
EDITED BY :  Hui-Jia Li, Lin Wang, Zhen Wang, Zhanwei Du, Bingyi Yang, 

Chengyi Xia, Aristides (Aris) Moustakas and Sen Pei

PUBLISHED IN :  Frontiers in Physics and 

Frontiers in Applied Mathematics and Statistics

MATHEMATICAL MODELLING OF THE PANDEMIC OF 
2019 NOVEL CORONAVIRUS (COVID-19): PATTERNS, 
DYNAMICS, PREDICTION, AND CONTROL

https://www.frontiersin.org/research-topics/14086/mathematical-modelling-of-the-pandemic-of-2019-novel-coronavirus-covid-19-patterns-dynamics-predicti
https://www.frontiersin.org/research-topics/14086/mathematical-modelling-of-the-pandemic-of-2019-novel-coronavirus-covid-19-patterns-dynamics-predicti
https://www.frontiersin.org/research-topics/14086/mathematical-modelling-of-the-pandemic-of-2019-novel-coronavirus-covid-19-patterns-dynamics-predicti
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/research-topics/14086/mathematical-modelling-of-the-pandemic-of-2019-novel-coronavirus-covid-19-patterns-dynamics-predicti


Frontiers in Physics 1 September 2021 | Mathematical Modelling of COVID-19

About Frontiers

Frontiers is more than just an open-access publisher of scholarly articles: it is a 

pioneering approach to the world of academia, radically improving the way scholarly 

research is managed. The grand vision of Frontiers is a world where all people have 

an equal opportunity to seek, share and generate knowledge. Frontiers provides 

immediate and permanent online open access to all its publications, but this alone 

is not enough to realize our grand goals.

Frontiers Journal Series

The Frontiers Journal Series is a multi-tier and interdisciplinary set of open-access, 

online journals, promising a paradigm shift from the current review, selection and 

dissemination processes in academic publishing. All Frontiers journals are driven 

by researchers for researchers; therefore, they constitute a service to the scholarly 

community. At the same time, the Frontiers Journal Series operates on a revolutionary 

invention, the tiered publishing system, initially addressing specific communities of 

scholars, and gradually climbing up to broader public understanding, thus serving 

the interests of the lay society, too.

Dedication to Quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely 

collaborative interactions between authors and review editors, who include some 

of the world’s best academicians. Research must be certified by peers before entering 

a stream of knowledge that may eventually reach the public - and shape society; 

therefore, Frontiers only applies the most rigorous and unbiased reviews. 

Frontiers revolutionizes research publishing by freely delivering the most outstanding 

research, evaluated with no bias from both the academic and social point of view.

By applying the most advanced information technologies, Frontiers is catapulting 

scholarly publishing into a new generation.

What are Frontiers Research Topics?

Frontiers Research Topics are very popular trademarks of the Frontiers Journals 

Series: they are collections of at least ten articles, all centered on a particular subject. 

With their unique mix of varied contributions from Original Research to Review 

Articles, Frontiers Research Topics unify the most influential researchers, the latest 

key findings and historical advances in a hot research area! Find out more on how 

to host your own Frontiers Research Topic or contribute to one as an author by 

contacting the Frontiers Editorial Office: frontiersin.org/about/contact

Frontiers eBook Copyright Statement

The copyright in the text of 
individual articles in this eBook is the 

property of their respective authors 
or their respective institutions or 

funders. The copyright in graphics 
and images within each article may 

be subject to copyright of other 
parties. In both cases this is subject 

to a license granted to Frontiers.

The compilation of articles 
constituting this eBook is the 

property of Frontiers.

Each article within this eBook, and 
the eBook itself, are published under 

the most recent version of the 
Creative Commons CC-BY licence. 

The version current at the date of 
publication of this eBook is 

CC-BY 4.0. If the CC-BY licence is 
updated, the licence granted by 

Frontiers is automatically updated to 
the new version.

When exercising any right under the 
CC-BY licence, Frontiers must be 

attributed as the original publisher 
of the article or eBook, as 

applicable.

Authors have the responsibility of 
ensuring that any graphics or other 
materials which are the property of 

others may be included in the 
CC-BY licence, but this should be 

checked before relying on the 
CC-BY licence to reproduce those 

materials. Any copyright notices 
relating to those materials must be 

complied with.

Copyright and source 
acknowledgement notices may not 
be removed and must be displayed 

in any copy, derivative work or 
partial copy which includes the 

elements in question.

All copyright, and all rights therein, 
are protected by national and 

international copyright laws. The 
above represents a summary only. 

For further information please read 
Frontiers’ Conditions for Website 

Use and Copyright Statement, and 
the applicable CC-BY licence.

ISSN 1664-8714 
ISBN 978-2-88971-386-8 

DOI 10.3389/978-2-88971-386-8

http://www.frontiersin.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/about/contact
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/research-topics/14086/mathematical-modelling-of-the-pandemic-of-2019-novel-coronavirus-covid-19-patterns-dynamics-predicti


Frontiers in Physics 2 September 2021 | Mathematical Modelling of COVID-19

MATHEMATICAL MODELLING OF THE PANDEMIC OF 
2019 NOVEL CORONAVIRUS (COVID-19): PATTERNS, 
DYNAMICS, PREDICTION, AND CONTROL

Topic Editors: 
Hui-Jia Li, Beijing University of Posts and Telecommunications (BUPT), China
Lin Wang, University of Cambridge, United Kingdom 
Zhen Wang, Hong Kong Baptist University, SAR China
Zhanwei Du, University of Texas at Austin, United States
Bingyi Yang, University of Florida, United States
Chengyi Xia, Tianjin University of Technology, China
Aristides (Aris) Moustakas, University of Crete, Greece
Sen Pei, Columbia University, United States

Citation: Li, H.-J., Wang, L., Wang, Z., Du, Z., Yang, B., Xia, C., Moustakas, A., Pei, S., 
eds. (2021). Mathematical modelling of the pandemic of 2019 novel 
coronavirus (COVID-19): Patterns, Dynamics, Prediction, and Control. 
Lausanne: Frontiers Media SA. doi: 10.3389/978-2-88971-386-8

https://www.frontiersin.org/research-topics/14086/mathematical-modelling-of-the-pandemic-of-2019-novel-coronavirus-covid-19-patterns-dynamics-predicti
https://www.frontiersin.org/journals/physics
http://doi.org/10.3389/978-2-88971-386-8


Frontiers in Physics 3 September 2021 | Mathematical Modelling of COVID-19

06 Editorial: Mathematical Modelling of the Pandemic of 2019 Novel 
Coronavirus (COVID-19): Patterns, Dynamics, Prediction, and Control

Hui-Jia Li, Lin Wang, Zhen Wang, Zhanwei Du, Chengyi Xia, 
Aristides Moustakas and Sen Pei

08 Gaussian Doubling Times and Reproduction Factors of the COVID-19 
Pandemic Disease

Martin Kröger and Reinhard Schlickeiser

17 Accounting for Underreporting in Mathematical Modeling of Transmission 
and Control of COVID-19 in Iran

Meead Saberi, Homayoun Hamedmoghadam, Kaveh Madani, 
Helen M. Dolk, Andrei S. Morgan, Joan K. Morris, Kaveh Khoshnood 
and Babak Khoshnood

25 Mathematical Modeling of Business Reopening When Facing SARS-CoV-2 
Pandemic: Protection, Cost, and Risk

Hongyu Miao, Qianmiao Gao, Han Feng, Chengxue Zhong, Pengwei Zhu, 
Liang Wu, Michael D. Swartz, Xi Luo, Stacia M. DeSantis, Dejian Lai, 
Cici Bauer, Adriana Pérez, Libin Rong and David Lairson

41 Estimation of Infection Rate and Predictions of Disease Spreading Based 
on Initial Individuals Infected With COVID-19

Seo Yoon Chae, KyoungEun Lee, Hyun Min Lee, Nam Jung, Quang Anh Le, 
Biseko Juma Mafwele, Tae Ho Lee, Doo Hwan Kim and Jae Woo Lee

47 Estimation of Local Novel Coronavirus (COVID-19) Cases in Wuhan, 
China from Off-Site Reported Cases and Population Flow Data from 
Different Sources

Zian Zhuang, Peihua Cao, Shi Zhao, Yijun Lou, Shu Yang, Weiming Wang, 
Lin Yang and Daihai He

53 Estimating the Serial Interval of the Novel Coronavirus Disease 
(COVID-19): A Statistical Analysis Using the Public Data in Hong 
Kong From January 16 to February 15, 2020

Shi Zhao, Daozhou Gao, Zian Zhuang, Marc K. C. Chong, Yongli Cai, 
Jinjun Ran, Peihua Cao, Kai Wang, Yijun Lou, Weiming Wang, Lin Yang, 
Daihai He and Maggie H. Wang

60 Epidemic Characteristics of COVID-19 in Africa

Lijun Wang, Shengwen Dong, Ying Zhao, Yulei Gao, Jian Wang, Muming Yu, 
Fei Xu and Yanfen Chai

70 Stochastic Filtrate of Essential Workers to Reactivate the World 
Economy Safely

Elias Manjarrez, Roberto Olmos, Lilia Cedillo 
and Humberto A. Salazar-Ibarguen

80 Conditions for a Second Wave of COVID-19 Due to Interactions Between 
Disease Dynamics and Social Processes

Sansao A. Pedro, Frank T. Ndjomatchoua, Peter Jentsch, 
Jean M. Tchuenche, Madhur Anand and Chris T. Bauch

Table of Contents

https://www.frontiersin.org/research-topics/14086/mathematical-modelling-of-the-pandemic-of-2019-novel-coronavirus-covid-19-patterns-dynamics-predicti
https://www.frontiersin.org/journals/physics


Frontiers in Physics 4 September 2021 | Mathematical Modelling of COVID-19

89 COVID-19 Reverse Prediction and Assessment on the Diamond Princess 
Cruise Ship

Juan Zhang, Gui-Quan Sun, Mingtao Li, Rui Gao, Huarong Ren, Xin Pei 
and Zhen Jin

97 How to Optimize the Supply and Allocation of Medical Emergency 
Resources During Public Health Emergencies

Chunyu Wang, Yue Deng, Ziheng Yuan, Chijun Zhang, Fan Zhang, Qing Cai, 
Chao Gao and Jurgen Kurths

102 Estimation and Monitoring of COVID-19’s Transmissibility From Publicly 
Available Data

Antonio Silveira and Antonio Pereira Jr.

115 Trend Analysis of COVID-19 Based on Network Topology Description

Jun Zhu, Yangqianzi Jiang, Tianrui Li, Huining Li and Qingshan Liu

121 Mathematical Modeling Based Study and Prediction of COVID-19 
Epidemic Dissemination Under the Impact of Lockdown in India

Vipin Tiwari, Namrata Deyal and Nandan S. Bisht

129 On the Time Shift Phenomena in Epidemic Models

Ayse Peker-Dobie, Ali Demirci, Ayse Humeyra Bilge and Semra Ahmetolan

141 Modeling Growth, Containment and Decay of the COVID-19 
Epidemic in Italy

Francesco Capuano

149 Application of a Susceptible, Infectious, and/or Recovered (SIR) Model to 
the COVID-19 Pandemic in Ecuador

Pablo Espinosa, Paulina Quirola-Amores and Enrique Teran

161 Reduced Treatment Sensitivity of SARS-CoV-2 After Multigenerational 
Human-to-Human Transmission

Qiang Wang, Tong Yang and Yang Wang

167 Epidemiological Model With Anomalous Kinetics: Early Stages of the 
COVID-19 Pandemic

Ugur Tirnakli and Constantino Tsallis

177 Epidemiological Characteristics of COVID-19 in Mexico and the Potential 
Impact of Lifting Confinement Across Regions

Cristy Leonor Azanza Ricardo and Esteban A. Hernandez-Vargas

186 The Impact of Population Migration on the Spread of COVID-19: A Case 
Study of Guangdong Province and Hunan Province in China

Guo-Rong Xing, Ming-Tao Li, Li Li and Gui-Quan Sun

196 The Generalized-Growth Modeling of COVID-19

Ye Wu, Lin Zhang, Wenjing Cao, Xiaofei Liu and Xin Feng

202 Characterizing COVID-19 Transmission: Incubation Period, Reproduction 
Rate, and Multiple-Generation Spreading

Lin Zhang, Jiahua Zhu, Xuyuan Wang, Juan Yang, Xiao Fan Liu 
and Xiao-Ke Xu

208 The Suppression of Epidemic Spreading Through Minimum 
Dominating Set

Jie Wang, Lei Zhang, Wenda Zhu, Yuhang Jiang, Wenmin Wu, Xipeng Xu 
and Dawei Zhao

https://www.frontiersin.org/research-topics/14086/mathematical-modelling-of-the-pandemic-of-2019-novel-coronavirus-covid-19-patterns-dynamics-predicti
https://www.frontiersin.org/journals/physics


Frontiers in Physics 5 September 2021 | Mathematical Modelling of COVID-19

214 Renormalization Group Approach to Pandemics as a Time-Dependent 
SIR Model

Michele Della Morte and Francesco Sannino

221 Dynamical Analysis of a Mathematical Model of COVID-19 Spreading 
on Networks

Wang Li, Xinjie Fu, Yongzheng Sun and Maoxing Liu

229 Epidemics Forecast From SIR-Modeling, Verification and Calculated 
Effects of Lockdown and Lifting of Interventions

R. Schlickeiser and M. Kröger

242 Estimating Parameters of Two-Level Individual-Level Models of the 
COVID-19 Epidemic Using Ensemble Learning Classifiers

Zeyi Liu, Rob Deardon, Yanghui Fu, Tahsin Ferdous, Tony Ware 
and Qing Cheng

252 The Connectedness of the Coronavirus Disease Pandemic in the 
World: A Study Based on Complex Network Analysis

Sha Zhu, Meng Kou, Fujun Lai, Qingxiang Feng and Guorong Du

266 Causal Analysis of Health Interventions and Environments for Influencing 
the Spread of COVID-19 in the United States of America

Zhouxuan Li, Tao Xu, Kai Zhang, Hong-Wen Deng, Eric Boerwinkle 
and Momiao Xiong

279 Social Heterogeneity Drives Complex Patterns of the COVID-19 
Pandemic: Insights From a Novel Stochastic Heterogeneous 
Epidemic Model (SHEM)

Alexander V. Maltsev and Michael D. Stern

291 The Effect of An Emergency Evacuation on the Spread of COVID19

Sachit Butail and Maurizio Porfiri

296 Isolation and Contact Tracing Can Tip the Scale to Containment 
of COVID-19 in Populations With Social Distancing

Mirjam E. Kretzschmar, Ganna Rozhnova and Michiel van Boven

https://www.frontiersin.org/research-topics/14086/mathematical-modelling-of-the-pandemic-of-2019-novel-coronavirus-covid-19-patterns-dynamics-predicti
https://www.frontiersin.org/journals/physics


Editorial: Mathematical Modelling of
the Pandemic of 2019 Novel
Coronavirus (COVID-19): Patterns,
Dynamics, Prediction, and Control
Hui-Jia Li 1*†, Lin Wang2†, ZhenWang3†, Zhanwei Du4†, Chengyi Xia5†, Aristides Moustakas6†

and Sen Pei7†

1School of Science, Beijing University of Posts and Telecommunications, Beijing, China, 2Department of Genetics, Faculty of
Biology, University of Cambridge, Cambridge, United Kingdom, 3Center for OPTical IMagery Analysis and Learning (OPTIMAL),
Northwestern Polytechnical University, Xi’an, China, 4School of Public Health, Li Ka Shing Faculty of Medicine, The University of
Hong Kong, Hong Kong, SAR China, 5Tianjin University of Technology, Tianjin, China, 6Natural History Museum of Crete,
University of Crete, Heraklion, Greece, 7Department of Environmental Health Sciences, Mailman School of Public Health,
Columbia University, New York City, NY, United States

Keywords: COVID-19, epidemic spreading, pattern recognition, mathematical modelling, transmission dynamics,
disease prediction

Editorial on the Research Topic

Editorial: Mathematical Modelling of the Pandemic of 2019 Novel Coronavirus (COVID-19):
Patterns, Dynamics, Prediction, and Control

Appeared as a public health event, the COVID-19 pandemic has triggered massive crises in
public health systems and economy. The COVID-19 has fleetly spread to most countries of the
world. By the end of May 2021, SARS-CoV-2 has infected 180 million people and caused over
three million deaths worldwide. To control the outbreak of COVID-19, travel restrictions,
economic lockdowns, and border controls have been taken by many countries. The ongoing
COVID-19 pandemic motivates the scientific community to contribute to infectious disease
modeling, epidemiological study and outbreak prediction. That is, understanding the
mechanism of COVID-19 pandemic spreading, exploiting the infection prevention and
mitigation, and evaluating policy implementation, are important research questions for
academics and policymakers.

To exploit this urgent question, mathematical models have been widely used to analyze the
characteristics, impacts and emergency responsefor COVID-19. Mathematical modeling is a kind of
mathematical structure that is made up of various concepts and formulas in mathematics, used for
generally or approximately expressing the characteristics or quantitative interdependence of a certain
system of things.

This special issue has collected a series of studies on epidemic data analysis and supporting
decision-making. Those studies fit mathematical models for COVID-19 to analyze the characters of
the COVID-19 pandemic in different regions, for instance, Azanza Ricardo et al. investigate the
outbreak of COVID-19 in Mexico with different scenarios. While Miao et al. use mathematical
modeling to study options for business reopening during the COVID-19 pandemic. As a commonly
used epidemiologic model, the Susceptible, Infectious, and/or Recovered (SIR) model, the
reproductive number of the SIR model is discussed to assess COVID-19 spread (Silveira et al.;
Espinosa et al.; Schlickeiser et al.). Also, a mathematical model is developed to study what role social
heterogeneity plays in the formation of complex infection propagation patterns (Maltsev et al.).
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Moreover, statistical analysis has been used to characterize the
COVID-19 pandemic and predict the spread trend (Wang et al.;
Zhao et al.; Liu et al.). Mathematical models and statistical
analysis play important roles in public health emergencies,
using these models to analyze and develop strategies for the
COVID-19 pandemic is also an essential mission. For example,
fast epidemic recognition of the epidemic as soon as it appeared,
optimal supply and allocation of medical emergency resources
(Wang et al.), and assessing the epidemiological consequences of
an emergency evacuation (Butail et al.).

Model estimation also plays an important role in this special
issue. Wu et al. propose a generalized-growth model to present
the evolution of the number of the total confirmed cases over
time. The model provides a simple phenomenological approach,
with potential implications for forecasting of the pandemic trend.
Zhang et al. quantify the incubation period, transmission rate
from close contact to infection, and the properties of multiple-
generation transmission from a detailed database in mainland
China. Tiwari et al. sought to provide a prediction of the epidemic
peak and to evaluate the impact of lockdown on the epidemic
peak shift in India. Peker-Dobie et al. argue that the peak of
infected individuals coincides with the inflection point of
removed individuals. Recent COVID-19 data and the records
for Spanish flu and SARS epidemics confirm this observation.
Using multistage models the authors provide an explanation for
this time shift. Chae et al. estimate the parameters and the initial
infections from fitted values, and quantify the infection rate, the
basic reproduction number, and the initial number of infected
individuals for a number of countries. Kröger and Schlickeiser
argue that the Gauss model is the simplest analytically tractable
model that allows us to quantitatively forecast the time evolution
of infections and fatalities during a pandemic wave and provide
relationships between peak time and width, the transient behavior
of doubling times, and reproduction factors. Zhuang et al. built a
model to estimate the total number of COVID-19 cases in
Wuhan, based on the number of cases detected outside
Wuhan city in China, with the assumption that cases exported
from Wuhan were less likely underreported in other cities/
regions. Total cases are determined by the maximum log
likelihood estimation and Akaike Information Criterion (AIC)
weight.

This special issue aims to understand the impact of COVID-19
spreading on public health, society, and economics, and provides
efficient reference values for economic redevelopment and social
stability. So far, the authors have fitted mathematical models for
COVID-19, studied the connectedness of the global COVID-19
network across countries, captured the virus transmission among
cities, analyzed the dynamic characteristics of the COVID-19
pandemic, assessed the impact of COVID-19 spreading, and
predicted the spread trends of COVID-19, which alleviates the
public panic caused by COVID-19, grasps the trend of COVID-
19 transmission, and assists the government or policymakers to
make efficient decisions according to the spreading situation of
the COVID-19 pandemic.
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The Gauss model for the time evolution of the first corona pandemic wave is rendered

useful in the estimation of peak times, amount of required equipment, and the forecasting

of fade out times. At the same time, it is probably the simplest analytically tractable model

that allows us to quantitatively forecast the time evolution of infections and fatalities

during a pandemic wave. In light of the various descriptors, such as doubling times

and reproduction factors, currently in use to judge the lockdowns and other measures

that aim to prevent spreading of the virus, we hereby provide both exact and simple

approximate relationships between the two relevant parameters of the Gauss model

(peak time and width), the transient behavior of two versions of doubling times, and

three variants of reproduction factors, including basic reproduction numbers.

Keywords: coronavirus, statistical analysis, extrapolation, parameter estimation, pandemic spreading

1. INTRODUCTION

Recently [1], we demonstrated that the proposed [2–4] Gaussian time evolution for the daily
number of cases (deaths or alternatively infections) at time t

c(t) = cmax e
−

(

t−tmax
w

)2

(1)

provides a quantitatively correct description for the monitored rates in 25 different countries. Here,
cmax is the maximum number of daily cases at peak time tmax and w a characteristic duration. The
Gauss model (GM) is capable of reproducing reasonably well the monitored time evolution of the
Covid-19 disease and, even more importantly, making realistic predictions for the future evolution
of the first wave in different countries. An epidemologic foundation of the GM had been suggested
by the agent-based model presented in Schüttler et al. [1]. The GM can furthermore be regarded as
an approximant of the classical Susceptible-Infected-Recovered/Removed (SIR) model [5, 6] in the
limit of large inverse basic reproduction numbers [7]. From a mathematical viewpoint, a sigmoidal
time evolution involving a polynomial in the exponent of an exponential can be Taylor expanded
about the maximum; the GM corresponds to the lowest non-trivial order of a Taylor expansion.

Values for the parameters of the GM had been extracted by fitting the natural logarithm of the
monitored rates with

ln c(t) = ln cmax −
(

t − tmax

w

)2

= ln cmax −
t2max

w2
+

2tmaxt

w2
−

t2

w2
, (2)
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which is a polynomial of second order in t, to derive the best fit
values and their confidence errors of the three parameters cmax,
w, and tmax. These parameters are country specific and reflect
the regional differences in treatment, geographical, political,
socioeconomic situations, available equipment, etc. If this fitting
and parameter determination is done during the early stage of
the pandemic wave, the GM makes predictions for the later time
evolution of the wave.

The starting time of the outbreak, t0 can be defined by the
first occurrence of a case, c(t0) = 1, and is thus known from the
parameters of the Gaussian. Inverting c(t0) = 1 readily yields
ln(cmax) = (t0 − tmax)

2/w2, or

t0 = tmax − w
√

ln cmax (3)

To simplify notation, besides absolute time t, we introduce two
more times. First, there is the time relative to the peak time,
denoted by

1 = t − tmax (4)

so that negative (positive) 1 correspond to times before (after)
the peak time. Second, there is the dimensionless time x =
−1/w. As time unit we choose days throughout, so that1 = +2
corresponds to 2 days after peak time, and w is also given in units
of days; meanwhile, c is a dimensionless number of cases, usually
renamed as d or i if we specialize to deaths or infections. The three
parameters of the GM are related but not identical for deaths
and infections, as discussed earlier [1]. The related—to Equation
(3)—starting time

10 = t0 − tmax = −wx0 = −w
√

ln cmax (5)

is negative, x0 =
√
ln cmax is positive, and |10| is the number of

days between outbreak and climax of the first pandemic wave. All
properties derived for the GMmust therefore depend on w, cmax,
and x or, alternatively, 1, where 1 ∈ [10,∞].

Often monitored data are reported in terms of doubling times
and effective reproduction factors. These are also important
indicators for the future temporal evolution of the disease,
especially if no functional form for the case temporal evolution,
such as the GM (2), is adopted. However, there are differently
defined doubling times as well as reproduction factors in use. It is
the purpose of this manuscript to discuss in detail the properties
of differently defined doubling times and the differently defined
reproduction factors, their mutual relations to each other, and
their temporal behavior for the GM.

2. DAILY INSTANTANEOUS DOUBLING
TIME

As before [2], we consider the relative change of the daily number
of cases for the GM

p(t) =
c′(t)

c(t)
= [ln c(t)]′ = −

21

w2
=

2x

w
, (6)

where the prime denotes a derivative with respect to time t,
c′(t) = dc(t)/dt. The monitored data are often given in terms

of the instantaneous doubling time d of the corresponding
exponential functions at any time for the daily number of cases

ca(t) ∝ e
t ln 2
d = 2t/d, (7)

with the obvious properties ca(t + d) = 2ca(t). With these
corresponding exponential functions, we obtain for the relative
changes in the daily rate

p(t) = [ln ca(t)]
′ =

ln 2

d
. (8)

Equating the two results, (6) and (8), leads to the time-dependent
differential Gaussian doubling time

d(t) = −
A

1
, A = w2 ln

√
2 = 0.35w2. (9)

Apart from the changed notation, these differential Gaussian
doubling times agree with the earlier derived Equation (5) in
Schlickeiser and Schlickeiser [2]. The differential doubling time
is positive for times earlier than the peak time, 1 < 0,
and monotonically increases over time until it diverges as it
approaches 1 = 0. For later times 1 > 0 the doubling time
is formally negatively valued but corresponds to positively valued
half-life approaching 0 for 1 → ∞. Because of the divergence
at 1 = 0 and its negative value for 1 > 0, daily doubling
times are of limited use only before the peak time of the outburst;
instead, in the public discussion, cumulative doubling times are
often preferred, which we discuss in the next subsection. Apart
from the time1 relative to the peak time, the daily instantaneous
doubling time (9) is determined by the width w of the Gaussian
time evolution function (1). Figure 1 displays the distribution
of widths w determined by the best fit of the GM to the death
rates in 67 countries, indicating that w ∈ [12, 34] with a mean
value of 18.96.

We emphasize that, at early times t of the time evolution,
characterized by t0 ≤ t≪ tmax Or, equivalently, 10 ≤ 1≪ 0, the
Gaussian time evolution function (1) approaches an exponential
distribution because the exponent−(t− tmax)

2 ≈ −t2max+2tmaxt
becomes linear in t and thus also linear in 1. At such early times,
the time relative to the peak time (4) is 10, so that the differential
Gaussian doubling time (8) approaches the constant

d0 ≃ d(t0) = −
A

10
=

0.35w2

tmax − t0
, (10)

characterizing the initial, exponential growth.

3. CUMULATIVE DOUBLING TIME

Instead of defining doubling times with daily number of cases
one may also define them with the cumulative case rate. From
Equations (1) and (4), one has for the corresponding cumulative
number of cases at time t

C(t) =
∫ t

−∞
ds c(s) =

Ctot

2

[

1+ erf (1/w)
]

, (11)
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FIGURE 1 | Distribution of widths w obtained by the best fit of the GM to the

death rates in 67 different countries [8].

respectively, in terms of the error function, where

Ctot =
√

π cmaxw (12)

denotes the total number of cases. Such values for fatalities,
Dtot, and infections, Itot, relevant for the first pandemic wave
of the Sars-Cov-2 virus were obtained in Schüttler et al. [1].
With the cumulative numbers (11), we found for the respective
relative change

P(t) = [lnC(t)]′ =
C′(t)

C(t)
=

c(t)

C(t)
. (13)

Equating these results again with Equation (8) for
the corresponding exponential function1 leads to the
time-dependent cumulative Gaussian doubling times

D(t) =
C(t) ln 2

c(t)
= χwe(1/w)2 [1+ erf (1/w)], (14)

where χ =
√

π ln(
√
2) ≃ 0.614 abbreviates the numerical

prefactor. Using the identities 1 + erf(x) = 1 − erf(−x) =
erfc(−x) in terms of the complimentary error function, we
express Equation (14) as

D(t) = χwF

(

−
1

w

)

(15)

with the function

F(x) = ex
2
erfc (x) (16)

As opposed to doubling times calculated from daily rates,
doubling times derived from cumulative numbers are strictly

1We note that for a daily exponential rate in time also the cumulative number will

be an exponential function in time.

positive, monotonically increase in the course of time, but never
diverge, and remain finite at 1 = 0. Because x = −1/w,
the argument x of F(x) is positive before and negative after the
peak time.

In Appendix 1, we investigate the properties of the function
F(x) and its approximations. It is convenient to consider times t
before and after the peak time tmax, i.e., negative and positive 1.
We consider each in turn.

3.1. Before Peak Time 1 < 0
With the approximation (50) from the Appendix we obtain for
the cumulative doubling time (15) at times t ≤ tmax

Dbefore(t) ≃
(χ/3)w2

w+ 0.5|1|

[

1+
2w2

(w+ 0.5|1|)2

]

(17)

where 1 = t − tmax is negative, and χ/3 ≃ 0.205. Dbefore(t)
continuously increases with time until it reaches Dmax (21) at
peak time. At early times of the time evolution t≪ tmax, not only
d but also the cumulative Gaussian doubling time (15) or (17)
approaches the constant

D0 = Dbefore(t0) (18)

reflecting again the result that, at an early time, the Gaussian time
distribution function (1) approaches an exponential distribution
function with the constant doubling time (10) so that also the
cumulative distribution function initially displays an exponential
behavior. The ratio of the two, differential (10) and cumulative
(18), limits is given by

D0

d0
=

√
πF(x0)

x0
, x0 =

tmax − t0

w
(19)

with F from definition (16).

3.2. After Peak Time, 1 > 0
Here, we use the property (46) and the approximation (50) to
obtain the cumulative doubling time (15)

Dafter(t) = χw
[

2e(1/w)2 − F (1/w)

]

≃ 2χwe(1/w)2 − Dbefore(t) (20)

with 2χ ≃ 1.229 and where we can make use of Dbefore(t) from
Equation (17) because it was written for this purpose in terms of
|1|. However, this Gaussian cumulative doubling time Dafter(t)
for times t > tmax is only a formal indicator for the decreasing
slope of the cumulative rate C(t). As the cumulative rate (11)
indicates, at the peak times tmax, it has the valueC(tmax) = Ctot/2,
so that, for any times greater than tmax, the cumulative rates can
no longer double. This implies that only the maximal cumulative
doubling time

Dmax = D(tmax) = χw ≃ 0.614w (21)

has a real physical meaning. In Figure 2, we calculate the
Gaussian daily instantaneous and cumulative doubling times as
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FIGURE 2 | Comparison of the daily instantaneous (d) and cumulative (D)

doubling times as a function of the time 1 relative to the peak time for three

values of the Gaussian width w = 10, 15, 20. The circles mark 10 for cmax = 1,

cf. Equation (5): the GM should not be used at times smaller than 10.

a function of the time 1 relative to the peak time for three values
of the Gaussian width w = 10, 15, 20. At times below the peak
time 1 < 0, the two doubling times have a similar behavior.
As 1 → 0 the instantaneous doubling times becomes infinitely
large, whereas the cumulative doubling times approaches large
but finite values. However, as noted before, for times 1 > 0,
the Gaussian cumulative doubling time Dafter(t) is only a formal
indicator for the decreasing slope of the cumulative rate C(t) that
can no longer double at any times larger than tmax.

Nevertheless, cumulative doubling times are issued by health
agencies, such as the Robert-Koch-Institut, to the public also at
times after the peak time: they can cause much confusion among
the public, as they suggest by their name that the cumulative
case rate can still double beyond its 50% value, although this
is no longer possible. Instead, one should refer to the effective
reproduction factor at this stage of the wave time evolution,
which we discuss next.

4. BASIC REPRODUCTION NUMBER R0

AND EFFECTIVE REPRODUCTION
FACTOR R(T)

In epidemiology, the basic reproduction number R0 (sometimes
called basic reproductive ratio, or incorrectly basic reproductive
rate) of an infection can be thought of as the expected number
of cases directly generated by one case in a population where
all individuals are susceptible to infection [9, 10]. The definition
describes the state where no other individuals are infected or
immunized (naturally or through vaccination). Some definitions,
such as that of the Australian Department of Health, add absence
of any deliberate intervention in disease transmission. Within
this manuscript, R0 is thus identical to the R(t) at the starting
time of the outbreak, i.e., R(t0) = R0.

The basic reproduction number R0 is not to be confused with
the effective, time-dependent reproduction factor R(t); this is the
number of cases generated in the current state of a population,
which does not have to be the uninfected state. By definition,
R0 cannot be modified through vaccination campaigns. Also, it
is important to note that R0 is a dimensionless number and not
a rate, which would have units of time like doubling time [9, 10].
Still, the basic reproduction numberR0 will be seen to correspond
to R(t) evaluated at time t0.

The definition of the effective reproduction factor R(t)
according to [11, 12] is

c(t) = R(t)

t
∑

s=−∞
W(t − s)c(s) (22)

where c(t) is the number of daily cases (deaths or infections,
usually the reproduction factor is obtained from the reported
number of daily infections) at time t, and W(s) denotes the
serial interval distribution [13]. This distribution describes the
probability for the time lag between a person’s infection and the
subsequent transmission of the virus to a second person, and it
is known to have an effect on the reproduction factor [14]. The
discrete sum in Equation (22) starts from zero rather than unity
as in references [11, 12], because W(0) = 0 and because we are
here interested in the continuous generalization of Equation (22).

Written in terms of integrals, Equation (22) corresponds
to [15]

R(t) =
c(t)

∫ ∞
0 W(s)c(t − s) ds

(23)

while the serial interval distribution W(s) has to be properly
normalized to unity, i.e.,

∫ ∞

0
dsW(s) = 1 (24)

This normalization is required in order to ensure, according to
Equation (23), that a constant stationary c(t) implies R(t) = 1.
Note that in Scirea et al. [12] they wrote E[c(t)] instead of c(t) on
the left hand side of Equation (22), where E[] signals that c(t) is
an expectation value involving the serial distribution. Here, we
consider c(t) to be defined by Equation (22) so that c(t) can be
evaluated for the GM via Equation (1).

In the following we investigate two different choices of
the serial interval distribution evaluated for the GM: (i) the
gamma distribution, as in previous studies [11, 12], and (ii) the
analytically simpler box-shaped serial interval distribution. We
consider each in turn.

4.1. Gamma Serial Interval Distribution
Here, the serial interval distribution W(s) is taken to be the
gamma distribution [16]

W(s) =
βαsα−1e−βs

Ŵ(α)
(25)

with the shape parameters α = 2.785 and β = α/6.5 that seem
to represent the distribution used in reference [11]. They used
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FIGURE 3 | Comparison of serial interval distribution W(s) employed in

[11, 12] (black circles) and our approximant (27) with b = 4/9.

another convention but mentioned the mean value 〈s〉 = 6.5 and
provided an excel file. The mean value of this distribution (25) is

〈s〉 =
∫ ∞

1
sW(s) ds =

α

β
(26)

For the specified parameters, the distribution (25) is very well-
approximated (absolute error < 0.006) by the slightly more
convenient and, again, properly normalized distribution

W(s) =
b3

2
s2e−bs, (27)

yielding a mean value 〈s〉 = 3/b. We adopt b = 4/9 = 0.444,
leading to the mean 〈s〉 = 27/4 = 6.75 days, which is very close
to the earlier chosen mean [11] 〈s〉 = 6.5 days. In Figure 3 we
compare the approximation (27) with the discrete distribution
used in reference [11] (black circles) during all their calculations.

4.1.1. Reproduction Factor R(t)
Here, we use the known c(t) = cmax exp[−(1/w)2] for the GM
(1). As for the doubling times, R(t) does not depend on the
magnitude cmax and absolute time t but can be expressed in terms
of the relative time 1 = t − tmax and w. With c(t − s) ∼
exp[−(1 − s)2/w2], And, with W(s) from (27), we can thus
proceed and calculate R(t) analytically as

R(t) =
2

b3J(t)
(28)

involving the time-dependent integral

J(t) =
∫ ∞

0
ds s2e−q1s−q2s

2
, (29)

where q2 = w−2 and q1(t) = b − 21/w2. To this end, it turns
out convenient to switch to dimensionless times.We have already
introduced x, and we now introduce a characteristic xc

xc = −
bw

2
, (30)

and the dimensionless, time-dependent distanceX between x and
xc via

X(t) = x− xc =
bw

2
−

1

w
=

wq1

2
. (31)

As shown in Appendix 2, the integral (29) can be evaluated
analytically to yield

J(t) =
√

πw3

4

d

dX
[XF(X)] =

w3

4

[

(1+ 2X2)
√

πF(X)− 2X
]

(32)

with the function F given by (16). Consequently, the effective
reproduction factor (28) becomes (Figure 5)

R(t) =
−1

x3c
√

π d
dX

[XF(X)]

=
1

x3c
{

2(x−xc)− [1+ 2(x−xc)2]
√

πF(x−xc)
} (33)

in terms of x and the negatively valued xc, where we recall that
x = (tmax− t)/w = −1/w carries the dependency on time t. The
effective reproduction factor approaches the basic reproduction
number R0 at small times and assumes the important value
R(t) = 1 roughly 4 days after peak time at 1 ≈ 4, as Figure 5
indicates. It is not difficult to show that this 1 asymptotically
approaches 2/b = 9/2 = 4.5 days for large w (Appendix 4.1).

4.1.2. Base Reproduction Number R0

While the basic reproduction number R0 for the GM can be
read off from (33) upon replacing x by x0 =

√
ln cmax (shown

in Figure 4), it is insightful to make the connection between
R0 and the early doubling time d0 = (ln

√
2)w/x0, according

to (10). As the Gaussian time distribution is exponential at
early times, in the vicinity of t ≃ t0, we can insert the
exponential growth (7) into definition (23) with the gamma-
shaped serial distribution W(s). This yields a time-independent
constant effective reproduction factor

R0 = R(t0) ≈
2

b3
∫ ∞
0 ds s2 exp[−(b+ ln 2

d0
)s]

=
(

1+
ln 2

bd0

)3

=
(

1−
x0

xc

)3

(34)

where b = 4/9 and where we have also mentioned its appearance
in terms of dimensionless x0 and xc. Since d0 is positive, the
exponential effective reproduction factor at time t0 (34) is greater
than unity and provides an approximation for the exact one
(Figure 4). It is worthwhile to mention that the same result
is obtained without assuming a purely exponential growth but
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FIGURE 4 | Basic reproduction number R0 = R(t0) for the GM as function of

peak width w for several peak heights cmax (thick solid lines). For comparison,

the thin lines show the approximant (34). The exact R0 is given by (33)

evaluated at x = x0 =
√
ln cmax.

instead by starting from (33) and assuming x0 ≫ xc + 1 (for a
proof see Appendix 3.1). For a model with purely exponential
growth characterized by a single doubling time d0, Equation (34)
provides the exact relationship between doubling time and basic
reproduction number and R(t) = R0.

Adopting b = 4/9 and w = 20 and thus xc = −40/9
according to (30), provides for the number (34)

Rw=20
0 =

(

1+ 0.225
√

ln cmax

)3
, (35)

yielding the estimates 4.77, 4.03, and 3.26 for cmax = 104, 103,
and 102, respectively, close to the exact values given by R(t0) from
Equation (33). The values of 10 and R0 for different values of the
width w and cmax = 1 are marked by circles in Figure 5.

4.2. Box-Shaped Interval Distribution
Here, we address the question on how relevant it is to take into
account the correct shape of serial interval distribution when
calculating R(t) via (23).

If we consider W(s) to be approximated by a constant
independent on s on the interval s ∈ [0, smax], and consider it
to be zero otherwise, the requirement of its proper normalization
(24) and unchanged mean value 〈s〉 = 6.5 compared with the
unapproximatedW(s) from (25) yields

W(s) =
2(s; 0, smax)

smax
, smax = 2〈s〉 = 13 (36)

with the two-sided Heaviside 2(x,A,B) = 1 for A ≤ x ≤ B and
2(x) = 0 otherwise.

FIGURE 5 | Gamma-shaped R(t) (33) compared with the approximate R(t) (37)

(red, dashed), using a box-shaped serial interval distribution W(s), and the RKI

formula (41). Cases shown are w = 10, w = 15, and w = 20. Deviations are

most pronounced and significant for the smallest w = 10. The R(t) curves

terminate at t = t0 corresponding to 1 = 10, see (5). The circles mark 10 for

cmax = 1.

4.2.1. Reproduction Factor R(t)
With the Gaussian evolution (1) and the box-shaped serial
interval distribution (36) inserted, we obtain with the help of (23)

R(t) =
smax

∫ smax

0 exp[(21 − s)s/w2] ds

=
2smax/w

√
πe(

1
w )2

[

erf (1/w) − erf ([1 − smax]/w)
]

=
26/w

√
π

[

e
26(1−6.5)

w2 F
(

1−13
w

)

− F
(

1
w

)

] (37)

plotted in Figure 5. As is visible, the box-shaped W(s) can serve
as a good approximation as long as w is sufficiently large, and
1 not too small. It crosses the R = 1 line roughly 4 days after
peak time and shares this feature with the case of the gamma-
shaped serial distribution. This aspect is worked out in detail
in Appendix 4. Starting from R(t) = 1 with R(t) from (37),
the exact asymptotic value is t = tmax + (smax/3) days (proof
in Appendix 4.2).

4.2.2. Base Reproduction Number R0

The basic reproduction number is given by R(t0), which amounts
to replacing 1 by 10 in (37). As before, it is useful to consider
a regime of exponential growth to come up with a simple
approximant for R0, now using a box-shapedW(s). Inserting the
exponential time evolution (7) with constant d0 and the box-
shaped serial interval distribution (36) into Equation (23), we
obtain the time-independent constant effective box reproduction
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factor that serves an approximant for R0,

R0 = R(t0) ≈
smax ln 2/d0

1− e−smax ln 2/d0
(38)

which is always greater than unity for positive d0. Since
smax ln 2 ≈ 9 days, we thus have

R0 ≈ 9/d0 (39)

as long as d0 < 9 days, which is the usual scenario (Figure 2). As
already mentioned, the box-shaped serial interval distribution is
better not used to estimate R0. It significantly underestimates the
R0 obtained with the gamma serial distribution.

4.3. Robert Koch Institute (RKI)
The RKI estimates an effective reproduction factor from the daily
measured number i(t) of people that have been recognized to be
infected as follows

R(t) =
∫ t
t−4 ds i(s)

∫ t−4
t−8 ds i(s)

(40)

Here, we again use the continuous version. Because measured
data is not available for the future and is not sufficiently reliable
if collected within the time frame of a few days, the RKI estimates
R(t) for a time t that lies one 8 days the past. A connection
between (40) and the true effective reproduction number is based
on the assumption that the true number of cases is proportional
to the measured ones at any time.

4.3.1. Reproduction Factor R(t)
Using the GM instead of measured numbers for i(t), the
estimated true number of cases (deaths or infections) in Equation
(40) yields

R(t) =
erf[1/w]− erf[(1 − 4)/w]

erf[(1 − 4)/w]− erf[(1 − 8)/w]
(41)

shown in Figure 5. With (41) at hand, one can predict the RKI
version of R(t) at all times during the first wave of a pandemic.
A time of interest is when R drops below unity. Equation (41)
readily yields for 1 = 4, with erf(0) = 0,

R(tmax + 4) = −
erf(4/w)

erf(−4/w)
= 1, (42)

in agreement with Figure 5. It is this feature of the RKI, shared
with the R(t) for the gamma serial distribution, that may have
given rise to the choice of the interval length of 4 days in its
definition. Figure 6 shows, for typical values between w = 15
and w = 20 days, how the R(t) calculated via the box-shaped
W(s), and evenmore the RKI value, overestimate the R(t) at times
beyond peak time.

FIGURE 6 | The R(t) factors obtained using (i) the box-shaped W(s) and (ii) the

RKI formula greatly overestimate the R(t) using a gamma-shaped serial interval

distribution at times beyond the peak time. Alternative representation of the

data already shown in Figure 5. The mismatch increases with decreasing w. A

typical w is in the range between 15 and 20 days for most countries [1] (cf.

Figure 1).

4.3.2. Base Reproduction Number R0

As in previous sections, we can read off the basic reproduction
numberR0 upon inserting10 instead of1 into the expression for
R(t) (41), and we can provide an approximate expression for R0
upon considering purely exponential, initial growth. Following
this route, inserting monoexponential i(t) ∝ 2t/d0 into (40) yields

R0 = R(t0) ≃
2t/d0 − 2(t−4)/d0

2(t−4)/d0 − 2(t−8)/d0
= 24/d0 (43)

While the two approximants (34) and (43) for basic reproduction
numbers look different at first glance, they are quantitatively very
similar: for d0 = 1, for example, (34) evaluates to 16.77, while
(43) equals 16.0. Likewise, for d0 = 2 (34) evaluates to 5.64, while
(43) equals 4.0. In the limit of d0 → ∞, both versions yield
R0 = 1. The RKI version generally underestimates R0, as given
by (34), but by no more than about 35%.

5. SUMMARY AND CONCLUSIONS

The Gauss model for the time evolution of the first corona
pandemic wave rendered useful in the estimation of peak times,
amount of required equipment, and the forecasting of fade out
times. At the same time, it is probably the simplest analytically
tractable model that allows to quantitatively forecast the time
evolution of infections and fatalities during a pandemic wave.
For these descriptions and forecasts, various descriptors, such
as doubling times and reproduction factors are currently used
in order to judge lockdowns and other non-pharmaceutical
measures that aim to prevent spreading of the virus. As different
definitions of doubling times and reproduction factors and
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numbers are used in the literature, we have provided in this
manuscript both exact and simple approximate relationships
between the two relevant parameters of the Gauss model (peak
time tmax and width w) as well as the transient behavior of two
versions of doubling times and three variants of reproduction
factors R(t), including basic reproduction numbers R0.

Regarding doubling times, we considered both differential
doubling times calculated from the daily number of cases and
cumulative doubling times calculated from the cumulative case
rates. The former differential doubling time is positive for times
earlier than the peak time and monotonically increases in the
course of time until it diverges as it approaches the peak time.
For later times after the peak time, the differential doubling
time is formally negatively valued but corresponds to positively
valued half-life. Because of the divergence at the peak time and its
negative value beyond, differential doubling times are of limited
use only before the peak time of the outburst; instead, in the
public discussion, cumulative doubling times are often preferred.

As opposed to doubling times calculated from daily rates,
doubling times derived from cumulative numbers of cases are
strictly positive, monotonically increase in the course of time,
but never diverge, and remain finite at and after the peak time.
At times below the peak time, the two doubling times have a
similar behavior. However, the Gaussian cumulative doubling
time for times after the peak time is only a formal indicator
for the decreasing slope of the cumulative rate of cases. The
Gaussian cumulative rate at the peak time attains exactly 50% of
its maximum value after infinite time so that, for any times larger
than the peak time, the cumulative rates can no longer double.
This implies that only the maximal cumulative doubling time
0.614w has a real physical meaning.

Because of these two drawbacks of differential and cumulative
doubling times in characterizing the time evolution of the
corona wave after its peak time, health agencies, such as
the German Robert-Koch-Institute (RKI) instead refer to the
effective reproduction factor of the disease R(t), which is the
number of cases infected in the current state of a population by
a single individual infected person. As long as this factor remains
smaller than unity the number of infections per day decreases
with time. The effective reproduction factor is calculated from
an integral involving the serial interval distribution W(s)

normalized to unity and the differential case time distribution.
For the GM, the latter is known analytically, and we investigated
three different effective Gaussian reproduction factors: (i) the
first is calculated with a gamma-function type serial interval
distribution, (ii) the second is calculated with a flat box-shaped
serial interval distribution, and (iii) the third, referred to as
RKI estimate, involves the ratio of two consecutive 4-days time
intervals of the monitored daily cases.

All three discussed effective reproduction factors, calculated
with the GM, decrease from the base reproduction number R0 at
the beginning of the pandemic wave to very small values at times
much larger than the peak time. They all cross the critical value
R = 1 about 4 days after the peak times. As the approximated
RKI estimate for Germany still, many weeks after the peak times
of the infection and death rates, occasionally indicates effective
reproduction factors greater than unity, this has to be due to
short intraday fluctuations of the rates. Such factors greater unity
at late times after the peak time contradict the much smaller
(below unity) effective reproduction factors from the GM, as we
have demonstrated by Figure 6. As the GM provides reasonable
descriptions of the overall temporal evolution of the infection and
death rates in Germany, we have to conclude that the present
RKI estimate of the effective reproduction factor overestimates
the influence of short intraday fluctuations in the reported cases.
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Iran has been the country most affected by the outbreak of SARS-CoV-2 in the

Middle East. With a relatively high case fatality ratio and limited testing capacity,

the number of confirmed cases reported is suspected to suffer from significant

underreporting. Therefore, understanding the transmission dynamics of COVID-19 and

assessing the effectiveness of the interventions that have taken place in Iran while

accounting for the uncertain level of underreporting is of critical importance. In this paper,

we developed a compartmental transmission model to estimate the time-dependent

effective reproduction number since the beginning of the outbreak in Iran. We associate

the variations in the effective reproduction number with a timeline of interventions and

national events. The estimation method accounts for the underreporting due to low

case ascertainment. Our estimates of the effective reproduction number ranged from

0.66 to 1.73 between February and April 2020, with a median of 1.16. We estimate

a reduction in the effective reproduction number during this period, from 1.73 (95% CI

1.60–1.87) on 1 March 2020 to 0.69 (95% CI 0.68–0.70) on 15 April 2020, due to various

non-pharmaceutical interventions. The series of non-pharmaceutical interventions and

the public compliance that took place in Iran are found to be effective in slowing down the

speed of the spread of COVID-19. However, we argue that if the impact of underreporting

is overlooked, the estimated transmission and control dynamics could mislead public

health decisions, policy makers, and the general public.

Keywords: COVID-19, Iran, mathematical modeling, underreporting, effective reproduction number

INTRODUCTION

The outbreak of SARS-CoV-2 in Iran was first officially announced in February 2020, 2 months
after the initial outbreak in Wuhan, China [1]. Iran’s patient zero is believed to have been a
merchant from Qom who had traveled to China [2]. Despite the initial signs of a spread in Qom,
the government declined to place the city under quarantine to contain the epidemic at an early
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stage for various technical, socio-economic, religious, and
security reasons [3]. The first local non-pharmaceutical
interventions, such as school and university closures, were put
in place a few days after the official acknowledgment of the first
cases in Qom and Tehran [4]. Since then, various public health
control measures at the local and national levels were taken
that are believed to have altered the course of the outbreak.
See Figure 1 for a spatial illustration of the spread throughout
the country by province in the first week since the official
announcement of the first case (Supplementary Material).

The relatively high case fatality ratio (CFR), defined as the
total number of deaths over the total number of infected cases,
in Iran’s official reports after the first week since the official
declaration of the first case (16.8%) has raised questions on
the true number of cases in the country [5, 6]. The testing
protocol in Iran at the early stages of the outbreak was limited
to hospital admissions of patients with severe symptoms. While
Iran later extended the COVID-19 diagnostic testing capacity
to patients with milder symptoms, it is believed that the under-
ascertainment of cases remains high. While a number of studies
have already explored the dynamics of the spread of COVID-
19 in different countries with various methodologies [7–10] and
its association with travel restrictions and other public health
interventions [11, 12], undocumented infections and how they
could affect the spread of SARS-CoV-2 in a population has been
a less explored area in the rapidly growing field of COVID-19
literature [13].

This study aims to understand the transmission dynamics of
COVID-19 in Iran and to assess the effectiveness of the control
measures that were put in place over time through estimation of
the effective reproduction number R (t) , defined as the average
number of susceptible persons infected by an infected person
during their infectious period at a given time in the course
of the epidemic. We assessed R(t) in relation to a timeline
of national events and non-pharmaceutical interventions. In
the absence of timely and reliable data, modeling can provide
helpful answers, including the degree of plausible uncertainty in
different estimates and the effectiveness of non-pharmaceutical
interventions. By providing explicit and clear information about

FIGURE 1 | Spatial illustration of the spread of COVID-19 in Iran by province in the first week of the official outbreak announcement from 19 February to 25 February

2020 (A–D).

model assumptions and parameters, modeling can also foster
scientific discussion of data gaps and what can be done to
improve outbreak-related estimates by borrowing information
available elsewhere. Finally, models can be developed and
presented using both average estimates and measures of their
uncertainty or, alternatively, as scenarios that can illustrate
possible developments of the epidemic under various conditions.

METHODS

Data Sources
We use official time-series reports of the number of confirmed
cases, recovered cases, and deaths from the World Health
Organization (WHO) [1] and Iran’s Ministry of Health and
Medical Education [14]. The first confirmed case was reported
on 19 February 2020, which is assumed as the beginning of the
outbreak of COVID-19 in Iran.

Mathematical Model
We describe the dynamics of spread using a variation
of the susceptible-exposed-infected-recovered (SEIR) model,
distinguishing between fatal and recovered cases combined
with an estimate of the percentage of symptomatic cases using
delay-adjusted CFR (Supplementary Material) (see Figure 2).
The model accounts for the time between exposure-to-onset
of symptoms (or confirmation), also known as an incubation
period, assuming a gamma distribution with an average of 5.5
days and a standard deviation of 2.3 days [15]. We also assume
the time from symptoms onset-to-death and -to-recovery both
follow a gamma distribution with an average of 22.3 days and a
standard deviation of 9.4 days, and an average of 22.2 days and
a standard deviation of 10 days, respectively [16]. The size of the
initial susceptible population is assumed to be 80 million.

Time-Dependent Effective Reproduction
Number
The basic reproduction number, R0, a fundamental measure in
infectious disease epidemiology and public health, is defined as
the average number of susceptible persons infected by an infected
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FIGURE 2 | Schematic illustration of the formulated mathematical epidemic model.

person during their infectious period in a fully susceptible
population. R0 is known to fluctuate if the social contact rate in
the population changes over time or space. Since R0 assumes an
entirely susceptible population, several studies from the literature
[17, 18] suggest using the time-dependent effective reproduction
number R(t) when examining the effect of various interventions
including vaccination, social distancing, and quarantine. R(t) is
defined similarly to R0 but is not limited to the assumption of a
completely susceptible population. Here, we use empirical data
from Iran to trace changes in R(t) over a rolling 7-day period
since the beginning of the COVID-19 outbreak and describe
its association with various interventions (e.g., school closures,
social distancing, and bans on public gatherings) that were
enacted by the public and government.

Various methods exist to estimate R0 [and R(t)] [19–21]. Here,
we use the same framework described in Figure 2 in which the
parameters of the formulated SEIR model are inferred through
an optimization problem. To estimate the parameters of the
developed SEIR model, we formulate an ordinary least squares
(OLS) minimization [22]. We use pattern search as a derivative-
free global optimization algorithm [23] to find the model
parameters that minimizes the sum of the normalized root mean
squared error (RMSE) of the number of infected εi, recovered
εr, and removed cases εf . R(t) is then calculated using a rolling
time window of 7 days to capture the evolving trend of the spread
over time due to various changes in the social network contact
rate. The calculated R(t) may be overestimated during the early
stage of an outbreak [24] due to different reasons, including the
impact of imported cases and heterogeneity in subpopulations
(e.g., older than 60 years old) with higher transmission rates.

Accounting for Underreporting
We account for the underreporting of the number of infected
cases in the official confirmed data using delay-adjusted case
fatality ratio (CFR) approach [25]. This approach assumes that
the time from hospitalization-to-death has a known statistical
distribution and uses this distribution to estimate when the
people who died from COVID-19 would have been reported
as being infected (Supplementary Material). The case fatality

ratio is the ratio of the numbers of deaths over the numbers
of reported infections calculated at the time of reporting, not
the time of death. This is extremely important for rapidly
evolving epidemics. The method, however, does not account
for underreporting in fatality cases. The distribution of the
time from confirmation-to-death is assumed to follow the
same distribution as of the time from hospitalization-to-death,
following a lognormal distribution with a mean of 13 days
and a standard deviation of 12.7 days [26]. Here, we assume
that the estimate for percentage of symptomatic COVID-19
cases reported for Iran follows a lognormal distribution (same
distribution type as of the time from hospitalization-to-death)
with a mean of 9.9% and a standard deviation of 4% based
on the latest estimates in the literature [25]. This is based on
the assumption of a baseline CFR of 1.4%. We assume the
underreporting level remains constant over time.

Model Limitations
The developed model does not take into account the imported
cases. The model also does not capture the impact of quarantine
and self-isolation on confirmed cases. While the model produces
stochastic outcomes due to various delay distributions used as
inputs, the model parameters are deterministic. The model does
not take into account the population age distribution. It is also
assumed that underreporting remains unchanged over time.

RESULTS

We estimated that R(t) varied between 1.73 and 0.69 during
March to April 2020 in Iran, with a median of 1.16. We estimated
a reduction in R(t) from early-March to mid-April, from 1.35
(95% CI 1.31–1.39) on 8 March 2020 to 0.69 (95% 0.68–0.70)
on 15 April 2020, due to control measures that took place.
See Figure 3A for a timeline of interventions and events and
Figure 3B for temporal variations of estimated R(t).

The CFR on 25 February 2020, before adjusting for the time
from diagnosis-to-death, was 16.84%. With more data emerging
after the second week, the CFR dropped to 4.4% on the 14th
day since the declared beginning of the outbreak on February
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FIGURE 3 | Temporal evolution of SARS-CoV-2 transmission characteristics in Iran. (A) Timeline of events and interventions that took place since the first case was

reported on 19 February 2020. (B) Estimated effective reproduction number R(t) with 95% CI over a 7-day rolling window when underreporting is taken into account.

(C) Estimated CFR with and without delay adjustment over the same time period in a semi-log scale.

19, 2020. Later, between 15 March 2020 and 12 April 2020,
the CFR stabilized between 5.2 and 7.8% with a mean of 6.7%
(see Figure 3C). With the wider spread of COVID-19 across the
country, the CFR increased to 7.86% on 23March 2020. However,
the CFR declined and plateaued around 6.2% between 1 and
15 April 2020. The relatively high CFR could correspond to a
significant level of underreporting of the infected cases and an
overwhelmed health system. Given the wide distribution of the

time from confirmation-to-death of COVID-19, we also explore
the delay-adjusted CFR with 5- and 10-day delay periods, as
examples. The dynamics of the delay-adjusted CFR with a 10-day
delay suggests that the CFR has been gradually reducing in Iran
from 17.97% on 16 March 2020 to 8.20% on 12 April 2020.

When underreporting of infected cases is overlooked, the
estimated effective reproduction number began from 5.67 (95%
CI 5.48–4.86) on 1 March 2020 and reduced to 0.70 (95% CI
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FIGURE 4 | The impact of underreporting on the estimated dynamics of transmission. (A,B) The projected curves for the number of infected cases when

underreporting is not considered and when it is taken into account, respectively. (C) Temporal variations of R(t) when underreporting is overlooked (purple curve) and

when it is taken into account (green curve).

0.69–0.71) on 15 April 2020, suggesting the outbreak peak has
already occurred on 8 April 2020 when R(t) goes below 1, about
50 days from the confirmation of the first case. The outbreak is
also likely to continue until the end of 2020 (see Figure 4). The
estimates of the effective reproduction number were consistently
larger during the early stage of the outbreak when underreporting
is overlooked compared to when underreporting is taken into
account. However, the estimated effective reproduction numbers
converged as the number of infected cases approached the peak.
The convergence of the estimates can be partly explained by the
fact that the effective reproduction number is more dependent
on the rate of change in the infected and recovered cases rather
than their absolute numbers. Results also suggest that the impact
of control measures on the effective reproduction number is
significantly overestimated when underreporting is not taken
into account.

With the gradual reduction of the effective reproduction
number to below one and the increasing pressure on an
already fragile economy because of the implemented control
measures, the government is seeking an exit strategy and is
considering easing some of the restrictions. Here, we conduct
a scenario analysis to understand how three different scenarios
could change the projected outlook of the outbreak in Iran:
(i) maintaining the same level of control measures as of 12

April 2020; (ii) intensifying the measures to increase physical
distancing, represented by a 20% reduction in the reproduction
number; and (iii) partially lifting the restrictions to ease physical
distancing, represented by a 20% increase in the reproduction
number (see Figure 5). To estimate the number of ICU beds
needed, we assume 5% of confirmed cases require intensive care

[27]. We found that in all scenarios the projection of patients
requiring ICU admission exceeds the original ICU capacity. Note
that no official information is available on the expanded ICU
capacity. As of 12 April 2020, both projected curves start above
the ICU capacity. Easing the restrictions can quickly push the
peak to a level that is five times higher than the scenario where
the current level of control measures is maintained and puts
additional pressure on the health system. Results clearly suggest
that with further restrictions (scenario ii), the projected curve
quickly goes back under the ICU capacity, while it takes more
than 100 days for the curve to go back under the ICU capacity in
scenario i and iii.

CONCLUSIONS AND DISCUSSION

In this study, we used a mathematical epidemic model to
provide the first estimates of the changing transmission of SARS-
CoV-2 infection in Iran when the underreporting of cases is
considered. We used official data and adjusted our estimates for
underreporting based on delay-adjusted CFR.

We used a variation of the SEIR model combined with an
estimate of the percentage of symptomatic cases using delay-
adjusted CFR based on the distribution of the time from
confirmation-to-death [19]. In contrast to previous models of
the epidemic [28], we did not assume any prior information
on the distribution of the effective reproduction number. This,
combined with the use of a series of distributions, allowed us
to take into account more appropriately the uncertainty and the
random variation in both input data and model outcomes.
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FIGURE 5 | Scenario analysis for maintaining, reinforcing, or easing the restrictions. (A) The projected curves for the total number of confirmed and suspected cases

under three different scenarios: maintaining the same level of control measures as of 12 April 2020, reinforcing the control measures to increase physical distancing by

a 20% increase in the reproduction number, and partial lifting the restrictions to ease physical distancing by a 20% decrease in the reproduction number. (B) The

projected number of ICU beds needed under the three scenarios. The original ICU capacity is assumed between 3,500 to 7,000 beds [7].

Association of R(t) and Public Health
Interventions
The outbreak of COVID-19 in Iran is claimed to have started
in Qom province, with the first case officially reported on 19
February 2020. As shown earlier in Figure 1A, according to the
official data, it only took 2 days for four more provinces, Tehran,
Markazi, Mazandaran, and Gilan (Guilan), to report their first
cases. The first non-pharmaceutical intervention took place on
22 February 2020, with the closure of schools and universities in
Qom, followed by their closure in the capital city of Tehran after
a day. With the school closures in the capital combined with low
levels of social awareness about the potential risks of COVID-19,
a surge in the number of holiday trips from Tehran to northern
provinces of Mazandaran and Gilan was observed. Soon after,
with no restriction on inter-city travel, the number of identified
cases in Gilan and Mazandaran grew rapidly, and the infection
spread throughout the rest of the country.

The second major non-pharmaceutical intervention occurred
on 28 February 2020 with a wide campaign to disinfect public
spaces and for the closure of all schools and universities across
all provinces. On 5 March 2020, the government announced an
increase in the COVID-19 testing capacity. On 7 March 2020,
sporadic closure or reduction of working hours in government
offices and banks across the country was reported. On 14
March 2020, two often crowded religious shrines in Qom
and Mashhad were closed to visitors. The increased physical
distancing as the result of interventions and increase in public
awareness of the crisis through major official and unofficial
information campaigns, especially on social media, gradually
showed its impact by slowing down the speed of the spread, as
shown earlier in Figure 1B. The estimated effective reproduction
number increased from 1.14 on 4 March 2020 to 1.35 on 8
March 2020, perhaps due to the increase in case ascertainment
and delay in early interventions to show their impact. The

effective reproduction number decreased consistently to 1.04 on
20 March 2020.

On 17 March 2020, only a few days before the Persian
New Year (Nowruz, 20 March 2020), in the absence of
strict travel restrictions, millions of Iranians began making
road trips to various destinations across the country,
despite the warnings from the government, and many
hotels, restaurants, and the general hospitality industry’s
refrainment to provide services to any traveler. This is believed
to have increased the speed of the spread of COVID-19
in Iran, increasing the effective reproduction number to
1.52 on 30 March 2020.

On 22 March 2020, the government announced more
restrictive non-pharmaceutical interventions, leading to the
closure of all non-essential businesses for at least 2 weeks,
followed by further intensified interventions on March 28, 2020,
including restrictions on entry and exit to affected provinces and
cities, closure of parks, pools, and all recreational places, and a
ban on public gatherings including sport, cultural, and religious
events. These restrictions pushed the effective reproduction
number further down to 1.0 on 9 April 2020 and 0.69 on 15
April 2020.

Case Fatality Ratio
Iran has had one of the highest CFRs among the affected
countries in the world. While the CFR is known to vary
significantly between countries due to various reasons, including
testing frequency and population age distribution [26], the CFR
is still higher in Iran despite having a younger population with
a median age of 30.8 years old compared to China with 4%
CFR and a median population age of 37.4 and South Korea with
2% CFR and a median population age of 41.8 [26]. Perhaps a
comparable country in the Middle East with similar population
characteristics (median age of 30.9) is Turkey. The CFR in Turkey
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as of 6 April 2020 was 2%, three times lower than that of Iran
[26]. While the evidence is indirect, it suggests that the official
number of cases reported by Iran may have been significantly
underreported, possibly due to relatively low case-ascertainment
and underreporting of identified cases [26].

The continuous reduction in the delay-adjusted CFR shows a
different trend compared to the CFR with no consideration of
the time from confirmation-to-death. The continuous reduction
could be explained by the improving case identification practice
in Iran over time with various initiatives, including a National
Coronavirus Helpline (a.k.a the “4030” service), established
in late February 2020 to self-report symptoms and identify
suspected cases.

Our results confirmed the significant impact of
underreporting in describing the story of the COVID-19
outbreak in Iran, especially in the early stages. We showed how
overlooking underreporting can drastically affect the estimation
of R(t) and overestimate the impact of control measures.

Final Remarks
Our results showed the reduction in effective reproduction
number, a measure of infection transmission, during the study
period. This decrease was most likely due to increased physical
distancing as the result of multiple non-pharmaceutical public
health interventions, including school closures, bans on public
gatherings, travel restrictions, and full/partial closure of non-
essential businesses, as well as major awareness campaigns
over social media. Based on the latest trends, while the
first peak of COVID-19 in Iran occurred on 5 April 2020,
the post-peak period may continue to the end of 2020.
However, these projections assume the continuation of the
current level of control measures and the absence of effective
therapeutic treatments or vaccination programs. Hence, they
can be subject to important shifts depending, in particular,
on the public’s willingness to continue and the government’s
success in implementing social distancing measures or easing
the restrictions.

Our model provides tangible evidence of the association
between the different non-pharmaceutical interventions and
their impact on the course of the outbreak. The results
showed how the acceptance and, hence, effectiveness of the
interventions endorsed by the Iranian government aimed at
“flattening the curve” depended in part on the public’s level
of awareness of the principles behind governmental policies
and their trust in the government and its control measures.
For example, closure of schools and businesses in the capital
city of Tehran near the time of the Persian New Year was
followed by a surge in holiday trips to Gilan and Mazandaran
and a subsequent increase in the number of cases in these
provinces and in other parts of the country. This observation
shows how interventions may be associated with unintended
and at times counterproductive consequences. These negative
consequences can be prevented when there is open and credible
communication by competent officials and mutual trust between
the public and government. Moreover, intervention measures

need to be developed, implemented, and enforced as a whole,
for example through strict reinforcement of travel restrictions in
conjunction with school and workplace closings.

There is no substitute for high quality data—complete,
accurate, and timely—as a basis for public policy. However, in
the absence of such data, modeling of the type presented here
can help provide reasonable estimates as well as realistic bounds
of their uncertainty. The range of uncertainty can be viewed as
the margin of error in the model’s predictions of the number of
cases, ICU admissions, or deaths. Modeling can also illustrate
different scenarios – pessimistic vs. optimistic vs. realistic – of
how the epidemic may evolve in relation to current and future
public health measures and the possible compliance of the public
over time.

In conclusion, using a compartmental model of the SARS-
CoV-2 epidemic in Iran, we assessed the dynamic of the epidemic
in relation to public healthmeasures to increase social distancing.
We took into account both the inherent uncertainty in the
data and the possible impact of underreporting of true cases
due to low case ascertainment and reporting. In the absence of
consistently reliable data, the modeling approach as presented
here can help to generate reasonable estimates of key public
health metrics, such as the number of cases and case fatality
ratio. In turn, these metrics and scenarios can help serve the
dual purpose of informing public policy and the public, and of
fostering discussions and improvements of epidemic modeling.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study.
The data can be found on WHO’s website available
online at https://www.who.int/emergencies/diseases/novel-
coronavirus-2019/situation-reports and Iran’s Ministry of
Health and Medical Education’s daily COVID-19 Epidemic
Reports available online at http://corona.behdasht.gov.ir/.

AUTHOR CONTRIBUTIONS

MS, HH, KM, and BK designed the study. MS and HH
developed the mathematical model and produced the figures.
MS, HH, KM, HD, AM, JM, KK, and BK contributed to
literature search, data analysis, data interpretation, and writing.
All authors contributed to the article and approved the
submitted version.

ACKNOWLEDGMENTS

This manuscript has been released as a pre-print at https://www.
medrxiv.org/content/10.1101/2020.05.02.20087270v1 [29].

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fphy.
2020.00289/full#supplementary-material

Frontiers in Physics | www.frontiersin.org 7 July 2020 | Volume 8 | Article 28923

https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
http://corona.behdasht.gov.ir/
https://www.medrxiv.org/content/10.1101/2020.05.02.20087270v1
https://www.medrxiv.org/content/10.1101/2020.05.02.20087270v1
https://www.frontiersin.org/articles/10.3389/fphy.2020.00289/full#supplementary-material
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Saberi et al. Underreporting in Modeling of Transmission of COVID-19

REFERENCES

1. WHO. Coronavirus disease 2019. (COVID-19). Situation report 31. Geneva:

World Health Organization (2020).

2. World Economic Forum. Finding ‘Patient Zero’: The Challenges of Tracing

the Origins of Coronavirus. (2020). Available online at: https://www.weforum.

org/agenda/2020/03/coronavirus-covid-19-patient-zero/ (accessed April 13,

2020).

3. The Atlantic. Coronavirus Could Break Iranian Society. (2020). Available

online at: https://www.theatlantic.com/ideas/archive/2020/02/iran-cannot-

handle-coronavirus/607150/ (accessed April 13, 2020).

4. WSJ. Iran Takes Emergency Measures After Two Coronavirus Deaths in

Qom. (2020). Available online at: https://www.wsj.com/articles/iran-takes-

emergency-measures-after-two-coronavirus-deaths-in-qom-11582202084

(accessed April 13, 2020).

5. Khafaiea MA, Rahim F. Cross-country comparison of case fatality rates of

COVID-19/SARS-COV-2. Osong Public Health Res Perspect. (2020) 11:74–80

doi: 10.24171/j.phrp.2020.11.2.03

6. NBC News. Why is Iran’s Reported Mortality Rate for Coronavirus Higher

Than in Other Countries? (2020). Available online at: https://www.nbcnews.

com/health/health-news/why-iran-s-reported-mortality-rate-coronavirus-

higher-other-countries-n1142646 (accessed April 13, 2020).

7. Maier BF, Brockmann D. Effective containment explains subexponential

growth in recent confirmed COVID-19 cases in China. Science. (2020)

368:742–6. doi: 10.1126/science.abb4557

8. Kraemer MUG, Yang CH, Gutierrez B, Wu CH, Klein B, Pigott DM, et al. The

effect of human mobility and control measures on the COVID-19 epidemic in

China. Science. (2020) 368:493–7. doi: 10.1126/science.abb4218

9. Vespignani A, Tian H, Dye C, Lloyd- Smith JO, Eggo RM, Scarpino

SV, et al. Modelling COVID-19. Nat Rev Phys. (2020) 2:279–81.

doi: 10.1038/s42254-020-0178-4

10. Xia C, Wang Z, Zheng C, Guo Q, Shi Y, Dehmer M, et al. A new

coupled disease-awareness spreading model with mass media on multiplex

networks. Information Sci. (2019) 471:185–200. doi: 10.1016/j.ins.2018.

08.050

11. Chinazzi M, David JT, Ajelli M, Gioannini C, Litvinova M, Merler

S, et al. The effect of travel restrictions on the spread of the 2019

novel coronavirus (COVID-19) outbreak. Science. (2020) 368:395–400.

doi: 10.1126/science.aba9757

12. Yang Z, Zeng Z, Wang K, Wong SS, Liang W, Zanin M, et al.

Modified SEIR and AI prediction of the epidemics trend of COVID-19 in

China under public health interventions. J Thorac Dis. (2020) 12:165–74.

doi: 10.21037/jtd.2020.02.64

13. Li R, Pei S, Chen B, Song Y, Zhang T, YangW, et al. Substantial undocumented

infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-

2). Science. (2020) 368:489–93. doi: 10.1126/science.abb3221

14. Iran’s Ministry of Health and Medical Education. Daily COVID-19 Epidemic

Reports. Available online at: http://corona.behdasht.gov.ir/ (accessed April 13,

2020).

15. Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q, Meredith HR, et al. The

incubation period of coronavirus disease (2019). (COVID-19) from publicly

reported confirmed cases: estimation and application. Ann InternMed. (2020)

172:577–82. doi: 10.7326/M20-0504

16. Imperial College London COVID-19 Response Team. Report 4: Severity of

2019-Novel Coronavirus (nCoV). (2020). Available online at: https://www.

imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/

Imperial-College-COVID19-severity-10-02-2020.pdf (accessed April 13,

2020).

17. Delamater PL, Street EJ, Leslie TF, Yang Y, Jacobsen KH. Complexity of

the basic reproduction number (R0). Emerg Infect Dis. (2019) 25:1–4.

doi: 10.3201/eid2501.171901

18. Mercer GN, Glass K, Becker NG. Effective reproduction numbers are

commonly overestimated early in a disease outbreak. StatMed. (2011) 30:984–

94. doi: 10.1002/sim.4174

19. Nishiura H, Chowell G. The effective reproduction number as a prelude

to statistical estimation of time-dependent epidemic trends. In: Chowell

G, Hyman JM, Bettencourt LMA, Castillo-Chavez C, editors. Mathematical

and Statistical Estimation Approaches in Epidemiology. Dordrecht: Springer

Netherlands. (2009). p. 103–21. doi: 10.1007/978-90-481-2313-1_5

20. Dietz K. The estimation of the basic reproduction number

for infectious diseases. Stat Methods Med Res. (1993) 2:23–41.

doi: 10.1177/096228029300200103

21. Linton NM, Kobayashi T, Yang Y, Hayashi K, Akhmetzhanov AR, Jung SM,

et al. Incubation period and other epidemiological characteristics of 2019

novel coronavirus infections with right truncation: a statistical analysis of

publicly available case data. J ClinMed. (2020) 9:538. doi: 10.3390/jcm9020538

22. Marinov RR, Mariova RS, Omojola J, Jackson M. Inverse problem for

coefficient identification in SIR epidemic models. Comput Math Appl. (2014)

67:2218–27. doi: 10.1016/j.camwa.2014.02.002

23. Audet C, Dennis JE. Analysis of generalized pattern searches. SIAM J Optim.

(2003) 13:889–903. doi: 10.1137/S1052623400378742

24. Artalejo JR, Lopez-Herrero MJ. On the exact measure of disease spread

in stochastic epidemic models. Bull Math Biol. (2013) 75:1031–50.

doi: 10.1007/s11538-013-9836-3

25. CMMID. Using a Delay-Adjusted Case Fatality Ratio to Estimate Under-

Reporting. (2020). Centre for Mathematical Modelling of Infectious Disease,

London School of Hygiene & Tropical Medicine. Available online at:

https://cmmid.github.io/topics/covid19/global_cfr_estimates.html (accessed

April 28, 2020).

26. CEBM. Global Covid-19 Case Fatality Rates. (2020). The Centre for Evidence-

Based Medicine, University of Oxford. Available online at: https://www.cebm.

net/covid-19/global-covid-19-case-fatality-rates/ (accessed April 13, 2020).

27. Wu Z, McGoogan JM. Characteristics of and important lessons from the

coronavirus disease (2019). (COVID-19) outbreak in china: summary of

a report of 72 314 cases from the chinese center for disease control and

prevention. JAMA. (2020) 323:1239–42. doi: 10.1001/jama.2020.2648

28. CMMID. Temporal Variation in Transmission During the COVID-19

Outbreak. (2020). Centre for Mathematical Modelling of Infectious Disease,

London School of Hygiene & Tropical Medicine. Available online at: https://

epiforecasts.io/covid/ (accessed April 13, 2020).

29. Saberi M, Hamedmoghadam H, Madani K, Dolk HD, Morgan A, Morris

JK, et al. Accounting for underreporting in mathematical modelling of

transmission and control of COVID-19 in Iran. medRxiv [Preprint]. (2020).

doi: 10.1101/2020.05.02.20087270

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Saberi, Hamedmoghadam, Madani, Dolk, Morgan, Morris,

Khoshnood and Khoshnood. This is an open-access article distributed under the

terms of the Creative Commons Attribution License (CC BY). The use, distribution

or reproduction in other forums is permitted, provided the original author(s) and

the copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Physics | www.frontiersin.org 8 July 2020 | Volume 8 | Article 28924

https://www.weforum.org/agenda/2020/03/coronavirus-covid-19-patient-zero/
https://www.weforum.org/agenda/2020/03/coronavirus-covid-19-patient-zero/
https://www.theatlantic.com/ideas/archive/2020/02/iran-cannot-handle-coronavirus/607150/
https://www.theatlantic.com/ideas/archive/2020/02/iran-cannot-handle-coronavirus/607150/
https://www.wsj.com/articles/iran-takes-emergency-measures-after-two-coronavirus-deaths-in-qom-11582202084
https://www.wsj.com/articles/iran-takes-emergency-measures-after-two-coronavirus-deaths-in-qom-11582202084
https://doi.org/10.24171/j.phrp.2020.11.2.03
https://www.nbcnews.com/health/health-news/why-iran-s-reported-mortality-rate-coronavirus-higher-other-countries-n1142646
https://www.nbcnews.com/health/health-news/why-iran-s-reported-mortality-rate-coronavirus-higher-other-countries-n1142646
https://www.nbcnews.com/health/health-news/why-iran-s-reported-mortality-rate-coronavirus-higher-other-countries-n1142646
https://doi.org/10.1126/science.abb4557
https://doi.org/10.1126/science.abb4218
https://doi.org/10.1038/s42254-020-0178-4
https://doi.org/10.1016/j.ins.2018.08.050
https://doi.org/10.1126/science.aba9757
https://doi.org/10.21037/jtd.2020.02.64
https://doi.org/10.1126/science.abb3221
http://corona.behdasht.gov.ir/
https://doi.org/10.7326/M20-0504
https://www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-severity-10-02-2020.pdf
https://www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-severity-10-02-2020.pdf
https://www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-severity-10-02-2020.pdf
https://doi.org/10.3201/eid2501.171901
https://doi.org/10.1002/sim.4174
https://doi.org/10.1007/978-90-481-2313-1_5
https://doi.org/10.1177/096228029300200103
https://doi.org/10.3390/jcm9020538
https://doi.org/10.1016/j.camwa.2014.02.002
https://doi.org/10.1137/S1052623400378742
https://doi.org/10.1007/s11538-013-9836-3
https://cmmid.github.io/topics/covid19/global_cfr_estimates.html
https://www.cebm.net/covid-19/global-covid-19-case-fatality-rates/
https://www.cebm.net/covid-19/global-covid-19-case-fatality-rates/
https://doi.org/10.1001/jama.2020.2648
https://epiforecasts.io/covid/
https://epiforecasts.io/covid/
https://doi.org/10.1101/2020.05.02.20087270
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


ORIGINAL RESEARCH
published: 11 August 2020

doi: 10.3389/fams.2020.00035

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 1 August 2020 | Volume 6 | Article 35

Edited by:

Sen Pei,

Columbia University, United States

Reviewed by:

Xin Wang,

Beihang University, China

Steve Newbold,

University of Wyoming, United States

Andreas Eilersen,

University of Copenhagen, Denmark

*Correspondence:

Hongyu Miao

hongyu.miao@uth.tmc.edu

Specialty section:

This article was submitted to

Dynamical Systems,

a section of the journal

Frontiers in Applied Mathematics and

Statistics

Received: 31 May 2020

Accepted: 13 July 2020

Published: 11 August 2020

Citation:

Miao H, Gao Q, Feng H, Zhong C,

Zhu P, Wu L, Swartz MD, Luo X,

DeSantis SM, Lai D, Bauer C,

Pérez A, Rong L and Lairson D (2020)

Mathematical Modeling of Business

Reopening When Facing SARS-CoV-2

Pandemic: Protection, Cost, and Risk.

Front. Appl. Math. Stat. 6:35.

doi: 10.3389/fams.2020.00035

Mathematical Modeling of Business
Reopening When Facing SARS-CoV-2
Pandemic: Protection, Cost, and Risk
Hongyu Miao 1*, Qianmiao Gao 1, Han Feng 1, Chengxue Zhong 1, Pengwei Zhu 1,

Liang Wu 1, Michael D. Swartz 1, Xi Luo 1, Stacia M. DeSantis 1, Dejian Lai 1, Cici Bauer 1,

Adriana Pérez 1, Libin Rong 2 and David Lairson 3

1Department of Biostatistics and Data Science School of Public Health, University of Texas Health Science Center at

Houston, Houston, TX, United States, 2Department of Mathematics University of Florida Gainesville, FL, United States,
3Department of Management, Policy and Community Health School of Public Health, University of Texas Health Science

Center at Houston, Houston, TX, United States

The sudden onset of the coronavirus (SARS-CoV-2) pandemic has resulted in

tremendous loss of human life and economy in more than 210 countries and territories

around the world. While self-protections such as wearing masks, sheltering in place,

and quarantine policies and strategies are necessary for containing virus transmission,

tens of millions of people in the U.S. have lost their jobs due to the shutdown of

businesses. Therefore, how to reopen the economy safely while the virus is still circulating

in population has become a problem of significant concern and importance to elected

leaders and business executives. In this study, mathematical modeling is employed

to quantify the profit generation and the infection risk simultaneously from a business

entity’s perspective. Specifically, an ordinary differential equation model was developed

to characterize disease transmission and infection risk. An algebraic equation is proposed

to determine the net profit that a business entity can generate after reopening and take

into account the costs associated of several protection/quarantine guidelines. All model

parameters were calibrated based on various data and information sources. Sensitivity

analyses and case studies were performed to illustrate the use of the model in practice.

The results show that with a combination of necessary infection protection measures

implemented, a business entity may stand a good opportunity to generate a positive net

profit while successfully controlling the within-business infection prevalence under that in

the general population. The use of personal protective equipment (PPE) is also found of

significant importance, especially at the early stage of business reopening.

Keywords: SARS-CoV-2 pandemics, mathematical modeling, reopening business, parameter calibration, benefit-

cost-risk trade-off

INTRODUCTION

Severe Acute respiratory Syndrome Coronavirus 2 (SARS-COV-2) is an ongoing global health
threat to every country in the world and has caused significant loss of almost every business
entity [1–3]. In the United States alone, as of May 14, 2020, more than 1.3 million confirmed
infections and more than 84,000 deaths had been reported since the COVID-19 outbreak, which
is associated with a 4.8% drop in gross domestic product (GDP) in the first quarter of 2020.
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While the development of effective vaccination, treatment, and
prevention strategies is underway, it is still unknown when such
efforts will yield clinical and medical practices effective enough
to allow a return to usual economic activity [4, 5]. Practicing
a variety of stringent quarantine and shutdown policies is an
effective way to protect our citizens’ health and lives during a
pandemic like SARS-CoV-2 [6]. However, there are costs that
need to be considered. Besides the extraordinary physical and
emotional stress and potentially significant medical expenses
that COVID patients and their families must cope with, a
large number of people have lost (or may lose) their jobs or
businesses. This significant financial loss results in a pressure
to reopen the economy prior to the availability of effective
vaccination and treatment of COVID-19. Elected leaders and
business executives as well as employees must address a critical
question: how to reopen the economy in the midst of a SARS-
CoV-2 pandemic safely?

In this study, we use mathematical modeling techniques to
address particular challenges a business entity may face during
reopening. In recognition that mathematical modeling results
alone cannot stop pandemics, [7] the following behavioral and
social guidelines are still strongly suggested for any business
entities in planning to reopen:

1. Social distancing (including dinning in restaurants and
manufacturing in factories), e.g., the number of workers (and
clients or patrons) that a business environment can support
while maintaining a 6ft distance between individuals;

2. Mask, glove, and goggle wearing while not alone;
3. Routine sanitization (e.g., entrance, exit, home, workplace,

conference room, bathroom, public transportation, door
knobs, shared electronic devices);

4. COVID-19 tests accessible to workers who have symptoms or
recent exposure to confirmed infections;

5. Deployment of non-contact sensors (e.g., Kinsa smart
thermometer) for real-time fever detection and location;

6. Case reporting and quarantine policy;
7. Determination of a maximum time duration of exposure to

working environment;
8. Specific equipment (e.g., stronger ventilation system, UV

purification system) for aerosol transmission prevention;
9. Employees in non-contact positions remain working

from home;

The implementation of each guideline above can protect
employees’ health and lives but may add an economical cost.
Indeed, the main purpose of reopening businesses is to prevent
further deterioration of our economy by generating profits and
provide incomes that many citizens desperately need. However,
for employees in a contact-based position, the risk of COVID
infection and transmission may remarkably increase if they
return to work. When the infection rate of COVID-19 within
a business entity becomes higher than the prevalence in the
general population, it may trigger a domino effect and subsequent
infections in a broader community originated from this business
entity. Therefore, a delicate balance between profit/income
generation and infection/transmission prevention must be the

ideal. The focus of this modeling strategy is to provide a
quantitative tool for investigating whether a business entity may
reopen according to a simple definition of operational reopening
feasibility: reopening is considered as feasible if a business entity
can generate positive net profit after reopening while keeping the
prevalence of COVID-19 infection within this entity less than or
equal to the prevalence in the general population. The prevalence
in the general population is assumed to remain under a certain
threshold after reopening; otherwise, isolation and quarantine
orders may be re-issued by government and reopening would
halt, disregarding an individual business’s performance.

MATERIALS AND METHODS

Mathematical Model
To our knowledge, there exist only a few studies that have
modeled the reopening of a country, a state, a city or a local
community [8–11], and fewer studies have focused on the
reopening of a business entity. This modeling work attempts
to address the business-reopening problem by considering a
transmission model together with a net profit equation.

Borrowing from the classical susceptible-infected-recovered
(SIR) modeling framework as in several previous models [8, 12],
the following definitions and notations are introduced. Let NT

denote the total number of employees in a business entity, Nc

denote the number of employees in a contact-based position,
and NN denote the number of employees in a non-contact
position. Employees in a non-contact position are expected to
remain working from home (WFH) according to Guideline
#9 and thus are excluded from the transmission model. These
WFH employees still actively contribute to profit generation
and are counted in the net profit equation. In addition, the
total number of employees NT is assumed variable after the
reopening due to various reasons, including infection-related
death or other factors. Among the Nc employees in a contact-
based position, let S denote the number of susceptible employees;
C denote the number of asymptomatic, pre-symptomatic, and
very-mildly-symptomatic (VMS) carriers (collectively known as
silent spreaders); Q denote the number of infected employees
on quarantine, under treatment (i.e., confirmed infection) or
awaiting test result (i.e., unconfirmed infection); and D denote
the number of deaths or resignations due to infection. Note
that: (i) all infected employees confirmed by virus tests should
be quarantined immediately, and any company fellow having
a recent contact with the infected person is assumed to also
be tested for the virus and initially be self-quarantined (see
Guideline #4). The asymptomatic, pre-symptomatic, and very-
mildly-symptomatic carriers are the three major categories of
the so-called “silent spreaders.” While it remains unclear how
quickly asymptomatic carriers can transmit the infection, some
studies in China suggested that ∼25% of those who tested
positive without symptoms continued symptomless, and the
remaining 75% turned out to be pre-symptomatic [13]. Other
ongoing studies suggested that the proportion of asymptomatic
infection could be as high as 50% [14]. People with very mild
symptoms (e.g., occasional light cough or mild fever) may not
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recognize the infection but are also fully capable of spreading
the disease like the presymptomatic carriers [15]. Finally, the
WFH employees may still be infected and then practice at-home
quarantine or receive treatment in hospital; for simplicity, instead
of introducing another set of equations for characterizing the
WFH transmission, the number of infected WFH employees
NNQ is assumed to be collected by the business entity on a
self-reported basis and directly accounted for in the net profit
calculation equation.

After taking silent spreaders into consideration, [16] the
proposed model structure is given below:

dS

dt
= −βO · κ · S− βA ·

αC

N
· S− βP ·

(1− α)C

N
· S (1)

dC

dt
= βO · κ · S+ βA ·

αC

N
· S+ βP ·

(1− α)C

N
· S

−τ · (1− α)C + ω · Q (2)

dQ

dt
= τ · (1− α)C − (γ + ω) · Q− δ · Q (3)

dR

dt
= γ · Q (4)

dD

dt
= δ · Q (5)

and the net profit is defined as the following:

Pntot = ξ1·ξ 7 · ρ ·
(

(NN − NNQ)+ S+ C + R
)

−
∑

i6=1or 7

ξi · (S+ C + R) − w · Q− w · NNQ (6)

where= S+C+R denotes the number of employees in contact-
based positions who are working on site. The definitions of
all model variables and parameters are listed in Table 1, and a
diagram (Figure 1) is also given to illustrate the transmission
model mechanisms and assumptions. As suggested in Figure 1

and Equation (1), susceptible employees can be infected and
become virus carriers by contacting people outside of the
business at a rate βO, or interacting with asymptomatic carriers
within the business at a rate βA and with pre-symptomatic and
VMS carriers within the business at a rate βP. Also, α denotes the
proportion of asymptomatic carriers among all tested-positive
infections, and κ denote the probability of transmission via
an average number of contacts per day of one person with
other persons. In Equation (2), the infected susceptible become
asymptomatic, pre-symptomatic or VMS carriers, and those pre-
symptomatic and VMS carriers further progress to symptomatic
infections at a rate τ . In Equation (3), symptomatic infections
may recover at a rate γ and become immune to virus infection
due to, e.g., memory immunity, [17] regress to symptomless
carriers (e.g., some patients can test positive and shed viruses after
symptoms end [18]) at a rate ω, or die at a rate δ. Also, Equations
(4) and (5) characterize the dynamics of recovered and death,
respectively. In the net profit Equation (6), ρ denotes the net
profit per day generated by healthy WFH, susceptible, and silent
carrier employees, ξi (i 6= 1, 7) is the average cost per person per
day in a contact-based position associated with the i-th protection

Guideline (i = 1, . . . , 9), and w is the average wage per day
per person for employees on quarantine or under treatment. It
is assumed that employees on quarantine or under treatment
still receive their wages given that the typical quarantine or
treatment length is 14–28 days even considering them as
sick days.

Data Source and Parameter Values
The datasets generated from recently published studies
and surveys are heterogeneous in terms of population
demographics, geospatial characteristics, medical resource
availability, treatment regimens, prevention polices and
implementation, among others. Extraordinary efforts are
needed to integrate such heterogeneous datasets and perform a
variety of statistical analyses, which is beyond the scope of this
study. Instead, the summary statistics or previously-calibrated
parameter values from previous studies and surveys are used
as the primary information sources for our model parameter
calibration. Note that studies reported different accuracy
(in terms of decimals), it is thus difficult to standardize the
number of decimals without losing accuracy so we keep the
original numbers.

To calibrate the transmission model parameters in Equations
(1)–(5), we started with the case death rate and the recovery time.
In the United States, the case fatality rate is currently 5.65% while
Omer et al. [29] previously estimated the infection-related death
rate as low as 1.7%. In other countries, the reported case death
rates may range from 0.56% (Iceland) to 13.53% (Italy); [29]1,2.
to preserve parameter uncertainty, this wide range of infection
fatality rate (0.56∼13.53%) is adopted in our calculations. To
calculate the mean recovery time, we consider the following
observations:3 (i) 8 out of 10 infected persons with symptoms
have only mild illness; (ii) the average recovery time for mild
cases is about 2 weeks; (iii) for severe cases, recovery may take
up to 6 weeks; (iv) the overall recovery rate is between 97
and 99.75%. The conservative mean recovery time for all cases
is thus 1/[

(

0.8
14 + 0.2

42

)

× 0.97] = 16.65 days among people
with symptomatic infections, which is longer than the reported
median hospitalization period of 12 days [33] among survivors.
It was also reported that the recovery time for mild cases can be as
short as 7 days, therefore, this study assumes that recovery time
ranges from 7 to 42 days4.

In Equation (1), for the proportion of asymptomatic carriers
(denoted by α), multiple studies have been conducted to estimate
this parameter among different populations with different
methods [14, 19–22]. The range of the estimate of α̂ is (13.8%,
75%), and about half of such studies reported a result around
50%. Sun et al. (26) analyzed 391 cases in Zhejiang Province,
China from Jan. 20th, 2020 to Feb. 10th, 2020, and found 54
(13.8%) cases were asymptomatic. Nishiura et al. [22] estimated

1Available online at: https://ourworldindata.org/coronavirus#what-do-we-know-

about-the-risk-of-dying-from-covid-19
2Available online at: https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/

cases-in-us.html
3Available online at: https://www.webmd.com/lung/covid-recovery-overview#1
4Available online at: https://www.houstonmethodist.org/blog/articles/2020/apr/

recovering-from-coronavirus-what-to-expect-during-and-after-your-recovery/
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TABLE 1 | Variable and parameter definitions, values, and sources.

Notation Definition Unit Value Reference

S Susceptible Persons

C Carrier Persons

Q Quarantine Persons

R Recovered Persons

D Death Persons

N Sum of S, C and R Persons

Number of employees in contact-based positions Persons

Number of employees in non-contact positions Persons

Number of employees in non-contact positions under quarantine Persons

α Proportion of asymptomatic carriers among all types of carriers % 50 (13.8, 75) [14, 19–22]5

The product of βO and κ day−1 3.10× 10−7

(2.42× 10−7,

3.88× 10− 7)

[23]

κ Probability of one employee having contacts with infected carriers

outside a business entity

% NA

βO Infection rate associated with activities outside of the business

entity

day−1 NA

βA Transmission rate of asymptomatic infection day−1 0.099

(0.0103, 0.814)

Calibrated from

[13, 24, 25]

βP Transmission rate of presymptomatic and very-mildly-symptomatic

infection

day−1 0.197

(0.0333, 1.18)

Calibrated from3,4[26]

τ Rate of progression to symptomatic infection day−1person−1 0.192

(0.143, 0.244)

Calibrated from [13, 24]

ω Rate of regression to carriage (e.g., even after treatment) day−1person−1 0.00172

(0.000575, 0.00455)

Calibrated from [27, 28]

γ Clearance rate of symptomatic infection, including the portion of

negative test outcomes among exposed employees

day−1 0.0535 (0.0178, 0.141) [6, 29]

δ Death rate due to infection day−1 0.00320

(0.00013, 0.0167)

Calibrated from4

ρ Net profit per capita $ per person per day 400.73
6

w Average wage of employees $ per person per da 218.60
8

ξ1 Social distancing % 67.4 [12]

ξ2 Personal protective equipment (PPE) $ per person per day 3.60 [30, 31]10

ξ3 Routing sanitization $ per environmental

service staff per day

10.45 [32]

ξ4 COVID test $ per person per day 0 Assumed

ξ5 Non-contact thermometer $ per person per day (0.005, 0.01)
11,12

ξ6 Case reporting and quarantine $ per person per day 0

ξ7 Proportion of current hours of exposure to working environment % 70 (50, 100)

ξ8 Specific equipment for aerosol transmission (e.g., UVGI, HEPA

filtration)

$ per person per day 0.874 [31]

ξ9 WFH $ per person per day 0 Assumed

ξi , Protection cost per person associated with the i-th Guideline; UVIG, ultraviolet germicidal irradiation; HEPA, high-efficiency particulate air filtration.

α in the evacuated Japanese citizens to be 30.8% (95% CI: 7.7–
53.8%).Mizumoto et al. [14] obtained an estimate 17.9% (95%CI:
15.5–20.2%) using the data from the Diamond Princess cruise.
Kimball et al. [21] analyzed the results of symptom assessment
and SARS-CoV-2 testing in King County, Washington, and
found that 56.5% of the tested positive was asymptomatic. Day
[20] suggested that the proportion of asymptomatic infection

was between 50 and 75% in northern Italy, and others5

suggested that α could be between 25 and 50% on Apr. 5th,
2020 [34].

5Available online at: https://www.augustahealth.com/health-focused/covid-19-

asymptomatic-carriers-and-antibody-tests
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FIGURE 1 | Transmission model diagram. Each rectangle represents a model variable, a directed arrow shows the transition from one to another model variable, and

the associated model parameters are labeled next to an arrow.

Furthermore, κ is the probability of one employee having
contacts with infected carriers outside a business entity, and
βO denotes the associated transmission rate. A limited number of
studies were found helpful for estimating these two parameters,
we thus calibrated such parameter values primarily using the
simulation results from Tang et al. [23]. In Tang’s study, the
daily average contact number was estimated to be 14.78 (SE 0.90)
contacts per day per person, and the probability of successful
transmission per contact was estimated to be 2.10 × 10−8 (SE
1.19 × 10−9). According to the definitions of κ and βO, we have
βOκ = 14.78 × 2.10 × 10−8 = 3.10 × 10−7 day−1, and the
range of βO κ , (2.42 × 10−7, 3.88 × 10−7), can be calculated
using the standard errors (i.e., 2.42 × 10−7 = (14.78 − 2 ×
0.90) × (2.10 × 10−8 − 2 × 1.19 × 10−9), and 3.88 × 10−7 =
(14.78+ 2× 0.90)× (2.10× 10−8 + 2× 1.19× 10− 9).

The transmission rate (βP) can be calculated from R0
recovery time ,

where R0 denotes the reproduction number (i.e., the average
number of new infections by one carrier) that has been frequently
investigated in many SARS-CoV-2 studies [13, 23, 35–43]. For
instance, according to the study of Liu et al. [26], the estimated
R0 of SARS-CoV-2 in China at the early stage of the pandemic
ranges from 1.4 to 6.49 with a mean 3.28 and a median 2.79.
Note that the population in Liu et al. [26] was mostly not
aware of the pandemic and used little protections such as mask
wearing, hand washing, and social distancing. Thus, for the
unprotected general population, the estimated transmission rate
is 3.28/16.65= 0.197 day−1. The corresponding range is between
0.0333 (=1.4/42) and 0.927 (=6.49/7) per day. Note that in
the early stage of a pandemic, it can be assumed that most of
the cases are pre-symptomatic or mildly-symptomatic such that
the parameter value calculated above may be close to the true
value of βP. Another study by Li et al. (43) suggested that the

transmission rate βP could be 1.12 (95%CI: 1.07–1.18), 0.52 (95%
CI: 0.42–0.72), or 0.35 (95% CI: 0.28–0.45) per day by fitting
data of different pandemic stages in China. For these reasons, we
assumed a range for βP of (0.0333, 1.18) per day.

For the transmission rate of asymptomatic infection (βA), very
little useful information was found in the scientific literature.
Here we borrowed the idea of Li ‘s work, [25] in which the
transmission rate of asymptomatic infection was calculated by
multiplying a reduction factor µ with the transmission rate of
symptomatic infection. The reduction factor µ was estimated
as 0.55 (95% CI: 0.46–0.62), 0.50 (95% CI: 0.37–0.69) and 0.43
(95% CI: 0.31, 0.61), corresponding to different stages of SARS-
CoV-2 outbreak in China. Using the same reduction factor µ

in our model, βA can be estimated by µβp, leading to a mean
of 0.197 × 0.5 = 0.099 per day and a range from 0.0103 (=
0.333× 0.31) to 0.814 (= 1.18× 0.69) per day.

In Equation (2), τ is the rate of silent carriers progressing
to symptomatic infections. The mean incubation period was
previously reported to be 5.2 days with a 95% confidence interval
(4.1, 7.0) days, [13, 24] or 5.1 days with a 95% confidence interval
(2.2, 11.5) days [44]. Based on these results, we estimated τ as the
reciprocal of the incubation period with a mean 1/5.2=0.192 per
day and a 95% confidence interval (0.143, 0.244) per day.

In Equation (3), for the clearance rate of symptomatic
infection γ and the death rate due to COVID infection δ, multiple
studies developed various methods to estimate them [6, 23, 45].
In Piguillem’s method, (6) the calculations were mainly based on
the case mortality rate and the recovery time. After substituting
16.65 days for the mean recovery time and 5.65% for the mean
death rate aforementioned, we obtain the estimate of γ as

(1− 0.0565)2 /16.65 =0.0535 per day, and the death rate δ as
(1 − 0.0565) × 0.0565

16.65 =0.0032 per day. The range of γ is found
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to be (0.0178, 0.141) per day, and the range of δ is (1.3 × 10−4,
1.67× 10−2) per day.

In Equations (2) and (3), we also introduced ω, the rate
of regression to carriage, considering the fact that 3.23% of
the patients recovered from SARS-CoV-2 infection were tested
positive after hospital discharge [27, 28]. However, the potential
infectivity of these carriers remains unclear. Here ω is estimated
to be 3.23% ×γ̂ =0.0323×0.0535= 0.00173 per day, and its
range is between 0.000575 (=0.0178 × 3.23%) and 0.00455
(=0.141×3.23%) per day.

Now consider the additional parameters in the net-profit
Equation (6). The average net profit per capita ρ in the U.S.
is found to be $400.73 per person per day, which is calculated
by dividing Jan 2020U.S. corporate profit $1908.02 Billion US
dollars6. by 158,714,000 (the number of employed persons in
the United States)7 and then by 30 days. The average weekly
wage of one employee in the U.S. is $1,093 per person in
the third quarter of Year 2019,8 so the average daily wage of
employee w is $218.60 per day (dividing $1,109 by the number
of weekdays 5). In the previous study of Thumstrom and
Newbold (2020), [12] GDP loss was considered as one cost of
social distancing; i.e., an immediate GDP decline associated with
practicing social distancing alone (i.e., house-hold quarantine)
in the United States was predicted to be 13.7 − 6.49 = 7.21
trillionUS dollars. The projected GDP of Fiscal Year 2020 is 22.11
trillion US dollars according to the United States Congressional
Budget Office (CBO)9. Therefore, for Guideline #1, the cost of
social distancing is the loss of productivity by 7.21 ÷ 22.11 =
32.6%, and thus ξ1 = 1 − 32.6% = 67.4%. For Guideline #2,
the cost of personal protective equipment (PPE), [30] including
surgical mask, gloves, goggle wearing, hand sanitization, and
soap, is calculated as ξ2 =$3.60 per person per day [31] under the
assumption that each person will consume two surgical masks per
day, two pairs of gloves per day, and one goggles. According to
the Personal Protective Equipment (PPE) guideline from Perdue
University,10 goggles can last for years if kept clean by using mild
soap and water, and if stored in a protected, dry, and temperate
storage location. So the use life of goggles is much longer than
our typical setting for simulation time window length (i.e., 100
days) and the cost of one goggles per day is $5 ÷ 100 = $0.05
per day for simplicity. The detailed costs of each PPE item as
well as hand sanitization and soap can be found from online
resources11,12. For Guideline #3, the cost of routine sanitization
(e.g., cleaning the workplace, bathroom, and shared electronic
devices) is calculated as ξ3 = $10.45 per environmental service
staff per day [32]. Specifically, in the work of White (2019), 11
hospitals with a total of 1,700 environmental service staffs, they

6Available online at: https://tradingeconomics.com/united-states/corporate-

profits
7Available online at: https://dlt.ri.gov/lmi/datacenter/ces.php
8Available online at: https://www.bls.gov/regions/southwest/news-release/

countyemploymentandwages_texas.htm
9Available online at: https://www.cbo.gov/publication/56073#_idTextAnchor148
10Available online at: https://www.chem.purdue.edu/chemsafety/Training/

PPETrain/ppetonline.htm
11Available online at: https://www.shopp.org
12Available online at: https://www.amazon.com

found to spend $11,308 per week to maintain the hygiene by
consuming disinfection products. We thus calculate ξ3 using the
following equation:

ξ3 =
cost of disinfection products

(Total number of enviromental services staffs
Number of hospitals

)
÷ 7 days.

For Guideline #4, the current policy dictates that the test of
COVID is free to the business entity (ξ4 = $0 per person per day).
For Guideline #5, as the current market prices of a non-contact
sensor may range from $50 to $100, and one non-contact sensor
is required for each worksite. With the assumption of having
100 employees per worksite, the cost of deploying non-contact
sensor ξ5 is $0.005 to $0.01 per person per day for a 100-day
time horizon. We assume that Guideline #6 does not cost any
money (ξ6 = $0 per person per day). For Guideline #7, the
cost is proportional to the current maximum working hours

(i.e., ξ7 = current maximum working hours
regular working hours

). In our model, the current

maximum working hours is assumed to be 70% of the regular
working hours. For Guideline #8, referring to the work of Chen
(2013), [31] the cost of deploying specific equipment for reducing
aerosol transmission such as ultraviolet germicidal irradiation
(UVGI) and high-efficiency particular air (HEPA) filtration are
$182.37 and $136.78 per person per year, respectively, ξ8 is thus
equal to $0.874 per person per day via dividing the total cost of
the aforementioned equipment by 365 days. Finally, we assume
that implementing Guideline #9 does not incur any cost (ξ9 = $0
per person per day).

All the parameter definitions, values and ranges are
summarized in Table 1. However, it should be stressed that
the parameter values calibrated above are for heterogeneous
populations. More importantly, at the early stage of the
pandemic, the estimates of certain transmission model
parameters (e.g., the reproduction number and transmission
rates) are expected to be larger due to the absence of protection
policies and self-protection awareness; and the transmission rates
are expected to have a notable drop after the implementation
of various protection and quarantine strategies (PQS). Such a
hypothesis is supported by several recent studies, which showed
that the overall transmission rates may decrease by 2.1–3.2
folds after implementing PQS. Also, the study of Seto et al. [46]
quantified the odds ratios of SARS infection as 13 (95% CI: 3,
60), 2 (95% CI: 0.6, 7), or 5 (95% CI: 1, 19), corresponding to
the use of masks, gloves or hand-washing, respectively. Thus,
the values of certain model parameters (e.g., transmission rates)
will be different from (e.g., smaller than) the values calibrated in
this section after implementing Guidelines #1-9, which will be
elaborated in the result Section.

Implementation and Computing
Configuration
All the computing codes were implemented in MATLAB R©

(MathWorks, Natick,MA), and the ordinary differential equation
(ODE) solver ode15s was employed for solving the transmission
model numerically. The relative error tolerance was set at 10−7,
the absolute error tolerance at 10−7, and the maximum step
size at 10−2.
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RESULTS

Sensitivity Analysis
We evaluated the local sensitivity of the transmission model in
Equations (1–5). Specifically, we evaluated the changes in the
model outcome variables (i.e. S, C, Q, R, D) corresponding to
a 1% increase in one parameter value, with the other seven
parameter values fixed at their default values as in Table 1. Initial
values for the sensitivity analysis were set as 299 susceptible and
1 silent carrier which approximated the proportion of infections
in the U.S. general population as reported by May 5, 2020. The
initial numbers of quarantined, recovered, and death were all
set as 0 for simplicity. The results were visualized in Figure 2,
showing that the transmission model was most sensitive to the
transmission rate of pre-symptomatic and VMS infections (βP)
and the rate of progression to symptomatic infection (τ ), and
least sensitive to the product βO · κ . For the most sensitive
parameters, a 1% increase in parameters βP or τ resulted in a
change <1.5% in the outcomes throughout a period of 200 days.
At the end of the 200 days, all changes in the outcomes reached
a plateau or tended to diminish. The results suggested that
the transmission model was not locally sensitive to parameter
value changes and could make robust predictions. Additional
sensitivity analyses were then performed to understand the
outcome changes over the entire range of parameter values. As
shown in Figure 2, S was one of the most sensitive outcomes
to parameter value changes; therefore, we plotted S against time
for each of the eight parameter value ranges in Figure 3. For
each parameter range, the minimum, the 1st quantile, the mean,
the 3rd quantile, and the maximum parameter values were used
to generate the trajectories of S. The results suggested that the
dynamicmodel did not crash into chaos and the outcome S varied
smoothly and predictably within the entire parameter range.

To evaluate the global sensitivity of this model, the Partial
Spearman Rank Correlation Coefficient (PRCC) method [47]
was employed. The model parameters were randomly sampled
100 times using the Latin hypercube sampling technique over
uniform distribution. The range of the uniform distribution for
the global sensitivity for each model parameter was reported
in Table 1. Figure 4 showed the plot of the PRCC values (next
to the y axis) between model parameters and ODE outputs
against time. As suggested in many previous studies, an absolute
PRCC value >0.4 was deemed as practically significant [48].
For the susceptible population (S), the corresponding subfigure
showed that the transmission rates βA and βP were strongly
and negatively (< −0.7) correlated with S. This result was
expected as the higher the transmission rates, the smaller
the number of the susceptible persons. Please note that the
percentage of asymptomatic carriers (α) was positively correlated
with S initially (> 0.4) and then became negatively correlated
with S at the end (< −0.6). The initial positive correlation
between S and α should not be interpreted as that S will increase
when α increases, but that S will decrease less when α increases.
This will happen when βA · α is less than βP · (1 − α). Around
the end of the time window of the simulation, a larger α

corresponded to a smaller N = S + C + R due to the increase
in death, and thus S will decrease more given a smaller N in

the denominator at the righthand side of Equation (1). From
all the subfigures, the transmission rates βA and βP were always
found strongly correlated with the outcomes while it was not
the case for βO · κ , the value of which was too small to have a
substantial impact on the outcomes. In addition, parameters α, γ
and τ were also found strongly correlated with the outcomes, and
interventions like more effective drug treatment or vaccination
would affect these parameter values.

Case Study
Business executives are strongly recommended to follow the
guidelines listed in the Background Section to prevent the
reopening from causing any exacerbation of the ongoing
pandemic. However, practical difficulties may arise due to, e.g.,
insufficiency of budget or medical recourses such that only some
of the guidelines will be implemented by employers. Through
this case study, we illustrated the use of the transmission model
and the cost equation in different scenarios to evaluate the
feasibility of reopening. Note that our simulation results were
obtained under many assumptions and subject to both model
structure and parameter value uncertainty; therefore, decisions
of business executives should not be made solely based on the
results presented in this section.

In this case study, we focused on four scenarios: (i) none
of the nine Guidelines was constantly implemented (baseline
scenario); (ii) all Guidelines 1–9 were constantly implemented;
(iii) PPE and all other indispensable guidelines (1, 2, 3, 4, 6,
9) were constantly implemented; (IV) Indispensable guidelines
(1, 3, 4, 6, 9) were constantly implemented but without the use
of PPE. Scenarios I was the baseline scenario, corresponding
to a complete devaluing of infection risk. Across scenarios
II-IV, Guidelines 1, 3, 4, 6, 9 were assumed to be always
implemented given the necessity and indispensability of these
five Guidelines to business reopening. Scenario III was designed
to be less restrictive than Scenario II, considering that some
business entities might not have the budget to deploy non-
contact sensors for real-time fever detection, reduce the number
of working hours, or acquire specific equipment for aerosol
transmission prevention. In Scenario IV, the use of PPE was
intentionally dropped to account for the possible shortage of
such materials on the market and to understand the importance
of the use of PPE. The implementation of behavioral and
social practice guidelines in Scenarios II-IV led to changes
in the values of these three, βO · κ , βA, and βP, parameters
in our transmission model. The other model parameters were
assumed not directly affected by Guidelines 1-9. For instance, the
recovery rate γ primarily depends on subject-specific immunity,
the availability, affordability of effective medical intervention
and health care, instead of behavioral and social practice
patterns. For these reasons, we adjusted the values of βO · κ ,
βA, and βP for scenarios II–IV, respectively. The guidelines
followed in each scenario and the corresponding adjusted
parameter values were listed in Table 2. For simplicity, we
assumed that the effects of different guidelines were independent
and remained constant throughout the entire simulation time
window. We also assumed that after reopening, every employee
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FIGURE 2 | Local sensitivity analysis of the transmission model, showing the changes in the model outcome variables corresponding to 1% increase in one parameter

value (with the other seven parameter values fixed at their default values as in Table 1).

rigorously followed the guidelines and immediately reported
their symptoms or infections once identified.

According to the study of Koo et al. [49], the practice of
social distancing together with disease testing, reporting and

quarantine policy (Guidelines 1, 4, and 6) could reduce the
number of infections by 78.20% (IQR: 59.0–94.4%) compared
with the baseline scenario when Ro was 2.5. That is, the
transmission rates might drop to 1–78.2% = 21.80% of their
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FIGURE 3 | The trajectories of S over the entire range of each parameter. For each parameter, the trajectories of S are generated corresponding to the minimum, the

1st quantile, the mean, the 3rd quantile, and the maximum parameter values.

baseline values after implementing Guidelines 1, 4, and 6. To
quantify the effects of wearing mask, glove, goggle and hand
washing (Guideline 2) on infection transmission, we adopted
the results from Seto et al. [46] and Yin et al. [50] for severe
acute respiratory syndrome (SARS). In their results, the odds
ratio for mask wearing was 13 (95% CI: 3–60, attack rate 11

83 =
13.25%), for glove wearing was 2 (95% CI: 0.6–7, attack rate

9
133 = 6.77%), for hand-washing was 5 (95% CI: 1–19, attack rate
3
17 = 17.65%), and for goggles wearing was 1

0.2 = 5 (95% CI:
2.44−10, attack rate 61.50%). Correspondingly, the transmission
rates might drop to 8.83% (95% CI: 1.92–36.56%) for mask
wearing, 48.85% (95%CI: 15.17–100%) for glove wearing, 39.37%
(95% CI: 22.40–64.33%) for goggle wearing, and 23.91% (95% CI:
6.32–100%) for hand washing. Thus, due to the implementation
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FIGURE 4 | Global sensitivity analysis (PRCC) of the transmission model.

of Guideline 2, the transmission rates might drop to 8.83% ×
48.85% × 39.37% × 23.91% = 0.41% of their baseline values.
Zhang et al. [51] investigated influenza A transmission in a
student office setting, which showed that the infection risk could
reduce by 2.14% with implementation of routine sanitization.
Routine sanitation is expected to reduce the transmission rates to
1 − 2.14% = 97.86% of their baseline values after implementing
Guideline 3. The implementation of Guideline 5 would improve
the implementation of Guidelines 4 and 6 so its effect on
infection transmission was not explicitly quantified in this study.
For Guideline 7, we assumed a linear relationship between
the number of working hours and the infection risk. The
average working hours per day after reopening was assumed
to be 70% of the regular working hours. Correspondingly, the
transmission rates might drop to 70% (range 50–100%) with
Guideline 7. For Guideline 8, according to the report of Mendell
et al. [52], a 10–14% reduction in communicable respiratory
infections might result from improved work environments.
Taking 12% as the median, we assumed that the transmission
rates might drop to 100% − 12% = 88% (range 86–90%) with
implementing Guideline 8. Furthermore, the transmission rates
among employees in contact-based positions were not affected by
Guideline 9. Finally, in scenarios II, III, and IV, the transmission
rates dropped to21.80%×0.41%×97.86%×70%×88% = 0.05%,
21.80% × 0.41% × 97.86% = 0.09% and 21.80% × 97.86% =
21.33% of their baseline values, respectively. See Table 2 for the
adjusted transmission rates.

All the simulation results in this section were generated using
the same set of initial values for simplicity. Taking the DELLTM

center at Austin, Texas as an example, the total number of
active workers after reopening could be around 14,000. The ratio
between the on-site workers and the WFH workers was assumed
as 2:1 (i.e., 9,333 on-site workers and 4,667 WFH workers).
On the first day of reopening (day 0), the proportion of silent
carriers among all the 14,000 employees was approximated by
the proportion of infections in the general population of U.S.
estimated using the number of reported cases as of May 5,
2020. The proportion of workers that had recovered from the
infection and thus acquired immunity (referred as “recovered”
in our model) were also estimated from the reported number
of recoveries of the general U.S. population. The numbers of
quarantined employees and death on day 0 were assumed to be
0. We conducted the simulations for 200 days for Scenario I and
100 days for Scenarios II–IV to verify the short-term feasibility
of reopening. The outcome trajectories in the four scenarios
were shown in Figures 5, 6 showed the reopening feasibility by
plotting the net profit and the prevalence of infections in the
workplace as well as in the general population (the left column),
and the corresponding values of cost, profit, and net profit (the
right column).

As shown in Figures 5A–C, without implementing any of the
guidelines, reopening merely led to a large number of infections
and deaths (230 deaths by the last day, 649 quarantined and
422 silent carriers at their peaks). The prevalence of infections
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TABLE 2 | Parameters value adjustment in different scenarios.

Scenario I

(Baseline)

Scenario II Scenario III Scenario IV

Guidelines

(*denotes implemented

guidelines)

1. Social distancing * * *

2. PPE * *

3. Routine sanitization * * *

4. COVID-19 tests * * *

5. Non-contact sensors *

6. Case reporting and quarantine * * *

7. Maximum duration of exposure *

8. Equipment for aerosol transmission

prevention

*

9. WFH if applicable * * *

Parameter Values βO · κ (%× day−1) 3.100× 10−7 1.653× 10−20 2.684× 10−20 6.613× 10−18

βA(day
−1) 0.099 5.280× 10−05 8.571× 10−05 2.112× 10−02

βP (day−1) 0.197 1.051× 10−04 1.706× 10−04 4.203× 10−02

within the business entity exceeded that in the general population
throughout the 200-days window, and peaked at 114 infections
per 1,000 people, which was 30 folds higher than that of the
general population. Even by the end of the 200 days, the within-
entity prevalence was 8 folds higher (32.9 cases per 1,000 persons)
than the population average. Also, even after we extended the
simulation time window to 200 days, the transmission model
still did not reach its steady states, suggesting a less predictable
risk of disease transmission. In short, despite that the net profit
remained positive (Figure 6B), since the prevalence in workplace
was constantly (much) higher than that in the general population,
reopening turned out to be infeasible in Scenario I.

If a business entity strictly followed all guidelines 1–9 as
in Scenario II, the number of infections and deaths reduced
remarkably, as shown in Figures 5D–F (2 deaths among 9,333
onsite workers, at most 16 quarantined and 35 silent carriers).
Figure 5 also showed that the outcomes of the transmission
model reached a plateau toward the end of the 100-days
window. In other words, the infection could be contained in
this scenario, with the number of carriers and the number of
the quarantined reaching and staying at 0 by day 48 and day
92, respectively. According to Figure 6C, under the assumption
that the prevalence of infections within the business entity
was the same as in the general population at the beginning
of reopening, the within-business prevalence dropped under
the general population prevalence immediately (on day 2), and
continuously decreased down to 0.035 infections per 1,000 people
by the last day of simulation. This within-business prevalence was
104 folds lower than the general population prevalence reported
in other studies. The business also attained higher and more
stable net profit than in Scenario I (Figure 6D).

In Scenario III, guidelines 5, 7, 8 were skipped and the
transmission rate values changed accordingly (see Table 2);
however, the simulation results were surprisingly similar to those
in Scenario II during the 100-day time window (Figures 5G–I,

6E,F). Specifically, the numbers of deaths, the quarantined and
silent carriers were nearly the same as those in Scenario II; also, it
took approximately the same amount of time for the numbers
of carriers and the quarantined to drop to 0 (Figures 5G–I).
The nearly same predicted population trajectories resulted in a
nearly same prediction on net profit (Figures 6E,F). To confirm
such results, additional local sensitivity analysis was conducted
at the parameter values in Scenarios II and III, suggesting that
the simulation outputs were not sensitive to parameter value
changes (e.g., a change of <0.1 in all the five output variables
corresponding to 1% parameter value change).

After a business entity further dropped guideline 2 (Mask,
glove, and goggle wearing while not alone) in Scenario IV, our
model predicted that the spread of infections did not become
uncontrollable within 100 days but associated with a higher
cost (Figures 5J–L, 6G,H). While the initial within-business
prevalence was the same as the general population prevalence,
the workplace quickly became a “hot spot” of infection spreading,
and a prevalence much higher than the population average was
reached (Figure 6G). The within-business prevalence continued
to stay above the general population average for 11 days, and
peaked at a level of 4 infections per 1,000 people on day 5.
The results suggested that reopening should stop to prevent this
entity from developing into a source of infection and posing
significant risk on its workers as well as their close social
contacts. Note that the within-business prevalence dropped to
0.09 infections per 1,000 people by the end of the 100-day
time window (Figure 6G), and the numbers of deaths and the
quarantined were controlled under 3 and 20 among 9,333 onsite
workers, respectively. Business executives should not rely on
such optimistic predictions and underestimate the infection risk
for two reasons. First, constant parameter values were used in
our simulations, which were not capable of capturing every
possible time-varying characteristic of disease transmission over
time (i.e., parameter values could be time-varying instead of
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FIGURE 5 | Outcome trajectories for the four scenarios. For the same scenario, the five outcome variables of different orders of magnitude are visualized by three

subfigures in one row. The scale of y-axis is adjusted to enable a clear view of each single trajectory over time. (A,D,G,J) Susceptible (S); (B,E,H,K) Recovered (R);

(C,F,I,L) Carrier (C), Quarantined (Q), and Death (D).
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FIGURE 6 | Cost, profit, net profit, and infection prevalence for the four scenarios (each row for one scenario and Scenarios I–IV in the order of the top row to the

bottom). For each scenario, the left subplot shows the reopening feasibility based on both net profit and infection prevalence in the workplace, with the prevalence in

the population presented for comparison; and the right subplot shows the cost, profit and net profit. (A,C,E,G) Reopening feasibility, (B,D,F,H) cost and profit.
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being constant). Second, our simulation was performed under
the assumption that all workers strictly followed the selected
guidelines. In reality, it is unlikely that every single employee
would faithfully stick to such rules and guidelines daily and
constantly over time. Moreover, Figure 6G suggested that the use
of PPE was very important at the early stage of reopening. In
Scenarios II and III, with the use of PPE, we did not observe the
rapid increase of prevalence since the beginning of reopening;
however, in Scenario IV without the protection of PPE, the
within-business prevalence started to increase and exceed the
population average on day one. This result was consistent with
the recent study by Kai et al. [53], which demonstrated the
significant effect of universal use of facial masks (e.g., at least 80%
population wear masks) on impeding the spread of infections.

DISCUSSION

SARS-CoV-2 struck the whole world since 2019 and caused
significant loss of human lives and economy. While various
lockdown, quarantine, and isolation rules and polices worked
effectively to control COVID infection transmission, numerous
businesses were closed and tens of millions of people lost their
jobs. As of May 20, 2020, all the states in the U.S. strategically
moved toward gradual reopening to save the economy. However,
given that neither effective drug treatments nor vaccines were
available, the risk of infection spreading within a business entity
became a key issue that any business executive had to consider.
In this study, an ODE-based transmission model was developed
together with a net profit equation to quantitatively evaluate the
trade-off among profit, cost, and infection risk within a business
entity after reopening. Model parameter values were calibrated
from heterogeneous sources to enable computer simulations.
Both local and global sensitivity analyses were conducted to
understand our model behavior and result robustness. Finally,
a case study assessed scenarios, in which different combinations
of behavioral and social practice guidelines were implemented.
The simulation results suggested that infection transmission was
controllable within a business entity and a positive net profit
could be generated after reopening only if a combination of
selected guidelines were implemented. Also, our results suggested
that the use of PPE could be significantly important at the early
stage of reopening to prevent infection spreading.

Modeling business reopening is a novel and important
problem during the COVID-19 pandemic or a similar situation.
This study adopted a business entity’s perspective instead of
a social perspective (e.g., one can further consider social cost
of death due to infection and model the interactions out of a
workplace). However, a study from a business entity’s point of
view has its own added value. Note that reopening decision is not
just the call of local governments but also business executives.
For instance, even if a state or local government issues the
reopening orders, a business entity may decide by itself whether
it should reopen immediately or postpone the reopening after
taking into consideration of both business-specific parameters
and benefit-cost-risk trade-off. With that said, future researches
from different perspectives are more than welcome to shed novel
insights into the business reopening problem.

There are several issues worth of further discussions. First,
while the proposed model did not explicitly introduce a term
for the incompliance of employees on the use of PPE, we have
investigated both Scenario III and Scenario IV in the Case Study
Section. The only difference between the two scenarios is whether
PPE is used; therefore, the results corresponding to partial or
full incompliance by employees will fall between the results
of Scenario III and those of Scenario IV. Second, our model
implicitly accounted for the fact that a virus testing process might
not be instant and completely error free. Recall that the outcome
variable for “carriers” (C) in our model is the total number of
asymptomatic, pre-symptomatic, and very-mildly-symptomatic
(VMS) carriers (collectively known as silent spreaders), as
defined in the Mathematical Model Section. It is reasonable to
expect that any person with notable symptoms should practice
self-quarantine or receive medical treatment even when waiting
for virus test results or tested false negative; therefore, cases that
are not immediately identified or quarantined are accounted for
in C. Third, βo × κ was found not to play a very significant role
in this study. Note that after reopening, employees will spend
the majority of their ‘gathering’ time in the workplace so the
workplace transmission would and should play a major role.
Consequently, the more time employees spend on work-related
activities, the less number of interactions they could have with
others outside the workplace, suggesting a small value for βo× κ.
Finally, while mathematically it could be interesting to examine
all the 29 = 512 possible combinations of the nine guidelines to
identify the optimal combination(s), it may not serve the practical
purpose of this study. For instance, we can hardly imagine a
worker who would strictly stick to the use of PPE but not practice
any handwash; or a workplace gives up on the cost-effective
measures such as social distancing and routine sanitization, while
spending lots of budget on equipment for aerosol transmission
prevention. More importantly, the infection protection measures
considered in Scenario III are those strongly recommended by
CDC due to their efficacy and cost-effectiveness. That is also
why the optional protection measures were only considered in
Scenario II to quantify the additional benefits such measures
may provide.

We also recognize a number of limitations of this study.
First, the mathematical model and the net profit equation were
developed under multiple assumptions. While many of those
assumptions are commonly adopted by related professional
communities (e.g., epidemiology or mathematical modeling),
some assumptions were introduced due to the lack of accurate
and/or complete information (e.g., asymptomatic infection
transmission rate). With additional efforts invested in future
SARS-CoV-2 related research, we expect that informative
and high-quality data will become available such that less
assumptions are needed and more accurate results can be
generated by our approach. Second, while we have compiled
information frommany different sources to calibrate the possible
ranges ofmodel parameter values, the parameter uncertaintymay
not be completely characterized by such parameter ranges due
to, e.g., the heterogeneity in population demographics, health
conditions, behavioral patterns, and social networks. Third,
although the costs associated with guidelines #1-9 were included
in the net profit calculation, our cost estimation is subject to
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market fluctuations and many other (unpredictable) factors. It
is thus suggested for users of our model to fine tune parameter
values upon available business-specific data or information.
Finally, in this study, herd immunity and vaccination strategies
were not considered because they were not available as of the
current moment. Considering the active research on SARS-CoV-
2 vaccine and drug development, the availability of effective
vaccines and medications can be expected and it should be taken
into consideration in our modeling work at some point.

In summary, this modeling work provides a quantitative
tool for decision-makers to explore and evaluate the business
reopening option in the midst of COVID pandemics, and it can
be extended to similar scenarios (e.g., outbreak of unknown or
new virus) by re-calibrating related parameter values. We expect
further research efforts in this direction to better prepare for
possible strikes of infectious diseases in the future.
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We consider the pandemic spread of COVID-19 in selected countries after the outbreak

of the SARS-CoV-2 coronavirus inWuhan City, China.We estimated the infection rate and

the initial individuals infectedwith COVID-19 by using officially reported data from the early

stages of the epidemic for a model of susceptible (S), infectible (I), quarantined (Q), and

officially confirmed recovered (Rk) populations (the so-called SIQRk model). In the officially

reported data, we know the number of quarantined cases and the officially reported

number of recovered cases. We cannot know about recovered cases from asymptomatic

patients. In the SIQRk model, we can estimate the parameters and the initial infections

(confirmed cases + asymptomatic cases) from fitted values. We obtained an infection

rate in the range β = 0.233 ∼ 0.462, a basic reproduction number of Ro = 1.8 ∼ 3.5,

and the initial number of infected individuals, I (0) = 10 ∼ 8409, for selected countries.

By using fitting parameters, we estimated that the maximum time span of the infection

was around 50 days in Germany when the government invoked the quarantine policy.

The disease is expected to subside about 6 months after the first patients are found.

Keywords: coronavirus (2019-nCoV), epidemic model, SIR (Susceptible Infected-Recovered) model, quarantine,

asymptomatic

INTRODUCTION

On December 31, 2019, Chinese authorities reported pneumonia from an unknown cause to the
World Health Organization (WHO) in Wuhan City, Hubei province, China. On January 7, 2020,
the virus was identified as a new coronavirus, first referred as 2019-nCov (SARS-CoV-2), which
causes the disease named COVID-19. On January 11, 2020, China reported the first death from
the novel coronavirus [1]. The victim was a 61-year-old man in Wuhan. On January 20, 2020,
the WHO reported the first confirmed cases outside China (in Thailand, Japan, and South Korea
[1]). The disease was spreading rapidly in Wuhan City, and cases were reported outside that city.
On January 23, 2020, China placed Wuhan, a city of 11 million people, under quarantine. All
transportation departures were canceled or suspended [1]. The president of the WHO declared
COVID-19 a pandemic on March 11, 2020. After the first report on December 31, 2019, in Wuhan,
COVID-19 was spreading very quickly all over the world [2] and is the first pandemic in the twenty
first century.
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Some states, such as the Republic of Korea, Taiwan, Singapore,
and Hong Kong, have been controlling the disease successfully
up to now. However, other countries, like the U.S.A., Italy, Spain,
France, and the U.K., are suffering from the outbreak and from
shortages of medical materials and overcrowded hospitals. Since
the outbreak, scientists all over the world have been struggling to
find a vaccine and drugs for treatment. In the highly connected
societies, information and data on the disease are shared through
the internet, social media, and mass media. We can obtain
information from websites like worldometer1 or livecornamap in
South Korea 2.

A flood of articles and preprints is appearing on many journal
and preprint websites. Recently, preprint websites like arXiv.org3,
bioRxiv4, and medRxiv5 are servicing a section with COVID-
19 quick links. It is important to predict the spread of the
disease in the early stages of the outbreak. Many epidemic models
were proposed based on dynamic spreading models, agent-
based models, the Monte Carlo model, and data-based spreading
models [3–10].

The evolution of the virus was described with a modified
susceptible (S), infectious (I), recovered (R) population, the so-
called SIR model [3–7]. The prediction of COVID-19 evolution
in Brazil was suggested by using the susceptible, infectious,
quarantined, recovered (SIQR) model [5]. Numerical analysis
provided an estimated basis reproduction number of Ro = 5.25,
and a doubling time estimated at 2.72 days. The SIQR model
includes a rate that quantifies the recovering of asymptomatic
individuals for the evolution equation of the infection and the
recovering population. Peng et al. introduced an epidemic model
for COVID-19 including the exposed population [4]. A model
by Carcione et al. is called the generalized susceptible, infectious,
exposed, recovered (SEIR) model [6]. They introduced time-
dependent parameters, such as mortality rate and protection rate.
They applied the model to the situation in the Italian Region of
Lombardy, and estimated a basic reproduction number of Ro =
2.6 in the early stages of the outbreak. Fanelli and Piazza analyzed
and forecast COVID-19 spread by using the susceptible, infected,
recovered, dead (SIRD) model in China, Italy, and France [3].
Pedersen and Meneghini quantified undetected COVID-19 cases
and the effects of containment measures in Italy, introducing
the SIQR model [7], which includes a rate for patients to
become non-infectious.

There are some limitations in the SIR-type models because
of the ignorance of the age-structure, spatial heterogeneities,
activity types of the people, latent periods, the polices to prevent
the spreading, etc. [8, 9]. In real situation the government of
each country enforces the protection strategies such as physical
distance, face masks, eye protection, wide testing, household
quarantine, lockdown, and effects of media in the early phase of
outbreak [10–16].

1Worldometer. Available online at: https://www.worldometers.info/coronavirus/
2Livecoronamap. Available online at: https://livecorona.co.kr/
3arXiv.org. https://arxiv.org/
4bioRxiv.org. https://www.biorxiv.org/
5medRxiv.org. https://www.medrxiv.org/

In this article, we consider a susceptible, infectible,
quarantined, and confirmed recovered (SIQRK) model based
on only known data for active cases and recovered cases.
In particular, we cannot know the recovered cases of the
asymptomatic infected individuals. In our model we can predict
the whole infected cases, quarantined cases, and recovered cased
based on the early data for the known quarantined cases and
the officially recovered cases. We estimate the parameters of the
model from data on reported cases for selected countries. We
obtained the infection rate and the initial number of infected
individuals. From the fitting parameters, we estimated the basis
reproduction number, and predict the maximum time span of
the infection and the annihilation period of the disease.

EPIDEMIC MODEL

We consider an epidemic model for COVID-19 that is
characterized by the variables {S (t) , I (t) ,Q (t) ,R (t)} denoting
the susceptible population, the infected population, the
quarantined population, and the recovered population,
all at time t. The total population satisfies the constraint
N = S (t) + I (t) + Q (t) + R(t) where N is the total population.
Let us define the recovered population as R (t) = Rk (t) + Ra(t),
where Rk (t) is the known- or confirmed-as-recovered cases as
reported officially, and Ra(t) is the unknown or asymptomatic
recovered population (infected, but not showing symptoms).
Under the homogenous mixing postulate, we consider the
so-called SIQRK model as follows:

dS(t)

dt
= −β

S (t) I (t)

N
(1)

dI(t)

dt
= β

S (t) I (t)

N
− (α + η) I (t) (2)

dQ(t)

dt
= ηI (t) − γQ (t) (3)

dRk(t)

dt
= γQ (t) (4)

dRa(t)

dt
= αI (t) (5)

In this model, the parameter β denotes the infection rate,
and α is the rate at which patients become non-infectious by
recovering without showing any symptoms. The parameter η

is the rate of detection for newly infected people, and γ is the
rate of recovery for quarantined cases. In the SIQRk model, the
infected populations are divided into officially confirmed cases
and asymptomatic cases. We only know the official number of
quarantined cases and the official number of recovered cases.
We do not know the actual number in the infected population
owing to the unknown number of asymptomatic cases. Some
asymptomatic individuals have recovered without any severe
suffering from the disease. We propose that the parameter
included in the dynamic equations should be the initial number
of infected cases, which is the sum of officially known cases and
the unknown population of asymptomatic cases. In this model
we don’t include the number of deaths. The number of deaths
is included implicitly in the number of quarantined cases. If the
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TABLE 1 | Date of reporting the first case, plus the state and location of

COVID-19 outbreaks for selected countries.

Ranking Country First

Report

State/Province Location

1 U.S.A. Jan. 21 Washington Sonohomish

2 Spain Jan. 31 Canary Islands La Gomera

3 Italy Jan. 31 Lazio (Latium) Rome

5 Germany Jan. 27 Babaria Munich

6 U.K. Jan. 31 Newcastle York City

7 China Dec. 31,

2019

Hubei Wuhan

8 Turkey Mar. 11 Ankara Ankara

9 Iran Feb. 19 Qom Province Qom

11 Brazil Feb. 25 São Paulo São Paulo

13 Canada Jan. 25 Ontario Toronto

23 Japan Jan. 16 Kanagawa Prefecture Kanagawa

24 Korea Jan. 20 Gyeonggi-do Gimpo

32 Mexico Feb. 28 Mexico City/Sinaloa Mexico City

The ranking is based on total reported cases of the infection1.

death is occurring, it is quarantined indefinitely. From this idea
we can predict some parameters from the officially provided data.

RESULTS

The outbreak of COVID-19 started around the world in January
and February 2020, as summarized in Table 1. The disease
was first reported in Wuhan City, Hubei province, China, on
December 31, 2019. Some states, like the Republic of Korea,
Taiwan, Hong Kong, etc., have controlled the disease well, up
to now. They have executed massive inspections for the disease.
When patients are found at a location, doctors and experts
from the Korean Center for Disease Control and Prevention
(KCDC) checked all people who had been in contact with those
patients. All infected individuals were quarantined in hospitals or
some remote places. Some persons suspected of infection would
self-quarantine, and controllers checked on them frequently
via cellphone app, the internet, and phone. However, many
countries did not prepare to control and prevent the disease in
the early stages, for example, the U.S.A. and Japan. Patients in
these unprepared countries were incubating the disease in the
early stages. Recently, these countries have suffered from abrupt
outbreaks, and many people have died. We aggregate data set
from worldometer website which is supported by the American
Library Association1.

In the reported data for each state, the active cases are
transferred immediately to quarantined cases. Therefore, active
cases correspond to quarantined cases, Q. Almost-recovered
cases come from the isolation cases. From the reported data for
Q and Rk, we can fit (Q+Rk) as a function of time in the early
stages of disease spread. (Q+ Rk) is fitted by the exponential
function g (t) = a

b
[ebt − 1] in the early stages of disease spread

(see the Appendix). From the obtained fitting parameters a and
b, we estimated model parameters such as a = ηI(0) and b =
β − (α + η), where I(0) is the number of infected individuals at

FIGURE 1 | Q+RK data were fitted to a non-linear least squares fit early in the

outbreak as a function of time for Germany. The solid line is from fitted data,

and the solid circles are the real data. We obtained fitting parameters a = 9.62

and b = 0.25.

the outset. We have to determine four parameters: α, β , η, and
I(0). We determined rates α, η, and γ according to the method
used in Bjornstad et al. [8].

Let ε denote the fraction of infectious individuals entering
Q. There is a controversy over the ratio of asymptomatic cases
for COVID-19 [17–22]. The reported rate of people testing
positive for COVID-19, but being asymptomatic, in several
instances ranged between 5 and 80%. We set the fraction as
ε = 1/3 [15, 17–22]. The average incubation time is about 5
days [17, 18], and the duration for milder cases of the disease
is about 5 to 6 days [19]. The average duration from infection
to recovery or death in non-isolated patients is about 10 days,
corresponding to a rate of 0.1/day [7]. Therefore, we obtained
α = (1 − ε) × 0.1/day and η = ε × 0.2/day. Finally,
we obtained α = η = 0.067/day. Using these parameters
and the fitting parameters a and b, we obtained parameters
β and I(0) from the fitting parameters and the predetermined
rates. We summarize the results obtained from the data of
each country.

We estimated infection rate β and the initial number of
infected individuals, I(0). The symptoms of COVID-19 do not
appear in many cases. In Figure 1, we represent the non-linear
least squares fit for Q+RK as a function of time in the early stages
of disease spread in Germany. The early data fit the exponential
function well. We give the fitted data for some selected countries
in Table 2. We observed that there were large numbers of initially
infected people. The infection rate shows a very high value in
the range 0.233 ≤ β ≤ 0.462 for the selected countries.
We calculated the basic reproduction numbers of the estimated
parameters for the countries. The R for many countries was >2.
In particular, the basic reproduction number, Ro, for the U.S.A.
shows a high value of Ro = 3.45. This high value induced the
large number of infected people throughout many of the states
in America.
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TABLE 2 | Parameters of the SIQRK model.

Country a b χ
2

β I(0) Ro τ

U.S.A. 1.13 0.33 0.99 0.462 17 3.5 2.1

Spain 43.7 0.19 0.99 0.324 652 2.4 3.6

Italy 93.26 0.16 0.99 0.294 1,392 2.2 4.3

Germany 9.62 0.25 0.99 0.384 144 2.9 2.8

U.K. 6.6 0.21 0.99 0.344 99 2.6 3.3

China 563.38 0.23 0.93 0.364 8,409 2.7 4.3

Iran 138.46 0.10 0.98 0.233 2,077 1.8 6.9

Brazil 22.16 0.15 0.98 0.284 331 2.1 4.6

Canada 0.65 0.23 0.99 0.364 10 2.7 3.0

Japan 1.06 0.12 0.96 0.254 16 1.9 5.8

Korea 90.95 0.294 0.98 0.294 1,356 2.2 4.3

Mexico 12.84 0.12 0.99 0.254 192 1.9 5.8

We obtained fitting constants a and b. Then, we derived the infection rate, β, and the rate of detection, η, for new cases from the fitted values. We obtained recovery rate γ for

quarantined individuals from the daily Q and RK data. We obtained the basic reproduction number, Ro. Using fitting parameters, we numerically solved the SIQRK model and predicted

the characteristic times.

We observed the high number of initially infected individuals,
I(0), from data fitting. In Table 1, we summarize the first official
confirmed days for COVID-19 patients in many countries.
Because of the incubation period and the asymptomatic cases in
young, healthy people, we expect that there were many infected
people when the health organizations of these countries reported
their first cases. In China, we estimated I (0) = 8, 409. The
first confirmed time for the virus in China was a long time
after the first case, because this is a new type of coronavirus.
For the U.S.A., the number of initially infected people is a
small value at I (0) = 17. In the U.S., the first patient was
found in the state of Washington. However, late inspections and
the delayed quarantine policy from the US Centers for Disease
Control and Prevention (CDC) and the US federal government
resulted in the huge outbreak in the USA. South Korea is one
of the countries that excellently controlled this disease. In the
early stages of the outbreak, the initial cases were estimated at
I (0) = 1, 356. In South Korea, a super-spreader was found in
the metropolitan city of Daegu on Feb. 17, 2020, who attended
worship services of a church gathering with a lot of people.
Although the number of initially infected people is very big, the
World Health Organization and the KCDC performed a wide
range of inspections, imposed a strong policy for quarantines,
and provided information on the people contacted by the
confirmed patient. These strong protection policies have been
preventing widespread infections of the disease up to now in
South Korea.

We calculated the SIQRK model by using fitting parameters
for the countries. Figure 2 shows the predicted cases of
susceptible (S), infecting (I), quarantined (Q), and individuals
officially confirmed as accumulated recovered (Rk) for Germany.
The maximum number of infected people was at around 50
days, when the government enforced quarantine on all infected
persons. Of course, the maximum time and the lasting time of
the disease depend on the fitting parameters and the number
of initially infected people. For Germany, the disease subsides

FIGURE 2 | Prediction of the susceptible (S), infecting (I), quarantined (Q), and

confirmed accumulated recovered (Rk ) individuals based on numerical

integration using fitting parameters for Germany. The disease is lasting 200

days after first infecting a patient.

after 200 days. We need about 6 months to eradicate the disease,
according to our model. We observed that the asymptomatic
recovered population, Ra = N − (S+ I + Q+ Rk), dramatically
increased after the maximum time span of the infection, as
shown in Figure 2. When we predict the evolution of the disease
by some model, we need to use a confirmed data set, such as
active cases, recovered cases, and terminal cases. In some cases,
it is possible that data reported officially include any errors in
the early phase of the outbreak. Then the prediction of the
model also includes the uncertainty. However, in that case, our
model can use observing the changing trend of the epidemic
spreading within errors. When we give some variations of the
initial conditions by the intrinsic errors in data, we can observe
some varying patterns of the evolving disease.
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CONCLUSIONS

We consider a spreading epidemic model called the SIQRK

model. In this model, we include a dynamic equation for
quarantined individuals. We estimate the parameters of the
dynamic evolution equation from the sum of quarantined cases
and recovered cases. We obtained the parameters via non-linear
least squares fit by using the set of reported data. When we
consider the fitting of the model, it is important to use data
for both types of confirmed cases, official and asymptomatic
individuals in the model. In particular, there are officially
reported recovered cases and asymptomatic recovered cases. We
cannot know the asymptomatic recovered cases because we have
no data. In this study we suggest a model to overcome this
difficulty. The observed high value of the basic reproduction
number indicates COVID-19 is a pandemic. We predict that
the maximum time span of the infection is around 50 days
to 2 months. The disease should last about 6 months when
we quarantine infected individuals. We predict based on the
model that the epidemics will last in some countries if the
policy of the quarantine is not strict. In this model we don’t
include the number of deaths which are implicitly included in

the quarantined cases. If we include the number of deaths, there
are some mathematical difficulties to predict the parameters of
the model. We will extend this model to include the death case
in general.
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APPENDIX

Let us examine the SIQRK model. In the early phase of disease
spread, we expect that the susceptible population is similar to the
total population, S/N ≈ 1. Therefore, we can write a dynamic
infection equation as found in Crokidakis [5] and Carcione
et al. [6]:

dI(t)

dt
= [β − (α + η)] I (t) (A1)

By integrating this equation with initial condition I(0), we obtain
the solution

I (t) = I (0) e[ β−(α+η)]t (A2)

The reproduction number, Ro, is given by

Ro =
β

α + η
(A3)

With COVID-19, the reproduction number is >1. The disease can
spread easily through contact between individuals. The doubling

time, τ , is given by τ = ln 2
[β−(α+η)] = ln 2

(α+η)(Ro−1) . Infection rate

β and the rate of detection of new cases, η, can be derived from
the evolution time after early infection. Adding equations (3) and
(4), we obtained a quantity such as

d(Q+ Rk)

dt
= ηI (t) (A4)

Therefore, we obtain the sum of quarantined cases and recovered
cases as follows:

(Q+ Rk) (t) =
ηI (0)

β − (α + η)

{

e[β−(α+η)]t − 1
}

(A5)

We calculated recovery rate γ obtained from the data set. The
recovery rate is given by γ = (Rki − Rki−1)/Qi−1. The value
of the recovery rate depends on time in the early stages, and
converges to a constant value. We obtained a recovery rate of
γ = 0.036/day.
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In December 2019, novel coronavirus disease (COVID-19) hit Wuhan, Hubei Province,

China and spread to the rest of China and overseas. The emergence of this virus

coincided with the Spring Festival Travel Rush in China. It is possible to estimate the total

number of COVID-19 cases in Wuhan, by 23 January 2020, given the cases reported in

other cities/regions and population flow data between Wuhan and these cities/regions.

We built a model to estimate the total number of COVID-19 cases in Wuhan by 23

January 2020, based on the number of cases detected outside Wuhan city in China, with

the assumption that cases exported from Wuhan were less likely underreported in other

cities/regions. We employed population flow data from different sources between Wuhan

and other cities/regions by 23 January 2020. The number of total cases in Wuhan was

determined by the maximum log likelihood estimation and Akaike Information Criterion

(AIC) weight. We estimated 8 679 (95% CI: 7 701, 9 732) as total COVID-19 cases in

Wuhan by 23 January 2020, based on combined source of data from Tencent and Baidu.

Sources of population flow data impact the estimates of the total number of COVID-19

cases in Wuhan before city lockdown. We should make a comprehensive analysis based

on different sources of data to overcome the bias from different sources.

Keywords: COVID-19, mobility, pneumonia, transportation, outbreaks

INTRODUCTION

In December 2019, a cluster of patients with pneumonia of unknown causes was reported in
Wuhan, Hubei Province, China [1]. On 9 January 2020, a novel coronavirus, named SARS-CoV-
2, was identified as the cause of this outbreak [2]. The emergence of this virus coincided with
the Spring Festival Travel Rush in China. It was estimated that there would be around 3 billion
trips made in China during the period of 10 January to 18 February 2020 [3]. Some researchers
have pointed out the risk of the regional and global disease spreading during the Spring Festival

47

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2020.00336
http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2020.00336&domain=pdf&date_stamp=2020-09-01
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:weimingwang2003@163.com
mailto:l.yang@polyu.edu.hk
mailto:daihai.he@polyu.edu.hk
https://doi.org/10.3389/fphy.2020.00336
https://www.frontiersin.org/articles/10.3389/fphy.2020.00336/full


Zhuang et al. Estimate COVID-19 Cases in Wuhan

Travel Rush [4]. However, due to the small number of severe
cases reported by mid-January and most cases were linked to
the Huanan Seafood Market of Wuhan city, neither international
nor regional traveling restrictions were implemented to Wuhan
at the early stage of this outbreak. On 13 January 2020, the first
case exported fromWuhan was reported in Thailand and the case
numbers dramatically increased after the diagnostic kits became
available in mid-January. As of 13 July 2020, there were 85 560
laboratory confirmed cases and 4 648 deaths (58.8 and 83.2%
in Wuhan) [5]. In recognition of a wide-spreading outbreak,
the government has suspended all public transportations inside
Wuhan city since 23 January 2020, and some regional traveling
restrictions were also implemented by other cities/regions [6].

METHODS

Objective
At the early stage of this outbreak, the cases might have been
severely underreported due to the lack of diagnostic kits and
insufficient screening for all suspected cases [7, 8]. Several efforts
have been made to estimate the COVID-19 case numbers in
Wuhan using different modeling approaches, and the estimates
range from 4 000 to 75 815 during the period of 18–29
January [8–10].

In this study, we aimed to estimate the number of COVID-
19 cases in Wuhan, based on the cases exported from
Wuhan to other cities/regions in mainland China and different
sources of the population flow data between Wuhan and these
cities/regions. We tested the impact of different sources of
population flow data on estimating cases in Wuhan before city
lockdown and combined different sources of data to overcome
the bias from different sources. The estimates were made by 23
January 2020 (before the suspension of public transportations
in Wuhan). We assumed that the cases exported from Wuhan
were less likely underreported in other cities/regions in mainland
China, as stringent temperature screening was implemented at
airports and railway stations.

Data
We obtained daily number of inbound and outbound domestic
passengers traveling by air, train or road to/from Wuhan from
two data sources:

(1) Tencent’s LBS (location-based services) database (see:
https://heat.qq.com/). According to location data of Tencent’s
mobile software users, population flow number during 10
December 2016 and 24 January 2017 was generated, between
Wuhan and 24 cities/regions in China (Anhui, Beijing,
Chongqing, Fujian, Gansu, Guangdong, Guangxi, Guizhou,
Hainan, Hebei, Heilongjiang, Henan, Hunan, Jiangsu, Jiangxi,
Jilin, Liaoning, Ningxia, Shandong, Shanghai, Sichuan, Tianjin,
Yunnan, Zhejiang). We assumed that the amount of population
flow in 2017 is same as that in 2020.

(2) Baidu map database (see: https://qianxi.baidu.com/).
According to location data of Baidu’s mobile software users,
population flow number from 1 to 20 January 2020 was
generated, between Wuhan and 26 cities/regions (Shanxi,
Shaanxi, and other cities/regions are the same as Tencent data).

We equally divided the population flow data from different
sources separately to get average daily population flow number.
Figure 1 shows the geographical location of cities/regions which
reported COVID-19 cases and the number of COVID-19 cases in
each city/region.

As shown in Table S1, we collected total numbers of reported
COVID-19 cases exported from Wuhan to other cities in China
by 23 January 2020, and cases which were not exported from
Wuhan (e.g., family or hospital clusters) were excluded from
the analysis [11]. Thirteen cases were excluded due to the lack
of traveling history to Hubei before illness onset. As for 161
cases that not specified the traveling history, we assumed that the
probability of a single case being an exported case is θ , and each
case is independent of each other. Then all of these unspecified
cases follow a binomial distribution. As shown in Equation (1),
θ represents the probability that a case is exported from Wuhan
and n means the number of COVID-19 cases that not specified
the traveling history, which is 161. P represents the probability
that k out of n COVID-19 cases came from Wuhan. Since the
most cases detected outside Wuhan are exported cases from
Wuhan, by 23 January 2020 [12], we assumed that the probability
of a case to be an exported case from Wuhan is based on a
different level of θ (1, 0.9, 0.8). Then we obtained the expectation
number of cases exported fromWuhan in city/region i.

P
{

X = k
}

=
(

n
k

)

θk(1− θ)n−k (1)

Models
Table S3 presents the general process of the whole method. The
total number of COVID-19 cases exported from Wuhan and
diagnosed in each city/region outside Wuhan by 23 January 2020
was assumed to follow a Binomial distribution [8], as in Equation
(2), where λ is the total number of cases infected in Wuhan by 23
January and pi is the probability of detecting any exported cases
fromWuhan in city/region i outside Wuhan in China.

Number of cases exported fromWuhan and detected in city/region i

= Binomial(λ, pi) (2)

The probability pi can be derived from dividing daily outbound
passengers of Wuhan to city/region i by the population size that
the Wuhan airport, railway and road serves and multiplying by
the mean time for patients from being infected to being detected,
see Equation (3).

pi =
Daily outbound travellers fromWuhan to city/region i

Catchement population of Wuhan airport

×Mean time from infection to detection (3)

Then, we used cases exported from Wuhan to estimate the total
number of COVID-19 cases infected in Wuhan (λ). Based on
the data obtained from each city/region, we obtained the λ by
maximum likelihood estimation.

l(λ) = log L(λ) =
k

∑

i=1

log f (ni, pi; λ) (4)
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FIGURE 1 | The geographical distribution of exported COVID-19 cases in China. This figure reported number of reported COVID-19 cases in China, the dark gray

area indicates the regions with zero COVID-19 cases as of 23 January 2020. Red paths show routes from Wuhan to other cities/regions.

In Equation (4), l(·) and L (·) are the total log-likelihood and the
total likelihood, respectively. f (·) is the function for computing
the value of the probability density function of the binomial
distribution (Equation 2). The k represents the total estimated
number of cities/regions. The ni represents the number of cases
exported from Wuhan and detected in city/region i, and pi
means the probability of finding any exported cases fromWuhan
in in city/region i. The 95% confidence intervals (95% CI)
of log-likelihood, l, can be calculated after obtaining λ, since
residuals of log maximum likelihood estimation follow Chi-
square distribution [13]. Then we can extrapolate a 95% CI about

the total number of COVID-19 cases infected in Wuhan. As in
Equation (5), by deducting the number of exported cases from
the total number of cases infected in Wuhan, we got the final
estimate of the total number of COVID-19 cases in Wuhan as
of 23 January 2020.

Cases in Wuhan = Cases infected in Wuhan

−Cases exported fromWuhan (5)

We assumed a population of 19 million (catchment population)
traveling through the airport, railway stations and highways in
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FIGURE 2 | Comparison between the number of population flow data from

Baidu and Tencent. Y-axis presents the number of population flow between

Wuhan and other cities/regions from Tencent data. X-axis presents the number

of population flow between Wuhan and other cities/regions from Baidu data.

Wuhan, and a 10-days delay on average, which accounted for
the time interval reported between infection timing and case
timing [8]. Since exported cases were much less than those in
Wuhan as of 23 January 2020, it was assumed that all cases in
other cities/regions outside Wuhan are detected. If cases in other
cities/regions are missed, our estimate would underestimate the
acute number of cases in Wuhan. In addition, we assumed that
all of the passengers outflowed from Wuhan were equally likely
to be infected, regardless of transfer passengers or local residents,
as passengers may be a high risk of infection while traveling in
trains and airplanes cabins.

To overcome the bias from different sources of data, we first
evaluated the correlation between two datasets to determine
whether there is an apparent inconsistency or discrepancy
between different sources of data. We found that the Spearman’s
rank correlation coefficient of Baidu and Tencent data for the
same 24 cities/regions is 0.75, which means that two sources of
data are correlated under 99.99% confidential level. We assumed
a linear relationship between the Baidu data and Tencent data
(see Figure 2). For all observations, we assumed error terms are
independent of each other. We also assumed all error terms
follow a normal distribution and have the same variance.We then
built the linear model (Equation 6) and tested the null hypothesis
H0 that α = 0. In Equation (6), NBaidu and NTencent represent the
number of population flow data from Baidu and Tencent.

NBaidu = αNTencent + β (6)

We got the result that estimated coefficient α equals 0.10, β equals
1 272 and P-value for F-test was <0.01. Then we rejected the null
hypothesis H0 under 99% CI, which suggests that two sources of
data are likely to have a linear relation. Since both sets of data
is likely to be reasonable. We then applied Akaike Information
Criterion (AIC) [14] to test the fitting result of number of cases
exported fromWuhan and detected in city/region i, nest<uscore>i,

FIGURE 3 | Log maximum likelihood estimation for λ, based on data sourced

from Baidu and Tencent.

which follows a binomial distribution (Equation 2), based on
Baidu and Tencent data, see Equation (7). To estimate the
number of cases exported fromWuhan, themodel used estimated
the total number of COVID-19 cases infected inWuhan (λ) from
Equation (4). pi is the probability that we will find any exported
cases from Wuhan in city/region i outside Wuhan in China,
which we have already obtained from Equation (3). Please note
that we only included 24 cities/regions of which both Baidu and
Tencent have population flow data in AIC weight calculation.

nest_i = piλ (7)

Since Baidu and Tencent data show significant linear
relationship, which confirmed with each other that the
general pattern of data is rational, we weighted (Equation 8)
and combined (Equation 9) the estimated number of cases
from Baidu and Tencent based on AIC value to obtain the
final estimate.

Ws = 1−
AICs

AICBaidu + AICTencent
(8)

λ =
2

∑

i=1

Wsλs (9)

In Equations (8) and (9), Ws and AICs represents the weight of
estimated number of COVID-19 cases infected in Wuhan and
AIC value for source s, respectively. λs is the estimate of the
total number of cases from Equation (4), based on source s, and
λ means the final estimate of total number of cases infected in
Wuhan by 23 January 2020.

RESULT

Based on the data sourced from Tencent and Baidu, we
estimated the total number of cases in Wuhan, λ (Figure 3).
Then we estimated the 95% CI of the total number of
COVID-19 cases. We estimated 4 672 (4 129, 5 257) and
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TABLE 1 | AIC value and calculated Weight of final estimate for different sources of population data (under different assumptions of, θ, probability of an unspecified case

reported in other cities/regions being an exported case from Wuhan).

Tencent data Baidu data

(θ = 1) (θ = 0.9) (θ = 0.8) (θ = 1) (θ = 0.9) (θ = 0.8)

AIC value 137.8 137.5 136.6 147.1 146.7 144.6

Weight 51.6% 51.6% 51.4% 48.4% 48.4% 48.6%

TABLE 2 | Summary table of estimated total number of cases infected in Wuhan (including cases exported from Wuhan to other cities/regions) and number of cases in

Wuhan (excluding cases exported from Wuhan to other cities/regions) by 23 January 2020, from different sources of data.

Tencent Data Baidu Data Combined Data

Baseline

(θ = 1)

(θ = 0.9) (θ = 0.8) Baseline

(θ = 1)

(θ = 0.9) (θ = 0.8) Baseline

(θ = 1)

(θ = 0.9) (θ = 0.8)

Estimated total

number of cases

infected in Wuhan

(95% CI)

4 969 (4

426, 5

554)

4 819 (4

284, 5

395)

4 635 (4

111, 5

201)

13 251

(11 811,

14 803)

12 855

(11 437,

14 384)

12 371

(10 981,

13 872)

8 977 (8

000, 10

031)

8 708 (7

746, 9

746)

8 395 (7

450, 9

415)

Estimated number

of cases in Wuhan

by 23 January

2020 (95% CI)

4 672 (4

129, 5

257)

4 531 (3

996, 5

107)

4 358 (3

834, 4

924)

12 950

(11 510,

14 502)

12 563

(11 145,

14 092)

12 090

(10 700,

13 592)

8 679 (7

701, 9

732)

8 418 (7

456, 9

456)

8 116 (7

171, 9

137)

θ represents the probability of an unspecified case reported in other cities/regions being an exported case from Wuhan.

12 950 (11 510, 14 502) as total cases in Wuhan by 23
January 2020, based on Tencent and Baidu population flow
data. In addition, based on the AIC weighting (Table 1),
we combined results from Baidu and Tencent and estimated
8 679 (7 701, 9 732) as total cases in Wuhan. Table 2

presents the estimates under different sources and different
level of probability of an unspecified case reported in other
cities/regions being an exported case from Wuhan. Table S2
present the probability of finding any cases for each city/region
outside Wuhan.

DISCUSSION

A recent study by Imai et al. estimated that a total of 4 000
(95% CI: 1 000–9 700) cases on 18 January 2020 [8]. Compared
with the total number of confirmed cases provided by the
government as of 23 January 2020, which is 495 [15], Imai
et al. obtained around 8-fold of cases before 23 January [8].
This is partly because the screening effort targeting population
from Wuhan in other cities is much more effective than the
local screening effort in Wuhan due to the worsening situation.
Estimates based on combination of Baidu data and Tencent data
provided closer result by Imai et al.’s [8] than the official report
[15]. Our model is mostly like Imai et al.’s [8]. The difference
between the two models is that we estimated the total number
of cases in Wuhan based on separated data of each city/region in
China. In addition, we applied maximum likelihood estimation
by calculating the log-likelihood value for each city/region.
Imai et al. [8] obtained the estimate based on overall overseas
data, applying maximum likelihood estimation by calculating
the simple ratio. In the sensitivity analysis, Table 2 shows that
when the probability of an unspecified case reported in other
cities/regions being an exported case from Wuhan is close to 1,

slight fluctuations of the probability will have little impact on
the estimation.

Estimates of the population outflow provided by Baidu and
Tencent show substantial fluctuation, leading to results with
significant differences. We found that Baidu and Tencent data
show significant linear relation, which means that pattern of
two sources of data is largely consistent. One possible reason
for the phenomenon is that different institutions have a various
definition of the number of people flow from one city to
another. Methods include people who travel to other cities
through Wuhan in the population flow may provide a much
more significant figure than those that only calculate people who
originally depart fromWuhan. At the same time, multiple round
trips may also affect the count. Another possible reason is that
Baidu and Tencent would fail to track the whole amount of
population flow since not everyone uses mobile phone software
from Baidu and Tencent.

Imai et al. suggested that by further improving the definition

and testing of COVID-19 cases, and further expanding the
scope of epidemic monitoring, the gap between the estimated

number and official reported cases would be further narrowed.
According to our results, statistics of population flow also play
significant roles in estimation. At present, many researches use

data from Baidu and Tencent platforms [10, 16–18]. Among
them, Tian et al. [18] referred to different data sources to gain a
more comprehensive measure of movement volume. According
to the data presented in the article, Tian et al. [18] integrated
the population flow data first, and then conducted relevant
calculation and analysis. In this paper, we calculated estimates
from each data source first and then weighted the results. Both
of methods provide more reasonable results ranged between
conclusions that generated by either data sources, contributing
to overcome the bias from different sources.
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CONCLUSIONS

Different sources of population flow data impact the estimates
of the total number of COVID-19 cases in Wuhan before
city lockdown. We built a model that could be reproduced
to employ incompatible sets of population flow data to
estimate the number of COVID-19 cases more reasonably.
We estimated 8 679 (95% CI: 7 701, 9 732) as total
COVID-19 cases in Wuhan by 23 January 2020, based on
the combined source of data from Tencent and Baidu.
What data source can be used to make the most reliable
estimation is not clear yet, though estimates based on a
single source of data are likely to be biased. A comprehensive
analysis based on different statistics is need before we reach
any conclusions.
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Estimating the Serial Interval of the
Novel Coronavirus Disease
(COVID-19): A Statistical Analysis
Using the Public Data in Hong Kong
From January 16 to February 15, 2020
Shi Zhao 1,2*, Daozhou Gao 3, Zian Zhuang 4, Marc K. C. Chong 1,2, Yongli Cai 5, Jinjun Ran 6,

Peihua Cao 7, Kai Wang 8, Yijun Lou 4, Weiming Wang 5*, Lin Yang 9, Daihai He 4* and

Maggie H. Wang 1,2

1 JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China, 2CUHK Shenzhen

Research Institute, Shenzhen, China, 3Department of Mathematics, Shanghai Normal University, Shanghai, China,
4Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong, China, 5 School of Mathematics and

Statistics, Huaiyin Normal University, Huaian, China, 6 School of Public Health, Li Ka Shing Faculty of Medicine, University of

Hong Kong, Hong Kong, China, 7Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou,

China, 8Department of Medical Engineering and Technology, Xinjiang Medical University, Ürümqi, China, 9 School of Nursing,

Hong Kong Polytechnic University, Hong Kong, China

Background: The emerging virus, severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2), has caused a large outbreak of novel coronavirus disease (COVID-19)

since the end of 2019. As of February 15, there were 56 COVID-19 cases confirmed in

Hong Kong since the first case with symptom onset on January 23, 2020.

Methods: Based on the publicly available surveillance data in Hong Kong, we identified

21 transmission events as of February 15, 2020. An interval censored likelihood

framework is adopted to fit three different distributions including Gamma, Weibull, and

lognormal, that govern the serial interval (SI) of COVID-19. We selected the distribution

according to the Akaike information criterion corrected for small sample size (AICc).

Findings: We found the lognormal distribution performed slightly better than the other

two distributions in terms of the AICc. Assuming a lognormal distribution model, we

estimated the mean of SI at 4.9 days (95% CI: 3.6–6.2) and SD of SI at 4.4 days (95%

CI: 2.9–8.3) by using the information of all 21 transmission events.

Conclusion: The SI of COVID-19 may be shorter than the preliminary estimates in

previous works. Given the likelihood that SI could be shorter than the incubation period,

pre-symptomatic transmission may occur, and extra efforts on timely contact tracing and

quarantine are crucially needed in combating the COVID-19 outbreak.

Keywords: COVID-19, serial interval, statistical analysis, Hong Kong, contact tracing
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INTRODUCTION

The coronavirus disease 2019 (COVID-19) is caused by the
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2, formerly known as the “2019-nCoV”), which has emerged
at the end of 2019 [1–5]. COVID-19 cases were soon exported
to many Chinese cities and overseas [6], and the travel-related
risk of disease spread was suggested in previous studies [4, 7–9].
The risks of rapid spreading were evaluated based on the early
surveillance data and also compared to other previous respiratory
infectious diseases [5, 10–14]. Since the first confirmed imported
case in Hong Kong on January 23 [15], the local government
has implemented a series of control and prevention measures
for COVID-19, including enhanced border screening and traffic
restrictions [16, 17].

The COVID-19 pandemic has affected most of the regions
around the world, including places with less developed healthcare
systems. Hong Kong was the hardest hit region in the severe acute
respiratory syndrome (SARS) outbreaks in 2003 [18, 19], and
thus it is expected to be more prepared in mitigation of emerging
infectious disease outbreaks [20]. The lesson in Hong Kong
shall be an example for other regions, in particular those less
developed places with poor settings [21–24]. As of February 15,
there were 56 COVID-19 cases confirmed in Hong Kong [16],
and local transmission was also recognized by the contact tracing
investigation. Given the risk of human-to-human transmission,
the serial interval (SI), which refers to the time interval from
illness onset in a primary case (i.e., infector) to that in a secondary
case (i.e., infectee) [25–28], was of interest to the iterative rate of
transmission generations of COVID-19. SI could be used to assist
strategic decision-making of public health policies and construct
analytical frameworks for studying the transmission dynamics
of SARS-CoV-2.

In this study, we examined the publicly available materials
released by the Center for Health Protection (CHP) of
Hong Kong. Adopting the case-ascertained design [29], we
identified the transmission chain from index cases to secondary
cases. We estimated the SI of COVID-19 based on 21 identified
transmission chains from the surveillance data and contact
tracing data in Hong Kong.

DATA AND METHODS

As of February 15, there were 56 confirmed COVID-19 cases in

Hong Kong [16], which followed the case definition in official

diagnostic protocol released by the World Health Organization
(WHO) [30]. To identify the pairs of infector (i.e., primary
case) and infectee (i.e., secondary case), we scanned all news

press released by the CHP of Hong Kong between January 16
and February 15, 2020 [17]. The exact symptom onset dates
of all individual patients were released by CHP [16], which
were publicly available, and used to match each transmission
chain. For those infectees associated with multiple infectors, we
recorded the range of onset dates of all associated infectors,
i.e., lower and upper bounds. With all publicly available
information from CHP, we constructed the transmission events
by subjectively screening the exposure link between consecutive

COVID-19 infections. We identified 21 transmission events,
including 12 infectees matched with only one infector, that
were used for SI estimation. Note that all the 21 transmission
events occurred in Hong Kong, and most of the cases involved
Hong Kong residents.

Following previous studies [25], we adopted a distribution
function with mean µ and standard deviation (SD) σ , denoted
by g(|µ, σ ), to govern the distribution of SI. We defined g(|µ, σ )
as three different distributions; Gamma, Weibull, and lognormal
distribution. The interval censored likelihood [31], denoted by
L0, of SI estimates is defined in Equation (1). It happens in the
practical analyses of serial interval (as well as incubation period),
observations are typically integer while the population mean can
be a real value.

L0

(

µ, σ |τ ,Tlow,Tup
)

=
∏

i









T
up
i
∫

Tlowi

h
(

t|Tlow
i ,T

up
i

)

g(τi − t|µ, σ )dt









(1)

The h(·) was the probability density function (PDF) of exposure
following a uniform distribution with a range from Tlow to Tup.
The terms Ti

low and Ti
up denoted the lower and upper bounds,

respectively, for the range of onset dates of multiple infectors
linked to the i-th infectee. The τi was the observed onset date
of the i-th infectee. Hence, the likelihood function in Equation
(1) can be interpreted as the probability of the SI being observed
with uncertain onset dates of infectors but a fixed onset date
of the infectee [25, 31]. We calculated the maximum likelihood
estimates of µ and σ . Their 95% confidence interval (95%
CI) were calculated by using the profile likelihood estimation
framework with a cutoff threshold determined by a Chi-square
quantile [32]. We select the distribution of g(·|µ, σ ) according
to the Akaike information criterion corrected for small sample
size, denoted by AICc. We employed both Pearson’s correlation
and coefficient of determination, i.e., R-squared, to measure the
goodness-of-fit of the selected model.

In addition, as pointed out in [31], it was possible that the
naive likelihood in Equation (1) underestimated the SI due to
sampling biases. Hence, we adjusted for the right truncation
observation bias due to isolation by using an alternative
likelihood function, L, in Equation (2), which is based on the
non-truncated version in Equation (1). The truncation scheme
in Nishiura et al. [31], as well as adopted in Kwok et al. [21],
is relying on prior knowledge of an additional parameter, i.e.,
the intrinsic growth rate of the epidemic, which is commonly
assumed and fixed in the likelihood framework. The truncation
scheme adopted in this work was previously discussed in
Zhao [33], which considers both likelihood of occurrence and
likelihood of being observed subjected to the implementation
of isolation.
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Here, the G(·) was the cumulative distribution function of g(·|µ,
σ ). The di was the isolation date of the infector associated
with the i-th infectee. All other notations were the same as
those in Equation (1). The maximum likelihood estimates were
calculated, and AICc was employed for model selection.

RESULTS AND DISCUSSION

The observed SIs of all 21 samples have a mean of 4.3 days,
median of 4 days, interquartile range (IQR) between 2 and 5, and
a range from 1 to 13 days. For the 12 “infector- infectee” pairs,
the observed SIs have a mean of 3 days, median of 2 days, IQR
between 2 and 4, and range from 1 to 8 days. Figure 1 shows the
likelihood profiles of varying SI with respect to µ and σ of SI. In

FIGURE 1 | The likelihood profile of the varying serial interval (SI) of COVID-19

by using all samples. The color scheme is shown on the right-hand side, and a

darker color indicates a larger log-likelihood, i.e., ln(L), value.

Table 1, for the non-truncated scenario [i.e., using Equation [1]],
we found the three distributions have almost equivalent fitting
performance in terms of the AICc. The lognormal distribution
has the lowest AICc, and thus it is presented as the main result
for the SI estimation. By using all 21 samples, we estimated
the mean of SI at 3.9 days (95% CI: 2.8–7.2) and SD of SI at
2.6 days (95% CI: 1.6–9.3). Between the observed and the fitted
distributions, the Pearson’s correlation is 0.98, and the R-squared
is 0.97. These estimates largely matched the results in the existing
literature [31, 34, 35]. Considering only the 12 “infector-infectee”
pairs, we found the lognormal distribution also outperformed,
and we estimated the mean of SI at 3.0 days (95% CI: 1.9–6.8)
and SD of SI at 2.0 days (95% CI: 1.0–10.5). In this case, the
Pearson’s correlation is 0.96, and the R-squared is 0.92. The fitted
lognormal distributions were shown in Figure 2.

For the right-truncated scenario [i.e., using Equation (2)], the
lognormal distribution also outperformed in terms of the AICc,
see Table 1. By using all 21 samples, we estimated the mean of
SI at 4.9 days (95% CI: 3.6–6.2) and SD of SI at 4.4 days (95%
CI: 2.9–8.3). By only using the 12 “infector-infectee” pairs, we
estimated the mean of SI at 3.0 days (95% CI: 2.1–3.9) and SD
of SI at 2.0 days (95% CI: 1.2–4.6). The Pearson’s correlation
and coefficient of determination were no longer applicable here
since the likelihood function was adjusted and thus not solely
depended on the SI observations.

Comparing to the SI of SARS with a mean of 8.4 days
and SD of 3.4 days [36], the estimated 4.9-day SI for COVID-
19 indicated rapid cycles of generation replacement in the
transmission chain. Hence, highly efficient public health control
measures, including contact tracing, isolation, and screening,
were strongly recommended to mitigate the epidemic size.
The timely supply and delivery of healthcare resources, e.g.,
facemasks, alcohol sterilizer, and manpower and equipment
for treatment, were required in response to the rapid growing
incidences of COVID-19 [4, 37]. In the places with less

TABLE 1 | Summary of the estimates of the serial interval (SI) mean and standard deviation (SD) from three different distributions.

Truncation Dataset Distribution Serial interval (day) AICc

Mean SD

Not truncated All transmission events (n = 21) Gamma 4.0 (2.9, 5.9) 2.4 (1.6, 4.5) 95.6

Weibull 4.0 (2.8, 5.8) 2.4 (1.8, 4.5) 96.2

Lognormal 3.9 (2.8, 7.2) 2.6 (1.6, 9.3) 95.5

“Infector-infectee” pairs (n = 12) Gamma 3.0 (1.9, 5.4) 1.8 (1.0, 4.6) 49.9

Weibull 3.0 (1.8, 5.5) 1.9 (1.3, 5.1) 51.0

Lognormal 3.0 (1.9, 6.8) 2.0 (1.0, 10.5) 49.0

Truncated All transmission events (n = 21) Gamma 4.4 (3.2, 5.6) 3.0 (2.1, 4.8) 100.7

Weibull 4.4 (3.1, 5.8) 2.9 (2.0, 5.0) 101.4

Lognormal 4.9 (3.6, 6.2) 4.4 (2.9, 8.3) 99.5

“Infector-infectee” pairs (n = 12) Gamma 3.0 (2.0, 4.0) 1.8 (1.2, 3.3) 49.9

Weibull 3.0 (1.9, 4.2) 1.8 (1.3, 3.6) 51.0

Lognormal 3.0 (2.1, 3.9) 2.0 (1.2, 4.6) 48.9

The highlight estimates are considered as the main results.
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FIGURE 2 | The distribution of serial interval (SI). (A), the red curve is the observed cumulative distribution of SI from 12 transmission pairs, and the blue curve is the

observed cumulative distribution of SI from all 21 transmission events. (A,B), the black bold curve is the fitted lognormal distribution using all 21 transmission events,

and the dashed thin curve is the fitted lognormal distribution using 12 transmission pairs without truncation.

developed healthcare systems and limited medical resources,
such a rapid growth of the epidemic may cause a burden
to the public health system. Therefore, preparedness and
cautiousness for the risk of COVID-19 are crucial to minimize
impacts [38, 39].

As also pointed out by recent works [31, 34, 35, 40], the
mean of SI at 4.9 days is slightly smaller than the mean
incubation period, roughly 5 days, estimated by many previous
studies [41–44]. The pre-symptomatic transmission may occur
when the SI is shorter than the incubation period. If isolation
can be conducted immediately after the symptom onset, the
pre-symptomatic transmission is likely to contribute to most
of SARS-CoV-2 infections. This situation has been recognized
by a recent epidemiological investigation [45], and has been
implemented in themechanistic modeling studies of the COVID-
19 epidemic [4, 46], where the pre-symptomatic cases were
contagious. As such, merely isolating the symptomatic cases
will lead to a considerable proportion of secondary cases, and
thus contact tracing and immediately quarantine were crucial
to reduce the risk of infection. In addition, we would like to
point out that minor negative SI observations were reported
in recent studies [34, 35, 47–49]. The negativity in the SI
may occur when the incubation period is short with a large
variance. However, negative value was not observed in our
dataset, which may be due to the small sample size. We further
remark that this is unlikely to bias the estimation of mean
SI, but may lead to a slight underestimation of the SD of SI.
The purpose of estimating SI is to approximate the generation
interval (time lag of infections of successive cases) which is
strictly positive. Caution should be taken when dealing with
negative SI.

A recently epidemiological study used 5 “infector-infectee”
pairs from contact tracing data in Wuhan, China during the
early outbreak to estimate the mean SI at 7.5 days (95% CI:
5.3–19.0) [42], which appeared larger than our SI estimate of
4.9 days. Although the 95% CIs of SI estimates in this study,
consistent with previous studies [21, 31, 33–35], and those in
Li et al. [42] were not significantly separated, the difference
in the SI estimates might exist. If this difference was not due
to sampling chance, one of the possible explanations could be
enhanced public awareness and swift control measures including
the contact tracing and isolation implemented in Hong Kong.
Since Hong Kong was the hardest hit in the SARS outbreaks
in 2003 [18, 19], the local public health control was one of the
most effective in the world. In the initial phase of the outbreak in
Wuhan, the transmission occurred without sufficient awareness
and effective intervention, thus the SI estimate in Li et al.
[42] may be regarded as the intrinsic (wild) SI, as defined in
Champredon et al. [50], of COVID-19. Whereas, the SI estimate
in Hong Kong may be regarded as the effective SI, in more
practical situations where timely action (quarantining cases and
their close contacts) is in place [23], such that one case could
be isolated before having the chance to further infect others.
If timely action was not in place, infections of longer serial
interval may occur. Thus, shorter SI observations might be an
outcome of effectiveness in control in a location. The practice
in Hong Kong is an example for other regions, including less
developed countries.

The SI estimate can benefit from larger sample size. The
estimates in our study were based on 21 identified transmission
events including 12 “infector-infectee” pairs. Although the
sample size was smaller than 28 transmission events in
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Nishiura et al. [31], 71 in You et al. [35] and 468 in Du
et al. [34], the advantage of this analysis is that all the 21
transmission events were identified in Hong Kong. Hence,
the surveillance data were under consistent reporting and
recording standards, which further reduced the heterogenicity
in the observations. Our analysis can be improved if larger
records on the local transmission events can be produced.
Furthermore, a comparison between different localities is
important, which sheds light on the effects of different external
factors on SI.

Accurate and consistent records on dates of illness onset were
essential to the estimation of the SI. All samples used in this
analysis were identified in Hong Kong and collected consistently
from the CHP [16, 17]. Hence, the reporting criteria were most
likely to be the same for all COVID-19 cases, which potentially
made our findings more robust.

Clusters of cases can occur by person-to-person transmission
within a cluster, e.g.,

• scenario (I): person A infected B, C, and D; or
• scenario (II): A to B to C to D; or
• scenario (III): a mixture of (I) and (II), e.g., A to B, B to

C and D;

or they can occur through common exposure to an unrecognized
source of infection, e.g.,

• scenario (IV): an unknown person X infected A, B, C, and
D; or

• scenario (V): a mixture of (IV) and (I) or (II), e.g., X to A and
B, B to C and D.

The lack of information in the publicly available dataset made
it difficult to disentangle such complicated situations. The
scenarios (I) and (II) can be covered by a pair of “infector-
infectee” such that we could identify the link between two unique
consecutive infections. Under the scenario (III), we cannot
clearly identify the pairwise match between the infector and
infectee, which means there were multiple candidates for the
infector of one infectee. As such, we employed the PDF h(·)
in Equation (1) to account for the possible time of exposure
ranging from Tlow to Tup. There is no information available
on the SI for scenarios (IV) as well as (V) due to the onset
date of person X being unknown, and thus our analysis was
limited in the scenarios (I)-(III). We note that we should be
extra cautious in interpreting the clusters of cases because of
this potential limitation. Although we used interval censoring
likelihood to deal with the multiple-infector matching issue,
more detailed information of the exposure history and clue on
“who acquires infection from whom” (WAIFW) would improve
our estimates.

Longer SI might be difficult to confirm in reality due to the
isolation of confirmed infections [51, 52], or to identify and
link together due to the less accurate information associated
with memory error which occurred in the backward contact
tracing exercise [34]. The issue associated with isolation could
possibly bias the SI estimates and lead to an underestimated

result [31]. It is possible that at the initial stage the SI is longer
than later when strict isolation takes place [23]. Nevertheless,
a comparison of estimated SI for SARS and COVID-19 in
Hong Kong is still meaningful. We found that the estimated SI
of COVID-19 appears shorter than that of SARS. It would be
hard to imagine that isolation is responsible for the difference.
It is unlikely that the isolation is more rapid in cases of
COVID-19 than cases in SARS in Hong Kong, as well as
other limitations, which would have happened for both. Thus,
the difference we observed for COVID-19 and SARS is likely
intrinsic. Given the rapid spreading of COVID-19, effective
contact tracing and quarantine/isolation were even more crucial
for successful control.

CONCLUSION

Together with the basic reproduction number, the serial interval
is one of the most important epidemiological parameters,
although is difficult to estimate and garners less attention
than the former. Here, we found that the SI of COVID-
19 may be shorter than the preliminary estimates seen in
previous works. Since SI could be shorter than the incubation
period among some cases, pre-symptomatic transmission
may occur, and extra efforts on timely contact tracing and
quarantine are crucially needed in combating the COVID-
19 outbreak.
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Objectives: The aim of this study was to investigate coronavirus disease 2019

(COVID-19) epidemic characteristics in Africa and provide some references to

prevent pandemic.

Methods: We collect information of the laboratory-confirmed case of COVID-19 that

has been reported since April 28, 2020 in Africa, describe the epidemic characteristics

in different regions of Africa, and predict the spread trend.

Results: (1) There are 35,309 COVID-19 cases and 1,522 deaths in 54 African countries.

Both case amount and death toll in Northern Africa are higher than those in other African

regions, whereas the case fatality rate (CFR) in Africa is lower than that of the world. (2)

Among the 54 countries in Africa, 39 of them (72.22%) report confirmed cases between

1 and 499. (3) In total, 596,146 tests have been conducted in 35 countries, and 28,271

patients have been confirmed, with a positive rate of 4.74%. However, there are only

335 tests (interquartile range: 145.5–874) for every 1 million people in Africa. (4) The

number of infection cases will increase to around 150,000 at the end of May according

to our model.

Conclusion: In Africa, COVID-19 spreads faster while with a relatively lower CFR, and

it may be related to higher young people ratio. In addition, test intensity of COVID-19 is

obviously insufficient in Africa.

Keywords: COVID-19, Africa, pandemic, prediction, test intensity

INTRODUCTION

Since the first coronavirus disease 2019 (COVID-19) case was reported in Wuhan, China, a
dramatically increasing number of cases had been identified, although its exact origin remained
unknown until now [1]. As of April 28, 2020, there were a total of 3,136,508 cases from 210 countries
and territories, and 217,813 cases died. Africa reported the first case of COVID-19 on February
14; currently, a total of 35,309 confirmed cases and 1,522 related deaths have been reported in 54
African countries [2].

Although African cases only account for 1.13% in the world, due to the unique demographic and
geographic characteristics, COVID-19 spreads much faster in Africa than that in other regions. In
addition, the African relatively higher ratio of young population and the fragile public health system
have exacerbated the disease epidemic [3]. Hence, Africa is suffering from the huge challenge of
the COVID-19 pandemic. This article introduces some epidemic characteristics of COVID-19
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in Africa, such as the case number and distribution, the case
fatality rate (CFR) and its regional difference, the total tests
and test intensity, and the transmission type. In addition, as
the COVID-19 is at the early stage, we use the Matlab Curve
Fitting toolbox to fit the model with the outbreak data and
make the forecasting. We hope that this article would make the
government pay more attention to the epidemic and provide
some references for effective prevention and control in Africa and
other countries.

MATERIALS AND METHODS

Materials
Data Sources and Definition

Population characteristics, such as population density (= people
number/km2), urban population rate (= current urban people
number/total population amount× 100%), age structure, median
age (index by dividing a population into two numerically equally
sized groups), and current population amount in each country,
are searched on the website “Worldometer-Population” [4] and
“Central Intelligence Agency” [5].

Data of total confirmed COVID-19 cases, total COVID-
19 deaths, total test samples, test intensity (= test numbers/1
million population), the country reporting the first case,
transmission type (imported or local), and amount are derived
from the “Worldometer-Coronavirus” [2], “African Centers for
Disease Control (CDC)” [6], and “COVID-19 Global Pandemic
Real-time Report” [7]. The age and gender distributions of
confirmed COVID-19 cases originated from the “World Health
Organization” [8]. All data in this article are updated to April 28,
2020, unless otherwise stated.

Different organizations have different divisions of African
regions. In this article, the regional classification of Eastern,
Southern, Western, Northern, and Central Africa is based on the
“African CDC” [6].

Methods
The total number of COVID-19 cases and deaths in African
countries has been recorded each day since February 14. The
total case number and the CFR in different African regions
are calculated according to the regional division [6]. The global
total number of COVID-19 cases, CFR, total test amount, and
intensity are searched online [2]. At the same time, population
characteristics of Africa and related 16 countries are investigated
on the Internet.

We predict the required time that Africa arrives at the
indicated case number (100, 500, 1,000, 5,000, 10,000, 50,000, and
100,000) using formulas (1) and (2):

Daya = Dateα − Dateβ (1)

Date b = Dateγ + Dayδ (2)

Abbreviations: COVID-19, coronavirus disease 2019; CDC, Centers for

Disease Control; CFR: case fatality rate; IQR, interquartile range; HCQ,

hydroxychloroquine; rRT-PCR, (real-time) reverse transcription polymerase chain

reaction; WHO, World Health Organization.

notes: a = required in a country; α = case arrival indicated
number in the country; β = the case first reported in the
country; b= predicative case arrival indicated number in Africa;
γ = the case first reported in Africa; δ = median Daya among
16 countries.

Data we use to calculate the median day is from 16 countries,
including USA, Italy, Germany, and China, etc. (seeTable 1). The
test intensity in this article is defined as “test numbers/1 million
population,” and test positive rate is calculated by formula (3):

Test positive rate(%) =
confirmed case number

total tests
× 100. (3)

In addition, we use the Matlab Curve Fitting toolbox to fit the
model with the outbreak data and make the forecasting. The
number of cumulative number of cases at time interval t, C(t),
is modeled by the following equation:

C (t) =
(

r
(

1− p
)

t + A
)

1
1−p

where p ∈ [0, 1] is a “deceleration of growth” parameter and r is
a positive parameter denoting the growth rate.

Figure 1 shows the flowchart in this article.

Statistical Methods
Categorical data are presented as frequencies and percentages,
whereas continuous data without normal distribution are
expressed as median and interquartile range (IQR). A chi-
square test is used to compare the differences in CFR of
COVID-19 or test positive rate among different regions. The
Wilcoxon rank-sum test is applied to test intensity between the
globe and Africa. Multiple linear regression analysis (stepwise
linear regression) is used to explore the relationship between
population characteristics and COVID-19 disease transmission
speed in countries. Statistical analyses are performed using IBM
SPSS Statistics for Windows (version 23.0, IBM Corp., Armonk,
NY, USA), and p < 0.05 is considered statistically significant.

RESULTS

Case Number and Distribution
Figure 2A shows the trend of COVID-19 cases in Africa: the daily
increase was <100 cases before March 19, whereas it reached up
to 100–500 during March 19–24, and it exceeded 500 cases/day
after March 24. Similar to the above-mentioned, there were
only 13 countries that reported COVID-19 cases before March
13, whereas the entire African countries discovered the case
on April 6 (Figure 2B). Figure 2C demonstrates the COVID-19
distribution in African countries on April 28.

Regarding the case distribution, there were 13,986 cases
coming from Northern Africa, taking account for 40.59%,
followed byWestern Africa (n= 8,614, 25.00%), Southern Africa
(n = 5,364, 15.57%), Eastern Africa (n = 3,474, 10.08%), and
Central Africa (n = 3,020, 8.76%). Figure 2D indicates that the
case number in Northern Africa grew faster than that in other
African regions.

The five countries in Africa with the highest cumulative
number of cases (proportion of reported cases in Africa) were
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TABLE 1 | Population characteristics and transmission dynamics of COVID-19 in some countries.

Population

density (P/km2)

Urban

population (%)

Median age

(year)

Current population

(million)

Reported 1st

casea

Days required for case growth

100 500 1 k 5 k 10 k 50 k 100 k

USA 36 82.8 38.3 330.52 Jan 10 52 58 61 67 69 74 77

Italy 206 69.5 47.3 60.48 Jan 29 25 29 31 38 41 52 61

Germany 240 76.3 45.7 83.78 Jan 26 35 39 42 49 52 61 70

Spain 94 80.3 44.9 46.75 Jan 30 32 37 39 43 47 56 62

France 119 81.5 42.3 65.28 Jan 23 37 43 45 52 56 68 75

UK 281 83.2 40.5 67.8 Jan 30 35 42 44 51 56 67 77

China 153 60.8 38.4 1,439.32 Dec 1 48 52 54 58 61 73

Iran 52 75.5 32.0 83.72 Feb 18 8 11 13 18 23 44

Turkey 110 75.7 31.5 84.11 Mar 9 9 11 13 18 21 33

Russia 9 73.7 39.6 145.92 Mar 2 15 23 25 34 38 50

Switzerland 219 74.1 43.1 8.64 Feb 26 8 14 16 23 28

Belgium 383 98.3 41.9 11.58 Feb 3 32 39 42 52 55

Netherlands 508 92.5 43.3 17.13 Feb 24 11 18 21 29 36

Austria 109 57.3 43.5 8.99 Jan 24 44 49 52 60 67

S. Korea 527 81.8 43.7 51.26 Jan 19 32 35 38 44 75

Brazil 25 87.6 33.5 212.18 Feb 24 18 23 26 36 40

Africa 45 43.8 19.7 1,332.38 Feb 14 25 33 37 46 53

Median (day)* 153 80.3 42.3 65.28 32 37 39 44 52 58.5 72.5

*African data not included.
aThe first case was reported in 2019 in China; the other countries were in 2020.

Bold values mean the median day required for case growth to indicated number among those 16 countries.

Egypt (n = 5,042, 14.28%), followed by South Africa (n = 4,996,
14.15%), Morocco (n = 4,252, 12.04%), Algeria (n = 3,649,
10.33%), and Cameroon (n= 1,705, 4.83%). These five countries
accounted for 55.63% in entire Africa, whereas these ratios in
Europe and China were 69.16 and 86.88%, respectively (χ2 =
10,526.70, p< 0.001). In addition, 39 (72.22%) countries reported
cases between 1 and 499 (Figure 2E). All those data suggest that
the case distribution in Africa is relatively scattered.

According to the available data [8] on the age and gender
distributions of confirmed COVID-19 cases in the World Health
Organization (WHO) African region (n = 4,639) from February
25 to May 5, the male to female ratio among confirmed cases
was 1.8, and the median age was 42 years (range: 0–105). Males
(62%) in the 31–39 and 40–49 age groups weremore affected than
females (38%) across the same age groups.

Case Fatality Rate and Regional Difference
The COVID-19 CFR in the globe gradually increased over time.
However, the CFR in Africa increased from February 14, the peak
value was on April 11 (5.24%), and it began to slowly decrease
after that day. Moreover, there were 1,522 death tolls as of April
28 with a CFR of 4.31% in Africa, which was lower than the
global CFR of 6.94% (χ2 = 113.96, p < 0.001; Figure 3A). The
countries with the highest CFR in Africa were Algeria, followed
by Liberia, Egypt, Burkina Faso, and Democratic Republic of the
Congo (Figure 3B).

Figures 3C,D indicate that the COVID-19 death toll in
Northern Africa has increased dramatically since March 28, and
its CFR was higher than that of other regions in Africa (7.18 vs.
1.99–3.34%, χ2 = 228.18, p < 0.001).

Total Tests and Test Intensity
As of April 28, a total of 30,832,243 COVID-19 tests were
conducted in 174 countries, and 3,070,343 patients were
confirmed, with a positive rate of 9.96%. In these countries,
there were 5,307 tests (IQR: 837.5–17,152.75) for every 1 million
people. Regarding Africa, a total of 596,146 tests were conducted
in 35 countries, and 28,271 patients were confirmed, with a
positive rate of 4.74%. However, there were only 335 tests
(IQR: 145.5–874) for every 1 million people in Africa. Both
test intensity and test positive rate in Africa were lower than
those in the globe (χ2 was 27.239 and 15,041.85, respectively,
all p < 0.001). Moreover, the test positive rate and test intensity
in African regions were different. Figure 4 demonstrates that
the test intensity in Northern Africa was higher than that in
other regions, whereas the test positive rate in Central Africa
seemed better.

Transmission Type
The transmission type is divided into two ways: imported or
local transmission. Just like in Tianjin, China, imported cases
predominated at the early stage. However, local transmission
patients became more and more over time [9]. In Africa, there
were only 33.68% local transmission cases from February 14 to
March 10, whereas this ratio was up to 99.06% in the first week in
April (Table 2). However, the duration of imported transmission
in Africa was longer than that in Tianjin (24 vs. 7 days).

A total of 105 cases were confirmed from February 14 to
March 10. Among them, 63 imported cases were reported by
nine countries. Forty-five cases (71.43%) came from an Egypt
cruise ship (12 crew members, 14 Egyptians, and 19 foreigners),

Frontiers in Physics | www.frontiersin.org 3 September 2020 | Volume 8 | Article 56469862

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Wang et al. COVID-19 in Africa

FIGURE 1 | Flowchart of this article.

followed by France (n = 9), Italy (n = 5), Kazakh (n = 2),
United Kingdom (n= 1), and Canada (n= 1) [6].

COVID-19 Case Dynamic Prediction for
Africa
We analyze the population characteristics and COVID-19
transmission dynamics in 16 countries from different continents
[2, 10] (Table 1). The median days required for arrival to 100
and 500 cases of COVID-19 in these countries are 32 and 37,
respectively. However, it only requires 25 and 33 days in Africa,
respectively. The age structure in Africa and other countries was
shown in Figure 2F. It indicates that the ratio of 0–24 years
old in Africa was significantly higher than that in the globe
(50.06 vs. 40.75%, χ2 = 46,613,552.9, p < 0.001). Moreover,

multivariate linear regression analysis shows that when the
confirmed case is below 1,000, the transmission speed in these
countries is only related to the median age (B = 2.044, t =
2.285, p = 0.043), whereas the other three variables, including
population density, total population, and urban population rate,
are not significantly different (p-value was 0.311, 0.051, and
0.414, respectively). According to the speed of virus transmission
in these 16 countries, we predict that the African COVID-19
cases will reach 50,000 and 100,000 cases on April 12 and 26,
respectively (Figure 5).

Moreover, in order to estimate the future situation of COVID-
19 infection in Africa for the upcoming intervention policy
planning, we analyze and forecast the number of infection cases
in Africa. As the COVID-19 outbreak in Africa was at the
early stage, we adopt the early epidemic growth model [10]
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FIGURE 2 | Case number and distribution in Africa. (A) Confirmed COVID-19 and death cases in Africa over time, (B) number of countries with COVID-19 over time,

(C) case distribution in Africa, (D) confirmed COVID-19 cases in different African regions. Three countries of Sahrawi Arab Democratic Republic (Northern Africa),

Union of the Comoros (Eastern Africa), and Kingdom of Lesotho (Southern Africa) are not included, (E) distribution of COVID-19 cases in different countries in Africa,

(F) age structure in Africa and other countries. Two countries of Mayotte and Reunion are not included.

developed to analyze the COVID-19 transmission pattern in
Africa. Figure 6 (upper) shows the outbreak data of all countries
in Africa. Figure 6 (lower) shows the fitting result and the

forecast result until May 31, 2020. As shown in Figure 6 (lower),
the early epidemic growth model well-characterizes COVID-19
transmission dynamics in Africa. According to the model, the
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FIGURE 3 | Case fatality rate and region difference. (A) CFR of COVID-19 in Africa, (B) the top 10 African countries with COVID-19 CFR. COD, The Democratic

Republic of the Congo; CFR, case fatality rate. (C,D) Comparison of COVID-19 CFR in different African regions. Three countries of Sahrawi Arab Democratic Republic

(Northern Africa), Union of the Comoros (Eastern Africa), and Kingdom of Lesotho (Southern Africa) are not included.

number of infection cases will increase to around 150,000 at the
end of May.

DISCUSSION

In Africa, COVID-19 has spread to only 13 countries from
February 14 toMarch 13, whereas up to the entire 54 countries on
April 6. The virus in Africa spreads significantly faster at the early
stage than that in other regions, as demonstrated by Figure 5.
Our results show that the transmission speed of COVID-19 is
related to the median age. The younger the population, the
faster the virus spreads. Table 1 shows that the virus spreads
significantly faster in Iran (median age = 32 years) or Turkey

(median age= 31.5 years) than in other countries. Data analyzed
about the first 425 confirmed cases in China suggest that the
epidemic doubled in size every 7.4 days at the early stage, whereas
it needs <4 days in Africa (105 confirmed cases in 24 days) [6].
The median age of those patients is 59 years, and more than 80%
of patients are ≥45 years in that Chinese study [11]. However,
Africa is a high concentration of young people, with a median age
of 19.7 years, which may lead to the faster spread of COVID-19.

In addition, cases distribution in Africa is relatively scattered.
The top five countries with the largest cases account for 55.63%
of all African cases, which is obviously lower than Europe
(69.16%), Asia (68.62%), or North America (99.51%) [7]. On
the other hand, although imported cases are predominant at the
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TABLE 2 | Transmission type of COVID-19 in Africa.

Date Transmission type Ratio of local transmission (%)

Local transmission Imported Under investigation

Feb 14–Mar 10 32 63 Not mentioned 33.68

Mar 11–Mar 17 263 23 Not mentioned 91.96

Mar 18–Mar 24 1,434 142 Not mentioned 90.99

Mar 25–Mar 31 3,334 134 Not mentioned 96.14

Apr 1–Apr 7 4,763 40 5 99.06

FIGURE 4 | Test positive rate and test intensity in different Africa regions.

early stage of the African outbreak, community-transmitted cases
have recently occurred in more and more countries over time.
There are only 1–499 confirmed COVID-19 cases in 39 (72.22%)
countries among Africa (Figure 2B); however, it will lead to the
rapid spread of the epidemic, just like a single spark could start a
prairie fire.

Furthermore, many people in Africa have serious health
issues, such as malaria, HIV, and tuberculosis, that make them
vulnerable to COVID-19 [12]. Sub-Saharan Africa has one of
the highest levels of child malnutrition globally. Recent research
finds that the stunting and underweight rates in Burundi are 57.7
and 28.8%, respectively, whereas the wasting rate is 18.0% in
Niger, followed by Burkina Faso (15.50%). COVID-19 may put
malnourished children at significant risk [13, 14].

Moreover, COVID-19 shares some of the highly similar
symptoms with malaria, such as fever, difficulty in breathing,
fatigue, and headaches of acute onset. What is more, both two
diseases could affect similar organs of the body. Thus, a COVID-
19 case may be misclassified as malaria if symptoms alone are

FIGURE 5 | Predictive curve of transmission dynamics of COVID-19 in

Africa (1).

used to define a case during this emergency period [15]. Hence,
the actual case numbers at the early stage are much smaller than
prediction, as shown in Figure 5. For example, predictive cases
would reach 50,000, whereas actual cases were only 13,813 on
April 12. Although the WHO has already supported Africa with
early detection by providing thousands of COVID-19 testing kits
to limit the widespread transmission, health officials in many
African countries concede that the case amount is far higher
than those confirmed [16, 17]. Meanwhile, the shortage of testing
kits in Africa has induced that test intensity only accounts for
6.31% of the world (median: 335 tests vs. 5,307 tests/1 million
population) [18].

The lower CFR of COVID-19 in Africa may relate to a higher
proportion of younger population. Data from Italy indicate a
much higher CFR among the elderly [19]. Another data also
find that COVID-19 kills an estimated 13.4% of patients of 80
years old or older, compared with 1.25% of those in their 50’s
and 0.3% of those in their 40’s [20]. In addition, over 80% of
the deaths in China occur to people of 60 years old or older
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FIGURE 6 | Predictive curve of transmission dynamics of COVID-19 in Africa (2).

at the early stage of COVID-19 [21]. People in that age group
account for 16% of the population, whereas in Africa, they
only make up just 5% of the population [12]. Africa’s relatively
young population could help buffer the continent against CFR.
Similarly, the relatively higher CFR in Northern Africa may relate
to the lower ratio of younger people. For example, the median
ages in Egypt, Algeria, and Morocco are 24.6, 28.5, and 29.5
years, respectively, whereas the median age in Africa is only 19.7
years [4]. On the other hand, Africa has a high incidence area of
malaria, and chloroquine or hydroxychloroquine (HCQ) is the
first-line drug for the treatment. Recently, research shows that
chloroquine or HCQ is also a potential treatment for COVID-
19 [22]. Is the lower CFR related to some changes in the body
caused by repeated use of chloroquine or HCQ by Africans?
Until now, however, there is no sufficient evidence whether the
lower COVID-19 CFR in Africa is related to the exposure of
chloroquine or HCQ.

The reason for the relatively lower test positive rate in
Africa remains unclear until now. The current gold standard
for the etiological diagnosis of COVID-19 is (real-time) reverse
transcription polymerase chain reaction (rRT-PCR), which is
affected by many factors, such as inadequate procedures for
collection, handling, transport, and storage of the swabs and
collection of inappropriate or inadequate material, as well as
sample contamination [23]. On the other hand, a high proportion
of young people in Africa may be another reason. Liu et al. [24]
tested 4,880 cases using quantitative RT-PCR and found that a
positive rate of 18–29 years in patients is only 24.90%, whereas

it is ≥70 years with 61.81%. A single negative RT-PCR should
not exclude COVID-19, especially if clinical suspicion is high.
Chest CT has higher sensitivity for the diagnosis of COVID-19
than initial RT-PCR from swab samples [25].

According to the volume of air travel between China and
Africa, a modeling study about African countries imported
COVID-19 cases demonstrates that countries with the highest
importation risk are Egypt, Algeria, and South Africa [26].
However, data from the African CDC indicate that the origin of
imported cases in Africa is mainly fromEurope (i.e., France, Italy,
and United Kingdom), although COVID-19 is first reported in
China [6, 27]. In addition, among these 105 patients reported as
of March 10, 80 (76.19%) were distributed in Northern Africa,
and most of them were imported from Europe. This may be the
reason why the number of COVID-19 cases in Northern Africa is
higher than that in other African regions.

Although accounting for 1.13% of the world cases, Africa also
needs a response immediately to prevent its pandemic. However,
most African countries remain woefully unprepared for what is
coming [28]. So far, quarantine is the most effective measure
to prevent virus transmission, but in African cities, particularly
in tightly packed informal settlements, keeping people apart
is very difficult because most people need daily income to
survive. People are relatively dispersed in rural areas, while
communicating information about social distancing will also be
challenging [12, 17].

After closing borders and mitigated measures, including
restrictions on movement, public gatherings, and schools, some
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countries have seen a reduction in the average daily case
growth, whereas it will undoubtedly depress economics in
Africa [27]. Whether lockdown is suitable for Africa remains
unknown. However, Africa could work together to prevent
the spread of COVID-19 and amplify their collaboration by
sharing data, capabilities, and coordinating strategies. Global
or regional unions (the WHO, African CDC, or West Africa
Health Organization) can be powerful drivers of that cooperation
[12, 27, 29]. In addition, regional workshops need to conduct
to strengthen the capacity for enhanced surveillance at points
of entry, infection prevention and control, risk communication,
and clinical case management [27]. Countries in Africa can
apply a combination of containment and mitigation measures
to delay a surge in cases that could overwhelm the availability
of hospital beds, while protecting the medically vulnerable, such
as the elderly and those with comorbidities [27]. What is more,
African countries should raise response fund to strengthen test
capacity, effective surveillance and contact tracing, and isolation.
For example, the Jack Ma Foundation has provided medical
supplies, including diagnostics, and equipment to each of the 55
countries in Africa [30].

There are some limitations in this article. Firstly, some
information, such as basic reproduction number (R0),
incubation, clinical presentation, and treatment strategies
are not collected in this study due to unavailable public data.
Secondly, this article only considers population density, age,
urban rate, and total population as factors affecting the spread of
COVID-19. In fact, some factors, such as poverty and education
level, may also affect the spread, and these factors will be
researched in the future. Lastly, the epidemic characteristics
of COVID-19 in each country are not the same, and the
accuracy of the data provided by 16 countries is uncertain.

Using the epidemiological characteristics of these countries to
predict development trends in Africa may be biased. There are
some new methods, such as multi-scale asynchronous belief
percolation model, temporal networks, and dynamical clustering
in electronic commerce systems [31–33], that may improve
the limitations in this article. We will use these methods in the
future research.

In total, COVID-19 spreads faster in Africa, with a relatively
lower CFR, and it may be related to higher young people
ratio. Test intensity of COVID-19 is obviously insufficient
in Africa. Africa could work together to prevent the spread
of COVID-19.
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Because there is a rapidly emerging risk that essential supply chains could collapse

during the COVID-19 pandemic, new strategies are urgently needed by governments

to protect workers regardless of whether or not they have symptoms. We propose

a “stochastic filtrate” of such workers to reduce the risk of physical interactions with

workers infected with SARS-CoV-2. Here, we suggest the random real-time-RT-PCR

test of SARS-CoV-2 as a filtrating agent, although other more useful tests developed in

the future to detect SARS-CoV-2 could also be used instead. Such a focused strategy,

when combined with other preventive measures, could be successfully replicated in

many countries to reactivate the world’s economy safely. Our stochastic filtrate concept

includes a mathematical framework and conceptual model. The simulations of this

stochastic filtrate process support its viability.

Keywords: epidemic control, stochastic filtrate, stochastic processes, complex systems, social physics, collective

phenomena, essential supply chains, COVID-19

INTRODUCTION

Real-time reverse transcription-polymerase chain reaction (RT-PCR) testing is a method
commonly employed in molecular biology laboratories. It is one of the most widely used laboratory
techniques for detecting the severe acute respiratory syndrome-related coronavirus 2 (SARS-
CoV-2). The highly contagious SARS-CoV-2 has resulted in the COVID-19 pandemic, which
is affecting the economy in an unprecedented way, despite extensive efforts to use real-time-
RT-PCR testing of SARS-CoV-2 to mitigate virus propagation [1]. A possible reason for this
failure is that many countries are only administering these tests to patients presenting COVID-
19-like symptoms, or to those who were in close contact with such patients, disregarding the
asymptomatic SARS-CoV-2 infected population [2]. Given the essential nature of supply chains
in meeting society’s needs, “focused” strategies of RT-PCR testing should be implemented to
test workers needed to maintain those supply chains. Here we propose an approach, termed
“stochastic filtrate” with a filtrating agent, which could be employed to timely identify and isolate,
under quarantine, essential workers infected with SARS-CoV-2. We propose focused real-time-
RT-PCR-testing as an optimal filtrating agent (though other future tests for early detection of
SARS-CoV-2 could also be employed). Our method takes advantage of the random nature of
stochastic processes, as in randomized controlled trials [3]. Such random sampling has been
found to be effective in providing a “quick count” in elections, in which a random sample
of polling places is used to identify the “winner” without having to count all the votes. In
other words, instead of waiting for the healthcare sector to carry out extensive testing on the
whole population, tests would be given to workers employed in essential businesses using a
random-sampling based on the stochastic filtrate. Because workers could be infectious several days
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before showing symptoms, it will be vital to apply the stochastic
filtrate to all workers regardless of symptoms. Therefore, we
propose that our approach provides a strategy that governments
could employ to optimize and speed up testing to protect
workers in essential supply chains all over the world. In this
article, we present a mathematical framework and simulation
to demonstrate that the stochastic filtrate of essential workers
could contribute to a safe and productive workforce during
the pandemic.

METHODS

Stochastic Filtrate
Briefly, to define the concept of “stochastic filtrate,” we first define
a “filtrating agent.” It is an abstract mathematical-instrument that
removes (isolates) only one particular distinctive element from a
set of Z elements:

Z =
R

∑

j=0

Wv
j +

F
∑

j=0

Wj (1)

Wv
j = Wj = 1 (2)

where, Wv
j are elements to be removed and Wj represent

elements to be filtrated (Figure 1). Here, R is the number of

FIGURE 1 | Scheme to explain the mathematical concept of the stochastic filtrate. (A) Absence of filtrating agent. (B) Complete filtrating agent. (C) Stochastic filtrate.

We can use the stochastic method illustrated in (C) to obtain the deterministic processes shown in (A,B). Additional explanation is in the text. The elements to be

removed are the “filtride” and the elements to be filtered are the “filtrate”.

elements to be removed, and F is the number of elements to
be filtrated (Z = R + F, is the total number of elements in
the set). Thus, the filtrating agent can be compared with a
“sieve,” a device able to remove a distinctive component from
a set of elements. In chemistry, the removed element is called
the “filtride,” whereas the filtrated element is the “filtrate” (as a
noun). In our definition of “stochastic filtrate,” we use “filtrate”
as a verb.

Specifically, we define “stochastic filtrate” as a process in
which a filter of N non-filtrating agents and M filtrating agents,
randomly allocated, remove a particular number of distinctive
elements Wv

j in a set of size Z, while the rest of the elements Wv
j

and Wj from the set pass through such a filter. The following
relationships combine the number of elements in the set and the
stochastic filter:

Z ≤ N +M (3)

R+ F ≤ N +M (4)

The stochastic filtrate is a process related to a stochastic filtrating
agent. For clarity, in Figure 1, we illustrate the filtrating agent
with a sieve symbol, and the non-filtrating agent with white
circles, whereas each filtrating instrument is depicted by a vertical
gray rectangle.
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There are three types of possible filters, depending on values
N and M:

1. When N = Z and M = 0, we obtain a filter with the “absence
of a filtrating agent.” In this case, there is no filtering process,
and the distinct elements (filtrides) remain mixed without
separation from the original set (Figure 1A).

2. When N = 0 and M = Z, we obtain a filter with a “complete
filtrating agent.” In this case, there is a separation of all
distinctive elements (filtrides) from the set in a single trial
(Figure 1B).

3. When N 6= 0 and M 6= 0, we obtain a filter with a “stochastic
filtrating agent” (stochastic filtrate). In this case, M filtrating
agents randomly remove one or several distinctive elements
(filtrides) from the set. We define M as the “random sampling
size” (RSS) of our stochastic filtrate. For instance, if the
random sample size is two, then up to two elements from the
set can be randomly separated (Figure 1C). A characteristic
of this stochastic filtrate is that it requires several trials to
remove all distinctive elements from the set. The number of
trials needed for the complete extinction of unique elements
is inversely proportional to M. Moreover, when M = 0, the
number of trials needed for complete removal is indefinite.
Additionally, when M is equal to the number of elements
in the set, then the number of trials necessary for complete
disappearance is one.

Note that the abovementioned stochastic filtrate in the third type
of filter is a general class of filtering that reproduces the first
and second types of filters, depending on the value of parameter
RSS. Thus, it is interesting that these two deterministic filters
derive from a stochastic one, with the level of uncertainty in
the stochastic filtrate being a function of RSS. Furthermore, if
we set RSS to the “random sampling size” M for the stochastic
filtrate, then:

RSS = M (5)

RSS ≥
R

∑

j=0

Wv
j +

F
∑

j=0

Wj − N (6)

To our knowledge, this is the first time that this formalism
and method of “stochastic filtrate” is introduced. In the next
section, we will explain how to employ this approach, as a strategy
to opportunely identify and isolate, under quarantine, essential
workers infected with SARS-CoV-2. For such a purpose, we will
suggest the use of the focused real-time-RT-PCR-testing as a
filtrating agent.

RESULTS

Stochastic Filtrate of Workers From an
Essential Company
We adapted the general conceptual framework illustrated in
Figure 1, to SARS-CoV-2-infected and non-infected workers (see
Figure 2). Figure 2A shows the scenario in which a focused
filtrating agent is lacking for workers from a particular company.
Such a scenario is similar to the current world situation of
unfocused usage of real-time RT-PCR testing, as these tests are

performed only on patients with COVID-19 symptoms, or those
persons who were in close contact with such patients. Current
testing is not focused on the population sector without COVID-
19 symptoms, including essential supply chain workers.

The scheme in Figure 2A illustrates five consecutive vertical
rectangles with white circles, each depicting a lack of filtrating
agents. The space around the vertical boxes represents the
scenario of contagion between workers each successive day (see
numbers) after they come into the company. Note that an
infection occurred on day 2 resulting from the close interaction
between workers on day 1 (see the new orange circle). On day
3, another contagion occurred and there was the addition of
another infected worker outside the company (orange circle
highlighted with a ring). Note that in this scenario, there is a
collapse of the company on day 4.

In contrast, with the use of a complete filtrating agent from
days 1 to 5 (i.e., periodic testing using focused real-time-RT-
PCR for all workers; see Figure 2B), the contagion is controlled
inside the company, and the workforce is not affected. Although
this approach is intuitive, it could be unpractical and expensive
for companies with thousands of workers. However, there is
a more feasible approach, as illustrated in Figure 2C. With
this approach, the filtrating agent (real-time-RT-PCR test) is
adequate to mitigate the contagion and maintain the workforce,
as expected from the theory of “stochastic filtrate.” In this
last scenario, the number of real-time-RT-PCR tests (i.e., RSS)
could be empirically adjusted depending on the number of
workers. This would save money and the human resources
needed to perform such focused and periodical tests. Note that
the effectiveness of the strategy described in Figure 2C is between
that of the procedures depicted in Figures 2A,B.

It is clear that the filtrating agent randomly changes its
position across trials, from days 1 to 5 (see vertical rectangles
with circles, and the horizontal yellow line in Figure 2C).
When the filtrating agent detects an infected worker (an
orange circle), then it “sieves” such an infected worker from
the rest of the workers and isolates it under quarantine
(horizontal blue lines). The “sieve” (i.e., the filtrating agent)
changes its position in each trial according to a stochastic
process. In this way, there is a chance that in repeated
tests, any infected worker could be identified and timely
separated. Note that the filtrating agent does not separate
non-infected workers (black circles), who continue working
in the company installations. In this example, there are three
workers who are infected, but two others continue working
(workforce), maintaining the company economically active.
This is an advantage compared with the scenario illustrated
in Figure 2A, in which all workers quickly become infected,
possibly leading to the company’s collapse. After quarantine,
all workers could return to the company, with the exception
of those with potential long-term health problems associated
with COVID-19.

It is clear that the cases shown in Figures 2B,C, the complete
and the stochastic filtrate, respectively, were useful in avoiding
the company’s collapse, allowing a safe economic reactivation
maintained by non-infected workers. The model introduced in
Figure 2 could be generalized to any number of workers and
random-sampling size across trials.
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FIGURE 2 | Strategies with real-time-RT-PCR as a filtrating agent, including the stochastic filtrate. (A) There is no filtration process when a filtrating agent is absent.

(B) The filtrate is highly effective when there is a complete filtrating agent (real-time-RT-PCR testing for all workers). (C) The case of the stochastic filtrate. Here the

infected workers are the “filtride,” and the non-infected workers are the “filtrate.” Note that (C) is similar to Figure 1C, but for infection between workers. The blue line

indicates that an infected worker is in quarantine. The filtrating agent randomly selects subjects (see vertical rectangles containing white circles and sieve circles). For

this example, the random sampling size (RSS, number of filtrating agents) is two in a population of five complete filtrating agents (i.e., RSS = 40%). Interestingly, when

the RSS is equal to the number of complete filtrating agents (100%), then we obtain the scenario illustrated in (B). However, when the RSS is zero %, we get the

situation depicted in (A). Thus, our method shown in (C) reproduces the three scenarios. RSS is expressed as percentage of the total number of filtrating agents; i.e.,

when the filter is in the “complete filtrating agent” condition (N = 0 and M = Z, see Methods).
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Conceptual Model of a Stochastic Process
To validate the proposal that stochastic filtrate is useful in
mitigating COVID-19 contagion, we developed a conceptual
model of a stochastic process for risky physical interactions
between workers in the three scenarios explained in Figure 2.
We hypothesize that asymptomatic workers carrying the virus
“v” can be timely identified and isolated in focused tests with
the complete filtrating agent and stochastic filtrate with real-time-
RT-PCR testing.

Briefly, our conceptual model consists of two compartments
in Cartesian space: “company” and “street.” We also included a
restrictive criterion for entering the company (i.e., when a worker
tests positive). With these assumptions, we generated the three
scenarios mentioned above for a random walk of infected and
non-infected workers:

Wv
j (x

v, yv, t), j = 1, . . . , R (7)

Wj (x, y, t), j = 1, . . . , F (8)

These are matricial representations for worker “j” as a function
of Cartesian coordinates “xy” and time “t,” where the superscript
“v” indicates a “j” worker infected with the virus SARS-CoV-2.
Here R is the number of workers put under quarantine and F is
the number of non-infected workers to be filtrated and allowed
to work at the company building.

We generated a stochastic process by assigning random
numbers to the xy coordinates. Then we obtained random walk-
like trajectories for each subject, with the possibility of emulating
a more realistic walking behavior using filters to smooth such
paths. We included the option of persons walking on the street
infected with SARS-CoV-2, who are represented by:

Pvj (x
v, yv, t), j = 1, . . . , C (9)

We assumed that some “C” citizens could potentially infect
workers in the street. To simplify, we defined a risky interaction
of non-infected workers with infected workers and persons
walking on the road as the case when the first crossing between
trajectories occurs in proximity, and one of the workers carries
the SARS-CoV-2.

(

xv, yv, t
)

−
(

x, y, t
)

= ∆µ (10)

Here, ∆µ is a proximity value of social distancing. We employed
trajectory crossings to estimate the incidence of infected workers
in the three scenarios. We also considered that the trajectory
crossing represents infection with a determined probability. This
last point is necessary because not all persons who are walking in
proximity will be infected; it will depend on various preventive
measures (see Discussion section).

Furthermore, RSS is the number of real-time-RT-PCR tests
performed during the stochastic filtrate of workers from a

particular company, where:

RSS = # of ′′Real_Time_RT_PCR_test′′ (11)

RSS ≥
R

∑

j=0

Wv
j

(

xv, yv, t
)

+
F

∑

j=0

Wj

(

x, y, t
)

− N (12)

N = # of workers− RSS (13)

Workforce (D) =
D

∑

day=1

[

F
∑

j=0

Wj

(

x, y, t
)

]day (14)

Here the workforce is defined as the number of non-infected
workers to testing dayD, who are still working after the successive
stochastic filtrate. In our model, RSS can be expressed as the
percentage of the total number of filtrating agents; i.e., when the
filter is in the “complete filtrating agent” condition (N= 0 andM
= Z, see Methods).

Python Simulation
To illustrate the viability of the conceptual model, we employed
Python to simulate the three scenarios with a different number
of workers (infected and non-infected) and infected-persons
walking on the street. The software can emulate the number
of workers in companies around the world. The simulation
was based on the mathematical framework and conceptual
model described in the previous section. Figures 3A–C show
representative elements of the simulation. Black traces represent
the random walk of non-infected workers, and orange and red
marks indicate the random walk of infected workers and persons
walking on the street, respectively. The green circles indicate
the Cartesian coordinates of the occurrence of a contagion, and
blue rectangles show those infected workers in quarantine after
a positive result of a real-time-RT-PCR test. As an example,
Figures 3D–F show simulated trajectories for Z = 49 workers
on a working day. The initial conditions are 48 workers not
infected (F = 48), one worker infected (R = 1), and one infected
person (C = 1) walking on the street. This means that for these
simulations, we used the following set of parameters and initial
conditions: Z = 49, F = 48, R = 1, and C = 1. In Figures 3D–F,
we also considered a random sampling size (RSS) = 40%. In
the computer simulation RSS was expressed as a percentage
of the total number of filtrating agents, i.e., when the filter
is in the “complete filtrating agent” condition (N = 0 and M
= Z, see Methods). We also included that the probability of
contagion by proximity is= 20% inside and outside the company.
In the previous section, we defined the parameters: F, R, C,
and RSS.

To analyze our proposed concept in more detail, we ran
the simulation 15 times to compute the infection incidence for
15 different companies with Z = 49 workers. We assigned an
RSS = 40% for ten companies and RSS = 75% for another
five companies. Then we calculated the cumulative number of
cases of infected workers with SARS-CoV-2 for these companies.
We obtained a graph of the grand average for the cumulative
number of cases (expressed as a percentage of the total number
of workers) in the three scenarios for 5 days (Figure 4A). Such
a graph shows that the number of infected workers in the first
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FIGURE 3 | Simulated strategies with real-time-RT-PCR as a filtrating agent. (A–C) Scheme of trajectories for two workers, one infected and another non-infected,

and for one infected-person walking on the street. (D–F) The same as (A–C), but for superimposed trajectories of 48 non-infected workers and one infected worker

as initial conditions. In this case, there is also one infected-person walking on the street (more explanations in the text). Note that each approach yields different

scenarios, with more contagions (orange circles) in situation (D) than in scenarios (E,F). In the Supplementary Material, we included two movies and the Python

code with detailed explanations (for purposes of reproducing or extending the analysis). The first movie simulates in sequence the three scenarios during 5 working

days in real time: (D) Absence of a filtrating agent with RSS = 0%, (E) Complete filtrating agent RSS = 100%, and (F) Stochastic filtrating agent, where RSS = 40%.

The second movie is similar to (D–F), but for RSS = 75%. RSS is expressed as percentage of the total number of filtrating agents; i.e., when the filter is in the

“complete filtrating agent” condition (see Figure 2).

scenario was significantly higher than the number of infected
workers in the second and third scenarios. We also calculated the
level of uncertainty (95% confidence intervals) in our simulation,

utilizing the percentage of infected workers at the end of 5
days vs. four different RSS values (Figure 4B). This graph shows
that at intermediate levels of RSS, there is an intermediate
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FIGURE 4 | Cumulative mean number of cases of infected workers in the

three scenarios: absence of a filtrating agent, complete filtrating, and

stochastic filtrate. Quantitative results from the Python simulation for 15

different companies. (A) Superimposed graphs show the number of infected

workers (as a percentage of the total number of workers) in the absence of a

filtrating agent, complete filtrating, and stochastic filtrate. Note the effectivity of

the stochastic filtrate of workers compared with the lack of a filtrating agent.

Gray lines indicate the standard error of the mean. In the real situation, the

time between “working days” could be defined empirically. These are

simulated strategies with real-time-RT-PCR as a filtrating agent, but other

filtrate agents detecting SARS-CoV-2 could be employed. (B) Number of

infected workers (as a percentage of the total number of workers) vs. random

sampling size (RSS in %) employed to generate the three scenarios in the

Python simulation. Note that the number of infected workers is inversely

proportional to RSS. The graph also shows that the stochastic process is

between two deterministic situations: “absence of a filtrate agent” and

“complete filtrate agent,” with an uncertainty range to quantify the number of

infected workers for intermediate values of RSS (with 95% confidence

intervals, dashed lines). Vertical bars represent the standard error.

uncertainty-level to calculate the number of infected workers.
The graph in Figure 4B also illustrates a significant tendency
with a low number of infected workers for high values of RSS.

Finally, we defined the workforce as the number of non-infected
workers, and we obtained the graph of the workforce vs. the
number of working days (Figure 5A). In a real context, the
periodicity of such “working days” could be defined empirically
(see Discussion section). Note that the workforce is 100% for the
ideal case of a complete filtrating agent and no contagion from
outside the company. This result indicates that both the complete
filtrating agent and the stochastic filtrate strategies could help
to maintain an active workforce in essential companies. We
also found that the mean workforce for the three scenarios
was: Absence of a Filtrating Agent = 3.0 ± 0.6%, Complete
Filtrating Agent = 74.8 ± 6.7%, Stochastic Filtrate = 32.4 ±
5.6% for RSS = 40% and Stochastic Filtrate = 50.4 ± 9% for
RSS = 75% (Mean ± SE). Figure 5B shows this workforce
vs. RSS.

The results clearly illustrate how the stochastic filtrate
strategy could be useful for mitigating the risk of COVID-19
infection in simulated data, thus supporting our proposal. In
the Supplementary Material, we included the source code of the
simulation software and two movies illustrating the computer
simulation in operation.

DISCUSSION

Here, we introduced for the first time the concept of “stochastic
filtrate,” in which a mathematical instrument of non-filtrating
and filtrating agents, randomly allocated, removes a particular
number of distinctive elements in a set. In contrast, the rest
of the items from the collection pass through such a filter.
We defined “filtrating agent” as an abstract mathematical-
instrument that isolates only one particular distinctive element
from a group. We extended this mathematical framework to
show in a model that the stochastic filtrate of workers could
be employed to mitigate SARS-CoV-2 propagation in essential
supply chains. For this purpose, we used focused real-time-
RT-PCR-testing as an optimal filtrating agent, although other
more effective tests or procedures developed in the future
could be implemented instead. We compared three scenarios:
“absence of a filtrating agent,” “complete filtrating agent,” and
“stochastic filtrate.” The first scenario represented the case of
“unfocused,” RT-PCR testing to any person in a country, but
not specifically targeting workers of essential companies. The
second scenario illustrated the case of focused RT-PCR testing
for all workers at an essential company. Finally, the third
scenario involved random focused-RT-PCR testing. Our results
support the hypothesis, and thus our proposed concept that
both the “complete filtrating agent” and “stochastic filtrate” could
be useful to mitigate the risk of SARS-CoV-2 contagion in
simulated data.

Advantages of the Stochastic Filtrate
An advantage of our concept is that it does not require
the RT-PCR testing, and it could be implemented with other
clinically approved tests for SARS-CoV-2 that will be available
after this publication. Another advantage is that governments,
companies, and citizens would most certainly benefit from this
concept, given the current emergency and the long time before
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FIGURE 5 | Cumulative mean number of cases of non-infected workers

(“workforce”) in the three scenarios: absence of a filtrating agent, complete

filtrating, and stochastic filtrate. (A) The same as in Figure 4, but for the

workforce (as a percentage of the total number of workers). (B) Workforce vs.

random sampling size (RSS in %) employed to generate the three scenarios in

the Python simulation. Note that a higher RSS ensures a higher workforce

(with 95% confidence intervals, dashed lines). Vertical bars represent the

standard error. The graph also shows that the stochastic process is between

two deterministic situations: “absence of a filtrate agent” and “complete filtrate

agent.” The filtrate agent could be the real-time-RT-PCR.

a vaccine for COVID-19 is available [4]. Another advantage
is the random nature of the sampling, necessitating only a
few RT-PCR assays per day (depending on the RSS). Such
a strategy is economically convenient, given that supplies
for RT-PCR analyses are scarce and overpriced in some
countries. Therefore, it would be ideal if governments could
freely provide, as a human right, this type of periodic test
to workers involved in essential supply chains during the

COVID-19 pandemic. Then, the proposed strategy of random
focused-RT-PCR testing, when combined with other preventive
measures against COVID-19 [5–7] and future vaccines, could
be successfully implemented. Some additional precautionary
measures are frequent handwashing, the combined use of
medical face shields and masks [8], social distancing, body
temperature sensors, and targeted isolation [9]. Because many
experts warn that SARS-CoV-2 spreads through the air in
respiratory aerosols (see references in the last paragraph
of this section), then air-conditioning systems should be
temporarily shut down and replaced by natural ventilation
through open windows and doors. Another logical preventive
measure is the implementation of monitoring stations outside
the company doors to detect a quick response (QR) code for
every worker.

Such a QR code could contain timely information about the
results of RT-PCR testing of each worker, as well as of their
possible risky physical interactions with others within company
installations. You Only Look Once (YOLO) based human action
recognition and localization software [10] combined with a
QR code, for instance, could be employed to analyze walking
trajectories. Alternative technologies are available from many
private companies and universities, such as social distancing
software [11] with contact data tracing and a variety of
monitoring devices to mitigate the COVID-19 pandemic.
Recently entries to the market include wearable badge holders
based on proximity sensors with an alarm and contact tracing
with mapping software to be used inside the workplace [12].
Also, there has been a proposal to employ prediction methods
to forecast the number of COVID-19 cases, which could
be useful to government decision-making on the measures
to impose [13, 14]. All of these new technological devices
and prevention methods could be implemented together with
the stochastic filtrate for essential worker populations. We
hypothesize that the combined and rigorous implementation
of such measures could keep the number of infected workers
low in order to maintain a highly productive workforce, as
illustrated by the horizontal dashed lines in Figures 4A, 5A.
Another significant advantage of ourmethod is that it could allow
us to choose, as a filtrating agent, another simpler and quicker
testing-technique in the future to detect SARS-CoV-2 with the
best precision.

Limitations of the Stochastic Filtering With
a Filtrating Agent
The first limitation of our proposal is that empirical research is
needed to determine the number of days between the working
days illustrated in Figures 4, 5. A possibility could be to employ
a 10-4 cyclic strategy, i.e., a cyclic schedule of a 4-day work
period and 10-day lockdown, or similar variants, as suggested
in recent models [7]. Another limitation is that some workers
will not agree to the privacy and data protection policy necessary
for QR information, or the complementary use of wearable
proximity sensors and video surveillance in offices and other
workplace environments. The contributions of psychologists
and social scientists would be very helpful in addressing these
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challenges. Governments could also assist by fostering empathy
campaigns during the “new reality” in the COVID-19 pandemic.
Another concerning limitation is that some governments may
disregard the proposal described here due to political issues or
conflicts of interest with the selective distribution of funds to
protect essential workers with random focused-RT-PCR testing.
However, it would be crucial to highlight that the proportion of
resources necessary for such tests would be only a small part of
the total funds used for all citizens. This means that the use of
random focused-RT-PCR assays for the rest of the population
would still be available.

Accuracy of the filtrating agent (real-time-RT-PCR test) is
another relevant issue of concern. False-negative cases could
affect the valuable utility of RT-PCR assays to correctly identify
and isolate infected workers. There is evidence that 29% of
patients infected with SARS-CoV-2 could receive an initial RT-
PCR false-negative result [15]. Therefore, such findings reinforce
the need for repeated testing in persons with suspicion of
SARS-CoV-2 [16]. Another alternative is the combined use of
other types of available tests to detect SARS-CoV-2, or IgM
antibodies against the virus, thus raising the quality of diagnostic
accuracy. Importantly, correct sampling procedures with high-
quality extraction of viral RNA and the real-time RT-PCR kit
performed by experts in biomolecular assays could also improve
the efficiency and reduce inaccurate results [16].

Simulation Limitations, Advantages, and
Challenges
A limitation of our Python simulation is that it is simple, due to
the use of only two compartments and one restriction parameter.
However, simplicity in simulation also offers advantages. For
example, simple simulations are easy to understand, and they
motivate more sophisticated uses. Nevertheless, other simulation
studies of our conceptual model and method could include
more compartments of different sizes within the company
boundaries, a different number of workers in different working
spaces, and more detailed probabilities of incorrect use of
masks or incomplete handwashing, quantified by YOLO-
like approaches. Other more sophisticated parameters could
include decision making in emulated workers via artificial
intelligence procedures, big data strategies, and 3D avatar-
based representations. In this form, walking trajectories and
physical interactions among several emulated workers may be
more realistic. Inclusion of “decision making” with avatars,
based on social networks with positive and negative prevention
information, could also be useful to quantify a more realistic
epidemic propagation [17]. It would also be interesting to
extend our simulation by using epidemiologic models of two-
layer multiplex networks, where the upper layer represents
the awareness diffusion regarding epidemics, and the lower
layer expresses the epidemic propagation [18]. On the other
hand, future simulations should consider preventive measures
to eliminate respiratory aerosols with SARS-CoV-2, a form of
virulent particulate matter (PM) 2.5 in the air [19]. The computer
simulation of these respiratory aerosols is relevant, given that

essential workers very often share close spaces. It would be
convenient to simulate far-UVC light [20] and electrostatic
precipitators [21, 22] to eliminate SARS-CoV-2 in virulent PM
2.5 to control the air quality in such spaces. This new realistic
computer simulation could help to capture real-world situations
and thus examine more effective measures to prevent and
control infectious spreading among essential workers during the
COVID-19 pandemic.

CONCLUSION

The stochastic filtrate of essential workers could undoubtedly
contribute to protect and efficiently improve each country’s
economy during the different stages of the “new reality” in the
COVID-19 pandemic.
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Supplementary Video 1 | Video 1.MP4. Movie of the Python simulation for RSS

= 40%. The first stage of this video shows part of a code and starts with

simulated action after 4 s. The first five trials reproduce scenarios as illustrated in

Figure 3D; whereas the second group of five trials, reproduce the situation of
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Figure 3E. The last five trials reproduce a scene as illustrated in Figure 3F. Green

symbols indicate the moment of occurrence of new infections and orange circles

represent the infected workers. The blue rectangles represent the infected

workers in quarantine. We considered the same parameters mentioned in the

Results section.

Supplementary Video 2 | Video 2.MP4. Movie of the Python simulation for RSS

= 75%. Note that the stochastic filtrating agent could be most efficient for RSS =
75% than for RSS = 40%.

Simulation Code | SimulationCode-40percentRSS.py (to reproduce random

scenarios similar to those illustrated in Video 1.MP4) (Here we used porTest = 40

in the main Python code).

SimulationCode-75percentRSS.py (to reproduce random scenarios similar to

those illustrated in Video 2.MP4) (Here we used porTest = 75 in the main

Python code). actors.py positions.py. The code is in the Data Sheet 1.ZIP file and

is open to any researcher for purposes of reproducing or extending

the analysis.
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In May 2020, many jurisdictions around the world began lifting physical distancing

restrictions against the spread of severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2). This gave rise to concerns about a possible second wave of coronavirus

disease 2019 (COVID-19). These restrictions were imposed in response to the presence

of COVID-19 in populations, usually with the broad support of affected populations.

However, the lifting of restrictions is also a population response to the accumulating

socio-economic impacts of restrictions, and lifting of restrictions is expected to increase

the number of COVID-19 cases, in turn. This suggests that the COVID-19 pandemic

exemplifies a coupled behavior-disease system where disease dynamics and social

dynamics are locked in a mutual feedback loop. Here we develop aminimal mathematical

model of the interaction between social support for school and workplace closure and the

transmission dynamics of SARS-CoV-2. We find that a second wave of COVID-19 occurs

across a broad range of plausible model input parameters governing epidemiological and

social conditions, on account of instabilities generated by behavior-disease interactions.

The second wave tends to have a higher peak than the first wave when the efficacy

of restrictions is greater than 40% and when the basic reproduction number R0 is less

than 2.4. Surprisingly, we also found that a lower R0 value makes a second wave more

likely, on account of behavioral feedback (although a lower R0 does not necessarily

cause more infections, in total). We conclude that second waves of COVID-19 can

be interpreted as the outcome of non-linear interactions between disease dynamics

and social behavior. We also suggest that further development of mathematical models

exploring behavior-disease interactions could help us better understand how social and

epidemiological conditions together determine how pandemics unfold.

Keywords: COVID-19, epidemic model, behavioral fatigue, coupled behavior-disease system, SARS-CoV-2,

evolutionary game theory, imitation dynamics, social learning
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1. INTRODUCTION

The COVID-19 pandemic has given rise to an “epidemic of
models” [1]. Diverse mathematical models of SARS-CoV-2
transmission (the virus that causes COVID-19 disease) have been
instrumental in capturing infection dynamics and informing
public health control efforts to mitigate the COVID-19 pandemic
and reduce the mortality rate. The concept of “flattening the
curve” comes from model outputs that show how reducing the
transmission rate through efforts such as contact tracing and
physical distancing can lower and delay the epidemic peak [2].

On account of limited options for pharmaceutical
interventions such as vaccines, and inadequate testing capacity
in many jurisdictions, the COVID-19 pandemic has also
been characterized by large-scale physical distancing efforts–
including school and workplace closure–being adopted by
entire populations despite heavy economic costs. Mathematical
models of SARS-CoV-2 transmission and control show that
physical distancing can mitigate the pandemic [2–5] and this
has subsequently been backed up by empirical analyses of case
notification data. These analyses show how mitigation measures
have reduced the effective reproduction number of SARS-CoV-2
below one, meaning that each infected case infects less than one
person on average [6–8]. However, the population’s willingness
to support school and workplace closures could wane over
time, as the economic costs of closure accumulate [9]. This has
given rise to the possibility of a second wave of COVID-19 in
many populations.

The large role played by physical distancing during the
COVID-19 pandemic exemplifies a coupled behavior-disease
system, in which human behavior influences infectious disease
transmission and vice versa [10–16]. These systems are part
of a broader class of pervasive systems in which human
behavior both influences, and responds to, the dynamics of our
environment. Hence, one might better speak of a single, coupled
human-environment system, instead of just human systems or
environmental systems in isolation from one another [17–19].

The interactions between disease dynamics and behavioral
dynamics in COVID-19 are emphasized by research showing
that the perceived risk of SARS-CoV-2 infection is a predictor
of adherence to physical distancing measures [20] and moreover
that individuals respond to the presence of COVID-19 cases
in their population by increasing their physical distancing
efforts [21]. In turn, physical distancing has been shown
to reduce the number of cases [6], completing the loop of
coupled behavior-disease dynamics. Some models have already
begun exploring this interaction between disease dynamics and
individual behavior and/or public health policy decision-making
for COVID-19 [5, 16, 22–26]. The emergence of a second wave
of COVID-19 on account of population attitudes to physical
distancing has also been explored in mathematical models [27].

The social aspects of behavior-disease interactions seem to
be relevant for COVID-19 decision-making. Individuals do not
necessarily make the best possible (most rational) response to
the presence of COVID-19 cases in their population. Instead,
it has been found that political leaders can be influential
in convincing individuals to change their physical distancing

efforts [23]. Additionally, jurisdictions experiencing outbreaks
that start relatively late appear to learn from the experiences of
jurisdictions that were affected earlier [28]. Meanwhile, other
research emphasizes a need for more work on the socio-
economic aspects of the pandemic [29]. These findings suggest
that imitation and social learning processes are important
for understanding interactions between disease dynamics and
decision-making for COVID-19, which ultimately determine the
epidemic curve.

Here we model the coupled behavior-disease dynamics of
SARS-CoV-2 transmission and population support for school
and workplace closure, using a simplified theoretical model. We
opted for a simple model that avoids heterogeneities because our
objective is to gain insights into potential interactions between
social and behavioral dynamics. Public opinion evolves according
to social learning rules [10, 18], and public opinion in support
of closure depends both on COVID-19 case incidence and
accumulated socio-economic losses due to school and workplace
closure. A central decision-maker chooses a time to initially
close schools and workplaces when the outbreak begins, but
may subsequently open and close them again depending on how
public opinion ebbs and flows. Meanwhile, disease dynamics are
described by a compartmental epidemic model [30]. The details
of our mathematical model are described in the section 2. We
analyze the model to characterize the conditions that give rise to
a second wave of COVID-19 in the population.

2. METHODS

2.1. Model Equations
Transmission dynamics are given by an SEIR model, modified to
take physical distancing into account,

dS

dt
= −β(1− C(t))SI,

dE

dt
= β(1− C(t))SI − σE,

dI

dt
= σE− γ I,

dR

dt
= γ I, (1)

where S is the proportion of susceptible individuals
(“susceptible”), E is the proportion of individuals who have
been infected but are not yet infectious (“exposed”), I is the
proportion of individuals who are both infected and infectious
(“infectious”), and R is the proportion of individuals who are
no longer infectious (“removed”). The time-varying parameter
C(t) captures the impact of school and workplace closure on the
transmission of SARS-CoV-2. β is the baseline transmission rate
in the absence of school/workplace closure, σ is the time rate at
which an exposed person becomes infections, and γ is the time
rate at which an infectious person recovers. We use an SEIR
model since they are appropriate for population-level modeling
epidemics of acute, self-limiting infections that confer natural
immunity [30, 31]. Since our focus is on physical distancing and
lockdown, we do not include compartments for testing, contact
tracing and asymptomatic transmission.

The decision-maker decides to “turn on” closure at some time
tclose, and then decides to “turn off” closure when population
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support for closure, x(t) drops below 50%. HenceC(t) is given by:

C(t) =
{

0 t < tclose or x < 50%,
C0 t ≥ tclose and x ≥ 50%,

where C0 is a combined measure of how many workplaces
are closed (the remainder being essential workplaces such as
hospitals) as well as the effectiveness of physical distancing in
those workplaces that remain open.

Approaches to modeling human opinions and decision-
making vary greatly and include agent-based network models
based on complex systems science [32–34], evolutionary game
theory (imitation dynamics) [10, 11, 13], mathematical models
based on psychological theory [35] and other approaches. For
our study system, the imitation dynamic approach is suitable
because (1) imitation dynamics are sufficient to describe the
population-level opinion dynamics when individuals learn from
one another and response to changes in their utility functions,
as epidemic and socio-economic conditions evolve [36]; (2)
differential equations are usually easier to analyze (either
rigorously or through numerical analysis) than agent-based
models. The percentage of the population that supports school
and workplace closure, x, evolves according to an imitation
dynamic as:

dx

dt
= κx(1− x)(ωI − ǫL), (2)

where κ is the social learning rate, ω is sensitivity to infection
prevalence, and ǫ is sensitivity to accumulated socio-economic
losses L. Support for closure goes up when the prevalence of
infection goes up, but it declines when the accumulated socio-
economic losses, L, become too large. The quadratic term x(1−x)
represents a social learning dynamics where individuals sample
others at some rate, and they change opinion based on the utility
difference ωI − ǫL (A full derivation of this type of differential
equation appears in [18]). The social learning rate κ represents
how often individuals discuss opinions about lockdown. The
parameterω control how the population opinion about lockdown
reacts to the prevalence of infection, and it is influenced by
the perceived risk of the severity of infection (frequency of
severe cases, hospitalizations, and deaths). The parameter ǫ

controls how population opinion about lockdown reacts to socio-
economic losses and is influenced by the perception of how
severe the socio-economic losses as a function of media coverage,
for instance.

We can absorb ω into κ , yielding:

dx

dt
= κω · x(1− x)(I − ǫ/ω · L) (3)

and then, setting κ ′ = κω and ǫ′ = ǫ/ω and dropping the primes
for simplicity we obtain

dx

dt
= κx(1− x)(I − ǫL). (4)

Finally, the variable L is a phenomenological representation of
accumulated socio-economic losses obeying

dL

dt
= αC(t)− δL, (5)

where α controls the rate at which school and workplace
closure impacts socio-economic health of the population, and
δ is a decay rate that represents adjustment to baseline
losses. These two parameters represent the sum effect of
multiple processes. For instance, α is influenced by what
proportion of workers are affected by lockdown through loss
of employment or working hours; household savings and debt;
and economic stimulus packages. Similarly, δ is determined by
economic discounting, the ability of individuals to adjust to new
economic circumstances (for instance by offering new products
and services to meet demand in a pandemic market), and
other factors.

2.2. Parameterization
A full list of parameter definitions, baseline values, and literature
sources appears in Table 1. The transition rates σ and γ , were
set based on COVID-19 epidemiological literature [37–39, 44,
45], while the transmission rate β was estimated. Note that
the last compartment of the model, R, does not correspond
to a stage of illness preceding recovery but rather a stage of
infectiousness [31], which wanes quickly after the imposition
of case isolation, in addition to the decline in viral shedding
after the first 5 days [46]. Moreover, the infectious stages is
preceded by a latent stage in which the virus is still replicating
inside its new host until it can reach a level where the host can
transmit the infection to others. These features of COVID-19
disease history guided our choice of γ and σ . Since the prevalence
I(t) as used in the model is different from case incidence
as appears in daily lab-confirmed case reports, a new state

TABLE 1 | Parameter values, baseline values, and literature sources.

Parameter Meaning Baseline

value

Range Source

1/σ Latent period 2.5 days 2.0–3.0 [37]

1/γ Infectious period 5 days 3.0–7.0 [37–39],

β Transmission rate 0.54/day 0.42–0.54 [40],

Calibrated

C0 Closure efficacy 0.63 0–0.67 C0 =
1− 1/R0,

[30]

α Rate of

socio-economic

loss

0.0657/day 0.00273–0.0822 Calibrated

δ Discounting rate 0.0033/day 0.00014–0.0041 δ = 0.05α,

[41]

κ Social learning rate 1.5/day 1–500 Calibrated;

[42, 43]

ǫ Sensitivity to

infection

0.005 0.001–0.01 Calibrated
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variable denoting daily infection incidence, Ii was defined as the
difference between accumulated health outcomes. That is, Ii(t) =
H(t) − H(t − 1), where H(t) is the cumulative number of cases
at time t:

dH

dt
= σE(t). (6)

The state variable Ii(t) was used when fitting the model to daily
case notifications was required.

Because ǫ, κ , and α and ω encapsulate many different factors,
we take the approach of inferring parameter values by fitting
the model to data. (We also explore the impact of variation in
these parameter values in sensitivity analysis through parameter
planes). To avoid over-fitting, δ is fixed based on commonly
used discounting rates. The social parameters κ and ǫ were
calibrated. While κ dictates how quickly population opinion
changes, ǫ dictates how sensitive the population is to changes in
case reports relative to socio-economic losses. κ was estimated
from behavior early in the epidemic when socio-economic losses
are small as dx/dt ≈ κx(1 − x)I. We derived I(t) from
reports of confirmed positive cases from the early stages of the
United States epidemic, adjusted by a case under-ascertainment
factor of 8.7 in the United States [42]. We used 21 January
2020 as the initial date of the epidemic, when the first case of
COVID-19 was reported in the United States. Most populations
rapidly adopted physical distancing measures against COVID-
19. Gallup polls indicate that 59%/79%/92% of the United States
public avoided going to events with large crowds, as of 13-
15 March/16-18 March/20-22 March 2020 respectively [43].
Similarly, 30%/54%/72% avoided public places, and 23/46/68%
avoided small gatherings [43]. Taking the average of these
responses across the three question types, we obtain that x(52) =
0.373, x(59) = 0.597, x(66) = 0.773 where time is measured in
days since January 21. Finally, we shifted these points forward
14 days as physical distancing at time t will not be reflected
in infection data until t + 14 due to the delays in testing and
symptom recognition. We assumed x(0) = 0.25 when fitting to
these three data points using least-squares error minimization for
the κ estimation.

To estimate β we used least-squares error minimization to
fit the modeled Ii(t) to lab-confirmed daily case reports in the
United States from the early epidemic [40]. The fitted infection
trajectory, Ii is in good agreement with reported cases in the US
during the initial phase of the epidemic leading up to 4 April
2020 (Supplementary Figure 1b). Our inferred estimate β =
0.54/day yields a basic reproduction number R0 ≈ β/γ = 2.7
[30], which agrees well with published estimates of R0 for SARS-
CoV-2 [47]. For the special case where there is an absence of
any control measures, the model predicts that about 80% of
the population becomes infected by the end of the outbreak
(Supplementary Figure 1a).

The remaining two parameters, ǫ and α, were calibrated
to obtain the result that x remains high after the initial surge
in support for closure, but begins to drop after 2 months.
This period of time was based on the observation that 2
months that have elapsed since the declaration of the national

emergency in the United States on 13 March 2020, and the
process of re-opening state economies that has unfolded over
the month of May 2020. These two parameters control the
timescale of lifting school and workplace closure based on its
socio-economic impacts. Finally, the parameter δ was set such
that δ = 0.05α on the basis of commonly used discounting rates
in economics and assuming that economic losses accumulated
through the αC(t) term would be discounted at a rate of 5% per
year [41].

In order to illustrate curve flattening and show that the
model has the expected response to reduction in the transmission
rate due to closure, we generated model timeseries of I(t) for
the special case where closure is applied throughout the entire
outbreak. The epidemic curve for different values of the closure
efficacy C0 is shown, ranging from C0 = 0 (no intervention)
to C0 = 0.6 (Supplementary Figure 1c). The timeseries show
that the epidemic curve is flattened and delayed as closure
becomes more efficacious, which reduces peak demand for
intensive care beds and buys time for developing pharmaceutical
interventions like vaccines and antiviral drugs, improving testing
capacity, and establishing novel approaches to patient care.
For the remainder of our analysis, to determine C0 it was
assumed that C0 should be large enough to bring the effective
reproduction number Reff below 1, reflecting the observed
success in multiple jurisdictions where physical distancing and
closure have maintained Reff < 1 [6–8]. Hence we chose
C0 = 1 − 1/R0 based on the elimination threshold for the
SEIR model [30]. We also assumed tclose = 20 days but
in practice, our second requirement that x ≥ 50% was not
reached until after 20 days in all of the model simulations. We
analyzed numerical simulations of our model to determine the
conditions where one or more waves of SARS-CoV-2 infections
could occur. A wave was defined as a local maximum in the
prevalence I(t), and the simulation time horizon was 730 days
(2 years).

3. RESULTS

3.1. Mechanisms Causing a Second Wave
At our baseline parameter values, time series of infection
prevalence I(t) and support for closure x(t) exhibit non-
trivial time evolution, including a second wave of COVID-
19 infections (Figure 1). These results illustrate the basic
mechanisms underlying the model dynamics. As infection
prevalence grows, support for closure rises and eventually crosses
the 50% threshold by t = 80 days. After this, infection
prevalence peaks and begins to decline. Support remains at
a high plateau for a period of 2 months. After this period,
infection prevalence remains small while the socio-economic
impacts of lockdown continued to mount. This causes waning
of support for lockdown, and hence restrictions are lifted by
t = 160 days. Shortly thereafter, prevalence begins to rise
again. Support for closure correspondingly rises again, but not
quickly enough to prevent a second wave of COVID-19 with
a peak at t = 240 days that is higher than the peak of the
first wave.
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3.2. Epidemiological Conditions for a
Second Wave
Our goal was to gain insight into the conditions that generate
a second wave of COVID-19, and to test the robustness of
the predicted result at our baseline parameter values illustrate
in Figure 1. Hence we explored the model dynamics in the
neighborhood of our baseline parameter values (Table 1) using
parameter planes that show how the dynamical regimes of the
model vary with changes in two model parameters (one on each
axis) around the baseline values. We explored two dynamical
outcomes: the number of waves in the course of the entire
pandemic, and the ratio of the peak height of the second wave
to the peak height of the first wave.

We start by exploring the effects of variation in the
epidemiological parameters β (transmission rate) and γ (inverse
of the average duration of infectiousness) in Figure 2, while
keeping the rest of the parameters at baseline values. The results
show that one, two, or three waves are possible under variation
in these parameter values. A second wave characterizes most of

FIGURE 1 | Second wave of COVID-19: time series plot of the number of

infected individuals (left) and proportion of individuals practicing physical

distancing (right). The results are obtained for C0 = 0.63, R0 = 2.675,

1/σ = 2.5, γ = 1/5, κ = 5, ǫ = 0.008, α = 1.0 ∗ 24/365, and

δ = 0.05 ∗ 24.0/365 and initial conditions S(0) = 1− 1/1000000, E(0) =
0, I(0) = 1/1000000, R(0) = 0, x(0) = 0.25, L(0) = 0, and H(0) = 0.

the β − γ plane, however. A third wave appears when 1/γ is
between 5 and 7 days and β is up to 0.4/day, corresponding to
R0 < 2 (we note that most estimates place R0 > 2 for SARS-CoV-
2 [47, 48]). The second peak may be higher or lower than the first
peak, depending on the β and γ parameter combinations. For
R0 > 2.4, the second peak tends to be lower than the first, while
for R0 < 2.4 is higher.

The increase in the number of waves with a decrease in β

(or equivalently, a decrease in the basic reproduction number
R0) is notable and surprising. The classical SEIR model without
behavior shows the opposite effect: increasing R0 when the
endemic equilibrium is stable causes damped oscillations to be
sustained for a longer period before the oscillations die down.
Our model shows different dynamics than the classical SEIR
model on account of strong behavioral feedback. When R0 is
sufficiently high, the infection can pass through the population
rapidly and cause a large amount of herd immunity to build up
before the population response causes a late dampening of the
epidemic curve. As a result of herd immunity, a second wave
is not possible. But when R0 is smaller, the spread of SARS-
CoV-2 is slow enough to allow a timely population response that
flattens the curve and ends the first wave. After the first wave,
cases are low, but so is herd immunity. In the meantime, the
economic consequences of lockdown continue to build, causing a
waning of support for continued lockdown, which in turns sparks
a second wave among the remaining susceptible individuals. This
process can be repeated in third and subsequent waves for some
parameter values. But we emphasize that multiple waves do not
necessarily correspond to more COVID-19 cases overall.

Changes in the duration of infectiousness 1/γ and the
duration of the latent stage 1/σ around baseline values do not
change the number of peaks: a secondwave is still observed across
the range we explored (Supplementary Figure 2). However, the
second peak is higher than the first when 1/γ is between 3 to 5
days, while out of this range the second peak is lower. The lack
of dependence of dynamics on σ is expected. When 1/γ < 3
days, the second peak is less severe because R0 drops below levels

FIGURE 2 | Parameter plane showing model dynamics as they vary with changes in the transmission rate β and the rate γ at which the infectious period ends, for the

number of COVID-19 waves (A) and the ratio of peak height of the second wave to the first wave peak (B). Other parameters are at baseline values (Table 1).
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that are feasible for continued transmission in the population.
In contrast, when 1/γ > 5 days the second peak is less severe
because a heightened R0 causes rapid build-up of herd immunity
in the first wave of infection.

3.3. Socio-Economic and Intervention
Conditions for a Second Wave
Next we explored the effect of variation in intervention,
economic and social parameters. The parameter plane for α, the
rate at which economic losses due to closure accumulate, and
δ, the discounting rate for losses, shows little variation in these
values across the ranges we explored (Supplementary Figure 3).
Two waves are predicted and the peak of the second wave is
higher than the first wave for almost all parameter combinations.
The only exception is that when α is very small, only a single wave
occurs because the population is willing to tolerate economic
losses indefinitely. As a result, x remains high over the entire time

horizon of the simulation and COVID-19 is effectively controlled
throughout this period.

The behavioral parameter κ is a measure of how quickly novel

social behavior spreads through a population as disease cases
are reported. It has a large influence on the model dynamics,

as represented in the κ − α, κ − ǫ, and κ − C0 parameter

planes (Figures 3–5). Higher values of κ indicate that individuals
imitate more quickly. At our baseline value κ = 5/day, we
observe a second wave. As the value of κ increases from this
baseline value, the number of waves increases from two to six
or seven in all three parameter planes, unless the effectiveness
of closure (C0) is so low that the population experiences a
single large epidemic that rapidly confers herd immunity to
everyone (Figures 3–5). As κ is reduced sufficiently from its
baseline value, the second wave is lost as expected, since we
enter a parameter regime where the population responds with
an unrealistic slowness to the presence of COVID-19, and it

FIGURE 3 | Parameter plane showing model dynamics as they vary with changes in the rate α at which socio-economic losses accrue and the rate κ that controls the

social learning rate, for the number of COVID-19 waves (A) and the ratio of peak height of the second wave to the first wave peak (B). Other parameters are at

baseline values (Table 1).

FIGURE 4 | Parameter plane showing model dynamics as they vary with changes in the rate κ that controls the social learning rate and the parameter ǫ which

controls how sensitive the population is to economic losses relative to infection prevalence, for the number of COVID-19 waves (A) and the ratio of peak height of the

second wave to the first wave peak (B). Other parameters are at baseline values (Table 1).

Frontiers in Physics | www.frontiersin.org 6 October 2020 | Volume 8 | Article 57451485

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Pedro et al. Conditions for Second COVID-19 Wave

FIGURE 5 | Parameter plane showing model dynamics as they vary with changes in the rate κ that controls the social learning rate and the parameter C0 which

controls how effective closure is, for the number of COVID-19 waves (A) and the ratio of peak height of the second wave to the first wave peak (B). Other parameters

are at baseline values (Table 1).

experiences a single, rapid pandemic wave that rapidly confers
herd immunity. The second peak is higher than the first peak in
all three parameter planes, except again when C0 is too low to
effectively flatten the curve, and a single large outbreak results.
Some examples of model outcomes for three or more waves are
shown in Supplementary Figure 4. In these extreme scenarios,
the second wave can either dominate the first and third waves,
or it is also possible that the peaks of successive epidemic waves
increase over time until it reaches a maximum peak in the
fourth wave.

4. DISCUSSION

A second wave of COVID-19 is widely feared in 2020 as many
jurisdictions around the world begin lifting restrictions that
have held viral transmission in check. To address this issue, we
analyzed a simple theoretical model of the interplay between
SARS-CoV-2 transmission dynamics and social dynamics
concerning public support for physical distancing and school and
workplace closure. We found that a second wave of COVID-19
(and sometimes also a third wave) was likely across a broad range
of epidemiological and behavioral parameters. In some cases,
the second peak was higher than the first peak, while for other
parameter combinations it was lower.

Our prediction of a second wave driven by behavior-disease
interactions is plausible, given past and recent experience with
novel emerging pathogens. One of the first affected countries
in the COVID-19 pandemic (Iran) is now experiencing a large
second wave on account of lifting restrictions in April 2020 [49].
During the 2003 SARS-CoV-1 epidemic in Toronto, premature
relaxation of control measures resulted in a second outbreak
that was as large as the first outbreak [50]. Finally, behavioral
responses to disease dynamics appear to have played a role
in shaping the three waves that some populations experienced
during the “Spanish flu” pandemic in 1918 [51].

Our model makes simplifying assumptions that could
influence its projections. For instance, our model assumes that

populations respond to infection prevalence I(t) but in fact,
populations observe reported cases and deaths, both of which are
delayed compared to time of actual infection. Time delays tend
to destabilize dynamics in epidemic models [31] and hence we
suspect that a model extension including a response to lagged
outcomes like reported cases and deaths would exacerbate the
severity of second waves in our model.

On the other hand, adding real-world spatial and
demographic heterogeneities to our model could stabilize
the dynamics and make the predicted oscillations less extreme,
even if they do not remove them completely [52–56]. Similarly,
on the behavioral modeling side, we suggest that the extreme
oscillations observed in this model could also be stabilized
if individuals use past and/or projected future states in their
decision-making, instead of just the current prevalence, as we
assumed [57, 58]. Alternatively, if individuals learn socially from
other populations at differing stages of COVID-19 outbreaks
[28], and not just their local population, this might also dampen
the oscillations we observed in the model.

In summary, we speculate that incorporating social and spatial
heterogeneities into the model would not completely remove
the possibility of a second wave, although it could dampen the
cycles [52–56] and give rise to epidemic curves more closely
resembling that observed in the second wave in Iran [49].
Moreover, our prediction of a second wave was relatively robust
across parameter space. Hence, we conclude that a secondwave of
COVID-19 on account of the coupled behavior-disease feedbacks
we explore in this model will characterize many populations.
Because interactions between the dynamics of disease spread and
social processes will play a major role in shaping the pandemic,
more effort in transmission modeling of COVID-19 should be
devoted to accounting for them.
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As of July 21, 2020, the coronavirus SARS-CoV-2 had spread to almost all countries

around the world and caused more than 14.8 million confirmed cases, owing to its high

transmissibility and fast rate of spread. Of the infected locations, the Diamond Princess

cruise ship is special in that it is an isolated system with a population highly concentrated

in a limited space, providing particularly favorable conditions for the transmission of

the novel coronavirus-associated pneumonia, COVID-19. The Japanese government’s

emergency measures for controlling the spread of COVID-19 on the cruise ship have also

been questioned. In this paper we develop a homogeneous mixed difference system to

describe the mechanism of transmission of COVID-19 on the cruise ship, reverse-predict

the epidemic transmission trend from January 20 to February 20, 2020, including the daily

number of infected people and the peak time of infection, estimate the range of the basic

reproduction number of virus transmission on the cruise ship, and assess the effects of

prevention and control measures. It is concluded that the isolation of people, along with

rapid and comprehensive detection of infections, play an important role in controlling the

epidemic. In fact, the Japanese government’s emergency measures did have a certain

effect on limiting the spread of COVID-19, but the number of infected people could have

been reduced by at least 60% if all personnel on the cruise ship had been tested and

isolated promptly as early as February 5.

Keywords: COVID-19, Diamond Princess, difference equation, reverse prediction, reproduction number, measures

assessment, infection scale

1. INTRODUCTION

Since December 2019 a new coronavirus pneumonia, named COVID-19, has spread menacingly
quickly and invaded more than 200 countries, infecting over 14.8 million people and causing more
than 600,000 deaths by July 21, 2020. Among the infected places, the Diamond Princess cruise ship
is a special case; the course of development of the epidemic on the ship is shown in Figure 1. On
January 20, the Diamond Princess departed from Yokohama, Japan, and a passenger from Hong
Kong embarked. The passenger disembarked in Hong Kong on January 25 and was confirmed to
be infected with SARS-CoV-2 on February 1. TheDiamond Princess, which was scheduled to return
to Yokohama on February 5, arrived ahead of time on February 4 and was subjected to quarantine
and inspection. According to requirements of the Ministry of Health, Labor and Welfare of Japan,
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FIGURE 1 | The course of development of the COVID-19 epidemic on the Diamond Princess cruise ship.

from February 5 all passengers on the Diamond Princess had to
be isolated in their cabins for 14 days. During the quarantine
period, passengers and crew were tested in batches irregularly,
and individuals confirmed to be positive for COVID-19 were
to disembark for treatment at designated institutions in Japan.
With the comprehensive implementation of systematic detection
starting from February 14, all testing work was completed on
February 18. Meanwhile, from February 17, other countries
began to evacuate their nationals on chartered flights. From
February 19, passengers who tested negative and in whose room
there were no confirmed cases were allowed to disembark. From
February 27, the crew of the cruise ship began to disembark and
were sent to Saitama prefecture and Hikari city in Japan to be
isolated for 14 days. ByMarch 1, all people had disembarked from
the cruise ship. Eventually, a total of 721 on theDiamond Princess
were reported to be infected with SARS-CoV-2.

During the initial phase of infection on the cruise ship,
the Japanese government did not pay enough attention to
the outbreak and did not test, survey, evacuate, or isolate
people in a timely fashion, but only asked passengers to isolate
themselves in their cabins, and continued to allow air to be
circulated on the ship through the central air-conditioning
system. Siqi Sun, a lecturer at Shanghai Maritime University
and the author of the book Cruise Tourism Law Thesis, has
said that this is the most complex crisis in the history of
cruises since the Titanic event in 1909 [1]. In the present
work, we aim to use mathematical methods [2] to elucidate
the mechanism of COVID-19 transmission on the Diamond
Princess cruise ship, and thus provide a theoretical basis
for guidance on epidemic prevention and control in similar
closed systems.

At the early stage of the epidemic on the Diamond Princess,
information about the outbreak was limited to daily detected
and confirmed cases. However, the sampling method and the
proportion of inspected samples were irregular, so it is difficult
to capture the pattern of the epidemic during the early stage,
let alone use it to predict the later development of the epidemic.
However, by May 2020 all cases of infection had been confirmed.
Therefore, based on the final cumulative number of confirmed
cases, the transmission trend of the epidemic from January 20
to February 20 can be reverse-predicted and evaluated. For
this purpose, considering that the mode of contact between
people on the ship is close to uniform mixing, we derive
a homogeneous mixing difference equation to describe the
transmission mechanism of COVID-19 on the ship, with the goal
of understanding the characteristics of epidemic transmission in
a confined space. In addition, we estimate the number of people
infected by the Hong Kong passenger from January 20 to January
25, the number of people who had been infected by February 5
when isolation measures were put in place, and the peak time
and peak value of the epidemic on the cruise ship. Moreover, we
estimate the basic reproduction number of the spread of COVID-
19 on the ship. Finally, we assess the effects of the isolation
measures taken by the Japanese government.

2. MATERIALS AND METHODS

2.1. Materials
We study the infection status of 3,711 people on the cruise
ship, including 2,666 passengers and 1,045 crew members, from
January 20 to February 20. The numbers of detected and
confirmed cases are shown in Table 1 [1, 3–5], where detected
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TABLE 1 | Detected and confirmed cases out of 3,711 people on the Diamond

Princess.

Date Cumulative number Cumulative number Number of people

of detected cases of confirmed cases disembarking

February 5 31 10 10

February 6 102 20 20

February 7 202 61 41

February 8 208 64 3

February 9 336 70 6

February 10 439 135 65

February 11 439 135 0

February 12 492 174 39

February 13 713 218 44

February 14 714 218 11

February 15 930 285 67

February 16 1,219 355 70

February 17 1,723 454 437

February 18 2,404 542 88

February 19 3,011 621 522

February 20 / 634 522

February 27 / 705 /

March 3 / 706 /

/ 721 (final number) /

cases refer to individuals who had taken a nucleic acid test
of which the result is uncertain (may be negative or positive),
and confirmed cases refer to individuals whose tests came
back positive.

2.2. Prerequisites
We assume that the first case on the cruise ship is the passenger
from Hong Kong, who boarded the ship on January 20 and
disembarked on January 25.

We also assume that everyone on the cruise ship has the same
contact number per day, denoted by C(t). Since the Japanese
government began to test and isolate all individuals on the cruise
ship from February 5, the model is divided into two stages:
(i) January 20 to February 4, and (ii) February 5 to February
20. The average number of close contacts per person per day
is denoted by C1 during the first stage and by C2 during the
second stage.

2.3. Dynamical Model
We take January 20 to be the initial time, denoted by t = 1. At
time t, the number of infected but not confirmed (INC for short)
is denoted by I(t). As given in Figure 2, the variation with time is
given by

number of INC at time t + 1 = number of INC at time t

+ number infected by the Hong Kong passenger at time t

+ number infected by other passengers at time t

− number of newly confirmed cases at time t.

FIGURE 2 | Transfer diagram for the dynamical transmission of COVID-19

among subpopulations.

Let F(t) be the number of imported infected persons at time t. It is
assumed that the Hong Kong passenger is the only imported case.
Then F(t) = 1 from January 20 to January 25, i.e., for 1 ≤ t ≤ 6,
and F(t) = 0 for t > 6. The daily number of close contacts
of the Hong Kong passenger is C1, and let λ be the probability
of another individual being infected by the passenger after close
contact. Then the number of people infected by the Hong Kong
passenger at time t is λC1F(t).

At time t, for all infected individuals except the Hong Kong
passenger, the close contact number per person per day is
C(t). The proportion of uninfected (i.e., susceptible) people is
N−G(t)−I(t)

N−G(t)
, where N is the total number of people on the cruise

ship on February 5, G(t) is the cumulative number of people
who have disembarked, and N − G(t) is the total number of
people remaining on the cruise ship at time t. Hence, the number
of infected people caused by one infected individual at time t

is λC(t)(N−G(t)−I(t))
N−G(t)

, and the number of infected people caused

by all infected individuals at time t is λC(t)(N−G(t)−I(t))
N−G(t)

I(t). The

number of newly confirmed cases at time t is denoted by D(t).
The cumulative number of confirmed cases at time t is denoted
by Q(t). The cumulative number of infected cases at time t is
denoted by A(t).

Hence we have the system of equations

I(t + 1) = I(t)+ λC1F(t)+
λC(t)(N − G(t)− I(t))I(t)

N − G(t)
− D(t),

A(t + 1) = A(t)+ λC1F(t)+
λC(t)(N − G(t)− I(t))I(t)

N − G(t)
,

Q(t + 1) = Q(t)+ D(t), (1)

where

F(t) =

{

1 for t ≤ 6,

0 for t > 6

and

C(t) =

{

C1 for t < 17,

C2 for t ≥ 17.

2.4. Parameter Values
In this subsection, we use real data (see Table 1) to estimate
the parameter values in model (1), which are given in
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TABLE 2 | Values of parameters and variables in model (1).

Parameter Meaning Value Confidence interval Source

D(t) Daily new number of confirmed cases at time t See Table 1 / Real data

G(t) Daily cumulative number of people disembarking at time t See Table 1 / Real data

λ Transmission probability per contact 0.05 / (a)

C1 Contact number per person per day before February 5 9.2472 (Case I) [8.7184, 9.7760] (b)

C2 Contact number per person per day after February 5 1.5013 (Case I) [0.8685, 2.1341] (b)

C1 Contact number per person per day before February 5 6.4386 (Case II) [6.4301, 6.4472] (b)

C2 Contact number per person per day after February 5 6.4386 (Case II) [6.4301, 6.4472] (b)

N Total number of staff on ship 3, 711 / Real data

I(0) Initial number of infected individuals 0 / Real data

A(0) Initial number of cumulative infected individuals 0 / Real data

Q(0) Initial number of cumulative confirmed individuals 0 / Real data

A(32) Theoretical number of cumulative infected individuals on February 20 /

Â(32) Actual number of cumulative infected individuals on February 20 / [720, 760] (c)

Table 2. We describe the process of parameter estimation,
which is implemented using the function fminsearch in the
optimization toolbox of MATLAB.

(a) The meaning of λ is the transmission probability per
contact. We estimate its value by combining information from
references [6–8], which studied the spread of the epidemic in
Wuhan city, in Shanxi province, and on the Diamond Princess,
respectively. In Zhang et al. [6] the transmission probability per
contact was found to be 0.0149; in Xue et al. [7] the values
0.01597 and 0.04644 were given; and Liu et al. [8] provided a
range of 0.001–0.2 for the transmission probability per contact.
Based on these estimates, here we take the value of λ to
be 0.05.

(b) We use the least-squares estimation method to obtain the
values of C1 and C2 in Case I and the value of C1 = C2 in
Case II (see section 3 for description of the cases) by fitting the
theoretical value of A(32) in model (1) to the actual cumulative
number of infected individuals, denoted by Â(32). Individuals
on the cruise ship were isolated, with each passenger staying
in their own cabin. Each cabin on the Diamond Princess can
accommodate four people [9], so we suppose that the average
number of people in each cabin is 3. As for the crew, from
February 5 they took meals in the canteen in turn, and the dining
room table can accommodate 12 people. Therefore, we assume
that the average contact number for each crew member is 12.
The proportions of passengers and crew on the ship were 71.8
and 28.2%, respectively, so we calculate that the average contact
number per person per day for passengers and crew is between
5 and 6.

(c) According to Japan’s health ministry bulletin, all
individuals on the ship had been tested and had disembarked by
March 1, and the total number of officially reported confirmed
cases is 721 [5]. Besides those, 38 passengers tested negative when
disembarking but were later confirmed to be positive [10, 11].
Considering that some of these people may have become infected
on their way back home, we estimate that on February 20 the
actual cumulative number of infected individuals, Â(32), was
between 720 and 760.

3. RESULTS

The isolation measures taken by the Japanese government have
been controversial, and the actual infection situations before and
after the measures were imposed are not clear. In this section, we
reverse-predict the infection on the cruise ship in two scenarios.

3.1. Case I
In this scenario it is assumed that the isolation measure is
effective by itself, and that circulating air through the central air-
conditioning system does not cause spread of the virus. Under
isolation, close contacts of passengers were restricted to their
cabin mates, and close contacts of crew members were limited to
those dining together. Based on the model and parameter values,

by calculating λC(t)(N−G(t)−I(t))
N−G(t)

I(t) and A(t) we can estimate the

new daily number and cumulative number of infected people
from January 20 to February 20; these values are reported in
Figure 3 and Table 3.

From Figure 3Awe observe that the peak time of the epidemic
in this case is from February 5 to February 15. As of February
20, there were still 100 infected but not confirmed individuals
on the ship. By comparing the red dots with the black solid
line, we can see that the number of confirmed cases was far
less than the number of infected people before February 14. The
comprehensive and systematic testing from February 14 led to a
rapid fall in the number of infected persons, and the cumulative
number of infected people and the total number of confirmed
cases gradually became closer. So we can see that isolating
people and conducting comprehensive testing play important
roles in epidemic control. From Table 3 we also see that there
would have been about 258 ([188, 328]) infected individuals
on February 5 when the cruise ship was isolated. It can be
concluded that because the Japanese government did not pay
enough attention to the epidemic at the initial stage and did
not carry out comprehensive testing on all people onboard in
time, the final proportion of infected reached nearly 20%. If
measures had been taken for the Diamond Princess as promptly
as for the Costa Selena cruise ship, which carried 4806 passengers
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FIGURE 3 | Number of infected people as a function of time from January 20 to February 20 in Case I: (A) daily new number of infected cases; (B) daily cumulative

number of infected cases. Red dots represent actual confirmed numbers; black dotted lines indicate critical time nodes; the black solid line represents the theoretical

mean value of the number of infected, λC(t)(N−G(t)−I(t))
N−G(t) I(t) in (A) and A(t) in (B); the blue area represents the interval of 10,000 times deduction results.

TABLE 3 | Reverse-predicted infection size and peak in Cases I and II.

Case Number of people infected Infected population Infected population Peak time

by Hong Kong passenger on February 5 on February 20 of infection

I 2.7742 ([2.6155,2.9328]) 257.9222 ([187.9917,327.8528]) 109.0139 ([96.4057,121.6221]) February 5 to February 15

II 1.9316 ([1.9290,1.9341]) 52.9066 ([52.6305,53.1826]) 119.5218 ([94.9011,144.1424]) February 15 to February 16

and crew members and for which the Chinese government
spent 1 h formulating the response plan, 4 h conducting the
sampling work, 5 h producing the test results, and 24 h overall
completing the detection, evacuation, and resettlement work
[12], the number of infected on the Diamond Princess could have
been reduced by at least 60–70%. This shows that the effect of
non-pharmaceutical interventions on controlling the spread of
COVID-19 is very considerable [13].

The reproductive number (including the basic reproductive
number, or the effective reproductive number) is an index that
measures the number of infected people caused by a single
infected individual during the infection period. In Case I, the
basic reproductive number can be estimated based on the Hong
Kong passenger infecting about 3 (2.7742) persons from January
20 to January 25 by the sum

∑6
t=1 λC1F(t), which can be taken as

the reproductive number of the Hong Kong passenger. Based on
reference [14], the incubation period of COVID-19 is 3–5 days,
so we assume that it will take 3–5 days from showing clinical
symptoms to becoming a confirmed case on the cruise ship.
Then the infection period is assumed to be 6–10 days. Besides,
according to reports of the National Institute of Infectious
Diseases of Japan, as of February 18 the percentage of infected but
symptomless samples among 2,404 respiratory tract specimens
was as high as 48%. Assume that the average time between being
infected and being confirmed for asymptomatic infection is 10–
15 days. Combining symptomatic and asymptomatic infections,
we estimate the basic reproduction number of the cruise ship to
be 3.66–5.54; see Table 4. For Wuhan city in Hubei province,
China, which also became an isolated system after sealing, the

TABLE 4 | Comparison of the basic reproduction number in different regions.

Region Basic reproduction number Source

Diamond Princess cruise ship 3.58–5.63 Case I

2.54–3.99 Case II

Wuhan city 1.5–2.5 WHO

1.47–2.59 [12]

2.47–2.86 [14]

3.6–4.0 [15]

1.16–1.48 [16]

2.2 [17]

Hunan province 1.34 [18]

Shandong province 1.71 [18]

Shenzhen city 1.08 [18]

China 3.51–4.05 [19]

basic reproduction number is 1.4–4.0 [15, 17, 19, 20]. For China
as a whole, the basic reproduction number is 3.51–4.05 [21]. The
basic reproduction number of the cruise ship is larger, which may
be due to the higher population density, a more enclosed space,
a higher percentage of asymptomatic infections, and delayed
testing for all individuals.

3.2. Case II
Japan’s emergency measures, which kept passengers isolated in
cruise cabins but continued to circulate air through central
air-conditioning, was questioned by many experts. Assume
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FIGURE 4 | Number of infected people as a function of time from January 20 to February 20 in Case II: (A) daily new number of infected cases; (B) daily cumulative

number of infected cases. Red dots represent actual confirmed numbers; black dotted lines indicate critical time nodes; the black solid line represents the theoretical

mean value of the number of infected, λC(t)(N−G(t)−I(t))
N−G(t) I(t) in (A) and A(t) in (B); the blue area represents the interval of 10,000 times deduction results.

FIGURE 5 | Number of cases plotted against time. The green bars show the

number of febrile patients and the blue bars the number of confirmed

COVID-19 cases with reported onset times.

that after isolation, the close contact number of each person
does not change due to circulation of air in the central air-
conditioning system, that is, C1 = C2. Similarly to Case I,
based on the model and parameter values we can calculate
the new number and cumulative number of infected people
from January 20 to February 20, as shown in Figure 4 and
Table 3. By inspection of Figure 4A, the infection peak time
is from February 15 to February 16. Although the quarantine
measure was imposed on February 5, the upward trend in the
number of infections remained largely unchanged. Comparing
the red dots with the black solid line in Figure 4A, we see
that the comprehensive and systematic testing which started
on February 14 resulted in a rapid decline in the number
of infected people after February 17. We also find that there

were about 53 infected individuals on February 5 when the
cruise ship was isolated. If the Japanese government had
completed response measures, such as detection, evacuation, and
resettlement work as quickly as was done for the Costa Selena,
the number of infected on the Diamond Princess could have
been reduced by at least 90%. In Case II, it can be estimated
that the Hong Kong passenger infected about two persons
(1.9316) from January 20 to January 25. In this case, then, we
estimate the basic reproduction number on the cruise ship to
be 2.55–3.99.

4. DISCUSSION AND CONCLUSION

In this article we have used a mathematical dynamical model to
reversely deduce, in two hypothetical cases, the number of people
infected with COVID-19 on the Diamond Princess cruise ship
from January 20 to February 20, 2020, the peak time of infection,
the number of the infections caused by the Hong Kong passenger,
and the basic reproduction number, information which can
provide the theoretical basis for understanding the spread of the
epidemic and developing effective control measures. The results
reported in this paper demonstrate that a dynamical model which
incorporates a transmission mechanism can be a very useful
method for predicting the spread of a disease, especially when
actual data are scarce [22–25].

Although the premises of the two cases are different, it
can be deduced that quarantining populations and conducting
comprehensive testing play an important role in control of the
epidemic, and that detection of cases needs to be timely.

According to the report published by the National Institute
of Infectious Diseases of Japan, as of February 18, 2,404 samples
on the Diamond Princess cruise ship had been tested (including
samples for double detection), and 531 cases were confirmed to
be positive for COVID-19. Of these, 33 cases showed symptoms
before February 6, 151 showed symptoms on or after February
6, and 255 (48%) were asymptomatic. Combining the time of
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diagnosis of 79 patients with fever before February 6 (only 33
of which were confirmed cases) with the onset time of 151
confirmed cases after February 6, we obtain Figure 5. As can
be seen from the figure, the infection peak was reached on
February 7. Comparing with Figures 3A, 4A, Case I seems closer
to the actual situation, indicating that the role of central air-
conditioning in transmission of the disease is relatively small,
and that the isolation intervention adopted by the Japanese
government had a certain impact on reducing the transmission
of the virus from one person to another.

By our analysis, we estimate the reproduction number
associated with the Hong Kong passenger to be between
1.9290 and 2.9328. In fact, the time period between the
date of infection and date of confirmation for other persons
on the cruise ship is irregular and cannot be determined,
so the period of infection cannot be determined and hence
the basic reproduction number cannot be found accurately.
Nevertheless, we can give a general range [2.54, 5.63]. If the
Japanese government had completed response measures for
the Diamond Princess—including detection, evacuation, and
resettlement work—as promptly as was done for the Costa Selena
cruise ship (within 24 h), the number of infections on the
Diamond Princess could have been reduced by at least 60%.
In this respect, the response measures taken for the Costa
Selena in Tianjin Port provide a positive paradigm. Moreover,
38 Diamond Princess passengers who tested negative on the
ship were confirmed to have the disease after they disembarked,
indicating that the nucleic acid test had certain errors and
led to a proportion of infected people not being detected and

thus becoming a potential source of risk for other regions.

Therefore, the accuracy of the testing method should also
be improved.
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The solutions to the supply and allocation of medical emergency resources during public

health emergencies greatly affect the efficiency of epidemic prevention and control.

Currently, the main problem in computational epidemiology is how the allocation scheme

should be adjusted in accordance with epidemic trends to satisfy the needs of population

coverage, epidemic propagation prevention, and the social allocation balance. More

specifically, the metropolitan demand for medical emergency resources varies depending

on different local epidemic situations. It is therefore difficult to satisfy all objectives at the

same time in real applications. In this paper, a data-driven multi-objective optimization

method, called as GA-PSO, is proposed to address such problem. It adopts the one-way

crossover and mutation operations to modify the particle updating framework in order

to escape the local optimum. Taking the megacity Shenzhen in China as an example,

experiments show that GA-PSO effectively balances different objectives and generates

a feasible allocation strategy. Such a strategy does not only support the decision-making

process of the Shenzhen center in terms of disease control and prevention, but it also

enables us to control the potential propagation of COVID-19 and other epidemics.

Keywords: COVID-19, computational epidemiology, epidemic propagation, emergence management, multi-

objective optimization, medical emergency resources

1. INTRODUCTION

In December 2019, a few patients with atypical pneumonia were first diagnosed in Wuhan, China,
and this was reported to the World Health Organization (WHO) [1]. Then, its etiology was
identified as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It is obvious that
the disease was spreading continuously from person to person at the end of January 2020 [2]. The
confirmed and imported cases in the Hubei province, China, brought about severe coronavirus
outbreaks in many cities across China. More seriously, the disease, called COVID-19, has since
spread rapidly across China and to the rest of the world [1]. By the end of June 30, 2020, there were
10,185,374 confirmed cases and 503,862 deaths in 210 countries [3].
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Currently, vaccines and antiviral medicines for COVID-
19 are still under development. Besides, other pharmaceutical
treatments (e.g., plasma therapy) are not likely to be implemented
on a large scale. Therefore, the use of a personal protective
equipment (PPE) (e.g., hand sanitizers, surgical face masks,
and protective clothing) becomes one of the major non-
pharmaceutical measures to reduce the infectious hazard [4].
The sudden outbreak throughout China has exacerbated an
unprecedented PPE shortage, causing austere challenges to
epidemic control [5]. Due to the limited stock of a PPE during the
early phase of COVID-19 epidemic, the local health organization
suffered great challenges. It has been an open problem for us to
efficiently allocate a PPE during an epidemic propagation.

Currently, various models (e.g., SIS, SIR, and SVIR) are
considered to model the spreading process for the purpose of
estimating the affecting scope from the perspective of theoretical
analysis [6–10]. It is also possible to introduce evolutionary game
theory during the resource allocation process [11]. However,
balancing the allocation of a PPE in different regions is still
a tough task due to multiple risk factors and high interest.
Two key factors are a high-risk population and the severity of
infection [12]. As a result, this paper develops an improved
particle swarm optimization algorithm to reconcile this decision

TABLE 1 | Parameters are used in the experiments of the GA-PSO algorithm.

Parameters Source

Ni Population size in the ith district in 2016 [13]

Oi Population size of people aged 65 or more in the ith district in 2015

[15]

Ii The number of confirmed cases in the ith district by February 1,

2020

[16]

Ai The number of impacted individuals in per confirmed case which is

assumed as 1,000

X The PPE allocation over 10 districts where X = (x1, ..., x10)

G The total allocation in Shenzhen where G =
∑

i xi

FIGURE 1 | The overview of the GA-PSO algorithm, which comprises three components, i.e., the random initialization, the genetic operations, and the particle swarm

optimization framework. The initial particles are selected by the roulette method. When a random number is less than the mutation rate, the particle is executed the

initialization operation.

making problem. It balances the heterogeneity of a high-risk
population and the severity of infection by incorporating the one-
way crossover and mutation operations into the particle swarm
optimization framework and eventually generates a reasonable
allocation strategy of a PPE.

We apply this algorithm for balancing the allocation of PPE
in Shenzhen, which is one of the largest megacities [with a
population ofmore than 11million [13]] in Guangdong province,
China. During the COVID-19 epidemic in China, Shenzhen
reported 195 confirmed COVID-19 cases as of February 1, 2020,
which was higher than all other cities except Hebei province at
that time. Therefore, improving the medical emergency system
has been one of the highest priorities in Shenzhen [14]. More
specifically, the supply and allocation of PPE is an urgent matter
in Shenzhen.

2. METHODS

Shenzhen is divided into ten administrative districts. All
parameters are set in Table 1. Let X = (x1, ..., x10) denote a PPE

TABLE 2 | The demographic information of 10 districts in Shenzhen and the

predicated PPE allocation of the highest risk and the greatest severity objectives.

District The

predicted

allocation of

the largest

high-risk

The

predicted

allocation of

the greatest

severity

Population

in 2016

Age 65 in

2015

Cumulative

cases on

february 1,

2020

Bao’an 3 21 2,863,300 51,938 22

Dapeng 36 36 135,600 4,499 2

Futian 84 705 1,440,600 80,605 36

Guangming 4 3 531,200 8,620 5

Luohu 13 61 975,600 44,210 11

Longhua 48 4 1,511,500 23,434 24

Longgang 61 25 2,052,400 44,620 41

Nanshan 705 84 1,291,200 57,477 46

Pingshan 25 13 356,100 5,935 5

Yantian 21 48 221,200 8,173 3
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allocation over 10 districts, and G =
∑

i xi represent the total
allocation. The optimization strategy is based on the following
assumptions and objectives:

• High-risk population: Due to multiple complications and a
high fatality rate of people over 65, we select people over
65 [17]. The ith district with Oi people aged 65 or more is
allocated xi sets of PPE defined in Equation (1), where Ni is
the population size in the ith district.

∑

i

xi × Oi/Ni (1)

• The severity of infection: The ith district with Ii confirmed
cases is allocated xi sets of PPE defined in Equation (2). Ai is

the number of impacted individuals per confirmed case, which
is assumed to be 1,000 for all districts.

∑

i

xi × Ai × Ii/Ni (2)

Based on the above two objectives, this paper proposes a
novel multi-objective optimization algorithm, named as GA-
PSO, developed on the basis of MODPSO [18]. More specifically,
GA-PSO is partially modified to simultaneously optimize the
high-risk population and the severity of infection. The overview
of GA-PSO is shown in Figure 1. It adopts one-way crossover and
mutation operations to modify MODPSO in order to enhance
the quality of solutions and escape the local optimum [19, 20].

FIGURE 2 | Estimated PPE optimized allocation in the 10 districts of Shenzhen on February 14, 2020. The Pareto frontier uses the two objectives of high-risk and

severity priorities in the middle right inset. The predicted allocation of the greatest high-risk priority in (A) and the predicted allocation of the greatest severity priority

in (B).
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Every population is composed of a set of particles which is a
feasible solution (i.e.,X). Firstly, a random population of particles
is initialized. X is a random integer vector by G =

∑

i xi. Then,
X is evaluated by the high-risk population and the severity of
infection. It adopts the roulette method to select the preferable
fitness particles. After that, it executes the one-way crossover
operation. When a random number is less than the mutation
value, it generates random particles. Finally, it iteratively
generates new populations using particle status updating rules.
During each iteration, the algorithm updates the Pareto solutions.
When the number of iterations reaches the set value, the
currently obtained Pareto solutions are the final solutions for the
optimization problem.

3. RESULTS

The Shenzhen dataset is shown in Table 2 and includes the
population size in 2016 [13], the number of people aged 65 or
more in 2015 [15], and the cumulative cases on February 1,
2020 [16]. Besides, the PPE optimized allocation is calculated
by GA-PSO as shown in Table 2. Figure 2 describes that
the GA-PSO detects the Pareto front solutions for the PPE
optimized allocation over 10 districts in Shenzhen. Every
Pareto front solution indicates a feasible allocation. Different
solutions can lead to different objective function values as
quantified by the high-risk and severity priorities. The value
of high-risk priority has ranged from 4.1% to 5.0%, and the
value of the severity priority has ranged from 2.5% to 3.1%
in Figure 2.

In summary, two objectives (i.e., the high-risk population
and the severity of inflection) are added to obtain the PPE
accessibility. The maximum value of the PPE accessibility is
7.53% for older or impacted individuals. When only the maximal
high-risk population is the objective, the optimized allocation is
estimated across 10 districts in Shenzhen, ranging from 3‰ in
suburban Bao’an to 705‰ in central Nanshan. If the severity
is the solitary objective, the allocation is from 3‰ in suburban
Guangming to 705‰ in central Futian. The central districts of
Futian and Nanshan top the PPE priority because of the maximal
older people and confirmed cases.

4. DISCUSSION

Metropols (e.g., New York, London, Paris, and San Paulo) have
been experiencing an urgent demand for medical emergency
resources since the early phase of the COVID-19 epidemic.

The use of a personal protective equipment (PPE) (e.g., hand
sanitizers, surgical face masks, and protective clothing) has
become one of the major non-pharmaceutical measures with
which to reduce the infectious hazard. Due to the limited stock
of PPE in particular during the early phase of the COVID-19
epidemic, the local health organization has suffered greatly. It
is therefore a challenge to balance the supply and allocation
of PPE during the available time. To overcome this challenge
for practical applications, the multi-objective optimization is a
promising method.

A multi-objective optimization algorithm generates a set of
Pareto solutions each of which is a tradeoff between multiple
objectives. Consequently, the multi-objective optimization
facilitates the decision making problem. In addition to PPE,
the pharmaceutical prophylactics (e.g., antibiotics, vaccines,
antitoxins, and other critical medical supplies) are also faced
with the decision making problem because of the limited supply
in the early phase. Our optimization algorithm for PPE can
therefore be extended to other pharmaceutical prophylactics to
narrow the scope of a disease spread and to avoid catastrophic
economic and social consequences.
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The 2019 coronavirus disease (COVID-19) pandemic began in the city of Wuhan, China,

at the end of 2019 and quickly spread worldwide. The disease is caused by contact

with the SARS-CoV-2 virus, which probably jumped from an animal host to humans.

SARS-CoV-2 infects various tissues in the body, notably the lungs, and patients usually

die from respiratory complications. Mathematical models of the disease have been

instrumental to guide the implementation of mitigation strategies aimed at slowing the

spread of the disease. One of the key parameters of mathematical models is the basic

reproduction ratio R0, which measures the degree of infectivity of affected individuals.

The goal of mitigation is to reduce R0 as close or below 1 as possible, as it means that

new infections are in decline. In this work, we use the recursive least-squares algorithm

to establish the stochastic variability of a time-varying R0(t) from eight different countries:

Argentina, Belgium, Brazil, Germany, Italy, New Zealand, Spain, and the United States.

The proposed system can be implemented as an online tracking application providing

information about the dynamics of the pandemic to health officials and the public at large.

Keywords: COVID-19, epidemic spreading, pattern recognition, mathematical modeling, transmission dynamics,

disease prediction

1. INTRODUCTION

OnMarch 11, 2020, the World Health Organization (WHO) declared the 2019 coronavirus disease
(COVID-19) a global pandemic [1]. COVID-19 is caused by the SARS-CoV-2 coronavirus and was
first reported in Wuhan, China, in December 2019 [2]. Since then, COVID-19 has spread globally
with millions of laboratory-confirmed cases and hundreds of thousands of deaths [3]. The median
incubation period of COVID-19 is 5.1 days, and nearly all infected persons who have symptoms
will do so within 12 days of infection [4]. However, an unprecedented characteristic of COVID-19
is its capacity for asymptomatic transmission [5], which contributes to increase the probability of
transmission [6]. So far, there is no specific treatment for the disease, and many research teams
are currently working on a vaccine that, optimistically, will only be available in 2021. Even then,
it will take some time to inoculate a significant share of the population. Meanwhile, hospital
structures around the globe (e.g., intensive care units’ beds, ventilators, and so on) are becoming
overwhelmed with new patients, and the increasing caseload will prove most catastrophic for poor
countries, which lack the adequate healthcare capacity to deal with the unparalleled demand posed
by COVID-19 [7, 8].
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So far, efforts to control the spread of the disease have focused
on the adoption of non-pharmaceutical interventions (NPI)
based on population behavioral change and social distancing,
such as banning large gatherings, enforcing the use of face
masks, washing hands, or imposing severe lockdowns [9, 10].
Due to significant uncertainties regarding the transmissibility
of SARS-CoV-2 as well as other political, social, and economic
considerations, it is necessary to delineate effective social
distancing policies that are able to alleviate COVID-19’s burden
on healthcare structure and borrow time for the development of
a vaccine or drug candidates while also simultaneously reducing
the socioeconomic strain of living in a locked-down, confined
society [11]. The effective monitoring of the epidemic’s dynamics
plays a crucial role in the ongoing containment efforts but will
also continue to do so for some time ahead when social distancing
control measures are eventually relaxed, and the first wave of the
pandemic is followed somemonths later by second or third waves
of infection that may be more severe than the first [12].

Mathematical models, by providing a quantitative framework
for hypothesis evaluation and the estimation of changes in
transmission of infectious diseases over time and space, can
indicate whether containment measures are having a measurable
effect while guiding the design of alternative interventions [13].
Mathematical models vary inmany aspects, including complexity
in terms of the number of variables and parameters used, spatial
and temporal resolution (e.g., discrete vs. continuous time), and
design (e.g., deterministic or stochastic) [14].Mechanistic models
of the susceptible–infected–recovered (SIR) type [15, 16] are
the standard framework for a wide array of infectious diseases,
including COVID-19 (see, for example, [17, 18]). However,
parameter estimates for a given model are subject to two major
sources of uncertainty: the noise intrinsic to the data and the ad
hoc assumptions used for ascertaining parameter estimates [14].

The basic reproduction number [19], R0, or the average
number of new infections caused by an infectious individual
[20], is widely used to characterize the dynamics of infectious
outbreaks and guide policy planning. For instance, the average
R0 at the start of the SARS pandemic in 2003 was estimated to
be around 2.75 and was later reduced to 1 due to intervention
strategies, including isolation and quarantine activities [21]. R0
is an imprecise estimate that is rarely measured directly [it
is the product of disease parameters: duration, opportunity,
transmission probability, and susceptibility (DOTS)] and rests
on particular model structures and assumptions [22]. Modelers
face many challenges when trying to provide robust estimations
of R0 in the current pandemics, such as the existence of
superspreaders, the fact that SARS-CoV-2 can also be spread by
asymptomatic individuals and the scarce availability of testing
supplies [17]. Several methods have been proposed to track
trends in R0 during the course of an epidemic [23–27]. The access
to reliable estimates of R0 could provide useful information about
the efficacy of containment measures and allow their effective
management in order to keep hospitalization rates within a
desired approximate range [28].

In the present study, we model the transmission dynamic
of COVID-19 in eight countries (Figure 1) using least-squares
algorithm (LSA) techniques. The criteria used to select the

eight countries were due to their geographical location in
either the northern/southern hemisphere or due to specificities
regarding their first response to the pandemic threat as reported
in the news media. Some (e.g., New Zealand and Argentina)
were very effective in responding rapidly to the pandemic
by implementing lockdown measures, whereas others (e.g.,
USA and Brazil) initially downplayed the virus’ threat and
took longer to initiate containment protocols. Our goal is to
contribute to understanding the spread of SARS-CoV-2 and
compare R0 uncertainty arising from noise in the time series data
gathered from public online sources. We used machine learning
algorithms to optimally estimate a time-varying R0(t), which
allows the monitoring of the ongoing pandemic in almost real
time. We compared the daily country reports for R0 to those we
estimated in the present work in order to assess the reliability of
official data. Besides, LSA-based techniques were used to reveal
clues regarding the dynamics of R0(t) and its stochasticity in
terms of the linear power of the estimation error and provide
information on how such stochastic behavior is correlated to the
outcome of the ongoing pandemics.

The LSA is one of the most popular estimation methods
in machine learning and has been used in many scientific and
engineering applications [30–32], including epidemiology, for
calibratingmathematical models’ parameters based on time series
data while also generating disease forecasts in the near or long
terms [14, 33–35]. While it has been used for centuries as a classic
curve-fitting technique [31, 32], it is still a basic tool in modern
data science because of its least-squares Euclidean ℓ2-norm
minimization that is advantageous over other norms andmetrics,
such as the ℓ∞ and ℓ1 norms, granting reduced sensibility to
outliers due to the squared error [32, 36]. Higher-order norms
and the use of more generalized cost functions, both linear and
non-linear, often require gradient descent solutions, which are
the foundation of deep learning algorithms with none, many,
or infinite solutions. In comparison, LSA is computationally
inexpensive and can even be solved analytically.

LSA estimation is based on the least mean squares (LMS)
algorithm, a special case of Bayesian estimation and the
foundation of classical optimal estimation theory, where its
applicability is commonly attributed to offline batch processing,
that is, the whole data set must be a priori available and be
processed at once “in one single step into the estimate” [36],
involving complex algebraic procedures, such as the inversion of
high-order matrices, with dimension equal to the length of the
data set. Its offshoot, the recursive least squares (RLS) algorithm,
has been used for real-time estimation applications in diverse
areas, such as signal and data processing, communications, and
control systems [37, 38], since it benefits from the recursive
method and avoids matrix inversion by working one sample at
a time, both speeding up processing and avoiding a possible
ill-conditioned (non-invertible) information matrix formation.

Some of the advantages of RLS algorithm over LMS
algorithm, and other more complex gradient descent-based
estimation methods, are as follows: its recursive or sequential
processing, which requires less memory over a single iteration
step; the possibility to capture the dynamics of non-linear
and time-varying systems; its native discrete-time synthesis to
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FIGURE 1 | Sociodemographic and COVID-19 data for the eight countries targeted in this study. COVID-19 data accessed on 22/05/2020 on https://coronavirus.jhu.

edu/map.html. Intervention data gathered from reference [29]. GDP per capita in US$. Interventions are categorized into Alert Levels 1 to 4 according to the New

Zealand framework (L1, Level 1, Prepare; L2, Level 2, Reduce; L3, Level 3, Restrict; L4, Level 4, Eliminate) [29]. Map from mapchart.net.

deal with discrete-time signals; and its dead-beat convergence
characteristics, that is, convergence in minimal time [31].
However, one important drawback is the possibility of RLS
getting stuck in local minima and becoming unstable when
tracking certain classes of signals, as remarked in reference [31].
Thankfully, the exponential functions used in epidemic modeling
are within the stable scope of convergence of the RLS method.

In this work, we compare the performance of both the
RLS and LMS algorithms on estimating R0(t), in terms of
processing speed and accuracy. While both are LSA-based
methods apparently differing just by the sequential-recursive and
the batch-processing forms of implementation, we are dealing
with a general case problem of estimating a random variable
R0(t) given random variables as well in a maximum-likelihood
estimation problem that “implies ignorance of any statistics
of the estimated variable” [36], R0(t). Thus, if the available
measurements are independent, RLS and LMS algorithms should
achieve the same accuracy performance. Otherwise, the RLS
algorithm should perform better.

Our modeling approach is based on a discrete-time multiple-
input, multiple-output (MIMO) setup that uses a well-established
concept in the design of aerospace navigation systems called
sensor fusion, which is summarized by the following statement,
“one always gains by adding a new measurement in terms of
navigation error, and this no matter how bad the additional
measurement is” [39, Remark 4.8]. In this work, we combine data
from the number of susceptibles, infections, recoveries, deaths,
and individual parameters of three coupled differential equations
in order to improve the estimation of R0(t).

2. METHODS

2.1. Data Sources
The COVID-19 data used in this report are publicly available
from The Center for Systems Science and Engineering of the
Johns Hopkins University (JSU CCSE) [40], which maintains a
Repository on Github [41].
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2.2. Procedures
The transmission dynamics of the COVID-19 outbreak is usually
described by a compartmental model SEIR, where S denotes
susceptible, E denotes exposed, I denotes infected, and R denotes
removed [42, 43]. In a closed population of Pn individuals,
the transitions between the compartments (cf. Figure 2) are
described through the following set of differential equations:

d

dt
s(t) = −λ̄s(t)i(t) (1)

d

dt
e(t) = λ̄s(t)i(t)− κe(t) (2)

d

dt
i(t) = κe(t)− γ i(t) (3)

d

dt
r(t) = γ i(t) (4)

where λ̄ = λ/Pn, λ is the infection rate, γ is the remove rate,
and κ is the incubation rate. From these parameters, it is possible
to calculate the basic reproduction ratio, R0 = λ/γ . Thus, R0
is not solely dependent on the infection rate but also on the
frequency of removals due to death or recoveries.

Assuming that the incubation period of the disease is
instantaneous, and the duration of infectivity is the same as the
length of the disease, we can consider both groups E and I as
contagious and E(t) : = I(t). Also, according to the Akaike
information criterion (AIC), the simpler SIR model performs
much better than an SEIR model in representing the information
contained in the confirmed-case data available for COVID-19
[44]. The basic SIR model is described by the set of Kermack–
McKendrick equations [45]:

d

dt
s(t) = −

λ

Pn
s(t)i(t) (5)

d

dt
i(t) =

λ

Pn
s(t)i(t)− γ i(t) (6)

d

dt
r(t) = γ i(t) (7)

2.3. Discrete-Time
Susceptible–Infected–Recovered System
Parametric Estimation in Real Time
Traditionally, mathematical epidemiology models have been
approached with a continuous-time perspective, due in part
to the fact that these are more tractable mathematically [46].
However, in order to use machine learning techniques, there is a
need for a discrete-time equivalent realization to cope with daily-
sampled data [47]. Due to the slow dynamics of the pandemics,

a first-order continuous to discrete Euler approximation can be
applied to the Kermack–McKendrick equations.

For a general f (t) function, a backward discrete-time
derivative approximation is given as:

d

dt
f (t) : =

f (k+ 1)− f (k)

Ts
= 1f (k+ 1)/Ts (8)

where Ts = 1 is the sampling interval in days, and 1 = 1 − q−1

is the discrete difference operator, defined in q−1, the backward
shift operator domain. The discrete-time approximations of
Equations (5)–(7) are given by the following difference equations,
respectively:

s(k) = s(k− 1)− λ(k− 1)
s(k− 1)i(k− 1)

Pn
(9)

i(k) = i(k−1)+λ(k−1)
s(k− 1)i(k− 1)

Pn
−γ (k−1)i(k−1) (10)

r(k) = r(k− 1)+ γ (k− 1)i(k− 1) (11)

The discrete-time SIR system described above considers time-
varying parameters in order to continuously adapt the model as
new data become available. Using the time series of infections and
removals (due to death or recovery), Equations (9)–(11) can be
used to estimate the model parameters.

Since Equation (11) has an exclusive dependence with γ (k),
this poses a direct estimation problem that can be stated as
“for N registered samples, minimize the following quadratic cost
function”:

Jr =
1

2

N
∑

0

e2r (k) =
1

2

N
∑

k=0

[

r(k)− r̂(k)
]2

(12)

Equation (12) is based on the estimation error of r(k). By applying
the RLS method to minimize Jr , it is possible to optimally
estimate γ̂ (k) using the following equation:

r̂(k) = r(k− 1)+ γ̂ (k− 1)i(k− 1) (13)

We assume that the estimation error is Gaussian, er(k) ∼
(0, σ 2

er
), with zero mean and variance σ 2

er
, such that r(k) = r̂(k)+

er(k). The estimator gain, the parametric estimation, and error
covariance minimization are solved recursively as follows:

Lr(k) =
pr(k− 1)i(k− 1)

1+ i(k− 1)pr(k− 1)i(k− 1)
(14)

γ̂ (k) = γ̂ (k− 1)+ Lr(k)
[

r(k)− r̂(k)
]

(15)

pr(k) = [1− Lr(k)i(k− 1)]pr(k− 1) (16)
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FIGURE 2 | SEIR (S denotes susceptible, E denotes exposed, I denotes infected, and R denotes removed) model structure.

where the error covariance matrix pr(k) can be reset periodically
to prioritize more recent data. Specifically in this work, pr(k) is
a scalar, since only a single parameter is being estimated. Choices
to initialize the covariance matrix may vary, depending on
prior available covariance information or other positive definite
matrix. The higher its magnitude, the higher the estimator gain
in the transitory dynamical stage of the estimation procedure.

In regard to Equation (11) and the estimation of γ̂ (k), since
the infection numbers increase before any removal report is
available during the first stages of the pandemic, during this
period γ̂ (k) tends to zero and eventually makes the time-varying
estimated reproduction number tend to infinity:

R̂0(k) =
λ̂(k)

γ̂ (k) → 0
= ∞ (17)

As a consequence of Equation (17), the estimation method
proposed in this work cannot be applied when the number of
recovered is not available.

Since Equation (10) depends on both SIR parameters, due to
its stronger dependence on γ̂ (k) and Equation (11), its estimated
value is substituted into Equation (10), and another RLS problem
is constructed to estimate λ̂(k), using

î(k) = i(k− 1)+ λ̂(k− 1)
ŝ(k− 1)i(k− 1)

Pn
− γ̂ (k)i(k− 1) (18)

The solution is akin to minimizing the estimation error ei(k) =
i(k) − î(k), using the following equations for estimator
gain, parametric estimation update, and error covariance
minimization, respectively:

Li(k) =
pi(k− 1)ŝ(k− 1)i(k− 1)/Pn

1+
[

ŝ(k− 1)i(k− 1)pi(k− 1)ŝ(k− 1)i(k− 1)
]

/P2n
(19)

λ̂(k) = λ̂(k− 1)+ Li(k)
[

i(k)− î(k)
]

(20)

pi(k) =
{

1− Li(k)

[

ŝ(k− 1)i(k− 1)

Pn

]}

pi(k− 1) (21)

Time-series data for Equation (9) is not available, and the
evolution of the susceptible compartment in time is in fact

estimated based on the known initial condition (i.e., the
population Pn) and on the estimated λ̂(k). Thus, it is always
estimated and fed back to Equation (18), such that the correct
form to represent it, within this time-varying SIR model, is by
rewriting Equation (9) based on the estimated susceptible:

ŝ(k) = ŝ(k− 1)− λ̂(k)
ŝ(k− 1)i(k− 1)

Pn
(22)

The estimation of the time-varying reproduction number, based
on the derived discrete-time SIR model, is given by:

R̂0(k) =
λ̂(k)

γ̂ (k)
(23)

We also adopted two modifications to the nominal R̂0(k)
equation: a moving 4-days average to compensate for the
randomness of daily updates on incidence data, as seen in the
German Daily Situation Report of the Robert Koch Institute on
COVID-19 [48], and the proportion of susceptible individuals in
the population, known as the effective reproduction number [14]:

R̄0(k) =
ŝ(k)

Pn

[

R̂0(k)+ R̂0(k− 1)+ R̂0(k− 2)+ R̂0(k− 3)

4

]

(24)
Figure 3 shows a block diagram of the proposed R̄0(k) estimator.
This diagram presents a clearer view of the coupled multivariate
dynamics and closed-loop characteristics of the proposed
estimation approach.

With this formulation, it is possible to analyze the
transmission ratio of the pandemics on a daily basis, as with a
sensor. Besides, estimations of the transmission ratio produce a
dynamic representation from the perspective of the time series of
R̄0(t) [henceforth designated simply as R̂0(t)], which allows the
modeling of its dynamics and its randomness in order to assess
stochastic properties correlated to the time-varying reproduction
number, which might reflect how health authorities have been
handling the challenges posed by the pandemics in each country
considered in this work.

2.4. Modeling of R0
Henceforth, we assume that we are able to estimate the
reproduction number on a daily basis and it is thus possible to
consider it as another output of the proposed pandemic model.
Thus, by relying on the time series of R̂0(k) and knowing it is
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FIGURE 3 | Block diagram of the estimation system. Notice how its subsystems are interconnected using closed-loop strategies and data fusion.

correlated with the number of infected and removed individuals,
we deploy machine learning techniques to identify a dynamic
system that fits the data.

Different from the real-time monitoring/sensing procedure
adopted to estimate R̂0(k), now, we are interested in obtaining
a general model that can describe the dynamics of a
system, R̂0(q

−1), for a certain period of interest. In order tomodel
such a system, we used the LMS algorithm, which is a non-RLS
estimation technique [31, 32], and propose a black-box linearized
polynomial model:

R̂0(q
−1) =

B̂(q−1)I(q−1)+ Ĉ(q−1)R(q−1)+ eR0 (q
−1)

Â(q−1)
(25)

Â(q−1) = 1+ â1q
−1 + â2q

−2

B̂(q−1) = b̂0q
−1 + b̂1q

−2

Ĉ(q−1) = ĉ0q
−1 + ĉ1q

−2

(26)

where eR0 (q
−1) is the Gaussian process based on the estimation

error eR0 (k) of estimated polynomials shown in Equation (26).
This second-order autoregressive with exogenous input

(ARX)-based model structure is assumed considering the
fundamental simplicity of the SIR model, in which the infected
and removed systems together form a second-order system.

The non-RLS estimator is a batch-processing technique used
to optimally estimate the set of parameters that minimizes a
quadratic performance index as the one shown in Equation (12),

but using a vector–matrix form of error, eR0 = R̂0 − 8θ̂ . This
vector–matrix system is defined as:

eR0 =
[

e(0) · · · e(N)
]T

(27)

R̂0 =
[

R̂0(0) · · · R̂0(N)
]T

(28)

θ̂
T
=

[

â1 â2 b̂0 b̂1 ĉ0 ĉ1

]

(29)

8
T =

[

φT(0) · · · φT(N)
]

(30)

The above equations represent, respectively, the vector of errors,
the vector of observed outputs, the estimated parameter vector,
and the matrix of regressors. The latter is based on the vectors of
regressors formed up to N registered samples, with such vectors
defined as:

φT(k) =
[

r̂0(k− 1) r̂0(k− 2) i(k− 1) i(k− 2) r(k− 1) r(k− 2)
]

(31)
The solution to obtain the estimated parameters is
straightforward and given by

θ̂ =
(

8
T
8

)−1
8

T
R̂0 (32)
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By assuming an ARX linear model, it is possible to evaluate
the pandemics from the perspective of linear stochastic systems
theory, assessing how the reproduction number decays linearly in
time in different countries and how the random nature of events
associated with the pandemics affects the model’s uncertainties,
that is, eR0 (k) ∼ (0, σ 2

eR0
). This calculated uncertainty can

give us some clues regarding the effectiveness of pandemic
control measures.

We propose that by analyzing the linear power of the R̂0(q
−1)

estimation error, that is, σ 2
eR0

, we can use this stochastic property

to generate stochastic ratio curves based on the estimated
linearized model of Equation (25). The higher the variability
associated with the stochastic ratio, the higher we expect the
variance or linear power of the error to be, and consequently,
the more uncertain is the official COVID-19 data reported by
health authorities.

3. RESULTS

We used publicly available data to validate the algorithms and
the estimated time-varying SIR model parameters. This section is
organized as follows: we first present the estimated results based
on the number of infectious and removals available from different
countries. Then, we present time series of daily estimates on R0(k)
based on the RLS-estimated λ̂(k) and γ̂ (k) and compare both
processing time and accuracy results to the classical LMSmethod
to verify the efficiency of the proposed technique.

These results are followed by the presentation of linearized
estimated outputs generated by the ARX-based R̂(q−1) models
[shown in Equation (25)] using non-recursive or batch
processing of 30-days of R0(k) estimates. The modeling residuals
were assumed to be Gaussian (zero mean). Estimated error
variances were used to produce 200 discrete Gaussian sequences
as surrogates to additive white noises, depicted by eR0 (k) in
Equation (25). These 200 additive noise sequences were used to
generate, for every analyzed country, 200 stochastic reproduction
ratio trajectories, shown together with the linearized ratio and
the real-time estimated ratio. It must be remarked, however,
that this value of 200 Monte Carlo simulations were selected
heuristically in order to give the necessary visual information
in our figures, such that the readers could verify by themselves
how the modeling uncertainties of the pandemics could mislead
our judgment of the probable effective reproduction number of
COVID-19 during the studied period. The number of Monte
Carlo simulations thus affects only a post-modeling phase and
do not interfere with the estimation of the reproduction number.

3.1. Discrete-Time
Susceptible–Infected–Recovered Model
Estimation Results
The Achilles’ heel of the RLS algorithm for parametric estimation
may be the setup of initial conditions and whether they
are optimal or not. However, this is a major problem only
if the estimated parameters are to be used in a real-time
adaptive control system where the closed-loop stability must be
guaranteed [31]. This is not the case in the present work, which

is interested only in the modeling question itself. Thus, the initial
RLS parameters can be either arbitrarily set or set at zero since,
theoretically, the RLS estimator is dead-beat and converges in the
minimum possible number of iterations [32, 36].

The discrete SIR model proposed in this work is described
by three coupled differential equations, each based on a single
recursive regression and thus forming a third-order system.
Then, theoretically, as a dead-beat estimator, the RLS estimator
would take three iterations to converge and estimate optimal
parameters. However, we used plenty more iterations than the
theoretical requirements by commencing to process data from
March 22, 2020 onward but evaluating the results after April 23,
2020, thus giving more than 30 days/iterations for the RLS to
converge to an optimal set of parameters by April 23, 2020, when
we started our analysis.

The estimators were implemented with arbitrary initial
parameters of γ̂ (0) = λ̂(0) = 1 and the initial guess for R̂0(0) =
1. The magnitudes of the estimation error covariance matrices
were initialized as pr(0) = pi(0) = 1, considering that the initial
error is large. Both pr(k) and pi(k) were reset to 1 every 7 days
to prioritize more recent data [49]. The selection of the reset
period considered not only the number of days required to wash-
out outliers but also to allow weekly changes in the parameters’
dynamical behavior, such as due to lockdowns or quarantine
relaxation. We also adopted a moving 4-days average for R̂0(k),
shown in Equation (24), to compensate for daily random effects
[48]. We only used data from March 22, 2020 onward, when all
eight countries already had more than 100 infections reported.

Figures 4, 5 show the dynamics of both infected and removed
cases using the SIR model. It must be remarked that the infected
curve in the United States was downscaled by a factor of 4 in
order to fit in the graph along with the other studied countries. It
is evident from Figure 4 that the RLS method provide parametric
estimates that fit the reported data. The same goodness of fit
cannot be observed in Figure 5, as the number of removals for
the United States, for example, poses some difficulties for the
RLS estimator, as depicted by the estimated removals (dotted
lines) showing a certain dispersion from the real data (continuous
lines). However, the inclusion of the removed data set, even with
bad measurements, leads to a better estimate of R̂0(k).

Figure 6 presents the R̂0(k) of the eight different countries
during a period of 2 weeks. Despite the large variability of both
Argentina and the United States, there are other countries that
are already reducing the number of new infections and where the
frequency of removals has increased, such as in Germany, Italy,
and New Zealand (see Table 1).

The trajectory of the curves shown in Figure 6 can also
be associated with some extraordinary events that occurred
during the same period. For example, after May 3, 2020, when
some U.S. states had relaxed social distancing guidelines, it is
possible to observe a corresponding phasic increase in the basic
reproduction ratio of the United States, which was also reported
in the Washington Post on May 9, 2020 [50].

One interesting trajectory in Figure 6 regards Argentina. For
most of the time, the estimated reproduction ratio of Argentina
was one of the highest and comparable only to the United States,
despite its low number of infected individuals (cf. Figure 4).
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FIGURE 4 | Estimation (dotted lines) of infected individuals (continuous lines)

using the recursive least-squares (RLS) technique (the U.S. data was

downscaled four times to fit in the graph).

FIGURE 5 | Estimation (dotted lines) of removed individuals (continuous lines)

using the RLS technique.

This apparent contradiction is related to the low number of
removals at the beginning of the pandemic that tends to raise
the R̂0(k) (see Equation 17). Recoveries in Argentina, based
on the data of May 16 (cf. Table 1), are ∼30.5% of its total
infected, close to Belgium with 26.6% and whose transmission
ratio is below Argentina’s ratio, reinforcing the notion that the
transmission ratio is not a static parameter and is best approached
by dynamical systems theory.

The results displayed in Figure 4 seem at odds with a recent
report that claimed that Brazil’s R0 had recently dropped to 1.4
[51]. However, on the same day a Brazilian newspaper quoted

FIGURE 6 | Daily monitoring of the COVID-19 pandemic: Dynamic behavior of

the estimated reproduction number for 2 weeks in May 2020.

TABLE 1 | Recoveries (May 21, 2020).

Country Recoveries (%)

Argentina 30.5

Belgium 26.6

Brazil 40.5

Germany 88.2

Italy 59.0

New Zealand 96.6

Spain 70.3

United States 23.5

this report, the country had a record number of new infections
and deaths [52]. This reinforces the notion that machine learning
methods might give better and faster clues regarding the severity
of the pandemic in terms of R̂0(k).

We compared the performance of the proposed RLS estimator
with its most common counterpart, the LMS algorithm. In this
comparison, we considered the average processing time and
the normalized relative estimation error based on the mean-
square-based cost function shown in Equation (12). The average
processing time results for the RLS and LMS algorithms were,
respectively, 14 and 20 ms. We used a computer with a fourth-
generation Intel Core i5-4200U CPU at 1.6 GHz, 4 GB of RAM,
running Ubuntu 18.04 LTS andMatlab R2018a (Mathworks, Inc.,
Natick, MA, United States). The accuracy results expressed by
normalized relative errors are summarized in Figure 7. Notice
that the RLS method outperformed the LMS method in all cases,
except for Argentina.
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FIGURE 7 | Comparison of normalized relative estimation error costs between

the proposed RLS-based technique and the least mean squares (LMS)

estimation algorithm. The average processing time of RLS and LMS algorithms

was, respectively, 14 and 20 ms.

3.2. Assessing the Pandemics Through R0

Dynamics
Figures 8–11 show R̂0(k) for a 30-days period for the eight
investigated countries. These figures show linearized R0 together
with the respective real-time estimated data that originated this
second-stage estimation. The variance of the estimation error is
then used to generate Gaussian sequences that are superimposed
on the linearized R0 estimate, the stochastic ratio, which
synthetically reproduces the stochasticity and uncertainties of R0
estimates. Both Germany and Italy (Figure 8) are through a
period of consistently decaying R0(t). Despite the hard way
COVID-19 hit Italy before, its stochastic ratio currently is among
the lowest.

Brazil and the United States (Figure 9) are the two most
populous countries of our sample and the most hard-hit
by COVID-19 among them. Both countries also have been
struggling with their uneven response to the pandemics [53].
This outcome is captured by our R0 sensors, with the Brazilian
stochastic ratio being in decrease, as recovered data becomemore
available (see Figure 9).

In Figure 10, we present linearized R0 estimates for Spain
and Belgium. Spain’s estimates have suffered the influence of
annotation errors (by subtracting infected individuals on April
24, 2020), which eventually provoked oscillations in the real-
time ratio estimate, making it zero-cross on April 27. Such an
error was washed out by the linearized estimate and has certainly
contributed to its increased degree of uncertainty (see Table 2).

Belgium’s degree of uncertainty was the worst among all the
countries, at least during the period we analyzed. One possible
clue to understand why Belgium’s stochastic ratio became so
variable is to consider the impossibility to linearize its dynamics
and the associated increase in error. However, our estimation

FIGURE 8 | Thirty days of linearized R0 dynamics for Germany and Italy. Both

countries display low variability in the stochastic ratio curve.

FIGURE 9 | Brazil and the United States display large variability in the

stochastic ratio curve, which probably reflects data uncertainty and difficulties

to control COVID-19’s spread.

procedure considers the error as Gaussian, and its mean value
in fact approaches zero. Thus, the linearized estimate based on 30
days of data has a high probability to be close to the values shown.

Belgium has also shown an increased R0 during the analyzed
period. The low number of recoveries (see Table 1) influenced
the frequency of removals and the basic reproduction number,
which is the ratio between the frequency of infections and the
frequency of removals (see Equation 23). Even though a recent
report [54] proposed that Belgium’s R0 at the beginning of May
2020 was 0.8, according to our adaptive SIR-based R0 estimations,
the current situation in Belgium is uncertain with a probable R0
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FIGURE 10 | Thirty days of linearized R0 dynamics for Spain and Belgium.

Both countries exhibit high variability of the stochastic ratio, which is

suggestive of problems with either data compilation or difficulties to stabilize

the pandemic.

FIGURE 11 | Thirty days of linearized R0 dynamics for Argentina and New

Zealand. New Zealand has been able to control its COVID-19 infection rate,

which is reflected on the low variability of the stochastic ratio curve.

close to 3.0, which is the mean value of 30 days of linearized
dynamics (see Table 3).

Figure 11 shows the trends for Argentina and New Zealand.
The R0 estimates for the two countries, which have the lowest
number of infections of the group, suggest that several recent R0
reports are considering a ratio solely based on the number of
infections and population, without estimating and taking into
account the frequency of removals, which makes R0 increase.

We compiled a table of the uncertainty of the estimated
stochastic ratios by country (see Table 2), where the percentage

TABLE 2 | Pandemic’s uncertainty (up to May 23, 2020).

Country Power Uncertainty (%)

Argentina 0.3099 30.9

Belgium 0.2426 24.2

Brazil 0.0546 5.4

Germany 0.0220 2.2

Italy 0.0113 1.1

New Zealand 0.0349 3.4

Spain 0.0521 5.2

United States 0.1835 18.3

TABLE 3 | R0 estimates (on/up to May 23, 2020).

Country Real-time Linearized 30-days mean

Argentina 4.6 5.3 3.5

Belgium 2.7 3.1 3.0

Brazil 2.9 2.8 3.0

Germany 1.6 1.4 1.5

Italy 1.2 1.1 1.5

New Zealand 1.1 1.2 1.1

Spain 2.6 2.1 1.4

United States 2.9 3.1 4.0

of uncertainty is proportional to the linear power of the Gaussian
estimation error. Table 3 shows the estimated R0 estimates by
country and demonstrates the usefulness of our approach to
provide a real-time picture of the pandemic that can be used to
support decision making.

4. DISCUSSION

Almost 2 months after the WHO declared COVID-19 a global
pandemic, health complications due to SARS-CoV-2 have caused
many deaths and upended the routines of billions of people
around the world. Research efforts for the development of a
vaccine are being accelerated, but it is still a distant target [55].
At this moment, however, the most effective interventions are
NPIs aimed at reducing SARS-CoV-2 transmission rates in order
to increase the fraction of severe cases having access to scarce
medical resources, such as mechanical ventilation [56].

Mathematical modeling is a valuable instrument to gauge the
epidemics’ dynamics and evaluate the effects of interventions
aimed to control its spread. A crucial parameter is R0, the basic
reproduction number, which is closely followed by health officials
and the public alike. As the world hopefully transitions to a
gradual release from social distancing measures, many questions
still remain about the SARS-CoV-2 virus, and there is all but
the inevitability of secondary waves of infection ahead. Thus,
the continuing use of mathematical models to track the disease
will remain a necessity. However, the utility of models depends
on the quality of the data they are fed, and there are many
uncertainties regarding publicly available data on COVID-19
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cases. For instance, due to the lack of widespread testing and
subnotifications on the cause of deaths due to the disease, it
is almost impossible to have a definitive picture of transitions
between the compartments used to model the disease. Thus, in
this work, we provide a system that takes into consideration the
degree of uncertainty of the results presented by epidemiological
SIR-type models.

The NPIs aimed to control the spread of the COVID-19
pandemic are implemented in a way similar to feedback control
systems, with health authorities implementing social restriction
measures in response to real-time evaluation of the number of
infected and removed cases. Therefore, as in control systems,
we are interfering with COVID-19’s dynamics, affecting its
behavior and parameters, and even discussing the development
of real-time monitoring techniques using automation and
control systems technologies. However, such closed-loop, control
systems still need humans in the loop, and some data annotation
mistakes may occur, such as seasonal dynamic changes related
to workers shifts, weekend reduced reports, and even possible
data manipulation of the data log may compromise the stability
of estimators.

We showed that the RLS algorithm performed a better
estimation job than the LMS algorithm in the present work,
both in speed and accuracy. Real-time parametric estimation
techniques, such as RLS, are widely used in the automation and
aerospace industries to support adaptive control systems and
state estimators. In automation applications, the RLS and LMS
estimators are in fact divided into two different technologies,
respectively, self-tuning and autotuning [31], where the first
refers to real-time online adaptive process and the second
involves the following steps: on-demand user request, acquiring
the data set with sufficient samples, run offline processing
without time constraints, present the results to the user,
and decide whether to deploy or not the parametric update.
Autotuning is less costlier to implement and thus more common,
whereas the self-tuning technology requires online real-time
processing with time constraints and is more commonly applied
in the aerospace industry [31, 57].

LSA-based estimation is becoming more popular in industrial
settings, such as in single-input, single-output (SISO) systems
and in MIMO systems; in linear and non-linear system
identification; and in polynomial and state-space MIMO system
realizations [58, 59]. Such an increase in the use of RLS for real-
time applications is justified by the advances of microprocessors
to cope with the time constraints of fast dynamical systems,
where the sampling interval can go as short as a few nanoseconds.
Modern engineering applications with great impact in our
society are associated with discrete-time sampled systems and
signals, thus requiring adequate and reliable digital estimation
algorithms, such as LSA. At least from an engineering viewpoint,
the COVID-19’s pandemic is also a discrete-time system, since
the publicly available data for infections, deaths, and recoveries
are updated on a daily basis, thus generating discrete-time
sequences with the sampling period of 24 h.

During the COVID-19 pandemic, the scientific community is
struggling to study, design, and deploy engineering applications
to better assist society with information that could somehow
quantify the pandemic’s degree of severity based on R0(t)
estimates [60]. Different from traditional modeling approaches,
we propose a discrete-time MIMO system realization instead
of the continuous-time estimation using ordinary differential
equations; the MIMO-based parametric estimation of R0(t)
is obtained through data fusion in a closed-loop estimation
arrangement (see Figure 3).

The innovation of our modeling approach is the use of
a discrete-time MIMO setup based on sensor fusion, a well-
established strategy employed in the design of aerospace
navigation systems under the assumption that “one always
gains by adding a new measurement in terms of navigation
error, and this no matter how bad the additional measurement
is” [39, Remark 4.8]. Thus, by fusing data from the number
of susceptibles, infections, recoveries, deaths, and individual
parameters of the three coupled dynamical equations instead of
a single one based solely on infections, the chance of having
a better estimate of R0(t) in the maximum-likelihood sense is
higher. Of course, the drawback of our proposed approach is the
impossibility to apply it to nations lacking public reports on death
and recovery numbers.

Our comparative approach shows that the strict measures
adopted by some countries, such as Germany, Italy, Spain, and
New Zealand, managed to stabilize the epidemics. In others,
such as the United States and Brazil, the delay in adopting
such measures and lack of coordination proved decisive to keep
the R0 values high and with a high degree of uncertainty. The
real-time estimation of model parameters such as R0 provides
important insight into the underlying epidemic process and
provides robustness in the face of imperfect data. This strategy
can be eventually implemented as an online tracking application
providing information about the dynamics of the pandemic to
health officials and the public at large.
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In this study, the trend of the epidemic situation of COVID-19 is analyzed based on the
analysis method for network topology. Combining with the sliding window method, the
dynamic networks with different topologies for each window are built to reflect the
relationship of the data on different days. Then, the static statistical features on
network topologies at different times are extracted during the dynamic evolution of
complex networks. A new trend function defined on the average degree and clustering
coefficient of the network is tailored to measure the characteristics of the trend. Through
the value of the trend function, we can analyze the trend of the epidemic situation in real
time. It is found that if the value of the trend function tends to decrease, it means that the
epidemic will have to be effectively controlled. Finally, we put forward some suggestions for
early control of the epidemic.

Keywords: COVID-19, sliding window, network topology, dynamic evolution, trend analysis

1. INTRODUCTION

Since December 2019, patients with pneumonia of unknown cause have appeared in some medical
institutions. By now, the number of cases caused by coronavirus (COVID-19) has increased. The
World Health Organization (WHO) declared the COVID-19 disease a pandemic onMarch 11, 2020.
The cumulative confirmed cases have reached almost 3,220,000 as of May 1, 2020 worldwide. For
new outbreaks, it is significant to understand the transmission dynamics of infection, which can help
governments take effective measures to contain them and reduce the number of spread. In the survey
of other two pandemics caused by coronavirus severe acute respiratory syndrome coronavirus
(SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), scientists have put
forward many effective measures to build the transmission models, such as the transmission analysis
based on genome research (Qin et al., 2003) and the mathematical model of infection kinetics (Liang,
2020).

Since the outbreak of COVID-19, scholars have conducted relevant research through different
models. Zhu and Chen give a statistical analysis of COVID-19 with early transmission model (Zhu
and Chen, 2020). A data-based iterative prediction method is proposed to find growth rates under
which the situation will be in control (Perc et al., 2020). Robust time series are used to complete
statistical forecasts for the confirmed cases of COVID-19 by Fotios and Spyros (Petropoulos and
Makridakis, 2020). In (Chen and Zhou, 2020), a Monte Carlo method is proposed to quantify the
control efficacy, which is completed by calculating the mean number of secondary cases infected by a
case with symptom onset every day. Moreover, a segmented Poisson model is adopted in Zhang et al.
(2020) to analyze the new cases, which takes the governments’ regulations into consideration. An
extended SIR model is employed by Jia and Han to compare the epidemics trend in Italy and Hunan,
China (Jia et al., 2020).
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With the development of complex networks, the spread
analysis of epidemics on complex networks has attracted wide
attention in the literature. Based on the SIR model in complex
networks, Xia et al. have investigated the effects of delaying the
time to recovery and of nonuniform transmission on the
propagation of diseases on structured populations (Xia et al.,
2012; Xia et al., 2013). In (Small and Tse, 2005), Small and Tse
propose a new four state model based on the transmission of
SARS, where community is modeled as a small-world network of
interconnected nodes. Wang et al. point out the spread of
epidemics in small-world networks (Wang and Li, 2016). The
prevalence of infectious diseases in the population, the spread of
viruses on computer networks, and the spread of rumors in
human society can all be regarded as the problem of
information dissemination on the network, which belongs to
the dynamic process of the network and can be dealt with
machine learning (Silva and Zhao, 2016).

In the study of complex network diseases (Wang et al., 2019;
Wu and Hadzibeganovic, 2020), individuals in the population are
regarded as nodes in the network, and the connections between
individuals are regarded as edges in the network, which
establishes the topology of the network. Since the real network
is usually small scale and scale-free, it is generally that the
network under study is a Watts–Strogatz (WS) or Barabási-
Albert (BA) scale-free network (Wu et al., 2019). After the
establishment of network topology, a mathematical model that
can reflect the dynamic characteristics of infectious diseases is
able to be built according to the transmission characteristics and
infectious diseases between individuals (Huang, 2008; Liu and Li,
2019; Lu and Liu, 2019; Zhou andWu, 2019; Aadil et al., 2020). In
this paper, we attempt to make use of empirical data and combine
the characteristics of COVID-19 transmission to analyze the
trend of COVID-19. We mainly use the knowledge of network
topology to give the trend analysis of COVID-19, which networks
are established based on the data from COVID-19 Data
Repository by the Center for Systems Science and Engineering
(CSSE) at Johns Hopkins University (https://github.com/
CSSEGISandData/COVID-19).

The article is organized as follows. Section 1 introduces the
process of relevant research. In Section 2, which is also the most
significant part of the article, we present the construction of the
networks and the topological features extracted from the
networks. Section 3 displays the networks we built and
analyzes the epidemic situation in the four regions through
the topological characteristics of the networks. We summarize
the method we used and give some suggestions in Section 4.

2. METHODOLOGY

This section introduces the construction of the networks and the
topological features extracted from the networks.

2.1. Networks Constructing
Here, we select four regions for the analysis, including Wuhan,
South Korea, Russia, and Germany. The total number of
confirmed cases is extracted for every day in each region. We

get a time series R1 � {x1, x2, . . . , xn}, where xi is the number of
diagnoses in the ith day, and n is the total days from the virus
outbreak. Then, the growth rate of the number of diagnoses yi in
the ith day is described as follows:

yi �
⎧⎪⎨⎪⎩

xi+1 − xi
xi

, xi ≠ 0

0, xi � 0
(1)

From this treatment, the change in the daily diagnostic number
can be seen more clearly. At the same time, the impact of the total
local population on the growth rate of the number of confirmed
cases can also be ignored. Then, we get a new time series on the
growth rate of daily diagnoses R2 � {y1, y2, . . . , yn−1}.

The dynamic evolution analysis method is an important way
for data analysis based on the features of network topology. In
dynamic evolution, the feature measurement of networks is a
function of time. In the same evolution mode, two subnetworks
obtained at different times have different features. Therefore, it is
a very important and effective way to analyze and classify the
network by using static statistical features at different times
during the dynamic evolution of networks (Backes et al.,
2009). Here, the sliding window method is used to extract the
features of network topology for further observation. The key to
selecting sliding windows is how to effectively maintain the
quality and quantity of the original time series information,
while minimizing the calculation complexity to the most
extent (Li and Zhang, 2004; Li and Xiao, 2009). In this study,
we apply the sliding window with the length of 9 days and the step
size of 1 day. Figure 1 shows the process of sliding windows for
the time series data. Next, we will use the daily growth rate to
build the networks.

For one of the sliding window Ri � {yi, yi+1, . . . , yi+8}, using the
nine-day growth rates as nodes, we calculate the Euclidean
distance between any two nodes to get the 9 × 9 distance
matrix D with

dij �
∣∣∣∣∣yi − yj

∣∣∣∣∣, (2)

where dij is the element ofD in row i and column j. The growth rate
defined in (1) formulates the difference between the different nodes,
so the connections in the network give a relevance description for

FIGURE 1 | Sliding windows are used to form the time series. The length
of sliding windows is chosen as 9 days, and the step size is 1 day. The figure
shows the process of constructing time series.
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the data in the 9 days. Set the average value of the distance as the
threshold denoted by δ. When dij < δ, there is a connection between
nodes i and j, that is, aij � 1 in the connection matrix A of the
network. Otherwise, we stipulate a) if one of yi and yj is 0, aij � 0; b)
if dij < 0.0002, aij � 0. Here, a) is to exclude the relationship between
the current day and the remaining days if a certain growth rate is 0,
and b) is an adjustment for the following consideration: at the time
of the definition of the growth rate, the number of diagnoses per day
on the previous day is increasing, and the growth rate is changing
even if the number of growth is invariant. The construction of
connection matrix is described as follows:

aij � { 1, if 0.0002< dij < δ and min{yi, yj}≠ 0
0, otherwise

(3)

2.2. Topological Features of Networks
The degree ki of the node i is defined as the number of sides
connected to the node. In an undirected and unauthorized
network, the mathematical formula for degree can be
expressed as follows:

ki � ∑N
j�1

aij, (4)

where aij is the element of connection matrix A and N is the total
number of nodes. Then, we can get the average degree k of the
whole network as follows:

k � 1
N

∑N
i�1

ki (5)

The clustering coefficient is a coefficient that measures the degree
of network aggregation, which can be formulated as follows:

C � 1
N

∑N
i�1

2|ei|
ki(ki − 1), (6)

where |ei| represents the number of connected edges between
nodes in the neighborhood of node i (i.e., the number of triangles
formed by node i and other two nodes in its neighborhoods) and
ki is the degree of node i. In general, the clustering coefficient of
the network quantifies the connection between nodes in the
network with C ∈ [0, 1]. If C � 1, all points in the network are
connected. If the value of C is relatively small, the network
connection is loose.

3. EXPERIMENTAL RESULTS

In this section, we combine the daily number of confirmed cases
in Wuhan, South Korea, Russia, and Germany to build the
networks and analyze the epidemic situation in the four
regions through the topological characteristics of the networks.

3.1. Data Processing
We use the daily number of diagnoses from January 22, 2020 to
May 16, 2020 as the data set. So, for each region, we can get the

total number of diagnoses per day for 116 days. First, from (1),
the data are processed to calculate the 115-day daily diagnosis
growth rate for each region. Then, using a sliding window of
9 days and a step size of 1 day, the time series data are divided into
107 periods, and 107 networks are constructed with nine nodes in
each period. Figure 2 shows the networks at the 43rd day of the
four regions. The more connections the network has, the greater
the change is of the 9-day growth rate. It should be emphasized
that few connections cannot only indicate the control period of
the disease but also the period of early outbreak.

3.2. Analysis of Network Topological
Characteristics
We use the equations in Eqs (5) and (6) to calculate the average
degree and clustering coefficient of each network, and the trend
function is defined as I � 0.5C + 0.5k combining the average
degree and clustering coefficient. Taking Germany for
example, Figure 3A shows the growth rate change chart of
Germany in the first 80 days, and Figure 3B depicts the
evolution of trend function. It can be seen from Figure 3A
that the daily growth rate in the first 80 days has changed
greatly, and it is difficult to find the regular pattern of
epidemic development. However, it can be seen from
Figure 3B that when the value of trend function is relatively
large and stable, the epidemic situation has not been completely
controlled. This situation can be seen from the data in the next
few days. It shows that the network topology method proposed in
this article is efficient for the analysis of epidemic situation.

The evolution of the trend function in the four regions is
shown in Figure 4. In the figure, the value of the abscissa is the
number of days passed from January 22, 2020, and the ordinate is
the value of the trend function I. The larger the I value, the larger
is the clustering coefficient and mean sum. The larger the
clustering coefficient, the difference of growth rate of any
3 days is less than the threshold in 9 days, and the larger the
average degree, the difference of the growth rate in 9 days is less
than the threshold number of days. Therefore, when the daily
diagnostic growth rate of 9 days becomes relatively small, the
clustering coefficient and average degree will be relatively small. If
the growth rate changes greatly in 1 day in the 9 days, the average
threshold will become larger, and the number of connections will
increase in the remaining 8 days, then the value of trend function
will also increase.

From Figure 4A inWuhan, there is a clear downward trend in
the values of the trend function around March 2. The growth rate
of the number of confirmed patients in the next 9 days has also
dropped to 0.1% for the first time, and the growth rate is also
declining in the next few days, gradually turning to 0. This
indicates that the change trend is related to the change of the
daily growth rate. Furthermore, if the values of trend function
show a downward trend, it can be inferred that the growth rate of
the region has dropped to a smaller value, and it can be
considered that the epidemic situation in the region has been
effectively controlled.

In Figure 4D, the values of trend function change in Germany
can be seen that it has a small wave peak at first, and then
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suddenly increases until it stabilizes around 0.6. So, it can be
speculated that there was a small outbreak in Germany between
January 22 and February 2, and then it was effectively controlled,
resulting in a growth rate of almost zero. But since February 22,
there has been a second outbreak in Germany. The values of trend
function have been fluctuating around 0.6, indicating that
Germany’s growth rate still remains high and the epidemic

has not been effectively controlled. The above results are
consistent with the local epidemic data in Germany, which
proves that the method is effective.

From above analysis, we can analyze and predict the epidemic
situation in South Korea and Russia. From Figure 4, it can be seen
that the figure of South Korea has shown a clear downward trend
since April 2, indicating that the epidemic situation in South

FIGURE 2 | Networks at the 43rd day of the four regions. The number of connections in the network reflects the change degree of nine-day growth rate.

FIGURE 3 | Growth rate and the evolution of trend function of Germany.
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Korea has been effectively controlled. However, there was a small
upward trend at the 100th day. This indicates that the daily
growth rate in South Korea has increased by a small margin
recently. But, it can be controlled quickly. For Russia, where the
values of trend function is still fluctuating around 0.6, which
indicates a certain fluctuation in the growth rate of the daily
confirmed population in Russia during April. We can also see that
the growth rate is still relatively high, which shows that the
Russian epidemic has not been effectively controlled, and the
growth rate will not be significantly reduced in the near future,
and more stringent measures are needed to control the
development of the epidemic.

Note that the effective control of the epidemic in this article
refers to the fact that the daily growth rate is almost zero, that is,
there is almost no new infection, rather than the change in the daily
growth rate of 0, or in other words, the next day is approximately
equal to the daily growth rate of the previous day, as mentioned in
some articles. For example, for the platform period mentioned in
Perc et al. (2020), we understand it as the epidemic situation has
been preliminarily controlled, and only when there is no new
infection can it be considered to be effectively controlled.

4. DISCUSSIONS AND CONCLUSIONS

In this article, we proposed a trend analysis method based on
network construction with sliding windows to extract the

characteristics of network dynamic evolution over time and
analyzed the epidemic trend in four typical regions. In the
analysis, we found that some regions had better control of the
epidemic, while others were still in the process of outbreak. So, we
put forward some suggestions and hope that the epidemic
situation in various countries can be effectively controlled as
soon as possible.

The proposed method in this article is easy but efficient for
the trend analysis of COVID-19. In general, since COVID-19
patients’mid-term course of disease develops rapidly, it is hard
to accurately judge the cycle from mild to severe. Moreover,
the issue of infectivity in the incubation period and the
infectious power of those infected patients during the
recovery period remains to be studied, which may be the
cause of second outbreak in Germany. The intensity of
different infection generation and the difference of infection
are still unknown. The question of whether the virus
will disappear or persist in the population remains to be
resolved.

Many countries have taken effective measures to the epidemic,
such as closing churches, bars, and gymnasiums. In severe cases,
some countries such as China seal off the city from all outside
contact to stop the spread of the plague. We can learn from the
above analysis that Wuhan has got the epidemic under control in
a relatively short time. In order to block the transmission chain of
the virus, it is a very effective method to trace the confirmed
patient’s activity route and contacts. For countries like Russia

FIGURE 4 | Evolution of trend function for the four regions: Wuhan, South Korea, Russia, and Germany. The value of the abscissa is the number of days passed
from January 22, 2020, and the ordinate is the value of the trend function I. The larger the I value, the larger is the clustering coefficient and mean sum.
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where the epidemic is still serious, which can be observed from
the trend in Figure 4, they should consider to strengthen the
isolation measures.
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Mathematical Modeling Based Study
and Prediction of COVID-19 Epidemic
Dissemination Under the Impact of
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COVID-19 (SARS-CoV-2) is rapidly spreading in South Asian countries, especially in

India. India is the fourth most COVID-19 affected country at present i.e., until July 10,

2020. With limited medical facilities and high transmission rate, the study of COVID-19

progression and its subsequent trajectory needs to be analyzed in India. Epidemiologic

mathematical models have the potential to predict the epidemic peak of COVID-19

under different scenarios. Lockdown is one of the most effective mitigation policies

adopted worldwide to control the transmission rate of COVID-19 cases. In this study, we

use an improvised five compartment mathematical model, i.e., Susceptible (S)-Exposed

(E)-Infected (I)-Recovered (R)-Death (D) (SEIRD) to investigate the progression of

COVID-19 and predict the epidemic peak under the impact of lockdown in India. The aim

of this study is to provide a more precise prediction of epidemic peak and to evaluate

the impact of lockdown on epidemic peak shift in India. For this purpose, we examine

the most recent data (from January 30, 2020 to July 10, 2020 i.e., 160 days) to enhance

the accuracy of outcomes obtained from the proposed model. The model predicts that

the total number of COVID-19 active cases would be around 5.8 × 105 on August

15, 2020 under current circumstances. In addition, our study indicates the existence of

under-reported cases i.e., 105 during the post-lockdown period in India. Consequently,

this study suggests that a nationwide public lockdown would lead to epidemic peak

suppression in India. It is expected that the obtained results would be beneficial for

determining further COVID-19 mitigation policies not only in India but globally as well.

Keywords: epidemic peak, SEIRD model, COVID-19, lockdown, India, under reporting

INTRODUCTION

COVID-19 is a contagious disease of the Severe Acute Respiratory Syndrome Corona Virus
(SARS-COV) family, and has emerged as the biggest health crisis of the twenty-first century
across the globe. It has been declared as a global pandemic by World Health Organization
(WHO) on March 11, 2020 just after a few months since its first case reported in Wuhan,
China [1]. COVID-19 infected patients generally exhibit common symptoms like cough, fever
and respiratory disorders. In the worst conditions, it might result in serious health issues like
kidney failure, and pneumonia which might cause death of patients. Investigations on COVID-19
indicate that it transmits through respiratory droplets, as well as human to human transition [2].
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The most serious issue with the COVID-19 pandemic is its
rapidly growing transmission rate across the world. Until July
10, 2020, total confirmed cases in world are 1.2 × 107 and total
number of deaths are 5.5 × 105 [3]. United States of America
(USA), Brazil, Russia, India and United Kingdom (UK) are the
top five most COVID-19 affected countries until July 10, 2020
[4]. Although researchers across the world are working on a
vaccination for COVID-19 to suppress its rapid dissemination
[5], an official vaccination of COVID-19 will not be available
for some time. Therefore, the preliminary mitigation policies
i.e., social distancing, public lockdown and improved testing
efficiency are vital steps to control the transmission rate of
COVID-19 worldwide [6].

Despite several mitigation policies, COVID-19 cases are in
an alarming situation in South Asian countries, particularly in
India. Being a developing nation and the second largest populous
country in the world, it is very challenging to control the spread
of COVID-19 in India. The first COVID-19 confirmed case was
reported in Kerala, India on January 30, 2020 [4]. Under the
lack of sufficient medical facilities in a country of 1.3 billion
people, various preliminary containment strategies have been
implemented by the government of India in the beginning
phase of COVID-19 transmission [7–9]. Social distancing and
several social awareness programs have been initiated as the
first precautionary steps to prevent the possibility of human-
to-human transmission. The primary goal of these strategies
is to control the main cause of COVID-19 transmission i.e.,
the social interaction in public places i.e., schools, colleges,
theaters, cultural and sports events excluding the essential public
services like hospitals, daily grocery shops, banks, and police.
On March 25, 2020 the Indian government announced the

FIGURE 1 | Spatial distribution of COVID-19 reported confirmed cases under the effect of lockdown in India (A–C). Color bar represents the spatial variation of

confirmed cases from lowest (green color) to highest (red color) under three phases of lockdown i.e., pre-lockdown (A), during lockdown (B) and post-lockdown

(C) in India.

first official nationwide lockdown for 14 days [9]. Subsequently,
the public lockdown has been implemented in five different
phases in India. In the second and third phase, the lockdown
has been extended up to April 15, 2020 and May 03, 2020
respectively to achieve better control on COVID-19 transmission
in India. However, few relaxations (conditional inter-state travel,
resuming domestic flights) in full lockdown have been provided
by Indian government in the fourth (May 04- May 17, 2020) and
fifth phases (May 18-May 31, 2020) of lockdown respectively. On
June 01, 2020 onwards, the nationwide lockdown was partially
lifted in India. Unfortunately, it resulted in a sudden growth in
COVID-19 cases in the last 40 days. At present, the number of
COVID-19 cases are dramatically increasing in India and tending
toward its epidemic peak [10]. Therefore, it is necessary to study
the dynamics and predict the future inflammation of COVID-19
in India.

Mathematical models have the potential to trace and
predict the epidemic trajectory under different circumstances.
Various mathematical, statistical models have been proposed to
understand the dissemination trajectory for a pandemic [11–34].
Among these models, Susceptible (S)-Infected (I)-Recovered (R)
model (SIR model) has been frequently used in past to predict
the dynamics of various contagious diseases i.e., HIV virus [11],
plague [12], SARS [13]. Recently, SIR model has also been
applied for prediction of COVID-19 trajectory and its epidemic
peak in all over the world [15–19]. Numerous relevant studies
have been carried out in India as well [20–34]. A COVID-19
simulation models i.e., IndiaSIM have been proposed by Center
for Disease Dynamics, Economics & Policy (CDDEP) to predict
COVID-19 infected cases under different lockdown periods in
India [25]. This model predicts the total infected cases as 106
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under pre-lockdown conditions and 1.5 × 106 under lockdown
conditions, respectively. Pai et al. investigated the COVID-19
transmission dynamics under the effect of lockdown. This study
predicts that the peak of active infected cases around 43,000
will occur in the middle of May, 2020 [29]. In another study,
a compartmental mathematical model to predict COVID-19
dynamics has been proposed by analyzing data up to April
30, 2020. This study mainly focuses on the computation of
basic reproduction number (R0) for COVID-19 spread and its
impact on epidemic transmission in India. Moreover, Sarkar
et al. proposed a six compartment mathematical model i.e.,
susceptible (S), asymptomatic or pauci-symptomatic infected
(A), symptomatic reported infected (I), unreported infected
(U), quarantine (Q), and recovered (R) [“SAIUQR” model]
to predict the COVID-19 dynamics in four major states of
India i.e., Jharkhand, Gujarat, Andhra Pradesh, and Chandigarh

[33]. However, such studies have been carried out at the very
early stage of the pandemic. Further a major problem for such
short-term predictions is the determination of crucial model
parameters and corresponding impact of intervention strategies
on the epidemic dynamics. Moreover, these studies mainly
predict the number of active cases from COVID-19 at particular
region whereas the mortality i.e., death rate is also a crucial
factor to take into account while forecasting the influence of
a fatal pandemic i.e., COVID-19. In addition, it is pointed
out in earlier studies that under-reporting i.e., the difference
between the reported cases and actual confirmed cases is another
vital parameter in prediction of COVID-19 trajectory [16]. A
data=based study on impact of abrupt changes in intervention
policies (testing) and corresponding population synchrony with
transmission dynamics of Bovine-tuberculosis has been discussed
[14]. It depicts how testing interruptions can alter the epidemic

FIGURE 2 | Schematic of modified SEIRD model. Susceptible (S) is the number of un-infected persons, exposed (E) are the individuals which are infectious but not

able to transmit the disease, infected (I) represent the active cases i.e., those who can transmit the disease, recovered (R) are the number of individuals who have

been cured from disease and Death (D) represents the number of deaths from COVID-19. The parameters β, ε, γ and δ are transmission rate, incubation rate,

recovery rate and death rate, respectively. The transmission rate (β) is optimized to β/k, (0.2 ≤ k ≤ 1) to account for the impact of lockdown.

FIGURE 3 | Determination of recovery rate and death rate in India (A) Reported recovered cases (B) Reported deaths with respect to daily confirmed cases. The

recovery rate (γ) and death rate (δ) have been estimated using linear regression method with r = 0.9701 and p < 0.0001.
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parameters and shift the dynamics of disease, and suggests
regular testing leads to more de-synchronized infected cases.

In this study, we propose an improvised five compartment
mathematical model i.e., Susceptible (S)-Exposed (E)-Infected
(I)-Recovered (R)-Death (D) (SEIRD model) to analyze the
progression of COVID-19 and forecast the epidemic peak of
COVID-19 pandemic under the influence of a nationwide public
lockdown in India. We use robust statistical methods i.e., linear
regression method and least square method to estimate the
SEIRDmodel parameters by analyzing publicly available reported
data of COVID-19 outbreak in India. In particular, a few crucial
factors i.e., optimized transmission rate, effective reproduction
number [R (t)] and under-reporting are incorporated in this
study for accounting impact of public lockdown. Consolidation
of these additional parameters is helpful to provide a broader
picture of COVID-19 dissemination in India.

MATERIALS AND METHODS

Data Collection
The data has been collected from the open source COVID-19
dataset official websites [3, 4, 9]. Global data of COVID-19 has
been retrieved from World Health Organization (WHO) official
dashboard [3] whereas publicly available data sources [4, 9] have
been used to perform data based study COVID-19 progression
in India.

Figures 1A–C represents the spatial transmission of COVID-
19 cases in India during three time periods i.e., pre-lockdown
(January 30- March 24, 2020), lockdown (March 25-May 31,
2020) and post-lockdown periods (June 1-July 10, 2020). It clearly
indicates that COVID-19 cases are least transmitted during
the lockdown period as compared to pre-lockdown and post-
lockdown across different states of India.

SEIRD Model
We used a five-compartment epidemic model i.e., Susceptible
(S)-Exposed (E)-Infected (I)-Recovered (R)-Death (D) (SEIRD
model) to study COVID-19 in India. The SEIRD model has been
improvised to account for the effect of the containment policy
(lockdown) by adjusting the contact rate (β) and reproduction
number (R) accordingly. Figure 2 represents a pictorial view of
SEIRD model.

Theoretically, the SEIRD model can be represented by four
differential equations [16]

dS

dt
= −β I S (1.1)

dE

dt
= β I S− ε E (1.2)

dI

dt
= ε E− γ I (1.3)

dR

dt
= γ (1− δ) I (1.4)

dD

dt
= δ γ I (1.5)

Here β , ε, γ and δ are contact rate/transmission rate, incubation
rate, recovery rate and death rate, respectively and known as
model parameters.

SEIRD Model Parameters
Equations (1.1–1.5) are solved in Matlab programming software
(Mathworks, R2016a) using ordinary differential equations solver
function “ode45.” In this study, initial susceptible volume has
been determined by multiplying the total population of India
(N) with a factor 10−3 [20]. The total confirmed cases have
been estimated by adding the number of infected (active) cases,
recovered cases and number of deaths predicted from the model.
The data is fitted with the SEIRD model to predict the possible
total confirmed cases in India under the effect of lockdown. The
fixed value of incubation period i.e., 5.2 days (incubation rate =
0.1923 day−1) is used in our model [21]. However, the recovery
rate (γ ) and death rate (δ) has been calculated with the help of
Figures 3A,B, respectively. To estimate the transmission rate (β),
the least square method is used to optimize the value of β [23].
We have minimized the difference between reported cases taken
from [4] and predicted the number of cases as

min|C∗(t)− C (t)|2 (2)

Here C∗ (t) represents the data based total number of confirmed
cases and C (t) represents the corresponding number of cases
predicted by model. The numerical values of C (t) can be
computed as [28]

C (t) = I (t) + R (t) + D(t) (3)

Further, we have assumed that β has been changed to β/k, (0.2 ≤
k ≤ 1) under the impact of lockdown in India [29] and projected
the number of total confirmed cases for the estimated β . Out
of these estimated values of β , the most suitable value i.e., β =
0.4809 is used to obtain the best fit for predicted number of cases
with reported number of cases. These SEIRD model parameters
are listed in Table 1.

Effective Reproduction Number [R (t)]
The basic reproduction number (R0) is the most crucial
parameter in the SEIRD mathematical model. It determines how
the disease is transmitting over the population during a particular
time interval. The value of R0 > 1 implies the disease is in

TABLE 1 | SEIRD model parameters.

S. No. SEIRD model parameters Value and source

1 β 0.4809 (estimated)

2 ε 0.1923 (adapted from [21])

3 Ŵ 0.7012 (calculated from Figure 3A)

4 δ 0.0215 (calculated from Figure 3B)

Transmission rate (β) has been estimated from the model with 95% confidence interval

(0.4521, 0.4922). The incubation period (ε) (5.2 days) is fixed and adapted from [21].

The recovery rate (γ) and death rate (δ) have been estimated using

Figures 3A,B, respectively.
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outbreak state, R0 = 1 indicates that the disease is still in system
but in a stable state while R0 < 1 represents the disease has
diminished completely. In practice, the effective reproductive
number R (t) measures the number of secondary cases generated
by an infectious case once an epidemic is ongoing. In our study,
we have considered R as R(t) i.e., as a function of time [17]. It is
given as

R (t) =
β(t)

γ
(4)

Case Fatality Risk/ratio (CFR) is another important parameter for
epidemic study. It interprets the status of epidemic in terms of
deaths. It is defined as [16]

CFR =
Number of deaths daily

Number of cases daily
(5)

RESULTS AND DISCUSSION

At first, we performed a data-based study of COVID-19
progression in India during the time period of January 30-
July 10, 2020 i.e., 160 days. We have observed the trend of
COVID-19 under the impact of lockdown. Figure 4A represents
the number of cases progression over time and indicates that
the COVID-19 cases were negligible in pre-lockdown period.
It implies that the lockdown has been implemented at the
beginning phase of COVID-19 transmission in India. Further
on comparing the cases in the lockdown and post lockdown
periods, clearly our results show that the cases are much fewer
during the lockdown period, and have increased abruptly just
after lockdown lifted. Similarly, Figure 4B depicts the variation
of testing samples under the impact of lockdown. It is observed
that a negligible amount (20,864) of samples have been tested

FIGURE 4 | COVID-19 reported data [5] based analysis during different time intervals in India (A) Reported number of daily cases (B) daily tested samples (C) Case

Fatality Ratio (CFR). The time interval has been divided into three sections i.e., pre-lockdown, during lockdown (blue shaded area) and post-lockdown (red shaded

area), respectively.

FIGURE 5 | COVID-19 reported data-based analysis during different time intervals in India, (A) Basic Reproduction number variation over time (B) estimation of

underreported cases. Red colored dashed line in (A) represents the threshold value of reproduction number i.e., R(t) = 1. The red colored region in (B) represents

possible under-reported cases in India. [Blue shaded region represents actual lockdown period].
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during pre-lockdown period [3] which implies that a number
of cases might have not been reported during the pre-lockdown
period as well. In fact, first sample testing data has been reported
on March 13, 2020 in India. Upon further analyzing the sample
testing data, an increasing trend of testing samples was observed
with respect to time. Apparently, a lesser number of samples had
been tested during the lockdown period as compared to the post-
lockdown period. Moreover, an identical ascending trend has
been noticed for number of cases and number of testing samples.
In addition, Figure 4C indicates that CFR is very low (1–3%) in
India i.e., COVID-19 fatality is below average as compared to
other countries in the world. However, CFR also increases rapidly
in the post-lockdown period.

Figure 5A represents the variation in effective reproduction
number at various phases of lockdown in India. A descending
trend has been observed in R during the lockdown period,
whereas it hikes again as the lockdown is lifted i.e., in post
lockdown period. Further observations suggest that R (t)
approaches unity around August 25, 2020. It indicates that the
epidemic peak should appear in August 2020 in India. Apart
from this, Figure 5B represents the possible under-reported
cases in India. It can be defined as the difference in the
total confirmed cases predicted from model and data based
reported cases [17]. A significant number of underreported cases
(∼105) has been observed in the beginning of post lockdown
in India.

FIGURE 6 | Mathematical model prediction of COVID-19 dissemination in India, (A) Five compartment trajectory over time (B) COVID-19 epidemic peak i.e.,

maximum active cases prediction in India. [Blue shaded region represents the actual lockdown period]. The incubation period and recovery rate are taken as 5.2 days

(incubation rate = 1/5.2 day−1) is 0.7012 day−1 respectively.

FIGURE 7 | Mathematical model prediction of COVID-19 dissemination in India under (A) without lockdown (B) Lockdown of 100 days. The incubation period and

recovery rate are taken as 5.2 days (incubation rate = 1/5.2 day−1) is 0.7012 day−1 respectively.
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TABLE 2 | COVID-19 epidemic peak prediction using SEIRD model in India under

lockdown effect.

S. no. Lockdown period Estimated COVID-19 epidemic peak

Date Estimated maximum

cases

1 0 days (hypothetical cases

i.e., if no lockdown has

been implemented in India)

September

25, 2020

2.1 × 107

2 65 days (March 25- May

31 2020) (actual case)

August

16, 2020

2.5 × 106

3 Lockdown of 100 days

(extensive case)

September

15, 2020

1.2 × 106

Prediction of COVID-19 Epidemic Peak in
India
To forecast the trajectory of COVID-19 in subsequent months,
we have applied the SEIRD model to predict the trajectory
of COVID-19 under the nationwide lockdown in India.
Figure 6A represents the actual transmission dynamics of all
five compartments (susceptible, exposed, infected, recovered
and death) for COVID-19 in India. Figure 6B provides more
clear insights of the epidemic peak in India based on actual
model parameters. It is estimated that the maximum number
of COVID-19 confirmed cases and active cases should be found
around 2.5×106 and 5.8× 105 respectively at mid-August 2020.
The red colored markers represent the COVID−19 trajectory
based on reported data [4]. On the other hand, Figure 7A

shows the five-compartment (SEIRD) trajectory under the pre-
lockdown condition in India. It indicates that the number of cases
would be around 107 in that case. Moreover, Figure 7B depicts
if a lockdown of 100 days could have been implemented instead
of 65 days, the number of cases would be much lower i.e., 105.
However, the peak would be shifted to mid-September 2020 in
that case.

Table 2 represents the predicted numerical data under various
lockdown possibilities in India. Observations show that the cases
could be order of 107, if lockdown had not been implemented in
India whereas a lockdown of 100 days instead of 65 days could
suppress the cases to up to 50% of the actual cases prediction
in India.

CONCLUSION

In this study, we have analyzed and predicted COVID-19
dissemination dynamics in India using a five-compartment
mathematical model i.e., SEIRD model. The conventional
SEIRD model has been improvised for accounting the impact
of COVID-19 mitigation policy i.e., nationwide lockdown in
India. The modified transmission rate [β/k, (0.2 ≤ k ≤ 1)]
based on intervention strategies i.e., lockdown, time dependent
reproduction number [R (t)] and determination of under
reported cases are the key elements of our improvised SEIRD
model. Moreover, the data has been examined up to July 10,
2020 in this study. The data based study suggests that COVID-19

inflammation has been controlled up to 50% by implementing
public lockdown in India at the starting phase of disease
transmission. Results indicated that the effective reproduction
number has been varied within a range of 2 to 3 during the
lockdown period. On the other hand, a relationship has been
established between testing efficacy and disease transmission in
an earlier study [34]. Our study strongly recommends improved
testing efficiency (higher number of sample testing) as one of the
robust strategies against COVID-19 spread worldwide. However,
a significant number of un-reported cases (∼105) have been
identified in early post-lockdown period in India. The possible
reasons for this underreporting might be inconsistency in testing
samples or abrupt release of lockdown.

In addition, the COVID-19 epidemic peak has also been
estimated under different possible lockdown scenarios using the
mathematical model. This study predicts the maximum number
of total confirmed cases and maximum active cases around
2.5 × 106 and 5.8 × 105, respectively on August 15, 2020.
Corresponding outcomes imply that COVID-19 cases could have
been controlled up to a better extent with an extensive lockdown
period. Although nationwide lockdown has been implemented at
the emerging phase of COVID-19 in India, this was only for 65
days. Keeping in mind the population and medical facilities in
India, such a short lockdown period might not be sufficient in
order to suppress COVID-19 transmission. Our study suggests
that the lockdown could have been extended up to 100 days to
achieve better control over COVID-19 transmission. Apart from
this, the researchers around the world are engaged in developing
a vaccine for SARS-COV-2. Therefore, one can expect that the
evolution of such pharmaceutical intervention strategies and
other medical interventions against COVID-19might modify the
outcomes of this study.

In brief, this study recommends the nationwide public
lockdown as an effective controlling policy for COVID-19
dissemination, not only in India but across the globe. It will
definitely play a crucial role in epidemic peak suppression
of COVID-19 dissemination. Although our improvised
SEIRD model provides satisfactory results, one can include
few additional parameters i.e., imported or exported cases,
asymptotic cases, under-reported cases etc. to enhance
the validity of mathematical model while predicting an
epidemic dissemination.
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On the Time Shift Phenomena in
Epidemic Models
Ayse Peker-Dobie1,2, Ali Demirci 1*, Ayse Humeyra Bilge2 and Semra Ahmetolan1

1Department of Mathematics, Faculty of Science and Letters, Istanbul Technical University, Istanbul, Turkey, 2Department of
Industrial Engineering, Faculty of Engineering and Natural Sciences, Kadir Has University, Istanbul, Turkey

In the standard Susceptible-Infected-Removed (SIR) and Susceptible-Exposed-Infected-
Removed (SEIR) models, the peak of infected individuals coincides with the inflection point
of removed individuals. Nevertheless, a survey based on the data of the 2009 H1N1
epidemic in Istanbul, Turkey displayed a time shift between the hospital referrals and
fatalities. An analysis of recent COVID-19 data and the records for Spanish flu (1918–1919)
and SARS (2002–2004) epidemics confirm this observation. We use multistage SIR and
SEIR models to provide an explanation for this time shift. Numerical solutions of these
models present strong evidence that the delay between the peak of R′(t) and the peak of
J(t) � ∑i Ii(t) is approximately half of the infectious period of the epidemic disease. In
addition, we use a quadratic approximation to show that the distance between successive
peaks of Ii is 1/ci, where 1/ci is the infectious period of the ith infectious stage, and we
present numerical calculations that confirm this approximation.

Keywords: COVID-19, epidemic models, multistage Susceptible-Infected-Removed model, multistage Susceptible-
Exposed-Infected-Removed model, time shift

1. INTRODUCTION

From the early attempts [1–4] to recent studies, epidemic modeling which is applicable in a wide
range of fields from informatics [5, 6] to chemistry [7–9] has drawn the attention of researchers in
various disciplines. Since the basic compartmental model Susceptible-Infected-Removed (SIR) which
is commonly used to model diseases for which the infection confers permanent immunity was
introduced by Kermack and McKendrick in 1927 [4]; other compartmental models [10–12] have
been developed to model diseases with different structures and dynamics. Especially in recent years,
major outbreaks such as avian flu in 2005, swine influenza in 2006, and H1N1 influenza in 2009 have
highlighted the need for more effective and reliable models to control the spread of disease and to
provide a better knowledge for the prediction of future threats and for the development of stronger
containment strategies. In Refs. [13–18], some results on the modeling of different types of epidemic
diseases, the solution form of these models, the observation of global stability, and the determination
of the final size of the epidemic are obtained. In Ref. [15], global stability criteria are derived for the
SEIS model which can be regarded as a model with no immunity, and different SIR models are
examined in Refs. [16, 17]. Moreover, the works [17, 18] provide some useful results on the final size
of the epidemic for SIR models. With the same motivation of these works but rather a different
contribution to literature, we use a multistage model [14] in this article to explain the time shift
observed in several surveys such as Spanish flu (1918–1919) [19], SARS (2002–2004), the 2009 H1N1
in Istanbul, and recently, COVID-19 [20] (see Figures 1–3).
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In the literature, available observed data that are used for
the ordinary differential equation system representing the
classical SIR epidemic model is based on the curve of
removed individuals. Usually, this curve is obtained by
taking into consideration only the fatality data of the
epidemic disease, whereas in some research studies, not
only the fatality data but also the hospitalization data for
the epidemic are taken into account in the modeling
process. In Ref. [21], it is shown that there exists a delay
between the peak of the hospitalization (infectious) curve and
the inflection point of the fatality (removed) curve based on the
data collected. The original contribution of this article to the
literature is that we explain this time shift by the
multidimensional form of SIR and SEIR models and also
provide numerical evidence that the expected delay is
approximately half of the infectious period of the epidemic
disease for both of the multistage systems.

In the second section of this work, we give a brief summary of
the classical epidemic SIR and SEIR models and define the
multistage form of these models that will be used in further
analysis. The graphs obtained by the numerical evaluations of the
classical SIR and SEIR models and their multistage forms are also
given. Analysis of these graphs confirms that the multistage SIR
and SEIR models explain the time shift observed in several
surveys. In the third section, the evaluation of delay for
different epidemic parameters is presented by using the
numerical evaluations of these multistage models. In the
fourth section, the distance between the points where
successive stages and hence any two stages assume their
maximum is found approximately. The last section includes a
summary of the results obtained in the previous sections as well as
motivations for future analysis.

2. STANDARD EPIDEMIC MODELS AND
EPIDEMIC MODELS WITH MULTIPLE
INFECTIOUS STAGES
The SIR model is commonly used to model diseases for which the
removed individuals are assumed to be immune to reinfection. In
addition, the total population with constant size is divided into
three distinct compartments the size of which change with time t.
These compartments are called the susceptible class S, the
infective class I, and the removed class R. Healthy individuals
with no immunity are members of class S until they are infected
with a pathogen and become capable of transmitting the disease
to others. They move from the class S into the class I once they are
infected and then from I to R once they recover or die. Childhood
illnesses like measles or rubella are good examples for the
SIR model.

The SIR epidemic model without vital dynamics, that is, the
recruitment of new susceptible through birth or immigration as
well as the loss through mortality or emigration are ignored, is
defined by the following system of nonlinear ordinary differential
equations:

SIR : S′ � −βSI,
I′ � βSI − cI,

R′ � cI,
(1)

where the coefficient β refers to the disease transmission rate and
1/c represents the duration of infection period. Note that since
S′ + I′ + R′ � 0, we may assume S + I + R � 1 by the use of
appropriate normalization.

The standard SIR model ignores a latent phase which is the
delay between the time of the acquisition of infection and the
onset of infectiousness. In order to define this latent phase, the
introduction to the SIR model of an exposed class E whose
members are individuals who have been infected with a
pathogen but are not yet infectious due to the incubation
period of pathogen yields the SEIR model. Chicken pox is
suitable for the SEIR model, which is defined by the following
system of ordinary differential equations

FIGURE 1 | (A) Weekly number of influenza cases and respiratory
deaths (pneumonia and influenza) in Copenhagen, Denmark, during
1918–1919 are presented. This figure was taken from the study of Andreasen
et al. [19] (copyright Andreasen et al. [19]). A shift occurred between the
maxima of curves. (B) Daily number of total cases and cumulative number of
the fatalities for the 2003 SARS epidemic in the world are shown. The data
provided by WHO were used in the generation of this figure (https://www.
who.int/csr/sars/country/en/) (last access: September 15, 2020). An explicit
shift was also observed for the SARS epidemic.
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FIGURE 2 | Daily number of referrals to hospitals and cumulative number of fatalities for the 2009 H1N1 epidemic in Istanbul, Turkey. The scatter in the number of
daily referral to hospitals indicates that the hospitalization rate varies during the epidemic. The asymmetry of the incidence curve is still observable. The fatalities shown
here are adjusted to at most 15 days after referral to the hospital (left panel). The duration of symptoms prior to hospitalization (light color) and the duration of
hospitalization prior to death (dark color) for the fatalities in Istanbul, Turkey, due to 2009 H1N1 epidemic (right panel).

FIGURE 3 | Graphs of total cases (TC) and removed individuals (R) for selected countries. The dataset of each country is collected according to published official
reports and available at the website http://www.worldometers.info/coronavirus/ (last access: June 28, 2020). Updated data are also available at the website http://
epikhas.khas.edu.tr/. The last data in this work were collected on the 16th of June 2020. Data cover the period January 22–June 28, 2020, and in the following, “Day 1”
corresponds to January 22, 2020.
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SEIR : S′ � −βSI,
E′ � βSI − ϵE,
I′ � ϵE − cI,
R′ � cI,

(2)

where 1/ϵ represents the mean exposed period. Note that we may
assume S + E + I + R � 1 by the use of appropriate normalization.

These two models are suitable for mathematical modeling of
seasonal diseases, but they fail to reproduce the time shift that was
observed in the modeling of the 2009 H1N1 epidemic in Istanbul,
Turkey [21], as shown in Figure 2. For COVID-19, a similar time
shift is observed between the curves of total cases and removed
individuals in China, South Korea, Iran, Turkey, Germany, and
Brazil as shown in Figure 3. Publicly accessible data that have been
released by the state offices of each country are used for this analysis.

In the literature, a similar time shift is also observed for
Spanish flu [19] and SARS epidemics. The graphs for the data
of these epidemics are shown in Figure 1. Weekly case and fatality
reports for Copenhagen, Denmark, in 1918–1919 are displayed in
Figure 1A. In this figure, it can clearly be seen that there is a time
shift between the peak of the infectious cases and the peak of
fatalities. Similarly, in Figure 1A–B, the time shift is also
observable between cumulative cases and cumulative fatalities.

In this study, we use multiple infectivity periods [13, 14] to
explain this delay that is unforeseen in the standard SIR
model. The approach of multiple infectious stages consists
of replacing the single infectious stage I with N + 1 substages
denoted by Ii, which is the density of individuals in the ith
infectious stage. Unlike the model in Ref. [14], each of these
stages may have different infectivity βi and a variable
infectious period 1/ci. In order to compare the solution
curves with the ones for the standard SIR and SEIR
models, we set

1
c0

+ 1
c1

+/ + 1
cN

� 1
c
.

The multistage SIR and SEIR epidemic models are defined by the
following systems:

Multistage SIR : S′ � −S(β0I0 + β1I1 +/ + βNIn),
I′0 � S(β0I0 + β1I1 +/ + βnIN) − c0I0,
I′1 � c0I0 − c1I1,
/ //
/ //

I′N � cN−1IN−1 − cNIN ,
R′ � cNIN ,

(3)

FIGURE 4 | Numerical solutions of classical SIR (1) and SEIR (2) models with R0 � 2.5 and 10. Here, ϵ and γ are chosen as 1/3 and 1/5 (D � 5), respectively. Time
shift does not occur in classical models.
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Multistage SEIR : S′ � −S(β1I1 +/ + βNIN),
E′ � S(β1I1 +/ + βNIN) − ϵE,
I′1 � ϵE − c1I1,
I′2 � c1I1 − c2I2,
/ //
/ //
I′N � cN−1IN−1 − cNIN ,
R′ � cNIN .

(4)

The multistage SIR and SEIR systems with β0 � . . . � βn and c0 �
. . . � cn correspond to the choice of gamma-distributed
“Infection Period Distribution” (IPD) in the integral equation
formulation of the SIR model [14].

The linear parts of apparently different infectious stages for
i≥ 1 in the multistage SIR model and i≥ 2 in the multistage
SEIR model have a similar structure. We write the linear parts
of each equation above as a system and then rearrange and
rename as follows to keep the models as clear and simple as
possible

SJR : J � I0 + β1
β0
I1 +/ + βN

β0
IN ,

S′ � −β0SJ ,
I′0 � β0SJ − c0I0,

I′i � ci−1Ii−1 − ciIi, for i � 1, . . .N ,

R′ � cNIN ,

(5)

SEJR : J � I1 + β2
β1
I2/ + βN

β1
IN ,

S′ � −β1SJ ,
E′ � β1SJ − ϵE,
I′1 � ϵE − c1I1,

I′i � ci−1Ii−1 − ciIi, for i � 2, . . .N ,

R′ � cNIN .

(6)

Subsequently, the numerical evaluations of these two systems, SJR
and SEJR, defined above will be used for some of the structural

FIGURE 5 |Numerical solutions of the multistage SIR model for different stage numbers N � 5, 10, 30, and 60. Here, R0 � 2.5 and c � 0.2 × N. In the graphs,
* represents the location of the maximum value of J and o represents the location of the inflection point of R. Graphs show that there is a time shift between these
points.
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comparisons of the classical models and multistage models. A
MATLAB® ODE45 solver is used for all the numerical
evaluations. In typical cases, initial conditions are chosen so
that S(0) is close to 1, whereas E(0) and Ii(0) are close to
zero, and R(0) is chosen so that the sum of all variables is 1,
that is,

S(0) � 1 − 10− 4, I0(0) � 10− 4, Ii(0) � 0, i � 1, . . . .,N ,

R(0) � 0;
(7)

and for the SEJR model,

S(0) � 1 − 10− 4, E(0) � 5 × 10− 5, I1(0) � 5 × 10− 5, Ii(0) � 0,

i � 2, . . . .,N , R(0) � 0.

(8)

Numerical evaluations of the classical SIR and SEIR models are
made for specific epidemic parameters, and the results are given
in Figure 4. For the evaluations of the classical models, c and ϵ are
fixed as 1/5 and 1/3, respectively, whereas the value of R0 is
chosen to be 2.5 and 10, respectively. In all cases, the maximum of
the infectious stage and the inflection point of the removed stage
occur at the same point in time; hence, there is no time shift in
these classical models.

Numerical evaluations of the multistage SIR model are
repeated for various stage numbers. First, R0 is set as 2.5,
while the total number of stages, N, is given the values
5, 10, 30, and 60, and the corresponding graphs of the
solutions are shown in Figure 5. In these evaluations, ci is
chosen to be 0.2 × N , for i � 0, 1, . . . ,N . In Figure 5, the time
shift between the maximum point of the curve, representing the
sum of the infectious stages, J(t) and the inflection point of R(t)
can clearly be seen. As predicted, the system given by Eq. 5
confirms the delay and therefore seems adequate to explain the
time shift between infectious and removed stages observed in
Istanbul data [21]. Note that the time shifts for N � 10, 30, 60
seem to be equal but the one for N � 5 is smaller.

Similarly, numerical evaluations of the multistage SEIRmodel
are obtained for various stage numbers. First, R0 is set as five,
while the stage number N is given the values 5, 10, 30, and 60,
and the corresponding graphs of the solutions are shown in
Figure 6. In these evaluations, ϵ and ci are chosen to be 1/3 and
0.2 × N , respectively, for i � 1, . . . ,N . Figure 6 illustrates that
just like it is seen in the SJR system, there exists a time shift
between the maximum point of J and the inflection point of R
in the SEJR model, with characteristics similar to the ones for
the SIR model.

FIGURE 6 | Numerical solutions of the multistage SEIR model for different stage numbers N � 5, 10, 30, and 60. Here, R0 � 2.5, ε � 1/3, and c � 0.2 × N. In the
graphs, * represents the location of the maximum value of J and o represents the location of the inflection point of R. Graphs show that there is a time shift between these
points.
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3. NUMERICAL RESULTS FOR MODELS
WITH MULTIPLE INFECTIOUS STAGES

In this section, we investigate the dependency of the delay on
the epidemic parameters by numerical evaluations of system
Eq. 5. Graphs I(i(t) for N � 1, 2, 3, 4 for the SIR and SEIR
models are given in Figures 7 and 8, respectively. To analyze
the nature of the time shift for relatively large values of the
stage number, the graphs of the solutions for the same
epidemic parameters are obtained for N ranging from 2 to
16 in steps of two and the corresponding graphs are given in
Figure 9. As it can be seen from Figure 9, the solution curves
start to resemble as the stage number N increases. Finally, in
Figure 10, we present the dependency of the time shift on the
number of stages N, for 1≤N ≤ 150. Similar computations are
repeated for the SEIR model and the results are presented in
Figures 11, 12.

For the SIR model, to investigate the effect of the basic
reproduction number R0 and the infectious period 1/c on the
infectious dynamics and the resulting delay, system (5) is solved
with the initial conditions given by Eq. 7 for some parameter
values. To this end, the pair (R0, 1/c) is chosen (2.5, 5), (5, 5),
(10, 5), (2.5, 10), (5, 10), (10, 10), (2.5, 20), (5, 20), and (10, 20),
respectively, and the numerical evaluations for various infectious
stages N are shown in Figure 10. It can be observed from this

figure that the delay is almost half of the infectious period. This
fact can also be seen in Figure 9 where the time value of the
maximum of J/N (normalized J) in time is located at the middle
of time values of the maximum of the first infectious stage and the
maximum of the last infectious stage. Comparison of panels of
Figure 10 shows that the change in the reproduction number R0

for a fixed infection period has no effect on the delay. On the
other hand, the delay depends on the infection period; in fact, it is
approximately half of it for large N.

The same analysis is repeated for the multistage SEIR model.
The system defined by Eq. 6 is solved for the same epidemic
parameters and initial conditions as above and with ε � 1/3, and
the resulting graphs are given in Figure 11. As for the SIR model,
the solution curves start to resemble for large N and the peak of
J(t) is located at the midpoint of the delay interval.

To illustrate the dependency of the delay on the system
parameters of the SEIR model, the pairs (ε, c) are chosen as
(1/3, 1/3)(1/3, (1/5), (1/5, 1/3), (1/5, 1/5), and variations of the
delay for each of these cases are presented in Figures 12A–D, for
R0 � 5 and R0 � 7.5. An analysis of these graphs yields that as N
increases, the delay converges to a value. Moreover, it could easily
be observed that the delay is independent of ϵ and R0, but yet it is
influenced by 1/c (i.e., infectious period). Note that the delay for
the multistage SEIR model is shorter than the delay observed in
the multistage SIR model.

FIGURE 7 | Graphs of the independent infectious stages I0 , . . . IN from numerical solutions of the multistage SIR model (5). Here, R0 � 2.5 and c � 0.2 × N. In the
graphs, vertical lines indicate the position of maximum points of the independent infectious stages. The distance between these vertical lines is approximately 1/c.
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4. ESTIMATION OF THE DELAY

In this section, we use a quadratic approximation to each Ii(t)
around the peak of Ii−1(t) to show that within the validity of the
quadratic approximation, the delays between successive peaks are 1/ci
.

Let ti be the time where each Ii assumes its maximum and 1/ci be
the corresponding infectious period for i � 0, 1, . . .N . To determine
the distance between the points ti where each substage Ii assumes its
maximum value, we use quadratic approximation of the Taylor
series expansion of Ii at the point t � ti−1 where,

Ii(t) � Ii(ti−1) + I′i(ti−1)(t − ti−1) + 1
2
I′′i (ti−1)(t − ti−1)2, (9)

for i≥ 1. Differentiating

I′i(t) � I′i(ti−1) + I′′i (ti−1)(t − ti−1) (10)

and then substituting t � ti in Eq. 10 and using the fact that
I′i(ti) � 0 since Ii reaches its maximum at ti, one obtains

ti − ti−1 � −I
′
i(ti−1)
I′′i (ti−1)

. (11)

The multistage SIR model defined by the equations in Eq. 5
suggests that for i≥ 1,

I′i(t) � ci−1Ii−1(t) − ciIi(t). (12)

Differentiating Eq. 12 yields

I′′i (t) � ci−1I
′
i−1(t) − ciI

′
i(t). (13)

By considering the fact that I′i−1(ti−1) � 0 since Ii−1 assumes its

maximum value at ti−1, one gets the following by replacing t � ti−1
in equation

I′′i−1(ti−1) � −ciI′i(ti−1).
Substitution of the equation above in Eq. 11 gives the
approximate distance formula as follows:

ti − ti−1 � 1
ci
. (14)

Therefore, the distance between any ti is ti − tj � ∑
k�j+1

i
1
ck
.

Results obtained by the numerical evaluations are compatible
with Eq. 14. To observe the distance between the maximum points
of the independent infectious stages, solutions of the multistage SIR
model with respect to various infectious periods are chosen. In this

FIGURE 8 | Graphs of the independent infectious stages I1 , . . . IN from numerical solutions of the multistage SEIR model (6). Here, R0 � 2.5, ε � 1/3, and
c � 0.2 × N. In the graphs, vertical lines indicate the position of maximum points of the independent infectious stages. The distance between these vertical lines is
approximately 1/c.
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respect, the basic reproduction numbers R0 and ci (i.e., duration is
5) are set as 2.5 and 0.2 × N , respectively, and the related graphs of
the solutions for various stage numbers (N � 1, 2, 3, 4) are given in
Figure 7. Comparison of graphs in Figure 7 reveals that the value of
the difference of the points where successive stages reach their
maximum is approximately 1/ci.

It should be emphasized that Eq. 14 is also valid for the
multistage SEIR model. The distance between the maximum
points of the independent infectious stages including the E stage
is approximately 1/ci. Since the proof is the same as in the SIR case,
we do not repeat the derivation of Eq. 14 again to avoid repetition.
However, to observe the distance between the maximum points of

the infectious stages numerically, the basic reproduction numbers
R0, ϵ, and ci (i.e., duration is 5) are set as 5, 1/3, and 0.2 × N . Then,
the SEIR model is solved for N � 1, 2, 3, and 4, and the related
graphs are given in Figure 8. As in the case of the SIR model, it is
observed that the distance between the maxima is found to be
approximately 1/ci, too.

5. CONCLUSION

Epidemic data display a time shift between the peaks of infectious
cases and fatalities. This time shift is not foreseen by the ordinary

FIGURE 9 | Change of the position of maximum of J/N (normalized J) in time with respect to the number of stages N for the multistage SIR model. “o”
indicates the position of the maxima of J/N (thick curves). Vertical lines represent the position of maximum points of the first stage, J/N, and the last stage,
respectively.
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FIGURE 10 | Variations of time shift (delay) with respect to the number of stages N for R0 � 2.5, 5, and 10; D � 5, 10, and 20 in the multistage SIR model. For all
cases, the time shift becomes stable at a constant value after a critical stage number N.

FIGURE 11 | Change of the position of maximum of J/N (normalized J) in time with respect to the number of stages N for the multistage SEIR model. “o” indicates
the position of the maxima of J/N (thick curves). Vertical lines represent the position of maximum points of the first stage, J/N, and the last stage, respectively.
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differential equations for the SIR and SEIR models since in both
of them, the derivative of R(t) is proportional to I(t).
Nevertheless, this can be remediated by using gamma
distributions instead of exponential distributions for the
infectious period distribution (IPD) in the original SIR model
of Refs. [4, 10] given in terms of integral equations [14], leading to
a multistage model.

In this article, we propose a generalization of these multistage
models by allowing the parameters to be unequal in different
stages. We showed that within the validity of a quadratic
approximation to Ii(t), the distance between the points
where each infectious stage reaches its maximum is
approximately 1/ci.

We solved the multistage models for a range of epidemic
parameters, and we have seen that the solution curves reveal the
time shift. While the delay varies for relatively small stage
numbers, it is observed that the delay becomes nearly stable as
the number of stages increases, and it is independent of the basic

reproduction number. This fact supports the validity of the
quadratic approximation and shows that the delay
phenomenon observed in the infectious diseases defined by the
epidemic models SIR and SEIR can be successfully explained by
the multistage forms of these models.

In addition to a theoretical contribution, the existence and the
estimation of the time shift between the progression of the
infectious cases and the fatalities have a practical importance,
in the sense that, in order to take timely actions, the severity of the
epidemic should be measured in terms of the increase in the
number of infectious cases.

Finally, we note that the importance of the effects of
quarantine is realized during the COVID-19 pandemic. In
the literature, there are two basic approaches, one of which
adds a compartment to the model as in Ref. [22] and the other
adds a function β/(c + Q(t)), where Q(t) is a time-dependent
rate as in Ref. [23] and has the effect of shortening the
duration of the infection period. This may explain the

FIGURE 12 | Variation of time shift for R0 � 5 and 7.5 in the multistage SEIR model. Here, ϵ � 1/3, 1/5, and D � 3, 5 are taken. For each case, delay becomes
stable at a constant value after a critical stage number N.
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relatively shorter delays in China (compared with South
Korea) where strict quarantine was in effect.
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Modeling Growth, Containment and
Decay of the COVID-19 Epidemic
in Italy
Francesco Capuano*

Department of Industrial Engineering, Università degli Studi di Napoli “Federico II”, Napoli, Italy

A careful inspection of the cumulative curve of confirmed COVID-19 infections in Italy and in
other hard-hit countries reveals three distinct phases: i) an initial exponential growth
(unconstrained phase), ii) an algebraic, power-law growth (containment phase), and iii) a
relatively slow decay. We propose a parsimonious compartment model based on a time-
dependent rate of depletion of the susceptible population that captures all such phases for
a plausible range of model parameters. The results suggest an intimate interplay between
the growth behavior, the timing and implementation of containment strategies, and the
subsequent saturation of the outbreak.

Keywords: COVID-19, power-law growth, compartment model, containment strategies, unreported cases

1. INTRODUCTION

The coronavirus disease 2019 (COVID-19) is an infectious respiratory illness caused by the newly
discovered virus strain SARS-CoV-2 [1–3]. The on-going COVID-19 outbreak started in Wuhan
(Hubei, China) in late December 2019 and spread quickly to all Chinese provinces and to several
countries, prompting the World Health Organization (WHO) to declare a pandemic on March 11,
2020 [4]. The high human-to-human transmission rate and clinical severity of the infection have
raised enormous concern on an international scale, with governments worldwide taking drastic and
unprecedented measures to contain the disease spread. Despite the efforts, 34,804,348 people have
been infected world-wide, and 1,030,738 have died as of October 4, 2020 [5].

The global emergency has issued a massive call-to-arms for researchers from several disciplines.
Among the various fields of study, epidemic modeling is of utmost importance to inform policy
makers about the required sanitary system capacity, to guide the design of containment strategies,
and to assess their effectiveness in real time [6]. Humongous efforts are currently on-going to develop
accurate mathematical models of the disease spread, ranging from top-down (i.e., static curve fitting)
approaches [7, 8] to dynamic compartment models of various degree of complexity [9, 10]. The latter
class is especially appealing, as it allows a rather straightforward incorporation and testing of physics-
based hypotheses. Nonetheless, the modeling process is hindered by several factors, including
incomplete knowledge of the disease, as well as the challenging incorporation of containment
strategies and unreported cases [11]. Retrospective analysis of data from countries that have already
overcome a turning point in the COVID-19 epidemic is highly valuable to inspire and calibrate novel
mathematical models with predictive capabilities.

In this paper, we aimed to derive a physics-based dynamic compartment model able to adhere as
much as possible to the qualitative and quantitative nature of the observed data. To this purpose we
take Italy, one of the early hard-hit countries that has overcome a first epidemic wave, as a primary
modeling source. We start by preliminarily analyzing the epidemic data in Section 2, drawing
important qualitative observations about the scaling laws of the growth and decay of the outbreak.
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Guided by these, in Section 3 we propose a compartment model
that incorporates key epidemiological features of the disease and
is able to reproduce the observed trends. In Section 4 we report
and discuss the results of the proposed model, and compare them
to official data from Italy. Concluding remarks are given in
Section 5.

2. DATA ANALYSIS OF THE COVID-19
OUTBREAK IN ITALY

The outbreak in Italy started on February 21, 2020, when a local
cluster of COVID-19 cases was identified in Codogno (Lodi). The
Italian government immediately ordered lockdown for 11 hard-
hit Northern-Italy municipalities; however, the rapid and
seemingly uncontrolled growth of infections in the following
days led to increasingly tight regulations on the entire national
territory, including closure of schools (March 4) and, shortly
after, quarantine (March 9). The measures proved to be effective
and, following the decline of the number of confirmed cases, the
containment measures were gradually released since May 4. As of
early July, the epidemic was mostly under control, with a
reproductive number < 1 in the majority of Italian regions [12].

It is instructive to preliminarily analyze the cumulative curve
of laboratory-confirmed infections C(ti), as well as the curve of
new daily cases, ΔC(ti) � C(ti) − C(ti−1). It is worth mentioning
that confirmed infected individuals are immediately quarantined
(either home-isolated or hospitalized). All data were downloaded
from the publicly available database provided by the Johns
Hopkins University Center for Systems Science and
Engineering (JHU-CSSE) [13].

Figure 1A shows a logarithmic plot of confirmed COVID-19
cases in Italy in a restricted time interval (from February 22 to
April 30), while Figure 1B reports new daily cases in a linear plot
for the same time range. Three distinct phases can be inferred
from static data analysis:

(1) an initial exponential growth, which is typical of
unconstrained outbreaks, with best-fit exponent ω ≈ 0.27.
The exponential growth phase lasts approximately until
March 2, before undergoing a transition to a different
scaling behavior;

(2) a phase of algebraic growth, starting approximately onMarch
6 and ending on March 18. The power-law scaling tα is best
revealed by examining the slope in the logarithmic plane

α(ti) � ΔlogC(ti)
Δlogti

, (1)

as shown in the inset of Figure 1A. The plot shows a distinct
plateau within the mentioned time window with α ≈ 3.1,
which guided the definition of the starting/ending dates of
the algebraic phase. The starting day of the power-law phase
slightly precedes the national quarantine (ordered on March
9), presumably as a consequence of previous containment
measures, such as lockdown of Northern areas and school
closure;

(3) a relatively slow decay. The decay phase is deliberately
assumed to start from the turning point of the epidemic,
that occurred on March 23, after roughly 5 days of
“transition” from the previous algebraic phase. The slow
decay is evident from Figure 1B, which shows a markedly
asymmetric bell-shaped curve with respect to the
turning point.

Evidence of algebraic growth has been observed and described
elsewhere for other countries, including China [14] as well as
other European countries [15], with exponents generally ranging
from 2 to 4. From a fundamental perspective, this behavior has
been attributed to structural changes in the topology of the
population network that supports the epidemic spreading.
Several authors [15, 16] have resorted to the small-world
hypothesis [17] to justify the algebraic growth. More in
general, spatial networks where short links are favored over
long-range connections have been shown to produce power-
law exponents in close similarity with the observed COVID-19
dynamics [18]. Similarly, the asymmetric decay has been put into
some (empirical) connection with the simultaneous presence of a
persistent phase of algebraic growth, in contrast with other
countries where the epidemic has been characterized by a
rather symmetric rise-and-fall behavior [19]. In this regard,
graphs with a power-law degree distribution are known to
produce outbreaks characterized by a polynomial growth
followed by an exponential decay [20]. A functional form of
this type was successfully used to fit COVID-19 data from over
100 countries [21], supporting the evidence that the nature of the
underlying network is key to the infectious dynamics, and that
growth and decay of the epidemic are indeed intimately
connected. Network effects and their relationship with
COVID-19 epidemic trends are further discussed in Ref. 22.

The reported observations have important consequences on
traditional modeling approaches. From the perspective of
classical population growth models, standard logistic models
appear to be inappropriate, as they provide symmetric
S-shaped curves for the cumulative number of infections; in
contrast, the generalized Richard’s model (GRM) has been
shown to provide a rather accurate description of the epidemic
in Chinese provinces [8]. While the GRM can provide sub-
exponential growth and asymmetric decline [23], it is known
to lack clear epidemiological significance [24]. Compartment
models are richer in terms of physics and allow addition of
several degrees of freedom. The basic version of the celebrated
Susceptible–Infectious–Removed (SIR) framework [25] can be
easily transformed, under mild assumptions, into a logistic model
[26], therefore suffering from the same above-mentioned
limitations. Several refined SIR-like approaches have been
proposed, particularly aiming at quantifying undetected cases
[27] and at modeling the effect of containment policies [14, 28].
These have been modeled in most cases by means of a piecewise
constant transmission rate (or, alternatively, by changing the local
reproduction number) [29], or possibly by incorporating the
effects of individual reaction [30].

Reconciling algebraic growth with mean-field models is not
straightforward. Recently Ref. 21, observed that a general solution
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of the type I(t)∝ tα, where I is the infectious compartment, is
compatible with a SIR model provided that the corresponding
basic reproduction number decays as t−1. On the other hand,
Maier and Brockmann [14] (M&B hereinafter) have found, and
proved analytically, that a region of algebraic growth can be captured
by a slightly modified SIR-like model that includes a (constant)
depletion rate of susceptible individuals. The question arises whether
such a modeling framework is able to capture a markedly
asymmetric decay dynamics such as the one occurring in Italy.

We conjecture that the three phases reported above are
inherently coupled by endogenous epidemic processes, and
thus they can be accurately modeled into a unique framework
that relies exclusively on physics-based assumptions and policy-
driven changes of the model parameters. Inspired by M&B, we
aim to propose a compartment model that is able to: 1) capture
the power-law growth; 2) generate an asymmetric decay; 3)
incorporate unreported cases.

3. PROPOSED COMPARTMENT MODEL

We propose a compact compartment model of SEIQR-type
(Susceptible–Exposed–Infectious–Quarantined–Removed),
whose schematic is shown in Figure 2. Although many more
compartments can be added to increase the level of detail and
supposedly the realism of the model, we rather opted for a
parsimonious framework, while focusing primarily on the
reproduction of the observed scaling laws. We note explicitly
that the inclusion of the Q-compartment is highly warranted for
countries characterized by strong government interventions,
since identified infectious individuals are typically quarantined
and therefore they are no longer able to spread the disease. On the
contrary, the necessity of taking the incubation period into
account via the E-class is currently debated, mainly due to
incomplete understanding of the relationship between
incubation and latency periods for SARS-CoV-2 infection.

However, a certain time lag between infection and
infectiousness (in either clinical or subclinical cases) has often
been observed [2, 31]; therefore, we chose to include the exposed
class with an average incubation period c−1.

Additional key features of the model include:

• a time-dependent rate of depletion of the susceptible
population, μ(t). Following M&B, we conjecture that
starting (roughly) from the implementation of lockdown
measures, and due to increased perception of the disease, a
fraction of the S-class becomes unsusceptible due to self-
protection, isolation, and adoption of preventive measures
(e.g., wearing masks, hand-washing, etc.). However, and

FIGURE 1 | (A)Cumulative number of laboratory-confirmed COVID-19 infections in Italy. A moving average with a time window of 7 days was applied to the data to
filter weekly fluctuations in case reporting. After an initial exponential growth, on March 6 the increase starts to follow a scaling law tα with average α ≈ 3.1. (B) Number of
new daily cases of laboratory-confirmed COVID-19 infections in Italy. The turning point is highlighted. Gray circles represent official data, highlighting fluctuations in data
reporting, while black circles were obtained with a 7-days moving average.

FIGURE 2 | Schematic of the model and of its parameters (see text for
details). The “quarantined” variable Q(t) coincides, by construction, with the
time-series of official laboratory-confirmed infections C(ti), when evaluated at
the same sample points; Q(t) is thus the only known variable in the
context of a data-driven calibration of the model.
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importantly, preliminary tests showed that a constant rate of
depletion leads to strong under-prediction of the number of
infections during the decay phase. Here we propose a time-
dependent, decaying rate of depletion of susceptible
individuals,

μ(t) � { 0, t < t*,
μ0e

−(t− t*)τ , t ≥ t*, (2)

where μ0 is the initial rate of the depletion, t
p is the start of

the containment measures and τ is a timescale parameter.
Such a modeling paradigm allows for a non-zero asymptotic
residual of susceptible individuals, and is an essential
component for capturing the strongly asymmetric
behavior observed for the curve of new daily cases;

• an explicit distinction between reported and unreported
cases. The infectious class has been split into reported (Ir)
and unreported (Iu) individuals, modulated by a reporting
rate ϕr . Since the policy in Italy consists into testing only
symptomatic individuals, it is reasonable to assume that
reported and unreported cases roughly coincide with
asymptomatic (i.e., subclinical) and symptomatic
(i.e., seeking medical attention) cases. Therefore,
individuals belonging to the Ir class are infectious as long
as they are tested and quarantined at a rate ct , and thus
transferred to the Q-class. By construction, the variableQ(t)
coincides with the time-series of laboratory-confirmed
infections C(ti). On the other hand, for individuals
belonging to the Iu class, the disease goes unrecognized
and they continue mixing with the susceptible population,
before spontaneously recovering at a rate ch. We assume a
bilinear transmission rate for reported and unreported
cases: θβ for symptomatic individuals, and β for
subclinical ones, with θ ∈ [0, 1]. Although counter-
intuitive, this choice was driven by the fact that people
with symptoms that are severe enough to require medical
attention are likely to reduce social contacts, therefore
diminishing their transmission rate with respect to
asymptomatic individuals (despite having, supposedly, a
higher viral load and thus contagious potential).

Note that, for the sake of simplicity, we do not explicitly model
the subsequent recovery/death of quarantined individuals, nor we
distinguish between hospitalized and home-isolated patients;
however, information in this regard can be inferred a-posterior
once the temporal dynamics of Q(t) and I(t) is known. It is also
worth to underline that the removed (R) class contains both
recovered (from the unreported compartment) and protected
individuals. Possible re-infection is not modeled as it is currently
considered to be unlikely [32].

In summary, the temporal dynamics of the compartments is
governed by the following system of ordinary differential
equations:

_S(t) � −βs(θIr + Iu) − μ(t)S, (3a)

_E(t) � βs(θIr + Iu) − σE, (3b)

_Iu(t) � σ(1 − ϕr)E − chIu, (3c)

_Ir(t) � σϕrE − ctIr , (3d)

_Q(t) � ctIr , (3e)

_R(t) � chIu + μ(t)S. (3f)

where s � S/N and N is the total (constant) population. The time
dependency of the main variables has been omitted at the right-
hand sides for the sake of clarity. All the parameters appearing in
the model are constant and positive real numbers, with
θ, ϕr ∈ [0, 1], except for μ(t) that has explicit dependence on
time. The basic reproduction number R0 of this model can be
inferred by a next-generation matrix approach; following [33];
the matrices F and V can be defined as

F � ⎡⎢⎢⎢⎢⎢⎣ 0 β βθ
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦,

V � ⎡⎢⎢⎢⎢⎢⎣ σ 0 0
σ(ϕr − 1) ch 0
−σϕr 0 ct

⎤⎥⎥⎥⎥⎥⎦,
and R0 is the spectral radius of FV−1, yielding

R0 � βθϕr

ct
+ β(1 − ϕr)

ch
. (4)

The model defined by Eq. 3 has eight free parameters; some of
them can be set a-priori based on epidemiological, clinical or
policy-related evidence. The incubation time σ−1 has been found
by different clinical groups to be around 5 days [2, 31], thereby
yielding σ � 1/5, a value also used in similar modeling studies [34,
35]. The rate of testing ct is country-specific; in Italy, the “Istituto
Superiore di Sanità” (ISS) has reported an average time from
symptoms onset to diagnosis (via pharyngeal swab) of 5 days,
within the time range considered in this work. The infection
duration in subclinical cases without medical treatment has been
estimated to be in the range of 5–10 days [36]; after preliminary
sensitivity tests, we set ch � 1/5. The starting time of the
susceptible population removal t* is expected to coincide
roughly with the starting time of national lockdown; we left,
however, t* as a free parameter for manual calibration.

4. RESULTS AND DISCUSSION

Numerical simulations of the outbreak in Italy were obtained
upon integration of Eq. 3 for the time range from February 24 to
June 30, 2020. Table 1 summarizes the values of the entire set of
model parameters, including those assigned a-priori and the ones
inferred from the data. After several preliminary tests aimed to
circumvent overfitting issues, we chose to optimize the parameter
space containing {β, θ, μ0, τ, E(0)}, while ϕr and t* were left free to
be manually varied in a parametric way until an optimal fit was
found. The optimization procedure was carried out using an
interior-point method implemented in MATLAB (Mathworks,

Frontiers in Physics | www.frontiersin.org November 2020 | Volume 8 | Article 5861804

Capuano Modeling COVID-19 Epidemic in Italy

144

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Natick, United States); the optimization target was based on a
blend of the cumulative number of confirmed cases and the daily
number of new cases, that were weighted 10 and 90%,
respectively. The infectious compartments were initialized as
follows: Ir(0) � ϕrE(0), Iu(0) � (1 − ϕr)E(0), while the other
initial conditions are either known from data or can be found
by subtraction, with N � 60 × 106.

Main results are shown in Figure 3. Figure 3A reports the
temporal evolution of Q(t), as compared with the time-series of
laboratory-confirmed infections C(ti). The agreement is very
good for all the phases of the outbreak. Interestingly, the best-
fit value for t* was March 9, i.e., the start of the national
quarantine, which indirectly proves the robustness of the
proposed framework in reproducing the underlying epidemic
mechanisms at play. The inset of Figure 3A reports the power-
law slope provided by the model, which is in very good agreement
with the observed one, proving that the model is capable of
reproducing the peculiar algebraic growth phase of the COVID-
19 pandemic reported in several countries.

Of note, the model was able to capture the decay phase of the
epidemic correctly without any further change of the parameters.
This circumstance suggests a strong link between the decay
dynamics and the timing and implementation of the
containment strategies. It is conjectured that an incomplete
depletion of the susceptible population during the lockdown
(provided by the exponential decay of μ(t)) naturally sets the
observed slow decay. It can be further hypothesized in light of the
results that the behavioral changes established during the
containment phase persist throughout the subsequent phases
of the epidemic. Since lower values of the timescale τ over
which the susceptible removal occurs yield a faster decay, this
parameter be re-interpreted as an “effectiveness index” of the
implementation of containment policies.

We also tested a variant of the model that more closely
resembles the original M&B approach, with a constant
depletion rate of the susceptible population μ � μ0. Upon re-
running the optimization procedure with τ � 0, we obtained
similar values as those reported in Table 1, but it was not
possible to match the decay phase correctly. This variant of
the model provides a reasonable agreement only up to the
turning point of the epidemic (with the peak value of new
daily cases highly over-estimated), while strongly under-
estimating the number of infections during the decay phase, as
clearly seen in Figure 3B. An additional steep change of the
model parameters would be necessary, although this would be
hardly justifiable in terms of physical assumptions or
containment policies.

In light of the above mentioned results and observations, it is
instructive to directly quantify the effects of μ(t) on the epidemic
dynamics. To this aim, it is worth to preliminarily observe that,
under a disease-free linearization (i.e., assuming that
containment dominates over infection) the normalized
number of susceptible for t≫ tp is not null (as in the case
τ � 0) but converges to

slimit � S0
N
e−μ0/τ, (5)

showing that τ is explicitly responsible for the incomplete
removal. Although it is possible, in principle, to derive a
closed-form expression for Q(t) under some mild simplifying
hypotheses, the analytic treatment becomes very involved
and it is cumbersome to extract immediate information. The
reader is referred to Ref. 14 for an analytic demonstration of
how the depletion of susceptible is responsible for the power-
law growth, while the effects of μ0 and τ on the decay are best
revealed through parametric analysis. Figure 4 shows the
effects of the containment-related parameters on ΔQ, with the
other modeling parameters being held equal to the optimal
solution reported in Table 1. Figure 4A shows that lower
values of μ0 (i.e., weaker depletion) tend to shift the curve
toward higher values of ΔQ and delay the turning point, while
the overall shape is roughly preserved. On the other hand,
Figure 4B demonstrates that values of τ > 0 contribute to
asymmetrize the curve of new daily cases, effectively slowing
the decay while preserving the growth dynamics. Since τ is
directly related to the residual number of susceptible
individuals during the course of the epidemic, see Eq. 6,
these findings reinforce our claim that the observed
asymmetry is directly related to a (spatially-averaged)
incomplete depletion of the susceptible population during
the containment phase.

With regards to the functional form of the time-varying
depletion rate μ(t), the exponential decay was chosen as the
most natural one with a clear and intuitive biological significance.
However, we also explored whether alternative expressions for
μ(t) are able to reproduce the essential characteristics of the
COVID-19 epidemic. To this end, we consider a simplified
version of the proposed compartment model, wherein the
E-class is removed and ϕr � θ � 1, i.e., all infected individuals
are identified and quarantined:

_S(t) � −βsI − μ(t)S,
_I(t) � βsI − cI,
_Q(t) � cI.

(7)

In such case, assuming that in a certain time interval Q(t) ≈ tα,
and that containment dominates over infection, simple analytic
manipulations yield

TABLE 1 |Optimal values of the estimated model parameters for the simulation of
the outbreak in Italy.

Parameter Description Value

β Transmission rate 0.95
θ Transmission factor for reported (symptomatic) cases 0.58
t* Starting time of depletion of susceptible 9-Mar
μ0 Initial rate of depletion of susceptible 0.16
τ Timescale factor for the rate of depletion of susceptible 0.1
ϕr Fraction of reported (symptomatic) individuals 0.6
σ Rate at which exposed individuals become infectious 0.2
ct Rate of testing for symptomatic individuals 0.2
ch Rate of recovery for unreported (subclinical) individuals 0.2
E(0) Initial number of exposed individuals 2,000
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μ(t) ≈ c1
t + c2t2

, (8)

where c1 and c2 are constants.We tested the behavior of the complete
model by plugging Eq. 8 into Eq. 3; we were able to generate
outbreaks (not shown here) in good agreement with the official
data and for similar values of the model parameters as those reported
in Table 1. While this circumstance promotes the correctness of the
underlying modeling hypotheses, additional tests and analyses are
required to determine which functional form ismost suitable for μ(t),
and whether other decay laws (e.g., Gaussian) can be instead ruled out
to describe the containment process.

The role of subclinical infected with regards to the spread of
the disease is one of the most debated epidemiological and
biomedical issues in the context of the COVID-19 outbreak

[37]. Accurate studies in small-scale, “laboratory-like” contexts
with blanket testing showed that a substantial fraction of SARS-
CoV-2-positive individuals can display very mild symptoms or
even remain completely asymptomatic throughout the course of
the infection, while having a viral load comparable to that of
symptomatic patients [38–40]. Here we found a very good fit for
values of the reporting rate in the range ϕr ∈ [0.55, 0.65], yielding
a fraction of unreported (subclinical) cases (1 − ϕr) in line with
previous modeling and experimental estimates [27, 38].

It is worth to remark, in general, that we were able to generate
outbreaks in good agreement with official data for a certain range
and combination of the model parameters. While we did not
quantify sensitivity, nor we carried out specifical statistical
analyses of the confidence interval of such parameters, we
chose the set of values that yielded the best accordance with

FIGURE 4 | Effects of containment on the number of new daily cases predicted by the SEIQR compartment model. The results are obtained with the parameters
provided in Table 1, and by varying the parameters μ0 and τ. The red curve corresponds to the optimal solution. Moving-averaged official data are also reported. (A)
Effect of μ0 for values in the set [0.14, 0.16, 0.18, 0.22]. (B) Effect of τ for values in the set [0.0, 0.1, 0.12, 0.13].

FIGURE 3 | Case numbers in Italy compared to model predictions. (A) Cumulative number of laboratory-confirmed infections. The model predictions are shown
both with the full model and with a variant obtained by setting τ � 0 (constant depletion rate of the susceptible population). The inset reports the local power-law slope for
the moving-averaged official data and the full-model prediction. (B) Number of new daily cases.
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the observed scaling laws (exponential growth rate, peak power-
law slope, decay dynamics) and a reasonable value for the basic
reproduction number. For the best-fit reported in Table 1, we get
R0 � 3.53, very much in line with previous literature results [41].

5. CONCLUDING REMARKS

In this study, we started from the preliminary observation that in
countries such as Italy, the cumulative number of infections
displays an initial exponential amplification, followed by a
power-law growth and a markedly asymmetric saturation
behavior. We conjecture that these three phases are intimately
connected and can be described by the interplay between the
contagion process and the behavioral changes/containment
policies acting on the population over comparable time scales.

Based on this hypothesis, and inspired by previous work by
Ref. 14, we proposed a SEIQR-type compartment model with the
following salient features: i) a compartment for unreported
(asymptomatic) infected, that are supposed to play a major
role in the spread of the disease; ii) a time-dependent rate of
depletion of the susceptible population, which allows for a non-
zero asymptotic residual of susceptible individuals.

The model was able to accurately reproduce the entire
epidemic course in Italy, including quantitative agreement
with exponential growth and power-law slope, for a plausible
range of the model free parameters, with only one steep change of
the parameters driven by the introduction of strict containment
strategies. This circumstance suggests that the timing and
implementation of containment policies (as quantified by
model parameters t*, μ0 and τ) may effectively establish the
decay characteristics of the epidemic. In particular we
conjecture that the slow decay of the Italian epidemic can be
attributed to an incomplete depletion of susceptible individuals
during the containment phase.

The proposed modeling framework could be profitably used to
gain insights and predictions on the so-called “second wave” of
the epidemic, which (as of early October 2020) appears to be
hitting Italy and other countries. To this purpose, themodel could
be modified by 1) introducing a release rate of protected
individuals (from compartment R to S), that reflects the
relaxation of containment measures as well as the gradually
diminished perception of the pandemic; 2) accounting for a
different testing policy: while only symptomatic individuals
were tested during the first wave of the epidemic, the

introduction of contact tracing and screening procedures has
certainly contributed to increase the reporting rate ϕr , whereas
the simultaneous improvements in testing efficiency and
COVID-related infrastructures has led to a decrease in the
testing time ϕt .

This study presents a number of simplifications and
limitations that, however, do not affect the main conclusions.
Among others, the number of confirmed infections is influenced
by the number of tests performed each day, an aspect that was
only weakly incorporated into the model via the (constant)
fraction of reported cases ϕr . Even though many countries
experienced initial difficulties with the testing capacity, the
robustness and universality of the observed epidemic trends
[19] strongly suggest that the scaling laws at play are primarily
driven by the described containment-related mechanisms, with
the scale of testing playing a minor role in the process [22].
Furthermore, the COVID-19 pandemic has been shown to have a
strong geographical character with localized outbreaks, due to so-
called superspreaders or family clusters [42]. In the context of a
well-mixed framework, such as the one proposed in this paper,
this phenomenon could be modeled by considering a specific
infectious compartment with a much higher transmission rate,
similarly as in Ref. 43. This aspect was not accounted for here and
is left for future work.
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Application of a Susceptible,
Infectious, and/or Recovered (SIR)
Model to the COVID-19 Pandemic in
Ecuador
Pablo Espinosa1, Paulina Quirola-Amores2 and Enrique Teran1,2*

1Colegio de Ciencias de la Salud, Universidad San Francisco de Quito, Quito, Ecuador, 2Instituto de Microbiología, Colegio de
Ciencias Biológicas y Ambientales-COCIBA, Universidad San Francisco de Quito, Quito, Ecuador

The coronavirus disease 2019 (COVID-19) pandemic is wreaking havoc in healthcare
systems worldwide. COVID-19 was reported for the first time inWuhan (China) and the first
case in Ecuador was confirmed on February 27, 2020. Several determinants are taken into
consideration for the establishment of asymptomatic or critical illness, and are necessary to
predict the dynamics and behavior of a pandemic. We generated a Susceptible, Infectious,
and/or Recovered model and reflected upon the COVID-19 pandemic in Ecuador. For the
entire Ecuadorian population, we estimated that the reproduction number (R0) was 2.2,
with 88% susceptible/infected individuals. To stop a national epidemic, a quarantine for
3–4months is required, and when 55% of the population has been immunized (equivalent
to 110 days since the first report of a COVID-19 case), a real decrease of new cases will be
observed. The effectiveness of quarantine should be analyzed retrospectively, and not as a
result of contemporary control of the COVID-19 epidemic.

Keywords: R0, COVID-19, herd immunity, susceptible infected-recovered model, attack rate

1. INTRODUCTION

The coronavirus disease 2019 (COVID-19) pandemic that is wreaking havoc in healthcare systems
worldwide is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection.
Several phylogenetic studies have determined the origin of this zoonotic virus and, simultaneously,
the potential reservoirs and amplifying species (especially mammals) [1–3].

The first report of SARS-CoV-2 infection was in December 2019 in Wuhan (Hubei Province,
China). Worldwide spread of SARS-CoV-2 was inevitable due to its easy dissemination (as droplets),
apparently low mortality, and high incidence of asymptomatic cases (≥15.8% of infected people)
[1–5].

In <3 months, 60% of countries reported COVID-19 cases, particularly in Europe (e.g., Italy,
Spain). Then, SARS-CoV-2 infection was documented in North America and, one week later, in
Brazil, Ecuador, and Chile.

For COVID-19, lethality has been estimated to be 4–6%, mortality to be 1–1.5%, and severe illness
to occur in ≥4.7% of diagnosed cases. The recovery time has been estimated to range from 8 to
11.5 days, but it is related to multiple factors [6–8].

TheMinistry of Public Health (MSP) of Ecuador reported the first case of COVID-19 on February
27, 2020. It was an Ecuadorian woman who returned from Spain to Guayaquil on a commercial flight
and had a welcoming party. Then, other cases at the northern (Tulcan) and southern (Machala)
borders appeared (arising potentially from Colombia and Peru, respectively) [8]. By the beginning of
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June, according to official reports, there were ≥43,120 confirmed
cases, with a higher prevalence in people aged 21–60 years,
lethality of 4–7%, and a mortality rate (<1%) [8, 9].

Mathematical models such as the Susceptible, Infectious, and/
or Recovered (SIR) model are used to predict different scenarios
related to epidemiologic factors and possible outcomes to assess
epidemic spread. The reproduction number (R0) is used to
estimate the capacity of viral transmission from one person to
another. The effective reproduction number (Re or Rt) refers to
the number of infected people in a specific time interval based on
the R0. The susceptible fraction (Fso) takes into account the
percentage of infected people that might exist in an epidemic.
These indices show how a population and a virus are related to
make predictions and consider the consequences at a given
moment [8, 10, 11].

We aimed to generate SIR models based on data provided by
the Ecuadorian MSP to estimate R0, Rt, Fso, time in quarantine,
and the required percentage of immunized people to consider a
reduction in the total incidence of COVID-19 in Ecuador. This
strategy would allow the creation of a new SIR model readily
without the need to have a large volume of regional data or
national data. The possibility of developing retrospective and
predictive models in this or other conditions based on an R0
calculation (observed here as a dynamic value) and the generation
of a dynamic Rt value that will serve as a reference to make
decisions in real-time, along with another type of model for
quarantine and immunization, would be very helpful.

2. METHODOLOGY

2.1. Data Source
The data used for these models were from daily reports produced
by the MSP. The data comprised of cumulative cases, new cases,
excluded cases, deceased cases, cases who recovered from
COVID-19, number of testing samples, and samples already
collected but waiting to be processed from day-1 to day 30 of
the epidemic (https://www.gestionderiesgos.gob.ec/informes-de-
situacion-covid-19-desde-el-13-de-marzo-del-2020/) [9]. Values
were taken from day 1 to day 30 of the epidemic considering the
range with the highest reliability of data.

The SIR model, predictions/estimations, and tabulation data
were processed using Excel

™
within Office

™
v16.37 (Microsoft,

Redmond, WA, United States). Model parameters were verified
using Vensim

™
v8.0.9 (Salisbury, United Kingdom) and

RStudio
™

v4.0 (R Foundation for Statistical Computing,
Vienna, Austria). Graphs were generated using Prism

™
v8.4.2

(GraphPad, San Diego, CA, United States).

2.2. Estimated Infection Rate for the
COVID-19 Epidemic in Ecuador
We used the parameters related to the number of individuals
infected per day, the trend of the epidemic, mean number of
samples processed, and samples waiting to be processed to
determine the percentage of “true” work carried out by the
MSP. Then, we compared the number of daily infected cases

and estimated the rate of increase (cases/day). This was done
using Eq. 1, in which the numerator is the number of reported
cases in a final period of time and the denominator is the number
of reported cases in an initial time [12, 13].

rate of increase[cases
day

] � Infected t2
Infected t1

(1)

contagion rate � (1 − rate of increase)p100% (2)

The result using Eq. 1 revealed whether the number of cases
increased or not from 1 day to another, and also predicted the
number of new cases for the next day. Thus, it also estimated the
daily rate of contagion (Eq. 2), and the percentage of contagion in
a certain period, based on the rate of increase. Both rates enabled
the observation of dynamic behavior with R0 and Rt.

2.3. Calculation of the Minimum Number of
Cases Required to Generate the COVID-19
Epidemic in Ecuador
A mathematical model based on sigmoid curves was applied to
estimate the minimum number of cases required to generate an
epidemic (“community infection”). To calculate the constants for
the equation, two methods were employed. First, Eq. 3 (K1) was
obtained from the curve for the number of positive case reported
by the MSP using logarithmic regression, where t is the time of
infection, and I is the number of people infected in time t. Second,
Eq. 4 (K2) was considered as a differential logarithm regarding
time, where Ti is the initial infection time, Tf is the final infection,
If denotes finally-infected individuals and Ii denotes initially-
infected people in an estimated period of time [14].

K1 � ∑ Ln(t) − Ln(I) − ∑ Ln(t)p∑ Lb(I)
n

∑ (Ln(t))2 − ∑ (Ln(t))2
n

(3)

K2 � Ln(If ) − Ln(Ii)
Tf − Ti

(4)

For K1 all the study data was used and in K2 data were from
shorter ranges. Then, K2 provides daily evolution while K1
provides a general view of the epidemic. To calculate It (Eq.
5) (the number of infections over time in an epidemic), Ic was the
number of infections present when the epidemic started. Based on
the results, K1 (Eq. 3) was 0.1972, and K2 (Eq. 4) was 0.2386.

It � [ 1
1 + Ice−kt

]Ic2 (5)

2.4. Duration of Quarantine
To determine the duration of quarantine and its subsequent
removal, we needed to calculate the recovery time of the
population. Hence, we took the minimum number of cases
after the first recovery of COVID-19, and a hypothetical daily
peak of infections (for our purpose this was considered to be 100
daily cases [15]) and a threshold of cases after this peak for
considering lifting the quarantine. Hence, when this number of
infected cases was reached, with no increase in the last few days,
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quarantine could be lifted. We assumed that all the daily reports
from the MSP detailed the maximum number of cases, so we
would know how long it would take for the recovery of these
infected individuals [14].

It � If
1 + (If − Reo)e− kIft (6)

k � Ln⎡⎣IfIt + 1

If
⎤⎦ (7)

td �
Ln[If

Ir−1
If ]

k
(8)

In Eq. 6, It is the number of recoveries in a period, If is the
maximum number of infections in a particular period, Reo is
the number of people who recovered on day-0 after reaching the
maximum number of infected individuals (usually 1). In Eq. 7, k
is the constant of proportionality. In Eq. 8, td is the duration of
quarantine, Ir is the maximum number of infected people minus
the threshold of 100 infected individuals [15] needed for lifting
the quarantine (Ir � If − 100) and If is the maximum of cases for
each day of quarantine.

2.5. SIR Models for COVID-19
We wished to model and predict the behavior of the COVID-19
epidemic in Ecuador. Hence, we took into account three
mathematical models based on SIR, differed in the use of
different parameters for the equations and the calculation of
R0, where we did not consider the rate of asymptomatic cases (not
a well-established value at the time of analyses).

The first model (Eqs 9–16) was based on the number of
infections generating new cases. The parameters for construction
were the recovery rate (95%), mortality rate (5%), time needed for
recovery (17 days), R0 (taken from international databases [5],
and assuming that 40% of the population was under total
quarantine (that is equivalent to 4% less probability of
becoming infected). N was the total population of Ecuador
and the R0 was the ratio between the number of infected
people and the number of people who recovered and those
who died (Eqs 13, 16) [13, 16–18].

%P � NCoM
IiTDSi

(9)

CoM � IiTDSi
N%P

(10)

Re � Iip(TR
DI

) (11)

M � Iip(TM
DI

) (12)

R0 � CoM

(Re +M) (13)

Rt � CoM(t)
(Re(t) +M(t)) (14)

dRt � R0p( 1

1 + e(So
N))p(

So
N
)p(e(So

N)) (15)

R0m � ������������
R01pR02pR0nn

√
(16)

Sf (Eq. 17) represents the number of vulnerable individuals, If
(Eq. 23) is the number of infected people, Rf (Eq. 21) is the
number of people who recovered from COVID-19,Mf (Eq. 22) is
the number of people who died; all of these parameters were taken
after a certain period of time. DI represents the duration of illness
in days, TD (Eq. 10) is the percentage of infections (R0), %P
(Eq. 9) is the probability of becoming infected, TR (Eq. 11) is
the percentage of people who recovered, TM (Eq. 12) is
the percentage of individuals who died, and Rt (Eqs 12, 15) is
the R0 that varies through time and the function of infected
people.

The second model (Eqs 17–26) takes into consideration
differential equations from a standard model that were
integrated subsequently with national data where the
percentage of people who recovered (c) (Eq. 17) was 95%,
mortality (μ) (Eq. 22) was 5%, and the time for recovery (TR)
(Eqs 9, 11, 20) was 17 days. To calculate R0 for Ecuador, we
considered standard calculations (Eqs 21, 26). Rt (Eqs 14, 15, 24)
was based on the variation in the percentage of susceptible people
during a particular time, and p (Eq. 17) was the relationship
between the number of people who recovered from COVID-19
and the infection rate [13, 19].

p � c

β
(17)

p � N − Sf

Ln(cN−cR
cSo ) (18)

R0 � β

c
So (19)

Sf � Soe−[N−So
p ] (20)

Rf � ( c

TR
)Ro (21)

Mf � μIi (22)

If � Sf � Ii − Ri −Mi (23)

Rt � Rope(So
N) (24)

dRt � R0p( 1

1 + e(So
N))p(

So
N
)pe(So

N) (25)

R0m � ������������
R01pR02pR0nn

√
(26)

The third model (Eqs 27–36) was based on the infection rate
calculated with the equation for the rate of increase, so the β value
(Eq. 27) was assigned to it. For the recovery rate (c), it was
considered that 17 days was the minimum time required to
recover, and a 3% mortality percentage (μ) in accordance to
the MSP report [10, 13].

β � 1 − rate (27)

c � 1
recuperation time

(28)

R0 � β

(c + μ) (29)

Infection(Con) � βpIipR0p(So − Ii
N

) (30)
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If � So − Con − Re −Mu (31)

Recuperation(Re) � If pc (32)

Dead(Mu) � If pμ (33)

Rt � Rope(So
N) (34)

dRt � R0p( 1

1 + e(So
N))p(

So
N
)p(e(So

N)) (35)

R0m � ������������
R01pR02pR0nn

√
(36)

2.6 Variation of the SIR Model With Different
Values of R0
Taking into consideration the first proposed SIR model (Eqs
9–16), we generated different R0 values (Eqs 13, 16) and
observed their behavior during a particular time. This strategy
allowed for the ascertainment of how Rt and the epidemic cycle
were related so that we could observe it and identify possible
“bottlenecks”, when the number of susceptible people decreased
(for whatever reason). Simultaneously, we compared the
derivative of Rt (Eq. 15), which allowed us to observe the
maximum number of infections when Rt varied, and worked
to adjust a national R0 [14]. For model validation, we applied a
difference between the curve for infected people (from the MSP
report) and the number of infections generated with the three
SIR models. Then, the curve (of these three models) that best fits
to the real data reported by the MSP, was selected for further
analysis [14].

2.7. Susceptible Factors and the Minimum
Percentage Required for Immunization
Using Rt
For the Rt of each model, we calculated the susceptible factor (Fso)
(Eq. 37). This strategy allowed us to observe the highest percentage
of infections (based on the variation in Rt) to generate a threshold
that estimated the direction of the epidemic and where R0 was
located in Ecuador [10, 19]. With Fso and R0 generated in each
model, we could predict the minimum percentage (%Pi,v) (Eq. 38)
required for immunization (by vaccination or herd immunity) to
stop COVID-19 spread [10, 19].

fSo(t) � 1 − e−Rt (37)

%Pi, v � 1 − 1
R0

(38)

2.8. Vaccination and Immunization
After the derivation of %Pi,v from Eq. 38, we considered the
incorporation of the Rt toward the population (N). Considering
the variation in infection, we could recognize how long it would
take for a vaccination strategy to obtain results and stop infection.
We could also observe the number of immunized individuals and
those who would not be infected during a particular time [10, 18,
20].

Immunizate population(Piz) � Np(1 + ( 1
2Rt2

)) (39)

Infected population(Pif ) � N − Np(1 + ( 1
2Rt2

)) (40)

3. RESULTS

Upon analyses of all the reported data by the MSP, a marked delay
in sample processing was noticed (40% CI � ±0.0035) and an
increase in the number of new daily cases of 28.5% (CI � ±0.00146)
was reported. Hence, the infection curve was delayed in 28.5% of
cases (∼40% of undetermined cases). This observation was
confirmed when the rate of increase per day remained the
average between the number of delayed samples and number of
reported cases. This resulted in 1.20 reported cases per day (CI �
±0.0103). When we analyzed the number of cases with COVID-19
reported by the MSP, there was a 30% delay in confirmatory
diagnose. This problem was most evident at day 33 of the
epidemic when there was 60% delay in confirmatory diagnoses
(Figure 1).

We usedK values (Eqs 3, 4) to determine theminimumnumber
of cases required to generate an epidemic in Ecuador. In our
simulation using K1, five cases were needed for an epidemic in
Ecuador. Also, the model using K2 showed that with six cases, an
exponential communitarian infection was possible (Figure 2), and
that recovery from COVID-19 could take 18 days (CI � ± 0.0945).

While observing the trend in the increase in infected cases, one
key question was how long the quarantine should last until there
were 100 infected cases. We calculated that quarantine should be
lifted after approximately 80–110 days (CI � ±0.2001) because the
maximum number of cases had been reached (Figure 3).

Simultaneously with obtaining results, we generated three SIR
models with variation of some parameters to obtain R0 and
observed which model was the best fit.

When the number of infected people was compared for each
model, model 1 (SIR 1) obtained the closest values to the true
situation. Hence, we chose model 1 to observe the dynamic in
cases once quarantine had been implemented (Figure 4). Using
this model, R0 � 2.2 (CI � −1.644, +2.75). Importantly, with each
model, an R0 value was generated so a different Rt analysis was
undertaken to detect the appearance of a bottleneck in a
susceptible population. We found that, for each model, the R0
was between 1 and 3 (CI � −1.865, +1.974) (Table 1).

Using these values, we calculated the maximum number
of people susceptible to SARS-CoV-2 infection for each R0
value (95.02%, CI � ±1.27). The same calculation showed
that a maximum of 66.67% (CI � ±2.70) of the same
population would need to be immunized to stop the
epidemic (Figure 5).

When quarantine parameters were generated with SIR 1, the
peak of the maximum number of infected individuals would be
reached on day 154 of the epidemic (65 more days than if
quarantine was not applied). The number of new cases would
decrease (64.6%, CI � ±2.35) but not disappear, demonstrating
that when the quarantine time increased, the number of infected
cases was redistributed. This phenomenon was observed when
the different Rt values (generated by a variation in parameters)
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were analyzed (Figure 6) and demonstrated that, for each unit
increase in Rt, the epidemic would increase by 10 days (CI �
±0.295).

To confirm the obtained R0 with SIR 1, we analyzed the
variation in Rt with its derivative, in addition to the variation in

Fsowith regard to Rt. As the bottleneck appeared with Rt, without
considering quarantine, the value of Rt remained in this
bottleneck demonstrating that, in reality, R0 was between 1.5
and 2.5 CI � −1.51, +2.48. When comparing these data with Fso,
we found that the maximum number of cases using this R0 value

FIGURE 1 | Report of the COVID-19 epidemic in Ecuador in January 2020. Section (A) shows the diagnoses of people in Ecuador from 15 February to 23 April
2020 (15 at 55 days of the epidemic) whereby red denotes the number of positive cases, blue denotes the number of negative cases, and black the number of samples.
(B) shows in blue line the increase rate of cases in MSP report, red line represents the possible real number of reported cases (including 30% delay in confirm diagnose).
The model SIR 1 showed the more accurate tendency (orange line).

FIGURE 2 |Model for the minimum number of cases required for an epidemic in Ecuador showing different simulations with various K constants for observing this
number, communitarian infection, and the average time needed for recovery.
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was 80%, with a maximum time of 90 days (when the epidemic
would begin to decrease). However, if quarantine was applied,
this value reached 86% of infected people at a time of 140 days
(Figure 7).

Upon application of all the different data of R0, an issue was
observed when an immunization appeared (even for vaccination
or herd immunity). The most important question is how long
will it take to observe if this strategy is successful. Our model

FIGURE 3 |Model for the number of days required for quarantine and the maximum number of daily cases. It was observed that the number of days necessary to
finish the quarantine remained the same despite the increasing number of cases daily.

FIGURE 4 | Fso and herd-immunity values with R0 for each model. An increase in R0 for each SIR model led to an increase in the infected population and herd
immunization, but neither of these values reached 100% of the population.
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showed that, without quarantine from day-80 to day 100, the
introduction of vaccination, the rebound of immunized
individuals, and a decrease in the number of infected cases
applying quarantine between day 100 to day 120 would result in
the same outcome (Figure 8).

4. DISCUSSION

The model used in our study is not the only model to predict the
behavior of COVID-19. Onemust consider the dynamic of SARS-
CoV-2 transmission, availability of resources, and delay in
diagnosis when choosing the best model. For Ecuador, an
important issue was the large number of people with pending
SARS-CoV-2 tests. This factor, together with asymptomatic
individuals and underreporting of “true” infected people (by
consensus, it is 55%), demonstrated why our model was not
well-fitted with the data reported by the MSP [9, 23].

Although the estimated time needed for a patient to
recover from COVID-19 was 18–20 days, some scholars
have stated it is 8–10 days using SIR models. According to
the MSP, it takes 20 days, which poses problems for
healthcare units in terms of space and resources [5, 23,
24]. Determining this value is a key component in the
prediction based on SIR models because it is based on
local data. Subsequently, extrapolations can be made in the
hope that they are not too far from reality.

In our study, the time for recovery from COVID-19 was
based on a K model and observing how the recovery curve was
adjusted to the true situation. Mistakes can be generated
because of the issues mentioned above as well as from the
reports of patients who have recovered from COVID-19. Even
though this value cannot be observed directly, it can be
estimated through the report of deaths by the MSP and
comparing them with the registry of the National Institute
of Statistics of Ecuador. This comparison resulted in a
difference of ≥20% and has been observed in other studies
too [23–26].

Through an assessment of the first 100 cases of COVID-19, a
marked difference in acceleration and control of the epidemic was
made in Taiwan. The Taiwan government isolated and
quarantined all individuals related to each COVID-19 case,
and tracked all asymptomatic individuals. This strategy
showed that, according to the proposed model, quarantining
the first six cases rapidly and aggressively would have created
a different scenario from that seen presently but, as the author
mentions, the switch from theory to practice is not easy [25].
Another important observation is the rate of increase of cases. At
the national level, the rate of increase was constant (the number of
cases increased in 5–7 days), as has been observed on a global
scale [9, 27]. Hence, locally obtained data were a reflection of

TABLE 1 | R0 values generated with three SIR models showing the maximum
number of people who may be infected (Fso), and herd immunity for
each model.

R0 R0m Fso (%) Herd immunity (%)

R0 Ref. 28 2.1 2.1 87.75 52.3
SIR 1 1.73 2.20 (CI� −1.644, +2.75) 81.73 41.18

3 95.02 66.67
2.1 87.75 52.38

SIR 2 1.76 1.92 82.80 43.18
2.1 (CI� −1.865, +1.974) 87.75 52.38

SIR 3 0.95 1.19 61.33 −5.26
1.5 (CI� −1.042, +1.337) 77.69 33.33

R0m is the average of the R0 value calculated in each model.

FIGURE 5 | SIR1model with modified parameters for quarantine. Different simulations were undertaken for COVID-19, with and without quarantine. The number of
infected individuals decreased but the duration of infectivity was prolonged by >200 days.
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what occurred in the past when SARS-CoV-2 spread in Asia and
Europe [9, 27].

Our model estimated that lifting the quarantine should occur
approximately 2–3 months after the peak of infection has been
reached. In China, after the peak of infection (after 17 days), the
quarantine was lifted during day 13 to day 14. Such lifting is
dependent upon time and the capacity of the health system of a
particular country. In addition, a strict quarantine works not
only by holding back the appearance of new cases, but also

allows the health system to recover and prepare for new cases
[5, 27].

The mortality rate for COVID-19 has been estimated to be
about 3–7%, and results in another problem for SIR models. In
our model, we took a mortality rate of 5% (in other models, it
varies between 3 and 4.5%). However, one must consider other
causes of death unrelated to COVID-19 that can affect a model
indirectly [5, 23, 24, 29]. The increase in R0 determines how
effective the strategies taken by local authorities are. In our study,

FIGURE 6 | SIR1 model comparing the parameters regulated with quarantine. (A) The number of infected people without quarantine (blue) and with quarantine
(red). (B) Simulation of Rt in the SIR1 model varying the parameters with and without quarantine over the duration of the epidemic.

FIGURE 7 | SIR1 model comparing regular parameters with quarantine. In (A) the simulation of Rt is observed in the SIR1 model varying the parameters with and
without quarantine throughout the epidemic duration. (B) shows the number of infections without quarantine (blue) and with quarantine (red).
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R0 � 2.2, which is not too far from the international trend (Ye
et al. estimated the same value of R0, and the World Health
Organization value is between 1.4 and 2.5).

The time of infection is generated based on R0 (which depends
on whether the value increases or decreases). If we compare the
R0 for other diseases caused by viruses of the same family (Middle
East respiratory syndrome-related coronavirus, <1; SARS, 2–4),
this value does not reflect the lethality for each one [5, 23, 27, 30,
31]. Hence, defining R0 is not easy and is mired in controversy.
Each population could “fix” their value and reflect the variation in
parameters of the equation used (β and α) in each SIR model. The
latter could be constructed and calculated in different ways
depending on data reliability. However, the R0 is very
important because from it the minimum number of
immunized people required to stop the epidemic, and the
maximum number of individuals susceptible to infection, can
be calculated [10, 11, 32, 33].

Some problems were identified when the R0 was calculated on
the basis of the total population. However, in reality,
interventions are applied only in specific or priority groups.
We analyzed different R0 values for the COVID-19 epidemic
in Ecuador and, despite an increase in R0, 100% of a population
will not be infected. With the prediction models used for
smallpox prevention, the R0 was 10, but the maximum
percentage of infected individuals in a vulnerable population
was 70% and, upon introduction of a vaccine, any epidemic can
be prevented with a coverage of 60% of the population [6, 16].

Complex and dynamic clinical phenomena occur during
disease development. The immune response, nutritional state,
chronic diseases, or co-infections can interfere (accelerate or

decelerate) epidemic expansion, and are not taken into
account when the R0 is calculated [11]. Hence, Li and
colleagues [11] postulated the interpretation and analyses of
R0 in four categories. Their model explains the rapid
expansion of a disease but with a relatively slow recovery process.

Rt provides a clearer picture of the time of increase of an
epidemic according to the percentage of susceptible people over
time. Initially, the Rt shows an acceleration in the number of
infected individuals, then becomes constant at the end of the
epidemic, and reaches a value of 0, thereby allowing calculation of
an adjusted R0 adapted to constant changes or population
variation over time [33, 34]. A bottleneck has been observed
in the Rt as the number of days of an epidemic increase, and the
R0 is closer to reality because, with fewer people to infect, the true
infective capacity of a virus is observed. However, this scenario
was not entirely accurate in our model (R0 � 1.97). Even though
our R0 is lower than that reported worldwide, some scholars have
calculated an R0 value between 0 and 1. This does not mean that
an epidemic is improving or ending; in some cases, this value
shows a latency period [11, 32, 34, 35]. For a more accurate
adjustment of the R0, we applied Fso based on our obtained Rt
value. As seen in Figure 7, the point where both curves intersect
corresponds to the R0 and simultaneously coincides with the
bottleneck observed in Rt (Figure 5), and we showed a similar
value of R0 to that obtained in previous studies [10, 33].

The minimum number of infected people required to stop an
epidemic has been mentioned [9, 23, 33, 36]. However, this value
must be considered very carefully because these infected
individuals will probably die. Importantly, 60% of the
population should be immunized (based on R0) to stop the

FIGURE 8 |Calculation model to reach herd immunity. (A) is the model without quarantine and shows the time that must pass for herd immunity to occur. (B) is the
model with quarantine and shows the time that must pass for herd immunity to occur.
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COVID-19 epidemic in Ecuador [9, 23, 33, 36]. This concept is
seen more clearly with “collective immunity” or “collective
protection”, which refers to the fact that a group of infected
people who recover will prevent the disease from spreading to the
entire population [21, 22, 37]. By applying this concept to our SIR
models, this collective protection will be reached with 60% of the
infected population but, as stated by Rashid and colleagues, there
are three main problems of assuming this value as real.

The first problem is the heterogeneity of the population
(i.e., the different immune responses that each person presents
to SARS-CoV-2). Hence, even though 60% of the population can
be infected, this does not ensure that people can generate an
immune state that protects the remaining susceptible members of
the population [35, 37].

The second problem refers to the R0 and the criterion of the
equation for %Pi,v. Rashid et al. explained that, because the
population is composed mostly of people at a high risk of
contagion, the R0 is overestimated. Hence, collective
protection does not correspond to the one that has been
calculated. In these cases, one must include in the equation
the efficiency of the country’s vaccination campaigns to
understand how the epidemic can be controlled [20, 35, 37].
This was not applied in the present study because a vaccine for
COVID-19 has not yet been found.

The third problem identified by Rashid et al. is the possible
impact of co-circulation of other pathogens (depends on the
characteristics of each population) during an epidemic. This
could modified SIR models through the calculated R0 with less
or more impact in predictions, and not are fitted to reality.

We evaluated the impact of the quarantine implemented in
Ecuador using two variables: the percentage of people
quarantined (used in the SIR model) and Rt variation (by
the effect of this measure). Quarantine reduces the number
of people on the streets, and decreases the number of SARS-
CoV-2 infections in a particular period [23, 24]. We took as a
reference the percentage of people quarantined as 40%. Other
models have considered 10%, and observed a decrease of 50% in
the number of expected cases that would be observed if no
health strategy was implemented. This 50% reduction does not
mean that the cases will not exist, only that they will be
redistributed over the duration of the epidemic. Hence, the
epidemic would last 300 days due to the quarantine instead of
180–200 days, thereby ensuring that the health system does not
collapse [29, 30]. Although quarantine has been a good strategy
for control of infectious diseases, it is not considered a good
strategy from dynamic and economic viewpoints because
external factors will affect Fso (the maximum number of
susceptible people that can be infected). In our model, Fso
increased by 10% (from 80 to 90%) if quarantine was applied in
40% of the population. This increase occurred because the
longer the quarantine lasts, the greater the probability that the
population will not comply with it. Since quarantine was
applied in Ecuador, the unemployment rate increased from
3.9 (2019) to 4.4% (2020). This increase forced people to take to
the streets in search of work and increased the number of
people exposed to SARS-CoV-2, and, consequently, Fso
increased [24, 34, 38].

We also estimated the number of people with acquired
immunity to SARS-CoV-2 based on the R0. We showed that a
decrease in the number of newly infected cases would be observed
by day 80 to day 100 of the epidemic. Other scholars say that this
value depends on the responsiveness of the local government to
report and identify cases, diagnostic capacity, and the delay in
sample processing [9, 23, 33, 36].

We identified a delay in sample processing in ≥40% of cases,
this parameter has not been reported before. Another value that
can be estimated through the R0 and Fso is the duration of
infection. If 40% of the population were in quarantine, we
estimated that the duration of infection would increase to
15 days, which was also observed by Li et al. and Massed
et al. Both research teams agreed that the duration of
infection and number of immunized individuals should not
be taken into account to estimate the reduction of an epidemic.
A latency period denotes the time when reinfections occur or the
epidemic disappears. Hence, if we know the R0, we could
estimate the percentage of infected people required to stop
the epidemic, which is equivalent to the one during this
latent period. Our model determined it to be 65% but, in
reality, this value will not be observed until it reaches 90% of
infected people and only then will we observe a decrease in the
infection rate [11, 23, 24, 33].

Although SIR models provide accurate data for the number
of patients who have recovered from COVID-19, infected
cases, and exposed patients, they require a large volume of
reliable data. SIR models could be used in countries with
better contingencies and strategies than those in most Latin
American countries. Traditional models are dimensionless in
time (results are not affected whether days or months are
used) so the infection rate will not fit well with dynamic
populations. For our models, we used a specific unit of time
that allowed for the daily adjustment and discreet
visualization of an increase or decrease of the epidemic. In
the context of public health, the use of our model could enable
prompt redistribution of resources according to infection
trends.

A weakness of our models was not providing the percentage
of asymptomatic cases and exposed cases. This led to a
reduction of the power of prediction for infected people
(≥15%). Although this percentage could affect the fit between
the real curve and model curve, this range of variation is
acceptable because the exact proportion of asymptomatic
COVID-19 individuals in Ecuador is not known. A lack of
reliable and updated data was the main limitation of our models.
This resulted from a deficiency in the structure of surveillance
measurements taken, identification of cases, sample-processing
capacity, as well as weakness in recollection, updating, and data
analyses from the MSP during the COVID-19 epidemic. The
MSP is the only entity that possesses full access to the data, and
those data are not open for external analyses or validation. In
addition, the number of reported cases and tests performed
changed dramatically over time without robust justification
from the MSP. Another important limitation was the
assumption of some of the parameters for our models. They
were obtained from countries from the same region with similar
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behavior of SARS-CoV-2 infection/COVID19 so did not affect
our results.

5. CONCLUSIONS

For the entire Ecuadorian population, we estimated that R0 � 2.2, with
88% susceptible/infected individuals. To stop a national epidemic, a
quarantine for 3–4months is required, and when 55% of the
population has been immunized (equivalent to 110 days since the
first report of a COVID-19 case), a real decrease of new cases will be
observed. The effectiveness of quarantine should be analyzed
retrospectively, and not as a result of contemporary control of the
COVID-19 epidemic.
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Reduced Treatment Sensitivity of
SARS-CoV-2 After Multigenerational
Human-to-Human Transmission
Qiang Wang†, Tong Yang† and Yang Wang*

Navy 971 Hospital of PLA, Qingdao, China

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome
coronavirus-2 (SARS-CoV-2), has become a rapidly spreading worldwide pandemic,
seriously threatening global public health security. At present, there is still no vaccine
or specific drug available for the virus. Therefore, epidemiological prevention and control is
crucial to block further spread of the disease. In this present study, based on the public
information of COVID-19 in Qingdao, Shandong Province, China, we analyzed the
epidemiological characteristics and treatment effects of 60 confirmed cases. It was
revealed that the hospital stay of patients were imported from Wuhan or infected by
Wuhan patients was obviously shorter than that of those who were imported from other
regions or infected by them. In addition, in Hubei-related patients, the earlier transmission
generation, which refers to the imported patients (G0) and the first-generation infections
(G1), was associated with reduced cure time. Therefore, we speculated that the treatment
sensitivity of SARS-CoV-2 decreased within interpersonal transmission in the early stage of
this epidemic.

Keywords: COVID-19, human-to-human transmission, treatment sensitivity, generation, region

INTRODUCTION

As of October 20, 2020, a total of 40652577 COVID-19 cases and 1119664 deaths have been
confirmed globally. To date, the outbreak of COVID-19 in China has been effectively controlled [1].
On the contrary, the worldwide pandemic is still spreading rapidly, with massive increases in the
number of cases daily. Therefore, it is necessary to analyze the epidemiological characteristics of
COVID-19 for further insights into this disease. By stratified analysis of patients in a city, subgroup
analyses can clarify relevant factors that affect therapeutic efficiency, thus providing important
evidence for the improvement of the treatment and prevention strategy for COVID-19.

In this study, publicly available data were collected from 60 confirmed COVID-19 patients in
Qingdao, Shandong Province (information from the official website of Qingdao Municipal Health
Commission). The correlation analysis was performed between treatment effect (hospital stay) and
related factors. After multigenerational human-to-human transmission, our study indicated reduced
treatment sensitivity of SARS-CoV-2 to the current therapeutic strategy, which could be inferred
from the fact that the cure time of Wuhan-imported patients and their associated infections is
significantly short than that in other patients. Meanwhile, the earlier transmission generation (G0
and G1) of SARS-CoV-2 was correlated with shorter cure time in patients who can be directly traced
to Hubei Province.
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METHODS

From January 21 to February 23, 2020, information of 60 cases of
COVID-19 confirmed in Qingdao was collected from the official
website of Qingdao Municipal Health Commission. The public
information includes patients’ age, gender, infection type
(imported or locally infected), the source of imported cases,
contact history of infected cases, and the date of onset of
symptoms, admission, diagnosis, and discharge. According to
the information, diagnostic time, hospital stay, and cure time of
patients could be calculated. Cure time was defined as the period
from the diagnosis of COVID-19 to the discharge of the patient.
We regarded the cure time as an indicator of the sensitivity of
treatment. Pearson’s chi-squared test was carried out to evaluate
the relationship of potential influence factors with cure time.
Subgroup analyses were applied to evaluate the therapeutic
efficiency affected by age, gender, infection type, generation,
imported region, and diagnostic time. SPSS (version 16.0) and
Review Manager (version 5.3) were adopted for statistical
analyses. All statistical tests were 2-tailed, and p-value < 0.05
was regarded significant.

RESULTS

Baseline Characteristics
By February 23, 2020, a total of 60 COVID-19 cases were
diagnosed in Qingdao with real-time fluorescence polymerase
chain reaction detection of SARS-CoV-2 RNA [2] (Table 1). All
patients were treated based on Chinese Clinical Guidance for
COVID-19 Pneumonia Diagnosis and Treatment (published by
the National Health Commission of the People’s Republic of

China) after the diagnosis. The standard clinical cure was defined
as temperature recovery for more than 3 days, with relieved
respiratory symptoms and two consecutive negative results for
respiratory pathogenic nucleic acid (sampling interval at least
1 day). The patients included 27 males and 33 females. For the 60
patients, the median age was 46 years, ranging from 1 to 90 years.
According to the infection type, 27 cases were imported from
other regions and 33 cases were locally infected. There were 13
imported patients from Wuhan, 8 from Hubei Province
(excluding Wuhan), and 1 from Thailand, thus causing 7, 16,
and 2 local infections, respectively. Another 2 cases were
imported from Henan Province and 3 cases from Shandong
Province, without interpersonal transmission. Another 8 cases
were infected by local suspected cases. The average incubation
period for the traceable 54 cases was 10.57 days, ranging between
1 and 31 days. Up to March 2nd, 59 cases were cured. The cure
rate was 98.33%, and the average hospital stay for the cured cases
was 17.69 ± 6.09 days. An 85-year-old female patient died from
COVID-19.

Virus Transmission Scenarios
Totally, 27 confirmed imported cases were identified up to March
2. Among them, 10 cases caused local transmission and induced
33 infected patients (Figure 1). Other 22 imported cases
displayed no human-to-human transmission. The maximum
number of transmissions was 11 from a single imported case.
The imported case (Case X2) was identified as a confirmed
patient from Tianmen, Hubei Province. There were 16 first-
generation infections, 12 second-generation infections, and
5 third-generation infections. Of note, four cases (Cases 50,
52, 56, and 58) were detected as asymptomatic infections, that
is, without typical symptoms including fever.

Analysis of Clinical Cure
Up to March 2, a total of 59 patients cured after systematic
treatment in Qingdao, with an average treatment time of
16.31 (range 6–43) days. Taking the median treatment time
(16 days) as the cutoff point, 59 patients were divided into the
shorter cure time (≤16 days) and longer cure time (>16 days)
groups. Correlation analysis was conducted for relevant factors
and cure time (Table 2). The results illustrated no significant
difference of age between patients with shorter cure time and
those with longer cure time. Moreover, the infection type
(imported or infected by interpersonal transmission of virus)
also demonstrated no significant correlation with therapeutic
effects. It is worth noting that the imported region of SARS-
CoV-2 exhibited significant correlation with therapeutic
efficiency (p � 0.002). The patients from Wuhan or infected
by Wuhan cases displayed shorter cure time than other patients.
Given that COVID-19 first broke out fromWuhan and spread to
other regions, the results suggested that SARS-CoV-2 became
more difficult to remove after multiple generations of human-to-
human transmission. Further analysis of the virus transmission
generation also supported significantly prolonged cure time in the
second and third generation of infected patients in Hubei-
associated transmission chain (p � 0.040). However, in terms

TABLE 1 | Characteristics of COVID-19 patients in Qingdao (N � 60).

Variable Statistics (N = 60)

Age (years)
Mean ± SD 45.63 ± 18.54
Median (range) 46 (1–90)

Gender
Male 27
Female 33

Infection type
Imported 27
Infected 33

Infection region
Wuhan 20
Hubei (except Wuhan) 24
Others 16

Generation
Imported (G0) 27
G1 16
G2 or G3 17

Diagnostic time
Mean (range), days 2.05 (0–12)
≤1 39
2–4 13
≥5 8

Frontiers in Physics | www.frontiersin.org December 2020 | Volume 8 | Article 5780242

Wang et al. Treatment Sensitivity Analysis of SARS-CoV-2

162

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


of 59 cured patients, there was no significant statistical
significance between transmission generation of SARS-CoV-
2 and cure time of patients. Furthermore, we analyzed the
influence of duration time from symptom onset to diagnosis,
and no significant difference was observed (p � 0.779).
Interestingly, it was clear that gender has a significant
impact on the cure time of patients. Compared with female
patients, male patients exhibited a trend of reduced hospital
stay (p � 0.046).

Further pooled analysis (Figure 2) supported that the
infection from other regions, rather than Wuhan (HR � 2.08,
95% CI: 1.32–3.27), was a detrimental factor for therapeutic
efficiency and was probably related to later generation of
interpersonal transmission of SARS-CoV-2. Female gender was
also indicated as a promising risk factor for therapeutic

efficiency (HR � 1.64, 95% CI: 1.00–2.70). By contrast,
increased transmission generation was not identified as a
significant risk factor for therapeutic efficiency (HR � 1.39,
95% CI: 0.74–2.59). What is more, no significant favor was
observed in age, infection type, or diagnostic time for the cure
efficiency.

DISCUSSION

The limitation of this study was the relatively modest number of
identified COVID-19 cases in Qingdao because the results of the
regional analysis may be different from those of overall research
to some extent. However, because of government’s efforts in
epidemic management, up to now, only 65 local cases were

FIGURE 1 | SARS-CoV-2 transmission scenarios in Qingdao. Totally, 10 imported COVID cases (red number) cased 33 cases of human-to-human transmission
(black or green number), among which 4 cases did not (green number) display typical symptoms of infection, such as fever. A1 was a suspected infected case from
Wuhan. A2 was a confirmed infected case from Tianmen, Hubei. X1-3 was a suspected case in Qingdao.

TABLE 2 | Correlation analysis of therapeutic efficiency in cured COVID-19 patients in Qingdao (N � 59).

Variables Cases with shorter cure time (≤16 d) Cases with longer cure time (>16 d) p value

Age (years)
≤46 19 13 0.253
>46 12 15

Gender
Male 18 9 0.046
Female 13 19

Infection type
Imported 16 11 0.343
Infected 15 17

Imported region
Wuhan 16 4 0.002
Others 15 24

Generation (all 59 cured cases)
G0 and G1 24 18 0.266
G2 and G3 7 10

Hubei-associated (43 cases)
G0 and G1 21 10 0.040
G2 and G3 4 8

Diagnostic time
≤1 d 21 18 0.779
>1 d 10 10
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confirmed in Qingdao and the last 5 cases confirmed after March
11 were all infected by patients imported from abroad.
Considering the possible impact of different sources of virus,
these 5 cases were not enrolled in our cohort. With a population
of 9.2 million, Qingdao is a large regional city with broad medical
and health coverage in the Jiaodong Peninsula. Its detailed and
accessible epidemiology information of COVID-19 provided
valuable research resources for the treatment and management
of this disease. Up to March 2, the mortality rate of COVID-19 in
Qingdao was 1.67%, lower than the national level (5.18%, 4,746/
91,574, up to October 20, information from the official website of
the National Health Commission of the People’s Republic of
China). The average time from symptom onset to diagnosis for
the infected patients is 2.05 days, which is a reliable guarantee for
high cure rate [3].

The systemic treatment of patients was based on Clinical
Guidance for COVID-19 Pneumonia Diagnosis and Treatment
that was published by the National Health and Health
Commission of China. The adjustment of this guidance may
have some impact on the treatment effect because its content was
constantly updated, and the treatment strategies were also
changed according to clinical treatment effects. However, since
all patients in this cohort were admitted to the hospital in a
relatively short period (33 days) and the improvement of the
clinical guidance was gradual, we believe that the impact of
treatment adjustments on the analysis of results is limited and
acceptable.

Laboratory diagnosis identified 4 infected patients from close-
contact cases (Cases 50, 52, 56, and 58), without typical symptoms
including fever [4]. Some infected patients did not display a
significant inflammatory response but were positive for the virus
detection, which were potential sources for further transmission.
Moreover, the cured patients revealed favorable prognosis, and
pulmonary fibrosis was rarely observed [5]. In this study, the only
died patient was an elderly patient with various underlying
diseases, including diabetes, hypertension, coronary heart

disease, and heart failure. It was worth noting that the time
from symptom onset to the diagnosis of this patient was 12
days. Long diagnosis time may also be a detrimental factor
for patients. The correlation of related factors, including old
age, underlying disease, and diagnostic time with treatment
effect still needs further analysis with larger series of
samples [5].

As it infects patients and causes pandemic, SARS-CoV-2
evolves at the same time. In March 2020, Tang et al. [6]
proposed that SARS-CoV-2 developed into two subtypes,
namely, L type and S type, among which L type was more
aggressive and infectious, accounting for about 70% of
infections. Forster’s team [7] put forward three major variants
in 160 complete SARS-CoV-2 genomes and named them A, B,
and C. Types A and C have a high proportion outside East Asia
(i.e., among Europeans and Americans). In contrast, type B is the
most common type in East Asia. In early March, Korber et al. [8]
identified seven D614Gmutations on spike protein from 187 viral
sequences, and its frequency increased rapidly when this mutant
strain entered the population. In many cases, G614 became the
main local form within a few weeks. The team obtained no
evidence that the virus carrying the mutation caused more
severe clinical symptoms. However, the levels of viral RNA in
the nose and mouth of patients infected with G614 appeared to
be slightly higher than those in patients with D614.
Subsequent studies proved that G614 virus may have
enhanced ability to enter cells [9, 10]. Moreover, a medical
team from Hubei Province, China, compared the clinical
characteristics of patients admitted before and after January
23, and they discovered that the initial symptoms of recently
infected patients had become more insidious, and even after
being cured and discharged from hospital, virus was
rediscovered in three patients [11]. The authors speculate
that the new coronavirus may gradually evolve into an
influenza-like virus and even hide in asymptomatic patients
for a long time [11].

FIGURE 2 | Subgroup analyses of therapeutic efficiency through age, gender, infection type, generation, imported region, and diagnostic time in 59 cured COVID-19
patients. Dashed vertical line corresponds to zero heterogeneity of the therapeutic effect. The variables were compared as follows: age, >46 years vs ≤46 years;
gender, female vs male; infection type, local transmission vs imported; generation, G2-3 vs G0-1; imported region, other regions vs Wuhan; and diagnosis time, >1 vs.
≤1 day.
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As a reasonable inference, we speculate that in the process of
long-term coexistence of the host, with improved adaptation to
human cells, the virus may become easier to be transmitted or
more difficult to be removed by the host. In cases of this cohort,
this adaptation may be manifested in the prolongation of the cure
time. This prolongation does not contradict with the decline of
COVID-19 mortality worldwide. First, due to the increasing
attention paid by countries around the world, the
enhancement of admission and treatment capacity, and the
standardization of diagnosis and treatment methods, the
reduction in death rate of COVID-19 were predictable.
Moreover, the evolution of SARS-CoV-2 does not necessarily
lead to increased virulence. On the contrary, in the process of
adapting to humans, certain functions of highly pathogenic
CoV in suppressing host immunity may be weakened or lost
[12]. And, this may be conducive to the survival of the virus in
the host without increasing the severity of the disease. At
present, there exist no specific treatment and vaccine
available for the disease [13]. However, the application of
treatment, even symptomatic or supportive, is beneficial to
the cure of patients. In fact, the treatment sensitivity reflects
the virus’ ability to survive in the human body and the
difficulty of being cleared in the presence of human
intervention. To some extent, it is an indicator of the
adaptability of the virus to the host.

This study revealed a reduced cure effect in infectious patients
from other regions than those fromWuhan, which was correlated
with decreased treatment sensitivity with the interpersonal
transmission of SARS-CoV-2. Although neutralizing IgG
extracted from the serum of cured COVID-19 patients is
equally effective in blocking cell entry of both the D614 and
614G variants of SARS-CoV-2 at this stage [14], we cannot
guarantee that new mutations that may threaten the
development of antivirus drugs or vaccines will not appear.
Before the advent of specific treatments for COVID-19,
universal epidemiological control is of great significance to
combat the pandemic. Population movement between regions

is an important factor influencing the spread of epidemics [15],
while virus testing along with case isolation and community
quarantine has been proved to be able to prevent rapid local
outbreak [16]. Physical distancing of 1 m or more and wearing
masks are also believed to significantly reduce the risk of virus
transmission [17]. In addition, the government’s promotion of
positive preventive measures can contribute to the inhibition of
the outbreak [18]. All in all, epidemiology is a powerful weapon
against COVID-19, and controlling the source of infection and
cutting off the route of transmission should not be ignored at
any time.
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We generalize the phenomenological, law of mass action-like, SIR and SEIR
epidemiological models to situations with anomalous kinetics. Specifically, the
contagion and removal terms, normally linear in the fraction I of infected people, are
taken to depend on I qup and I qdown , respectively. These dependencies can be understood
as highly reduced effective descriptions of contagion via anomalous diffusion of
susceptible and infected people in fractal geometries and removal (i.e., recovery or
death) via complex mechanisms leading to slowly decaying removal-time distributions.
We obtain rather convincing fits to time series for both active cases and mortality with the
same values of (qup,qdown) for a given country, suggesting that such aspects may in fact
be present in the early evolution of the COVID-19 pandemic. We also obtain approximate
values for the effective population Neff , which turns out to be a small percentage of the
entire population N for each country.

Keywords: COVID-19, pandemics, complex systems, nonextensive statistical mechanics, epidemiological models

1 INTRODUCTION

The classic and still widely used SIR and SEIR epidemiological models [1] represent contagion and
removal in analogy with the law of mass action in chemistry, corresponding to a mean-field approach
based on the assumption of homogeneous mixing. The latter hypothesis constitutes an
oversimplification, particularly for the COVID-19 pandemic, due to strong government
intervention (social distancing; lockdown) and underreporting as the number of cases grows
beyond testing capacity. Diverse aspects are discussed, assuming homogeneous or
nonhomogeneous mixing, in epidemiological models in general [2–4], as well as in the current
pandemic [5–15].

Epidemic models can be formulated on varying levels of detail, from individual agents in
geographically realistic settings to models of large populations without spatial structure. Each
level has its own benefits and costs; the study of an ensemble of models is expected to yield a
more reliable description than any single approach in isolation. In chemical kinetics of
processes involving anomalous diffusion and/or complex conformational pathways, effective
descriptions typically employ noninteger power-law terms where the mean-field or mass-action
analysis involves integer powers of concentrations, as in the analysis of reassociation of folded
proteins [16, 17]. With this motivation, we consider SIR- and SEIR-like models in which the
contagion and removal terms depend on I qup and I qdown , respectively, instead of depending
linearly on I, as they do in mean-field/homogeneous descriptions. Such generalization is
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consistent with anomalous human mobility and spatial disease
dynamics [18, 19] and emerges naturally within statistical
mechanics based on nonadditive entropies [20] as we show in
what comes next.

Let us now follow along lines close to [16], which provided a
satisfactory description of reassociation in folded proteins [17].
Consider the equation

dy
dt

� ayq (q ∈ R; t ≥ 0; y(0)> 0) . (1)

Its solution is given by

y(t) � y(0) ea[y(0)]
q− 1

t
q , (2)

with ezq ≡ [1 + (1 − q)z]1/(1− q) (ez1 � ez), a function that emerges
naturally in the nonadditive-entropy-based statistical mechanics
[20]. We have a monotonically increasing function y(t) for a> 0
(with infinite support if q≤ 1 and finite support if q> 1) and a
monotonically decreasing function for a< 0 (with infinite support
if q≥ 1 and finite support if q< 1). Notice an important point that
will permeate through this entire paper: if q � 1, only then the
coefficient a (which characterizes the scale of the evolution of
y(t)/y(0) with time) is not renormalized by the initial condition
y(0). If q≠ 1, the effective constant {a [y(0)]q− 1} will differ from
a; the difference can be very important depending on the values of
q and y(0).

2 GENERALIZED MODELS

2.1 q-SIR Model
The SIR set of equations is (see [1] for instance) as follows:

dS
dt

� −β S I
N

dI
dt

� β S
I
N
− c I

dR
dt

� c I ,

(3)

with β> 0, c> 0, and S + I + R � N � constant, N is the total
population, S ≡ susceptible, I ≡ infected, and R ≡ removed
(removed means either recovered or dead). Now let us
q-generalize this model as follows:

d(S/Neff )
dt

� −β S
Neff

( I
Neff

)qup

d(I/Neff )
dt

� β
S

Neff
( I
Neff

)qup

− c( I
Neff

)qdown

d(R/Neff )
dt

� c( I
Neff

)qdown

(4)

with qup ≤ 1 and qdown ≥ 1, where the bilinear term is generalized
into a nonbilinear one and the effective population Neff � ρN with
ρ≤ 1. These equations generically have a single peak for I(t). In all
cases, we have S(t) + I(t) + R(t) � Neff ; moreover, 0≤ S(t)/Neff ,

I(t)/Neff , and R(t)/Neff ≤ 1. Consistently, in the set of Eq. 4, it is
enough to retain the first two. Let us qualitatively compare the
SIR and q-SIR models given by Eqs 3 and 4, respectively, by
focusing on the β term; i.e., let us compare βSIR [S(t)/N] [I(t)/N]
with βqSIR [S(t)/Neff ][I(t)/Neff ]qup � βqSIR

[I(t)/Neff ]1−qup [S(t)/Neff ] [I(t)/
Neff ]; we remind that ρ � 1 yields Neff � N . It follows that roughly

βSIRx
βqSIR

[I(t)/Neff ). Since, before the peak, I(t) steadily increases with
time, a fixed value for (1 − qup)> 0 acts qualitatively as a
phenomenological time-dependent βSIR(t) which decreases with
time. These tendencies are similarly realistic since they both
reflect, each in its own manner, the generic action of
pandemic authorities to isolate people in order to decrease the
contagion represented by the β term in both models.

The particular limit R(t) ≡ 0 (hence S(t) + I(t) � Neff ) in Eq.

(4) yields I(t) � I(0) e−c[I(0)/Neff ]qdown−1 t
qdown if β � 0, and I(t) �

I(0) eβ t
(I(0)/Neff ) eβ t+[1−I(0)/Neff ] if (c, qup) � (0, 1). For generic qup < 1 and

R(t) ≡ 0, Eq. (4) yields

∫S/Neff

S(0)/Neff

dx
x(1 − x)qup � −βt , (5)

and hence,

−βt � (1 − S/Neff )1− qupΓ(qup) 2
~F1(1, 1; qup + 1;Neff /S)

S/Neff

−(1 − S(0)/Neff )1− qupΓ(qup) 2
~F1(1, 1; qup + 1;Neff/S(0))

S(0)/Neff

where Γ is the Gamma function and ~F is the regularized
hypergeometric function. As an illustration, let us consider

qup � 1/2. It follows ln[1− �����
1−S/Neff

√
1+ �����

1−S/Neff

√ × 1+ �������
1−S(0)/Neff

√
1− �������

1−S(0)/Neff

√ ] � −βt; hence,

I(t)
Neff

� 1 − S(t)
Neff

� { 1 + ��������
I(0)/Neff

√ − [1 − ��������
I(0)/Neff

√ ]e−β t
1 + ��������

I(0)/Neff

√ + [1 − ��������
I(0)/Neff

√ ] e− β t)}
2

.

(6)

Before the peak, I(t) increases nearly exponentially if
qup � 1 and is roughly characterized by I(t)xt

1
1−qup if

qup < 1. After the peak, I(t) decreases exponentially if qdown �
1 and is roughly characterized by I(t)xt−

1
qdown−1 if qdown > 1.

These various aspects are illustrated in Figure 1. An
important remark is necessary at this point. The
possibility for nonbilinear coupling β (S/Neff ) (I/Neff )qup
between subpopulations seems quite natural since
nonhomogeneous mixing involves complex dynamics and
networks for the susceptible and infected people, as well as
for the infecting agent of the disease. But why would it be
necessary to also allow, at the present phenomenological
level, a nonlinear behavior for the one-subpopulation term
c (I/Neff )qdown itself? The answer might be found in nontrivial
(multi)fractal-path-like relaxation mechanisms such as the
one that is known to happen in reassociations in folded
proteins [16, 17].
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We have checked that the q-SIR model provides functions I(t)
that are numerically close but different from the quite performing
ansatz in [5], namely, I(t)∝ tα e−β t

c

q , whose behavior before and
after the peak is, respectively, tα and tα−c/(q−1). Still, both
approaches have power-law behaviors before and after the
peak. We also checked I(t)∝ e

βup t
qup × e−βdown tqdown

, and the results are
once again numerically close but nevertheless different from the
ansatz in [5].

2.2 q-SEIR Model
The q-SIR model is not capable (for any choice of its
parameters) of correctly fitting the epidemiologically crucial
function I(t) for the COVID-19 available data for various
countries. Since this generalization of the simplest model
does not provide a useful tool for COVID-19 data, we
addressed a more sophisticated one, namely, a four-
compartment model known as SEIR. Therefore, we next
q-generalize the SEIR model with no vital dynamics (no
births; no deaths), which is given by

dS
dt

� −β S I
N

dE
dt

� β S
I
N
− σ E

dI
dt

� σ E − c I

dR
dt

� c I

(7)

with S + E + I + R � N , where E stands for exposed. We can
generalize it as follows:

d(S/Neff )
dt

� −β S
Neff

( I
Neff

)qup

d(E/Neff )
dt

� β
S

Neff
( I
Neff

)qup

− σ
E
Neff

,

d(I/Neff )
dt

� σ
E
Neff

− c( I
Neff

)qdown

(8)

where once again we have generalized the bilinear couplings
between subpopulations into nonbilinear ones and the linear c I
term into a nonlinear one. Its particular instance E(t) ≡ 0 (hence,
S(t) + I(t) + R(t) � Neff ) precisely recovers the q-SIR model, as
defined here above. Notice that the cumulative function C(t) of
I(t) is given by C(t) ≡ ∫t

0
dt′ I(t′) � ∫t

0
dt′ [1

c

dR(t′)
dt′ ]1/qdown , which

differs from the expression C(t) � R(t) currently used in the
SEIR model. It is of course possible to further generalize the
above q-SEIR set of four equations by allowing in the right hand
S qs (with qs ≠ 1) instead of S and E qϵ (with qϵ ≠ 1) instead of E,
but no need has emerged to increase the number of free
parameters of the model, since the allowance for qup < 1 and
for qdown > 1 appears to be enough for satisfactorily reproducing
all the relevant features of the COVID-19 available data.

Indeed, the variable which is epidemiologically crucial for
avoiding a medical-hospital collapse in a given region is
I(t), and this time dependence generically appears to be very
satisfactorily described by just allowing the possibility for
qup ≠ 1 and/or qdown ≠ 1. Notice that β (I/Neff )qup is a convex
function of (I/Neff ) for 0< qup < 1 and c (I/Neff )qdown is a concave
function of (I/Neff ) for qdown > 1. These tendencies, illustrated
in Figure 2, as well as the numerical values for the various
coefficients of the model, are in agreement with the available
medical/epidemiological evidence [21–25]. Notice also that,
through τ ≡ ct and (I/Neff ) ≡ (I/Neff )qdown , we can eliminate,
without loss of generality, two fitting parameters (e.g., c and
qdown) within the set of equations (8). Finally notice that if we
consider β � σ � 0, we precisely recover Eq. (1) and its
analytical solution in Eq. (2). Therefore, even if the general
analytical solution of the set of equations (8) is not available
(due to mathematical intractability), the initial conditions
naturally renormalize (in a nontrivial manner) the
coefficients (β, σ, c) of the model, and the effective
population Neff becomes a fitting parameter of the model.
These renormalizations disappear of course if
qup � qdown � 1, i.e., for the standard SEIR model;
concomitantly Neff (� ρN , with ρ≤ 1) ceases being a fitting
parameter and can be directly taken from the actual
population N of the particular region under focus. For other
mathematical aspects of nonlinear models such as the present
one, the reader may refer to [26].

3 APPLICATION OF Q-SEIR MODEL TO
COVID-19 PANDEMIC

In Figures 3 and 4, we have illustrations of this model for
realistic COVID-19 cases. We identify the present variable I
with the number of active cases,1 as regularly updated online
[27]. We verify that the description provided by the q-SEIR
model for nonhomogeneous epidemiological mixing is indeed
quite satisfactory for the early stages of the pandemic (before
an unpredictable but possible second wave). Let us also
mention that we have not followed here a road looking for
the minimal number of free parameters, but rather a road
where various realistic elements are taken into account, even if
at the fitting-parameter level some of them might be
redundant. Any further model yielding a deeper, or even
first-principle, expression of exponents such as qup and
qdown in terms of microscopic/mesoscopic mechanisms is
very welcome. This is by no means a trivial enterprise but,
if successfully implemented, this would probably follow a road
analogous to anomalous diffusion, namely, from Fourier’s heat

1At this point, it should be noted that the variable I in the model represents both
detected plus undetected active cases although, of course, the database includes
only detected ones as active cases. However, since these cases are roughly
proportional to each other (with a proportionality coefficient which might
change from country to country), we use the model variable I to fit the active
cases reflecting the incorporation of this proportionality into Neff and hence into ρ.
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equation through Muskat’s Porous Medium Equation [28] to
Plastino and Plastino nonlinear Fokker-Planck equation [29],
which in turn implied the scaling law α � 2/(3 − q) [30] (α
being defined through the scaling between x2 and tα and q
being the index value of the q-Gaussian solution for the
nonlinear Fokker-Planck equation). This scaling law
recovers, for q � 1, the Brownian motion scaling 〈x2〉∝ t
and was impressively validated within 2% error in granular
matter [31]. This phenomenological line was later legitimated
on the basis of microscopic overdamped mechanisms in at
least a wide class of systems, namely, providing q � 0 for the
motion of vortices in type-II superconductors [32], and later
extended to D-dimensional 1/rλ short-range repulsive
interactions (λ/D≥ 1), leading to q � 1 − λ/D [33]. These
approaches were shown to satisfy the zeroth law of

thermodynamics, an H-theorem, and Carnot’s cycle
efficiency, with microscopically established analytical
equations of state [34–37]. An attempt to follow along
similar lines for the present q-SEIR model would surely be a
very interesting challenge. In summary, we have q-generalized,
through Eq. (8), the SEIR epidemiological model. By solving this
set of deterministic equations given the initial conditions and its
parameters, we obtain [S(t), E(t), I(t),R(t)], as well as the
cumulative function C(t). We have focused on I(t) because
the hardest quantities for satisfactorily fitting are the number of
active cases and that of deaths and also because those are the
most crucial quantities for making correct sanitary and
epidemiological decisions.

From a general perspective, let us stress that the law of mass
action, the Arrhenius relaxation law, and the Kramers

FIGURE 1 | Time evolution of I(t) for the q-SIR equations with Neff � 108; we consider t to run virtually from zero to infinity (not necessarily during only the typical
range of real epidemics, say 1,000 days). (A) Fixed β and various values of c. For c � 0 and ∀β, I(t)/Neff precisely recovers the expression given in Eq. (6). The slope at the
first inflection point for increasing time is given by max[d ln I/d ln t] � 1/(1 − qup), ∀ c. (B) Fixed c and various values of β. For β � 0, the qdown-exponential function is
precisely recovered. (C) Time dependence of the slope of [d ln(I/Neff )/d ln t], which appears to be bounded between 1/(1 − qup) (� 2 in this example) and
−1/(qdown − 1) (� −2.5 in this example) (dashed lines). The dotted line corresponds to the position of the peak of I(t), and themaximum (minimum) corresponds to the left
(right) inflection point. (D) The maximal slope of I(t)/Neff as a function of qup. The high value at qup � 1 reflects the divergence expected in the limit qup � qdown � 1.
Indeed, in this limit, the present q-SIR model recovers the standard SIR model, which increases exponentially (and not as a power-law) toward the corresponding peak.
Notice also that this slope decreases when I0/Neff increases.
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mechanism [38] of escape over a barrier through normal
diffusion constitute pillars of contemporary chemistry. They
are consistent with Boltzmann-Gibbs (BG) statistical
mechanics and constitute some of its important successes.
However, they need to be modified when the system exhibits
complexity due to hierarchical space and/or time structures. It is
along this line that a generalization has been proposed based on
nonadditive entropies [20], characterized by the index q (q � 1
recovers the BG frame): see, for instance, [16, 39–43]. It is along
these same lines that lies the present q-generalization of the
standard SEIR model.

At the level of the numerical performance of the present
q-SEIR model for the COVID-19 pandemic, it advantageously
compares with models including time-dependent coefficients
[44–47]. For instance, the SEIQRDP model [44, 45, 47]
includes seven equations with several coefficients, two of them
phenomenologically being time-dependent. It does fit rather well

the COVID-19 reported data until a given date. However, the
q-SEIR, which includes four (instead of seven) equations with
several coefficients, all of them being fixed in time, fits definitively
better the same data for all the countries that we have checked: see
illustrations in Figure 5.

At this stage, let us emphasize a rather interesting fact.
Neither the SIR nor the SEIR models distinguish the dead
from the recovered, within the removed (R) subpopulation.
However, the same values for (qup, qdown) fit satisfactorily
both the numbers of active cases and of deaths per day for a
given country, as shown in Figures 3 and 4. At this point, it
would be worth noting that although the present model, unlike,
for example, the SEIRD model [48, 49], does not distinguish
deaths from healings, the deceased cases will still be roughly
proportional to infected people. It is this proportionality, we
believe, which makes us obtain reasonable fits using the variable
I of the model, again incorporating the proportionality into Neff

FIGURE 2 | Time evolution of I(t) for the q-SEIR equations with Neff � 108; we consider t to run virtually from zero to infinity (not necessarily during only the typical
range of real epidemics, say 1,000 days). (A) Fixed (β, c) and various values of σ. (B) Fixed (σ, c) and various values of β. (C) Time dependence of the slope of
[d ln I/d ln t], which, in contrast with the q-SIR equations, is not bounded between 1/(1 − qup)>0 and −1/(qdown − 1)< 0 (dashed lines). The dotted line corresponds to
the position of the peak of I(t), and the maximum (minimum) corresponds to left (right) inflection points. (D) The maximal slope of I(t)/Neff as a function of qup. The
high value at qup � 1 reflects the divergence expected in the limit qup � qdown � 1. Indeed, in this limit, the present q-SEIR model recovers the standard SEIR model,
which increases exponentially (and not as a power-law) toward the corresponding peak. Notice also that this slope decreases when I0/Neff increases.
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FIGURE 3 | Time evolution of available data for COVID-19 numbers of active cases (probably under-reported inmost cases) and deaths per day [27] and their (linear
scale) Least Squares Method fittings with Neff I(t) from the q-SEIR model; ρ � Neff /N, where N is the population of the country. Notice that, (i) by convention, t0 � 0 for
China; (ii) parameters such as ρN are particularly relevant for sanitary-epidemiological decisions, and, as it is natural, ρ(deaths)≪ ρ(active) for any given country; (iii) for
any given country, the values of (qup ,qdown) are the same for both curves of active cases and of deaths; (iv) the dates of the peaks of the active cases and deaths per
day do not necessarily coincide; (v) the values that emerge for β/c (reproduction number or growth rate), 1/β (exposition time), 1/c (recovering time), and 1/σ (incubation
time) are consistent with those currently indicated in the literature [21–25]; (vi) we considered all the data reported until June 13, excluding some very initial transients or
sudden anomalous discrepancies (e.g., in China, Turkey, and Brazil).
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and hence into ρ. It is also evident from these figures that the
data for deaths per day are more scattered than those for active
cases. This is due to the fact that the real data for the former are

much less than for the latter. This is also the reason for the
significantly small ρ values of deaths per day compared to those
of active cases.

FIGURE 4 | Continuation of Figure 3.
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4 CONCLUSION

To conclude, let us remind that the q-SEIR model recovers, as
particular instances, the q-SIR model introduced here, as well as
the traditional SEIR and SIR ones. It has, however, an important
mathematical difference with the usual epidemiological models.
Virtually all these models (SIR, SEIR, SAIR, SEAIR, SIRASD,
SEAUCR, and SEIQRDP) are defined through equations that are
multilinear in their variables; i.e., that are linear in each one of its
variables. This multilinearity disappears in models such as the
present q-SIR and q-SEIR ones if either qup or qdown differs from
unity. Consequently Neff definitively plays a different role since it
sensibly enters within the set of fitting parameters of the
q-generalized models; its precise interpretation remains to be

elucidated, perhaps in terms of the sociogeographical
circumstances of that particular region. Last but not least, let us
stress that the aim of the present q-SEIR model is to mesoscopically
describe a single epidemiological peak, including its realistic power-
law growth and relaxation in the time evolution of the number of
active cases, and by no means to qualitatively address possibilities
such as the emergence of two or more peaks, a task which is (sort of
naturally, but possibly less justified on fundamental grounds)
attainable within approaches using traditional (multilinear)
models where one or more coefficients are allowed to
phenomenologically depend on time by realistically adjusting
their evolution along the actual epidemics. Alternatively, it
is always possible to approach the two-peak case by
proposing a linear combination of two q-SEIR curves

FIGURE 5 | Comparison, using precisely the same reported data (green dots), of the SEIQRDP model (left plots) and the q-SEIR model (right plots) for the time
series of Germany (from February 26th to June 13th 2020) and of Italy (from February 21st to June 13th 2020). To obtain the SEIQRDP fittings (seven linear/bilinear
equations satisfying S + E + I + Q + R + D + P � N and including several fixed as well as two time-dependent coefficients), we have used the online program [47]. To
obtain the q-SEIR fittings (four not necessarily linear/bilinear equations satisfying S + E + I + R � Neff and including only fixed parameters, two of them being the
nonlinear exponents qup and qdown ), we have used a Standard Least Squares Method (linear scales).
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starting each of them at two different values of the departing
time (t0).
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Epidemiological Characteristics of
COVID-19 in Mexico and the Potential
Impact of Lifting Confinement Across
Regions
Cristy Leonor Azanza Ricardo1 and Esteban A. Hernandez-Vargas2*

1Centro de Física Aplicada y Tecnologia Avanzada, Universidad Nacional Autónoma de México, Juriquilla, Mexico, 2Instituto de
Matemáticas, Universidad Nacional Autonoma de Mexico, Juriquilla, Mexico

The novel coronavirus SARS-CoV-2 has paralyzed our societies, leading to self-isolation
and quarantine for several days. As the 10th most populated country in the world, Mexico
is on a major threat by COVID-19 due to the limitations of intensive care capacities, about
1.5 hospital beds for every 1,000 citizens. In this paper, we characterize the COVID-19
pandemic in Mexico and projected different scenarios to evaluate sharp or gradual
quarantine lifting strategies. Mexican government relaxed strict social distancing
regulations on June 1, 2020, deriving to pandemic data with large fluctuations and
uncertainties of the tendency of the pandemic in Mexico. Our results suggest that
lifting social confinement must be gradually sparse while maintaining a decentralized
region strategy among the Mexican states. To substantially lower the number of infections,
simulations highlight that a fraction of the population that represents the elderly should
remain in social confinement (approximately 11.3% of the population); a fraction of the
population that represents the confined working class (roughly 27% of the population)
must gradually return in at least four parts in consecutive months; and to the last a fraction
of the population that assumes the return of students to schools (about 21.7%). As the
epidemic progresses, deconfinement strategies need to be continuously re-adjusting with
the new pandemic data. All mathematical models, including ours, are only a possibility of
many of the future, however, the different scenarios that were developed here highlight that
a gradual decentralized region deconfinement with a significant increase in healthcare
capacities is paramount to avoid a high death toll in Mexico.

Keywords: COVID-19, confinement, control strategies, epidemiology, risk, Mexico

1. INTRODUCTION

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the virus behind the 2019
coronavirus disease (COVID-19) with alarming levels of spread and death tolls worldwide. With
more than four million confirmed cases and 292,046 deaths [1], COVID-19 pandemic has spread 212
countries moving the epicentre from China to Europe and consequently to America [1]. While
potential vaccines and antiviral drugs are under fast development [2], epidemiological models have
underlined the relevance of social distancing interventions as the main weapon so far to mitigate
COVID-19 pandemic [3].
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Epidemiological models have played a central role to advance
our understanding in SARS-CoV-2 transmission [3–6]. In its
early stages, the epidemic can double in size every 7.4 days [7].
The case fatality rate for COVID-19 ranges from 0.3 to 1% [1] up
to 20% [8]. The basic reproductive number has been computed
roughly 2.2 (95% CI, 1.4–3.9) [4, 7]. The lesson learned from
China, Italy, and the United States pointed out that COVID-19
can quickly result in high demands of healthcare capacities
deriving in the collapsing of hospitals of well-resourced
nations [9, 10].

Developing countries with limitations of intensive care beds
are highly jeopardized by COVID-19. Mexico ranks as the 10th
most populated country in the world with about 127 million
people [11]. About 60.4% of the population is economically active
whereof 56.2% depends on the informal workforce [11]. Albeit
the economic impact and levels of moderate poverty, Mexico
adopted on March 15, 2020 social confinement, which was
relatively early compared to the confirmed number of cases
and deaths [12]. By the cut-off date of May 25, 2020, the
public health strategy in Mexico has resulted in 71,105
infected cases and 7,633 deaths by COVID-19 [12].

The public health strategy followed by Mexico for the COVID-
19 pandemic is the sentinel model, which was implemented by
Mexico in 2009 against the pandemic of influenza H1N1 [13]. The
sentinel model consists on three phases. In stage 1 of the outbreak,
the model applies case-by-case monitoring. In phase two, the
model focuses on places where the epidemic is growing, at this
stage a community-based surveillance is applied. In phase three,
which is the peak infection phase, the central problem of pandemic
surveillance is not to monitor the growth of the pandemic but to
ensure that hospital capacities are not exceeded. Mexico has an
extremely limited healthcare capacity, approximately 1.5 beds for
every 1,000 citizens. Based on early data of the pandemic and
assuming social confinement restrictions, the Sub-secretary of
Prevention and Health Promotion of Mexico presented
mathematical model predictions with a peak of the pandemic
Mexico between 8 and 10 May with an end of the pandemic on
June 25, 2020 [12]. Mexico is planning to lift the strict social
distancing regulations on June 1, 2020. However, an abruptly lifting
of social confinement would likely result in new waves of new
COVID-19 cases and high death tolls.

While the SIR model has a simple structure, this has been
central to understand different epidemiological aspects of
COVID-19 such as the reproductive number, number of
infected cases in short time scales, and the effects of lifting
confinement strategies in different countries [3–5, 14]. Simple
models can help us to think clearly and to interpret pandemic
data sets on quantitative grounds. Consequently, simulations can
infer predictions of different possible scenarios. If the predictions
are confirmed, the model has proven to be a justified simplification
of the complex reality and may be further used. If the predictions
are wrong, the model assumptions can be reconsidered or
extended, which is very important during pandemics. In this
paper, we fit a mathematical model for COVID-19 [15] using
data of the COVID-19 epidemic in Mexico [12] as well as its public
health capacities and demographic conditions [11]. Different lifting
confinement scenarios are evaluated for the main regions of

Mexico in order to inform public makers to tailor decentralized
region strategies through the Mexican territory with the ultimate
goal to minimize deaths.

2. THE SENTINEL MODEL FOR TRACKING
COVID-19 IN MEXICO

Epidemiological models have been proposed to represent COVID-
19 pandemic in different countries [15, 16]. These contain many
variables resulting in a significant number of parameters difficult to
estimate with epidemiological data at themoment of the pandemic.
Instead of considering the exposed compartment and then divided
into presymptomatic, symptomatic, and asymptomatic, we assume
that the exposed hosts to the virus go from susceptible to
presymptomatic. Consequently, presymptomatic cases would
progress to symptomatic or to recover. In this fashion, we do
not increase the complexity of the model. Furthermore, several
assumptions would need to be integrated in order to match the
sentinel model used byMexico against COVID-19 [13]. Themodel
writes as follow:

dS
dt

� −β SA
N

+ τC − qS, (1)

dC
dt

� qS − τC, (2)

dA
dt

� β
SA
N

− ηA, (3)

dI
dt

� ϵηA − δI, (4)

dR
dt

� (1 − ϵ)ηA + δI. (5)

The susceptible population is represented by S, from which
the total country population (N) is about 127 million [11]. The
susceptible population would pass to the presymptomatic
compartment (A). Note that in the sentinel model applied in
Mexico is that testing is about 10% of the suspected cases while
100% of hospitalized cases and deaths. Once the infected cases
(I) are listed in the epidemiological data sets by the Mexican
Government, the infected case should be either hospitalized or
at home under confinement. Based on the fact that
presymptomatic shedding is very common for COVID-19
[17], it is a reasonable assumption to consider that new
infections are mainly driven by the presymptomatic
population with the term β SA

N . The presymptomatic phase has
been reported on average 5–6 days, but it can be up to 14 days [1,
3]. The presymptomatic population will leave this compartment
with a rate η. A fraction ϵ of the presymptomatic population that
will present severe symptoms or complications, and
consequently counted in the reports of infected cases (I).
This is approximately 20% [1, 3, 18], that is ϵ � 0.2. The
other fraction 1 − ϵ will move to the compartment of remove
(R), those cases that recover or die. The average infection time is
about 3–7 days [19], while the clinical recovery is 2–6 weeks
after symptoms [20, 21]. Thus, we assume the recovery rate of
infected cases (δ) in 10 days.
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The first confirmed case of COVID-19 in Mexico was reported
on February 28th, 2020 [12]. On the day of social confinement,
March 15, 2020, the number of infected cases (I0) for the whole
country was 12 [12]. Due to the change in socialmovement as well as
the very low number of infected cases between the first confirmed
case till the day of social confinement, we perform our parameter
fitting at the first day of social confinement. The initial number of
presymptomatic population (A0) is approximately a factor f of 8–12
respect to the confirmed cases [22], which approximates A0 � fI0.

The compartment C is the confined population which entered
with a rate q from the susceptible population. τ the effect of
population deconfinement, which can be attributed to
government policies as well as resistant/forgetting factor by the
population to keep adequately the confinement. Estimations by
the COVID-19 community mobility report of Google [23]
suggest a reduction in the mobility of about 50–70%. Thus,
the ratio between τ/q � 2/3 would represent the 60%
confinement percent in the steady state. If we consider a fast
confinement rate, that is q � 1, then τ � 2/3.

2.1. Re-sampling Strategy for Parameter
Distributions
A re-sampling strategy was employed to fit the parameters β and η.
The range of parameter values in Table 1 served to generate 3,000
sets of random parameters with specific statistical distributions as
presented in Supplementary Figure S1. This set of parameters
consequently was used to fix parameters and perform 3,000 fitting
repetitions by minimizing the root mean square (RMS) difference
between the model predictive output (yi) and the reported data of
infected cases (yi). Among different several stochastic optimization
algorithms, the minimization of RMS is performed using the
Differential Evolution (DE) algorithm [24] with our Python
library PDEparams [25]. Using the python library st.t.interval
and parameter fitting distributions based on 3,000 samples, the
95% confidence interval (CI) is computed.

3. SIMULATION RESULTS

Social confinement started inMexico onMarch 15, 2020, which was
early compared to the confirmed number of cases and deaths in
comparison to other countries [12]. Albeit of this early confinement,
Mexico had an exponential growth of infected cases and many

deaths, thus confinement needed to be extended. Pandemic data in
Mexico is very heterogeneous among regions as well as in time
scales. This may be attributed to different social behavior, working
class, and public health policies.

3.1. Scenario 1: COVID-19 Pandemic Under
Confinement
The first scenario to investigate, Scenario 1, is the reports of
infected cases from 15 March till May 25, 2020 [12]. This time
period is when a major part of the population remained in social
confinement, about 50–70% [23]. The embedded panel in
Figure 1 presents the best fit and sampling procedure for the
whole country, Mexico City (CMX) and the State of Mexico
(MEX), while the other regions with major number of infected
cases is shown in Supplementary Figure S2. Simulations show
that while the early social confinement would delay the initial
expected peak of the pandemic on middle may [12] till July-
August, the number of infected per day would reach very high
numbers, an order of 104–105.

In fact, reproductive numbers for the whole country as well as
major regions affected with COVID-19 were between 2.3 and 3.6
(Supplementary Table S1). This underlines that even social
restrictions SARS-CoV-2 was still spreading among the country
andmajor populated cities. The heterogeneity of the infections and
their respective public health necessities varied significantly among
different geographic regions ofMexico. Note in Figure 2 that some
states had R0 larger than 4, which is not reasonable. This is
attributed to the data of the respective states are having a small
number of infected cases, deriving in bias predictions.

Considering the reported number of infected cases, Figure 3
presents the percent of the COVID-19 infected cases that require
Intensive Care Units beds (ICU), intubation facilities (INT) and
hospital beds (HOS) from 12 April till August 15, 2020 [26]. Large
box plots imply that the requirements of the state were changing a
lot in time e.g., Zacatecas (Zac) and Colima (Col). On the other
hand, small box plots highlight that public health requirements for
the state were very consistent during the reported period e.g., CMX.

Assuming the percents of required hospital beds with respect to
the reported infected cases are consistent in the future (about 38% for
the whole country, see Figure 3 and Supplementary Table S2), the
most optimistic peak of the pandemic presented in Figure 1 could be
about 254,174 infected cases, which would result in a saturation of
hospitals. That is, the whole country would require to have about
97,180 hospital beds, while the number available of beds for COVID-
19 pandemic reported for the whole country is about 49,083 [27]. This
is a major public concern as Mexico would only be able to provide
approximately 50% for the peak of COVID-19 pandemic, otherwise
hospitals capacities for non-COVID-19 patients would be reduced.

On March 24, an official communication [27] reported that 40%
of the available hospital beds in the country were dedicated to the
COVID-19 epidemic. That is, a total of 49,083 hospital beds, 256
intensive care units, 5,523 ventilators and 2,446 intensive care beds.
Furthermore, a re-conversion program was in process, to increase
the health capacity [27]. In spite of social confinement, simulations
pointed out a high threat to Mexico (Figure 1), that is for the most
optimistic scenario, the pandemic peak would be about 338

TABLE 1 | Parameters of the sentinel model (1)–5) for tracking COVID-19 in
Mexico.

Parameters Value (range) References

Cases with severe symptoms, ϵ 0.2 (0.15–0.3) [1, 3, 18]
Recovery time, δ 2 (1.5–3) weeks [20, 21]
Factor for estimate presymptomatic cases, f 10 (8–12) [22]
Reduction in the mobility CS 60 (50–70)% [23]
Confinement rate, q 1 (0.9–1.1) Fixed
Infection rate, ß 1.48 Estimated
Incubation period, 1/η 0.55 Estimated
Reproductive number, R 2.7 (2.4–3.6) Estimated
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thousand infected people. If the ratios of hospitalization observed so
far are consistent in the next months (about 38% of infected cases,
see Figure 3), Mexico would be almost at the maximum capacity,
approximately 98% hospital bed occupancy, although beds of non-
COVID-19 patients are considered for COVID-19 patients.
Therefore, social confinement lifting would very likely result in a
hospital system breakdown.

3.2. Scenario 2: Complete Lifting
Confinement on June 1, 2020
Mexico was planning to lift social distancing restrictions on
June 1, 2020, however, due to the continuous increase in

infected cases, confinement has been irregular [12]. Based
on the nominal values presented in Table 1, we develop
different possible scenarios to gradually lift social
confinement and explain the on-going pandemic. To this
end, we will study first the hypothetical case of a complete
lifting confinement on June 1, 2020 (Scenario 2). This would
help to understand what has been the implication of social
confinement on the initial estimations. Panels (a), 2) and 3) in
Figure 4 present a simulation scenario with a sharp and
massive return of activities on June 1, 2020. This would
result in a major increase of infected cases, about two
orders of magnitude higher than the scenario with social
confinement in Figure 1.

FIGURE 1 | Scenario 1: Maintaining COVID-19 Lockdown. Mathematical model (1)–(5) is fitted with pandemic data from 15 March to May 25, 2020. Shadows
indicate the range of 3,000 fits of infected cases considering the range of parameters in Table 1. Simulations are performed till November 2021.

FIGURE 2 | Reproductive number (R0) for all Mexico states obtained from the model fits up to June 25, 2020.
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3.3. Scenario 3: Orderly Gradual Lifting
Confinement on June 1, 2020
Considering that the confinement in Mexico was about 60% of
the population [23], we evaluate a step-wise social confinement
lifting based on a gradual deconfinement of different age
groups. Based on Mexican reports by the INEGI [11],
Mexican population can be divided into three major age
groups: G1 are those between 0 and 24 years old
(approximately 42.94% of the population), G2 are those
between 25 and 59 years old (approximately 45.75% of the
population), and G3 are those between 60 years old
(approximately 11.32% of the population).

Note that our model does not include any differentiation in
infection risk and contact patterns among elderly, working class
and students. As a result, it is not able to distinguish those sub-
populations. Therefore, any conclusion about the order for lifting
confinement of any sub-populations is purely based on
assumptions. What can be represented in our model is the
fraction of population lifted in each phase.

Thus, we consider fractions of the population that would
represent the elderly, group G3, should stay in social
confinement. The remaining population in confinement, about
48.7%, is divided into two groups: the first are students from 3 to
17 years old composed approximately 21.7% [11], the second is

FIGURE 3 | National requirements of Intensive Care Units beds (ICU), intubation facilities (INT) and hospital beds (HOS). These percents are based on the reported
data of infected cases that require ICU, INT or HOS. Box plots are composed by data sets from 12 april till 15 August. Therefore, those states with small box plots reveal a
very stable needs in public health capacities in time (e.g., CMX). Data was extracted from Ref. [26].

FIGURE 4 | Scenario 2: Complete lifting Confinement on June 1, 2020. Panels (A) Present a sharp and massive return of people for social deconfinement on June
1, 2020 for the whole country; (B) CMX, and; (C) MEX, respectively.
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the group of the working force of Mexico that stayed in social
confinement, around 27% [11].

The initiation of activities of a fraction of the population
proportional to the working class and students is tailored to
reduce the peak of the pandemic. Figure 5A–C shows a step-
wise deconfinement strategy starting at different months (from
June till November), returning a fraction proportional to the
working class in four consecutive months (or three for CMX and
MEX) and at the last the returning of students to schools.
Independently of the initiation time of deconfinement,
simulations in Figure 5 highlight that confinement lifting
must be avoided before passing the peak of the pandemic. If
the initiation of activities is before the first peak, this would
result in a much higher number of infected cases, and
consequently death tolls.

Similar outcomes are obtained for CMX and MEX
(Figure 5B, C) as well as in major regions of Mexico
(Supplementary Figure S3). Figure 5D–F underlines that
the best time to initiate deconfinement in CMX and MEX
would be between October and November. While this step-
wise confinement lifting strategy is the best alternative to
mitigate the peak of the pandemic, it would still derive a
second wave of the pandemic equivalent to the first one
under social restrictions. Estimations of hospital beds
requirements for deconfinement strategies for different
Mexican regions are presented in Supplementary Table S2.

3.4. Scenario 4: Compliance of the
Population Under Social Restrictions and
Gradual Lifting Confinement on June 1, 2020
Using the model (1)–(5) to recapitulate the pandemic data from
June 1 till August 15, 2020 was not possible to achieve changing
only the social confinement (%C). Therefore, the model (1)–(5)
was extended with the Eq. 6, which would mimic the
deconfinement and social behavior dynamics in Mexico.
Deconfinement initiates at day dCS and ends at day dCE . Eq. 6
contains a damped cosine function to represent the social
behavior that promotes individuals to enter and leave
confinement. The decay constant (λ � 2/(dCE − dCS )) is referred
to the half of deconfinement time period to assure a strong
amplitude damping at dCE .

Note that Eq. 6 is a possible scenario among many others to
explain the epidemiological data in Mexico. Of course this is a
hypothetical scenario, but in principle any damped oscillating
function would represent the pandemic data.

C%(d) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

CS d < dC
S

CS + d − dCS
dCE − dCS

(CE − CS) + ACe
− 2( d− dC

S
dC
E
−dC

S

)
cos(d − dCS

pC
) dC

S < d < dCE

CE d > dC
E

(6)

FIGURE 5 | Scenario 3: Gradual lifting Confinement on June 1, 2020. Panels (A) shows a step-wize social confinement lifting at different time points for the whole
country; (B) CMX, and; (C)MEX, respectively. Panels (D) underlined the best scenario for confinement lifting in the whole country; (E) CMX, and; (F)MEX, respectively.
This consists on keeping in confinement a fraction of the population equivalent to the size of the elderly, while a fraction representing the confinedworking force of Mexico
(about 27%) returns to activity in four parts (three steps for CMX and MEX), each one in consecutive months, while a fraction assuming the students would come
back to school one month after the working group.
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To further adapt to the pandemic data, we incorporate
social distance (fβ) and the use of mouth cover strategies
that could have decreased the new infections. This starts at
day dβS , and ends at day dβE . This is represented by the following
equation:

β(d) �

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

β0 d < dβS

β0[1 + (fβ − 1) d − dβ
S

dβE − dβ
S

] dβ
S < d < dβE

fββ0 d > dβE

(7)

The dynamics of social distance and deconfinement is
illustrated in the lower panel in Figure 6 with parameter
values in Table 2. Figure 6 shows the pandemic data and
model simulations. We would like to remark this is just a
possible scenario among possibly many others that recapitulate
the pandemic data of Mexico.

4. DISCUSSION

The year 2020 has revealed one of the biggest pandemics reported
in history, the novel coronavirus SARS-CoV-2 causes a severe
and potentially fatal acute respiratory syndrome (COVID-19).
Epidemiological reports by countries with strong public health
capacities have uncovered the potential of COVID-19 to saturate
hospitals in short time [1]. Therefore, COVID-19 is a major
threat to developing countries because of the limitations of
intensive care beds. While no vaccine or antiviral drug is likely
to be available soon, the only remaining tool against COVID-19 is
social confinement. However, a prolonged lock-down will hugely
affect societies, education, and economy.

In this paper, we investigate the dynamics of the COVID-19
pandemic in Mexico, which adopted on March 15 social
confinement to avoid the fast spread of the virus and the
eventual collapse of the public health services [12]. Mexico is a
highly populated country with major levels of moderate poverty.
A strict social confinement has been extremely difficult to apply
in a country with 56.2% of the population working informally
[11]. Mexico originally plan to lift the social confinement on June
1, 2020, however, the high death tolls in a limited public health
system forced to extend the confinement.

While keeping the elderly in social confinement until a vaccine is
available, the best strategy to contain the epidemic inMexicowould be
to return social activities after thefirst peak of the pandemic, returning
a fraction of the population equivalent to the confined working class
(about 27% of the population) in four equal parts, and at the last the
returning of students to schools (see Figure 5). Considering the best
deconfinement strategy, Mexico would need at least a three fold
increase in current hospital capacities. Note that this is an upper view
of the pandemic at country level, however, the fate decision of
pandemic evolution has shown great differences not only among
countries but also among states inside of countries. Therefore, social
confinement lifting should be tailored for each city in Mexico.
Mexican Government may need to consider in deconfinement
strategies not only on the age factor in COVID-19 patients
Supplementary Figure S4 but also people with chronic diseases
such as diabetes, COPD and obesity as shown in Supplementary
Figure S5. This is also a main concern, as in Mexico 65% of the
population is overweight, 30% of the population is obese, and about
10% of the population had diabetes [28].

The mathematical model (1)–(5) was fitted with data from 15
March to May 25, 2020 (Figure 3). For validation the model was
used to predict an independent data set fromMay 25 till June 1st,
Supplementary Figure S6 shows how the model can predict the
tendency of the pandemic. However, on June 1, 2020,

FIGURE 6 | Possible scenario to represent COVID-19 pandemic data.
Pandemic data and model simulation (upper panel). Confinement lifting
scheme and ß modification (lower panel). The percent of the population in
confinement (%C) with Eq. 6 and social distance measures affecting the
value of ß with Eq. 7. These equations with parameter values at Table 2
represent a possible scenario to reconcile the pandemic data from June 1 till
August 15.

TABLE 2 | Parameter values for confinement lifting scheme and social distance
measures in Eqs 6, 7. β0 corresponds to the fitted value up to May 25, 2020.

dC
S dC

E CS CE AC pC

June 01, 2020 (79) October 14, 2020 (214) 60% 30% 5% 2
dβ
S dβ

E βS βE β0 fβ
May 15, 2020 (62) January 12, 2021 (304) β0 fββ0 1.48 0.06
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confinement restrictions were relaxed in a growing phase of new
infected cases and deaths. However, data sets from June 1 till 15
shows a deceleration of the infected cases. Simulations in Figure 6
shows that the dispersion of data sets of infected cases could be
attributed to changes in social behavior to confinement as well as
social distance measures. A key aspect to represent pandemic data
in Figure 6 was the combination of deconfinement from 60% to
30% and a decrease in ß starting two weeks before deconfinement
initiation.

In the same spirit of the epic phrase by Goerge E.P. Box that
“All models are wrong, but some are useful”, our model as well as
others for COVID-19 has several limitations. In particular,
mathematical models that are fitted during the emerging
phase, exponential growth, of an outbreak that have potential
sources of bias [29]. Furthermore, the data of infected cases in
Mexico is very limited because of the implementation of the
sentinel model. While sampling is based on 10% of the suspected
cases while 100% of hospitalized cases and deaths, mass testing
for stages 2 and 3 is considered irrelevant. In fact, reports by the
OECD (COVID-19) [30] underlines that Mexico was only testing
0.6–0.8 per every thousand, occupying in this way Mexico the last
place among countries with high number of infected cases. With
5,623 new tests onMay 4, 2020,Mexico reported the highest number
of samples per day [30]. Therefore, with this sample rate Mexico will
be unable to register the dimension of the epidemic, actually, it is
expected thatMexico will have a flat region as soon as the number of
infected cases per day passes over 7,560. At the peak of the pandemic
Mexico would need to test at least 18 per every thousand to provide a
better vision of the problem. The summary of activities to reduce the
COVID-19 Pandemic in Mexico would be:

• Return social activities after the first peak of the pandemic.
• Keep the elderly and citizens with chronic diseases such as

diabetes, COPD and obesity in social confinement until a
vaccine is available.

• Lift confinement to a fraction of the population equivalent
to the confined working class (about 27% of the population)
in four equal parts after the first peak during confinement.

• Returning of students to schools by February 2021.
• Testing for COVID-19 should be at least 18 per every

thousand.
• Increase at least three fold hospital capacities dedicated for

COVID-19.
• Continuous social distance and mouth cover use to decrease

the rate of new infections.

Traveling is having a key aspect in COVID-19 pandemic.
Previous studies explored the consequences for travel [6],
particularly focusing on airplane transportation but attempting
to give a gross approximation to terrestrial movement since this is

the main form of population movement in Mexico. Given the
large population size of migrants in Mexico, the transmission risk
of this population is high. Thus, airports should test passengers
arriving from certain countries when they enter Mexican
territory, potentially allowing them to spend less time in
quarantine if they test negative.

Note that this study does not consider the economic effects but
it was only based to have enough hospital capacities. With the
progressing of information of COVID-19 pandemic as well as
new data of infected cases in Mexico, our simulations would be
more accurate and hopefully less drastic scenarios. Nevertheless,
our model predictions highlight critical scenarios and suggest
tailored public health strategies for social confinement lifting in
combination with a significant increase in the health care system
capacities.

AUTHOR’S NOTE

This manuscript has been released as a preprint at medRxiv (31).

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: https://serendipia.digital/2020/03/datos-
abiertos-sobre-casos-de-coronavirus-covid-19-en-mexico.

AUTHOR CONTRIBUTIONS

CR performed the simulations. EH-V envisaged the project. All
the authors discussed and wrote the paper.

FUNDING

This research was funded by the Universidad Nacional
Autonoma de Mexico (UNAM), CONACYT, and the
Alfons und Gertrud Kassel-Stiftung. This work received
support from Luis Aguilar of the Laboratorio Nacional de
Visualización Cientifica Avanzada (LAVIS) at UNAM-
Juriquilla.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fphy.2020.573322/
full#supplementary-material.

REFERENCES

1. CDC. Coronavirus diseases (COVID-2019). (2020). Situation Reports.
2. Lowe D A close look at the frontrunning coronavirus vaccines as of may 1

(updated)—in the pipeline. (2020). Tech. Rep.

3. Anderson RM, Heesterbeek H, Klinkenberg D, Hollingsworth TD. How will
country-based mitigation measures influence the course of the COVID-19
epidemic? Lancet (2020) 395:931–934. doi:10.1016/S0140-6736(20)30567-5

4. Kucharski AJ, Russell TW, Diamond C, Liu Y, Edmunds J, Funk S, et al. Early
dynamics of transmission and control of COVID-19: a mathematical modelling
study. Lancet Infect Dis (2020) 3099:1–7. doi:10.1016/s1473-3099(20)30144-4

Frontiers in Physics | www.frontiersin.org December 2020 | Volume 8 | Article 5733228

Azanza Ricardo and Hernandez-Vargas The Risk of Lifting COVID-19 Confinement

184

https://serendipia.digital/2020/03/datos-abiertos-sobre-casos-de-coronavirus-covid-19-en-mexico
https://serendipia.digital/2020/03/datos-abiertos-sobre-casos-de-coronavirus-covid-19-en-mexico
https://www.frontiersin.org/articles/10.3389/fphy.2020.573322/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphy.2020.573322/full#supplementary-material
https://doi.org/10.1016/S0140-6736(20)30567-5
https://doi.org/10.1016/s1473-3099(20)30144-4
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


5. Weitz JS, Beckett SJ, Coenen AR, Demory D, Dominguez-Mirazo M, Dushoff J,
et al. Modeling shield immunity to reduce COVID-19 epidemic spread. Nat
Med (2020) 26:849–854. doi:10.1038/s41591-020-0895-3

6. Acuña-Zegarra MA, Santana-Cibrian M, Velasco-Hernandez JX. Modeling
behavioral change and COVID-19 containment in Mexico: a trade-off
between lockdown and compliance. Math Biosci (2020) 325:108370. doi:10.
1016/j.mbs.2020.108370

7. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early transmission
dynamics in wuhan, China, of novel coronavirus–infected pneumonia. N Engl
J Med (2020) 382:1199–1207. doi:10.1056/NEJMoa2001316

8. Baud D, Qi X, Nielsen-Saines K, Musso D, Pomar L, Favre G. Real estimates of
mortality following COVID-19 infection. Lancet Infect Dis (2020) 3099:30195.
doi:10.1016/s1473-3099(20)30195-x

9. Li R, Rivers C, Tan Q, Murray MB, Toner E, Lipsitch M. The demand for
inpatient and ICU beds for COVID-19 in the US: lessons from Chinese cities.
medRxiv (2020) 16:20033241. doi:03.0910.1101/2020.03.09.20033241

10. Kissler SM, Tedijanto C, Goldstein E, Grad YH, Lipsitch M. Projecting the
transmission dynamics of SARS-CoV-2 through the postpandemic period.
Science (2020) 368(6493):860–8. doi:10.1126/SCIENCE.ABB5793

11. INEGI. Encuesta Nacional de Ocupación y Empleo (ENOE), población de 15
años y más de edad. (2019). Tech Rep.

12. Secretaria de Salud MEXICO. Coronavirus (COVID-19)-Comunicado técnico
diario—secretaría de Salud—gobierno—gob.mx. (2020). Tech Rep.

13. de Salud S. Manual para la vigilancia epidemiológica de Influenza. Dirección
General de Epidemiologia (2014) 1–84.

14. López L, Rodó X. The end of social confinement and COVID-19 re-emergence
risk. Nat Human Behav (2020) 4:746–55. doi:10.1038/s41562-020-0908-8

15. Peng L, Yang W, Zhang D, Zhuge C, Hong L Epidemic analysis of COVID-19
in China by dynamical modeling. arXiv (2020) 1–12. doi:10.1101/2020.02.16.
2002.06563

16. Zhao H, Feng Z. Staggered release policies for covid-19 control: costs and
benefits of relaxing restrictions by age and risk.Math Biosci (2020) 326:108405.
doi:10.1016/j.mbs.2020.108405

17. He X, Lau EHY, Wu P, Deng X, Wang J, Hao X, et al. Temporal dynamics in
viral shedding and transmissibility of COVID-19. Nat Med (2020) 26:672–5.
doi:10.1038/s41591-020-0869-5

18. LeungLau R, Okel LC, Dorigatt I, Winskill P, Whittaker C, Imai N, Cuomo-
Dannenburg G, et al. Estimates of the severity of coronavirus disease 2019: a
model-based analysis. Lancet Infect Dis (2020) 20(6):669–77. doi:10.1016/
S1473-3099(20)30243-7

19. Wölfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Müller MA, et al.
Virological assessment of hospitalized patients with COVID-2019. Nature
(2020) 581(7809):465–9. doi:10.1038/s41586-020-2196-x

20. WHO. WHO Director-General’s opening remarks at the media briefing on
COVID-19–24 February 2020 (2020).

21. Phua J,WengL, Ling L, EgiM, LimC-M,Divatia JV, et al. Intensive caremanagement
of coronavirus disease 2019 (COVID-19): challenges and recommendations. Lancet
Respir Med (2020) 8:506–17. doi:10.1016/s2213-2600(20)30161-2

22. Reporte de la Secretaria de Salud MEXICO (8 de Abril 2020). Versión
estenográfica. Conferencia de prensa. Informe diario sobre coronavirus
COVID-19 en México (2020).

23. Google. COVID-19 community mobility reports.
24. DuWeng R, Price K. Differential Evolution–a simple and efficient adaptive

scheme for global optimization over continuous spaces. J Global Optim (1997)
11:341–59. doi:10.1023/A:1008202821328

25. Parra-Rojas C, Hernandez-Vargas EAPDE. Parameter fitting toolbox for
partial differential equations in python. Bioinformatics (2019) 36(8):2618–9.
doi:10.1093/bioinformatics/btz938

26. General de Epidemiología D. Datos Abiertos para COVID-19–dirección
General de Epidemiología | Secretaría de Salud | Gobierno | gob.mx.

27. Velázquez Ramírez MDC. Capacidad instalada en México para enfrentar al
coronavirus COVID-19 (2020).

28. Levaillant M, Lièvre G, Baert G. Ending diabetes in Mexico. Lancet (2019) 394:
467–8. doi:10.1016/S0140-6736(19)31662-9

29. Britton T, Tomba GS. Estimation in emerging epidemics: biases and remedies.
J R Soc Interface (2019) 16:20180670. doi:10.1098/RSIF.2018.0670

30. OECD. Testing for COVID-19. A way to lift confinement restrictions. OECD
(2020). Tech. Rep. April.

31. Azanza Ricardo CL, Hernandez Vargas EA. The risk of lifting covid-19
confinement in Mexico. medRxiv (2020) 1–18. doi:10.1101/2020.05.28.
20115063

Disclaimer: The results expressed in this report should not be construed to
represent the views of any agencies or the Mexican government.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © Azanza Ricardo and Hernandez-Vargas. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Physics | www.frontiersin.org December 2020 | Volume 8 | Article 5733229

Azanza Ricardo and Hernandez-Vargas The Risk of Lifting COVID-19 Confinement

185

https://doi.org/10.1038/s41591-020-0895-3
https://doi.org/10.1016/j.mbs.2020.108370
https://doi.org/10.1016/j.mbs.2020.108370
https://doi.org/10.1056/NEJMoa2001316
https://doi.org/10.1016/s1473-3099(20)30195-x
https://doi.org/03.0910.1101/2020.03.09.20033241
https://doi.org/10.1126/SCIENCE.ABB5793
https://doi.org/10.1038/s41562-020-0908-8
https://doi.org/10.1101/2020.02.16.2002.06563
https://doi.org/10.1101/2020.02.16.2002.06563
https://doi.org/10.1016/j.mbs.2020.108405
https://doi.org/10.1038/s41591-020-0869-5
https://doi.org/10.1016/S1473-3099(20)30243-7
https://doi.org/10.1016/S1473-3099(20)30243-7
https://doi.org/10.1038/s41586-020-2196-x
https://doi.org/10.1016/s2213-2600(20)30161-2
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1093/bioinformatics/btz938
https://doi.org/10.1016/S0140-6736(19)31662-9
https://doi.org/10.1098/RSIF.2018.0670
https://doi.org/10.1101/2020.05.28.20115063
https://doi.org/10.1101/2020.05.28.20115063
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


The Impact of Population Migration on
the Spread of COVID-19: A Case Study
of Guangdong Province and Hunan
Province in China
Guo-Rong Xing1, Ming-Tao Li2, Li Li 3 and Gui-Quan Sun1,4*

1Complex Systems Research Center, Shanxi University, Taiyuan, China, 2School of Mathematics, Taiyuan University of
Technology, Taiyuan, China, 3School of Computer and Information Technology, Shanxi University, Taiyuan, China, 4Department
of Mathematics, North University of China, Taiyuan, China

On the eve of the Spring Festival in 2020, the coronavirus disease 2019 (COVID-19) was
reported. Subsequently, the Chinese government at all levels took emergencymeasures to
control the spread of COVID-19 among people. Guangdong and Hunan are large
population floating provinces. The spread of COVID-19 is affected by population
migration. Before the Spring Festival, Guangdong and Hunan Provinces dominated
population export and import, respectively; after the Spring Festival, the trend of
population flow was reversed by the resumption of work. Taking Guangdong and
Hunan as examples, we establish a three-stage dynamical model to study the impact
of population migration on the spread of COVID-19. The result reveals that Guangdong
Province mainly emigrated the population and the scale of infection was reduced before
the Spring Festival. However, the situation in Hunan Province was just the opposite. After
the Spring Festival, work resumption was taking place across China and the migration of
Guangdong may cause a second outbreak of the epidemic. While people in Hunan leave
the province to work, the migration of population will have little effect on the spread of
COVID-19.

Keywords: COVID-19, dynamical modeling, migration, basic reproduction number, work resumption

1. INTRODUCTION

At the end of 2019, unknown pneumonia was reported. The World Health Organization (WHO)
officially named the new coronavirus as COVID-19 on February 11, 2020 [1, 2]. The main
transmission routes of COVID-19 are direct transmission, aerosol transmission, and contact
transmission [3]. Early, Li et al. analyzed the data of 425 confirmed cases in Wuhan to
determine the epidemiological characteristics of NCIP [4]. As the time of the outbreak is
approaching the Spring Festival, passenger traffic from Wuhan to all parts of the country was
large, which caused the rapid spread of COVID-19. In order to control the epidemic effectively, the
Chinese government took the lockdown strategy in Wuhan on January 23 [5]. Everyone who came
from Hubei Province has to be registered and then quarantined at home for 14 days. The flights,
railways, and highways taken by people from Wuhan were closely followed up and announced in
detail after registration. In order to control the spread of COVID-19, the government took a series of
measures, such as prohibiting all transport in and out [6, 7] and disinfecting and taking body
temperature in public places. For individuals, people must wear their own masks when going out.
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At present, the epidemic is still spreading globally. Many
research teams have been studying the impact of COVID-19
transmission in real time. The study of dynamical modeling to
predict the epidemic rule plays an important role in disease
control [8–11]. Typically, Li et al. analyzed the impact of
different lockdown time in Wuhan on the transmission of
COVID-19 in Shanxi Province [12]. Tang et al. focused on the
time to resume work and assessed the risk of the epidemic
[13–15]. Furthermore, Huang et al. predicted the trend of
COVID-19 and calculated the parameters of this epidemic
[16]. Moreover, lots of scholars established dynamical
modeling to analyze the influence of different quarantine
measures on the spread of COVID-19 [17–19]. For example,
Gao et al. established dynamical modeling showing that the
epidemic was controlled by reducing the contact rate [20].
Some works were dedicated to assessing the effectiveness of
epidemic prevention and control measures [21–23].
Meanwhile, great academics have discussed the issue of media
raising awareness of epidemic prevention and control [24, 25].

For the provinces with a large flow of people, Guangdong and
Hunan naturally attract great attention from society. Compared
with other provinces in China, Guangdong Province has the
largest number of migrant people. We collected data on reported
confirmed cases of COVID-19 in Guangdong from January 19 to
March 11 released by the Health Commission of Guangdong
Province [26]. Figure 1 illustrates the time series of confirmed
COVID-19 cases in Guangdong Province. On January 19, the
National Health Commission verified the first confirmed case of
pneumonia with imported COVID-19 infection in Guangdong
Province. Guangdong Province initiated the first-level emergency
response on January 23. Figure 1 shows that the peak of daily new
confirmed cases is 127 cases on January 31, and the epidemic will
disappear at the end of February. Based on Baidu migration data
[27], Figure 2 indicates the number of migrant people in
Guangdong and Hunan around the Spring Festival proportion.
Before the Spring Festival, most of the people of Hunan Province
immigrated from Guangdong, Hubei, and Jiangxi Provinces on a

large scale, among which Guangdong Province had the largest
immigration population accounting for more than half of the
total. However, the main emigration population of Guangdong
Province flowed to Hunan Province, Guangxi Zhuang
Autonomous Region, and Jiangxi Province. After the Spring
Festival, work resumption was taking place across China. Most
of the emigrants from Hunan Province went to work in
Guangdong Province. At this time, the trend of population
flow in the two provinces was opposite to that before the
Spring Festival.

In order to reflect the COVID-19 variations and describe the
impact of population migration on the spread of COVID-19, we
establish the corresponding dynamical modeling in three
different time periods around the Spring Festival and calculate
the basic reproduction number for each stage. Using the actual
data published by the Health Commission, the parameters were
estimated and 95% confidence interval was obtained to verify the
rationality of the dynamical modeling [26, 28]. Finally, we draw
practical conclusions based on dynamic modeling, which
provides some help for resuming work.

We conduct a detailed study of immigration and emigration of
population, which is helpful to the prevention and control of
areas with large population flows all over the world. At present,
there are few teams to study the spread of COVID-19 in
provinces. We not only consider the control characteristics in
different provinces but also combine the features of the Spring
Festival to establish multiple-stage dynamical modeling on the
time scale, which can more accurately predict the development
trend of the epidemic.

2. METHODS

2.1. Data Sources
In our study, we use Baidu migration data to estimate the
immigration and emigration rates of Guangdong and Hunan
Provinces around the Spring Festival [27]. In addition, we used

FIGURE 1 | Transmission scheme of COVID-19 in Guangdong Province. Guangdong Province launched the first-level response to major health incidents on
January 23 and the Spring Festival ends on January 31.
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the information released by Guangdong and Hunan Provincial
Health Commissions to collect the number of cumulative and
daily new confirmed COVID-19 cases [26, 28]. According to the
information released by the National Bureau of Statistics, we
obtained the number of permanent residents in Guangdong and
Hunan Provinces at the end of this year [29].

2.2. Dynamical Modeling Construction and
Analysis
Based on the knowledge of COVID-19, it is necessary to establish
dynamical modeling to further understand the transmission
mechanism [30–33]. Most infectious diseases are studied in
three parts: susceptible population, transmission route, and
infected population [34–37]. According to the characteristics
of COVID-19, the total population N(t) is divided into
susceptible individuals S(t), exposed individuals E(t), infected
individuals I(t), confirmed individuals Q(t), and removed
individuals R(t). We make the following assumptions:

(1) The exposed individuals E(t) have the ability to infect
susceptible individuals S(t).

(2) The removed individuals R(t) have immunity during the
epidemic.

(3) Individuals’ birth and death rates are ignored.

In order to describe the spread of COVID-19, we establish a
corresponding dynamical model based on the policies of epidemic
control in Guangdong and Hunan Provinces. The following takes
Guangdong Province as an example of mathematical analysis. We
study the dynamic modeling in three stages. The first stage: the
first confirmed case appeared until the Spring Festival (1.19–1.24).
Each province has hospitals that treat and isolate cases. In order to
prevent large-scale infection, the confirmed cases Q(t) were
treated in the province, indicating that they did not migrate.
Figure 3 demonstrates the transmission of COVID-19 and
population migration in detail. Based on the above
assumptions, we establish the COVID-19 transmission
dynamical modeling Eq. (1):

FIGURE 2 |Migration of population in Hunan Province and Guangdong Province [27]. (A) The immigration situation of Hunan Province before the Spring Festival.
(B) The emigration situation of Guangdong Province before the Spring Festival. (C) The immigration situation of Guangdong Province after the Spring Festival. (D) The
emigration situation of Hunan Province after the Spring Festival.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt

� −β1SE + β2SI
N

+ (a − b)S,
dE(t)
dt

� β1SE + β2SI
N

− δE + (a − b)E,
dI(t)
dt

� δE −mI + (a − b)I,
dQ(t)
dt

� mI − cQ,

dR(t)
dt

� cQ.

(1)

Here, δ denotes the transfer rate of exposed individuals to infected
individuals, so the incubation period is 1/δ. The recovery rate of
confirmed individuals is γ. The parameter m is the confirmation
rate of infected individuals. Susceptible individuals are infected
with COVID-19 through contact with exposed individuals and
infected individuals. In particular, the novel coronavirus
incubation period is infectious, so the parameters β1 and β2 are
the transmission incidence rates from exposed individuals and
infected individuals to susceptible individuals, respectively; a and
b denote the immigration rate and emigration rate, respectively.

The second stage: during the Spring Festival (1.24–1.30), the
Guangdong Provincial Government has increased control efforts
to investigate suspected cases. In addition, people’s awareness of
the epidemic has gradually increased. We assume that the
population has not moved across provinces during this period.
The dynamical modeling (2) is as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt

� −β1SE + β2SI
N

,

dE(t)
dt

� β1SE + β2SI
N

− δE,

dI(t)
dt

� δE −mI,

dQ(t)
dt

� mI − cQ,

dR(t)
dt

� cQ.

(2)

The third stage: due to the nationwide resumption of work, the
population began to move across the provinces. At this stage, the
prevention and control measures were quite perfect, and the
relevant departments immediately quarantine infected
individuals and monitor the people who are in close contact
with them. The dynamical modeling Eq. (3) is as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt

� −β1SE
N

+ (a − b)S,
dE(t)
dt

� β1SE
N

− δE,

dI(t)
dt

� δE −mI,

dQ(t)
dt

� mI − cQ,

dR(t)
dt

� cQ.

(3)

Before and after the Spring Festival, Guangdong Province was
opposite to the overall population mobility of Hunan Province. In
the modeling, parameters a and b are used to describe the
migration situation of the two provinces (shown in Table 1).

Since the modeling in the three stages is roughly the same, we
only conduct mathematical analysis on the first stage. Below, we
calculate the basic reproduction number R0 by using the method
of the next-generation matrix [38]. Denote

F �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β1SE + β2SI
N
0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, ν � ⎛⎜⎝ δE − (a − b)E
−δE +mI − (a − b)I

−mI + cQ

⎞⎟⎠, (4)

By calculating the Jacobian Matrix at the disease-free state E0, we
have

F � ⎛⎜⎝ β1 β2 0
0 0 0
0 0 0

⎞⎟⎠, V � ⎛⎜⎝ δ − a + b 0 0
−δ m − a + b 0
0 −m c

⎞⎟⎠. (5)

Then,

FV−1 �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
δ + b − a

0 0

δ

(δ + b − a)(m + b − a)
1

m + b − a
0

mδ

c(δ + b − a)(m + b − a)
m

c(m + b − a)
1
c

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (6)

So

R0 � ρ(FV−1) � β1
δ + b − a

+ β2δ

(m + b − a)(δ + b − a). (7)

If R0 > 1, we can get the endemic equilibrium
E* � (S*, E*, I*,Q*,R*).

TABLE 1 | The migration relationship between Guangdong Province and Hunan
Province.

Time The relationship between a and b

Guangdong Province Hunan Province

Before the Spring Festival a < b a > b
During the Spring Festival a � b a � b
After the Spring Festival a > b a < b

FIGURE 3 | Before the Spring Festival, the flowcharts of COVID-19
infectious disease model. S(t), E(t), I(t), Q(t), and R(t) represent
susceptible, exposed, infected, confirmed, and removed populations.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S* � (δ + b − a)(m + b − a)N
(β1(m + b − a) + β2δ)I* ,

E* � m + b − a
δ

I*,

I* � (a − b)δN
β1(m + b − a) + β2δ

,

Q* � m
c
I*,

R* � mI*.

(8)

3. RESULTS

3.1. Parameters Estimation
In our study, the first stage is the early phase of the epidemic when
infected individuals and exposed individuals are freely contacted
with susceptible people in public places, so β1 � β2. In the second
stage, during the Spring Festival, the communities investigated
the activities of residents. Anyone who came back from Wuhan
and had a history of contact with Wuhan personnel should be
quarantined at home for 14 days. Therefore, we assume β2 � 1

14β1.
In the third stage, the medical conditions and control measures
were perfect; it is assumed that β2 � 0. The parameter γ, which
depends on the actual infection cases, does not affect the
parameters’ estimation of the model.

Since the epidemic occurred before the Spring Festival, the
initial value of the susceptible population S(t) equals 1.1521 × 108

of the permanent population in Guangdong Province [29]. By the
time the hospital detected the first case, many people had already
been infected. Based on the data of confirmed cases reported by
Guangdong health and Health Commission on the second day,
we assume that the initial value of infected individuals I(t) is 10.
Since the COVID-19 has an average incubation period of 5 days,
we assume that the initial value of exposed individuals E(t) is 110
based on the data from the Health Commission of Guangdong
Province about 5 days after the release of the report. According to
the characteristics of the COVID-19 incubation period [39], we
chose δ1 � δ2 � 1

3.4, δ3 � 1
6.8. Before the Spring Festival, the

emigration rate is much greater than the immigration rate.
According to Baidu migration data [27], we assume that a �
0.01, b � 0.24.

Similarly, we assume that the initial value of the susceptible
population S(t) equals 6.91838 × 107 of the permanent
population in Hunan Province [29]. The initial value of
exposed individuals E(t) is 110, and the number of infected
individuals I(t) is 21. Moreover, we chose δ1 � δ2 � 1

3.1, δ3 � 1
6.

Before the Spring Festival, the immigration rate in Hunan
Province is much bigger than the emigration rate according to
Baidu migration data [27], so a � 0.12, b � 0.001.

In this work, we estimate the parametersm and β1 by the least-
squares method. Figure 4 unveils the time evolution of the
cumulative and the daily new confirmed cases in three stages.
The parameter values of our simulation are shown in Table 2.
Figure 4 indicates that the cumulative value of confirmed cases in
Guangdong Province reaches 1356 and COVID-19 will disappear

after 40 days. The peak value time of daily new confirmed cases is
January 31, which is the same date as reported.

Figure 5 shows the simulation results of the cumulative and
the daily new confirmed cases in Hunan Province. The parameter
values of the fitting result are shown in Table 3. From January 21
to February 29, the cumulative number of confirmed cases in
Hunan Province reached 1018. It can be seen that the daily new
confirmed cases in Hunan Province were slower than that in
Guangdong Province from the simulation results. Our dynamical
model indicates that the epidemic peak in Hunan Province
occurred on February 2 and will disappear at the end of February.

3.2. Impact of Population Migration
In order to discuss the impact of populationmigration around the
Spring Festival on the spread of COVID-19, we analyze the
parameters a (immigration rate) and b (emigration rate) of
Guangdong and Hunan Provinces which have been shown in
Figures 6, 7, respectively.

Due to the large number of external population in Guangdong
Province, the emigration rate of the population needs to be
discussed before the Spring Festival; we find that the greater
the emigration rate of the population, the smaller the final scale of
the cumulative confirmed cases (shown in Figure 6A) and the
lower the peak value of daily new confirmed cases (shown in
Figure 6C).

Through Figures 6B,D, we can see the impact of the immigration
rate on the confirmed cases of COVID-19 after the Spring Festival
when many industries began to resume work. As we can see, if the

FIGURE 4 | Fitting results of cumulative COVID-19 cases in Guangdong
Province. (A) Cumulative confirmed cases. (B) Daily new confirmed cases.
Initial value of parameter: S(0) � 1.1521 × 108 [29], E(0) � 220, I(0) � 10,
Q(0) � 1,R(0) � 0.
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immigration rate is small, the final scale of confirmed cases will not
change, whereas if the immigration rate is too large, the number of
confirmed cases will increase with the increase of immigration rate,
and the epidemic has a second outbreak. Relevant departments of
Guangdong Province should strengthen the restrictions on the
number of external population when resuming work.

For the population flow in Guangdong Province, Hu et al.
studied the evaluation and prediction of the COVID-19
variations at different input population [40]. Both our research
and that by Hu et al. draw the conclusion that there will be a risk
of secondary outbreak when the input population flow is so severe
that the population movement changes. Taking January 27 to
February 20, 2020, as the research period, they established the
SEIRQ dynamical modeling to simulate and predict the epidemic
in Guangdong Province. In their work, imported population
p(t)A(t) and exported population B(t) were both constants.
Through the four time points of February 6, February 16,
February 24, and March 5, 2020, Hu et al. discussed the
impact of imported population and quarantine strategies on
the epidemic in Guangdong Province, including cumulative
and daily new confirmed cases. In this study, our dynamical
modeling uses index input and output to represent the actual data
immigration rate and emigration rate. In addition, we study the
dynamical modeling in three phases around the Spring Festival,
which reflects COVID-19 variations.

On the contrary, Hunan Province has a large number of
people who work in other provinces, so we discuss the

TABLE 2 | Parameter estimation of COVID-19 in Guangdong Province.

Parameter Estimated value Source

The first stage The second stage The third stage

β1 0.3346 0.4648 0.0010 Estimated
β2 0.3346 0.0332 0 Estimated and calculated
a 0.01 0 0.1 [27]
b 0.24 0 0.005 [27]
δ 1

3.4
1
3.4

1
6.8 [37]

m 0.1836 0.2291 0.3432 Estimated
γ 1

30 Estimated
R0 1.0923 1.6229 0.0068 calculated

FIGURE 5 | Fitting results of cumulative COVID-19 cases in Hunan
Province. (A) Cumulative confirmed cases. (B) Daily new confirmed cases.
Initial value of parameter: S(0) � 6.91838 × 107 [29], E(0) � 110, I(0) � 21,
Q(0) � 1,R(0) � 0.

TABLE 3 | Parameter estimation of COVID-19 in Hunan Province.

Parameter Estimated value Source

The first stage The second stage The third stage

β1 0.1798 0.3961 0.0022 Estimated
β2 0.1798 0.0283 0 Estimated and calculated
a 0.12 0 0.01 [27]
b 0.01 0 0.11 [27]
δ 1

3.1
1
3.1

1
6 [37]

m 0.1998 0.2291 0.3308 Estimated
γ 1

30 Estimated
R0 3.8828 1.3265 0.0132 Calculated
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immigration rate of the population before the Spring Festival. The
greater the immigration rate of the population before the Spring
Festival, the larger the final scale of cumulative confirmed cases
(shown in Figure 7A) and the higher the peak value of the daily
new confirmed cases (shown in Figure 7C).

After the Spring Festival, people began to resume work, so
Figures 7B,D show the impact of the immigration rate on the
confirmed cases of COVID-19. The relationship between the
emigration rate and the confirmed cases is not obvious, and the
final scale tends to be stable. This indicates that the scale of the
emigrated population in Hunan Province after the Spring Festival
has a small impact on the spread of COVID-19, which can be
understood as the epidemic has been controlled.

For the transmission of COVID-19 in Hunan Province, Jia
et al. established an eSIR model (Extended SIR Model) with
time-varying transmission rates [41]. According to the model
analysis, there are two turning points in the disease. And they
predicted that the end of the epidemic of COVID-19 was
March 3. They used the Markov chain Monte Carlo
(MCMC) method to estimate the average basic reproduction
number as 3.16 (CI: 1.73–5.25), which is roughly the same as
ours. Both our study and that by Jia et al. consider the time
factor. Compared with our work which reflects this factor by
segmenting the dynamical modeling, Jia et al. reflected it
through the transmission rate. In this paper, the turning

points of the given model are January 25 and February 1,
and the epidemic disappeared after February 29, which is close
to the date given in Ref. 39.

4. DISCUSSION

Taking Hunan Province and Guangdong Province as examples,
this paper uses dynamical systems to study the impact of
population migration on the spread of COVID-19. We
establish the SEIQR model in three stages and calculate the
basic reproduction number for each stage. Subsequently, the
actual data released by the Health Commission was used for
fitting to prove the rationality of the model. In addition, we
discussed in detail the impact of population migration around the
Spring Festival on the spread of COVID-19.

Before the Spring Festival, a large-scale population moved out
of Guangdong Province, and the number of people infected with
COVID-19 is decreasing. After the Spring Festival, the industries
began to enter the period of resuming work, and the migrant
population began to move in. If the immigrant population is too
large, the disease may have a second outbreak. The Guangdong
Provincial Government should restrict the entry of the
population reasonably. For Hunan Province, most of the
migrant workers returned home for the Spring Festival. As the

FIGURE 6 | Influence of population migration on COVID-19 cases in Guangdong Province before and after the Spring Festival. (A) Cumulative confirmed cases
before the Spring Festival. (B) Cumulative confirmed cases after the Spring Festival. (C) Daily new confirmed cases before the Spring Festival. (D) Daily new confirmed
cases after the Spring Festival.
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Spring Festival approached, the population began to immigrate in
large numbers, and the number of people infected with COVID-
19 continued to rise. After the Spring Festival, population
emigration has little effect on the spread of COVID-19 in
Hunan Province. The larger population in Guangdong
Province may be the reason why the final scale of the
cumulative confirmed cases in Guangdong Province is larger
than that in Hunan Province. Before the Spring Festival, a large
number of people immigrated to Hunan Province, which led to a
large increase in the daily new confirmed cases, indicating that the
population migration before the Spring Festival accelerated the
spread of COVID-19. During the Spring Festival, the growth rate
of daily new confirmed cases in Guangdong Province slowed
down. At the beginning of February, the daily new confirmed
cases in both provinces reached a peak. Subsequently, the number
of daily new confirmed cases began to decline and cleared after
40 days. That is to say, the prevention and control measures made
by the country in the early stage have well controlled the
development of the epidemic, and the risk of people resuming
work was reduced.

This work still has many shortcomings and needs to be further
improved: 1) in the early stage of the spread of COVID-19, we do
not consider asymptomatic infections when establishing the
SEIQR modeling; 2) this paper studies the early stage of the
epidemic when the confirmed cases may have errors because of
the limited detection and medical level. The data of population

migration is based on the positioning of software and the analysis
of big data, which may lead to population deviation; 3) our work
does not take spatial factors into consideration, nor does it study
the characteristics of spatial diffusion based on the reaction-
diffusion equation [42, 43]. This article analyzes the impact of
population migration on the spread of COVID-19 from the
perspective of dynamical modeling. Although there are some
limitations, it has a certain guiding significance to control the
local epidemic due to population movements.
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The Generalized-Growth Modeling
of COVID-19
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1School of Information Engineering, Putian University, Putian, China, 2School of Science, Beijing University of Posts and
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The global spread of the COVID-19 pandemic is changing everything in 2020. It is of crucial
importance to characterize the growth patterns during the transmission. In this paper, a
generalized-growth model is established to present the evolution of the number of the total
confirmed cases changing with time. Due to effective containment, the generalized growth
model reveals a piecewise pattern, referred to as the sub-exponential and the sub-linear
stages. Moreover, the parameters can quantify the effectiveness of the containment and
the trend of resurgence in different regions all over the world. Our model provides a
phenomenological approach, which is simple and transparent for better understanding of
the typical patterns within the general dynamics. Our model may have implications for
possible nowcasting and forecasting of the pandemic trend.

Keywords: nonlinear dynamics, complex system, COVID-19, phenomenological model, sub-exponential growth,
sub-linear growth, ordinary differential equation

1 INTRODUCTION

The global spread of the COVID-19 pandemic is changing everything in 2020. The first outbreak was
in Wuhan during the Chinese New Year’s Holiday in late January, and the further outbreaks of
COVID-19 in Europe and the US began inMarch. High infectiousness and worldwide mobility make
it more and more difficult to prevent the pandemic. As of October 2020, there are in total more than
40 million confirmed cases all over the world with more than 1 million deaths. The pandemic has
already influenced every part of daily life, not only in the way we work, learn, and communicate but
also in terms of the economic and political status of different countries and regions all over the world
[1, 2]. As a starting point for better understanding and effectively preventing the further spread of
COVID-19, exploring the patterns during the propagation of COVID-19 is of crucial importance.
Furthermore, the effectiveness of containment measures needs a rapid and transparent response.

Several research directions related to COVID-19 have been developed since the breakout of the
deadly virus. The first one is clinical analysis, focusing on the coronavirus itself [3, 4] via, for example,
the estimation of the basic reproduction number R0 [5], the effective reproduction number Rt [6], the
infectiveness of the virus [1, 7], and the serial interval [8]. The second one is modeling the spreading
processes by assuming some mechanisms. Different generalized SIR models are commonly used. An
SIR-X model is illustrated to explain that effective containment is the reason for the subexponential
growth during the early spread of COVID-19 in China [9].

The clinical analysis is helpful in understanding the virus itself, and the agent-based models are
useful in understanding different factors during the spreading procedure [10, 11]. However, the trend
and patterns during the epidemics is still unclear. Moreover, agent-based models are sensitive to
assumptions. As time goes by, heterogeneity caused by containment measures and resurgence of the
virus would make the model inconsistent and unreliable. A simple, fast, transparent, and robust
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model for macroscopic analysis would therefore be more
informative from a specific point of view. A generalized
logistic growth model is utilized for exploring the patterns
[12]. However, this unimodal growth function can only
describe one wave of the pandemic with total number of
infected cases estimated ahead from the model. It does not
work for the second wave of COVID-19.

In this paper, a generalized growth model is used to fit the
number of cumulative confirmed cases in different countries
and regions to reveal the typical patterns and rate of spread
of COVID-19. The heterogeneity is well described by a
piecewise fitting procedure with the same growth model.
As a result, the sub-exponential and sub-linear stages of the
past 9 months are revealed from the real time series of
different stages during the worldwide fights against
COVID-19. Our findings provide a general methodology
to quantify the rate of spread, the effectiveness of
containment measures, and the speed of resurgence,
which may be useful for further prevention decision
making and effectiveness evaluation.

2 MATERIAL AND METHODS

Theoretically, the growth of the virus spread is exponential due to
the sufficiency of resources. The growth therefore follows an
ordinary differential equation:

dy
dt

� ry(t),

with solution y(t) � y (0) ert, where y (0) is the number of infected
individuals at the beginning of dynamics, and r is the growth rate.
However, outbreaks of many infective diseases show that,
compared with exponential growth, sub-exponential growth is
more common, such as with the growth rates of HIV/AIDS [13],
Ebola [14], and foot-and-mouth disease [14]. What is more, there
are several explanations for the sub-exponential growth: spatial
heterogeneity, clustering of contacts [14, 15], and the
heterogeneity in behavioral changes [13]. In the SIR model,
the heterogeneity in time [14–16], space [13], and in
combination [17] can lead to sub-exponential growth. For
COVID-19, the underlying mechanisms governing sub
exponential growth can be difficult to disentangle and, thus,
to model.

In terms of non-pharmaceutical intervention, the growth will
not be exponential and is referred to as the effectiveness of the
mitigation. Moreover, the degree of sub-exponential growth (or
even much slower growth) can be referred to as the effectiveness
of different control measures. A phenomenological model is
therefore more flexible through the introduction of a tuning
parameter p that considers the sub-exponential or even much
slower growth. The general-growth model is given as follows:

dy
dt

� ry(t)p,

where p≠ 1 is called the deceleration of growth. The solution of
the above ordinary differential equation is

y(t) � [r(1 − p)t + y(0)1− p] 1
1− p, p≠ 1. (1)

When 0 < p < 1, the model is applied to explain the sub-
exponential growth at the early stage of epidemics [15]. Cases
with p > 1 or p < 0 can also appear at certain stages during the
process of spreading, showing the evolution of the rate of spread
during the long-term pandemic of COVID-19.

In this work, regions and countries with different scales of
confirmed case numbers and different containment measures
were selected. Then their time series of total confirmed cases were
fitted to Eq. 1, the solution of the phenomenological model, which
can reproduce a variety of growth profiles. The growth can be
divided into different stages of the evolution, reflecting the
effectiveness of different mitigation measures. Moreover, the
fitted parameters, especially the deceleration of growth
parameter p, can be treated as the quantification of the
spreading trends, which is comparable among different
countries and regions. Generally speaking, smaller p means
a slower rate of spread in different types of stages. In fact,
when p � 1, it is the exponential growth model. The
other special case is p � 0, which refers to linear growth with
y(t) � y (0) + rt. When 0 < p < 1, y(t) grows sub-exponentially, or
equivalently, polynominally. The smaller distance between
p ∈ (0, 1) and 1 reflects the closer proximity of sub-
exponential growth to the exponential one. Moreover, when
p < 0, the growth is sub-linear, which is much slower, and the
spread dies out gradually. The larger absolute value of p in this
case the spread will die out at a faster rate. Therefore, p quantifies
the spread of COVID-19 in certain regions.

To differentiate different stages from each other during the
pandemic spread, Eq. 1 is fitted to the real data from the very
beginning of the confirmed cases in a certain region. With
different containment measures, the growth patterns will be
changed, and the fitting curve will deviate further from the
real data if the fitting curve continues. In this situation, as
soon as the fitting curve deviates from the real time series, the
former fitting is stopped and a new one is restarted from the same
spot. Consequently, piecewise fitting to the real time series with
one general form of equation but different parameters is
provided. A quantification of the rate of spread at different
stages in different regions and countries is obtained. Based on
the quantitative results, the evaluation of the effectiveness of
mitigation measures in different countries can be obtained.
Moreover, the resurgence can also be detected by the flexible
and robust methodology. The provided results may shed light on
nowcasting and forecasting of the spreading trend and decision
making for further prevention of COVID-19.

3 RESULTS

In this paper, we use the number of cumulative confirmed cases of
a certain country or region over time. The general growth model
is applied to countries or regions with different scales of
confirmed cases. Two levels of regions are selected, one is the
provincial level (in China) and the other the national level
(worldwide). The results reflect the stability and reliability of
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our phynomenological growth model. Moreover, the fitting
parameters in different areas are informative, providing the
rate of spread, which reflects the effectiveness of containment
measures, as well as the trend of resurgence.

The piecewise fitting results are illustrated in figures. The
parameters fitted to certain regions in different stages are listed in
Table 1. For the goodness of fit in each stage, the mean absolute
value of relative errors (MARE) is calculated, which is also listed
in the table. The MARE is defined as

MARE � 1
N

∑N
t�1

∣∣∣∣y(t) − ŷ(t)∣∣∣∣
y(t) ,

where ŷ(t), t � 1,/,N is the fitted value by the generalized growth
model and N is the number of dates under consideration. The dates
and duration of different stages can also be found in Table 1.

Due to the preventative measures, the growth trend changes as
time goes by. The generalized growth model is fitted by adjusting the
fitness to the real data. At the early stage, sub-exponential growth was
found by several related works [12], where the generalized growth
model can fit the data well. With effective containment, the growth
speedwill slowdown, resulting in amisfitting between the real data and
the fitting curve. As long as the fitting curve does not match the real
data, the current fitting will be stopped, and a new one will be restarted
right after the stopping spot. As a consequence, the changes from one
stage to another by our fitting methodology reflect the changes of the
intrinsic spreading trend of COVID-19 in certain regions. We can
quantify not only the effectiveness of prevention through the
generalized growth model but also the resurgence of COVID-19.

Within the fitting procedure, the key parameter is p, which
presents the rate of spread at different stages in different regions,
regardless the scale of confirmed case numbers. The provincial

results in China can be referred to as one of the typical patterns of
spread with effective prevention. However, when faced with a
severe pandemic, other patterns are also revealed by use of our
simple fitting model. In the following, besides the provincial
results in China, the national-level results are classified according
to different numbers of fitting stages, representing different types
of spreading trends. For the second wave of COVID-19, our
simple, flexible, and robust methodology will be helpful in
quantifying the trend of spread in future stages.

Provincial level in China Two Chinese provinces, Henan and
Anhui, are selected to reveal the typical growth of confirmed cases
with effective prevention. As shown in Table 1, under strict local
containment, the number of confirmed cases increases sub-
exponentially at an early stage, and the parameter p is no more
than 0.5. Within 2 weeks, the growth rate changes into a sub-linear
one, and p is less than −3. The fitting curves are illustrated in
Figure 1. The fitting procedure stopped at the ending stage since the
increment is getting smaller. Figure 1 shows a typical curve for a
complete process of total confirmed cases. In order to get the
COVID-19 pandemic under control, it is necessary that the total
confirmed cases going into the sub-linear growth stage, that is, the p
parameter, is negative. The ideal case for the spreading trend is
changing from a sub-exponential growth into sub-linear one. At the
same time, the awareness of resurgence is more important due to the
high and asymptomatic infectiveness of COVID-19.

National level with one growth stage During the fitting
procedure, division into different segments is necessary to
consider containment measures or resurgence. However, when
the containment measures are not effective enough, one stage
fitting merges. Figure 2 shows the fitting results of two typical
countries: India and Colombia. The ending date is August 23,
2020, in this paper. The growth rates of these two countries are

TABLE 1 | The fitting parameters for different stages of different regions and countries. The MARE, dates, and duration are also listed for each case.

Region p r y (0) MARE (%) Dates Duration (day)

Henan 0.47 4.39 52 1.77 January 25–February 4 11
−3.39 6.75e + 11 601 0.61 February 4–17 13

Anhui 0.40 5.50 11 5.57 January 24–February 6 14
−3.10 3.87e + 10 589 0.62 February 6–14 9

India 0.82 0.41 684 3.26 March 17–August 23 160
Colombia 0.80 0.40 156 4.79 March 30–August 23 147

Brazil 0.80 0.67 1,260 2.21 March 22–June 7 78
0.33 333 6.25e + 05 0.73 June 7–August 20 75

Mexico 0.63 2.46 314 0.90 March 31–June 20 82
0.17 758 1.62e + 5 0.61 June 20–August 21 63

Russia 0.84 0.71 705 4.00 March 28–April 23 27
0.47 33 4.90e + 5 1.79 April 23–May 17 25
−0.64 3.53e + 07 2.46e + 5 0.72 May 17–August 23 99

Peru 0.59 4.89 726 4.23 April 2–June 4 64
−0.78 6.54e + 7 1.73e + 5 0.40 June 4–July 13 39
1.62 4.57e − 4 3.16e + 5 0.41 July 13–August 23 42

United States 0.61 16.37 2,991 1.91 March 18–April 5 19
−0.32 2.18e + 6 2.46e + 5 0.81 April 5–June 17 74
1.01 0.01 2.04e + 6 0.78 June 17–July 31 45
−0.50 1.16e + 8 4.46e + 6 0.17 July 31–August 23 24
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sub-exponential, with speed parameter p as 0.82 and 0.80,
respectively. A larger p means closer to exponential growth,
which is indicative of the rapid growth of the pandemic in
these countries. The same pattern of growth lasts more than
5 months, resulting in large numbers of confirmed cases, with a
scale of millions and hundreds of thousands.

Our quantitative results can tell the severity of the pandemic in
these countries. The same sub-exponential growth pattern with a
growth parameter p of around 0.8 had lasted more than 5 months
in India and Colombia: until the end of August 2020. No effective
containment is reflected by our method.

National level with two growth stages Besides the severe
situation with only one growth stage, some countries are showing
favorable trend, resulting in two growth stages until the end of our
observation date of August 23, 2020. Typical countries with two-
stage fitting are illustrated: Brazil and Mexico see Figure 3. As
shown in Table 1, the key parameter p gets smaller in the second
sub-exponential stage. For Brazil, p changes to 0.31 from 0.82
after 78 days of growth in the first sub-exponential stage. For

FIGURE 2 | The fitting results of India and Colombia. The black dashed
curves represent the real data. The red curves represent the sub-exponential
growth of the total confirmed cases changing with time. The parameters and
dates in consideration for different cases are listed in Table 1.

FIGURE 3 | The fitting results of Brazil and Mexico. The black dashed curves
represent the real data. The red and yellow curves represent the two different sub-
exponential growth segments of the total confirmedcases over time. Theparameters
and dates in consideration for different cases are listed in Table 1.

FIGURE 4 | The fitting results of Russia and Peru. The black dashed
curves represent the real data. The red and yellow curves represent two
different sub-exponential growth of the total confirmed cases over time. The
blue curve represents the sub-linear growth. The red dashed curve
represents the super-exponential growth in the third stage of Peru. The
parameters and dates in consideration for different cases are listed in Table 1.

FIGURE 1 | The fitting results of Henan and Anhui provinces in China.
The black dashed curves represent the real data. The red and blue segments
represent the sub-exponential and sub-linear growth of the total confirmed
cases over time. The parameters and dates in considerations for different
cases are listed in Table 1.

Frontiers in Physics | www.frontiersin.org January 2021 | Volume 8 | Article 6030014

Wu et al. Generalized-Growth Modeling

199

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Mexico, p changes to 0.18 from 0.67 after 82 days of growth in the
first stage.

Different from the two-stage growing pattern in provinces in
China, the two stages are all sub-exponential. In the sub-
exponential stage, the rate of spread is always increasing. The
positive side is that the speed is slowing down, reflecting the
effectiveness of the prevention measures to some extent.

National level with more than two growth stages The change
from one stage to another may not always result in improved
situations. More growth stages reflect the complex growing trend
during the spreading of COVID-19 in certain regions.

One typical country with three stages is Russia. The fitting
result is shown in Figure 4. It is a common rule that the growth is
sub-exponential at the early stages, and this was the same in all
our fittings. The second stage of Russia is still sub-exponential
with smaller p from 0.84 in the first stage to 0.47 as with the cases
of Brazil and Mexico. Its third stage changes into sub-linear
growth with p � −0.64 and lasts 99 days until August 23, 2020. A
slower rate than linear growth is necessary to control the spread.
The three stages improve, reflecting the success of containment
up to the ending date considered in this paper.

In contrast to Russia, the three stages of Peru show another
growth pattern. The fitting result is also shown in Figure 4.
Different from the situation in Russia, the second stage of Peru is
already sublinear with p � −0.78. However, 39 days later, a severe
outbreak emerged, resulting in super-exponential growth with p �
1.62 > 1, reflecting the rapid resurgence of the pandemic in Peru.

The differences between growth trends in Russia and Peru
exemplify the difficulty of defending against the pandemic of
COVID-19. There is difficulty not only in preventing the
outbreak but also in maintaining the temporary victory and
preventing the resurgence.

The last case comes from the United States, for which the
piecewise fitting splits into four stages see Figure 5. The first three
stages possess similar patterns to Peru, which are sub-exponential
growth with p � 0.61, sub-linear growth with p � −0.32, and
exponential growth with p � 1.01. The last stage goes back again
into the sub-linear stage with p � −0.50 and until our considered

ending date August 23, 2020. From the complicated changes in the
case of the United States, we can see that it is very difficult tomitigate
the pandemic of COVID-19, and, worst of all, resurgence and further
waves of outbreak may last for a significant period of time.

To sum up, the growth patterns of pandemic of COVID-19 are
split into two main rules: sub-exponential and sub-linear. Among
all the fitting results above, the MARE is quite small, see Table 1,
which provides the validation of the general fitting function.

The change from one stage to another is indicative of the trends
of the rate of spread. Strict containment results in smaller p, and the
pandemic will be under control within a shorter period. It is a
common pattern that the first stage is sub-exponential, with p
around 0.8, there is no containment, or the prevention is ineffective.
Only extreme containment measures can control the pandemic of
COVID-19 within a short space of time (say, two months or so).
Effective containment can push the trend into sub-linear growth
directly, as are the cases of the second stage in Peru and
United States. Less effective prevention measures may get sub-
exponential growth with a smaller p, as is the case for the second
stage in Brazil, Mexico, and Russia. Ineffective measures make no
change to the fitting curve, resulting in one stage lasting more than
5months, as are the cases of India and Colombia. It is notable that,
before the pandemic is under real control, the resurgence of the
pandemic will bemore severe than the early stage, as is the case with
the third stage in Peru and the United States; the speed parameters p
are 1.62 and 1.01, respectively, which means the super-exponential
growth and exponential one for the trend of the resurgence. The
result would be disastrous.

4 DISCUSSION

Starting with the observation of common sub-exponential growth in
epidemic spreading of COVID-19, a phenomenological general-
growth model is established to quantify the spreading speed of
COVID-19 in different areas. The piecewise fitting methodology can
be adapted to different trends during the pandemic, and it is simple,
transparent, and robust. Our fitting results provide a reference for
the rate of spread in certain countries and regions. The key
parameter p not only gives the reference for speed in each stage
but also a comparative reference among stages and regions.

Comprehensive fitting reveals typical patterns during the spread
of COVID-19. The early stage is sub-exponential growth.
Effectiveness of containment measures can be reflected by later
stages. Sub-linear growth is necessary for the spreading under
control. However, after a long period sub-linear growth, the
resurgence may take over, and growth may thus be faster than ever.

There are various classical dynamic propagation models with
considerations of heterogeneity that are used to explain the
mechanism of growth patterns. Our work provides a generalized
result with one consistent fitting function but different speed
parameters. Our findings are informative for the general growth
of the pandemic in different regions, especially the areas with severe
waves during the pandemic. Compared with the fitting results of
two provinces in China under strict containment, there is still a long
way to go for the countries and regions currently severely affected by
the pandemic. It is shown in the cases of the transmission from

FIGURE 5 | The fitting results of United States of America. The black
dashed curves represent the real data. The red curve and red dashed curve
represent the sub-exponential and exponential growth of the total confirmed
cases changing with time. The blue curve and blue dashed curve
represent the sub-linear growth with time. The parameters and dates in
consideration for different cases are listed in Table 1.
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Stage 2 to Stage 3 in Peru and the United States that even if the
spread is under control with a sub-linear growth speed, close
attention and strict containment are still necessary to prevent
later outbreaks due to the highly infectious nature of the virus
and its ability to exist asymptomatically.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: https://github.com/owid/covid-19-data/blob/
master/public/data/owid-covid-data.xlsx.

AUTHOR CONTRIBUTIONS

YW, LZ, and XF designed the analysis. LZ, WC, and XL analyzed
the data. YW and LZ wrote the paper.

FUNDING

This work was jointly supported by the Fundamental Research
Funds for the Central Universities (No. 2019XD-A11), the
National Natural Science Foundation of China (Grant Nos.
11971074, 61671005, 61672108, 61976025).

REFERENCES

1. Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of
global health concern. Lancet (2020) 395:470–3. doi:10.1016/S0140-6736(20)
30185-9

2. Wang P, Zheng X, Li J, Zhu B. Prediction of epidemic trends in covid-19 with
logistic model and machine learning technics. Chaos, Solit Fractals (2020) 139:
110058. doi:10.1016/j.chaos.2020.110058

3. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and
clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in
Wuhan, China: a descriptive study. Lancet (2020) 395:507–13. doi:10.1016/
S0140-6736(20)30211-7

4. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical characteristics
of coronavirus disease 2019 in China. N Engl J Med (2020) 382:1708–20. doi:10.
1056/NEJMoa2002032

5. Zhou T, Liu Q, Yang Z, Liao J, Yang K, Bai W, et al. Preliminary prediction of
the basic reproduction number of the wuhan novel coronavirus 2019-ncov.
J Evid Base Med (2020) 13:3–7. doi:10.1111/jebm.12376

6. Zhao S, Lin Q, Ran J, Musa SS, Yang G, Wang W, et al. Preliminary estimation
of the basic reproduction number of novel coronavirus (2019-ncov) in China,
from 2019 to 2020: a data-driven analysis in the early phase of the outbreak. Int
J Infect Dis (2020) 92:214–7. doi:10.1016/j.ijid.2020.01.050

7. Chan JFW, Yuan S, Kok KH, To KK-W, Chu H, Yang J, et al. A familial cluster
of pneumonia associated with the 2019 novel coronavirus inducating person-to-
person transmission: a study of a family cluster. Lancet (2020) 395:514–23.
doi:10.1016/S0140-6736(20)30154-9

8. Du Z, Xu X, Wu Y, Wang L, Cowling BJ, Meyers LA. Serial interval of covid-19
among publicly reported confirmed cases. Emerg Infect Dis (2020) 26:1341–3.
doi:10.3201/eid2606.200357

9. Maier BF, Brockmann D. Effective containment explains subexponential
growth in recent confirmed COVID-19 cases in China. Science (2020) 368:
742–6. doi:10.1126/science.abb4557

10. Wang Z, Xia C, Chen Z, Chen G. Epidemic propagation with positive and
negative preventive information in multiplex networks. IEEE Trans Cybern
(2020) 99:1–9. doi:10.1109/TCYB.2019.2960605

11. Shao Q, Xia C, Wang L, Li H. A new propagation model coupling the offline
and online social networks.Nonlinear Dynam (2019) 98:2171–83. doi:10.1007/
s11071-019-05315-9

12. Wu K, Darcet D,Wang Q, Sornette D. Generalized logistic growth modeling of
the covid-19 outbreak: comparing the dynamics in the 29 provinces in China
and in the rest of the world. Nonlinear Dynam (2020) 101:1561–81. doi:10.
1007/s11071-020-05862-6

13. Szendroi B, Csányi G. Polynomial epidemics and clustering in contact
networks. Proc Biol Sci (2004) 271(Suppl 5):S364–6. doi:10.1098/rsbl.2004.
0188

14. Chowell G, Viboud C, Hyman JM, Simonsen L. The western africa ebola virus
disease epidemic exhibits both global exponential and local polynomial growth
rates. PLoS Curr (2015) 7:1–10. doi:10.1371/currents.outbreaks.
8b55f4bad99ac5c5db3663e916803261

15. Viboud C, Simonsen L, Chowell G. A generalized-growth model to
characterize the early ascending phase of infectious disease outbreaks.
Epidemics (2016) 15:27–37. doi:10.1016/j.epidem.2016.01.002

16. Chowell G, Hengartner NW, Castillo-Chavez C, Fenimore PW, Hyman JM.
The basic reproductive number of ebola and the effects of public health
measures: the cases of Congo and Uganda. J Theor Biol (2004) 229:119–26.
doi:10.1016/j.jtbi.2004.03.006

17. Finkensta DT, Grenfell BT. Time series modelling of childhood diseases: a
dynamical systems approach. J Appl Stat (2000) 49:187–205. doi:10.1111/
1467-9876.00187

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Wu, Zhang, Cao, Liu and Feng. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Physics | www.frontiersin.org January 2021 | Volume 8 | Article 6030016

Wu et al. Generalized-Growth Modeling

201

https://github.com/owid/covid-19-data/blob/master/public/data/owid-covid-data.xlsx
https://github.com/owid/covid-19-data/blob/master/public/data/owid-covid-data.xlsx
https://doi.org/10.1016/S0140-6736(20)30185-9
https://doi.org/10.1016/S0140-6736(20)30185-9
https://doi.org/10.1016/j.chaos.2020.110058
https://doi.org/10.1016/S0140-6736(20)30211-7
https://doi.org/10.1016/S0140-6736(20)30211-7
https://doi.org/10.1056/NEJMoa2002032
https://doi.org/10.1056/NEJMoa2002032
https://doi.org/10.1111/jebm.12376
https://doi.org/10.1016/j.ijid.2020.01.050
https://doi.org/10.1016/S0140-6736(20)30154-9
https://doi.org/10.3201/eid2606.200357
https://doi.org/10.1126/science.abb4557
https://doi.org/10.1109/TCYB.2019.2960605
https://doi.org/10.1007/s11071-019-05315-9
https://doi.org/10.1007/s11071-019-05315-9
https://doi.org/10.1007/s11071-020-05862-6
https://doi.org/10.1007/s11071-020-05862-6
https://doi.org/10.1098/rsbl.2004.0188
https://doi.org/10.1098/rsbl.2004.0188
https://doi.org/10.1371/currents.outbreaks.8b55f4bad99ac5c5db3663e916803261
https://doi.org/10.1371/currents.outbreaks.8b55f4bad99ac5c5db3663e916803261
https://doi.org/10.1016/j.epidem.2016.01.002
https://doi.org/10.1016/j.jtbi.2004.03.006
https://doi.org/10.1111/1467-9876.00187
https://doi.org/10.1111/1467-9876.00187
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Characterizing COVID-19
Transmission: Incubation Period,
Reproduction Rate, and
Multiple-Generation Spreading
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Understanding the transmission process is crucial for the prevention and mitigation of
COVID-19 spread. This paper contributes to the COVID-19 knowledge by analyzing the
incubation period, the transmission rate from close contact to infection, and the properties
of multiple-generation transmission. The data regarding these parameters are extracted
from a detailed line-list database of 9,120 cases reported in mainland China from January
15 to February 29, 2020. The incubation period of COVID-19 has a mean, median, and
mode of 7.83, 7, and 5 days, and, in 12.5% of cases, more than 14 days. The number of
close contacts for these cases during the incubation period and a few days before
hospitalization follows a log-normal distribution, which may lead to super-spreading
events. The disease transmission rate from close contact roughly decreases in line
with the number of close contacts with median 0.13. The average secondary cases
are 2.10, 1.35, and 2.2 for the first, second, and third generations conditioned on at least
one offspring. However, the ratio of no further spread in the 2nd, 3rd, and 4th generations
are 26.2, 93.9, and 90.7%, respectively. Moreover, the conditioned reproduction number
in the second generation is geometrically distributed. Our findings suggest that, in order to
effectively control the pandemic, prevention measures, such as social distancing, wearing
masks, and isolating from close contacts, would be the most important and least costly
measures.

Keywords: COVID-19, incubation period, close contacts, superspreading, effective reproduction number, spreading
tree

1 INTRODUCTION

As of July 2020, the cumulative confirmed cases of COVID-19 worldwide have exceeded 17.4 million
with over 572 thousand dead. There are 22 countries with more than 100,000 confirmed cases of as of
July 14, 2020. The high transmissibility of the SARS-CoV-2 virus has substantially changed people’s
hygiene habits, social relations, and forms of work and schooling during and after the pandemic [1].
In the absence of pharmaceutical intervention measures, public policies such as city lockdowns and
workplace and school closures can mitigate the spread of disease, though with substantial economic
and societal costs. The indecision regarding restarting the economy and stopping the pandemic has
resulted in a wave of outbreaks in many countries [2].
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Understanding the characteristics of the COVID-19
transmission process is crucial in finding a middle ground
between restoring economic and societal order and controlling
the pandemic. Previous research has shown that COVID-19 can
be infectious pre-symptomatically [3], i.e., the virus is
transmissive even without symptom onset. Finding out the
incubation period’s duration and the virus reproducibility
during the incubation period and shortly after symptom onset
but before hospitalization is thus an urgent necessity [4].

Considering the incubation period, as of Jan. 26, the mean and
median were 5 and 4.75 days (obtained by 125 patients) [5].
Confirmed cases reported from Jan. 4 to Feb. 24 showed a
median incubation period of 5.1 days (obtained from 181
patients) [6]. By Jan. 22, using 425 patients, the mean
incubation period was 5.2 days, and [7]. Reference [8] gave a
shorter incubation period of 4.2 days, inferring that COVID-19
is more infectious than initially estimated. As of Mar. 31, the
mean incubation time is estimated as 8.0 with a standard
deviation of 4.75 [9]. Through a renewal process, the
estimated median of the incubation period is 8.1 days, which
is longer than other studies [10]. The mean and median of the
incubation periods were 5.84 and 5.0 days via bootstrap for
groups with an age of ≥ 40, and they otherwise demonstrated a
significant difference [11]. By meta-analysis, the incubation
period was modeled with a lognormal distribution, and the
mean and median were 5.8 and 5.1 days [12].

The transmission rate is defined as the probability that an
infection occurs among susceptible people within a specific
group. It is an important index for providing an indication of
how social interactions are related to transmission risk. Nine
reports were listed in [13], showing a rate of 35% (95% CI 27–44),
depending on infection caused by different contact methods.

One of the most important indices for infectious disease is the
basic reproductive number. Numerous studies are devoted to its
estimate. It is estimated to be 2.2 [14], which is higher than SARS-
COV and MERS-CoV [15]. More estimates for the basic
reproduction number are 4.7–6.6 [8], 2.24–3.58 [16], 3.77
(95% CI 3.51–4.05) [5], and 3.60 (3.49–3.84) [17]. The
effective reproduction number is changing with time; it
changed from 2.35 (1.15–4.77) to 1.05 (0.41–2.39) due to
lockdown in Wuhan within 1 week [18].

The best-knownmodel within infectious disease epidemiology
is the SEIR (susceptible-exposed-infectious-recovered) model
with different generalization. These models are utilized at the
population level for the proportion of each state at given time,
aiming to investigating the strategic decisions or effectiveness of
the mitigation measures. For illustration, effective containment
can explains the subexponential growth in China [19], and effects
of containment measures in Italy are also analyzed by an SEIR-
like model [17]. More results can be found [20–27].

Clinical investigations may suffer from a limited sample size
and biased sampling from the population, leading to geometrical
or demographic-dependent results. Different samples and
different methods also lead to different results for data
analysis and estimates. Simulation of disease spread and
mitigation policies require a precise setting of incubation
period [19, 28]. Metapopulation disease transmission models

require a prerequisite setting of the transmission rate during
social gathering events to predict disease spreading range [18, 29,
30]. For a better estimate of the reproduction number, a real data
sample is a crucial ingredient. However, it is difficult to collect.
Considering the demand of investigating the properties and
modeling of COVID-19, fine data extracted from informative
line-list records can provide supporting evidence for the existing
results and solid foundation for further study.

In this work, we estimate the parameters of concern from a
large scale epidemiological line-list database, which contains the
contact history and epidemiological timelines of 9,120 confirmed
COVID-19 cases in China [31]. The duration of the incubation
period and the details of close contacts and contact scenarios are
extracted from the line-list. Spreading trees are reconstructed
from the potential transmission pairs in the line-list data set.
Hidden in the line-list records of confirmed cases, we have
collected 421 chains of spreading with a total confirmed cases
number of 1,140. We fit proper distributions to the incubation
period as well as scale of close contact. The reproducibility is
presented by the spreading tree, which can be referred to as the
effective reproduction number under strict containment
measures in China.

The incubation distribution is fitted by Weibull
distribution with a mean and median of 7.83 and 7 days,
respectively; this is in agreement with [9]. Larger data size and
longer observation period tend to result in larger incubation
period, which is coincidence with the long tailed nature of
Weibull distribution. For the secondary attack rate, there are
much fewer results due to the lack of data. We have obtained
412 close contact events to investigate the transmission rate. It
is revealed that the relationship between the contact scale and
transmission rate is not strongly related no matter if it is a
linear or nonlinear relation. Moreover, the contact scale is
fitted by Lognormal distribution, and the empirical
distribution of transmission rate is also given. Finally, the
reproducibility of COVID-19 under strict containment
measures is investigated by the multiple-generation
spreading structure, revealing the effectiveness of the
containment measures in China. The key contributions of
our work are those that aim for a better understanding of the
properties of COVID-19 spread.

The rest of the paper is organized as follows. Section 2
describes the data and methods. Section 3 reports the
empirical analysis and models fitted. Section 4 discusses the
implications of results and provides an explanation based on
branching process and the necessity of ultra-strict prevention
measures.

2 DATA AND METHODS

The line-list database used in this paper contains hand-coded
information extracted from 9,120 public reported cases by
mainland China health commissions from January 15 to
February 29, 2020. A typically reported item is as follows:

“Patient ID: Huainan-25.
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The patient Huainan-25 is a 59-year-old woman who is the
wife of the Huainan-26 patient. On February 12, she developed
fever, muscle soreness, and other symptoms. On February 14, she
went to the hospital for treatment and stayed at the hospital for
observation. On February 15, her nucleic acid test was tested
positive, and doctors diagnosed her as a suspected patient. Two
days later, she was confirmed. Doctors have traced back 3 close
contacts, all of whom have been quarantined for medical
observation. During the New Year’s holiday, she had close
contact with her daughter, son-in-law, and granddaughter. Her
son-in-law, an asymptomatic patient with a history of suspicious
exposure in Hefei, stayed at a designated hospital for observation.
Doctors have traced back his 46 close contacts, all of whom have
been quarantined for medical observation.”

The original extracted line-list database contains the
epidemiology timelines, e.g., the possible date of virus
exposure and date of symptom onset, for each case. We define
the incubation period as the time between virus exposure and
symptom onset. There are 457 cases with both dates of exposure
and date of symptoms reported in the line-list database.

Close contact events are social events and scenarios such as
living together, dining together, traveling together, and working
together. There were 412 close contact events with the numbers of
close contacts and secondary infections reported. Multiple-
generation transmissions can form tree structures that
originated from an initial infection. There are 421
transmission chains identified from the line-list.

3 RESULTS

3.1 Duration of the Incubation Period
The incubation period is a vital variable considering the control of
the pandemic. The quarantine period of close contact people with

an infected individual depends on this variable. The quarantine
was usually 14 days for COVID-19. However, for strict
prevention, it was suggested at the Information Office of
Beijing Municipality press conference on June 28 that after the
first 14 days, another 14-day quarantine is necessary in some
high-risk areas.

The reason why another 14 days quarantine is necessary can
be found from the distribution of incubation time. The sample
with 457 incubation time reveals that it is a skewed
distribution, see Figure 1. The mean, median, and mode
calculated from the sample data are 7.83, 7, and 5 days,
respectively. Moreover, the empirical probability of
incubation period exceeds 14 is

P(Incubation period≥ 14 days) � 0.125.

That is to say, the chance of an asymptomatic infected
individual turning into symptomatic after 14 days is about
12.5%. For strict control of COVID-19, longer quarantine is
necessary. A Weibull distribution is fitted to the empirical
data, with shift 1 to the right for avoiding zero. The density
function is

FIGURE 1 | The empirical distribution and Weibull distribution fitting of
incubation time. The Weibull distribution has density function fW(x;A,B) �
k
λ (xλ)k−1

e−(x/λ)
k
, x ≥0 with λ � 9.93, and k � 1.79. The K–S test is 0.17, which

means that Weibull distribution is proper for the data.

TABLE 1 | Numbers of different types of close contact events.

Type Number of cases Proportion (%)

Living 386 93.69
Dining 7 1.70
Working 3 0.73
Traveling 1 0.24
Others 15 3.64

FIGURE 2 | The empirical distribution of scale of close contact events
with log-normal density fitting. The density function of this log-normal

distribution is fLN(x) � 1
σx

��
2π

√ e−
(lnx−μ)2

2σ2 , where the fitting parameters are

μ � 2.495, σ � 0.745. The p-value of the K–S test for log-normal
distribution is 0.18. The notion that the scale is log-normal distributed is not
rejected.
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fW(x;A,B) � k
λ
(x
λ
)k−1

e−(x/λ)
k
, x ≥ 0,

with λ � 9.93, and k � 1.79. The K–S test is 0.17, which means
that Weibull distribution is proper for the data.

3.2 Scale of Close Contact Events
The scale of close contact events is the number of people involved in
one event of where people have gathered together in a specific way.
Table 1 shows the number of different types of social events and
scenarios that can potentially facilitate disease spreading. Among the
412 close contact events, more than 93.7% happened by way of living
together.

The period of our dataset is the early stage of COVID-19
spread in China. The distribution of the scale in close contact
events is a natural feature seen when people are free from
movement regardless of the COVID-19 pandemic. The contact
scale is intrinsically positive, with a few enormously high data
points typically arising. The lognormal distribution is an ideal
descriptor of such data, with a positive range, right skewness,
heavy right tail, and easily computed parameter estimates.
Supported by the K-S test with a value of 0.18, the log-normal
distribution shows the proper fitting among the positive, skewed,
heavy-tailed distribution candidate. The mechanism of
lognormal distributed data in ecology can be obtained by
stochastic differential equation [32], which would be another
topic for further investigation. The result is shown in Figure 2,

The density function of this log-normal distribution is

fLN(x) � 1
σx

���
2π

√ e−
(lnx−μ)2

2σ2 ,

where the fitting parameters are μ � 2.495, σ � 0.745. The p-value
of the K-S test for log-normal distribution is 0.18. It is not a
rejected notion that the scale is log-normal distributed. Though
there are various prevention measures worldwide, various contact
events result in a heterogeneous scale of close contact. The heavy-

tailed nature of the close contact scale reveals a non-neglectable
possibility of super-spreading events. Therefore, in order to
effectively control the pandemic, maintaining social distance
and wearing masks should be effective measures.

3.3 Transmission Rate and the Scale of
Close Contact Events
We define the transmission rate as the number of people infected
in one close contact event over the number of people in that event.
Figure 3 shows the scatter plot between the transmission rate and
the scale of close contact events. It can be seen that the rate drops
as the scale of events increases in a non-linear fashion.

Let p be the transmission rate andN the total number of people
in the close contact events. Based on our sample, given the value
of N, the mean p is calculated. The relationship between N and p
can be fitted with the following exponential function:

p � a p exp(−b pN) + c,

where the fitting parameters are a � 0.453, b � 0.121, and
c � 0.092, and the goodness of fit index is R2 � 0.706. The
exponential relation reveals that a larger scale of close contact
tends to smaller secondary incidence p. However, the fitting is not
convinced enough. The correlation coefficient between N and p is
−0.29, implying that neither a linear nor a nonlinear relation
between N and p is significant. In other words, p can be treated as
a natural feature of COVID-19, with weak monotonic decrease of
N. The mean and median of the transmission rate is 0.20 and 0.13
with an interquartile range 0–0.3. The empirical distribution of
transmission rate is also given in Figure 4. Protective measures to
decrease the transmission rate would be the least cost ways to
prevent the pandemic, such as maintaining social distance,
wearing masks, and washing hands.

3.4 Spreading Tree Structures
Transmission events can create tree structures to map disease
spread. There are in total 421 chains verified from the record data.
Among the chains, there are 311 chains with secondary cases, out

FIGURE 3 | The scatter plot of N vs. the mean of p, together with
exponential function fitting. The relationship between N and p can be fitted
with function p � a p exp(−b pN) + c, where the fitting parameters are
a � 0.453, b � 0.121, and c � 0.092, and the goodness of fit index is
R2 � 0.706.

FIGURE 4 | The empirical distribution of the transmission rate. Themean
and median of the transmission rate is 0.20 and 0.13 with an interquantile
range 0–0.3. No proper common distribution fits the empirical distribution.
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of which there are 654 children in the second generation.
However, due to effective prevention, there are only 54 and 11
children in the third and fourth generations, respectively. No fifth
generation is observed in our dataset.

The reproduction number of an infection is the number of
secondary infectees infected by the same confirmed individual.
We define the reproduction number in each generation by
dividing the number of infected people in the next generation
by the present one. Based on the existence of at least one child in
the next generation, the mean reproduction number in the first,
second, and third generations are 2.10, 1.35, and 2.2. However,
without the conditional restriction, the mean are 1.55, 0.08, and
0.2, respectively, see Table 2.

Using the sample of number of secondary cases caused by the 311
infectors in the first generation, empirical distribution, together with
geometric fitting is shown in Figure 5. The geometric distribution
law is P(k secondary cases) � p(1 − p)k−1 for k≥ 1. The parameter
is p � 0.50, and the K–S test value is 0.73.

4 DISCUSSION

In this study, based on the details of confirmed cases reported by the
mass media, the following features are explored: the Weibull
distribution of the incubation period, the Log-normal distribution
of the scale of close contact events, the geometric distribution of the
reproduction number in different generations of virus transmissions,
and the statistical feature of secondary attack rate.

As far as we know, the distribution of the close contacts’ scale is
released for the first time that it is log-normal distributed due to lack
of data. This heavy-tailed distribution reveals a relatively larger
possibility of super spreading events comparing to light-tailed
distributions. To reduce the secondary infection, it is important
to take adequate measures to reduce the scale of close contact and
reduce the secondary infections.Moreover, efforts should bemade to
trace back the close contacts to cut off the possible spreading chain in
advance.

It is notable that the method here is universal to all infectious
diseases. The crucial step is the line-list record of each confirmed case
and the detailed transmission relationship in the spreading tree
structure. For infectious diseases where only non-pharmaceutical
measurement can be applied to prevent its spreading, detailed
record keeping of each confirmed case and the contact history is
crucial. The tree structure is good evidence for the spreading trend and
helpful for the precise estimation of the effective reproductive number.
Moreover, contact history is useful to nip severe infectious diseases in
the bud.

Theoretically, the reproduction number, say R, is a
determining index quantifying the transmissibility. To control
the pandemic, R should be less than one. Borrowed from the
theory of branching processes, there is a phase transition with a
critical value R � 1. If R< 1, then, with a probability of one, the
spread of a certain disease will die out with exponential speed.
However, when R> 1, the rate of spread will exponentially
increase. The probability of exponential increas can be
obtained as the minimum nonnegative solution to the
equation f (s) � s for s ∈ (0, 1), where f (s) is the generating
function of the reproduction number. From this point of view,
the propagation of COVID-19 is an issue of “all or nothing.”
From this point of view, the control measures would be as strict as
possible to avoid the possibility of exponential increase.
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COVID-19 has infected millions of people, with deaths in more than 200 countries. It is
therefore essential to understand the dynamic characteristics of the outbreak and to design
effective strategies to restrain the large-scale spread of the epidemic. In this paper, we present
a novel framework to depress the epidemic spreading, by leveraging the decentralized
dissemination of information. The framework is equivalent to finding a special minimum
dominating set for a duplex network which is a general dominating set for one layer and a
connected dominating set for another layer. Using the spin glass and message passing
theory, we present a belief-propagation-guided decimation (BPD) algorithm to construct the
special minimum dominating set. As a consequence, we could immediately recognize the
epidemic as soon as it appeared, and rapidly immunize the whole network at minimum cost.

Keywords: COVID-19, epidemic spreading, minimum dominating set, multiplex network, control

INTRODUCTION

In recent years, many different epidemic types have frequently erupted and spread worldwide,
leading to not only great economic losses, but also widespread social disruption [7, 11, 14, 19]. The
ongoing COVID-19 pandemic in particular has infected more than 10 million people causing deaths
in more than 200 countries [5, 6, 10, 11, 24]. It is therefore essential to understand the dynamic
characteristics of epidemic outbreaks and to design effective strategies to restrain the large-scale
spread of the epidemic [4, 9, 13, 16–18].

The most traditional method of controlling an epidemic outbreak is network immunization, which
cuts the path of the spread, by immunizing parts of the network nodes [2, 20, 23]. The common solution
of network immunization uses the centrality index of the network, in which the nodes with large degree,
k-shell, articulation points, betweenness, or spectral coefficients are selected as the immunized nodes.
Recently, the control strategy of an epidemic, based on the competing spread on top of a duplex network,
has attracted a lot of attention [1, 3, 15–17]. It is known that the information propagation in a virtual
social network plays an important role in controlling epidemic spreading. A representative scenario is that
the infectious diseases spread in a real physical contact network of individuals, will naturally lead to the
propagation of crisis awareness information on virtual social networks. The individuals who obtained the
awareness information will takemeasures to protect themselves, resulting in the suppression of the spread
of the infectious disease. This is the framework of the competing spreading process of disease and
awareness information on the duplex network coupled with the physical network and virtual network.
Similarly, [21] introduced the competing spreading framework of the computer virus and patch, in which
the patch dissemination restrains the virus propagation while they spread through different channels [21].
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However, both of these competing spreading frameworks suffer the
problem that it is surely improper to assume all network nodes have
the ability to monitor their neighbors and recognize the epidemic
and would like to distribute the awareness information or patch.

To compensate for the shortcomings of the competing spreading
framework, Takaguchi et al. proposed a novel control method
which takes advantage of both traditional network immunization
and competing spreading [12]. They introduced the observer node
into the networks, which could monitor the state of its neighbors
and could therefore recognize the epidemic if its neighbors were
infected. In addition, the observer node could send awareness
information to its uninfected neighbors (i.e. immunize its
uninfected neighbors) if it recognized the epidemic. However,
such a method focusses on a single network which ignores the
fact that physical monitoring and information propagation usually
takes place in different channels. As an extension, [8] introduced an
improved model of deploying an observer node on multiplex
networks, consisting of an epidemic spreading layer and an
information spreading layer. Though the observer node-based
method could monitor all the network nodes and efficiently
recognize the infection, it cannot immunize all the network
nodes when infection spreading is confirmed.

In this sense, Zhao et al. introduced a strategy of controlling an
epidemic through the minimum dominating set (MDS) of the
multiplex network [22]. They proposed a framework coupled by a
duplex network (one layer is the immunization distribution
network, another is the epidemic spreading network layer) and
a central node and let the nodes of the MDS of the duplex network
be the observer nodes. When one neighbor is infected in the
epidemic spreading network layer, the observer could immediately
recognize the infection and send the information to the central
node. The central node would then distribute the crisis information
or patches to all the observers and the observers then spread them
to their neighbors in the immunization distribution network.
Under the definition of MDS of the multiplex network, such a
method could recognize the infection immediately as it happened
and could also immediately immunize all the network nodes using
the smallest number of observer nodes.

However, Zhao’s method belongs to the centralization
strategy. As an improvement, in this paper we propose an
MDS-based decentralized strategy. We introduce a special
MDS of the duplex network which is a general dominating set
for one layer and a connected dominating set for another layer.
Using the spin glass and message passing theory, we present a
belief-propagation-guided decimation (BPD) algorithm to
construct the special MDS. As a consequence, we could
monitor all the network nodes and immediately recognize the
infection, and rapidly immunize all the network nodes when
infection spreading is confirmed, while the cost is minimized.

DEPLOYMENT OF OBSERVER NODE
BASED ON SPECIAL MDS OF DUPLEX
NETWORK
Different from the Zhao’s method, our method only contains one
duplex network where one layer is the immunization distribution

network (IL), and the other is the epidemic spreading network
layer (EL). Here, we introduce a novel definition of special MDS of
the duplex network (see Figure 1). It is a minimum node set which
is a general dominating set for the EL and a connected dominating
set for the IL; at the same time, the size of the node set is minimum.

To control the epidemic spreading, we let the nodes of the
special MDS of the duplex network be the observer nodes. The
observer nodes could monitor its neighbors’ states in EL, thus
could immediately recognize the infection after the neighbor was
infected. In addition, the observer nodes could diffuse the
information to its neighbors in IL after they recognized the
infection or after receiving the information from its neighbors.
Therefore, under the definition of the special MDS of the duplex
network, the epidemic could be immediately recognized as soon
as it appeared since all network nodes were monitored, and all
network nodes could receive the related information due to the
observer nodes being fully connected in IL.

CONSTRUCTION OF SPECIAL MDS OF
DUPLEX NETWORK

When considering the discussion in the above section, the
problem of controlling epidemic spreading is converted to
construct a special MDS of the duplex network. Obviously, the
construction of the special MDS is NP-hard, and so we can only
try to obtain a near optimal solution. Therefore, all the MDS
discussed in the rest of the paper are actually a near-optimal

FIGURE 1 | The set of green nodes is a special MDS of the duplex
network. It is a general dominating set of the EL and a connected dominating
set of the IL.
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special dominating set. In [22]; Zhao et al. proposed a framework
of the construction method of the MDS of the multiplex network,
but no detailed implementations are given. In this section, we first
show the detailed procedure of the construction of general MDS
of the duplex network, then a simple greedy strategy is given to
construct the special MDS of the duplex network.

Construction of the General MDS of the
Duplex Network
Let G � (G1,G2) be a duplex network, where Gi denotes the
network layer i. In our framework,G1 andG2 represent the IL and
EL, respectively. The two layers have the same set V of N nodes
and a distinct set of edges. IfD is a dominating set of G, it must be
a dominating set of each network layer of G, which means every
node in V\Dmust be connected to at least one node of D in every
layer. The state of node i ∈ D is called occupied, denoted by ci � 1.
Otherwise i ∈ V\D is called empty but observed and denoted as
ci � 0. For constructing the MDS of the duplex network, we
introduce the following partition function

Z � ∑
c

∏
i∈V

⎧⎪⎨⎪⎩e−xci⎡⎢⎢⎢⎢⎢⎣1 − (1 − ci)∏
j∈Γ1i

(1 − cj)⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣1 − (1 − ci)∏

j∈Γ2i

(1 − cj)⎤⎥⎥⎥⎥⎥⎦⎫⎪⎬⎪⎭
(1)

where c � {c1, c2, . . . , cN} represents a configuration of node
states, and Γki denotes the set of neighbors of i in Gk. x is
regarded as the positive re-weighting parameter. Obviously, in

Eq. 1 ⎡⎢⎢⎣1 − (1 − ci)∏
j∈Γ1i

(1 − cj)⎤⎥⎥⎦⎡⎢⎢⎣1 − (1 − ci)∏
j∈Γ2i

(1 − cj)⎤⎥⎥⎦ � 1

implies i is occupied or observed in both layers; otherwise the
term is equal to 0. Therefore, Z is only contributed by the
configuration of the dominating set. In particular, only the
MDS of the duplex network contributes to Z in the case of
x→∞.

Solving Eq. 1 using the message passing theory, we have the
expression of marginal probability qcii of i being in state ci as follows

qcii � Qci
i∑

ci

Qci
i

(2)

where

Q1
i � e−x ∏

j∈Γ1i ∨Γ2i

∑
cj

q(cj ,1)j→ i (3)

Q0
i � ∏

j∈Γ1i ∨Γ
2
i

∑
cj

q(cj ,0)j→ i − ⎡⎢⎢⎢⎢⎢⎣∏
j∈Γ1i

q(0,0)j→ i ∏
j∈Γ2i
j∉Γ1i

∑
cj

q(cj ,0)j→ i

+ ∏
j∈Γ2i

q(0,0)j→ i ∏
j∈Γ1i
j∉Γ2i

∑
cj

q(cj ,0)j→ i − ∏
j∈Γ1i ∨Γ2i

q(0,0)j→ i
⎤⎥⎥⎥⎥⎥⎦. (4)

Γ1i ∨ Γ2i represents the union of set Γ1i and Γ2i , i.e. the set of all
neighbors of nodes i in both layers. q

(cj ,ci)
j→ i denotes the joint

probability of j being in state cj and i in ci under the
assumption that node i is deleted from the network. q

(cj ,ci)
j→ i is

given by

q{cj ,ci}j→ i � Q{cj ,ci}j→ i

∑
cj ,ci

Q{cj ,ci}j→ i

(5)

where

Q{1,0}
j→ i � e−x ∏

k∈Γ1j ∨Γ2j
k≠ i

∑
ck

q(ck ,1)k→ j (6)

Q{1,1}
j→ i � Q{1,0}

j→ i (7)

Q{0,1}
j→ i �

∏
k∈Γ1j ∨Γ2j

k≠i

∑
ck

q(ck ,0)k→ j − ∏
k∈Γ2j
k≠i

q(0,0)k→ j ∏
k∈Γ1j
k∉Γ2j
k≠i

∑
ck

q(ck ,0)k→ j , if j ∈ Γ1i , j ∉ Γ2i

∏
k∈Γ1j ∨Γ2j

k≠i

∑
ck

q(ck ,0)k→ j − ∏
k∈Γ1j
k≠i

q(0,0)k→ j ∏
k∈Γ2j
k∉Γ2j
k≠i

∑
ck

q(ck ,0)k→ j , if j ∉ Γ1i , j ∈ Γ2i

∏
k∈Γ1j ∨Γ2j

k≠i

∑
ck

q(ck ,0)k→ j , if j ∈ Γ1i ∧ Γ2i

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(8)

Q{0,0}
j→ i � ∏

k∈Γ1j ∨Γ
2
j

k≠i

∑
ck

q(ck ,0)k→ j − ⎡⎢⎢⎢⎢⎢⎢⎢⎣ ∏
k∈Γ1j
k≠i

q(0,0)k→ j ∏
k∈Γ2j
k∉Γ1j
k≠i

∑
ck

q(ck ,0)k→ j

+ ∏
k∈Γ2j
k≠i

q(0,0)k→ j ∏
k∈Γ1j
k∉Γ2j
k≠i

∑
ck

q(ck ,0)k→ j − ∏
k∈Γ1j ∨Γ2j

k≠i

q(0,0)k→ j
⎤⎥⎥⎥⎥⎥⎥⎥⎦ (9)

Eq. 9 is called the belief propagation equation which has been
widely used in different kinds of optimization problems.

Based on Eqs.1–9, we can use the classical Belief-Propagation-
Guided Decimation Algorithm (BPD) to identify the MDS of a
multiplex network. As discussed in [22]; we first simplify the
calculation of q1i .

In case j has not been occupied but observed in at least one
layer, the states of its neighbors in the corresponding layer could
not be considered. Therefore, Q{0,1}

j→ i and Q{0,0}
j→ i can be further

simplified as

Q{0,1}
j→ i � ∏

k∈Γ1j ∨Γ2j
k≠i

∑
ck

q(ck ,0)k→ j , if (j ∈ Γ1i , j ∉ Γ2i , j ∈ O2) or (j ∈ Γ2i , j ∉ Γ1i , j ∈ O1)

(10)
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Q{0,0}
j→ i �

∏
k∈Γ1j ∨Γ2j

k≠i

∑
ck

q(ck ,0)k→ j − ∏
k∈Γ1j
k≠i

q(0,0)k→ j ∏
k∈Γ2j
k∉Γ1j
k≠i

∑
ck

q(ck ,0)k→ j , if j ∉ O1, j ∈ O2

∏
k∈Γ1j ∨Γ

2
j

k≠i

∑
ck

q(ck ,0)k→ j − ∏
k∈Γ2j
k≠i

q(0,0)k→ j ∏
k∈Γ1j
k∉Γ2j
k≠i

∑
ck

q(ck ,0)k→ j , if j ∈ O1, j ∉ O2

∏
k∈Γ1j ∨Γ2j

k≠i

∑
ck

q(ck ,0)k→ j , if j ∈ O1 ∧ O2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(11)

whereOk represents the set of nodes which have been observed in
Gk, andO1∧O2 denotes the intersection ofO1 andO2. In addition,
Q0

i can also be simplified if i has been observed in at least one layer

Q0
i �

∏
j∈Γ1i ∨Γ2i

∑
cj

q(cj ,0)j→ i − ∏
j∈Γ1i

q(0,0)j→ i ∏
j∈Γ2i
j∉Γ1i

∑
cj

q(cj ,0)j→ i , if i ∉ O1, i ∈ O2

∏
j∈Γ1i ∨Γ2i

∑
cj

q(cj ,0)j→ i − ∏
j∈Γ2i

q(0,0)j→ i ∏
j∈Γ1i
j∉Γ2i

∑
cj

q(cj ,0)j→ i , if i ∈ O1, i ∉ O2

∏
j∈Γ1i ∨Γ

2
i

∑
cj

q(cj ,0)j→ i , if i ∈ O1 ∧ O2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(12)

The procedure of BPD is now given by:

(1) The states of all nodes are initialized to be unoccupied and
unobserved. The initial values of all joint probabilities {q(cj ,ci)j→ i }
could set to be random numbers.

(2) Perform iterative calculations of the joint probabilities
{q(cj ,ci)j→ i } based on Eq. 5 for T0 rounds. Then calculate the
occupation probability {q1i } for all nodes using the obtained
{q(cj ,ci)j→ i } according to Eq. 2.

(3) Select the first r unoccupied nodes with the highest
occupation probabilities occupied. Then update the states
of all remaining nodes.

(4) Remove the edges between the nodes that have been observed
and remove all isolated observed nodes in every layer.

(5) If the remaining network still has unobserved nodes,
calculate Eq. 5 for T1 rounds and then calculate Eq. 2.
Whether using Eq. 3 and Eq. 4 or Eq. 3 and Eq. 12 in
Eq. 2, depends on whether i is unobserved or observed.

(6) Repeat operations (3)–(5) until all nodes are observed in all
layers.

Greedy Construction of Special MDS of
Duplex Network
In this section, we construct the special MDS of the duplex
network based on the general MDS constructed via the BPD
algorithm. We delete all of the nodes of layer IL which do not
belong to the general MDS and denote the remaining network as

IL’. If IL’ is not fully connected, it must have more than one
cluster. We then remove nodes form V/D into IL’ to reduce the
number of clusters based on the following operations.

(1) If the insertion of one node into the IL’ can reduce the
number of clusters, we select the node whose insertion can
reduce the number of clusters to be inserted into the IL’
the most.

(2) If the insertion of one node into the IL’ cannot reduce the
number of clusters, we select two linked nodes whose
insertion can reduce the number of clusters to be inserted
into the IL’ the most.

The operations are performed repeatedly until the IL’ is fully
connected. In this way, a special MDS of the duplex network is
constructed.

RESULT

In this section, we verify the effectiveness of our method by
comparing it with the random algorithm and the simulated
annealing algorithm.

The random algorithm is very simple. It randomly selects an
unoccupied node and changes the node’s state to be occupied,
until a special dominating set is constructed. The simulated
annealing algorithm is widely used to solve many different
kinds of optimization problems. To construct a special MDS
of the duplex network, we define the following energy function

E � u∑
i

ci + v∑
i

fi + w∑
α

∑
i

(1 − oαi ). (13)

In the energy function, fi � 1 indicates that node i is occupied
but has no occupied neighbor in layer IL, otherwise fi � 0. oαi � 1
indicates that node i is observed in layer α, that is it has at least
one occupied neighbor in layer α, otherwise oαi � 1. In addition, u,
v, and w are tunable parameters. At the beginning of the SA
algorithm, we construct a special dominating set for the duplex
network based on the random algorithm. Then we calculate the
corresponding energy E based on Eq.13. At each time step of SA,
we perform the following operations:

(1) Randomly select one node from the network. If the selected
node is occupied, change its state to unoccupied. We then
calculate the new energy Enew.

(2) Randomly select one node from the network. If the selected
node is unoccupied, change its state to occupied. We then
calculate the new energy Enew.

The operation is accepted with probability e−β(Enew−E),
otherwise, the new occupation should be omitted. In this
paper, we set u � v � w � 0.5. β represents the inverse of the
temperature. Its initial value is set to be 0.5 and then is increased
by 10− 6 at each time step. The SA algorithm terminates when β
equals βmax. It should be noted that the SA algorithm could not
ensure that the constructed dominating set is a special
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dominating set, therefore, a greedy process is still needed after the
termination of the SA algorithm.

We performed experiments on four different kinds of duplex
networks which are coupled by the SF network and ER random
network. The results are given in Table 1. We can see that our
method constructs the smallest special dominating set for any duplex
network. Therefore, we could use the smallest observer nodes to
control the epidemic spreading based on our deployment scheme.

CONCLUSION

In this paper, we designed a deployment scheme of observer nodes
to control epidemic spreading based on the special MDS of the
duplex network. Through the nodes of the special MDS of the
duplex network, we could immediately recognize the epidemic as
soon as it appeared and could immunize all network nodes—at the
same time, the cost remains minimal. The deployment problem of

the observer nodes is then converted to the construction problem
of the special MDS of the duplex network. We used the BPD
algorithm and a greedy algorithm to construct the special MDS of
the duplex network. Our solution is verified to be very efficient on
different kinds of duplex networks.
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Renormalization Group Approach to
Pandemics as a Time-Dependent
SIR Model
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We generalise the epidemic Renormalization Group framework while connecting it to a SIR
model with time-dependent coefficients. We then confront the model with COVID-19 in
Denmark, Germany, Italy and France and show that the approach works rather well in
reproducing the data. We also show that a better understanding of the time dependence of
the recovery rate would require extending the model to take into account the number of
deaths whenever these are over 15% of the cumulative number of infected cases.

Keywords: Compartmental models, epidemic renormalisation group, pandemic, pandemic (COVID-19), COVID-19

1 INTRODUCTION

Epidemic dynamics is often described in terms of a simplemodel introduced long time ago in [1]. Here,
the affected population is described in terms of compartmentalised sub-populations that have different
roles in the dynamics. Then, differential equations are designed to describe the time evolution of the
various compartments. The sub-populations can be chosen to represent (S)usceptible, (I)nfected and
(R)ecovered individuals (SIR model), obeying the following differential equations:

dS
dt

� −cS I
N
,

dI
dt

� cS
I
N
− εI,

dR
dt

� εI,

(1.1)

with the conservation law

S(t) + I(t) + R(t) � N . (1.2)

The system depends on three parameters, namely c, ε andN. Due to the conservation law (2), only
two equations are independent, so that one can drop the equation for S.

The cumulative number of infected, ~I(t), that we are interested in, is related to the above sub-
populations as

~I(t) � I(t) + R(t). (1.3)

We can therefore re-write the two independent SIR equations as

d~I(t)
dt

� c(~I(t) − R(t))(1 − ~I(t)
N

), (1.4)
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dR(t)
dt

� ε(~I(t) − R(t)). (1.5)

Empirical modifications of the basic SIRmodel exist and range
from including new sub-populations to generalise the coefficients
c, ε to be time-dependent in order to better reproduce the
observed data (see Refs. [2–5] for recent examples).

Recently the epidemic Renormalization Group approach
(eRG) to pandemics, inspired by particle physics
methodologies, was put forward in [6]. The approach builds
on scale transformations and invariances as introduced by
Wilson in [7, 8], applied in this case to the evolution of social
systems. The method has been further explored in [9], where it
was demonstrated the eRG effectiveness when describing how the
pandemic spreads across different regions of the world. This
allowed to successfully simulate the onset of the second wave
pandemic in Europe [10]. The eRG framework provided useful
also to determine the impact and level of social distancing when
combined with mining the Google and Apple mobility data [11].
We refer the reader to the review in [12] for a clear and
comparative discussion of several approaches used in order to
model the COVID-19 pandemic.

The goal of the present work is to further extend the eRG
framework to properly take into account the number of recovered
cases so that a better understanding of the reproduction number
can also be achieved. We will start, first, by providing a map
between the original eRG model and certain modified SIR
models, establishing in this way and for the first time an exact
connection between two powerful approaches to pandemics. We
will finally test the framework via COVID-19 data.

1.1 Reviewing the Epidemic
Renormalization Group
In the epidemic Renormalization group (eRG) approach [6],
rather than the number of cases, it is convenient to discuss its
logarithm, which is a more slowly varying function

α(t) � ln~I(t), (1.6)

where ln indicates the natural logarithm. The derivative of α with
respect to time provides a new quantity that we interpret as the
beta-function of an underlying microscopic model. In statistical
and high energy physics, the latter governs the time (inverse
energy) dependence of the interaction strength among
fundamental particles. Here it regulates infectious interactions.

More specifically, as the Renormalization group equations in
high energy physics are expressed in terms of derivatives with
respect to the energy μ, it is natural to identify the time as
t/t0 � −ln(μ/μ0), where t0 and μ0 are respectively a reference time
and energy scale. The latter is introduced to ease the reading and
notation for the physics community. We choose t0 to be one week
so that time is measured in weeks, and will drop it in the
following. Thus, the dictionary between the eRG equation for
the epidemic strength α and the high-energy physics analog is

β(α) � dα
d ln(μ/μ0) � −dα

dt
. (1.7)

It has been shown in [6] that α captures the essential information
about the infected population within a sufficiently isolated region of
the world. The pandemic beta function can be parametrised as

−β(α) � dα
dt

� ~c α(1 − α

a
)n

, (1.8)

whose solution, for n � 1, is a familiar logistic-like function

α(t) � ae~ct

b + e~ct
. (1.9)

The dynamics encoded in Eq. (1.8) is that of a system that
flows from an UV fixed point at t � −∞ where α � 0 to an IR
fixed point where α � a. The latter value encodes the cumulative
number of infected cases P � exp(a) in the region under study at
the end of the epidemic wave. The coefficient ~c is the diffusion
slope, while b shifts the entire epidemic curve by a given amount
of time. Further details, including what parameter influences the
flattening of the curve and location of the inflection point and its
properties can be found in [6].

1.2 Connecting Epidemic Renormalization
Group With SIR While Extending It
To start connecting with compartmental models we rewrite Eq.
(1.8) as

d~I
dt

� ~c~Iln~I(1 − ln~I
ln P

), (1.10)

whose solution, with the initial condition ln~I0 � ln~I(0) � ln P
b+1, is a

logistic function written as

~I(t) � exp(a 1

be−~ct + 1
). (1.11)

In the original eRG framework the number of recovered
individuals were not explicitly taken into account. This is,

FIGURE 1 | Typical form of time-dependent γ matching the SIR system
to the eRG one.
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however, straightforward to implement by introducing an
equation for dR/dt and imposing a conservation law
equivalent to the one for the SIR model. A minimal choice
compatible with the conservation law is

dR
dt

� εI,

dI
dt

� ~c(I + R)ln(I + R)(1 − ln(I + R)
lnP

) − εI,

dS
dt

� −~c(I + R)ln(I + R)(1 − ln(I + R)
ln P

),
(1.12)

where the parameters are ~c, P and ε. At fixed N, ~c, P and for any
value of ε, the SIR model in (1.1) and the eRG systems of
equations match if we allow γ to be the following time-
dependent function

c(t) � ~c(I(t) + R(t))ln(I(t) + R(t))
(1 − ln(I(t) + R(t))

ln P
) N

I(t)S(t).
(1.13)

As we shall see this is a welcome feature. To better appreciate
the mapping we show in Figure 1 the time-dependent γ
parameter for a hypothetical case with N � 7 millions, P � 300

thousands, ε � 1 and ~c � 0.7 with initial conditions I(0) � 3,
R(0) � 0 and S(0) � N − I(0).

The result is a smooth function that peaks at short times and
then plateaus to a fraction of ~c. In other words the eRG naturally
encodes a rapid diffusion of the disease in the initial states of the
epidemic and the slow down at later times.

In terms of ~I one can more compactly write the system of
equations in (1.12) as:

dR
dt

� ε(~I − R),
d~I
dt

� ~c~Iln~I(1 − ln~I
ln P

),
dS
dt

� −d~I
dt

.

(1.14)

1.3 Reproduction Number
An important quantity for pandemics is the reproduction
number related to the expected average number of infected
cases due to one case. In the time-dependent generalised SIR
model it is identified as:

R0(t) � c(t)
ε(t) . (1.15)

FIGURE 2 | Time dependence of~I(t), R(t), R0(t), c(t) and ε(t) within the eRG SIR model optimised to describe the Danish data for COVID-19. Solid lines are the
model (shown as a 95% confidence level band for the predictions) and the dots with error-bars are the data. For the chosen confidence intervals the errors for the fit
functions ~I and R are not visible in this and the following figures.
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To extract R0 from data it is useful to recast it as:

R0 � c

ε
�

dI
dt + dR

dt
dR
dt

N
S
�

d~I
dt
dR
dt

N
S
. (1.16)

The result holds for c and ε generic functions of time. Here we
also generalise the time-dependence of ε to be:

ε(t) � A[1 − c · e− 1
2(t− t0

W )2] . (1.17)

The choice above has been empirically devised to best describe
the data within the current approach. As it is clear from its form
this function has a dip at t0 (possibly correlated with the peak of
the newly infected cases) of width W and depth c · A with A the
asymptotic value for t→ ±∞.

Aswe shall see the shape allows for a substantial increase ofR0 near
the peak of the newly infected cases that could be due to a number of
factors including possible health-system stress around this period.

2 TESTING THE FRAMEWORK

As a timely application we consider the COVID-19 pandemic.
Here the factor N/S in (1.16) can be neglected as the number of

total infected is at most of O(1%) of the total susceptible
population and the ratio is therefore very close to unity. The
reproduction number can hence be estimated as:

R0(t) � newly infected(t)
newly recovered(t) . (2.1)

The values for the numerator and denominator for different
regions of the world can be obtained from several sources such as
the World Health Organization (WHO) and Worldometers.

As testbed scenarios we consider four benchmark cases,
namely Denmark, Germany, France and Italy. These countries
adopted different degrees of containment measures. We find
convenient to bin the data in weeks to smooth out daily
fluctuations. We associate an error to both newly infected and
newly recovered given by the square root of their values.

Procedurally we first fit the function α(t) to determine a, b and
~c following [6, 9]. We then solve with these, as input, the system
of equations (1.12) for O(104) different choices, within
reasonable ranges, of the parameters A, c, t0 and W entering
the definition of ε(t), Eq. (1.17). The optimal choice of such
parameters is finally obtained by performing a χ2 minimization to
the data related to the recovered cases. Combining the results
with c(t) we compare R0(t) with the actual data.

FIGURE 3 | Time dependence of~I(t), R(t), R0(t), c(t) and ε(t)within the eRG SIR model optimised to describe the German data for COVID-19. Solid lines are the
model (shown as a 95% confidence level band for the predictions) and the dots with error-bars are the data.
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For each country we show the data and the model results by
grouping together five graphs in a single figure. The different
panels represent ~I(t), R(t), R0(t), c(t) and ε(t), all as function of
the week number. Additionally the data will be reported starting
some time after the outbreak. The reason being that the values of
the number of recovered cases at early times is too small to be
reliable and begins to be sizeable only few weeks after the outbreak.
For our predictions ε(t), c(t) and R0(t) we show bands limiting
the 90% confidence level. Those are obtained shifting the data for
the number of recovered cases by 1.65 standard deviations. The
fitting errors for ~c, a and b from the method in [6] can be neglected
given that these parameters are highly constrained by the data.

In general we find good agreement between the data and themodel
with the exception of the increase in the number of infected cases
occurring in the last weeks for some of the countries. Those are non-
smooth events resulting froman abrupt change in the social distancing
measures or from new and previously un-accounted disease hotspots.
As such those events cannot be predicted by smooth models.

2.1 Denmark
The data and the model results for Denmark are shown in
Figure 2. For the time-dependence of R0, given in panel 2c,

we observe that the model captures the variation of the data for
over 10 weeks. Overall we find that the eRG model provides a
reasonable description of the time dependence of the reproduction
number. We observe that the recovery rate ε(t) grows with time by
a factor of five. There could be several factors contributing to this
growth, one being a better trained health system.

2.2 Germany
For Germany the analysis is summarised in Figure 3. The overall
trends are similar to the Danish case including the temporal trend
of the recovery rate ε(t).

2.3 Italy
The analysis for Italy is shown in Figure 4. We observe rather
large values of R0 compared to Denmark at early times and a
factor of two with respect to Germany. We also observe that a
good fit is obtained for c(t) approaching very small values at large
times. This is different from Germany and Denmark, suggesting
strong distancing measures being adopted by the Italian
government. This seems to be further followed by a smaller
value of the recovery rate, roughly about a fourth. However
this last comparison is biased by the fact that the number of

FIGURE 4 | Time dependence of~I(t), R(t), R0(t), c(t) and ε(t) within the eRG SIR model optimised to describe the Italian data for COVID-19. Solid lines are the
model (shown as a 95% confidence level band for the predictions) and the dots with error-bars are the data.
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deaths in Italy is about 15% of the number of infected cases while
in Germany and Denmark it is below 5% suggesting that a more
accurate description at large times would require introducing also
a compartment accounting for the deaths.

2.4 France
The results for the French case can be found in Figure 5 with the
overall picture similar to the Italian one. The striking difference
compared to the other countries is that the recovery rate decreases
at late times. Given that the deaths in France amount to about
20% of the total infected, such difference indicates that a more
complete model (including the deaths compartment) is needed.

3 CONCLUSIONS AND OUTLOOK

We generalised the epidemic Renormalization Group framework
to take into account the recovered cases and to be able to determine
the time dependence of the reproduction number. At the same time
we show that the eRG framework can be embedded into a SIR
model with time-dependent coefficients. Interestingly the resulting
infection rate c(t) is a smooth curve with a maximum at early
times while rapidly plateauing at large times. This is a welcome

behaviour since it encodes the slow down in the spreading of the
disease at large times coming, for example, from social distancing.

FIGURE 6 | The average fatality ratio as a function of the cumulative
number of infected per million inhabitants for the countries discussed here.

FIGURE 5 | Time dependence of~I(t), R(t), R0(t), c(t) and ε(t) within the eRG SIR model optimised to describe the French data for COVID-19. Solid lines are the
model (shown as a 95% confidence level band for the predictions) and the dots with error-bars are the data.
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We thenmove to confront themodel to actual data by considering
the spread of COVID-19 in the following countries: Denmark,
Germany, Italy and France. We show that the overall approach
works rather well in reproducing the data. Nevertheless the
interpretation for the recovery rate is natural for Denmark and
Germany while it requires to add the deaths compartment for Italy
and France. The reason being that for the first two countries the
number of deaths is below 5% of the number of infected cases while it
is above 15% for France and Italy1. We therefore expect that this
compartment will be relevant to include for countries with similar
number of deaths. The extension of the eRG to include also the death
compartment is a natural next step. Upon introducing
thD-compartment, the system of differential equations in 1.1 (and
similarly for Eq. 1.12) extends to

dS
dt

� −cS I
N

,

dI
dt

� cS
I
N
− (1 − α)εI − αρI,

dR
dt

� (1 − α)εI,
dD
dt

� αρI.

(3.1)

with I(t) + R(t) + S(t) + D(t). becoming the new conserved
quantity. Notice that two new parameters had to be
introduced, i.e. the fatality ratio α and the death rate ρ. In the
case of COVID-19 the data suggest that these parameters have an
important time dependence, as it is manifest from Figure 6.

Here the running average fatality ratio (cumulative number of
deaths over cumulative number of infected) is displayed, as a
function of the number of infected per million inhabitants, for the
countries considered here.

We are now investigating different parameterizations of these
curves, however, since our main focus here is to establish an exact
connection between two well known frameworks describing
social dynamics (the renormalization group and
compartmental models) we have restricted our attention to the
simplest compartmental model, i.e., the SIR model. To our
knowledge such an exact matching could not be found in
previous literature. Another interesting approach could be to
include the death compartment in the recovered one as put
forward in [13].
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Dynamical Analysis of a Mathematical
Model of COVID-19 Spreading on
Networks
Wang Li1, Xinjie Fu2, Yongzheng Sun1 and Maoxing Liu2*

1School of Mathematics, China University of Mining and Technology, Xuzhou, China, 2School of Science, North University of
China, Taiyuan, China

In this article, an SEAIRS model of COVID-19 epidemic on networks is established and
analyzed. Following the method of the next-generation matrix, we derive the basic
reproduction number R0, and it shows that the asymptomatic infector plays an
important role in disease spreading. We analytically show that the disease-free
equilibrium E0 is asymptotically stable if R0 ≤ 1; moreover, the effects of various
quarantine strategies are investigated and compared by numerical simulations. The
results obtained are informative for us to further understand the asymptomatic infector
in COVID-19 propagation and get some effective strategies to control the disease.

Keywords: COVID-19 epidemic, networks, asymptomatic, the basic reproduction number, quarantine

1 INTRODUCTION

Coronaviruses are a group of enveloped viruses with a positive-sense, single-stranded RNA and viral
particles resembling a crown from which the name derives. They belong to the order of Nidovirales,
family of Coronaviridae, and subfamily of Orthocoronavirinae. A recent coronavirus outbreak has
started since December 2019. So far, the new virus has infected more than 25 million people and
killed at least 842,000 of them [1–3].

In order to better study the spread and control of infectious diseases, several classical
mathematical models have been discussed to understand the transmission mechanism and
dynamics of the disease, such as the SI model, SIR model, SEIR model, and SEIRS model [4,
5]. Different factors are considered in different models, and the purpose of these models is finding
the transmission mechanism and dynamics of the diseases for controlling the diseases. This
process needs a contact between them. It is found that the best pattern of contact is contact in the
networks [6–11], and study epidemic model on networks has been a hot field in mathematical
biology [6–20,35].

To find the transmission mechanism, we have to know who is the infector [27]. An infector is an
individual who carries the virus and can export the virus. Sometimes, an individual with the
infected state may not show any symptoms of disease, and the state can be defined as
asymptomatically infected. An individual with the infected state who shows symptoms of
disease can be defined as symptomatically infected. Exposed state and asymptomatically
infected state are more dangerous than symptomatically infected state. When a susceptible
individual contacts a symptomatic one, he(she) will usually do something possible to prevent
the disease spreading.

In the disease spreading process, a symptomatic infector will be restricted by individual
behavior or public behavior, but a symptomatic one has a higher efficiency than an
asymptomatic one. A class of works studied the role of symptomatic infectors and
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asymptomatic infectors in diseases infections, such as dengue
virus [21, 22], malaria [23], and Norovirus [24–27]. The results
of these works all show that the asymptomatic cases cannot be
neglected. Recently, several mathematic models within
asymptomatic infection have been studied, such as SAIR
model [21], CI model [28], SEIADR model [29], and SEIIeQR
model [30]. But mathematical models within asymptomatic
infection on networks are still relatively rare. When the
COVID-19 pandemic begin to outbreak, quarantining certain
individuals may be the most efficient way to stop the outbreak of
disease, but the choice of which is an important step in the
control process, and thus we also discuss the effect of different
quarantine strategies.

In this article, we consider an SEAIRS epidemic model on
scale-free networks to study the spread of COVID-19. Further,
we consider the effect of the asymptomatic state changing into
the symptomatic state. By studying the dynamics of the model,
we try to find what role the three infectors, E, A, and I, play in
disease spreading, especially for the asymptomatic infectors, E
and A. Next, in Section 2, we establish an SEAIRS COVID-19
model on network. In Section 3, we study the dynamics of the
model. In Section 4, we study and compare the effects of
various control strategies, and carry out numerical
simulations to illustrate the theoretical results in Section 5.
Finally, conclusions and some discussions are given in
Section 6.

2 THE MODEL

In the spread process, each node has five states: susceptible (S);
exposed (E); asymptomatically infected (A), those who are
infectious but have no symptoms; symptomatically infected
(I), those who are infectious but have symptoms; and
removed (R). The disease transmission flow is depicted in
Figure 1. A susceptible individual can be infected by contact
at rate β1 if there are infected individuals with A in its neighbors,
or be infected by contact at rate β2 if there are symptomatically
infected individuals I. The exposed individual will becomeA and
I with rate pα and (1 − p)α, and A will become I individual at
rate q. The infectedA and Iwill become a recovered individual at
rate μ1 and μ2 due to treatment, respectively. A recovered
individual will become S at rate δ. All parameters are
nonnegative.

In this article, we consider an SEAIRS epidemic model on
scale-free networks as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSk(t)
dt

� −β1kSk(t)θ1(t) − β2kSk(t)θ2(t) + δ Rk(t),
dEk(t)
dt

� β1kSk(t)θ1(t) + β2kSk(t)θ2(t) − αEk(t),
dAk(t)
dt

� pαEk(t) − qAk(t) − μ1Ak(t),
dIk(t)
dt

� (1 − p)αEk(t) + qAk(t) − μ2Ik(t),
dRk(t)
dt

� μ1Ak(t) + μ2Ik(t) − δ Rk(t).

(2.1)

Following [6], 〈k〉 � ∑kkPk describes the average degree and
Pk(k � 1, 2, . . . , n) describes the degree distribution; the
probability θi(i � 1, 2, 3) is a link pointing to an exposed
individual, asymptomatic infected individual, and symptomatic
infected individual. Here, Nk is a constant that stands for the
number of nodes with degree k. Then, Nk � Sk(t) + Ek(t) +
Ak(t) + Ik(t) + Rk(t), (k � 1, 2, . . . , n) and ∑kNk � N . We have

θ1(t) � 1
〈k〉∑

k

kPk
Ak(t)
Nk

, (2.2)

θ2(t) � 1
〈k〉∑

k

kPk
Ik(t)
Nk

. (2.3)

For the practice, the initial condition for model (2.1) satisfies
the following:

{ 0≤ Sk(0), Ek(0),Ak(0), Ik(0),Rk(0)≤Nk,
Sk(0) + Ek(0) + Ak(0) + Ik(0) + Rk(0) � Nk,

(k � 1, 2, . . . , n).
(2.4)

3 DYNAMICAL BEHAVIORS OF THE
MODEL
In this section, we study the stability of disease-free equilibrium of
model (2.1). First, we derive the basic reproduction number of
the model.

3.1 Equilibria and Basic Reproduction
Number
Lemma 3.1. Suppose that Sk(t), Ek(t),Ak(t), Ik(t),Rk(t) is a
solution of model (2.1) satisfying initial conditions of Eq. (2.4), then

Ω � {(Sk, Ek,Ak, Ik,Rk)|0≤ Sk, Ek,Ak, Ik,Rk ≤Nk, k � 1, 2, . . . , n}

is a positive invariant for model (2.1).
The proof of this lemma is similar to that in [31]. We ignore it

here. The stability analysis and numerical simulations are
investigated in the positive invariant Ω.

It is easy to find that model (2.1) has a disease-free
equilibrium E0, it is the only susceptible state.
E0 � (S01, 0, 0, 0, 0, S02, 0, 0, 0, 0,/, S0n, 0, 0, 0, 0), where S0k � Nk,
k � 1, 2, . . . , n. Following the method of the next-generation
matrix [32], the basic reproduction number can be calculated

FIGURE 1 | State-transition rules of the SEAIRS model of COVID-19.

Frontiers in Physics | www.frontiersin.org January 2021 | Volume 8 | Article 6014592

Li et al. COVID-19 model on Networks

222

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


by R0 � ρ(FV−1). Here, F is the matrix of the rate of generation
of new infections, and V is the matrix of the rate of transfer of
individuals out of the two compartments. F is given by

F � ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
A11 A12 / A1n

A21 A22 / A2n

« « 1 «
An1 An2 / Ann

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
3n×3n

and

Aij �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
β1S

0
i Pj

〈k〉Nj
ij

β2S
0
i Pj

〈k〉Nj
ij

0 0 0

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

In addition, V � diag(B1,B2, . . . ,Bn), where

Bk � ⎛⎜⎝ α 0 0
−pα q + μ1 0

−(1 − p)α −q μ2

⎞⎟⎠,

and

B−1
k �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
α

0 0

p
q + μ1

1
q + μ1

0

q + (1 − p)μ1
μ2(q + μ1)

q
μ2(q + μ1)

1
μ2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

so, V−1 � diag(B−1
1 ,B−1

2 , . . . ,B−1
n ), and the basic reproduction

number R0 can be obtained:

R0 � ρ(FV−1) � μ2pβ1 + [q + (1 − p)μ1]β2
μ2(q + μ1)

〈k2〉
〈k〉 . (3.1)

Let J0 be the Jacobian matrix of the middle three equations of
model (2.1), then J0 � F − V and s(J0) � max {Reλ: λ is an
eigenvalue of J0}, R0 < 15s(J0)< 0, R0 > 15s(J0)> 0. [34]

Remark 3.1. Let R0,a � pβ1
q+ μ1

〈k2〉
〈k〉 , R0,d � [q+(1−p)μ1]β2

μ2(q+ μ1)
〈k2〉
〈k〉 , then

R0 � R0,a + R0,d , if q � 0, this result is corresponding to the result
in [27].

Remark 3.2. If we do not consider the asymptomatic infected
state, that is β1 � 0, μ1 � μ2 � μ, p � q � 0, then R0 � β2

μ
〈k2〉
〈k〉 ,

which is corresponding to the result in [6, 33].
Lemma 3.2. If and only if R0 > 1, there is a unique endemic

equilibrium E+.
Proof. We consider the right side of the model (2.1) to be

equal to zero. Then, we obtain

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−β1kSkθ1 − β2kSkθ2 + δ Rk � 0,
β1kSkθ1 + β2kSkθ2 − αEk � 0,
pαEk − qAk − μ1Ak � 0,(1 − p)αEk + qAk − μ2Ik � 0,
μ1Ak + μ2Ik − δRk � 0.

Following the above equation, using θ � β1θ
*
1 + β2θ

*
2, we can find

E*
k �

kθ
α
S*k,A

*
k �

pkθ
q + μ1

S*k, I
*
k �

[q + (1 − p)μ1]kθ
μ2(q + μ1) S*k,R

*
k �

kθ
δ
S*k.

(3.2)
According to the condition N*

k � S*k + E*
k + A*

k + I*k + R*
k, we

can get

S*k �
μ2α(q + μ1)δN*

k

δμ2α(q + μ1) + {μ2α(q + μ1) + δμ2(q + μ1) + δμ2pα+δα[q + (1 − p)μ1]}kθ. (3.3)

Substituting E*
k, A

*
k, and I*k of Eq.(3.2) and Eq.(3.3) into θ, we can

obtain θf (θ) � 0, where

f (θ) � 1 − A1

〈k〉∑
k

k2Pk

A2 + A3kθ
,

and A1 � δα{μ2pβ1 + [q + (1 − p)μ1]β2}, A2 � δμ2(q + μ1)α,
A3 � μ2(q + μ1)α + δ{μ2(q + μ1) + μ2pα + α[q + (1 − p)μ1]}. It is
easy to find that θf (θ) � 0 has a trivial solution with no condition,
and model (2.1) has a disease-free equilibrium. In addition,

df (θ)
dθ

� A1A3

〈k〉 ∑
k

k3Pk

(A2 + A3kθ)2 > 0,

f (β1 + β2) � 1 − A1

〈k〉∑
k

k2Pk

A2 + A3k(β1 + β2)
> 1 − A1

〈k〉∑
k

k2P(k)
A3k(β1 + β2) � 1 − A1

A3(β1 + β2)
�1 − δα{μ2pβ1 + [q + (1 − p)μ1]β2}

μ2(q + μ1)α + δ{μ2(q + μ1) + μ2pα + α[q + (1 − p)μ1]}
1

β1 + β2

> 1 − δα{μ2pβ1 + [q + (1 − p)μ1]β2}
μ2(q + μ1)α + δ{μ2(q + μ1) + μ2pα + α[q + (1 − p)μ1]}> 0.

Thus, θf (θ) � 0 has a nontrivial solution if and only if f (0)< 0,
that is if and only if R0 > 1, there is a unique endemic equilibrium.

3.2 Stability of Disease-free and Endemic
Equilibrium
Theorem 3.1. If R0 ≤ 1, E0 of model (2.1) is locally asymptotically
stable; if R0 > 1, E0 is unstable, and there is a unique endemic
equilibrium E+, and E+ is locally asymptotically stable.

Proof. From the results of Lemma 3.1, Lemma 3.2, and the
basic reproduction number, we only need to prove the case of
R0 � 1. We consider the following model:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSk
dt

� −β1kSkθ1 − β2kSkθ2 + δRk,

dEk

dt
� β1kSkθ1 + β2kSkθ2 − αEk,

dAk

dt
� pαEk − qAk − μ1Ak,

dIk
dt

� (1 − p)αEk + qAk − μ2Ik.

(3.4)

The Jacobian matrix of model (3.4) at disease-free equilibrium is
given by
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J � ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
J11 J12 / J1n
J21 J22 / J2n
« « 1 «
Jn1 Jn2 / Jnn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
4n×4n

with

Jij �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−δ −δ − β1PjNi

〈k〉Nj
ij − δ − β2PjNi

〈k〉Nj
ij − δ

0 −α β1PjNi

〈k〉Nj
ij

β2PjNi

〈k〉Nj
ij

0 pα −q − μ1 0

0 (1 − p)α q −μ2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The characteristic equation of the disease-free equilibrium is

(λ + μ2)n− 1(λ + q + μ1)n− 1(λ + δ)n(λ + α)n− 1(λ3 +H2λ
2

+H1λ + H0) � 0,

where

H2 � α + q + μ1 + μ2 > 0,

H1 � α(q + μ1) + αμ2 + μ2(q + μ1) − [pαβ1 + (1 − p)αβ2] 〈k2〉〈k〉 ,

H0 � μ2α(q + μ1) − α{μ2pβ1 + [q + (1 − p)μ1]β2} 〈k2〉〈k〉 ,

when R0 � 1, H0 � 0, and

αμ2pβ1
〈k2〉
〈k〉 < μ2α(q + μ1)0αpβ1

〈k2〉
〈k〉 < α(q + μ1),

(1 − p)αμ1β2〈k2〉〈k〉 < μ2α(q + μ1)0(1 − p)αβ2〈k2〉〈k〉 < μ2(α + q + μ1).
Then, we obtain H1 > 0, and the characteristic equation can be
written as

λ(λ + μ2)n− 1(λ +q + μ1)n− 1(λ +δ)n(λ + α)n− 1(λ2 + H2λ +H1) � 0,

where the eigenvalues of J are all negative except zero eigenvalue
when R0 � 1..

4 QUARANTINE STRATEGIES

Quarantine is helpful in controlling diseases. In this section, we
will discuss three different quarantine strategies for COVID-19
disease model on networks.

4.1 Proportional Quarantine
In this case, for fixed spreading rates β1 and β2, let ω(0<ω< 1) is
the density of quarantine nodes in the network. At the mean-field
level, the presence of proportional quarantine will effectively reduce

the spreading rate. Thus, we can approximately use β1(1 − ω) to
substitute β1 and use β2(1 − ω) to substitute β2; thus, the system
(2.1) becomes

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSk(t)
dt

� −β1(1 − ω)kSk(t)θ1(t) − β2(1 − ω)kSk(t)θ2(t) + δ Rk(t)
dEk(t)
dt

� β1(1 − ω)kSk(t)θ1(t) + β2(1 − ω)kSk(t)θ2(t) − αEk(t)
dAk(t)
dt

� pαEk(t) − qAk(t) − μ1Ak(t)
dIk(t)
dt

� (1 − p)αEk(t) + qIk(t) − μ2Ik(t)
dRk(t)
dt

� μ1Ak(t) + μ2Ik(t) − δ Rk(t)
(4.1)

Using the same method in Section 3, we obtain a self-
consistency equation as follows:

θ � δα(1 − ω)A1

〈k〉 ∑
k

〈k2〉Pk

A2 + A3kθ
θ ≡ ~f (θ).

By arguments similar to those in Section 3, the epidemic
threshold R̃w is determined by the following inequality:

d~f (θ)
dθ

|θ�0 > 1;
therefore, it can be shown that

R̃w � μ2p(1 − ω)β1 + [q + (1 − p)μ1](1 − ω)β2
μ2(q + μ1)

〈k2〉
〈k〉 , (4.2)

that is,

R̃w � (1 − ω)R0. (4.3)

Note that in (4.3), when ω � 0, that is, if no quarantine were
done, then R̃w � R0; when 0<ω< 1, R̃w <R0, that is, the
quarantine scheme is effective; while as ω→ 1, R̃w → 0, that is,
in the case of a full quarantine, it would be impossible for the
epidemic to spread in the network.

4.2 Targeted Quarantine
While proportional quarantine schemes are effective, there
may be more efficient schemes due to the
heterogeneous nature of scale-free networks. We
introduce an upper threshold κ such that all nodes with
connectivity k> κ are immunized, that is, we define the
quarantine rate ωk by

ωk �
⎧⎪⎨⎪⎩

1, k> κ,
c, k � κ,
0, k< κ.

where 0< c< 1 and ∑
k
ωkP(k) � ω, where ω is the average

quarantine rate. The epidemic dynamics model is
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dSk(t)
dt

� −β1(1 − ωk)kSk(t)θ1(t) − β2(1 − ωk)kSk(t)θ2(t) + δ Rk(t)
dEk(t)
dt

� β1(1 − ωk)kSk(t)θ1(t) + β2(1 − ωk)kSk(t)θ2(t) − αEk(t)
dAk(t)
dt

� pαEk(t) − qAk(t) − μ1Ak(t)
dIk(t)
dt

� (1 − p)αEk(t) + qIk(t) − μ2Ik(t)
dRk(t)
dt

� μ1Ak(t) + μ2Ik(t) − δ Rk(t)

.

(4.4)
This leads to

θ � δαA1

〈k〉 ∑
k

〈k2〉Pk(1 − ωk)
A2 + A3kθ

θ ≡ ~f (θ).

Therefore, the epidemic threshold

R̂w � μ2pβ1 + [q + (1 − p)μ1]β2
μ2(q + μ1)

〈k2〉 − 〈k2ωk〉
〈k〉 . (4.5)

Note that 〈k2ωk〉 � ω〈k2〉 + σ ′,where σ ′ � 〈(ωk − ω) × [k2 −
〈k2〉]〉 is the covariance of ωk and k2. There may be κ (usually
big enough) where σ ′ < 0, but for appropriately small κ, ωk − ω
and k2 − 〈k2〉 have the same signs except for some k where ωk −
ω and/or k2 − 〈k2〉 is zero; Therefore σ ′ > 0 for appropriate κ.
Then,

R̂w <
1 − ω

1 − ω
R̃w.

If we set ω � ω, then,

R̂w < R̃w(0<ω< 1),
which means the targeted quarantine scheme is more efficient
than the uniform quarantine scheme for the same average
quarantine rate.

4.3 High-Risk Quarantine
If a neighbor of a susceptible individual is
infected, vaccinating this susceptible individual is

FIGURE 2 | Asymptotical stability of the model.

TABLE 1 | Parameters of Figure 2

Figure 2 β1 β2 δ α p q μ1 μ2 R0

A 0.08 0.08 0.4 0.4 0.5 0.5 0.2 0.4 0.8193 < 1
B 0.0905 0.10003 0.4 0.4 0.5 0.5 0.2 0.4 1

TABLE 2 | Parameters of Figure 4

β1 β2 Δ α

Figure 4 0.0020178 0.033949 0.12178 0.1055744
p q μ1 μ2

Figure 4 0.40043 0.040403 0.0119,536 0.20955
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called high-risk immunity [37]. We introduce the
parameter σ, that is, the probability that a node
is quarantined per unit time, and Γ � kPk

〈k〉N, which

denotes the probability that any given node is the
neighbor of some specific nodes. The epidemic dynamics
model is

FIGURE 3 | Sensitivity of model parameters.

FIGURE 4 | Effectiveness of quarantine for different ω and σ respectively.
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dSk(t)
dt

� −β1(1 − σΓ)kSk(t)θ1(t) − β2(1 − σΓ)kSk(t)θ2(t) + δ Rk(t)
dEk(t)
dt

� β1(1 − σΓ)kSk(t)θ1(t) + β2(1 − σΓ)kSk(t)θ2(t) − αEk(t)
dAk(t)
dt

� pαEk(t) − qAk(t) − μ1Ak(t)
dIk(t)
dt

� (1 − p)αEk(t) + qIk(t) − μ2Ik(t)
dRk(t)
dt

� μ1Ak(t) + μ2Ik(t) − δ Rk(t)
(4.6)

This leads to

θ � δαA1

〈k〉 ∑
k

〈k2〉Pk(1 − σΓ)
A2 + A3kθ

θ ≡ f (θ).

And the epidemic threshold

R0 � μ2pβ1 + [q + (1 − p)μ1]β2
μ2(q + μ1) (〈k2〉〈k〉 − σ〈k3Pk〉

〈k〉2N )<R0.

This means that the implementation of high-risk quarantine is
effective, and the longer the period of σ〈k3Pk〉, the more effective it is.

5 NUMERICAL SIMULATIONS

In this section, we present numerical simulations of model
(2.1), (4.1) and (4.6) to illustrate the results in Section 3
and 4. Without loss of generality, we consider the dynamical
process on scale-free networks with Pk � ck−c and ∑n

k�1Pk � 1,
c � 3, n � 200. The average infected number is
A(t) + I(t) � ∑ n

k�1Ak(t)Pk + ∑n
k�1Ik(t)Pk. The parameters of

the model are estimated by MCMC using the number of
cases in Wuhan (http://wjw.wuhan.gov.cn/ztzl_28/fk/yqtb/).

Figure 2 shows the asymptotical stability of model (2.1) with
different values, and the parameter values are shown in Table 1.
Figures 2A,B show the time series of the average infected number
I(t) with different initial values, which is in accord with the
asymptotical stability of the disease-free equilibrium.

The sensitivity analysis of the basic reproduction number R0
can be performed by model parameters. It is easy to obtain that

zR0

zβ1
� p
q + μ1

〈k2〉
〈k〉 > 0,

zR0

zβ2
� q + (1 − p)μ1(q + μ1)μ2

〈k2〉
〈k〉 > 0,

zR0

zμ1
� −β2pq − β1μ2p

μ2(q + μ1)2
〈k2〉
〈k〉 < 0,

zR0

zμ2
� −β2[q + (1 − p)μ1]

μ22(q + μ1)
〈k2〉
〈k〉 < 0,

zR0

zp
� β1μ2 − β2μ1

μ2(q + μ1)
〈k2〉
〈k〉 ,

zR0

zq
� p(β2μ1 − β1μ2)

μ2(q + μ1)2
〈k2〉
〈k〉 .

(5.1)

Equation (5.1) shows R0 is linearly positively correlated with β1
and β2; R0 is negatively correlated with μ1 and μ2; the correlation
between R0 and p or q is determined by β2μ1 − β1μ2. As can be seen
from Figure 3 that the monotonicity of R0 increases or decreases
with respect to p and q, respectively. In Figure 4, the parameters of
the model are estimated by MCMC using the number of cases in

Wuhan and the parameter values are shown in Table 2. Figure 4
shows the change of total infection density with time under different
ω and σ. It can be seen that with the increase of ω and σ, the total
infection density is becoming lower as ω and σ increase.

6 CONCLUSION AND DISCUSSION

In this article, we have generalized a traditional homogeneous
epidemic model with asymptomatic infectors to a network case to
study the spread of COVID-19. As one can see, homogeneous
epidemic models can be considered as a special case of network
epidemic models, and network epidemic models are more realistic
and refined description of disease propagation in population.
Considering two cases of infected state (show symptoms and
show no symptoms), we investigated an SEAIRS model of
COVID-19 on scale-free networks to approach the disease
progress and calculated the basic reproduction number R0. By
theoretical analysis, we obtained the asymptotical stability of the
equilibria: if R0 ≤ 1, E0 is asymptotically stable. Then, we analyzed
the different quarantine strategies in the model. At last, numerical
simulations illustrated the theoretical analysis. The results show that
the asymptomatic infectors may infect health individuals as well as
symptomatic infectors.

The SEAIRSmodel is an extension of the SEAIRSmodel, and it
is a case of the S→ S model. The S→ S model, S→ I model, and
S→Rmodel differ in terms of pathological mechanisms. It is difficult
to say which one is better than others except introducing a special
disease. Within S→ S models, formally, either the SIS model or SIRS
model can be a special case of the SEIRS model. The parameters β1
and β2 denoted in the model are constant. In fact, many infectious
diseases show seasonal phenomenon, such as measles, chickenpox,
and mumps [36], and each individual has a periodic order; the
parameters above should have some periodic property.

At the same time, we have also discussed proportional, targeted
quarantine and high-risk quarantine schemes for network models.
The result of Leung et al. [27] by illustration is suitable for Norovirus
andmeasles.Different from theirwork, the formulaic result seems to be
unsuitable for any kind of disease, for none of the parameters in the
model is assigned to a specific value. In fact, for different disease, the
parameters in themodelmay present special values. COVID-19 is now
spreading faster abroad. Susceptible people will also be infected by
asymptomatic patients. If not controlled, the epidemic will spread
more widely and the number of infected people will be more
difficult to control. The epidemic situation in China was obviously
well controlled after the implementation of the strategy of
lockdown, and other quarantine strategies. Therefore, the model
and quarantine strategy in this article can also be applied to other
countries. And, we hope that the results will be helpful to study and
control the spread of COVID-19 disease.
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Epidemics Forecast From
SIR-Modeling, Verification and
Calculated Effects of Lockdown
and Lifting of Interventions
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Materials, ETH Zurich, Zurich, Switzerland

Due to the current COVID-19 epidemic plague hitting the worldwide population it is of
utmost medical, economical and societal interest to gain reliable predictions on the
temporal evolution of the spreading of the infectious diseases in human populations.
Of particular interest are the daily rates and cumulative number of new infections, as they
are monitored in infected societies, and the influence of non-pharmaceutical interventions
due to different lockdown measures as well as their subsequent lifting on these infections.
Estimating quantitatively the influence of a later lifting of the interventions on the resulting
increase in the case numbers is important to discriminate this increase from the onset of a
second wave. The recently discovered new analytical solutions of Susceptible-Infectious-
Recovered (SIR) model allow for such forecast. In particular, it is possible to test lockdown
and lifting interventions because the new solutions hold for arbitrary time dependence of
the infection rate. Here we present simple analytical approximations for the rate and
cumulative number of new infections.

Keywords: coronavirus (2019-nCoV), statistical analysis, pandemic spreading, time-dependent infection rate,
parameter estimation

1 INTRODUCTION

The Susceptible-Infectious-Recovered (SIR) model has been developed nearly hundred years ago [1,
2] to understand the time evolution of infectious diseases in human populations. The SIR system is
the simplest and most fundamental of the compartmental models and its variations [3–17]. The
considered population of N≫ 1 persons is assigned to the three compartments s (susceptible), i
(infectious), or r (recovered/removed). Persons from the population may progress with time between
these compartments with given infection (a(t)) and recovery rates (μ(t)) which in general vary with
time due to non-pharmaceutical interventions taken during the pandemic evolution.

Let I(t) � i(t)/N , S(t) � s(t)/N and R(t) � r(t)/N denote the infected, susceptible and
recovered/removed fractions of persons involved in the infection at time t, with the sum
requirement I(t) + S(t) + R(t) � 1. In terms of the reduced time τ(t) � ∫ t

0
dξa(ξ), accounting for

arbitrary but given time-dependent infection rates, the SIR-model equations are [1, 2, 18]

dI
dτ

� j − KI,
dS
dτ

� −j, dR
dτ

� KI (1)
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in terms of the time-dependent ratio K(t) � μ(t)/a(t) of the
recovery and infection rates and the medically interesting daily
rate of new infections

_J(t) � a(t)j(τ) � _τj(τ), (2)

where the dot denotes a derivative with respect to t.
For the special and important case of a time-independent ratio

K(t) � k � const. new analytical results of the SIR-model (1) have
been recently derived [19] – hereafter referred to as paper A. The
constant k is referred to as the inverse basic reproduction number
k � 1/R0. The new analytical solutions assume that the SIR
equations are valid for all times t ∈ [−∞,∞], and that time t �
τ � 0 refers to the “observing time” when the existence of a
pandemic wave in the society is realized and the monitoring of
newly infected persons _J(t) is started. In paper A it has been
shown that, for arbitrary but given infection rates a(t), apart from
the peak reduced time τ0 of the rate of new infections, all
properties of the pandemic wave as functions of the reduced
time are solely controlled by the inverse basic reproduction
number k. The dimensionless peak time τ0 is controlled by k
and the value ε � −lnS(0), indicating as only initial condition at
the observing time the fraction of initially susceptible persons
S(0) � e−ε. This suggests to introduce the relative reduced time
Δ � τ − τ0 with respect to the reduced peak time. In real time t the
adopted infection rate a(t) acts as second parameter, and the
peak time tm, where _J(t) reaches its maximum must not coincide
with the time, where the reduced j reaches its maximum,
i.e., τm ≡ τ(tm)≠ τ0, in general.

2 RESULTS AND DISCUSSION

According to paper A the three fractions of the SIR-model

S(τ) � 1 − J(τ), I(τ) � j(τ)
1 − J(τ),

R(τ) � −kln[1 − J(τ)]
(3)

can be expressed in terms of the cumulative number J(τ) and
differential daily rate j(τ) � dJ/dτ of new infections. The
cumulative number satisfies the nonlinear differential equation

j(τ) � dJ
dτ

� (1 − J)[J + k ln(1 − J)] (4)

Two important values are J0(k) � J(τ0), where j attains its
maximum with (dj/dJ)J0 � 0, and the final cumulative number
J∞(k) at τ � t � ∞, when the second bracket on the right-hand
side of the differential Eq. 4 vanishes, i.e., J∞ + kln(1 − J∞) � 0.
The two transcendental equations can be solved analytically in
terms of Lambert’s W function, as shown in paper A. In the
present manuscript we are going to avoid Lambert’s function
completely, and instead use the following approximants
(Figure 1A)

J0(k) � (3 − k)(1 − k)(1 + k + k2)/6, (5)

J∞(k) � 1 − exp[− (1 − k)(1 + κ)/k], (6)

κ(k) � (4 − k)k/3 (7)

Without any detailed solution of the SIR-model equations the
formal structure of Eqs 3 and 4 then provides the final values
I∞ � j∞ � 0, R∞ � J∞, and S∞ � 1 − J∞. We list these values
together with κ in Table 1. We emphasize that the final
cumulative number J∞, determined solely by the value of k,
remains unchanged (Table 1). With NPIs one can only flatten
and distort the epidemics curve (compared to the case of no NPIs
taken) but not change the final cumulative number.

2.1 New infections
The exact solution of the differential Eq. 4 is given in inverse form
by (Appendix A)

τ � ∫J

1−e−ε
dy

(1 − y)[y + k ln(1 − y)], (8)

which can be integrated numerically (subject to numerical
precision issues), replaced by the approximant presented in
paper A (involving Lambert’s function), or semi-quantitatively
captured by the simple approximant to be presented next. The
solution J(Δ) as a function of the relative reduced time
Δ � τ − τ0, with the reduced peak time approximated by

τ0 � 1 − k
fm(k)[ln

J0
1 − J0

− ln(eε − 1)], (9)

corresponding to J � J0 in Eq. 8, and where fm(k) � 1 − k + lnk, is
reasonably well captured by (Appendix C)

J(Δ) � 1
2
[1 + tanhY1(Δ)]Θ[Δs(k) − Δ] + {1 − 1 − J∞

2
[1

+ cothY2(Δ)]}Θ[Δ − Δs(k)] (10)

with the Heaviside step function Θ(x) � 1(0) for x ≥ (<)0. In
Eq. 10

Y1 � 1
2
[fm(k)(Δ − Δs)

1 − k
+ ln

1 − k
k

],
Y2 � 1

2
[E0(k)(Δ − Δs) + ln

k

(1 − k)κ],
(11)

with

Δs � 1 − k
fm(k) ln

(1 − k)(1 − J0)
kJ0

, E0(k) � [ k

(1 − k)κ − 1]fm(k)
(12)

also tabulated in Table 1. We note that Δs(k) is always positive.
Figure 2 shows the approximation (Eq. 10) for the cumulative
number as a function of the relative reduced time Δ for different
values of k. For a comparison with the exact variation obtained by
the numerical integration of Eq. 8 see Appendix C. The
agreement is remarkably well with maximum deviations less
than 30 percent. The known limiting case of k � 0 is captured
exactly by the approximant (Appendix D).

For the corresponding reduced differential rate j(Δ)
in reduced time we use the right hand side of Eq. 4 with
J � J(Δ) from Eq. 10, cf. Figure 3. Note, that this j is not
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identical with the one obtained via j � dJ/dτ, because J does
not solve the SIR equations exactly. The peak value jmax in the
reduced time rate occurs when J � J0 and is thus determined
by jmax � (1 − J0)(1 − J0 − k), also tabulated in Table 1.

As can be seen in Figure 3 the rate of new infections (Eq. 12) is
strictly monoexponentially increasing j(Δ≪ 0)xeΓ1Δ with Γ1(k) �
fm(k)/(1 − k) well before the peak time, and strictly
monoexponentially decreasing well above the peak time
j(Δ≫ 0)∝ e−Γ2Δ with the Γ2 � (1 − J∞)Γ1/κ. These exponential
rates exhibit a noteworthy property and correlation in reduced time:

Γ2
Γ1

� 1 − J∞
κ

(13)

The SIR parameter k affects several key properties of the
differential and cumulative fractions of infected persons. If the
maximum _J(tm) of the measured daily number of newly infected
persons has passed already, we find it most convenient to estimate
k from the cumulative value J(tm) at this time tm. While the
maximum of _J(t) must not occur exactly at τ(tm) � τ0
(Appendix F), we can still use J0 as an approximant for the
value of J(tm) and the relationship between J0 and k can be
inverted to read (Appendix E)

FIGURE 1 | (A) Approximants J0, J∞, and κ (thick green) used in this manuscript, cf. Eqs (5)–(7), compared with the exact functions [19] (thin black). (B) J∞ vs. J0
and (C) J∞ vs. jmax for the SIR model. (D) k as function of J0 according to Eq. 14. For J0 ≤0.1 this is well approximated by k ≈ 1 − J0, where J0 can be replaced by the
cumulative fraction of infected people at the time of the maximum in the daily number of newly infected people.

TABLE 1 | Exact parameter values depending on the inverse basic reproduction
number k.

k κ J0 J‘ S‘ fm E0 Δs jmax

0.00 0.00 0.500 1.000 0.000 1.000 0.0000 ∞ 0.2500
0.05 0.05 0.492 1.000 0.000 0.800 0.0000 3.5339 0.2327
0.10 0.11 0.483 1.000 0.000 0.670 0.0003 3.0441 0.2156
0.15 0.17 0.473 0.999 0.001 0.565 0.0049 2.7698 0.1986
0.20 0.24 0.462 0.993 0.007 0.478 0.0173 2.5745 0.1819
0.25 0.31 0.450 0.980 0.020 0.403 0.0348 2.4181 0.1653
0.30 0.37 0.436 0.959 0.041 0.339 0.0535 2.2835 0.1490
0.35 0.43 0.421 0.930 0.070 0.283 0.0709 2.1621 0.1330
0.40 0.49 0.403 0.893 0.107 0.234 0.0857 2.0491 0.1174
0.45 0.54 0.384 0.848 0.152 0.191 0.0971 1.9418 0.1022
0.50 0.59 0.363 0.796 0.203 0.153 0.1050 1.8386 0.0876
0.55 0.64 0.339 0.739 0.261 0.121 0.1093 1.7386 0.0736
0.60 0.69 0.313 0.676 0.324 0.094 0.1099 1.6416 0.0603
0.65 0.73 0.283 0.607 0.393 0.070 0.1071 1.5477 0.0479
0.70 0.78 0.251 0.533 0.467 0.050 0.1009 1.4571 0.0365
0.75 0.82 0.217 0.454 0.546 0.034 0.0914 1.3701 0.0263
0.80 0.86 0.179 0.371 0.629 0.022 0.0788 1.2871 0.0174
0.85 0.89 0.138 0.284 0.716 0.012 0.0633 1.2084 0.0102
0.90 0.93 0.095 0.193 0.807 0.005 0.0449 1.1343 0.0047
0.95 0.97 0.049 0.098 0.902 0.001 0.0237 1.0648 0.0012
1.00 1.00 0.000 0.000 1.000 0.000 0.0000 1.0000 0.0000

FIGURE 2 | (A) Cumulative number J(Δ) for different values of k according to Eq. 10. The vertical gray lines starting at the Δ-axis indicate the respective values of
Δs(k). (B) Same as in (A), divided by the final J∞.

Frontiers in Physics | www.frontiersin.org January 2021 | Volume 8 | Article 5934213

Schlickeiser and Kröger Epidemics Forecast From SIR-Modeling

231

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


k � 2(1 − J0) − 1
1 + ln(1 − J0) � 1 − J0 − J20

2
+ O(J30 ) (14)

The dependency of k on J0 is shown in Figure 1C. With the so-
obtained value for k at hand, the infection rate a(tm) at peak time
can be inferred from a(tm) � _J(tm)/jmax(k). It provides a lower
bound for a0.

A major advantage of the new analytical solutions in paper A
and here is their generality in allowing for arbitrary time-
dependencies of the infection rate a(t). Such time-dependencies
result at times greater than the observing time t � 0 from non-
pharmaceutical interventions (NPIs) taken after the pandemic
outbreak [20] such as case isolation in home, voluntary home
quarantine, social distancing, closure of schools and universities
and travel restrictions including closure of country borders, applied
in different combinations and rigor [21] in many countries. These
NPIs lead to a significant reduction of the initial constant infection
rate a0 at later times. It is also important to estimate the influence of
a later lifting of the NPIs on the resulting increase in the case
numbers in order to discriminate this increase from the onset of a
second wave. Especially in the papers by Dehning et al. [17],
Flaxman et al. [22] and those reviewed by Estrada [4] the influence
of NPIs on the time evolution of the Covid-19 pandemics has been
studied using numerical solutions of the SIR-model equations. Our
analytical study presented here is superior to these results from
numerical simulations as its predictions are particularly robust for
the late forecast of the pandemic wave.

2.2 Modeling in Real Time of Lockdowns
The corresponding daily rate _J(t) and cumulative number J(t) of
new infections in real time t for given time-dependent infection
rates a(t) are J(t) � J(τ(t)) and _J(t) given by Eq. 2. From a
medical point of view the daily rate _J(t) is most important as it
determines also i) the fatality rate [23] d(t)xf _J(t − td) with the
fatality percentage fx0.005 in countries with optimal medical
services and hospital capacities and the delay time of tdx7 days,
ii) the daily number of new seriously sick persons [24] NSSPs �
2f _J(t − td) needing access to breathing apparati, and iii) the day
of maximum rush to hospitals tr � tm + td . In countries with poor
medical and hospital capacities and/or limited access to them the

fatality percentage is significantly higher by a factor h which can
be as large as 10.

To calculate the rate and cumulative number in real time
according to Eq. 2 we adopt as time-dependent infection rate the
integrable function known from shock wave physics

aLD(t) � a0
2
[1 + q − (1 − q) tanh t − ta

tb
]x{ a0 for t≪ ta

qa0 for t≫ ta,

(15)

which implies

τLD(t) � a0
2
⎡⎢⎢⎣(1 + q)t − (1 − q)tbln⎛⎝cosh t−ta

tb

cosh ta
tb

⎞⎠⎤⎥⎥⎦
x{ a0t for t≪ ta

qa0t for t≫ ta

(16)

The time-dependent lockdown infection rate (Eq. 15) is
characterized by four parameters: i) the initial constant
infection rate a0 at early times t≪ ta, ii) the final constant
infection rate a1 � qa0 at late times t≫ ta described by the
quarantine factor q � a1/a0 ≤ 1, first introduced in Refs. 21 and
24, iii) the time ta of maximum change, and iv) the time tb
regularizing the sharpness of the transition. The latter is known to
be about tbx7–14 days reflecting the typical 1–2 weeks
incubation delay. Consequently, the parameter q mainly affects
the amplitude _J shown in the left columns of Figures 5 and 6
(note that we also plotted the case of no NPIs taken (i.e., q � 1) for
comparison). Alternatively, the transition time tb controls the
rapidness of the transition in the fraction of infected persons per
day and therefore the widespread.

Moreover, the initial constant infection rate a0 characterizes
the Covid-19 virus: if we adopt the German values a0x58 days−1

and tbx11 determined below, with the remaining two
parameters q and ta we can represent with the chosen
functional form Eq. 15 four basic types of reductions: 1)
drastic (small q≪ 1) and rapid (ta small), 2) drastic (small
q≪ 1) and late (ta large), 3) mild (greater q) and rapid (ta
small), and 4) mild (greater q) and late (ta large). The four
types are exemplified in Figure 4.

FIGURE 3 | Reduced differential rate j(Δ) of newly infected fraction corresponding to the cumulative J(Δ) shown in Figure 2. (A) linear scale, (B)
semilogarithmic scale.
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2.3 Verification and Forecast
In countries where the peak of the first Covid-19 wave has already
passed such as e.g. Germany, Switzerland, Austria, Spain, France
and Italy, we may use the monitored fatality rates and peak times
to check on the validity of the SIR model with the determined free
parameters. However, later monitored data are influenced by a
time varying infection rate a(t) resulting from non-
pharmaceutical interventions (NPIs) taken during the
pandemic evolution. Only at the beginning of the pandemic
wave it is justified to adopt a time-independent injection rate
a(t)xa0 implying τ � a0t. Alternatively, also useful for other
countries which still face the climax of the pandemic wave, it is
possible to determine the free parameters from the monitored
cases in the early phase of the pandemic wave. We illustrate our
parameter estimation using the monitored data from Germany
with a total population of 83 million persons (P � 8.3 × 107).

In Germany the first two deaths were reported on March 9 so
that ε � 4.8 × 10− 6 corresponding to about 400 infected people
7 days earlier, on March 2 (t � 0). The maximum rate of newly
infected fraction, _Jmaxx380/fP, occurred tm � 37 days later,
consistent with a peak time of fatalities on 16 April 2020. At
peak time the cumulative death number was Dm � 3820/P
corresponding to Jm � Dm/f � 200Dm � 0.009. This implies

k ≈ 1 − J0 ≈ 0.991 according to Eq. 14 (and not far from the
value k � 0.989 to be determined from the fit shown in Figure 5).
From the initial exponential increase of daily fatalities in
Germany we extract Γ1(k)a0x0.28, corresponding to a
doubling time of ln(2)/Γ1a0x2.3 days, as we know Γ1(k) �
fm(k)/(1 − k)x0.0046 already from the above k. The quantity
am we can estimate from the measured _Jmax, as _Jmax � amjmax and
jmax(k) ≈ 4.2 × 10− 5. Using the mentioned value for _Jmax, we
obtain am ≈ 22/days as a lower bound for a0.

With these parameter values the entire following temporal
evolution of the pandemic wave in Germany can be predicted as
function of tb and q. To obtain all parameters consistently, we
fitted the available data to our model without constraining any of
the parameters (Figure 5). This yields for Germany kx0.989,
ta x21 days, qx0.15, a0 x58 days, and tb � 11 days. The
obtained parameters allow us to calculate the dimensionless
peak time τm x1353, the dimensionless time τ0 x1390, as
well as Jm x0.009, J0x0.011, Γ1x0.0056 and Γ2x0.0055.

We note that the value of k � 0.989 implies for Germany that
J∞(0.989) � 0.022 according to Figure 1, so that at the end of the
first Covid-19 wave in Germany 2.2% of the population, i.e., 1.83
million persons will be infected. This number corresponds to
a final fatality number of D∞ � 9146 persons in Germany.

FIGURE 5 | (A)Measured data _J(t) of new daily infected fraction (black circles) for Germany (DEU) compared with themodel _J(t) � a(t)j(τ(t)) outlined here (green).
Shown for comparison is the case where no NPIs are imposed (q � 1, black dot-dashed). (B) The measured cumulative fraction J(t) (black circles) together with the
model prediction (green), and the reference q � 1 case. Also depicted are J0 and the value at peak time, Jm. (C) The infection rate a(t) corresponding to the curves shown
in (A) and (B). Model parameters mentioned in the figure; a dropped from an initial value ofx58/days down to 7.8/days during the 2nd half of march. This realized
case can be directly compared with the four hypothetic cases shown in Figure 4. For details on how to obtain the parameters see Appendix G.

FIGURE 4 | (A) Infection rate a(t), (B) reduced time τ(t), (C) daily rate of new infections _J(t), (D) cumulative fraction J(t) of infected persons. In each panel we
consider four basic types of reductions: 1) drastic (small q � 0.1) and rapid (ta � 20), 2) drastic (small q � 0.1) and late (ta � 40), 3) mild (q � 0.5) and rapid (ta � 20), and 4)
mild (q � 0.5) and late (ta � 40). Remaining parameters due to Germany: tb � 11 days, a0 � 57 days−1, and k � 0.989. Both curves in (C) for the late cases reach the
same value at the maximum, which is plausible as the curve remains unaffected at the time of the maximum. The rapid cases tend to lower the maximum amplitude
already at the time of the maximum, and thus tend to decrease it compared with the late cases.
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Of course, these numbers are only valid estimates if no efficient
vaccination against Covid-19 will be available.

An important consequence of the small quarantine factor q �
0.15 is the implied flat exponential decay after the peak. Because
Γ1xΓ2 for k � 0.989, the exponential decay is by a factor q
smaller than the exponential rise prior the climax, i.e.,

_J(t≫ tm)∝ e−Γ2a0qt � e−
Γ1(1−J∞ )a0qt

κ xe−t/21.8 days (17)

Equation 17 yields a decay half-live of ln(2) × 21.8 daysx 15 days
to be compared with the initial doubling time of x 2.3 days. For
Germany we thus know that their lockdown was drastic and rapid:

the time tax March 23 is early compared to the peak time tmx
April 8 resulting in a significant decrease of the infection rate with
the quarantine factor qxam/a0 � 0.15. In Figure 5we calculate the
resulting daily new infection rate as a function of the time t for the
parameters for Germany, and compare with the measured data. In
the meantime, the strict lockdown interventions have been lifted in
Germany: this does not effect the total numbers J∞ and D∞ but it
should reduce the half-live decay time further.

We also performed this parameter estimation for other
countries with sufficient data. For some of them data is
visualized in Figure 6, parameters for the remaining countries
are tabulated in Tables 2 and 3. Most importantly, with the

FIGURE 6 | Same as Figure 5 for other countries: (A) Italy (ITA), (B) France (FRA), (C) Sweden (SWE), (D) Iran (IRN), (E) Great Britain (GBR).
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exception of the six countries ARM, DOM, IRN, PAN, PER, SMR
we found values of k> 0.9 for all other countries investigated
corresponding to basic reproduction numbers R0 � 1/k< 1.11.
These values are significantly smaller than the estimates of
R0 ∈ [2.4, 5.6] in the mainstream literature on Covid-19 [4,
22]. Part of these significant differences may be explained by
the different definitions of R0.

While the inverse basic reproduction number k � 1/R0 �
μ(t)/a(t) in the SIR-model is clearly defined as the ratio of
the recovery to infection rate, there are alternative definitions of
the basic reproduction number R0 using the effective
reproduction factor R(t). As discussed in detail in Sect. 4 of
Ref. 25 R(t) has to be calculated from the convolution

R(t) � c(t)
∫∞

0
dsW(s)c(t − s) (18)

of the number of daily cases c(t) with the serial interval distribution
W(t) describing the probability for the time lag between a person’s
infection and the subsequent transmission of the virus to a second
person. As different choices of the serial interval distribution are used
in the literature this leads to differences in the calculated associated
effective reproduction factors R(t). As R0 is identical to the value
R(t0) at the starting time of the outbreak it is not clear in themoment
that this R0 will be identical to the 1/k of the SIR model [26].

2.4 Summary and Conclusion
In this work we derived for the first time an analytical
approximation for the solution for the SIR-model equations
with an accuracy better than 30 percent. The explicit
approximation refers to the fraction of newly infected persons
per day _J as a function of the relative reduced time with respect to
the reduced peak time. This closed form of the analytical solution
only depends on a single parameter k, the ratio of infection to
recovery rates. We assume that this ratio is independent of time.
As _J can be directly compared with the monitored death and
infection rates in different countries, we see no advantage in using
the more complicated SEIR-model which currently does not
allow for a closed analytical solution. An analytic solution of
the SIR model with an accuracy better than 5% is available as well
from our yet unpublished work where we did not consider time-
dependent a(t), but it has the disadvantage that it involves
Lambert’s function.

For the first time in the history of SIR-research (these
equations have been discovered 93 years ago!) we thus have
derived an analytical solution which can be applied successfully to
all accumulated data of virus diseases in the world. Being of
analytic form it is superior to all existing numerical simulations
and results in the literature. We also discovered for the first time
how to extract the value of k from the monitored data which is
highly nontrivial. We applied this new method to the data taken

TABLE 2 |Model parameters and model implications. The columns are as follows: country (α3 code), population P in millions (M), outbreak time defining t � 0, fitted time ta,
estimated time t0 corresponding to the reduced peak time τ0 of j(τ), fitted SIR parameter k, fitted initial infection rate a0, fitted parameter tb, fitted quarantine factor q,
estimated doubling time t2 characterizing the early exponential increase, estimated decay half life t′2 characterizing the late exponential decrease, estimated unreported
number of infections per reported number, estimated final fraction J∞ of infected population, final number of estimated fatalities D∞P � J∞Pf . We use f � 0.005 as the
probability to decease from a Covid-19 infection (reported plus unreported).

country P/M t � 0 ta tm t0 k a0 tb q t2 t92 dark J‘ D‘P

AFG 34.66 Mar 18 Apr 3 Jul 7 Jun 28 0.995 68.9 36 0.16 4.0 24.8 7.1 1.00% 1725
ALB 2.88 Mar 11 Mar 22 Jul 17 Jul 19 0.988 24.4 1 0.14 4.7 34.2 6.8 2.41% 346
AND 0.08 Mar 19 Mar 25 Mar 23 Apr 4 0.931 7.6 0 0.24 2.6 12.0 11.8 13.50% 52
ARG 43.85 Mar 6 Apr 4 Jul 13 Jul 19 0.987 21.8 12 0.20 4.8 24.1 4.6 2.63% 5774
ARM 2.93 Mar 22 Jun 9 Jul 1 Jul 19 0.897 1.1 14 0.30 11.4 43.7 4.0 19.78% 2893
AUT 8.75 Mar 9 Mar 11 Mar 31 Apr 5 0.992 149.8 19 0.05 1.1 23.4 7.2 1.66% 725
BEL 11.35 Mar 4 Mar 28 Apr 3 Apr 9 0.911 6.1 7 0.23 2.5 12.3 30.8 17.30% 9822
BFA 18.65 Mar 14 Mar 20 Mar 19 Apr 5 0.999 1754.5 0 0.25 2.8 10.9 10.1 0.06% 53
BGR 7.13 Mar 7 Mar 31 Jul 15 Jul 19 0.974 10.1 28 0.12 5.3 47.3 7.8 5.10% 1828
BLR 9.51 Mar 25 Mar 19 Jun 25 Jul 19 0.975 40.9 32 0.03 1.4 55.1 1.6 4.91% 2344
BOL 10.89 Mar 23 Apr 12 Jun 24 Jul 3 0.968 7.9 29 0.31 5.5 18.4 8.7 6.30% 3428
BRA 207.65 Mar 11 Mar 15 May 27 Jul 13 0.919 12.1 46 0.02 1.4 64.9 8.3 15.83% 164365
CAF 4.60 May 24 May 27 Jun 15 Jun 14 0.999 123.9 11 1.87 9.3 5.0 2.6 0.24% 55
CHE 8.37 Mar 1 Mar 22 Mar 23 Apr 3 0.976 22.0 5 0.25 2.6 10.9 11.8 4.70% 1969
CHL 17.91 Mar 16 Jun 7 Jul 9 Jul 8 0.910 2.0 11 0.22 7.5 38.3 5.5 17.43% 15610
CHN 1378.67 Jan 15 Feb 1 Apr 9 Feb 16 0.999 1544.6 9 0.09 2.6 28.1 10.9 0.07% 4765
COL 48.65 Mar 15 Apr 4 Jul 16 Jul 19 0.899 4.0 7 0.19 3.3 20.1 8.4 19.48% 47385
CUB 11.48 Mar 19 Mar 22 Apr 16 Apr 15 0.999 631.5 21 0.25 2.9 11.5 7.1 0.15% 86
CZE 10.56 Mar 17 Mar 25 Apr 1 Apr 11 0.997 235.1 8 0.08 1.7 21.4 5.3 0.69% 365
DEU 82.67 Mar 2 Mar 23 Apr 8 Apr 11 0.989 57.7 11 0.15 2.2 15.1 9.0 2.21% 9146
DNK 5.73 Mar 8 Mar 23 Mar 28 Apr 8 0.989 52.6 6 0.16 2.4 15.3 9.2 2.15% 615
DOM 10.65 Mar 12 Mar 23 Jul 17 Jul 19 0.747 2.6 16 0.04 1.9 76.4 4.0 45.91% 24442
DZA 40.61 Mar 6 Mar 31 Apr 2 Jul 19 0.977 18.4 9 0.05 3.3 65.2 10.0 4.48% 9105
ECU 16.39 Mar 7 Mar 7 Apr 25 Jul 8 0.935 15.5 40 0.01 1.3 119.5 14.9 12.72% 10422
EGY 95.69 Mar 6 Apr 3 Jun 8 Jun 22 0.994 52.5 5 0.22 4.4 19.8 10.5 1.20% 5724
ESP 46.44 Feb 26 Mar 17 Mar 25 Mar 31 0.937 12.4 6 0.14 1.7 13.4 21.9 12.27% 28498
ETH 102.40 Mar 29 Mar 29 Jul 19 Jul 10 0.999 215 4 1.29 21 16.2 4.7 0.06% 315
FRA 66.90 Feb 19 Mar 27 Apr 2 Apr 5 0.954 10.0 8 0.22 3.0 14.2 28.5 9.01% 30142
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TABLE 3 | Continuation of Table 2.

country P/M t � 0 ta tm t0 k a0 tb q t2 t29 dark J‘ D‘P

GAB 1.98 Apr 16 Apr 30 Jun 8 Jun 6 0.997 64.6 0 0.39 7.6 19.4 1.6 0.56% 56
GBR 65.64 Feb 29 Mar 26 Apr 2 Apr 19 0.925 8.9 12 0.09 2.0 26.1 30.9 14.54% 47719
GHA 28.21 Mar 16 Mar 21 Jun 12 Jun 18 0.999 464.9 0 0.22 4.4 19.9 1.2 0.13% 190
GRC 10.75 Mar 7 Mar 24 Mar 27 Apr 7 0.998 191.9 6 0.16 3.8 24.6 10.1 0.38% 203
GTM 16.58 Mar 28 Jun 11 Jul 7 Jul 6 0.985 9.7 10 0.48 9.4 19.9 9.0 3.03% 2513
HND 9.11 Mar 22 Mar 28 Jun 24 Jul 14 0.978 26.0 17 0.11 2.5 23.5 6.6 4.28% 1952
HRV 4.17 Mar 19 Apr 11 Apr 11 Apr 28 0.996 72.3 17 0.04 4.8 122.5 6.3 0.79% 165
IND 1324.17 Mar 6 Mar 21 Jun 8 Jun 28 0.997 189.9 36 0.12 2.4 20.8 5.9 0.61% 40316
IRL 4.77 Mar 7 Mar 13 Apr 17 Apr 16 0.962 21.2 29 0.11 1.7 16.9 13.7 7.41% 1768
IRN 80.28 Feb 12 Mar 8 Jul 14 Jul 19 0.819 3.1 17 0.04 2.3 84.0 11.5 33.82% 135755
ITA 60.60 Feb 15 Mar 13 Mar 20 Apr 1 0.940 10.2 8 0.14 2.2 17.6 28.7 11.70% 35442
KOR 25.37 Feb 14 Feb 16 Mar 14 Mar 21 0.999 989.6 13 0.07 1.2 17.4 4.3 0.22% 285
KWT 4.05 Apr 6 May 5 May 22 Jun 6 0.986 21.8 20 0.09 4.5 51.0 1.5 2.83% 573
LBN 6.01 Mar 4 Mar 31 Jul 19 Jul 19 0.999 95.5 2 0.09 9.9 105.3 3.6 0.29% 88
LUX 0.58 Mar 11 Mar 19 Apr 4 Apr 4 0.981 29.5 7 0.21 2.4 12.1 4.0 3.82% 111
MAR 35.28 Mar 10 Mar 24 Mar 28 Apr 17 0.999 628.8 13 0.03 2.5 82.8 3.6 0.18% 316
MDA 3.55 Mar 20 Mar 25 Jun 1 Jun 15 0.973 25.9 23 0.06 1.9 33.7 7.0 5.40% 960
MEX 127.54 Mar 13 Mar 24 Jul 19 Jun 24 0.954 16.2 42 0.06 1.8 31.1 25.4 8.99% 57326
MKD 2.08 Mar 16 Mar 31 Jun 25 Jul 19 0.927 5.4 9 0.11 3.4 33.1 10.1 14.29% 1488
MRT 4.30 May 6 Jun 1 Jun 3 Jun 7 0.996 66.4 4 0.29 5.1 17.9 5.3 0.82% 175
MYS 31.19 Mar 10 Mar 17 Mar 15 Mar 30 0.999 2064.2 7 0.11 1.7 16.2 2.8 0.08% 123
NGA 185.99 Mar 23 Apr 25 Jun 9 Jun 24 0.999 405.4 21 0.16 5.2 33.1 4.7 0.13% 1214
NLD 17.02 Mar 1 Mar 22 Mar 31 Apr 8 0.963 15.4 5 0.20 2.4 12.6 23.7 7.26% 6182
NPL 28.98 May 10 Jun 2 May 29 Jun 20 0.999 953.4 3 0.34 7.7 22.5 0.5 0.04% 55
PAK 193.20 Mar 11 Apr 8 Jun 11 Jun 13 0.997 101.1 17 0.22 4.0 18.2 4.4 0.69% 6677
PAN 4.03 Mar 15 Mar 26 Jul 10 Jul 19 0.848 3.5 10 0.09 2.5 35.5 4.8 28.80% 5808
PER 31.78 Mar 13 Mar 6 Jul 16 Jul 19 0.703 3.2 47 0.03 1.3 68.9 10.1 52.66% 83666
PHL 103.32 Mar 5 Mar 23 Jul 5 Jul 19 0.996 142.4 19 0.04 2.5 58.0 5.7 0.78% 4024
POL 37.95 Mar 6 Apr 2 Apr 17 Jun 5 0.993 63.1 20 0.05 3.4 67.0 8.3 1.30% 2474
PRT 10.33 Mar 11 Mar 14 Mar 31 Apr 22 0.982 86.4 16 0.02 0.9 38.8 7.1 3.67% 1896
ROU 19.71 Mar 15 Mar 17 Jul 14 Jul 19 0.909 13.8 21 0.02 1.1 79.1 11.7 17.60% 17343
RUS 144.34 Mar 18 Mar 18 May 22 Jul 5 0.984 60.7 44 0.02 1.4 61.8 3.4 3.12% 22543
SEN 15.41 Mar 28 May 9 Jun 8 Jun 24 0.998 79.9 1 0.55 11.5 21.0 4.3 0.30% 232
SMR 0.03 Mar 3 Mar 13 Mar 13 Mar 19 0.867 2.9 0 0.41 3.5 10.4 12.0 25.32% 42
SOM 15.01 Apr 6 Apr 19 Apr 15 May 4 0.999 591.7 0 0.24 3.7 15.2 6.0 0.13% 95
SRB 7.06 Mar 15 Mar 25 Jul 19 Jul 19 0.931 10.1 15 0.03 1.9 73.7 5.1 13.50% 4763
SWE 9.90 Mar 7 Mar 26 Apr 14 May 1 0.935 10.1 16 0.07 2.1 33.6 14.7 12.75% 6311
TCD 15.48 Apr 21 Apr 28 Apr 30 May 4 0.999 1387.0 3 0.22 2.1 9.2 16.9 0.10% 75
THA 68.86 Mar 17 Mar 29 Mar 26 Apr 1 0.999 3463.0 0 0.56 4.8 8.6 3.6 0.02% 58
TUN 11.40 Mar 15 Mar 30 Mar 26 Apr 1 0.999 659.7 6 0.29 4.7 16.4 7.3 0.09% 50
TUR 79.51 Mar 12 Mar 17 Apr 9 May 6 0.990 144 21 0.01 1.0 108.3 5.1 1.97% 7851
USA 323.13 Feb 24 Mar 23 Apr 10 May 16 0.938 10.2 23 0.03 2.1 81.6 7.8 12.18% 196763
ZAF 55.91 Mar 22 May 18 Jul 14 Jul 19 0.968 6.5 21 0.32 6.6 21.1 3.7 6.34% 17728

FIGURE 7 | Same as Figure 4 but with incomplete lifting (η � 0.8) hundred days after breakout (ts � 100 days). (A) infection rate a(t), (B) reduced time τ(t), (C)
daily rate of new infections _J(t), (D) cumulative fraction J(t) of infected persons. In each panel we consider four basic types of reductions: 1) drastic (small q � 0.1) and
rapid (ta � 20), 2) drastic (small q � 0.1) and late (ta � 40), 3) mild (q � 0.5) and rapid (ta � 20), and 4) mild (q � 0.5) and late (ta � 40). Remaining parameters due to
Germany: tb � 11 days, a0 � 57 days−1, and k � 0.989.
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for the Covid-19 pandemic waves in many countries. Our work
includes an estimate on the effects of non-pharmaceutical
interventions in these countries. This is possible as our
analytical solution holds for arbitrary but given time
dependencies a(t) of the infection rates.

An example, on how lockdown lifting can be modeled is
described in Appendix H. The situation is depicted in
Figure 7. The lifting will increase a(t) from its present value
up to a value that might be close to the initial a0. While the
dynamics is altered, the final values remain unaffected by the
dynamics, except, if the first pandemic wave is followed by a 2nd
one. The values for J∞ provided in Tables 2 and 3 provide a hint
on how likely is a 2nd wave. These values correspond to the
population fraction that had been infected already. While this
fraction is extremely large in Peru (53%), it is still below 1% in
several of the larger countries. The tables also report the

unreported number of infections per reported number
(column “dark”), estimated from the number of fatalities,
reported infections, and the death probability f.
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APPENDIX A: NON-PARAMETRIC
SOLUTION OF THE SIR MODEL

We start from the Eq. 19 from part A

τ � ∫ G
ε

dx
1 − e− x − kx

(A1)

and substitute

y � 1 − e−x, x � −ln(1 − y), dx
dy

� 1
1 − y

(A2)

Consequently, as the cumulative number of new infections is
given (see Eq. 37 from part A) by

τ � ∫ J
ψ

dy

(1 − y)f (y), f (y) � y + kln(1 − y) (A3)

with the abbreviation ψ � J(0) � 1 − e−ε for the initial value. This
inverse relation τ(J) is the general solution of the SIR-model for
constant k. It is not in parametrized form.

APPENDIX A.1: Maximum of j
Taking the derivative of Eq. 37 from part A with respect to τ we
obtain

1 � j

(1 − J)[J + kln(1 − J)] (A4)

or the exact SIR relation

j � (1 − J)[J + kln(1 − J)] (A5)

Equation A5 provides

dj
dJ

� 1 − k − 2J − kln(1 − J) (A6)

The maximum value jmax occurs for (dj/dJ)J0 � 0 providing

1 − J0 � kln(1 − J0) + k + 1
2

(A7)

Setting 1 − J0 � e−X yields

e−X � −k
2
(X − k + 1

k
), (A8)

which is of the form of Eq. G1 from part A, and solved in terms of
the non-principal Lambert function W−1 as

X � k + 1
k

+W−1(α0), α0 � − 2
ke

e−1/k, (A9)

so that

J0 � 1 − e−
1+k
k −W−1(α0) � 1 + k

2
W−1(α0) (A10)

The maximum value is then given by

jmax � j(J0) � k2

4
{[1 +W−1(α0)]2 − 1} (A11)

and this can also be written as jmax � (1 − J0)(1 − J0 − k) with J0
from Eq. A10. According to Eq. 8 the reduced peak time in the
dimensionless rate of new infections is then given by

τ0 � ∫ J0
ψ

dy

(1 − y)f (y), (A12)

which is the only quantity depending besides on k also on ε via
ψ � 1 − e−ε. In order to have our approximation depending only
on kwe therefore introduce the relative reduced time with respect
to the peak reduced time

Δ � τ − τ0 � ∫ J
J0

dy

(1 − y)f (y) (A13)

which is still exact, independent of ε and only determined by the
value of k.

APPENDIX B: APPROXIMATING THE
FUNCTION f(y)
The function f (y) defined in Eq. A3 vanishes for
yc + kln(1 − yc) � 0, or 1 − yc � e−yc/k with the solution

yc(k) � J∞(k) � (1 − k)(1 + κ) (B1)

where κ was already stated in the introduction. According to Eq.
A13 the value J∞ corresponds to Δ � τ � ∞, so the maximum
value of the cumulative number of new infections is Jmax � J∞.

Moreover, the function f (y) attains its maximum value fm(k) �
f (y � 1 − k) � 1 − k + klnk at ym � 1 − k. As approximationwe use

f (y)x{ f1(y) for y ≤ 1 − k

f2(y) for (1 − k)≤ y ≤ J∞

� fm

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

y
1 − k

for y ≤ 1 − k

J∞ − y
J∞ − (1 − k) for 1 − k≤ y ≤ J∞

(B2)

FIGUREB1 |Comparison of the approximation (B2) with the exact curve
for f(y) for different values of k. Vertical solid lines mark the position of the
maximum of the function.
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which is shown in Figure B1 in comparison with the function
f (y). The agreement is reasonably well with maximum deviations
less than 30%.

APPENDIX C: APPROXIMATIONS FOR J (τ)

Figure C1 demonstrates that J0(k) is always smaller than 1 − k. In
order to calculate the integral in Eq. A13 with the approximation
Eq. B1 we then have to investigate two cases: 1) For J0 < 1 − k and
J < 1 − k only the function f1 contributes and

Δ(J<1−k,J0<1−k) � ∫J

J0

dy

(1 − y)f1(y) (C1)

2) For J ≥ 1 − k> J0 both functions f1 and f2 contribute and

Δ(J≥1−k>J0)x∫1−k

J0

dy

(1 − y)f1(y) + ∫J

1−k
dy

(1 − y)f2(y)
� Δs + ∫J

1−k
dy

(1 − y)f2(y)
(C2)

with

Δs � ∫1−k

J0

dy

(1 − y)f1(y) �
1 − k
fm(k)∫

1−k

J0

dy

(1 − y)y �
1 − k
fm(k) ln

1
J0
− 1

1
1−k − 1

� 1 − k
fm(k) ln

(1 − J0)(1 − k)
kJ0

(C3)

denoting the relative time corresponding to the value J � 1 − k.
We consider each case in turn.

Appendix C.1 Case (1): J ≤ 1 − k, J0 < 1 − k
Here Eq. C1 provides

fmΔ
1 − k

� ∫J

J0

dy

(1 − y)y � ln
1
J0
− 1

1
J − 1

, (C4)

so that the difference of Eqs C3 and C4 yields

fm(Δ − Δs)
1 − k

� ln
kJ

(1 − k)(1 − J), (C5)

or after inversion

J(τ) � [1 + k
1 − k

e−
fm(Δ−Δs )

1− k ]−1
(C6)

Appendix C.2 Case (2): J ≥ 1 − k > J0

Here Eq. C2 with Eq. C3 yields

fmΔx(1 − k)∫1−k

J0

dy

(1 − y)y + [J∞ − (1 − k)]∫J

1−k
dy

(1 − y)(J∞ − y)

(C7)� fmΔs + (J∞ − 1 + k)∫J

1−k
dy

(1 − y)(J∞ − y),
so that

FIGURE C1 | The ratio (1 − k)/J0(k) as a function of k.

FIGURE C2 | Comparison for (A) j(Δ) and (B) J(Δ) between exact solution of the SIR model (green) and the approximant used here (black) for various k. Our
approximant [19] in terms of Lambert’s function is shown as well, but coincides with the exact solution (green) in this representation.
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fm(Δ − Δs)
J∞ − (1 − k) � ∫J

1−k
dy

(1 − y)(J∞ − y) � − 1
1 − J∞

ln
1 − 1−J∞

1−J
1 − 1−J∞

k

(C8)� − 1
1 − J∞

ln
k(J∞ − J)

(J∞ − 1 + k)(1 − J)
After straightforward but tedious algebra we obtain

J∞ − J
1 − J

� J∞ − (1 − k)
k

e−E, (C9)

E(Δ) � 1 − J∞
J∞ − (1 − k) fm(Δ − Δs) (C10)

and consequently

J(Δ) � 1 + J∞ − 1

1 − (1−k)κ
k e−E(Δ)

(C11)

Using the identities 2(1 + e−2Y )− 1 � 1 + tanhY and
2(1 − e−2Y )− 1 � 1 + cothY we combine the results Eqs C6
and C11 to the analytical approximation of the SIR-model
equations at all reduced times, stated in Eqs 10–12 above. A
comparison with the exact numerical solution of the SIR model
is provided in Figure C2. The corresponding j(Δ) is obtained
from J(Δ) via Eqs A5.

APPENDIX D: SI-LIMIT k � 0

In the limit k � 0 Eq. A7 provides J0(k � 0) � 1/2 so that with
limk→ 0fm(k � 0) � 1 the time scale (Eq. C3) becomes

Δs(k � 0) � lim
k→ 0

ln
1 − k
k

� ∞ (D1)

With this result

Y1(k � 0) � Δ
2
− 1
2
lim
k→ 0

[Δs + ln
k

1 − k
]

� Δ
2
− 1
2
lim
k→ 0

[ln 1 − k
k

+ ln
k

1 − k
] � Δ

2
(D2)

Consequently, the cumulative number Eq. 10 and the rate Eq. 4
in this case for all times correctly reduce to

J(Δ, k � 0) � 1
2
[1 + tanh

Δ
2
], j(Δ, k � 0) � 1

4cosh2(Δ/2)
(D3)

APPENDIX E: RELATIONSHIP BETWEEN J0

AND K

Here we prove Eq. 14. According to paper A the quantity J0 is
given by J0 � 1 − e−G0 with

G0 � 1 + k
k

+W−1(−2e−1/kke
) � −ln(1 − J0) (E1)

where e denotes Euler’s number and W−1 the non-principal
solution of Lambert’s equation z � WeW . Equation E1 is of
the form x � r + c−1W(ce−cr/β) upon identifying c � 1, r � 1/k,

β � −ke/2, and x � −[1 + ln(1 − J0)]. From paper A we thus
know that e−cx � β(x − r) holds, or equivalently

(1 − J0)e � −ke
2
[ −1 − ln(1 − J0) − 1

k
] � ke

2
[1 + ln(1 − J0)] + e

2
(E2)

This is readily solved for k, and thus proves Eq. 14.

APPENDIX F: TIME OF MAXIMUM IN THE
MEASURED DIFFERENTIAL RATE _J(t)
One has J(t) � J(τ(t)) and _J(t) � _τ(t)J′(τ(t)) � a(t)j(τ(t))
since j � J′ if we let the prime denote a derivative with respect
to τ. The maximum in _J(t) thus fulfills

0 � €J(tm) � _a(tm)j(τ(tm)) + a2(tm)j′(τ(tm)) (E1)

or equivalently,

0 � [dlnj
dτ

+ _a
a2
]
t�tm

(E2)

From part A we know that

dlnj
dτ

� 1 − 2J − kln(1 − J) − k (E3)

and our J0 � J(τ0) solves 1 � 2J0 + kln(1 − J0) + k. That is,
j’(τ0) � 0. If a does not depend on time, τ0 � τ(tm) � a0tm, but
this is not generally the case. To find tm and τm ≡ τ(tm) one has to
solve Eq. E1, or Eq. E2. Equation E2 with Eq. E3 is solved by

Jm � J(τm) � 1 + k
2
W−1(αm) (E4)

with

αm � −2e
−(1+Cm)/k

ek
, Cm � − _a(tm)

a2(tm) (E5)

The corresponding j is, according to Eq. 4,

j(τm) � (1 − Jm)[Jm + kln(1 − Jm)] (E6)

The smaller Cm, the closer is Jm to J0.

APPENDIX G: FITTING THE DATA

As discussed in length in paper A we base our analysis of existing
data on the reported cumulative number of deaths, D(t), from
which we estimate the cumulative number of infections J(t) �
D(t − td)/f � 200D(t − td)with td � 7 days. From the cumulative
value Jm � J(tm) at the time tm of the maximum in _J(t) we
estimate k via Eq. 14 upon assuming Jm ≈ J0. Similarly, am �
a(tm) is estimated from am � _J(tm)/jmax(k). These tm, k, am are
not the final values, but provide starting values which are then
used in the minimization of the deviation between measured and
modeled J(t). The minimization is performed assuming the time-
dependent a(t) parameterized by Eq. H1 involving parameters
ta > 0, tb > 0, a0 > 0, q ∈ [0, 1], q< η ∈ [0, 1] and ts > tm. While τ(t)
is given by the integrated a(t), we use three strategies to model
J(t): i) the numerical solution of the SIR model, ii) the
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approximant G(τ) and J(τ) � 1 − e−G(τ) developed in part A, and
iii) the approximant J(Δ) given by Eq. 10 with Δ � τ − τm and τm
specified by Eq. 9. Because the numerical solution (i) is extremely
well approximated by (ii), and (ii) and (iii) compared to (i) not
prone to numerical instabilities at small and large Δ, we present
results only for method (iii), as they can be readily reproduced by
a reader without Lambert’s function at hand.

APPENDIX H: MODELING OF LOCKDOWN
LIFTING

Similarly to the lockdown modeling a later lifting of the NPIs can
be modeled by adopting the infection rate

a(t) � aLD(t)Θ (ts − t) + astop(t)Θ (t − ts) (H1)

where ts denotes the stop time of the lockdown still represented
by the infection rate Eq. 15, and where aLD is given by Eq. 15. The
infection rate after ts is assumed to be

astop(t) � a0[qs + (η − qs)tanh t − ts
tb

]x{ qsa0 for t � ts
ηa0 for t≫ ts,

(H2)

with qs � aLD(ts)/a0 the quarantine factor reached at the time ts
of lifting. Together with the reduced time given by Eq. 16 we
now find

τ(t) � τLD(t)Θ (ts − t) + τstop(t)Θ (t − ts) (H3)

and

τstop(t) � τLD(ts) + qs(t − ts)a0 + (η − qs)a0tbln[cosh(t − ts
tb

)]
(H4)

with τLD(t) from Eq. 16. For the four basic types of Figure 4 we
demonstrate in Figure 7 the effect of incomplete lifting.
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Estimating Parameters of Two-Level
Individual-Level Models of the
COVID-19 Epidemic Using Ensemble
Learning Classifiers
Zeyi Liu1,2, Rob Deardon2,3, Yanghui Fu1, Tahsin Ferdous2, Tony Ware2 and Qing Cheng1*

1College of Systems Engineering, National University of Defense Technology, Changsha, China, 2Department of Mathematics and
Statistics, University of Calgary, Calgary, AB, Canada, 3Department of Production Animal Health, University of Calgary, Calgary,
AB, Canada

The ongoing COVID-19 pandemic has led to a serious health crisis, and information
obtained from disease transmission models fitted to observed data is needed to inform
containment strategies. As the transmission of virus varies from city to city in different
countries, we use a two-level individual-level model to analyze the spatiotemporal SARS-
CoV-2 spread. However, inference procedures such as Bayesian Markov chain Monte
Carlo, which is commonly used to estimate parameters of ILMs, are computationally
expensive. In this study, we use trained ensemble learning classifiers to estimate the
parameters of two-level ILMs and show that the fitted ILMs can successfully capture the
virus transmission among Wuhan and 16 other cities in Hubei province, China.

Keywords: COVID-19 epidemic, individual-level model, SARS-CoV-2 transmission, spatiotemporal analysis,
ensemble learning classifiers

INTRODUCTION

The COVID-19 epidemic [1, 2] has caused the most serious threat to global health since the early
20th century; the exponential spread of the SARS-CoV-2 virus around the world has caused over 26
million confirmed cases and 860 thousand deaths worldwide as reported by the John Hopkins
University COVID-19 web dashboard (https://coronavirus.jhu.edu/map.html) at the time of writing
[3]. The spread of the SARS-CoV-2 virus, which causes COVID-19, has varied considerably in
different areas, in part depending on the control different measures taken. Intensive testing, tracing,
and isolation of infected cases have enabled control of transmission in some places, such as China
and Singapore [4]. At the opposite extreme, many countries lack the testing and public health
resources to take similar measures to control the COVID-19 epidemic, which can result in
unhindered spread. Between these extremes, many countries have taken measures that facilitate
“social distancing”, such as closing schools and workplaces and limiting the size of gatherings. In
order to analyze the dynamics of COVID-19 outbreak, we build an epidemic model based on the
individual-level model (ILM) of Deardon et al (2010) [5] to catch the spread of SARS-CoV-2 virus
within and among cities.

The individual-level model (ILM) framework enables us to express the probability of a susceptible
individual being infected at a point in discrete time, as a function of their interactions with the
surrounding infectious population, while also allowing the incorporation of the effect of individually
varying risk factors. Here, we consider an extension of the Deardon et al (2010) framework of ILMs,
to allow the probability of infection to depend upon two levels of transmission dynamics. The first is a
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within-city (or region) level; the second is a between-city level.
Infectious diseases are generally modeled through compartmental
frameworks, and here we place our ILMs within the susceptible-
infectious-removed (SIR) framework [6]. In the SIR framework,
infected individuals become instantly infectious upon exposure,
with no dormant or latent period. Since, in reality, infection is not
observed instantaneously, and many infected individuals are not
recorded at all in the data, we add an “observation model” which
ties the epidemic generating model above to the observed data.
This consists of a geometric distribution-based “delay model” and
a “reporting model” which assumes that the probability of a true
case being reported follows a Bernoulli distribution.

ILMs are intuitive and flexible due to being expressed in terms
of individual interactions [7–9], but the cost of computation to
parameterize them using observed data is often expensive,
especially when dealing with a disease spreading in large
populations. Traditional parameter estimation methods, such
as Bayesian Markov chain Monte Carlo, have an associated
high computation cost. Recent works by Nsoesie et al (2011)
[10], Pokharel et al (2014) [11], and Augusta et al (2019) [12]
have shown how to bypass the likelihood calculations by using
machine learning classifiers to fit ILMs to data. In this work, we
develop this approach to explore the use of ensemble learning
classifiers to accurately and efficiently find the parameters for our
two-level ILM, which incorporates a delay and reporting
mechanism.

GENERATING MODEL

In this section, we present the two-level epidemic ILM [13] and
observation model (delay model and reporting model) which ties
the epidemic model to observed data. We denote the set of
individuals who are susceptible, infectious, or removed at time
t in city/region k as Sk,t , Ik,t , or Rk,t , respectively. Note, for given t,
these sets are mutually exclusive, so individuals cannot be in
multiple states, or multiple cities. Here, we assume time is
discretized so that time point t, for t � 1, 2, ...n, represents a
continuous time interval [t, t + 1).

Two-Level Individual-Level Model
The number of newly infectious persons in city k at time point
t + 1 is given by

Inewk,t+1 � binomial(∣∣∣∣Sk,t ∣∣∣∣;Pk,t) (1)

where
∣∣∣∣Sk,t ∣∣∣∣ is the number of susceptible individuals within city k

at time t, and Pk,t is the probability of each susceptible individual
in the kth city being infected at time t. Here, Pk,t is given by

Pk,t � 1 − e
[−α0|Ik,t|−α1∑

j ∈ (1,2,...,n)/kd
− β
k,j |Ij,t|] (2)

where n is the number of cities in the population;
∣∣∣∣Ik,t ∣∣∣∣ is the

number of infectious individuals within city k at time t; α is a
parameter representing the risk of infection within cities; and α1
and β are parameters representing the risk of infection between
cities, with β capturing the decay rate of a power-law distance-
based kernel, d−βk,j . Note, decreasing β will lead to a lower rate of

decay in the infection kernel and thus more long-distance
infections.

In the two-level ILM-SIR model, the transitions from
susceptible to infectious and from infectious to recovered are
treated as events of interest. In this work, the number of time
points (days) between I and R is referred to as the infectious
period, denoted by c. The constant infectious period expresses the
number of days over which an infectious individual is capable of
transmitting the disease.

Observation Model
Here, we consider adding an observation model which ties
epidemics generated by epidemic model to observed data.

Delay Model
Since there is a delay between infection and observation of that
infection (reporting), we use a delay model to better represent
reality. Specifically, given true infection times τi ∈ Ζ+ for each
infected individual i, we let the potential observation time for
individual i to be

τDi � τIi + zi, where zi ∼ Geometric(PD) (3)

where PD is the delay rate parameter. Note τDi is a potential
observation time, since case i may not be observed at all.

Reporting Model
The second component of the observation model, the “reporting
model”, accounts for asymptomatic, or otherwise unreported,
cases of COVID-19. Here, we assume the probability of observing
a case and it being recorded in the data (at time τDi ) follows a
Bernoulli distribution, such that

δi ∼ Bernoulli(PR), δi � { 1, infected i is reported
0, infected i is unreported

(4)

where PR is the reporting rate parameter.

ENSEMBLE LEARNING CLASSIFIERS

In supervised learning algorithms, the goal is to learn a stable
classification (or regression) model that performs well across a
wide range of data scenarios. Often, however, this is a difficult
goal to achieve. Ensemble learning is the process by which
multiple models are strategically “learned” and combined to
solve a computational intelligence problem. Ensemble learning
is primarily used to provide for an improved performance over
any single model, or to reduce the likelihood of the selection of a
poor single model. Bagging, boosting, and stacking are common
ensemble learning algorithms. Note, here, we are concerned with
classification rather than regression problems.

Bagging
Bagging, which stands for bootstrap aggregating, is one of the
earliest, most intuitive, and perhaps the simplest ensemble based
algorithms, with a surprisingly good performance [14]. A
diversity of classifiers in bagging is obtained by using
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bootstrapped replicas of the training data. That is, different
training data subsets are randomly drawn—with
replacement—from the entire training dataset. Each training
data subset is used to train a different classifier of the same
type. Individual classifiers are then combined by taking a simple
majority vote of their decisions. For any given instance, the class
chosen by the greatest number of classifiers is the ensemble
decision.

The random forest is a bagging method for trees, later
extended to incorporate random selection of features to help
control variance [15, 16].

Boosting
Similar to bagging, boosting also creates an ensemble of classifiers
by resampling the data, which are then combined by majority
voting. However, in boosting, resampling is strategically geared to
provide the most informative training data for each consecutive
classifier.

The gradient boosted decision tree (GBDT) method [17–19]
uses decision trees as the base learner and sums the predictions of
a series of trees. At each step, a new decision tree is trained to fit
the residuals between ground truth and the current prediction.
Many improvements have since been proposed. XGBoost [20]
uses a second-order gradient to guide the boosting process and
improve the accuracy. LightGBM [21] aggregates gradient
information in histograms to significantly improve the training
efficiency; it splits the tree leaf-wise with the best fit, whereas
other boosting algorithms split the tree depth-wise or level-wise
rather than leaf-wise. AdaBoost, short for Adaptive Boosting, can
be used in conjunction with many other types of learning
algorithms to improve performance; the output of the other
learning algorithms (weak learners) is combined into a
weighted sum that represents the final output of the boosted
classifier. Finally, CatBoost [22] proposed a novel strategy to deal
with categorical features.

Stacking
Stacking, sometimes called stacked generalization, is also an
ensemble learning method that combines multiple
classification (or regression) models via a metaclassifier or a
metaregressor. The base level models are trained based on a
complete training set; then the metamodel is trained on the
outputs of the base level model as features. Stacking involves
training a learning algorithm to combine the predictions of
several other learning algorithms. Stacking typically yields
performance better than any single one of the trained models
[23]. It has been successfully used on both supervised learning
tasks (regression, classification, and distance learning) and
unsupervised learning (density estimation).

EXPERIMENT

Typically, ILMs are fitted to data using computationally intensive
techniques such as BayesianMarkov chainMonte Carlo methods.
In order to avoid this computational expense, in this study we use
the method of Pokharel et al (2014) to fit our models to data.

Broadly this method involves defining a set of candidate
generating models, each with different parameter values. Then,
epidemics are repeatedly generated from the candidate models
and summarized. Here, we summarize the epidemics using the
number of observed cases per day, what we term the “epidemic
curve”. These epidemic curve summary statistics form the
training set used to build a classifier mapping the epidemic
curve (input features) to the generating model (class). The
classifier can then be used to identify the most likely
generating model for future observed summaries of epidemic
data sets; several ensemble learning classifiers such as random
forest, XGBoost, LightGBM, AdaBoost, CatBoost, and stacking
are used to seek the best fitted parameter for the two-level ILM
model. Here, we verify the accuracy of these ensemble learning
classifiers by testing their performance on data simulated from
the two-level ILM model. In Real Data Case Study: COVID-19 in
Hubei Province, China, we will use such classifiers to estimate the
parameters that give the model of best fit when applied to
COVID-19 data from Hubei province, China.

Simulation Study
We now recap the parameters we need to identify: α0, β, and α1
are the parameters of the two-level epidemic model in Eq. 2; tstop
is the interval of time from the initial infection (unknown) to the
day when the epidemic stopped by external intervention
(lockdown) in Hubei province; c is the infectious period,
assumed to be constant for all individuals; pD is the rate
parameter of the delay model; and pR is the rate parameter of
the reporting model. Here we assume that when day t � tstop is
reached, the rate of new infections becomes negligible, and so
α0 � α1 � 0. Thus, newly observed cases after day t � tstop result
from earlier infections becoming observed through the
delay model.

In the simulation experiment, we suppose there are total 100
cities, where (x,y) coordinates are simulated uniformly across a
100 × 100 unit. Further, the population of each city is set at 1,000.
Each candidate two-level ILM is used to generate 100 epidemics,
summarized as epidemic curves. To initialize the SIR model, we
set the value of I0 to 50 in the one city (chosen randomly), where
the disease originates. Here, a maximum of 12 candidate
epidemic generating models are considered in each analysis
with parameters shown in Table 1. Sets of generated epidemic

TABLE 1 | The parameters of ILM generating model.

α0 α1 β c pD pR

1 0.001 0.8 3 7 0.5 0.6
2 0.005 0.1 2 3 0.3 0.8
3 0.005 0.2 1 6 0.8 0.4
4 0.01 0.5 2 9 0.7 0.5
5 0.05 0.9 1 8 0.8 0.4
6 0.05 0.1 3 6 0.8 0.5
7 0.1 0.6 2 4 0.6 0.8
8 0.2 0.3 1 6 0.7 0.9
9 0.2 0.1 3 4 0.6 0.9
10 0.3 0.5 1 6 0.5 0.5
11 0.4 0.7 3 6 0.3 0.5
12 0.5 0.1 2 3 0.8 0.3
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curves are shown in Figure 1, with different colors denoting
different epidemic generating models.

In order to verify the performance of classifiers, we have
carried out five classification tasks, each consisting of different
numbers of epidemic generating models. These tasks consisted
of the first 4, 6, 8, 10, and 12 models of Table 1, respectively.
The generated data is randomly divided into a training set and
test set, with 70% of the data for the training set, and the rest for
the test set. The results of classification are shown in
Tables 2, 3.

We can see Figure 1 has epidemic curves that overlap
substantially. However, all classifiers achieve quite high
accuracy. We also repeated the simulation study using 200

curves per epidemic generating model (140 training; 60 test).
The results are shown in Table 3, and we can see that accuracy
increases when we have larger training sets.

The details of super-parameters of classifiers used to get the
best classification score are as follows. The parameters in
AdaBoost classifier are as follows: the max depth is 6, the
number of estimators is 1,000, and the learning rate is 0.008;
the parameters in CatBoost classifier are as follows: the depth is 6,
the iteration is 1,200, and the learning rate is 0.05; the parameters
in LightGBM classifier are as follows: the max depth is 8, the
number of estimators is 150, and the learning rate is 0.05; the
parameters in random forest classifier are as follows: the max
depth is 8, the number of estimators is 300; the parameters in

FIGURE 1 | Epidemic curves generated under various training sets.

TABLE 2 | The accuracy of different classifiers for training sets of 70 curves per generating model.

Methods sets Random forest XGBoost LightGBM AdaBoost CatBoost Stacking

4 0.98 0.98 0.98 0.98 0.98 0.99
6 0.98 0.96 0.97 0.99 0.99 0.99
8 0.94 0.91 0.94 0.94 0.94 0.93
10 0.95 0.94 0.95 0.96 0.96 0.95
12 0.97 0.97 0.96 0.98 0.98 0.98
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XGBoost classifier are as follows: the max depth is 10, the number
of estimators is 250, and the learning rate is 0.1.

Real Data Case Study: COVID-19 in Hubei
Province, China
We now consider training a classifier to find the parameters of
best fit for the two-level ILM for COVID-19 data from China. As
the first reported COVID-19 cases happened in the city of
Wuhan, we choose the Hubei province in China as the
example in this study. There are in total 17 cities in Hubei
province, and we utilize information on the population of
each city and the distance between cities for the two-level
epidemic ILM.

For the distance between each city, we use the center of each
city as its coordinate point, and then we choose to use the shortest
road traffic distance based on Baidu map (https://map.baidu.
com). Rather than using the total population size to calculate the
terms

∣∣∣∣Sk,t ∣∣∣∣ and ∣∣∣∣Ik,t ∣∣∣∣, we consider using the population in the
central urban area (where most citizens live). Further, we scaled
the population of each city based on the ratio of population
density in central urban area relative to that in Wuhan. Thus, the
population measure of each of the other 16 cities in Hubei will be
greater or less than one depending on whether their population
density in central urban area is greater or less than that ofWuhan.
These measures of population density are shown in Table 4
(adjusted population column).

The reported case data had some anomalies, and so some
preprocessing was carried out. For example, the number of new
cases in Wuhan on February 12, 2020, was recorded as more than
ten thousand, which is much larger than on other days. Also,
there were two other cities which had a two-day spike of an
excessively large magnitude. We believe these spikes represent
retrospectively found cases, which should have been recorded as
cases on earlier days, “dumped into the data” on those “spike”
days. Further, some values in the reported data were negative
because the health agencies subtracted retrospectively discovered
false positives from the date on which the false positives were
discovered, rather than the day on which they were initially
recorded. For the large one-day spike, we took the average of
values of three days before and three days after the spike and used
this average value to replace the spike case count. Then we
“scattered” the excess cases onto past days, at a rate
proportional to the previously observed cases recorded on
each day. The two-day spikes were replaced in a similar
manner, the difference being that in this case two spikes were
replaced by the average value. For negative values, we simply
replaced them with zero. Our preprocessed data can be found in
the Supplementary Tables S1, S2.

We build our classifier in the following way. To begin, we
consider epidemic generating models that are relatively spaced
out in the parameter space.We initially set the range of parameter
α0 from 5 × 10− 8 to 5 × 10− 6, the range of α1 from 0.0005 to 0.05,
the range of β from 1 to 9, the range of tstop from 40 to 100, the

TABLE 3 | The accuracy of different classifiers for training sets of 140 curves per generating model.

Methods sets Random forest XGBoost LightGBM AdaBoost CatBoost Stacking

4 1.00 1.00 0.99 1.00 1.00 1.00
6 0.98 0.98 0.98 0.98 0.98 0.98
8 0.97 0.95 0.96 0.96 0.96 0.96
10 0.97 0.96 0.96 0.97 0.97 0.97
12 0.96 0.96 0.96 0.97 0.97 0.97

TABLE 4 | Adjusted population of 17 cities in Hubei.

City Population in central
urban area (10,000)

Central
urban area (km2)

Density ratio Adjusted population (10,000)

Wuhan 918 917.5 1 918
Huangshi 85.99 260.36 0.3303 28.4
Shiyan 73.44 28.09 2.6145 192.01
Yichang 93.13 35.11 2.6525 247.03
Xiangyang 132.57 78.11 1.6972 225
Ezhou 45.97 208.95 0.22 10.11
Jingmen 57.17 30.83 1.8544 106.02
Xiaogan 57.38 109.02 0.5263 30.2
Jingzhou 87.05 52.62 1.6543 144.01
Huanggang 33.8 102 0.3314 11.2
Xianning 41.32 105.91 0.3901 16.12
Suizhou 50.25 26.58 1.8905 95
Xiantao 40.5 90.12 0.4494 18.2
Qianjiang 43.74 103.98 0.4207 18.4
Tianmen 29.92 49.19 0.6083 18.2
Enshi 28.39 20.28 1.3999 39.74
Shennongjia 3.6 1.62 2.2222 8
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range of c from 10 to 30, the range of pR from 0.1 to 0.7, and the
range of pD from 0.4 to 1. Specifically, for α0, we consider values of
5 × 10− 8, 5 × 10− 7, and 5 × 10− 6; for α1, we set the values to be
0.0005, 0.005, and 0.05. We set the step size of β to be 4 (i.e., we
considered values 1,5, and 9), the step size of tstop to be 30, the step
size of c to be 10, and the step size of pD and pR to be 0.3. Thus, we
have 37 epidemic generating models.We build our classifier based
upon epidemics generated by each model and then use the
Adaboost classifier to identify which of the candidate models
is the most likely generating model for the real data.

After the first round of classification, the most likely
generating model is found to be one with parameters:
α0 � 5 × 10− 8, α1 � 0.005, β � 1, tstop � 70, c � 20, pD � 0.4,
and pR � 0.7. Next, a less spaced-out set of parameter values
are considered to define the generating models. We set the range
of α0 from 2 × 10− 8 to 8 × 10− 8, the range of α1 from 0.002 to
0.008, the range of β from 0.5 to 3.5, the range of tstop from 55 to
85, the range of c from 15 to 25, the range of pD from 0.2 to 0.6,
and the range of pR from 0.5 to 0.9. We set the step size of α0 to be
3 × 10− 8, the step size of α1 to be 0.003, the step size of β to be 1.5,
the step size of tstop to be 15, the step size of c to be 5, the step size
of pD to be 0.2, and the step size of pR to be 0.2. The parameters of
the most likely generating model we get in this second round are

α0 � 2 × 10− 8, α1 � 0.002, β � 2, tstop � 70, c � 15, pD � 0.4, and
pR � 0.7. As the approach continues, parameters of candidate
generating models obviously get closer and closer to each other,
with generated curves overlapping more and more and
classification becoming less well defined. After six rounds of
classification, we converge on estimates of the parameters of the
most likely epidemic generating model for the real data:
α0 � 2.1 × 10− 8, α1 � 0.002, β � 2.5, tstop � 64, c � 16,
pD � 0.25, and pR � 0.85.

Recall that tstop denotes the interval of time from the initial
infection to the day when the epidemic was severely curtailed due
to lockdown. Given that the report of first suspected cases was in
early December 2019, the estimate of tstop � 64 matches quite
closely to real circumstances (note,Wuhan had severe restrictions
on Jan 23, 2020, and the other cities in Hubei were similarly
“closed down” within two or three days).

Figures 2A to Figure 2D show generated epidemic curves
from our chosenmodel for four cities in Hubei; one isWuhan and
the other three are chosen arbitrarily. Given the stochasticity
inherent in our model, and the complex population structure the
epidemic is being transmitted/simulated through, we get a lot of
variability in the epidemic curves generated. We can see that the
“fitted” two-level ILMmodel captures the dynamics of the SARS-

FIGURE 2 |Observed and simulated epidemic curves under final model for four cities in Hubei. Real data shown in red; light gray and yellow curves represent 15%
strongest and weakest epidemics simulated from the final model, respectively; remaining dark gray curves represent remaining 70% of simulated epidemics.
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CoV-2 spread reasonably well, especially in Wuhan. However,
there is a tendency for the epidemic peak under our model to be
overestimated and arrive a little late in other cities.

Of course, our model is relatively simple, assuming
homogeneity between cities in terms of both the transmission
process (after accounting for population dynamics) and the
observation model. Our suspicion is that the observation
model may be a major issue here. For example, note that the
delay mechanism is mimicking both a biological process (the
incubation period of the disease) and a bureaucratic process
(diagnosis and processing and publication of numbers of cases
per day). It therefore seems perfectly plausible that the delay
between infection and reporting of cases could differ between
different jurisdictions, in this case, cities.

Since the epidemic observed in Wuhan was by far the most
substantial, it makes sense that theWuhan data would be driving the
inference process for the finalmodel. It thereforemakes sense that the
model ends up parameterized in such a way that the data in Wuhan
are mimicked well by the fitted model, and the other cities less so.
Also, since Wuhan was the first city infected, it also makes sense that
the delay between infection and reportingwould be larger for that city
and others, since it was operating with less information than other
cities which had to deal with their infections a little later on.

In Figure 3, we see the “gray epidemic curves” (the 70% closest
to the observed epidemic) for Wuhan. Figures 4, 5 show these
“gray curves” for other cities. We can see that in Huangshi in

FIGURE 3 | Observed and simulated epidemic curves under final model
for Wuhan. Real data shown in red; dark gray curves represent 70% of curves
simulated from the final model closest to the true curve.

FIGURE 4 |Observed and simulated epidemic curves under final model for four cities in Hubei (other 12 cities in Figures 5, 6; for Wuhan, see Figure 3). Real data
shown in red; shifted real data accounting for potential differences in delays to reporting in different cities shown in blue; dark gray curves represent 70% of curves
simulated from the final model closest to the true curve.
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FIGURE 5 | Observed and simulated epidemic curves under final model for eight cities in Hubei (other four cities in Figure 6; for Wuhan, see Figure 3). Real data
shown in red; shifted real data accounting for potential differences in delays to reporting in different cities shown in blue; dark gray curves represent 70% of curves
simulated from the final model closest to the true curve.
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Figure 4A, if we shift the epidemic curve based on the observed
cases (shown in red) by a few days (shown in blue), the epidemic
curves produced by the fitted model much better match the
observed curve. Throughout Figures 4–6, we see a similar pattern
for the other cities in the province.

This would imply that the next step we might want to take in
refining our model is to allow for heterogeneity in the observation
model parameters between cities, probably starting with the delay
mechanism rate parameter, pD.

Overall, these results show that the two-level ILM model fitted
using an ensemble classifier can reasonably well reflect the spread of
SARS-CoV-2 among cities; this is especially true for Wuhan, and we
can see the potential for better capturing the dynamics of COVID-19
transmission among other cities through furthermodel development.

CONCLUSION

We construct a statistical inference framework that allows us to fit
a two-level individual-level epidemic model to data. We use
several ensemble learning classifiers to successfully estimate
model parameters, avoiding the high computation costs

exhibited by traditional methods of inference. The simulation
study shows good performance of the fitted model, and we
successfully fit our model to real data on COVID-19
transmission among 17 cities in Hubei province, China.

FUTURE WORK

In this study, we focus on analyzing the transmission of SARS-
CoV-2 among 17 cities in Hubei province, China. It would
certainly be of interest to see how our model performs on
COVID-19 data from different countries and indeed data on
other diseases. Here, also we choose to model disease
transmission within an SIR framework. In many scenarios,
more complex compartmental frameworks such as SEIR or
SIRS would be more appropriate. It would therefore be
desirable to test if classification-based inference for our model
works similarly well, as well as considering such frameworks for
COVID-19 transmission itself. An additional limiting factor was
that we made the simplifying assumption that the infectious
period was the same for all individuals. This is obviously not true
in practice, and so it would be desirable to relax this assumption.

FIGURE 6 | Observed and simulated epidemic curves under final model for four cities in Hubei (for Wuhan, see Figure 3). Real data shown in red; shifted real data
accounting for potential differences in delays to reporting in different cities shown in blue; dark gray curves represent 70% of curves simulated from the final model closest
to the true curve.
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There are also likely other risk factors, in addition to population
size/density, we might want to include within models of COVID-
19 spread to improve them. These could include demographic
descriptors of age distribution within cities, knowledge about
traffic flows between cities, and socioeconomic covariates.

As discussed previously, we might well wish to allow the
parameters of the observation model to vary between cities, to
allow for differences in recording and reporting procedures. In
addition, we may want to think about allowing these parameters
to change over time in line with jurisdictional government policy.

Finally, we will explore more classification methods, such as deep
learning methods, to attempt to build even more accurate classifiers,
especially for more complex models and populations structures.
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The Connectedness of the
Coronavirus Disease Pandemic in the
World: A Study Based on Complex
Network Analysis
Sha Zhu1, Meng Kou2, Fujun Lai3*, Qingxiang Feng4* and Guorong Du5
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and Economics, Kunming, China, 4Institute of Guangdong Hong Kong andMacao Development Studies, Sun Yat-sen University,
Guangzhou, China, 5Chinese Academy of Finance and Development,Central University of Finance and Economics, Beijing, China

Since the coronavirus disease (COVID-19) pandemic started at the beginning of 2020, it
has seriously affected various countries’ economic and social development and
accelerated the economic recession worldwide. Therefore, the connectedness of the
global COVID-19 network across countries is studied in this article. Based on COVID-19
correlations in 122 countries, we construct a complex network of COVID-19 from January
19, 2020, to August 15, 2020. We then deconstruct the overall global network connectedness
and analyze the connectedness characteristics. Moreover, we empirically investigate the network
connectedness influencing factors by using various countries’ macroeconomic and social data.
We find that the global COVID-19 pandemic network has some prominent complex network
properties, such as lowpath length, high clustering, andgood community structure. Furthermore,
population density, economic size, trade, government spending, and quality ofmedical treatment
are significant macrofactors affecting COVID-19 connectedness in different countries.

Keywords: COVID-19, pandemic, connectedness, complex network, economic and social factors

INTRODUCTION

The COVID-19 global pandemic has changed the world remarkably. In just a few months, from
limited local transmission in several countries, COVID-19 evolved into a multicountry spread and
raged in more than 100 countries and regions across five continents. The COVID-19 pandemic has
disrupted and changed the lifestyle of millions of people around the world and has had a profound
impact on international relations and the economy. At present, increasing attention is being paid to
the prevention and control of the COVID-19 pandemic. The pandemic is well under control in some
countries, such as China and Germany, but most countries, including the United States, still do not
have effective ways to control COVID-19. The fight against the COVID-19 pandemic has become a
top priority for governments in many countries and regions, and the public health sector has paid
unprecedented attention to protecting people’s lives.

The rapid spread of the COVID-19 pandemic is more than just a medical problem. It is also linked
to an infection network among countries worldwide. The complex network science of infectious
diseases can reveal necessary information about disease transmission behavior, as many studies have
shown. First, the research has revealed the typical characteristics of disease transmission behavior,
such as the critical transmission threshold. The virus can spread in the network only when the
transmission probability is more significant than a specific value called the propagation threshold of
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the network (Moore and Newman [1]). Moreover, nonrandom
networks, such as small-world and community structure
networks, are critical to disease transmission. Many real
networks have small-world characteristics in that they tend to
have small average distances and large clustering coefficients. In
such a network, diseases more easily infect others. In addition,
scholars [2] have found that a complex network with a
community structure can promote or effectively inhibit the
spread of diseases.

Furthermore, the key nodes in a network have a profound
impact on disease transmission. Outbreaks of infectious diseases
often spread rapidly from a small number of nodes to the entire
network. Scientists propose indicators such as page rank, node
degree, and k-shell to evaluate the network science characteristic
[3]. In disease research, the information of these key nodes can
reveal the path of disease transmission. Finally, network science
information can be formulated to control the spread of diseases
and reduce harmful transmission processes. In recent research,
Wang et al. [4] use a two-layer networkmodel method to find that
people who received positive prevention information had a lower
risk of disease infection than those who received negative
prevention information.

Therefore, this study establishes a complex network of COVID-
19 infections worldwide and investigates the influencing factors of
the pandemic’s connectedness across countries. We integrate three
methods, i.e., complex networks, visualization principles, and
regression models, to examine the global infection path of the
COVID-19 pandemic and explore possible causes for the rapid
COVID-19 spread. First, we calculate the correlation of COVID-19
infection growth rates between each pair of countries and obtain a
global correlation matrix for COVID-19 infections using the
sample from January 19, 2020, to August 15, 2020. Second, we
establish a global infection complex network using a global
correlation matrix to outline global COVID-19 pandemic
relations and study the global infection complex network
properties. Third, based on the properties of our complex
network, we further investigate how economic and social factors
(such as economic size, population density, international trade,
government expenditure, inflation, and medical level) affect the
network connectedness of the global COVID-19 infection complex
network, shedding light on the prevention and control of the
COVID-19 pandemic for policymakers.

The main conclusions are as follows. First, the complex
network of the global COVID-19 pandemic has some
prominent complex network properties, such as small-world
network and community structure characteristics. In our
network, there are a total of 958 edges in 122 countries
around the world. The average path length between any two
countries is approximately 3, the clustering coefficient is 0.58, and
the network can be divided into several modularity classes.
Second, in terms of intercountry connectedness, we further
examine important topological characteristics in our network,
e.g., degree, triangles, centrality, modularity class, hub, and
authority. We use visual figures to demonstrate these features.
The deeper the color is, the greater the connectedness in the visual
figure is. This suggests that our network reflects the actual
situation of the COVID-19 pandemic. Moreover, based on

similarity, we divide the complex network into ten modularity
classes. On the one hand, the community classification shows that
the United States, Russia, and Colombia, which are suffering
severely from the COVID-19 pandemic, are in one community,
and China and Japan, which have better epidemic control, are in
another community. On the other hand, the community
classification is closely related to each country’s geographical
location. Finally, the analysis of influencing factors reveals that
countries with considerable economic size, high population
density, and high government expenditure have a higher
network connectedness value. In contrast, countries with
adequate import capacity and better medical levels can reduce
the connectedness. In short, these empirical results can clearly
explain the reasons for the rapid global spread of the COVID-19
pandemic.

The contributions of this study are as follows. First, the global
COVID-19 pandemic network is constructed based on the
number of infected people, and the topological information
and connectedness characteristics of the network are obtained,
to some extent explaining the spread of the COVID-19 pandemic
from the perspective of a complex network. The global COVID-
19 pandemic network is a complex network with the
characteristics of short average distance and large clustering
coefficient and has a good community structure division.
Second, integrating the visualization method into the global
COVID-19 pandemic network provides visual results of
network connectedness, helping us determine the potentially
dangerous countries. Finally, we identify economic and social
factors affecting COVID-19 network connectedness, including
population density, GDP, exports, government spending, and
life expectancy. To reduce network connectedness, the
government should implement measures to reduce
population density, increase medical equipment imports,
improve the medical treatment level, and effectively allocate
government expenditures.

LITERATURE REVIEW

Vespignani, a professor who is famous for modeling the global
spread of epidemics, proposes that there are inherent limitations
to predictions in complex sociotechnical systems. However,
mathematical and computational models have successfully
forecast the size of epidemics and have been used to
communicate the risks of uncurbed infectious disease
outbreaks in recent years [5]. Since the beginning of the
COVID-19 outbreak, many mathematical models have been
proposed to describe the pandemic’s spread. Some of them
forecast the future dynamics of COVID-19. Perc et al. [6]
forecast COVID-19 by using a simple iteration method that
needs only the daily values of confirmed cases as input. Other
researchers focus on diagnosing the spread of COVID-19 and
analyzing the factors of disease transmission. Liu et al. [7] propose
a susceptible-asymptomatic-infected-removed (SAIR) model on
social networks to describe the spread of COVID-19 and analyze
the outbreak based on epidemic data fromWuhan. Kraemer et al.
[8] show that China’s drastic control measures substantially

Frontiers in Physics | www.frontiersin.org January 2021 | Volume 8 | Article 6020752

Zhu et al. Connectedness of Coronavirus Disease Pandemic

253

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


mitigated the spread of COVID-19. Tsiotas andMagafas [9] build
on the visibility graph algorithm to study the Greek COVID-19
infection curve as a complex network. These studies consider the
spread of COVID-19 to be complicated, and diagnosing the scale
and characteristics of the COVID-19 pandemic is conducive to
governments effectively blocking the spread of this epidemic in
their nations. Hence, we believe that it is very effective and
important to prevent and control the further spread of
COVID-19 by studying the connectedness characteristics of
the pandemic complex network.

Studying the connectedness characteristics in a complex
network through theoretical analysis and numerical simulation
is helpful in understanding the microscopic mechanism of the
spread process of an epidemic to discover practical ways to
control the spread. Previous research has shown that a real
social network is a typical complex network with small-world,
scale-free, and high clustering characteristics. Small-world
characteristics accelerate the spread of an epidemic, scale-free
features facilitate the spread of an epidemic, and high clustering
characteristics cause community clustering in epidemic
transmission [5, 10–17].

Hence, some scholars have combined complex network theory
with epidemiology. Ni [18] builds a dynamic model of an
epidemic and shows that infectious diseases spread much
faster in public networks than in in-home networks. In the
beginning, the number of infected people in the network
increases exponentially, and the spread speed obviously
increases with increasing local structural scale. Chen et al. [19]
simulate the propagation of the H1N1 virus based on complex
networks. The simulation results show that the targeted
immunization strategy can effectively inhibit the spread of
diseases. Wang et al. [3] deeply investigates influential
spreaders’ identification in complex networks based on various
centrality indices. Wang et al. [4] use a two-layer network model
method to find that people who received positive prevention
information had a lower risk of disease infection than those who
received negative prevention information.

All the abovementioned studies try to provide feasible ways to
curb the spread of the epidemic by using mathematical models or
complex network tools. They can help us to work with limited
data to solve problems in a constantly changing environment.
However, at present, there are few studies that examine the global
network of COVID-19. Therefore, determining the complicated
connectedness of the COVID-19 complex network can fill gaps in
the literature and effectively help the government identify good
policies to prevent the COVID-19 pandemic in a timely manner.
This study attempts to show the global situation of the COVID-19
pandemic based on a complex network. It profoundly analyzes
the significant economic and social factors that affect the
connectedness of the COVID-19 network to powerfully
supplement the above literature.

DATA

The growth rate of COVID-19-infected people in each country is
calculated using the COVID-19 infection sample from January

19, 2020, to August 15, 2020. The data came from the CSMAR
database. To analyze the influencing factors of global COVID-19
infection network connectedness, we use each country’s
economic and social macrodata in 2018 as samples. Economic
and social variables include GDP, total exports, total imports,
inflation rate, government expenses, population density, and life
expectancy. All these data are from the World Bank database.
From them, we take logarithms of GDP, total exports, total
imports, government expenses, and population density to
reduce the absolute values.

METHODOLOGY

Construction of COVID-19 Pandemic
Network
In this study, we build a COVID-19 infection complex network
among 122 countries. Any node in our network is a specific
country. Moreover, the possible connection between any two
countries is called an edge in the network. These nodes and
connected edges constitute the entire network of global COVID-
19 infections. The network may rely more on certain countries, as
many paths pass through them. Once this kind of country is
identified and excluded, the network may collapse. Therefore,
identifying these import infection nodes can enable governments
to better fight the pandemic.

The key step in constructing the COVID-19 pandemic
network is measuring the correlation of the growth rate of
COVID-19-infected people among countries. The specific
construction process of the COVID-19 pandemic network is
as follows.

First, we exclude countries with fewer than 2,000 infected
people and then calculate the growth rate of infected people in the
remaining 122 countries individually.

gi,t � ( infectedi,t
infectedi,t−1

− 1) × 100% i � 1, 2, . . . , 122, (1)

where gi,t is the infected persons growth rate of country i in
month t, infectedi,t is the number of infected persons of country i
in month t, and infectedi,t−1 is the number of infected persons in
country i in month t−1.

Second, we compute the correlation coefficients of the infected
persons’ growth rate between any two countries. The correlation
coefficient is formulated as follows:

ρX,Y � Cov(X,Y)������������
Var[X]Var[Y]√ , (2)

where Cov(X,Y) is the covariance of X and Y, Var[X] is the
variance of X, and Var[Y] is the variance of Y.

Third, we need to set a threshold for correlation
coefficients to define the existence of the possible
connection. To fulfill this purpose, we take half of the
mean of each country’s maximum correlation coefficient
(approximately 0.4) as the threshold value for the existence
of connectedness. If the correlation coefficient between the
two countries is higher than the threshold, a line is drawn in
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the network to connect these two countries, indicating a
connection between them.

This method can test the network connectedness between all
countries, draw undirected connecting lines in the network, and
finally create a COVID-19 pandemic infection network.

Complex Network Characteristics
Centrality Analysis
Centrality is an important indicator of each node’s status and role
in the network, and it can be used to judge whether an individual
node is influential [3]. The higher a node’s centrality is, the more
significant its influence in the network is, suggesting that it can
influence other nodes more prominently. In complex network
analysis, there are many ways to characterize the centrality of a
node. The most important are betweenness centrality, closeness
centrality, eigenvector centrality, and page rank.

1) Betweenness centrality
In a network, a certain node’s degree may be very small, but it
may be the intermediate node between any two other
nonadjacent nodes. If this node is removed, the connectivity
between the nonadjacent nodes will be interrupted. Therefore,
the node plays a vital role in the network. For such a node, we
can define betweenness.
The core idea is that the interaction between two nonadjacent
nodes depends on other nodes in the network, especially those
on the shortest path. They exert a certain control over the two
nonadjacent nodes. For example, if node A is located on
multiple shortest paths between other nonadjacent nodes,
node A plays a greater role and has greater betweenness
centrality.
Freeman [20] suggests that the shortest path between
nonadjacent nodes vj and vl will pass some nodes in a
network. If vi is passed by many other shortest paths, then
it is important in the network. Moreover, the importance or
influence of vi for vj and vl can be represented by Bi, defined as
follows:

Bi � ∑
1≤j≤N

[njl(i)
njl

], (3)

where njl is the number of shortest paths between nodes vj and
vl ; njl(i) is the shortest path between nodes vj and vl , which
passes through node vi; and N is the total number of nodes in
the network.
Then, the betweenness centrality of vi is defined as follows:

CB(vi) � 2Bi

[(N − 1)(N − 2)]. (4)

2) Closeness centrality
Sabidussi [21] proposes that the closeness centrality of vi
measures the extent of proximity to other nodes through
the shortest path. The closer the node is, the more
important it is in the network. The closeness centrality
value is the reciprocal of the average distance between node

vi and all other nodes that vi can reach. Specifically, closeness
centrality is defined as follows:

Cc
i �

1
Li

� n − 1
∑j∈Γ,j≠ idij

, (5)

where Γ is the set of nodes that vi can reach, Li is the average
distance to all other reachable nodes of vi, and dij is the distance
between vi and vj. The closeness indicator describes the
difficulty of reaching other nodes in the network through a
certain node vi. It reflects the ability of node vi to exert
influence on other nodes in the network. Therefore, the
closeness centrality can effectively reflect the global structure
of the network.

3) Eigenvector centrality
Bonacich [22] suggests that eigenvector centrality is another
important centrality measurement method for nodes. For node
vi, let the centrality score xi be proportional to the sum of the
centrality scores of all nodes connected to it.

xi � 1
λ
∑N
j�1

aijxj, (6)

where N is the total number of nodes and λ is the maximum
eigenvalue. Each score of the eigenvector must be positive.

4) Page rank
Page rank [23] can be understood as a randomwalk on a graph.
It can be defined as follows:

xk � ∑N
i�1

aikxi � (1 − d) + d ∑
i:bik�1

xi
ri
, (7)

where xk is the page rank value of node k; d is the model
parameter, usually d � 0.85; and aik is the probability of
transition from page i to page j.

Small-World Network
The small-world property is an important topological feature of
the network. Watts and Strogatz [10] propose the small-world
network model (WS small-world network). They argue that some
network systems are large in size but have a relatively small
distance between any two nodes. A typical small-world network
has a shorter average distance and a larger clustering coefficient.
For example, there are no more than six people between any two
strangers in a small-world social network.

1) Clustering coefficient

In a WS small-world network, the clustering coefficient
quantifies the tendency of the nodes of a complex graph to
cluster. In terms of a certain node v in the WS small-world
network, vi and vj are two neighboring nodes of node v. If we
reconnect vi and vj by random probability p, then the probability
of vi and vj still being neighboring nodes is (1 − p), and (1 − p)3 is
the probability that there is still an edge between vi and vj. Watts

Frontiers in Physics | www.frontiersin.org January 2021 | Volume 8 | Article 6020754

Zhu et al. Connectedness of Coronavirus Disease Pandemic

255

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


and Strogatz [10] and Barrat and Weigt [24] argue that the WS
clustering coefficient can be calculated as follows:

CWS(p) � 3(k − 1)
2(2k − 1) (1 − p)3. (8)

The initial network is a one-dimensional lattice of N sites, with
periodic boundary conditions (i.e., a ring), each vertex being
connected to its 2k nearest neighbors. The vertices are then visited
one after the other; each link connecting a vertex to one of its k
nearest neighbors in the clockwise sense is left in place with
probability (1 − p) and with probability p is reconnected to a
randomly chosen other vertex.

2) Average path length

The average distance between any two nodes would also show
interesting properties in a given complex network. The diameter
D of a complex network is defined as the maximum distance
between any pair of nodes.

Watts and Strogatz [10] argue that in terms of random
networks, almost all networks have the same diameter. This
means that the Nth-order random network with probability P
has a tiny change in diameter. Watts [25] suggests that the
diameter D is usually concentrated as follows:

D � lnN
ln〈k〉 ≈

lnN
ln(pN). (9)

Supposing LER is the average path length of the ER random
network, for a randomly selected node in the ER random
network, there are approximately 〈k〉LER other nodes in the
network with a distance from the selected node that is equal
or very close to LER. Therefore, LER ∝ lnN

ln〈k〉. It is a typical small-
world property that the average path length is proportional to the
logarithmic growth function. Since lnN grows slowly with N, a
large random network may have small average path lengths.

Modularity Class
Newman [26, 27] proposes modularity, which enables a clear
evaluation indicator to measure the segmentation of network
communities. In other words, modularity refers to the difference
between an ordinary network and a random network under a
specific community division criterion. Because the random
network does not have a community structure, the larger the
difference is, the better the community division will be.

Newman [27] defines modularity as follows:

Q � 1
4m

∑
ij

(Aij − kikj
2m

)(si,sj + 1) � 1
4m

∑
ij

(Aij − kikj
2m

)sisj, (10)

where m is the total number of edges in the network, A is the
corresponding adjacency matrix of the network, and Aij � 1
represents the existence of an edge between node i and node j.
Otherwise, there is no edge connection. ki is the degree of node i,
si is the label of node i belonging to a community, and 1

2 (si,sj +
1) � 1 if and only if si � sj; otherwise, 12 (si,sj + 1) � 0.

EMPIRICAL RESULTS AND DISCUSSION

COVID-19 Pandemic Network
In this section, we present our COVID-19 pandemic network.We
first calculate the daily growth rate of the infected population in
122 countries individually and then calculate the correlation
coefficient (ρij) of the growth rate between any two countries.
Furthermore, the threshold value for the existence of
connectedness is set as 0.4 since the half mean of each
country’s maximum correlation coefficient is 0.38. If the
correlation coefficient between country i and country j is
higher than the threshold value, i.e., ρij > 0.4, then the element
{aij} in the connectedness matrix is 1; otherwise, it is 0. If aij � 1,
there is an edge between country i and country j, and if aij � 0,
there is no edge between country i and country j. In addition, the
value of the element on the diagonal of the connectedness matrix
is set as 0, which indicates that there is no link between any
country and itself. We obtain our COVID-19 pandemic
connectedness matrix through the above calculation method
(as the number of countries involved is 122, we cannot
present the 122 × 122 matrix here). Because a zero growth
rate will affect the similarity calculation, we excluded 91
countries and regions with fewer than 2,000 infected people.

Finally, the COVID-19 pandemic network obtained in this
study is a complex network without considering the direction,
and it is an undirected network with 122 nodes and 958
connected edges.

Using the software Gephi, we generate a visual graph of our
network. The results are shown in Figure 1. Taking China, the
United States, and Brazil as examples, China has connectedness
with Singapore, Japan, and Thailand; the United States has
connectedness with Australia, Kenya, Colombia, Pakistan,
Dominica, Turkey, and Luxembourg; and Brazil has
connectedness with 16 countries, including Austria, Portugal,
Denmark, Saudi Arabia, and France.

Then, we use Gephi to obtain the network topology
characteristic values, which is the basis for the next step of the
analysis. Figures 2 and 3 show the COVID-19 pandemic network
parameters. Figure 2 shows the degree distribution in our
COVID-19 pandemic network. The overall distribution of the
graph shows that the COVID-19 pandemic network is relatively
dispersed. Figure 3 shows the clustering coefficient graph. The
larger the clustering coefficient is, the higher the extent of the
connection between neighbors is. Our COVID-19 pandemic
network has a clustering coefficient of 0.58. This large
clustering coefficient indicates that the COVID-19 pandemic
network is a very close world.

Other overall characteristics of the COVID-19 pandemic
network are shown in the following table.

Table 1 shows that the COVID-19 pandemic network has 122
nodes, and the number of edges between nodes is 985 with an
average degree of 7.85, average path length of 3.104, clustering
coefficient of 0.58, and diameter of 8. Moreover, the clustering
coefficient is large, so the network has close-world network
characteristics.
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FIGURE 1 | The global COVID-19 pandemic network. Note: This is the global COVID-19 pandemic network. It excludes countries with fewer than 2,000 infected
people. When the correlation of the growth rate of infected people is larger than 0.4, there is a connected edge between countries.

FIGURE 2 | The degree distribution of the global network. Note: Figure 2 represents the degree distribution. The vertical and horizontal axes of each subplot are
node counts and parameter distribution values, respectively. The horizontal axis represents the degree value of each country. The vertical axis represents the number of
countries. For example, value � 2 and count � 7 means that there are seven countries, and they all have a degree of two.

Frontiers in Physics | www.frontiersin.org January 2021 | Volume 8 | Article 6020756

Zhu et al. Connectedness of Coronavirus Disease Pandemic

257

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


In addition, the small-world network has the characteristics of
a small path length and a high clustering coefficient between
nodes. Our global COVID-19 pandemic network’s average path
length is 3.104, and its clustering coefficient is 0.58, indicating
that the global COVID-19 pandemic network has some
characteristics of a small-world network.

Connectedness Characteristics of the
Global COVID-19 Pandemic Network
In this section, we further analyze some important characteristics
of the global COVID-19 pandemic network. Specifically, we focus
on the degree, triangles, centrality, modularity class, and
authority and then provide the visual results.

Figure 4 represents the degree of each country in the global
COVID-19 pandemic network. The degree of country i is the total
number of edges directly connected to that country. The deeper a
country’s color is, the greater its degree is. As shown in Figure 4,
Brazil has the deepest color on the American continents; in
Europe, Austria has the greatest degree; in Asia, Israel and Sri
Lanka have the highest number of edges; in Oceania, the color of
Australia is the deepest; and in Africa, the countries with the
greatest degree are South Africa and Morocco. The above results

indicate that these countries have the greatest degrees with other
countries and a prominent ability to spread COVID-19 to other
countries. Thus, more attention should be paid to their capacity
and measures for COVID-19 pandemic prevention and control.

Figures 5–8 show the centrality analysis results, reflecting the
relative importance of each node in the network. Figure 5 shows
betweenness centrality. The countries with the deepest colors are
the Democratic Republic of the Congo, Australia, and Croatia,
which are located in Africa, Oceania, and Europe, respectively.
This finding indicates that these three countries play an
important betweenness role in the COVID-19 pandemic
network. Additionally, Canada and Cuba in North America
are also significant. We may more easily halt the global spread
of COVID-19 if we control the pandemic in these three
countries first.

Figure 6 shows eigenvector centrality. The three countries
with the deepest colors are Moldova, Sri Lanka, and Austria,
located in Europe, Asia, and Europe, respectively. This finding
shows that the three countries have the highest centrality scores
and are the nodes with the greatest importance in the COVID-19
pandemic network. Again, Austria shows its importance in the
COVID-19 pandemic network, indicating that the effective
control of COVID-19 in Austria has a significant role in
halting the global spread of the COVID-19 pandemic.

Figure 7 represents closeness centrality. The three countries
with the deepest colors are Kazakhstan, Iraq, and Uzbekistan, all
located in Asia. This means that Kazakhstan, Iraq, and
Uzbekistan may be important for Asian COVID-19 control.
Figure 8 shows harmonic closeness centrality. The empirical
results are the same as those shown in Figure 7.

Figure 9 shows the analysis results of authority, reflecting the
influence of nodes in the network. The three countries with the
deepest colors are Moldova, Israel, and Austria, located in

FIGURE 3 | The clustering coefficient distribution of the global network. Note: Figure 3 represents the distribution of clustering coefficients in various countries. The
vertical and horizontal axes of each subplot are node counts and parameter distribution values, respectively. The horizontal axis represents the clustering coefficient value
of each country. The vertical axis represents the number of countries.

TABLE 1 | Topological characteristics of the COVID-19 pandemic network.

Network N E <d> K C D

COVID-19 pandemic 122 958 7.85 3.104 0.58 8

Table 1 presents the topological information of the COVID-19 pandemic network. N is
the number of nodes. E is the number of edges. <d> is the average degree of the whole
network. K represents the average path length of the network. C is the clustering
coefficient of the network. D is the diameter of the network.
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Europe, Asia, and Europe, respectively. This indicates that the
infections in Moldova, Israel, and Austria are highly dangerous,
as these three countries may have high virus spread capacity.

Figure 10 shows modularity-class analysis results, describing
the community situation in the network. The results show that
the modularity coefficient is 0.526, and the COVID-19 pandemic
network is divided into 10 communities, representing community
structures. Community 0 contains 8 countries, including
Palestine, Poland, and the United Arab Emirates. Community
1 contains Cuba, the Democratic Republic of the Congo, and 23
other countries. Community 2 contains Mexico, Moldova, Sri
Lanka, Israel, and so on. Community 3 contains 13 countries,
including China, Canada, Britain, India, Germany, Australia, and
Japan. Community 4 contains 24 countries, including France,
Brazil, Austria, and South Africa. Community 5 contains Bahrain,
Iraq, and Oman. Community 6 contains 11 countries, including
Bangladesh, Kyrgyzstan, and Ghana. The countries in
Community 7 are Uzbekistan, Kazakhstan, and Guatemala.

The countries in Community 8 are Iran, South Korea, and
Italy. Community 9 contains 16 countries, including the
United States, the Russian Federation, and Colombia.

The Determinants of Connectedness
According to the above analysis, the connectedness of the global
COVID-19 infection network varies across different countries.
Therefore, what factors influence the network connectedness of
COVID-19 infection? Hereafter, this study further explores how
economic factors, population density, medical level, and other
social factors influence the connectedness of COVID-19 by using
a quantitative regression method to provide a theoretical basis
and guidance for policymakers’ prevention and control measures.

We build the econometric model as follows:

connectednessi � β0 + β1LnDensity + β2LnGDP + β3LnExport

+ β4LnImport + β5Inflation + β5Expense

+ β6LifeExpectancy + εi,

FIGURE 4 | The degree of the global COVID-19 pandemic network.

FIGURE 5 | The betweenness centrality of the global COVID-19 pandemic network.
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where connectednessi represents degree, eigenvector centrality,
betweenness centrality, closeness centrality, harmonic centrality,
page rank, authority, hub, and triangles separately. LnDensity
means the logarithms of population density. LnGDP is the
logarithms of economic size. LnExport is the logarithms of
total exports. LnImport is the logarithms of total imports.
Inflation indicates monetary policy. Expense represents
government expenditure. Life represents life expectancy,
reflecting the quality of medical treatment.

Table 2 shows the regression results between the characteristics
of the COVID-19 pandemic network and other possible
determinant factors. In columns (1)–(7), we investigate how the
degree, eigenvector centrality, betweenness centrality, closeness
centrality, harmonic closeness centrality, page rank, authority,
hub, and triangles are affected by possible influencing factors.

In columns (1) and (2), LnGDP and Expense are significantly
positive at the 10% confidence level, indicating that economic
level and government expenditure will significantly increase
degree and eigenvector centrality. In column (3), LnGDP is
also significantly positive at the 5% confidence level, indicating
that the economic scale significantly increases betweenness
centrality, consistent with the result of degree and eigenvector
centrality. Inflation is significantly negative at the 5% confidence
level, suggesting that it significantly reduces betweenness
centrality. In column (5), the estimated coefficient of LnGDP
is still significantly positive at 10%, suggesting that economic size
will significantly increase harmonic closeness centrality. In
column (6), LnDensity, LnGDP, and Expense are all
significantly positive at the 5% confidence level, indicating that
population density, economic scale, and government expenditure

FIGURE 6 | The eigencentrality of the global COVID-19 pandemic network.

FIGURE 7 | The closeness centrality of the global COVID-19 pandemic network.
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increase page rank. However, LnImport is significantly negative at
5%, indicating that imports significantly reduce page rank. In
columns (7) and (8), Expense has a significantly positive
coefficient at 1%, meaning that the amount of government
expenditure will significantly increase authority and hub. In
column (9), LnGDP and Expense are significantly positive at
5%, indicating that the size of the economy and government
spending significantly increase triangles.

Overall, the economic development level and government
spending show significant positive effects on COVID-19
infection connectedness. If policymakers hope to curb the
spread of COVID-19 effectively, they should give priority to

the COVID-19 pandemic, appropriately reduce economic
activities, and avoid crowd gatherings to reduce the risk of
infection. Moreover, government expenditures need to be
allocated more effectively. Controlling and preventing the
spread of COVID-19 should be the first goal of government
expenditures. More government resources should be used to
purchase medical devices and improve medical staff
protection and treatment. The United States is a case in
point. As the United States has prioritized the economy in
its COVID-19 prevention policy, a large amount of fiscal
spending has been used to subsidize economic activities
rather than medical resources. As a result, the number of

FIGURE 8 | The harmonic closeness of the global COVID-19 pandemic network.

FIGURE 9 | The authority of the global COVID-19 pandemic network.
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confirmed COVID-19 cases in the United States is
approaching 9 million.

The Determinants of Connectedness: Asia
and Europe
To further analyze how economic and social factors affect Asian
and European countries’ connectedness characteristics
differently, this study divides the samples into Asian and
European countries.

Table 3 shows the empirical results in Asia. In Asia,
LnDensity, LnGDP, and LnExport are significantly positive at
the 10% confidence level for degree, eigenvector, authority, hub,
and triangles, indicating that population density, economic
activities, and export activities show significantly positive
effects in the Asian COVID-19 pandemic network. However,
LnImport is persistently significantly negative at the 10 or 5%
confidence level for degree, eigenvector, page rank, authority,
hub, and triangles, showing that imports can effectively reduce
the characteristics of the COVID-19 pandemic network in Asia.

FIGURE 10 | The modularity class of the global COVID-19 pandemic network.

TABLE 2 | Determinants of connectedness: global.

Variables (1) (2) (3) (4) (5) (6) (7) (8) (9)

Degree Eigen Betweenness Closeness Harmonic Page
rank

Authority Hub Triangles

LnDensity 0.7450 0.0217 −13.9320 −0.0020 0.0024 0.0007** 0.0036 0.0036 2.1949
(1.46) (0.75) (−0.53) (−0.12) (0.14) (2.03) (0.55) (0.55) (1.50)

LnGDP 2.9796** 0.1207* 72.1867** 0.0440 0.0551* 0.0025*** 0.0249 0.0249 8.1021**
(2.28) (1.76) (2.39) (1.60) (1.81) (3.51) (1.63) (1.63) (2.08)

LnExport 0.2037 −0.0009 −10.2764 −0.0181 −0.0111 0.0004 −0.0014 −0.0014 0.3559
(0.10) (−0.01) (−0.20) (−0.52) (−0.27) (0.31) (−0.06) (−0.06) (0.05)

LnImport −4.1171 −0.1654 −73.2675 −0.0328 −0.0537 −0.0036** −0.0341 −0.0341 −12.4868
(−1.50) (−1.12) (−1.06) (−0.80) (−1.05) (−2.36) (−1.03) (−1.03) (−1.48)

Inflation −0.0531 −0.0037 −6.4161** −0.0000 −0.0001 −0.0001* −0.0010 −0.0010 −0.0766
(−0.78) (−1.03) (−2.39) (−0.02) (−0.02) (−1.78) (−1.29) (−1.29) (−0.33)

Expense 0.2523*** 0.0126*** 2.4979 −0.0001 0.0012 0.0001*** 0.0029*** 0.0029*** 0.7041***
(3.53) (3.47) (1.06) (−0.03) (0.55) (3.39) (3.48) (3.48) (3.25)

Life 0.0605 0.0067 0.6182 0.0031 0.0033 0.0000 0.0019 0.0019 0.5413
(0.54) (1.12) (0.14) (1.28) (1.29) (0.46) (1.38) (1.38) (1.47)

Constant 7.0192 0.0728 217.2144 0.2184 0.2472 0.0080* −0.0029 −0.0029 8.3716
(1.00) (0.21) (0.92) (1.48) (1.45) (1.95) (−0.04) (−0.04) (0.41)

Observations 79 79 79 79 79 79 79 79 79
R-squared 0.228 0.212 0.102 0.039 0.057 0.232 0.218 0.218 0.232

This table constructs regression models for global determinants of connectedness. Dependent variables are network connectedness characteristics. Independent variables are economic
and social factors. Values in parentheses are the T statistical values; ***, **, and * indicate significance at the levels of 1, 5, and 10%, respectively.
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In summary, for Asian countries, population density and
economic activities significantly increase the connectedness of
the COVID-19 pandemic network, which is consistent with the
full sample results. As most Asian countries have large
populations and high residential density, it is very important
and influential for them to decrease economic activities and
strengthen quarantine measures appropriately. In addition,
more substantial imports would reduce the connectedness of

the COVID-19 pandemic network in Asian countries. We suspect
that one of the reasons is that most Asian countries’medical level
is still relatively low. More imports of materials and medical
equipment can effectively reduce domestic resource pressure,
thus reducing connectedness.

Table 4 shows the empirical results for Europe. In Europe, the
coefficients of Expense for degree, eigenvector, closeness,
harmonic closeness, and page rank are significantly positive at

TABLE 3 | Determinants of connectedness: Asia.

Variables (1) (2) (3) (4) (5) (6) (7) (8) (9)

Degree Eigen Betweenness Closeness Harmonic Page
rank

Authority Hub Triangles

LnDensity 3.1811* 0.1962** 21.1112 −0.0711 −0.0586 0.0013* 0.0438** 0.0438** 10.8935**
(2.28) (2.87) (0.69) (−1.01) (−0.88) (1.92) (2.87) (2.87) (2.80)

LnGDP 6.5357* 0.3872* 62.9644 0.0091 0.0281 0.0038* 0.0874* 0.0874* 21.9928*
(2.00) (2.30) (0.79) (0.09) (0.26) (1.96) (2.29) (2.29) (2.24)

LnExport 10.9008 0.6387* 50.8330 0.0305 0.0631 0.0059 0.1464* 0.1464* 35.9940*
(1.78) (2.16) (0.37) (0.16) (0.31) (1.36) (2.19) (2.19) (1.96)

LnImport −21.0506** −1.2356** −149.3194 −0.0607 −0.1177 −0.0118* −0.2827** −0.2827** −70.3091**
(−2.43) (−3.04) (−0.74) (−0.25) (−0.46) (−1.92) (−3.06) (−3.06) (−2.81)

Inflation 0.0684 −0.0058 −7.8613 0.0080 0.0072 0.0000 −0.0025 −0.0025 0.4325
(0.19) (−0.34) (−0.82) (0.52) (0.48) (0.19) (−0.65) (−0.65) (0.41)

Expense 0.1327 0.0092 3.9181 −0.0034 −0.0019 0.0000 0.0023 0.0023 0.3640
(0.46) (0.67) (0.74) (−0.35) (−0.20) (0.22) (0.74) (0.74) (0.43)

Life −0.3162 −0.0248 −2.2921 0.0116 0.0087 0.0001 −0.0051 −0.0051 −0.6678
(−0.69) (−1.13) (−0.22) (0.56) (0.42) (0.44) (−1.05) (−1.05) (−0.50)

Constant 66.9493* 4.1986** 655.5296 0.2487 0.5011 0.0241 0.9375** 0.9375** 188.7532
(1.88) (2.42) (0.83) (0.16) (0.29) (1.08) (2.39) (2.39) (1.77)

Observations 16 16 16 16 16 16 16 16 16
R-squared 0.545 0.632 0.250 0.311 0.292 0.520 0.640 0.640 0.611

Note: This table constructs regression models for the determinants of connectedness in Asia. Dependent variables are network connectedness characteristics. Independent variables are
economic and social factors. Values in parentheses are the T statistical values; ***, **, and * represent significance at the levels of 1, 5, and 10%, respectively.

TABLE 4 | Determinants of connectedness: Europe.

Variables (1) (2) (3) (4) (5) (6) (7) (8) (9)

Degree Eigen Betweenness Closeness Harmonic Page
rank

Authority Hub Triangles

LnDensity 0.9020 0.0689 28.5923 0.0345 0.0392 0.0007 0.0157 0.0157 3.5322
(0.60) (0.89) (0.72) (1.67) (1.68) (0.69) (0.87) (0.87) (0.74)

LnGDP 0.2223 0.0478 60.4216 0.0681 0.0740 0.0009 0.0140 0.0140 −0.1817
(0.09) (0.36) (0.73) (1.37) (1.39) (0.56) (0.45) (0.45) (−0.02)

LnExport 0.5186 0.1156 12.5290 0.0634 0.0832 −0.0007 0.0137 0.0137 −7.0843
(0.07) (0.30) (0.06) (0.89) (0.95) (−0.14) (0.15) (0.15) (−0.28)

LnImport −2.1137 −0.2598 −113.1319 −0.1503 −0.1819 −0.0010 −0.0503 −0.0503 2.1277
(−0.21) (−0.49) (−0.36) (−1.25) (−1.30) (−0.14) (−0.41) (−0.41) (0.06)

Inflation −1.0538** −0.0673*** −25.0360* −0.0101** −0.0120** −0.0007** −0.0168*** −0.0168*** −4.0368**
(−2.37) (−2.85) (−1.85) (−2.22) (−2.15) (−2.26) (−3.01) (−3.01) (−2.49)

Expense 0.2490** 0.0105* 6.4767 0.0034* 0.0045** 0.0002** 0.0023 0.0023 0.6057*
(2.26) (1.83) (1.54) (1.99) (2.37) (2.60) (1.69) (1.69) (1.73)

Life −0.5094* −0.0381** −8.2352 −0.0066** −0.0073** −0.0003 −0.0088** −0.0088** −1.7204*
(−1.90) (−2.62) (−1.06) (−2.61) (−2.34) (−1.48) (−2.57) (−2.57) (−1.77)

Constant 62.6958** 4.5161*** 1,092.8542 0.9114*** 1.0772*** 0.0359** 1.0523*** 1.0523*** 217.3826**
(2.78) (3.93) (1.45) (4.58) (4.53) (2.30) (3.94) (3.94) (2.71)

Observations 33 33 33 33 33 33 33 33 33
R-squared 0.326 0.398 0.232 0.301 0.335 0.330 0.410 0.410 0.409

Note: This table constructs regression models for the determinants of connectedness in Europe. Dependent variables are network connectedness characteristics. Independent variables
are economic and social factors. Values in parentheses are the T statistical values; ***, **, and * indicate significance at the levels of 1, 5, and 10%, respectively.
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10 or 5%, meaning that government expenses in Europe may be a
burden and that governments do not effectively use their
resources to control the COVID-19 pandemic. The estimated
coefficients of inflation for all characteristics are all significantly
negative except for betweenness and page rank. All the estimated
coefficients of Life are significantly negative at 10 or 5%,
indicating that as countries with higher life expectancy are
more likely to have a better medical level; life expectancy is
negatively associated with the connectedness of the COVID-19
pandemic network.

Compared with Asian countries, economic activity,
population density, and government expenditure do not
significantly increase the connectedness of the COVID-19
pandemic network in Europe. However, life expectancy can
effectively reduce network connections. As European countries
have more capital intensive and high value-added industries
compared with Asia, the infection possibility of COVID-19 is
relatively low in those industries. We believe that cutting down
economic activities can not effectively prevent and control the
spread of COVID-19 pandemic in Europe. Moreover, as the
population density in Europe is much lower than that in Asia, it
is difficult for the government of European countries to lower
their population density furthermore. Therefore, population
density is not significantly associated with the connectedness
of the COVID-19 pandemic in Europe. Compared with Asian
countries, most European countries have a higher economic
development level, so their government expenditure is generally
used for medical expenditure. Government expenditure can
effectively strengthen a country’s medical resources.
Therefore, life expectancy in Europe is higher, and life
expectancy is negatively associated with the connectedness of
the COVID-19 network, suggesting that the European medical
level is useful for preventing and controlling COVID-19.

Due to differences in economic and social characteristics,
policymakers should use different prevention and control
measures for different countries. Each country should
implement prevention policy measures according to its local
conditions. Only in this way can we effectively control the
further spread of COVID-19.

CONCLUSION

Based on the growth pattern of the number of COVID-19
infections worldwide, this study constructed a complex
network among 122 countries. Complex network analysis was
used to deconstruct the overall connectedness of COVID-19
infection networks, visualize the connectedness characteristics
among countries in the network, and further explore the
influencing factors of the global COVID-19 infection network
based on macrodata such as the economy, population, and life
expectancy.

Our research shows that, first, in terms of overall
connectedness, the global COVID-19 pandemic network has

small-world network, close-world network, and community
structure features. There are a total of 958 edges in 122
countries worldwide, which are divided into ten communities.
This network has a small average path length (3.14) and a high
clustering coefficient (0.58), and its diameter is 8. Second, in
terms of intercountry connectedness, some countries have a
significant influence on the global COVID-19 pandemic
network, such as Austria (Europe), Croatia (Europe), Moldova
(Europe), Brazil (South America), Canada (North America), Iran
(Asia), Kazakhstan (Asia), Uzbekistan (Asia), Republic of the
Congo (Africa), and Austria (Oceania). More attention should be
paid to these countries for further control of COVID-19.

In addition, we divide the network into ten communities. The
United States, Russia, and Colombia, which are suffering more
severely from COVID-19, are in a community, while China and
Japan, which have better control of COVID-19, are in another
community.

Finally, in the influencing factor analysis, our study finds that
population density, economic size, exports, and government
expenditure significantly increased the connectedness of the
COVID-19 infection network. However, imports and life
expectancy significantly reduced the connectedness of the
COVID-19 infection network. This result indicates that
countries with large economic size, high population density,
and high government expenditure more easily suffer from and
spread COVID-19. In contrast, countries with adequate import
capacity and a better medical level can reduce the network
connectedness.
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Causal Analysis of Health
Interventions and Environments for
Influencing the Spread of COVID-19
in the United States of America
Zhouxuan Li1, Tao Xu1, Kai Zhang1, Hong-Wen Deng2, Eric Boerwinkle1 andMomiao Xiong1*

1School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States, 2Tulane Center
of Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans,
LA, United States

Given the lack of potential vaccines and effective medications, non-pharmaceutical
interventions are the major option to curtail the spread of COVID-19. An accurate
estimate of the potential impact of different non-pharmaceutical measures on
containing, and identify risk factors influencing the spread of COVID-19 is crucial for
planning themost effective interventions to curb the spread of COVID-19 and to reduce the
deaths. Additive model-based bivariate causal discovery for scalar factors and multivariate
Granger causality tests for time series factors are applied to the surveillance data of lab-
confirmed Covid-19 cases in the US, University of Maryland Data (UMD) data, and Google
mobility data fromMarch 5, 2020 to August 25, 2020 in order to evaluate the contributions
of social-biological factors, economics, the Google mobility indexes, and the rate of the
virus test to the number of the new cases and number of deaths fromCOVID-19.We found
that active cases/1,000 people, workplaces, tests done/1,000 people, imported COVID-
19 cases, unemployment rate and unemployment claims/1,000 people, mobility trends for
places of residence (residential), retail and test capacity were the popular significant risk
factor for the new cases of COVID-19, and that active cases/1,000 people, workplaces,
residential, unemployment rate, imported COVID cases, unemployment claims/1,000
people, transit stations, mobility trends (transit), tests done/1,000 people, grocery,
testing capacity, retail, percentage of change in consumption, percentage of working
from home were the popular significant risk factor for the deaths of COVID-19. We
observed that no metrics showed significant evidence in mitigating the COVID-19
epidemic in FL and only a few metrics showed evidence in reducing the number of
new cases of COVID-19 in AZ, NY and TX. Our results showed that the majority of non-
pharmaceutical interventions had a large effect on slowing the transmission and reducing
deaths, and that health interventions were still needed to contain COVID-19.

Keywords: COVID-19, causal inference, time series, control of the spread, transmission dynamics, public health
interventions
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INTRODUCTION

As of August 25, 2020, the number of cumulative cases of
COVID-19 in the US exceeded 5,727,107 and included
170,305, deaths (John Hopkins Coronavirus Resource Center,
https://coronavirus.jhu.edu/MAP.HTML), thus causing a
devastating public health and economic crisis. Since the
number of new cases in the US remains high (36,339 in the
US on August 25, 2020) ((John Hopkins Coronavirus Resource
Center, https://coronavirus.jhu.edu/MAP.HTML), curbing the
spread of COVID-19 is urgently needed [1]. There is
increasing recognition that many geographic, economic and
environmental factors contribute to the outbreak of COVID-
19. In the absence of vaccines and specifically effective
medications, non-pharmaceutical public health interventions
and personal hygiene practices are the only options to slow
the spread of COVID-19 [2, 3]. The effects of the different
factors and intervention measures on the spread of COVID-19
vary. Identifying key factors that most contribute to the rapid
spread of COVID-19, and accurately estimating the potential
impact of different non-pharmaceutical measures for containing
COVID-19 are crucial for planning the most effective
interventions to curb the spread of COVID-19 [4].

The widely used statistical methods for COVID-19
epidemiological factor analysis and evaluation of intervention
measures include correlation analysis [2, 4–6], regression [7, 8],
logistic regression [9] and a transmission dynamic model coupled
with a linear model [10]. The most examined scalar factors
consist of underlying health conditions such as high blood
pressure, diabetes, stroke, cardiac or kidney diseases, and aging
individuals [2, 11, 12], atmospheric temperature [5], age, gender,
ethnicity, and population density [2, 13], airflow [2], and
socioeconomics such as median income [9, 14].

The most explored non-pharmaceutical public health
interventions and digital technologies for curbing the spread
of COVID-19 include social distancing, case isolation and
quarantine as well as closuring borders, schools travel
restrictions, use of face-masks, and testing [15–18] and
population surveillance, case identification, contact tracing,
mobility data collection, and communication technology,
which utilize billions of mobile phones and large online
datasets to provide information for the evaluation of
intervention strategies and to strengthen the curb of the
spread of COVID-19 [17–19].

Although association analysis is of great importance for
curbing the spread of COVID-19, association measures
dependence between two variables or two sets of variables in
the data, and use the dependence for prediction and evaluation
of the effects of environmental, social-economic factors and
public health interventions on the spread of COVID-19 [20, 21].
It is well recognized that association analysis is not a direct
method to discover the causal mechanism of complex diseases.
Association analysis may detect superficial patterns between
intervention measures and transmission variables of COVID-
19. Its signals provide limited information on the causal
mechanism of the transmission dynamics of COVID-19 [22].
Association analysis has been a major paradigm for statistical

evaluation of the effects of influencing factors and health
interventions on the spread of COVID-19 [23].
Understanding the transmission mechanism of COVID-19
based on association analysis remains elusive. The question
to uncover the transmission mechanisms of COVID-19 is
causal in nature.

Distinguishing causation from association is an age-old
problem. Methods for causation analysis that is one of the
most challenging problems in science and technology need to
be developed as an alternative to association analysis [24]. A
number of researchers have performed causal analysis of COVID-
19 to evaluate the causal effects of mobility, awareness, and
temperature [22], social distancing [21], mobility [25], herd
immunity [26], and mask use [27]. However, most causal
analysis of COVID-19 have treated time series data as pseudo-
cross-sectional data. In some cases, causal analysis of COVID-19
treated the data as time series; time series was assumed stationary.
In practice, the number of new cases and the number of deaths
from COVID-19 were nonstationary time series in most cases
[28]. The environmental, social-economic and geographic
factors, and intervention measures include two types of data:
scalar variables and time series (stationary or nonstationary)
variables.

The purpose of this paper is to develop a general framework
for the causal analysis of COVID-19 in the US. The number of
new cases and deaths from COVID-19 are taken as response
variables. The factors and intervention measures are taken as
potential causal variables. If the factor and intervention
variables are scalar variables, the additive noise models
(ANMs) [29] are used to test for causation between the
response variable and potential causal variable where the
number of new cases or deaths should be averaged over
time. Most intervention measures are time series data. An
essential difference between time series and cross-sectional
data is that the time series data have temporal order, but
cross-sectional data do not have any order. As a
consequence, the causal inference methods for cross
sectional data cannot be directly applied to time series data.
Basic tools in statistical analysis are the raw of large numbers
and the central limit theorem. Applications of these tools
usually assume that all moment functions are constant.
When the moment functions of the time series vary over
time, the raw of large numbers and the central limit
theorem cannot be applied. In order to use basic
probabilistic and statistical theories, the nonstationary time
series must be transformed to stationary time series [30].

A widely used concept of causality for time series data is
Granger causality [31, 32]. Underlying the Granger causality is
the following two principles:

(1) Effect does not precede the cause in time;
(2) The effect series contains unique causal series information

which is not present elsewhere.

The multivariate linear Granger causality test will be used to
test causality between the number of new cases and deaths from
COVID-19 and environmental, economic and intervention time
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series variables [33]. The proposed ANMs and multivariate
linear Granger causality analysis methods are applied to the
surveillance data of lab-confirmed COVID-19 cases in the US,
UMD data, and Google mobility data from March 5, 2020 to
August 25, 2020 in order to evaluate the contributions of social-
biological factors, economics, the Google mobility indexes, and
the rate of virus testing to the number of the new cases and
number of deaths from COVID-19. Data and software for
implementing the algorithms for causal analysis can be
downloaded from our website https://sph.uth.edu/research/
centers/hgc/software/xiong/.

MATERIAL AND METHODS

Nonlinear Additive Noise Models for
Bivariate Causal Discovery
The ANMs are used for identifying causal effect of a factor or an
intervention measure on the number of new cases or an
intervention measure [29, 34]. Assume no confounding, no
selection bias, and no feedback. Let Y be the average number
of new cases or new deaths from COVID-19 and X be a scalar
factor or an intervention measure such as gender, population
density, ethnic group, among others. Consider a bivariate additive
noise model X→Y where Y is a nonlinear function of X and
independent additive noise EY :

Y � fY(X) + EY , X∐EY , (1)

where X and EY are independent. Then, the density PX,Y is said to
be induced by the additive noise models (ANM) from X to Y [35].
In some cases, we may have the following alternative direction of
the ANMs: Y→X:

X � fX(Y) + EX , Y∐EX , (2)

where Y and EX are independent. If the density PX,Y is induced by
the ANM X→Y , but not by the ANM Y→X, then the ANM
X→Y is identifiable.

Assume that n + m state data were sampled. Divide the dataset
into a training data set by specifying D1 � {Yn, Xn}, Yn �
[y1, ..., yn]T , Xn � [x1, . . . , xn]T for fitting the model and a
test data set D2 � {~Ym, ~Xm}, ~Ym � [~y1, . . . , ~ym]T , ~Xm �
[~x1, . . . , ~xm ]T for testing the independence, where n is not
necessarily equal to m.

Procedures for using the ANM to assess causal relationships
between two variables are summarized below [34].

Step 1. Regress Y on X using the training dataset D1 and non-
parametric regression methods:

Y � f̂ Y(X) + EY (3)

Step 2. Calculate the residual ÊY � Y − f̂ Y(X) using the test
dataset D2 and test whether the residual ÊY is independent of
causal X to assess the ANM X→Y .
Step 3. Repeat the procedure to assess the ANM →X.

Step 4. If the ANM in one direction is accepted and the ANM in the
other is rejected, then the former is inferred as the causal direction.

There are many non-parametric methods that can be used to
regress Y on X or regress X on Y. For example, we can use neural
networks [36], smoothing spline regression methods [37],
B-spline [38] and local polynomial regression [39]. In this
paper, the smoothing spline regression method was used to fit
the regression models.

Covariance can be used to measure association but
cannot be used to test independence between two variables
with a non-Gaussian distribution (https://en.wikipedia.org/
wiki/Correlation_and_dependence). A covariance operator that
is a generalization of the finite dimensional covariance matrix
to infinite dimensional feature space can be used to test for
independence between two variables with arbitrary
distributions. Specifically, we will use the Hilbert-Schmidt
norm of the cross-covariance operator or its approximation,
the Hilbert-Schmidt independence criterion (HSIC) to
measure the degree of dependence between the residuals
and potential causal variable and test for their
independence [35, 40].

The covariance operator can be defined as

Cov (f (X), g(Y)) �� 〈f ,C(X,Y)g〉F ,
where f , g are any nonlinear functions and C(X,Y) is the
covariance operator and 〈.〉F is an inner product in the F
Hilbert space. The covariance operator is positive
symmetric, which implies linearity and continuity. In
addition, the covariance operator maps spaces in their
dual spaces [41]. The Hilbert-Schmidt norm of the
covariance operator can be used as criterion for assessing
independence between two random variables and is called
the Hilbert-Schmidt independence criterion (HSIC). The
Hilbert-Schmidt norm of the centered covariance operator
is defined as

HSIC2(X,Y) � ‖CXY‖2HS,
where ‖.‖HS is the Hilbert-Schmidt norm.

We know that (Wang et al., 2018). HSIC2(X,Y) � 0 if and
only if X and Y are independent. HSIC2(X,Y) can be
approximated by.

HSIC2(X,Y) � 1
n2

tr(KHLH),

where n is a sample size, K and L � are n × n dimensional
kernel matrices and H � I − 1n1Tn

n . We used the Gaussian
kernel: k(x, y) � e−

x−y2
2σ2 , σ > 0 and polynomial kernel. The

order- d polynomial kernel is defined as
k(x, y) � (xTy + c)d . The fourth and sixth order polynomial
kernels were used in this analysis. To test independence
between the potential cause X and residual EY , we
calculated HSIC2(X, EY ) as follows.

HSIC2(X, EY ) � 1
n2

tr(KXHKEY),
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KEY � ⎡⎢⎢⎢⎢⎢⎣ kEY(ε1, ε1) / kEY(ε1, εn)
« « «

kEY(εn, ε1) / kEY(εn, εn)
⎤⎥⎥⎥⎥⎥⎦

andKX � ⎡⎢⎢⎢⎢⎢⎣ kX(x1, x1) / kX(x1, xn)
« « «

kX(xn, x1) / kX(xn, xn)
⎤⎥⎥⎥⎥⎥⎦,

εi � ÊY(i) � Yi − f̂ Y(Xi), i � 1, . . . , n,

In summary, the general procedure for testing
independence between the average number of new cases or
new deaths and the scalar factor or intervention measure is
given as follows [34, 35]:

Step 1: Divide a data set into a training data set Dn � {Yn, Xn}
for fitting the model and a test data set Dm � {~Yn, ~Xn} for
testing the independence.
Step 2: Use the training data set and any non-parametric
regression methods

(a) Regress Y on X: Y � fY(X) + EY ,
(b) Regress X on Y : X � fX(y) + EX .

Step 3: Use the test data set and any non-parametric regression
methods that fits the test data set Dm � {~Yn, ~Xn} to predict
residuals:

(a) ÊYX � ~Y − ~f Y(~X),
(b) ÊXY � ~X − f̂ X(~X).

Step 4: Calculate the dependence measures HSIC2(EY ,X) and
HSIC2(EX ,Y).
Step 5: Infer causal direction:

X→Y if HSIC2(EY ,X)<HSIC2(EX ,Y); (4)

Y→X if HSIC2(EY ,X)>HSIC2(EX ,Y); (5)

IfHSIC2(EY ,X) � HSIC2(EX ,Y), then causal direction is undecided.
We do not have closed analytical forms for the

asymptotic null distribution of the HSIC and hence it is
difficult to calculate the p-values of the independence tests.
To solve this problem, the permutation/bootstrap approach can
be used to calculate the p-values of the causal test statistics. The
null hypothesis is H0 : no causations X→Y and Y →X (Both X
and EY are dependent, and Y and EX are dependent).

Calculate the test statistic

TC � ∣∣∣∣HSIC2(EY ,X) −HSIC2(EX ,Y)
∣∣∣∣. (6)

Assume that the total number of permutations is np. For each
permutation, we fix xi, i � 1, . . . , m and randomly permutate
yi, i � 1, . . . , m. Then, fit the ANMs and calculate the
residuals Ei

X , E
i
Y , i � 1, . . . , n and test statistic Tc. Repeat above

procedures np times. The p-values are defined as the proportions of
the statistic ~TC (computed on the permuted data) greater than or
equal to T̂C (computed on the original test data Dm).

Each state was a sample. Since the sample sizes were small
(only 50), the p-value for declaring significance was 0.05 without
Bonferroni correction for multiple comparison.

Multivariate Linear Granger Causality Test
Before performing multivariate linear Grander causality test, we
first need to transform nonstationary time series to stationary
time series.

Consider an m-variable VAR with p lags:

Yt � μ +∑p
i�1

AiYt−i + εt , (7)

where Yt is a m dimensional vector, μ is a mean, the
Ai (i � 1, . . . , p) are m ×m coefficient matrices and m
dimensional residual vector εt is assumed to have mean zero
(E[εt] � 0), with no autocorrelation (E[εtεTt−s] � 0), but can be
correlated across equations (E[εtεTt ] � Σ).

Vector error correction model (VECM) consists of first
differences of cointegrated I(1) variables, their lags, and error
correction terms:

ΔYt � μ + ΠYt−1 +∑p−1
i�1

ΦiΔYt−i + εt , (8)

where matrixes Π and Φi (i � 1, . . . , p − 1) are functions of
matrices Ai (i � 1, . . . , p).

When two non-stationary variables are cointegrated, the VAR
model should be augmented with an error correction term for
testing the Granger causality (Engle and Granger, 1987).

The VECM can be reduced to

ΔYt � A0 + A(L)ΔYt−1 + α(ECMt−1) + εt , (9)

where

ΔYt � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ΔY1t

«

ΔYmt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, A0 � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
A10

«

Am0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, A(L) � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
A11(L) / A1m(L)

« « «

Am1(L) / Amm(L)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

α � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
α11 / α1k

« « «

αm1 / αmk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

ECMt−1 � βTYt−1 + Ct, Yt−1 � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Y1,t−1
«

Ym,t−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

β � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
β11 / β1k
« « «

βm1 / βmk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, C � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
c1
«

cm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

Consider two non-stationary time series, Xt �
[X1t , . . . , Xm,t]T and Yt � [Y1t, . . . , Ymt]T . Let m � m1 +m2.

Suppose that Xt and Yt are cointegrated with the residuals
ECMt . The VECM model for testing the Granger causality is
given by
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[ΔXt

ΔYt
] � [Ax

Ay
] + [Axx(L) Axy(L)

Ayx(L) Ayy(L) ][
ΔXt−1
ΔYt−1

] + [ αx

αy
]

ECMt−1 + [ εx
εy
] (10)

whereAx andAy arem1 andm2 dimensional vectors of intercept terms,
respectively, Axx(L), Axy(L), Ayx(L) and Ayy(L) are n1 × n1, n1 ×
n2, n2 × n1 and n2 × n2 dimensional matrices of lag polynomials,
respectively,αx andαy aren1 and n2 dimensional coefficient vectors for
the error correction term ECMt−1, respectively. The lag length was
selected using the two-stage procedure [42].

There are four different cases of causal relationships between
two vectors of time series Xt and Yt [33].

(1) If Axy(L) is significantly different from the zero, while Ayx(L)
shows no significantly different from zero, then there exists a
unidirectional Ganger causality from time series Yt to Xt ;

(2) If Ayx(L) is significantly different from zero, while Axy(L)
shows no significantly difference from zero, then there exists
a unidirectional Ganger causality from Xt to Yt ;

(3) If both coefficients Axy(L) and Ayx(L) are significantly
different from zero, then there exists bidirectional Granger
causality between Xt and Yt ;

(4) If both coefficients Axy(L) and Ayx(L) are not significantly
different from zero, then Xt and Yt are not rejected to be
independent.

The four statements imply that Ganger causal relationships
between Xt and Yt depend on the coefficients Axy(L) and Ayx(L).
Therefore, the null hypotheses for testing the Ganger causality
between Xt and Yt are.

(1) H1
0 : A xy(L) � 0,

(2) H2
0 : Ayx(L) � 0, and

(3) Both H1
0 and H2

0 : A xy(L) � 0 and Ayx(L) � 0.

Likelihood ratio tests for multivariate Granger causality are
given by.

(1) The likelihood ration statistics for testing the null
hypothesis: H1

0 : A xy(L) � 0 is

Tml � (T − (np + 1))(log∣∣∣∣Σ̂0

∣∣∣∣ − log
∣∣∣∣Σ̂∣∣∣∣) , (11)

which is asymptotically distributed as a central χ2(n1×n2×p) under
the hull hypothesis H1

0 .

(2) The likelihood ration statistics for testing the null
hypothesis: H2

0 : A yx(L) � 0 is

Tml � (T − (np + 1)) (log∣∣∣∣Σ̂0

∣∣∣∣ − log
∣∣∣∣Σ̂∣∣∣∣),

which is asymptotically distributed as a central χ2(n2×n1×p) under
the hull hypothesis H2

0 .

(3) The likelihood ration statistics for testing the null hypothesis:
H1

0 and H2
0 : A xy(L) � 0 and Ayx(L) � 0 is

Tml � (T − (np + 1))(log∣∣∣∣Σ̂0

∣∣∣∣ − log
∣∣∣∣Σ̂∣∣∣∣),

which is asymptotically distributed as a central χ2(2n2×n1×p) under
the hull hypothesis H1

0 and H2
0 .

The total number of variables to be tested was 18. The p-value
for declaring significance after Bonferroni correction was 0.0028.

Data Collection
Data on the number of new cases and new deaths of COVID-19
across the 50 states in the US were obtained from John Hopkins
Coronavirus Resource Center (https://coronavirus.jhu.edu/MAP.
HTML). Google mobility indexes were downloaded from Google
COVID-19 Community Mobility Reports (https://www.google.
com/covid19/mobility/). Comprehensive data and insights on
COVID-19’s impact on mobility, economy, and society were
downloaded from the University of Maryland COVID-19
Impact Analysis Platform (https://data.covid.umd.edu) [43,
44]. All data were collected from March 5, 2020 to August
25, 2020.

RESULTS

Test for Scalar Potential Causes
The scalar variables tested for causation of the new cases and
deaths from COVID-19 in the US included the number of
contact tracing workers per 100,000 people, percent of
population above 60 years of age, median income, population
density, percentage of African Americans, percentage of
Hispanic Americans, percentage of males, employment
density, number of points of interests for crowd gathering per
1,000 people, number of staffed hospital beds per 1,000 people,
and number of ICU beds per 1,000 people. The number of new
cases and deaths were averaged over time. Each state was a
sample. Since the sample sizes were small, the p-value for
declaring significance was 0.05 without Bonferroni correction
for multiple comparison. The p-values for testing 11 scalar
potential causes of the number of new cases and deaths from
COVID-19 in the US using both Gaussian kernel and polynomial
kernels were summarized in Table 1 where minimum of three
p-values using Gaussian kernel and fourth order and sixth order
polynomial kernels were listed and only one causal direction was
observed. We observed from Table 1 that population density
(minimum of p-value < 0.0002, which was due to Gaussian
kernel), percentage of males (minimum of p-value < 0.03, which
was due to Gaussian kernel) and Percentage of Hispanic
Americans (minimum of p-value < 0.0325, which was due to
sixth order polynomial kernel) showed significant evidence of
causing the spread of COVID-19. Employment density
(minimum of p-values < 0.0223, which was due to sixth
polynomial kernel), Percentage of African American
(minimum of p-values < 0.024, which is due to Gaussian
kernel), population density (minimum of p-values < 0.025,
which was due to Gaussian kernel) and Percentage of males
(minimum of p-values <0.0377, which was due to fourth order
polynomial) showed significant evidence of causing deaths due
to COVID-19. percentage of Hispanic Americans (minimum of
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p-value < 0.052, which was due to sixth order polynomial kernel)
were close to significance level 0.05 for causing death.

Population density was an important risk factor for both the
spread and death from COVID-19. High density resulted in
closer contact, stronger interaction among residents and lower
social distancing, which facilitated the spread and increased the
death rate from COVID-19 [45–48]. However, our results were
contradictory with the conclusion of Hamidi et al. [49]. Some
literature also confirmed that high proportion of African
Americans caused a high rate of deaths [48, 50, 51]. Our
results concluded that percentage of Hispanic Americans was
a risk factor for the spread and a weak risk factor for death from
COVID-19, while the literature showed stronger evidence that
Hispanic communities were highly vulnerable to COVID-19 [52].

The second most significant demographic risk factor for the
spread of COVID-19 was percentage of males. We found higher
COVID-19morbidity in males than females. However, we did not
find higher COVID-19 mortality in males than females.

It was reported that higher COVID-19 mortality in males than
females can be due to the following factors [53]. The first factor
was higher expression of angiotensin-converting enzyme-2 (ACE
two; receptors for coronavirus) in males than females. The second
factor was sex-based immunological differences due to sex
hormone and the X chromosome.

Test for Granger Causality
Daily mobility and social distancing data from a COVID-19
impacted the analysis platform, including four categories:
category A: mobility and social distancing, category B:
COVID and health, category C: economic impact, and
category D: vulnerable population. A total of 12 temporal
metrics in four categories and 12 metrics from the COVID-
19 impact analysis platform, six daily Google Community
Mobility indexes and protest attendee data that captured
real-time trends in movement patterns for each state in the
US were included in the analysis to test for Granger causality
between these risk factors, health intervention measures and the
number of new cases and deaths from COVID-19 across 50
states in the US [44, 54]. The total number of variables to be
tested was 18. The p-value for declaring significance after
Bonferroni correction was 0.0028.

All 18 metrics except for protest attendee showed high
significance in causing a reduction of the new cases of
COVID-19 in 19 less affected states: VT, WY, ME, AK, NH,
WV, ND, SD, NM, RI, DE, KY, KS, CT, CO, IA,WA,WI, andMS.
Most of these states were less populated. However, although CA
was most affected and the most populated state, all 18 metrics
except protest attendance showed a strong significance in causing
rapid spread of COVID-19 (Table 2 and Supplementary Table
S1). To provide complete causal testing information, we listed the
values of statistics for testing 18 temporal potential causes of the
number of new cases of COVID-19 across 50 states in the US in
Supplementary Table S2.

All 18 metrics showed no significance in causing reduction of
the new cases of COVID-19 in Florida. The majority of the 18
metrics did not demonstrate evidence that they can significantly
mitigate the spread of COVID-19 in most the affected states such
as TX, NY, GA, IL, AZ, NJ, NC, and TN. These 10 states were in
the top largest states by population in the US. Public health
intervention measures such as closing schools and businesses,
avoiding public gatherings, restricting traffic, placing residents to
stay-at-home and adherence to guidelines were less well
implemented or difficult to implement homogeneously due to
large populations and geographical areas [55]. These results also
explained why the number of new cases of COVID-19 in these
states was high and confirmed by several studies [56–58].

Table 3 summarized the ranges of p-values, Supplementary
Tables S3, S4 summarized all p-values and values of statistics for
testing 18 temporal potential causes of the number of new deaths
from COVID-19 across 50 states in the US, respectively. All 18
metrics except for protest attendance showed high significant
evidence for causing a reduction of new deaths across 50 states
except for Michigan (MI) in the US. Our results suggested that a
cascade of causes led to the COVID-19 tragedy in the US.

Table 4 listed the most significant risk factor for the new cases
of COVID-19 in each of the 50 states in the US. Active Cases/
1,000 People, workplaces, number of tests completed/1,000
people, imported COVD cases, unemployment rate and
unemployment claims/1,000 people, mobility trends for places
of residence (residential), retail and recreation, mobility trends
for places like restaurants, cafes, shopping centers, theme parks,
museums, libraries, and movie theaters (retail) and test capacity

TABLE 1 | p-values for testing 10 scalar potential causes of the number of new cases and deaths of COVID-19 in the US.

Risk factor p-value

Gaussian kernel Polynomial (order 6) Polynomial (order 4) Minimum

New cases Deaths New cases Deaths New cases Deaths New cases Deaths

Percent of population above the age of 60 years 0.4634 0.1530 0.3472 0.1130 0.2532 0.1547 0.2532 0.1130
Median income 0.1109 0.0760 0.1202 0.0654 0.1713 0.1832 0.1109 0.0654
Percentage of African Americans 0.6526 0.0240 0.9326 0.0710 0.3459 0.0343 0.3459 0.0240
Percentage of Hispanic Americans 0.0575 0.0640 0.0325 0.0520 0.0422 0.1473 0.0325 0.0520
Percentage of males 0.0300 0.1440 0.0403 0.0542 0.0401 0.0377 0.0300 0.0377
Population density 0.0002 0.0250 0.0327 0.0359 0.0265 0.0952 0.0002 0.0250
Employment density 0.4571 0.0590 0.3536 0.0223 0.3485 0.0248 0.3485 0.0223
Number of staffed hospital beds per 1,000 people 0.6732 0.3130 0.5352 0.3224 0.6506 0.2374 0.5352 0.2374
Number of ICU beds per 1,000 people 0.5134 0.4860 0.7516 0.4438 0.6114 0.9037 0.5134 0.4438
Number of contact tracing workers per 100,000 people 0.4203 0.8190 0.4102 0.7215 0.3907 0.7336 0.3907 0.7215
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were the most significant risk factors for the new cases of COVID-
19 in 23, 7, 6, 5, 4, 2, 1 and 1 states of the US, respectively.

Table 5 summarized the most significant risk factor for the
deaths from COVID-19 in each of the 50 states in the US. Active
Cases/1,000 people, workplaces, residential, unemployment rate,
imported COVID cases, unemployment claims/1,000 people,
transit, test done/1,000 people, grocery, testing capacity, retail,
percentage of change in consumption, percentage of working
from home were the most significant risk factor for the deaths of
COVID-19 in 17, 10, 4, 4, 3, 2, 2, 2, 1, 1, 1, 1 states, respectively.
We also observed that the number of protest attendees showed

mild significant evidence to cause increasing the number of new
cases of COVID-19 in KY (p-value < 0.00012), KS (p-value <
0.00026), NH (p-value < 0.00108), MA (p-value < 0.0016) and TN
(p-value < 0.0024) or to cause more deaths from COVID-19 in
OR (p-value < 5.11 E-05), TX (p-value < 0.00017), ME (p-value <
0.00028), KS (p-value < 0.00061), MI (p-value < 0.0015), OH
(p-value < 0.0021) and NC (p-value < 0.0023).

In some cases, two causal directions may occur. To examined
whether the COVID-19 cases and deaths caused daily mobility
and social distancing metrics to change, we summarized the
values of statistics and p-values for testing COVID-19 new case

TABLE 2 | p-values testing 18 temporal potential causes of the number of new cases of COVID-19 in the top 10 most affected states and bottom 10 less affected states in
the US.

State CA FL TX NY GA IL AZ NJ NC TN

Number of cumulative cases 673,095 605,502 586,730 430,774 258,354 224,887 199,273 190,021 157,741 145,417
Miles/person 7.7E-08 3.1E-02 2.3E-03 9.1E-02 2.8E-04 4.9E-04 7.3E-05 4.7E-03 9.2E-06 5.9E-06
Population 1.6E-06 3.6E-02 5.1E-03 6.1E-02 3.2E-04 5.2E-05 1.9E-04 1.2E-03 2.5E-04 2.9E-05
% Change in consumption 1.4E-05 5.5E-02 4.7E-03 1.8E-03 8.7E-04 1.8E-04 2.2E-04 9.6E-07 1.1E-04 1.1E-04
Social distancing index 8.0E-06 9.1E-02 8.8E-03 4.0E-02 3.4E-04 4.6E-04 5.9E-04 1.5E-05 3.5E-03 2.7E-04
Unemployment claims 4.3E-05 6.8E-02 1.7E-02 1.1E-03 2.3E-03 8.0E-04 1.1E-03 2.2E-07 4.2E-03 3.9E-04
Unemployment rate 3.7E-08 2.6E-02 4.4E-03 1.7E-01 4.2E-04 5.3E-06 2.4E-04 2.8E-03 1.5E-04 4.8E-05
% Working from home 5.2E-07 3.7E-02 2.4E-03 3.4E-02 2.4E-04 6.6E-06 2.2E-05 2.8E-04 1.2E-05 2.0E-06
Active cases/1,000 people 2.3E-18 7.2E-02 3.1E-06 5.8E-01 2.8E-10 2.3E-05 7.1E-07 9.5E-04 7.5E-14 3.4E-12
Testing capacity 9.0E-05 7.2E-02 1.3E-02 3.0E-02 2.4E-03 2.1E-05 4.1E-04 1.2E-04 1.7E-03 1.8E-04
Tests done/1,000 people 1.2E-14 3.6E-02 1.1E-05 1.0E-01 2.5E-09 1.5E-03 7.0E-05 3.8E-03 1.3E-07 3.7E-11
Imported COVID cases 1.3E-16 4.5E-01 1.1E-04 2.6E-01 1.7E-07 1.3E-03 5.1E-04 5.9E-04 1.7E-06 4.4E-12
Retail 1.3E-05 9.6E-02 2.2E-02 2.9E-02 4.4E-03 5.9E-04 1.4E-03 3.4E-07 4.5E-03 6.1E-04
Grocery 1.5E-05 1.1E-01 4.1E-03 2.0E-01 5.8E-04 1.5E-05 2.7E-04 9.0E-06 2.6E-04 4.5E-05
Parks 2.4E-08 8.2E-02 6.3E-03 4.1E-02 3.1E-02 6.4E-02 5.6E-03 4.0E-03 8.6E-03 1.7E-05
Transit 5.8E-06 6.4E-02 7.3E-03 2.0E-02 3.3E-04 2.2E-07 3.0E-04 9.2E-06 1.2E-03 3.3E-04
Workplaces 1.5E-05 9.6E-03 2.6E-03 3.5E-03 2.1E-05 5.8E-08 9.3E-06 2.2E-05 1.2E-04 6.1E-05
Residential 7.0E-05 1.7E-02 7.2E-03 9.6E-05 3.6E-04 1.7E-07 6.5E-05 1.1E-06 2.8E-04 1.5E-04
Protest 3.6E-01 9.6E-01 6.6E-01 7.7E-01 8.0E-03 5.1E-01 3.8E-01 1.7E-01 4.1E-01 2.3E-03

State SD ND WV NH HI MT AK ME WY VT

Number of cumulative cases 11,559 10,229 9,395 7,150 6,984 6,624 5,666 4,368 3,634 1,572
Miles/person 3.7E-08 1.1E-04 1.3E-09 3.8E-14 9.5E-03 5.8E-04 2.8E-05 8.2E-11 2.7E-13 4.8E-14
Population 4.2E-08 5.4E-04 6.6E-08 1.7E-18 2.0E-02 1.2E-03 5.4E-04 1.7E-12 1.7E-11 6.8E-16
% Change in consumption 2.1E-08 1.1E-04 4.6E-10 3.6E-19 3.1E-02 1.4E-04 7.2E-05 1.2E-11 4.2E-10 7.5E-19
Social distancing index 5.7E-05 9.8E-03 5.0E-06 2.8E-19 3.3E-02 6.5E-03 2.4E-03 1.6E-08 1.9E-09 1.6E-19
Unemployment claims 5.0E-06 4.3E-03 1.8E-06 3.6E-16 3.1E-02 3.3E-03 1.4E-03 1.9E-07 1.0E-08 2.1E-32
Unemployment rate 3.8E-08 1.3E-03 2.5E-06 4.8E-26 2.9E-02 2.7E-03 2.8E-04 7.1E-18 8.0E-12 3.8E-14
% Working from home 1.5E-09 1.3E-05 1.5E-12 1.4E-16 2.3E-03 1.1E-04 8.3E-04 1.3E-11 2.4E-15 1.8E-16
Active cases/1,000 people 3.9E-09 3.3E-13 1.5E-16 6.2E-27 1.3E-08 4.8E-09 3.2E-07 6.8E-13 2.1E-21 6.9E-15
Testing capacity 1.1E-07 3.4E-05 5.4E-07 1.3E-22 2.1E-02 3.6E-03 2.0E-03 1.7E-14 6.0E-10 1.5E-23
Tests done/1,000 people 4.5E-07 4.6E-11 2.1E-16 1.9E-12 3.8E-05 1.9E-11 6.3E-09 7.4E-07 1.5E-19 5.7E-13
Imported COVID cases 2.7E-07 6.8E-09 9.6E-13 9.0E-32 7.4E-06 2.7E-08 2.0E-06 1.3E-14 5.4E-19 2.5E-13
Retail 1.3E-07 6.1E-03 4.4E-06 4.8E-19 2.9E-02 2.7E-04 3.1E-04 2.0E-09 5.4E-14 1.4E-20
Grocery 1.3E-04 3.7E-04 1.1E-07 1.7E-22 2.0E-02 2.3E-04 7.5E-04 4.3E-10 3.3E-13 5.6E-20
Parks 3.9E-06 4.9E-04 1.6E-06 3.9E-12 1.9E-02 1.6E-07 2.8E-04 7.8E-07 1.6E-19 3.1E-12
Transit 3.3E-06 3.2E-03 7.4E-09 1.3E-22 2.2E-02 1.6E-04 5.6E-04 6.3E-11 2.0E-13 3.0E-19
Workplaces 3.9E-12 2.3E-04 1.2E-07 1.4E-23 1.8E-02 4.6E-04 4.7E-04 9.8E-15 1.9E-09 2.2E-19
Residential 3.5E-09 1.6E-03 2.0E-06 3.0E-24 1.6E-02 1.4E-03 6.3E-04 4.9E-12 5.6E-08 3.1E-22
Protest 2.4E-01 2.6E-01 9.7E-01 1.1E-03 1.3E-02 2.1E-01 9.6E-03 8.0E-02 8.3E-01 1.6E-01

Retail: Retail and recreation, mobility trends for places like restaurants, cafes, shopping centers, theme parks, museums, libraries, and movie theaters.
Grocery: Mobility trends for places like grocery markets, food warehouses, farmers markets, specialty food shops, drug stores, and pharmacies.
Parks: Mobility trends for places like local parks, national parks, public beaches, marinas, dog parks, plazas, and public gardens.
Transit: Transit stations, mobility trends for places like public transport hubs such as subway, bus, and train stations.
Workplaces: Mobility trends for places of work.
Residential: Mobility trends for places of residence.
Test Rate: Ratio of the number of individuals who have taken the virus test over the total population in the region.
Attendee: Number of attendees in the protest.
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and death potential causes of six Google mobility indexes across
50 states in the US in Supplementary Tables S5–7 and DS8,

respectively. We did observe the opposite causal direction.
Table 6 presented the smallest p-value across 50 states in the
US for testing two causal directions: from Google mobility
indexes to the number of new cases of COVID-19 and from
the number of new cases of COVID-19 to the Google mobility
indexes. We observed significant causation from the number of
COVID-19to the Google mobility indexes in some states.
However, the p-values for testing causation from the number
of new cases of COVID-19 to the Google mobility indexes were
much larger than that from the Google mobility indexes to the
number of new cases of COVID-19. The causal pattern for the
COVID-19 deaths was similar to the number of new cases of
COVID-19.

To illustrate the causal relationships between the risk factors
and the number of new cases and deaths from COVID-19, we
plotted Figures 1 and 2. Figure 1 plotted the social distance
index curves as a function of time fromMarch 5, 2020 to August
25, 2020 in Florida (FL) and Rhode Island (RI). Figure 1 showed
that the social distance index in FL was much higher than that in
RI state, which resulted in the larger number of new cases of
COVID-19 in FL than that in RI. Figure 2 showed the number of
imported COVID-19 cases as a function of time from March 5,
2020 to August 25, 2020 in Maryland (MD) and Wyoming
(WY).We observed a huge difference in the number of imported
COVID-19 cases between MD and RI. The very low number of
imported cases of COVID-19 in WY resulted in the very low
number of deaths from COVID-19 in WY, while the high
number of imported cases in MD state led to the increased
deaths from COVID-19 in MD. These results were consistent
with the finding in the literature. It was reported that strong

TABLE 3 | Ranges of p-values for testing 18 temporal potential causes of the
number of new deaths from COVID-19 across 50 states in the US.

State p-value State p-value

Lower
bound

Upper
bound

Lower
bound

Upper
bound

AK 1.47E-18 3.95E-24 MT 7.66E-15 4.41E-25
AL 7.45E-11 1.10E-18 NC 2.93E-08 8.95E-18
AR 1.17E-12 1.54E-30 ND 2.54E-17 1.04E-20
AZ 4.35E-11 1.29E-27 NE 5.11E-15 2.62E-23
CA 1.10E-04 1.54E-13 NH 6.67E-15 3.41E-28
CO 1.41E-21 6.44E-26 NJ 1.80E-03 1.96E-09
CT 6.73E-07 3.13E-16 NM 7.20E-07 1.15E-16
DE 1.20E-03 1.35E-06 NV 9.00E-09 1.45E-17
FL 2.50E-04 1.47E-15 NY 4.30E-02 1.52E-05
GA 6.53E-07 5.81E-17 OH 1.82E-08 2.67E-17
HI 1.77E-15 1.14E-20 OK 4.29E-07 1.89E-19
IA 6.78E-06 8.06E-15 OR 3.37E-15 4.50E-26
ID 1.96E-08 7.11E-18 PA 3.86E-15 1.11E-23
IL 3.81E-05 1.34E-12 RI 4.26E-09 2.16E-22
IN 1.78E-07 3.39E-17 SC 8.97E-08 6.75E-25
KS 8.74E-30 1.42E-40 SD 5.04E-18 6.01E-25
KY 1.89E-13 1.40E-24 TN 7.28E-09 2.06E-24
LA 7.71E-11 2.38E-20 TX 6.22E-07 2.59E-23
MA 1.25E-03 3.92E-04 UT 3.90E-13 8.12E-29
MD 3.80E-02 7.63E-06 VA 3.39E-17 2.61E-16
ME 2.29E-15 4.29E-25 VT 3.39E-07 1.23E-29
MI 0.28 2.07E-05 WA 5.67E-16 3.83E-29
MN 2.40E-04 8.89E-11 WI 2.21E-10 4.77E-29
MO 1.73E-11 7.85E-20 WV 9.61E-15 7.81E-22
MS 2.94E-08 1.49E-19 WY 7.93E-26 2.39E-28

TABLE 4 | The most significant risk factor for the new cases of COVID-19 in each of 50 states in the US.

State Risk factor p-value State Risk factor p-value

AK Tests done/1,000 people 6.27E-09 MT Tests done/1,000 people 1.87E-11
AL Active cases/1,000 people 5.40E-08 NC Active cases/1,000 people 7.49E-14
AR Active cases/1,000 people 4.49E-14 ND Active cases/1,000 people 3.35E-13
AZ Active cases/1,000 people 7.12E-07 NE Unemployment rate 6.10E-10
CA Active cases/1,000 people 2.29E-18 NH Imported COVID cases 9.04E-32
CO Work places 1.48E-17 NJ Unemployment claims/1,000 people 2.15E-07
CT Test capacity 5.46E-25 NM Active cases/1,000 people 5.68E-13
DE Residential 3.64E-15 NV Imported COVD cases 2.36E-09
FL Work places 9.60E-03 NY Residential 9.57E-05
GA Active cases/1,000 people 2.76E-10 OH Active cases/1,000 people 6.42E-10
HI Active cases/1,000 people 1.31E-08 OK Tests done/1,000 people 4.14E-10
IA Active cases/1,000 people 5.07E-14 OR Active cases/1,000 people 3.87E-12
ID Imported COVD cases 4.53E-10 PA Work places 4.21E-09
IL Work places 5.82E-08 RI Imported COVD cases 1.02E-27
IN Active cases/1,000 people 1.12E-09 SC Active cases/1,000 people 1.58E-04
KS Tests done/1,000 people 1.21E-32 SD Work places 3.89E-12
KY Imported COVID cases 4.30E-26 TN Active cases/1,000 people 3.45E-12
LA % Working from Home 1.58E-19 TX Active cases/1,000 people 3.05E-06
MA Retail 3.20E-10 UT Active cases/1,000 people 2.04E-07
MD Work places 6.35W-09 VA Active cases/1,000 people 2.08E-08
ME Unemployment rate 7.15E-18 VT Unemployment claims/1,000 people 2.07E-32
MI Work places 1.16E-10 WA Active cases/1,000 people 2.65E-21
MN Active cases/1,000 people 9.01E-07 WI Active cases/1,000 people 5.19E-12
MO Tests done/1,000 people 2.42E-09 WV Active cases/1,000 people 1.53E-16
MS Tests done/1,000 people 2.16E-12 WY Active cases/1,000 people 2.13E-21
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interventions would substantially decrease the number of
deaths (Davies et al. 2020; Gagnon et al. 2020).

The COVID-19 case curves as a function of time from March
5, 2020 to August 25, 2020 in FL, RI, MD andWY were plotted in
Figure 3, respectively. The response of COVID-19 to public
health intervention which were measured by Google mobility
indexes were usually delayed.

DISCUSSION

Causal inference for COVID-19 is essential for selecting and
implementing public intervention measures and understanding
the role of the demographics in curbing the spread and
reducing the deaths from COVID-19. In this paper, we
systematically addressed the issues in identifying causal risk
factors and evaluating the causal effects of risk factors and
intervention measures on the spread and deaths from COVID-
19 in the US. Risk factors and intervention measures included

scalar variables and temporal variables. The ANMs were used
to test for causal relationships between scalar risk factors and
the average number of new cases or deaths from COVID-19 in
the US. Transmission of COVID-19 is a dynamic system.
Many risk factors and intervention measures are temporal
variables. The Granger Causality Test was used to reveal the
causal relationships between the temporal risk factors and
intervention measures, and the number of new cases or new
deaths from COVID-19 across the 50 states in the US.

The demographic risk factors were the major part of the
scalar risk factors in the causal analysis of COVID-19. We
found that population density was the most significant causal
factor of both new cases and death from COVID-19.
Population density measured the average number of people
per square kilometer living in a built-up area. Densely
populated states generated conditions where COVID-19 can
spread quickly and undetected in the densely populated areas
and created high levels of vulnerability. The second significant
demographic factor was percentage of males. Our data

TABLE 5 | The most significant risk factor for deaths of COVID-19 in each of 50 states in the US.

State Risk factor p-value State Risk factor p-value

AK Active cases/1,000 people 3.95E-24 MT Active cases/1,000 people 4.41E-25
AL Active cases/1,000 people 1.10E-18 NC Work places 8.95E-18
AR Tests Done/1,000 people 1.54E-30 ND Unemployment rate 1.04E-20
AZ Active cases/1,000 people 1.29E-27 NE Work places 2.62E-23
CA Work places 1.54E-13 NH Imported COVID cases 3.41E-28
CO Residential 6.44E-26 NJ Residential 1.96E-09
CT Active cases/1,000 people 3.12E-16 NM Unemployment rate 1.15E-16
DE Retail 1.35E-06 NV Active cases/1,000 people 1.45E-17
FL Active cases/1,000 people 1.47E-15 NY % Change in Consumption 1.52E-05
GA Work places 5.81E-17 OH Unemployment rate 2.67E-17
HI Active cases/1,000 people 1.14E-20 OK Work places 1.89E-19
IA Unemployment rate 8.06E-15 OR % Working from Home 4.50E-26
ID Active cases/1,000 people 7.11E-18 PA Imported COVID cases 1.11E-23
IL Residential 1.34E-12 RI Imported COVID cases 2.16E-22
IN Work places 3.39E-17 SC Active cases/1,000 people 6.75E-25
KS Grocery 1.42E-40 SD Active cases/1,000 people 6.01E-24
KY Work places 1.40E-24 TN Test Done/1,000 people 2.06E-24
LA Transit 2.38E-20 TX Active cases/1,000 people 2.59E-23
MA Active cases/1,000 people 3.92E-09 UT Active cases/1,000 people 8.12E-29
MD Grocery 7.60E-06 VA Work places 2.61E-16
ME Residential 4.29E-25 VT Unemployment claims/1,000 people 1.23E-29
MI Unemployment claims/1,000 people 2.07E-05 WA Transit 3.83E-29
MN Testing capacity 8.89E-11 WI Work places 4.77E-29
MD Work places 7.85E-20 WV Active cases/1,000 people 7.81E-22
MS Active cases/1,000 people 1.49E-19 WY Active cases/1,000 people 2.39E-28

TABLE 6 | Lower bound of p-values for testing causation from Google mobility indexes to COVID-19 case and from COVID-19 case to Google mobility indexes.

Cause Effect Smallest p-value Cause Effect Smallest p-value

Retail COVID-19 case 7.67E-26 COVID-19 case Retail 1.29E-04
Grocery 3.70E-25 Grocery 4.85E-11
Parks 3.87E-23 Parks 1.80E-12
Transit 1.90E-27 Transit 1.29E-04
Workplaces 1.07E-25 Workplaces 3.99E-06
Residential 1.09E-25 Residential 2.99E-07
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FIGURE 1 | Social distance index curves as a function of time from March 5, 2020 to August 25, 2020 in Florida (FL) (red color) and Rhode Island (RI) (blue color).

FIGURE 2 | Number of imported COVID-19 cases as a function of time from March 5, 2020 to August 25, 2020 in Maryland (MD) (red color) and Wyoming (WY)
(blue color).
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suggested that men were more vulnerable to COVID-19 than
women. However, our analysis did not conclude that more men
than women were dying from COVID-19.

We also discovered that more Black Americans were dying
from COVID-19. The reasons for this were complex. Black
Americans had higher rates of chronic disease conditions,
including diabetes, heart disease, and lung disease, were poor
and more easily exposed to the COVID-19, and lived in the
cramped housing. Inequities in the social determinants of health
affected mortality and morbidity of COVID-19 for Hispanic
Americans with much milder significance.

We studied the causal effect of major public health
interventions across the 50 states in the US. In the absence of
centralized intervention measures and implementation of a
timeline and presence of the complex dynamics of human
mobility and the variable intensity of local outbreaks of
COVID-19, evaluating the causal effect of public health
intervention measures on COVID-19 transmission and deaths
in the USA posed a great challenge. We used 6 Google mobility
indexes and 12 daily metrics to measure the effects of COVID-19
spread and public health interventions on mobility and social
distancing, derived from mobile device location data and
COVID-19 case data, provided by the University of Maryland
COVID-19 Impact Analysis Platform. These real time metrics
capture the dynamics of social distancing. Granger causality tests
were used to identify the causality relationships between time
series metrics and time varying in the number of new cases or
deaths from COVID-19. Although the risk factors differed by
location, Active Cases/1,000 people were a significant risk factor

for both number of new cases and deaths from COVID-19 in
most states. The most popular intervention measure in the US
was workplaces (mobility trends for places of work). Workplaces
were the significant cause of the number new cases of COVID-19
in 44 states and significant cause of death in 49 states. Therefore,
workplaces should be considered as a very important risk
mitigation measure to reduce the number of new cases and
deaths from COVID-19. Tests done/1,000 people was the
second population intervention in the US. It was the
significant cause of the new cases of COVID-19 in 46 states
and significant cause of death in 47 states. Virus test results in
quick case identification and isolation to contain COVID-19, and
rapid treatment to reduce the number of deaths. Imported
COVID cases were also a top significant risk factor for
speeding the spread and increasing the deaths from COVID-
19. Our results showed that the imported COVID case metric was
the significant causal factor for the new cases in 46 states and the
significant causal factor for the deaths in 47 states.

Our results showed that the high numbers of cases and deaths
from COVID-19 were due to lacking strong interventions and
high population density. We observed that no metrics showed
significant evidence in mitigating the COVID-19 epidemic in FL
and only a few metrics showed evidence in reducing the number
of new cases of COVID-19 in AZ, NY and TX. Our results showed
strong interventions were needed to contain COVID-19.

Although we tried to systematically and comprehensively
analyze the data, this study has multiple limitations. First, we
only analyzed the causal relationship between mobility patterns
and the number of new cases or deaths and ignored the role of

FIGURE 3 | Number of new cases of COVID-19 as a function of time from March 5, 2020 to August 25, 2020 in Florida (FL), Rhode Island (RI), Maryland (MD), and
Wyoming (WY).
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other potential mitigating factors (e.g., wearing face masks) that
could also have contributed to the reduction of new cases or
deaths from COVID-19. When data are available, more metrics
should be included in the analysis.

Second, we have not addressed the confounding bias issue.
When confounding is unknown, adjusting for confounding
methods cannot be applied to eliminate confounding bias
from the causal analysis. Unadjusted confounding bias will
distort the inferred (true) causal relationship between the
number of new cases or deaths from COVID-19, and metrics
for social distancing when these two variables share common
causes. This will have substantive implications for developing
interventions to mitigate the spread of COVID-19 and reduce the
deaths from COVID-19. However, removing confounding from
causal analysis for COVID-19 is complicated and will be
investigated in the future.

In summary, our analysis has provided information for both
individuals and governments to plan future interventions on
containing COVID-19 and reduction of deaths from COVID-19.
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Social Heterogeneity Drives Complex
Patterns of the COVID-19 Pandemic:
Insights From a Novel Stochastic
Heterogeneous Epidemic Model
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In addition to vaccine and impactful treatments, mitigation strategies represent an effective
way to combat the COVID-19 virus and an invaluable resource in this task is numerical
modeling that can reveal key factors in COVID-19 pandemic development. On the other
hand, it has become evident that regional infection curves of COVID-19 exhibit complex
patterns which often differ from curves predicted by forecasting models. The wide
variations in attack rate observed among different social strata suggest that this may
be due to social heterogeneity not accounted for by regional models. We investigated this
hypothesis by developing and using a new Stochastic Heterogeneous Epidemic Model
that focuses on subpopulations that are vulnerable in the sense of having an increased
likelihood of spreading infection among themselves. We found that the isolation or
embedding of vulnerable sub-clusters in a major population hub generated complex
stochastic infection patterns which included multiple peaks and growth periods, an
extended plateau, a prolonged tail, or a delayed second wave of infection. Embedded
vulnerable groups became hotspots that drove infection despite efforts of the main
population to socially distance, while isolated groups suffered delayed but intense
infection. Amplification of infection by these hotspots facilitated transmission from one
urban area to another, causing the epidemic to hopscotch in a stochastic manner to places
it would not otherwise reach; whereas vaccination only in hotspot populations stopped
geographic spread of infection. Our results suggest that social heterogeneity is a key factor
in the formation of complex infection propagation patterns. Thus, the mitigation and
vaccination of vulnerable groups is essential to control the COVID-19 pandemic
worldwide. The design of our new model allows it to be applied in future studies of
real-world scenarios on any scale, limited only by computing memory and the ability to
determine the underlying topology and parameters.
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INTRODUCTION

Coronaviruses represent one of the major pathogens that
primarily target the human respiratory system. Previous
outbreaks of coronaviruses (CoVs) that affected humans
include the severe acute respiratory syndrome (SARS)-CoV
and the Middle East respiratory syndrome (MERS)-CoV [1].
COVID-19 is a disease caused by the novel coronavirus SARS-
CoV-2 virus that is both fatal and has a high transmission rate
(R0), almost twice that of the 2017–2018 common influenza [2,
3]. TheWorld Health Organization stated that this combination
of high health risk and susceptibility is of great global public
health concern, and efforts must be directed to prevent further
infection while vaccines are still being developed [4]. As of
November 2020, there are almost sixty million confirmed
COVID-19 cases worldwide and close to confirmed one and
a half million deaths. Older adults seem to be at higher risk for
developing more serious complications from COVID-19 illness
[5, 6]. In addition to vaccines and treatments, an effective way to
combat the virus is to find and implement mitigation strategies.
An invaluable resource in this difficult task is numerical
modeling studies that can reveal key factors in pandemic
development.

What models could be useful? Direct study of the available
data of COVID-19 is complicated because many cases and deaths
are underrepresented. However, a simple model that correctly
captures large-scale behaviors, but gets some details wrong, is
useful, whereas a complicated model that gets some details
correct but mischaracterizes the large-scale behaviors is
misleading [7]. Previously, during the H1N1 pandemic,
generic (i.e., non-specific) stochastic influenza models were
important to understand and quantify the full effects of the
virus in simulations of important scenarios [8]. Open source
stochastic models such as FluTE (2010) or GLEaM (2011) [9, 10]
were developed to simulate the spatial interaction and
clusterization of millions of people to discover epidemic patterns.

Now, with respect to COVID-19, the FluTE model has
recently been used to offer interventions to mitigate early
spread of SARS-CoV-2 in Singapore [11], and GLEaM was
adopted by Chinazzi et al. [12] to model the international
propagation of COVID-19 to gain insight into the effect of
travel restrictions on virus spread. Detailed statistical
information about the social interactions and grouping of
individuals is difficult to gather, but ultimately can be used to
calibrate the parameters of agent-based models. Such calibrated
agent-based models have been applied to model high-density
housing in Brazil and their effect on viral spread to the rest of the
population [13].

Despite extensive efforts to understand and predict the
COVID-19 spread, the key factors that determine the
multimodal rise patterns, the asymmetry of the recovery phase,
and the emergence of a distinct second wave remain unclear.
Therefore, instead of another data-based forecasting model, we
chose to develop a scenario model to study the consequences of a
set of hypothesis-driven conditions in a network of populations.
One underexplored but important factor of pandemic spread is
social heterogeneity which defines the degree of dissimilarity in

the behaviors of embedded subpopulations. With regard to virus
spread, the important characteristics of social heterogeneity to
consider are levels of clusterization, societal interaction, and
disease mitigation strategies. Our hypothesis is that complex
infection curves that consist of multiple infection peaks and
growth periods are the consequence of asynchronous
propagation of infection among groups with widely varying
degrees of intra-group interaction and isolation from main
hubs (a metapopulation of infections).

To approach this problem, we developed a novel Stochastic
Heterogeneous Epidemic Model (dubbed SHEM) which
incorporates heterogeneous aspects of society. We also take
into account over-dispersed stochasticity (super-spreading)
[14], which is usually not incorporated into compartmental
models but can be critical in small or virgin populations. The
model design was inspired by our stochastic models of local
calcium release dynamics inside heart cells, driven by explosive
calcium-induced-calcium-release [15, 16]. We examine several
key scenarios of heterogeneity where separate communities of
various clusterization and transmission capabilities are linked to a
large population hub. The basic reproduction number of infection
(R0) of the bulk of our population was assigned to R0 � 2.5 which
is within the range of SARS-CoV-2 basic reproduction number
based on the early phase of COVID-19 outbreak in Italy [17].
Interplay of various degrees of heterogeneity and isolation
periods in our model generated various dynamic patterns of
infection, including a multi-modal growth periods, an extended
plateau, prolonged tail, or a delayed second wave of infection.
Most importantly, we found that vulnerable social subgroups play
a key role in the propagation and unpredictability of the
epidemic, and can defeat efforts at social distancing.

METHODS

Model Purpose
In view of the constantly changing behavioral environment for
COVID-19 in the United States and worldwide, data-based
predictive modeling of the future of the epidemic is difficult.
Our model is specifically intended to examine the effect of
heterogeneity, including not only geographic but also social
heterogeneity, i.e. the existence of groups within one
geographic location that have different social interaction
patterns and may be partially isolated from neighboring
groups, e.g., nursing homes, prisons, campuses. Alternatively,
subgroups can be partially embedded in the main population, e.g.,
meat processing plants or warehouse employees who are unable
to socially distance at work, but spend part of their day in the
main community where they can acquire and amplify infection.
The model is fully stochastic and, unlike most compartmental
models, incorporates the effect of over dispersion of secondary
infections (super spreading).

Structure of the Model
The general model consists of a number of subpopulations
(“villages”) whose number is limited only by computing
memory. The simulation is based on a generalization of the
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SEIRD representation. The state of each village is represented by
the numbers of individuals in each of five states: Susceptible,
Exposed (destined to become infected), Infected, Recovered
(immune) and Dead (however, see below under Super-
spreading for additional state-dependence). Each village is, by
definition, homogeneous and mixed. Villages could represent
actual geographic units, but could also be groups or sub-regions
that have different social interactions or behavior. The mean
duration of infection (infectious period) was taken to be 7 days
and the incubation period 5.5 days.

Each village J is characterized by its population, the expected
mortality of virus infections, and its local value RINN(J) of the basic
reproduction numberR0.R0 is defined as themean expected number
of secondary infections spawned by one infected individual over the
duration of their illness, if the population were totally susceptible. It is
a property of both the virus and the behavior of individuals in the
population, but is distinct from R(t), the realized, time dependent,
reproduction number that depends also on the fraction of
susceptible individuals remaining during the epidemic.

Villages are connected by a user-specified network of formally
unidirectional links along which infection or individuals can
travel at user-specified rates, including links from each village
to itself to represent internal infection/recovery processes.
Infection can spread by two processes: transient contact
between groups (alpha process) e.g., nursing home staff
coming from the city; or actual migration of individuals from
one village to another (beta process). Each non-self link is
characterized by four user-supplied parameters: alphain and
alphaout describe the degree of transient contact (see below)
along or against the direction of the link respectively; betain and
betaout are rates of migration of individuals (time−1).

Transient Contact (Alpha) Process
Infection transmitted by transient contact is modeled as though
members of one village spend some (small) fraction alpha(in/out)
of their time (i.e., of their inter-personal contacts) “visiting” the
opposite village at the other end of the link, adjusted for any
mitigations (an example would be staff working at a nursing
home, or meat-packing plant employees, treated as a separate,
high-risk population but living in the surrounding county). The
spread of infection in each direction of the link has two
components: 1) exposure of susceptibles by visiting infectious
individuals and 2) exposure of visiting susceptibles in the visited
village, who then carry the infection back to their village. This
formulation allows for the possibility that transmission is
asymmetric. The generation of exposure by these “visitors” at
home and abroad is scaled so that each infected individual,
generates (in an otherwise susceptible population) his destined
number of secondary cases (see below under super-spreading).

This arrangement allows for the possibility that “visitors” from
different villages could cross-infect while visiting a common hub
(picture UPS and FEDEX drivers) even if there is no direct link
between them. To represent this process, “virtual links” are
generated between pairs of physical links that meet in a hub (in
graph-theory terms these are links of the adjoint graph of the
network). Infection by this indirect process is second-order in the
alpha’s so it makes very little contribution in the case of highly

isolated sub-populations (e.g., nursing homes, prisons) but could
be important for embedded sub-populations with high contact
with the hub. Although each village is considered homogeneous by
definition, further heterogeneity within a village could be
represented by subdividing the population into several “villages”
in close mutual contact via the alpha process (e.g., students in a
college split into those who go to bars and those who study alone).

Simulation Method
The entire collection of populations is simulated as a single,
continuous-time Markov chain (birth-death process). There are
16 types of possible events associated with each link:

• Infection from source to target by transient contact
• Infection from target to source by transient contact
• Infected individual moves from source to target
• Exposed individual moves from source to target
• Susceptible individual moves from source to target
• Infected individual moves from target to source
• Exposed individual moves from target to source
• Susceptible individual moves from target to source
• Susceptible gets exposed inside village (self-link only)
• Exposed converts to infected inside village (self-link only)
• Infected recovers inside village (self-link only)
• Infected dies inside village (self-link only)
• Recovered moves from source to target
• Recovered moves from target to source
• Susceptible gets vaccinated
• Recovered loses immunity

The objective of the simulation is to generate a continuous-
time sequence of Markov states, with transition rates determined
by the SEIRD equations, modified as described below under
Super Spreading. The algorithm consist of a front-end
program that sets up the network of villages and the rates of
spread of infections by the alpha and beta processes, and an
engine module that is called repeatedly by the front-end to walk
the Markov scheme under a sequence of imposed conditions, e.g.,
open, lockdown etc. The operation of the program is described by
the following simplified pseudocode:

PROGRAM FRONT_END
use module simulator
read parameter file !nh � number of villages

do ih � 1,nh
initialize village population sizes
and states
lrlinks(ilink,1:2) � ih !create
self-links
set r0’s for first time period
end do

!create network
lrlinks(ilink,1) � source
lrlinks(ilink,2) � target
set alphain, alphaout, betain,
betaout(ilink)
ilink++
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call episim(...lrlinks . . . tswitch, yflag) !
invoke the engine in simulator module

if yflag � false on return then ! t reached a
breakpoint

change r0’s,alphas, betas
advance tswitch
call episim again

else
reached tmax
write output history

end program front-end

MODULE SIMULATOR
contains
subroutine episim ! main engine
create bidirectional linked infectivity lists
!generate virtual links by extending link array
do ll1 � 1,nrlinks

do ll2 � ll1, nrlinks ! triangular
search for common hubs j3
ilink++
links(ilink,3) � j3
alphav(ilink) � alphain/out(j1)
*alphaout/in(j2)
end do

end do
t � 0
! main loop
do while t < tswitch

do over all links
do event � 1,16 !generate
cumulative rates of possible
events
rtot � rtot + rate(event, link)
rtt(jtt) � rtot
jtt++
end do

end do
!rtotistotalrateofavailablemarkovtransitions
! time of next event in Poissant point process

time of next event � t-log(random)/rtot
!exponential distribution

! choose the actual event link and type:
find rtot*random2 in the cumulative
array rtt at index jbin
jl�(jbin-1)/16 + 1 ! find which link fired
links(jl,1:3) gives the villages at the
link ends and/or hub
jp � jbin-16*(jl-1) ! remainder points
to the event type

! carry out the event
if the event creates a new infectious
person then

k � kranbin(random3,rinn(j),reff)
! personal infectivity

push k on the top of infection list
of village j
inf(j) � inf(j)+k

! inf is the collective infectiousness of
village j, plays role of
! (numberinfected)*r0 in SEIRD equations

end if
if the event removes infectious person
by recovery or death then

pull k off bottom of infection list
inf(j) � inf(j)-k

end if
if the event is migration of infectious
move between tops(most recent) of
infection list
end if
if t > tmax then

return with yflag � true
end if
if t > tout then

record state in kout array
increment tout

end if
end do over links

end do while ! continue with time steps until t >
tswitch

return with yflag � false ! continue to
the next simulation period.

end subroutine episim

FUNCTION kranbin ! draws random negative
binomial integer with mean r0 and !
dispersion reff.

end module simulator

Super-Spreading
It is known that the distribution of secondary COVID-19 infections
generated by a single, infected individual is over-dispersed (i.e. has a
long tail compared to the Poisson distribution of infections expected
if transmission were random). Although the average R0 is estimated
to be 2.5-4 in the absence of social distancing mitigations, contact
tracing has shown that single individuals have infected up to a
hundred others. This is known as super-spreading events, and can
occur by several possible mechanisms, involving either a predilection
of an individual (e.g., a celebrity who travels widely and contacts
many other people) or a situation in which individuals were placed in
unusually close contact (e.g., a church choir in an indoor location).
On the other hand, themajority of infected individuals do not appear
to spread the infection to anyone. It has been shown [14] that this
over-dispersed distribution can be approximated by a negative
binomial distribution, with mean R0 (by definition) and dispersion
parameter r<<1, for example 3 and 0.16. By iterating this distribution
for several generations of viral spread, it is found that the eventual
distribution of epidemic size is predicted to be quite different than
found for a hypothetical stochastic transmission by Poison-
distributed secondary infections with the same R0. A recent model
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of contact tracing assumed, based on data from the Netherlands, that
the distribution of number of personal contacts outside the family is
distributed as a negative binomial and used this to generate random
changes to infection levels at 1-day intervals [18].

Unfortunately, viral generations do not remain synchronous in
time, so it is not straightforward to incorporate super-spreading in a
time-dependent epidemic evolution model except by following the
interactions and infections of each individual in the population, as done
for example in the FLuTE simulation for influenza [8]. This is very
compute-intensive, but a more significant objection from our point of
view is that it depends on knowing (statistically) the social interaction
groups and travel behavior of the population at afine-grained scale, and
these have been severely disrupted by mitigation efforts during the
current pandemic. It is possible to try to adjust for these mitigations by
calibration against the evolving case data, but this is difficult. Rather
than speculate on these variables, we have developed a modified
Markov scheme that tries to reproduce the observed distribution of
secondary infections by replacingR0 in the event-rate calculations by an
infectivity that is itself stochastic. This requires storing a partial history
of individual infections, whichmakes the actual state-space, considered
as a Markov process, much larger than that in a classic SEIRD model.

The stochastic process of infection generation by one infected
case is in competition with the independent stochastic recovery
process. In the model, recovery is a Poisson point process with a
rate proportional to the number of infections. If we don’t identify
individuals, a super-spreader is likely to be “recovered” before (or
after) generating his destined number of infections. To avoid this,
we have adopted the following scheme:

• In each village j, at each event, an infectivity inf(j) is
maintained that takes the place of ki*R0 in the SEIRD
rate equations.

• Whenever a new infection is created (by conversion of an
exposed individual), a random number K is drawn from a
negative binomial distribution of mean R0 and dispersion
reff , the latter to be determined. Inf is incremented by K and
the individual infectivityK is placed on the top of a linked list.

• Whenever a random recovery event is generated at the
above-mentioned rate, the oldest individual infectivity is
removed from the bottom of the list and subtracted from inf.

The number of secondary infections actually realized by one
infected individual is proportional to the actual length of time he
remains infectious. Since infections recover in the order in which
they were created, if there are n infections active, that lifetime will
be the nth waiting time of the Poisson point process whose rate is
n times the mean recovery rate (i.e., the reciprocal of the mean
infection duration). The secondary infections generated by
individual K are a Poisson point process, which is then
convolved with the recovery process to give the realized
distribution of secondary infections generated by that
individual. Further convolving that with the negative binomial
distribution of K with mean r0 and dispersion r we find:

p(j, n) �
nnΓ(n + j)rr ∑∞

k�0
rk0k

j(n+k)− n− j(r+r0)− r− kΓ(r+k)
Γ(k+1)

jΓ(j)Γ(n)Γ(r) (1)

As the distribution of the actual, realized number of secondary
infections. This is a long-tailed probability distribution that can
be fit, by an appropriate choice reff for the dispersion parameter r
so as to approximate the empirical negative binomial distribution
with r � 0.16 over the relevant range. With more than a few active
infections present, the distribution converges to the limit:

p(j,∞) � ∑∞
k�0

rk0k
je−krr(r + r0)− r− kΓ(r + k)
jΓ(j)Γ(k + 1)Γ(r) (2)

We choose reff to give the best least-squares fit on a linear scale for
the case n � 1, which is the most important stochastic case since it
governs the chance that a single infected individual can start an
outbreak, and gives the chance that an infected individual causes no
secondary infections, p(0,1) � 0.62 similar to the empirical distribution.
These distributions are all normalized and have mean R0 and differ
dramatically from the Poisson distribution (Supplementary Figure S1,
dashed line) assumed in the classic SEIR model. Larger values of n are
decreasingly important because the aggregate distribution of the actual
infection rate controlled by the sum inf behaves similarly to
negbinomial (R0 ,n*r) which converges to Poisson, so stochastic
effects become less important once there are many active cases.

Super-Spreaders Vs Super-Spreading
Events
Super-spreading can be a property of the individual or of the
circumstances. What happens when an individual infected patient
migrates to a new village? Does he keep his identity or does he
assume the infectiousness typical of the local R0 of his new
environment? In the model we can make the choice, determined
by a logical variable SPREADR (default TRUE. controlled in the
demos by the input parameter spreads). If SPREADR is true, a
migrant keeps his prior K value which simply migrates from the top
(newest) link to be added to the top of the infection list in the new
village, thereby preserving his infectious lifetime in his new home. If
SPREADR is false then the K value of migrants is re-randomized
using the local R0 and reff and the infectivity of transient visitors in
the alpha process is re-scaled to the local value of R0. In the current
version of the program, SPREADR is a single variable governing all
events, but it could easily be made specific to individual links to
distinguish groups that are vulnerable due to high density in their
home village (e.g., factory or warehouse) vs. groups that are
intrinsically super-spreaders due to their individual behavior
(celebrities, bar hoppers).

Software Considerations
The model software is written in Fortran 77/95. The main
simulation engine, described above, is in the form of a single
Fortran module SIMULATOR. It is intended to be driven by a
front-end program that sets up the network and scenario. For
purpose of these demonstrations, we hand-coded a front end
(epichainF) describing a chain of urban clusters (or a single
cluster) connected by bidirectional travel, each linked to a large
set of small subpopulations whose characteristics differ from the
urban cluster. The single Markov-chain structure of the model is
intrinsically serial, and is implemented in a single processor thread.
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For networks with many nodes and dense links this can be speeded
up about 5-fold with 32 processors by parallelizing an inner loop.

RESULTS

Simulations of Infection in Isolated Clusters
Driven by An Urban Cluster
In the first set of simulations we examined the virus spread in simple
hypothetical scenarios with equal numbers of individuals in urban
and isolated populations (Figure 1A, insert). The large urban cluster
was composed of one million individuals set to R0 � 2.5 (open level,
but changing throughout the simulation). The isolated population
consisted of 250 clusters, each with 4,000 ± 500 people and with the
same internal R0 � 2.5 that remained constant throughout all
simulation stages. The urban cluster was weakly connected with
0.001% transient contact into the isolated clusters (alphainpop)
while isolated clusters had 0.1% contact into the urban cluster
(alphaoutpop), see Methods for the definition of transient contact.
This can be visualized as a collection of small suburban
neighborhoods or nursing homes that are attempting to isolate
themselves from the city. We investigated four scenarios, specified
below. In each scenario except #1, the urban cluster closed to R0 �
1.25 at t � 40 days (closed level, e.g., this was New York City under
lockdown, based on 21% antibody positive tests at the peak [19]).

(1) No mitigation, i.e., freely expending pandemic: The large
cluster of individuals stays always open.

(2) Premature, partial reopening to R0 � 1.9 at 100 days.
(3) Moderate lockdown period with full reopening at 225 days to

R0 � 2.5.
(4) Long lockdownperiodwith full reopening at 365 days toR0� 2.5.

A general tendency throughout all four scenarios was that as
the lockdown period increased, the magnitude of the infection
decreased but its duration increased. At the same time, the
interplay of the urban cluster and the isolated clusters
generated a variety of specific patterns in virus spread
dynamics. In the first “no mitigation” scenario (Figure 1A)
the isolated areas generated a strong second peak at the time
when infection in the urban cluster had gone through its peak and
was decaying. On the other hand, the infection rise in the
“premature reopening” scenario (Figure 1B) was multi-modal,
and the cumulative peak in isolated clusters happened later than
the urban cluster, creating an apparent plateau in active infection
cases from day 175–225. The infection dynamics in the “moderate
lockdown” scenario (Figure 1C) was more complex. During the
closed stage (of the urban center), the infection in the urban
cluster declined, but the delayed infection in isolated clusters
continued to rise forming an additional peak in total infections
(Figure 1E, inset). Then another peak in total infections emerged
in the reopen stage that was generated mainly by the urban
cluster, and then was echoed by the isolated subpopulations.
Finally, in the “late reopening” (Figure 1D) scenario, infection
decreased during the first wave in both urban and isolated clusters
but a distinct delayed second wave of infection occurred.

FIGURE 1 | Complex dynamic patterns of SARS-CoV2 infection in
simulations in a heterogeneous society when infection in isolated clusters are
ignited by an urban cluster implementing various lockdown strategies. (A)
isolated clusters generate a second delayed peak when no intervention
is implemented. Inset schematically illustrates the society structure in this
scenario. Contributions are shown by different colors. (B) an apparent plateau
after early reopening and complex rise pattern during close period (inset).
Green shade shows the lockdown periods. (C) A multimodal rise (inset) with
additional peak generated by rural cluster after full reopening at day 225. (D) A
delayed second wave emerged after full reopening at day 365. (E) The
dynamics of total number of deaths in each scenario.
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We also performed a control simulation to validate that
heterogeneity of isolated clusters is indeed important for the
infection pattern. In the most complex scenario of “moderate
lockdown” shown in Figure 1C we substitute 250 clusters by one
big cluster with the same population of one million people
keeping all other parameters the same. The simulations
showed a different pattern in which the second big cluster
always generated a peak of substantially larger amplitude
(Supplementary Figure S2).

Simulations of Integrated Clusters Driving
Infection in an Urban Cluster
By altering parameters in the same topology as Figure 1A, we found
that the outlying clusters, if they are unable to socially distance, can
become potential “hotspots” that can drive the infection in the
urban population even against efforts of the latter to lock down. In
this scenario the large urban cluster was composed of 1 million
individuals with R0 � 1.25 throughout all simulation stages
while the highly susceptible population consists of 250 clusters
each with 1,200 ± 500 people and internal R0 � 3.0 that are
partially embedded in the urban cluster. This R0 value is based
on data from four districts in Germany when essential
manufacturing sectors were open–95%-prediction interval:
2.16–3.73 [20]. The potential hotspot clusters were connected
with 20% out-coupling into the urban cluster (alphaoutpop �
0.20, see Methods). This mechanism of transient contact
implements short-term movement of the same people in and out
regularly, which does not dilute the effect of the conditions in
hotspots the way that random bidirectional migration would. In
other words, the same people “virtually” move back and forth but
spendmost of their time in the high-R0 locations where the infection
regenerates. In this scenario, the small number of infections in the
urban area are picked up by hotspots, amplified, and then drive a
wave of infection among the urban population despite their efforts to
keep their internal R0 at 1.25 by social distancing.

We performed 10 runs of these simulations which
demonstrated that the integrated clusters drove infection in
the urban cluster, leading the late appearance of the epidemic
in places that had seen few cases in a microcosm of the pattern
(Figure 2). In the second “chain” topology multiple small
urban areas (population 100 K each) are sequentially
connected and 30 potential hotspots with R0 � 2.0 drive
infection within each urban cluster and facilitate
propagation from cluster to cluster (Figure 3,
Supplementarys Figure S3 and Video S2 show the
stochastic dynamics of individual hotspots). In this model,
the first urban cluster began with R0 � 2.5, then locked down
to 1.25 at day 40, while the unsuspecting urban clusters
connected through the chain kept R0 � 1.25 throughout,
signifying efforts at social distancing. Ultimately these
efforts were defeated by the hotspots picking up the small
number of arriving infections and amplifying them. These
results demonstrate that subgroups who cannot or will not
socially distance can drive the propagation of the epidemic to
new regions against the best efforts of the majority of the
populations. It follows that it is possible to control the spread

of the epidemic through the mitigation of hotspot
amplification. To validate this finding, we simulate the
application of vaccine treatments to just the hotspot
members, who constitute only about 30% of the
population. The vaccine treatment is applied to individuals
in hotspots at the rate of 5% per day, and, as a result, the
geographic spread of infection is sufficiently stopped and the
entire downstream region is protected from infection and
deaths (Figure 4).

Reopening Urban Cluster After Hotspots
Drive First Wave of Infection
We extended the single urban cluster hotspot scenario to
reopen when infection numbers substantially drop. Here, the
main cluster was composed of 1 million individuals which
starts off closed with R0 � 1.05 and reopens to R0 � 2.50 at
day 360. The cluster was connected to 30 potential hotspots
each with 1,200 ± 500 people with R0 � 3.0 which remained
constant throughout all simulation stages. The urban cluster
was connected with 0.1% transient contact into the isolated
clusters (alphainpop) while isolated clusters had 1% contact
into the urban cluster (alphaoutpop). The results show two
distinct waves of infection (Figure 5). The hotspots drove the
first wave of infection, whereas the second wave was almost
entirely composed of infection from the urban area,
demonstrating that the hotspots acquired immunity and did
not participate at all in the second wave. The ending of the first
wave, dominated by the vulnerable groups, created the illusion
that the epidemic was nearly over, while a large fraction of the
surrounding populations was in fact still susceptible when
reopening occurred.

DISCUSSION

Interpretations and Implications
Since Summer of 2020, the infection curves of the COVID-19
pandemic in various locations have been very different from
standard smooth bell curves. Here we tested the hypothesis
that multiple, asynchronous waves and plateaus are in part
due to stochasticity and heterogeneity, as well as due to
changing efforts at mitigation. Geographic heterogeneity is
included in forecasting models [12, 21, 22] which use
extensive, public databases of population characteristics
and travel patterns, but these do not fully account for the
stratification of social behaviors that controls the spread of
the virus. Therefore, instead of building another data-based
forecasting and estimation model, we developed a numerical
scenario model that we used to explore mechanisms of
infection dynamics with regards to social stratification.
The model was built as a network of “populations” which
represent social and behavioral strata of geographic
populations. Our model can be considered a
metapopulation of SARS-CoV2, when a single species is
spread among different environments that determine its
local survival or extinction.
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We examined several scenarios which included one or more
large urban populations connected to vulnerable subgroups that
are unable/unwilling to socially distance and thus represent
potential COVID-19 hotspots. Depending on the degree of
interaction, these subgroups were either driven by infection
from the main population, or acted as major drivers of the
epidemic. Isolated subpopulations were infection-driven (e.g.,
nursing homes, prisons, remote suburbs, clustered religious
groups) and had a substantially delayed contribution to total
infection cases, ultimately forming an infection curve which
could include multi-modal growth periods, an extended plateau,
a prolonged tail, or a delayed second wave of infection (Figure 1).
These communities, due to their isolated nature, had low herd
immunity that put them at risk for explosive scenarios when basic
mitigation strategies were not implemented. Alternatively, partially
integrated subpopulations were driving infection (e.g., employees
of factories, warehouses, meat packing plants, church groups,
campuses, shelters, and other essential workers) in its connected
urban population by picking up infection and amplifying it by
(Figure 2, Supplementary Video S1). We found that these
“hotspots” ignite infection even in a locked down population,
ultimately propagating and igniting other isolated populations
(Figure 3, Supplementary Video S2). The locked down
population however does not acquire herd immunity, as
opposed to the hotspots, and thus when lockdown is lifted, a
second wave is generated by the main cluster (Figure 5).

There are several implications that arise from our results.
We can expect social heterogeneity to form delayed local
asynchronous epidemics, creating a variety of infection
profiles in various regions over time, prolonging the
pandemic time span, and spreading to new areas
unpredictably due to the stochasticity of infection in small
subgroups, as is becoming increasingly obvious in the
United States in the Fall of 2020 Effective mitigation of the
epidemic in the main population requires close attention to
vulnerable subgroups in order to prevent the formation of
COVID-19 infection hotspots. Otherwise vulnerable
subgroups that cannot implement mitigation strategies
spread infection to the socially distanced populations,
defeating their efforts at mitigation. Despite hotspots
possibly acquiring immunity, there still exists a threat of a
second wave of infection in the socially distanced main
population. Thus, an effective treatment or vaccination
needs to be developed prior to full reopening. As vaccines
become readily available, the selection and timing of their
administration will be an important policy consideration.
Our simulations in idealized scenarios (Figure 4) suggest
that focusing vaccination on the small fraction of the
population that is unable or unwilling to socially distance
may be sufficient to interrupt regional spread and protect a
much wider fraction of the public. Notably, achieving this effect
requires vaccinating all hotspot groups, not merely medical
personnel, and essential workers, but also uncooperative
college students and those with an aversion to mitigations.
This creates a kind of moral hazard–rewarding bad
behavior–but the model suggests that it is the public interest.

FIGURE 2 | Highly susceptible integrated clusters (hotspots) drive
SARS-CoV2 infection in an urban cluster. (A,B) Initial rise of infection in
hotspot clusters is followed by the infection in urban cluster with a delay of
about 30 days. Y-axis represents active infections in % population
reflecting for hotspots (red line) the ratio of all active cases in all hotspots to
entire population of all 250 hotspots. Inset shows schematically the society
structure in this scenario. (C) Infection in individual hotspots (multiple colors)
substantially fluctuates in terms of time of ignition and magnitude from the
mean (red bold curve). See also Supplementary Video S1. (D) Explosive
infection in hotspots within locked urban cluster substantially increased the
peak of infection in the entire society and shifted it toward much earlier
occurrence from about 400 to 200 days. Shown are 10 simulation runs for
each scenario.
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Comparison With Other Studies
While our study is focused on vulnerable subpopulations in
pandemic development, there are other important factors
regarding social heterogeneity identified by previous studies.

The study by Dolbeault et al. [23], using their multi-group
SEIR model, underlined the importance of mitigation measures
on single individuals with a high level of social interactions.

Indeed, their study showed that even a small group of individuals
with high transmission rate can trigger an outbreak even if the R0
of the majority is below 1. Althouse et al. [14] identified and
explored in depth another important factor, explosive super-
spreading events originating from long-term care facilities,
prisons, meat-packing plants, fish factories, cruise ships, family
gatherings, parties and night clubs. This study further

FIGURE 3 | Complex infection propagation patterns in multiple urban areas containing hotspots. (A) Schematic illustration of the heterogeneous society used in
simulations. (B) Total infection count oscillates as infection propagates. While individual oscillations exhibit substantial variations in timing and amplitude, the patterns remain
the same (i.e., four oscillations, reflecting infection surge in each urban cluster). (C) The infection in hotspots is delayed before the lockdown at day 40, but then is always in the
lead (red curves), driving infection in each urban cluster (blue curves) and facilitating infection propagation among clusters (Supplementary Video S2).
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demonstrated the urgent need for targeted interventions as routes
of effective virus transmission. Taking into account the
importance of these super-spreading events and individuals,
they were included in the design of our model (see Methods,
Super-spreading) to generate more realistic outcomes of
scenarios.

With regard to agent-based models, Chinazzi et al. [12] used
GLEaM to demonstrate that travel restrictions introduced in

Wuhan in January 2020 only delayed epidemic progression by
3–5 days within China, and international travel restrictions
only helped slow infectious spread until mid-February. Our
simulations of COVID-19 spread also show that ultimately,
when enough time goes by, isolation does not prevent infection
of vulnerable subpopulations (Figure 1). Chinazzi et. al.
suggests that early detection, hand washing, self-isolation,
and household quarantine are more effective than travel
restrictions at mitigating this COVID-19 pandemic. Our
recommendations are in accord, and we advocate for
communities to take extra care of vulnerable subpopulations
internally, as so to prevent a possible hotspot formation that
may evolve into a regional epidemic.

Model Features, Limitations, and Future
Studies
An epidemic can be likened to a forest fire, which spreads by
diffusion along a front, but can also jump by embers that may or
may not start a new blaze. Such spread to virgin areas, with a virus
as with a fire, is intrinsically stochastic and such stochasticity,
which is not explicitly included in mean-field models, may
contribute to the remarkable patchiness of the COVID-19
epidemic. This has caused the epidemic to appear entirely
different to observers in different locations, leading to
politicization of the response, which is, itself, a form of social
heterogeneity. For rare spread to small, isolated subgroups
(embers) this stochasticity is crucial. Patchiness is aggravated
by the over-dispersion (super-spreading) of secondary cases of
COVID-19, where the majority of infected individuals do not
spread the virus, but some can cause up to a hundred secondary
infections [14]. Our model is explicitly stochastic, with a
mechanism to account for over-dispersion, by keeping a
partial history of individual infections. Furthermore, the
design of our new model allows it to be applied in future
studies of real-world scenarios on any scale, limited only by
memory and the ability to determine the underlying topology and
parameters.

However in our model, we make no attempt to distinguish
between symptomatic and asymptomatic cases, despite recent
findings by Chao et al. [24] in their agent-based model (dubbed
Corvid) that demonstrated that most infections actually
originate from pre-symptomatic people. Since the relative
infectivity of symptomatic and non-symptomatic is
uncertain, there is no direct way to accurately determine the
number of asymptomatic infections at present. Such a
distinction (included in a number of other models) could
easily be added by subdividing the five compartments, at the
risk of added complexity and more parameters needed in a
scenario.

We did not take into account recent suggestions that
infectivity is concentrated in a short time window just
before and after symptom onset. Instead, we used the
standard SEIRD assumption that infections are generated
throughout the period of infection, using a mean clinical
duration of 7 days. The model does not consider the
physical mechanisms of transmission of COVID-19, or the

FIGURE 4 | Multicity model as in Figure 3 without (A) and with (B)
vaccination of only the hotspot populations at a rate of 5% of the population
per day, starting at day 150. Vaccination of hotspot individuals prevents
geographic spread of the virus even though they are only about 1/3 of
the population, thereby protecting the general population. The colored curves
show only the infections among the socially distanced majority of the city
population. (C) Overall mortality with and without vaccine, assuming case
mortality of 1% in all groups.
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possibility that many recovered patients do not quickly re-
enter their normal social circles, delaying herd immunity. An
additional compartment, with a pipeline mechanism, could
also be added to account for this.

We examined several simple scenarios as a demonstration of our
model, which revealed the important role of embedded, non-
distancing sub-populations in infection propagation. Further
studies require consideration of the role of model network
topology. Several studies have shown that epidemic propagation
in large, scale-free networks can result in the establishment of an
endemic state even with small infection rates, preventing random
vaccination from effectively ending the epidemic [25, 26]. Strictly
speaking this cannot happen in the scenarios we considered, which
assumed that recovered individuals are permanently immune–a
choice we made because of the extreme rarity of re-infections
with SARS-CoV-2. A more important point is that prior
theoretical analyses pertained to networks of individuals, each of
whom can be either infected or susceptible. Within a single
population cluster, over-dispersed link distributions such as in
scale-free networks can enable persistence of infection because
highly connected individuals can scavenge rare infections and
widely redistribute them [27]. This is a major mechanism of
super-spreading, which is incorporated in our model by
heuristically handling super-spreading in each homogeneous
cluster. However, stratification of the connectivity of individuals
is not included in the model: Individual villages were taken to be
homogeneous, characterized by their populations, R0 and reff that
determine the effective dispersion of secondary infections. Further
stratification of individual connectivity could be handled by splitting
social behavior into separate, mutually embedded clusters e.g.,
college students who study together vs. those who study alone.

It requires further studies to see if similar topological
considerations pertain to networks of populations as in our

model. With that in mind, the model includes the possibility
that a recovered individual may revert to being susceptible,
with a specified rate constant. How the topology of the
larger-scale network of populations affects the
propagation of the virus requires simulation studies too
extensive to be considered in this paper. For example,
whether physical transportation and communication
networks are scale-free is controversial [28–30]. In our
preliminary simulations (not shown), we found that a
scale-free random network of 500 villages with
populations proportional to the link numbers, and
uniform behavior, had a significant probability of entering
an endemic state even when the lifetime of immunity was as
long as 500 days. However, the same was true of Erdös-Rényi
random networks with a similar number of links.
Interestingly, both types of random networks produced
smooth single-peak epidemics resembling a single
population suggesting that the increasingly complex
patterns now being observed do depend on behavioral
heterogeneity.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

AM and MS designed research, performed research, analyzed
data, and wrote the paper.

FIGURE 5 | Second wave in the hotspot scenario. Urban cluster generates a second wave of infection when it reopens from R0 � 1.05 to R0 � 2.50 on day 360
(green line), whereas hotspots with R0 � 3.0 (red line) have acquired immunity in the first wave and do not participate in the second wave.

Frontiers in Physics | www.frontiersin.org January 2021 | Volume 8 | Article 60922411

Maltsev and Stern Novel Stochastic Heterogeneous Epidemic Model

289

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


FUNDING

The work was supported by the Intramural Research
Program of the National Institute on Aging, National
Institutes of Health.

ACKNOWLEDGMENTS

This manuscript has been released as a pre-print at https://www.
medrxiv.org/content/10.1101/2020.07.10.20150813v4 [31]. This

study utilized the high-performance computational capabilities of
the Biowulf Linux cluster at the National Institutes of Health,
Bethesda, MD. (https://hpc.nih.gov/).

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fphy.2020.609224/
full#supplementary-material.

REFERENCES

1. Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease
(COVID-19) outbreak. J Autoimmun (2020) 109:102433. doi:10.1016/j.jaut.2020.102433

2. Xiaofang F, Yuqing Z, Jie W, Xiaoxiao L, Cheng D, Chenyang H, et al. A severe
seasonal influenza epidemic during 2017–2018 in china after the 2009 pandemic
influenza: a modeling study. Infect Microbes Dis (2019) 1:20–6. doi:10.1097/
IM9.0000000000000006

3. Liu Y, Gayle AA, Wilder-Smith A, Rocklov J. The reproductive number of
COVID-19 is higher compared to SARS coronavirus. J Trav Med (2020) 27.
doi:10.1093/jtm/taaa021

4. World-Health-Organization. Coronavirus disease 2019 (COVID-19) situation
(2020). Report No. 72. Available from: https://apps.who.int/iris/bitstream/handle/
10665/331685/nCoVsitrep01Apr2020-eng.pdf. (Accessed November 23, 2020).

5. Liu K, Chen Y, Lin R, Han K. Clinical features of COVID-19 in elderly patients:
a comparison with young and middle-aged patients. J Infect (2020) 80:e14–e8.
doi:10.1016/j.jinf.2020.03.005

6. Li P, Chen L, Liu Z, Pan J, Zhou D, Wang H, et al. Clinical features and short-
term outcomes of elderly patients with COVID-19. Int J. Infect. Dis (2020) 97:
245–50. doi:10.1016/j.ijid.2020.05.107

7. Siegenfeld AF, Taleb NN, Bar-Yam Y. Opinion: what models can and cannot tell
us about COVID-19. Proc Natl Acad Sci (2020) 117 (28):16092–16095. doi:10.
1073/pnas.2011542117

8. Chao DL, Halloran ME, Obenchain VJ, Longini IM, Jr. FluTE, a publicly
available stochastic influenza epidemic simulation model. PLoS Comput. Biol
(2010) 6:e1000656. doi:10.1371/journal.pcbi.1000656

9. Van den Broeck W, Gioannini C, Goncalves B, Quaggiotto M, Colizza V,
Vespignani A. The GLEaMviz computational tool, a publicly available software
to explore realistic epidemic spreading scenarios at the global scale. BMC Infect
Dis (2011) 11:37. doi:10.1186/1471-2334-11-37

10. Balcan D, Goncalves B, Hu H, Ramasco JJ, Colizza V, Vespignani A. Modeling the
spatial spread of infectious diseases: the GLobal epidemic and mobility
computational model. J Comput Sci (2010) 1:132–45. doi:10.1016/j.jocs.2010.07.002

11. Koo JR, Cook AR, Park M, Sun Y, Sun H, Lim JT, et al. Interventions to
mitigate early spread of SARS-CoV-2 in Singapore: a modelling study. Lancet
Infect Dis (2020) 20:678–88. doi:10.1016/S1473-3099(20)30162-6

12. Chinazzi M, Davis JT, Ajelli M, Gioannini C, Litvinova M, Merler S, et al. The
effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-
19) outbreak. Science (2020) 368:395–400. doi:10.1126/science.aba9757
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The Effect of An Emergency
Evacuation on the Spread of COVID19
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In an emergency evacuation, people almost always come in close proximity as they quickly
leave a built environment under a potential threat. With COVID19, this situation presents
yet another challenge: that of getting unintentionally exposed to an infected individual. To
assess the epidemiological consequences of an emergency evacuation, we expanded a
popular pedestrian dynamic model to enable social distancing during a normal exit and
analyze the effect of possible transmission through respiratory droplets and aerosol.
Computer simulations point to a troubling outcome, whereby the benefits of a quick exit
could be outweighed by the risk of infection.

Keywords: COVID19, evacuation, aerosol, crowds, proximity

INTRODUCTION

As schools and universities continue to evaluate various social distancing strategies to mitigate the
spread of COVID19, a critical feature of human behavior is being overlooked—the response to a
sudden alarm in a built environment that may trigger an emergency evacuation. The alarm may
come from a fire in the building, the presence of an active shooter, or even a simple drill to prepare for
true emergencies. Perhaps, in the current context, even someone blatantly unwilling to comply with
social distancing regulations and use of masks could trigger an alarm. Whatever the source of the
alarm is, during an evacuation, individuals will likely weigh the risks of being injured from the
perceived threat heavily against the possibility of contracting an infection from a classmate or the
instructor. Upon exiting however, people may wonder if they got too close to an infected person and
if they breathed the same air for too long. These aspects represent an important discussion in relation
to airborne transmission of COVID19 [1, 2].

The recommended separation distance of 2 m (six feet) is largely based on the transport of
“respiratory droplets produced when an infected person coughs, sneezes, or talks.” [2]. These
droplets can be propelled through air for up to 2 m and “land in the mouths or noses of people who
are nearby or possibly be inhaled into the lungs.” [2]. More recently, results from fluid mechanics
research have shown that aerosol could be the dominant driving mechanism for transmission
between people in close proximity [3]. In comparison with respiratory droplets, aerosol includes
much smaller particles that remain suspended in air for long periods of time to be inhaled by others.
Irrespective of the drivingmechanism, proximity to an infected individual is likely to increase the risk
of infection, especially in the presence of screaming.
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RISK OF INFECTION FROM AN INDIVIDUAL
AS A FUNCTION OF THEIR PHYSICAL
PROXIMITY
Under the premise that the risk of an infection increases with the
proximity to an infected individual, we could quantify the
epidemiological consequences of an evacuation by tracking the
separation distance within the crowd. We assume that the risk of
infection decays exponentially with distance [3], and that this risk
accumulates over time. More specifically, we measure the risk of
exposure in a crowd ofN people from an infected individual I as the
instantaneous exposure integrated over time for the duration of the
evacuation: E � max

j≠ I
∫
t

e−τdIj(t)dt, where dIj(t) is the instantaneous
distance between individual I and any other individual in the crowd
(Figure 1A), and τ is the spatial decay rate of the transmission. The
maximization ensures that we select the individual who receives the
highest exposure within the crowd and quantifies the risk in terms
of a worst-case scenario. The higher the value of E, the more likely
the infected individual will create a new infection in the crowd.
This definition is agnostic to the specific mechanism of
transmission, be it respiratory droplets or aerosol, and allows
for a direct comparison among feasible scenarios.

An estimate of the value of τ can be obtained through a linear
regression of the plots in logarithmic scale presented in Figure 7
of Chen et al. [3]. These plots include exposure from both talking
and coughing for droplets of size more than 100 µM (respiratory
droplets) and short-range airborne (aerosol) as functions of
distance. Hence, we obtain the following estimates: talking/
respiratory droplets: τ � 16.29 m−1; talking/aerosol:
τ � 9.46 m−1; coughing/respiratory droplets: τ � 7.64 m−1; and
coughing/aerosol: τ � 5.29 m−1. As a reference for values of E that
could lead to an infection, we can follow guidelines of the Centers
for disease Control and Prevention (CDC)[4] that define a “close
contact” as one that may trigger an infection by being within 2 m
of an infected individual for more than 15 min. By considering
the most extreme case of aerosol transmission during coughing,
the value of E that corresponds to close contact is 2.29 × 10–2 s.
This value can be used as a simple threshold to assess a close
contact in an evacuating crowd.

SIMULATING EMERGENCY EVACUATIONS
AND NORMAL EXIT WITH SOCIAL
DISTANCING
Emergency evacuations represent a dire situation where people
exit a built environment as quickly as possible to escape the
perceived danger. In an evacuation, the resulting crowd dynamics
arise from a complex interplay between psychological, social, and
physical factors. Individuals use social, cognitive, visual, and
physical cues to stay with friends and family [5], look for the
exit [6], and avoid collisions and injury [7]. Evacuation is
therefore a cognitively demanding situation, which makes it
inevitable for individuals to come close to each other—much
less than the stipulated 2-m distance. Could this increase the risk
of contracting COVID19?

Experiments on evacuation are impractical and potentially
dangerous to conduct. A number of agent-based, mathematical
models have been proposed over the years to predict human
response and support hypothesis-driven experiments to clarify
the mechanisms of the crowd dynamics. Among those, the social
force model originally proposed by Helbing et al. [8] constitutes a
viable compromise between model complexity and predictive
power. The social force model is a physics-based model that
captures interactions between finite-sized particles (agents) in the
form of four kinds of forces: a social force that keeps agents apart;
a goal force that makes them orient and move toward a goal
location; a physical force in the event of friction and collision
between agents; and a wall force, which is the same as the social
force but captures interaction with walls and obstacles instead of
other agents. Computer simulations can reproduce several real-
world phenomena, including occurrences of bottlenecks near
exits, injuries during an evacuation of a large crowd, and lane
formation in corridors. The social force model has been validated
in laboratory experiments [9], as well as real-world scenarios [7],
thereby constituting a valid framework for exploring the potential
epidemiological implications of an evacuation. By combining the
classical evacuation model from Helbing et al. [8] with the
proposed definition of risk of exposure, it is possible to
provide a first assessment of the epidemiological consequences
of an evacuation, compared to a normal exit where people can
exercise social distancing.

The social force model [8] captures the motion of agent i as the
combination of three effects, a desire to move toward the exit goal,
maintain separation from others, and maintain distance from
walls. This is mathematically written as m€xi � f g +∑

j
f ij + ∑

W
f iW ,

wherem is the common mass of each agent (80 kg), xi is the two-
dimensional position vector of agent i, f g is the goal force, f ij
includes the social force and the physical force between agents i
and j, and f iW is the wall interaction force for agent i with respect
to the wallW. The goal force is modeled as f g � v0e−v

α , where v0 is
the desired speed that encapsulates the urgency with which
the agent must leave the built environment, e is the direction
toward the exit, v is the instantaneous velocity, and α � 0.5 s is
the relaxation time. The interaction force is

f ij � {Ae(rij−dij )B + kg(rij − dij)}nij + κg(rij − dij)Δvjitij, where rij is

the sum of the radii of agents i and j (modeled as circles); dij is the
distance between agents i and j ; nij identifies the direction from j
to i, and tij denotes the direction that is perpendicular to nij;A and
B are constants that determine the strength of social interaction,
with higher values leading to larger distances between agents; and
k � 1.2 × 105 kg s− 2 and κ � 2.4 × 105 kg m− 1s−1 determine the
strength of physical interaction and friction effects, with the
function g being equal to rij − dij if rij > dij and is zero
otherwise. The wall interaction force f iW has the same form of
the social interaction force, so that an agent stays away from the
wall and experiences physical force when in contact.

To quantify and compare the risk associated with an
emergency evacuation, we simulated two scenarios: evacuation
and normal exit with social distancing. To simulate these two
scenarios, we varied the interaction range (parameter B in the

Frontiers in Physics | www.frontiersin.org February 2021 | Volume 8 | Article 6312642

Butail and Porfiri Emergency Evacuation during COVID19

292

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


model), interaction repulsive force (parameter A in the model),
and desired speed (parameter vo in the model) within the social
force model (Figure 1). For a normal exit where people exercise
social distancing (Figure 1B), we set a large interaction range and
a strong interaction repulsive force, along with a low desired
speed of 1 m/s. On the other hand, for an evacuation, we utilize a
low interaction range and a weak repulsive force (Figure 1C),
accompanied by a high desired speed of 5 m/s. The selection of
these desired speeds reflect walking and running speeds during
normal and emergency situations [8].

Specifically, evacuation was simulated by setting
A � 20 kN, B � 0.08m, v0 � 5 m s− 1, which were the default
values proposed in Helbing et al. [8] to simulate an evacuation;
the A and B parameter values for exit with social distancing were
selected by simulating exit scenarios with a range of values
A ∈ {20, 40, 60, . . . , 200} kN, B � {0.08, 0.16, 0.24, . . . , 0.72}m,
for a normal walking speed of v0 � 1 m s− 1 and calculating the
average distance to the nearest neighbor for all agents in the room
for the first 10 s; we found that the average distance to nearest
neighbor increased steadily with A and B before it plateaued at
approximately 1.7 m due to the wall and room size constraints.
The dependence of average distance to the nearest neighbor on
parameters A and B is highly nonlinear and multiple parameter
choices could yield the same value. Specifically, we record an
average distance of 1.7 m for A × B ≈ 5 kNm as we vary A from

6 kN to 14 kN and B from 0.4 m to 0.72 m. We selected A �
10 kN, and B � 0.48 m as the centroid of this region. In the event
that experimental data is available, the parameters of the
pedestrian dynamics model can be set by minimizing the
difference between simulated and experimental trajectories [9],
or between distribution of individual speeds [10]. All other
parameter values were kept the same as set in the open source
code provided as part of Helbing et al [8]. Simulations were
performed using the C source code provided as Supplement to
the paper by Helbing et al. [8].

To prevent goal and interaction forces from balancing out to
an equilibrium for the exit with social distancing scenario, the
goal force was multiplied by a factor kg that was a function of the
distance to the exit de. This distance-dependent factor was set to
an exponentially decaying value, namely, kg � 1 + C1exp(−C2de),
with C1 � 100, and C2 � 1 m−1 so that agents felt a stronger pull
toward the exit as they got closer to it.

For each simulation, we randomly placed 25 agents (modeled
as finite-sized circles) within a 10 × 10 m room with a single 1 m
wide exit; this number of individuals is sufficiently low to allow
for maintaining a separation distance of 2 m within the room.
Randomness in the simulation was introduced through two
means: first, ten simulations were performed in each scenario,
where each simulation corresponded to a different initial
condition and the distribution of agent size (circles with

FIGURE 1 | The epidemiological risks from coming close to an individual during an evacuation could outweigh the benefits of being able to quickly leave a room
under a potential threat (A) The framework used here combines a pedestrian dynamic model and an exposure model to quantify the risk of exposure during an
emergency evacuation (B) and (C), Snapshots from a simulation of the social force model [8] as 25 agents exit a 10 × 10 m room through a 1-m wide door while
maintaining social distance or evacuate without maintaining social distance (D), Risk of exposure of an individual in the crowd as a function of the decay rate of the
transmission; a low value of τ indicates high transmission at larger separation distances (red denotes evacuating, and turquoize identifies exiting and social distancing)
(E), Average distance to the nearest neighbor during the two types of simulations performed (red denotes evacuation without distancing, and turquoize identifies exiting
with distancing) (F), Leaving time for more than ninety percent of the crowd for the two scenarios.
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diameters ranging uniformly between 0.5 and 0.7 m), and,
second, by selecting a different agent as the single infected
agent within the crowd. This amounted to hundred different
realizations of each scenario. The risk of exposure, E, was
computed for each scenario for different values of τ.

Figure 1D shows that the exposure for an agent within the
evacuating crowd without social distancing is much larger than
when the crowd leaves normally and maintains social distance,
despite the evacuating crowd leaves the arena much sooner than a
crowd that normally exits and maintains social distance
(Figure 1F). Figure 1E confirms that the agents maintain
larger distances as a result of the higher interaction range and
repulsive force encoded into the model. Should the simulation be
performed with a larger group of 100 agents within a room of
20 × 20 m dimensions, the results would be statistically
indistinguishable from those presented herein. This evidence
suggests that our claims should be robust with respect to size
of the room and the evacuating crowd.

DISCUSSION

Our simulations show that despite the evacuating crowd taking
only a sixth of the time to leave the room than when the crowd
which is exiting normally, evacuation presents a far greater threat
for possible transmission of COVID19 than a crowd that is
exiting with social distancing. For example, in the case of
aerosol transmission, evacuating in the presence of an infected
individual who is coughing will yield a risk of exposure due to
aerosol transmission of about 0.1 s (above the estimate of the
threshold of close contact), while exit with social distancing will
cause an average exposure ten time smaller (below the estimate of
the threshold of close contact).

A vast community of researchers is focused on
understanding how the flow of individuals during an
emergency evacuation can be eased to avoid bottlenecks and
high pressures that could lead to injuries and fatalities [11].
COVID19 presents yet another complication, where we must
also weigh our compulsion to run away from a potential threat
against the possible risks involved in being in proximity to an
infected individual. Our results indicate that maintaining social
distancing during an exit could increase the time required to
leave the built environment by a factor of ten, which may be fatal
in the case of a fire or a mass shooting. At the same time,
evacuating without maintaining a social distance dramatically
increases the risk of exposure, potentially leading to further
infections. Face coverings can certainly help mitigate these risks,
although more research is required to precisely evaluate the
reduction in the decay rate associated with the proper use of
masks, especially in the context of aerosol intake. Overall, this

study points to a critical gap in the current guidelines for
resuming in-presence learning, as well as opening up
businesses during the coming fall.

Our analysis is not free of limitations, which should be
investigated in further efforts, beyond the scope of this
perspective. First of all, the pedestrian dynamics is
described by one of the very first mathematical models in
the field [8], which has seen several refinements throughout
the last 20 years [12]. As such, one may attempt at more
complex simulation of the evacuation process to capture
perceptual and psychological factors that are missing in
this model. Second, the simple evacuation scenario
presented here is not able to fully capture the combination
of exposure risks one may face when evacuating a building
with multiple rooms, floors, stairways, and doorways. In such
a complex scenario, it will also be important to trace the
individuals who have experienced the strongest exposure;
toward this aim it may be possible to borrow techniques
from community detection in networks [13–15]. Third, the
contact process examined herein does not account for
individual orientation, which is likely to play an important
role on droplet-based exposure, and, to a lesser extent, on
airborne transmission [3]. This limitation for example could
be overcome by following the approach proposed by Ronchi &
Lovreglio [16] to combine risks of infections across a range of
viable scenarios in a built environment. Overall, this study
contributes to the general topic of safety-related issues during
the current pandemic [17], by bringing forward preliminary
evidence for the expected risks of infection during
evacuations.
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Isolation and Contact Tracing Can Tip
the Scale to Containment of COVID-19
in Populations With Social Distancing
Mirjam E. Kretzschmar1*, Ganna Rozhnova1,2 and Michiel van Boven1

1Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands,
2BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal

SARS-CoV-2 has established itself in all parts of the world, and many countries have
implemented social distancing as a measure to prevent overburdening of health care
systems. Here we evaluate whether and under which conditions containment of SARS-
CoV-2 is possible by isolation and contact tracing in settings with various levels of social
distancing. To this end we use a branching process model in which every person
generates novel infections according to a probability distribution that is affected by the
incubation period distribution, distribution of the latent period, and infectivity. The model
distinguishes between household and non-household contacts. Social distancing may
affect the numbers of the two types of contacts differently, for example while work and
school contacts are reduced, household contacts may remain unchanged. The model
allows for an explicit calculation of the basic and effective reproduction numbers, and of
exponential growth rates and doubling times. Our findings indicate that if the proportion of
asymptomatic infections in the model is larger than 30%, contact tracing and isolation
cannot achieve containment for a basic reproduction number (R0) of 2.5. Achieving
containment by social distancing requires a reduction of numbers of non-household
contacts by around 90%. If containment is not possible, at least a reduction of epidemic
growth rate and an increase in doubling time may be possible. We show for various
parameter combinations how growth rates can be reduced and doubling times increased
by contact tracing. Depending on the realized level of contact reduction, tracing and
isolation of only household contacts, or of household and non-household contacts are
necessary to reduce the effective reproduction number to below 1. In a situation with social
distancing, contact tracing can act synergistically to tip the scale toward containment.
These measures can therefore be a tool for controlling COVID-19 epidemics as part of an
exit strategy from lock-down measures or for preventing secondary waves of COVID-19.

Keywords: contact tracing, branching process model, effective reproduction number, exponential growth rate,
doubling time, social distancing

1 INTRODUCTION

The novel coronavirus (SARS-CoV-2) has established itself in all parts of the world. There are still no
registered vaccines and treatment options to COVID-19 disease remain mainly supportive. Control
of virus transmission and associated disease thus depends on preventive measures such as social
distancing combined with isolation of infected persons and those that have high likelihood of being
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infected, for instance because they have been traced as contacts of
infected persons [1, 2]. It has become clear that additional
measures are needed to control epidemic transmission, for
example by using active tracing of contacts in combination
with isolation of infected contacts. Also, such measures are
important in the context of exit strategies, i.e. once social
distancing measures are reduced or lifted, as has been
suggested recently [3]. It is unclear how effective such
combinations of interventions can be in populations with
social distancing in place [4].

To what extent local containment or local slowing down of an
epidemic by isolation and contact tracing is successful depends on
the fraction of infections that remain asymptomatic or have mild
disease, on the infectiousness before the onset of symptoms [5, 6],
and on testing rates. It is known that occurrence of asymptomatic
infections, a high proportion of transmission occurring before the
onset of symptoms, a long delay between case finding and isolation,
and high overall transmissibility all factor in negatively in the
likelihood that an outbreak can be contained [7–11]. For SARS-
CoV-2, evidence indicates that a high fraction of infected persons is
infectious before they show symptoms (up to 50%), that a
substantial fraction of infections may be asymptomatic or show
only mild symptoms (up to 80%), and that the epidemic doubling
time in the absence of interventions may be one week or even less
[6, 12–18]. On the other hand, it is also reported that with intensive
contact tracing it could be possible to trace the majority (>80%) of
secondary infections [11, 19].

Here we provide a model-based analysis of the impact of
isolation and contact tracing in a setting with various levels of
social distancing measures, using varying levels of the effectiveness
and timeliness of contact tracing. It is important to consider the
impact of each of these interventions in isolation but also in
combination, as it is known that each intervention that reduces
transmission is expected to increase the effectiveness of additional
interventions in a synergistic manner [20]. The current analyses
extend and complement our earlier study in which the focus was
purely on the impact on delays in testing and tracing of contacts of
infected individuals [11]. Here we report effective reproduction
number, the (exponential) rate of increase, and the doubling time
of the epidemic for scenarios with various combinations of
interventions. Considering that the capacity of healthcare
systems is limited, it is important to assess which interventions
are most effective in slowing down the rate of increase of case
numbers during an ongoing outbreak. As it is likely that, on the one
hand, isolation and contact tracing will be more effective in close
contact settings with well-defined contacts (household) than in the
community (commuting, public spaces), while, on the other hand,
the potential impact of household interventions on the epidemic
could be smaller, we stratify the analyses by transmission setting
(henceforth called household and non-household) [9].

2 METHODS

2.1 Overview
We use a stochastic transmission model based on a model that
has been developed earlier [9], and which has been adapted to

describe the biological characteristics of SARS-CoV-2 [11]. The
model describes an epidemic while the proportion of immunes is
low as a branching process. The model does not take into account
clustering of infections, small world network effects, or other
density dependent effects. Starting from a small set of initially
infected individuals, the model calculates the numbers of latently
infected persons, infectious persons, and persons that are
diagnosed and isolated in time steps of one day. Latent
infection, infectivity during the infectious period, and daily
contact rates are quantified using distributions taken from the
literature (Table 1). We distinguish between household contacts
(e.g. housemates, but also other persons with whom contact is
regular and close like care takers), and non-household contacts
with whom frequency and duration of contact is lower. The two
types of contacts differ in the risk of infection, and the delay and
effectiveness of tracing and isolation may be different.
Intervention effectiveness is determined by the daily
probability of being diagnosed during the infectious period
(Table 2). Furthermore, intervention effectiveness depends on
the delays in tracing household and non-household contacts,
respectively, and the proportions of contacts can be found and
isolated or quarantined. Here isolation applies to stopping
contacts of a person who is diagnosed with COVID-19, while
quarantine means that a person who is not yet tested refrains
from contacts. We assume that isolation and quarantine are
perfect, i.e. that isolated and quarantined persons cannot
transmit any longer. See Figure 1 for a schematic description
of the transmission and contact tracing process. The model is
described by a set of difference equations, and allows for explicit
computation of the basic reproduction number R0 and the
effective reproduction number under interventions Re.
Although the model is a dynamic stochastic model, here we
only report results on expectations of effective reproduction
numbers, exponential growth rates and doubling times. For
more information about the time dependent version of the
model and some results concerning the exponential growth
phase of the COVID-19 epidemic, we refer the reader to [9,
21]. The model is coded in Mathematica 12.1 and is available in
our GitHub repository. We give a summary of the model
assumptions here, and provide a technical description in the
Supplementary Appendix.

2.2 Natural History of Infection
We assume that the latent period lasts between 1 and 3 days with
a given probability per day of moving to the infectious state.
Individuals then become infectious for at most 10 days [22].
Infectivity is high at the beginning of the infectious period and
decays to low levels during these 10 days (Figure 2A). The
probability of symptom onset increases during the first 3 days
of the infectious period, thereby influencing the daily probability
of diagnosis during the infectious period (see Section 2.4 and
Figure 2B). Incubation period distribution and infectivity were
fitted to recent estimates by Li et al [15], He et al [23], and
Ashcroft et al [24]. The average incubation period in our model
was 5.2 days with standard deviation of 3.9 days. An infectious
individual makes contacts with household members and persons
outside the household. We model the daily number of household
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TABLE 1 | Disease and transmission parameters.

Parameter Distribution/values References

Latent period 1–3 days Based on incubation period and infectivity distribution
Infectious period 10 days (variable infectivity) [22]
Incubation period Lognormal(1.434065, 0.6612) [15]
Infectivity Gamma(97.1875, 0.2689) shifted by 25.625 [23, 24]
Number of household contacts Poisson(2.15) Statistics Netherlands
Number of non-household contacts Negbin(2.0, 0.15) [25]
Relative transmissibility of non-household contacts 0.25 [43]
Scaling factor for infectivity 0.152 Calibrated such that R0 � 2.5

TABLE 2 | Parameters related to diagnosis and contact tracing.

Parameter Value/range

Testing delay (delay between symptom onset and testing of index case) Baseline: 0 days; varied from 0 to 7 days
Testing coverage (percentage symptomatic persons tested) Baseline: 100%; alternative values considered are 60% and 80%
Tracing delay household contacts Baseline: 0 days; varied from 0 to 4 days
Tracing delay non-household contacts Baseline: 0 days; varied from 0 to 4 days
Tracing coverage household contacts Baseline: 100%; varied from 0 to 100%
Tracing coverage non-household contacts Baseline: 100%; varied from 0 to 100%
Percent symptomatic infections Baseline: 80%; varied from 0 to 100%
Percent reduction of non-household contact rates Baseline: 0%; varied from 0 to 95%

FIGURE 1 | Schematic description of the transmission and contact tracing process.
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contacts with a Poisson distribution, and the numbers of non-
household contacts with a negative binomial distribution
(Table 1), with parameters based on the average household
size in the The Netherlands, and numbers of contacts
observed in a contact study in the The Netherlands
(Figure 2C) [25]. With the chosen parameters, the mean
number of contacts per day is 13.2 with standard deviation of
8.5 days.

On each day of the infectious period, an individual makes a
number of contacts according to the contact distribution. This
number is reduced by a factor describing the probability that the
contact person has already been infected during earlier contacts
with the index person. Figure 2A shows the probability
distribution of transmission upon contact with a susceptible
household contact. As contacts with persons outside the
household are often less close, and secondary attack rates in
non-household contacts are observed to be lower than in
household contacts [26], we assume that the transmission
probability for these contacts is lower by factor 0.25. For this
reduction factor, Figure 2D shows the percentage of onward
transmissions per day since becoming infected, e.g. around 40%
of transmission occurs in the first 4 days after acquisition of
infection, i.e. before the average time of symptoms onset [24].

2.3 Social Distancing
Social distancing can be self-imposed, if people decide to reduce
their social contacts during the outbreak, and it can be
government-imposed by closing schools, workplaces, and other

venues of social gatherings [27]. Here we assume that when social
distancing is applied, household contacts remain unchanged, but
the mean number of non-household contacts is reduced. This is
implemented by a reduction factor in the mean of the negative
binomial distribution describing non-household contact
numbers. The reduction factor for social distancing was varied
between 0 and 95%. In scenarios with social distancing we
assumed that 80% of cases are symptomatic or can be
ascertained [28]. In surveys during the lock-down in the first
wave of SARS-CoV-2 in the The Netherlands, it was shown that
the daily number of community contacts was reduced by 71% to
around 3.7 per day [29] and after the partial lifting of the
measures the number of contacts slowly increased again.
Similar decreases in contact numbers during the lock-down in
the United Kingdom were reported by [30].

2.4 Diagnosis, Contact Tracing, and
Isolation
An infectious person becomes symptomatic with a given
probability per day since infection (Figure 2B). For SARS-
CoV-2 the probability of developing symptoms is high in the
first few days of the infectious period and then declines. If an
infected and infectious person has not developed symptoms
10 days after acquisition of the virus, the probability that he/
she will still do so is very small. The probability of developing
symptoms determines whether he/she will be diagnosed and
isolated. The total probability of developing symptoms

A B

C D

FIGURE 2 | (A) The transmission probability per day of the infectious period; (B) the probability of developing symptoms per day since infection; (C) the probability
distribution of the number of contacts per day; and (D) percent onward transmission per day since infection.
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determines the fraction that remains asymptomatic or otherwise
undiagnosed, i.e. if the total probability of developing symptoms
is smaller than 1, a proportion of the infected persons will remain
undiagnosed and can transmit throughout their infectious period.
With the assumed distributions, on average at least half of all
potential onward transmissions will have occurred before an
infected person is diagnosed and isolated. If diagnosis is
delayed, because a person does not get tested immediately at
symptom onset, and then it takes time until a test result is
available, this proportion will be higher. This delay, i.e. the
time between symptom onset until a symptomatic person gets
a positive diagnosis, is denoted here as the testing delay. A testing
delay is implemented in the model by setting the diagnosis
probability to zero for the number of days of delay, and
shifting the probability of diagnosis distribution to the right.

If an individual is diagnosed, contacts will be traced. Traced
infected persons will be diagnosed and isolated. Tracing goes back
in time for a given number of days to trace all contacts of the
index case during this time window. There may be a delay before
contacts are found and diagnosed, and only a fraction of all
contacts may be found. These parameters, tracing delay and
tracing coverage, may be different for household and non-
household contacts. We assume that all traced infected
persons are immediately isolated and cannot transmit any
further. In reality, there might be a delay between tracing a
contact and its effective isolation, but we interpret the tracing
as an ‘effective tracing delay’ that encompasses the time from
positive diagnosis of the index case until isolation of the contact.
Therefore, the only individuals who will continue transmitting
are those who are not found by tracing and are not yet diagnosed.
Table 2 shows the parameter values related to diagnosis and
contact tracing.

2.5 Baseline Scenario
For assessing the effectiveness of contact tracing and isolation, we
use a best case scenario, where all parameters are set to optimistic
values. We assume that when a case is diagnosed, he/she will
immediately be isolated and this will stop onward transmission
completely. Furthermore, we assume that all contacts will be
traced, and if found infected will be isolated immediately. We
assume that it takes 0 days to find and isolate both household and
non-household contacts. The rationale for using these optimistic
assumptions as a baseline is that it enables investigation of the
maximum contribution contact tracing can provide for achieving
containment. We then investigated for various control
parameters at which point of diverging from the baseline
parameters control of the outbreak will be lost. We also
considered more realistic parameter combinations with
imperfect contact tracing, in particular including delays and
reduced tracing coverages (see also [11]).

2.6 Output Variables
The model allows an explicit calculation of the basic reproduction
number R0 and effective reproduction number Re [9, 11]. R0 is
defined as the number of secondary cases an index case generates
on average in a susceptible population without any intervention.
Re is the number of secondary infections per case when an

intervention is in place. R0 is determined by daily transmission
probabilities and numbers of contacts, and Re in addition by the
level of social distancing, diagnosis probabilities, tracing delays,
and tracing coverage per day of the infectious period. We can
therefore investigate how Re depends on R0, and on the
intervention parameters. Details are given in the
Supplementary Appendix.

We are interested in the critical tracing coverage, i.e. what
proportion of non-household contacts needs to be found and
isolated to control the outbreak, for populations with various
levels of social distancing. Furthermore, we study the epidemic
growth rate (or epidemic doubling time) without and with
contact tracing and isolation and various levels of social
distancing. In sensitivity analyses, we study how these
quantities depend on the testing delay of the index case and
on the tracing delay in contact tracing. For example, we assume
that household contacts can be traced with a high coverage
without delay, but that tracing of non-household contact may
take longer and be less complete.

Based on the distributions of the latent and infectious periods
and infectivity, we calculate the exponential growth rates and
doubling times under various assumptions on the intervention
parameters. This gives additional information for situations
where the outbreak is not controllable, because intervention
measures will lower the growth rate and increase the epidemic
doubling time.

A

B

FIGURE 3 | The effective reproduction number Re for varying values of
the basic reproduction numberR0 in the optimistic baseline scenario, and for
various values of the tracing coverage for non-household contacts (A) or
testing delay (B). Tracing coverage of household contacts is assumed to
be 100%.
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We investigated how controllability of the outbreak depends
on the fraction of infections that develop symptoms and therefore
vary this percentage between 0 and 100%. We then considered
combinations of interventions and their impact on the effective
reproduction number, growth rate, and doubling time of the
epidemic. We varied levels of social distancing, and coverage of
tracing of household and non-household contacts. In our analysis
for different levels of social distancing we assumed that 80% of
infected persons develop symptoms [28, 31].

3 RESULTS

3.1 Basic and Effective Reproduction
Numbers
In the baseline scenario without interventions we calibrate the
transmission probability such that R0 � 2.5. In this case, 39% of
transmission events take place in the household. The basic
reproduction number of household contacts is 0.97, and that
of non-household contacts 1.53. Hence, if all non-household
transmissions could be prevented, the outbreak would be just
under the control limit. In the baseline scenario without
interventions the exponential growth rate is 0.16 per day and
the doubling time is 4.4 days, which agrees with published
estimates [32, 33]. Figure 3 shows the relation between R0

and Re for varying levels of the tracing coverage and testing
delay. In Figure 3A, where testing delay is kept at 0 days, we find
that for a tracing coverage of 40% and higher, Re < 1, i.e. the
epidemic can be controlled by contact tracing and isolation.
Similarly, if tracing coverage is 100%, as shown in Figure 3B
testing delay can be at most 1 day to keepRe < 1. For lower values
ofR0, for example if reproduction numbers are reduced by social
distancing, control is possible at longer delays and lower tracing
coverages. However, this is only possible if all other parameters
are at optimal values.

3.2 Fraction of Non-household Contacts
Needed to Be Traced and Isolated
The question arises how effective contact tracing has to be to
keep the outbreak under control if there is a testing delay. We
therefore compute the minimum fraction of non-household
contacts that need to be traced and isolated (henceforth
termed “critical tracing coverage”) to bring Re below 1
(Figure 4). If 80% of infected persons develop symptoms [28,
31] and subsequently get tested, there is a chance of controlling
the outbreak if the coverage of tracing non-household contacts
is above the critical tracing fraction for a testing delay of at most
a single day (Figure 4A). If 60% of infected persons develop
symptoms and are tested even perfect contact tracing cannot

A C

B D

FIGURE 4 | The critical tracing coverage for varying values of the basic reproduction number R0; (A) 80% symptomatic and diagnosed index cases and varying
testing delay, (B) 80% symptomatic and diagnosed index cases and varying tracing delay for both household and non-household contacts; (C) 60% symptomatic and
diagnosed index cases and varying testing delay, (D) 60% symptomatic and diagnosed index cases and varying tracing delay for both household and non-household
contacts.
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control the outbreak. Further, in Figures 4C,D we vary the
tracing delay of non-household contacts from 0 to 4 days,
assuming no testing delays. If 80% of infection are
symptomatic and diagnosed, the tracing delay should not be
more than 2 days, while control is not possible if only 60% of
infections are symptomatic and diagnosed.

3.3 Impact of Asymptomatic Cases
Not being diagnosed can be a consequence of not developing
symptoms, having only mild symptoms, or any other reason
why infected persons might not be identified by healthcare
system. We subsume these possible reasons for cases not
being ascertained under the term “asymptomatic”. With
increasing proportion of asymptomatic cases, the possibility
of controlling the outbreak with contact tracing and isolation
quickly fades. This is illustrated in Figure 5, in which we plot the
critical tracing coverage for non-household contacts for several
values of R0 as a function of the fraction of symptomatic cases
(i.e. the fraction of those who will eventually develop symptoms
during their entire infectious period). Household contacts are
assumed to be always traced and isolated. The figure shows that
for R0 � 2.5 control is not possible with isolation and contact
tracing, if less than 80% of all infected persons develop
symptoms or are otherwise not detected by the healthcare
system. This is true even if all other parameters are at their
most optimistic values. Other control measures such as social
distancing are then needed for containment.

3.4 Exponential Growth Rates and Doubling
Times
If epidemic control is not possible with isolation and contact
tracing only, it might still be possible to slow down the epidemic
and thereby lower demand for the healthcare system. We find
that contact tracing has a significant impact on the epidemic

growth rate for short testing delays (Figure 6A) and high
coverage of tracing non-household contacts (Figure 6C).
Figures 6B,D show the associated epidemic doubling times
(see the Supplementary Appendix for details). If 60% of cases
are symptomatic and diagnosed, while contact tracing is
efficient (i.e. short testing delay and high tracing coverage)
the doubling time can be increased to about 15 days. If less
than 60% of infections are symptomatic and ascertained,
however, the impact of contact tracing on the doubling time
is small.

3.5 Social Distancing and Contact Tracing
Social distancing in theory could reduce the effective
reproduction number to below 1, but only if the number of
non-household contacts is reduced to near zero. In practice this
will be hard to achieve. Additional effort into tracing and isolation
of household contacts are then needed to achieve containment. In
Figure 7A we consider a scenario in which 80% of infected
persons who develop symptoms are tested and isolated, and social
distancing is implemented. The figure shows the critical tracing
coverage as a function of the reduction of non-household
contacts. In the brown area, it is sufficient to trace and isolate
household contacts with a coverage above the critical coverage. In
the purple area, also non-household contacts need to be traced
with a coverage above the critical coverage in addition to tracing
and isolating 100% of household contacts. We find that, if social
contacts outside the household are reduced by at least 30%,
isolating all household contacts is sufficient for control. If
non-household contacts are reduced by more than 50%,
testing and isolating of cases without tracing is sufficient to
bring Re below 1. Similarly, Figure 7B shows the critical
tracing coverage if testing coverage is only 60%. Here, there is
less testing and the tracing coverage needs to be higher, or,
alternatively, there needs to be a larger reduction in non-
household contacts. Note that all diagnosed cases must be
isolated immediately and isolation needs to be perfect.

In Figure 8, we explore the impact of social distancing on the
exponential growth rate and doubling time, again for the scenario
with a testing coverage of 80%. The curves show how the
exponential growth rate and doubling time are affected by the
reduction of non-household contacts, for various coverage levels
of tracing household and non-household contacts. Figure 8A
shows how the exponential growth rate decreases with increasing
level of social distancing, and also how increasing coverage of
tracing household and non-household contacts lowers the
exponential growth rate. Figure 8B shows the associated
doubling times. We consider scenarios of with increasing
coverage of contact tracing. First, only household contact are
traced with coverage increasing from 0 to 100% in increments of
20% (green to yellow curves in Figure 7); then in addition to
tracing 100% of household contacts, an increasing fraction
varying from 0 to 100% in increments of 20% of non-
household contacts are traced (blue to magenta curves in
Figure 7). We find that in situations where control of the
epidemic is not possible, i.e. when the reduction of non-
household contacts remains lower than about 50%, an effective
tracing may help to greatly increase epidemic doubling times.

FIGURE 5 | The critical tracing coverage for varying percentages of
symptomatic infections and values of the basic reproduction number R0

between 1.5 and 3.5. If the critical tracing coverage is above the line, the
outbreak can be controlled. However, if the coverage reaches the blue
line, control is lost. If more than 20% of cases escape diagnosis, because they
are asymptomatic or have only mild symptoms, for R0 � 2.5 the outbreak is
not controllable even with our optimistic baseline values for the intervention
parameters.
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4 DISCUSSION

Our analyses show that rapid diagnosis and isolation of infections
based on COVID-19 disease alone cannot control outbreaks of
SARS-CoV-2, but that the addition of tracing and isolation of
traced cases could in theory be successful (Figure 3) [3, 11, 19,
34–37]. In practice, however, the potential for containment will

be seriously jeopardized by delays and imperfections in the
tracing process. Especially delays in diagnosis and isolation,
and the existence of asymptomatic and mild infections that
contribute to onward transmission could make control
difficult. As evidence is mounting that the proportion of
asymptomatic and mild cases is large and leads to substantial
numbers of unascertained cases, most countries have

A B

C D

FIGURE 6 | The exponential growth rate and associated epidemic doubling time as a function of the testing delay (A and C) and coverage of contact tracing (B and
D). The colors depict the fraction of infections that is symptomatic, and which is varied from 60% (pink) to 80% (blue). The outbreak is controlled when the exponential
growth rate is smaller than zero (red horizontal line). If 60% of infections are symptomatic, contact tracing and isolation can slow down the epidemic to around 15 days,
but they cannot control it, even if there is no diagnosis delay and all non-household contacts are traced.

A B

FIGURE 7 | The critical tracing coverage in a population with social distancing andR0 � 2.5. In the brown shaded area tracing of household contacts is sufficient, in
the purple area a certain level of non-household contacts have to be traced in addition to 100% of household contacts. (A) 80% testing coverage; (B) 60% testing
coverage.
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implemented strategies of social distancing or full lock-downs.
Such measures have proven effective earlier during the 2009
influenza pandemic [38, 39]. However, social distancing can
never be complete, as healthcare workers and doctors have to
continue their work, but also personnel of supermarkets,
public transport employees, and others will have contact
outside their households. We find that in a situation where
60% of cases are ascertained, social distancing of non-
household contacts fails to contain the epidemic even if
contacts outside the household are reduced by 80%. In this
case, combining the social distancing with tracing and
isolation of household contacts may suffice to bring the
balance toward containment. If social distancing is less
severe, more intensive contact tracing and also tracing of
non-household contacts is needed (Figure 7). If social
distancing reduces non-household contacts only by 50%,
tracing and isolation also of non-household contacts is
needed for containment. If this is not possible, for example
due to constraints of the public health system, tracing and
isolation of household contacts can at least substantially
increase the doubling time of the epidemic (Figure 8).

Even though the SARS-CoV-2 pandemic cannot be contained
by contact tracing and rapid isolation alone, this does not render
contact tracing useless. On the contrary, contact tracing and
isolation when used in addition to social distancing, may be the
tool needed to make this mix of strategies successful. Our analyses
show that isolation and contact tracing when combined with
social distancing can contribute to reducing the growth rate and
increasing the doubling time of epidemics, thereby buying time,
spreading the number of severe cases out over a longer period of
time, and potentially also reducing the total number of infections
[40]. This will lower peak healthcare demand, alleviate the stress

on healthcare systems, and contribute to reducing the burden of
disease.

Our analyses of contact tracing add to an earlier study by a
more systematic analysis of the relation between key
parameters (transmissibility, fraction asymptomatic,
fraction of contacts traced, diagnosis delays), and by
incorporating household vs. non-household contacts [34].
Household contacts are at a higher risk of becoming
infected than non-household contacts as persons in a
household will usually have repeated contacts. On the other
hand, our analyses show that household infections contribute
less to onward transmission than non-household infections
simply because the numbers of household contacts are much
lower than numbers of other contacts. As a consequence, the
effectiveness of isolating non-household contacts is key for a
successful contact tracing strategy. Our assumption that
asymptomatic cases are as infectious as symptomatic cases
may result in an overestimation of the contribution of
asymptomatic cases to transmission. This might mean that
effectiveness of contact tracing is more favourable than found
in our analyses.

A strength of our model is that quantitative information about
distributions of the latent and infectious periods, and the
infectivity per day of the infectious period can be incorporated
easily and detailed, such that if new and better data become
available, the analyses can be updated quickly. In particular, the
model can incorporate non-standard distributions based on
empirical data (e.g. viral load measurements to quantify
infectiousness per day).

A limitation of the analyses presented here is that they apply
to a situation in which the epidemic is described by a branching
process and is growing exponentially. This also applies to

A B

FIGURE 8 | The exponential growth rate (A) and epidemic doubling time (B) as a function of the level of social distancing and coverage of contact tracing. Testing
coverage is set to 80%. The colors represent different coverage levels of contact tracing. For the lines colored from green to yellow only household contacts are traced
and isolated; for the lines colored from blue to magenta, 100% of household contacts are traced and an additional fraction of non-household contacts are traced and
isolated.
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another modeling using a (one-type) branching process [34].
Ultimately, as the number of persons who are or have been
infected increases, the number of persons that are still
susceptible will start to dwindle, and epidemic growth will
ultimately come to a halt. Hence, strictly speaking our results
apply to the early stages of an epidemic. However, in the
present situation, the proportion of the population who is
immune for COVID-19 does in general not exceed 10% in
most places [41]. In fact, even when the number of infected
persons is still relatively small in the early stage of an epidemic
it is possible that exponential growth is not observed, for
instance due to local depletion of susceptible persons in
combination with clustering in contact patterns, spatial
effects, and inhomogeneous mixing [42]. However, estimates
of the effective reproduction number are independent of the
dynamics and give information about the ability of an
intervention to slow down epidemic spread. Also, at present
it is only in few places in the world where cumulative infection
attack rates may have surpassed the 10% level.

In conclusion, our results show that in populations where
social distancing is implemented, isolation and contact tracing
can play an essential role in gaining control of the COVID-19
epidemic. On their own, none of these strategies are able to
contain COVID-19 for realistic parameter settings, but in a
combined strategy they can just tip the balance toward
containment. These insights provide guidance for policy
makers, who will have to decide when and how to release
severe lock-down or social distancing measures, and whether
additional contact tracing and isolation is then a feasible
alternative to keep a resurging epidemic at bay.
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