3 | GLMMs with NARS as the sole predictor for the four post-lesson scores.

Robot tutor Voice tutor

B SE Z p B SE Z p

Immediate production -0.08 0.15 -0.51 0.610 0.03 0.18 0.20 0.843
Immediate receptive -0.20 0.18 -1.14 0.253 0.01 0.20 0.07 0.947
Delayed production -0.45 0.22 -2.01 0.045 -0.03 0.21 -0.13 0.895
Delayed receptive -0.31 0.15 -2.08 0.038 0.05 0.18 0.29 0.771

For the immediate tests, N � 50 in both conditions; For the delayed tests, N � 49 in the robot tutor condition and N � 50 in the voice tutor condition.

TABLE 4 | GLMMs with the first impression as the sole predictor for the four post-lesson scores.

Robot tutor Voice tutor

B SE Z p B SE Z p

Immediate production -0.06 0.09 -0.68 0.500 0.04 0.11 0.37 0.715
Immediate receptive 0.04 0.10 0.42 0.678 0.05 0.13 0.43 0.664
Delayed production -0.03 0.11 -0.26 0.797 0.01 0.13 0.05 0.959
Delayed receptive 0.02 0.08 0.24 0.811 -0.04 0.11 -0.33 0.738

For the immediate tests, N � 50 in both conditions; For the delayed tests, N � 49 in the robot tutor condition and N � 50 in the voice tutor condition.

TABLE 5 | GLMMs with L2 Anxiety as the sole predictor for the four post-lesson scores.

Robot tutor condition Voice tutor condition

B SE Z p B SE Z p

Immediate production -0.43 0.14 -2.97 0.003 -0.16 0.16 -1.00 0.315
Immediate receptive -0.22 0.16 -1.35 0.176 -0.15 0.18 -0.83 0.404
Delayed production -0.42 0.20 -2.08 0.037 -1.36 0.27 -5.04 <0.001
Delayed receptive -0.31 0.14 -2.25 0.025 -0.41 0.16 -2.53 0.012

For the immediate tests, N � 50 in both conditions; For the delayed tests, N � 49 in the robot tutor condition and N � 50 in the voice tutor condition.
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DISCUSSION

As the presence of social robots in our lives is becomingmore andmore
prominent, it is critical to understand when and for whom robots can
provide the most benefit. The present study examined the physical
embodiment of robots and individual differences among learners to
evaluate the effectiveness of robot tutors in an online L2 vocabulary
lesson. To further understand the circumstances in which the robot

tutor is effective, we also assessed how learners’ individual differences
in attitudes toward robots, impressions of the robot tutor, anxiety
about L2 learning, and personality traits were related to their learning
outcomes. Through a stringent evaluation using two different
outcome measures at two time points, we found that embodiment
did not affect learning in our lesson, and individuals with negative
attitudes toward robots and L2 learning anxiety learned fewerwords in
the robot-led lesson.

Embodiment of the Robot Tutor
The learning outcomes were comparable on all four measures
between the robot tutor and voice tutor conditions, and thus we did
not see an advantage of the robot tutor having a body.Our results are in
concert with previous research that did not find benefits of physical
embodiment in learning (e.g., Kennedy et al., 2015). To further confirm
the conclusion, we also conducted an exploratory analysis comparing
the current data with the data from the in-person robot lesson in our
previous study (Kanero et al., 2021). We built four GLMMs for each
post-lesson test examining the main effects of 1) embodiment (in-
person and Zoom robot tutors vs. Zoom voice tutor), and 2) physical
presence (in-person robot tutor vs. Zoom robot and voice tutors).
Neither embodiment nor physical presence was identified as a
significant predictor (all p’s > 0.080). Therefore, we found no
evidence of the robot’s embodiment or physical presence affecting
the learning outcomes of the simple L2 vocabulary lesson. As discussed
further in Changes in Attitudes, Impressions, and Preferences From
Before to After the Lesson section, we did not find an impact of physical
embodiment on the learning outcomes or impressions of the robot
tutor after the lesson either. The context of our paradigm must be
taken into consideration in interpreting these results, as our
vocabulary learning task was solely conversational and did not
require the robot to interact with the physical world. Embodiment

FIGURE 4 |Mean of the NARS ratings in the robot tutor and voice tutor
conditions before and after the lesson. N � 100 for the pre-lesson NARS; N �
99 for the post-lesson NARS. The highest possible score for each test was 5.
The error bars indicate the standard errors.

FIGURE 5 |Mean ratings of the impression survey in the robot tutor and voice tutor conditions before and after the lesson. N � 100 for pre-lesson and N � 99 for
post-lesson. The highest possible score for each test was 7. The error bars indicate the standard errors.
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may not be a factor in such non-physical settings (Ligthart and
Truong, 2015), hence learning environments with physical
materials may yield different results.

Individual Differences and Learning
Outcomes
In concert with the previous study concerning in-person lessons
(Kanero et al., 2021), we found that negative attitudes toward
robots as well as anxiety about learning L2 are related to L2
vocabulary learning with a robot, though the relations were less
pronounced. In addition to the measures used previously, we
tested the effect of the learner’s first impression of the robot tutor.
The current study was among the first to test whether 1) the first
impressions of the robot affect the learning outcomes, and 2) the
impressions of the robot change before and after the interaction.
Contrary to our expectation, the first impression ratings did not
predict the number of words participants learned from the lesson.
Therefore, we found that the NARS, which assessed participants’
general attitudes toward robots, was a better predictor of the
learning outcomes than the impression of the specific robot tutor.

The inclusion of the impression survey is also relevant for the
discussion of the construct validity of the questionnaires used in
HRI studies. Many studies used the NARS (Nomura et al., 2006)
to measure the attitudes of participants and to predict
participants’ behaviors (Nomura et al., 2006; Takayama and
Pantofaru, 2009; Ivaldi et al., 2017). In both the current study
and the previous study (Kanero et al., 2021), although the NARS
predicted the number of words participants learned, the
correlation was weak to moderate. One possibility was that the
difference in generality between the independent variables
(i.e., general attitudes toward all robots) and dependent variables
(i.e., the number of words learned from a specific robot) led to the
relatively weak correlations. Importantly, the impression survey in the
current study was a less general measure, but we did not find a
correlation between the impression and learning outcomes.

Changes in Attitudes, Impressions, and
Preferences From Before to After the
Lesson
Onaverage, participants’ attitudes toward robots (and voice assistants)
became more positive after they interacted with the specific tutor, but
the change was not statistically significant. It should be noted that our
lesson was very short and the interaction was minimal, and we may
expect a greater change when the lesson is longer and more interactive.
The NARS was also tested in the previous study (Kanero et al., 2021),
and thus we can compare the data of the current study with the data
from the in-person lesson.We found that the learner’s negative attitudes
toward robots did not significantly change before and after the in-
person lesson either [t (49) � -1.02, p � 0.31]. As per participants’
impressions of the tutor, the first impressions were better for the robot
tutor than the voice tutor, but the impressions became comparable
between the two conditions after the actual interaction. The results may
indicate that, although the impression before the lesson can be affected
by embodiment, the short Zoom session was enough for the learners to
override the first impressions and assess the agent based on the actual
interactive and communicative capabilities. With regard to the learner’s
preference, we observed a clear preference for a human tutor over both
of the machine tutors, and some preference for the robot tutor over the
voice tutor. These results also emphasize the importance of choosing
different scales depending on what the researcher plans to evaluate.

Limitations and Future Directions
In the current study, embodiment did not facilitate vocabulary learning,
and the learner’s attitudes toward robots and anxiety about learning L2
consistently predicted learning outcomes. In termsof physical presence,
however, we could only compare the current study with the previous
study (Kanero et al., 2021) to anecdotally discuss its lack of impact.
Therefore, a direct comparison between in-person and virtual lessons
should bemade before drawing a conclusion. It would also be critical to
further test the unique features of robots (e.g., the ability to perform
gestures) and to consider other aspects of language such as grammar

FIGURE 6 | Preference ratings for each tutor after the lesson. N � 49 in the robot tutor condition; N � 50 in the voice tutor condition. The highest possible score for
each test was 5. The error bars indicate the standard errors.
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and speaking (Kanero et al., 2021). Similarly, the lesson scenarios, the
demographic characteristics of participants (e.g., education, familiarity
with robots) and the morphology of robots (e.g., Pepper, Kismet,
Leonardo) might affect learning outcomes. Future research should not
only investigate the influence of these factors on learning outcomes, but
also analyze the detailed nature of human-robot interaction (e.g., the
learner’s behaviors during the lesson).

Perhaps most importantly, in the current study, the human-
robot interaction was limited to one session lasting only about
15min. Needless to say, more research is needed to examine whether
the physical body of a robot affects learning outcomes in other settings
such as a lesson on another subject, or in a longer andmore interactive
lesson. The effects of embodiment may be more pronounced when
multiple lessons are provided over a longer period of time. Further,
some researchers suggest that robot tutorsmay reduce the L2 anxiety of
child learners in the long run (Alemi et al., 2015), and thus future
research may focus on the long-term effects of robot language lessons
on the anxiety levels of children and adults. Another recent study also
found that children between 5 and 6 years old do not interact with voice
assistants as much as they interact with humans (Aeschlimann et al.,
2020). To our knowledge, no child study has compared robots and
voice assistants. Overall, developmental research should adopt an
experimental design similar to our study and examine whether the
current findings can be replicated with a younger population.

Our data in the voice tutor condition also provide insights into the
effectiveness of voice assistants such as Amazon Alexa and Apple Siri.
Research with children suggests that voice assistants are perceived as a
source of information that can answer questions about a wide range of
subjects, including language such as definitions, spellings, and
translations (Lovato et al., 2019). Our results show that adults can
learn a second language from voice assistants as well, at least to the
same extent they dowith social robots. It should also be noted that one
reason why we did not find a link between negative attitudes toward
voice assistants and learning outcomes might be that we adapted a
questionnaire about robots, simply by changing the word “robot” to
“voice assistant.”While this manipulationmade the two conditions as
comparable as possible, the validity of the voice assistant questionnaire
should be carefully considered. Future research may use our findings
as a base to explore how and for whom voice tutors are beneficial.

Finally,we should alsopoint out that the current studywas conducted
amid the COVID-19 pandemic. We believe that our findings are
generalizable, and if anything, the pandemic might have provided a
better setting to evaluate the impact of (dis)embodiment. Online
education has become abundant, and people may be less hesitant to
engage in virtual interactions, hence the difference between in-person
and online interactions should be less driven by the unfamiliarity of
online interactions in the current climate. Nevertheless, more studies
shouldbe conducted to critically assess the generalizability of thefindings.

Conclusion
This study was the first to empirically investigate the influence of the
robot’s physical embodiment on second language learning. The study
presents an example of embodiment not affecting the learning
outcomes although the results should be interpreted cautiously
until the results are replicated for different language learning
tasks and using various scenarios and interaction designs.

Evaluating the influences of individual differences in robot-
led Zoom lessons, we also found that the learner’s general
attitudes toward robots predict learning outcomes. Our
findings provide some hope for the difficult situation during
the COVID-19 pandemic because participants successfully
learned vocabulary in a short Zoom lesson. The current
results also encourage more researchers to be engaged in
studying the influence of the user’s individual differences in
human-robot interaction and policymakers and educators to
carefully consider how social robots and other technological
devices should be incorporated in educational settings.
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Turkish Version of Foreign Language Anxiety Scale: Reliability and Validity.
Proced. - Soc. Behav. Sci. 232, 250–256. doi:10.1016/j.sbspro.2016.10.011

Barsalou, L. W., Niedenthal, P. M., Barbey, A. K., and Ruppert, J. A. (2003). The
Psychology of Learning andMotivation: Advances in Research and Theory, Elsevier
Science, 43–92. doi:10.1016/s0079-7421(03)01011-9 Social Embodiment.

Belpaeme, T., Kennedy, J., Ramachandran, A., Scassellati, B., and Tanaka, F. (2018).
Social Robots for Education: A Review. Science Rob., 3. doi:10.1126/scirobotics.aat5954

Bartneck, C., and Forlizzi, J. (2004). “A Design-Centred Framework for Social
Human-Robot Interaction,” in RO-MAN 2004: 13th IEEE International
Workshop on Robot and Human Interactive Communication. (Kurashiki,
Japan: Institute of Electrical and Electronics Engineers), 591–594. doi:10.
1109/ROMAN.2004.1374827

Bates, D., Mächler, M., Bolker, B., and Walker, S. (2015). Fitting Linear Mixed-Effects
Models Using lme4. J. Statistical Software 67, 1–48. doi:10.18637/jss.v067.i01

Bialystok, E., Craik, F. I. M., Klein, R., and Viswanathan, M. (2004). Bilingualism,
Aging, and Cognitive Control: Evidence from the Simon Task. Psychol. Aging
19, 290–303. doi:10.1037/0882-7974.19.2.290

Chevalier, P., Martin, J.-C., Isableu, B., Bazile, C., and Tapus, A. (2017). Impact of
Sensory Preferences of Individuals with Autism on the Recognition of Emotions
Expressed by Two Robots, an Avatar, and a Human. Auton. Robot 41, 613–635.
doi:10.1007/s10514-016-9575-z

Demir, B., and Kumkale, G. T. (2013). Individual Differences in Willingness to
Become an Organ Donor: A Decision Tree Approach to Reasoned Action.
Personal. Individual Differences 55, 63–69. doi:10.1016/j.paid.2013.02.002

Deng, E., Mutlu, B., and Mataric, M. J. (2019). Embodiment in Socially Interactive
Robots. FNT in Robotics 7 (4), 251–356. doi:10.1561/2300000056

Dunn, L. M., and Dunn, D. M. (2007). Peabody Picture Vocabulary Test(PPVT).
Fourth edition (Minneapolis, MN: NCS Pearson).

Gunaydin, G., Selcuk, E., and Zayas, V. (2017). Impressions Based on a Portrait
Predict, 1-Month Later, Impressions Following a Live Interaction. Soc. Psychol.
Personal. Sci. 8, 36–44. doi:10.1177/1948550616662123

Han, J., Jo, M., Jones, V., and Jo, J. H. (2008). Comparative Study on the
Educational Use of home Robots for Children. J. Inf. Process. Syst. 4,
159–168. doi:10.3745/JIPS.2008.4.4.159

Hoff, E. (2013). Interpreting the Early Language Trajectories of Children from
Low-SES and Language Minority Homes: Implications for Closing
Achievement Gaps. Dev. Psychol. 49, 4–14. doi:10.1037/a0027238

Horwitz, E. K., Horwitz,M. B., and Cope, J. (1986). Foreign Language ClassroomAnxiety.
Mod. Lang. J. 70, 125–132. doi:10.2307/32731710.1111/j.1540-4781.1986.tb05256.x

Ivaldi, S., Lefort, S., Peters, J., Chetouani, M., Provasi, J., and Zibetti, E. (2017).
Towards Engagement Models that Consider Individual Factors in HRI: On the
Relation of Extroversion and Negative Attitude towards Robots to Gaze and
Speech during a Human-Robot Assembly Task. Int. J. Soc. Robotics 9, 63–86.
doi:10.1007/s12369-016-0357-8

Jaeger, T. F. (2008). Categorical Data Analysis: Away from ANOVAs
(transformation or not) and Towards Logit Mixed Models. J. Mem. Lang.
59, 434–446. doi:10.1016/j.jml.2007.11.007

Kanero, J., Geçkin, V., Oranç, C., Mamus, E., Küntay, A. C., and Göksun, T. (2018).
Social Robots for Early Language Learning: Current Evidence and Future
Directions. Child. Dev. Perspect. 12, 146–151. doi:10.1111/cdep.12277
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Becoming Team Members: Identifying
Interaction Patterns of Mutual
Adaptation for Human-Robot
Co-Learning
Emma M. van Zoelen1,2*, Karel van den Bosch2 and Mark Neerincx1,2

1Interactive Intelligence, Intelligent Systems Department, Delft University of Technology, Delft, Netherlands, 2Human-Machine
Teaming, Netherlands Organization for Applied Scientific Research (TNO), Soesterberg, Netherlands

Becoming a well-functioning team requires continuous collaborative learning by all team
members. This is called co-learning, conceptualized in this paper as comprising two
alternating iterative stages: partners adapting their behavior to the task and to each other
(co-adaptation), and partners sustaining successful behavior through communication. This
paper focuses on the first stage in human-robot teams, aiming at a method for the
identification of recurring behaviors that indicate co-learning. Studying this requires a task
context that allows for behavioral adaptation to emerge from the interactions between
human and robot. We address the requirements for conducting research into co-
adaptation by a human-robot team, and designed a simplified computer simulation of
an urban search and rescue task accordingly. A human participant and a virtual robot were
instructed to discover how to collaboratively free victims from the rubbles of an earthquake.
The virtual robot was designed to be able to real-time learn which actions best contributed
to good team performance. The interactions between human participants and robots were
recorded. The observations revealed patterns of interaction used by human and robot in
order to adapt their behavior to the task and to one another. Results therefore show that
our task environment enables us to study co-learning, and suggest that more participant
adaptation improved robot learning and thus team level learning. The identified interaction
patterns can emerge in similar task contexts, forming a first description and analysis
method for co-learning. Moreover, the identification of interaction patterns support
awareness among team members, providing the foundation for human-robot
communication about the co-adaptation (i.e., the second stage of co-learning). Future
research will focus on these human-robot communication processes for co-learning.

Keywords: human-robot collaboration, human-robot team, co-learning, co-adaptation, interaction patterns,
emergent interactions

INTRODUCTION

When people collaborate in teams, it is of key importance that all team members get to know each
other, explore how they can best work together, and eventually adapt to each other and learn to make
their collaboration as fluent as possible. While humans do this naturally (Burke et al., 2006), it is not
self-evident for robots that are intended to function as team partners in human-robot collaborations.
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It is well known that robotic team partners should be transparent,
predictable, and explainable, but it is often overlooked that
human team partners become predictable and explainable
through a process of exploration and mutual learning.

We call the above mentioned process co-learning (Bosch et al.,
2019). While existing work on human-robot collaboration and
mutual adaptivity often focuses on short-term single interactions,
we believe it is necessary to also look at repeated interactions to
study co-learning as a mechanism for building fluent human-
robot collaborations.We conceptualize co-learning as comprising
two alternating iterative stages. In the first stage, partners observe
each other and adapt their behavior to the other, leading to
successful emergent team behaviors. Such adaptation can be done
deliberately but often occurs implicitly and unconsciously. In the
second stage, partners communicate about their adaptations and
give each other feedback, thereby giving meaning to and
becoming aware of the learned behavior. Especially this second
stage of creating awareness of what has been learned helps to
sustain the behavioral adaptations over time and across contexts.

We regard co-learning to be vital for creating successful
human-robot collaborations. However, the term “co-learning”
is relatively new in human-robot interaction literature, and it is
not yet precisely defined what human-robot co-learning looks
like in practice and how it should be studied. Emergent behavior
can only be investigated through empirical studies; to investigate
human-robot co-learning it is therefore necessary that both
partners can learn in real-time while collaborating with each
other. In this study, we therefore chose to empirically study co-
learning with a human participant and a Reinforcement Learning
(RL) virtual robot. For the investigation of emerging co-adaptive
behaviors, we distinguish four main research questions:

1. How to identify and classify recurring behaviors that indicate
co-learning in a human-robot team?

2. Which recurring sequences of these behaviors (co-learning
patterns) can be identified, such that they can be used by the
team partners to communicate about their adaptations?

3. How does the robot’s learning, emerging from the
interactions, affect the human’s behavior and learning?

4. How does the human’s learning, emerging from the
interactions, affect the robot’s behavior and Reinforcement
Learning?

The literature on human-robot interaction and learning
contains a large body of research on personalized robot tutors,
in which a robot tutor learns to personalize its interactions to
support the learning process of a human student, focused on
classroom or training related contexts [a few examples are (Baxter
et al., 2017; Gao, Barendregt, and Castellano 2017; Belpaeme
et al., 2018; Vignolo et al., 2019)]. Formal training is important to
initiate learning and to steer development in the right direction.
However, it is important to realize that learning continues after
training has been completed. Every new experience in the task
provides an opportunity for human-robot teams to learn from
their collaboration. An important aspect of co-learning in actual
task contexts is developing and refining (shared) mental models
about team members and about the task at hand, to increase

mutual understanding of the best way to perform the task (Klein
et al., 2004). Therefore, we specifically attempt to answer the
above mentioned questions in a task context where learning
happens during task execution.

In this paper, we present a behavioral study of how a human
and a virtual robot, which uses a Reinforcement Learning
algorithm to adapt and optimize its actions, adapt their
behavior to collaboratively solve a task. We are interested in
how the behavior of the human ánd the behavior of the robot
changes as a result of this process, making our study fit within a
new area of research in which both human and machine behavior
are assessed [with their mutual dependencies; cf. (Rahwan et al.,
2019)]. We first provide an in-depth elaboration of the concept
“co-learning” within the context of human-robot collaboration,
resulting in a definition of co-learning and the related concepts of
co-adaptation and co-evolution. Based on this, we identify the
requirements for empirical research into co-adaptation and co-
learning, and present the design of an environment for studying
co-learning. This environment has been built and used to conduct
an empirical study into human-robot co-learning. From the
analysis of the observed human-robot interactions, a list of
patterns of adaptive interactions, and the switching between
these patterns over time, were identified. These patterns can
emerge in similar task contexts, forming a first description
method for co-learning analyses. Moreover, it supports the
creation of awareness, providing the foundation (concepts) for
human-robot communication about the co-adaptation (i.e., the
second stage of co-learning).

CO-LEARNING: BACKGROUND AND
DEFINITION

Collaborative learning is a widely studied mechanism in human-
only contexts, and it was Dillenbourg (Dillenbourg et al., 1996)
who suggested that collaborative learning can also take place
between humans and computers. Collaborative learning in the
context of Dillenbourg’s work means that learning (the
acquisition of new knowledge, skills, behavior, etc.) results
from collaborative activities between team partners. If we look
at human-robot interaction literature, several terms are used that
describe a similar process in which two parties or systems change
their behavior and/or mental states concurrently while
interacting with each other. Co-adaptation (Xu et al., 2012;
Chauncey et al., 2016; Nikolaidis et al., 2017a) and co-learning
(Bosch et al., 2019) are two of them, but we also encounter co-
evolution (Döppner et al., 2019), in which “co” stands for
collaborative, also meaning “mutual.”

Co-adaptation and co-learning are often used interchangeably,
making it difficult to understand what they stand for. There are
several vision papers explaining the importance of both co-
adaptation [e.g. (Xu et al., 2012; Ansari, Erol, and Sihn 2018)]
as well as co-learning [e.g. (Bosch et al., 2019; Holstein, Aleven,
and Rummel 2020; Wenskovitch and North 2020)], but a clear
distinction between the two, or a definition specifically for co-
learning, is missing from these papers. When looking at the
experimental literature, however, it seems that there are subtle
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differences. Experimental studies on co-adaptation often focus on
making the agent or robot adaptive to the human, using different
kinds of information about the human [e.g. (Buschmeier and
Kopp 2013; Ehrlich and Cheng 2018; Sordoni et al., 2015; Yamada
and Yamaguchi 2002)]. Some studies have investigated how a
human adapts in situations in which they collaborate with an
intelligent agent or robot. These studies mostly focus on the
performance of the human and their resulting subtle behavior
change in short experiments [e.g. (Nikolaidis et al., 2017b;
Mohammad and Nishida., 2008; Nikolaidis et al., 2017a)]. The
studies that use “co-learning” tend to take a more symmetrical
approach by looking at agent or robot learning as well as human
learning, and pay more attention to the learning process and
changing strategies of the human as well, often looking at many
repetitions of a task (Ramakrishnan, Zhang, and Shah 2017; C.-S.
Lee et al., 2020; C. Lee et al., 2018; Shafti et al., 2020). Studies on
co-evolution, on the other hand, monitor a long-term real-world
application in which behavior of the human as well as the robot
subtly changes over time (Döppner, Derckx, and Schoder 2019).

Following these differences, we propose to distinguish the
terms using three dimensions, namely 1) the time over which the
development takes place, 2) the persistence of the resulting
behavior/mental state over time and across contexts, and 3)
the intention of the development. Table 1 shows the proposed
definitions in detail. Within our research, we focus on co-learning
as defined here.

In a human-robot co-learning process, a human and a robot
collaborate on a given task. In order to do well on the task, they need
to learn all kinds of implicit and explicit knowledge related to both the
task itself as well as the collaboration and interaction between them.
Related to the task they can, for example, learn the technical details of
how the task should be executed. Related to the collaboration, they
can, for example, learn social collaboration skills. Related to both, they
can learn about their own role and the role of the other in the task and
the consequences of their own and their partner’s actions andmental
state on the task (how to collaborate in context of the task).
Ultimately, learning this should help them to together perform
well on the task, to build understanding of each other in context
of the task and to calibrate the trust that the human and the robot
have in each other. We focus our work on this last type of combined
task and collaboration learning.

We further define co-learning to be comprised of two stages
that follow each other in continuous iterative cycles, namely 1)
co-adaptation, and 2) a communication process. Part (a) is
therefore a process in which team members (sometimes
unconsciously) adapt to each other and the task, thereby

changing and developing their behavior as a consequence of
interactions and an implicit or explicit drive to improve
performance or experience (see again Table 1). Part (b) is a
process in which these implicitly developed behaviors are shared
and discussed through direct communications or interactions
between team members, thereby making the team members
aware of the implicit adaptations. This combination ensures
that learned strategies are grounded in the context and task
and can be strategically used in new contexts.

RESEARCH CHALLENGES

Many research challenges follow from the conceptualization of
co-learning, due to the fact that both human and robot are non-
static. They are both constantly developing, changing and
adapting, and they influence each other in the process. This
means that it is not possible to study only one of the team
partners; it is necessary to take a symmetrical approach, where
both human and robot are studied through the interactions
between them. Moreover, co-learning in dynamic tasks is a
continuous process in which new task situations that appear
dynamically require new learning over and over again. Therefore,
focusing on one specific interaction, or on team performance as
end result, does not offer a complete picture. We need to study all
interactions that contribute to this process. These specific
dynamic properties need to be taken into account in the
design of experiments, as well as in the analysis and
discussion of results. Following from this, and to provide a
broader view on the specific study that we present in this
paper, we have defined three research directions that need to
be addressed in the study of human-robot co-learning:

1. Research into enabling and assessing co-learning: to
understand the dynamics of co-learning, we need to
investigate what kind of behaviors and interactions drive
co-adaptation and co-learning, and how learning processes
of human and robot team members influence each other.

2. Research into interaction patterns that make team partners
explicitly aware of learned behavior, such that behavior can
be sustained over time and context: in order to create
sustainable team behavior, human and robot need to
communicate about learned behavior to ensure that they
are aware of useful learned behavior. It is important to
investigate what kind of communication interaction
patterns enable this specific type of communication.

TABLE 1 | The concepts co-adaptation, co-learning and co-evolution defined in terms of timespan in which they occur, persistence and intention.

Co-adaptation Co-learning Co-evolution

Timespan Short (seconds—hours) Medium (hours—weeks) Long (weeks—years)
Persistence Developed behavior/mental state does not necessarily

persist over time, and probably not at all across
contexts

Developed behavior/mental state persists
over time and possibly across contexts

Developed behavior/mental state might persist for a
while but possibly continues to evolve, similar to the
development of habituation

Intention Changes and developments happen as a
consequence of interactions and an implicit or explicit
drive to improve performance or experience

Explicitly goal-driven: Attempts to improve
performance or experience; learning is an
explicit goal

Changes and developments happen as a
consequence of interactions and possibly an implicit
drive to improve performance or experience
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3. Research into a dynamic team mental model that takes into
account naturally occurring changes in interaction patterns,
and how such a model can support the robot in its learning
process: as humans, we are able to anticipate on the fact that
our team members learn and change. It is important to
investigate how a dynamic team model can enable robots
to also anticipate the fact that their human team member is
continuously changing.

The study presented in this paper focuses on the first research
direction; the research questions presented in the introduction have
been derived from it. More specifically, in the experiment that we
describe in the following sections, we have chosen to focus on the
first stage of the co-learning process: co-adaptation as a precursor for
co-learning. We do not yet address questions concerning
communication about learned behaviors (research direction 2),
but focus on the implicit behavioral adaptations that occur within
a relatively short time span. It is expected that results of the present
study will provide pointers for how to investigate the issues
associated with research challenges two and three above.

RESEARCH ENVIRONMENT: DESIGNING
TASK, AGENT, CONTEXT

Context
To study co-learning in human-robot teams, a suitable task
context needs to be designed. We identify the following
requirements for such a task context in which we can study
co-adaptation according to the definition in Table 1:

1. It should be possible for the team to improve its performance
by making effective use of the capabilities of the individual
team members [as this is necessary to make it a team task
(Johnson et al., 2014)];

2. There should be possibilities for implicit adaptation and
learning for both human and robot team members;

3. It should accommodate different emergent collaborative
strategies for solving the task;

4. For this first study, the task and team work should be simple
enough for a Reinforcement Learning agent to learn new
behavior in a short number of rounds, such that we can
study co-adaptation in relatively short experimental sessions;

5. To ensure societal relevance of this research, the task should be
based on a real-life domain in which there is a need for
autonomous robots that function as team partners.

As a general context for defining a task, we chose Urban Search
and Rescue (USAR). A lot of research on human-agent teaming is
done inUSAR-related tasks (Lematta et al., 2019), because the safety-
critical nature makes the application of human-robot collaboration
very useful; there are ongoing initiatives which aim to use robots in
real USAR teams (requirement 5). Moreover, it is a dynamic task
context with many possible subtasks and possibilities for the
introduction of threats, safety risks and changing information.

We developed an earthquake scenario for our human-robot
USAR team, with the team’s task to remove rubble and debris

from a victim. To get a better understanding of the task, and of the
knowledge and capabilities it requires from partners, we created a
storyboard (Figure 1). The storyboard shows a possible scenario
in which the robot picks up a large rock to clear it away, not
realizing that the action may lead to a small rock falling on the
head of the victim (Figure 1C). When the human notices this, this
provides an opportunity to jump in, and to prevent the rock from
crushing the victim (Figure 1D). This event facilitates the human
learning that the robot apparently does not understand the risks
of falling rocks. It provides the robot with the opportunity to learn
that it made a mistake. The event furthermore provides an
opportunity for team members to communicate about the
event, their actions, and to plan how they will manage such
situations together in the future. This storyboard illustrates that
using the unique capabilities of both the human (insight into
strategic choices) and robot (physical strength) can be exploited
to achieve better task performance (requirement 1). The task of
removing rubble from a victim allows for a great diversity in task
planning and execution, and for the development of individual
strategies (requirement 2 and 3), as the different debris can differ
in shape, size and location, while enabling simple basic actions to
create strategies for solving the task (requirement 4).

Task Implementation
We developed a digital task simulation of the described USAR
context using Python and the MATRX package (MATRX
Software, 2020). MATRX is a package for rapid prototyping of
human-agent team environments, which supports easy generation
of an environment, object and agents. Figure 2 shows a screenshot of
the simulation. The scene involves three characters: a victim buried
underneath a pile of rocks (shown in the middle), an explorer (avatar
on the left, played by a human participant) and a Reinforcement
Learning robot agent (avatar on the right). The goal of the task is to
free the victim by clearing away all rocks that are in front of the
victim, as well as to create a pathway to the victim from either the left
or the right side. In order to score well, this must happen as quickly as
possible, and no additional rocks (or as little as possible) should fall on
top of the victim, as that will cause extra harm. Both the human and
the virtual robot each have a set of actions they can perform, such as
picking up rocks and dropping them somewhere else. However, the
extent to which they can perform actions differs: the robot can pick
up large and small objects, and break large objects into pieces.
Humans can only pick up small objects. Humans however have a
better insight in certain aspects of the task that dictate which actions
are useful to do, such as how rocks will fall when other rocks are
removed or replaced. This insight stems from the fact that humans
have “common sense,” which helps us understand the probable
consequences of actions. In order to complete the task successfully
participants must collaborate with the virtual robot (requirement 1),
while managing their actions in such a way that the robot does not
accidentally drop rocks on the victim’s head. Since it is not clear at the
start what the best strategy would be to solve the task quickly, both
partners need to learn and adapt as they go (requirement 2). The
levels are designed such that there are different possible ways to solve
the task (requirement 3), and it is a discrete environment build on a
simple state machine, making it possible to design a Reinforcement
Learning agent that can process the environment (requirement 4).
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Learning Agent
To be able to empirically study how a human and a robot co-
adapt while collaborating on a task, the robot should be able to try
out and evaluate different actions, to be able to choose the policy
that best fits the goals of the team given the adaptations done by

the human team member. We chose to use Reinforcement
Learning to enable the agent to learn, for three main reasons:

1. The robot had to be able to learn real-time, on the basis of
rewards: as the behavior of the human team partner is adaptive

FIGURE 1 | A storyboard describing how a human-robot teammight free an earthquake victim from underneath a pile of rocks. In this storyboard, we can see how
the robot picks up a large rock, unaware that this will cause another rock to fall on the head of the victim (panel C). The human notices the issue, and steps in to prevent
the rock from falling (panel D). This event can help the robot learn about the task, and that it apparently made amistake. The human can learn about the capabilities of the
robot, namely that it didn’t understand how the rocks would fall and that it would cause harm.

FIGURE 2 | The USAR task environment programmed in MATRX. It shows a victim underneath a pile of rocks, and a human and a robot representing the team
members. The dashed red square (above the human’s head) represents the hand of the human that can be moved to pick up rocks. The dashed blue square represents
the hand of the robot. Scene (A) was used as level 1 in the experiment, while scene (B) was used as level 2.
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and unpredictable, we cannot determine optimal behavior
before the start of the task. This means that the best way to
find the optimal strategy for solving the task collaboratively
would be to get feedback or rewards on performance.

2. The described task can be solved by a sequence of actions that
manipulate the state of the world with each action, therefore,
the learning algorithm had to be able to learn a sequence of
actions given different sequential task situations.

3. The described task is a human-robot scenario, but it can also
conceptually be seen as a multi-agent scenario as both the
robot and the human are autonomous and learning agents
within the collaboration. Reinforcement Learning is an often
used and widely studied mechanism in multi-agent scenarios,
for reasons related to reasons one and two above as well [see
e.g. (Kapetanakis and Kudenko 2002; Foerster et al., 2016)].

Reinforcement Learning has been designed for learning
sequences of actions in tasks that can be modeled as Markov
Decision Processes (van Otterlo and Wiering 2012), in which
the transitions between states are unknown. In contexts where
agents collaborate and learn with a human, these transitions are
unknown since it is unknown what the human will do; this is also
the case in our task. While such a human-agent collaborative
context poses many challenges (e.g. large state spaces, long
convergence times and random behavior in the beginning)
(Dulac-Arnold, Mankowitz, and Hester 2019), earlier work has
shown that RL can be used successfully for learning behavior in real
time when interacting with a human, provided that the learning
problem is simple enough (Weber et al., 2018). Since we used RL
mostly as a tool to ensure that the agent could adapt over time, and
not as a goal in itself, we created a RL mechanism that is much
simpler than the current state-of-the-art, but that would provide the
basic learning that is sufficient for our research goals. We simplified
the task by modeling it as a semi-Markov Decision Process (Sutton,
Precup, and Singh 1999), which means that the task is divided into
several “phases,” which serve as the states in the RL algorithm.
Normally states last one timestep, whereas in a semi-Markov
Decision Process, these phases can last variable amounts of time.
Our state definition describes the state of the environment based on
the amount of rocks present in the area around the victim. The state
space is defined by S � (Phase 1, Phase 2, Phase 3, Phase 4, Goal
Phase). Table 2 describes the details of the individual states. We
chose to not explicitly represent learning about collaboration in the
learning agent, since we wanted to focus on implicit behavioral
adaptations (as explained in Research Challenges). We combined

this with a system inspired by the Options Framework (Stolle and
Precup 2002) and a basic greedy Q-learning algorithm. In the
Options Framework, agents use RL to learn a meta-policy as well as
several “sub-policies.” These sub-policies can also be seen as macro-
actions; they are combinations of atomic actions that are used
together to solve parts of the task. Usually, these macro-actions are
learned in parallel with the meta-policy, but sometimes they are
pretrained, such as for example in (Illanes et al., 2019). To further
simplify the learning problem, we chose to predefine three rule-
based macro-actions; the agent could choose from these macro-
actions in each phase of the task (a description of eachmacro-action
is given in Figure 3, Figure 4, and Figure 5). The rewards for the RL
algorithm are based on two factors: 1) the time it took the team to
move to the next phase, and 2) the amount of additional harm done
to the victim. The agent would receive this reward when
transitioning into a new phase, or when the task terminates due
to becoming unsolvable or due to a timeout. The height of the
rewards was made such that the total reward given was always
negative. With initial Q-values of 0, this ensured that in the first
three runs of the experiment, the agent would try out all three
macro-strategies in order, to enforce initial exploration. A visual
overview of the learning problem is provided in Figure 6, after we
have explained more details about the experimental method.

Claims: Expected Observations
We expect to observe several behaviors within this task
environment, given that it was designed to study co-learning
behavior. We have formulated these expected observations as the
following claims:

• Different participants develop different ways of performing
the task;

• The agent learns different sequences of macro-actions for
different participants;

• Different teams converge to different ways of performing
the task;

• The agent converges to a specific sequence of macro-actions
for most participants;

• The human converges to a specific strategy within the
experiment.

In the Discussion (Discussion), we use the results of our
experiment to critically evaluate whether we have been able to
study co-adaptation as a precursor for co-learning with our
methods by verifying to what extent these claims hold.

TABLE 2 | The task conditions specified for each Phase Variable used in the state space of the Reinforcement Learning algorithm.

Phase Description

Phase 1 The starting phase: Describes the state of the task environment when no rocks have been moved
Phase 2 The heights of all piles of rocks added up is now at least 10 rocks lower than in phase 1
Phase 3 Phase 2 has been reached, and the heights of all piles of rocks added up is now at least 20 rocks lower than in phase 1
Phase 4 Phase 2 and 3 have been reached, and either there are nomore rocks directly on top of the victim, OR one of the sides of the

task field is cleared from rocks, meaning there is an access route to the victim from either the left or right side
Goal phase Phase 2, 3 and 4 have been reached, and there are no more rocks directly on top of the victim, AND one of the sides of the

task field is cleared from rocks, meaning there is a free route from either the left or right side to the victim. The task terminates
when this phase is reached
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METHOD OF STUDY FOR IDENTIFYING
INTERACTION PATTERNS

The experimental setup and procedure described belowwas approved
by the Human Research Ethics Committee at Delft University of
Technology on August 17th, 2020 (reference number: 1261).

Participants
A total of 24 people participated in the experiment (17 female,
seven male), recruited through personal connections on
LinkedIn, within the university, from a Slack community on
AI and Design and from interns at TNO. The average age among
the participants was 24.8 (Std � 2.47). All of the participants had a

FIGURE 3 | A flowchart showing the rule-based decision making the agent would go through when using Macro-Action 1.

FIGURE 4 | A flowchart showing the rule-based decision making the agent would go through when using Macro-Action 2.

FIGURE 5 | A flowchart showing the rule-based decision making the agent would go through when using Macro-Action 3.
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university degree in a STEM field. Most of them had little to some
experience with gaming (n � 7 for “little experience,” n � 10 for
“some experience”). Also, most of them expressed that they had
no to little experience with human-robot collaboration (n � 11 for
“no experience,” n � 7 for “little experience”) or human-robot
collaboration research (n � 11 for “no experience,” n � 5 for “little
experience”).

Due to a few problems in the data collection, some participants
were excluded from all of the analyses or some of the analyses.
Two participants (one female, one male) were excluded from all
analyses, because there were significant connectivity issues during
the execution of the experiment and/or data collection went
wrong on more than one factor. One participant (female) was
excluded from the questionnaire analyses, because their data was
not properly saved, and one participant (male) was excluded from
the robot behavioral analyses, because the log data was not
properly saved.

Design and Materials
Participants were divided over two conditions: 1) a condition in
which participants were instructed to think aloud and 2) a
condition in which they were asked to perform the task in
silence. Since we study learning processes, and since it is
known that thinking aloud can have an effect on learning, the
two conditions ensured that we had control over any possible
effect.

We presented the task environment described in Task
Implementation to all participants, in the form of two different
levels. The first level was designed to be relatively easy, as it could
be solved by simply clearing away all rocks (Figure 2A). A
complicating factor was that breaking rocks would easily hurt
the victim, which would therefore need to be avoided. The second
level was designed to be more challenging: it contained a brown
rock that could not be picked up at all (Figure 2B). This means
that if the brown rock would fall on top of the victim, it would no
longer be possible to save the victim and finish the task.

Participants played the first level five times, as it was estimated
from pilot runs that five times would provide ample opportunity
for both the participant and the robot to learn a working strategy.
Participants then played the second level three times, to give the

team the opportunity to adapt to the new situation. The repetition
allowed for within-subject analyses, in which the behavior of
participants could be compared between rounds, as well as
between-subjects analyses of learning. For an overview of how
the definition of the task in the Reinforcement Learning
algorithm combines with this setup, Figure 6.

Procedure
The experiment was conducted through a video call between the
experimenter and each individual participant, while both were
located in their own home for the course of the experiment.
Participants were given access to the experimental task using
Parsec, which is a screen-sharing platform made for collaborative
gaming (Parsec., n.d.). This ensured that participants had control
over the task environment, while allowing the experimenter to
observe their behavior.

All participants went through the following steps:

1. Participants were seated in front of their own computer at
home;

2. They read the instruction, signed the consent form and
provided some demographic information as well as
information on their experience with video games, human-
robot collaboration and human-robot collaboration research;

3. Participants had the opportunity to do a short test scenario of
the task without the virtual robot, to familiarize them with the
task environment and the controls;

4. Participants were presented with the first pre-specified level.
After five runs, the new level was presented to the participant,
which they played three times;
a. The participants in condition A were asked to think aloud

during the execution of the levels;
b. After each level, participants completed a selection of the

questionnaire on Subjective Collaboration Fluency [taken
from (Hoffman 2019), see Supplementary Appendix SA
for the questions used]. In addition, they were asked to rate
how confident they were that their strategy was a good
strategy for solving the task on a scale of 1–10;

c. After the first five runs and at the end of the experiment the
participants were interviewed about their experiences.

FIGURE 6 | An overview of the representation of the learning problem embedded in the experiment. It shows the different runs that a participant went through (5
runs for level 1, 3 runs for level 2), as well as how the runs were separated into 4 phases defined by the Phase Variables. The colors show how in R1.1, R1.2 and R1.3, the
robot usually used O1—picking up all, O2—passive large rocks and O3—breaking respectively in each phase. From R1.4 onwards, the robot would choose a Macro-
action based on the learned Q-values. The Future Run portrays the behavior that the robot would engage in if there were another run, based on the Q-values
after R2.3.
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Data Collection and Analysis
Several types of data were collected in order to answer our
research questions:

1. Screen captures and notes of behavior in the MATRX
environment during the execution of the experiment

2. Voice recordings of the participants in condition A while they
are thinking aloud during the execution of the experiment

3. Voice recordings of short interviews (see Supplementary
Appendix SA for the questions asked)

4. Collaboration Fluency scores
5. Confidence of Strategy scores
6. Q-table as learned by the robot and log of how it changes

We will explain in more detail how this data was collected and
how it relates to our research questions in the sections below.

Behavior
In order to identify what interaction patterns drive co-adaptation
and co-evolution, we wanted to look at how the behavior and
strategy of the team changed over time, and which interactions
were used in that process. We used data types 1, 2, 3 and 6 for this.
The screen captures and notes (data type 1) serve mainly as data
on the human behavior, while the thinking aloud output and the
interviews (data types 2 and 3) help to explain why humans
behave in a certain way. The Q-tables (data type 6) serve to see
what strategy the robot chose in each phase of the task. Normally,
behavior of a robot driven by RL is assessed by looking at the
cumulative rewards. As we are not necessarily interested in
performance, but in the behavior resulting from the learning
process [as prescribed in (Rahwan et al., 2019)], we chose to look
at the development of the Q-tables, to understand what macro-
action the robot learned to choose in each phase.

A Grounded Theory (Charmaz 2014) process was used to
identify recurring adaptive behaviors from the screen captures
and notes. This means that we went through a process of open
coding first, while constantly writing short memos of observed
patterns. After that, we collected all codes and categorized and
clustered them until reaching the desired level of detail.

We will explain how the behavioral data and Q-tables were
used to answer our research questions in more detail in Results.

Subjective Collaboration Fluency and Confidence
Score
Within the task that we designed, it is quite difficult to keep track
of task performance due to the possibility for large differences in
strategies, as well as because the task can become unsolvable. To
still keep track of how the human-robot team performed over the
course of the experiment, we have chosen two measures for
tracking subjective task performance: subjective collaboration
fluency and confidence score (data types 4 and 5). These
measures helped us to validate that our experiment setup
actually allowed for learning and improvement.

For subjective collaboration fluency, we used a short version of
an existing questionnaire (Hoffman 2019). To measure
participants’ confidence in their strategy, we asked them to
rate confidence on a scale from 1 to 10 with the following

question: “How confident are you that your strategy is the
right strategy?”

RESULTS

Subjective Collaboration Fluency and
Confidence Score
We have created a box plot of the Subjective Collaboration
Fluency scores (Figure 7). The Confidence scores followed a
very similar pattern, therefore we do not go into further detail
about those. Both scores follow a pattern with scores starting off
relatively high in run one, after which they drop for run two and
three, move up again for four and five, drop again for six and then
move up for the last two runs. To test whether thinking aloud and
the number of the run affected participants’ experience of
collaboration with the robot, the Subjective Collaboration
Fluency score was entered in a one-way repeated measures
ANOVA with Thinking Aloud (yes/no) as between-subjects
factor, and run number (1–8) as a within-subjects repeated
measure factor. Results show that there was no significant
difference between the participants who were instructed to
think aloud (Mean � 40.56, Std � 22.78) and those who were
not (Mean � 45.12, Std � 25.75) (F � 0.81, p � 0.38), while there
was a significant effect on the run (F � 5.97, p < 0.0001). When
looking at Figure 7, we expected this significant difference to exist
between round one and round two, round three and round four,
round five and round six and round six and round seven (scores
went down after round one, up after round three, down again
after round five and up after round six). To test whether these
differences between rounds were significant, we did a post-hoc
analysis using a Tukey HSD test, which mostly confirmed the
differences visible from the plot: R1.1 and R1.2 are significantly
different (p � 0.006), R1.3 and R1.4 are significantly different (p �
0.006), R1.5 and R2.1 are almost significantly different (p � 0.058)
but R1.4 and R2.1 are (p � 0.003). R2.1 and R2.2 did not differ
statistically, but R2.1 and R2.3 do, although not significantly (p �
0.114).

The pattern of scores on both fluency and confidence over
runs are probably caused by the setup of our experiment. In the
first run, the robot would use macro-action 1 for the whole task,
which is the easiest to work with from a participant perspective.
Therefore, participants may have been inclined to assign high
scores in the beginning. In run 2 and 3, the way the RL algorithm
is implemented causes the robot to use macro-action 2 and 3
respectively for the whole task, which are quite hard to
understand from a participant perspective, arguably leading to
a lower level of experienced fluency. In run 4 and 5, the robot
would start picking its macro-action based on previous
performance, while the participant would have learned to
work with the robot a bit more. It is likely that this made the
fluency scores go up again. Run 6, however, introduced the new
scenario in which previously learned strategies often did not work
anymore. In runs seven and eight the human-robot team would
then learn to perform better at this second scenario, inducing
participants to give higher scores on experienced collaboration
fluency. Following this explanation of the scores, these results
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suggest that our experiment design indeed allowed for a learning
process of the human-robot team as we anticipated.

Interaction Pattern Analysis
The open coding process of behavioral summaries, based upon the
information from videos, interviews and notes, yielded a list of 52
different behaviors. These behaviors consist of task-related actions by
the participant; interactions between the participant and the virtual
robot; learning (participant learns something about the task or the
collaboration); strategies (combinations of actions executed over
longer periods of time); team performance and participant
emotional responses. After excluding behaviors that did not relate
to adaptation in specific (e.g. actions such as “picking up top rocks”)
and behaviors that were more of an assessment of the quality of a
behavior rather than a description (e.g. performance factors such as
“not understanding the link between waiting and robot action”), a
list of 38 behaviors was left.

These 38 behaviors were categorized in the following two
categories [based on the categorizations made in (van Zoelen
et al., provisionally accepted)]:

• Stable situations (9 behaviors): behaviors observed in-
between adaptations, such as the behavior of the
participant alternating acting and waiting for the robot.

• Sudden adaptations (29 behaviors): behaviors in which the
human and/or robot adapted their actions, thus starting a
transition from one stable situation to another. The
adaptation happens in a single moment or over a short
period of time, often in response to a newly hypothesized or
discovered property of the partner’s behavior.

The full list and categorization can be found in
Supplementary Appendix SB. The behaviors listed in the

Appendix are closely tied to the experimental task. The
descriptions of the behaviors were processed to fit co-
adaptation in general (such that we can call them interaction
patterns). For this purpose, some of the behaviors were combined
into one descriptive interaction pattern. The resulting list,
consisting of 23 interaction patterns (five stable situations, 18
sudden adaptations), is presented in Table 3.

The biggest group is that of “sudden adaptations,” the
patterns that often arise in response to a discovery, an
expectation, or a surprise of one of the partners. In order to
better understand this important group of adaptive interaction
patterns, we explored in more detail the nature of the triggers
that initiate them, what characterizes the execution of these
patterns, and what they bring about in the human-robot
collaboration. Again following the approach taken in [van
Zoelen et al. (provisionally accepted)], we used the
following terms to describe the sudden adaptations:

• External trigger: an event outside of the partner (e.g. in the
task, environment or other partner) triggers an adaptation
to a new stable situation;

• Internal trigger: an event inside of the partner (e.g. a specific
expectation or change of mind) triggers an adaptation to a
new stable situation;

• Outcome: a specific action that is preceded by an internal or
external trigger, that will gradually develop into a new stable
situation afterward;

• In-between-situation: a specific action that is preceded by an
internal or external trigger, that serves as a new trigger for
adapting to a new stable situation afterward.

The results of this can be found in Supplementary
Appendix SB.

FIGURE 7 | The Collaboration Fluency scores per run in the experiment for all participants.
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Collaborative Learning
In addition to developing a comprehensive description of adaptive
interaction patterns, we further explored how human behavior, and
specifically human behavior adaptation, influenced learning by the
virtual robot. We analyzed and coded human adaptive behavior at a
detailed level by identifying the interaction patterns as described
above, but in order to analyze how the development of robot
behavior and human learning depend on each other, a different
level of detail was necessary. We looked at three aspects of the data:

• For each participant, we looked at the Q-tables of the virtual
robot at the end of each run in the experiment, to see which
of the three macro-actions received the highest expected
reward in the different phases and runs of the task;

• For each participant, we identified the main behavioral
strategy used by the human per run, as well as during
the whole experiment;

• We analyzed how the chosen macro-actions of the virtual
robot can be associated with specific behavioral strategies of
the participants.

We will describe our process for all three of these aspects in
more detail below.

Virtual Robot Q-Tables
The Reinforcement Learning algorithm addressed learning when to
apply which of three macro-actions or options (as described in
Figure 3, Figure 4, and Figure 5; we will call them O1—picking up
all, O2—passive large rocks and O3—breaking from here onwards)
and used four phase variables to identify states. Figure 8 shows an
overview of how often the robot learned to pick specific macro-
actions in each phase (Figure 8A) and each run (Figure 8B), based
on the macro-action with the highest expected reward.

As the robot’s choice for macro-options is not clearly related to
the phases in the task (especially phase 2, 3 and 4 are very similar,
as can be seen in Figure 8A), we looked mostly at Figure 8B to
understand how the robot’s behavior developed. The figure shows
that in the first three runs the robot mostly tried out all macro-
strategies one by one, as determined by how the algorithm was
programmed. Small deviations from this are likely caused by
some participants going back and forth between phases in the

TABLE 3 | The interaction patterns identified from the behavioral data, including a description of what they entail.

Category Concept Description

Stable situation Actively synchronizing actions with a team member Human understands the capabilities of another team member and actively uses their own
actions to make optimal use of the combined capabilities

Alternating actively working on the task and waiting for a
team member

Human switches between performing their own task for a while, then waiting for a team
member to perform their task, and so on

Being generally passive and letting a team member do
most of the work

Human is overall passive and lets the other team member do the work

Damage control: Prevent damage caused by a team
member

Human performs actions that prevent their team member from causing intentional or
unintentional harm or damage

Focusing on own task Human performs their own task without paying much attention to their team member
Sudden
adaptation

Avoiding communication with a team member One of the team member actively avoids the other team member to avoid unwanted
communication interpretations

Being confused by non-human-like behavior A human team member is confused by non-human-like behavior performed by a team
member

Being confused by unexpected behavior (negative) One of the team members is confused or frustrated by behavior performed by their team
member that they did not expect

Being happy that a team member does as expected One of the team members is happy that their team member performs the kind of behavior
that they expect and hoped for

Being surprised by unexpected behavior (positive) One of the team members is positively surprised by behavior performed by their team
member that they did not expect

Coming into action when a team member comes into
action

A teammember starts to actively perform their task after a period of inaction, when their team
member also starts to actively perform their task after a period of inaction

Doing useless or harmful actions because there is nothing
else to do

A team member is unable to perform useful actions, therefore starts performing useless or
harmful actions

Feeling alone, as if team member does not help A human team member feels left alone
Following a team member’s action A team member follows or copies the action performed by another team member
Learning about behavioral cues A team member gains insight into specific behavior performed by another team member
Learning about own capabilities A team member gains insight into their own capabilities
Learning about team member’s capabilities or strategy A team member gains insight into the capabilities or strategy of another team member
Moving around different task components A team member moves around different task components without actually performing any

task
Team member changes strategy, which is visible by a
behavioral cue

A team member observes that another team member changes strategy by a behavioral cue

Team member performs an action that makes no sense A team member performs a useless action
Trying to communicate by interacting with a team partner A team member attempts to communicate with another teammember by directly interacting

with them, for example by coming close to them
Trying to communicate by signaling task actions A team member attempts to communicate with another team member by trying out different

actions that they want their team member to perform
Waiting for a team member to start acting A team member waits for another team member to start performing their task
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task, rather than moving through them linearly as we initially
expected. The robot generally learned to select O1—picking up all
most of the time for most participants over the course of the next
few runs, which fits with how level 1 of the experiment was
designed. From run 6 onwards, when the second level was
introduced, the robot learned to choose O2—passive large
rocks and O3—breaking more often. This shows that the robot
is able to generally learn what works best for the task.

Participant Behavioral Clustering
To better understand how the behavior of the participants
developed over time, we performed a manual clustering of
participant behavior per run. Based on the behavior
observations as described in Interaction Pattern Analysis, we
defined the following behavioral clusters:

• Just focus on own behavior efficiently
• Balancing acting and waiting
• Exploring how the robot works by observing and trying to
communicate

• Actively using O3—breaking
• Actively using O2—passive large rocks

The result of this clustering can be seen in Figure 9. It is difficult
to find detailed insights from this figure, apart from the fact that
more participants showed more adaptive behavior in the later runs,
as indicated by the red and olive green bars in the figure. Participants’
strategies did not develop linearly, and it also did not converge to one
specific type of behavior consistently within our experiment. To be
able to see whether human learning had an influence on robot
learning, we chose to remove the dimension of time (runs) from our
participant data, and focus on whether and how a participant
adapted over the whole experiment. We created the following
clusters based on participant adaptation over the whole experiment:

• Does not adapt: participant shows no signs of adapting to
strategies employed by the robot; participant either focuses
on their own task, or constantly switches between behavior
strategies as they focus too much on the robot.

• Adapts by balancing waiting and acting: participant shows
signs that they adapt by waiting for the robot to act, and to
use that robot behavior to determine their own response. It
suggests that the participant understands that being passive
for a while may cause the robot to act.

• Adapts by actively using O2—passive large rocks or
O3—breaking: participant visibly adapts as they actively
guide the robot to pick up or break rocks by waiting on
top of those rocks.

This clustering of participants according to their dominant
strategy resulted in three clusters with a similar number of
participants per cluster, as shown in Table 4.

Combining Participant Adaptation and Robot Learning
In order to explore whether these different types of adaptation
employed by participants affected robot learning, and whether
differences occur between clusters, we plotted the robot strategies
per human adaptation cluster, as shown in Figure 10. These figures
present the bar graphs of how often the differentmacro-actions were
chosen across the group, in an attempt to more closely evaluate any
possible differences between the three clusters. The figures suggest a
response in the robots’ behavior to the participants’ actions,
especially later on, in the final runs. When we compare the
figures for “adapts by balancing passively waiting and acting”
(Figure 10B) and “does not adapt” (Figure 10C), the former
shows the trend of using O1—picking up all in the first level
(first five runs) and using other strategies in the second level
(run 6–8) more strongly. The figures for “adapts by actively
using O2 or O3” (Figure 10A), however, shows that the robot
already learned to use O2—passive large rocks and O3—breaking
before being introduced with the second level, and actually moving
back to O1—picking up all a little more toward the final runs.

This suggests that if participants learned more about the robot
behavior and adapted their own behavior more strongly (by
actively guiding the robot with O2—passive large rocks and
O3—breaking), the robot was also able to learn to use those
strategies more often. This combined learning effect therefore can
be seen as learning at the team level.

FIGURE 8 | An overview of how often certain Macro-actions were chosen by the robot across all participants per phase (A) and per run (B).
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DISCUSSION

Interaction Patterns That Drive Co-Learning
We set out to investigate what interaction patterns between
humans and robots drive co-adaptation as a precursor for co-
learning. From the behaviors observed in our experiment, we
identified a list of interactions and a set of interaction patterns. It

should be noted, however, that (interactive) behavior is very
much determined by the specific context. This means that our list
should not be considered as a complete list of all possible co-
adaptive interactions. It should rather be seen as a collection of
interaction patterns that are likely to appear in contexts similar to
ours, where co-adaptation is centered around mutual observation
and harmonizing actions when collaborating.

The collection of interaction patterns can be used as a language
for recording, analyzing and coding co-adaptive behavior. By
describing observed behavior with such interaction patterns,
complex behavioral observations of human-robot co-adaptive
strategies can more easily be compared. The interaction
patterns can also be useful as a vocabulary for a human-robot
team itself to discuss the adaptations that they are engaged in, to
help them elaborate and sustain successful collaborations
over time.

FIGURE 9 | An overview of how many participants used specific behavioral strategies per run.

TABLE 4 | The clusters resulting from manually clustering participants based on
whether they adapted to the robot across the whole experiment.

Cluster Participants

Does not adapt 2, 6, 9, 15, 21, 22, 23, 24 (n � 8)
Adapts by balancing passively waiting and
acting

12, 13, 14, 16, 27, 28 (n � 6)

Adapts by actively using O2 or O3 3, 8, 10, 17, 19, 20, 26 (n � 7)

FIGURE 10 | An overview of how often certain Macro-actions were chosen by the robot across all participants per run, split up by the level adaptation the
participant showed: (A) shows participants who adapted by actively using O2—passive large rocks and/or O3—breaking, (B) shows participants who adapted by
balancing waiting and acting, and (C) shows participants who did not adapt.
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Validating the Research Environment
An important objective of this study is to improve our
understanding of how human-robot co-learning develops, as
well as how the adaptative processes of both partners interact.
We defined claims for the experimental environment we
designed; if these claims are justified, it means that it
enabled us to study co-adaptation, the process that we
consider to be a precursor for co-learning. Table 5 shows
the claims described in Claims: Expected Observations and
annotated conclusions as to whether we were able to justify the
claims in the present study.

As can be seen in the table, only one of the claims was justified
completely. Fortunately, many of the other claims were partly
justified. For the claims that we did not realize, the results provide
cues for how to design a research environment that better fits the
claims. We regard these findings as an important step toward
studying and revealing the processes involved in human-robot
co-learning. Aspects that should be improved upon or need
further work center around a few problems that we will
elaborate on below:

1. Behavior strategy: Convergence vs. flexible adaptations
2. Statistical analysis of complex behavioral data
3. Behavior of the individual team member vs. behavior of

the team
4. Task effects vs. participant effects

In our claims in Table 7, we mentioned convergence
several times. This stems from the principle that a
Reinforcement Learning algorithm should aim for
convergence toward an optimal solution. However, when
studying co-learning, we specifically use dynamic task

environments that have no fixed optimal solution, and in
which unpredicted events can require strategy changes. In
such environments, convergence is not a good criterion for
performance, as agents (human as well as robot) are required
to continuously learn and adapt. For human-robot co-
learning it can be argued that it is better to make the
algorithm learn certain repeated subsequences of
interactions (or interaction patterns), and to store those in
a rule-based manner. Once a pattern of interaction has
proven to be successful in multiple instances of task
situations, it can be applied, combined and if necessary
revised in similar but other task situations. We therefore
believe that future research into co-learning should not take
convergence as a criterion for the robot’s behavior, but to
focus on the emergence and sustainability of successful
interaction patterns (aspect 1).

The results show that the robot had a similar learning process
across all participants despite the high variety between individual
participants. However, the behavioral data of both the robot and
the participant is quite complex. Sometimes there are radical
changes in behavior between one run and the next, and even
within one run participants sometimes quite radically changed
their behavior. It is a challenge to analyze such data as it is often
difficult to clarify the origin of the behavior from the data. Our
qualitative analysis and clustering is able to deal with this
complexity and provides many useful insights, therefore we
would advise future research into co-learning to include
similar qualitative analyses. When further investigating co-
learning, it will, however, also be relevant and interesting to
verify insights statistically. This will require different design
considerations. The current complexity in behavioral data is
partly due to the interaction between two adaptive systems,

TABLE 5 | The claims as presented in Claims: Expected Observations that need to be justified in a co-adaptation experiment, including whether they were validated and an
explanation of that conclusion.

Claim Justified Explanation

Different participants develop different ways of performing the task Yes When looking at the different interaction patterns that people engage in, and categorizations
of their adaptive behavior, we can see that different people indeed performed the task in a
variety of ways

The agent learns different sequences of strategy options for
different participants

Partly The results showed that not all agents learned the same model on an individual level.
However, the models had much in common, suggesting that all agents learned similar
behavior. When splitting this up in groups based on human adaptive behavior, there seems
to be a difference in learned agent behavior between the different groups. Currently,
however, we did not do any statistical analysis to test whether this is a significant result

Different teams converge to different ways of performing the task Partly When looking at the different interaction patterns that participants engaged in with their robot
team partner, different teams solved the task in a variety of ways (see H1). However, it is
unclear to what extent the robot contributed to this. Moreover, while participants generally
gained more confidence in their strategy and expressed to experience a greater subjective
collaboration fluency toward the end of the experiment, it is unclear to what extent the
strategy of the team really converged to a stable one

The agent converges to a specific sequence of strategy options
for most participants

No While we did observe a logical development of the Q-values on a population level, this does
not count for all of the individual agents. Moreover, it is not clear to what extent the agents
really converged to a stable set of actions

The human converges to a specific strategy within the experiment Partly The categorizations of participant behavior show that participants settle on a stable strategy
more and more over the course of the experiment. This is also shown by the development of
the confidence scores and subjective collaboration fluency. True convergence to a stable
strategy, however, is not clearly visible within the 8 runs of the experiment
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and probably an inherent property of co-learning. Moreover, the
human and robot can approach the task in many different ways
by design. This property is a strength of our experiment, as it
allows participants to behave relatively freely and naturally, but it
also contributes to the complexity of the resulting co-adaptation.
For future research, it will be important to explicitly take these
properties into account when designing an environment for
experimentation (aspect 2), in such a way that insights can be
verified statistically. For example, in our design, the strategies of
the robot were separate, nominal actions, but if we can design a
learning agent such that their learned behavior is ordinal (e.g. by
using more or less of a certain behavior), it might be easier to
apply statistical methods. Moreover, we can look into data
analysis methods used in complexity science, to see if they can
be applicable to co-learning scenarios.

Lastly, it is currently a challenge to determine which aspects of
the final team behavior are caused by adaptations of individual
team members, and which by interactions between them.
Similarly, we cannot yet conclusively determine which aspects
of the learned strategy are caused by the task, and which by the
individuality of a participant (e.g. what does the robot learn just
because of the task, and what does the robot learn because a
certain participant behaved a certain way). To solve this problem,
we need to find ways to separate the different effects, for example
by creating relevant baseline results. Letting the robot perform a
task and learn by itself is not an option in the context of team
tasks, as the nature of such task dictates dependencies between the
team members. A possibility might be to create a simulated,
possibly rule-based human agent for the robot agent to
collaborate with.

Future Steps for Studying Human-Robot
Co-Learning
The discussion regarding the interactions that underlie co-
learning provide several pointers and suggestions for
improving the design of our research methods. Besides the
suggestions above, however, there are several other directions
in which we believe that co-learning research should develop. In
this paper we developed an approach for studying co-learning.
Since we were still defining what it means to study co-learning,
the scope of the task, learning algorithm and opportunities for
interaction had to be limited. Eventually, if we want to enable and
study co-learning in full-fledged teams, it will be necessary to use
more complex task environments, more intelligent agents or
robots and more elaborate interaction and communication
between the human and the robot. In the following section we
will therefore further outline the two research directions
mentioned in Research Challenges that we did not further
address in this paper (research direction two and three).

The first direction is aimed at enabling the communication
between partners within the team, especially communication
about adaptations. We believe that in order for team members
to produce successful sequences of interactive behavior, that can
be used strategically across contexts, it is necessary that the team
members can communicate with one another. The interaction
patterns that we have identified might be used as a start for a

vocabulary for such communication interactions, but the specific
timing, modality and details of the interactions will have to be
designed and studied.

The second direction is aimed at making the agent or robot
more intelligent in terms of its abilities for co-learning. In the
experiment we presented, our agent only learned based on task-
related rewards. It makes sense to also explicitly reason about or
take into account the human’s behavior and preferences in
learning. There is a large body of research on personalizing
robot behavior, e.g. by making the robot develop a user model of
its partner, but these models often do not explicitly take into
account that the human continuously learns and adapts. We
therefore believe that there is a need for user models and team
models that specifically accommodate the adaptive interactions
as described in this paper. A team mental model that is able to
represent the interactions within a team will support the
partners in developing and sustaining successful adaptations
and to synchronize and align their actions and learning
processes.

CONCLUSION

Co-learning is an important mechanism for building successful
human-robot teams. However, there is no general understanding
of what co-learning means in the context of human-robot teams. In
this paper, we defined the concept of co-learning based on related
literature, and positioned it in relation to co-adaptation and co-
evolution. From this definition, it is clear that adaptive interactions
between humans and robots play a central role in co-learning. We
defined requirements for studying how bi-lateral adaptation emerges
from the interactions between humans and robots.

From these requirements, we developed an experimental task
environment based on a real-life Urban Search and Rescue task.
The task was designed such that it allowed human participants to
behave relatively naturally and freely, enabling us to record and
analyze emerging adaptive interactions between a human and a
robot. A bottom-up coding process based on Grounded Theory
allowed us to identify recurring interaction patterns. The
resulting list of interaction patterns describe stable situations
(repeating subsequences of stable behavior) as well as sudden
adaptations (changes in behavior happening over short periods of
time). These patterns can emerge in similar task contexts, thereby
forming a description and analysis method of co-adaptive
behavior in human-robot teams.

Over the course of the experiment, the robot learned similar
strategies for most participants. However, the results show that
the learned strategies were slightly different depending on
whether a human participant adapted their behavior to the
robot. This suggests that human learning affected the robot’s
Reinforcement Learning. More specifically, the human learning
about and adapting to a specific strategy of the robot enabled the
robot to learn to stick to that strategy. This shows how learning
on the individual level lead to team level learning in our
experiment.

This paper presents a theoretical framework and a
methodological approach for studying the processes that
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underlie co-learning in human-robot teams. The strengths as
well as the shortcomings of our approach provide ample
directions for future research into this important
process that ultimately defines the quality of human-robot
teaming.
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Individual Differences in Children’s
(Language) Learning Skills Moderate
Effects of Robot-Assisted Second
Language Learning
Rianne van den Berghe1,2*, Ora Oudgenoeg-Paz1, Josje Verhagen3, Susanne Brouwer4,
Mirjam de Haas5, Jan de Wit6, Bram Willemsen7, Paul Vogt5,8, Emiel Krahmer6 and
Paul Leseman1

1Department of Development of Youth and Education in Diverse Societies, Utrecht University, Utrecht, Netherlands, 2Section
Leadership in Education and Development, Windesheim University of Applied Sciences, Almere, Netherlands, 3Amsterdam
Center for Language and Communication, University of Amsterdam, Amsterdam, Netherlands, 4Department of Modern
Languages and Cultures, Radboud University, Nijmegen, Netherlands, 5Department of Cognitive Science and Artificial
Intelligence, Tilburg University, Tilburg, Netherlands, 6Department of Communication and Cognition, Tilburg University, Tilburg,
Netherlands, 7Department of Intelligent Systems, KTH Royal Institute of Technology, Stockholm, Sweden, 8School of
Communication, Media and IT, Hanze University of Applied Sciences, Groningen, Netherlands

The current study investigated how individual differences among children affect the added
value of social robots for teaching second language (L2) vocabulary to young children.
Specifically, we investigated the moderating role of three individual child characteristics
deemed relevant for language learning: first language (L1) vocabulary knowledge,
phonological memory, and selective attention. We expected children low in these
abilities to particularly benefit from being assisted by a robot in a vocabulary training.
An L2 English vocabulary training intervention consisting of seven sessions was
administered to 193 monolingual Dutch five-year-old children over a three- to four-
week period. Children were randomly assigned to one of three experimental
conditions: 1) a tablet only, 2) a tablet and a robot that used deictic (pointing) gestures
(the no-iconic-gestures condition), or 3) a tablet and a robot that used both deictic and
iconic gestures (i.e., gestures depicting the target word; the iconic-gestures condition).
There also was a control condition in which children did not receive a vocabulary training,
but played dancing games with the robot. L2 word knowledge was measured directly after
the training and two to four weeks later. In these post-tests, children in the experimental
conditions outperformed children in the control condition on word knowledge, but there
were no differences between the three experimental conditions. Several moderation
effects were found. The robot’s presence particularly benefited children with larger L1
vocabularies or poorer phonological memory, while children with smaller L1 vocabularies
or better phonological memory performed better in the tablet-only condition. Children with
larger L1 vocabularies and better phonological memory performed better in the no-iconic-
gestures condition than in the iconic-gestures condition, while children with better selective
attention performed better in the iconic-gestures condition than the no-iconic-gestures
condition. Together, the results showed that the effects of the robot and its gestures differ
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across children, which should be taken into account when designing and evaluating robot-
assisted L2 teaching interventions.

Keywords: social robots, second language learning, child-robot interaction, individual differences, (language)
learning skills

INTRODUCTION

The current study addresses the use of social robots in language
education. Specifically, we investigated how individual differences
among children affect the added value of social robots for
teaching second language (L2) vocabulary to young children.
While studying the effects of robots is in itself important in view
of applications in education, it is crucial to compare the
effectiveness of robots to that of cheaper and more accessible
technological aids such as tablets. Several potential advantages of
robots relative to other technologies such as tablets have been
identified in extant research. For example, social robots allow for
interactions that make use of the physical environment (e.g.,
acting upon objects, enacting particular movements or
operations, using various types of gestures) and they can
stimulate more natural, human-like interactions because of
their humanoid appearance (Belpaeme et al., 2018; van den
Berghe et al., 2019). The use of iconic gestures is known to
support L2 vocabulary learning (Tellier, 2008; Macedonia et al.,
2011; Rowe et al., 2013), and a robot’s iconic gestures and other
non-verbal cues have been found to benefit learners as well (Kory
Westlund et al., 2017; de Wit et al., 2018).

Current evidence on the effectiveness of robot-assisted
language learning (RALL), however, is mixed (see for reviews
Kanero et al., 2018; van den Berghe et al., 2019), and there is
inconclusive evidence on the possible benefits of robots over other
forms of technology (Han et al., 2008; Hyun et al., 2008; Leyzberg
et al., 2012; Gordon et al., 2015; Kory Westlund et al., 2015;
Zhexenova et al., 2020). Specific for word learning, positive effects
of robots on learning were found in several single-session studies
(Tanaka and Matsuzoe, 2012; de Wit et al., 2018), while only
moderate learning gains were found in multiple-session studies
(Kanda et al., 2004; Gordon et al., 2016). This effect is in contrast
with evidence regarding effective and impactful vocabulary
training programs involving human tutors where multiple
sessions with a large number of repeatedly presented words
are usually more effective than single sessions (Marulis and
Neuman, 2010). Perhaps this difference is due to the novelty
effect: If children have little or no experience with robots, they
may attend more to the robot and become more motivated by it,
and thus learn more than when they become more familiar with
robots (see Leite et al., 2013, for an overview of long-term
interactions with robots). Multiple-session studies are thus
required to rule out a short-lived novelty effect as a main
cause of children’s word learning in RALL studies.

Moreover, and crucial to this paper, there is evidence that
RALL may be only effective for a subgroup of children (such as
children who are motivated to play with the robot; Kanda et al.,
2004), suggesting that individual characteristics of children
may moderate the effects of RALL. It is possible that robots are

useful language-education tools for certain children only, for
example, depending on children’s prior language knowledge
and general (language) learning abilities. However, studies on
the role of individual child characteristics in RALL, enabling
the identification of such specific groups, are scarce. Most
studies on adaptive learning focus on learners’ age, gender, or
cognitive or affective state during the learning task (e.g.,
Gordon et al., 2016; Ahmad et al., 2019), and not so much
on learners’ prior skills.

The current study, therefore, aims to add to the evidence
regarding the effectiveness of robots in L2 teaching of young
children in a vocabulary training spanning multiple sessions, by
specifically focusing on the role of individual differences across
children in skills related to the task at hand. We focused on three
skills suggested by the literature to play an important part in
language learning: children’s first language (L1) vocabulary
knowledge (Wolter, 2006), phonological short-term memory
capacity (Gathercole and Baddeley, 1990; Service, 1992;
Baddeley et al., 1998; Masoura and Gathercole, 2005;
Gathercole, 2006; Verhagen et al., 2019), and selective
attention (Schmidt, 1990; Robinson, 1995). We will examine
whether these skills moderate any effects of RALL on
children’s learning of L2 words.

The current study follows up on a previous study using the
same data (Vogt et al., 2019). In this previous study, the added
value of a social robot and its iconic gestures for L2 vocabulary
learning were investigated. Native Dutch-speaking five-year-old
children were taught L2 English vocabulary in the domains of
mathematical and spatial language in a series of seven short,
individually administered lessons. Children were taught words
through language games on a tablet in one of three conditions: 1)
by themselves (the tablet-only condition); 2) with a robot that
used deictic (pointing) gestures (the no-iconic-gestures
condition); or 3) with a robot that used both deictic and
iconic gestures (i.e., gestures depicting the target word; the
iconic-gestures condition). In addition, a control group of
children was included who did not receive the vocabulary
training but played dancing games with the robot instead.
Children in the experimental conditions were found to
outperform children in the control condition on word-
knowledge tasks in two post-tests, both directly after the
training and two to four weeks later. However, there were no
differences in word knowledge between children across the three
experimental conditions on either one of these post-tests. Thus,
no overall benefit of the robot’s presence or its iconic gestures was
found in Vogt et al. (2019).

In the present study, we extend this earlier study by Vogt et al.
(2019) by investigating whether any effects of the robot’s presence
or its gestures would be moderated by children’s (language)
learning skills. Both the general research question on the
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added value of the robot and its iconic gestures (answered in Vogt
et al., 2019) and the follow-up exploratory question on individual
differences (answered in the current paper) were preregistered on
AsPredicted1. As noted above, we considered three aspects of
children’s (language) learning skills, as moderator variables: L1
vocabulary knowledge, phonological memory, and selective
attention. If effects of these variables are found, our findings
will show the importance of taking into account individual
differences in RALL and help tailor RALL to individual
children to optimize learning outcomes. Below, we first
describe how L1 word knowledge, phonological memory, and
selective attention may play a role in L2 word learning, before we
turn to our research question and hypotheses on how they may
play a role in RALL in particular.

Learning an L2 is dependent on both the quality and quantity
of the L2 input (Hoff, 2013; Unsworth, 2016) and on
characteristics of the learner (i.e., the learner’s cognitive and
personality resources; Cummins, 1991). Prior L1 knowledge may
help in L2 learning, as learners can map new L2 labels onto
underlying concepts which they already acquired in their L1,
provided that concepts are similar (Wolter, 2006). Besides
conceptual similarity, similarity in word form between L1 and
L2 can also aid in L2 learning, at least when this similarity also
entails similarity in meaning (Brenders et al., 2011; Hemsley et al.,
2013; Sheng et al., 2016). On the basis of these findings, children
with larger L1 vocabularies are expected to learn more words
from L2 vocabulary interventions than children with smaller L1
vocabularies. Children with larger L1 vocabularies can use their
richer lexical and conceptual networks to disambiguate new input
and to integrate it in existing knowledge. This phenomenon,
found in particular for reading instruction but also in vocabulary
learning (e.g., Penno et al., 2002), has been referred to as the
Matthew effect (Stanovich, 2009).

Another factor relevant for L2 learning is children’s
phonological memory, defined as the capability to construct a
phonological representation of speech sound sequences and to
temporarily hold this representation active in memory for further
processing (Gathercole and Baddeley, 1990; for a review on the
relationship between phonological memory and word learning,
see Gathercole, 2006). Phonological memory has been found to
predict both L1 and L2 vocabulary learning (Gathercole and
Baddeley, 1990; Service, 1992; Baddeley et al., 1998; Masoura and
Gathercole, 2005; Gathercole, 2006; Verhagen et al., 2019).
Phonological memory may aid L2 vocabulary learning, either
directly or through its effect on L1 vocabulary knowledge, in
particular if the learner is a novice and still has limited L2
vocabulary knowledge (Cheung, 1996; Masoura and
Gathercole, 2005). Learners with substantial L2 vocabulary
knowledge can rely on semantic, conceptual, or phonological
similarities between novel words and words they have already
learned, while novice learners cannot do this and thus have to rely
more on their phonological memory (Masoura and Gathercole,
2005).

Finally, language learning in both L1 and L2 may depend on
general learning abilities, in particular selective attention – a skill
that has been considered the core of executive functions and
working memory by some researchers (Garon et al., 2008; Mulder
et al., 2014; Hendry et al., 2016; Cowan, 2017). Selective attention,
defined as a domain-general, effortful mechanism of perceptual
focusing, helps individuals to filter relevant information from
irrelevant information in the encoding stage of linguistic
information processing and supports processing in working
memory. Language learning is thought to depend in part on
automatic implicit processes (e.g., statistical learning), but
attention can strengthen implicit learning (e.g., Lewkowicz and
Hansen-Tift, 2012; Stevens and Bavelier, 2012), and learning may
also depend on explicit processes that require attentional effort,
especially in L2 learning at a later stage (e.g., the Noticing
Hypothesis; Schmidt, 1990).

In the present study, we investigated whether individual
differences in L1 word knowledge, phonological memory, and
selective attention moderated the extent to which children
benefited from the robot’s presence and its iconic gestures
during robot-assisted L2 learning. We used the data from
Vogt et al. (2019), from all three experimental conditions (the
tablet-only, no-iconic-gestures, and iconic-gestures condition),
and the control condition. The choice to include a tablet-only
condition was motivated by the fact that we had to work around
limitations of the robot with regard to speech and object
recognition (Kennedy et al., 2017; Wallbridge et al., 2017),
which could only be resolved by including a tablet as an
additional device for communication and interaction, as is
explained more extensively in Vogt et al. (2019). Based on the
findings in language learning research, discussed above, we
expected that children with larger L1 vocabulary knowledge,
larger phonological memory capacity, and a higher level of
selective attention would learn more English words across all
experimental conditions (i.e., conditions involving a robot and/or
a tablet) than children scoring lower on these skills. We did not
expect to see effects of L1 vocabulary knowledge, phonological
memory, and selective attention for children in the control
condition on their English word knowledge, as these children
were not taught any English words. We contrasted the
experimental conditions with the control condition to make
sure that, if any moderator effects were found in the
experimental conditions, they would pertain to the learning
process, and not to the test taking.

In the remainder or this section, we will discuss our
hypotheses regarding possible moderator effects in the robot-
assisted vs. tablet-only conditions, before discussing our
hypotheses regarding moderator effects in the iconic-gestures
vs. no-iconic-gestures conditions. All our hypotheses are quite
general, as our study is, to the best of our knowledge, the first to
investigate the moderating effects of children’s (language)
learning skills on RALL. Our expectation was that the robot
conditions offered children a more naturalistic and supportive
language learning setting than the tablet-only condition (i.e., a
setting in which the learner interacts with another being and
which is grounded in the physical environment; Barsalou, 2008;
Ellis, 1999; Gallaway and Richard, 1994; Hockema and Smith,1https://aspredicted.org/6k93k.pdf
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2009; Iverson, 2010;Wellsby and Pexman, 2014), as the robot had
a social presence and provided visual input (i.e., iconic and/or
deictic gestures) in addition to the tablet. Our hypothesis,
therefore, was that the presence of the robot would
particularly benefit children who are poorer at language
learning, that is, children with smaller L1 vocabulary
knowledge, smaller phonological memory capacity, and a
lower level of selective attention. These children in particular
would need support in relating the novel (L2) words to their
existing (L1) knowledge. Thus, we expected these children to
show larger differences in learning outcomes between the robot-
assisted conditions and the tablet-only condition compared to
children higher in (language) learning abilities.

Our hypothesis with respect to the difference between the two
robot-assisted conditions (i.e., the added value of the robot’s
iconic gestures) was that the iconic gestures would further add to
the naturalistic language learning environment and its visual
support, and therefore, would particularly benefit children
poorer at language learning. Iconic gestures visualize words
and help learners to relate novel words to existing concepts
(Tellier, 2008; Macedonia et al., 2011; Rowe et al., 2013),
which may benefit children poorer in language learning in
particular (van Berkel-van Hoof et al., 2019). Thus, we
expected children low in (language) learning abilities to show
a larger difference in learning outcomes between the iconic-
gestures condition and the no-iconic-gestures condition,
compared to children with higher learning abilities.

METHODS

Participants
One hundred and ninety-three2 monolingual Dutch preschoolers
(95 girls) with an average age of 68.4 months (range
59–81 months, SD � 4.7 months) participated in the study.
They were recruited from nine different schools in the
Netherlands and were randomly assigned within schools to

one of the four conditions, while ensuring a similar gender
distribution over conditions. None of the schools taught
English to preschool children. Parents indicated in a
background questionnaire that most children received limited
English input. Most children heard, with a maximum of 2 days
per week, some English in the media or when parents used stand-
alone words and phrases like “let’s go”. Table 1 displays the
background characteristics of the children divided over the four
conditions. There were no significant differences between
conditions in parental education, age, and gender, all ps >
0.303. Eleven additional children started the lessons but did
not complete them due to illness, technological problems, or
because they did not want to participate anymore (n iconic-
gesture condition � 6, n no-iconic-gesture condition � 3, n tablet-
only condition � 2). Three additional children were pre-tested but
excluded from the experiment because they knew more than half
of the target words at the pre-test. Informed consent for all
children was obtained from parents/caretakers prior to data
collection. The L2TOR project, in which this study was
embedded, received ethical approval from Utrecht University’s
Ethics Committee under protocol number FETC16-039.

Overview of Experimental Sessions
The experiment consisted of a pre-test, seven tutoring sessions,
and two post-tests (see Figure 1 for an overview of the
experiment). All children participated in a groupwise
introduction prior to the pre-test (see Procedure for more
information). In the pre-test, we measured children’s
knowledge of the L2 target words and their L1 vocabulary
knowledge, phonological memory, and selective attention. The
training was administered in one of four conditions, and had a
between-subject design. In the experimental conditions,
children played language games on a Microsoft Surface
tablet: 1) by themselves; 2) with a robot that used deictic
gestures (see the Robot section for more information on the
robot used); or 3) with a robot that used iconic and deictic
gestures. Children received on average two lessons per week
over a period of on average 24 days (SD � 5.5 days). Children in
a fourth, control condition did not play language games but
danced with the robot during three sessions, once every week.
Children’s immediate learning outcomes were measured in a
game concluding each lesson (which are beyond the scope of

TABLE 1 | Background characteristics of the children in the four conditions.

Tablet only No iconic gestures Iconic gestures Control

N 53 54 54 32
n girls 29 26 22 18
M age (SD) in months 69.1 (4.4) 68.5 (4.7) 68.4 (4.8) 66.9 (4.7)
Age range in months 61–79 59–79 60–81 59–79
M standardized PPVT score 105.1 (12.3) 108.6 (11.7) 107.9 (14.5) 108.9 (14.0)
Parental education
Academic level 60% 72% 74% 66%
Vocational level 33% 26% 20% 24%
Secondary school 7% 2% 6% 10%

Note. Information on parental education of both parents was gathered through a questionnaire with a response rate of 65.8%, thus for 127 out of 193 children (n iconic-gestures condition � 40,
n no-iconic-gestures condition � 32, n tablet-only condition � 34, n control condition � 21).

2One child from the Vogt et al. (2019) data was excluded from the analyses in the
current paper, as this child had a different home language in addition to Dutch,
which may interfere with the (language) learning variables studied here.
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the current paper), and in a post-test one or two days after the
seven tutoring lessons and a second post-test two to four weeks
after the first post-test (M � 18.9 days, SD � 3.6 days) to
measure retention over a longer period.

L2 Vocabulary Lessons
The lesson series consisted of seven individual lessons: six
lessons in which new L2 vocabulary was provided, and one
recap lesson in which all target words were repeated. Five or six
target words were taught within each lesson, resulting in a total
of 34 target words. The target words were chosen such that
they were part of early mathematical and spatial language. This
type of language – academic language – is highly important for
later academic success (Hoff, 2013; Leseman et al., 2019). The
overall theme of the lesson series was an area to be explored,
with different locations for each lesson, such as “the zoo”, “the
bakery”, etcetera. The locations were chosen such that they
were familiar and relevant to young children. See Table 2 for
an overview of the lesson series, the locations, and the
target words.

Each lesson consisted of four parts. First, the child was
greeted, a reference was made to the previous lesson, and the
location of the current lesson was introduced. Then, the new
target words were modelled. New target words were first
introduced by a pre-recorded speech sample of a native
(Canadian) English speaker. The child was asked to repeat
the target word, as this benefits productive recall of target
words (Ellis and Beaton, 1993). Then, the child was
instructed to perform several tasks on the tablet to
practice the target words, for example, during the first
lesson in the zoo, children had to put two elephants in a
cage to practice the word “two”. The tasks allowing children
to practice the target words differed per target word. Some
target words required manipulations on the tablet, while
others allowed for more physical activity. For example,
children were asked to act out running when being taught

the word “running”. The lessons concluded with a short test,
to measure immediate learning outcomes. We will not discuss
these immediate tests in this paper, as this would make
our–already extensive–data set too complicated and would
distract from the overall picture in which we were interested,
namely the overall effect of (language) learning skills on
robot-assisted word learning and retention, rather than
immediate learning gains.

Each target word was repeated ten times throughout the
lesson: nine times by the robot, and once by the native
English speaker when it was introduced. Each target word
reoccurred once in the following lesson and twice in the recap
lesson. During the recap lesson, a photo book appeared on the
tablet, which showed print screens from the previous lessons.
Children had to practice repeating the target words once more
during this recap lesson.

Robot
The robot used in this study was a Softbank Robotics NAO
robot3. The robot was sitting in crouch position during the lesson
series in a 90° angle to the right of the child, which was sitting on
the floor facing the tablet that was positioned on an elevated
surface.

The robot’s responses had been preprogrammed, such that its
responses and behaviors were consistent for all children. The
robot was nearly autonomous; it behaved by responding to the
child’s actions on the tablet. The only function controlled by the
experimenter was voice detection, as automatic speech
recognition systems do not work reliably for children
(Kennedy et al., 2017). This function was only used when
children were asked to repeat the target words. The
experimenter indicated, using a graphical user interface on a
laptop computer, whether the child had produced sounds or not.
The laptop computer was not in direct sight of the child (see
Figure 2). The robot was introduced as Robin (which is a gender-
neutral name in Dutch), being a peer that was going to learn
English words together with the children.

The robot acted as a slightly more knowledgeable peer who
understood the game usually faster than the child. As such, the
robot performed several behaviors during the training: 1) talking
to the child and explaining the tasks of the lesson; 2) pronouncing
the target words; 3) providing feedback on the actions of the child;
4) pointing to the tablet while explaining what to do; 5)
performing required manipulations in case the child failed to

FIGURE 1 | Overview of the experiment.

TABLE 2 | Overview of the lesson series and target words.

Lesson Location Target words

One Zoo One, two, three, add, more, most
Two Bakery Four, five, take away, fewer, fewest
Three Zoo Big, small, heavy, light, high, low
Four Fruit shop On, above, below, next to, fall
Five Forest In front of, behind, walk, run, jump, fly
Six Playground Left, right, catch, throw, slide, climb
Seven Photo book Repetition of all target words

3https://www.softbankrobotics.com/emea/en/nao
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perform a specific task. In case of the latter, the robot moved its
arm above the tablet and any required manipulations “magically”
occurred. In the iconic-gestures condition, the robot made an
iconic gesture each time it pronounced a target word in English.
These gestures were modeled after the gestures adults made in a
gesture-elicitation procedure when they were asked to make an
iconic gesture for each target word4.

To ensure that the content and structure of the lessons were
the same between the different conditions, in the tablet-only
condition, the robot’s voice was redirected through the tablet’s
speakers, and the robot itself was hidden from sight. Thus, the
robot was used “behind the scenes” to operate the system, but
children only saw and interacted with the tablet. In the robot-
assisted conditions children thus interacted with the robot and
the tablet, whereas in the tablet-only condition they interacted
with the tablet only.

Measures
Pre-test Translation Task
Tomeasure whether children knew the L2 English target words
prior to the lesson series, we administered a translation task. In
this task, children heard the 34 English target words one by one
and were asked to translate them to Dutch. The target words
were pre-recorded by a native speaker (different from the
native speaker whose voice introduced the target words for
the first time through the tablet) and played through a laptop
computer. Two versions of this task were used, differing in
word order. The first list of words was created by listing the
target words randomly, and a second list was created by
reversing the first list. Children were awarded one point per
correct answer, yielding a maximum score of 34 points.

Cronbach’s alpha showed that the internal consistency of
the task was excellent, α � 0.96.

Post-test Translation Tasks
To measure how many L2 English target words the children
learned during the lesson series, we administered two translation
tasks: one from English to Dutch and one from Dutch to English.
The task was the same as the pre-test translation task, except that
children now also had to translate the words from Dutch to
English.We did not include the Dutch-to-English translation task
in the pre-test, because this would make the pre-test too long and
difficult for the children (they were expected to know very few
English words, and translating them from English to Dutch was
expected to be a sufficient measure to assess their existing
knowledge of the English target words). Both tasks were
administered twice after the lesson series had ended, once
during the first post-test and once during the second post-test.
Children were awarded one point per correct answer, resulting in
a maximum score of 34 points per task. Cronbach’s alpha showed
that the consistency of both tasks was excellent, α � 0.94 at the
first post-test and α � 0.95 at the second post-test for the English-
to-Dutch translation task, and α � 0.97 at the first post-test and
α � 0.98 at the second post-test for the Dutch-to-English
translation task.

Post-test Comprehension Task
We administered a comprehension task to measure children’s
receptive knowledge of the target words taught. The
comprehension task was a picture-selection task in which we
presented children with three images (still photos for most words,
or short films in the case of verbs) on a laptop screen. Children
then had to select the image corresponding to the target word
they heard. Again, pre-recorded speech was used. A bilingual
native English-Dutch speaker pronounced a Dutch carrier
sentence “waar zie je” (“where do you see”) followed by the

FIGURE 2 | A child engaging in a lesson with the robot.

4Video recordings of the gestures made by the robot can be found at https://tiu.nu/
l2tor-gestures.
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target word in English. There were three trials for each target
word, with different distractors each time. We selected half of the
target words for this task to reduce children’s fatigue, as a
comprehension task consisting of all items would have been
too long for the children. The target words included in the
tests were chosen such that words from each lesson were
included and that different types of words (verbs, adjectives,
prepositions) were included. Two versions of this task were used,
differing in word order: The first list of words was created by
listing the target words randomly, and a second list was created by
reversing the first list. Children were awarded one point per
correct answer, resulting in a maximum score of 54 points. This
task was administered during the first and second post-test.
Cronbach’s alpha showed that the consistency of the task was
good, α � 0.84 at the first post-test and α � 0.87 at the second post-
test.

L1 Vocabulary
We used the Dutch version of the Peabody Picture Vocabulary
Test (PPVT-III-NL, Dunn et al., 2005) to measure children’s
Dutch receptive vocabulary knowledge. In this task, children are
presented with four pictures and asked to select the picture
corresponding to a word said by the experimenter. The task
contains a total of seventeen sets, with each set consisting of
twelve items. The test is adaptive, such that the starting set is
chosen depending on the age of the child, and testing is stopped
when the child makes nine or more errors within one set. The test
is age-normed, with a mean of 100 and a standard deviation of 15.
Cronbach’s alpha is described in the test manual to be between
0.92 and 0.94. We used standardized scores in our analyses.

Phonological Memory
The Cross-Linguistic Nonword Repetition Task (CL-NWR) was
used to measure phonological memory (Boerma et al., 2015;
Chiat, 2015). The CL-NWR is a computerized task appropriate
for young children, consisting of sixteen items, ranging from two
to five syllables in length. Children hear a previously recorded,
non-existing word via a laptop computer, and are asked to repeat
it. Children receive two practice items (two one-syllable
nonwords) before starting. Children’s responses were scored
online by the experimenter and they received one point for
each word that they repeated correctly, yielding a maximum
score of twelve. Cronbach’s alpha showed that the consistency of
this task was satisfactory, α � 0.76. Ten percent of the data was
scored independently by an additional researcher based on video
recordings of the test. Inter-rater reliability was good with 89%
agreement, κ � 0.74 [95% CI (0.663–0.819)], p < 0.001.

Selective Attention
A computerized visual search task was used to measure selective
attention (Mulder et al., 2014). In this task, children were shown
a display of animals on a laptop screen consisting of elephants,
bears, and donkeys that were similar in color and size. Children
were asked to find as many elephants as possible among
distractor animals. Children were given three practice items
and four test items that increased in difficulty. In the first two
test items, 48 animals appeared on a six by eight grid. In the

third item, 72 animals (similar in size to the first two test items)
appeared on a nine by eight grid. In the last item, 204 animals
(smaller in size than in the other three test items) appeared on a
12 by 17 grid. There were eight targets (elephants) in total in
each test item. Each test item lasted 40 s. The experimenter
encouraged children to search as quickly as possible and gave
feedback according to a strict protocol. Elephants that were
found were crossed off with a line by the experimenter. The
number of targets located correctly per item was calculated and
averaged across items, resulting in a maximum score of eight.
Cronbach’s alpha showed that the consistency of this task was
good, α � 0.86.

Procedure
Group Introduction of Robot
Prior to the individual sessions, the robot was introduced to all
children in a group session. The robot introduced itself and did a
dance with the children. The groupwise introduction served to
familiarize children with the robot, and reduce potential anxiety
during the individual sessions.

Pre-test
All children were tested individually by a trained experimenter in
a quiet room in their schools. Children were administered the
tasks in the following order: PPVT, pre-test translation task,
selective-attention task, and CL-NWR. Furthermore, a
perception questionnaire was administered (also during the
first post-test) which measured the degree to which children
anthropomorphized the robot. This questionnaire is beyond the
scope of the current paper as it did not measure language skills or
learning outcomes, and the results of this questionnaire can be
found in Van den Berghe et al. (2020). The pre-test session lasted
30–40 min. Children got a sticker in reward for each task.

L2 Vocabulary Lessons
Each lesson was administered individually in a quiet room at
the children’s schools. At the start of the first session, the
experimenter explained how the child could perform the
requested actions on the tablet during the lessons (e.g.,
swiping and tapping), and helped the child to play the
game. The experimenter was always present during the
lessons to help children if needed, and to control the robot.
The lesson could be paused if children needed a break. Each
lesson lasted 15–20 min.

Control Activities
Children in the control condition participated in a total of three
activities with the robot, each administered individually in a quiet
room in the children’s schools. In each session, the robot greeted
the children, did a dance together with the child, and said
goodbye. Each session lasted around five to 10 min.

First and Second Post-test
Children were administered the various tasks in the following
order: the English-to-Dutch translation task, the Dutch-to-
English translation task, and the comprehension task. During
the first post-test the anthropomorphism questionnaire was also
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administered. Each session lasted around 30 min. Children got a
sticker in reward for each task completed.

Analyses
We ran a MANOVA to compare the four groups of children on
L1 vocabulary knowledge, phonological memory, selective
attention, and pre-test scores. Children’s scores on the
comprehension task were compared against chance level (33%)
using one-sample t-tests. To investigate differences in learning
outcomes between the four conditions, we ran mixed-effect
logistic regression models in the statistical package R (R Core
Team, 2017) using the lme4 package (Bates et al., 2015).
Dependent variables were children’s binary (correct/incorrect)
scores on the translation tasks and the comprehension task. The
analyses were run separately for the translation tasks and the
comprehension task, as they were assumed to measure different
types of vocabulary knowledge. For both types of tasks, both
assessments (the first and second post-test) were included.

Linear mixed-effects models included both fixed and
random factors. The fixed-effect factors that were included
in the models for the comprehension and translation tasks
were condition (control, tablet-only, no-iconic-gestures, and
iconic-gestures) and time (first and second post-test), with an
interaction between them. For the translation task, target
language (from English as source to Dutch as target, and
vice versa) was included as an additional fixed-effect factor.
The models were run separately for each of the three
moderator variables (L1 vocabulary knowledge,
phonological memory, and selective attention), as models
with more than one moderator variable did not converge.
The moderator variables were included as a fixed-effect
factor in interaction with condition.

We included random factors and slopes by estimating a series
of models with various combinations of random factors and
slopes. We compared models by performing likelihood ratio tests
that compared the goodness of fit using the ANOVA function in
the base package (R Core Team, 2017). First, models were selected
by checking whether the p-value from the likelihood ratio test was
significant. Then, AIC and BIC values were compared, and the
model with the smallest values were chosen. For the translation
tasks, “participants”, “target words”, and “test item number” were
included as random factors, and random slopes for target words
(condition*target word). For the comprehension task,
“participants”, “target words”, and “test item number” were
included as random factors, and no random slopes were
included as models including random slopes did not converge.
We kept our models maximal, that is, we chose the models with
the maximal random effects structure that converged (Barr et al.,
2013).

We applied orthogonal sum-to-zero contrast coding to our
categorical effects (i.e., condition, time, language; Schad et al.,
2020), and all continuous variables (i.e., vocabulary
knowledge, phonological memory, selective attention) were
centered around zero (Baguley, 2012, pp. 590–621). For time,
the first post-test (coded as −0.5) was contrasted with the
second post-test (coded as 0.5). For condition, there were three
contrasts: Contrast one contrasted the three experimental

conditions (each coded as 0.25) with the control condition
(coded as −0.75); Contrast two contrasted the two robot-
assisted conditions (each coded as −0.33) with the tablet-
only condition (coded as 0.66); and Contrast three
contrasted the iconic-gestures condition (coded as −0.5)
with the no-iconic-gestures condition (coded as 0.5). The
number of iterations was increased to 100,000 using the
bobyqa optimizer to solve issues of non-convergence
(Powell, 2009).

The full results of each model can be found in the
Supplementary Tables S2–7)5. The “ß” is an indicator of the
effect size. To reduce the risk of Type-1 error when conducting
multiple comparisons, we applied the Benjamini-Hochberg
procedure (Benjamini and Hochberg, 1995) with a false-
discovery rate of 5%. The outcomes of this procedure can be
found in the Supplementary Tables S8–13), and the calculations
can be found online with the dataset6.

RESULTS

Descriptive Analyses
Table 3 displays the descriptive statistics for all the variables
included in the analyses for the children in each condition
separately. A MANOVA showed no statistically significant
differences in L1 vocabulary, phonological memory, selective
attention, and English vocabulary pre-test scores between the
conditions, F (12, 397) � 1.75, p � 0.054, ηp

2 � 0.05. For all
conditions, children scored above chance level on the
comprehension task on both the first and second post-test, all
ps < 0.001, range ds � 1.49–2.83.

Effects of (Language) Learning Skills
First, we discuss the moderator effects of L1 vocabulary,
phonological memory, and selective attention on the
comparison of the experimental conditions versus the control
condition. Then, we will discuss the moderator effects on the
comparisons of the robot-assisted versus tablet-only conditions,
and on the iconic-gestures versus no-iconic-gestures conditions.
All outcomes can be found in the Appendix and the interactions
are displayed in Figure 3.

Experimental Conditions vs. Control Condition
First, we investigated whether children’s (language) learning
skills moderated the effect of the vocabulary intervention
itself. We expected an effect of children’s (language) learning
skills in the experimental conditions but not in the control
condition, as only children in the experimental conditions
received an L2 vocabulary training in which they could
benefit from these skills. The models of the translation
tasks showed statistically significant interactions between
the moderator variables and condition. There were positive

5We also ran our model without moderator variables, and confirmed the results
from Vogt et al. (2019; see Supplementary Table S1 for the results).
6https://doi.org/10.17605/OSF.IO/GSNEK.
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main effects for L1 vocabulary, ß � 72.47, SE � 8.99, z � 8.06,
p < 0.001, phonological memory, ß � 22.13, SE � 8.07, z � 2.74,
p � 0.006, and selective attention, ß � 36.46, SE � 6.47, z � 5.63,
p < 0.001, but only for children in the experimental conditions,
and not for those in the control condition, as expected. Note
that the effects were only found for the translation tasks and
not for the comprehension task.

Robot-Assisted Conditions vs. Tablet-Only Condition
Next, we investigated whether children’s (language) learning
skills moderated the effect of the robot’s presence. We
expected that the robot’s presence would particularly benefit
children with poorer skills. Differences in translation task
scores were found between the robot-assisted and tablet-only
conditions for two of the three moderators, that is, L1 vocabulary,
ß � −24.52, SE � 10.94, z � −2.24, p � 0.025, and phonological
memory, ß � 26.72, SE � 10.53, z � 2.54, p � 0.011. Children with
smaller L1 vocabularies knew more words in the tablet-only
condition than in the robot-assisted conditions, while children
with larger L1 vocabularies knew slightly more words in the
robot-assisted conditions than in the tablet-only condition. The
effect was opposite for phonological memory: Children with
better phonological memory knew more words in the tablet-
only condition than in the robot-assisted conditions, while
children with poorer phonological memory knew more words
in the robot-assisted conditions than in the tablet-only condition.
This effect was in line with our expectation. No effects were found
for the comprehension task or for selective attention, contrary to
our expectation.

Iconic-Gestures Condition vs. No-Iconic-Gestures
Condition
Last, we investigated whether children’s (language) learning skills
moderated the effect of the robot’s gestures. We expected that the
iconic gestures would benefit children with poorer skills most.
Children with larger L1 vocabularies knew more target words in
the no-iconic gestures condition, while children with smaller L1
vocabularies knew more words in the iconic-gestures condition.
This was indicated by the models run on the translation tasks, ß �
31.99, SE � 9.16, z � 3.49, p < 0.001, and comprehension task, ß �
19.56, SE � 6.43, z � 3.05, p � 0.002. Similarly, children with better

phonological memory knew more target words in the no-iconic-
gestures condition, while children with poorer phonological
memory knew more words in the iconic-gestures condition,
but only for the translation tasks, ß � 40.52, SE � 14.99, z �
2.70, p � 0.007. Those effects were in line with our expectations.
Selective attention showed an opposite pattern: Children with
better selective attention showed higher performance in the
condition in which the robot used iconic gestures than in the
condition in which it did not, again only on the translation tasks,
ß � −41.25, SE � 8.75, z � −4.71, p < 0.001.

DISCUSSION

The aim of our experiment was to investigate whether individual
differences in L1 word knowledge, phonological memory, and
selective attention moderated whether children benefit from the
robot’s presence or its iconic gestures during robot-assisted L2
learning. Children in the present study were taught L2 English
vocabulary through seven lessons in the form of tablet games,
which they played either: 1) by themselves (the tablet-only
condition); 2) together with a robot that used deictic gestures
(the no-iconic-gestures condition); or 3) together with a robot
that used both deictic and iconic gestures (the iconic-gestures
condition). Furthermore, the children in the experimental
conditions were compared to 4) a control group of children
who did not play language games but played dancing games with
the robot instead. Several statistically significant moderator
effects were found, both expected and unexpected. We first
discuss the general moderator effects of the (language)
learning skills in the experimental conditions, then the
moderator effects in the two robot-assisted conditions vs. the
tablet-only condition, and lastly, the moderator effects in the
iconic-gestures vs. no-iconic-gestures conditions. For the
discussion of the general research question on the added value
of the robot and its iconic gestures, see Vogt et al. (2019).

Regarding the overall effectiveness of the experimental
conditions involving word-learning lessons compared to the
control condition without word learning, we found the
expected moderator effects: Children scoring high on L1
language knowledge, phonological memory, or selective

TABLE 3 | Means (standard deviation) on all the tasks in the pre-test and post-tests for the four conditions.

Iconic No iconic Tablet-only Control

Pre-test L1 vocabulary 108.13 (12.54) 108.67 (11.83) 105.77 (11.92) 108.88 (13.96)
Phonological memory 10.08 (2.97) 11.33 (2.86) 11.08 (2.13) 10.16 (3.22)
Selective attention 6.48 (0.65) 6.82 (0.58) 6.67 (0.64) 6.61 (0.82)
Translation En-Du 3.41 (3.05) 3.59 (3.14) 3.98 (2.74) 2.81 (2.83)

First post-test Translation En-Du 7.54 (5.14) 7.83 (4.94) 7.91 (4.63) 3.81 (3.21)
Translation Du-En 6.09 (4.15) 6.54 (4.28) 6.64 (4.01) 3.16 (2.27)
Comprehension 29.39 (5.78) 29.50 (6.13) 29.53 (6.40) 25.03 (6.66)

Second post-test Translation En-Du 8.20 (4.98) 8.02 (4.92) 8.57 (4.61) 4.34 (3.22)
Translation Du-En 6.57 (4.60) 6.44 (4.59) 6.75 (4.22) 3.47 (2.13)
Comprehension 30.54 (6.26) 29.69 (6.61) 30.30 (6.55) 26.00 (6.04)

Note. The L1-vocabulary test is age-normed, with a mean of 100 and a standard deviation of 15. The maximum scores were 16 for the phonological-memory test, eight for the selective-
attention test, 34 for each translation task, and 54 for the comprehension task (chance level for the latter task was 18).
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attention, as assessed prior to the experiment, knew more words
after the vocabulary lessons than children scoring low on these
skills, in line with a vast body of literature that showed similar
advantages in (second) language learning in general (Gathercole
and Baddeley, 1990; Schmidt, 1990; Service, 1992; Robinson,
1995; Baddeley et al., 1998; Masoura and Gathercole, 2005;
Gathercole, 2006; Wolter, 2006; Verhagen et al., 2019). No
moderator effects were found in the control condition, which
was expected because the control condition did not involve a
word-learning intervention. The control condition, however, did
involve an immediate and delayed post-test, similar to the

experimental conditions. The lack of moderator effects in the
control condition, therefore, supports the interpretation of the
moderator effects in the experimental conditions as pertaining to
the learning process, not to the test taking.

Regarding possible moderator effects between the three
experimental conditions (i.e., the two robot-assisted conditions
vs. the tablet-only condition), we expected the robot conditions to
offer children a more naturalistic and supportive language-
learning setting than the tablet-only condition (by grounding
the interaction in the physical environment and allowing the
learner to interact with another being; Barsalou, 2008; Ellis, 1999;

FIGURE 3 | Relations between children’s English word-knowledge scores (y-axis) and (language) learning scores (x-axis), separated by condition and word-
knowledge task.
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Gallaway and Richard, 1994; Hockema and Smith, 2009; Iverson,
2010; Wellsby and Pexman, 2014). We expected that this would
particularly benefit children poorer at language learning
(i.e., children with smaller L1 vocabulary knowledge, smaller
phonological memory capacity, and a lower level of selective
attention). The robot’s presence particularly benefited children
with larger L1 vocabularies or poorer phonological memory,
while children with smaller L1 vocabularies or better
phonological memory performed better in the tablet-only
condition. These effects were only found for the translation
tasks, and no effect was found for the comprehension tasks or
for selective attention.

A possible explanation of why few effects were found is the
prominent role of the tablet in our setup. It should be noted that
the tablet was an essential device in the robot conditions, as
technical limitations, in particular the lack of accurate speech
perception (Kennedy et al., 2017) and object recognition for the
type of robot we used (Wallbridge et al., 2017) required this extra
device to enable interaction and communication. This may have
limited the added value of the robot’s social presence. We were
aware that using a tablet was a risk that could limit the benefits of
the robot. We could have chosen to teleoperate our robot using
WoZ, allowing us to make a highly responsive, adaptive robot.
However, in view of the educational relevance of the current
study, we wanted to design a robot that could function nearly
autonomously, such that it was more representative of the type of
robots that can currently be implemented in schools. Many
technological developments are still needed before a robot’s
full potential as an autonomous tutor in educational situations
can be realized: Robots would need to be able to monitor the
learner’s speech, knowledge, mental state, emotions, and
movements, and adapt their own behavior accordingly. In the
meantime, a balance needs to be found between making robots as
effective as possible, without losing their autonomy. Perhaps we
need to change the design process. Rather than first focusing on
what tasks would be ideal from an instruction perspective, we
should consider earlier in the process what qualities the robot
does and does not have, and design tasks that match these
qualities optimally.

With respect to the two robot-assisted conditions (iconic
gestures vs. no iconic gestures), we expected the iconic gestures
to further add to the naturalistic language learning
environment and its visual support, and therefore, to
particularly benefit children poorer at language learning.
Children with smaller L1 vocabularies or poorer
phonological memory capacity as assessed prior to the
experiment knew more English words in the iconic-gestures
condition compared to the no-iconic-gestures condition, while
children with larger L1 vocabularies or larger phonological
memory capacity knew more English words in the no-iconic-
gestures condition compared to the iconic-gestures condition.
Note that these moderator effects were observed in addition to
positive main effects of both conditions compared to the
control condition, and suggest that iconic gesturing in
RALL may support children with weaker (language)
learning abilities. Thus, the iconic gestures particularly
benefited children with poorer (language) learning abilities

as expected. However, they disadvantaged children with
stronger (language) learning abilities. Perhaps, the iconic
gestures distracted these children, who did not need these
gestures to learn from the learning task (similar to Kennedy
et al., 2015). Anecdotal evidence supports this suggestion, as
experimenters occasionally observed that children looked
away when the robot was making its gestures. We are
currently systematically investigating this by looking into
children’s engagement during the lessons (regarding both
the learning task itself and the robot’s involvement) and by
conducting additional analyses to identify subgroups of
children who possibly benefited from the iconic gestures
(e.g., depending on their age).

Selective attention showed an opposite pattern. Children
high in selective attention knew more English words than
children low in selective attention in the iconic-gestures
condition compared to the no-iconic-gestures condition.
Note again that the moderator effect was found in addition
to positive main effects of both experimental conditions relative
to the control condition. A possible explanation points again to
the distracting effect the iconic gestures may have had on
children’s word learning in this study (cf. Schmidt, 1990;
Robinson, 1995). Children high in selective attention may
have been better able to profit from the additional cues,
which assumingly required attentional effort to perceive and
interpret, and/or may have been less distracted by the extra
information provided. Children low in selective attention may
have been less capable in figuring out what the meaning was of
the gestures and/or were more easily distracted by the gestures
and the extra time it took the robot to perform these gestures. If
true, this suggests that implementing iconic gestures benefits
children with good attention skills, but disadvantages children
with poorer attention skills. The results of benefiting some
children while disadvantaging others highlights the
importance of making adaptive robot-assisted lessons, which
is in line with the conclusions of other recent studies that found
limited benefits of a robot’s gestures for language learning (de
Wit et al., 2020; Demir-Lira et al., 2020).

The present study reveals moderator effects of children’s
(language) learning skills on the effectiveness of RALL. The
findings, however, show a mixed pattern for the three
(language) learning skills examined in this study. An open
question is how children would respond to a robot (with or
without iconic gestures) compared to a tablet or other non-robot
condition if they have a mix of skills that are associated with
opposite effects of robot-assisted instruction. For example, if a
child both has a small L1 vocabulary and poor selective attention,
it is unclear how they would respond to instruction by a robot
with iconic gestures. On the one hand, the child could benefit
from the iconic gestures. On the other hand, they would struggle
to benefit from this additional, potentially distracting
information. For future RALL research it is recommendable to
identify profiles of skills in children and examine which profiles
match best particular approaches to RALL. The overall results of
the present study and Vogt et al. (2019) reveal that using robot
tutoring in L2 learning programs for young children still has a
long way to go. Designing the lesson series around the NAO
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robot, given the current state of technology, put severe constraints on
the design of the lessons, required the use of a tablet for
communication, and necessitated strong standardization.
Traditional vocabulary training interventions may include more
diverse activities that benefit learning and motivation, such as
moving around and joint playing with objects. The robot was not
yet capable of such activities in our study, and therefore, the only
difference between the three experimental conditions was that
children did not receive non-verbal support in the tablet-only
condition through the robot’s social presence and its (iconic and)
deictic gestures. Overall, children did not benefit from the robot’s
presence, as was first reported in Vogt et al. (2019). The present
study, however, reveals that children’s (language) learning abilities
may moderate the effects of the presence of a robot and its iconic
gestures. Future studies on RALL will likely benefit from
technological advancements that allow RALL to incorporate more
elements of effective traditional vocabulary training interventions,
and to adapt optimally to individual learners’ skill profiles.

Our study is one of the first to investigate whether individual
differences in children’s (language) learning abilities moderate the
added value of a robot and its iconic gestures for L2 vocabulary
learning in a multiple sessions and well-powered experiment. Taken
together, the results suggest that the study of individual differences
and moderators is highly relevant, as they showed that children’s
(language) learning skillsmoderated the effect of the robot’s presence
and iconic gestures: Depending on their (language) learning skills,
some children benefited from the robot’s presence and iconic
gestures, while some children appeared to be distracted by them.
It is likely that the effects of the robot are different for different
children and adaptation to children’s learning profiles is warranted.
Indeed, one of the real advantages of robots is that they can play
different roles for different types of learners if programmed to do so.
The present results should be replicated before any firm conclusions
can be drawn. The study of individual differences is standard practice
in educational sciences and developmental psychology, and could
add to studies on the design of adaptive robots for educational
practice.
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Robots for Foreign Language
Learning: Speaking Style Influences
Student Performance
Kerstin Fischer1*, Oliver Niebuhr2 and Maria Alm1

1Department of Design and Communication, University of Southern Denmark, Sonderborg, Denmark, 2Centre for Industrial
Electronics, University of Southern Denmark, Sonderborg, Denmark

Much previous research suggests that teachers’ individual characteristics may affect
students’ performance; however, which factors are particularly helpful is as yet unclear and
methodologically very difficult to assess. In this paper, we study the effects of robots’
speaking styles when instructing students on a task. 40 participants saw a brief video in
which a robot presented its instructions either in a charismatic or a not so charismatic
speaking style. Participants’ task was then to produce foreign language sentences on the
basis of visualizations of the prosodic properties of these sentences. A subsequent
analysis of participants’ productions shows that language learners’ performance was
significantly better when the robot had delivered its instructions in a charismatic voice. The
results suggest not only that a charismatic speaking style may be crucial for teachers in
general and hence one of the factors causing the interpersonal variation between teachers,
but also that students can benefit from instructions by robots delivered in a charismatic
speaking style.

Keywords: charisma, social robots, language learning, intonation, speaking style

INTRODUCTION

With robots becoming more prevalent in our daily lives and possibly our classrooms (e.g., Leyzberg
et al., 2012), the question to what extent robots can facilitate learning and teaching has gained some
attention (cf. Belpaeme et al., 2018 for an overview). However, so far, the use of robots in pedagogical
settings has not only yielded positive results; especially in the area of language learning, i.e., in
learning to interact in a foreign language, previous studies have been rather discouraging. For
instance, Rosenthal-von der Pütten et al. (2016) find no positive effect of using robots for language
learning, and (Jiyoung and Jeonghye, 2015) find that because of the reliance on synthesized speech,
robots are not useful to teach students native-like speaking competence.

That previous work has not only found robots to be successful teachers or tutors may thus be due
to the way robots speak; speech is not only the prevalent medium of communication in the classroom
and the target of the language learning process, but it also conveys a lot of information about the
speaker, like, for instance, the speaker’s gender, geographic origin, social class and speaker
personality (Sutton et al., 2019). Of these, especially teacher personality has been shown to
influence students’ success (e.g., Lee et al., 2013). Research on teaching has long noted that
individual teacher characteristics may play a role in pedagogy, and scholars have tried to
identify what aspects of teacher personalities may have an effect on the learning process.
Suspected factors include teacher’s empathy, organization, adaptability, fostering of community,
autonomy and enthusiasm (Klassen et al., 2018), and occasionally also charisma is noted as a

Edited by:
Mohamed Chetouani,

Université Pierre et Marie Curie,
France

Reviewed by:
Khiet Phuong Truong,

University of Twente, Netherlands
Yomna Abdelrahman,

Munich University of the Federal
Armed Forces, Germany

*Correspondence:
Kerstin Fischer
kerstin@sdu.dk

Specialty section:
This article was submitted to

Human-Robot Interaction,
a section of the journal

Frontiers in Robotics and AI

Received: 14 March 2021
Accepted: 10 August 2021

Published: 03 September 2021

Citation:
Fischer K, Niebuhr O and AlmM (2021)

Robots for Foreign Language
Learning: Speaking Style Influences

Student Performance.
Front. Robot. AI 8:680509.

doi: 10.3389/frobt.2021.680509

Frontiers in Robotics and AI | www.frontiersin.org September 2021 | Volume 8 | Article 6805091

ORIGINAL RESEARCH
published: 03 September 2021
doi: 10.3389/frobt.2021.680509

92

http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2021.680509&domain=pdf&date_stamp=2021-09-03
https://www.frontiersin.org/articles/10.3389/frobt.2021.680509/full
https://www.frontiersin.org/articles/10.3389/frobt.2021.680509/full
https://www.frontiersin.org/articles/10.3389/frobt.2021.680509/full
http://creativecommons.org/licenses/by/4.0/
mailto:kerstin@sdu.dk
https://doi.org/10.3389/frobt.2021.680509
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2021.680509


potential factor (Towler et al., 2014; Lin and Huang 2017). That
the way of speaking can have an effect has been suspected
especially by experts on charismatic speech (e.g., Rosenberg
and Hirschberg 2009).

However, there is no systematic investigation of the impact
of the teacher’s speaking styles on students’ performance.
There are at least three reasons for this: The first,
methodological, reason is that very few speakers can
manipulate their speaking styles to produce a charismatic
speaking style in one situation and not in another, thus
making the controlled investigation of speaking style
difficult. The second reason is that for a long time, it has
not been entirely clear what exactly makes a speaking style
charismatic. The third reason is that a potential relationship
between a charismatic speaking style and student performance
does not matter if a charismatic speaking style cannot be
taught to teachers, which is assumed by many (but see
Abelin 2018).

In the current study, we circumvent the first problem by
using robots as teachers. Robots, in contrast to people, can be
manipulated at will, and they can produce identical output in
comparable ways as often as necessary to all participants
alike. Robots are therefore excellent tools for the study of
effects of certain linguistic behaviors, such as speaking styles
(cf. also Andrist et al., 2013, 2015; Fischer and Niebuhr
2020). In particular, robots’ speech can be presynthesized
and then manipulated by a prosody expert in order to match
a particular speaking style. As for the second problem area,
recent research has provided evidence for a short list of
factors that contribute to charismatic speech (Niebuhr et al.,
2016; Berger et al., 2017). In our own previous work, we
demonstrated successfully that the speech features identified
in the model make robot speech more persuasive (Fischer
et al., 2020). Regarding the third problem area, robots can
again provide the solution: Irrespective of whether a
charismatic speaking style can or cannot be taught, if we
have robots deliver the instructions, we only need to know
how to generate charismatic robot utterances. By using
robots to investigate the effects of teachers’ speaking
styles on student performance we furthermore shed light
on how robots themselves can be employed to facilitate
learning.

Consequently, in the current study, we focus on the
characteristics of the instructions delivered by robots in a
foreign language teaching context. In particular, we show that
a more charismatic presentation of the task increases the
correctness of students’ performance significantly. In our
study, the students’ task is to interpret visualizations of the
prosodic realization of questions in English, which generally
constitutes a problem for them. A robot introduces the
participants to the task, either using a charismatic speaking
style or in a speaking style that is less charismatic. The results
show that students who heard the charismatic robot produced
significantly better results than students who heard the
introduction by the less charismatic robot. Thus, the degree to
which a teacher speaks charismatically can influence students’
performance.

PREVIOUS WORK

Previous work concerns the role of teachers’ charisma in language
learning situations and especially on the effects of speaking styles
on learning, as well as the roles of robots in language teaching.

Teacher Characteristics and Charismatic
Speech
A review of previous work by Qardaku (2019) aims to narrow
down what it means for teachers to be charismatic. Her analysis
suggests that charismatic, and hence inspirational, teachers have
to be experts, transmit enthusiasm for their topic and cultivate
positive relationships with their students, reflect on their
practices, and make learning meaningful to the students. None
of these characteristics relates to the teacher’s speaking style. Also
other work on charisma in teaching leaves out the verbal
dimension; for example, Nissim and Simon (2019) try to
identify the characteristics that teachers and teacher-leaders
have in common and find that charisma is expected of a
teacher-leader, and certain personality characteristics are
expected of good leaders and teacher-leaders to the same
extent, but that the good teacher-leader should also be able to
empower students - somewhat in line with Qardaku’s (2019)
suggestions. Similarly, Lin and Huang (2016) take it to be
uncontroversial that a charismatic teacher is characterized by
“knowledge, character, humour and teaching method,” again
without any reference to speaking style. Concerning these four
characteristics, they find that they are positively related to interest
in a subject. In a follow-up study, Lin and Huang (2017) find that
the same features also influence students’ attitude to calculus
learning.

Towler et al. (2014) study the effects of what they consider
charismatic content on the evaluation of the trainer and on recall
and transfer immediately after the presentation and a week later.
Their manipulations concern the articulation of a higher vision,
positive emotional expression, emphasis of the importance of the
contents, storytelling, use of metaphors, raising of expectations
and encouraging of innovative thinking and the provision of
encouragement and support. Students listened to a 15 min course
on statistics software either with or without the charismatic
features. The results show better evaluations of the charismatic
teacher as well as better retention and transfer a week later. It is
however unclear to what extent the trainer also used “appropriate
vocal intonation,” which the authors also consider to constitute a
trait of charismatic trainers.

We can conclude that as yet, there is no systematic
investigation of the relationship between speaking style and
student performance, and thus we don’t know the impact of a
charismatic speaking style on teaching.

Robots as Tutors in Language Learning
Robots have been found to be generally engaging for students,
and to have a positive influence even on their performance (e.g.,
Baxter et al., 2017; De Haas et al., 2020). However, robots can play
various different roles in language learning situations. Belpaeme
et al. (2018) provide an overview of current work on robots as
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language tutors (compared to as peers, as in Baxter et al.’s study)
and conclude that the effects reported so far are rather small.
Similarly, in a study in which the robot served as a teacher,
Rosenthal-von der Pütten et al. (2016) find no advantage of an
embodied robot over a computer simulation and in general
neither application led students to improve their language
skills. Also a large-scale study by Vogt et al. (2019) with 194
children yielded no advantages of a robot over a tablet, and the
iconic gestures the robot was using (for instance, for “add”,
“behind” or “running”) had no impact on children’s word
learning performance. Here the robot taught 5–6 year old
children English words for already known concepts. In the
control condition, children sang songs together with the
experimenters and were not exposed to the English words at
all. Another study by De Haas et al. (2020) finds that the
variability of the feedback the robot provided in an animal
name learning game had an effect on children’s engagement in
the game, but the feedback itself did not affect their learning gain,
which was small but present in all conditions.

Rosenthal-von der Pütten et al. (2016) also investigated
whether synthesized speech constitutes a problem for the
language learners. They first synthesized the robot
utterances, then had a human speaker speak them with
similar speech characteristics in order to make the stimuli as
comparable as possible. They find no differences in
participants’ self-reported experiences, on alignment with
syntactic and lexical features of the robot’s utterances and
students’ learning gains. Thus, the synthesized utterances
performed no worse than the human utterances. In contrast,
In and Han (2015) found the range in speech melody in
synthesized speech to be much lower than native speaker
utterances, which they found to have negative effects on
language learners who even adjusted their own utterances in
the wrong way. The authors conclude that because of problems
in speech melody, synthesized utterances are not useful for
foreign language learning. By asking the human speaker to
imitate the speech melody to create the stimuli, the authors in
Rosenthal-von der Pütten et al.’s study may thus have
eliminated the difference between synthesized and natural
stimuli that In and Han (2015) identified to be most
important. Thus, the fact that Rosenthal-von der Pütten
et al. (2016) did not find differences between synthesized
and natural speech may be related to the fact that the
natural speech did not exhibit natural speech melodies.

Kory-Westlund and Breazeal (2019) investigate the role of
the language level a robotic peer uses on four-six year old
children’s vocabulary learning. They had a robot show a
depicted scene on a tablet and tell a short story and then
ask the child to tell a story about that scene, after which the
robot told a story about a new scene and asked the child again to
tell their own story. In the second round, the robot’s language
level either did, or did not, match the child’s language
competence level. The two language versions differed in
syntax (simple main clauses compared to complex sentences
comprising main and subclauses) and more or less complex
vocabulary (for instance, basic level versus more specific
general language terms). Children came in eight times to

play with the robot. Children’s vocabulary scores increased
more in the condition in which the robot’s language matched
the child’s such that, on average, children in the matched
condition picked up almost seven new words, compared to
2.5 in the unmatched condition. These results suggest that the
robot’s language choices may have an effect on the amount of
learning.

To sum up, while the use of robots for language learning is
promising and robots have been found to increase children’s
engagement and interest (at least for a certain amount of time, cf.,
for instance, Vogt et al., 2019), especially robots as language
tutors have not been found to be very effective, and even to be
counter-effective in the teaching of native-like speech melodies.
However, with robots in other roles than tutors (e.g. in Baxter
et al.’s and Kory-Westlund and Breazeal’s studies), it seems that
speaking style might have an impact. In the current study, we
therefore address whether the speaking style of robotic teachers
can impact students’ performance.

METHODS

In the following, we present a study in which language learners
are instructed by a robot who introduces them to the task and the
experiment using either a very charismatic or a not so charismatic
speaking style. The charismatic speaking style is based on the
speech characteristics of Steve Jobs, whereas the other one uses
the speech characteristics associated with the speech of Mark
Zuckerberg. The two styles have been shown to create different
pragmatic effects (e.g., Fischer et al., 2020). The learners are then
asked to produce correct interpretations of three questions in
English whose intonation contours and stress patterns are noted
down in a prosodic notation system (cf. Fischer et al. submitted).
Thus, the independent variable in this experiment is the robot’s
speaking style, and the dependent variables are the errors the
participants make when carrying out the task instructed. The
focus of the experiment is therefore on the effect of speaking style
on students’ performance.

Stimuli
The stimuli were created by synthesizing the robot’s
instructions using the male voice of a free text-to-speech
system, and then manipulating them to match the speech
characteristics of Steve Jobs and Mark Zuckerberg. The
melodic features investigated are those that have previously
been found to be related to persuasiveness and positive
character traits like enthusiasm, passion, charm, and
convincingness in analyses of advertisements and politicians’
speeches (Gelinas-Chebat et al., 1996; Rosenberg & Hirschberg
2005, 2009; Biadsy et al., 2007; Nienhuis 2009; Pejčić 2014;
Bosker 2021). The acoustic-melodic analysis of various public
speakers in Niebuhr et al. (2016) revealed that Steve Jobs’
speech features mark one end of the persuasion dimensions
whereas Mark Zuckerberg’s speech characteristics mark the
opposing end of the spectrum among those public speakers
investigated. This juxtaposition allowed Niebuhr et al. (2016) to
identify potentially influential charismatic speech features, and
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several studies (Berger et al., 2017) confirm that those speech
characteristics are indeed related to charisma, even when used
by robots (Fischer et al., 2020).

For the manipulations, we used the PSOLA pitch and duration
manipulation functions available in praat (Boersma 2001).
Changes in acoustic energy were made using Audacity (www.
audacityteam.org/). The manipulations resulted in two different
versions of the same instructions, one time with the speech
characteristics identified for Steve Jobs and another one with
those identified for Mark Zuckerberg.

Table 1 provides an overview of the acoustic-melodic
parameters manipulated. In general, these features concern the
pitch level (measured in semitones relative to a male baseline of
100 Hz, st), i.e., how high or low the fundemental frequency is; the
pitch range (measured in semitones, st), i.e., how far up and how
far low a given voice moves; the acoustic-energy level (RMS,
measured in decibel, dB, and normalized to the dB level of a
frequent reference word (“so”) in the two speaker’s speeches),
i.e., how loud the voice is; the speaking rate (measured in syllables
per second, syl/s, excluding pauses), i.e., how fast or slow the
speech is; the emphatic accent frequency (measured in counts per
minute, cpm), i.e., how often a speaker adds expressive
accentuation to stressed words; the hesitation frequency
(measured in counts per minute, cpm), i.e., how often a
speaker uses uh and um; the duration of silent pauses
(measured in deciseconds, ds), i.e., how long the silence lasts;
and the frequency of high-pitched accents (measured in counts
per minute, cpm). Note that all values in Table 1 refer to mean
values and, thus, to the two speakers’ speeches as a whole.
Accordingly, we also took them as target values for the robot’s
utterances as a whole.

When applying these measurements to the robot’s utterances,
we focused on those acoustic features of the speech signal that
were found relevant in the comparison between the different
speaking styles of Steve Jobs and Mark Zuckerberg, but we also
took into account that the acoustic manipulation would still
produce naturally sounding and comparable stimuli. For
example, while voice quality is potentially relevant in the

perception of the speaker’s personality (cf., for instance,
Signorello and Demolin 2013), it is difficult to manipulate
voice quality, given state-of-the-art resynthesis tools. We
therefore restricted the manipulation to the features listed in
Table 1, which have also been shown to be effective in Fischer
et al. (2020), in which the two speaking styles led to different
behavioral effects.

During the creation of the robot speech stimuli, the
manipulation procedure was conducted iteratively by adjusting
each parameter successively. This is necessary because a
resynthesis is required after each manipulation before the
effect of the manipulation can be evaluated. Thus, the
manipulations were applied individually and in as many
iterations as necessary to achieve the values described in Table 1.

We deemed a manipulation check of our stimuli unnecessary
because of extensive previous work that has shown that the two
manipulations have significant effects on the speaker’s perceived
charisma. Specifically, Berger et al. (2017) and Niebuhr (2021b)
show in detail that the two speaking styles employed, inspired by
Steve Jobs and Mark Zuckerberg respectively, have significantly
different effects on the extent to which they are perceived as
charismatic. Michalsky and Niebuhr (2019) and Fischer et al.
(2020a) furthermore show that the same effect occurs with
artificial speakers, like in-car navigation systems and a range
of different robots, including Keepons; for instance, in the study
involving the Keepon robots, Fischer et al. (2020a) find that the
robots that use the speaking style inspired by Steve Jobs to be
significantly more passionate, enthusiastic and charming, as well
as significantly less boring. We can thus safely assume that the
stimuli used in this experiment will yield similar interpretations
of the robots as charismatic or not.

The audio files with the instructions were then combined with
a video in which a Keepon robot moved slightly as if in
coordination with speaking. The text the robot produced was:

Hello, we are the Keepons! Thanks for taking the time for
this little exercise! We want to teach you how to ask
questions in English with the right speech melody. First,
my kind human assistant will ask you to fill out a consent
form. After that, my human assistant will show you three
questions with representations of the speech melody and
ask you to record these questions. That’s all! Thank you
so much already!

The actual task participants had to fulfill was to produce three
questions in English with the appropriate speech melodies. Even

TABLE 1 | The acoustic features manipulated.

Acoustic speech feature Steve Jobs Mark Zuckerberg

Mean pitch level relative to 100 Hz (st) 8.8 5.4
Mean pitch range (st) 22.9 12.1
Mean acoustic-energy level normalized relative to all instances of “so” (dB) −3.2 −5
Mean speaking rate (syl/s) 4.4 5.9
Emphatic accent frequency (cpm) 8.4 1.6
Mean silent pause duration (ms) 200 500
Frequency of high-pitched accents (cpm) 17.2 13.8

TABLE 2 | Stress, timing and scaling errors made by students in the Steve Jobs
(SJ) and the Mark Zuckerberg (MZ) conditions.

Condition\Error Stress Timing Scaling Total

SJ 13 (21.7%) 16 (26.7%) 16 (26.7%) 45 (25%)
MZ 15 (25%) 30 (50%) 25 (41.7%) 70 (38.9%)
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though English and Danish are both Germanic languages, the
intonation patterns of the two languages are quite different. In
particular, in our previous studies (Niebuhr et al., 2017; Fischer
et al. submitted), it turned out that native speakers of Danish, who
are the participants in our study, have great problems with the
production of the rising final tonal gesture in English questions
because there is no such rise in questions in Danish; instead, the
signaling of speech acts (statements vs. questions) is indicated by
the declination of an utterance as a whole (Grønnum 2007: 98).
Thus, producing final rises in English questions constitutes a
challenge for Danish learners of English as a foreign language.
Consequently, we expected our participants to have problems
with the task (cf. also Niebuhr et al., 2017).

Participants’ task consisted in reading three questions out loud
based on a visualization of the speech melody and stress
placement of three native-speaker utterances annotated
according to ToBI by Hedberg et al. (2017): (10). The
examples are thus based on authentic American English
questions, more precisely on examples of questions with a
low-rise nuclear contour, which Hedberg et al. (2017) find to
be the unmarked nuclear contour for yes-no questions in their
corpus study of American English. We re-interpreted the ToBI
notation into drawn intonation contours complemented with
stress marking for the prominent syllables (cf. Ladd, 2014). We
only made one small adjustment to the third example (Do you
still work for a veterinarian) by removing the third, contrastive
accent in the sentence because we deemed such a contrastive
accent to be confusing without a supporting context. The
visualization technique of the intended prosodic realization of
these questions had been developed in several experiments and
had proven to yield the best results, compared to six other
common notation systems (Fischer et al. submitted). Figure 2
shows the visualizations presented to the students.

The task, to read English sentences based on a visualization of their
prosodic realization, is quite difficult for foreign language learners
because we do not normally produce intonation contours voluntarily,
and because the original English contours feel strange for the native
speaker of Danish, where rises in the final intonation contour do not
occur. Thus, the task is sufficiently challenging so that ceiling effects
are prevented and students are quite likely to fail to some extent. At the
same time, it is a realistic and informative task, because students learn
to produce English questions in the appropriate way (otherwise
risking negative inferences about their personalities, since the
transfer of intonation contours from the native to the target
language usually leads to unwanted conclusions about a speaker’s
character cf. Fischer and Niebuhr (2020) concerning the effects of
transferring Danish contours into a language in which a final rising

contour is expected]. And finally, even though the role of the robot is
not to explain how questions in English are to be produced, the task is
relatively typical of teaching situations in which teachers provide
students with access to resources, like pronunciation dictionaries, that
allow them to improve their productions, or ask them to fill out
exercising sheets.

Procedure
Forty participants (21 female, 19male), twenty in each condition, were
recruited by three student assistants by approaching them while they
were sitting in the common spaces at three campuses of a largeDanish
university. Participants were all students from a broad range of
disciplines and both undergraduates and graduates. Given the
prominent role of English in Danish society in general (for
instance, panel discussions at prime time may be held in English
on Danish TV if international guests are involved), the early
introduction of English in school (most often as the first foreign
language), and the ubiquity of English at the university in particular,
where many courses are taught in English, we can understand all
Danish students to be learners of English as a foreign language at an
advanced level. The participants were between 18 and 55 years old,
with an average age of 26 and a median age of 24.

Participants were given a tablet that played a Powerpoint
presentation, where on the first slide they saw a video in which a
Keepon robot, the middle robot in a group of three robots (see
Figure 1), welcomed participants to the experiment and briefly
explained the procedure. On the next slide, the students found a
link to a consent form, informing them about their right to withdraw
from the experiment at any time, and asking them for the permission
to record their data, to analyze the data and to publish their data, for
instance, at a conference, in separate questions. Then, participants
were presented with the visualizations of three English questions (see
Figure 2), which they were asked to read out loud with the intonation
contour and stress pattern visualized. Participants were allowed to
practice as often as they like and then providedwith an external digital
recording device to record their realizations of the three questions.

Data Analysis
In the data analysis, the participants’ productions were first annotated
using the Kiel IntonationModel (KIM, Kohler 1997; Niebuhr 2021a).
The KIM is a phonological intonation model, which analyses
utterance intonation in terms of rises, falls and combinations of
rises and falls, such as peaks and valleys, on an auditory basis; that
is, the analysis is carried out by a prosody expert, in our case, an expert
with more than 12 years of prosodic annotation experience. In
addition to describing the main intonational movements of the
speech melody, the annotation based on KIM also identifies stress

FIGURE 1 | The Keepon robots used and the text that the robot in the middle presented.
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placement. For instance, regarding our target questions displayed
in Figure 2, the learners’ task is to place the stress on those
syllables indicated by the dots in the visualization. The KIM
allows the analysis of the placement of the stress, as well as of the
right pitch movement. Accordingly, the annotation proceeds in
two steps: The first step is to identify pitch-accented words and to
distinguish between weak, normal and emphatic prominence
levels (cf. Niebuhr et al., 2015; Baumann et al., 2016). The
second step is to determine the main melodic movements
connected to the stressed words. Based on the annotations of
the participants’ realizations of the three questions, we analyzed
the number and kinds of errors they made. We distinguish
between: 1) pitch-timing errors, i.e., errors that occur if the
sentence-accent realized by the participant shows a wrong
timing (or f0-peak alignment) in relation to the lexically
stressed syllable (Niebuhr 2013); 2) pitch-scaling errors, which
describe instances in which the pitch movement is different, for
instance, if a participant produces a falling contour when a rising
contour is indicated (cf. Ladd, 2014); and 3) stress-level errors,
i.e., errors that occur if stress is placed on another syllable than

indicated. The analysis thus allows us not only to identify the
extent to which students’ productions are correct, but also what
kinds of mistakes they make with regard to the annotation. We
are thus interested in how well our participants were able to
pronounce the questions as represented by the visualizations. We
did not have a panel of native speakers judging the questions in
this study because the focus here is not on second-language
competence in general, but on the effectiveness of the
visualizations in combination with different instructor
speaking styles. When we talk about errors, we mean
pronunciation errors in relation to the visualizations.

RESULTS

The results show that students who heard the introduction by the
robot whose speech was manipulated to match the speech profile
of Steve Jobs performed significantly better than those students
who heard the introduction from the robot whose speech
characteristics matched those of Mark Zuckerberg. Given that
each participant produced three questions, there are 60
opportunities for each error type to occur in each condition.

Table 2 summarizes the errors made in the two conditions,
and Figure 3 illustrates their distribution by condition. We
carried out a Chi Square test on the data and find a very
significant difference between the two conditions on all errors
(X2 (1, N � 40) � 7.9858, p � 0.004715, η2 � 0.19). Furthermore,
the differences in errors of timing are very significant
(X2 (1, N � 40) � 6.9095, p � 0.008574, η2 � 0.17), and the
difference between the scaling errors approaches significance (X2

(1, N � 40) � 3.0009, p � 0.083217, η2 � 0.08). Just regarding the
stress placement, the difference is non-significant.

Figures 4, 5 illustrate the distributions of the different errors in
the two conditions by participant; they show that the different
speaking styles affected a large number of participants, and that
the effect is not due to a few outliers.

FIGURE 2 | The three questions to be produced.

FIGURE 3 | Distribution of the errors made by students in the two conditions.
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DISCUSSION

The results suggest that the task chosen, to produce English questions
with the appropriate prosodic features, was sufficiently difficult, and
that even in the condition in which the robot was presenting the

instructions with speech characteristics based on Steve Jobs’ speech,
students still made many errors, including scaling errors that concern
the direction of the pitch movement (up or down). Similarly, the
timing and placement of stress was challenging. The task was thus
adequately difficult but not impossible for the students, and to acquire

FIGURE 4 | Errors made by the individual participants in the Mark Zuckerberg-condition.

FIGURE 5 | Distribution of errors by participants in the Steve Jobs-condition.
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native-like competence with respect to intonation has been identified
as challenging across foreign language teaching research (e.g., Levis
2018). We can conclude that the results were not influenced by
potential floor or ceiling effects.

The results obtained furthermore indicate that a teacher’s
speaking style has a small, but consistent impact on students’
objective performance, even if that teacher is a robot. Thus, there
is evidence that this part of a teacher’s personality significantly
influences how well students perform on a given task. While it is
still unclear to what extent charisma can be learnt (cf. Abelin
2018), robots can take over the role of providing charismatic
instructions in teaching materials.

We suspect that the effect of speaking style on student
performance is due to the pragmatic and cognitive effects of
charismatic speech in terms of perceived competence, self-
confidence and passion. The speech characteristics chosen can
be related empirically to these three personality traits, which are
likely to cause the effects observed. Specifically, speaking rate and
silent pause duration are mostly related to competence (cf.
Niebuhr and Michalsky 2019), whereas pitch range and
emphatic-accent frequency are related to passion and a higher
level of arousal. These in turn can lead to heightened attention
and memory in the listener (cf. Niebuhr 2021b). For instance,
conveying competence creates trust (“the speaker can do that”),
conveying self-confidence creates motivation (“I can do that,
too”), and conveying passion creates inspiration and
commitment (“I want to do that, too”). This is, we suspect,
the reason why a charismatic teacher increases students’
performance.

The domain we investigated concerns pronunciation, and thus
we have no results on other areas of foreign language learning,
such as grammar, vocabulary or interaction. Furthermore, our
study focused on adult language learners, and hence the effects
may be different for children. Currently, we cannot see a reason
why our results should not carry over to other subject areas and
other populations, but future work is needed to confirm a general
effect.

Another possible limitation may be that the robot only
provides the general instructions concerning the different steps
involved in the task, so that there is no “teaching” involved in the
sense of clarifying contents for a learner. However, we believe that
the results are therefore all the more interesting just because the
role of the robot as a teacher is so small; if this short introduction
to the task already affects the students’ performance, then the
robot’s speech characteristics are likely to affect student
performance even more so with a greater involvement of the
robot as teacher.

In spite of these potential limitations, we can conclude that
robots may serve well as instructors in language teaching, but
that their success depends at least to some extent on the
speaking style used. Given that most available text-to-speech
systems do not provide speaking styles that exhibit
characteristics identified as charismatic in previous work,
and instead are characterized by features that range low on

the charismatic side (see In and Han 2015), this finding draws
attention to the need for more adequate speech synthesis for
human-robot interaction. Furthermore, our findings suggest
that some of the negative findings on robot tutors might
actually be due to the respective robot’s speaking style - future
work will have to shed light on the magnitude of this effect.
Finally, the results suggest that speaking style contributes
significantly to (robot) teacher personality and student
performance.
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Assisted Learning ThroughDesign and
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Robots are an opportunity for interactive and engaging learning activities. In this paper we
consider the premise that haptic force feedback delivered through a held robot can enrich
learning of science-related concepts by building physical intuition as learners design
experiments and physically explore them to solve problems they have posed. Further, we
conjecture that combining this rich feedback with pen-and-paper interactions, e.g., to
sketch experiments they want to try, could lead to fluid interactions and benefit focus.
However, a number of technical barriers interfere with testing this approach, and making it
accessible to learners and their teachers. In this paper, we propose a framework for
Physically Assisted Learning based on stages of experiential learning which can guide
designers in developing and evaluating effective technology, and which directs focus on
how haptic feedback could assist with design and explore learning stages. To this end, we
demonstrated a possible technical pathway to support the full experience of designing an
experiment by drawing a physical system on paper, then interacting with it physically after
the system recognizes the sketch, interprets as a model and renders it haptically. Our
proposed framework is rooted in theoretical needs and current advances for experiential
learning, pen-paper interaction and haptic technology. We further explain how to
instantiate the PAL framework using available technologies and discuss a path forward
to a larger vision of physically assisted learning.

Keywords: educational robotics, experiential learning, haptic force feedback, interactive drawing, physically
assisted learning

1 INTRODUCTION

The learning of topics once delivered in physical formats, like physics and chemistry labs, has moved
into digital modalities for reasons from pragmatics (cost, maintenance of setups, accessibility, remote
delivery) to pedagogy (topic versatility, personalized learning, expanded parameter space including
the physically impossible). Much is thereby gained. However, typically accessed as graphical user
interfaces with mouse/keyboard input, these environments have lost physical interactivity: learners
must grasp physical concepts in science and math through disembodied abstractions which do little
to help develop physical intuition.

Physically interactive robots coupled with an interactive virtual environment (VE) offer an
alternative way for students to encounter, explore and collaboratively share and build on knowledge.
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While contemporary technology and learning theories have not
yet delivered a robot system sufficiently versatile to support a
wide range of learning needs and environments, we can
nevertheless propose and separately evaluate design
dimensions that a haptic robot and accompanying interactive
VE enables. The objective of this paper is to facilitate the design
and assessment of this new class of learning technology by
articulating its requirements via a framework.

Experiential learning theorist Kolb (1984) posits a four-phase
cycle that learners ideally repeat iteratively: concrete experience
(CE), reflective observation (RO), abstract conceptualization
(AC), and active experimentation (AE).

In this paper we focus on how a haptic robot might be engaged
in the stages of this cycle which naturally lend themselves to
physical manipulation: active experimentation, through
designing a virtual experimentation environment suitable for a
question they have, and concrete experience, through exploring
the environment they configured.

1.1 A Vision for Physically Assisted
Learning: A Sketch-Based Design-Explore
Cycle
The ability to draw a model, then feel it (active experimentation
around an idea, then associated concrete experience of
it—forming and testing a hypothesis) may be key to elevating
interactive sketching to experiential learning. When exploring,
learners can extend their understanding of a domain of
knowledge by physically interacting with a virtual
model—making abstract concepts more accessible, and
approachable in new ways. When they are designing,
physicalized digital constraints combined with sketch-
recognition intelligence can help them to expeditiously express
their thoughts by sketching to the system, with the added benefit
of representing the resulting model to a co-learner. Finally,
exploring one’s own designs now becomes a holistic cycle: the
learner challenges their knowledge by dynamically posing their
own questions and mini-experiments as well as others’ by
designing models, then reflecting on the outcome of
interacting with it.

As a concrete example: to “play with” the dynamics of a
physical system (e.g., a mass-spring oscillation), a learner is
assisted by a force-feedback-enabled drawing stylus to sketch
the system on an arbitrary surface. The system recognizes the
drawn ink as, say, a mass connected to a ground through a spring.
Using the same stylus, the learner can then “grab” the drawnmass
and pull on it. To test a question about parallel versus series
spring networks, they can mentally predict then quickly draw the
two cases and physically compare the result. Similarly, they could
test relative oscillatory frequencies by extending the spring then
“releasing” it. By writing in a new spring constant (“K � 2”) they
can modify the spring constant. The same process can be applied
in other domains, such as in designing-to-explore an electronic or
fluid circuit, and to improvisationally testing equations defining
system properties. This use case (Figure 6) and others are
implemented and elaborated later in this paper.

1.2 Technical Challenges and Ways Around
Them
Aspects of the AE and CE experiential learning stages have been
studied and validated in isolation using tangible user interfaces,
robots and haptic devices, and the results underscore the general
promise of this approach (Zacharia et al., 2012; Magana and
Balachandran, 2017; Radu et al., 2021). However, few systems
support physicalized interaction in both stages, far less fluid
transition between them.

This is at least partially due to the technical difficulties of
working with present-day versions of these technologies. For
example, conventional grounded force-feedback haptic systems
can theoretically support VE creation and interaction, but in
practice, they require extensive time and expertise not just to
create but even to apply small variants in learning purpose, which
often is unavailable in a school setting. Their expense, limited-size
and desk-tethered workspaces and single-user nature preclude
mobility and collaboration and tend to be too high-cost and
require significant technical support. Other robot technologies
are mobile and collaboration-friendly, but do not convey physical
forces—e.g. a robot puck with which a user can control tokens on
a graphical screen.

However, a handheld force-feedback tool that combines a
spectrum of autonomy with physical interaction can potentially
overcome these technical limitations: e.g., a robotic pen which can
assist a learner in navigating concepts of physics and math by
conveying physical forces modeled by an environment drawn by
its holder. Technically, this system must read and understand the
user’s sketches and notations, translate them into a VE and
associated parameterized physical models, then animate this
environment mechanically with a physics engine rendered
through a suitable force-feedback display—ideally with the
same handheld tool with which they drew the environment. A
haptic device in the general form of a handheld, self-propelled
and high-bandwidth robot can generate untethered, screen-free
experiences that encourage collaboration.

This concept is technically feasible today without any
intrinsically high-cost elements, with the haptic pen itself fully
demonstrated (Kianzad andMacLean, 2018; Kianzad et al., 2020),
but significant engineering remains to translate innovations in
sketch recognition from other technical domains and integrate
them into a full-functioned, low-latency robotic system. Our
purpose in this paper is to consider the potential of this
approach based on related technology elements as a proxy for
a future integrated system which we know is possible to build if
proven worthwhile.

1.3 Approach and Contributions
We have designed support based on a theory of activities that
has been shown to lead to effective learning, and require this
support to meet usability principles suggested by the theory. For
example, the cyclical nature of Kolb (1984) et al’s learning cycle
directs us to minimize cognitive and procedural friction in
performing and moving between important cycle activities.
Unfettered designing and exploring implies comfortable
workspace size and natural command-and-control functions
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that transfer easily from a student’s existing experience—e.g.,
pen-and-paper diagramming, nomenclature consistent with
how they are taught, direct application of parameters, etc.
They should not have to switch tools when they switch
stages. Meanwhile, their work should be easily visible in a
way that teachers and co-learners can see what they are
doing and effectively collaborate in their experience
(Asselborn et al., 2018; Khodr et al., 2020; Radu et al., 2021).

1.3.1 Getting to Confidence that it Could Work
The scope of this paper is to identify and solve technical obstacles
to the instantiation of the theoretically based PAL framework,
focusing on the gap in previous work: the connection between
physically supported design and explore learning activity, in the
form of theoretical rationale and technical proof-of-concept. We
need to ensure that the concept’s non-trivial realization is feasible,
given obstacles ranging from stroke recognition to haptic
rendering algorithm and availability of a haptic display with
suitable capability and performance.

Only with this evidence will it will be ready to (beyond our
present scope) optimize for usability; and thence to evaluate for
the pedagogical value of adding physical expression and fluidity
to the explore-design-explore cycle. Given the complex and
individual process of learning, this will require a sequence of
user studies to convincingly validate the framework and its
impact on learning gain, as well as generalizablity across
multiple platforms.

1.3.2 Guiding Support and Assessing Potentials With
an Experiential Learning Framework
We propose a Physically-Assisted Learning (PAL) framework
through which we can systematically compare different candidate
technologies’ potentials in unlocking key activities and values
(Figure 1). Through the PAL lens, we view learning via the

physically supported activities of designing (AE) and exploring
(CE); and assess platforms against key cross-cutting values of
learner/teacher accessibility (Özgür et al., 2017a), support of
collaboration, untethered (Kianzad and MacLean, 2019),
screen-free mobility, transparent user-system communication
(Romat et al., 2019), and seamless transitioning between
learning stages.

We are using PAL as a tool to understand the impact of device
attributes on learning strategies and outcomes, as well as
collaborative effectiveness, self-efficacy, creativity, and
performance in drawing and design.

Throughout the paper, we will relate needs, technical
challenges and approaches to this framework, and consider
how the candidate technologies stack up on its values under
the two activities of focus.

1.3.3 We Contribute
1) The Physically Assisted Learning (PAL) framework which

can 1) conceptually and constructively guide the design of
haptic science-learning support; and 2) lead directly to
articulation of special requirements for explore-type
contexts like learning, including fluid access to large ranges
of model structure and parameterization.

2) Demonstrations of 1) means of addressing these needs, for
designing with innovative application of hand-stroke
recognition, and for exploring through haptic rendering
with a control approach not available in open libraries
(namely passivity control); and 2) a technical proof-of-
concept system in which designing and exploring are
haptically linked: a user can draw and then feel a virtual
environment.

3) A path forward: An account of technical considerations,
challenges and possible approaches to fully realize this
paradigm.

FIGURE 1 | The PAL Framework. Physically Assisted Learning interactions haptically adapt stages of experiential learning from Kolb (1984)’s general framework,
with some added features from Honey and Mumford (2000). Hands-on Active Experimentation and Concrete Experience are most amenable to haptic augmentation,
enriching the more purely cognitive Reflective Observation and Abstract Conceptualization.
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2 BACKGROUND

We introduce past work related to the idea of physicalizing digital
manipulatives, relevant classes of haptic force feedback
technology, challenges in bringing this kind of technology into
education environments, and ways in which haptics have been
used for related activities of designing and exploring.

2.1 Adding Physicality to Digital
Manipulatives via Robots
Physical manipulatives are objects that aid learners in perceiving
physics and math concepts by manipulating them, such as the
pattern blocks, coloured chips, and coins used in early childhood
education to engage learners in hands-on activities. Digital
manipulatives (DMs) are physical objects with computational
and communication capabilities that can promote different types
of thinking in children by engaging them in playing and building.
The history of using DMs for education dates to the early 70–80 s
in several works from MIT Media Lab’s Tangible Media and
Epistemology and Learning groups and the Artificial Intelligence
Lab. Among them, projects such as Floor Turtle, Graphical Logo,
LEGO Mindstorms, Crickets, and Curlybot introduced engaging
environments to develop new approaches to thinking about
mathematical concepts with encouraging results (Papert, 1980;
Resnick et al., 1998; Frei et al., 2000).

Robots are a class of DMs that use motion along with other
visual or audio cues to express information. Children can
program robots and therefore observe and experience how
defining a set of rules results in intentional behaviours in
them. This also gives them the freedom to decide what the
robot is, based on how the robot behaves. This flexibility
potentially helps learners to use the robot as a probe to
explore many learning concepts in different contexts (Resnick,
1998).

Haptics can empower digital manipulatives by expanding the
imagination beyond the motion of a physical robot, in the
behaviour of the virtual avatar and respective feeling of force
feedback. While users can manipulate the environment, we posit
that the visual and haptic cues can reduce the cognitive load of
interpreting the abstract concepts and make the haptic digital
manipulative more expressive.

Returning to our mass-spring illustration: a physical mass
connected to a real spring is a manipulative that can demonstrate
the concepts of elasticity, inertia, vibrations and resonance. A
programmable robot can visibly implement the mass-spring
behaviour through its reactive motion. With physical user
interactivity, this robot becomes a haptic digital manipulative.
Combined with a graphical display, it could tangibly render the
system with learner-specified parameters—shape, size, spring and
mass constants—and expose learners to the reaction forces and
dynamics of pulling and bouncing it (Minaker et al., 2016) as well
as new combinations of springs, and varying viscosity and
gravitational force. Such a system can simulate many other
physical systems, e.g., gas, fluid or electronic circuits.

2.2 A Brief Overview of Haptic Force
Feedback Technology Relevant to
Education
Haptics is the sense of touch, and haptic technology is commonly
used to refer to both tactile feedback (e.g., the vibration on your
smartphone) and force feedback, which acts on our
proprioceptive and kinesthetic senses. Force feedback haptic
devices can provide active pushing and pulling; holding the
handle of one of these small robots, you can interact with a
VE and the dynamics it represents. Force feedback devices come
in many forms and capabilities, as portrayed on Haptipedia.org
(Seifi et al., 2019).

To support the PAL vision we ultimately want a planar (2D)
device that is drawing-friendly, because we see sketching
experimental ideas as an intrinsic part of learning. We want
large workspace to support big movements, spread out, see one’s
work; and portability for working in different environments or
collaborate around a table without a screen in the way. Cost is
crucial to accessibility of any learning technology.

At present, these properties are in substantial conflict. In the
interim, to assess technical feasibility we focused on planar (2D)
world-grounded force-feedback platforms. This section describes
basic terminology, intrinsic tradeoffs, and progress towards this
kind of technology we need.

2.2.1 Grounded Force Feedback and Impedance
Force feedback devices require a physical ground. Typically,
world-grounded devices are anchored to a base in order to
transfer reaction forces to a ground other than the user’s own
body, generally via links or cables. Device impedance is essentially
the stiffness it can display. A high-impedance device can strongly
resist user movement, either by generating strong actuator forces
or by braking and blocking movement. Impedance control is the
most common approach to implementing force feedback models:
the device is programmed to generate a force in response to a
user-imposed positional input. For example, the relation F � Kx
describes a simple virtual model of a spring deflection
relationship.

2.2.2 Workspace, Mobility and Tethering: Present and
Future
With conventional GFF devices, large workspace and impedance
range (the difference between minimum and maximum device-
renderable impedance) are a tradeoff: 1) minimum renderable
impedance increases with workspace due to inertia in links and
actuators; and 2) maximum renderable impedance decreases due
to longer and more compliant linkages (Barrow and Harwin,
2008; Zinn et al., 2008). Further, large devices require larger
motors, stronger links, better sensors. They are heavy and
expensive.

Some low-cost 2D GFF devices targeting education instead go
for fabrication ease and low cost. The Haply (https://haply.co/)
exhibits a “pantograph” configuration, which delivers consistent
force over reachable workspace (Gallacher et al., 2016). The
Haply has open-source construction guides and a public hAPI
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software library (Gallacher and Ding, 2017). We chose it for
feasibility assessment because of its maturity and support.

In the future, more will be possible. To achieve mobility and
large workspace, we need to consider a different approach to
grounding than being bolted to a table: hand-held mobile robots
which can propel themselves on a surface. Of mobile robots have
been used as active force feedback displays, two have practical
educational potential.

Cellulo is a mobile haptic robot purpose-designed for
classroom learning, able to render virtual objects on a 2D-
plane (Özgür et al., 2017a). Its omnidirectional, backdrivable
mechanism uses a permanent magnet ball to generate vibration-
free movement; at 168 g, the size and weight of a large pear, it
costs 125 Euros. Cellulo can render variable resistive force
feedback and guide users on a specified path or to a certain
destination, albeit at a low sample rate and with relatively low
magnitude and range of supplied force.

The Magic Pen is a low-cost haptic stylus (∼50$) which can
provide force feedback in 2D (Kianzad and MacLean, 2018).
Force grounding is supplied by friction contact between a rolling
drive ball and an arbitrary 2D surface, like a tabletop or a vertical
whiteboard, able to transmit resistive and guiding forces to the
user’s hand. Magic Pen supports exploration of a VE, and a later
version embeds the drawing capability in an assistive framework
for physically assisted manual sketching (Kianzad et al., 2020).
The Phasking framework introduces the concept of control
sharing as well as bring and bound constraints as a framework
to support physically assisted sketching.

Cellulo and Magic Pen are the only plausibly suitable mobile
haptic displays of which we are aware which can render force
feedback in the large, i.e., an unrestricted workspace. The two
differ in many ways: Cellulo is held in a mouse-like grip, and can
move autonomously when not held; the Magic Pen is a stylus and
thus more suitable for drawing applications, but cannot ambulate
on its own. The Magic Pen can deliverable more controllable and
larger forces, and is designed to support drawing and sketching
whereas Cellulo is physically not suited for this. Purpose-designed
for educational purposes, Cellulo as been evaluated in multiple
learning scenarios.

2.3 Challenges and Opportunities in
Bringing Haptics Into Educational Contexts
Several studies have explored benefits of haptics in education
Magana and Balachandran, 2017; Amin et al., 2013; Jones et al.,
2006).

We will next discuss the many practical issues in using haptic
displays in educational settings, not least the cost of the high-end
commercial haptic displays used in these studies.

2.3.1 School Logistics
Besides pedagogical needs, Özgür et al., 2017a propose
requirements for a useful educational platform in a class
setting: it should be affordable, robust with minimum required
initialization, configuration or calibration, and reliable enough to
effectively support uninterrupted learning activities. Other
considerations drawn from our own classroom work include

extreme limits on teacher time (for studies or deployment),
technological expertise, and the ability to prioritize such
activities. On the technology side, it is hard to justify the
expense of sole-use technology, deployment practicalities like
batteries and power cords, and the sheer difficulty of students
being able to determine when a device is behaving correctly.
Classroom sessions are often short, requiring a quick-start system
that nevertheless delivers engagement and learning gains right
out of the gate (Özgür et al., 2017b).

Validation is a major challenge: it is difficult to validate
learning benefit where there are countless variables and
controlled studies are not possible. Thus, many studies take a
qualitative approach and look for ways in which the haptic
modality is changing student strategies, collaboration style,
engagement and interest or type of questions (Davis et al., 2017).

2.3.2 Creating Haptically Augmented Learning
Environments: Open-Source Haptic Libraries
A multitude of haptic libraries support designers developing
haptic VE interactions for a given technology. There are two
main categories of functions: rendering haptic behaviors, and
connecting the haptic interface modality to other parts of the
system and experience, be it an underlying virtual model,
graphics and/or sound engines and display, managing other
forms of user input and control, and in some cases interaction
over a network and with other users and entities. While some
have been associated with a specific product, most attempt to
generalize support for at least a significant class of devices
(e.g., CHAI3d (Conti et al., 2003), hAPI (Gallacher and Ding,
2017)).

Some of these haptic libraries support advanced rendering of
complex deformation and collisions both haptically and
graphically for sophisticated environments such as surgical
training simulations. For educational contexts, we often do
not need such complexity. For student-oriented online
physics learning materials it is common to see the physical
behaviour of an object presented with simplicity via an open
body diagram and illustration of applied forces (e.g., Perkins
et al., 2006).

On gaming platforms, developers use graphic engines to
simulate rigid body behavior in a virtual world in procedural
animations which move realistically and interactively. Hapticians
have exploited game engines for their VE modeling, getting
graphic display for free and driving haptic output from the VE
simulation; this obviates the need to make or access another
physics library for haptic rendering. For example, the hAPI uses a
wrapper around the 2D physics simulation library Fisica and
turns it into a haptic engine system for educational purposes
(Gallacher and Ding, 2017).

However, designing even a simple VE with a library requires
basic knowledge of programming and physics, often absent for
student or teacher, and often difficult to access in a classroom.
Even when a teacher is a technology enthusiast, the uncertainty in
predicting learning benefit relative to a large time investment is an
understandable barrier. This underscores a broad need for more
usable, accessible tools for haptic experience design which go well
beyond the need for accessible technology itself.
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2.4 Haptics for Designing and Exploring
In this survey of education-related haptics, we focus on the
intersection of two primary haptic approaches: 1) haptically
rendered virtual environments, and 2) pen-and-paper-based
interactions. Although many devices support one or the other,
only a few support both features simultaneously.

2.4.1 Design Approaches: Input Methods, Feedback
Modalities and CAD Features
Out of many works describing novel input and haptic output, we
focus on systems suited to educational applications such as STEM
learning and visual art.

VoicePen is a digital stylus that uses non-linguistic vocal,
position and pen pressure inputs for creative drawing and
object manipulation (Harada et al., 2007). VoicePen uses
vowel sounds, variation of pitch, or control of loudness to
generate fluid continuous input to the user’s pen interactions.
WatchPen uses a digital stylus, smartwatch and a tablet for
drawing inputs while employing vocal and touch input to
reduce workflow interruptions, such as tool selection (Hung
et al., 2019). These systems’ reliance on vocalization make
them impractical in classrooms, but they deliver ideas for
stylus interactions.

TAKO-Pen is a haptic pen providing pseudo-force-feedback
by creating the sensation of sucking on users’ fingers through
pressure chambers embedded on a handheld surface (Konyo,
2015). RealPen is a digital stylus which recreates the sensation of
writing on real paper with a pencil through auditory and tactile
feedback (Cho et al., 2016). FlexStylus allows users to perform tool
selection and to draw accurately by bending the pen in various
modes (Fellion et al., 2017). Although these novel input and
feedback modalities expanded the interaction space between
users and haptic devices or digital styluses, they have very
specific purposes and do not point to more general
sketching tools.

In addition to devices, we looked for innovations in computer-
aided drawing (CAD) features for generating engineering or
artistic drawings. Parametric sketching is a CAD functionality
where users define geometric entities with parameters, and
specify relationships between them as constraints: e.g., defining
a circle by its central position and radius, or defining two lines as
co-linear or of equal length (Pavlidis and Van Wyk, 1985). This
function is useful to architects and architects for creating complex
architectural or mechanical sketches. Gürel (2019) studied the
impacts of parametric drawing with CAD tools on architectural
design creation, finding that allowing designers to define
parameters and constraints on geometric entities enhanced
creative process flexibility. Ullman et al. (1990) emphasized
the importance of geometric constraint in CAD tool function
for improving clarity in designers’ mechanical sketching.

For direct-sketching input, we highlight ChalkTalk, which
recognizes users’ strokes and translates them into meaningful
interactions using dynamic visualization and procedural
animation to facilitate exploration and communication (Perlin
et al., 2018). ChalkTalk is a purely visual medium; we see potential
for using its approach when extending PAL-type functionality for
more expansive sketch interpretation.

2.4.2 Pen-Based Sketching Tools for Engineering
Design and Educational Drawing
In pen-based devices developed for professional and education
drawing, we focused on sketching on 2D surfaces to find features
that suit PAL needs. In engineering design, InSitu provides
architects with a stroke-based sketching interface capable of
augmenting sites’ contextual information from sensor data
into sketches and delivering the information via pop-ups
(Paczkowski et al., 2011). dePENd can guide users to draw out
shapes (e.g., lines and circles) precisely by providing directional
force feedback. It also allows users to deviate from dePENd’s
guidance so she can edit the shapes at will (Yamaoka and Kakehi,
2013a).

Within educational drawing support for (STEM subjects),
most devices were built for sketching math or physics
diagrams and equations. MathPad2 allows users to create
animations to represent processes (e.g., a mass block
oscillating) in addition to static diagrams or math formula
(LaViola and Zeleznik, 2004). Hands-on Math places more
emphasis on recognizing handwritten math inputs from users
and performing calculations such as solving for an unknown
variable in an equation (Zeleznik et al., 2010).

While Insitu or MathPad2 support a particular type of
drawing, such as architectural sketches, the PAL framework
aims to support designers from a wide range of
fields—architects, physicists, web developers.

2.5 Relevant Educational Theory and Design
Guidelines
2.5.1 Learning Through Experience
In Constructivism, knowledge is seen as deriving from
individuals’ experiences, rather than as a transferable
commodity. Learners actively construct and re-construct
knowledge by interacting with the world (Piaget, 1977;
Antle and Wise, 2013). According to Piaget’s cognitive
development theory, to know an object means to act on it.
Operation as an essence of knowledge requires the learner to
modify and transform an object, and also understand the
process of transformation; leading to knowledge of how the
object is constructed (Piaget, 1964). Several schools of
educators (Montessori and Carter, 1936; Dewey, 1938;
Papert, 1980) have emphasized physicality in educational
learning tools and direct manipulation of objects. These
theories underlie a goal of providing tools that enable
learners to operate on multiple instances of knowledge
construction.

2.5.2 Extending Experience With Reflection
Meanwhile, Le Cornu (2009) propose three iterative steps of
externalization, sense-making of meaning, and internalization,
through which reflection links experience to learning. Often
discussed in social constructionism literature, these steps have
been applied to a wide range of human actions in the world and
society, including the use of feedback (from people, or the
results of physical “experiments”) to develop the meaning of
the self.
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2.5.3 Haptic Digital Manipulatives as Vehicles for
Experience and Reflection
The theories above have been applied to a wide range of tangible
user interfaces and digital manipulatives. Through educational
robots, experiential learning can be tangible and digitally
supported, and specifically invite reflection. Resnick et al.,
1998’s process of reflection with robots starts with the
construction of a robot-based environment, in which learners
make their own “microworld” by programming it, followed by
feedback from robots to help them shape and validate their ideas.
Such a reflection cycle can be repeated multiple times, deepening
the experience (Frei et al., 2000).

Within early edurobot work, we sought visions for digital
manipulatives suitable for more advanced educational topics. We
found examples using robots to aid learners in mindful
integration or materialization of ideas through the practice of
design (Ackermann, 2020); and to support exploration of
different domains of knowledge or of abstract concepts by
making them more accessible or approachable in new ways
(Özgür et al., 2017c).

Instantiating these principles in a digital manipulative could
help them to work as an object-to-think-with, wherein learners
instantiate their ideas into a physical model through the object,
and can debug or extend their thinking model regarding the
outcome. The process of analyzing the validity of execution
motivates learners to think about their own thinking,
developing their metacognitive ability. This results in 1)
gaining higher-level thinking skills, 2) generating more
representations and metaphors for their understanding, 3)
improving social communication and a collaborative
atmosphere, and 4) forming deeper understanding of the
concept among learners (Atmatzidou et al., 2018; Blanchard
et al., 2010).

3 A FRAMEWORK FOR PHYSICALLY
ASSISTED LEARNING

The motivation for the PAL framework is to exploit benefits
postulated above for a haptic digital manipulative, in learning and
in pen-and-paper interaction, and turn them into a versatile and
effective digital manipulative. We previously introduced Kolb
(1984)’s four-stage framework for experiential learning, on which
we have based PAL (Figure 1). Here, we lay out PAL’s theoretical
basis, then elaborate on its components and explain how we
expect learners and designers to use it.

3.1 Pedagogical Rationale and Components
Learning is iterative: one builds a mental model of a concept by
repeatedly interrogating and manipulating a system, forming
then testing successive ideas of how it works in a cycle such as
Kolb’s. Manipulatives are often designed in a way that will
support just one part of this cycle—e.g., to create a
microworld or to directly interact with one.

Our premise is that supporting fluidmovement throughout the
experiential learning cycle will facilitate more resilient mental
model formation.

3.1.1 Supporting Kolb’s Learning StagesWith a Haptic
Digital Manipluative
Most of the visions in Section 2.4, and the idea of robot-
supported reflection more broadly, would support at least one
out of Kolb’s two “acting in the world” phases: Concrete
Experience (CE; having an experience) and Active
Experimentation (AE; putting a theory into practice). Here,
there is an opportunity for intervention, and also for
researchers to observe and try to understand what is
happening based on the part of the cycle that is visible. The
more internal stages of Reflective Observation (RO; reflecting on
an experience) and Abstract Conceptualization (AC; theorizing)
are crucial, but can be influenced or inferred only through what
happens in the other phases, or through post-hoc assessment, e.g.,
of changes in conceptual understanding.

The PAL framework’s mandate is therefore to help educators
focus on physical instruments and strategies that will support
learners in CE and AE, and eventually to help us insightfully
observe them as they do so.

Early works on edurobots have claimed that robots could be
beneficial in all four stages. For example, for Reflective
Observation (RO), Resnick et al., 1998 suggested that through
its processing power, the robot could speed the reflection
cycle—externalizing/internalizing from hypothesis to result;
modifying parameters, conditions and even time. For Abstract
Conceptualization (AC), Papert (1980) uses gears as an example
where learners can use mechanical objects for conceptualizing
physics concepts.

Kolb himself argues that the interaction and manipulation of
tangible objects is an indivisible part of epistemic (knowledge-
seeking) exploration, where the learner purposefully changes the
learning environment to see its effect and thereby to understand
relationships. When suitably framed through availability of
multiple perspectives, parameters and factors, manipulation thus
might provide at least indirect support for Kolb’s Reflecting
Observation (RO) stage (Antle and Wise, 2013; Fan et al., 2016).

However, these claims are as yet unsupported. Limited tofindings
that have been validated in controlled studies, we conjecture that a
DM approach’s influence on RO and AC will be indirect.

3.1.2 Physically Assisted Learning Components
A useful (that is, versatile) manipulative should be able to provide
the basis for productive subsequent reflection and theorizing
during both Active Experimentation (AE) and Concrete
Experience (CE). Therefore, we identified explore (CE) and
design (AE) as PAL’s key components: activities which a
haptic DM must enrich.

Further support for centering a framework on these two
components, as well as clues towards means of implementing
them, emerge from other studies of how haptic feedback can
support designing and exploring. Summarizing these, Table 1 has
two features of particular interest. First, we populated it with just two
of Kolb’s four learning activities, because we found very few
examples of attempts to use haptics or other PDMs to directly
support reflection or theorizing. Those we did find (e.g., Hallman
et al., 2009; Reiner, 2009; Triana et al., 2017) proposed systems or
studies whose results either showed no benefit or were inconclusive.
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Secondly, none of the cited studies examined both designing
and exploring, but treated them as isolated activities. This may
have been influenced by the natural affordances of the devices
used. For instance, a Haply (in its unmodified state) can be used
readily to Explore; but to facilitate creation of micro-worlds
(Design), we felt we needed to hack it—and chose addition of
a drawing utensil. In other words, meeting the principles
expressed by PAL triggered specific, targeted technology
innovation. More is needed to reach the full PAL vision; the
framework provides a blueprint to get there.

3.2 Principles for Creating Digital
Manipulatives
We assert two overriding principles that guide us in creating
versatile digital manipulatives, based on learning theory discussed
in Section 2.5 as well as observations of learners’ interactions
both with conventional pen and paper and with haptic/robotic
devices, across a range of learning scenarios.

3.2.1 A Digital Manipulative Needs to Serve Learners in
Expressing Their thoughts (Design)
According to Ackermann (2020), “To design is to give form or
expression, to inner feelings and ideas, thus projecting them
outwards and making them tangible”. Design enables individual

interactions with and through human made artifacts and involves
them in the “world-making” process (Goodman, 1978). The
purpose of design goes beyond representing just what exists, by
bringing imagination into this existence (Ackermann, 2020).

For example, we often use pen and paper to write down fast-
travelling ideas in our minds. Our immediate drawings can reflect
our thoughts, experiences and emotions. Particularly for children,
drawings reveal the hidden transcripts of their interpretation of
the world.

From scribbles to detailed, elaborated productions, sketching
is both intellectual play and can help us form, develop and
communicate our thoughts, a key part of a conceptual process.
Sketching is direct, improvisational, expressive, resists
distraction, and may promote deeper cognitive processing.
Projecting our ideas onto paper makes our thoughts more
tangible, shareable, and justifiable; This enhances our
communications with others. A versatile manipulative should
work as a medium to exchange information between a user and a
computer interactively.

These prior findings and observations support the premise
that aid from a suitably configured and supported physical digital
manipulative can directly impact the active experimentation
phase: specifically, when learners are hypothesizing and
planning small tests. The environment altogether should
encourage the learner to hypothesize, construct a experimental

TABLE 1 | Summary of research informing the use and benefits of haptics in learning, organized by the PAL framework’s two activity components. [+] indicates a positive
benefit, or [−] no added value was found.

Haptic benefits Design (Active exploration) Explore (concrete experience)

Understanding and
manipulating geometry

[+] Yamaoka and Kakehi (2013b) Drawing accurate geometric
shapes

[+] Özgür et al. (2017c) Identifying different shapes and number of
edges

[+] Nakagaki and Kakehi (2014) Computer assist collaborative
drawing of different shapes

[+] Minogue and Jones (2009) Understanding the structure and
function of the cell membrane transform

[+] Lin et al. (2016) Increasing the passive stylus affordance through
haptic guidance

[+] Jones et al. (2006) Learning morphology and dimensionality of
viruses; diagnose mysterious viruses by pushing, cutting and poking

Improving accuracy and
speed

[+] Kianzad et al. (2020) Improving accuracy of drawing objects
through force feedback assistance

[+] Murayama et al. (2004) Enhancing completion time and interactivity
of bimanual tasks

[+] Wang et al. (2006) Using haptic feedback in a calligraphy
simulation reduces writing errors and improves writing speed

[−] Evans (2005) Users were unable to sculpt forms to produce
acceptable curved surfaces using haptic feedback

[+] Yamaoka and Kakehi (2013b) Drawing accurate geometric
shapes

[−] Beckers et al. (2020) Haptic human–human interaction does not
improve individual visuomotor adaptation

Engagement [+] Hamza-Lup and Stanescu (2010) Significant increase in
students’ engagement during the learning activity

[+] Vaquero-Melchor and Bernardos (2019) Enhancing interactions
with objects in Augmented Reality

[+] Younq-Seok et al. (2013) Increasing engagement in word-writing
activities

[+] Tsetserukou et al. (2010) Providing realistic sensation of physical
interaction in a virtual environment

[+] Kyung et al. (2007) Increasing confidence and achieving more
realistic drawings

[+] Khodr et al. (2020) More engagement in educational robotic
activities

Accessibility (e.g., in face of
disability)

[+] Mullins et al. (2005) Re-learning to write after a stroke [+] Wall and Brewster (2003) Allowing visually impaired users to
perceive data with greater speed and efficiency[+] Jafari et al. (2016) Haptics improves task performance of children

with physical disabilities (review paper

Understanding of underlying
concepts

[+] Lopes et al. (2016) Designing an optimum system/model by
receiving on-the-go force feedback

[+] Magana and Balachandran (2017) Conceptualizing electrostatic
concepts through the sense of touch
[+] Zacharia and Michael (2016) Building electrical circuits with one or
two bulbs
[−] Renken and Nunez (2013) Haptics did not add to learners’ ability to
understand pendulum principles
[+] Zacharia et al. (2012) Understanding mass-beam balance
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micro-world and set the conditions for the environment,
anticipate the result and test it; and iterate to improve their
hypothesis.

3.2.2 A Digital Manipulative Needs to Support
Exploration of Domains of Knowledge (Explore)
Two classes of manipulative proposed by Resnick et al. (1998)
include Frobel Manipulatives (FiMs) to model the world, i.e.,
provide an intuitive way to experience many concepts in physics
by making themmore accessible (wooden sphere and cube to feel
the natural differences between shapes), and Montessori
manipulative (MiMs) to model abstract structure—e.g., form
an approachable way to make math, and geometry concepts
more tangible (golden bead materials used for representing
number). Haptics researchers show that even a 1D haptic
device can support both of these classes when it works as
haptic mirror (Minaker et al., 2016), to mimic physical
experience, or as a haptic bridge, connecting a dynamic
visualization of a mathematical concept with a haptic
representation (Davis et al., 2017). A versatile manipulative
should support both classes using physical interaction with the
virtual world through force feedback.

Perhaps the most studied aspect of digital and physical
manipulative is the role of physicality in simulation learning
for concrete experience (CE) stage. Here, learners try out the
action and have a new experience. Through physicality, learners
can obtain more embodied experiences and perceive information
through touch.

3.3 Using the Physically Assisted Learning
Framework
3.3.1 Learner’s Use
Some examples illustrate PAL’s two conceptual activities, wherein
a learner constructs a microworld then explores it.

Design: The learner must be able to fluidly express rich
information to the system. Assistive force feedback to users’
pens while sketching can help them manifest and
communicate their ideas to other people and to a computer: it
might be more efficient and natural if they can feel virtual
constraints that support them in generating smooth curves
and straight lines as they draw—on a computer screen, paper,
whiteboard or other surface. In the future, we can exploit this
design space to empower learners to actively design, make, and
change their learning environment based on their hypothesis.

Explore: The tool must provide rich sensory information to the
learner. The addition of haptics to a digital manipulative (beyond
motion alone) potentially supports a more compelling
interpretation so that learners can predict and reason about
outcomes based on what they feel as well as see.

In this project we explore these two PAL activities—requisite
attributes for an object to think with—along with the connection
between them. Although such a device could also be seen as an
object to promote computational thinking (Ioannou and
Makridou, 2018) we saw it differently. A DM exploits the
computational power of the computer to speed up the
learner’s reflection cycle, which leads to more constructive

failures (Clifford, 1984). Throughout this process, learners can
explore a variety of representations and solution methods. If
followed by a consolidation and knowledge assembly stage,
together they can create a productive failure process (Kapur
and Bielaczyc, 2012).

3.3.2 Education Technology Designer’s Use
3.3.2.1 Ideation of Form and Prediction of Haptic Value
Designing technology solutions for learning requires ideating
innovative concepts and ideas, but also evaluating and
prioritizing them. PAL can help inspire educational technology
designers with new ideas, and to understand the potential of
adding haptics to a particular domain or context. In addition, our
implementation shows a technical example of how to use
emerging technological capabilities to solve particular problems.

3.3.2.2 Setting Requirements and Evaluating the Result
PAL can help designers identify requirements via experiences that
their technology needs to support. Based on Figure 1, a designer
can create an opportunity map by examining connections
between the stages of learning and activity type.

For example, to support collaboration in learning electrostatic
forces, a learner can construct the environment (design) by
placing the point charges; then invite their partner to
experience them (explore). A designer can then focus on
finding the haptic controls and feedback which will allow the
learner to place the point charges correct places (e.g., equidistant),
and how to render the force behaviour as learners move
respectively to each other.

Based on these requirements, in evaluation a ed-tech designer
simply needs (at a first pass) to verify that the requirements are
being met when learners interact with the system. Are they able to
construct the environment, and then place the charges correct?
Can a partner experience this? Is the whole experience engaging
and usable enough to invite this kind of collaboration? With the
assurance provided by intermediate goal and usability evaluation
derived from theory-based guidelines, they will be in a better
position to proceed to assess how such a system is influencing
learning outcome.

3.4 First Step: Need for a Technical
Proof-of-Concept
In past research supporting haptic design and explore activities
(Table 1), what is missing is the connection between them.

This requires a technical means by which to understand the
user’s imagination and dialogue in design and then bring it into
existence by defining its physical, haptic behaviour for exploring.
For example, if a user draws a microworld consisting of a set of
point charges, we need to define the force behaviour of the point
charge and make it interactive so that users can feel the forces as
they move in the environment.

Once such a system exists, it can misfire for purely technical
reasons. For example, expanding the user’s available possibilities
during design—e.g., allowing them to cover a greater variety of
concepts in more ways—often introduces new issues such as
triggering vibrational instabilities which naturally accompany
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haptic rendering of dynamic environments with large
uncertainties.

In summary, the challenges here are to 1) make an intelligent
system that can take unconstrained drawing as an input, and 2)
robustly render a wide range of haptic environments with high
quality. For the first, advances in artificial intelligence go far in
allowing us to infer and display interpretations of user’s drawings
(Bhunia et al., 2020; Dey et al., 2019). For the second, the field of
haptic rendering can contribute advanced control methods which
when carefully applied should be able to describe and within
bounds, to address the environments that may arise when a user is
permitted to create ad hoc environments Haddadi et al., 2015;
Diolaiti et al., 2006.

Putting these elements together is, however, a substantial
systems-type contribution, and its initial appropriate validation
is in technical performance assessment with respect to force and
stability outputs relative to known human psychometric
capabilities rather than a user study of either usability or
learning efficacy. In the following, we will describe and assess
performance of our technical-proof-of-concept system which
implements this missing, connective aspect of our proposed
PAL framework.

4 HAPTICALLY LINKING THE EXPRESSION
AND EXPLORATION OF AN IDEA

Currently available processes for generating and modifying
content for haptic interaction (Section 2.3) impose logistic
and cognitive friction between ideation in the form of
sketching a problem, idea or experiment the learner would like
to understand, and testing that idea in the form of a physicalized
model. We aim to reduce this friction.

After describing the technical setup we will use to demonstrate
our ideas (overviewed in Figure 2), we will work through a series
of technical instantiations which support increasingly powerful
and wide-ranging cases. Each begins with an education use case
illustrating how this level of haptics could be useful. Readers may
find the first (rendering a haptic wall) distant from our final goal;
we have included it as a means of gradually exposing layers of
haptic technology needed to understand more complex
implementations. While all of the haptic rendering algorithms
described here are well known, we show how they can be
combined in new ways with other technical features (e.g.,
stroke recognition) to meet technical challenges that arise
from the requirements of a versatile, unrestricted learning
environment.

4.1 Technical Proof-of-Concept Platform:
Haply Display and Digital-Pen Stroke
Capture
The demonstrations described here use the Haply Robotics’
pantograph system (Figure 3, https://haply.co/, Gallacher and
Ding, 2018) and its hAPI software library (Gallacher and Ding,
2017). The Haply is a low-cost pantograph, relying on 3D-printed
parts which together with good-quality motors and fast

communication can offer convincing haptic rendering with
respect to accuracy, force levels, responsiveness and uniformity
across its 14 × 10 cm workspace (https://haptipedia.org/?
device�Haply2DOF2016). It communicates sensor and
actuator data via USB to a VE running on a host computer,
typically using the Processing computer language. The hAPI
library renders haptic interactions by reading the pantograph’s
end-effector position (moved by the user’s hand) and computing
output forces sent to two driver motors.

To capture users’ sketch strokes, we used a watermarked paper
and a digital pen (Neo Smart Pen, Inc. (2018)) connected to the
Haply end-effector. The digital pen captures detailed information
about the user’s stroke: absolute position, pressure, twist, tilt and
yaw. The Neo pen requires watermarked paper, creatable with a
standard laserprinter by printing encoded dot files. For erasability
and re-usability of sheets, we laminated the watermarked paper
and positioned it under the Haply workspace. We calibrated the
digital pen’s position data with the Haply’s encoders. With this
system, the user can draw on the laminated paper and the strokes
are captured, sent to the host computer and imported to the
Processing application that interacts with the Haply.

4.2 Level 1: Rendering Rigid Surfaces and
Tunnels
We begin by illustrating how haptics could potentially support
learning (in motor coordination) with basic haptic rendering
techniques.

4.2.1 Use Case: Handwriting Training Guided by Virtual
Walls
Past research on motor training, e.g., post-injury rehabilitation,
has elucidated effective strategies for utilizing physical guidance,
whether from a human trainer or a programmed haptic
appliance. Full guidance of a desired movement does not
typically produce good transfer to the unguided case; some
studies suggest better results by physically obstructing the
desired movement in the face of visual feedback, causing
exaggerated motor unit recruitment (Huegel and O’Malley,
2010; Fu et al., 2014). Learning and improving handwriting
similarly involves training numerous haptic sensorimotor
activities; these employ both fine (fingers) and larger (arms)
motor units. It entails significant mental and motor-control
practice, particularly for individuals working against special
challenges, such as dysgraphia which can impact 25% of the
school-aged population (Smits-Engelsman et al., 2001; Guneysu
Ozgur et al., 2020).

However, learning and improving handwriting is also a
cognitive practice, and often practiced by the young where
engagement is also important. Rather than learners comparing
their results to a standardized specified outcome, an expert may
be able to conceive of better individualized support (more
specific, or advanced at a different rate) but requires a means
to convey it to the learner as they practice on their own (Gargot
et al., 2021).

The priority may thus be easing an expert’s customization of
exercises, to support repeated self-managed practice (Guneysu
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Ozgur et al., 2020). The expert might want to modify details of
visual cue presentation and the level and form of haptic
guidance (Korres and Eid, 2020; Teranishi et al., 2018); or
temporally adapt by reducing force feedback aid over time
through control-sharing (Kianzad et al., 2020). Effective
feedback must convey correct movements, notify a learner
when something goes wrong, and show them how to correct
their movement (Asselborn et al., 2018; Amin et al., 2013).
Haptic guidance could potentially provide these needed cues
when the teacher is not present, without demanding a high
cognitive load.

In the PAL framework, the teacher would use the design stage,
then explore to ensure the force feedback works correctly. The
learner would access this resource in the explore stage.

Here, we show in a basic example targeting elementary school
students how a teacher can define a channel within which the
learner needs to stay as they trace a letter. This channel will be
rendered as a pair of enclosing and guiding haptic walls. This
simple demonstration does not attempt best practices for
handwriting training, or demonstrate many customization
possibilities; it primarily introduces a important building block
of haptic rendering, but is also a placeholder for the advanced
ways listed above that haptic feedback could be used ti customize
handwriting support.

4.2.2 Defining a Wall
There are many ways to define a boundary to a computer
program. We require a means that is convenient for a teacher

FIGURE 2 | Technical implementation required to support Design (green) and Explore (blue) learning activities in response to ongoing user input. Details are
explained in Section 4.3. (The user’s graphic from Can Stock Photo, with permission).

FIGURE 3 | Technical Setup. Our demonstration platform consists of a Haply force-feedback pantograph, a USB-connected digital pen, and a host computer. The
Haply communicates position information to the host computer and receives motor commands through a USB port. A digital pen captures and conveys thes user’s
stroke, along with data opressure, twist, tilt and yaw.
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or therapist. Working in a context of pen-and-paper, we let the
teacher sketch the path which they wish the learner to follow.
Their strokes are captured as a time-based set of point
coordinates. These can be used either directly, if the stroke
sample density is adequate, or with a smoothed line fit to them.

We collect the user’s strokes as a two-dimensional array, then
re-sample it with spatial uniformity and present the result as a
one-sided wall. A user can move freely on one side of the wall; if
they penetrate the wall from the free direction, they will feel
resistance. A teacher can draw a set of one-sided walls as a letter-
shaped tunnel to guide a learner in their handwriting practice.

4.2.3 Feeling the Wall: Virtual Coupling
The simplest way to haptically render a wall is to sense the
position of the user or haptic device handle, hereafter Xuser, and
compare it with the wall boundary Xwall. If Xuser has penetrated
Xwall, the penetration distance is multiplied by a stiffness K
defining the force that pushes the user out of the wall
(Figure 4A, upper). However, we typically want to render very
stiff walls, while limitations of haptic device force output and
sampling rate create a result which is both squishy and unstable
(Gillespie and Cutkosky, 1996). As shown in Figure 4B,C,
increasing K makes a more rigid wall but at the cost of
unstable oscillations.

4.2.4 Virtual Coupling for Stiff Yet Stable Walls
An accepted technique for stably rendering stiff walls, virtual
coupling connects the haptic end-effector position Xuser to a point
representing it in the virtual world which we define as its avatar
(Xavatar, Salisbury and Srinivasan, 1997). A VC links Xuser to
Xavatar through a virtual damped-spring, as shown in Figure 4A,
lower). A stiff VC spring connects the operator more tightly to the
virtual model; they can feel more detail, but it can lead to
instabilities.

Thus, a VC’s parameters (stiffness and damping) need to
be tuned to model properties, such as virtual mass and

spring magnitudes, device force limits and anticipated
interaction velocities. When these are known and
constrained to a limited range, a VC can work very well.
The VC implementation in the hAPI interface library
enables users to change VC parameters (Gallacher and
Ding, 2017).

A virtual coupling is closely related to a proportional-
derivitive (PD) controller, perhaps the most basic form of
automatic control structure. The key goals in tuning either
system are to 1) set damping to the minimum needed for
stability, to limit energy dissipation and consequently
responsiveness; balanced with 2) sufficient stiffness to
achieve satisfactorily tight connection to the user’s motion.
System stability is also challenged when the mass of the
virtual entity to which the avatar is either bound or
touching is too small, or when the system’s update
(sampling) rate is slow compared to the dynamics of the
system (either the virtual system or the user’s movement)
(Shannon, 1949).

4.2.5 Wall Performance in Letter-Drawing Use Case
In Figure 5, we show the various mechanisms by which a
teacher can define and revise a shape which they want a
learner to trace (A–D). In (E), we show an example of a
learner exploring the tunnel defined by the letter outline,
including the haptic rendering performance of the virtual
coupling as a learner practice to write an m. The spring-
damper VC filters high frequency force variations and
creates smooth guidance as the user slides between and long
the walls; the forces keep them within the tunnel. The user’s
actual position sometimes goes outside the wall, but their avatar
remains within it and the learner feels restoring forces pulling
them back inside. Depending on velocity, the user position and
avatar may be slightly displaced even while within the wall, as
the user “pulls” the avatar along through the damped-spring
coupling.

FIGURE 4 | Rendering a haptic wall, using a virtual coupling to achieve both high stiffness and stability. (A) Algorithm schematic. (Upper) In the simplest rendering
method, force depends directly on the distance between the virtual wall and the user’s hand (haptic device) as it penetrates the wall: F � K (Xwall–Xuser). (Lower) A virtual
coupling establishes an avatar where Xuser would be if we could render a wall of infinite stiffness, and imposes a virtual damped-spring connection between Xuser and
Xavatar. (B) Force-displacement behaviour when the wall is rendered as a direct stiffness or through a virtual coupling. The VC used here also uses themaximum K �
10 N/cm, and achieves a similar stiffness as when this K value is used on its own. (C) Oscillatory behavior of the conditions from (B). In direct rendering, instability
increases with K, but with a VC, a high K is as stable as the softest direct-rendered wall. (B) and (C) show data sampled from a Haply device.
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To extend this example, a teacher could adjust the tunnel width (a
step amenable to parameterization) to customize the experience for the
learner. The activity can optionally be visualized graphically, or be done

entirely on paper. Learner progress can be quantified through statistics
of position error (distance between the physical and virtual avatars) and
the force magnitude generated in response to this error.

FIGURE 5 | A teacher prepares a handwriting activity by defining a letter shapem; the learner will then attempt to form the letter with assisting guidance. To create
the m, the teacher can (A) laser-print a computer-generated graphic on paper, (B) draw it by hand, or (C) manually draw it with haptic assistance. For erasable media,
e.g., pencil on paper or marker on whiteboard, the teacher can (D) erase and draw a new exercise. (E) Exploring the m with ink marks rendered as virtual walls.

FIGURE 6 | Use case: comparing the dynamic behavior of different spring–mass system configurations by drawing then feeling. (A) The user sketches a pair of
spring–mass systems using a system-readable notation. (B,E) Our system recognizes the user’s strokes and incorporates them into virtual models. The user can now
“connect” to one of the drawn masses by moving over it and e.g., clicking a user interface button. (C) Behavior when connected to the single-spring configuration (A).
The system implements the corresponding model (B) by pinning Xavatar to that mass. The user can then feel the oscillatory force behaviour by “pulling the mass
down”, extending and releasing the spring. (D) The user connects to the two-parallel-springs configuration, and compares its behavior (model E) to the first one. (F)
compared to (C) shows a higher force for the same displacement, and a different oscillatory behavior. This system is implemented using a passivity controller to allow a
wide range of M and K values, which are modifiable by hand-writing new values on the sketch.
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4.3 Level 2: Drawing and Feeling Dynamic
Systems
Our second example implements more challenging stroke
recognition, and addresses the situation where a virtual
coupling is inadequate because of the range of properties that
the user may need to access in their design and exploration. The
overall flow of the interaction is illustrated in Figure 2.

4.3.1 Use Case: a Mass-Spring System
Hook’s Law is a linchpin topic in high school physics: along with
gravity and friction, students learn about the relation between
applied force and the amount of displacement in springs and
other stretchable materials. They further must be able to define
what a spring constant is, how to compute a net constant
assembled through parallel and serial spring assemblies, and
with support from their teacher, conduct experiments to verify
spring-stiffness hypotheses (Giancoli, 2005). Here, we use a
dynamic system consisting of coupled mass and springs to
demonstrate the construction of and interaction with a
physical system model based on the PAL framework (Figure 6).

4.3.2 System Interprets the User’s Stroke
We used a 2D recognition library implemented in Processing (the
$1 Unistroke Recognizer (Wobbrock et al., 2007) to translate user
sketches into a virtual model. $1 is an instance-based nearest-
neighbor classifier with a 2-D Euclidean distance function. It can
accurately identify 16 simple gesture types, e.g., zigzag, circle,
rectangle. To improve performance and customize it to shapes
relevant to models our system supports, we created a database to
which learners can add their own labeled strokes. In the current
implementation, the system starts in a training mode where users
draw then type to label their sample; then exit training mode and
start designing their experiment.

Our current implementation is modal: it needs to know what
kind of a system a user is sketching in order to recognize theirmarks.
A zig-zag could represent a spring in a mechanical system, or a
resistor in an electrical circuit. This can be done bymanually writing
the system type’s name on the paper with the digital pen as shown by
Lopes et al., 2016—e.g., “Hydraulic lab” triggers a hydraulic
simulation. The Tesseract optical character recognizer (OCR)
system is one of many robust solutions (Kay, 2007). For
simplicity, we selected environments using a graphical user interface.

Reliance on a set notation for sketching has a potential as
usability feature or pitfall. If the notation is well known (e.g.,
taught in the curriculum), it gives the learner a pre-existing
language; versus unfamiliar, unmemorable or uncued (e.g., no
“tool-tips”). We did not focus on usability refinement at this
stage; ensuring it will be an important future step.

4.3.3 System Interprets User Strokes for Model
Construction and Parameter Assignment
Ease of environment specification and modification is an
important PAL principle. One way that users can specify
environment parameters is in the way they draw them. For a
mechanical system, a box indicates a mass; mass magnitude is
interpreted as the area within the box. Spring stiffness is assigned

based on the zigzag’s aspect ratio. Haptics can provide assistive
guidance to create more accurate drawings. Here, haptic
constraints help the user follow implicit geometrical
relationships such as relative locations and sizes, through
“snapping”; thus the user can perceive when they reach and
move beyond the width or length of the previously drawn spring.

Some parameters are harder to indicate graphically, or the user
may want to modify an initial value. This could be handled by
writing an equation: e.g., set the value of gravitational force with
g � 9.8 m/s2, or change a spring constant by K1 � 10 N/cm. As
before, recognition can be done with an OCR like Tesseract, a
possibility already demonstrated by at least one other system
(Lopes et al., 2016).

4.3.4 Unconstrained Experimentation Requires
Stepping Up the Control Law
Fluid exploration means that a learner should be able to observe
and feel an object’s behaviour and reason about it. This requires
changing object properties, comparing behaviour between
versions of a model and reflecting on the differences.

Above, we introduced the concept of an avatar as key to
rendering a wall through a virtual coupling. The avatar’s
existence was transparent to the user, its existence implicit in
their movement. But when we advance to interacting with multiple
dynamic systems—to compare them—users must get more explicit
with their avatar. To “hold on” to and interact with a part of a
virtual model, such as a tool or to probe part of a dynamic system,
they must hitch or pin their avatar to that model element, just as
they might when selecting a character in a virtual game.

The combined functionality of 1) pinning and unpinning one’s
avatar to arbitrary system elements, and 2) allowing
unconstrained parameter assignment, is a major departure
from how a model intended for haptic rendering is typically
constructed. Normally, we design an environment with particular
components, set its parameters to a pre-known range, and expect
the user to interact with it in a particular set of ways—always
connecting through a particular avatar linkage. For example, in a
surgical simulation, we might have a defined set of tools, and
known tissue parameters. Bone and liver have very different
properties, and rendering them might be highly complex and
computationally expensive, but their properties are known in
advance. We can tune a controller (such as a VC) to work with
those constrained conditions.

This is no longer the case if parameters can be changed
arbitrarily and on the fly, and as usual, the result will be
instability. Commonly, several factors can cause instability, such
as quantization, delays, and virtual object properties like stiffness
and mass. We address this next with the passivity controller.

4.4 Level 3: Expanding the Range of
Parameter Exploration Through Passivity
Control
To move beyond the simple tuning heuristics above, we reference
the notion of passivity. A real-world, nonvirtual system like a
wood tabletop or mechanical button or doorknob is energetically
passive—it will never vibrate unstably when we touch, tap or
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wiggle it because such oscillations require additional energy
which they cannot access. The only energy flowing into the
interaction comes from our own hand. At best, we can excite
a mechanical resonance (e.g., by bouncing a rubber ball, or
pumping our legs on a swingset), but this cannot grow in an
unlimited way because of the lack of an external energy source.

In contrast, a haptic display is energetically active: it accesses
an external energy source through its controller. This is necessary
for the system to physically simulate a VE’s dynamics. However,
instability—often manifested as vibrations that grow without
bounds, or unnaturally “buzz” upon operator contact—occur
when the total energy entering the system from the human
operator and the controller’s commands is greater than the
energy leaving it.

Passivity theory underlies a type of controller which can be
designed so as to guarantee stability in systems interacting with
humans (Colgate and Brown, 1994; Colgate and Schenkel, 1997;
Miller et al., 2004). In essence, passivity controllers bound system
movements based on the flow of energy flow through the system:
they guarantee overall system passivity by ensuring that the
energy input exceeds outputs. It also can achieve global
stability through local passivity in subsystems separately. As a
result, if we know that other parts of the virtual model and
physical device are operating in a passive range, we can focus on
the subsystem that the (less predictable) user is interacting with.

4.4.1 Passivity Controller Overview and Design
We designed our passivity controller (PC) with the method
described by Hannaford and Ryu (2002). In overview
(Figure 7), the PC is interposed in series between the haptic
interface and VE. This location is similar to the virtual coupling
controller, and like the VC, the PC works by acting as a virtual
dissipative element; the PC differs from a VC through its more
targeted energetic accounting system.

The human operator interacts physically with the haptic
device in continuous time; however, since the control system
is digitally sampled, the VE is computed with a time delay
typically specified at 1/10 of the fastest dynamics in the
system. The human operator is conceptualized as an
admittance—a source of flows (i.e., movement), and sink of
efforts (i.e., forces)—and the VE as an impedance—a source of
efforts and sink of flows.

At the heart of the passivity controller is α, which is in turn
based on the Passivity Observer (PO). The PO, also known as the

parameter Eobsv, computes the total energy observed in the system
at a given moment as:

Eobsv(n) � ΔT∑
n

k�0
f(k)v(k) (1)

where ΔT is the sampling time, (f) and (v) are effort and flow
(force and velocity) of the 1 port network at time step n.
Specifically, f1 and v1 are effort and flow for the haptic display,
while f2 and v2 are for the force computed from the VE
computation.

When Eobsv(n) is negative, the system in losing energy; for
positive values it is generating energy. We compute α as:

α(n) � −Eobsv(n)/ΔTv2(n)2, if Eobsv < 0.
0, otherwise.

{ (2)

After the VE model is updated, its subsystem forces are
recalculated, then passed through α before being passed as
commands to the haptic display’s actuators. f1, the haptic
display command force, is computed as the VE force plus the
passivity control component (which is acting to siphon excess
energy out of the system).

f1(n) � f2(n) + α(n)v2(n) (3)

In this implementation

• If the amount of force exceeds the motor force saturation,
we subtract the excess amount and add it to the next
time step,

• If the user spends significant time in a mode where the PC is
active (dissipating considerable energy to maintain
stability), energy will accumulate and the PC will not
transmit actuation forces until the user has backed away
from the dissipation-requiring usage, allowing the PC to
discharge. In practice, we reset the PO’s energy
accumulation to zero every 5 s, scenario-tunable scenario
or adapted automatically.

4.4.2 Passivity Controller Performance
4.4.2.1 Example 1: Large-Load Coupling
In our first assessment, we examine the performance of our
passivity controller for a simple scenario in which the user’s
position (Xavatar) is “pinned” to a virtual mass as if holding it in
their hand. We evaluate performance with two load levels and
show how the PCr performs on a large-load coupling.

Virtual Coupling, M � 1X Figure 8A shows the displacement
(upper) and energy output (lower) of the virtual coupling system
of Section 4.2.3, i.e., without the PCr. The VC parameters are
optimized for this system. Thus, when the user (Xuser) moves
2 cm, Xavatar follows smoothly with no overshoot, achieving
steady-state by 150ms. The maximum kinetic energy of PC
can potentially reduce performance in a normal case where it
is not needed, as it may siphon off system energy even when not
necessary, being a conservative approach. Therefore for cases
close to the system parameters for which the VC was originally
tuned, we switch it off.

FIGURE 7 | Simulation model of a complete haptic interface system and
passivity controller, as implemented here. [Reproduced from Hannaford and
Ryu (2002), Figure 8—permission not obtained for review manuscript].
System blocks are (left to right): user, haptic display, passivity controller
α, and virtual environment.
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Virtual Coupling, M � 20X To understand the effect of
changing the virtual avatar properties, we investigate a
scenario of increasing the mass of the virtual free body being
interacted with by 20. Figure 8B shows how the system oscillates
following the same user movement. Although the oscillation is
bounded by physical damping from the user’s hand, it can
become unstable if the user releases the handle. The system
kinetic energy peaks at 4.5Ncm then gradually decreases.

Passivity Control, M � 20X In Figure 8C, with the PC active
with a large mass, the system overshoots by 44% but converges
within 200ms to the desired displacement. System energy peaks
at 2.7Ncm and decreases more quickly than in the VC case for the
same mass (B).

4.4.2.2 Example 2: User Interacts With a Virtual Mass-Spring
System
The previous example showed how PC can handle a large change
in the system’s virtual mass; how does it do with comparable
changes in rendered stiffness as well as the same 20X mass range?

We implement the system as illustrated in Figure 6, where a
user draws a mass attached to a spring.

Here, Figure 6B shows a graphical representation of the
recognized mode. Our system recognize a zigzag stroke as a
spring and rectangle as a mass, and their connection on the sketch
as a kinematic connection between them. The experience is
similar to pulling on a real spring: force increases as one pulls
further. Figure 6B shows the interaction result: as the user pulls
down on the spring (change in Xuser) by around 3 cm and then
“drops” the force—i.e., stops resisting the haptic display’s applied

force—the system applies up to 1.27N of force to restore Xuser to
its starting position. The system exhibits a damped oscillation,
with two sources: 1) the user’s hand and 2) frictions in the haptic
display. Here, this is desired behavior faithful to the virtual system
dynamics in interaction with the user’s hand damping, not a
controller instability.

The graphical representation could optionally be displayed to
the user to confirm recognition, and animated as they interact.
Drawing and animating could implemented on a co-located tablet
screen under the haptic display. In future we plan to investigate
impacts of employing the user’s original strokes versus changing
them with a cleaner graphical representation, and of animating
the diagrams.

The second row in Figure 6 shows the user placing two
springs in parallel. The learning concept is that springs in
parallel sum to a greater combined stiffness than in series,
and the operator should feel a tighter (stiffer) connection. In
comparision the previous example, the user should perceive a
difference in force for the same displacement: the system
supplies up to 2.3 N force to the user’s hand for a similar
displacement to the single-spring case. As these results show,
this system remains stable under passivity control for a doubling
of total stiffness in combination with an already-large virtual
mass. This mass-spring example can trivially be extended to
include a damper (dissipative element). This is energetically less
demanding—a virtual damper does not store energy. In general
increasing virtual damping (assuming adequate sampling)
reduces susceptibility to large impedance variation (Haddadi
et al., 2015).

FIGURE 8 | Abrupt movements of varying loads. The position, i.e., Xavatar as it tracks Xuser (upper) and kinetic energy (lower) of the load for (A) the original avatar
25 Gram; (B) for the avatar with 20 times more mass than the original avatar without the passivity controller, and (C) with the passivity controller.
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5 DISCUSSION

We examine this work’s contributions, and discuss how the PAL
approach can be validated and extended.

5.1 The Physically Assisted Learning
Framework, Guidance and Exposed Needs
We drew on general theories of experiential learning to
propose a framework that to help haptic and educational
experts work together to leverage physical intuition in an
effective learning process. This endeavor needs support:
learning technology is notoriously hard to evaluate for
efficacy, and get feedback on what is helpful. Despite
evidence for the role of physical intuition and embodiment
in effective learning, we know far less about how to saliently
recreate it in digital contexts. Thus, rather than trying to show
directly that haptic feedback helps learning, we built on a
proven approach in first 1) accepting that designing and
exploring are powerful supports to learning, then 2) seeing
how haptic environments can make these activities more
powerful than without them.

5.1.1 Metrics
While we have not yet evaluated our technical demonstrations
with students, we will in future choose metrics (as per PAL-
inspired goals) to highlight how the activities can be more fluid,
engaging, focused, intuitive and insightful than without haptics.

5.1.2 Guidelines for Physically Assisted
Learning-Inspired Systems
In applying PAL principles we exposed some key requirements.
We made progress in translating these to technical challenges,
some of which can be addressed with current state-of-art
techniques, and others where we need to further innovate.
Here we summarize these, noting that while we have identified
one pathway to implement them here (Section 5.2), we hope that
others will find more.

1) Let learners design their own worlds: PAL (and experiential
learning theory generally) indicates that we should lower
friction in letting learners (or in some case their teachers)
build their environments. This is an old idea—Scratch and its
ilk have born rich fruit—but we need this for environments
amenable to haptic display for the purpose of accessing
physical tuition.

2) Let learners explore, iterate and compare those worlds with
physical feedback: Exploration should be informative, flexible
and fun. Haptic feedback needs to be clear enough to support
insights; it must be possible to jump around easily within an
environment and try different things; and the whole process
should flow, show insights that might not be otherwise
available, surprise and delight. This entails a certain quality
of haptic display, and curation of environments (e.g.,
mechanical systems, electrical, hydraulic, chemistry) that
while offering broad scope, also guide the learner on a
rewarding path.

3) Moving between designing and exploring and back should be
fluid: When experiential learning is working as it should,
learners will generate more questions as they explore, and
want to go back, re-design, compare and ask again. If they
have to change modalities or undergo a laborious process to
alter the environment or compare different examples, this
cycle will be inhibited. We wonder if it is worth trying to stay
(graphically) on paper while the digital world plays out
through the haptic device, for immersion, focus and the
intuitiveness of physical drawing; instead of fussing with
a GUI.

5.1.3 Support a Broad Space for Experimentation
Instability is a continual risk for haptic force feedback systems,
and could quickly turn anyone off as well as obscuring
recognizable physical insights. Tightly restricting the
explorable parameter space is an unacceptable solution, since
it likewise limits the kinds of experiments to be conducted.
Passivity control is one approach to a broader range than the
methods currently available to novice hapticians via libraries.

5.2 Technical Proof-of-Concept
In the scope of this paper, we have demonstrated at least one full
technical pathway for a system that allows a user to design a
haptically enabled system by sketching it on paper while adhering
to some basic conventions, then interact with that system
haptically—and stably—without changing mode or context
across a parameter range of which is larger than typically
supported in haptic environments. Its and-stroke recognition
supports low-friction designing, so users can informally sketch
ideas, even alter them. For exploring,we identified the inadequacy
of the conventional rendering method of virtual coupling given
the range of system parameters we need to support, and showed
how a more specialized controller (based on passivity theory)
could take it to this needed level. We encourage curators of haptic
libraries to include passivity control support.

5.3 Generalizing to Other Physics
Environments: A Bond Graph-Inspired
Approach
Our examples demonstrate the ability of a passivity controller to
bound a system’s energy and prevent instability across a broad
range of simulated system parameters. We did this based on a
basic mechanical dynamic system, a mass oscillating with
different spring combinations. This step can be translated with
relative ease to other systems of interest in science learning.

Bond Graph theory (Paynter, 1960; Karnopp et al., 1990)
relates physical domains (e.g., mechanics, electronics, hydraulics)
based on energetic concepts of efforts and flows. This
commonality is a means to connect domains, but also
translate ideas between them. For our purposes, a physical
model developed to represent a mechanical system can be
translated with relative ease to an electrical domain.

Bond graphs hold threefold value here. First, technically we
can exploit its analogies and representation to translate models
and their support to other physical domains. Comparable
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properties will be relevant. In Bond graphs, springs (mechanical)
and capacitors (electrical) are analogs, both idealized to store
energy in the same way, as are mass and inductance, dampers and
resistors. Table 2, drawn from Borutzky (2011), includes a full list
of Bond domain analogies.

Second, these analogs provide a language and convention by
which to render physical properties haptically: e.g., effort, flow,
resistance and inertance can be developed once and re-used in
their relation to one another. It simplifies implementation in new
domains.

Thirdly and most interesting pedagogically, these analogs are a
powerful way to grasp and generalize fundamental relationships
in physical systems. The haptic representation will reinforce this
Bond-centered generalization, helping learners to transfer their
growing knowledge across domains: once they have mastered
how the relations between current, voltage, compliance and
resistance work in the electrical domain, they should be able
to quickly apply them to kinetic or hydraulic systems. It is often
the case that a learner feels more comfortable in one domain; they
can use this “home” grounding to support their understanding
elsewhere.

5.4 Future Work: The Path Forward
The progress in this paper documents technical feasibility for a
basic implementation of a pen-and-paper interaction approach to
interactive, self-driven, exploration-centered physical simulation
for the sake of learning and gaining physical insight about ideas.
Much work remains before we can claim that the concept is ready
for roll-out to students and teachers, far less a typical public high
school classroom. We lay out some foreseeable next steps.

5.4.1 Validating the PAL Framework: Establishing
Impact on Learning
With a theoretically-grounded framework articulated and
technical feasibility demonstrated, the next step is to begin
confirming the manner and degree to which it actually
supports learning. Validating this framework will require a
series of focused studies that empirically evaluate the added
value of physicality in design and explore learning phases as
well as fluidity in the transition between them. These studies
also need to consider factors such as engagement, ownership of
knowledge, self-efficacy, self-confidence, and self-paced learning.

One important investigation is the impact of the specific haptic
platform: different characteristics (e.g., workspace size, type of
grasp, whether they can write as well as feel, ability to propel
themselves autonomously, the nature and magnitude of force
feedback they can provide) suit them to different usages and
learning-environment implementations. Understanding this is

the path to generalizing the PAL frameworkt. Meanwhile, PAL
itself provides a structure within which we can identify and
respond to the advantages and shortcomings of each device as
we seek to support specific learning activities.

5.4.2 Basic Access
First and foremost, building haptic worlds and even accessing
them interactively requires considerable expertise and
infrastructure. Haptic technology is anything but accessible,
and this barrier will need to be breached. As for any
educational technology, the principle barriers will be in cost,
robustness, versatility and usability or expertise.

Low-cost Robust and Highly Portable Technology Lower-cost
grounded force feedback devices are becoming more common,
but the Haply still costs $300 USD, has a small workspace and is
not quite tough enough for a school environment. However,
Maker culture has starkly lowered barriers for innovation in this
space. With use cases established, we expect to see new GFF
device formats be commercialized and toughened. For the ideas
described here to succeed, the technology will need to become a
commonplace tool. It needs to become a highly portable form
factor like a pen or stylus type—such as envisioned in Kianzad
et al., 2020.

Versatility There will be myriad ways to use physical
interaction in a form factor that one can carry around,
perhaps first like the nerdly calculator of the 80 s then
becoming more ubiquitously useful as a haptically augmented
smartphone stylus.

Usability and Expertise We have called here for lowering
friction and barriers to entry for end-users. This also needs to
become more true for system designers, allowing them to
participate in development from their home discipline and
without engineering expertise—e.g., education experts. Input
methods, library construction, support groups and other
aspects of development ecosystems will move us in this direction.

Eventually, Logistical Deployment with Kids Classrooms are
challenging environments. The first point of contact may be
science centers and tutoring centers, and potentially on to
personal devices (like student calculators) rather than school-
supplied technology.

5.4.3 Enhanced Usability, Fluidity and Function
We have described many possible variations and augmentations
to a basic implementation, all of which can be explored to
discover optimality from logistic and pedagogical standpoints,
and inform the direction of further technology development. To
name a few (and going beyond innovation in the haptic
technology itself):

TABLE 2 | Analogy between some conventional physical domains, reproduced from Borutzky (2011).

Domain Flow Effort Compliance Resistance Inertance

Electric Current Voltage Capacitor Resistor Inductor
Kinetic translation Velocity Force Spring Damper Mass
Kinetic rotational Angular Velocity Torque Torsional Spring Damper Inertia
Hydraulic Flow rate Pressure Chamber Valve Fluid inertia
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• CAD-type sketching support at the design stage
• More advanced sketch-recognition functions, e.g., setting
and modifying simulation parameter values by [re]writing
them on paper

• Generating more extensive simulation environments, in
multiple domains (e.g., Bond graph extensions)

• Utilizing more sophisticated haptic rendering algorithms as
we encounter limits

• Finding good haptic representations for abstract fields such
as maths

• Libraries to support educators setting up “design
sandboxes”

5.4.4 More Deeply Understanding how Variations Can
Maximize Pedagogic Value
Several topics will merit especially deep dives, including
longitudinal evaluation; we mention two here.

Paper vs. Digital Boundaries When should the system stay
entirely paper-based, and when move between graphical and
paper—what are the value and limitations of each modality in
the situation where for the first time we have a choice about it?

Supporting CollaborationHow do we best exploit the power of
collaborative learning, allowing students to share ideas with peers
and jointly work out problems? This sketch-based approach
paired with personal or shared haptic devices could be
extended to remote learning scenarios with the use of
touchscreen tablets. We anticipate that haptic feedback can
provide a new vocabulary through which students can
communicate.

6 CONCLUSION

A long-awaited promise of ubiquitous computing (Weiser, 1991)
is natural access to computational power where and when we
need it. Yet, for the most part we remain tied to a small screen and
a keyboard or tablet, with constrained space to work, keystroke

input, a single viewport with many distractions, and interaction
generally on the terms of the device.

In this paper we proposed an approach to support multimodal
learning with potential benefits to embodied learning and
thinking. It includes a framework drawn from validated
theories of experiential learning translated to the physical
domain to guide system designers in creating educational
systems focused on designing and exploring; underscoring of
the importance of fluid, same-modality movement between
these learning phases; demonstrations of the technical
feasibility of implementing both idea capture and physical
rendering in a pen-and-paper environment; and guidelines
and assessment of how to move such a vision forward. We
demonstrated these ideas on a fixed small-workspace device,
but untethered, infinite workspace grounded force feedback
has been prototyped and could be commercially viable given
demand.

The present work points to a path away from tethered,
disembodied interaction, examining ways to harness the
natural fluidity and ease of pen-and-paper interactions and
connect them to powerful digital simulation for the purpose of
simulation, gaining physical, embodied insight, problem solving
and thinking with our sense of touch as well as our heads and
eyes. A graphical viewport is not always needed when we have our
imagination, a sketchpad and hands to feel.
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Personalizing HRI in Musical
Instrument Practicing: The Influence
of Robot Roles (Evaluative Versus
Nonevaluative) on the Child’s
Motivation for Children in Different
Learning Stages
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1Department of Industrial Design, Eindhoven University of Technology, Eindhoven, Netherlands, 2Human-Technology Interaction,
Department of Industrial Engineering and Innovation Sciences, Eindhoven University of Technology, Eindhoven, Netherlands

Learning to play a musical instrument involves skill learning and requires long-term
practicing to reach expert levels. Research has already proven that the assistance of a
robot can improve children’s motivation and performance during practice. In an earlier
study, we showed that the specific role (evaluative role versus nonevaluative role) the robot
plays can determine children’s motivation and performance. In the current study, we argue
that the role of the robot has to be different for children in different learning stages (musical
instrument expertise levels). Therefore, this study investigated whether children in different
learning stages would have higher motivation when assisted by a robot in different
supporting roles (i.e., evaluative role versus nonevaluative role). We conducted an
empirical study in a real practice room of a music school with 31 children who were at
different learning stages (i.e., beginners, developing players, and advanced players). In this
study, every child practiced for three sessions: practicing alone, assisted by the evaluative
robot, or assisted by the nonevaluative robot (in a random order). Wemeasured motivation
by using a questionnaire and analyzing video data. Results showed a significant interaction
between condition (i.e., alone, evaluative robot, and nonevaluative robot) and learning
stage groups indicating that children in different learning stage groups had different levels
of motivation when practicing alone or with an evaluative or nonevaluative robot. More
specifically, beginners had higher persistence when practicing with the nonevaluative
robot, while advanced players expressed higher motivation after practicing with a robot
than alone, but no difference was found between the two robot roles. Exploratory results
also indicated that gender might have an interaction effect with the robot roles on child’s
motivation in music practice with social robots. This study offers more insight into the child-
robot interaction and robot role design in musical instrument learning. Specifically, our
findings shed light on personalization in HRI, that is, from adapting the role of the robot to
the characteristics and the development level of the user.

Keywords: child–robot interaction, robots in music education, motivation for musical instrument practicing, robots
for personalized education, robot roles, learning stages
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1 INTRODUCTION

Musical instrument learning appears to have collateral cognitive
benefits (Hassler et al., 1985; Anvari et al., 2002; Hietolahti-
Ansten and Kalliopuska, 1990). Compared with passively
listening to music, the strongest benefits were reported to
come from active music listening and music training
(Rauscher and Hinton, 2006). For example, singing, learning
to play a musical instrument, and recognizing and keeping
pitches and beat could improve learner’s cognitive functions
better than passive listening (Bernhard, 2002; Jausovec and
Pahor, 2017). Due to the acquisition of a complex set of
motor, sensory, and cognitive skills that learning a musical
instrument requires (Lehmann et al., 2007) for beginners, it
typically takes years to become skilled performers. Meanwhile,
Ericsson et al. (1993) argue that the amount of deliberate practice
is the major distinction between successful and unsuccessful
learners through the long-term instrument learning process to
reach a high-level achievement (Lehmann and Ericsson, 1997).
Practicing at home is an important part of the instrument
learning process for children (Hallam, 1998),but it is not an
enjoyable activity for most children. It is crucial for teachers and
parents to understand the significance of motivation in
instrument learning, which is also a skill development process
(Woody, 2004).

Besides practicing repeatedly, social factors also play an
important role in the success of young children’s music
lessons. Previous literature indicates that young children
depend dominantly on extrinsic motivation (Zdzinski, 1996),
and, for example, peer support and peer tutoring can motivate
the learner to engage in practicing music vigorously (Burnard,
2002), parental involvement is also a key factor that influences
young children’s persistence and achievement in instrument
learning (Creech and Hallam, 2003; Moore et al., 2003). With
the rapid development of social robots and the benefits of using
robots in different educational contexts (Brown and Howard,
2014; Shiomi et al., 2015; Kennedy et al., 2016), social robots
could also be used to provide social support to motivate children
in instrument learning. And the main aim of using social robots
in education is mainly to arouse children’s motivation and
improve the outcome of learning.

Earlier research suggested that the presence of the robot
influences children’s motivation and performance for learning
activities (Riether et al., 2012). This can be explained by social
facilitation theory (Triplett, 1898). More specifically, social
facilitation theory (confirmed by earlier research, see, e.g.,
Zajonc (1965)) describes that people perform better at well-
trained tasks when audience is present, while on new and
complex tasks, people perform worse when they know they
are being observed by other people (and robots) (Riether
et al., 2012). In addition, several studies suggested that
evaluation apprehension may be a necessary condition for
producing social facilitation effects (e.g., Cottrell et al. (1968);
Jones and Gerard (1967)), Sasfy also suggested that social
facilitation only works under the condition of people trusting
the audience to have the potential to evaluate (Sasfy and Okun,
1974). So it might not simply be the presence of a robot, but rather

the role that it has in the social interaction that determines a user’s
response to the robot. That is, when a robot is present in an
interaction as an evaluator of the user’s behavior, the user’s
performance might be influenced. In general, earlier research
has already deployed the role of robots as a tutor (Kennedy et al.,
2016), a peer (Balkibekov et al., 2016; Park et al., 2017), a learner
(Sandygulova et al., 2020; Hood et al., 2015), or a mediator of the
interaction (Barakova et al., 2015).

Confirming the importance of the robot’s role in stimulating
music practice, in an earlier study (Song et al., 2020), we designed
two robot roles (i.e., evaluative role and nonevaluative role) as
companions for children’s music practice and tested the influence
of practicing while being assisted by a robot with one of the two
roles on children’s motivation and performance (Song et al.,
2021). Results showed that children were more motivated and
performed better with the nonevaluative robot.

However, as described above, social facilitation theory
(Triplett, 1898) shows that for new and complex tasks, being
observed by an evaluator might be detrimental for performance
and motivation, but for well-trained tasks, being observed by an
evaluator has positive effects on performance and motivation.

Especially in the domain of instrument learning, such
evaluation seems important. That is, in the domain of
instrument learning, a person’s self-concept (a person’s
perception of themselves, see, Greenberg (1970)) may be more
crucial than in other domains (Marsh et al., 2003). A person’s self-
concept is generated from an early age and more personalized
when the person grows older (Marsh et al., 1991), which indicates
that a learner’s self-concept differs in different learning stages.
And this perception can become more positive because of the
evaluations from others or comparison with others (Greenberg,
1970; Bong and Clark, 1999; Lamont, 2011).

Still, in the domain of human-robot interaction, the effect of
how evaluative a robot role is for children in different learning
stages has not been established yet. Therefore, in the current
study, we investigated whether children in different learning
stages would have higher motivation when assisted by a robot
in a different supporting role (i.e., evaluative role versus
nonevaluative role). We conducted an empirical study in a
real practice room of a music school with 31 children who
were at different learning stages (i.e., beginners, developing
players, and advanced players). In this study, every child
practiced for three sessions, practicing alone, assisted by the
evaluative robot, or assisted by the nonevaluative robot (in
random order). We measured motivation by using a
questionnaire and analyzing video data. We expected that
children in different learning stages would have higher
motivation with different robot roles (i.e., evaluative role
versus nonevaluative role).

2 RELATED WORK

2.1 Musical Instrument Learning and
Self-Regulation
From 1920s, researchers already started investigating the
nonmusical benefits of musical training (Earhart, 1920; Hassler
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et al., 1985; Hietolahti-Ansten and Kalliopuska, 1990; Anvari
et al., 2002). Additionally, as a skill learning activity, instrument
learning requires amounts of practice through a combination of
sensory input and output. The quantity and quality of practice
have been one of the most important focuses in instrument
learning, as well as collaborative music performance; evidence
showed that it takes over 10 years for experts to train their skills to
the level of a master (Ericsson et al., 1993; Williamon and
Valentine, 2000; Thresher, 1964). Lehmann and Ericsson
(1997) also pointed out, compared to unsuccessful learners,
successful musicians put more effort into deliberate practice,
which is one of the main reasons they reached a higher level.
Practice has always played an important role in children’s
instrument learning; however, it is not enjoyable especially for
young children (Hallam, 1998). In this case, parental involvement
becomes quite important in children’s persistence and
achievement in instrument learning (Creech and Hallam,
2003; Moore et al., 2003). Nevertheless, with the increase of
practice time, involvement of parents could exert pressure on
children. And with time, it could eventually bring tense to the
relationship between parents and their children.

In the development of children’s instrument learning, their
practice habits in different learning stages are varied; proper
habits take years to develop. The result from a study by
McPherson and Renwick (2001) showed that playing a music
piece from the beginning to the end is one of the practicing
strategies that most of the beginners applied. Parncutt and
McPherson (2002) considered this as the lack of awareness of
the mistakes they make, since beginners normally do not have the
ability to identify and correct their own mistakes. After
investigating the practice habits of musicians and learners,
researchers have also paid attention to the myriad factors
implicated in musical learning, especially in musical
instrument practicing, which offered a crucial backdrop for
self-regulation research in instrument learning context. Started
with McPherson and his colleagues from the 1990s, researchers
started to investigate the educational construct which was known
as self-regulation. According to Zimmerman’s sociocognitive
model of self-regulation, personal perceptions, efficacy, and
environmental conditions are involved in self-regulated
learning (SRL) (Zimmerman, 1989), which indicated that a
social context or an environment is an important part of
students’ SRL. However, as a self-regulated activity, few
researchers have applied self-regulation for social robot design
in musical instrument learning. And self-regulated learning is
related to the expertise level (Varela et al., 2016); we chose to
focus on children’s learning stages in this study.

2.2 Motivation in Instrument Learning
Since social support is a key component in self-regulated learning
and practicing is an important but not enjoyable part of the
instrument learning process for children (Hallam, 1998), keeping
children motivated during instrument learning seems important
for teachers and parents. Self-determination theory has mainly
been used to explain motivation in instrument learning (Renwick
and Reeve, 2012; MacIntyre et al., 2018). This theory proposes
that people have three core psychological needs, which are

autonomy, competence, and relatedness. These psychological
needs will be satisfied to different levels (Deci and Ryan, 2000;
Ryan and Deci, 2000). Furthermore, as a crucial factor that can
influence motivation to participate in learning activities, a
student’s self-concept has found to be stronger in music than
in other domains (Marsh et al., 2003), which means in order to
maintain the motivation to persist in instrument learning, a
strong music self-concept is a crucial component for it.
However, as children age, these beliefs tend to change.
Younger students are more inclined to have positive
achievement beliefs. As they grow older, they tend to become
more realistic about how successful they will be (Wigfield et al.,
1997). This could be explained by children’s development of self-
concept and the evaluation or feedback from others (Ireson and
Hallam, 2009). Hence, it is intriguing to study the influence of
evaluation on learners in different learning stages with different
levels of self-concept.

2.3 Social Robot for Educational Use
As promising tools in education, educational robots are becoming
a popular research topic, since there are proof that showed using a
robot in the educational context could improve teachers’
effectiveness and students’ learning motivation. (Johnson et al.,
2003; Papert, 1993). With the rapid development of technology
and social robotics research, a lot of challenges researchers faced
had already been solved or can be taken care of soon. For instance,
in instrument learning, with the combination of sensors and
cameras in a robot or other devices, the robot should be able to
detect and correct wrong postures. There is also a well-developed
system that we can build in the robot to detect the mistakes and
evaluate the pitch and tempo of the performance (Asahi et al.,
2018). We believe that student’s musicality can be developed well
with more accurate judgements and individual strategies from the

FIGURE 1 | The SocibotMini robot used in the current study.
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robot. We also envisioned the role of robot in children’s
instrumental learning mainly as a companion, which is able to
provide professional help and social support in children’s daily
practice with the capability of 24/7 availability, flawless memory,
mistake detection, big data, professional music knowledge,
different teaching strategies, and so on. In the future, the
robot could also be used to provide music teachers help in the
music lessons to offer each child suitable learning experience.
Research has found that interacting with a tangible robot resulted
in more engagement than interacting with a video (Xie et al.,
2008). Various educational scenarios have been employed with a
social robot, including knowledge learning [e.g., math (Brown
and Howard, 2014), science (Shiomi et al., 2015)] and skills
learning [e.g., music (Han et al., 2009) and language (Nielsen
et al., 2008)].

In educational scenarios, the roles of robots have also been
explored. The robot can be deployed as a tutor (Kennedy et al.,
2016), a peer (Balkibekov et al., 2016; Park et al., 2017), a learner
(Sandygulova et al., 2020; Hood et al., 2015), or a mediator of the
interaction (Barakova et al., 2015). By implementing the social
facilitation theory and the evaluation apprehension theory, in the
previous study (Song et al., 2020), we developed two roles
(i.e., evaluative role and nonevaluative role) in the context of
musical instrument practice by using SocibotMini (see Figure 1),
which is also the robot we used in the current study, a robot with a
projected face that provides rich human-like expressions. In the
previous study, we performed the evaluation of those two roles in
a real practice room at the music school. The study concluded
that the designed evaluative and nonevaluative role of the social
robot was convincing and matched children’s cognitive
expectations in the music practicing context (Song et al., 2020).

2.4 Research Questions and Hypotheses
To figure out the impact of robot roles (i.e., evaluative role and
nonevaluative role) on the motivation of children in different
learning stages, we proposed the following:

• Research Question: Can different robot roles (i.e., evaluative
role and nonevaluative role) affect the motivation of
children in different learning stages differently in
instrument practice?

• Hypothesis: We expect to find an interaction between the
learning stage and robot condition (i.e., alone vs evaluative
role vs nonevaluative role) on children’s motivation in
instrument practice.

Furthermore, we will explore whether other factors influence
the impact of different robot roles on children’s motivation in
instrument practice.

3 METHOD

3.1 Research Context and Participants
This study was conducted at a common piano practicing room of
a music school (Centrum voor de Kunsten Eindhoven, CKE) in
the Netherlands. We chose the piano because the piano is one of

the most popular musical instruments with children. In addition,
it is quite easily possible to match the difficulty level of a new
melody with the music learning level of a child, and also because
of practical reasons (e.g., number of available potential
participants at the local music school).

Two rooms were used for the experiment: an experiment room
(see Figure 2A) for the participants to practice and interact with
the robot and a control room (see Figure 2B) for the researcher to
observe the process and control the robot. Two cameras (camera
A and camera B) were set up in the experiment room before the
experiment started. In the control room (see Figure 2B),
researchers and parents could watch the child and the robot in
the experiment room via the monitor which showed the view of
camera B. We used the Wizard of Oz method to ensure situation-
specific utterances of the robot. Researcher A in the control room
monitored the experiment on laptop A (with the view of camera
A in the practicing room) and the monitor (showing the view of
camera B in the practicing room) to control the robot through
laptop B. Camera A recorded the whole practicing session of
each child.

The participants were 31 children (N � 31) aged from nine to
12 years old who were taking piano lessons in the music school.
The learning stage of children, which indicates their level of
expertise, ranged from 2 months to 5.5 years. Children were
divided into three different learning stage groups based on the
suggestion from piano teachers, which are beginners (had learned
piano for less than 2 years, n � 11), developing players (had
learned piano for two to 4 years, n � 10), and advanced players
(had learned piano for more than 4 years, n � 10). The number of
girls (n � 15) was approximately equal to that of boys (n � 16).

3.2 Robot Roles
We employed the two robot roles that we designed and evaluated
in the previous study (Song et al., 2020). The evaluative role of the
current study used “forceful and concrete language, providing
praise on effort, with a slow and steady pitch, and a calm facial
expression, focusing on the practice, move little, and dress
formally (i.e., shirt)” (Song et al., 2020). In contrast, the robot
in the nonevaluative role used “indirect and abstract language,
provided praise on talent, with a quick and active pitch, and a
funny facial expression, moved a lot, and dressed informally
(i.e., striped sweater)” (Song et al., 2020). In the previous study,
the interaction scripts for each role of the robot included 36
behaviors (Song et al., 2020). In the current study, children
needed to practice two melodies in each session. To measure
the performance data correctly, it is better if children can keep
practicing one melody first and then change to the other one. In
this case, we designed six new behaviors for the robot to indicate
the melody the children should practice during practicing
sessions. We also deleted some behaviors that were proved not
suitable in the practicing context to simplify the interaction, but
still kept the robot roles clear enough. In total, there were 30
behaviors of the robot adapted and designed (see Table 1).

In addition, for the purpose of eliminating the ‘novel effect’ of
practicing with a social robot, each child went through an
introduction session with a robot, which has a neutral role.
Twelve behaviors of the robot (i.e., a robot introduces itself
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and introduces the practicing task generally) were employed here
in the introduction session to generate a fluent conversation (see
Table 1).

3.3 Measures
We adapted and combined three subscales (i.e., autonomy,
delight, and stress) from the FunQ questionnaire (Tisza and
Markopoulos, 2021) and three questions from The Situational
Motivation Scale (SIMS; Guay et al. (2000)) to measure the
children’s motivation (see Table 2). The combined
questionnaire consisted of four dimensions of motivation:
autonomy, delight, stress, and interest. The FunQ
questionnaire was developed to measure the fun value of a
learning activity with adolescents around 12 year old, which is
positively correlated with engagement (Iten and Petko, 2016;
Rambli et al., 2013). We took the autonomy, delight, and stress
dimensions from it as indicators of motivation. As for the interest

dimension of the questionnaire, the questions in this dimension
were adapted from the SIMS, in which questions were not
included in the three dimensions mentioned before. Since the
SIMS was not designed for children, based on the findings of
Mellor and Moore (Mellor and Moore, 2014), the questions were
changed into 5-point Likert questions and made easier by
simplifying the language to the level of the children. Each
dimension had three questions. Some questions had to be
reverse coded: one question for the autonomy dimension and
all three questions in the stress dimension were reversed
questions that needed to be analyzed oppositely (Table 2).
The motivation was also measured with observation data from
the videos from camera A in Figure 2A.

3.4 Procedure
The participants were invited to the study through emails, and
teachers fromCKE helped us by sending the emails to the parents.

FIGURE 2 | Top view illustration of the experiment room (A) and the control room (B).

TABLE 1 | Numbers of robot behaviors for evaluative role and nonevaluative role in different tasks.

Context Tasks Evaluative robot Nonevaluative robot

Robot introduction Robot self-introduction 1 1
Greeting 2 2
General task introduction 3 3

Practice Session General task introduction 1 1
Melody order guide 2 2
Verbal feedback for praise 3 3
Verbal feedback for stop 1 1
Verbal feedback for playing wrong melody 1 1
Verbal feedback for questions 3 3
Conclusion of the practice 1 1

Filling in questionnaire Ask to fill in 2 2
Ask to take a break 1 1
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After the participants and their parents arrived at the assigned
room in the music school, they were asked to sign the informed
consent form of the current study and fill in the questionnaire to
collect basic information (e.g., gender, age, and learning
duration). Then, researcher B explained the procedure in
detail to them and escorted participants and their parents into
the experiment room (see Figure 2A). In the meantime, the robot
started to greet the children and encouraged them to talk to them.
Next, the parents were invited to the control room while every
child was practicing piano in three conditions (i.e., alone, with the
evaluative robot, and with the nonevaluative robot) in random
order, in a within-subject experiment design. In each condition,
children needed to practice for 10 minutes (5 minutes for each
music piece). At the beginning of the robot conditions, the robot
gave a self-introduction first, including the name (i.e., “Jimmy” is
the evaluative robot and “Peter” is the nonevaluative robot). After
each session, they were asked to fill in the questionnaire to
measure their motivation. And between each session, children
were allowed to take a 5-minute break.

The melodies we chose to use in the experiment are parts of
Chinese children’s songs because we want to make sure these are
totally new to the (Dutch) participants. Eventually, we had in total
nine pieces for each of the learning stage groups (i.e., beginners,
developing players, and advanced players) and conditions
(i.e., alone, evaluative robot, and nonevaluative robot). For
instance, piece one is for beginners to play in the alone
condition, piece two is for beginners to play in the evaluative
robot condition, and piece four is for developing players to play in
the alone condition. All the pieces were selected by a music
teacher who has more than 25 years of experience of teaching the
piano. The difficulty levels of the selected melodies were super
easy for beginners (can be played by a single hand), easy for
developing players (starting level of add another hand, for
instance, at the start of each bar), and medium for advanced
players (played by two hands, multiple keys at the same time).
The duration of all the pieces was around 15 s since we only
offered 5 min for them to practice each piece.

Regarding to the complexity of children’s motivation in
instrument learning, our main purpose of this study is to test
the different effects of different robot roles on children’s
motivation. During the whole experiment, we kept all the

possible confounding variables the same in the three
conditions. The only difference between conditions is the type
of accompanying (i.e., none (alone), evaluative robot, and
nonevaluative robot) we provided. And thereby, we control for
the influence of any other variable.

3.5 Data Analysis
The questionnaire data and video data were used to address
whether children in different learning stages would have higher
motivation with robots in different supporting roles
(i.e., evaluative role versus nonevaluative role) in musical
instrument practicing. First of all, by averaging the answers
from the twelve questions, we were able to construct reliable
measures for each dimension of the motivation scale, that is,
autonomy (Cronbach’s alpha � 0.65), delight (Cronbach’s alpha �
0.80), stress (Cronbach’s alpha � 0.73), interest (Cronbach’s alpha
� 0.77), and the questionnaire in total (Cronbach’s alpha � 0.89).
To ascertain the impact of different roles of the robot on
children’s motivation in practice, we divided the children into
three different learning stage groups based on the suggestion from
piano teachers. Additionally, as a nonempirical method, length of
experience has been used as one of the factors to identify expertise
in the clinic context (Rassafiani, 2009). The learning stage groups
are beginners (had learned piano for less than 2 years),
developing players (had learned piano for two to 4 years), and
advanced players (had learned piano for more than 4 years). After
that, we performed a repeated measure ANOVA (see Results
section). Additionally, to increase the reliability and
interpretability of the measurement for children’s motivation,
despite the questionnaire, the video of children we took during
the practicing was also analyzed. Because our video recordings
(taken by camera A in Figure 2A) of the task were primarily
focused on children’s faces and upper bodies, we coded the video
data by using a validated coding scheme for assessing motivation
in young children developed by Berhenke et al. (2011). They
explored the importance of emotions in young children’s
motivation, which they coded through facial movements
(Izard, 1971). Meanwhile, they also took mastery motivation
and strategy use as observed indicators of motivation.
Eventually, they developed a coding system including four
categories of codes, which were emotion states (neutral,
positive, interest/arousal, sadness, confusion, anxiety, and
anger), emotion events (pride, frustration, hostility, and
shame), task behavior states (persistence, socializing and off-
task), and task behavior events (help-seeking and competence).
We adapted their coding system to fit the context of children’s
piano practicing with the social robot by deleting codes that are
not important in this context, adding behaviors that especially
exist in musical instrument practicing, and adding codes to
observe children’s interaction with the robot (Perugia et al.,
2018). Finally, we analyzed the video data with the codes
listed in Table 3.

Emotional expressions, task-related behaviors, and robot-
related behaviors were coded independently by two
independent researchers using the Observer XT 15.0 software
system (Zimmerman et al., 2009) (Cohen’s k � 0.673, p < 0.01).
Except for the persistence and off-task codes in the task-related

TABLE 2 | Motivation questionnaire questions.

Source Dimension Question

FunQ Autonomy I knew what to do
— I did this activity because I had to. (r)
— I did this activity because I wanted to

FunQ Delight I was happy
— I had fun
— I want to do something like this again

FunQ Stress I felt angry. (r)
— I felt sad. (r)
— I felt bad. (r)

SIMS Interest I could focus easily
— I think this practice is important
— I did this activity because I wanted to

r: reversed items.
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behaviors category, which was coded continuously and analyzed
by the percentage of focusing time in each mutually task-related
behavior, the rest codes in the coding system were dichotomous
nominal codes, which were counted and those counts were used
in the analysis. Facial, vocal, and behavioral cues were used to
indicate emotional expressions (e.g., triangular brows for sadness
and smile for happiness) and task-related behaviors (e.g., intently
keep practicing). Afterward, we performed independent sample
t test to examine the impact of robots on children’s motivation
and offer an additional explanation to the results of
questionnaire data.

4 RESULTS

In order to investigate the impact of robots in different
supporting roles (i.e., evaluative role versus nonevaluative
role) on the motivation of children in different learning
stages in musical instrument practicing, the following
analyses were performed. For the questionnaire data, firstly,
we tested the normality of all questions in the questionnaire
by using the Kolmogorov–Smirnov test and Shapiro–Wilk
test. Results indicated that the answers to each dimension and
question follow a normal distribution (p < 0.05). Then, we
performed repeated-measures ANOVA to examine the impact
of robot roles on children’s motivation (RQ). Results showed a
main effect of the practicing condition (i.e., alone, with the
evaluative robot and with the nonevaluative robot) on the
children’s motivation measured using the questionnaire (F (2,
29) � 4.14, p � 0.02). Pairwise comparisons between the

conditions showed that children had higher motivation
after interacting with the evaluative robot (M � 4.53, SD �
0.77) and with the nonevaluative robot (M � 4.55, SD � 0.37)
than after practicing alone (M � 4.34, SD � 0.56), with both
p’s < 0.05.

Furthermore, confirming our first hypothesis, on motivation
as measured using the questionnaire, results showed an
interaction effect between robot role conditions (i.e., alone,
with the evaluative robot, and with the nonevaluative robot)
and learning stage groups [F (2, 29) � 2.88 and p � 0.03]. This
indicated that children in different learning stage groups had
different levels of motivation in the three conditions. More
specifically, as shown in Table 4, compared to beginners (M �
4.40 and SD � 0.40) and developing players (M � 4.56 and SD �
0.39), advanced players showed the tendency to have the lowest
motivation in the alone condition (M � 4.07 and SD � 0.97), as
indicated by t � 1.69 and p < 0.10. For the two robot conditions
(i.e., the evaluative role and nonevaluative role), such differences
in motivation as measured by the questionnaire were not found,
with both t’s < 1.00.

Additionally, we explored the behavioral measures of
motivation and found comparable results on one of the
indicators of motivation: persistence, which is very clearly an
indicator on the participant’s motivation in instrument learning;
see Table 5. For this, just as for the questionnaire data, we tested
the normality of all the codes and the results showed that except
for the interest in the ‘robot-related behaviors’ category, which is
not calculated here in the comparison of motivation on task, all
observational data follow a normal distribution (p < 0.05). On
these data, we performed independent sample t tests. Confirming

TABLE 3 | Descriptions for Emotion and Task Behavior Codes.

Category Positive
codes and indicators

Negative
codes and indicators

Emotional expressions Happiness Sadness
pLaughs/giggles pSad Expression
pGrins/smiles pSelf-frustration
pPride Anxiety
— pAnxious expression
— pShame/gaze avoidance/face hidden
— pConfusion/frozen expression

Task-related behaviors Persistence Hostility/Reluctance
-Visual focus point on task pStop playing
pShowing initiative pLean away from piano/leave
pApplication of personal strategies pShortcuts
— pFrustrated verbal remarks
Help-seeking Off-task
pVerbally, directly, and explicitly ask for help pSigns of boredom
— -Visual focus off task

Robot-related behaviors Interest Hostility/Reluctance
-Visual focus on robot pRefuses/hesitates/ignore to follow robot’s directions
pEngaged with a robot pVerbal remarks “must I really”
pCuriosity toward robot —

pReply to the robot positively —

pFollows instructions —

Help-seeking Socializing
pChats with the robot about the task pChats about other topics but the task

*Dichotomous nominal code.
*Continuous code.
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our finding on motivation as measured using the questionnaire,
these analyses showed that advanced players (M � 2.80 and SD �
2.39) had lower persistence than beginners (M� 4.71 and SD� 2.43)
and developing players (M � 3.67 and SD � 3.57) in the alone
condition [t (2, 29) � 2.12 and p � 0.04]. It also showed that
beginners’ persistence (M � 3.00 and SD � 2.94) was significantly
higher than the advanced players (M � 1.90, SD � 1.60) in the
nonevaluative condition [t (2, 29) � 4.03 and p � 0.00]. Furthermore,
beginners also had higher persistence than developing players and
advanced players, as indicated by a significant trend [t (2, 29) � 1.90
and p� 0.07]. For the evaluative robot conditions, such differences in
motivation as measured by behavioral measures of motivation were
not found, t < 1.00.

After we compared the difference between learning stage
groups in each of the conditions, we performed a comparison
within each of the learning stage groups as well. We conducted
paired sample t test on motivation as measured by the
questionnaire within learning stage groups, and the results
showed that advanced players had higher motivation in both
robot conditions (i.e., evaluative role (M � 4.65 and SD � 0.56)
and nonevaluative role (M � 4.53 and SD � 0.39)) than the
alone condition [M � 4.07, SD � 0.97, t (2, 29) � 3.39, and p �
0.01; t (2, 29) � 2.02 and p � 0.07]. For the other two learning
stage groups (i.e., beginners and developing players), such
differences in motivation as measured by the questionnaire
were not found, with both t’s < 1.00.

TABLE 4 | Mean and standard deviation of motivation collected by the questionnaire in the alone, nonevaluative robot, and evaluative robot conditions.

Alone Nonevaluative robot Evaluative robot

n M SD n M SD n M SD

Beginners 11 4.40 0.40 11 4.50 0.42 11 4.43 0.29
Developing players 10 4.56 0.39 10 4.63 0.33 10 4.53 0.43
Advanced players 10 4.07 0.97 10 4.53 0.39 10 4.65 0.56
Total 31 4.34 0.65 31 4.55 0.37 31 4.53 0.77

TABLE 5 | Mean and standard deviation of motivation measured as persistence collected by the behavior data in the alone, nonevaluative robot, and evaluative robot
conditions. Videos with a bad quality were not analyzed (incomplete, too much noise, etc.).

Alone Nonevaluative robot Evaluative robot

n M SD n M SD n M SD

Beginners 7 4.71 2.43 7 3.00 2.94 7 3.57 1.51
Developing players 9 3.67 3.57 9 2.11 2.57 9 2.33 3.24
Advanced players 10 2.80 2.39 10 1.90 1.60 10 0.90 1.10
Total 26 3.62 2.86 26 2.27 2.31 26 2.12 2.36

FIGURE 3 | Means of persistence of children in different gender groups in the evaluative robot condition and the nonevaluative robot condition.
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Furthermore, to explore other factors that may affect
children’s motivation in music practicing with different roles
of the robot, we also analyzed the difference between genders.
According to the result we got from MANOVA, gender might
also be a factor that influences children’s motivation through
persistence in music practice [F (1, 30) � 5.02, p � 0.03]. As
shown in Figure 3, under the nonevaluative robot condition,
girls tended to have better persistence than boys, which means
they focus on practice longer and follow more instructions. On
the opposite, girls tended to persist less than boys in the
evaluative robot condition while boys’ persistence level
remained similar in both of the conditions. Except gender,
we also checked whether age is the factor that influences
children’s preference of the robot roles. Therefore, we
conducted a correlation between the learning duration and
age. Finally, the result showed no significant correlation
between the learning stage and age (r � -0.01, p � 0.96),
which suggested that the age of children did not influence
the results we found on children’s learning stages. Also, this
indicates that although younger people might have liked more
the nonevaluative robot, younger people were not necessarily
beginners.

5 DISCUSSION AND CONCLUSION

The aim of the current research was to find out the impact of
robots in different supporting roles (i.e., evaluative role versus
nonevaluative role) on children’s motivation in different learning
stages in musical instrument practice. First of all, we performed a
repeated-measure ANOVA to answer the first research question
(RQ): Can robot roles affect the motivation of children in
different learning stages differently? The main effect firstly
indicated that regardless of the learning stages children in,
children tended to have higher motivation with the
nonevaluative role. Then, the result of the interaction effect
combined with the result from behavioral data showed
differences between different learning groups, which could
answer the research question. With the result we got from the
questionnaire and video data, we were able to confirm our
hypothesis and suggested that children in different learning
stages are more motivated with robots with different roles
during practicing. This finding is in line with self-concept
development in instrument learning (Greenberg, 1970) and
social facilitation theory (Zajonc, 1965). That is, beginners
have not developed clear acknowledgment about their
abilities, which may have a negative impact on their
motivation; a positive audience might encourage them better
than an evaluative judge. Additionally, beginners do not yet
have the (evaluation) skills to estimate which evaluation
information from others can be used. As for the advanced
players, their music self-concepts have been greatly
reinforced by earlier music experiences, which makes them
conscious of their own ability (Ireson and Hallam, 2009). In
other words, advanced players usually have a higher self-
concept. Without companionship, it is easy for them to lose
patience in instrument practice. The encouragement and

feedback provided by the robot may reinforce the self-
concept of the advanced players (Greenberg, 1970; Bong and
Clark, 1999; Lamont, 2011), which further improved their
motivation in practicing. Combined with our empirical
results, we believe that applying different roles of the robot
in different learning stages would help children keep motivated
in music instrument learning. More specifically, we suggest
employing social robots in children’s instrument learning,
especially for the advanced players. Also, it seems better to
use less evaluative robot for the beginners who just started
learning a musical instrument. At the same time, we suggest that
individual characteristics of learners during piano practicing
might require more complex pedagogical approaches.

In addition, results from the observations further strengthened
our confidence to confirm the conclusion. Within all the
indicators that we coded for motivation, the most important
result is that robot roles have an impact on children’s persistence
in different learning stages. According to the definition of
motivation as a “process whereby goal-directed activity is
energized and sustained” (Pintrich and Schunk, 2002),
persistence is a key indicator of sustainment. This result aligns
with the questionnaire result, which showed advanced players
had better persistence with a robot than alone and beginners tend
to have better persistence with the nonevaluative robot.

While the main results were in accordance with our
expectations, the exploratory results also suggested that
gender might be a determinant of a user’s evaluation of
the robot, in interaction effect with the robot’s role. A
potential explanation might be that the interaction
between gender and robot role influenced children’s
motivation through persistence in music practice.
However, in the review about gender differences in self-
concept with children and adolescents done by Wilgenbusch
and Merrell (1999), female participants reported
significantly higher levels of self-concept in the musical
domain among elementary grade participants (grade 1–6).
Applying this finding to our case, girls should persist longer
with the evaluative robot, which contrasts with our result.
Still, Wilgenbusch and Merrell (1999) also indicated that
their results were based on quite small effect sizes. And they
also found that males reported significantly stronger self-
concepts in the musical domain among secondary grade
participants (grade 7–12). Our participants consist of
children in both of their grade groups, and therefore,
further work needs to be carried out to establish whether
gender is a crucial factor that can affect children’s
motivation in the child–robot interaction.

Although our findings indicated the idea that different roles
of the robot should be employed in different stages of
children’s instrument learning, we are aware that our
research may have two limitations and which future studies
can extend. The first is about the appearance and function of
the robot. We used the SocibotMini, which does not have arms
and cannot move. These features limited the possibility of
interactions and may cause distrust from children on robot’s
music-related abilities. Furthermore, this robot requires real-
time operation from the controlling system to be able to react.
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However, it was impossible for the researcher to eliminate the
delay in the interaction between children and the robot, even
with a real-time surveillance camera. Therefore, there should
be an inevitable influence on the interaction. This can be
improved by using a full-body robot with an intelligent
system. Secondly, even though we investigated child–robot
interaction design for long-term companions with different
learning stage groups, another perspective is studying changes
in learning styles within one individual. For example, with the
children’s grows, their perception and preference would
change. It is important to investigate the link between
children’s age and robot role preference in a long-term
interaction design. Furthermore, instead of using children
in different learning stage groups, future experimental
investigations are needed to find out children’s perception
and preference of the robot roles within the development of the
same individual. By then, we may focus on discovering the
long-term effect of social robots in music instrument learning.
In future research, it is also crucial to investigate more detailed
factors that can affect children’s motivation and performance
in instrument learning, for instance, find out the impact of
different kinds of evaluation in the instrument learning
context (Sasfy and Okun, 1974). Another interesting
research direction to investigate would be music-induced
emotions. Emotion experiences are valid indicators for
motivation (Csikszentmihalyi, 2000; Pekrun, 2006) and
emotion expressions (e.g., facial expressions) are measurable
elements of people’s emotion experience. In the context of
instrument learning, some of the basic indicators (e.g., smile)
are rather rare in instrument learning and practice. However,
not showing a smile is not equal to not being happy, as the
expressions of positive emotions may be hidden in the
instrument learning context. In this case, it is valuable to
investigate whether it is correct to use common indicators
to measure motivation in instrument learning.

In conclusion, our study confirmed the impact of different
robot roles in children’s instrument learning process, which offers
more insight into child–robot interaction and robot role design in

musical instrument learning. Specifically, our findings shed light
on personalization in HRI, that is, adapting the role of the robot
to the characteristics and the development level of the user.
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Do Robotic Tutors Compromise the
Social-Emotional Development of
Children?
Matthijs H. J. Smakman1,2*, Elly A. Konijn1 and Paul A. Vogt3

1Department of Communication Science, VU University Amsterdam, Amsterdam, Netherlands, 2Institute for Information and
Communication Technology, HU University of Applied Sciences Utrecht, Utrecht, Netherlands, 3School of Communication,
Media and IT, Research Group Digital Transformation, Hanze University of Applied Sciences Groningen, Groningen, Netherlands

Social robots are reported to hold great potential for education. However, both scholars
and key stakeholders worry about children’s social-emotional development being
compromised. In aiming to provide new insights into the impact that social robots can
have on the social-emotional development of children, the current study interviewed
teachers who use social robots in their day-to-day educational practice. The results of our
interviews with these experienced teachers indicate that the social robots currently used in
education pose little threat to the social-emotional development of children. Children with
special needs seem to bemore sensitive to social-affective bonding with a robot compared
to regular children. This bond seems to have positive effects in enabling them to more
easily connect with their human peers and teachers. However, when robots are being
introduced more regularly, daily, without the involvement of a human teacher, new issues
could arise. For now, given the current state of technology and the way social robots are
being applied, other (ethical) issues seem to be more urgent, such as privacy, security and
the workload of teachers. Future studies should focus on these issues first, to ensure a safe
and effective educational environment for both children and teachers.

Keywords: social robots, child-robot interaction, education, social development, primary school, social skills,
bonding, friendship

INTRODUCTION

Social robots are gradually being introduced in primary education. They provide new opportunities
for improving cognitive outcomes, such as learning a second language (Vogt et al., 2019; Konijn et al.,
2021), rehearsing the times tables (Konijn and Hoorn, 2020), learning sign language (Luccio and
Gaspari, 2020) and training handwriting (Aktar Mispa and Sojib, 2020). In addition, social robots are
used to support motivational and affective elements of learning (e.g., the learner being attentive,
receptive, responsive, reflective, or inquisitive) (Belpaeme et al., 2018). Although social robots show
potential as learning or teaching companions for children, according to a recent literature review
(Johal, 2020), other studies on the use of social robots in education have reported that it is too early to
conclude that robots are, for instance, effective as language tutors (van den Berghe et al., 2019), or
more effective than human teachers or other types of technology (Woo et al., 2021). Furthermore,
both scholars (Sharkey, 2016;Woo et al., 2021) and stakeholders (Smakman et al., 2021a) have voiced
concerns related to social robots potentially harming children’s social-emotional development.

Social robots differ from other types of robots used in education, such as STEM robots. Other than
STEM robots, social robots are designed to take on social roles such as that of a tutor or peer that
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assists children during their learning process. Having physical
embodiment, the option to act (semi-) autonomously, and the
capability to interact with humans by following social norms, can
be considered as the three defining capacities for social robots
(Hegel et al., 2009). Using these capacities, a robot can act as a
social entity, such as in the role of a tutor, a peer, or that of a naïve
learner (Hood et al., 2015). The feeling that users are socially
connected with robots is central to the field of social robotics
(Belpaeme et al., 2013).

Children’s social-emotional development is not only
important during childhood, but also for adulthood and public
health, because it is associated with academic performance,
substance abuse, mental health, workplace and academic
performance (Cherniss, 2000; Denham, 2006; Tremblay, 2020).
Children’s social-emotional development can be characterized by
five domains: 1) social competence, 2) attachment, 3) emotional
competence, 4) self-perceived competence, and 5) temperament/
personality (Denham et al., 2009). Milestones in social-emotional
development domains differ per developmental period of
children. For the purpose of this study, we will focus on the
milestones associated with the primary school period. The first
domain, social competence, can be defined as a child’s ability and
effectiveness in social interaction (Rose-Krasnor, 1997).
Children’s general developmental tasks related to social
competence that should be assessed in primary school are the
formation of dyadic friendships, solidification of peer status, and
general diminution of physical aggression. Related to attachment,
children in primary school should begin to balance the
connection to parents and peers. The milestones for children
in primary school related to emotional competence are the ability
to understand complex emotions, such as unique perspective and
ambivalence, and to be able to apply cognitive strategies to
regulate emotions. Children’s self-perception of competence
can be defined as “one’s evaluations of one’s own abilities,
including the child’s own assessment of his/her cognitive,
physical and social abilities, especially in comparison with those
of others” (Denham et al., 2009, p. 44). During primary school,
children’s views of their own competence become more complex,
earlier notions of self-perceived competence are solidified and
social evaluations by peers and teachers become more important
(Denham et al., 2009). Lastly, for the domain temperament/
personality, children’s personality attributes become
increasingly differentiated during primary school. In earlier
research, social robots have been reported to potentially
influence several aspects of the social-emotional development
domains, such as social competence (Peter et al., 2021) and
attachment (Coeckelbergh et al., 2016).

Key stakeholders, such as teachers, parents, and policymakers,
have also voiced concerns related to the potential social-affective
bond that children may develop with a robot (Serholt et al., 2017;
Smakman et al., 2020a, Smakman et al., 2020b). They report
worries in the field that such a bond could harm children’s social-
emotional development (Smakman et al., 2021b). Children
bonding with robots could lead to children preferring the
interaction with robots over that of their human friends and
teachers, potentially resulting in the loss of human contact
(Sharkey, 2016; Pandey and Gelin, 2017), social isolation

(Kennedy et al., 2016), and dehumanization (Serholt et al.,
2017). Children could also start to expect too much from
robots, which could lead to children ending up feeling
deceived or feeling anxious when the robot is absent (Sharkey,
2016). These potential risks related to the social-affective bond
that children may develop with a robot might harm the children’s
social-emotional development. According to a recent study
(Pashevich, 2021), it is still unclear what kind of effect social
robots might have on the social-emotional development of
children.

Children have been reported to perceive social robots as
entities with whom they will likely form social relationships
(van Straten et al., 2020). What kind of relationships children
form with robots is still unclear. For example, children are
reported to perceive social robots as potential private tutors
(Shin and Kim, 2007), possible rivals (Shin and Kim, 2007),
and even friends (Lin et al., 2009). Various scholars argue that this
newly perceived bond with technology might influence children’s
behavior, both positively and negatively. Researchers have found
that robots seem able to elicit socially desirable behavior among
children, such as sharing, but they may also elicit socially
undesirable behavior, such as aggressive behavior (Peter et al.,
2021). Children have also been recorded to express bullying
behavior towards an educational robot (Kanda et al., 2012)
and others have expressed concerns related to the robot
becoming a bully or becoming subject to bullying (Diep et al.,
2015). What type of children are more susceptible to the influence
of the robot on social-emotional domains, however, is still
unclear. According to a recent study (Tolksdorf et al., 2021),
the influence of individual variables, such as shyness, are still
understudied in the field of child-robot interaction (CRI).

Measuring social-emotional development is complex. For each
domain of children’s social-emotional development, there exist
multiple measurement instruments such as the Rothbart Child
Behavior Questionnaire for emotional competence (Putnam and
Rothbart, 2006), and the Social Skills Rating System for social
competence (Van der Oord et al., 2005). Furthermore, these
scales differ per developmental period and pose challenges in
their use in longitudinal studies (Denham et al., 2009). Child-
robot interaction studies in education are often short-term
studies and rarely deploy robots for more than a few days,
according to reviews on social robots in classrooms (Rosanda
and Starčič, 2019; Woo et al., 2021). Systematic, long-term
evaluation of the potential negative impact of social robots’
potential on children’s social-emotional development is
lacking. This might be explained by social robots still being a
nascent technology. An accepted approach to evaluate the
potential long term (negative) impact of nascent technology is
to include stakeholders into the design and evaluation of
technology (Friedman et al., 2008).

Teachers are one of the most important stakeholders when
implementing social robots in education. They are not only
responsible for the learning process in a classroom, but they
also play a key role in children’s social-emotional development
(Denham et al., 2009). They could therefore provide insights into
the potential compromising role of social robots. However, in the
extant literature on teachers’ perspectives on social robots,
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teachers have had little experience with robots (Van Ewijk et al.,
2020; Xia and LeTendre, 2020; Chootongchai et al., 2021).
Additionally, researchers have pointed out that the level of
experience with robots could influence stakeholders’
perspectives (Serholt et al., 2014). People with experience to
working with robots are significantly more likely to have a
positive attitude towards social robots, compared to people
with little to no experience (Smakman et al., 2021a). This
makes it hard to evaluate the potential harms and benefits
voiced by teachers in earlier studies.

The lack of experience of stakeholders combined with the
limited empirical data, make it hard to evaluate the reported
potential risks related to children’s social-emotional
development. Given that studies are often short-term and
stakeholders’ worries are hard to evaluate, there is a need to
examine the impact that social robots have on children’s social-
emotional development now that social robots are entering day-
to-day education for longer periods of time. Therefore, this study
aims to assess the impact of social robots in primary education on
the social-emotional development of children. To this aim, we
conducted in-depth interviews with teachers who have applied
social robots in their day-to-day education. These primary school
teachers all have a thorough knowledge of the social-emotional
development of the children in their classroom, as this is part of
their daily job. Therefore, in our opinion, they are most
appropriate persons to assess the impact of social robots on
children. Besides the impact on children’s social-emotional
development, we examined which children, according to the
teachers, would be more susceptive to social robots, and what
the teachers would consider best practices for using social robots
responsibly. In the next section, we will first describe our
methodology, followed by our results. Thereafter, we will
discuss our main findings in light of earlier research and
discuss our conclusions.

MATERIALS AND METHODS

Participants
For qualitative research, such as this interview study, participants
can best be selected based on their understanding of the
phenomenon (Kuper et al., 2008; Creswell and Creswell,
2009). Therefore, via purposeful sampling, participants were
selected. The criterion for participants to be included in our
study was: being a primary school teacher in the Netherlands with
first-hand experience in using social robots in a real-life
educational setting. Participants were recruited through
newsletters of robotic companies, messages on social media,
snowballing (Ghaljaie et al., 2017) and direct e-mails. Nine
experienced teachers agreed to participate in our research
(Mean age = 36 SD = 10, 8 Female, 1 Male). On average, they
had 12 years of working experience, ranging from 1.5 to 35 years.
The participants ranked their own experience with robots on a
1–5-point rating scale (1 = having very little experience and 5 =
having very much experience). The mean score for the experience
with robots was 3.66 (SD = 0.82). In total, the participants
supervised/facilitated the child-robot interaction of 2,660

primary school children from all primary school levels/grades.
General information about the teachers who participated in the
interviews is shown in Table 1.

Materials and Measures
In setting up our interview guidelines (Taylor, 2005), we followed
the five phases of the framework for the development of a
qualitative semi-structured interview guide created by Kallio
et al. (2016). First, we established that a semi-structured
interview would be a rigorous data collection method in
relation to our research question, because it allows the
interviewer to improvise follow-up questions based on the
teachers’ answers and it allows room for participants’ verbal
expressions. Second, we created an initial set of questions
targeting teachers’ perspectives on the robot’s influence on
children’s social-emotional development based on existing
literature. These questions included four main themes. The
first questions were related to the social demographic data of
the participant, such as age and gender, because these are shown
to influence people’s perception of robots (European
Commission, Directorate-General for Communication, 2017).
The second type of questions was about how the teachers
applied the robots in their classroom. These included which
robot they used, but also what role the robot was given in the
classroom. Earlier research has shown that children react
differently to, for example, a robot as a peer, compared to that
of a robot as a teacher (Zaga et al., 2015). Furthermore, role
switching has also been shown to have potential as a motivational
strategy (Ros et al., 2016). The third and fourth themes were
related to the possible perceived social-affective bond of children
with the robot and its potential influence on children’s social-
emotional development. After setting up the initial interview
protocol, two expert scholars in social robotics reviewed the
interview guide to validate the coverage and relevance of the
content. Furthermore, as prescribed by Kallio et al. (2016), the
feedback of the experts was used to reformulate the questions and
to test the implementation. This resulted in the final list of
interview questions, which can be found online (https://osf.io/
qne96/).

Procedure and Analysis
Over a span of 2 months, from February to April 2021, the data
for this study were collected. Due to the COVID19 pandemic, all
interviews were conducted online via Microsoft Teams. The
interviews started with a short introduction about the purpose
of the study, after which the questions started. As mentioned, the
interviews were semi-structured (Kallio et al., 2016), which
allowed us to deviate somewhat from the formal set of
interview questions when needed, and to explore the thoughts
and beliefs of participants in more detail. In general, each
interview lasted between 45 min and 1 h. At the end of the
interview, we inquired whether participants would like to
voice any other potentially relevant information related to
child development and robots in education. Lastly, we asked
participants if they could provide us with names of other teachers
who had applied social robots in their education and might be
willing to participate in this study. All interviews were recorded,
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for which all participants provided active verbal consent.
Afterwards, the recordings were transcribed. All transcriptions
were then analyzed using an inductive and deductive coding
process through a qualitative data analysis application (ATLAS.ti,
version 9). To identify patterns within and across the data, we
used a thematic analysis method (Braun and Clarke, 2012). First,
we coded the text based on the main themes of the interview
questions (participant data, use of robots, social-affective bond,
and social-emotional development). Thereafter, we randomly
read samples of the data and created thematic codes, shown in
Table 1. We then applied the codes onto new sample texts derived
from our interview transcriptions. Using this iterative process, we
created our final coding scheme which we applied to all data
collected. The themes were coded by a scholar with considerable
experience in conducting qualitative studies in social robotics and
education. The final coding scheme can be found online (https://
osf.io/qne96/). Lastly, the effects of the robots on children derived
from the thematic analysis were linked to the appropriate
domains of children’s social-emotional development reported
in the literature (Denham et al., 2009). This was done during
a mapping workshop by the first author and two undergraduate
students.

RESULTS

All participants had experience with applying humanoid robots
in their education, being either with the Nao robot (SoftBank
Robotics, 2020) or the Alpha mini-robot (Ubtech, 2021). One
participant also had experience with other types of robots, such as
the Innobot, Probot, Bluebot, Microbot, and Ozobot. Experience
with applying robots ranged from 6 years to a couple of months.
The participants had applied the robots in their day-to-day
education for teaching children arithmetic, language,
geography, presentation skills, physical education, and
computational thinking. Eight participants had used the robots
as a social entity (as a tutor or peer), sometimes combined with
using the robot purely as a tool, such as for learning
programming. One participant had used the robot just as a
tool for teaching programming. The number of interactions
with the robot per child ranged from just one to sixteen times
per period of 10 weeks. The time children had spent working with

the robot ranged from 15 min to 1 hour per interaction. None of
the participants systematically measured the effect of the robot
during their lectures. The teachers used robots in all classes of the
primary school, which included children from age 4 up to
12 years.

Place in Education
Eight out of nine teachers mentioned that social robots (should)
have a place in primary education. They considered the robot a
good educational tool, mainly because it can enrich the lessons.
“Some children learn more easily from books, another child learns
more easily from a screen with interactivity, and a robot gives an
extra dimension to education [. . .] it is one of the means by which
you prepare children for a future” as one teacher indicated. The
teachers overall stated that they viewed the robots as additional
support for the teacher, or to provide help for solving problems
(such as knowledge gaps) bymeans of targeted help. Teachers had
applied the robot in small groups and in one-to-one interaction
settings. Most teachers indicated that the robot has a clear novelty
effect and that children are fascinated and amazed by the robot.
Most of the teachers stated that the children are enthusiastic
about the robot and are (more) motivated to work and learn with
the robot.

One teacher did not consider social robots to have a place in
primary education, for two reasons: 1) because of the high cost
and 2) because of a lack of impact in primary education. Although
the teacher stated that the robot does create a deeper kind of
learning, because of the social interaction, she considered the
robot best for special education. In special education, the teaching
methods would bemore open-minded for using robots and not so
restricted and formalized as in regular primary education,
according to this teacher. Three other teachers also indicated
that the high cost of the NAO robot was an issue. Especially for
teaching programming skills, they considered nonsocial or non-
humanlike robots cheaper and therefore more appropriate.

Overall, the teachers indicated that the current social robots
require a lot of work from the teacher. As one teacher explained:
“It is really labour-intensive for the person who sets up and
prepares the robot, and this is still an impeding factor.”
Teachers also indicated that it will take some time before
other teachers are acquainted with robots because the
educational methods change rapidly every few years, which

TABLE 1 | Data on participants in the interviews.

Interview # Gender Age Experience as
a teacher
(years)

Experience with
robots (1–5 scale)

# Children
interacting with

a robot

1 F 39 14 4 600
2 F 25 3 3 57
3 F 36 13 2 20
4 F 42 10 5 700
5 F 57 35 4 540
6 F 28 7 3 200
7 M 39 12 4 500
8 F 25 1,5 4 25
9 F 35 14 4 18
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also takes time to implement. Furthermore, the lack of evidence
that robots are (more) effective makes it hard to convince school
management to invest in the implementation of social robots,
according to one teacher.

Impact on Social-Emotional Development?
It should first be noted that none of the teachers systematically
measured the robot’s effect on the children’s social-emotional
development. Due to the relatively broad age range of the children
that interacted with the robot (4–12 years), which covers both the
primary school period and the preschool/early childhood period,
and because the general developmental tasks that should be
assessed in each dimension of social-emotional development
differs for each developmental period, we decided to describe
the perceived impact based on the themes derived from our
thematic analysis (Braun and Clarke, 2012).

All teachers indicated that social robots can have a positive
impact on the social-emotional development of children. They
reported several examples of how children’s social-emotional
development could be affected by social robots, such as by
boosting children’s self-confidence and by increasing children’s
ability to express themselves. All reported impact was considered
positive. Only a few occasions were reported where some (mainly
young) children were afraid of the robot. Based on the thematic
analysis, we were able to distinguish five positive effects which
were reported by the teachers, being: 1) Self-confidence, 2)
helping other children, 3) ability to express oneself, 4) ability

to be patient and listen to others, and 5) curiosity stimulation.
Thereafter, we linked the themes to the appropriate domains of
children’s social-emotional development, shown in Figure 1. In
the next sections, we will present the results based on the derived
themes and discuss their potential effect on the theoretical
domains of children’s social-emotional development.

Self-Confidence
Almost half of the teachers reported higher self-confidence as a
positive result of child-robot interaction. Children who were shy
to talk in public or in groups could give presentations together
with the robot, which could bolster the self-confidence of the
children. One teacher explained: “Giving presentations causes a lot
of stress in children. I think it is good if you give them a choice, that
they can give the presentation, in the first instance, completely by
the robot, and then for example together, so that children, perhaps
unconsciously, are presenting in front of groups. This way they will
get used to it, in a very safe manner [. . .] you actually take away a
lot of stress”. Also, teachers indicated that children who are a bit
shy or socially less capable, could become the robot expert of the
class, which would boost their self-confidence: “I could put
children who are socially not very strong in the spotlight so that
they would become a robot expert. They were then able to teach
other children or help the teacher, so they grew in their whole being
because of this . . . , this changed their [social] position and place in
the group”, as one teacher explained. Furthermore, teachers
reported that children more easily practice subjects they find

FIGURE 1 | Overview of themes based on the interviews and the linked theoretical constructs of social-emotional development, based on the literature.
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difficult with the robot because a robot does not judge or laugh at
them when they give a wrong answer. This is also reported to
create more social interaction between children, as one teacher
who used the robots for extra support in language learning
described: “We have a school where several children come from
a different culture. They have difficulty speaking Dutch, and they
don’t speak Dutch at home. They find it difficult to speak in public,
and a robot helps them with this and thus helps with their own
language development, which also makes it easier for them to make
contact with peers. That is what we have seen, it absolutely had an
impact”. None of the teachers reported negative outcomes related
to the self-confidence of children. Although, some teachers
reported practical issues related to the speech of the robot that
sometimes lacks the proper pronunciation, especially with
longer words.

The capability of the robot to contribute to children’s self-
confidence can be (in)directly linked to three of the five social-
emotional domains. First, the increased social interaction
between children, caused by the increased self-confidence of
shy children, could lead to the formation of dyadic friendships,
which is linked to the social-emotional domain of social
competence. Furthermore, this could lead to a more
balanced connection with their peers, which is related to
the social-emotional domain of attachment. Lastly, the
robot could contribute to the domain of self-perceived
competence, because it could result in a child’s increased
ability to assess one’s own social abilities in comparison
with those of others.

Helping Other Children
Several teachers indicated that they applied the robot to
enhance social interaction between children. For example,
by giving some children the role of robot expert, they created a
new role in the group. According to teachers, this did not only
increase children self-confidence (cf. Self-Confidence), but it
also allowed the robot experts (often the socially weaker
children) to more easily interact with other classmates.
Also, by letting children work with the robot in small
groups, the interaction between children in the groups was
stimulated. Furthermore, when the robot was used by multiple
groups in sequence, the last group could help the next group
when they encountered difficulties. One teacher expressed
concerns about when the robot would be used for one-on-one
tutoring, which could potentially lower the contact with other
children. The teacher considered this as part of the broader
trend of (smart)phone use and time spent on a computer,
which seems to lower personal, face-to-face contact. However,
the teacher could not tell whether the robot caused children to
interact less with each other. Likewise, this was not reported
by any of the other interviewed teachers.

The option to apply a social robot to stimulate helping
behavior can be (in)directly linked to two of the five social-
emotional domains. The introduction of social robots, which
allows for the creation of new roles in the classroom as indicated
by the teachers to stimulate interaction, and can be linked to the
domains of social competence and attachment.

Ability to Express Oneself
Some teachers reported on children who, before the introduction
of the robot, would not be willing to talk to the teacher, or did not
want to learn. However, after the robot was introduced in the
classroom, these children started to talk. First to the robot, and
thereafter to the teacher. Teachers said that they expected that
children would more easily express certain things to robots than
to their teachers. “I think that a robot could definitely be used for
that [emotional support] as well [. . .] because it is something that is
a bit further away from you and a bit less personal, so I think it is
easier to discuss more difficult things [. . .] and certainly in the
social, emotional area,” as voiced by one of the teachers. Some
teachers used the robot as a means to let children talk about their
feelings by letting the robot express emotions. This has led to the
opportunity to talk about emotional feelings. One teacher
compared this to hand puppets that are currently used in the
Dutch educational system to start confirmations on difficult
subjects, which the teacher considered a similar tool.

Children opening up to a robot about their feelings relates to
two of the five social-emotional domains. First, it could allow
children to cope with negative emotions, learn about emotions
and emotional expressiveness, which is linked to emotional
competence. Second, it allows for the possibility for children to
get more insight into their own social competence, which is
related to the domain of self-perceived competence.

Ability to be Patient and Listen to Others
Two of the teachers reported on the robot’s ability to teach
children to be patient and listen more carefully to others. This
was mainly caused by the robot’s script that did not allow a child
to go any faster, according to the teachers. “You have to keep calm
and you also have to keep your impulses in check [. . .] you also
have to be careful, children are normally rumbling everywhere, in a
manner of speaking, but that is really not possible. So yes, there is
really something being asked of them”, as one teacher reported.
The teachers indicated that the robot made children listen more
to others and wait their turn. However, they also indicated that
the robot would need to be in the classroom for longer periods to
make a lasting impact on these skills.

The ability to be patient and more carefully listen to others
could, in theory, contribute to understanding the unique
perspective of others, which can be linked to emotional
competence.

Curiosity Stimulation
Several teachers indicated that they have seen how robots can
stimulate children’s curiosity. Most teachers reported on the
robot being something “magical” or “special”. This made
children curious to learn about and from the robot, also for
subjects they would otherwise dislike or even avoid. One teacher
experienced the following: “I had one child at that time, who did
not want to learn. That does not happen often, but he really did not
want to, he had no interest at all in reading or in letters or in math
or something else, but that robot that was really it. Once that robot
was there, he did everything. That was so special, he did everything
he had to do, but not with me, but with the robot. With me, he just
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closed down, but with the robot, he did it all.” The teacher
indicated that she did not encounter this behavior often.
Other teachers mentioned that they had also experienced how
robots stimulated and motivated children, although they voiced
that they did not consider the currently limited interactions
enough to have a long-lasting effect on children’s curiosity.

The ability of the robot to stimulate curiosity can contribute to
the social-emotional domain of temperament/personality. By
stimulating children’s curiosity, they could become more
encouraged to follow and experience aspects that suit their
personality, which can be linked to the temperament/
personality domain.

In summary, the teachers expressed five ways by which social
robots can impact the theoretical domains of children’s social-
emotional development, which is illustrated in Figure 1. Children
potentially getting attached to the robot was a topic that came up
regularly during the interviews. Therefore, we decided to discuss
attachment as a topic separately in the next section.

Attachment
Almost half of the teachers indicated that children can feel
emotionally attached to a robot. Some indicated that this
attachment would not be different from how children attach
to other objects children like, such as video games and toys. One
teacher saw a child with bonding problems getting emotionally
attached to the robot, but did not encounter this with other
(typically developing) children. Some teachers indicated that
while young children could feel attached to the robot, older
children, around the age of 11-12, would consider the robots
merely as a tool.

Another teacher reported on a child talking about the robot as
his best friend, while other participants indicated that they have
seen children interact with the robot as if it were their buddy. In
several interviews, teachers indicated that children showed a kind
of empathy and affection towards the robot. As one teacher
experienced: “They [children] also immediately asked when he [the
robot] would come back, and everyone wanted to take care of it,
you really noticed that the care aspect really came up there. Such
that it had actually become a kind of a buddy.” Another teacher
indicated to be concerned that children would view the robot as a
best friend, however, this teacher did not encounter this in her
own classroom. Furthermore, several teachers indicated that for
children to become attached to a robot, the robot would have to
be present much more often than is possible in the current
educational system.

What Would be Considered “Too Attached”?
When asked for signals that would indicate that children are too
attached to the robot, teachers expressed two main indicators: 1)
when it results in less contact with their human peers, and 2)
when children would get upset when the robot was not around.
However, four teachers indicated explicitly that they have not
encountered this in their classes, and that the way robots are being
applied nowadays poses little risk for children to become too
attached. “In the current education you don’t get it [attachment
issues] very quickly, only if you always have a robot in class” and “I
see few risks in the way in which we now use robots” as explained

by two other teachers. The other five teachers did mention
encountering attachment issues in their classes.

Although the teachers did not encounter children becoming
too attached to the social robots, this might be due to the short
interaction time and the limited number of interactions children
had with the robot. Therefore, we continued to further ask the
teachers on what type of children would be more susceptible to
getting attached to social robots.

Children who are More Susceptible to Getting
Attached to Social Robots
The current literature does not provide a solid basis for
deriving insights into what kind of children would be more
susceptive to getting attached to social robots. To gain more
insight into which children might be at risk to become ‘too
attached’ to a social robot, we conducted a thematic analysis to
differentiate between types of children based on the interview
transcripts (Braun and Clarke, 2012). The teachers expressed
four types of children who would be more susceptible to
getting attached to social robots.

• The first type, indicated by seven of the nine teachers, is
timid, socially less strong, and could have an autism
spectrum disorder (ASD). However, regarding ASD, it
should be noted that one teacher explicitly stated that
these usually are children of which the teachers think
they have ASD because it is mostly not yet diagnosed at
this young age. Indeed, a number of studies reported
successful interactions of social robots specifically
focusing on children with ASD (e.g., Huijnen et al., 2016;
Di Nuovo et al., 2020).

• The second type of children concerns children who are
interested in science and engineering. “The children who are
just very interested in robots and programming”, as one
teacher explained. This is in line with common applications
of robots for STEM education (e.g., Ahmad et al., 2020).

• The third type of children that can be considered more
sensitive for the robot’s interaction, as indicated by two
teachers, are children who are underachievers on a certain
subject, such as language learning or math. Studies indeed
reported good results for language learning (Vogt et al.,
2019; Konijn et al., 2021) or rehearsing the times tables
(Konijn and Hoorn, 2020).

• The fourth and final type of children who are more sensitive
to social robots are children with special needs, such as
children with attention deficit hyperactivity disorder
(ADHD), highly sensitive children, highly gifted children,
and children sensitive to game addiction. Seven teachers
indicated that these children can be considered more
sensitive for child-robot interaction in education: “The
children who have a certain need [. . .] children with
ADHD, or just children who are highly gifted, they could
be attracted in a certain way if it suits them, and then there
are many possibilities to work with this,” as explained by one
teacher. In earlier studies the potential for children with
ADHD have been discussed before (e.g., Fridin and
Yaakobi, 2011)
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The teachers expressed several best practices to ensure that
these types of children would not get too attached to the robot.
The best practices expressed also included general remarks on
how social robots could be implemented in a responsible way,
according to these experienced teachers. In the next section, we
present these findings.

Best Practices and Success Factors for
Child-Robot Interaction in Education
The interviewed teachers reported about what they considered
best practices and success factors when applying social robots in
primary education. In total, they reported eight best practices and
success factors for applying social robots in primary education.
To provide an overview of these best practices and their
description we present them in Table 2.

DISCUSSION

The main goal of this interview study was to examine whether
social robots in primary education compromise the social-
emotional development of children. Therefore, we interviewed
primary school teachers who supervised the child-robot
interaction of more than 2,600 unique children in a real-life
school environment. Nearly all child-robot interactions reported
by our interviewees were one-on-one or small group interactions
in which a humanoid robot took the role of a tutor or peer. Each
robot was used for teaching children a specific subject or skill in a
school environment.

The main finding of our study is that the participating teachers
experienced no negative effects on the social-emotional
development of children caused by the child-robot interactions
that would have a lasting negative impact. In contrast, teachers
expressed seeing five positive effects of social robots related to the

social-emotional development of their pupils, being 1) increased
self-confidence, 2) helping other children, 3) increased ability to
express oneself, 4) increased ability to be patient and listen to
others, and 5) curiosity stimulation. These five themes could be
linked to all domains of children’s social development reported in
developmental literature, as discussed in the introduction and
summarized in Figure 1.

The social robots seemed especially useful for introducing the
learning by teaching paradigm (Fiorella and Mayer, 2013). This
allows for some children to take on new roles, such as that of an
expert. This can have a positive effect on children’s social-
emotional development. For example, by giving children an
expert role, or by letting experienced groups help other
groups. Novel technologies, such as social robots, seem
appropriate to support children in such roles. The robot’s
impact on the children’s ability to be patient and to listen
carefully was reported to be caused mainly by the current state
of technology that does not allow children to respond quickly,
and due to the intonation of the robot which is sometimes
lacking. Given that automatic speech recognition based on
child-robot interaction has been shown to be a complex issue
(Kennedy et al., 2017), it is unlikely that robots will be able to
respond quickly to children’s verbal reactions in the near future.
Therefore, we consider that the robot’s positive impact on
children’s ability to be patient and to listen will remain for the
foreseeable future. However, teachers indicated that they
wondered whether the effect on children’s ability to be patient
and to listen would impact the children in the long run. The other
three effects, increased self-confidence, ability to express oneself,
and curiosity stimulation, seem all specifically useful for children
with special needs.

Four types of children were identified by the interviewed
teachers, three of whom could specifically benefit from social
robots and be receptive to interacting with a social robot. These
children are considered to have special needs, either the timid,

TABLE 2 | Best practices and success factors for applying social robots in primary education.

# Title Description

1 Apply when needed Make sure there is a clear why for applying social robots, robots are means not ends. Social robots are considered to be an
addition to the teacher, not a replacement. When applying the robot every day, the novelty effect can wear off. Use social
robots for a specific aim or goal

2 Teacher stays involved The role of the teachers stays very important, he/she should be present during the child-robot interaction, or at least close
by. Also, the teacher can judge which children potentially get too attached to the robot, and which children would benefit
most from the interaction. This might lead to an increase in the number of teaching assistants needed to facilitate the robot
interaction

3 Proper introduction Teachers should pay specific attention to the introduction of the robot. Children should first be told what a robot is, and what
is it going to do, before they start to interact with a robot

4 Small groups Learning with robots is best done in small groups. This not only allows children to continue communicating with their peers,
but it can also stimulate children to interact with each other and not get socially isolated

5 Vertical groups Let children of different age groups work together with the robot, make use of the older, more experienced children to
introduce and guide younger children

6 Separate room When a small group of children is working with the robot, this is distracting for the other children in the classroom. Therefore,
the robot should not be in the same room as where other children are who do not work with the robot

7 Team effort and mindset For robots to be sustainably implemented in schools, the technology needs to have the support of the teacher-team
including the school management. A teacher in the role of a robot ambassador can be appointed to introduce the robot to
other teachers, making it easier to implement the robot

8 Parents The parents of the children should be informed pro-actively by the schools when social robots are going to be used. This is
the responsibility of the school
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socially less strong children potentially with ASD,
underachievers, or children with other special needs, such as
ADHD or attachment issues. According to the teachers, these
children could potentially benefit the most from social robots in
education when it comes to their social-emotional development
and are indeed often addressed in studies (e.g., Fridin and
Yaakobi, 2011; Huijnen et al., 2016; Konijn and Hoorn, 2020).
As a downside, the interviewed teachers reported that these
children might get more attached to the robot in the long run,
which could, in theory, lead to less human contact and children
getting upset when the robot would not be around. However, this
has not been observed by our teachers, and they further indicated
that the robot would need to be present much more for this
to occur.

To ensure that some children will not get too attached to the
robot, teachers have indicated that they should supervise the
child-robot interaction, or at least be close by. The teachers in
our study mentioned that applying social robots in education is
labor-intensive, and requires time and effort to use and
implement. This is in line with another study reporting
about teachers being worried that social robots would
increase the workload of teachers (Reich-Stiebert and
Eyssel, 2016). A recent review on robots in classrooms came
to similar results, concluding that “the current generation of
commercially available robots, like NAO or Pepper, do not
have sufficient programming to be readily integrated into
classrooms without extensive support and resource
mobilization” (Woo et al., 2021, p.9).

The comparison of the bond between children and robots to
the bond between children and other humans might not be the
best way forward. Although some children seem to behave as if
they are friends with a robot (Fior et al., 2010), robots are still a
different entity. When comparing human-robot interaction to
interaction between humans, Black (2019) argues against
developing empathy with robots because children cannot
experience the kind of affect toward robots that they
develop with other humans, such as their human peers and
teachers. However, if we use the robot to simulate human
interaction, by letting children work together, this doesn’t
seem to be a big problem. Furthermore, for social robots to
be able to support children in primary education, there seems
to be no need for very humanlike robots with extensive
empathy capabilities; current studies on the use of social
robots in education do, most of the time, not use very
humanlike robots with extensive empathy capabilities, and
still show promising results (e.g., Konijn and Hoorn, 2020).
One might argue that robots need extensive empathy
capabilities for teaching social skills to children who cannot
learn these with their human peers because of disorders, such
as ASD. Although humanoid robots with extensive empathy
capabilities might help this specific group of children, there
seems little reason to equip robots with far-reaching human
embodiment when it comes to assisting regular children in
their school process.

The social bond between child and robot challenges the
fundamentals of friendship and relationships, according to
Richards and Calvert (2017). However, according to the

teachers in our study, such social bonds are infrequent and
similar to the bond children have with other technologies or
artefacts, such as smartphones and (hand) puppets. Thus, the
negative impact of social robots on the fundamentals of
friendship and relationships, for now, seems limited.

Other researchers have found that robots seem able to elicit
socially desirable behavior among children, such as sharing (Peter
et al., 2021). However, according to the same researchers, this
may also apply to socially undesirable behavior, such as aggressive
behavior (Peter et al., 2021). Children have been recorded to
express bullying behavior towards an educational robot (Kanda
et al., 2012). Others have also expressed concerns related to the
robot becoming a bully or becoming subject to bullying (Diep
et al., 2015). However, following the best practices of the
participants in our study, when teachers stay involved in the
child-robot interaction, this scenario seems unlikely. Teachers or
teaching assistants could intervene when such undesirable
behavior occurs. Nevertheless, the results of other researchers
emphasize the importance to be careful in how robots are
presented to children because robots (in videos) have been
shown to negatively influence children’s pro-social behavior
and willingness to share resources in an experimental setting
(Nijssen et al., 2021).

The participating teachers did not report major privacy issues
related to the child-robot interaction, except one related to IT
security, and they did not use extensive personalized data
collection by the robot. This might be due to the relatively
simple, not highly personalized child robot interaction
currently used in schools. In other studies, privacy has been
reported to be a major issue related to social robots in education
(Sharkey, 2016; Smakman et al., 2021a). Data collection allows
personalized interaction, which is one of the key benefits,
according to scholars (Kanda et al., 2012; Shimada et al., 2012;
Jones et al., 2017; Jones and Castellano, 2018; Woo et al., 2021).
Although the teachers in our study did not report on major
privacy issues, given the need for data collection for personalized
learning, we consider the issue crucial for integrating social robots
in education in a responsible way and should therefore be subject
for further research.

One limitation of this study is that, although the participants
had experience with using a social robot in their day-to-day
education and supervised the child-robot interaction of over
2,600 unique children, the total number of participants was
limited. However, given that all participants had experience
with using a social robot in their day-to-day education,
combined with the large number of unique children they
supervised, they still provide valuable insights into the
currently observed effects of social robots on children. The
gender distribution was unequally balanced, with only one
male participating teacher. However, this can be considered a
reflection of the gender distribution in Dutch primary education,
where approximately 80% is female (Traag, 2018). It should also
be noted that this study was carried out solely in the Netherlands,
therefore the results may differ in other countries. Furthermore,
none of the teachers systematically measured the robot’s effect on
the social-emotional development of children. The evaluations in
this study are solely based on the teachers’ previous experiences
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and observations. The experiences of these teachers could differ
from how children experienced the robot interaction. Further
studies could compare the perceptions of children to the
perceptions of their teachers. Future studies in child-robot
interaction could also include the Social Skills Rating System
(SSRS) or the social Skills Improvement System-Rating Scales
(SSIS-RS) (Gresham et al., 2011), to systematically measure the
impact of social robots in children’s development.

In conclusion, our study indicates that the social robots
currently used in education pose little threat to the social-
emotional development of children according to teachers who
applied these robots in their day-to-day education. Children
with special needs seem to be more sensitive to social bonding
with a robot compared to regular children. However, this
social-affective bond seems to have more positive effects
enabling them to more easily connect with their human
peers and teachers.

Given that the best practices reported in this study are taken
into account, we consider that social robots pose more benefits
than harms concerning the social-emotional development of
children. However, when robots are being introduced more
regularly, daily, without the involvement of a human teacher,
new issues could arise. For now, given the current state of
technology and the way social robots are being applied, other
(ethical) issues seem to be more urgent, such as privacy and
security issues, and the workload of teachers.
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Education is one of the major application fields in social Human-Robot

Interaction. Several forms of social robots have been explored to engage

and assist students in the classroom environment, from full-bodied

humanoid robots to tabletop robot companions, but flying robots have been

left unexplored in this context. In this paper, we present seven online remote

workshops conducted with 20 participants to investigate the application area of

Education in the Human-Drone Interaction domain; particularly focusing on

what roles a social drone could fulfill in a classroom, how it would interact with

students, teachers and its environment, what it could look like, and what would

specifically differ from other types of social robots used in education. In the

workshops we used online collaboration tools, supported by a sketch artist, to

help envision a social drone in a classroom. The results revealed several design

implications for the roles and capabilities of a social drone, in addition to

promising research directions for the development and design in the novel

area of drones in education.

KEYWORDS

social drone, education, human drone interaction, robot design, remote design
workshop, robots in education

1 Introduction

Advances in Human-Robot Interaction (HRI) have recently opened up for the rising

research field of Human-Drone Interaction (HDI). The field generally started by

investigating novel interaction approaches such as defining visual representations of a

drone Szafir et al. (2015), designing ways for motion control [Obaid et al. (2016a); Walker

et al. (2018)], exploring social body motions Cauchard et al. (2016), or defining

interpersonal spaces Yeh et al. (2017). In parallel, researchers have looked at utilizing

drones in several application domains [see Obaid et al. (2020a)], such as entertainment

Rubens et al. (2020), sports [Romanowski et al. (2017); Mueller and Muirhead (2015)],

domestic companions Karjalainen et al. (2017), local services [Obaid et al. (2015b);

Knierim et al. (2018)], videography Chen et al. (2018), art Kim and Landay (2018), and

more. A recent review by Baytas et al. (2019) on designing drones, suggests that drone

application domains that target domestic-human environments can be defined as “social

drones”. Based on amore recent HDI survey by Tezza and Andujar (2019), it is foreseeable
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that drones will become a ubiquitous technology deployed in

many new application domains within our society, but they have

not yet been investigated. In their survey, it is suggested that one

way to move forward is to gauge research efforts into activities

that will elicit design implications for the different societal

application areas, enabling a better understanding and

acceptance when utilizing drones in our society.

Extrapolating from the social HRI field, a large body of

research efforts have been put towards the application domain

of education Johal (2020). One of the aims is to introduce

novel ways to support teachers in classroom environments

Belpaeme et al. (2018), thus enhancing the students’ learning

capacity. In this context, ongoing HRI research suggests that

assistant classroom robots is a preferred approach Ahmad

et al. (2016). However, to the best of our knowledge, the

application domain of social drones (or flying social robots) in

education has not been researched yet. Therefore, we believe

this is an opportunity to explore the design space and

implications of drones in an educational context, in

particular looking at drones that support the classroom

environment with no intention of replacing the teacher (see

Figure 1). We do this by taking a novel first step into exploring

the educational drones’ design space and contributing the

following to the HDI community:

• Conduct novel research to understand how social drones

can be utilized to support the classroom environment,

teachers and students.

• Create a user-centered design method to elicit design

implications on four main design themes, thus

providing insights on social drones in education and

future research directions.

• Identify the implications and lessons to be learned from the

online and remote design workshops.

2 Related work

In this section, we highlight related research to demonstrate

the need to establish a design space for a novel application area of

social drones in education. The section is divided into three parts:

social robots in education, user-centered robot design, and

related work towards our approach to drones in education.

2.1 Social robots in education

Since the establishment of the Human-Robot Interaction

(HRI) field, a considerable research body has contributed to

investigating social robots in education [Mubin et al. (2013);

Belpaeme et al. (2018); Johal (2020)]. Initially, educational

robotic agents originated from research on virtual agents that

aimed at enhancing the learning environment of students

[Johnson et al. (2000); Yılmaz and Kılıç-Çakmak (2012)].

Thereafter, the physical embodiment of a robot in a

classroom environment has attracted the attention of

FIGURE 1
An illustration of social drones in a classroom, with examples of instantiating the social form and social function in an educational context
[extending the definition by Hegel et al. (2009)].
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researchers, strengthening several dimensions in a learning

classroom setup [Saerbeck et al. (2010); Köse et al. (2015);

Kennedy et al. (2015)]. A recent review by Belpaeme et al.

(2018) highlights the benefits of having a physically

embodied social robot that has a tutoring role in a

classroom. One of the benefits is the ability to foster

engagement, creating a positive learning experience for

students. In addition, in their review Belpaeme et al.

(2018) demonstrated that HRI literature used a wide

variety of robot appearances; pointing out that almost all

of them had social attributes and features (i.e. humanoid

features such as head, eyes, mouth, arms or legs). Moreover,

in another review on robots used in education, Mubin et al.

(2013) showed that the role of a classroom robot is generally

seen as an assistant or a tutor supporting the teacher and

students. To this end, the aforementioned literature reviews

suggest that social robots in education are likely to be

autonomous in their movements and will depict an

assistant to a teacher role in a classroom environment.

In the context of social robots in education, many

researchers have worked on investigating interactions using

different robotic platforms that are already available in the

market, such as the popular NAO robot [Johal (2020);

Amirova et al. (2021)]. For example, Serholt et al. (2014)

deployed a NAO robot to investigate the school children’s

response to a robotic tutor compared with a human tutor

while giving instructions to accomplish a task. Another

example is using the NAO robot Obaid et al. (2018a) to

study the development of empathetic robotic capabilities in

educational settings. While such studies hold a significant

value in the development and understanding of educational

robots in classroom environments, most can be considered to

be taking a robot (device)-centric approach to understand

robots in classroom settings; thus, revealing few insights about

the users’ views of a what a robotic agent should entail from a

user-centered design (UCD) prospective. In the review by

Johal (2020), it is also noted that research into the educational

use of social robots in adult higher education has been almost

unexplored.

2.2 User-centered robot design

Users’ contributions in the design process of a robot can

help fast track their acceptance and usefulness Reich-Stiebert

et al. (2019b). Recently, several researchers have employed

and developed new UCD approaches in the design and

development of robots [Barendregt et al. (2020); Reich-

Stiebert et al. (2019a); Leong and Johnston (2016);

S�abanovic et al. (2015)]. Focusing on the domestic robots,

the work by Lee et al. (2012b) inspired other researchers to

involve users in the design of assistant robots in a classroom

environment [Obaid et al. (2015a; 2016b; 2018b)]. Although

their work was not focused on robots in education, Lee et al.

(2012b) suggested an innovative approach to envision a

domestic robot by utilizing sketches and drawings along

with four main design themes: the look and feel,

interaction modalities, social role, and desired tasks. Later,

Obaid et al. (2015a) used a similar UCD approach to

investigate how adult interaction designers and school

children would envision a robot as an assistant to a teacher

in a classroom. In their study, 24 interaction design students

and 29 children took part in focus group sessions to draw,

describe, and discuss the creation of robot designs based on

the aforementioned themes suggested by Lee et al. (2012b).

Their results revealed interesting insights into the clear

differences between the adult interaction design students’

and children’s views. For example, children wanted their

robot to have a human-like form that included robotic

features, but adult designers envisioned a cute animal-like

robot in a classroom space. Thereafter, Obaid et al. (2016b)

developed a robotic design toolkit (Robo2Box) aiming to

support children’s involvement in the design of their

classroom robot. The work presented by Obaid et al.

(2018b) suggests that social features were envisioned by

children. In addition, some children expressed the

preference of having a robot with flying capabilities in a

classroom.

2.3 Human-drone interaction and social
drones

One direction in recent HRI research is increasing activity

in investigating flying robots (drones), thus creating a whole

sub-field on Human-Drone Interaction (HDI). In a recent

HDI survey by Tezza and Andujar (2019), research is

currently focusing on (1) exploring ways of HDI

communications, (2) identifying suitable interaction

modalities with drones, (3) investigating human-drone

social behaviours (e.g., proxemics), and (4) introducing

novel application areas and use-cases. Generally, the two

first items are directed towards investigating novel

modalities of interaction between humans and drones and

the last items investigate novel application domains for these

interactions.

For example, studies ranged from exploring ways to

navigate/control a drone using body gestures [Obaid et al.

(2016a); Cauchard et al. (2015); Ng and Sharlin (2011)], to

utilising visual representations held/projected by drones

[Scheible and Funk (2016); Schneegass et al. (2014);

Romanowski et al. (2017)].

In the case of social drones, however, there is some

specificity that will apply. In this section, we propose to

define the characteristic of social drones grounding the

definition of social robots and highlighting the specificity
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of social drones. The literature on the design of social drones

was recently reviewed by Baytas et al. (2019). In their review,

they gave a summary of three main design categories and

twelve design aspects that were identified from related

literature. The design aspects were put into perspectives in

either Drone Design concerns (lighting and displays,

proxemics, sound, appeal, control methods, form, flight)

or Human-Centered concerns (ergonomics, intuitive

control, perceived social role, tactility perception, and

intuitive comprehension). While this review is the first

focusing on social drones, the authors only provided a

short definition, mainly relying on the context of

deployment of the drone “we submit that an autonomous

embodied agent in an inhabited space can be similarly

described as social.” While important, social context alone

is insufficient to qualify a drone as social.

In Human-Robot Interaction, Hegel et al. (2009) proposed

to define social robots as a composition of robot and social

interface, with the social interface referring to all the designed

features by which a user judges the robot as having social

capabilities being: 1) its form, 2) its functionality, which

should be exercised in a socially appropriate manner, and

3) its context of use. This definition of social robots can be

further defined thus:

Form: All aspects related to the robot communication: its

appearance, its socially expressive capabilities (i.e., facial

expression, display of emotions, expressive navigation,

other types of non-verbal cues)

Function: All aspects which compute any artificial social

behaviour of a social robot: BDI reasoning, joint attention

mechanisms, theory of mind, affective recognition, and others

Context: All aspects linked to the knowledge of specific

applications domains, in terms of social norms and social roles

While presented distinctively, these aspects are obviously

interrelated. For example, social functions and social forms

would be aligned to meet a user’s expectations (e.g., one

would expect that a robot with a mouth could speak).

Going back to the HDI research context, we can now

distinguish the social drone as a special case of social robot

thanks to its aerial motion capabilities. Looking at the recent

literature review by Obaid et al. (2020a), we hence see that

researchers are investing these aspects. For example, Herdel

FIGURE 2
Overview of the research areas linked with social drones.
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et al. (2021) propose to investigate how facial expressions and

emotions could be rendered on a face mounted on a social drone

(Form). In another example, Karjalainen et al. (2017) investigate

how social drones could be used for companionship in the home

environment, and what functionality and role these drones would

have. Figure 2 summarises the characteristics of social drones in

relation to HDI (e.g., interested in interactions between humans

in flying robots) and general social robotics.

To summarize, looking at the importance of social robots in

education within the HRI field (Section 2.1), and inspired by the

domestic companion work of (Karjalainen et al. (2017)) and other

related work (Sections 2.2, 2.3), we apply a user-centered method to

take the initial steps towards exploring a novel design space on social

drones in education. In the following section, we describe our

method and the UCD approach in detail.

In particular, we aim to establish how the role envisioned for

social drones differs from that of classical social robots in education;

what features of the social drones (e.g. aerial motion, bird-view) are

envisioned to be useful; and finally, what threats and risks are

envisioned in the case of social drones in classrooms.

3 Methods

To investigate social drones’ assistance in educational

contexts, a set of seven design workshops were conducted

remotely, each with 2-4 participants, 2 facilitators, and

1 sketch artist. The study was approved by the institute’s

ethics committee and all participants were recruited on a

voluntary basis. Their consent was obtained through an

online consent form prior to the study. The workshop

structure consisted of two steps and the duration of each

workshop was 1.5 h on average. A few days after the workshop,

a post-workshop questionnaire was sent to participants to

evaluate the techniques and tools used (i.e., sketch artist’s

support and online tools).

The essence of this study was to take a learner-centered

design (LCD) approach, in order to gauge the learners’

environment of an educational drone. We specifically focused

on Higher-Education student who are often less researched as a

target group for social robots in education (see Johal (2020)).

3.1 Participants

An announcement for the study was made via different

online channels, including social network accounts and email

lists to students at the authors’ institutions. In total

20 participants (15F and 5M) responded to the call and

attended the workshops. The workshop announcement

was an open call, so there were no criteria for participant

selection, however, all the respondents were either university

TABLE 1 Sessions and participants’ information (P#: Participant ID, F: Female, M:Male, D: Design, E: Engineering), All the teaching experience reported
was university level.

Session ID P# Grad Gender Background Teaching experience

S01 P01 Bachelor M E

P02 PhD F D Y

S02 P03 PhD F D Y

P04 Master F D

P05 PhD F D Y

P06 PhD F D Y

S03 P07 Master F E

P08 PhD F E

S04 P09 PhD F E Y

P10 PhD M E & D Y

P11 PhD F D Y

S05 P12 PhD F D Y

P13 Bachelor F D

P14 PhD M E

S06 P15 Bachelor F D

P16 Bachelor F D

P17 Master M E

S07 P18 Master F D

P19 Bachelor F E & D

P20 Master M E
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students or graduates (students: three BA, three MA, seven

PhD; graduates: two BA, two MA, three PhD). Of the

20 participants eight had teaching experience, while six

were specialized in education-related research, four of

whom worked particularly on “education for children”.

Finally, 10 out of 20 participants had engineering-related

backgrounds and 12 out of 20 had design-related

backgrounds (two had both backgrounds). One workshop

was conducted with four participants, four workshops with

three participants, and two workshops with two participants.

Table 1 summarises the important demographic information

of participants for all the workshop sessions.

FIGURE 3
Scene from a Miro session. (A) The Miro canvas contained five distinct board groups. (B)Orientation board and avatars. (C) Each task consisted
of one central board and two to four surrounding boards for participants. Each participant had a dedicated seat around the central board, resembling
a round-table setting. (D) Easy to access workshop agenda for participants’ and facilitator’s reference.
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3.2 Study settings

All workshops took place via two online platforms

concurrently: Zoom1, the video conferencing platform, and

Miro2. The latter is an online collaboration platform that

allows users to share their ideas and comment on shared

artifacts on an infinite canvas using sticky notes, drawing

tools, and customizable boards (see Figure 3). Besides

collaboration, Miro also offers facilitation features such as a

timer, an easy-to-access workshop agenda, and directing users’

attention to a specific spot when needed using the visible mouse

mode. First, a Miro canvas template was created and used in a

pilot study with one participant to evaluate the ease and the flow

of the study; thereafter, necessary adjustments were made to

revise the workshop structure and theMiro template. The revised

template setup was duplicated and used for each

workshop. While everyone communicated through Zoom,

Miro was used for generating ideas and having discussions on

the matter during the workshops. Zoom sessions were audio-

recorded, whereas Miro sessions were saved as PDF files and

participants’ ideas were exported to a spreadsheet for analysis.

One researcher recorded data and managed the technical aspects

of the workshop without interacting with the participants, and

one researcher undertook the facilitation, guiding the

participants through all tasks and managing the discussions as

well as keeping track of the time. The reason to use Zoom instead

of Miro’s audio communication was to avoid connection

problems.

Each session consisted of two steps, each having three tasks,

as explained in the below sections. In each task, participants used

personal boards assigned to themselves around a central board,

resembling a physical round-table setting (see Figure 3). The

central board was used by the sketch artist to visualize

participants’ ideas while they talked and wrote down their

ideas related to each of the tasks. When a task was completed,

participants moved to the next round-table to work on the next

task. Each participant’s personal board contained three empty

sticky notes for them to start each task. They were free to add

more but had to at least fill one.

3.3 Step one: Context building

The aim of the first step was to familiarize the participants

with Miro and the topic of the workshop. It consisted of three

tasks:

3.3.1 Task 1: Orientation
Participants were welcomed via an orientation board, where

they were asked to choose an avatar, write their name next to it

and introduce themselves using sticky notes next to their chosen

avatars. After each participant figured out how to use the Miro

basic tools needed for the rest of the workshop and had met each

other, everyone moved to the next task. For the rest of the

workshop, participants had the same position around the board

FIGURE 4
An example of the drawings made by the sketch artist to visualize participants’written ideas during the fourth workshop. The hovering X shape
illustrates a drone. The shape representing the drone was suggested by the sketch artist during the pilot study, to allow the visualization of drones in
the quickest way possible.

1 https://zoom.us/

2 https://miro.com

Frontiers in Robotics and AI frontiersin.org

Johal et al. 10.3389/frobt.2022.666736

154

https://zoom.us/
https://miro.com
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.666736


based on the one they picked in this first task, as if they were

sitting around a table.

3.3.2 Task 2: Recall a learning challenge
As an introduction to the topic of the study, participants were

asked to write down the challenges they face (or had faced) in

physical education settings. Each participant presented their

sticky notes, and discussed the challenges and issues they had

experienced in classrooms. We noticed here that the participants

referred mainly to issues encountered in their higher education

context.

3.3.3 Task 3: Presentations of current drone
applications and capabilities

The general public shapes their conceptual understanding of

drones (as a rising technology) from representations exhibited in

the mainstream media (e.g., movies); as illustrated by Aydin

(2019). This meant that our participants arrived at the study with

some previous knowledge of drones from the different media

channels. Aydin (2019) also states that the general public is not

aware of the majority of applications that drones can hold, giving

us an incentive to educate our participants on a broader

understanding of the social drone space. To achieve this, we

used a priming video3. After the discussion on the challenges in

educational contexts, all participants were briefly introduced to

the many current applications of drones by the facilitator, and

then watched a YouTube video on social drones created by the

MagicLab (2016), illustrating how drones, individually and in

groups, could interact with a user, and what their current

interaction capabilities are.

3.4 Step two: Brainwriting on social drones
in education

In this step, the aim was to investigate how participants

imagine drones being used in educational settings. Inspired by

the work presented by Obaid et al. (2015a), we adopted similar

themes to reveal design aspects on social drones in education.

Therefore, this step consisted of three theme-based tasks: desired

tasks and social roles, interaction modalities, and the look and

feel of social drones. Furthermore, for this step, an adapted

brainwriting Rohrbach (1969) technique was used, in which

participants were asked to individually note down their ideas

on sticky notes on their boards before exchanging those ideas in a

group discussion. Concurrently with the brainwriting activity,

the sketch artist made drawings of participants’ ideas on the

central board. Each idea was captured with drawings on separate

sticky notes, and those drawings were improved based on the

discussion among participants and on their feedback (see

Figure 4). Participants were also asked to match the

drawings with their own ideas during the discussion; in order

to help others to understand and to facilitate the discussion further.

3.4.1 Task 4: Desired tasks and social roles of
social drones in education

For this task, the facilitator asked the following questions to

the participants and set up a timer for 5 minutes for brainwriting:

• What are the social roles of a drone?

• What social roles do you think the drone will have in a

classroom environment?

• What are the desired tasks that the drone should carry out

in a classroom context?

Participants were reminded that the drone should be

imagined as an assistant supporting a classroom environment,

possibly addressing some of the learning challenges they elicited

in Step One, Task 2. After the brainwriting activity, the drones’

possible social roles and tasks in educational settings were

discussed.

3.4.2 Task 5: Interaction modalities
In this task, the goal was to identify how participants would

envision interacting with a drone in an educational setting. They

were asked to generate ideas based on the following questions:

• What interaction modalities should this drone have?

• How do you envision your drone interacting with students,

with teachers, and with the environment?

The time given for brainwriting in this task was again 5 min.

3.4.3 Task 6: Look and feel
Based on the discussion on previous tasks, the facilitator

asked the participants to envision the look and feel of social

drones. Within 5 minutes, the participants were asked to think

about and note down their ideas on the following questions:

• What do you imagine the drone to look like?

• What would its shape, color, size look like?

• Are there any additional functions or parts that the drone

should have that would help with its social role?

3.5 Post-workshop questionnaire

A week after each workshop, a questionnaire was sent to the

participants to collect their feedback regarding the workshop’s

form and content. Each session’s questionnaire started with the

pdf export of their workshop discussion boards and participants

were asked if they wanted to add anything. The rest of the3 Video used for priming: https://youtu.be/B4xtsH6pzoM
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questionnaire focused on collecting participants’ feedback on the

form used to run the workshops (i.e., online tools and the sketch

artist’s support). The output of the questionnaire and

participant’s feedback are presented and discussed in Section 5.4.

3.6 Data collection

All the sticky notes were extracted fromMiro and parsed into

a table for annotation. The first reading of all the sticky notes

allowed us to clean and remove empty ones. The audio recording

was also used when the idea written on the sticky notes was not

clear. The recording was then transcribed to complement the

information on the sticky notes. The analysis process was mainly

based on annotating the data logs for the participants from each

of the workshop sessions. In this section, we describe the derived

coding scheme and the annotated coding process.

3.6.1 Coding scheme

We utilised a deductive categorisation approach [see

Bengtsson (2016)] to define the coding categories, mainly

based on previous literature, the coders’ knowledge, and

experience in the HRI field. The coding scheme was built to

address our three main research questions. When constructing

the coding grid, we referred to the work by Lee et al. (2012b)

(i.e., Role, Look and Feel, Desired Tasks and Interaction

Modalities), and Yanco and Drury (2004)’s taxonomy to

characterize the interaction context (i.e., interaction roles, task

type), to define the level of granularity, and Obaid et al. (2015a)’s

list of robotic attributes that helped to draft the interaction and

look and feel codes (i.e., size, sensors). As a first step, the coders

started with the main coding categories adopted from the design

themes presented in previous research [Yanco and Drury (2004);

Lee et al. (2012b); Obaid et al. (2015a)]. The main themes

consisted of the social role, desired tasks, interaction

modalities, and look and feel. The coders then started

discussing the categories, and iteratively defined coding

options together to derive an initial coding scheme.

Thereafter, each coder used the initial scheme to annotate a

sample data set of 55 sticky notes, allowing the coders to discuss

and amend any further code categories to the scheme. The final

coding scheme contained the main categories listed in Table 2.

3.6.2 Coding process

The groups generated various notes during the session. The

process started with four coders analysing a whole session, 10% of

the data, to deduce an inter-rater reliability check. Each coder

separately analysed the data logs of one entire session, composed

of 55 sticky notes. Thereafter, an inter-rater reliability was

computed via a Fleiss measure (Fleiss (1971)-suitable for more

than two raters for categorical ratings). On average, across all of

the dimensions coded, the inter-rater reliability resulted in a

Fleiss’ kappa of 0.69 (SD = 0.13), which is considered to be a

substantial agreement. The coders discussed some of the

categories further to eliminate any misunderstanding or

ambiguities throughout the process. The annotations of the

full dataset then commenced, where each of the coders was

assigned a set of coding categories to annotate across all of the

seven workshops.

4 Analysis and results

This section presents the results of the analysis of the ideas

captured by the sticky notes and the sketches across seven

workshops (20 participants). All of the participants generated

a total of 463 sticky notes. In order to report the results, we

propose to articulate them following the design themes proposed

by Lee et al. (2012a).

4.1 Social roles and desired tasks

Participants (P) were invited to envision what social roles

would be desirable for a drone in education to support and assist

in a classroom setting. Out of the 498 sticky notes generated

during the seven sessions, 100 referred to a social role for the

drone in the classroom.

TABLE 2 Coding scheme used for the quantitative analysis with possible codes separated by “;” for each category.

Main category Possible codes

Social roles Teaching assistant; Butler; Moderator (i.e. between students or between teacher and students); Environment Manager (i.e.
classoom facility); Companion; Entertainer; Special Needs Caregiver

Interaction modalities: Social cues input Gaze tracking; Movement tracking; Face/Object recognition; Video/Image capturing; Speech; Environment sensors; Controller
(UI or tangible); Gesture control

Interaction modalities: Social cues output Gaze; Speech; Non-verbal sound; Lights; Displays; Body color; Body language; Writing or texting; Drawing; Tactile feedback

Drone size (diameter) Small (< 20 cm); Medium (≥ 20cm and ≤ 35cm); Large (> 35cm)
Desired tasks See Table 3 for details on the codes
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The results show two main roles that were predominantly

mentioned by the participants: Teaching Assistant (mentioned

54 times), and Butler (22). Other roles mentioned were

Moderator (8), Companion (7) and Environment Manager (6).

While Teacher Assistant/Tutor is quite a commonly found

role for social robots in education Belpaeme et al. (2018), the task

envisioned for social drones as teacher assistant differs somewhat

from that of classical social robots in education.

Furthermore, the role of Butler often cited by our participants

has mainly heretofore been in the literature about social robots in

a home context Karjalainen et al. (2017) and not educational

contexts. The ease of movement of drones could explain this as

many butler tasks consist of moving objects around the room.

Table 3 shows the envisioned set of tasks for the social drone.

Out of the 498 sticky notes, 122 mentioned a task that could be

carried by the social drone. While the set is very varied (we

counted 17 different types of tasks), two stand out by the

frequency at which they were mentioned by the participants:

Managing participation (mentioned 30 times) and Doing chores

(mentioned 21 times). These tasks are in line with the principal

desired social roles discussed before, respectively Teaching

Assistant and Butler4.

We notice that these tasks differ from classical tasks

performed by social drones in other contexts, more often

found to be suitable for navigation, well-being, and

companionship (Obaid et al. (2020a)). But they also differ

from classical tasks attributed to other types of social robots

in education which often offer individual assistance Johal (2020)

rather than classroom orchestration functions.

In terms of the envisioned target users for the social drones5,

we notice that the participants mainly mentioned tasks involving

individual interactions between the social drone and one student

(26 times): “[It] can help students taking notes when the teacher

moved on, it can [. . .] explain any point students missed/didn’t

understand” (P16). They also thought the drones could interact

with the whole classroom (11 mentions) by broadcasting

information, being used as a tool to do physical

demonstrations, assessing and managing the well-being of

students at the classroom level: “Classroom environment can

be modified to enable a more productive climate (heat, seating

arrangement, etc)”. Finally, some participants thought the social

drone could be useful for group work (6 mentions): “During

teamwork it can guide students or participate as well like a leading

team member” (P16).

4.2 Interaction modalities and
communication

In Task 5, participants were asked to imagine how users could

interact with a social drone. We categorised their comments into

two types: 1) Social Cues Input-describing how the drone

TABLE 3 Coding scheme used for the desired tasks for the social drone in classroom.

Task Occurrence

Managing participation (i.e., answering small questions, grouping students) 34

Doing chores (i.e., cleaning, transferring items, bringing food) 30

Proctoring exams/taking attendance 10

Enriching demonstration and visualization 8

Managing students’ attention/focus 6

Ensuring safety/assisting people in case of emergency 6

Ensuring physical settings and arrangements 6

Ensuring everyone understands, hears the teacher, understands the language 3

Informing students about past/current/future class content 3

Assisting musical/body exercise 2

Recording class/course content/board 2

Enriching teacher’s gestures 1

Broadcasting teacher’s lecture in multiple classes 1

Keeping track of time 1

Helping teachers to evaluate themselves 1

Understanding students’ mood 1

4 see the dashboard for the full list: https://apps.streamlitusercontent.
com/wafajohal/socialdroneeducation/dev/streamlit_app.py/+/#task-
analysis

5 see the dashboard for the full list: https://apps.streamlitusercontent.
com/wafajohal/socialdroneeducation/dev/streamlit_app.py/+/#target-
user
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perceives its environment and the users, and 2) Social Cues

Output-describing how the drones communicate with the users.

The analysis shows that participants often mentioned multiple

modalities for the drone to perceive its environment and the

users, among which the most mentioned were: Speech/Audio

(13), Environment sensors (i.e. temperature, light) (10), Gesture

(10), Movement Tracking (9), and Face or Object Tracking (7)6.

We note here that it is interesting that the participants didn’t

think about the fact that the drone’s propeller might be too noisy

for microphones to be used. We also note that touch was not

envisioned and that the modality of interaction proposed by the

participants could be implemented for public space proxemic

distance see Mumm and Mutlu (2011).

In terms of social drone expressivity, participants mainly

mentioned non-verbal communication cues (only 3 sticky

notes mentioned Speech and 2 Non-verbal sound). Body

Language was the most mentioned modality (8). For

instance, participants thought of using different types of

motion to convey messages: “fast-short movements vs. slow

continuous movements” (P12), or to include gestures such as

“nodding” (P20 and P03). Several participants mentioned

lights (4) or body changing colors (3) as a way for the

drone to express its mood “RGB color codes: Green is

positive, Red is negative [and] Blue is uncertain” (P20) or to

signal learning phases to the whole classroom: “The color of

the light of the drone might indicate something such as its the

time of the lecture for questions and discussion” (P18). The

sound of the drone was often considered to be distracting and

only two participants mentioned it as a possible way for the

drone to communicate. Three participants also mentioned the

possible use of a projector embedded in the drone: “projection

(light, picture)” (P07). Nearly all the interactions mentioned

by the participants were spatially collocated (84), and only

three mentioned remote interactions with the drone. This has

implications for the drone’s appearance (i.e., in terms of safety

and discretion), discussed below.

4.3 Look and feel

Nineteen out of the 20 participants mentioned the drone’s

size in their sticky notes. To code for the drone size, we

decided to split the 19 sticky notes into three categories

relative to the size of a regular commercial drone such as

the Phantom Dj3 (see Table 2). Analyzing the results, we find

that participants mainly mentioned a small hand-sized social

drone (10 out of 19 sticky notes). It was often justified by the

fact that the drones needed to appear safe and to be discreet.

Only two sticky notes mentioned a large drone, anticipating

that the drone needed to be big enough to contain and carry

objects in the classroom or to arrange the table and chairs after

the class.

Related to the drone’s size and shape, three participants

mentioned that the drone could change shape as a way to

illustrate concepts and enrich presentations:“take the shape of

the Eiffel Tower during a lesson on France” (P08), or to be

transportable: “folding/unfolding for saving space and being

able to use in different sizes” (P06). Further, on the drone’s

shape, three participants suggested that drones should look

appealing to children. To that end, cartoon-like, animal-like:

“butterfly” (P08); “similar to bird or animal” (P10); or object-

like such as a “balloon” (P14) or a “toy” (P06) drones were

mentioned by several participants. Related to child-

friendliness, participants also suggested colorful and easy-

to-distinguish drones: “very colorful like a flying insect” (P03).

Another aspect related to the look and feel of the drones

was the potential distraction that the drones may cause. Seven

participants explicitly addressed that the drones should be as

silent as possible. Possible solutions suggested for making

drones silent were covering or removing the propellers (P19,

P10) and using noise-cancelling (P20). One participant

mentioned that the drone should be “silently lurking

around” (P05) so as not to interrupt people in the class.

Besides the auditory distractions, five participants were

concerned about visual distraction, and suggested the

following to render drones less distracting: “transparent

drone” (P21), “seamless: change the color according to the

environment” (P11), “not a vibrant color, plain physical

features” (P10) and “ghost-like” (P10).

Non-threatening drones emerged as a need in the classrooms

both for children and older students. Participants mentioned

drones to be physically harmless and with a friendly appeal.

Related to physical safety, soft materials (P11) were suggested.

Another suggestion for harmless drones was that “lights should

not be harsh or blinding” (P20).

In addition to the features related to look and feel explained

above, lightweight (P11), color-changing (P10, P02) (depending

on e.g., students’mood (P06, P04), environment (P08), preferred

visibility (P12), performed behaviour (P20), social role (P13),

activity status (P09) and class subject (P08)), smooth (P03) and

modular (P06) drones were suggested.

5 Discussion

The main aim of this study is to explore how social drones

would be utilised in a classroom setting, in terms of social

roles, tasks, interaction modalities, and appearance. Here in

this section, we will discuss implications related to the design

of social drones in a classroom and the methodological

implications associated with the remote design workshops.

6 see the dashboard for the full list: https://apps.streamlitusercontent.
com/wafajohal/socialdroneeducation/dev/streamlit_app.py/+/#social-
cues-input
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5.1 Implications for social role

Keeping in mind their learning challenges, several roles were

envisioned by participants in the study, but two main roles stood

out: a Teaching Assistant (TA) and a Butler. A TA was by far the

most mentioned role for the social drone in the classroom.

Participants thought of the TA as being able to bridge the

communication between the teacher and the students, either

by using other media (recording, broadcasting, enriching the

demonstrations and visualisations) or through gestures (“attract

the attention of teacher” [P03]). Similar to a regular classroom

TA, the social drones could be asked to gather questions, answer

some of them directly, manage group discussion, and balance

students’ participation. Low Engagement and lack of focus

during the class were discussed to be important challenges by

several participants. While several participants thought that the

TA could be more accessible and engaging than the teacher, they

also expressed concern about the drone being distracting. As a

result, the look of the drone incorporates attributes such as small,

invisible, and quiet: “size-not so big, not to distract students so

much” (P16), “seamless[. . .]” (P11) “transparent drone” (P21),

and “silent as possible as it can be” (P10). To summarise, the

drone TA is seen as a way to discreetly bridge communication

between students and teachers through physical movement.

A Butler was the second most mentioned role, and this is an

unexpected role when applied to social robots in education

(Belpaeme et al. (2018)). The butler was seen as an assistant

in charge of students’ well-being in the classroom, that “brings

food when people are hungry” (P18), “handing out/collecting tools,

papers” (P19), “clean[ing] any left trash[, and] adjusting seats and

tables after class is done” (P01). Because of its ability to easily

move in space, the butler drone would be expected to carry

objects, and hence was thought of as a larger drone, sometimes

with “extensible arms” (P01) or a “small storage (for distributing

things)” (P13). Here also, one aspect participants thought of as

important was a safe appearance: “appear harmless” (P03), “it

must be made of a soft material due to safety reasons” (P11), and

“not threatening” (P20). This new butler role brings new scenario

opportunities for social robots in the classroom, closer to what is

commonly found in home settings.

5.2 Implications for the communication
capabilities

The interaction modalities that support the social capabilities

of a drone were largely discussed by participants, especially when

envisioning how the drone could sense users and its

environment. We noticed that participants were more

talkative about the social inputs and sensors that the drone

could have (55 sticky notes on input sensing capabilities)

compared to its ability to express itself (only 28 sticky notes

on the output capabilities). This could be a result of the fact that

10 out of 20 participants have an engineering technical

background. This has also been seen in previous HRI

research, in which interaction with humanoid robots was

clearly influenced by the technical or non-technical

background of the participants Obaid et al. (2014).

Some participants also thought the drone could be in the

classroom to monitor student attendance or exams, hence to

“detect humans” (P19), or to “give a warning if it detects

suspicious behaviour during exams” (P13). The well-being of

students in the classroom was often discussed with two aspects:

the students’ mood (affective state and attention) and

environmental factors (temperature and light adjustments).

Several participants agreed that the drone could be used to

monitor and adapt to a student’s mood: “Biosensors

(Understanding the mood of the user)” (P02), “mood detection”

(P18); and to the environment: “adjust the physical environment

for best learning conditions (light, temperature, screen size, etc)”

(P16) and “[the] classroom environment can be modified to enable

a more productive climate (heat, seating arrangement, etc)” (P05).

Social capabilities were attributed to the drone to sense and

interact with students similarly to other social robots in

education (Belpaeme et al. (2018); Johal (2020)). Additionally,

we found that abilities to sense the whole classroom were

proposed for social drones by participants which is quite

specific to the drone’s ability to adopt a bird’s-eye position

and see the entire class (see Section 6.1.4). Having said that,

improving social expressivity of social drone is needed as they

lack anthropomorphic features used by other social robots in

education [e.g., NAO Amirova et al. (2021)].

5.3 Implications for the appearance

Some participants thought of the social drone as a versatile

agent that could change appearance and/or change role:

“modular [drone]” (P06), “different colors [could] indicate

different social roles (janitor [in] red, helper [in] green,

assistants [in] orange etc.)” (P13), “changeable to the

[curricular] subject and to the environment” (P08). In

addition, two aspects of appearance that predominated the

participants’ comments were safety and discretion. These two

last aspects are very specific to social drones. Indeed, noise and

visual distraction could be a threat for students’ learning. We

discuss this aspect further in Section 6.1.1.

5.4 Implications for remote design
workshops

In this section, we discuss lessons learned from our

experience with the online combination of using Zoom, Miro,

and sketches employed in a design workshop for drones in

education.
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5.4.1 Designing online around a virtual table
Miro has provided an online collaboration platform for

participants and helped in materializing their thoughts. The

18 participants that responded to the post-workshop

questionnaire agreed that it was easy to share their ideas using

Miro (4.28 on the 5 point Likert scale). Participants each had

their own boards that were positioned as if they were sitting

around a table, and when it was time for group discussions, they

used the group board in the middle. This setup allowed

participants to have individual thinking time when needed

and orient joint attention during presentations and

discussions. Miro has enabled us to overcome certain

challenges encountered in co-located physical workshops, such

as getting distracted by others or having difficulties in presenting

ideas placed on sticky notes due to the distance among

participants. Moreover, this online-remote workshop helped

us bring together participants, facilitators, and the sketch

artist from all around the world (Turkey, Australia, Sweden

and Portugal).

Along with Miro, Zoom was used for the introduction of

the workshop, audio communication and recording during

the Miro sessions. The decision of leaving the video on or off

was left to the participants but it was suggested that they

should prioritise their time on the Miro screen to be able to

concentrate on the workshop content. Only one participant

stated that it would have been better to be able to see others

during discussions.

5.4.2 Designing with visual sketching support
The third component of the method we used was the sketch

artist’s contribution to the workshops. The idea behind

employing a sketch artist was to support participants in

presenting and discussing their ideas that would otherwise be

written and limited to keywords. That is why the sketch artist

simultaneously visualized ideas that participants noted on their

boards, and the sketches were placed on the central board while

participants explained their ideas in each task. Participants were

encouraged to interact with the sketch artist to ask for corrections

or comment on the illustrations. Again, the participants

mentioned in the post-questionnaire that they were happy

with the extent that the sketching artist captured their ideas

(4.28 on the 5 points Likert scale). They also thought that the

sketches helped them understand the others’ ideas (4.17/5.00); in

addition, the sketches helped them enrich their presentations

(4.00/5.00). From the perspective of the sketch artist, we realized

that it was challenging to visualize multiple participants’ ideas

simultaneously, particularly when the number of participants

exceeded three. The sketch artist, in the attempt to capture a

participant’s idea, also often asked for clarifications in order to be

able to draw a corresponding sketch. This was greatly helpful to

increase discussions and have participants express their thoughts

in more detail.

6 Conclusion

In this paper, we have presented a study that aims at

envisioning the design of social drones in a classroom context.

After running a series of seven online design workshops

(20 participants) with the support of a sketch artist, we

analyzed, discussed, and extracted several main design

implications that can advance future research on social drones

in education. To the best of our knowledge, this is the first

summary of design implications on social drones in education

that contributes to the HDI research and the HRI community in

general. We conclude with the following list to shed light on some

of the main implications found in our analysis:

1. A teaching assistant and a butler are the main social roles in

the context of designing a social drone in educational settings.

While the roles that came out from the workshops were

relatively similar to other social robots in education

[Belpaeme et al. (2018); Johal (2020)]; the findings

pertaining to tasks and abilities differed. In particular, we

found that the abilities for the drone to easily move in the

classroom made participants think of different scenarios:

handing sheets of paper, roaming in the classroom to

address students’ questions, and acting as a carrier pigeon

to carry messages between students. Another main identified

role was to be the classroom butler; as discussed in the paper,

while common for home robots Lee et al. (2012b), this role has

not been explored in the classroom context.

2. A social drone in education should have several interaction

modalities to sense the user’s behaviour, particularly the non-

verbal behaviours exhibited by the user. In addition, the drone

should also have the capabilities to sense its surrounding

environment. These are mostly considered as input channels

for the drone to make sense of its users and environment and

adapt to these.

3. A social drone in education should also be able to exhibit and

communicate via different interaction modalities; in particular,

the drone should have expressive embodied motions as an

output channel.

4. Social Drones could benefit from an adaptive design of their

appearance and role. For example, different illuminating body

colors could be customised to mean different roles in educational

settings.

6.1 Research in social drones in education

Currently, Drones in Education can be considered to encompass

several realistic scenarios despite the challenges of the technology

and the associated infrastructural foundations at educational

institutes. For example, drones can be utilized to be used in

aerial monitoring of students on the ground, in particular in
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outdoor settings. Another example, is the use of drones in education

as a tool or an applied instrument in educational subjects, such as

science and technology. However, envisioning the use of drones as a

social entity in education that can deliver and communicate with

students has several research challenges that his articles tried to

outlined. In this section, we demonstrate some of the challenges and

associated research opportunities that entail doing research in the

area of Social Drones in Education. Here we outline what HDI

researchers can address in their work to help in driving the field

towards future scenarios and research in HDI.

6.1.1 Challenge 1: Drones’ noise in the classroom
One major issue with most of the commercial drones at the

moment is the noise they make when flying Schäffer et al. (2021).

Several mitigations for this issue have been proposed Watkins et al.

(2020). The first one is the design of propellers that minimise noise.

Other suggestions were to allocate zones and flying path to drones.

6.1.1.1 Opportunity

While this issue remains, it is difficult to envision drones being

used during lectures. Researchers and drone designers need to come

up with ways to further mitigate for this challenge. For example, can

drone’s noise be used as away to communicateWatkins et al. (2020).

Moreover, as suggested by Schäffer et al. (2021), drone noise

annoyance might be lower in noisy contexts such as group work

or tutorials. However, the main opportunity remains on further

work to lower the noise of propellers why in motion.

6.1.2 Challenge 2: Drones lack social cues
Unlike the research literature into social robots for education

that often investigate how the robot’s affective capabilities could

be used in learning scenarios, the mention of affective cues for

social drones was nearly absent in our workshops.

6.1.2.2 Opportunity

The current form of drones is not anthropomorphic, and

doesn’t allow it to naturally render emotions. [Duffy (2003)

makes the link between anthropomorphism and social

capabilities of robots]. In order to render social cues, some

previous work investigated how the drone’s flight path could

be used see Cauchard et al. (2016) and some very recent work

even proposed to embed facial expressions or eyes on flying

robots [Herdel et al. (2021); Karjalainen et al. (2017); Treurniet

et al. (2019); Obaid et al. (2020b)]. Overall, developing social cues

for drones to exhibit and equally perceive is a prominent

opportunity for the HDI community to address.

6.1.3 Challenge 2: Drones are scary
The perception of drones as a threat was often mentioned

during the workshops and this can be linked with the

previous point and to common feelings about drones

(Aydin (2019)).

6.1.3.1 Opportunity

During the last part of the workshop (Look and feel of the

drone), participants often mentioned friendly and non-

threatening look to be an important aspect. More social cues,

and “warmer” material could be used to design drones that can

more easily be accepted in social contexts. This leads us to further

work to be done in the area of drone fabrication for HDI, which

we believe is a novel area that is yet to be explored.

6.1.4 Challenge 3: Handling more than one
student

In terms of the number of participants, we noticed that

compared to the literature on social robots in education (Johal

(2020)), there were more mentions of group drone interaction.

This can be explained by the fact that drones can take this birds-

eye/distanced stance, allowing them to interact with more

than just one student at a time. A drone can also easily move

in the classroom allowing it to be used as a novel channel of

communication between students.

6.1.4.1 Opportunity

While this reduces the opportunities for individualised

tutoring scenarios, it opens doors to explore a more school

realistic setup in which the ratio would be one drone per

classroom. It also open opportunities to expand the current

paradigm in social robots for education who tend to be

used for personalisation and individualised learning Johal

(2020). Finally, a novel direction here can be directed towards

research in Drones for Education within the CSCW arena. To the

best of our knowledge, very little research has been done there

addressing drones in education.

6.1.5 Challenge 4: Novel tasks for the TA
Similarly, the tasks envisaged for the drone were close to the

ones found in HDI, surveillance (i.e., during exams) and safety

Obaid et al. (2020a). While not often studied as social task, the

participants thought of a companion, and a safely agent that

could be there to guide and monitor.

6.1.5.1 Opportunity

Here again there will be opportunities to develop further

research to provide social cues in this kind of scenario in order to

inform students when they are being filmed or to guide them in a

safe, private and comfortable manner.

6.1.6 Challenge 5: Social drones for classroom
orchestration

Our participants mainly focused on the higher education

setup (which is not well explored in the research literature for

social robots in education). Several scenarios were described but

often the social drone was envisioned to be used in a tutorial/

workshop kind of setting rather than individual learning or
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classroom lecturing. This is an interesting aspect as the classroom

orchestration and the teacher cognitive load managing group

work needs to be taken into account when introducing

technologies for the classroom Shahmoradi et al. (2019).

6.1.6.1 Opportunity

Future works could investigate how to leverage the social

drone’s high speed and mobility to use it for classroom

orchestration (e.g., classroom monitoring, instructional scripting).

An example of this orchestration is the management and

monitoring of students’ attention and well-being in the

classroom that was often mentioned by participants. In these

scenarios, participants thought of the drone as part of an

Internet of Things ecosystem in which it could sense and adjust

environmental aspects such as the light and the temperature.

6.2 Limitations and future directions

The above articulation on the design implications can support

several future directions, which are also limitations in the

presented study. For example, our focus is to gauge for the

learners envisioned drone in education; taking a user (learner)

centered design approach. This approach is also supported by

others in field, such as the work presented by Reich-Stiebert et al.

(2019a) and Lee et al. (2012a). Thus, the recruitment of our

participants was done mainly through university student

channels, and hence some of the graduate students came with

teaching experience. However, we didn’t select or expect our

participants to have professional teaching experience, which one

could consider as a limitation. In this context, we did notice that

participants who had some teaching experience were the ones who

thought of some teacher-centric scenarios “Enables teachers to

reflect on their quality of teaching” (P05). Thus, conducting a study

with school children and/or school teachers may further suggest

additional valuable insights into the design of social drones in

education. Moreover, despite the advantages afforded by our

running an online design workshop, developing design insights

from a face-to-face focus group workshop may reveal further

implications towards social drones in education, as it could

allow physical prototyping, such as the work presented by

Karjalainen et al. (2017).

In summary, social robots in education are complex and

challenging as they involve many stakeholders

(i.e., students, teachers, parents, and the educational

environment), individual and group interactions, and

timely responses. As seen in previous research, drones

offer a great potential for social interactions in the

various application areas (Obaid et al. (2020a)). Thus,

investigating the potential uses of social drones in

education allowed us to generate novel perspectives for

the design of social drones. We hope this work lays the

foundation for the design of novel drones targeting teachers,

learners, and the classroom environment.
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