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Editorial on the Research Topic

Plant Viruses, Volume II: Molecular Plant Virus Epidemiology and Its Management

The International Committee on Taxonomy of Viruses (ICTV) lists nearly 2,000 different species
of plant viruses. Plant viruses are recognized as economically important plant pathogens, because
they cause significant losses in a variety of crops that we rely on. Due to the global transportation of
agricultural products and planting materials and intensive agricultural farming practices, emerging
new viruses and reemerging known viruses significantly threat food security. There is currently no
efficient or long-term control measures for many of the plant viruses that cause serious diseases.
On these lines, Zhang Z. et al. describes the occurrence and distribution of orthotospoviral diseases
and their possible management strategies in China.

A big advancement in ecological plant virus research has been achieved by high throughput
sequencing (HTS). HTS allows quick identification of most, if not all, viruses in plants without a
need for prior information, which viruses might be present. In their expert review, Maclot et al.
highlights the many opportunities that careful use of the HTS method opens up in understanding
the behavior of plant virus populations in cultivated and wild plants. Velasco and Padilla consider
the possibility to use HTS in certification schemes based on the results of a comparison between
HTS of small RNAs and other diagnostic methods in grapevine plants. The prospects of HTS based
diagnosis in controlling plant virus diseases are bright.

Plant viruses enter the plant cell by mechanical injury, when transported by insects or
nematodes feeding on them or via parasitic agents such as fungi. Virus-insect vector interaction
studies are essential for understanding the connections between plant viral transmission routes
and virus epidemics. In their review, Zhang L. et al., discuss fijivirus outbreaks, which
occur in connection to migrations of the planthopper vectors. The authors give insights
into several aspects of vector transmission including the effects of viruses on the behavior
and physiology of vector insects. An interesting finding presented by Du et al., is that
the RNA-silencing suppressor NSs of tomato spotted wilt virus reduces the monoterpene
volatiles in a way that increases the attractiveness of the plant for the transmission vector
thrip Frankliniella occidentalis. In their paper, McGreal et al. studied the possibility to use
ground cover plants as an alternative controlling strategy to reduce transmission of grapevine
leafroll-associated virus 3 by mealybugs. Zhang J. et al., asked the question about the role
of virus-induced expression of circular RNAs in the vector Laodelphax striatellus on rice
black-streaked dwarf virus infection. Chen et al., found that the virus concentrations in the

5
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salivary gland of the leafhopper vector Nephotettix cincticeps
were higher during the intermittent period than during the
transmitting period of rice dwarf virus, a plant reovirus, which
led the authors to discuss a threshold-regulated release of viruses
from the insect vectors.

Plant responses to mixed infections vary, but because of
their many possible adverse consequences, it is important
to understand how viruses interact in co-infected susceptible
plants. A previously undescribed interaction of a potyvirus
watermelon mosaic virus protein P1 with a crinivirus cucurbit
yellow stunting disorder virus protein P25 was proposed to
contribute to the complex response of the host to this virus
pair (Domingo-Calap et al.). The authors demonstrate reduced
RNA silencing suppression activity of the crinivirus P25 in this
interaction. An interaction that reduced the activity of RNA
silencing suppressor of another crinivirus cucurbit chlorotic
yellows virus was discovered by Yang et al., In this case the
interactor was a ribosomal protein that could negatively affect
virus accumulation. These studies suggest that the silencing
suppressor proteins interact with various proteins and many
antiviral defense pathways during crinivirus infections. It also
simply is amazing in how many ways geminiviral AC2 silencing
suppressor proteins interfere with post-transcriptional gene
silencing, transcriptional gene silencing and other plant defense
pathways as can be learned from the review article by Veluthambi
and Sunitha.

Basal immunity of non-host plant species protects plants
against most plant virus diseases. Also host plants may express
basal resistance at certain developmental stages. The factors
underlying the mechanism of age-related resistance against a
geminivirus, tomato leaf curl virus, were studied by against
a geminvirus tomato yellow leaf curl virus were studied by
Zhang J.-R. et al. They suggest that salicylic acid plays a
major role and raise the possibility to deploy the cues obtained
from these studies in managing the disease. Knowledge on
the molecular mechanisms of plant virus- host interactions
provides ideas and novel targets for resistance breeding. The
mechanism of resistance toward rice stripe virus, achieved by
expressing coat protein encoding transcripts, relates to RNA
silencing in Arabidopsis as demonstrated in Sun et al. While
RNA silencing-mediated resistance provides one option, it is
important to explore other possibilities as well. Identification
of host factors that either promote or suppress infections by
interacting with viral proteins is an important study field in
the search of possible novel resistance targets. Increasing body
of evidence indicate that specific nuclear factors are involved
in systemic spread of several viruses. The study by Alazem

et al., reveals that the control of systemic spread of bamboo
mosaic virus is connected to a correct homeostasis of a nuclear
high mobility group protein and to processes it regulates. As
reviewed in Kozieł et al., the components of cell wall affect
the spread of the virus and the apoplast- and symplast-based
defense mechanisms both in susceptible and resistant plants.
Engineering antiviral mechanisms to host plants to prevent and
control plant viruses has been and will continue to be an effective
management strategy. Modern DNA/RNA editing tools based
on clustered regularly interspaced short palindromic repeats
(CRISPR) and CRISPR-associated Cas nucleases are reviewed by
Cao et al. They discuss the challenges and opportunities provided
by CRISPR/Cas systems for controlling different plant viruses by
targeting either viral sequences or host susceptibility genes.

Finally, we would like to show our gratitude to all
the authors who contributed to the Research Topic.
The articles cover a broad spectrum of plant host-virus
interactions and management strategies and open several
channels for study by providing major insights into these
complex relationships.
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Circular RNAs (circRNAs) are endogenous RNAs that have critical regulatory roles in
numerous biological processes. However, it remains largely unknown whether circRNAs
are induced in response to plant virus infection in the insect vector of the virus as
well as whether the circRNAs regulate virus infection. Rice black-streaked dwarf virus
(RBSDV) is transmitted by Laodelphax striatellus (Fallén) in a persistent propagative
manner and causes severe losses in East Asian countries. To explore the expression
and function of circRNAs in the regulation of virus infection, we determined the circRNA
expression profile in RBSDV-free or RBSDV-infected L. striatellus midgut tissues by
RNA-Seq. A total of 2,523 circRNAs were identified, of which thirteen circRNAs
were differentially expressed after RBSDV infection. The functions of these differentially
circRNAs were predicted by GO and KEGG pathway analyses. The expression changes
of five differentially expressed circRNAs and eight parental genes were validated by RT-
qPCR. The circRNAs-microRNAs (miRNAs) interaction networks were analyzed and two
miRNAs, which were predicted to bind circRNAs, were differentially expressed after
virus infection. CircRNA2030 was up-regulated after RBSDV infection in L. striatellus
midgut. Knockdown of circRNA2030 by RNA interference inhibited the expression
of its predicted parental gene phospholipid-transporting ATPase (PTA) and enhanced
RBSDV infection in L. striatellus. However, none of the six miRNAs predicting to bind
circRNA2030 was up-regulated after circRNA2030 knockdown. The results suggested
that circRNA2030 might affect RBSDV infection via regulating PTA. Our results reveal
the expression profile of circRNAs in L. striatellus midgut and provide new insight into
the roles of circRNAs in virus–insect vector interaction.

Keywords: circular RNA, RNA-Seq, rice black-streaked dwarf virus, Laodelphax striatellus, midgut, circRNA2030
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Zhang et al. CircRNAs Regulate RBSDV Infection

INTRODUCTION

A high-proportion of genomes can be transcribed into RNA and
the majority of these RNAs are non-coding RNAs (ncRNAs).
The ncRNAs, can be divided into multiple types, including
microRNAs (miRNAs), PIWI-interacting RNAs (piRNAs), long
non-coding RNAs (lncRNAs), and circular RNAs (circRNAs)
(Huttenhofer et al., 2005; Lauressergues et al., 2015). CircRNAs
have a single-strand and covalently closed structure. In general,
circRNAs are generated through back-splicing the exons and
introns of precursor mRNAs and joining a downstream splice
donor site with an upstream splice acceptor site (Lasda and
Parker, 2014). CircRNAs exist in almost all eukaryotes with
abundant and tissue-specific expression patterns (Lasda and
Parker, 2014; Salzman, 2016).

An increasing number of researches have shown that
circRNAs play vital regulatory roles in numerous biological
processes (Gan et al., 2017; Wei et al., 2017). CircRNAs
can function as miRNA sponges, splicing interferences, and
transcription regulators (Li et al., 2019). For example, circRNA
CDR1as can impact the development of zebrafish midbrain
through sponging miR-7 (Memczak et al., 2013). CircRNAs also
play vital roles in host–virus interactions. In Bombyx mori, a
large number of differentially expressed circRNAs were identified
during cytoplasmic polyhedrosis virus (CPV) infection (Hu et al.,
2018). The relative expressions of circRNAs and their parent
genes were significantly alerted in the IPEC-J2 cell line after
porcine endemic diarrhea virus (PEDV) infection (Chen et al.,
2019). CircRNAs were involved in the response to cucumber
green mottle mosaic virus (CGMMV) infection in watermelon
(Sun et al., 2020). In tomato, circRNAs were identified as negative
regulators following tomato yellow leaf curl virus (TYLCV)
infection (Wang et al., 2018). However, the functions of circRNAs
in host–virus interactions are still unclear.

Over 76% of plant viruses are transmitted via insect
vectors, including planthoppers, whiteflies, thrips, and aphids
(Hogenhout et al., 2008; Dader et al., 2017; Jia et al., 2018).
Rice black-streaked dwarf virus (RBSDV) is a member of the
genus Fijivirus within the family Reoviridae and is the causal
agent of rice black-streaked dwarf and maize rough dwarf disease
(Zhang et al., 2001b; Xu et al., 2014; Wu et al., 2020). RBSDV
was first reported in Japan (Kuribayashi and Shinkai, 1952), with
the first report in China in 1963 in Yuyao county, Zhejiang
Province, and caused severe damage (Chen, 1964; Ren et al.,
2016; Liu et al., 2020). RBSDV is transmitted in a persistent
propagative manner by Laodelphax striatellus (Fallén) (Wu et al.,
2020). The genome of RBSDV contains 10 double-stranded
RNA (dsRNA) segments (S1 to S10) and encodes 13 proteins
(Milne et al., 1973; Zhang et al., 2001a; He et al., 2020). Most
RBSDV genomic segments encode one protein, while S5, S7, and
S9 encode two proteins. P5-1, P6, and P9-1 proteins encoded
by S5, S6, and S9 are the components of the viroplasm (Li
et al., 2013; Sun et al., 2013; He et al., 2020). The P10 protein,
encoded by S10, is the virus outer capsid protein. P10 can
promote RBSDV infection when expressed in rice and can
impair the innate immunity in L. striatellus (Lu et al., 2019;
Zhang et al., 2019).

In its insect vector, RBSDV can move from midgut lumen to
hemolymph or other tissues, then to salivary gland, and finally,
infect the plant during insect feeding. The midgut is an important
barrier for RBSDV infection (Jia et al., 2014). In this research,
we investigated the expression profiles of circRNAs in the
L. striatellus midgut during RBSDV infection by RNA-Seq. The
expression of differentially expressed circRNAs and their parental
genes was verified by quantitative real-time PCR (RT-qPCR).
The functions of the differentially expressed circRNAs were
predicted using GO and KEGG analyses. Also, the interactive
networks between differentially expressed circRNAs and miRNAs
were constructed. Furthermore, the function of circRNA2030 was
investigated by RNA interference (RNAi). The results provide
new insight into the functions of circRNAs in regulating plant
virus infection in the insect vector.

MATERIALS AND METHODS

Insect, Virus, and Sample Preparation
The non-viruliferous populations of L. striatellus used in this
research were collected from Haian (32.57◦N, 120.45◦E; Jiangsu
Province, China) and maintained in the incubator at 26 ± 1◦C
with 70%–80% humidity and 16 h light: 8 h dark photoperiod.
The RBSDV-infected rice plants with typical dwarf symptom
were collected for L. striatellus to acquire virus.

The non-viruliferous 3rd-instar nymphs of L. striatellus were
reared on RBSDV-infected rice plants for 2 days and then
transferred to healthy rice seedlings for another 2 days. Finally,
the surviving nymphs of L. striatellus were collected as RBSDV-
infected L. striatellus. The non-viruliferous 3rd-instar nymphs of
L. striatellus were reared on healthy rice seedlings for 4 days, and
the surviving nymphs of L. striatellus were collected as virus-free
L. striatellus.

RBSDV-free (VF) and RBSDV-infected (RB) midguts
were collected from 200 non-viruliferous or RBSDV-infected
L. striatellus nymphs for RNA-Seq analysis. For midgut
dissection, the nymphs were rinsed with 75% ethanol and
then washed three times using sterilized-deionized water.
The midgut tissue was dissected in chilled 1× phosphate-
buffered saline (1× PBS, pH 7.4) with sterile forceps under a
stereomicroscope. Each sample contained three independent
biological repetitions.

RNA Extraction and RNA-Seq
Total RNA of L. striatellus midgut was extracted using
TRIzol reagent (Invitrogen, United States) according to the
manufacturer’s instructions. The quantity and quality of total
RNA was determined by spectrophotometry (NanoDrop 2000,
Thermo Scientific) and agarose gel electrophoresis, respectively.

Ribosomal RNA in the total RNAs was eliminated by Epicentre
Ribo-Zero Gold Kit (Illumina, United States). Thereafter, the
cDNA libraries were constructed by the mRNA-Seq sample
preparation kit using approximately 10 µg of RNA (Illumina,
United States). Sequencing was carried out using the Illumina
HiSeq 4000 platform, and the whole transcriptome was
performed by Lianchuan Biotechnology (Hangzhou, China).
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Bioinformatics Analysis
The sequence quality was analyzed by FastQC after removal of
the reads containing low-quality bases, undetermined bases, and
adaptor contamination1. Bowtie2, Tophat2, and tophat-fusion
were used to map sequences to the genome of L. striatellus
(GenBank No.: GCA_003335185.2) (Kim and Salzberg, 2011;
Langmead and Salzberg, 2012; Kim et al., 2013). The mapped
reads were de novo assembled to circRNAs using CIRCExplorer
(Zhang et al., 2014, 2016; Gao et al., 2015). The unmapped
reads were used to identify back splicing reads by CIRCExplorer
and tophat-fusion (Kim and Salzberg, 2011; Zhang et al.,
2014, 2016; Gao et al., 2015). The expression levels of
circRNAs were normalized using the formula (normalized
expression = (mapped reads)/(total reads) × 1,000,000). Only
the comparisons with p value < 0.05 were regarded as having
significant differential expression by the R package (Robinson
et al., 2010). Gene Ontology (GO2) and Kyoto Encyclopedia
of Genes and Genomes database (KEGG3) were performed to
analyze the potential functions of circRNAs (Kanehisa et al.,
2008; Young et al., 2010). The miRanda software4 was used
to detect the potential binding miRNAs of these differentially
expressed circRNAs.

RT-qPCR
The cDNA was synthesized from 1 µg of total RNA with
PrimeScriptTM RT reagent kit with gDNA Eraser (Takara,
Japan). SYBR PrimeScriptTM RT-PCR Kit (Takara, Japan)
and IQTM5 multicolor real-time PCR detection system (BIO-
RAD, United States) were used and each experiment included
three independent technical and biological replications. RT-
qPCR was carried out for 40 cycles (94◦C for 5 s, 60◦C
for 34 s) after an initial denaturation step (94◦C for 30 s).
RPL5 (encoding ribosome protein L5) was used as an internal
reference gene (Wu et al., 2019a). U6 snRNA was used
as an internal reference for miRNAs analysis (Wu et al.,
2019b). The data were calculated by 2−11Ct method. The
primers were designed with Beacon Designer 7.7 and listed in
Supplementary Table S1.

RNA Interference
The T7 high yield transcription kit (Invitrogen, America) was
used to synthesize double-stranded RNA (dsRNA). The RBSDV-
free 3rd-instar nymphs of L. striatellus were immobilized on a
1% agarose plate and approximately 100 nL dsRNA (2 µg/µL)
was injected into the conjunction between the prothorax and
mesothorax via capillary on FemtoJet (Eppendorf, Germany)
after being anesthetized with carbon dioxide. The dsRNA of
enhanced green fluorescent protein (EGFP) was injected as a
control. Each experiment was carried out with 30 nymphs and
three independent biological repetitions.

The RNAi efficiency of circRNA2030 was determined
by calculating its relative expression at 1, 3, and 5 days

1http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
2http://www.geneontology.org/
3http://www.kegg.jp
4http://www.microrna.org/microrna/home.do

after injection of circRNA2030 dsRNA. Two days after
microinjection, the nymphs of L. striatellus were reared on
RBSDV-infected rice plants for 2 days. Then, the nymphs
were transferred to healthy rice seedlings for another 2 days,
and the RBSDV accumulation was determined by detecting
the gene and protein expression of P10 using RT-qPCR and
immunofluorescence, respectively.

Immunostaining
The midgut tissue was dissected in chilled 1× PBS under a
stereomicroscope and fixed with 4% paraformaldehyde for 1 h.
Then, the midguts were permeabilized with 2% Triton X-100
for 30 min and blocked with 3% BSA for 2 h. The primary
antibody (anti-RBSDV P10 mouse mAb conjugated with FITC)
was incubated with the midguts at 4◦C overnight. Then, the
midguts were incubated with TRITC phalloidin (Solarbio, China)
for 10 min. An LSM 710 (ZEISS, Germany) was used to view the
confocal imaging.

Statistical Analysis
SPSS 20.0 (IBM Corporation, United States) was used to
perform the statistical analysis. One-way analysis of variance
(ANOVA) with least significant difference (LSD) test was used
in comparing the gene expression levels. The p-value < 0.05 and
p-value < 0.01 were regarded as significant and very significant
differences, respectively.

RESULTS

Profiling of CircRNAs in L. striatellus
Midguts in Response to RBSDV Infection
Six libraries were constructed from RBSDV-free (VF) and
RBSDV-infected (RB) L. striatellus midguts and analyzed
by RNA-Seq. The sequence was deposited in the National
Center for Biotechnology Information (NCBI) with accession
number GSE153102. A total of 2,523 circRNAs were identified
(Supplementary Table S2). In this study, the length of circRNAs
ranged from 116 to 121,200 bp and 86.76% of circRNAs
were greater than 1,000 bp (Supplementary Figure S1A).
Source statistics showed that about 98% of the circRNAs were
exonic circRNAs, and about 2% of the circRNAs were from
introns (Supplementary Figure S1B). Due to the limitations of
CIRCExplorer software analysis, none circRNAs were identified
from intergenic exons and introns.

Analysis of Differentially Expressed
CircRNAs
Thirteen circRNAs were differentially expressed in response to
RBSDV infection in L. striatellus midguts, including eight up-
regulated and five down-regulated circRNAs (Supplementary
Table S3). Heat maps were generated to illustrate the expression
patterns of the 13 differentially expressed circRNAs (Figure 1).
We randomly selected three up-regulated (circRNA378,
circRNA2029, and circRNA2030) and two down-regulated
circRNAs (circRNA1026 and circRNA1117) to verify the
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FIGURE 1 | The heatmap of the 13 differentially expressed circRNAs in VF and RB L. striatellus midgut. The expression changes of differentially expressed circRNAs
are presented by log2(fold changes). VF, virus-free; RB, RBSDV infected.

circRNA expression by RT-qPCR. The expression levels of
circRNA378, circRNA2029, and circRNA2030 were confirmed
to be up-regulated and the expression level of circRNA1117 was
down-regulated in L. striatellus midgut after RBSDV infection
(Figure 2). These data were consistent with the transcriptome.
However, the expression level of circRNA1026 did not have any
changes after RBSDV infection (Figure 2).

GO and KEGG Pathway Analysis of
Differentially Expressed CircRNAs
It has been reported that the function of circRNAs can be
suggested through characterizing the features of parental linear
mRNAs (Wei et al., 2017). In this study, 13 differentially
expressed circRNAs were predicted from 11 parental genes
(Supplementary Table S4). To predict the functions of these
differentially expressed circRNAs, the GO and KEGG analyses
of their parental genes were performed. GO analysis revealed
that the biological process was the most significantly different
subgroup (Figure 3A). SNARE interactions in vesicular transport
and caffeine metabolism were shown as the top two most
significantly enriched pathways in KEGG analysis (Figure 3B).

To clarify whether the parental genes of the differentially
expressed circRNAs are also induced in response to RBSDV
infection, the expression patterns of eight parental genes were
analyzed by RT-qPCR. As shown in Figure 4, the expression
levels of four parental genes, helicase, syntaxin, phospholipid-
transporting ATPase (PTA) and multiple C2 and transmembrane
domain-containing protein 1 (MCTP1) were differentially
expressed. In contrast, the expression of other parental genes did
not change after RBSDV infection.

CircRNAs-MiRNAs Interaction Analysis
CircRNAs can act as miRNA sponges to regulate the post-
transcriptional level of miRNA’s target genes (Li et al., 2019). In
this study, the interactions of differentially expressed circRNAs-
miRNAs were analyzed according to the miRanda software.
Thirteen differentially expressed circRNAs were predicted to bind
30 miRNAs (Table 1). Both circRNA1102 and circRNA2030
were predicted to bind six miRNAs. Four miRNAs, miR-14-3p,
miR-9a-3p, miR-92a, and miR-315-5p, were predicted to bind
two or more differentially expressed circRNAs. Besides, miR-9a-
3p and miR-315-5p were significantly down-regulated, and the
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FIGURE 2 | Validation of the expression changes of five differentially expressed circRNAs by RT-qPCR in VF and RB L. striatellus midgut. The expressions of five
differentially expressed circRNAs were analyzed through 2−11Ct method. The ns represents no significant difference, and the asterisks (**) indicate significant
differences at p < 0.01 levels.

FIGURE 3 | The GO and KEGG pathway analysis of the parental genes of differentially expressed circRNAs. (A) The top four GO terms of parental genes were
analyzed. (B) The top eight enriched pathways for the parental genes were analyzed. GO: gene ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes.

expression levels of miR-14-3p and miR-92a did not change after
RBSDV infection (Figure 5).

CircRNA2030 Regulated RBSDV
Infection in L. striatellus Midgut
The expression of circRNA2030 changed more than 4.0-fold
after RBSDV infection. It was predicted to bind six miRNAs.

We further studied its functions in RBSDV infection of
L. striatellus midgut. The expression patterns of circRNA2030
were examined in different developmental stages, from 1st-instar
to adult and in different tissues, including fat body, midgut,
ovary, and salivary gland. The expression of circRNA2030
was observed in all developmental stages and had highest
level in the male adult (Figure 6A). The tissue expression
patterns showed that circRNA2030 was highly expressed in
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FIGURE 4 | Validation of the expression of eight parental genes by RT-qPCR. The ns represents no significant difference, and the asterisks (**) indicate significant
differences at p < 0.01 levels.

the midgut (Figure 6B). The relative expression level of
circRNA2030 was significantly decreased three and five days after
dsRNA injection (Supplementary Figure S2). Knockdown of
circRNA2030 significantly increased the expression of RBSDV
S10 in L. striatellus midgut, suggesting that inhibition of
circRNA2030 promotes RBSDV accumulation (Figure 7A).
Besides, immunofluorescence analysis also showed that RBSDV
accumulation in L. striatellus midgut was also increased after
knockdown of circRNA2030 (Figure 7B). Furthermore, the
relative expression levels of RBSDV replication related genes, S5-
1, S6, and S9-1, were significantly up-regulated after knockdown
of circRNA2030 (Figure 7C).

In order to explore whether circRNA2030 regulates RBSDV
infection via miRNA or its parental gene, the relationships
between circRNA2030 and its related miRNAs (miR-8-3p,
miR-184-3p, miR-277-3p, miR-315-5p, miR-277, and miR-932)
or its parental gene (PTA) were investigated. In general, if
circRNA2030 could act as miRNAs sponges, the expression
levels of the adsorbed miRNAs should be up-regulated when
circRNA2030 was knocked down. However, none of the
six related miRNAs was up-regulated after knockdown of
circRNA2030 (Figure 8). In the other hand, the expression
of PTA was significantly down-regulated after knockdown of
circRNA2030 (Figure 8). In addition, the relative expression level
of PTA was significantly up-regulated after RBSDV infection
(Figure 4). These results indicated that circRNA2030 may
regulate RBSDV infection via regulating the expression of PTA
at the mRNA level.

DISCUSSION

With the novel computational methodology and the advent of
deep sequencing technology, numerous circRNAs have been
identified in eukaryotes, including mice, Caenorhabditis elegans,
and plants (Memczak et al., 2013; Westholm et al., 2014; Ye
et al., 2015; Cortes-Lopez et al., 2018). However, functional

studies of circRNAs in insects are still at preliminary stages.
Recently, significant progress has been made in the identification
of circRNAs in insects, especially in Drosophila melanogaster
and B. mori (Westholm et al., 2014; Gan et al., 2017). It has
been reported that circRNAs participate in the responses of viral
infection in animal and plant, such as CPV infection in B. mori
(Hu et al., 2018), and TYLCV infection in tomato (Wang et al.,
2018). However, few studies focus on the expression profiles and
functions of circRNAs in plant virus–insect vector interactions.
Midgut is an important barrier for persistent circulative plant
viruses to infect insect vectors (Jia et al., 2018; Qin et al., 2018).
Our present research characterizes the comprehensive types and
expression patterns of circRNAs in L. striatellus midgut during
RBSDV infection for the first time. After verifying the sequence
quality with FastQC, a total of 2,523 circRNAs were systematically
identified in virus-free and RBSDV-infected L. striatellus midgut.
The total number of the circRNAs identified in our research
was similar to other insect species, such as D. melanogaster and
B. mori (Westholm et al., 2014; Gan et al., 2017). The length of
86.76% circRNAs was over 1,000 bp in this study. Although, it is
usually reported that the length of circRNA is less than 1,000 bp,
there are still many circRNAs longer than 1,000 bp, even longer
than 10,000 bp in circBase5. Also, 13 differentially expressed
circRNAs were obtained after RBSDV infection. Mainly, the
identification and quantification of circRNAs were dependent
on the reverse splicing reads, resulting in a large intra-group
difference in the identified circRNAs. Therefore, the number of
differentially expressed circRNAs was quite less in this study.
Altogether, these data will be helpful to identify specific circRNAs
involved in virus infection in the insect vector.

Understanding the functions of parental linear mRNAs will be
helpful to reveal the roles of circRNAs (Wei et al., 2017). The
differentially expressed circRNAs identified in our study were
predicted from 11 parental genes and were mainly predicted to
be involved in SNARE interactions in vesicular transport and

5http://www.circbase.org/
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TABLE 1 | The miRNAs predicted to bind the differentially expressed circRNAs.

Accession
name

Exons Putative
miRNAs

miRanda
score

miRanda
energy

circRNA2323 4 miR-6497-3p 148.00 −15.32

circRNA378 2 miR-79 170.00 −13.69

miR-305-5p 156.00 −15.86

miR-79-3p 170.00 −13.69

miR-9a-3p 159.00 −14.68

circRNA1714 2 miR-971 145.00 −12.45

miR-137-5p 149.00 −14.55

miR-1-3p 157.00 −17.34

miR-14-3p 142.00 −11.82

miR-1 157.00 −17.34

circRNA2029 3 miR-124-3p 154.00 −17.65

miR-315-5p 147.00 −10.32

miR-965-3p 141.00 −10.52

circRNA1102 4 miR-6497-5p 142.00 −15.44

miR-92a 147.00 −12.08

miR-92a-3p 152.00 −13.79

miR-9a-3p 150.00 −11.67

miR-92b-3p 152.00 −13.32

miR-92-3p 156.00 −19.08

circRNA2030 3 miR-8-3p 146.00 −16.39

miR-184-3p 153.00 −20.27

miR-277-3p 163.00 −19.18

miR-315-5p 147.00 −10.32

miR-277 163.00 −19.18

miR-932 148.00 −14.93

circRNA513 6 miR-252a-3p 146.00 −24.25

miR-993a-3p 140.00 −15.24

miR-14-3p 147.00 −10.80

miR-34 156.00 −28.51

circRNA600 2 miR-971 158.00 −15.59

miR-1000 148.00 −15.02

miR-14-3p 157.00 −15.26

circRNA1026 5 miR-210 154.00 −25.91

miR-993a-3p 151.00 −14.91

miR-210-3p 154.00 −25.91

circRNA1678 2 miR-92a 145.00 −13.81

miR-14-3p 170.00 −21.30

circRNA1117 2 miR-2765 149.00 −16.96

caffeine metabolism by KEGG analysis and biological process by
GO analysis. The expression changes of some circRNAs were
verified by RT-qPCR, and most of the results were consistent
with the sequencing, indicating the accuracy results of RNA-
Seq were reliable. Among the parental genes of the circRNAs,
helicase, syntaxin, and PTA were significantly up-regulated, and
MCTP1 was significantly down-regulated after RBSDV infection.
It has been reported that syntaxin is involved in the release
of hepatitis C virus (HCV) through mediating vesicles fusion
(Ren et al., 2017). These differentially expressed parental genes
might be involved in the infection of RBSDV in L. striatellus
midgut. However, a relationship between circRNAs forms and
their parental genes needs to be studied.

FIGURE 5 | Validation of the expression of four microRNAs by RT-qPCR. The
ns represents no significant difference, and the asterisks (**) indicate
significant differences at p < 0.01 levels.

A growing body of research has shown that circRNAs function
as miRNA sponges to regulate the post-transcriptional level
of gene expression (Li et al., 2019). To further explore the
roles of the differentially expressed circRNAs during RBSDV
infection, a total of 30 miRNAs were predicted to bind to the
circRNAs. A single miRNA was predicted to combine with
several circRNAs. For example, miR-14-3p could bind by four
differentially expressed circRNAs. It has been reported that
miR-14 can regulate various ecdysone-signaling pathway genes
to switch off ecdysone production after ecdysis in silkworm
(He et al., 2019). However, the expression level of miR-14-3p
(measured by RT-qPCR) was not changed after RBSDV infection,
indicating that miR-14-3p may not be directly involved in virus
infection, but it might affect the development of the insect
vector. In addition, we found that the expression levels of miR-
9a-3p and miR-315-5p were significantly down-regulated after
RBSDV infection. miR-9a is involved in the dengue virus (DENV)
infection in mosquitoes (Avila-Bonilla et al., 2017). In shrimp,
miR-315 could facilitate the white spot syndrome virus (WSSV)
infection by targeting the expression of the gene encoding the
prophenoloxidase-activating enzyme to attenuate phenoloxidase
activity (Jaree et al., 2018). The results suggest that miR-9a-3p
and miR-315-5p may be involved in RBSDV infection, and the
mechanism is worth further study. In addition, a network of
circRNA-miRNA is presented in L. striatellus midgut following
RBSDV infection. Altogether, our results provide a new insight
into the mechanism of plant virus-insect vector interactions.

CircRNA2030 was significantly expressed after RBSDV
infection and bound to six miRNAs. To further study its functions
in virus infection, we analyze its expression pattern. It was
expressed in all developmental stages and mainly expressed in
the midgut of L. striatellus, indicating a key biological role of
circRNA2030 in the midgut. Knockdown of circRNA2030 caused
a significant increase of RBSDV accumulation in L. striatellus
midgut, indicating that circRNA2030 has antivirus functions
in L. striatellus under RBSDV infection. To our knowledge,
this is the first report that circRNA can regulate plant virus
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FIGURE 6 | The expressions of circRNA2030 in different developmental stages and different tissues of L. striatellus. (A) CircRNA2030 was expressed in all
developmental stages and had the highest level in the male adult. (B) CircRNA2030 was highly expressed in the midgut. The letters a, b, c and d present significant
differences (p < 0.05) of the expression level of circRNA2030 at different developmental stages and in different tissues.

FIGURE 7 | Knockdown of circRNA2030 increased RBSDV accumulation in L. striatellus midgut. (A) RT-qPCR analyzed the expression of RBSDV S10 after
knockdown of circRNA2030 in L. striatellus midgut. The expression level of S10 was used as an indicator of relative abundance of RBSDV. (B) Immunofluorescence
analysis showed that the relative abundance of RBSDV, labeling by antibody against P10 protein and presenting as green dots, was significantly increased after
knockdown of circRNA2030. (C) The relative expression levels of S5-1, S6, and S9-1 genes were significantly increased after knockdown of circRNA2030. The
asterisks (**) indicate significant differences at p < 0.01 levels. Scale bars, 50 µm.
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FIGURE 8 | Validation the relationships among the circRNA2030 and its related miRNAs (miR-8-3p, miR-184-3p, miR-277-3p, miR-315-5p, miR-277, and miR-932)
and parental gene (PTA) by RT-qPCR. The ns represents no significant difference, and the asterisks (**) indicate significant differences at p < 0.01 levels.

infection in an insect vector. To explore the possible molecular
mechanism of circRNA2030 regulating RBSDV infection, the
relationships among the circRNA2030 and its related miRNAs
and parental gene were investigated. The results indicated that
the possible molecular mechanism of circRNA2030 regulating
RBSDV infection might be via regulating the expression of PTA
at the mRNA level.

CONCLUSION

The expression profile and the differentially expressed circRNAs
were identified in L. striatellus midgut after RBSDV infection, and
the function of circRNA2030 in RBSDV infection was analyzed.
These results suggest that circRNAs play pivotal roles for virus
infection through the insect vector.
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The ecology of plant viruses began to be explored at the end of the 19th century.
Since then, major advances have revealed mechanisms of virus-host-vector interactions
in various environments. These advances have been accelerated by new technlogies
for virus detection and characterization, most recently including high throughput
sequencing (HTS). HTS allows investigators, for the first time, to characterize all or nearly
all viruses in a sample without a priori information about which viruses might be present.
This powerful approach has spurred new investigation of the viral metagenome (virome).
The rich virome datasets accumulated illuminate important ecological phenomena such
as virus spread among host reservoirs (wild and domestic), effects of ecosystem
simplification caused by human activities (and agriculture) on the biodiversity and the
emergence of new viruses in crops. To be effective, however, HTS-based virome
studies must successfully navigate challenges and pitfalls at each procedural step,
from plant sampling to library preparation and bioinformatic analyses. This review
summarizes major advances in plant virus ecology associated with technological
developments, and then presents important considerations and best practices for HTS
use in virome studies.

Keywords: virus ecology and evolution, plant virome, high throughput sequencing, historical advances,
opportunities and challenges

INTRODUCTION

The field of plant virus ecology examines complex interactions among plant-associated viruses,
their hosts and their vectors, and the environment, effectively extending the perspective of plant
virus epidemiology (Jones, 2014). Traditionally, virus epidemiology investigates diseases and
factors influencing their spread and population dynamics, whereas virus ecology extends the focus
to include understanding patterns of virus distribution and dynamics within a given environment,
their effects on community and ecosystem properties, and the reciprocal effects of the environment
on virus dynamics and evolution (Gibbs, 1983; Hull, 2014; Lefeuvre et al., 2019).
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As a field, plant virus ecology draws on diverse disciplines
including virology, ecology, epidemiology, plant biology and
entomology (Matthews and Hull, 2002). The study of viruses
requires highly specialized methods and tools, which explains
why at first ecologists focused their efforts on more readily
observable organisms and why the history of plant virus ecology
has largely been driven by technological developments (see
Figure 1). Plant virus ecology has also been marked by the
gradual divergence of virology and ecology during the 20th
century, caused by the development of molecular methods
from the 1970s onward, which oriented virology toward virus
molecular biology and the study of viral infection in controlled
conditions, away from ecological considerations (Malmstrom
et al., 2011). This gap between the fields of ecology – mainly
focused on wild and less managed ecosystems – and virology,
centered on model or domesticated hosts, began to be bridged
in the early 21st century by the use of new genomic tools
and molecular approaches in ecological studies (Malmstrom
et al., 2011). Most of these new tools involve High-Throughput
Sequencing (HTS) technologies, also called Next Generation
Sequencing (NGS). Taken together, these developments have
spurred the emergence of plant virus metagenome studies. The
metagenome, or “virome” when referencing viruses, corresponds
to the collective genome of a microbial community within a
given individual or a defined environment (Roossinck, 2012).
Studying the plant virome in natural communities is currently
strongly advancing knowledge of viral diversity, identifying new
viral variants or species that might emerge in the future as
significant pathogens, and identifying new hosts of known viruses
(Roossinck et al., 2015; Massart et al., 2017). Going forward, a
better understanding is needed for many aspects of virus ecology:
reservoirs, exchange among hosts in various landscapes, lifestyles
of plant viruses, contribution of viruses to the functioning of
plant populations and communities, the impact of agricultural
practices on viral populations, etc.

We describe here the evolution of the techniques used
in plant virus ecology and their respective impact in this
field, emphasizing new high-throughput sequencing-based
approaches. Several reviews have already been published on
virus ecology and HTS (Roossinck, 2012; Roossinck et al., 2015;
Stobbe and Roossinck, 2014) but as of yet none has detailed
the opportunities and the technical challenges of applying
HTS technologies with a plant virus ecology perspective. The
chronology of the major advances in plant virus ecology, as
well as the technological developments supporting them, is
represented in the historical timeline of Figure 1.

EARLY STAGES OF PLANT VIROLOGY
AND OF PLANT VIRUS ECOLOGY

The first plant virus infection phenotypes were likely recorded
more than 1,200 years ago in Eupatorium plants in Japan in
AD 752, as highlighted by Saunders et al. (2003). But the early
stages of plant virology were marked by the description of the
first plant virus, tobacco mosaic virus (TMV), by concomitant
studies of Mayer (1886), Beijerinck (1899), and Ivanovskij (1899)

at the end of the 19th century, using the observation of symptoms
on tobacco plants.

Since the discovery of TMV, scientists have sought to study
the interactions between plants and viruses, but also to decipher
how viruses are transmitted between plants. Hence, the first half
of the 20th century saw the building of the foundations for
plant virus ecology, thanks to the use of host symptomatology,
sap transmission, indicator plants, biochemistry and microscopy
(reviewed in Harrison, 2009). The first explorations of plant-
virus interactions involved cultivated plants and led to important
insights, such as the existence of asymptomatic infections
(Nishimura, 1918) or of multiple infections (Dickson, 1925).
In the 1930s plant virologists began to show interest in wild
communities. Brief surveys on wild plants, carried out in
Germany in 1932–33 and in England in 1948–49, revealed high
rates of viral infections in weeds, and a longer-term study was
implemented between 1951 and 1954 in order to determine
the frequency and distribution of plant viruses in their natural
environment (MacClement and Richards, 1956). Virus flow
between wild and cultivated reservoirs was demonstrated (Storey
and McClean, 1930), as well as asymptomatic viral infections in
many wild plants (Bennett, 1944).

In parallel, virologists examined interactions between viruses
and their vectors, illustrated by the discovery of the first
insect vector of plant viruses in 1901 (Takami, 1901). The
importance of insects in virus transmission brought the concept
of the “ecological trinity” between viruses, their hosts and their
vectors, as coined by Carter (1939). The relationships between
insect-borne viruses and their vectors led to the notions of
“persistence” or “non-persistence” according to the period over
which the vector can transmit the virus following its acquisition
(Carter, 1939). Other virus vectors were identified, such as fungi
[Olpidium spp. for lettuce big vein virus, (Campbell, 1962)] and
nematodes [Xiphinema spp. for grapevine fanleaf virus, (Hewitt
et al., 1958)]. Interactions between viruses themselves were also
examined, leading to the discovery of synergisms (Vanterpool,
1926; Bennett, 1944) and antagonisms between virus strains or
species (Bawden and Kassanis, 1941, 1945). Finally, early stages
of plant-virus-vectors interactions were illustrated in 1951 with
the demonstration that a virus can manipulate its host plant and
vector, through a differential effect on aphids feeding on healthy
or infected plants (Kennedy, 1951).

THE DEVELOPMENT OF MOLECULAR
TOOLS

The rise of serological and molecular detection tools was a
golden era for the discovery of the vectors of plant viruses.
Indeed, plant viruses were found to be transmitted by a wide
range of agents, especially sap-sucking insects (e.g., aphids, thrips,
whiteflies, leafhoppers), but also by beetles, mites, nematodes,
fungi, and protists. It was also revealed that plant viruses can be
vertically transmitted via infected pollen or seeds (reviewed by
Harrison, 1981 and recently in Lefeuvre et al., 2019). Screening
of plant viruses in many plants and insects by the Polymerase
Chain Reaction (PCR), Enzyme-Linked ImmunoSorbent Assay
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FIGURE 1 | Time line of the major advances in plant virus ecology, linked to the evolution of the detection methods.

(ELISA), and radioactivity (dot blots, tissue printings, etc.)
revealed that the host and vector ranges of some plant viruses
are remarkably wide (Timian, 1974; Sherwood et al., 2003; Zitter
and Murphy, 2009). This variability is also reported for virus
transmission, with a great diversity in host ranges for given
vectors (Wijkamp, 1995; Wilson, 2014). Despite this diversity
of virus biological properties, many plant viruses studied to-
date are considered as host generalists and vector specialists,
i.e., they have a wide host range but a narrow range of vectors
(Power and Flecker, 2003). Advances in deciphering routes of
virus transmission were also made, in particular concerning
the description of circulative and propagative transmission
modes (Gildow, 1985; Ullman et al., 1993), and the concepts
of phenotypic mixing or transencapsidation (Rochow, 1970). In
parallel, advances in plant-virus interactions were made at the
molecular level, with for instance the discovery of the role of
helper component (Thornbury et al., 1985), the concept of RNA
silencing of viral genes by the host and its viral suppression
(Lindbo et al., 1993; Wang and Maule, 1995; Voinnet et al.,
1999), or the role of genetic recombination in virus evolution
(Bujarski and Kaesberg, 1986).

Major advances in understanding plant-virus co-evolution
were obtained too, with the confirmation that virus infections
could commonly be found in asymptomatic wild plants (Kelley,
1994; Creamer et al., 1996; Anaya-López et al., 2003). This was

extended by the suggestion that some viruses could potentially be
beneficial to plants (Gibbs, 1980; Xu et al., 2008). Overall, plant-
virus interactions were shown to be complex and to vary along
an antagonism-mutualism continuum according to host and
virus genotypes combinations and to environmental conditions
(Gibbs, 1980, reviewed in Fraile and García-Arenal, 2016). In
addition, co-infections with several viruses were frequently found
in crops and in wild plants, further increasing the complexity of
these interactions (Hammond, 1981; Jooste et al., 2015). Plant
viruses were also found to be able to manipulate both their hosts
and/or their vectors in order to maximize their transmission
in plants (Mauck et al., 2010; Ingwell et al., 2012; Moreno-
Delafuente et al., 2013), and reviewed in Mauck (2016).

THE ADVENT OF VIROMICS

Studies of plant-virus interactions at the interface between
managed and natural vegetation have been conducted for
nearly a century (as reviewed in Alexander et al., 2014) but
became more common in the 21st century, facilitated by PCR
and new sequencing techniques, most recently HTS. HTS-
based metagenomic studies were initially mostly performed to
explore plant virus diversity, demonstrating it to be largely
underestimated (Roossinck et al., 2015; Wren et al., 2006).
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Plant virus-like nucleic acids were further detected in many
environments [(Culley et al., 2006; Kreuze et al., 2009) and
reviewed in Roossinck, 2012; Roossinck et al., 2015], revealing
an intriguing ability to circulate and persist with ecological
implications that are not well understood. Viruses detected
in metagenomic studies can be classified in four different
types: (i) known viruses already described in the surveyed
environment; (ii) known viruses not previously described in
the surveyed environment; (iii) new virus species/isolates from
a known family, and (iv) totally new viruses (Stobbe and
Roossinck, 2014). This diversity of known/unknown plant viruses
using metagenomic studies was first identified from pooled
samples, further probed in analyses of individual barcoded
plants [ecogenomics studies (Roossinck et al., 2010)], and then
considered in an explicit spatial context [geometagenomic studies
(Elena et al., 2014; Roossinck et al., 2015)].

Up to now, most HTS studies have been focused on virus
identification and characterization in cultivated plants (Stobbe
and Roossinck, 2014). In contrast, metagenomic studies on wild
plants have been scarcer (Stobbe and Roossinck, 2014), but
have confirmed that virus infections are common in nature
(Muthukumar et al., 2009; Claverie et al., 2018, 2019; Susi
et al., 2019) and may not cause any recognizable symptoms in
wild plants in natural settings. These studies further reveal an
abundance of persistent viruses (i.e., viruses that do not move
between cells in plants but are transmitted in a strictly vertical
manner via gametes) (Roossinck, 2010). The central value of these
studies in expanding our understanding of viral diversity has
been well-recognized. Indeed, a recent taxonomic position paper
recommended the incorporation of viruses identified only from
metagenomic data into the official classification scheme of the
International Committee on Virus Taxonomy [ICTV, (Simmonds
et al., 2017)], in parallel with the development of robust
frameworks and safeguards for sequence-based virus taxonomy.
Major discoveries in metaviromics and viral phylogenomics have
caused conceptual shifts in plant virus evolution and ecology,
recognition of the influence of co-divergence, host switching, and
horizontal virus transfer (HVT) from invertebrates and fungi, on
the origins and diversification of the plant virome (Shi et al., 2016;
Zhang et al., 2019; Dolja et al., 2020). These discoveries redefined
the RNA virosphere and virus evolution pathways, and enable
development of the first comprehensive virus megataxonomy
(Koonin et al., 2020).

Metagenomics-based inventories of plant viruses can inform
significant current issues in virus ecology, including the
emergence of new virus diseases, the impact of climate change
or of anthropic pressures on viral populations and on plant-
virus-vector interactions, the contribution of plant viruses to
the functioning of wild plant populations, rules driving the
assembly of viral communities etc. (as reviewed in Jones, 2014).
Consequently, molecular and recent HTS-based studies have
advanced our understanding of several important phenomena:
(i) the reciprocal influences between the dynamics of pathogens
and the structure of multispecies host communities (Power and
Mitchell, 2004), illustrated with invasions of non-native plants
(Malmstrom et al., 2005; Borer et al., 2007); (ii) plant virus spread
among host reservoirs (wild and domestic) (Ma et al., 2020);

(iii) spill-over and spill-back events (Elena et al., 2014; Roossinck
and García-Arenal, 2015); (iv) effects of ecosystem simplification
caused by human activities (and especially agriculture) on the
biodiversity and the emergence of new viruses in crops (Pagán
et al., 2012; Bernardo et al., 2018; Alonso et al., 2019, reviewed
in Roossinck and García-Arenal, 2015; McLeish et al., 2019); and
finally (v) effects of host diversity and genetic heterogeneity on
virus dynamics (Power, 1991).

PLANT VIRUS ECOLOGY AND HTS:
OPPORTUNITIES

The ability of HTS technologies to potentially detect, without
a priori information, all or nearly all viruses within a sample
offers a huge opportunity to improve virome characterization
and supports the study of virus richness at multiple scales,
from individual plants to entire ecosystems. In addition, these
technologies also provide new insight about deciphering intra-
specific viral diversity, facilitating the characterization of virus
variants and better disentangling viral population genetics. In
the future, HTS might also be used to quantify the relative
proportions of virus species and variants within a sample or
environment, thus permitting new analyses of virus prevalence
and co-infection dynamics.

HTS technologies have significantly accelerated the discovery
of novel viruses and of new wild hosts for known viruses.
In many cases, HTS provides a strong advantage for virome
characterization over the application of a large number of specific
ELISA or (RT-) PCR detection protocols (Boonham et al., 2014;
Massart et al., 2014), in particular when taking into account
novel viruses. If the aim is to independently characterize the
virome of multiple plant species within a community, the number
of potentially targetable viruses becomes even greater, making
targeted detection approaches more complex if not unrealistic.
This fact – and the cost of large targeted efforts – explains in
part why virus ecological studies have so far largely focused on
a small number of virus species. Thanks to its untargeted and
comprehensive approach, HTS has the potential to allow more
comprehensive studies of the plant virome at community and
landscape scales (Prabha et al., 2013).

Bioinformatic advances leverage the power of HTS
technologies and provide further insight about viral genomes.
Given sufficient sequencing depth or target availability, contigs
assembled from short reads (e.g., from IlluminaTM sequencing)
or native long-reads (e.g., from NanoporeTM) can potentially
represent the full or nearly full genome of a virus.

PLANT VIRUS ECOLOGY AND HTS:
CHALLENGES

HTS technologies can provide a comprehensive analysis of
the viruses and variants present within a sample, and allow
their detection, sequence characterization and, potentially in the
future, relative quantification. Nevertheless, HTS application in
plant virus ecology may be hindered by challenges that limit
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the sensitivity and/or specificity of species/variant detection and
their relative quantification (see Figure 2). Until recently, HTS
technologies have been widely used on single plants to discover
new viruses or strains or to study viral population genetics
within individual plants. A current issue is to ensure smooth
and smart transition from sequencing individual plants to large
plant populations. The central challenge is that whereas low cost
(RT-)PCR and ELISA tests can be carried out on large numbers
of individual plants, the high per sample cost of HTS technologies
often requires balancing sequencing depth/cost with the number
of plants analyzed, for example by the pooling of plant samples.
This pooling step has consequences for the interpretation of
results. Thus, the transition to work at broader scales raises a
series of issues that must be surmounted. Here we consider these
issues in more detail.

Selection of Plant Sampling Strategy
Depending on the research aim – which might be the study
of a single virus or of holistic virome diversity – there are
several possible plant sampling strategies, including one-time and
repeated measures. For one-time sampling, the crucial point is to
determine the optimal sampling date in relation to the research
objectives, perhaps when virus titers are highest (see below), at
periods of greatest viral diversity, or after a certain period of virus
spread, etc. For virome diversity studies, the lack of information
makes it very complicated (perhaps impossible) to determine the
optimal sampling period for novel viruses. In that case, it may be
best to use repeated sampling.

Virus Concentration (Titer)
Several factors influence the multiplication rate of viruses and
their accumulation within plant hosts: the time of sampling, i.e.,
days post-infection (DPI); environmental conditions (Cordoba
et al., 1991; Nachappa et al., 2016); phenological stage of the
plant (Dal Zotto et al., 1999); sampled organ(s) (Kogovšek et al.,
2011; Constable et al., 2012; Lacroix et al., 2016), and plant and
virus genotypes (Azizi and Shams-bakhsh, 2014). The detection
sensitivity for a single virus, as well as its genome coverage,
depend on its concentration in the sample, on the sample
processing method, and on sample sequencing depth (Visser
et al., 2016). The genome of a low-titer virus is therefore less
likely to be completely sequenced with good coverage, which will
impose limits on population genetics studies.

There is generally no optimal sampling, but virus titers
are typically higher in actively-growing, green vegetation than
in senescent plant tissues. In-depth knowledge of biology of
the known viruses within the plant community is therefore a
bonus and should guide the choice of sampling time(s). For
instance, temperate climate pathosystems involving aphids may
be preferentially sampled in spring and autumn, when plants
are growing actively and vector populations are expanding and
actively disseminating (Harris and Maramorosch, 1977). This
would therefore warrant sampling at multiple time points to
provide a dynamic vision of the virome. If the budget is limited,
a smart approach can be to first conduct large-scale screening
by HTS followed by assessment of the kinetics of targeted virus
prevalence by ELISA or (RT-)PCR.

Co-infection by Several Viruses
The broad application of HTS technologies for plant virus
detection has driven a paradigm change: co-infections are now
recognized to be much more frequent than single infections
(reviewed in Mascia and Gallitelli, 2016). Such co-infections
may have consequences for symptom expression and/or virus
concentration, and therefore the probability of detection. Indeed,
interactions of multiple viruses within a single plant or tissue
can lead to a variety of relationships ranging from antagonism
(Wintermantel et al., 2008; Tatineni et al., 2010; Syller and
Grupa, 2014) to synergism (Wang et al., 2002; Martínez et al.,
2013), depending on host, viruses involved and infection history
(defined as the succession of infection events).

Co-infection may also cause competition among viral targets
for sequencing reads; a low-titer virus could theoretically be
missed in a co-infection if the other virus(es) have high titer.
The presence of several strains or several viruses sharing regions
of homology can also hamper the proper reconstruction of
viral genomes. Indeed, around the homologous region (for
which a single contig will be generated), several 5′ and 3′
flanking reads and contigs can be assembled, which can
in fine produce chimeric assemblies. This issue has been
demonstrated for closely related species most particularly,
but not only, when using a small RNA sequencing protocol
(Massart et al., 2019).

Field Sampling
The protocol used for collection of samples from the field is
critical but often poorly documented in virological reports. To
support robust data analysis and interpretation, it is essential to
consider the relationships among the question to be investigated,
the overall study design, and the sampling strategy. Three
common aims of field sampling for HTS studies are (i) to quantify
infection prevalence – the proportion of individual plants that
have detectable virus infection; (ii) to characterize the species (or
variant) composition of a viral community or population; and
(iii) to evaluate patterns of viral diversity, including viral taxa
richness – the number of taxonomic units, such as species, genera,
or families within a community. There are both general and
aim-specific sampling considerations.

General Sampling Considerations
Many practical ecological and epidemiological texts offer
guidance about field sampling strategies, including the classic
“Measuring and Monitoring Plant Populations” (available
online)1. Sampling insect communities raises additional
considerations beyond the scope of this article. The interested
reader is directed to specific literature on this question, in
particular (Dayaram et al., 2015). Questions to consider include:
What spatial pattern and areal extent of sampling will be the
most suitable? What host species will be chosen? When and how
frequently should sampling occur? How many individuals of
each sampling group will be selected? What will be the specific
process for plant selection – will developmental stage, size, or

1https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1016&context=
usblmpub
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FIGURE 2 | Methods for characterizing the viromes of plant communities. Various factors may potentially impact HTS-based viral ecology studies, at the different
steps of these studies: plant sampling at days post-infection (DPI), field sampling, pooling strategies, sample and library preparation methods, selection of the
sequencing platforms and bioinformatic analyses. Biological data on the viruses, their host plants and vectors (if known) could also be useful for viral ecology studies.

symptom status be considered? The answers to these questions
will influence the nature of the statistical analyses that can be
conducted and the inferences drawn.

In heterogeneous landscapes, planning may further involve
discernment of plant community types within a larger sampling

unit and development of a stratified sampling scheme in which
sampling effort is allocated to each community type as a function
of its relative area. If a larger unit is 40% dry meadow and 60%
wet meadow, for example, sampling effort might be allocated
proportionately.
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Once sampling compartments are identified, protocols must
be developed for determining (i) at which points material
will be collected, and (ii) how much of each plant(s) will be
collected at each point. Decisions about sampling locations
are best made prior to entering the field to remove user
bias. For example, pre-determined points can be selected
in the lab with a Geographic Information System (GIS)
and then located with a Global Positioning System (GPS)
in the field. These points might be located completely
randomly or be selected in a grid for systematic sampling
(Bernardo et al., 2018). If a grid is used, care must be
taken that the spacing does not align with a regular interval
in the vegetation pattern that would lead to oversampling
of some vegetation types and undersampling of others.
Alternatively, sampling may be conducted at predetermined
intervals along transects, an approach that requires less
technology to implement (Wilson, 2014). One method is to
walk along one or several transects within a community or
landscape, collecting samples every certain number of paces
(Sseruwagi et al., 2004; Turechek et al., 2010). Transect
start points and headings may be selected randomly or
deliberately chosen to capture particular features, such as
distance from edge (Ingwell et al., 2017) or border communities
containing alternative host species (Byamukama et al., 2011;
Muñoz et al., 2014).

Once sampling points are chosen, it is also essential to develop
a protocol guiding the selection of individual samples at each
point. The sampling unit might be an individual plant, several
plants, or a quadrat from which all or some of the plants are
collected (Byamukama et al., 2011). A sample-selection protocol
is necessary to prevent introduction of bias by the sampler
whose eyes may be drawn, for example, to symptomatic plants
(Wilson, 2014) or to larger ones. Selection may be made through
a specific randomization process or selection pattern (e.g., the
individual closest to the right of the point is sampled, irrespective
of condition or size).

Infection Prevalence
Studies aimed at quantifying infection prevalence – a common
objective in agricultural research – focus on determining the
proportion of plants carrying infection. In this context, virus
infection can be considered as a plant characteristic, and plants
can be sampled using standard plant ecology methods. Individual
plants may be barcoded separately and sequenced. Alternatively,
pooled plants may be sequenced and then viruses of interest
targeted in individual plants with specific (RT-)PCR or ELISA
methods. A critical consideration is to ensure that individuals are
sampled without regard to symptoms and that all age/size classes
of interest are evaluated.

Virus Community Composition
A more complex aim is to characterize the virus community
(“virome”) within a given area, plant community, or plant
population. Typically, the objective is to identify all or most of
the viral taxa within the study unit and perhaps also to compare
virus community composition across host species, locations, or
treatments. Important questions include, (i) Will the sampling

protocol return a representative sample of the study unit? (ii) Can
the desired comparisons across study units be fairly made?

To characterize the virome infecting a given plant community,
the sampling effort may be structured to reflect the relative
representation of the plant community’s members, as evident
in their relative abundance, relative cover, or relative biomass.
A virome reflecting the relative abundance of individual plant
species could be achieved, for example, by complete random
sampling of individual plants, given sufficient sampling effort.
Alternatively, sampling that is representative of plant species’
relative abundances might also be achieved by first evaluating
plant community composition and then conducting stratified
sampling in which each plant species is sampled in proportion
to its relative abundance. A third approach is to harvest all of the
plants within numerous randomly-placed quadrats (often called
the “lawn-mower” strategy) (Ramsell et al., 2008; Roossinck,
2012). This approach might be the most suited for analyses that
aim to characterize an areal-based virome, but may also reflect
to varying degrees the relative abundance, cover, or biomass of
individual plant species. A critical issue for all methods is the
extent of spatial dispersion or aggregation of samples, which
will influence estimates of viral community composition and its
comparability. For example, plants and viruses that are sampled
in close proximity to each other are likely to be more similar than
those with greater separation. Thus, samples taken from quadrats
may miss species found in completely random sampling.

A related issue is the sampling effort – how many samples are
to be taken overall? Typically, greater sampling effort uncovers
greater species numbers, and the prevalence of individual viruses,
as well as the relative representation of their plant hosts,
will directly influence their probabilities of detection. If the
prevalence or titer of a given virus is low, more sampling
effort will be required to detect it, as it is also true for rare
host species (Abarshi et al., 2010). Taxon accumulation curves
(collector’s curves) illustrate the gain in species numbers detected
with increasing sampling effort, but do not predict species
identity. They are sometimes used, however, to roughly assess
the sampling effort at which species number begins to saturate
(Gotelli and Colwell, 2001).

In addition to capturing a representative plant community
virome, some studies also seek to compare the viromes of
individual plant species within it. This is straightforward if
the relative abundances and samples of the plant taxa to be
compared are similar. However, if one plant species is common
and the other is rare, the sample size of the rare species in
a community-representative sample may be too small to be
effectively compared. For such comparisons, additional equal-
numbers sampling of each plant species might be conducted,
while keeping in mind that equal numbers will not represent
equal proportions of the host populations. For example, 30
individuals might represent 80% of a rare population but only 1%
of a common one. Thus, the virome of the rare host population
will likely be more complete than that of the common host.
For discussion of an alternative approach, standardizing to equal
coverage, see Chao et al. (2014). To reduce sampling costs,
the host-comparative and community–representative approaches
might be combined by sampling all individual plant species in
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high numbers and then creating a community-representative
assessment by subsampling each plant taxon in proportion to its
relative abundance (this can be done multiple times to evaluate
variability in outcomes). Such a combined approach is probably
most tractable when barcoded plants are sequenced individually,
because pooling steps in library preparation add complexity.

Virus Richness and Diversity
A third key aim of HTS studies is to evaluate patterns of
virus diversity, as distinct from determining the taxonomic
composition of the virome. Diversity is a core ecological property
that can be complex to measure [for an introductory overview,
see McCabe (2011)]; and further discussion in Gotelli and
Colwell, 2001, 2011]. The simplest measure is taxa richness (S)
or the number of different taxonomic units within a community
sample. A related measure is taxa density, the number of
taxonomic units per unit area. More complex indices, such as
the Shannon-Wiener diversity index (H’) and Simpson’s diversity
index (D1), incorporate information about both taxa richness and
their relative abundance or evenness; the choice of index – of
which there are many – may strongly influence the interpretation
of results (Chao et al., 2014). Diversity is classically considered
at several scales, as alpha, beta and gamma diversity. To simplify,
alpha diversity describes diversity within a given subunit (sample,
field, etc.), whereas beta diversity describes diversity among
subunits or along environmental gradients. Gamma diversity
represents diversity across an entire landscape, and incorporates
both alpha- and beta- components (Whittaker, 1960).

In comparing diversity values, it is critical to consider
equitability of sampling effort because the number of taxa
discovered will increase with sampling intensity, as noted earlier.
It is also important to note that sampling for diversity metrics
may be either “individual-based” or “sample-based.” Individual-
based assessments examine randomly chosen individuals in the
field, whereas sample-based assessments evaluate the number
and identity of the target taxa in collective sampling units such
as quadrats (Gotelli and Colwell, 2001). Because of within-
patch similarities, species richness values from sample-based
assessments will generally be lower than equivalent individual-
based assessments. When assessing viral diversity, essentially all
measures will be sample-based, because viruses are not sampled
directly as individuals standing independently in the field but
rather as entities embedded within particular host environments,
be they individual plants or multi-plant collections.

With regard to sampling effort, richness in the simplest
example quantifies the number of taxa represented by a given
number of enumerated individuals. For example, if one finds 100
individual viruses (virus counts, however defined) in each of two
communities and this number represents 7 taxa in community A
and 25 in community B, then viral taxa richness is much greater
in community B, all else being equal. (In practice, richness values
may be adjusted to account for differences in detection rates
among species and other issues beyond the scope of this review).
In this example, comparisons between the two communities are
straightforward because the same number of viruses has been
enumerated in each. If the number differed, then rarefaction
curves could be used to estimate how many taxa would be

represented if the larger sample were subsampled to match the
size of the smaller one (Gotelli and Colwell, 2001; McCabe,
2011). Alternatively, taxa accumulation curves could be used to
estimate how many more species would be gained if the number
of individuals enumerated in the smaller sample (Gotelli and
Colwell, 2001). For in-depth consideration of such issues, see
(Chao et al., 2014).

One must recall that “individual” in this context refers to
an individual viral unit, however defined, not to an individual
plant, and that “sample-based” assessments include assessments
of individual or multiple plants. So with individual-based
assessments, for example, one evaluates the number of distinct
taxa represented by a given number of virus individuals and
then might compare this richness value across treatments. For
instance, 100 virus individuals might represent seven taxa in one
treatment, and twenty-five in another, giving the latter greater
virus richness. One advantage of working with richness values
is that taxa accumulation curves and corresponding rarefaction
curves may be more directly useful in permitting comparisons.
Rarefaction determines how many taxa would likely be present
in smaller subsamples of the total sampled population (McCabe,
2011). Thus, a treatment with more individuals can be rarefied to
allow more equitable comparison of virus richness with another
containing fewer individuals.

Pooling Strategy
Another crucial parameter is the strategy for pooling individuals
or samples for sequencing (e.g., in library preparation), which
can be necessary to reduce costs. Individual plants might
be pooled, for instance, by species (a subsample of each
species present) or by sampling location (all sampled plant
species from one quadrat or location). The optimal pool size
depends on striking a sometime difficult balance between
the number of pools to be sequenced and the number of
individual plants per pool. Increasing pool size is likely to
exacerbate competition among viruses for sequencing reads;
the larger the pool, the higher the probability that some low
prevalence or low concentration viruses may be missed if
other viruses are present in high abundance (dilution effect).
An example is the current practice of inoculating a mild
strain of pepino mosaic virus in tomato production to prevent
the infection by severe strains. This mild strain is present
in high concentration in the plants (up to 25% of total
RNA reads, unpublished data). If such plants are included
in a pool, the majority of viral reads might come from the
PepMV mild strain, hampering the detection of other viruses
at low abundance.

This issue is arguably most important in studies that seek
to characterize the complete viral community, and perhaps less
important for relative comparisons among sampling groups.
Nested sample pooling is one approach for determining optimal
pooling strategy. In this approach, a series of pools with
increasing number of pooled plants from the same community
or from an increasing number of communities is collected and
sequenced. The results will give a preliminary overview of the
geographic heterogeneity of the sampled population and thus of
the sample size required for good representation. In all cases, it
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is advisable to collect and store individual plants for downstream
confirmation of HTS results.

Pooling strategies should also consider that some plant species
may contain inhibitors (i.e., secondary metabolites) that can
negatively affect the amplification and sequencing steps in some
protocols (Lacroix et al., 2016). A preliminary study of the
potential inhibitory effect of all host species sampled may need
to be performed using targeted RT-PCR and mixing experiments
(e.g., Lacroix et al., 2016). If inhibition is evident, the preferred
solution would be to employ nucleic acid extraction protocols
sufficiently robust for all plant hosts sampled. If no other option
is available, it may be necessary to exclude the problematic
plants species from the study. The dsRNA purification protocol
(Tzanetakis and Martin, 2008; Okada et al., 2015; Nwokeoji et al.,
2017; Ma et al., 2019) appears to be relatively robust, but in
any case, the possibility of limitations for particular plant species
should always be considered.

Selection of Method for Sample
Preparation and Sequencing
The selection of the target nucleic acids population is critical as it
defines the types of viral sequences that will be detected, including
total RNA/DNA, RNA-Seq, Virion-Associated Nucleic Acids
(VANA), dsRNA, small RNA, circular ssDNA or amplification
of targeted PCR products using generic primers. While HTS
technologies have the theoretical capacity to target any viral
nucleic acid in any host plant or vector, the available
protocols present distinct advantages and limitations as reviewed
previously (Roossinck et al., 2015) and summarized in Figure 3
and Table 1.

These limitations warrant a careful a priori evaluation of
the viruses and viroids potentially infecting the plants in the
study area. However, neither the viruses, nor their (genomic)
characteristics are a priori all known. Hence protocol selection
may be influenced most strongly by information about which
viruses are common in the study area or are most interesting
given the question(s) addressed. The research question and the
objectives of the study will thus be crucial for protocol selection,
along with a botanical inventory. For example, there are currently
no viroids known to infect Poaceae. So, the VANA method –
which concentrates DNA and RNA associated with virions but
not viroids – could be a good choice when studying grassland
samples, as long as it is understood that the analysis would likely
miss any novel Poaceae-infecting viroids.

There are additional important considerations in sample and
library preparation. For example, many current metagenomics-
based protocols include a random PCR amplification step prior
to sequencing, which can create chimeric reads and introduce
bias in the relative proportion of sequences. This, among
others, has so far limited the ability to evaluate the relative
frequencies of viral sequences in a sample. Moreover, HTS-based
approaches have already proven to be as susceptible to between-
samples contamination as PCR-based assays (Massart et al.,
2014; Galan et al., 2016), thus requiring specific precautions and
controls. These contaminating reads can result from laboratory
contaminations but also from read misassignment (also called

index-hopping) when multiple libraries that include multiplexed
samples are sequenced on the same Illumina lane (Vezzi et al.,
2017). In ecogenomic studies where the establishment of a direct
link between host plants and virus species is sought, cross-
contamination among samples would result in the erroneous
identification of virus-host combinations. For example, a plant
species might be erroneously identified as a low-titer reservoir
for a particular virus. Therefore, the same precautions and
standards currently implemented in (RT)-PCR-based assays must
be implemented for HTS technologies (Massart et al., 2014;
Galan et al., 2016), such as the use of a series of controls
(positive/negative, internal/external, spiking) at each step of the
HTS pipeline [for example, as developed in the guidelines of
the European VALITEST project (Lebas and Massart, 2020)]. In
addition, verification of the virus found in individual samples by
other independent methods is highly recommended.

In the sequencing phase, proper read length selection is a
key consideration. For small RNA sequencing, the very short
length of small RNAs (21–24 nt) complicates sequence assembly
and annotation, and makes genome reconstruction and strain
identification more difficult (Massart et al., 2017, 2019). More
typically, read lengths generated by IlluminaTM platforms range
from 75 to 300 nt for single or paired reads, with error rates
increasing with longer reads (Sameith et al., 2016). Pacific
BiosciencesTM or Oxford NanoporeTM technologies can generate
much longer reads (and therefore a better reconstruction of
genomes and isolates) but with lower sequencing accuracy
(Filloux et al., 2018).

Sequencing depth is directly correlated with an improved
ability to detect viruses present at low abundance/concentration,
as shown for small RNA sequencing (Massart et al., 2019). On the
other hand, a higher sequencing depth increases the probability
of false positive detection because of potential contamination
problems (i.e., contaminants are more likely to be sequenced) and
increases the price per sample (Massart et al., 2014). Protocols
allowing an enrichment of viral sequences, such as VANA or
dsRNA will significantly improve the sensitivity of virus detection
for a given sequencing depth. These protocols are therefore very
popular for ecological studies (Djikeng et al., 2009; Coetzee et al.,
2010; Blouin et al., 2016; Palanga et al., 2016). On the other hand,
total RNA/DNA may still be used despite the requirement of
higher sequencing depth (Ng et al., 2011; Bernardo et al., 2013;
Gil et al., 2016; Akinyemi et al., 2016). Nevertheless, on the long
term, if the cost of sequencing continues to decrease and the
efficiency of ribodepletion protocols to increase, the use of total
RNA could also be envisioned, provided sufficient sequencing
depth is sought (in the range of 100x more than for VANA or
dsRNA), as illustrated in grapevine viruses and a 35x enrichment
for dsRNA (Al Rwahnih et al., 2009).

Bioinformatic Analysis
Detection, Characterization, and Taxonomic
Assignment of Viral Reads and Contigs
Bioinformatic analyses may be performed to examine viral reads
and assign them to virus taxonomic units, in order to estimate
virus(es) genetic structure and diversity (richness and evenness),
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FIGURE 3 | Sample preparation for virus ecological studies using HTS. Samples taken from plants, vectors or other sources (waters, animals, etc.) may contain
various viral sequences including DNA viruses (blue), RNA viruses (green), viroids (yellow) or viral sequences integrated in the host genome (red). Variants can be
produced by mutations (white) and recombinations (black) during the infection. The most frequently used protocols to analyze viral sequences by HTS are based on
the extraction of total RNA, dsRNA, small RNA, and Virion-Associated Nucleic Acids (VANA). By using sequencing platforms, sets of reads are obtained and have
then to be processed by bioinformatic pipelines to reassemble them in order to detect, identify and quantify the virus and viroids present. Dotted figures correspond
to viral sequences sometimes detected with the preparation method described.
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TABLE 1 | Advantages and drawbacks of different sample preparations for HTS-based virus ecological studies.

Nucleic acids Total RNA dsRNA Small RNA (21, 22, 24 nt) VANA

Advantages • Detection of any RNA or DNA
virus and viroids.
• For individual plants and pooled

samples.

• All RNA viruses including
viroids.
• Enrichment of viral sequences

in the data.
• For individual plants and pooled

samples.

• Screen any kind of virus and
viroid targeted by silencing
mechanism.
• For individual plant samples.

• All viral particles, detection of
DNA and RNA viruses.
• Enrichment of viral sequences

in the data.
• For individual plants and pooled

samples.

Drawbacks • High sequencing depth is
needed as there is a high
background of rDNA (even with
depletion of ribosomal RNAs).
• No enrichment of viral

sequences.
• Limited sensitivity to detect

viruses in low concentration

• Labor intensive.
• Limited or no detection of DNA

viruses.
• Introduction of technical bias

(enrichment) for quantification
of variants and species.

• Cumbersome extraction
methods (Trizol and
CTAB-based).
• Difficult annotation of

sequences and genome
reconstruction due to the small
size of the sequences.
• Only detects actively replicating

agents targeted by plant
silencing.
• Many viruses can have very low

sRNA titer in woody crops.
• Not yet applied on sample

pools for ecological studies.
• Complicated assembly requires

high sequencing depth in order
to be able to assemble and
identify viruses.
• No enrichment of viral

sequences.
• Limited sensitivity to detect

viruses in low concentration.

• In theory, no detection of viroids
or virus nucleic acid not
encapsided or with unstable
particles. But endornaviruses
were demonstrated to be
detected with this technique.
• Introduction of technical bias

(enrichment) for quantification
of variants and species.
• Highly variable in recovery of

viruses.

The four most frequently used protocols are considered: total RNA, dsRNA, smallRNA, and Virion-Associated Nucleic Acids (VANA) (Cf. Figure 3). Their advantages and
drawbacks are presented, in terms of detection, sensitivity, enrichment, convenience, and eventual bias.

or even to characterize novel virus species. However, different
population-based or taxonomy-based terms are often used in
these analyses, such as virus species, isolates, strains, operational
taxonomic unit (OTU) or quasispecies, while their definition has
been discussed by virologists (Van Regenmortel, 2007; Adams
et al., 2013; Peterson, 2014) and these terms have sometimes
been inconsistently used in the literature. The crucial point is
thus to define clearly the fundamental unit used for diversity
estimation (Claverie et al., 2018). In recent geometagenomics
work (Bernardo et al., 2018), virus family was for example
defined as the base “individual” unit enumerated to evaluate virus
richness per sample, i.e., the number of virus families represented
(if any) as determined by BLAST matches of viral contigs.
Consequently, this approach was deliberately conservative (to
avoid double-counting contigs representing the same viral
genome), but could not distinguish and enumerate co-infections
of multiple isolates from the same species or of multiples species
in the same or in related genera belonging to a family, that
can be frequent in nature. Other strategies for estimating the
viral diversity from metagenomics-based approaches have been
recently used, relying on the use of a clustering of viral conserved
protein motifs such as RNA-dependent RNA polymerases (RdRp)
to define OTUs representing an acceptable proxy to viral species
(Lefebvre et al., 2019; Ma et al., 2019) (see also next section).

Even for a single plant sample, identifying all viral agents
present may be a non-trivial bioinformatic challenge and many
elements have to be taken into consideration when trying to select

a pipeline/strategy and optimize parameters (Massart et al., 2019).
The presence of a novel viral species in a sample is not always
easily detected and, to some extent, its detection still depends
on the expertise of the researcher (Massart et al., 2019). In
addition, homology-based annotation approaches, like BLASTn
or BLASTx, have limitations because a significant proportion
of sequence reads may have no detectable homologs in the
sequence databases (Lefebvre et al., 2019) or because some
sequences are wrongly annotated databases, which may lead
to mis-identifications. Due to these limitations, current virome
studies probably still miss part of the viral community but the
proportion of viral sequences that are thus unidentified remains
a matter of debate. Other approaches like Markov profile (Mistry
et al., 2013) or k-mer analyses (Wood et al., 2019) can be used
to try to identify novel virus species but without totally solving
this issue since their performances are either incomplete or
not properly known. Moreover, read assignment can be refined
using statistical phylogenetic placement methodology, as recently
illustrated by a study focusing on the appropriate phylogenetic
position of viral metagenomic reads on a reference phylogenetic
Mastrevirus tree (Claverie et al., 2019). Beside these homology-
based annotation methods, sequence-independent strategies
have been developed to identify novel viral sequences without
using sequence databases, e.g., through the examination of
characteristics of virus-derived small RNAs (Aguiar et al., 2015).

Another crucial issue for taxonomic assignment is the fact
that viruses detected in plant samples by HTS technologies may
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include not only viruses infecting the plant host itself but also
those infecting any other organisms caught up in the sample,
including microscopic arthropods, bacteria, or fungi living on
or in the plant (Shi et al., 2016; Zhang et al., 2019). Some
viral taxa may be readily assigned to hosts, on the basis of
relationships to existing known viruses. However, the process
can be complex if the taxa appear highly novel, are not well
accommodated by existing phylogenies, or fall in an intermediate
zone of host transition (Dolja et al., 2020; Koonin et al., 2020).
Special attention should be paid to the contribution of these
“contaminating viruses” to the plant virome, and to the potential
influence of sample preparation techniques (e.g., dsRNA isolation
might result in overrepresentation of fungal viruses with dsRNA
genome as compared to ssRNA plant viruses) (Ma et al., 2019).

The characterization of the biology (host range, transmission
mode, symptomatology, geographical distribution, etc.) of any
newly identified virus can be challenging too. Indeed, the
identification of a putative new virus alone will be of limited
usefulness in a range of ecological studies. A characterization
framework has recently been published, proposing a scaled
approach to progressively and efficiently characterize the biology
of a newly identified virus and the associated risks for the wild
and domesticated plants (Massart et al., 2017).

Viral Richness and Diversity
As discussed, taxa richness (the number of taxa present within
a sample or environment) and taxa diversity (which takes into
account both taxa richness and evenness, the relative proportions
of each taxa) are two key ecological metrics (Whittaker, 1965;
Colwell, 1997; Witzany, 2012). To measure richness and diversity
from HTS data for viruses is not a trivial task, due to: (i)
incomplete virus genome assemblies potentially resulting in
different viruses being represented by non-overlapping genome
regions (e.g., viral species 1 being represented by its capsid
protein gene while viral species 2 is represented by it polymerase
gene); (ii) chimeric assembly due to homologous regions as
explained in “Co-infection by Several Viruses”; and (iii) the
challenge of defining enurable viral units (see above). Non-
homogeneous taxonomic criteria between viral families and the
absence of universally conserved genomic region shared by
all viruses further complicate viral richness estimation. This
difficulty will also impact alpha, beta or gamma diversity analyses,
with the added complexity of simultaneously necessitating
quantitative abundance or prevalence data for each individual
agent (see section on “Infection Prevalence”).

A proposed strategy is to measure a proxy of virus species
richness by enumerating OTUs. This can be achieved by
aligning a conserved region, often part of the polymerase
region, setting an arbitrary distance separating OTUs (more
than a fixed percentage of divergence) and then performing a
sequence clustering. Other proxys have been used to estimate
viral richness, for example the number of viral families or
genera, or OTUs defined using other approaches but these
other proxys tend to have even more limitations than the
use of OTUs based on a clustering approach. A very good
description of this approach for virus classification was presented
by Simmonds (2015). It has recently been implemented in at

least one annotation pipeline (Lefebvre et al., 2019), and already
used at the family level in ecological analyses combined to
plant spatial distribution (Bernardo et al., 2018) and near
species level for the benchmarking of sequencing strategies
(Ma et al., 2019). The study of taxa richness based on
similarities/divergence between sequences offers the possibility
to taxonomically “assign” the large number of virus sequences
generated by HTS, but also presents some pitfalls. Indeed,
while numerous virus genomes have experienced recombination
and reassortment event(s), only complete genomes or at least
complete coding regions of virus genomes are suitable for reliable
taxonomic assignments (Simmonds, 2015). However, despite
these limitations to precise taxonomic assignment, distance-
based methods can be used as the only source of information for
virus richness estimation from HTS data.

Single-Nucleotide Polymorphisms (SNPs) and Virus
Populations
Viral populations can evolve quickly by mutation and/or
recombination at each replication cycle. The resulting variants
may bear large genome rearrangements as well as single-
nucleotide polymorphism (SNP) mutations. Accessing viral
intra-specific diversity through HTS has value for specific
scientific aims (Beerenwinkel and Zagordi, 2011), such as
to better measure and map evolutionary footprints of virus
emergence at the plant community scale. For example, the
detailed characterization of viral isolates will be needed in order
to compare the virus population in a primary host and in
potential reservoir(s).

To genotype and haplotype SNPs remains a challenging
bioinformatic task for a single virus in a single sample. It
becomes obviously more complex with samples containing
multiple viruses from multiple hosts. In the case of mixtures of
isolates, reconstruction of genomic sequences may be particularly
complex, if not altogether impossible, especially when multiple
closely related isolates are involved or for quasi-species with
high variability. Moreover, the differentiation between SNP and
sequencing errors is intrinsically difficult for low frequency
variants. It can be impacted by the quality of the HTS sequences
produced, by read length, but also by the algorithms used
for quality control, contig assembly, and SNP identification.
The statistical approach selected for the haplotyping analysis is
another key factor to consider; its performance is determined
by mutation rate and was demonstrated to decrease with genetic
diversity of the sample (see McCrone and Lauring, 2016; Posada-
Cespedes and Seifert, 2017; Eliseev et al., 2020).

The confirmation of SNPs represents another challenge:
targeted real-time PCR could be used but the need to design
and produce two probes per SNP remains costly. Another
potential way to reinforce the significance of the analysis is
to sequence duplicates of each sample or to combine the use
of different HTS approaches that have different distribution
of sequencing errors. While costly, these approaches have the
potential to distinguish true SNPs from sequencing errors.
Running duplicates is a strategy that is often performed for HTS-
based barcoding (Razzauti et al., 2015) and could be applied
to virus ecology.
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CONCLUSION

The study of plant virus ecology, which began at the end of
the 19th century, has been accelerated by the evolution of new
methods used to detect plant viruses in various environments
and in many plants simultaneously: the HTS technologies
offer huge opportunities to improve virome characterization
and address novel questions such as the examination of virus
spread among host reservoirs (wild and domestic), the effects
of ecosystem simplification caused by human activities (and
agriculture) on the biodiversity, and the emergence of new
viruses in crops. Recently, conceptual shifts in the understanding
of the origins and diversification of the plant virome were
achieved, leading to the design of the first comprehensive virus
megataxonomy. Nevertheless, the use of HTS in ecological
studies is associated with a series of challenges and pitfalls
described in detail in this review for each procedural step in
the field, in the laboratory and for bioinformatic analyses. The
rapid evolution of the sequencing platforms and bioinformatic
pipelines promises numerous findings in viral metagenomic
studies over the coming years. These novel approaches developed

in plant virology will directly be transferable to other models for
a better understanding of host-virus interactions and ecological
virology in general.
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Plant diseases caused by invading plant viruses pose serious threats to agricultural
production in the world, and the antiviral engineering initiated by molecular
biotechnology has been an effective strategy to prevent and control plant viruses.
Recent advances in clustered regularly interspaced short palindromic repeats
(CRISPR)/CRISPR-associated (Cas) system-mediated DNA or RNA editing/interference
in plants make them very attractive tools applicable to the plant protection field. Here,
we review the development of CRISPR/Cas systems and summarize their applications
in controlling different plant viruses by targeting viral sequences or host susceptibility
genes. We list some potential recessive resistance genes that can be utilized in
antiviral breeding and emphasize the importance and promise of recessive resistance
gene-based antiviral breeding to generate transgene-free plants without developmental
defects. Finally, we discuss the challenges and opportunities for the application of
CRISPR/Cas techniques in the prevention and control of plant viruses in the field.

Keywords: CRISPR, Cas proteins, plant virus, recessive resistance genes, antiviral engineering

INTRODUCTION

Plant diseases caused by plant pathogens, including bacteria, fungi, nematodes, and viruses in
different crops, lead to enormous economic losses worldwide. Plant viruses cause almost half of
plant diseases, and the annual global cost of viral infection of cultivated crops is estimated to be
more than US$ 30 billion (Nicaise, 2014; Sastry and Zitter, 2014). About 1,500 plant virus species,
grouped into 26 families, have been identified and characterized based on viral genome sequences so
far1. Plant viruses are a class of obligate intracellular parasites, with minimal coding capacity, which
heavily rely on their host to complete their infection/life cycle. Unlike in the case of other pathogens,
there are barely any efficient antibiotics or other chemicals that can eliminate an infecting plant
virus without perturbing host cells. Therefore, molecular plant breeding plays a pivotal role in
generating virus immunity, virus resistance, or virus-tolerant plants in agricultural production to
prevent and control plant viruses.

CRISPR (clustered regularly interspaced short palindromic repeats)/CRISPR-associated
(Cas) systems, derived from bacterial and archaeal sources, serve as an important
adaptive immunity against invading nucleic acids. With the fast development of our
understanding of CRISPR/Cas systems, they have been converted into convenient tools to
edit endogenous and exogenous DNA or RNA sequences in different organisms. To date,

1https://talk.ictvonline.org/taxonomy/
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a simplified CRISPR system only contains an easily engineered
guide RNA (gRNA) and a Cas effector protein. Based on the
different characteristics of Cas proteins in sequence, structure,
and function, CRISPR/Cas systems are separated into two distinct
classes (Makarova et al., 2015, 2017a,b). Class 1 of CRISPR/Cas
systems contains types I, III, and IV, which utilize a multi-protein
effector complex (Makarova et al., 2017a). In contrast, class 2 of
CRISPR/Cas systems includes types II, V, and VI, which achieve
target editing only with a single effector protein (Makarova et al.,
2017b; Shmakov et al., 2017). Therefore, class 2 CRISPR/Cas
systems have been widely adopted and utilized for nucleic acid
manipulation and detection (Hsu et al., 2013; Garcia-Doval and
Jinek, 2017; Ji et al., 2019; Table 1). Among them, the type II
and V Cas proteins are utilized to edit DNA, and the type VI
Cas proteins are applied for editing RNA. In the past few years,
CRISPR/Cas system-mediated gene editing technology has been
introduced rapidly into plant genetic engineering to generate
resistance against viruses and other pathogens (Hadidi et al.,
2016; Ma et al., 2016; Langner et al., 2018; Mahas and Mahfouz,
2018; Chen et al., 2019; Li and Wang, 2019; Li et al., 2019; Zhang
et al., 2019b). Generally, there are two main strategies to utilize
CRISPR/Cas technology to control plant viruses (Figure 1). One
approach is to target, destroy, and interfere with the viral genome
to inhibit the replication and infection of invading viruses. The
other one is to manipulate host susceptibility factors required for
the viral infection/life cycle in order to enhance plant immunity
and block virus invasion.

CRISPR/Cas SYSTEM-MEDIATED
RESISTANCE TO PLANT VIRUSES BY
TARGETING THE VIRAL GENOME

CRISPR/Cas System-Mediated
Resistance to Plant DNA Viruses
Geminiviridae and Caulimoviridae are two major destructive
plant DNA virus families that contain 485 species with single-
stranded DNA (ssDNA) genome and 85 species with double-
stranded DNA (dsDNA) genome, respectively, see text foot note
1. Multiple independent works have aimed to directly target and
destroy the genomic DNA of geminiviruses or caulimoviruses
by plant gene editing technologies. Before the emergence of
the CRISPR/Cas systems, the zinc finger nucleases (ZFNs) and
transcription activator-like effector nucleases (TALENs) have
been applied to manipulate the host and viral DNAs in plants.
ZFN- and TALEN-mediated resistance to several geminiviruses,
including tomato yellow leaf curl China virus (TYLCCNV) and
tobacco curly shoot virus (TbCSV), by targeting the viral genomic
replication-associated region has been reported (Chen et al.,
2014; Cheng et al., 2015). Compared to ZFN- and TALEN-
mediated DNA editing technologies, CRISPR/Cas systems have
more advantages in manipulation, so they have rapidly become
more popular and promising in antiviral engineering in plants.

CRISPR/Cas9 constructs with single guide RNAs (sgRNAs)
targeting the viral replication-associated region, or intergenic
region (IR), have exhibited effective DNA interference and

conferred viral resistance against beet severe curly top virus
(BSCTV), cotton leaf curl Multan virus (CLCuMuV), and
bean yellow dwarf virus (BeYDV) in transgenic Nicotiana
benthamiana or Arabidopsis thaliana plants, respectively (Baltes
et al., 2015; Ji et al., 2015; Yin et al., 2019). Targeting the tomato
yellow leaf curl virus (TYLCV) genome with Cas9–single guide
RNA at the sequences encoding the coat protein (CP) or replicase
(Rep) resulted in efficient virus interference, as evidenced by the
low accumulation of the TYLCV DNA genome in the transgenic
tomato and N. benthamiana plants (Tashkandi et al., 2018).
The sgRNAs targeting the stem-loop sequence compared to
the sgRNAs targeting the viral CP region and the replication-
associated region within the IR displayed a more effective
interference of several geminiviruses including the monopartite
geminivirus, cotton leaf curl Kokhran virus (CLCuKoV), the
bipartite geminivirus, Merremia mosaic virus (MeMV), and
different severe and mild strains of TYLCV geminiviruses (Ali
et al., 2016). These findings suggest that CRISPR/Cas9-induced
variants in open reading frames (ORFs) but not the IR of
geminiviruses are capable of replication and systemic movement,
thereby evading the CRISPR/Cas9 machinery. The use of this
system by a single sgRNA targeting the conserved stem-loop
sequence of the origin of replication in the TYLCV intergenic
region was also able to render plants broad-spectrum resistance
to other geminiviruses, including a monopartite geminivirus, beet
curly top virus (BCTV), and a bipartite geminivirus, MeMV
(Ali et al., 2015).

With the fast development of CRISPR/Cas9 system-based
technologies, more and more successful examples show the
promising resistance to plant DNA viruses. For example, a
CRISPR/Cas9 system duplexed with sgRNAs targeting the
movement protein (MP) or CP region established resistance
to wheat dwarf virus (WDV) or banana streak virus (BSV),
respectively (Kis et al., 2019; Tripathi et al., 2019). This
approach shall also provide new avenues for engineering cotton
against cotton leaf curl disease (CLCuD), mediated by cotton
leaf curl virus (CLCuV), a key limiting factor for cotton
productivity worldwide (Uniyal et al., 2019). The initial success of
transgenic plants engineered by CRISPR/Cas9 systems resistant
to geminiviruses points out the potential of a similar strategy
against other severe ssDNA viruses, like banana bunchy top virus
(BBTV), which causes devastating damage to the whole banana
industry in Southern China (Rao et al., 2017).

In addition, CRISPR/Cas9-mediated immunity has been
recently utilized to defend against plant dsDNA viruses.
A. thaliana transgenic plants consistently expressing both Cas9
protein and sgRNAs targeting the CP region of cauliflower
mosaic virus (CaMV) in the Caulimoviridae family conferred
effective resistance to this species (Liu et al., 2018).

CRISPR/Cas System-Mediated
Resistance to Plant RNA Viruses
Recently, some RNA targeting and editing CRISPR-associated
proteins were found, such as Cas9 derived from Francisella
novicida (FnCas9) and Cas13a (formerly called C2c2) from
Leptotrichia shahii (LshCas13a) (Price et al., 2015; Shmakov et al.,
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TABLE 1 | CRISPR/Cas system-mediated resistance to plant viruses by targeting the viral genome, host factors, and some potential recessive targets using genome
editing systems.

Targets Viruses Applied systems Potential recessive resistance targets
(Without development defects)

Viruses

Viral replication region TYLCCNV, TbCSV ZFN AOCl,AT4CLI,BAMI,CML38,CML39, Geminiviruses

Viral IR region/replication region TYLCCNV, TbCSV TALEN CPHSC70-1, CSNs, deltaCOP, GRAB2,
HSC70, NSI, NsAK, PLP2, rgs-CaM, SCE1,
SK4-I/SKK, SYTA1

Vil-Hl IR region /replication region BeYDV. CLCuMuV CRlSPR/SpCas9

Viral IR region/replication region/ CP BCTV, CLC’uKoV,
McMV, TYLCV

CRJSPR/SpCas9 u-EXPA, bZIP60, CK2, cPGK, DBP1, DDXs,
DnaJ-like proteins, eEFl A, eEFIB, eEF4E,
eEF4G, eEF4G2, eEF(iso)4E, GRF6, IREI A,
IRE1B, NBR1, PABPs, PCaPl, PVIPs, RAV2,
RHs (RH8, RH9), Sec24a, SYTA1, SYP71

Potyviruses

Viral genome region BSCTV C’RISPR/SpCas9 l > ZIP60, CAT1, cPGK, eEFIB, EXA1 Potexviruses

Viral long IR region/MP/CP/ replication
region

WDV, BSV CRlSPR/SpCas9 ARL8a/8b, eEFIA, SYTA1, TOM1, TOM2A,
TOM3

Tobamoviruses

Viral CP CaMV CRISPR/SpCas9 Chl-PCK, eEFIA BaMV

Viral coding ORF/non-coding region/3′

UTR
TMV, CMV CRISPR/FnCas9 PDIL5-1 BaYMV, BaMMV

Viral HC-Pro/CP/GFP region TuMV (TuMV-GFP) CRISPR/LshCasl3a,
Rfi(Casl3d

FDH, CRT3, HAT1, HAT2, HAT3, VPS41 CMV

Viral coding ORF TMV, SRBSDV (RISPR LshCa.sl3a PDLP1/PDLP2/PDLP3 GFLV.CaMV

Viral NIh/P3/CI/CP region PVY C’RISPR/LshCasl3a EXAI LoLV

Host gene elF4E CVYV, ZYMV,
PRSV-W, TuMV

CRISPR’SpCas9 eEFIA, ESCRT, GAPDH, RAB5, SYPK1 TBSV

Host gene elF4E C1YVV CRISPR/nCaaS-
cytidine deaminase

SYTA1 TVCV

Host gene el F4G RTSV CRISPR/SpCas9 CPR5 RYMV

Host gene elF(iso)4E TuMV CRISPR/SpCas9 RIM1.SAMS1 RDV

Host gene nCBP-l/nCBP-2 CBSV CRISPR/SpCas9 RHD3 TSWV

The known targets in light blue background are used in antiviral engineering by genome editing technologies, which can be viral replication regions, viral open reading
frames (ORFs), viral non-coding regions, or the host factors required for viral infection. The potential recessive targets in light yellow background which are suppressors
of plant defenses, the susceptibility factors required for viral translation/replication/movement or other life cycles, the factors in the cellular metabolism, or the modified
factors for the benefit of the viral infection or viral protein functions, etc., can be utilized in antiviral engineering by genome editing technologies. The abbreviations of
the virus names in this table are as follows: BaMMV, barley mild mosaic virus; BaYMV, barley yellow mosaic virus. Caulimoviruses: BSV, banana streak virus; CaMV,
cauliflower mosaic virus; CMV, cucumber mosaic virus; CMV-GFP, cucumber mosaic virus carrying GFP. Geminiviruses: BCTV, beet curly top virus; BeYDV, bean yellow
dwarf virus; BSCTV, beet severe curly top virus; CLCuKoV, cotton leaf curl Kokhran virus; CLCuMuV, cotton leaf curl Multan virus; MeMV, Merremia mosaic virus; TbCSV,
tobacco curly shoot virus; TYLCCNV, tomato yellow leaf curl China virus; TYLCV, tomato yellow leaf curl virus; TYLCSV, tomato yellow leaf curl Sardinia virus; WDV, wheat
dwarf virus; GFLV, grapevine fan leaf virus; LoLV, Lolium latent virus. Potyviruses: CBSV, cassava brown streak virus; ClYVV, clover yellow vein virus; CVYV, cucumber
vein yellowing virus; PRSV-W, papaya ringspot virus-W; PVY, potato virus Y; TuMV, turnip mosaic virus; TuMV-GFP, turnip mosaic virus carrying GFP; ZYMV, zucchini
yellow mosaic virus; TBSV, tomato bushy stunt virus; RDV, rice dwarf virus; RTSV, rice tungro spherical virus; RYMV, rice yellow mottle virus; SRBSDV, southern rice
black-streaked dwarf virus; TMV, tobacco mosaic virus; TMV-GFP, tobacco mosaic virus carrying GFP; TSWV, tomato spotted wilt virus. The abbreviations of the gene
names in this table are listed as follows. Potential recessive resistance targets that function in the infection of geminiviruses: AOC1, allene oxide cyclase 1; AT4CL1,
4-coumarate: CoA ligase; BAM1, barely any meristem 1; CML38/39, calmodulin-like protein 38/39; CPHSC70-1, chloroplastic HSC70-1; CSNs, COP9 signalosome
subunits; delta COP, coatomer delta subunit; GRAB2, geminivirus Rep A-binding; HSC70, heat shock protein cognate; NSI, nuclear acetyltransferase I; NsAK, a proline-
rich extensin-like receptor protein kinase (PERK); PLP2, patatin-like protein 2; rgs-CaM, regulator of RNA silencing, calmodulin-like protein; SCE1, SUMO, conjugating
enzyme E1; SK4-1/SKK, shaggy-related kinase proteins. Potential recessive resistance targets that function in the infection of potyviruses: α-EXPA1, expansin; bZIP60,
basic-leucine zipper transcription factor 60; cPGK, nuclear-encoded chloroplast phosphoglycerate kinase; DDXs or RHs, DEAD-box RNA helicase; eEF1, eukaryotic
translation elongation factor 1A/1B; eIF4s/eIF(iso)4s, eukaryotic translation initiation factors 4/isoform factors 4 [eIF4E, eIF4G, eIF4G2, eIF(iso)4E, etc.]; GRF6, 4-3-3
family protein; IRE1, inositol requiring protein-1; NBR1, neighbor of BRCA1 gene 1; PABPs, polyA-binding proteins; PCaP1, plasma membrane-associated cation-binding
protein-1; PVIPs, potyvirus VPg-interacting proteins; RAV2, ethylene-inducible host transcription factor; Sec24a, a COPII coatomer; SYTA1, synaptotagmin 1; Syp71,
snare protein 71. Potential recessive resistance targets that function in the infection of CMV: FDH, formate dehydrogenase; CRT3, calreticulin-3; HATs, homeodomain-
leucine zipper proteins 1/2/3; VPS41, vacuolar protein sorting 41. Potential recessive resistance targets that function in the infection of potexviruses: bZIP60; CAT1,
catalase 1; cPGK; EXA1, essential for poteXvirus accumulation 1, including a putative eIF4E-binding motif and a GYF domain protein. Potential recessive resistance
targets that function in the infection of tobamoviruses: ARL8a/8b, a small GTP-binding ARF family protein 8a/8b; TOM, tobamovirus multiplication (TOM1, TOM2A, and
TOM3). Potential recessive resistance targets that function in the infection of some other viruses: chl-PGK, chloroplast phosphoglycerate kinase; CPR5, also referred
to as the RYMV2 gene; ESCRT, endosomal sorting complexes required for transport; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; PDIL5-1, protein disulfide
isomerase-like 5-1; PDLP1/2/3, plasmodesmata-located proteins 1/2/3; RHD3, root hair defective 3; RIM1, rice dwarf virus multiplication 1, related to an Arabidopsis
NAC domain protein (ANAC028); SAMS, S-adenosyl-L-methionine synthetase.

2015). Among them, LshCas13a is the first Cas13 ortholog to
be harnessed for programmable RNA-targeting activities, which
expanded the application of CRISPR/Cas systems from DNA to
RNA (Abudayyeh et al., 2016). The LshCas13a protein combined

with the protospacers can be bioengineered to knock down
specific mRNAs in bacteria (Abudayyeh et al., 2017), which
offered virologists an alternative CRISPR/Cas system to fight
against pathogenic RNA viruses. Therefore, RNA viruses can
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FIGURE 1 | Schematic representation of class 2 CRISPR/Cas systems to confer resistance to plant viruses. After plant viruses enter into plant cells, the viral genome
is uncoated and transcribed, or translated with the help of host factors. Plant viruses then multiply their genome in the nucleus or in the cytoplasm. The viral genome
DNA or RNA can be targeted, destroyed, or interfered with by CRISPR/Cas9 or CRISPR/Cas13 (or FnCas9) systems in the nucleus or in the cytoplasm, respectively,
which inhibits viral infection. In addition, the mutation or deficiency in host susceptibility factors edited by the CRISPR/Cas9 system also perturbs viral infection.
However, some new viral variants might be generated as by-products when CRISPR/Cas systems edit the viral genome, which might drive the risk of viral evolution.

be directly interfered with by targeting their genome through a
CRISPR/Cas system with these new types of Cas effector proteins.
Programmable FnCas9 protein and an RNA-targeting gRNA
(rgRNA) could target a single-stranded RNA (ssRNA) virus,
hepatitis C virus (HCV) in mammalian cells, resulting in the
inhibition of viral protein production (Price et al., 2015). A plant
codon-optimized version of FnCas9 paired with rgRNA targeting
plant ssRNA viruses was also employed to gain viral resistance to
cucumber mosaic virus (CMV) and tobacco mosaic virus (TMV)
in transgenic N. benthamiana and A. thaliana plants, respectively
(Zhang T. et al., 2018).

Another RNA-targeting CRISPR/Cas system using the class
2 type VI-A CRISPR/Cas effector, LshCas13a, has been
characterized and programmed to cleave ssRNA viruses in plants.
As expected, LshCas13a with a sgRNA targeting viral RNA
sequences exhibited rapid and effective RNA interference to
turnip mosaic virus (TuMV), wherein sgRNA was driven by a pea
early browning virus (PEBV) promoter in a tobacco rattle virus
(TRV)-based vector in LshCas13a transgenic N. benthamiana or
A. thaliana plants, respectively (Aman et al., 2018a,b). Similarly,
resistance to TMV, rice stripe mosaic virus (RSMV), and
Southern rice black-streaked dwarf virus (SRBSDV) in transgenic
tobacco and rice harboring LshCas13a specifically targeting viral
RNA was also confirmed using this system (Zhang et al., 2019a).
By targeting the P3-, NIb-, or CP-coding sequences in the potato

virus Y (PVY) genomic region, this CRISPR/Cas13a system also
showed its effectiveness in interfering with and inhibiting PVY
infection (Zhan et al., 2019).

Furthermore, a new protein of Cas13 from Ruminococcus
flavefaciens was characterized and classified into the type
VI-D effector, named Cas13d (CasRx). This Cas13d effector
with two higher eukaryotic and prokaryotic nucleotide-binding
domains (HEPN) that dictate CRISPR RNA maturation and
target cleavage also possesses RNase activity to target ssRNA
(Konermann et al., 2018). Researchers found that Cas13d showed
great advantages over Cas13a, Cas13b, or other Cas13 variants
when it was used to interfere with TuMV infection by targeting
the GFP, CP, or HC-Pro region in the TuMV-GFP genome
(Mahas et al., 2019). Similarly, the Cas13d-mediated RNA
interference system was also applied in mammalian cells to
combat the novel coronavirus SARS-CoV-2 as well as influenza
(Abbott et al., 2020).

CRISPR/Cas SYSTEM-MEDIATED
RESISTANCE TO PLANT VIRUSES BY
TARGETING HOST FACTORS

Plant viruses recruit their host cellular translation factors
not only to translate their viral RNAs but also to facilitate
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their other infection processes, so the translation-related
host factors were initially identified as pro-viral factors.
Later, more and more pro-viral host factors, including
translation/replication/movement/metabolism-related genes,
have been identified and characterized and exploited to control
viral diseases in plants. Recessive resistance is conferred by
a recessive gene mutation that encodes a host factor critical
for viral infection/life cycle or encodes a negative regulator of
plant defense responses (Hashimoto et al., 2016). Therefore,
it is ideal for obtaining a targeted recessive gene mutant by
CRISPR/Cas systems. Eukaryotic translation initiation factors
eIF4E, eIF4G, and their isoforms, eIF(iso)4E and eIF(iso)4G, are
the most widely exploited recessive resistance genes required
for plant RNA virus–protein translation processes in several
crop species, and they are effective in defending against a subset
of viral species (Lellis et al., 2002; Robaglia and Caranta, 2006;
Wang and Krishnaswamy, 2012; Sanfaçon, 2015; Wang, 2015;
Hashimoto et al., 2016). It has been reported that CRISPR/Cas9-
edited eIF4E-knockout cucumber showed complete resistance
to zucchini yellow mosaic virus (ZYMV), papaya ringspot
mosaic virus-W (PRSV-W), and cucumber vein yellowing virus
(CVYV) (Chandrasekaran et al., 2016). Also, a novel allele of
rice, eIF4G, generated by CRISPR/Cas9-targeted mutagenesis
showed resistance to rice tungro spherical virus (RTSV) (Macovei
et al., 2018). The induced mutation in CRISPR/Cas9-mediated
eIF(iso)4E in cassava and A. thaliana conferred full resistance to
cassava brown streak virus (CBSV) or TuMV-GFP, respectively
(Pyott et al., 2016; Gomez et al., 2019). Cassava encodes some
alternative eIF4E-like proteins: novel cap-binding protein-1
(nCBP-1) and nCBP-2. When CRISPR/SpCas9 was used to
target nCBP-1 or nCBP-2 in cassava plants, the mutant plants
displayed successful resistance to CBSV (Gomez et al., 2019).
The newly emerged CRISPR–Cas9n–cytidine base editor was
also applied in antivirus engineering, which could convert
the Arabidopsis eIF4E1 susceptibility allele into a resistance
allele by introducing the N176K mutation to generate clover
yellow vein virus (ClYVV)-resistant plants (Bastet et al., 2019).
Recently, a soybean PBS1 decoy protein modified to contain a
cleavage site for the soybean mosaic virus (SMV) NIa protease
triggers cell death in soybean protoplasts, indicating that this
CRISPR/Cas system can also be utilized to generate soybean
resources resistant to SMV (Helm et al., 2019).

However, the current establishment of efficient, recessive
resistance-type antiviral strategies was mainly dependent on
eIF4s and their homologs against potyviruses and some related
plant viruses. Therefore, more host susceptibility genes need to be
identified and applied to obtain effective genetic resources against
many other economically important plant viruses.

THE PROMISING HOST SUSCEPTIBILITY
GENES FOR ANTIVIRAL ENGINEERING
IN PLANTS

Although many dominant resistance genes against plant viruses
have been identified, they are often genetically linked to
undesired traits, including low yield, poor flavor, small size,

and even developmental abnormities. Therefore, these resistance
genes would not be valuable in antivirus engineering. Similarly,
many host susceptibility genes involved in viral infection also
affect plant viability. For example, the Arabidopsis ssi2 mutant,
which accumulates high levels of the plant defense hormone
salicylic acid (SA), confers resistance to CMV, but shows an
abnormal growth phenotype (Sekine et al., 2004).

Here, we list some promising potential host factors to explore
for antiviral breeding whose mutation or deficiency would
not perturb plant growth or development, but can still confer
resistance to many plant viruses mainly based on these reports
(Lozano-Durán et al., 2011; Wang, 2015; Hashimoto et al., 2016;
Garcia-Ruiz, 2018; Li and Wang, 2019; Li et al., 2019; Mäkinen,
2020; Table 1). Most of these host factors are related to viruses
of the Geminiviridae family (nine genera, 485 species) and the
Potyviridae family (12 genera, 228 species), which constitute
almost half of the plant viruses described to date see text foot
note 1 and cause devastating diseases in economically important
crops. Based on the functions of these host factors, we classified
them into four groups as follows:

(1) The negative regulators of plant defenses, such as rgs-CaM
that inhibited RNA silencing through repressing the transcription
level of RDR6 and degrading the SGS3 protein via autophagy (Li
et al., 2018), and homeodomain leucine zipper protein 1 (HAT1)
and its related genes HAT2 and HAT3, whose mutation conferred
loss-of-susceptibility to CMV infection by accumulating high
levels of SA and jasmonic acid (JA) (Zou et al., 2016).

(2) The susceptible factors involved in viral
replication/translation/movement or other life cycles, such
as tobamovirus multiplication 1 (TOM1) and its homologs
involved in the replication of tobamoviruses (Yamanaka
et al., 2000), eEF1A and eEF4s involved in the translation of
potyviruses, and PCaP1 (plasma membrane-associated cation-
binding protein-1) and Sec24a(a COPII coatomer) involved in
the movement of potyviruses (Wang, 2015).

(3) The host factors participating in the modification of viral
proteins to achieve their effective function in the infection, such
as shaggy-related protein kinases (SK4-1, NsAK, etc.) which
could interact with and phosphorylate geminiviral C4 proteins,
and are required to trigger disease symptoms (Lozano-Durán
et al., 2011). The CP protein of potato virus A (PVA) is
phosphorylated by cellular CK2, and the phosphorylated CP
interacts with ubiquitin ligase CP-interacting protein (CPIP)
and HSP90, which is required for PVA replication and CP
accumulation (Lõhmus et al., 2017).

(4) The factors involved in the cellular processes beneficial for
virus behaviors, such as phenylpropanoid metabolism factor (4-
coumarate:CoA ligase1, 4CL1) or secondary cell wall synthesis
factor (Bearskin2B, BRN2), whose silencing in phloem tissue
delays geminivirus infection (Lozano-Durán et al., 2011).

The above recessive genetic resources can be obtained by a
regular CRISPR/Cas9 system, and the corresponding transgene-
free resources can also be further generated by genetic crossing
to remove the Cas9 protein out. Different strategies to deliver the
constructs expressing Cas proteins or sgRNAs to the plant have
been reported and improved. The use of viral vectors to deliver
sgRNAs and/or Cas proteins vastly enhanced the efficiency of
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this system due to the rapid and robust amplification/expression
of sgRNAs and/or Cas proteins during virus infection. In
addition, the virus vector-based CRISPR/Cas9 system was able to
produce plants with the desired traits without the involvement
of laborious and time-intensive tissue culture practices. For
example, the CRISPR/Cas9 system based on DNA viruses
(BeYDV, WDV, and cabbage leaf curl virus) and RNA viruses
(TRV, PEBV, TMV, beet necrotic yellow vein virus, and barley
stripe mosaic virus) have demonstrated efficient gene targeting
frequencies in model plants (N. benthamiana and A. thaliana)
and crops (potato, tomato, rice, wheat, and maize) (Cody et al.,
2017; Zaidi and Mansoor, 2017; Hameed et al., 2018; Hu et al.,
2019; Jiang et al., 2019). In order to decrease the off-target effects
of antiviral strategies mediated by the CRISPR/Cas9 system in
plants, (Ji et al., 2018) developed two virus-induced gene editing
vectors, in which the pV86 and pC86 promoters of BSCTV were
trans-activated by co-infecting BSCTV. These BSCTV-inducible
vectors were spatially and temporally responsive and inhibited
BSCTV accumulation in both transient (N. benthamiana) and
transgenic (A. thaliana) assays without off-target defect. A recent
report showed that the sonchus yellow net virus (SYNV)-
delivered transgene-free CRISPR/Cas9 system could generate the
genetic resources only by one step (Ma et al., 2020), which
would save time and labor in breeding procedures. In addition,
SYNV is a negative-stranded RNA virus that cannot be integrated
into the plant genome or inherited into the next seedlings.
Therefore, it is promising to deliver some other CRISPR/Cas
editing agents by this system, such as base editors and primer
editors, in order to achieve more specific and accurate gene
editing results in the future (Anzalone et al., 2020). However, the
SYNV-delivered transgene-free CRISPR/Cas9 system only works
in N. benthamiana plants, which would limit its application
in crops. Therefore, more convenient and optimized virus-
mediated CRISPR/Cas9 systems need to be explored and applied
in antiviral engineering.

THE POTENTIAL RISK OF CRISPR/CAS
SYSTEMS IN ANTIVIRAL ENGINEERING

The CRISPR/Cas systems provide many valuable tools and new
thoughts in creating gene loss-of-function and gain-of-function
mutants of plants, especially for economic crops. In the plant
virus-combating arsenal, the interaction and battle between
host plants and viruses never end. When plant virologists are
determined to control the dissemination of plant DNA virus by
using CRISPR/Cas9 technology to interfere with and destroy viral
genome DNA, some accompanying challenges also come out.

The mutation or recombination of endogenous genes would
lead to inactivate their function, while the sequence variations
of plant viruses generated by genome editing technologies
would probably facilitate viral evolution. It has been shown
that mutation, recombination, and reassortment are the main
driving forces of plant RNA viruses, and the first two are
that of plant DNA viruses. Mehta et al. found transgenic
cassava plants with the expressions of both Cas9 and a sgRNA
targeting the overlapping regions of AC2 and AC3 of African

cassava mosaic virus (ACMV) failing to confer any resistance
to ACMV infection. The depth analysis of the full-length viral
genomes in transgenic plants revealed about 33–48% of inserted
geminiviruses. Although these new variants of ACMV generated
by CRISPR/Cas9 could not proliferate themselves alone, they are
able to rely on wild-type ACMV to accumulate in N. benthamiana
(Mehta et al., 2019). Ali et al. and Liu et al. also showed the
CRISPR/Cas9-mediated targeting of viral ORFs that generated
more viral variants, which may result in different levels of viral
escape events, raising the possibility that this system has the
potential to create and allow the dissemination of mutant viruses
from plants even with multiple gRNAs (Ali et al., 2016; Liu
et al., 2018). However, the combinations of two single gRNAs,
especially those far from each other, would substantially delay
resistance breakdown compared to a single sgRNA (Liu et al.,
2018). Also, there exist off-target effects when the CRISPR/Cas9
system was applied in A. thaliana plants, indicating that this
system would possibly entail unpredictable risks (Zhang Q. et al.,
2018). In addition, the presence of folded dsRNA domains
in sgRNAs could generate small interfering RNAs (siRNAs),
which could reduce the abundance of sgRNAs, a possibility
that should be considered in the future application of the
CRISPR/Cas9 system.

Therefore, the cases and risks that viruses escaped from the
CRISPR/Cas system-mediated antiviral immunity in plants warn
that the CRISPR/Cas system may be considered as a double-
edged sword in antiviral engineering. Although it can target,
destroy, or interfere with the viral genome to inhibit viral
infection, it raises an important issue that the new viral variants
or species may be generated as genome editing by-products,
indicating that it would speed up the virus evolution or that
the obtained transgenic crops may lose their specific resistance
to these viruses.

CONCLUSION AND FUTURE
PERSPECTIVES

Molecular breeding has played a pivotal role in the prevention
and control of plant viruses causing diseases, and the emergence
and development of CRISPR/Cas technologies would speed up
the generation and obtainment of new resistance resources. With
the development and understanding of CRISPR/Cas systems
and the exploration and function identification of recessive
resistance genes, the resistance materials with the mutation or
deficiency in host susceptibility factors generated by CRISPR/Cas
systems would better benefit viral prevention and control in
the field. Compared to targeting, destroying, or interfering
with viral genomes, which might increase the risks of viral
evolution, the editing of recessive resistance genes would have
a promising perspective in engineering-resistant plants against
plant viruses. Additionally, host susceptibility genes for insect
vectors can be important targets by CRISPR/Cas systems to
prevent the viral spread and dissemination. Of note is that
it is also useful for antiviral engineering by utilizing newly
developed CRISPR/Cas systems. For instance, the transcriptional
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activation of many plant-dominant resistance genes by CRISPR-
Act2.0 would enhance the plant immunity to confer a broad
range of resistance to different kinds of pathogens (Lowder
et al., 2018), and the primer editor is also an interesting
alternative applied into the antiviral engineering (Anzalone
et al., 2019). The multiplexed CRISPR technologies, in which
numerous gRNAs or Cas proteins are expressed at once, have
vastly enhanced the scope and efficiency of genetic editing
and transcriptional regulation (McCarty et al., 2020). However,
the application of these multiplexed CRISPR technologies into
the field to control plant viruses is still on the way, mainly
because of the complexity of experimental manipulation, the
limitations of the genetic transformation of several simultaneous
Cas proteins into one plant, and the lack of validated and effective
endogenous targets against different viruses, among other things
(McCarty et al., 2020).
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Rice stripe virus (RSV) causes rice stripe disease, which is one of the most serious
rice diseases in eastern Asian countries. It has been shown that overexpression of RSV
coat protein (CP) in rice plants enhances resistance against virus infection. However,
the detailed mechanism underlying RSV CP-mediated virus resistance remains to be
determined. In this study, we show that both translatable and non-translatable RSV
CP transgenic Arabidopsis plants exhibited immunity to virus infection. By using deep
sequencing analysis, transgene-derived small interfering RNAs (t-siRNAs) from non-
translatable CP transgenic plants and virus-derived small interfering RNAs (vsiRNAs)
mapping in the CP region from RSV-infected wild-type plants showed similar sequence
distribution patterns, except for a significant increase in the abundance of t-siRNA reads
compared with that of CP-derived vsiRNAs. To further test the correlation of t-siRNAs
with RSV immunity, we developed RSV CP transgenic Arabidopsis plants in an siRNA-
deficient dcl2/3/4 mutant background, and these CP transgenic plants showed the
same sensitivity to RSV infection as non-transgenic plants. Together, our data indicate
that the expression of RSV CP protein from a transgene is not a prerequisite for virus
resistance and RSV CP-mediated resistance is mostly associated with the RNA silencing
mechanism in Arabidopsis plants.

Keywords: Rice stripe virus, CP-mediated resistance, RNA silencing, deep sequence, dcl2/3/4

INTRODUCTION

RNA silencing is a conserved antiviral defense mechanism that has been used to increase resistance
to plant virus infections (Pumplin and Voinnet, 2013; Guo et al., 2019). In antiviral RNA
silencing, host Dicer-like ribonucleases (DCLs) cleave viral double-stranded RNAs (dsRNAs)
that are formed during virus replication and transcription into 21-24-nucleotide (nt) viral small
interfering RNAs (vsiRNAs) (Pumplin and Voinnet, 2013; Guo et al., 2019). Secondary vsiRNAs
can be produced by dicing secondary viral dsRNA synthesized by host-encoded RNA-dependent
RNA polymerases (RdRps) (Wassenegger and Krczal, 2006; Zhang et al., 2015). These vsiRNAs
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are mainly loaded into the Argonaute (Ago) protein-containing
RNA-induced silencing complex (RISC) to posttranscriptionally
repress target viral and host RNAs by sequence complementarity
(Carbonell and Carrington, 2015; Fang and Qi, 2016). The
Arabidopsis thaliana genome encodes four DCLs, among which
DCL1 produces microRNA, whereas DCL2, DCL3, and DCL4
produces 22-, 24-, and 21-nt vsiRNAs, respectively (Guo et al.,
2019). DCL4 and DCL2 are the primary components of antiviral
defense in plants and exhibit redundant or cooperative functions
(Diaz-Pendon et al., 2007; Guo et al., 2019). The 21-nt vsiRNA
produced by DCL4 is the most dominant species of vsiRNA in
RNA virus-infected plants (Deleris et al., 2006; Wang et al., 2010).
DCL2-dependent 22-nt vsiRNAs also accumulate abundantly
when DCL4 is absent or suppressed by viruses, and these 22-
nt vsiRNAs seem to be less effective at mediating antiviral RNA
silencing (Wang et al., 2011). DCL3 produces 24-nt siRNAs that
are associated with transcriptional repression of transposons and
repeat sequences in plants (Blevins et al., 2015; Singh et al.,
2019) and may enhance antiviral defense against DNA viruses
(Raja et al., 2008; Jackel et al., 2016). In Arabidopsis plants,
AGO1 and AGO2 are the two major plant antiviral argonautes
against RNA viruses by associating with vsiRNAs based on
the identity of the 5′ terminal nucleotide (Mi et al., 2008;
Carbonell and Carrington, 2015).

Rice stripe virus (RSV) is the type species in the genus
Tenuivirus and causes rice stripe disease, which is one of
the most serious rice diseases in eastern Asia (Falk and Tsai,
1998; Xiong et al., 2008). It is transmitted by the small
brown planthopper (SBPH) (Laodelphax striatellus Fallén) in
a circulative and propagative manner (Falk and Tsai, 1998;
Li et al., 2015). Under experimental control, RSV also infects
Nicotiana benthamiana by mechanical sap inoculation and
Arabidopsis plants by viruliferous SBPH inoculation (Xiong et al.,
2008; Sun et al., 2011, 2016). The genome of RSV contains
four single-stranded RNA segments, RNA1, RNA2, RNA3, and
RNA4, in order of their decreasing molecular weights (Toriyama
and Watanabe, 1989). RNA1 is negative sense and encodes a
putative viral RdRp (Barbier et al., 1992). The other small three
RNA segments encode two proteins using an ambisense coding
strategy. RNA2 encodes NS2, a viral RNA silencing suppressor
(Du et al., 2011), and NSvc2, a putative membrane glycoprotein
(Yao et al., 2014). RNA3 encodes NS3, another RNA silencing
suppressor (Xiong et al., 2009) and a coat protein (CP). SP
(a disease-specific protein) (Kong et al., 2014) and NSvc4 (a
movement protein) (Xiong et al., 2008) are encoded by RNA4.

To manage rice stripe disease caused by RSV, the use
of insecticides against SBPH vectors and the exploitation of
genetically resistant cultivars are the most effective approaches;
however, they all have concerning features, such as high
costs, environmental pollution, insecticide resistance and limited
resistance resources (Otuka, 2013). Recently, RNA silencing-
based resistance has been shown to be an effective and powerful
method to enhance plant resistance against viruses in transgenic
plants (Galvez et al., 2014; Lindbo and Falk, 2017). Plants
transformed with a hairpin construct consisting of an inverted
repeat virus-specific sequence are able to induce RNA silencing
and exhibit immunity to virus infection (Lindbo and Falk, 2017).

For RSV, transgenic rice plants with the RSV CP or NSvc4 hairpin
constructs exhibit near immunity against RSV infection (Shimizu
et al., 2011; Sasaya et al., 2014). Chimeric CP/SP RNA silencing
construct transgenic rice plants show strong resistance against
two different RSV isolates (Ma et al., 2011). In addition to hairpin
constructs, plant expression of the viral CP gene also confers
plant viral resistance, which is mostly but not completely due to
an RNA silencing-mediated resistance mechanism (Lindbo and
Falk, 2017). It has been shown that overexpression of the RSV
CP gene in transgenic rice plants enhances resistance against
the virus (Hayakawa et al., 1992). Recent research has also
shown that RSV CP mediates virus resistance through jasmonate-
AGO18 signaling in rice plants (Han et al., 2020; Yang et al.,
2020). However, considering that AGO18 is the key component
of RNA silencing in rice plants, whether RSV CP-mediated
virus resistance involves the RNA silencing pathway remains
to be addressed.

In this study, using the RSV-Arabidopsis pathosystem, we
showed that both translatable and non-translatable RSV CP
transgenic Arabidopsis plants exhibit immunity to RSV infection.
By using deep sequencing analysis and comparing transgenic-
derived siRNAs (t-siRNAs) from non-translatable versions of
CP transgenic plants and CP-derived virus-derived siRNAs
(vsiRNAs) from RSV-infected wild-type plants, we found that
siRNA mapped to the CP sequence segment showed a similar
pattern in both transgenic plants and virus-infected wild-type
plants, except that greater accumulation of siRNAs was seen
in transgenic immune plants. In the siRNA-deficient dcl2/3/4
mutant background, CP transgenic plants showed the same RSV
susceptibility as non-transgenic plants. Together, our collective
results indicated that RSV CP-mediated virus resistance depends
on the function of DCLs and mostly involved in RNA silencing in
Arabidopsis plants.

MATERIALS AND METHODS

Sources of Virus, Vectors, and Plant
Materials
Rice stripe virus-infected rice plants were collected from Jiangsu
Province in China, and the virus was confirmed by using a
western blot assay (Sun et al., 2016). Non-viruliferous instar
nymphs of SBPHs reared on rice seedlings (Oryza sativa L. cv.
Wuyujing No. 3) were collected and fed on RSV-infected rice
plants for 3 days to acquire the virus. The virus was maintained
by successive transovarial infections in SBPHs on rice seedlings
in an insect-rearing room at 25◦C.

Arabidopsis thaliana (Col-0) and dcl2/3/4 mutant seeds were
obtained from Dr. Xiuren Zhang (Texas A&M University,
College Station, United States) and grown in potting soil in a
growth chamber at 23◦C under 200 µmol m−2 s−1 illumination
and 16-h light/8-h dark cycle conditions.

RSV Inoculation Assay
Transgenic and wild-type Arabidopsis plants at 2 weeks were
inoculated with 10 viruliferous SBPHs per plant and were kept
in a glass incubator containing ten plants. SBPHs were sprayed
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with insecticide after a 4-day inoculation access period. Plants
were kept in a growth chamber for symptom development, and
non-viruliferous insects were used for mock inoculation. To
evaluate of resistance to RSV, thirty Arabidopsis plants of each
line were inoculated with RSV. The seedlings were harvested at
different time points for RNA and protein extractions. Each RSV
inoculation assay was repeated three times.

DNA Constructs and Transgenic Plants
The RSV CP gene was amplified from RSV-infected rice
plant leaf tissue using RT-PCR performed with CP-
specific primers (Supplementary Table S1). The CP
PCR products were cloned into the pDONR-zero vector
(Invitrogen, Carlsbad, CA, United States) and subsequently
transferred into the binary vector pBA-Flag-Myc4-DC
(Zhang et al., 2005) using the Gateway cloning system
following the manufacturer’s instructions (Invitrogen
Corporation). The constructed binary vector pBA-Flag-Myc4-CP
was transformed into Arabidopsis plants using Agrobacterium
tumefaciens strain ABI by the floral dip method (Clough and
Bent, 1998; Zhang et al., 2006). The CP overexpression transgenic
Arabidopsis plants were selected on standard MS medium
containing 10 mg/L glufosinate ammonium (Sigma-Aldrich, St.
Louis, MO, United States).

Western Blot Assay
Western blot was performed following the protocol described
by Sun et al. (2016). In brief, Arabidopsis total proteins
were separated by 10% SDS-PAGE and transferred to PVDF
membranes. The membranes were blocked and inoculated with
an anti-RSV SP (our laboratory), anti-Myc (Sigma-Aldrich, St.
Louis, MO, United States), anti-YFP (Genscript, Nanjing, China)
or anti-actin antibody (Enogene, Nanjing, China) overnight at
4◦C. Signals were developed in ECL buffer (Transgen Biotech,
Beijing, China) and recorded with a Tanon 5200 Luminescent
Imaging Workstation (Tanon, Shanghai, China).

RT-PCR
Total RNA was isolated from the plant samples using RNAiso
Plus reagent (Takara, Dalian, China), and first-strand cDNA
was synthesized from 1 µg of total RNA using an iScriptTM

cDNA Synthesis Kit (Bio-Rad, Hercules, CA, United States).
PCR amplification was performed using 2 × Taq Master Mix
(Vazyme Biotech, Nanjing, China) with RSV CP-specific primers
(Supplementary Table S1). EF1a was used as a loading control.

Quantitative Reverse-Transcription PCR
Total RNA was isolated from the plant samples using RNAiso
Plus reagent (Takara, Dalian, China), and cDNA synthesis and
PCR were performed as described previously (Sun et al., 2016).
Briefly, first-strand cDNA was synthesized from 1 µg of total
RNA using an iScriptTM cDNA Synthesis Kit (Bio-Rad, Hercules,
CA, United States). qRT-PCR was performed using SsoFast
EvaGreen Supermix (Bio-Rad, Hercules, CA, United States)
with a Bio-Rad iQ5 Real-Time PCR system with gene-specific
primers (Supplementary Table S1). EF1a was used as an internal

standard, and all qRT-PCR experiments were performed at
least three times.

Deep Sequencing and Analysis of Small
RNA Sequences
Total RNA was extracted from RSV-infected and mock-treated
NOP-CP transgenic or non-transgenic plants each with triplicate
biological replicates, using RNAiso Plus reagent (Takara, Dalian,
China), and used for small RNA library construction. A total of
12 small RNA libraries were sequenced using an Illumina HiSeq
4000 sequencer to generate single-end 50-bp sequences at the
Beijing Genome Institute (BGI, Shenzhen, China). Raw data were
obtained after removing the adapter sequences using cutadapt
(v1.16) (Martin, 2011). The clean data were then mapped
to the RSV genome (NCBI accession numbers: NC_003755.1,
NC_003754.1, NC_003776.1, NC_003753.1), allowing up to one
mismatch. Reads showing matches with the RSV reference
sequences were retained and further analyzed using the CLC
Genomics Workbench program (QIAGEN, Hilden, Germany),
Perl scripts and Excel tools. Small RNA-seq data was deposited in
the NCBI BioProject database with accession code PRJNA649376.

RESULTS

RSV CP Transgenic Arabidopsis Plants
Show Immunity to RSV Infection
Previous studies demonstrated that transgenic rice plants
expressing RSV CP exhibited a significant level of resistance to
virus infection (Hayakawa et al., 1992; Yang et al., 2020). Our
previous studies also showed that RSV infectedArabidopsis plants
and caused significant symptoms, including stunted growth and
vein chlorosis on leaves (Sun et al., 2011, 2016). To test whether
RSV CP-mediated resistance can be extended to Arabidopsis
plants, we first generated CP transgenic Arabidopsis plants. Full-
length RSV CP was cloned from virus-infected rice plants and
transferred into the binary vector pBA-Flag-Myc4-DC (Zhang
et al., 2005) using the Gateway cloning system (Figure 1B).
This recombinant vector was transformed into Arabidopsis plants
(Col-0 ecotype) by the floral dip method (Clough and Bent,
1998; Zhang et al., 2006). These T2 generation transgenic
plants overexpressing RSV CP with Flag-Myc4 epitopes were
examined by western blot assay. The expression of Flag-Myc4-
CP was detected only in transgenic plants with an anti-Myc
antibody (Figure 1B).

To test RSV resistance, both CP transgenic (CP#4, CP#18)
and wild-type (Col-0 ecotype) Arabidopsis plants were challenged
with RSV by viruliferous SBPHs at 2-week-old stages. In three
independent experiments, all wild-type plants showed typical
RSV symptoms, including severe stunting at 4 weeks post-
inoculation. In contrast, all the CP transgenic Arabidopsis plants
did not show any symptoms and displayed resistance to RSV
infection (Figure 1A). Moreover, RSV-encoded SP protein was
detected in wild-type Arabidopsis plants by western blot assay at
14 to 28 days post-inoculation (dpi) but not in CP transgenic
plants (Figure 1C). qRT-PCR assays showed that RSV SP mRNA
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FIGURE 1 | Examination of the Rice stripe virus (RSV) resistance of CP transgenic Arabidopsis plants. (A) Symptoms of mock-inoculated and RSV-infected CP
transgenic (CP#4, CP#18) and wild-type (WT) Arabidopsis plants. Photographs were taken at 4 weeks post-inoculation. (B) The upper panel shows the schematic
representation of the constructed binary vector pBA-Flag-Myc4-CP, and the lower panel shows western blot analysis of CP transgenic lines with an anti-Myc
antibody. The actin protein level served as a loading control. (C) Western blot analysis of the time course of RSV-encoded SP protein accumulation in RSV-infected
CP transgenic (CP#4, CP#18) and WT Arabidopsis plants using an SP-specific antibody. The actin protein level served as a loading control. (D) qRT-PCR analysis of
the time course of RSV SP mRNA transcription levels in RSV-infected CP transgenic and WT Arabidopsis plants. Signal intensities for each transcript were
normalized with those for EF1-α. Values are means ± SD (n = 3). *p ≤ 0.05 (Student’s t-test).

accumulated to significantly higher levels in wild-type plants than
in CP transgenic plants (Figure 1D). These results therefore show
that RSV CP induces virus resistance in Arabidopsis plants.

Expression of CP Protein From a
Transgene Is Not a Prerequisite for
Resistance in Arabidopsis Plants
Previous studies demonstrated that the mechanism of CP-
mediated resistance depended on the particular virus system and
transgenic plants being analyzed (Lindbo and Falk, 2017). To
demonstrate whether expression of RSV CP protein is necessary
for resistance, we generated Arabidopsis plants overexpressing a
non-translatable protein mutant of RSV CP (NOP-CP) in which
the first codon ATG of the CP gene was replaced with TAG
(Figure 2B), and the NOP-CP sequence was inserted into the
pBA-Flag-Myc4-DC vector and tagged with Flag-Myc4 epitopes.
These T2 generation transgenic plants were confirmed by RT-
PCR and western blot assays. As expected, transcripts of NOP-CP
mRNA were detected with primers specific to the CP sequence
only in transgenic Arabidopsis plants (Figure 2B). However,
signals of NOP-CP protein were not visible in either transgenic
or wild-type plants with an anti-Myc antibody. These results
indicate that NOP-CP transgenic Arabidopsis plants expressed

only CP mRNA but not protein. To further analyze whether
there was still a truncated RSV CP protein encoding C-terminal
truncation in the corresponding region of CP nucleotides in
NOP-CP gene. YFP-tagged CP or NOP-CP in C-terminal were
transiently expressed in Nicotiana benthamiana. The transcripts
of NOP-CP-YFP mRNA were detected in Nicotiana benthamiana
(Supplementary Figure S1B). However, signals of NOP-CP-YFP
protein were not visible in tobacco plants using confocal imaging
and western blot assays (Supplementary Figures S1A,C). These
data indicated that NOP-CP-YFP gene expressed only CP mRNA
but not protein in Nicotiana benthamiana.

To test RSV resistance, NOP-CP transgenic (NOP-CP#7,
NOP-CP#9) and wild-type Arabidopsis plants were inoculated
with RSV viruliferous SBPHs. In three independent trials, no RSV
symptoms were observed in the NOP-CP transgenic Arabidopsis
plants (Figure 2A), in contrast with the severe stunting
symptoms in wild-type plants. Consistently, the accumulation
of viral SP protein was not detected in the NOP-CP transgenic
plants by western blot (Figure 2C), and fewer SP mRNA
transcripts were detected in NOP-CP transgenic plants than in
wild-type plants (Figure 2D). These results show that Arabidopsis
transgenic plants with a non-translatable RSV CP sequence are
immune to virus infection and that RSV CP-mediated resistance
is independent of CP protein expression.
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FIGURE 2 | Evaluation of NOP-CP transgenic Arabidopsis plants for resistance to Rice stripe virus (RSV). (A) Symptoms of mock-inoculated and RSV-infected
NOP-CP transgenic (NOP-CP#7, NOP-CP#9) and wild-type (WT) Arabidopsis plants. Photographs were taken at 3 weeks post-inoculation. (B) The upper panel
shows the schematic representation of the NOP-CP nucleotide sequence. The middle panel shows RT-PCR analysis of NOP-CP mRNA transcription levels of
NOP-CP transgenic lines, and the EF1-α mRNA level served as a loading control. The lower panel shows western blot analysis of NOP-CP transgenic lines with an
anti-Myc antibody, and the actin protein level served as a loading control. (C) Western blot analysis of the time course of RSV-encoded SP protein accumulation in
RSV-infected NOP-CP transgenic (NOP-CP#7, NOP-CP#9) and WT Arabidopsis plants using an SP-specific antibody. The actin protein level served as a loading
control. (D) qRT-PCR analysis of the time course of RSV SP mRNA transcription levels in RSV-infected NOP-CP transgenic and Col-0 Arabidopsis plants. Signal
intensities for each transcript were normalized with those for EF1-α. Values are means ± SD (n = 3). *p ≤ 0.05 (Student’s t-test).

Deep Sequencing of Small RNA From
NOP-CP Transgenic and Wild-Type
Arabidopsis Plants
To better resolve whether the small RNA population is associated
with RSV CP-mediated resistance and minimize the impact of CP
protein on the immune response, 12 libraries were constructed
with small RNA isolated from mock- and RSV-infected NOP-
CP transgenic and wild-type Arabidopsis plants. Each library
generated 7–15 million clean reads ranging from 18 to 30
nt (Table 1). Three biological replicates of each group were
analyzed and showed very similar patterns. The results described
below were derived from the average generated from three
biological replicates. The size distributions of total small RNAs
within these different treatments were similar; the dominant
size was 22 nt, followed by 21 nt and 23 nt (Figure 3A). We
mapped clean small RNA (18–30 nt) reads to the RSV genome
and CP transgenic sequence and obtained RSV-derived, CP-
derived siRNAs. In RSV-infected wild-type Arabidopsis plants,
we identified 160,436 vsiRNAs, accounting for 1.55% of the
total, whereas only 1,481 reads matched to the RSV genome
in mock control plants. In NOP-CP transgenic Arabidopsis
plants, almost all reads matched to the RSV genome were
generated from the NOP-CP segment sequence, accounting for
0.09% of the total reads in RSV-infected plants and 0.27% in
mock plants (Table 1). Unexpectedly, in NOP-CP transgenic
Arabidopsis plants, RSV infection resulted in less accumulation

of NOP-CP-derived small RNA than in mock plants despite
generating more small RNA reads mapped to other RSV
genomic regions (Table 1). The sequencing results confirmed that
the accumulation of NOP-CP-derived siRNAs from transgenic
sequences was associated with the immunity of these plants
to RSV infection.

Characterization of vsiRNA in
RSV-Infected Wild-Type Arabidopsis
Plants
To further decipher the regulatory functions of vsiRNAs, we
studied the profiles of vsiRNA in RSV-infectedArabidopsis plants.
Size distribution analysis showed that RSV-derived vsiRNAs were
predominantly 20 and 21 nt, accounting for 45% and 25% of
the total, respectively (Figure 3B). For CP-derived t-siRNAs, the
dominant sizes were 21 nt and 22 nt (Figure 3C), whereas the
most dominant sizes of CP-derived vsiRNAs were 20 nt and 21
nt (Figure 3D), suggesting that DCL4 is the major producer of
CP-derived t-siRNA and that RSV vsiRNA production involves
multiple DCL functions.

The canonical 21–24-nt small RNAs from the viral sequences
were further analyzed. The 21–24-nt vsiRNA reads were mapped
to the RSV genomic sequence to explore their origin. As shown in
Figure 4A and Supplementary Figures S2, S3, the proportions
of vsiRNAs from both polarities were almost continuous, but
some genomic regions showed higher mapping frequencies. In
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TABLE 1 | Twelve libraries constructed with small RNAs from wild-type (WT) and NOP-CP transgenic (NOP-CP) Arabidopsis plants after mock control (Mock) or RSV
inoculation (RSV), including three biological replicates each.

Library Total 18–30 nt reads Number of reads on
RSV

Percentage of RSV
reads (%)

Number of reads on
CP

Percentage of CP
reads (%)

NOP-CP-Mock1 8,955,649 20,391 0.23 20,326 0.23

NOP-CP-Mock2 7,625,242 13,531 0.18 13,455 0.18

NOP-CP-Mock3 9,991,991 40,589 0.41 40,473 0.41

NOP-CP-Mock (average) 8,857,627 24837 0.27 24751 0.27

NOP-CP-RSV1 11,577,160 9,423 0.08 8,058 0.07

NOP-CP-RSV2 8,858,390 9,017 0.10 7,610 0.09

NOP-CP-RSV3 9,430,632 7,036 0.07 6,826 0.07

NOP-CP-RSV (average) 9,955,394 8492 0.09 7498 0.08

WT-Mock1 14,727,568 64 0.00 1 0.00

WT-Mock2 15,054,977 71 0.00 0 0.00

WT-Mock3 15,943,020 4,307 0.03 333 0.00

WT-Mock (average) 15,241,855 1,481 0.01 111 0.00

WT-RSV1 8,726,871 69,622 0.80 4,878 0.06

WT-RSV2 9,272,442 111,136 1.20 10,252 0.11

WT-RSV3 11,340,961 300,550 2.65 23,138 0.20

WT-RSV (average) 9,780,091 160436 1.55 12756 0.12

FIGURE 3 | Size distribution of 18–30 nucleotide small RNAs. (A) Size distribution of total small RNA from mock-inoculated and RSV-infected NOP-CP transgenic
and Col-0 Arabidopsis plants. (B) Size distribution of small RNA from vsiRNAs from RSV-infected Col-0 Arabidopsis plants. (C) Size distribution of CP-derived
t-siRNAs from NOP-CP transgenic plants. (D) Size distribution of CP-derived vsiRNAs from RSV-infected Col-0 plants.

the RSV RNA1 genome, the complementary strand of the 3′
terminus produced significantly more vsiRNAs, and other RNA
segments also exhibited some hotspots for vsiRNA generation
(Figure 4A and Supplementary Figures S2, S3). The sense and
antisense RSV RNA strands generated almost equivalent amounts
of sense (49.5%) and antisense (50.5%) vsiRNA (Figure 4B).
In addition, preferential occurrence of A/U at the 5′ terminus
was identified in vsiRNAs (Figure 4C). These results suggest

that RSV vsiRNAs are potentially loaded into AGO1/AGO2-
containing RISCs.

Characterization of t-siRNA in NOP-CP
Transgenic Arabidopsis Plants
To understand the significance of t-siRNA in CP-mediated RSV
resistance, we characterized and compared t-siRNAs generated
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FIGURE 4 | Profile of 21–24 nucleotide (nt) virus-derived small interfering (vsiRNA) derived from RSV-infected Col-0 plants. (A) Distribution of vsiRNAs along the RSV
genome in both positive (blue) and negative (red) polarity. Genome organization of RSV positioned proportionally above. CP, coat protein; RdRp, RNA-dependent
RNA polymerase; SP, disease-specific protein. (B) Accumulation of sense and antisense vsiRNAs. (C) 5′-terminal nucleotide frequency of 21–24 nt vsiRNAs.

from the NOP-CP transgene of transgenic Arabidopsis plants
and vsiRNAs mapping to the same region (CP-derived vsiRNA)
in RSV-infected wild-type plants. The sequence distribution
profile of 21–24-nt t-siRNA from the NOP-CP transgene region
showed that t-siRNA accumulated in several hotspot regions
throughout the transgenic sequence. Interestingly, CP vsiRNAs
mapping to the CP region also showed a very similar profile,
with peaks in the same position, although the t-siRNA peak read
number was much higher than that for vsiRNAs (Figure 5A

and Supplementary Figure S4). The similar t-siRNA and
vsiRNA distribution profiles indicated that a sequence bias
in the t-siRNA population depends on a nucleotide sequence
preference and that there is a similar mechanism for t-siRNA and
vsiRNA generation.

The size distributions of t-siRNAs showed that 21 nt was
the most dominant size, representing 80% of the total t-siRNAs
(Figure 5B). Similarly, the 21-nt classes accounted for the
majority of the CP vsiRNAs, representing 70% of the total
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FIGURE 5 | Characterization and comparison of 21–24 nt transgenic-derived small interfering RNA (t-siRNA) mapped to the CP sequence in NOP-CP transgenic
plants (left) and virus-derived small interfering RNA (vsiRNA) mapped to the RSV CP sequence in RSV-infected Col-0 plants (right). (A) Distribution of t-siRNAs and
vsiRNAs along the CP sequence in both positive (blue) and negative (red) polarity. Note that the scale used for the NOP-CP transgenic plants is different from that
used for the RSV-infected Col-0 plants. (B) Size distribution of t-siRNAs and vsiRNAs. Pie graph showing the percentage of the sense and antisense t-siRNAs and
vsiRNAs. (C) 5′-terminal nucleotide frequency of 21–24 nt t-siRNAs and vsiRNAs.
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CP vsiRNAs (Figure 5B), indicating similar sRNA processing
properties in transgene- and virus-derived sRNA. To explore
the origin of t-siRNAs, the strand specificity and locations of
t-siRNAs were analyzed. As shown in Figures 5A,B, almost
equivalent proportions of sense and antisense sRNAs were
generated in both t-siRNAs and CP vsiRNAs, although the sense
(51%) t-siRNA amounts were slightly greater than the antisense
orientation amounts (49%), whereas for CP vsiRNAs, more reads
were counted in the antisense (54%) orientation. The 5′ terminal
nucleotides were characterized for 21–24 nt t-siRNAs and CP-
vsiRNAs. The U/A were the most abundant 5′ nucleotides in all
four sizes of both t-siRNAs and CP-vsiRNAs (Figure 5C).

Furthermore, we also characterized and compared the
t-siRNA populations of NOP-CP transgenic Arabidopsis plants
with mock treatment and RSV inoculation. The results showed
that the t-siRNAs of NOP-CP transgenic plants after mock
and RSV inoculation shared highly similar distribution profiles,
although the read number of total t-siRNAs in RSV inoculation
plants was significantly less than that in the mock treatment
plants (Supplementary Figure S5 and Table 1). Characterization
of t-siRNAs in NOP-CP transgenic Arabidopsis plants indicates
that NOP-CP-derived t-siRNAs may be associated with CP-
mediated RSV resistance in Arabidopsis.

Plant DCLs 2, 3, and 4 Are Indispensable
for CP-Mediated RSV Resistance in
Arabidopsis
Previous studies have demonstrated that plant DCLs are
responsible for generating transgene-derived t-siRNAs and

virus-derived vsiRNAs (Guo et al., 2019). To test our hypothesis
that the accumulation of t-siRNAs is associated with RSV
resistance in CP transgenic Arabidopsis plants, we generated CP
transgene plants in the Arabidopsis dcl2/3/4 mutant background.
These T2 generation transgenic plants were confirmed by western
blot using an anti-Myc antibody (Figure 6B). An RSV infection
assay showed that CP transgenic Arabidopsis plants in the
dcl2/3/4 background (dcl2/3/4;CP) developed severe stunting
symptoms similar to those of non-transgenic dcl2/3/4 and Col-
0 plants (Figure 6A). Western blot and qRT-PCR results both
showed that both RSV SP mRNA and proteins accumulated to
similar levels in dcl2/3/4;CP plants and non-transgenic dcl2/3/4
and Col-0 plants (Figures 6C,D and Supplementary Figure S6).
These results indicate that CP-mediated RSV resistance depends
on the function of DCLs in Arabidopsis.

DISCUSSION

Since the concept of pathogen-derived resistance (PDR) was
proposed (Sanford and Johnston, 1985) and confirmed by
expressing tobacco mosaic virus (TMV) CP in transgenic tobacco
plants, resulting in TMV resistance (Abel et al., 1986), CP-
mediated resistance has been widely used to protect various
plant species against virus infection (Galvez et al., 2014). In the
case of RSV, the overexpression of CP in rice plants resulted in
partial resistance to virus infection, but no related mechanism
was determined (Hayakawa et al., 1992). Recent studies have also
demonstrated that the RSV CP triggers jasmonate accumulation
and subsequently induces the plant antiviral immune response

FIGURE 6 | Rice stripe virus resistance examination of CP transgenic plants in the dcl2/3/4 background. (A) Symptoms of mock-inoculated and RSV-infected CP
transgenic plants in the dcl2/3/4 background (dcl2/3/4;CP#15, dcl2/3/4;CP#19) and dcl2/3/4 and Col-0 Arabidopsis plants. Photographs were taken at 4 weeks
post-inoculation. (B) Western blot analysis of CP transgenic lines in the dcl2/3/4 background with an anti-Myc antibody. The actin protein level served as a loading
control. (C) Western blot analysis of the time course of RSV-encoded SP protein accumulation in RSV-infected CP transgenic plants in the dcl2/3/4 background and
dcl2/3/4 (dcl2/3/4;CP#15, dcl2/3/4;CP#19) and Col-0 Arabidopsis plants using an SP-specific antibody. The actin protein level served as a loading control.
(D) qRT-PCR analysis for the time course of RSV SP mRNA transcription levels in RSV-infected CP transgenic plants in the dcl2/3/4 background (dcl2/3/4;CP#15,
dcl2/3/4;CP#19) and dcl2/3/4 and Col-0 Arabidopsis plants. Signal intensities for each transcript were normalized with those for EF1-α. Values are means ± SD
(n = 3).
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(Han et al., 2020; Yang et al., 2020) and that RSV CP-mediated
resistance requires AGO18 protein expression in rice plants
(Yang et al., 2020). Thus, RSV CP-mediated resistance appears
to be a protein-mediated phenomenon in rice plants, similar
to TMV CP-mediated resistance in tobacco plants (Lindbo and
Falk, 2017). However, the effectiveness of transgene-induced
silencing could not be ruled out in these previous studies,
as some resistant lines containing translatable transgenes also
generated RNA-mediated resistance correlating with t-siRNAs.
In this study, we provide evidence that the expression of RSV
CP in transgenic Arabidopsis plants is not a prerequisite for CP-
mediated resistance. First, both translatable and non-translatable
versions of CP transgenicArabidopsis plants all showed immunity
to RSV infection. Second, by using deep sequencing analysis,
CP-mediated resistance in transgenic Arabidopsis plants was
associated with high accumulation of 21–24-nt t-siRNAs. Third,
CP overexpression in the dcl2/3/4 mutant background resulted
in similar sensitivity to RSV infection in non-transgenic dcl2/3/4
plants. Our results strongly indicate that RSV CP-mediated
resistance is due to an RNA silencing-mediated resistance
mechanism in Arabidopsis, similar to that indicated in tobacco
etch virus (TEV) CP-mediated resistance (Lindbo et al., 1993) and
tomato spotted wilt virus (TSWV) N (nucleocapsid)-mediated
resistance (Catoni et al., 2013).

RNA silencing-directed resistance is mediated by 21–24 nt
siRNAs (Hamilton et al., 2002; Ruiz-Ferrer and Voinnet, 2009)
generated through the cleavage of a double-stranded or an
imperfect stem-loop RNA molecule by plant DCLs (Moazed,
2009). In this paper, Illumina deep sequencing was performed
to characterize the small RNA population and gain insights
into the RNA-based virus resistance mechanism during RSV-
Arabidopsis interactions. Bioinformatic analysis of the deep
sequencing data indicated that RSV infection triggered the
generation of relatively large amounts of vsiRNA, accounting
for 1.55% of the total 18–30-nt reads in Arabidopsis plants
(Table 1), in contrast with an average of 0.29% of the total
small RNA reads mapped to the RSV genome in RSV-infected
natural host rice plants (Yang et al., 2018). This difference is
probably a result of the different virus titers in different RSV-
host pathosystems. In general, DCL4-generated 21-nt vsiRNAs
are the most abundant class, following DCL-dependent 22-nt
vsiRNAs (Guo et al., 2019). In RSV-infected Arabidopsis, 20-
nt vsiRNAs was the most abundant species (Figure 3B). This
result is similar to the rice ragged stunt virus (RRSV) vsiRNAs
in rice plants (Li et al., 2018). In RSV-infected rice and tobacco
plants, 20 nt vsiRNAs also account for the high proportion
(Yan et al., 2010; Jiang et al., 2012; Xu et al., 2012). These
results indicate that 20 nt vsiRNAs may play a role in RSV-
plants interaction. The mechanism of biogenesis and function
of 20 nt visRNA remains elusive, though the biogenesis of 20
nt miRNAs is dependent on DCL1 (Lee et al., 2015). Further
studies are needed to elucidate the role of Arabidopsis DCL1 in
the production RSV vsiRNAs.

InArabidopsis, AGO1 and AGO2 play crucial roles in antivirus
defense (Carbonell and Carrington, 2015) and associate with
small RNAs that exhibit uridine and adenosine at their 5′ ends,
respectively (Mi et al., 2008). Our study also revealed preferential

occurrence of uridine or adenosine residues at the 5′ terminus
in RSV vsiRNA, showing the conserved AGO complexes binding
vsiRNA for antivirus defense. Compared with previous studies,
the 5′-terminal nucleotides of RSV visRNAs from Arabidopsis,
rice and tobacco plants were similar (Yan et al., 2010; Jiang
et al., 2012; Xu et al., 2012; Yang et al., 2018), suggesting
that AGO1 and AGO2 play an important role in virus defense
against RSV in plants.

Regarding the genomic regions from which RSV vsiRNAs
were generated, fewer vsiRNAs were produced from RNA2 than
from the other three RNA segments in Arabidopsis (Figure 4);
however, in RSV-infected rice plants, RNA1 generated fewer
vsiRNAs than the other three RNA segments (Xu et al., 2012; Yang
et al., 2018). These distinct RSV vsiRNA origins in plant hosts
might be explained by the evolutionary adaptation of RSV, which
escapes RNA silencing antivirus machinery, thus facilitating
successful virus infection in rice plants. In this study, RSV-
derived vsiRNAs equally originate from the sense and antisense
strands (Figure 4B), consistent with previous reports in RSV-
rice interaction (Yan et al., 2010; Yang et al., 2018). These results
indicate that the RSV vsiRNAs may originated from double-
stranded replication intermediates.

To characterize CP t-siRNAs that confer resistance to
RSV infection, the origin, composition and abundance of CP
sequence-derived t-siRNAs were analyzed and compared with
those of CP-derived vsiRNAs. The sequence distribution, 5′
terminal nucleotides and strand specificity exhibited very similar
patterns between CP-derived t-siRNAs and CP-derived vsiRNAs,
except that the amount of t-siRNAs was nearly twice that of
vsiRNAs, indicating that the activation of t-siRNAs mediates
antiviral defense derived from the transgene. A prerequisite step
for t-siRNA biogenesis is a sufficient quantity of transgene RNA
that has a dsRNA nature. Multiple studies have demonstrated that
transgenes can often integrate into the host genome in complex
structures, such as multiple copies inverted to each other, and
transcription of transgenic DNA from these complex integrations
could lead to dsRNA structures (Lindbo and Falk, 2017). Another
possibility is that the single-stranded RNA transcript from
transgene DNA is converted to dsRNAs by SUPPRESSOR OF
GENE SILENCING 3 (SGS3) and RNA-DEPENDENT RNA
POLYMERASE 6 (RDR6) (Guo et al., 2019). Further genetic
and biochemical studies will be necessary to address which
pathway is responsible for t-siRNA biogenesis in CP transgenic
Arabidopsis plants.

In Arabidopsis plants, DCL4, DCL2 and DCL3 process
transgene-derived dsRNAs to 21–24 nt siRNAs in a redundant
and hierarchical manner (Deleris et al., 2006), which are
incorporated into AGO1 or AGO2 effectors to guide cleavage of
target RNAs (Pumplin and Voinnet, 2013). To further confirm
our hypothesis that the accumulation of t-siRNAs was associated
with RSV immunity in CP transgenic Arabidopsis plants, CP
transgenic plants in the dcl2/3/4 triple mutant background
were developed. As expected, these transgenic plants exhibited
susceptibility to RSV infection similar to that of non-transgenic
plants, thus supporting our hypothesis. Our results also showed
that dcl2/3/4 triple mutant plants exhibited increased severity of
disease symptoms and virus titers compared with those of Col-0
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plants in RSV challenge assays, and similar results were obtained
with other RNA viruses (Guo et al., 2019). Further investigation
is needed to elucidate the special role of DCLs in producing
t-siRNAs in CP transgenic Arabidopsis plants. The mechanism of
RSV CP-mediated virus resistance revealed by this study provides
an in-depth understanding of RNA-based antiviral immunity in
RSV-Arabidopsis interactions.
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Supplementary Figure S4 | Characterization and comparison of 21–24 nt
transgenic-derived small interfering RNA (t-siRNA) mapped to the CP sequence in
NOP-CP transgenic plants (left) and virus-derived small interfering RNA (vsiRNA)
mapped to the RSV CP sequence in RSV-infected Col-0 plants (right) from two
other biological replicates.

Supplementary Figure S5 | Characterization and comparison of 21–24 nt
transgenic-derived small interfering RNA (t-siRNA) mapped to the CP sequence in
NOP-CP transgenic plants after mock control (left) and RSV inoculation (right). (A)
Distribution of t-siRNAs along the CP sequence in both positive (blue) and
negative (red) polarity. Note that the scale used for the mock control is different
from that used for the RSV inoculation. (B) Size distribution of t-siRNAs. Pie graph
showing the percentage of the sense and antisense t-siRNAs. (C) 5′-terminal
nucleotide frequency of 21–24 nt t-siRNAs.

Supplementary Figure S6 | Comparison of RSV resistance in CP transgenic
plants in dcl2/3/4 and Col-0 background. (A) Western blot analysis of
RSV-encoded SP protein accumulation in RSV-infected CP transgenic
Arabidopsis plants in dcl2/3/4 and Col-0 background at 28 dpi. The actin protein
level served as a loading control. (B) qRT-PCR analysis of RSV SP mRNA
transcription levels in RSV-infected CP transgenic plants in dcl2/3/4 and Col-0
background at 28 dpi. Signal intensities for each transcript were normalized
with those for EF1-α. Values are means ± SD (n = 3). ∗p ≤ 0.05 (Student’s
t-test).

Supplementary Table S1 | Primer sequence used for the cloning of transgenes
and testing the viral infection.
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Tomato spotted wilt orthotospovirus (TSWV) causes serious crop losses worldwide
and is transmitted by Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae).
NSs protein is the silencing suppressor of TSWV and plays an important role in
virus infection, cycling, and transmission process. In this research, we investigated
the influences of NSs protein on the interaction of TSWV, plants, and F. occidentalis
with the transgenic Arabidopsis thaliana. Compared with the wild-type Col-0 plant,
F. occidentalis showed an increased number and induced feeding behavior on
transgenic Arabidopsis thaliana expressing exogenous NSs. Further analysis showed
that NSs reduced the expression of terpenoids synthesis-related genes and the content
of monoterpene volatiles in Arabidopsis. These monoterpene volatiles played a repellent
role in respect to F. occidentalis. In addition, the expression level of plant immune-related
genes and the content of the plant resistance hormone jasmonic acid (JA) in transgenic
Arabidopsis were reduced. The silencing suppressor of TSWV NSs alters the emission
of plant volatiles and reduces the JA-regulated plant defenses, resulting in enhanced
attractiveness of plants to F. occidentalis and may increase the transmission probability
of TSWV.

Keywords: tomato spotted wilt orthotospovirus, NSs, Frankliniella occidentalis, monoterpene, insect behavior

INTRODUCTION

In plant-virus-insect interactions, plants have evolved a complicated defense system against
herbivores and viruses, such as the defense of secondary metabolites. For instance, plants emit
repellent terpenoids as soon as herbivores damage plants (Dahlin et al., 2015; Magalhaes et al.,
2018). In addition, when plants are attacked by herbivores and viruses, the plant hormone jasmonic
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acid (JA) is rapidly synthesized, to activate the expression of
defense compounds such as alkaloids and terpenoids, which
directly and indirectly increase plant resistance (De Geyter et al.,
2012; Okada et al., 2015; Rondoni et al., 2018). Correspondingly,
insect-vector transmitted viruses overcome this system by
increasing the capability of their insect vectors to promote virus
spread (Luan et al., 2014; Shi et al., 2014, 2018; Yan and Xie,
2015). Some plant viruses can induce the synthesis of terpenoids
to change the preference of insect vectors (Eigenbrode et al., 2002;
Mann et al., 2012; Chen et al., 2017; Shi et al., 2017). Plant viruses
have also evolved effective mechanisms to interfere with the JA-
mediated defense response by targeting key proteins to inhibit the
JA signaling pathway (De Geyter et al., 2012; Attaran et al., 2014;
Cole et al., 2014; Gimenez-Ibanez et al., 2014).

Tomato spotted wilt orthotospovirus (TSWV) is a notorious
virus in agriculture worldwide, which has a wide range of host
plants, such as pepper, tomato, eggplant, broad bean, and lettuce
(Turina et al., 2016). Arabidopsis is also the host plant for
TSWV (Abe et al., 2011). TSWV is transmitted by thrips in a
persistent propagative manner (Wan et al., 2020), of which the
Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae)
is the main species (Rotenberg et al., 2015; Cao et al., 2018). To
resist virus infection, plants often exploit RNA silencing in their
defense system, while plant viruses encode many RNA silencing
suppressors as a corresponding countermeasure. The NSs protein
of TSWV is an RNA silencing suppressor which plays many roles
in the TSWV infection, replication, and transmission process
(Rotenberg et al., 2015). For example, NSs protein suppressed
post-transcriptional gene silencing in plants and interfered with
RNA silencing in arthropod cell lines (Takeda et al., 2002;
Garcia et al., 2006). In addition, NSs protein has been proven
to be necessary in virus accumulation in viruliferous thrips
(Margaria et al., 2014).

Recent evidence has shown that the silencing suppressor of
plant viruses is involved in JA expression and plant volatile
manipulation to promote insect vector survival and viral
transmission (Yan and Xie, 2015). For example, 2b protein,
the silencing suppressor of cucumber mosaic virus (CMV),
was identified to prevent JA-induced degradation of JAZ1, and
therefore enhanced odor-dependent attraction of the aphid
vector (Wu et al., 2017). Similarly, βC1 protein, the RNA silencing
suppressor of tomato yellow leaf curl China virus (TYLCCNV),
which interacts with the JA-related transcription factor MYC2
and suppresses the JA-regulated synthesis of terpenoids, results in
the promotion of virus transmission by the insect vector whitefly,
Bemisia tabaci (Salvaudon et al., 2013). Up to now, whether
there is a role in TSWV silencing suppressors in reducing plant
defenses and promoting the preference and feeding behavior of
F. occidentalis remains unknown.

To investigate the interaction between NSs protein, the
silencing suppressor of TSWV, plants, and F. occidentalis, we
(1) produced transgenic Arabidopsis expressing exogenous NSs
genes; (2) compared the host preference and feeding behavior
of F. occidentalis with wild-type Arabidopsis and transgenic
Arabidopsis expressing NSs; (3) profiled plant volatiles using GC-
MS and functionally characterized specific volatile compounds
using a Y-tube olfactometer; (4) investigated endogenous

hormones of plants; and (5) analyzed differentially expressed
genes involved in terpenoid biosynthesis and plant-pathogen
interaction using RNA-seq.

RESULTS

Preference and Feeding Behavior of
F. occidentalis
A two-choice test was conducted with a Y-tube to investigate
the preference of F. occidentalis on NSs transgenic plants and
wild-type plants. The results showed that approximately 64% of
F. occidentalis preferred the NSs transgenic plants, whereas 36%
of F. occidentalis preferred wild-type Arabidopsis (Student’s t-test,
T =−2.45, df = 16, P < 0.01) (Figure 1). F. occidentalis preferred
the transgenic plants expressing NSs over wild-type Arabidopsis.

An electrical penetration graph (EPG) was used to explore
the feeding behavior of F. occidentalis. As the results showed,
the number of total ingestion probes (TI), non-ingestion probes
(NI), short-ingestion probes (SI), and long-ingestion probes (LI)
was 2.76, 2.74, 2.90, and 1.93 times greater, respectively, for
F. occidentalis on NSs plants than on WT plants (TI: Student’s
t-test, T =−2.86, df = 78, P< 0.01; NI: Student’s t-test, T =−2.68,
df = 78, P = 0.01; SI: Student’s t-test, T =−2.73, df = 78, P = 0.01;
LI: Student’s t-test, T = −2.14, df = 78, P = 0.04; Figure 2A). The
duration of the total ingestion probes (TI), non-ingestion probes
(NI), short-ingestion probes (SI), and long-ingestion probes (LI)
was 1.80, 2.94, 1.95, and 1.09 times greater, respectively, for
F. occidentalis on NSs plants than on WT plants (TI: Student’s
t-test, T =−3.53, df = 78, P< 0.01; NI: Student’s t-test, T =−4.72,
df = 78, P < 0.01; SI: Student’s t-test, T =−2.28, df = 78, P = 0.03;
LI: Student’s t-test, T = −0.38, df = 78, P = 0.71; Figure 2B).
F. occidentalis preferred to feed on NSs plants than on wild-type
plants, which means that the silencing suppressor NSs attracts
F. occidentals to the plants.

FIGURE 1 | Preference of F. occidentalis in Y-tube olfactometer bioassay. WT,
wild-type control plants; NSs, Transgenic plants expressing NSs gene. Data
are shown as percentages, and * indicate a significant difference between two
bars (n = 9, Student’s t-test, P < 0.05).
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FIGURE 2 | Feeding behavior of F. occidentalis. Number and duration were
recorded from each of two 1 h period for each individual thrip. (A) Number of
F. occidentalis probes on NSs plants and WT plants; (B) Duration of
F. occidentalis probes on NSs plants and WT plants. WT, wild-type control
plants; NSs, transgenic plants expressing NSs gene. TI, total ingestion
probes; NI, non-ingestion probes; SI, short-ingestion probes; LI,
long-ingestion probes. Different lowercase letters (a, b) indicate significant
differences between two bars (n = 40, Student’s t-test, P < 0.05).

Extraction and Functional Analysis of
Plant Volatiles
The volatiles were measured in the headspace of NSs transgenic
plants and wild-type plants. Three terpene volatiles including (E)-
β-ocimene, γ-terpinene, and β-phellandrene were detected, and
they were all found to be monoterpene. Compared with wild-
type Arabidopsis, the levels of the three monoterpene volatiles in
the transgenic plants expressing NSs were significantly reduced
(Student’s t-test, T = 3.56, df = 4, P < 0.05 for (E)-β-ocimene;
T = 3.37, df = 4, P < 0.05 for γ-terpinene; T = 4.56, df = 4,
P < 0.05 for β-phellandrene) (Figure 3). The results indicate that
the silencing suppressor NSs attracts F. occidentals by suppressing
host terpenoids.

F. occidentalis Preference Tests With
Volatiles From Arabidopsis
To confirm whether (E)-β-ocimene, γ-terpinene, and
β-phellandrene had a repellent effect on F. occidentalis,
Y-tube olfactory-choice tests of F. occidentalis between
volatiles and purified air were performed. The number of

F. occidentalis was significantly higher on the arm of purified
air compared with the arm with (E)-β-ocimene, γ-terpinene,
and β-phellandrene. Among them, γ-terpinene showed the
most obvious repelling effect (Student’s t-test, T = −3.76,
df = 16, P < 0.01 for (E)-β-ocimene; T = −4.75, df = 16,
P < 0.01 for γ-terpinene; T = −3.01, df = 16, P < 0.05 for
β-phellandrene) (Figure 4A).

In each pair of the volatile mixture and control, the
number of F. occidentalis was higher in the Y-tube arm of
purified air control than in the arm of the volatile mixture
(Student’s t-test, T = −6.30, df = 16, P < 0.01 for (E)-
β-ocimene + γ-terpinene; T = −5.06, df = 16, P < 0.01 for
(E)-β-ocimene + β-phellandrene; T = −8.74, df = 16, P < 0.01
for γ-terpinene + β-phellandrene; T = −3.50, df = 16, P < 0.05
for (E)-β-ocimene+ γ-terpinene+ β-phellandrene) (Figure 4B).

Quantification of Plant Endogenous
Hormone
The endogenous hormones were measured in NSs transgenic
plants and wild-type plants. Transgenic plants expressing
NSs had one third JA compared with wild-type Arabidopsis
(Student’s t-test, T = −3.05, df = 4, P < 0.05). However,
there was no significant difference in the level of MeJA
and SA between the wild-type Arabidopsis and transgenic
plants expressing NSs (MeJA: Student’s t-test, T = 0.61,
df = 4, P > 0.05; SA: Student’s t-test, T = 1.05, df = 4,
P > 0.05) (Figure 5). It suggests that NSs interferes
with JA-regulated host terpenoid expression to attract
F. occidentals.

RNA-Seq of Wild-Type and Transgenic
Plants
The RNA-seq was performed to confirm the effect of NSs,
which suppressed host terpenoids to attract F. occidentals. For
RNA-seq, an average of 52 million clean reads were produced
that mapped onto the Arabidopsis genome at an average
rate of 92%, representing an average of 16,289 genes that
were expressed for each sample (Supplementary Table S2).
Compared with wild-type Arabidopsis, 204 differentially
expressed genes (DEGs) were upregulated and 1054 DEGs
were downregulated in transgenic plants expressing NSs
(Figures 6A,B and Supplementary Table S3). KEGG analysis
indicated that a total of 89 KEGG pathways were enriched for
the DEGs (Supplementary Table S4). Most pathways were
involved in the plant-pathogen interaction (ath04626), plant
hormone signal transduction (ath04075), terpenoid backbone
biosynthesis (ath00900), and sesquiterpenoid and triterpenoid
biosynthesis (ath00909).

A total of five genes involved in terpenoid biosynthesis
were lower in transgenic plants expressing NSs than in wild-
type Arabidopsis among 1258 DEGs. The five DEGs were
identified as terpenoid biosynthesis encoded squalene synthase
2 (SQS2), FAD/NAD (P)-binding oxidoreductase family
protein (XF1), squalene epoxidase 3 (SQE3), 3-hydroxy-3-
methylglutaryl-CoA reductase 2 (HMG2), and GHMP kinase
family protein (AT3G54250) (Figure 6C). In addition, 10
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FIGURE 3 | Plant volatiles from wild-type Arabidopsis and transgenic plants expressing NSs at the flowering stages. WT, wild-type control plants; NSs, transgenic
plants expressing NSs gene. * indicates a significant difference between two bars (n = 3, Student’s t-test, P < 0.05).

FIGURE 4 | Preference of F. occidentalis for selected plant volatiles, including (E)-β-ocimene, β-phellandrene, γ-terpinene, and a mixture of the three volatiles using a
Y-tube olfactometer. (A) Preference of F. occidentalis for respective plant volatiles; (B) Preference of F. occidentalis for plant volatile mixtures. Standards of volatiles
were used in the assay. Volatiles, (E)-β-ocimene or β-phellandrene or γ-terpinene; CK, purified air control; Volatile mixtures, mixture of (E)-β-ocimene, β-phellandrene,
γ-terpinene. Different lowercase letters (a, b) indicate a significant difference between two bars (n = 9, Student’s t-test, P < 0.05).

DEGs involved in the plant-pathogen interaction were also
identified, including cyclic nucleotide gated channel 9 (CNGC9),
calcium-binding EF hand family protein (TCH3), calmodulin
9 (CAM9), calmodulin 2 (CAM2), calmodulin 8 (CAM8),
MAP kinase/ERK kinase 1 (MEK1), pathogenesis-related
protein 1 (PR1), phosphatase-like protein (SGT1A), heat

shock protein 81-2 (HSP81-2), and heat shock protein 81-3
(HSP81-3) (Figure 6C).

Validation of RNA-Seq Data by qRT-PCR
The qRT-PCR was conducted to validate RNA-seq data.
As expected, compared with wild-type Arabidopsis, all nine
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FIGURE 5 | The JA, MeJA, and SA content in wild-type Arabidopsis and
transgenic Arabidopsis expressing NSs at the flowering stages. * indicates a
significant difference between two bars (n = 3, Student’s t-test, P < 0.05).

genes were downregulated in transgenic plants expressing NSs
(Figure 7A). To further validate the correlation of RNA-seq data
and qRT-PCR data, the r-squared value of Pearson’s correlation
test was used. Compared with RNA-seq results, all nine genes
(genes in NSs transgenic plants compared to wild-type plants)
showed downregulated expressions in the qRT-PCR results
(0 < r < 1), which confirmed the reliability of RNA-seq data
(Figure 7B). The results of RNA-seq and qRT-PCR confirmed
that NSs interferes with JA-regulated host terpenoid expression
to attract F. occidentals.

DISCUSSION

During the co-evolution of plant viruses with insect vectors,
plant viruses influenced the performance of their vectors
by manipulating plant volatile release. Although the specific
molecular mechanism by which viruses interfere with the
expression of host volatiles is not clear, some effectors have been
found to be associated with them (Ziebell et al., 2011; Salvaudon
et al., 2013; Casteel et al., 2014). Most effectors belong to silencing
suppressors but the function of manipulation is independent of
its silencing inhibition activity (Wu et al., 2017). In this study, we
reported that NSs, the silencing suppressor of TSWV, reduced the
expression of JA and led to a decrease in monoterpene volatile
formation, thereby indirectly attracting F. occidentalis to plants.
In addition, we found that feeding male thrips on NSs plants
resulted in an almost threefold increase in the number of total
ingestion, non-ingestion, and short-ingestion than on WT plants.
Previous research showed that infected males made three times
more total probes than uninfected males (Stafford et al., 2011).
We found that even without a TSWV infection in the body of
the thrip, only an infection of the NSs transgenic plants could
induce the feeding behavior of thrips, and NSs may be the key
factor of TSWV to induce thrip feeding. The NSs protein of
TSWV is an RNA silencing suppressor which plays a key role
in TSWV infection (Wu et al., 2019), and here we found a new
role for NSs protein in helping the TSWV manipulate the feeding
behavior of thrips.

Terpenoids emitted from plants, which are airborne signals
for plant defense can repel herbivores (Kendra et al., 2016).
Terpenoids are induced when plants are attacked by herbivores
in response to herbivore damage and work to repel herbivores
(Keeling and Bohlmann, 2006; Heiling et al., 2010). The content
of (E)-β-ocimene increased in the volatiles of Arabidopsis infested
with Pieris rapae (Faldt et al., 2003). Headspace volatiles from
lima beans infested with spider mites often contain many
terpenoids, such as (E)-β-ocimene, 4,8-dimethyl-1,3(E), and 7-
non-atriene (Bouwmeester et al., 1999). In addition, γ-terpinene
has the acaricidal activity against adult Hyalomma marginatum
(Cetin et al., 2010). In our research, three monoterpene volatiles
were detected: (E)-β-ocimene, β-phellandene, and γ-terpinene,
and emissions of these three monoterpene volatiles in the
transgenic plants expressing NSs were lower than those of wild-
type Arabidopsis (Figure 3). Moreover, the Y-tube olfactometer
assay showed that F. occidentalis was repelled by these three
volatiles individually, and the volatile mixtures indicated that
plant volatiles act as a repellent to reduce F. occidentalis numbers
on plants and then reduce damage to Arabidopsis (Figure 4).
These results indicated that the preference of F. occidentalis for
transgenic plants expressing NSs was due to the inhibition of
monoterpene volatile emissions by NSs. In this research, the
terpenoid volatiles detected were different from Wu et al. (2019),
as different host plants (Arabidopsis and pepper) were used in
the two studies. The volatiles detected were all monoterpenes.
It is possible that in different host plants, NSs may reduce the
monoterpene synthesis through different volatile pathways to
induce the feeding behavior and preference of F. occidentalis. Our
results indicated that a viral silencing suppressor, such as NSs,
plays an important role in inhibiting the synthesis of many kinds
of monoterpenes in different host plants.

In addition, RNA-seq and qRT-PCR showed that the reduction
of terpenoids was due to the inhibition of the gene expression
of terpenoid synthesis pathways by NSs (Figures 6C, 7). The
expression of five genes (HMG2, AT3G54250, SQS2, SQE3,
and XF1) in the terpenoid synthesis pathway was inhibited.
Among them, the enzyme 3-hydroxy-3-methylglutaryl coenzyme
A reductase (HMGR), which contains two functionally active
HMGR isoforms (HMG1, HMG2), was reported to catalyze
the main rate-limiting step in terpenoid biosynthetic pathways
(Caelles et al., 1989; Enjuto et al., 1994). For example, the levels of
triterpenes were reduced by 65 and 25% in HMG1 and HMG2
mutants, compared to those in wild-type plants, respectively
(Ohyama et al., 2007). Moreover, the expression level of sterol
in transgenic Arabidopsis overexpressing HMGR was increased
(Manzano et al., 2004).

Jasmonic acid is the master switch in plant defense
systems against herbivores and viruses, activating gene
expression associated with terpenoid volatiles synthesis
(Okada et al., 2015). For example, caterpillars (Spodoptera
littoralis) feeding on lima beans increases the expression of
JA and induces the synthesis and emission of terpenoids
such as (E)-β-ocimene (Arimura et al., 2008). Conversely,
after tomato mutant plants (def-1), which are deficient in
JA biosynthesis, were attacked by phytophagous mites, the
production of terpenoids did not increase as in wild tomatoes
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FIGURE 6 | Gene expression profiling by RNA-seq. (A) Volcano plot for differentially expressed genes between NSs and WT; (B) Cluster analysis of differentially
expressed genes; (C) Cluster analysis of terpenoid biosynthesis-related genes and plant-pathogen interaction-related genes using RNA-seq data. Total RNA was
extracted from transgenic Arabidopsis expressing NSs and wild-type Arabidopsis and sequenced using the Illumina HiSeq platform. DEGs were defined according
to FDR < 0.05. NSs, transgenic plants expressing NSs gene; WT, wild-type plants.

(Ament et al., 2004). Moreover, JA and SA have an obvious
antagonistic relationship in terpenoid biosynthesis, when
Arabidopsis is infested with aphids (Girling et al., 2008). SA

interferes with JA’s positive regulation of terpenoids synthesis.
However, in our study, NSs reduced the expression of JA
in plants but had no effect on SA (Figure 5). These results
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FIGURE 7 | Validation analysis of RNA-seq data by qRT-PCR. (A) Quantitative RT-PCR analysis of five selected terpenoid biosynthesis-related and four selected
plant-pathogen interaction-related genes. * indicates a significant difference between two bars (n = 3, Student’s t-test, *P < 0.05); (B) The correlation analysis of five
selected terpenoid biosynthesis-related and four selected plant-pathogen interaction-related genes between RNA-seq data and qRT-PCR data (Pearson’s
correlation test, 0 < r < 1).

suggest that the synthesis of terpenoids may be regulated by JA
signaling pathways.

In conclusion, our study shows that the silencing suppressor
NSs of TSWV reduces the emission of plant monoterpene
volatiles, to increase the attraction of plants to F. occidentalis, by
interfering with JA-regulated plant defense systems and reducing
the resistant volatiles. Insect vectors are extremely important for
the epidemic of their transmitted viruses, since the spread of
viruses between plants requires the transport of insect vectors.
These viruses commonly change the physiology of plants to
increase the attractiveness and adaptability of plants to insect
vectors (Beanland et al., 2000; Lacroix et al., 2005; Jiu et al.,
2007; Wang et al., 2012; Luan et al., 2014). The phenomenon
that viruses alter plant volatiles to increase the attraction of

plants to insect vectors is also found in other plant-virus-insect
interactions (Eigenbrode et al., 2002; Mann et al., 2012; Chen
et al., 2017). Combining these results, we speculate that “odor
manipulation” is a common strategy for plant viruses to indirectly
promote their own transmission.

MATERIALS AND METHODS

Thrip Strain and TSWV Inoculation
TSWV was obtained in Kunming, Yunnan Province of China
from tomato plants in 2018. Then TSWV was purified, identified,
designated as TSWV-YN, and mechanically inoculated on
Nicotiana tabacum cv. Samsun NN. The mechanical inoculation
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of TSWV involved an inoculum consisting of infected leaf sap
in 0.1 M phosphate buffer, 0.2% sodium sulfite and 0.01 M
mercaptoethanol, and 1% each of celite 545 and carborundum
320 grit. Cotton swabs were used to draw inoculum and
gently rub the fresh leaves of the plant (Mandal et al., 2008;
Shalileh et al., 2016). The symptoms were observed after
7–14 days, and the reverse transcription polymerase chain
reaction (RT-PCR) method was used to detect whether the
plant was successfully infected with the TSWV. The specific
primers were NSs-F: ATGTCTTCAAGTGTTTATGAGT and
NSs-R: TTATTTTGATCCTGAAGCATATG. To maintain the
TSWV strain, some of the TSWV isolates were flash frozen
with liquid nitrogen and then placed in a refrigerator at −80◦C.
The other TSWV isolates were maintained on N. tabacum
plants by thrip transmission to avoid the viral mutants and the
reduced transmissibility.

An isolate of F. occidentalis was obtained from Dr. Qing-jun
Wu of the Chinese Academy of Agricultural Sciences (Beijing,
China). Virus-free stock colonies of F. occidentalis were reared
on bean pods (Phaseolus vulgarisin) in glass jars, closed on top
with a 64 µm thrip-proof nylon net in a greenhouse at 25± 1◦C,
60± 10% RH, and a 14 L: 10 D photoperiod. The bean pods were
replaced daily, and the harvested pods with eggs were transferred
to new glass jars to synchronize larvae growth. F. occidentalis
used in all the experiments were from synchronized rearing
(Mandal et al., 2008).

Wild-type Col-0 Arabidopsis was also obtained from
the Chinese Academy of Agricultural Sciences (Beijing,
China). Wild-type and transgenic Arabidopsis were grown in a
greenhouse at a temperature of 22 ± 1◦C, relative humidity of
55± 10%, and a photoperiod of 14 h.

Construction of Plasmids and
Generation of Transgenic Plants
To obtain the NSs ORF, total RNA was extracted from
100 mg of TSWV-infected N. benthamiana leaves using Trizol
(Invitrogen, United States). The NSs cDNA was obtained by
RT-PCR with specific primers using a HiScript II 1st Strand
cDNA Synthesis Kit (Vazyme, China). The full length coding
sequence of NSs was amplified using pCB-NSs-F (XbaI) and
pCB-NSs-R (PstI) and inserted between the XbaI and PstI
sites of the pCambia1301 vector under the control of the
cauliflower mosaic virus (CaMV) 35S promoter to generate
pCambia1301-NSs. The obtained expression vector was verified
by PCR and sequencing. pCambia1301-NSs was transferred
into Agrobacterium tumefaciens GV3101 by electroporation, and
then transferred into Col-0 plants by the floral dip method
(Clough and Bent, 2010). Successfully transformed T1 plants
were obtained on MS medium containing 50 µg/mL hygromycin
B and confirmed by RT-PCR (Supplementary Figure S1A).
Therefore, the T3 transgene-homozygote lineages generated from
T1 plants through continuous self-pollination (selfing), and RT-
PCR identification were used for the experiments. Western
blot analysis was used to check for protein expression in the
transgenic plants. Total protein of Arabidopsis thaliana was
extracted using a Plant Protein Extraction Kit (Solarbio, China).

Then, the protein was resolved by SDS-PAGE and transferred to a
PVDF Membrane (BIO-RAD, United States). The membrane was
blocked with TBS-T containing 5% skimmed milk, and incubated
with the polyclonal antibody of TSWV NSs protein. Detection
was performed incubating with the horseradish peroxidase-
conjugated goat anti-rabbit IgG antibody (Thermo Fisher
Scientific, United States) and the PierceTM ECL Plus Western
Blotting Substrate (Thermo Fisher Scientific, United States)
(Supplementary Figure S1B). Wild-type Arabidopsis was used as
a negative control. Tubulin was used as a loading control.

Preference and Feeding Behavior of
F. occidentalis
According to previous references, the volatile components are
mainly released from flowers (Aharoni et al., 2003). To investigate
the preference of F. occidentalis on wild-type Arabidopsis and
transgenic plants expressing NSs, plants at the flowering stages
were used for pair-wise comparison using the Y-tube. In each
preference test, five wild-type plants and five transgenic plants
expressing NSs were placed into two odor source bottles, which
were connected to the two arms of the Y-tube (stem 10 cm; arms
20 cm, 60◦ angle; inner diameter 2 cm). Under the action of the
gas generator pump, two streams of purified airflow were metered
into the arms of the Y-tube at 100 mL/min−1.

F. occidentalis adults were used in the preference test for
approximately 5 days. Thrips were starved for 8 h and were
individually introduced at the end of the Y-tube stem. In each test
there were 50 thrips, and each thrip was observed for a maximum
of 5 min. A “choice” was recorded when a thrip entered one arm
for more than 3 cm and a “no choice” was recorded when they
remained inactive for 5 min. In each test, the preference of 50
thrips was counted and the number at each arm was recorded.
In total, there were nine replicate tests, and there was a total of
450 thrips used in this research. The position of two odor-source
bottles was changed to eliminate the effect of potential asymmetry
(Cao et al., 2019). The Y-tube was replaced every 10 thrip tests,
and in each preference test, the Y-tube was replaced 5 times. The
used Y-tube was then washed with 75% ethanol and placed in a
65◦C oven to dry.

The feeding behavior of F. occidentalis on wild-type
Arabidopsis and transgenic plants expressing NSs was compared
by electrical penetration graphs using a DC-system (a Giga-8 DC-
amplifier with a 109 –� input resistance, Wageningen University,
Netherlands) (Liu et al., 2013). There were two treatments, with
each of 20 replicate plants in five to six-leaf stages. The 5 d-old
male thrips were cooled on a glass dish on an ice-pack before
recording. After that, a 15 µm diameter, 2 cm long gold wire
was attached to the thorax of a thrip with a drop of water-soluble
silver glue. Each wired thrip was connected to the Giga-8 probe
input and then placed on the surface of the back of upper leaf of a
plant. The thrip feeding behavior was analyzed with a DI710-UL
analog-to-digital converter (Dataq Instruments, Akron, OH) and
the output was acquired and stored with the PROBE3.4 software
(Wageningen University, Netherlands). EPGs were observed and
recorded continuously for 8 h with each thrip. Waveforms
of EPG were identified according to a previous publication
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(Stafford et al., 2011). Each 8 h observation period was divided
into two 4 h halves, and a 1 h period from each half was randomly
selected for analysis. For each selected 1 h period, the single and
total number and duration of non-ingestion, short-ingestion, and
long-ingestion probes were measured.

Extraction and Analysis of Plant Volatiles
Volatiles emitted by Arabidopsis at the flowering stages were
collected using a dynamic headspace collection system. The soil
with the roots of each plant was carefully wrapped in aluminum
foil, and five plants were placed in 4 L glass jars with gas inlets and
outlets. One stream of purified airflow was metered into a glass
jar at 300 mL/min−1 from the inlet, and a glass tube filled with
300 mg of PoraPak Q 80/100 mesh (Waters, United States) was
used to trap plant volatiles at the outlet. Volatiles were eluted with
800 µL n-hexane (Sigma Aldrich, United States) that contained
160 ng of n-dodecane as an internal standard after 8 h collection
under continuous light. Then a 1 µL sample of the solution
was subjected to GC/MS analysis. The whole experiment was
repeated three times.

GC analysis was performed using a DB-1
(Agilent Technologies, United States) column (30
m × 0.25 mm × 0.25 µm). The temperature profile was
as follows: 60◦C for 2 min; then increased to 130◦C at a
programmed rate of 5◦C/min−1 and kept for 2 min, followed
by a rate of 5◦C/min−1 to 180◦C, then followed by rate of
20◦C/min−1 to 250◦C and kept for 5 min. MS conditions were as
follows: the temperature of the ion source was 200◦C; the scan
mass range was 40–500 U. Then the compounds were identified
by comparison of GC retention times with those of authentic
standards and by comparison of mass spectra with spectra of the
National Institute of Standards and Technology (NIST) database.
The peak area of the volatile expressed as a proportion of the
peak area of the internal standard was used for quantification.

F. occidentalis Preference Tests With
Volatiles From Arabidopsis
Based on the GC/MS analysis results, the preference of
male F. occidentalis to plant volatiles was tested in a Y-tube
olfactometer using the standard chemical of detected volatiles
(Sigma Aldrich, United States). In the Y-tube olfactometer
bioassay, two glass containers, one of the standard chemical
and one of purified air as control, were connected into
the olfactometer arms (Shi et al., 2018). The preference of
F. occidentalis was observed as described in “Preference and
feeding behavior of F. occidentalis.”

Quantification of Plant Endogenous
Hormone
Transgenic plants and wild plants of Arabidopsis at the flowering
stages were used for quantification of the plant endogenous
hormone with 1 g/plant. Leaves of Arabidopsis were ground with
10 mL isopropanol/hydrochloric acid and shaken at 4◦C for
30 min (You et al., 2016). There were 9 transgenic plants and 9
wild plants. Subsequently, 20 mL dichloromethane was added.
The mixture was shaken at 4◦C for 30 min and centrifuged at

13,000 rpm at 4◦C for 5 min. The organic fraction was separated
and then dried under nitrogen in darkness. The solid residue
was re-suspended in 400 µL methanol/0.1% methanoic acid.
The sample was filtered with a 0.22 µm filter membrane before
HPLC-MS/MS analysis.

HPLC analysis was performed using a poroshell 120 SB-C18
(Agilent, United States) column (150 × 2.1 mm × 2.7 µm). The
mobile phase A solvents consisted of methanol+ 0.1% methanoic
acid and the mobile phase B solvents consisted of ultrapure
water + 0.1% methanoic acid. The injection volume was 2 µL.
MS conditions were as follows: the spray voltage was 4,500 V; the
pressure of the air curtain, nebulizer, and aux gas were 15, 65, and
70 psi, respectively, and the atomizing temperature was 400◦C.

RNA-Seq of Wild-Type and Transgenic
Plants
Total RNA was extracted from wild-type Arabidopsis and
transgenic plants (above-ground parts) expressing NSs using
Trizol (Invitrogen, United States), respectively. There were
three biological replicates of NSs plants and three biological
replicates of control wild-type plants. Sequencing libraries were
constructed using the NEBNext

R©

UltraTM RNA Library Prep
Kit for Illumina

R©

(NEB, United States) and sequenced using the
Illumina HiSeq platform. To obtain clean reads, sequencing data
of the raw reads were firstly processed through in-house perl
scripts. Clean reads were obtained by removing reads containing
adapter, reads containing ploy-N, and low quality reads from raw
data. At the same time, Q20, Q30, and GC content clean data were
calculated. All the downstream analyses were based on the clean
data with high quality.

The paired-end clean reads were mapped to the reference
genome downloaded from theArabidopsis information resource1.
To quantify the gene expression level, the mapped clean reads
were calculated and then normalized into transcripts per million
(TPM) (Patro et al., 2017). Genes with a false discovery rate
(FDR < 0.05) were assigned as differentially expressed using
the DESeq R package (1.18.0). Gene ontology (GO) enrichment
analysis of differentially expressed genes was implemented by the
GOseq R package, GO terms with an FDR less than 0.05 were
considered significantly enriched by differential expressed genes.
With a cut-off of 0 < FDR < 1, the statistical enrichment of
differential expression genes was tested by the KOBAS software in
Kyoto Encyclopedia of Genes and Genomics (KEGG) pathways2.

Validation of RNA-Seq Data by qRT-PCR
To validate the results from RNA-seq data, we selected
nine genes from the terpenoid biosynthesis-related
genes and plant-pathogen interaction genes for qRT-
PCR analysis. First-strand cDNA was synthesized from
RNA using the HiScript

R©

II 1st Strand cDNA Synthesis
Kit (Vazyme, China). The specific primers for qRT-PCR
were designed using qPrimerDB (Lu et al., 2018)3 and
two reference genes, β-TUBULIN-2 and ACTIN1 were

1https://www.arabidopsis.org
2http://www.genome.jp/kegg/
3https://biodb.swu.edu.cn/qprimerdb
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used as controls for constant transcript level expression (Wang
et al., 2009; Ramadoss et al., 2018). The stable expression
of β-TUBULIN-2 and ACTIN1 were determined under our
experimental conditions. A total of 0.5 µl 10 µM primers
were used in the 20 µl qRT-PCR reaction system, the primer
sequences are listed in Supplementary Table S1. In addition,
qRT-PCR was performed using the AceQ qRT-PCR SYBR-Green
Master Mix (Vazyme, China) and was analyzed using the 2−11Ct

analysis method (Livak and Schmittgen, 2001). In total, there
were three biological replicates and three technical replicates per
treatment in this test.

The r-squared value of Pearson’s correlation test was used
to validate the correlation of RNA-seq data and qRT-PCR data.
When the r-squared value is 0 < R < 1, it means there is a positive
correlation between RNA-seq data and qRT-PCR data.

Data Analysis
All proportional data were arcsine-square root transformed
before analyses. Student’s t-test for independent samples
was used to compare the preference of F. occidentalis,
the feeding behavior of F. occidentalis, the volatile,
plant hormone, and qRT-PCR performed on wild-type
Arabidopsis and transgenic plants expressing NSs. Student’s
t-test for independent samples was also used to compare
F. occidentalis preference to volatiles and volatile mixtures
from Arabidopsis. Pearson’s correlation test was used to
validate the correlation of RNA-seq data and qRT-PCR data.
SPSS 22.0 (SPSS Software, United States) was used for all
statistical analyses.
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Disrupting the Homeostasis of High
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mosaic virus
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Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan

Viruses hijack various organelles and machineries for their replication and movement.
Ever more lines of evidence indicate that specific nuclear factors are involved in
systemic trafficking of several viruses. However, how such factors regulate viral systemic
movement remains unclear. Here, we identify a novel role for Nicotiana benthamiana high
mobility group nucleoprotein (NbHMG1/2a) in virus movement. Although infection of
N. benthamiana with Bamboo mosaic virus (BaMV) decreased NbHMG1/2a expression
levels, nuclear-localized NbHMG1/2a protein was shuttled out of the nucleus into
cytoplasm upon BaMV infection. NbHMG1/2a knockdown or even overexpression
did not affect BaMV accumulation in inoculated leaves, but it did enhance systemic
movement of the virus. Interestingly, the positive regulator Rap-GTPase activation
protein 1 was highly upregulated upon infection with BaMV, whereas the negative
regulator thioredoxin h protein was greatly reduced, no matter if NbHMG1a/2a was
silenced or overexpressed. Our findings indicate that NbHMG1/2a may have a role in
plant defense responses. Once its homeostasis is disrupted, expression of relevant host
factors may be perturbed that, in turn, facilitates BaMV systemic movement.

Keywords: high mobility group proteins, virus movement, Bamboo mosaic virus, plant-virus interaction,
nucleoprotein

INTRODUCTION

Viruses hijack various cellular machineries to utilize the molecules, subcellular structures, and
trafficking systems required for their replication and movement (Huang et al., 2017a; Pitzalis
and Heinlein, 2017). For local movement, viruses move from one cell into neighboring cells
through plasmodesmata (PD), whereas viruses enter veins and traffic through the vascular system
for systemic movement (Lough and Lucas, 2006; Hipper et al., 2013). Depending on the virus
group, mobilized viral forms can be either viral nucleoprotein complexes or virions, with both
forms usually being assisted by specific virus-encoded non-structural proteins (Hipper et al., 2013;
Solovyev and Savenkov, 2014; Pitzalis and Heinlein, 2017). In the Potexvirus group, such proteins
are encoded by triple gene block (TGB), which are translated into three movement proteins (MPs)
TGBp1, 2, and 3 (Solovyev et al., 2012).
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Ever more lines of evidence indicate that the translocation
of viral MPs to nuclei, where they interact with specific
nucleoproteins, is an essential step in promoting systemic viral
infection (Lukhovitskaya et al., 2013; Solovyev and Savenkov,
2014; Lukhovitskaya et al., 2015). These interactions lead to
transcriptional programming that reregulate the cell to confer
optimal conditions for virus replication and spread (Solovyev
and Savenkov, 2014). In addition, a few studies have reported
that entry of specific viral proteins into the nucleus results in
the export of specific host nuclear proteins to the cytoplasm
(Krichevsky et al., 2006; Chang et al., 2016; Li et al., 2018).
However, depending on the type of exported protein, this
relocalization might be virus-regulated to assist trafficking or be
a plant defense reaction that triggers an immune response. We
previously identified the nucleolar protein fibrillarin as being a
critical factor required for autonomous movement of the satellite
RNA of Bamboo mosaic virus (satBaMV). The satBaMV-encoded
P20 protein forms a complex with fibrillarin in the nucleolus
and punctate structures associated with PDs (Chang et al., 2016).
However, export of other nuclear proteins beyond the nucleus
might represent a plant response to invading pathogens. For
example, Arabidopsis high mobility group (HMG) protein B3
is exported to the apoplast where it functions as a damage-
associated molecular pattern (DAMP), recognizes avirulent
factors of the nectrophic fungus Botrytis cinerea, and triggers
defenses mediated by salicylic acid (SA) (Choi et al., 2016).

To date, a few nuclear factors have been identified as being
involved in the systemic movement of certain viruses (Hipper
et al., 2013; Li et al., 2018). A previous study demonstrated
that translocation of TGBp1 from Potato mop-top virus (PTMV)
into the nucleus, mediated by the shuttle protein importin-α, is
important for systemic trafficking of the virus, with importin-
α knockdown reducing viral accumulation in upper leaves
(Lukhovitskaya et al., 2015). However, it is not known how
TGBp1 functions in the nucleus to enable PTMV to move
systemically. In another example, TGBp1 of Barley stripe mosaic
virus (BSMV) interacts with and exports fibrillarin-2 (Fib2)
to PD. Fib2 also associates with the ribonucleoprotein (RNP)
movement complex of BSMV, providing direct evidence of the
ability of viral TGBp1 to hijack and employ Fib2 for BSMV cell-
to-cell movement (Li et al., 2018). Previous works have indicated
that such nuclear factors may regulate transcriptome profiles,
inducing other factors required for systemic movement (Solovyev
and Savenkov, 2014). Interestingly, several such nuclear factors
are nucleolus-related proteins (Hiscox, 2007). For example,
interaction of Groundnut rosette virus (GRV) open reading frame
3 (ORF3) with fibrillarin in the nucleolus is essential for re-
localization of fibrillarin to the cytoplasm, as well as for the
assembly of cytoplasmic RNP particles (ORF3-RNA-Fibrillarin)
required for long-distance movement (Kim et al., 2007).

HMG proteins represent a heterogeneous class of ubiquitous
and relatively abundant non-histone proteins associated with
chromatin. They modulate chromatin structure and act as
architectural factors in the assembly of nucleoprotein (Wu
et al., 2003; Bianchi and Agresti, 2005; Reeves, 2010). HMGAs
(previously known as HMG1s) bind specifically to AT-rich DNA
through a small DNA binding motif, termed the AT-hook, and

they are involved in diverse nuclear and cellular processes,
including gene transcription (Lewis et al., 2001; Reeves and
Beckerbauer, 2001; Bianchi and Agresti, 2005; Reeves, 2010).
A role for HMGs in host-pathogen interactions has been reported
previously (Choi et al., 2016; Sprague et al., 2018), playing a
positive role in host defense against fungal or viral pathogens.
For example, Arabidopsis thaliana HMGB3 (AtHMGB3) was
identified as a DAMP molecule that mediates innate immune
responses upon infection with B. cinerea (Choi et al., 2016).
AtHMGB3 translocalizes to the apoplast upon infection with
B. cinerea, activates MAPK, induces callose accumulation,
and triggers the expression of defense-related genes, which
collectively reduces levels of B. cinerea. Silencing AtHMGB3
increased A. thaliana susceptibility to B. cinerea (Choi et al.,
2016). Similarly, the mouse cell lines NIH-3T3 and 3T6-Swiss
secreted HMGB1 upon infection with Herpes simplex virus strain
HSV1716, an oncolytic herpes virus. An HMGB1 knockdown cell
line revealed its role in restricting HSV1716, indicating that it acts
as a DAMP to regulate pro-inflammatory cytokine release and
inflammation (Sprague et al., 2018; Hong et al., 2019).

Focusing on host nuclear factors is an emerging field of study
in host-pathogen interactions, yet their involvement in viral
movement remains largely unexplored (Solovyev and Savenkov,
2014). Here, we used BaMV to investigate the role of Nicotiana
benthamiana HMGs (NbHMGs) in systemic movement of
BaMV. BaMV is a flexuous Potexvirus with a single-stranded
positive-sense RNA genome of 6.4 kb that encodes five ORFs
(Lin et al., 1992; DiMaio et al., 2015; Hsu et al., 2018). The first
ORF encodes a 155 kDa protein that functions as a replicase with
methyltransferase (Li et al., 2001a; Huang et al., 2004), helicase
(Li et al., 2001b) and RNA-dependent RNA polymerase (RdRp)
domains (Li et al., 1998). The second to fourth ORFs encode
three TGBp proteins; TGBp1 of 28 kDa, TGBp2 of 13 kDa, and
TGPp3 of 6 kDa, respectively (Lin et al., 1994; Yang et al., 1997).
These TGBp proteins assist in cell-to-cell movement of BaMV
(Lin et al., 2006; Hsu et al., 2008; Chou et al., 2013). The fifth ORF
encodes a 25 kDa capsid protein (CP) that is involved in virus
encapsidation, symptom formation (Lan et al., 2010), and viral
movement (Lee et al., 2011). When BaMV replicates, three major
RNAs are generated; a genomic RNA (gRNA) of 6.4 kb and two
sub-genomic RNAs (sgRNA) denoted sgRNA1 and sgRNA2 of 2
and 1 kb, respectively (Lin et al., 1994; Yang et al., 1997).

In this study, we identified two HMG1 genes in
N. benthamiana in which only NbHMG1/2a was detectable
and downregulated upon infection with BaMV. NbHMG1/2a
localized exclusively in the nucleus but, upon BaMV
infection, it was also detected in the cytoplasm. Knockdown
or overexpression of NbHMG1/2a did not affect BaMV
accumulation in inoculated leaves. Interestingly, under both
scenarios (NbHMG1/2a-silenced or -overexpressed), we
observed significantly enhanced systemic BaMV. Moreover,
previously identified host factors required for BaMV cell-to-cell
and systemic movement were not affected by the status of
HMG in BaMV-infected plants, except for two important host
factors–Rap-GTPase activation protein 1 (Rap-GAP1) (Huang
et al., 2013) and thioredoxin h protein (TRXh2) (Chen et al.,
2018)–that played a positive and negative role, respectively, in
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local and systemic movement of BaMV. These results provide
evidence for the role of HMG protein in systemic movement
of an RNA virus.

RESULTS

Orthologs of Arabidopsis HMGB3 in
N. benthamiana
In order to identify the orthologs of AtHMGB3 in
N. benthamiana, we blasted the coding sequence of AtHMGB3
against N. benthamiana genome database v1.0.1 in the Sol
Genome network (solgenomics.net). The blast analysis
identified two accessions; Niben101Scf09442g05005.1 and
Niben101Scf02041g04034.1 with 86.55 and 82.35% identities
covering 103 and 98 amino acids (aa), respectively, of the
119-aa AtHMGB3 sequence (Figure 1A). Both sequences show
high identity to each other in the coding region (CDS) (95%)
(Figure 1A) and in the 5′ untranslated region (UTR) (93%),
but share low similarity in the 3′ UTR (43.5%) (Supplementary
Figure S1). The region of high similarity corresponds to the
high mobility group box domain (Figure 1A). However, our
phylogenetic analysis of HMG orthologs from different species
clustered these two accessions in close proximity to HMG1/2
from different Nicotiana and Solanum species, prompting us
to denote the two accessions Niben101Scf02041g04034.1 and
Niben101Scf09442g05005.1 as NbHMG1/2a and b, respectively
(Figure 1B). We then measured the expression levels of
NbHMG1/2a and b in N. benthamiana plants in response
to BaMV infection. Although expression of NbHMG1/2a
was significantly decreased upon BaMV infection in both
inoculated and systemic leaves at 6 days post infection (dpi)
(Figure 1C), we did not detect any expression of NbHMG1/2b
using different pairs of primers targeting the CDS and 3′ UTR
under various conditions [healthy plants or plants infected with
BaMV infectious clone pKBG or infiltrated with empty vector
(EV) of the Tobacco rattle virus (TRV) (TRV-EV)]. These data
suggest that NbHMG1/2a might be involved in the interaction
between BaMV and N. benthamiana, but NbHMG1/2b may not
be expressed in N. benthamiana leaves under normal growth
conditions or when it is under viral attack.

NbHMG1/2a Localizes in the Nucleus
and Nucleolus
Next, we identified the functional domains of NbHMG1/2a. The
conserved domain database of NCBI (Marchler-Bauer et al.,
2015) predicted a DNA binding domain in a motif corresponding
to aa 36-101 of NbHMG1/2a protein, with an E-value of 8.37e-15
(Figure 2A). A nucleus localization signal (NLS) and a nucleolus
localization signal (NoLS) were also predicted in motifs at 4–
56 and 15–42 aa, respectively, using cNLS and NoD mappers
(Kosugi et al., 2009b; Scott et al., 2011; Figure 2A). No nucleus
export signal was identified in the coded protein using the
LocNES server (Xu et al., 2015), but the NetNES 1.1 server (la
Cour et al., 2004) predicted a weak signal (below threshold) in
a motif at 44–50 aa. To confirm these findings, we cloned the

full NbHMG1/2a coding sequence with a 3HA-mCherry tag into
the pBin61 expression vector (Chang et al., 2016). Transient
expression of NbHMG1/2a in N. benthamiana leaves showed
that this protein clearly localizes in the nucleus (Figure 2B), the
nucleolus, and the nucleoplasm (Figure 2C), but no cytoplasmic
localization was detected across 3 days of observation (1.5,
2, and 3 dpi) (Supplementary Figures S2–S4). Thus, under
normal plant growth conditions, NbHMG1/2a localizes in the
nucleus and nucleolus.

Both Silencing and Overexpression of
NbHMG1/2a Increase Systemic
Movement of BaMV
We examined the effects of silencing NbHMG1/2a to determine
if it has any effect on BaMV accumulation or spread. To avoid
silencing any off-target genes, we employed the virus-induced
gene silencing (VIGS) tool in the Sol genomics database to
assess the full CDS of NbHMG1/2a (Fernandez-Pozo et al.,
2015). The VIGS tool recommended using any fragment within
the first 300 base pairs (bp) of the NbHMG1/2a CDS to avoid
silencing off-target genes (Supplementary Table S2). A 21-mer
siRNA generated from this silencing construct would have large
numbers of matches with both NbHMG1/2a (404 matches) and
NbHMG1/2b (101 matches), but no other potential genes were
identified as being off-target (except for two accessions each with
one match) (Supplementary Table S2). To silence NbHMG1/2a,
TRV silencing vector carrying NbHMG1/2a partial fragments was
agroinfiltrated into 18-day-old N. benthamiana plants to silence
NbHMG1/2a. The Phytoene desaturase (PDS) gene acted as an
indicator of silencing efficiency and mCherry functioned as an EV
negative control. After a strong bleaching phenotype appeared
on PDS-silenced plants, the upper leaves (leaves 7 and 8) were
agroinfiltrated with pKBG (Figure 3A). Silencing of NbHMG1/2a
resulted in a stunted phenotype compared to EV- or PDS-
silenced plants (Figure 3B). Nonetheless, leaf size was similar
among control and silenced plants (Figure 3B). Levels of BaMV
RNA or CP were comparable in inoculated leaves at 4, 5, and
6 dpi among EV- and NbHMG1/2a-silenced plants (Figure 3C).
However, BaMV spread more rapidly to the upper systemic leaves
(leaves 11 and 12) and exhibited greater accumulation (∼3.1-fold
relative to EV-silenced plants) in NbHMG1/2a-silenced plants
at 6 dpi (Figure 3D). To confirm these results, we carried
out RTqPCR for samples collected at 6 dpi (Supplementary
Figure S5A). Using primers targeting BaMV genomic RNA
(RNA-dependent RNA polymerase “RDR”), the RTqPCR showed
that RDR accumulated equally in the BaMV-inoculated leaves
of EV and the NbHMG1/2a-silenced plants, but showed ∼ 6.7-
fold upregulation of RDR in the systemically infected leaves
(Supplementary Figure S5A). We next tested whether the TRV
silencing vector is affected by BaMV or the reduced level
of NbHMG1/2a. While TRV-RDR accumulated equally in the
control and BaMV inoculated leaves, TRV-RDR exhibited 50%
increase in the systemically infected leaves (Supplementary
Figure S5B). Of note, VIGS resulted in significant decrease of
NbHMG1/2a in both BaMV-inoculated leaves as well as in the
systemically infected leaves (Supplementary Figure S5C). This
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FIGURE 1 | Phylogenetic and expression analyses of Nicotiana benthamiana HMG1/2 genes. (A) Similarities of NbHMG accessions to Arabidopsis thaliana HMGB3.
Two NbHMG accessions with high similarity to AtHMGB3 were obtained by blasting the AtHMGB3 coding sequence against the N. benthamiana database (Sol
Genomics Networks), i.e., NbHMG_101Scf02041g04034 (NbHMG1/2a) and NbHMG_101Scf09442g05005 (NbHMG1/2b). (B) Phylogenetic analysis of NbHMG1/2
with orthologs from other species. The HMG phylogeny was generated using the Neighbor Joining method in MEGA 6.0 software. Numbers represent relative
phylogenetic distance. BaMV capsid protein (CP) was used as an outgroup to root the tree. (C) Relative expression levels of NbHMG1/2a by RTqPCR in
N. benthamiana plants infected with BaMV infectious clone (pKBG) compared with plants infiltrated with empty vector (pKn). Inoculated leaves were tested at 3 days
post infiltration (dpi), and the systemic leaves were tested at 6 dpi. Actin was used as an internal control. Data represent the mean ± standard deviation from three
biological replicates. One-sided student t-tests were performed to determine significant differences. Asterisks indicate significant differences relative to control lines
(infiltrated with pKn), with ** representing P < 0.01.

indicates that BaMV infection may allow faster spread of the
silencing vector TRV.

Since NbHMG1/2a-silenced plants displayed enhanced
systemic movement and accumulation of BaMV, we assessed
the impact of transient overexpression of NbHMG1/2a (fused
with HA-mCherry tag) on both local and systemic BaMV
accumulation. Although levels of BaMV RNA and CP
protein were similar in the inoculated leaves of control and

overexpressing plants, accumulation of BaMV was enhanced
(∼3.6-fold relative to control) in the systemically infected
leaves at 6 dpi (Figure 4A). To confirm these results, BaMV-
RDR expression level was measured at 6 dpi using RTqPCR
(Supplementary Figure S6). BaMV-RDR showed no difference
in the inoculated leaves of the control and NbHMG1/2a-
overexpressing plants. However, the accumulation level was
threefold upregulated in the systemically infected leaves
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FIGURE 2 | Domain analysis and localization of NbHMG1/2a. (A) Predicted domains encoded in NbHMG1/2a: a nuclear localization signal (NLS) between 4 and 56
amino acids (aa), a nucleolar localization signal (NoLS) between 15 and 42 aa, and a DNA-binding domain between 36 and 101 aa. No nuclear export signal was
found. (B) NbHMG1/2a localizes in the nucleus. N. benthamina leaves were infiltrated with Agrobacterium carrying pBin61-HA-HMG-mCherry or with control vector
pBin61-HA-mCherry. (C) NbHMG1/2a localizes in the nucleolus. N. benthamina leaves were infiltrated with Agrobacterium carrying HA-mCherry and
nucleolus-localized fibrillarin fused with eGFP (eGFP-Fib), or with HA-mCherry-HMG and eGFP-Fib. DAPI was used for nuclear staining. Images were taken 3 days
after infiltration, and bars represent a measurement scale of 20 and 10 µm for the nucleus and nucleolus, respectively. The experiment was repeated three times
with similar results and representative images are shown.

overexpressing NbHMG1/2a compared with the infected
control (Supplementary Figure S6). Notably, the overexpressed
NbHMG1/2awas detectable in inoculated leaves (Figure 4A), and
it did not result in systemic silencing of NbHMG1/2a as RT-qPCR

revealed that transcript levels of the endogenous NbHMG1/2a
were comparable between control and overexpressing plants,
and the overexpressed gene accumulated 2.5-fold more than
the endogenous gene in the inoculated leaves (Figure 4B).
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FIGURE 3 | Effects of silencing NbHMG1/2a on plant growth and resistance to BaMV. (A) Schematic illustration of our VIGS experimental design. The first three
leaves of N. benthamiana plants were infiltrated with the silencing vector TRV carrying the NbHMG1/2a fragment or control mCherry fragment. Eight days later,
leaves 7 and 8 were infiltrated with pBin61 carrying BaMV (pKBG). Inoculated leaves (leaves 7 and 8) and systemic leaves (leaves 11 and 12) were collected at 3, 4,
and 6 days after BaMV infection (dpi). (B) Phenotype of NbHMG1/2a-silenced plants. Plants infiltrated with TRV-mCherry, TRV-HMG, and TRV-PDS. Photos were
taken 8 days after agroninfiltration with TRVs. Upper and middle panel show plant height and spread, and lower panel shows leaf size. (C,D) RNA blot of BaMV in
the inoculated leaves (C) and systemic leaves (D) of control plants (infiltrated with TRV-mCherry) and NbHMG1/2a-silenced plants (HMG-VIGS). The second panel
represents rRNA levels as internal control. The third panel shows NbHMG1/2a levels in the control and silenced plants. eIF1α was used as an internal control. Values
represent average accumulation of BaMV genomic RNA from three biological replicates ± standard deviation. Lower panels represent protein blots of BaMV capsid
protein (CP) (25 kDa) and actin in the control and silenced plants.
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FIGURE 4 | Overexpression of NbHMG1/2a enhances systemic movement of BaMV. (A) Twenty-four-day-old N. benthamiana plants were co-agroinfiltrated with
pKBG and pBin-HA-mCherry or pBin-HA-mCherry-HMG. Samples were collected from inoculated and systemic leaves at 4, 5, and 6 dpi. Upper panels are Northern
blots for BaMV, with rRNA used as a loading control. Lower panels are protein blots of BaMV CP and HA-tag to detect HA-mCherry (30 kDa) and HA-mCherry-HMG
(45 kDa). Ponceau S was used as a loading control. The experiment was conducted with three biological replicates, which generated similar results. Values below
Northern blots represent average accumulation of BaMV genomic RNA from three biological replicates ± SD. (B) Relative expression of endogenous NbHMG1/2a
and the overexpressed gene NbHMG1/2a-mCherry in inoculated and systemic leaves of NbHMG1/2a-overexpressing plants based on RTqPCR. According to
one-sided student t-test, asterisk indicates significant difference for the expression of NbHMG1/2a-mCherry relative to the endogenous NbHMG1/2a, with **
representing P < 0.01. Actin was used as an internal control. Error bars represent the standard deviation from three biological replicates.
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These results confirmed that transcript level of NbHMG1/2a was
boosted by transient expression in the inoculated leaves.

Host Factors Required for BaMV
Systemic Movement Are Regulated in
NbHMG1/2a-Silenced and
-Overexpressing Plants
Several host factors required for BaMV cell-to-cell and systemic
movement have been identified previously (Cheng, 2017;
Huang et al., 2017a). These factors include the activating protein
Rab GTPase (Rab-GAP1) (Huang et al., 2013), casein kinase
2α (CK2α) (Hung et al., 2014), serine/threonine kinase-like
protein (STKL) (Cheng et al., 2013), and thioredoxin h protein
(TRXh2) (Chen et al., 2018). TRXh2 plays a negative role
in BaMV accumulation, whereas the other genes enhance
local BaMV accumulation, with RAB-GAP1 increasing BaMV
accumulation in both inoculated and systemic leaves (Huang
et al., 2013). In BaMV-inoculated leaves, we found that expression
of Rab-GAP1, CK2α, and STKL all increased following BaMV
infection of TRV-EV control plants (Figures 5A–C), whereas
expression of TRXh2 remained unchanged (Figure 5D). In
NbHMG1/2a-silenced plants (TRV-HMG), only CK2α presented
a slight increase in expression compared to TRV-EV control
(Figure 5B). However, upon BaMV infection of NbHMG1/2a-
silenced plants, Rab-GAP1 was the only gene exhibiting a
significant increase in expression relative to TRV-EV control
plants (Figure 5A). Of note, expression of TRXh2 decreased in
TRV-HMG-agroinfiltrated plants compared to TRV-EV control
plants (Figure 5D).

Expression of Rab-GAP1, STKL, and TRXh2 was significantly
increased in plants transiently overexpressing NbHMG1/2a
(pHMG) compared to plants infiltrated with the mCherry-
expressing vector (mCh) (Figures 5E,G,H), whereas that of
CK2α was not affected (Figure 5F). After BaMV infection,
Rab-GAP1 and STKL were upregulated (Figures 5E,G), and
TRXh2 was downregulated (Figure 5F). Only Rab-GAP1 was
significantly increased in BaMV-infected pHMG-overexpressing
plants compared to mCh-infected ones (Figure 5E). These
findings indicate that only Rab-GAP1 was significantly increased
in both silenced and overexpressing plants following BaMV
infection. Moreover, TRXh2 was downregulated (∼ 2.5-fold)
in the infected pHMG-overexpressing plants when compared
to mCh-infected plants (Figure 5H). Together, these findings
imply that enhanced systemic accumulation of BaMV may be
attributable to coordinated upregulation of Rab-GAP1 expression
and downregulation of TRXh2. Previously, it was proposed that
Rab-GAP1 triggers one of the RabGTPases to release vesicles
containing the BaMV-movement complex for trafficking to the
PD (Huang et al., 2013, 2017a). The speed at which viral
movement complex is delivered to the PD affects the onset and
swiftness of systemic trafficking (Rodrigo et al., 2014).

BaMV Infection Triggers Relocalization
of NbHMG1/2a to the Cytoplasm
We have shown that NbHMG1/2a localizes exclusively in the
nucleus (Figure 2). This observation was confirmed at 1.5, 2, and

3 dpi (Supplementary Figures S4–S6), and BaMV did not appear
to affect this localization within these timeframes. We tried to
extend our observations to the late stage of infection, but levels
of transiently-expressed proteins had greatly declined, resulting
in undetectable signal at 6 dpi (Supplementary Figure S7). To
overcome this problem, we agroinfiltrated very limited amounts
of pKBG (BaMV infectious clone carrying GFP) (OD600 = 0.005)
into a defined region of leaves (Figure 6A, green circle).
mCherry-HMG (OD600 = 0.5) was then expressed in the whole
leaves. Two days later, GFP fluorescent signals were only detected
in close proximity to the pKBG-infiltrated regions (upper white
circle), but no fluorescent signals were observed in the distal cells
(lower white circle) (Figure 6A). Surprisingly, in cells showing
BaMV-GFP infection, mCherry-HMG signals were not only
detected in the nucleus but also in cytosol (Figure 6A, upper
panel). However, mCherry-HMG signals remained localized
in the nucleus where no BaMV-GFP signals were observed
(Figure 6A). To confirm the mCherry-HMG is localized in
both the cytosol and the nucleus following BaMV-GFP infection,
cell fractionation was carried out to separate the nuclei from
the cytoplasm. First, N. benthamiana leaves were infiltrated
with HA-mCherry or HA-mCherry-HMG, and the HA signal
in the infiltrated tissues was detected by protein blot at 48 h
after infiltration (Figure 6B). We next purified nuclei from
control and the BaMV-infected leaves at 7 dpi, and the presence
of HMG, CP, Histone H2 (a nuclear marker protein), and
Tubulin (a cytoplasmic marker protein) was determined by
protein blots from nuclear extracts. HMG and CP were found
in the nuclear and the supernatant fractions, whereas Histone
H2 was detectable only in the nuclear fraction, and Tubulin
was found only in the supernatant fraction (Figure 6C). We
conclude that NbHMG1/2a is translocalized to the cytoplasm
upon BaMV infection. Using a similar approach, we observed
that a substantial amount of mCherry-HMG moved from the
nucleus to cytoplasm upon infection with pKBG (Supplementary
Figure S8), whereas mCherry-HMG remained in the nucleus
upon pKn infiltration (Supplementary Figure S8), indicating
that the relocalization of mCherry-HMG is triggered by BaMV
infection.

No Evidence of Interaction Between
Plant NbHMG1/2a and Viral CP or TGBp1
Proteins
Previously, TGBp1 and CP proteins were reported to localize
in the nucleus and cytosol and that they play crucial roles in
BaMV cell-to-cell and systemic movement (Lin and Chen, 1991;
Chang et al., 1997; Palani et al., 2009). Our observations of
the localization of NbHMG1/2a in the nucleus and its trans-
localization to the cytoplasm prompted us to test if CP or TGBp1
interacts with NbHMG1/2a. However, yeast two-hybrid analysis
revealed that neither of these BaMV proteins directly interacts
with NbHMG1/2a (Supplementary Figure S9), suggesting that
the effect of BaMV on NbHMG1/2a localization is indirect. These
observations imply that NbHMG1/2a may not be involved in
regulating cell-to-cell movement of BaMV, but it might have
other functions related to anti-BaMV defenses.
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FIGURE 5 | Relative expression of host genes involved in BaMV movement in NbHMG1/2a- knockdown and -overexpressing plants. Transcript levels of RAB-GAP1
(A,E), CK2α (B,F), STKL (C,G), and TRXh2 (D,H) in N. benthamiana plants infected with pKBG or pKn and upon HMG being knocked-down or overexpressed,
respectively. Expression level was measured in the BaMV-inoculated leaves at 6 dpi in both HMG-silenced and HMG-overexpressed plants. Actin was used as an
internal control. Data represent the mean ± SD from three biological replicates. One-sided Student’s t-tests were performed to determine significant differences.
Asterisks indicate significant differences relative to mock lines (infiltrated with pKn and pBin-mCherry), with * representing P < 0.05.

DISCUSSION

Entry of specific viral proteins into the nucleus and their
interaction with certain nuclear or nucleolar proteins are
critical processes for the systemic movement of several viruses
(Solovyev and Savenkov, 2014). Yet, how these interactions
locally or systemically alter plant mechanisms has not been fully
uncovered, despite a few studies suggesting transcriptional
reprogramming conditions the cell for enhanced viral

replication and movement (Chen et al., 2013; Levy et al., 2013;
Solovyev and Savenkov, 2014).

Cell-regulated export of certain nuclear proteins in response
to viral infection is intriguing and implies specific functions after
viral attack. Taking HMG proteins as an example, several works
have reported roles for these proteins in chromatin modification
and transcriptional regulation, requiring nuclear localization
(Ju et al., 2006; Launholt et al., 2006; Antosch et al., 2012).
However, upon infection with B. cinerea, export of AtHMGB3
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FIGURE 6 | Localization of NbHMG1/2a in BaMV-GFP-infected N. benthamiana. (A) Leaves of N. benthamiana were agroinfiltrated with pKBG (BaMV-GFP)
(OD = 0.005) into the region represented by the green circle. Five days later, inoculated leaves were agroinfiltrated with mCherry-HMG (OD = 0.5) in whole leaves.
Samples were excised (white circles) 2 days afterward for confocal microscopic observation. To detect the nucleus, 4′,6-diamidino-2-phenylindole (DAPI) solution
was infiltrated into the N. benthamiana leaves before observation. Scale bars are 50 µm. Arrows and arrowheads indicate nucleus and cytoplasm, respectively. The
experiment was repeated three times with similar results, and representative images are shown. (B) Protein gel blot analysis of HA-mCherry and HA-mCherry-HMG
at 2 dpi by anti-HA or anti-actin body. (C) Protein gel blot analysis of HA-mCherry-HMG in subcellular fractions of BaMV infected leaf tissues. Histone H2 was used
as a nuclear marker, and cytosolic tubulin served as a cytosolic marker. N, nuclear protein extracts; S, total protein extracts depleted of nuclei.

to the apoplast has been deemed critical for initiation of innate
immunity. AtHMGB3 acts as a DAMP molecule that recognizes
avirulent factors of B. cinerea to trigger SA-mediated defenses
(Choi et al., 2016). Here, our data also shows that NbHMG1/2a
is normally localized in the nucleus (Figure 2), but substantial
amounts of NbHMG1/2a can be detected in the cytoplasm but
not at PDs in response to BaMV late infection (Figure 6),
potentially excluding a direct role of NbHMG1/2a in BaMV cell-
to-cell movement. Our observation that NbHMG1/2a expression
is reduced upon BaMV infection indicates that the virus may
exert this effect to modulate the host for optimal infection
conditions (Figure 1C). Indeed, this possibility is supported
by our finding that systemic spread of BaMV was faster in
NbHMG1/2a-silenced plants relative to control plants (Figure 3).
In addition, neither CP nor TGBp1, both of which localize in
the nucleus and cytoplasm, were found to interact directly with
NbHMG1/2a (Supplementary Figure S9). These findings do not

exclude the notion that NbHMG1/2a relocalization to the cytosol
is defense-related. In fact, other HMGs, such as mouse HMGB1,
contribute to cell defense against the HSV1716 oncolytic herpes
virus (Sprague et al., 2018). Overall, studies of HMGs from
different species suggest several members of this protein group
function in defense against pathogens.

Expression levels of host factors required for local and
systemic movement of BaMV indicate that Rab-GAP1 might
be regulated by NbHMG1/2a because levels of this protein
increased when NbHMG1/2a was transiently overexpressed
(Figure 5E), but remained unaffected in NbHMG1/2a-silenced
plants (Figure 5A). However, in response to BaMV infection,
expression levels of Rab-GAP1 were upregulated 3-fold in
NbHMG1/2a-silenced plants (Figure 5A). It was reported
previously that silencing of Rab-GAP1 drastically reduced
systemic and local BaMV accumulation by ∼98 and 50%,
respectively, but had no effect on protoplast levels (Huang
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et al., 2013). Thus, Rab-GAP1 serves as a positive regulator
of BaMV movement. In contrast, BaMV infection reduced
the expression of TRXh2 only in NbHMG1/2a-silenced plants
but not in EV-control plants. NbTRXh2 may target TGBp2,
disrupting its structural integrity and its association with
TGBp1 and TGBp3 (Chen et al., 2018). Regulation of these
factors may explain the enhanced systemic accumulation of
BaMV in NbHMG1/2a-silenced plants and it suggests a role
for NbHMG1/2a in transcriptional regulation of Rab-GAP1
and TRXh2, and probably for other factors necessary for the
BaMV infection cycle. Previous works have reported roles for
HMGs in transcription (Reeves and Beckerbauer, 2001; Ju
et al., 2006; Launholt et al., 2006; Reeves, 2010; Antosch et al.,
2012), strengthening the notion that other host factors involved
in BaMV systemic movement might also be transcriptionally
regulated by HMG.

Interestingly, transient overexpression of NbHMG1/2a also
enhanced systemic movement of BaMV, but it did not affect its
local accumulation (Figure 4). Levels of the positive regulator
of BaMV movement, Rap-GAP1, were significantly increased
upon BaMV infection (Figure 5E), whereas TRXh2 that impedes
systemic BaMV movement was downregulated in infected plants
overexpressing NbHMG1/2a (Figure 5H). Thus, coordinated
upregulation of Rab-GAP1 expression and downregulation
of TRXh2 may explain the enhanced systemic accumulation
of BaMV. It could be speculated that BaMV affects the
transcription-related function of NbHMG1/2a because BaMV
enhanced the expression of Rab-Gap1 in the overexpression
and silenced plants (Figures 5A,E). While BaMV reduces
the expression level of NbHMG1/2a (enhanced by the VIGS-
mediated transient silencing), BaMV forces the remaining
NbHMG1/2a to translocalize from the nucleus to the cytosol
(Figure 6). Both cases resulted in increased expression of
Rab-GAP1, which may suggest that NbHMG1/2a may act
as a negative regular for Rap-GAP1 in the presence of
BaMV. The VIGS results support this notion, however,
further experimental validations are required to explain how
NbHMG1/2a affect the expression of several host factors
with/without BaMV infection.

While it could be interpreted that a homeostatic imbalance
of HMG affects the expression of factors involved in BaMV
movement, these findings may also rule out the potential
involvement of antiviral defenses (e.g., callose deposition,
antiviral RNA silencing pathway, accumulation of reactive
oxygen species, and salicylic and abscisic acids) on systemic
BaMV movement. The impacts of these antiviral defenses would
be apparent for both inoculated and systemic leaves, as well
as at cellular levels (Alazem et al., 2017, 2019; Huang et al.,
2019). However, since the effect of NbHMG1/2a was only
significant for systemic leaves, those antiviral defenses might
not be affected by HMG homeostasis. In a similar example
where silencing and overexpression of specific genes induced
plant susceptibility to viral infection, a previous study showed
that the chloroplast gene Increased Size Exclusion Limit 2 (ISE2)
enhanced systemic accumulation of Tobacco mosaic virus (TMV)
and Turnip mosaic virus (TuMV) under conditions of both
silencing and overexpression, albeit most likely through different

mechanisms (Ganusova et al., 2017). Whereas silencing of ISE2
enhanced symplastic flux, thereby increasing systemic movement
of both TMV and TuMV, levels of the Dicer-like protein of
the antiviral RNA pathway was reduced in ISE2-overexpressing
plants, perhaps explaining the enhanced susceptibility to TMV
and TuMV via abrogation of antiviral defense mechanisms
(Ganusova et al., 2017). ISE2 is involved in the chloroplast-
to-nucleus retrograde signaling that regulates formation of PD,
consequently affecting intercellular viral movement (Ganusova
et al., 2020). In our study, the nuclear-localized protein
NbHMG1/2a regulates expression of host factors involved in
systemic movement of BaMV with no effect observed in the
inoculated leaves. The cytoplasmic role of NbHMG1/2a under
conditions of BaMV infection warrants further investigation.

CONCLUDING REMARKS

Local and systemic viral trafficking requires specific cellular host
factors. These factors vary depending on each stage of movement,
such as passage through PDs, movement into companion cells,
phloem entry, and exit from the vascular system into the upper
leaves. Our study presents evidence of the involvement of a
nuclear protein, HMG1/2a, in the systemic movement of plant
viruses. HMG1/2a homeostasis affects levels of Rap-GAP1 and
TRXh2 to regulate systemic BaMV movement and we speculate
that HMG1/2a may affect other factors involved in the infection
cycle of BaMV, potentially linked to its reported nuclear function
in transcriptional regulation or to its unknown function in the
cytoplasm. Viral interactions with host nuclear proteins and
subsequent export of these latter into the cytoplasm seem to be
diverse phenomena, which are probably infection stage-related.
Further studies on how host nuclear factors mediate virus-
host interactions will shed light on how viruses control their
movement and replication by hijacking host nuclear factors and
their downstream pathways.

MATERIALS AND METHODS

HMG Domain Prediction
Nucleus localization signal was predicted using cNLS Mapper
with a cut-off score of 5.61 (Kosugi et al., 2009a). Nucleolus
localization signal was predicted using NoD with a cut-off score
of 0.81/1.002 (Scott et al., 2011). The conserved domains of
HMG were defined by querying against conserved domains
in NCBI3 (Jones et al., 2014; Marchler-Bauer et al., 2015;
Marchler-Bauer et al., 2017). The NetNES 1.1 server was used to
predict a nuclear export signal, which indicated that a motif at
44–50 aa is responsible for nuclear export, albeit with a weak
signal (below threshold) (la Cour et al., 2004).

1http://nls-mapper.iab.keio.ac.jp
2http://www.compbio.dundee.ac.uk/www-nod/
3https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi

Frontiers in Plant Science | www.frontiersin.org 11 December 2020 | Volume 11 | Article 59766578

http://nls-mapper.iab.keio.ac.jp
http://www.compbio.dundee.ac.uk/www-nod/
https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-597665 December 10, 2020 Time: 20:48 # 12

Alazem et al. HMG Affects BaMV Systemic Movement

Phylogenetic Analysis
Protein sequences of NbHMG1/2 were blasted against the NCBI
database. Similar sequences (with at least 70% similarity) were
used to generate phylogenetic trees in MEGA 6.0 software and
by applying the Neighbor Joining method.

Plant Growth and Virus Induced Gene
Silencing (VIGS)
N. benthamiana plants were grown at 28◦C in a walk-in
plant growth chamber under a 16-h-light/8-h-dark cycle with
a white light (Philips TLD 36W/840 ns) intensity of 185–222
µmol m−2 s−1 at the leaf surface, and a relative humidity
of approximately 70%. VIGS was carried out as described
previously (Senthil-Kumar and Mysore, 2014). In brief, 18-day-
old N. benthamiana plants where infiltrated with Agrobacterium
strain C58C1 carrying either TRV1 or TRV2 vector, with
the latter carrying ∼300 bp fragments of NbHMG1 or PDS
as a phenotype control. In addition, the TRV2 vector (with
mCherry insert) was agroinfiltrated alongside TRV1 as a vector
control (TRV-EV). Seven-to-eight days post-infiltration (dpi),
the control plants silenced with PDS presented a bleached
phenotype, indicating that silencing was effective. Leaves 7 and
8 of NbHMG1/2a-silenced plants were later infiltrated with
pKBG to assess the effect of NbHMG1/2a-silencing on BaMV
movement (Liou et al., 2014). pKBG-infiltrated leaves (leaves
7 and 8) and systemically infected leaves (leaves 11 and 12)
were collected at 4, 5, and 6 dpi for further analyses. The VIGS
experiment was tested in three biological replicates, each of which
consisted of three plants.

Overexpression of NbHMG1/2a
Full-length NbHMG1/2a was cloned into the expression vector
pBin61, with 3xHA-mCherry tagged on the N-terminus of
NbHMG1/2a (pBin-HMG). The vector pBin61-3HA-mCherry
(pBin-mCherry) was used as a control (Huang et al., 2017b).
The BaMV infectious clone pKBG (BaMV construct expressing
GFP) (Liou et al., 2014) was used to infect plants, and the
empty vector pKn was used as a control. All clones were
transferred into A. tumefaciens C58C1 strain for agroinfiltration.
Fully expanded N. benthamiana leaves (leaves 7 and 8) were
co-infiltrated with four different construct combinations: pBin-
HMG with pKBG, pBin-HMG with pKn, pKBG with pBin-
mCherry, or pKn with pBin-mCherry. Infiltrated leaves (leaves
7 and 8) and systemic leaves (leaves 11 and 12) were collected
at 4, 5, and 6 dpi for further analysis. The results were
tested in three biological replicates, each of which consisted
of three plants.

RNA Analyses
Total RNA Extraction
Total RNA was extracted from leaves using TRIzol (Invitrogen,
Carlsbad, CA, United States), purified according to the
phenol-chloroform method, and then precipitated in 0.1 volume
of 3 M NaOAc and 2.5 volume of 100% ethanol.

Northern Blot Analysis
BaMV RNA was detected as described previously (Alazem
et al., 2014, 2017). In brief, total RNA (2 µg) was glyoxylated
and then separated by electrophoresis on a 1% agarose
gel. The RNA was then transferred onto a Hybond-N+
membrane (GE Healthcare, Little Chalfont, Buckinghamshire,
United Kingdom), cross-linked under UV light, and
hybridized against P32-labeled (–)CP to detect (+)BaMV
(Lin et al., 1993).

Real-Time Quantitative PCR (RTqPCR)
Each RNA sample (2 µg) was treated with RQ1-DNase (Promega,
Madison, WI, United States) for 30 min at 37◦C. RNA
samples were then subjected to first-strand cDNA synthesis
with Superscript III (Invitrogen). cDNA was then diluted
to a final concentration of 20 ng/µl. Primers used for
RTqPCR are listed in Supplementary Table S1. All RTqPCR
reactions were performed with SYBR Green Supermix (Applied
Biosystems, Foster City, CA, United States), following the
manufacturer’s instructions. RTqPCR was carried out on three
biological replicates, with three technical replicates for each
biological replicate.

Protein Blot
Total protein from N. benthamiana leaves was extracted as
described previously (Alazem et al., 2014). Briefly, leaves
(approximately 0.1 g) were ground to fine powder in liquid
nitrogen and homogenized by adding a similar volume of
extraction buffer [0.1 M glycine NaOH (pH 9.0), 0.1 M NaCl,
0.5 mM EDTA, 2% sodium dodecyl sulfate (SDS), and 1%
sodium laurosarcosine] (Varallyay et al., 2017). Samples were
boiled for 5 min and subsequently centrifuged at 13,000 rpm
for 5 min. Supernatants were then transferred to new tubes.
For BaMV CP detection, crude protein extract (25 µl) was
loaded with 2 × dye (1 M Tris, 10% SDS, 100% glycerol,
and 900 ml of β-mercaptoethanol in 50 ml of H2O) onto
10% SDS-polyacrylamide gels for Western blot analysis, and
membranes were hybridized with BaMV anti-CP sera (Lin
et al., 1992), anti-HA, anti-Histone H2, anti-Tubulin, or anti-
actin (Sigma).

Nuclear fractionation was performed based on the protocol
described by Kinkema et al. (2000). Briefly, N. benthamiana
leaves were homogenized in Honda buffer (2.5% Ficoll 400, 5%
dextran T40, 0.4 M sucrose, 25 mM Tris-HCl, pH 7.4, 10 mM
MgCl2, 10 mM β-mercaptoethanol, and a proteinase inhibitor
cocktail) by using a mortar and pestle and then filtered through
62-µm (pore-size) nylon mesh. Triton X-100 was added to a
final concentration of 0.5%, and the mixture was incubated on
ice for 15 min. The solution was centrifuged at 1,500 g for
5 min, and the pellet was washed with Honda buffer containing
0.1% Triton X-100. The pellet was resuspended gently in 1 ml
of Honda buffer and transferred to a microcentrifuge tube.
This nucleus-enriched preparation was centrifuged at 100 g for
1 min to pellet starch and cell debris. The supernatant was
centrifuged subsequently at 1,800 g for 5 min to pellet the nuclei
(Kinkema et al., 2000).
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Yeast Two-Hybrid Assay
Yeast two-hybrid assays were performed according to protocols
of the manufacturers of the GAL4 Two-Hybrid Phagemid
Vector kits (Agilent Technologies, Inc., 2011). The full-length
coding sequences of NbHMG1/2a, BaMV-CP and BaMV-
TGBp1 were cloned downstream of the GAL4 activation
domain (AD) or GAL4 DNA-binding domain (BD). Rich
medium yeast extract, peptone, dextrose (YPD) was used
to grow yeast under non-selective conditions. To test the
interaction between NbHMG1/2a and CP or TGBp1, we
coexpressed the constructs in YRG-2 yeast cells, and selected
by incubation in leucine-tryptophan-histidine medium at 28◦C
for 2–3 days until colonies appeared. Each experiment was
repeated three times.

Confocal Microscopy
To view the subcellular localization of NbHMG1/2a,
N. benthamiana leaves were infiltrated with Agrobacterium
strain C58C1 carrying pBin-mCherry or pBin-mCherry-HMG,
and images were taken by confocal microscopy at various
timeframes after infiltration. In some agroinfiltrated leaves,
pBin-eGFP-Fib was co-expressed as a nucleolar marker. For
BaMV infection, leaves were first agroinfiltrated with pKBG
(OD, 0.005), agroinfiltrated with pBin-mCherry or pBin-
mCherry-HMG (OD, 0.5) 5 days later, and leaves were then
observed after a further 2 days. To visualize nuclei in leaf
epidermal cells, DAPI (4′,6-diamidino-2-phenylindole) was
infiltrated into N. benthamiana leaves and then leaves were
visualized immediately using a Zeiss LSM510 laser scanning
microscope with a 403/1.2 W Korr UV-VIS-IR objective lens.
Images were captured using LSM510 software with filters
for DAPI (excitation/emission: 405 nm/480–510 nm), GFP
(excitation/emission: 488 nm/505–575 nm), and mCherry
(excitation/emission: 543 nm/560–615 nm). All images were
processed and cropped using Zeiss LSM Image Browser and
Photoshop CS5 (Adobe).
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Supplementary Figure 1 | Sequence similarity between NbHMG1/2 a and b for
the coding region (CDS), 5′ UTR, and 3′ UTR.

Supplementary Figure 2 | NbHMG1/2a localization in BaMV-infected
N. benthamiana at 1.5 dpi. N. benthamiana leaves were co-agroinfiltrated with
pKBG or empty vector (pKn) combined with either pBin-HA-mCherry or
pBin-HA-mCherry-HMG, as described in the legend of Figure 6. Confocal
microscopic observation was carried out at 1.5 dpi. Scale bars represent 50 µm.
The experiment was repeated three times with similar results, and representative
images are shown.

Supplementary Figure 3 | NbHMG1/2a localization in BaMV-infected
N. benthamiana at 2 dpi. The experiment was carried out as described in
Supplementary Figure S2, except confocal analyses were conducted at 2 dpi.

Supplementary Figure 4 | NbHMG1/2a localization in BaMV-infected
N. benthamiana at 3 dpi. The experiment was carried out as described in
Supplementary Figure S2, except confocal analyses were conducted at 3 dpi.

Supplementary Figure 5 | Expression levels of BaMV-RDR, TRV-RDR, and
NbHMG1/2a in N. benthamiana plants silenced with NbHMG1/2a. Transcript
levels of BaMV-RDR (A), TRV-RDR (B), and NbHMG1/2a (C) in BaMV-inoculated
N. benthamiana leaves at 6 dpi. Plants were already infiltrated with the empty
TRV-silencing vector (EV), or with TRV-HMG (HMGi) 7–8 days before BaMV
infection. Statistical analysis was carried out as described in Figure 3, with ∗ and
∗∗ representing P < 0.05 and < 0.01, respectively.

Supplementary Figure 6 | Expression of BaMV-RDR in N. benthamiana plants
transiently expressing NbHMG1/2a-mCherry. Transcript levels of BaMV-RDR in
BaMV-inoculated N. benthamiana leaves at 6 dpi in control plants (pBin-mCherry)
and NbHMG1/2a-mCherry expressing plants (pBin-HMG). Statistical analysis was
carried out as described in Figure 3, with ∗∗ representing P < 0.01.

Supplementary Figure 7 | Protein blot for HA-mCherry (30 kDa) or
HA-HMG-mCherry (45 kDa) in leaves infiltrated with the control vector (pKn).
Leaves from N. benthamiana plants were collected at 4, 5, and 6 dpi for analysis.
The experiment was carried out as indicated in the legend of Figure 5, and was
repeated three times with similar results. Ponceau S was used as a
loading control.

Supplementary Figure 8 | NbHMG1/2a localization in BaMV-infected
N. benthamiana. Leaves of N. benthamiana were first agroinfiltrated with pKBG
(BaMV) or pKn (vector), and then agroinfiltrated with mCherry or mCherry-HMG
5 days later. Samples were collected 2 days after mCherry or mCherry-HMG
expression for confocal microscopic observation. DAPI was infiltrated into
N. benthamiana leaves before observation to detect nuclei. Scale bars represent
20 µm. The experiment was repeated three times with similar results, and
representative images are shown.

Supplementary Figure 9 | Yeast two-hybrid assay of HMG against BaMV
proteins. Binding assays were performed for HMG against BaMV CP and TGBp1
proteins. Yeast cells were grown in liquid media to an OD600 of 0.1 and then
subjected to a 10−1, 10−2, and 10−3 dilution series. Ten microliters of liquid
medium were grown on SD medium lacking Trp and Leu, or lacking Trp, Leu, and
His. Images were taken 3 days after incubation.

Supplementary Table 1 | Primers used in the study.

Supplementary Table 2 | Probable targets of silencing if the first 300 bp of
HMG1/2a is targeted for silencing.
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Numerous piercing-sucking insects can persistently transmit viral pathogens in
combination with saliva to plant phloem in an intermittent pattern. Insect vectors
maintain viruliferous for life. However, the reason why insect vectors discontinuously
transmit the virus remains unclear. Rice dwarf virus (RDV), a plant reovirus, was found
to replicate and assemble the progeny virions in salivary gland cells of the leafhopper
vector. We observed that the RDV virions moved into saliva-stored cavities in the salivary
glands of leafhopper vectors via an exocytosis-like mechanism, facilitating the viral
horizontal transmission to plant hosts during the feeding of leafhoppers. Interestingly, the
levels of viral accumulation in the salivary glands of leafhoppers during the transmitting
period were significantly lower than those of viruliferous individuals during the intermittent
period. A putative viral release threshold, which was close to 1.79× 104 copies/µg RNA
was proposed from the viral titers in the salivary glands of 52 leafhoppers during the
intermittent period. Thus, the viral release threshold was hypothesized to mediate the
intermittent release of RDV from the salivary gland cells of leafhoppers. We anticipate
that viral release threshold-mediated intermittent transmission by insect vectors is the
conserved strategy for the epidemic and persistence of vector-borne viruses in nature.

Keywords: intermittent transmission, rice dwarf virus, insect vectors, salivary glands, viral release threshold

INTRODUCTION

Several persistent plant viruses of agricultural importance are transmitted to plants by piercing–
sucking insect vectors, such as leafhoppers, planthoppers, and whiteflies (Jia et al., 2018). These
vectors are usually infected with viruses throughout their lifetime, yet they transmit the virus
intermittently (Gamez, 1973; Reynaud and Peterschmitt, 1992; Muniyappa et al., 2000; Ammar
and Nault, 2002; Pu et al., 2012). Intermittent transmission refers to the phenotype that after the
latent period of persistent virus, insect vectors discontinuously transmit the virus for life, rather
than transmitting it daily. The intermittent period ranges from 2 to 14 days, in which the insect
vectors still remain viruliferous (Muniyappa et al., 2000; Pu et al., 2012). However, the reason why
insect vectors intermittently transmit viruses and the association of intermittent transmission with
viral infection in the plant hosts remain unknown. To address the mechanism that underlies the
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intermittent transmission of viruses by insect vectors, it is
essential to understand how the viruses are released from the
salivary glands of insect vectors.

In the salivary glands of insects, most salivary gland cells are
filled with abundant apical plasmalemma-lined cavities in which
saliva is stored (Mao et al., 2017). Virions are generally secreted
together with saliva to the salivary cavities (Hogenhout et al.,
2008; Wei and Li, 2016). The virions then successively move
with saliva into a canal that leads to the salivary canal and a
duct that allows virus-laden saliva to exit the stylets. The virions
are ultimately ejected into the phloem of the plant, while insect
vectors feed on susceptible hosts (Hogenhout et al., 2008; Wei and
Li, 2016). Therefore, the salivary glands of insects serve as the last
barrier for the circulation of the viral pathogen and determines
whether an insect can transmit the virus. A better understanding
of the mechanism that underlies how the virus overcomes the
salivary glands barriers is essential to provide a basis for the
control of viral diseases. Previous studies showed that the salivary
gland release barrier referred to the apical plasmalemma that
separates the salivary cavities for saliva storage (Gray and Gildow,
2003; Mao et al., 2017). Virus in the cytoplasm of salivary glands
must pass through the apical plasmalemma and disseminate into
the salivary cavities for transmission by insect vectors. Therefore,
the transmission efficiency by insect vectors is correlated with the
viral ability to overcome the salivary gland release barrier.

Rice dwarf virus (RDV), belonging to the Phytoreovirus genus
of Reoviridae family, was the first plant virus discovered to be
transmitted by insect vectors (Ishikawa, 1928; Attoui et al., 2012).
RDV causes rice dwarf disease, which results in yield losses in
southern China, Japan, and southeast Asia (Boccardo and Milne,
1984). This virus is primarily transmitted by the leafhopper
vector Nephotettix cincticeps in a persistent-propagative manner,
and the transmission process includes infective and non-infective
periods (Ishikawa, 1928; Fukushi, 1940; Zhong et al., 2003).
The virion is icosahedral and approximately 70 nm in diameter
(Attoui et al., 2012). The viral genome possesses 12 double-
stranded RNA (dsRNA) segments (S1-S12) that encode seven
structural proteins (P1, P2, P3, P5, P7, P8, and P9) and five
non-structural proteins (Pns4, Pns6, Pns10, Pns11, and Pns12)
(Omura and Yan, 1999; Nakagawa et al., 2003; Miyazaki et al.,
2010; Chen et al., 2015a). Once the virus gains access to the
alimentary canal of leafhopper via the stylet and esophagus, the
RDV virions specifically recognize and bind to the undefined
receptors of the filter chamber and enter the epithelium (Chen
et al., 2011). The viral life cycle begins when the viroplasm, which
is composed of the matrix aggregated by non-structural proteins
Pns6, Pns11, and Pns12, is generated for viral propagation (Wei
et al., 2006b; Chen et al., 2015b). At approximately 12 days
post first access to diseased plants (padp), the RDV reaches
the salivary glands of the most viruliferous leafhoppers (Chen
et al., 2011). The leafhopper then becomes RDV transmittable
at approximately 14 days padp (Honda et al., 2007; Chen et al.,
2011). However, how the leafhopper transmits RDV and how
RDV releases from the salivary glands and infects plants via the
stylets of the leafhopper vector remain unknown.

To understand how a virus releases from the salivary gland
and infects plant hosts, the system of RDV–leafhopper system

was investigated. In this study, by applying immunofluorescence
and electron microscopy analyses, RDV infection, replication
in, and release from the salivary gland cells of leafhopper
vectors were characterized. The properties of viral intermittent
transmission by leafhoppers were also shown. Finally, we
proposed a putative threshold for viral release to interpret the
phenotype of viral intermittent transmission by the leafhopper
vectors. We hypothesized that this viral intermittent release
threshold mediates the viral release from leafhopper vectors for
the effective infection of the virus into the plant host.

MATERIALS AND METHODS

Insects, Viruses, and Antibodies
Uninfected N. cincticeps leafhopper individuals were collected
from Yunnan Province, southwest China and propagated for
several generations at 25 ± 3◦C in the laboratory. Rice samples
infected with RDV were also initially collected from Yunnan
Province. These diseased plants served as an original viral source
for transmission by N. cincticeps to rice plants (Oryza sativa L.
ssp. Japonica, variety Nipponbare) under greenhouse conditions.
The infected rice plants were tested using RT-PCR and PCR
assays to make sure that the rice plants were singly infected with
RDV in the absence of rice orange leaf phytoplasma.

Rabbit polyclonal antisera specific for RDV and Pns6
were provided by Dr. Toshihiro Omura (National Agricultural
Research Center, Japan). IgGs of RDV and Pns6 were directly
conjugated to fluorescein isothiocyanate (FITC) and rhodamine,
respectively, according to manufacturer’s instructions (Thermo
Fisher Scientific, United States). The virus-FITC and Pns6-
rhodamine were used for immunofluorescence detection. Actin
dye rhodamine-phalloidin was obtained from Thermo Fisher
Scientific (Waltham, MA, United States). The antibodies against
the glyceraldehyde-3-phosphate dehydrogenase (GADPH) were
obtained from Sangon Biotech (Shanghai, China).

Virus Acquisition and Transmission
Uninfected second-instar nymphs were first allowed to feed on
rice plants with RDV for 2 days and then transferred to healthy
plants for 12 days. At 14 days padp, the salivary glands were
dissected for immunofluorescence assays or electron microscopy.

To characterize the profile of RDV transmission by a group
of leafhoppers, the leafhoppers that fed on diseased rice plants
were then sequentially kept on healthy rice seedlings for 10 days
and individually fed on a healthy rice seedling in one glass
tube for 24 h (Supplementary Figure 1). The leafhoppers
were then transferred daily to new healthy rice seedlings for
13 days (Supplementary Figure 1). All of the rice seedlings
tested were planted in an insect-proof greenhouse for 60 days
(Supplementary Figure 1). To determine whether RDV was
transmitted by leafhoppers to plants, RT-PCR was performed to
test the presence/absence of the RDV P8 gene, which encodes a
major outer capsid protein, in the tested plants.

To determine the viral genome copies in the salivary glands
of viruliferous leafhoppers in the transmitting and intermittent
periods at 19 days padp, leafhoppers that had previously fed
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on diseased plants for 2 days were individually fed on a
healthy rice seedling in a glass tube for 24 h. The bodies of
tested leafhoppers were then collected for RT-PCR to determine
whether or not the insects were infected. The tested rice seedlings
were grown for 60 days and then examined using RT-PCR for
the presence of the RDV P8 gene to determine whether or not
RDV was transmitted by leafhoppers, ultimately enabling the
transmitting or non-transmitting leafhoppers to be distinguished
from the population tested. RT-qPCR was then conducted
on the corresponding salivary glands of transmitting or non-
transmitting leafhoppers to determine the viral gene copies of the
major outer capsid protein P8.

To visualize the viral accumulation in salivary glands of
leafhoppers during the transmitting or intermittent periods,
the salivary glands of the leafhoppers tested post 24 h
inoculation feeding were dissected for immunofluorescence
assays. The methods of viral acquisition, transmission,
and distinguishment for transmitting or non-transmitting
viruliferous leafhoppers from the population tested were the
same as those described above.

RNA Extraction and RT-qPCR Detection
To extract the total RNA of individual insect bodies, the
individual insects were collected in one 1.5 mL Eppendorf tube.
The tubes were then placed in liquid nitrogen. The insect bodies
were ground with pestles and then lysed with 200 µL TRIzol
reagent (Thermo Fisher Scientific). To extract the total RNA
of salivary glands of each individual insect, a pair of salivary
glands was dissected and collected in one 0.5 mL tube. The
salivary glands were then lysed with 100 µL TRIzol reagent.
The subsequent procedures were conducted following the
manufacturer’s instructions. The final concentration of RNAs was
determined using a NanoDrop 1000 (Thermo Fisher Scientific).

To absolutely quantify the viral titers in the salivary glands
of infected leafhoppers, a standard curve of RDV P8 was
first established. In brief, the concentration of the plasmid
DNA, including the RDV P8 gene, was determined using the
NanoDrop 1000. A 10-fold dilution series of plasmid was then
prepared in RNase-free water, and the copy number of the
RDV P8 gene was calculated using the following formula: (DNA
amount × 6.022 × 1023)/(plasmid length × 1 × 109

× 650).
The diluted plasmids were analyzed for their Ct value using
qPCR assays with specific primers of RDV P8 (forward
primer 5′-tacagccatcagctaagccaaa-3′) and reverse primer 5′-
ccgcaacagaccgaaaca-3′). The qPCR assays were performed in
a Mastercycler Realplex4 real-time PCR system (Eppendorf,
Hamburg, Germany) using GoTaq qPCR Master Mix kit
(Promega, Madison, WI). Based on the correlation of the
logarithm of plasmid copy number to base 10 with the
corresponding Ct value, the equation y = –3.506x + 42.981 (x
is the logarithm of plasmid copy number to base 10, y is the Ct
value, and R2 = 0.9987) was established.

The viral titers in the salivary glands of infected leafhoppers
were then determined. The first-strands cDNA of RDV P8
derived from the RNAs of salivary glands were synthesized using
the specific primer (forward primer 5′-tacagccatcagctaagccaaa-3′)
and then analyzed for their Ct values using qPCR assays. The

system and program of the qPCR assay for cDNA were the same
as those of the qPCR assay for plasmid DNA. Based on the Ct
value of each cDNA and the equation y = –3.506x + 42.981,
the copy number of RDV P8, which was used to judge for viral
genome copy, was determined as the log of the copy number per
microgram of insect RNA.

Immunofluorescence Assay
To characterize the viral infection in and release from salivary
glands, uninfected second-instar nymphs were allowed to feed
on rice plants infected with RDV for 2 days and were
then kept on healthy rice seedlings. At 12 days padp, the
salivary glands of these tested leafhoppers were dissected,
fixed in 4% paraformaldehyde in PBS for 10 h, and then
permeabilized in 0.2% Triton X-100 for 24 h. Following
previously described methods (Chen et al., 2017), the salivary
glands were ultimately immunolabeled with antibodies against
virus-FITC for RDV particles, Pns6-rhodamine for viroplasm,
or rhodamine-phalloidin for actin. The resulting samples were
observed using a Leica TCS SP5 inverted confocal microscope
(Wetzlar, Germany).

Electron Microscopy
The salivary glands dissected from infected N. cincticeps were
fixed, dehydrated, and embedded. Ultrathin sections were then
cut as previously described (Mao et al., 2017).

Statistical Analyses
All data for viral titers in the salivary glands of leafhoppers were
analyzed using a two-tailed t-test in GraphPad Prism 6 (San
Diego, CA, United States).

RESULTS

RDV Infection and Replication in Salivary
Gland Cells
To address how RDV was released from the cells of salivary gland
to overcome the salivary gland release barrier, the accumulation
of RDV in the salivary glands was first studied. The salivary
glands of N. cincticeps consist of a pair of principal and accessory
salivary glands. The principal gland contains six types of cells
(I–VI) (Figures 1A,B). The type III-cell was the largest and
separated from each other, while the type VI-cells situated at the
center of the type V-cells were the smallest. Immunofluorescence
assays showed that at 12 days padp, RDV antigens were
localized to the type III-cells (Figure 1C); type II- and III-cells
(Figure 1D); type III-cells, type IV-cells, and accessory salivary
glands (Figure 1E), or they were found throughout the principal
salivary glands (Figure 1F). These results indicated the high
frequency of RDV infection in the type III-cells.

The antibodies against the viral non-structural protein Pns6,
which is a component of the viroplasm matrix (Wei et al., 2006b;
Chen et al., 2015b), were used to examine viral replication.
Immunofluorescence assays showed that various amounts of
viroplasm were distributed in each type of cell, such as type
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FIGURE 1 | RDV infection and replication in the salivary gland cells of viruliferous leafhoppers. (A) Schematic illustration of a salivary gland from an N. cincticeps
leafhopper, modified from Sogawa (1965). (B) Transmission light micrograph of one pair of salivary glands from an N. cincticeps leafhopper. The principal salivary
gland of N. cincticeps consists of six types of cells (I to IV). (C–F) Immunofluorescence microscopy showing RDV infection in different types of salivary gland cells.
(G,H) RDV replication in type III- (G,H) and IV- (I,J) cells. Salivary glands of leafhoppers at 12 days padp were stained with virus-FITC (green), actin dye
phalloidin-rhodamine (red) (C–F), or Pns6-rhodamine (red) (G,H), and then examined by confocal microscopy. The arrows indicate viroplasm. Panels (H,J) are
enlarged images of the boxed areas in panels (G,I), respectively. PSD, principal salivary duct; SD, salivary duct; Sa, spherical appendage; ASG, accessory salivary
gland. Bars, 100 µm (B–F), 20 µm (G,I).

III- and IV-cells (Figures 1G–J). As indicated by the yellow in
Figures 1G–J, RDV was clearly localized at the periphery of
viroplasm. These results indicated that RDV could replicate more
progeny virions in most cells of the salivary gland.

RDV Release From Salivary Gland Cells
Using immunofluorescence assays, we then investigated the
process of RDV release from salivary gland cells into salivary
cavities. The type III-cells were filled with apical plasmalemma-
lined saliva-storing cavities, which formed the loose network
establishing the intracellular space of secretory cells (Figure 2A).

At 12 days padp, the RDV virions appeared as discrete, punctate
inclusions inside or at the periphery of salivary cavities in type
III- and VI-cells (Figures 2A–C). In type IV-cells, intracellular
canaliculi, which discharged the main protein components for
the sheath saliva (Sogawa, 1967), were immunostained with the
actin dye phalloidin-rhodamine and penetrated the cytoplasm
in a coarse reticular manner (Figure 2D). A large number of
virions were scattered throughout the cytoplasm of type IV-cells
or located within the canaliculi (Figure 2D). Together, these
results provide evidence for the viral release from salivary gland
cells via entry into the cavities or intracellular canaliculi.
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FIGURE 2 | Immunofluorescence microscopy showing the release of RDV from salivary gland cells. (A) Abundant RDV virions that have accumulated inside the
cytoplasm at the periphery of apical plasmalemma of type III-cells of salivary gland. (B–D) A number of RDV virions entering the cavities of type III (B) or VI (C) cells
or into the canaliculi of type IV-cells of salivary gland (D). The salivary glands of leafhoppers at 12 days padp were stained with virus-FITC (green) or actin dye
phalloidin-rhodamine (red), and then examined by confocal microscopy. Arrows indicate virus in the canaliculi. Panels i to iv are enlarged images of the boxed areas
in panels (A–D), respectively. APL, apical plasmalemma; Cv, cavity; IC, intracellular canaliculi. Bars, 20 µm (A–C), 10 µm (D).

FIGURE 3 | Electron micrographs demonstrating the entry of RDV into cavities by utilizing vesicular compartments via an exocytosis-like process. (A) Virus-laden
vesicular compartments within the cytoplasm of salivary gland cells. (B) Virus-laden vesicular compartments in the cytoplasm moving close to the salivary cavities.
(C) Virus-laden vesicular compartments enter into the salivary cavities by fusing with the apical plasmalemma. (D) Virus-laden vesicular compartments interspersing
within the salivary cavities. Red arrows indicate virus-laden vesicular compartments. Black arrow heads indicate the virions in vesicular compartments. Panels II are
enlarged images of the boxed areas in panels I of (A–D), respectively. SC, salivary cytoplasm; APL, apical plasmalemma; Cv, cavity; VC, vesicular compartment.
Bars, 500 nm (A-I,B-I,C-I,D-I), and 100 nm (A-II,B-II,C-II,D-II).

In addition, electron microscopy showed that double-layered
RDV particles of approximately 70 nm in diameter were
sequestered within vesicular compartments in various sizes
in the cytoplasm of salivary gland cells or at the periphery
of salivary cavities (Figures 3A,B). The migration of virus-
laden vesicular compartments that were close to the salivary
cavities led to the fusion of the apical plasmalemma with
the vesicular compartments (Figure 3C). Finally, virus-laden
vesicular compartments were released to the salivary cavities

(Figure 3D). These observations indicate that the release of RDV
virions into the saliva-stored cavities takes advantage of vesicular
compartments via an exocytosis-like manner.

Intermittent Transmission of RDV by
N. cincticeps
To understand the effect of RDV release via virus-laden
vesicular compartments on viral transmission, the profiles of
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RDV transmission by N. cincticeps from 13 to 26 days padp
was characterized. The curve for the daily transmission rates
of RDV by individual N. cincticeps showed a wave pattern
rather than a stable trend (Figure 4A), revealing a viral
intermittent transmission pattern (Table 1). Approximately
61.8% of individual N. cincticeps showed the following pattern:
they transmitted RDV for 1 day, then ceased transmission, and
then some days later transmitted the virus for 1 day. The period
of intermittent transmission ranged from 1 to 13 days (Table 2).
Approximately 38.2% of N. cincticeps displayed the ability to
continuously transmit RDV, and the period of transmission
ranged from 2 to 5 days. The intermittence of viral transmission
by individual N. cincticeps clarified the wave pattern observed in
the graph of the daily transmission rate (Figure 4A).

A Release Threshold Mediating Viral
Intermittent Release
To address the reason for viral intermittent transmission by
N. cincticeps leafhoppers, the viral titers in salivary glands of
N. cincticeps during the intermittent or transmitting periods were
analyzed. The gene copy number of RDV P8 in the salivary
glands of N. cincticeps served as viral titers. The results showed
that the total RNA amount of a pair of salivary glands of one
adult leafhopper ranged from 822 to 1,524 ng. The total RNA
amount of one adult leafhopper ranged from 2,145 to 9,769 ng.
At 19 days padp, the mean copy number of the viral genome
in the salivary glands of 50 transmitting adult leafhoppers was
2.76 × 101 copies/µg RNA, which was significantly lower than
the mean copy number of 3.8 × 103 copies/µg RNA in the
salivary glands of 52 leafhoppers during the intermittent period
(Figure 4B). The immunofluorescence assays showed that the
RDV antigens in the salivary glands of leafhoppers during the
transmitting period were less than those of the leafhoppers during
the intermittent period (Figure 4C). Western blots also indicated
a lower accumulation of RDV P8 in the salivary glands of
N. cincticeps vectors during the transmitting period compared
with those of viruliferous leafhoppers during the intermittent
period (Figure 4D). These findings indicated that the viral
load in the salivary glands decreased significantly owing to
viral release into the rice plants, which was also the process of
viral transmission by leafhoppers. Moreover, the transmitting
and non-transmitting behaviors of viruliferous leafhoppers could
result from a release threshold for viral release.

We then analyzed the number of viral genome copies in the
salivary glands of 52 leafhoppers in the intermittent period (copy
number ranging from 1.03 × 100 to 1.79 × 104 copies/µg RNA;
Table 2) and deduced that the highest 1.79 × 104 copies/µg
RNA were very close to the viral release threshold. Below this
putative RDV release threshold, the RDV tended to accumulate,
and few of the virions could release from the salivary gland
cells in most leafhoppers (Table 2). Once the viral accumulation
in the salivary glands of leafhoppers increased above the viral
release threshold, the virus was released from the salivary gland
cells and entered the salivary cavities for transmission by most
leafhoppers. Therefore, this release threshold possibly mediated
the intermittent transmission of RDV by N. cincticeps.

DISCUSSION

To date, few reports have clarified the mechanism by
which viruses overcome the salivary glands release barrier.
Non-propagative persistent luteoviruses and propagative
rhabdoviruses can overcome this barrier via transcytosis or
membrane budding (Gildow, 1982; Brault et al., 2006; Mao
et al., 2017). The propagative rice gall dwarf virus (RGDV)
utilizes virus-induced inclusion as a vehicle and causes an
exocytosis-like process for viral release into the salivary cavities
(Mao et al., 2017). In this study, we found that the progeny RDV
could release from salivary gland cells and enter the salivary
cavities utilizing virus-laden vesicular compartments via the
exocytosis-like process (Figures 1–3). These viral releases caused
intermittent transmission of RDV by most leafhopper vectors
(Table 1). Most importantly, the viral titers in the salivary glands
of leafhoppers, which were in the transmitting period, were
significantly lower than the viral titers in the salivary glands of
leafhoppers, which were in the intermittent period (Figure 4).
We proposed that the putative RDV release threshold (close
to 1.79 × 104 copies/µg RNA) (Table 2) mediated the viral
intermittent transmission by leafhoppers, thus, facilitating RDV
effective infection in the plant host.

Salivary Gland Release Barrier
The salivary gland of leafhoppers secretes two different types of
saliva, namely, coagulable and watery saliva (Sogawa, 1968). At
the beginning of feeding, leafhoppers eject coagulable saliva to
form salivary sheaths that surround the stylets for protection
(Hattori et al., 2005). The watery saliva, which lubricates the
stylet and introduces enzymes, ejects when the stylet penetrates
the host plant tissues (Hattori et al., 2005). Simultaneously, virus
is introduced with the watery saliva into the plant. Type III-
cells secrete watery saliva; type IV-cells secrete the components
of coagulable saliva, and type V-cells primarily secrete phenolase
(Sogawa, 1967, 1968). We found that the virus passed through the
apical plasmalemma of type III- and VI-cells, which then accessed
the salivary cavities and mixed with watery saliva for release. In
type IV-cells, the RDV entered the intracellular canaliculi and
mixed with coagulable saliva for release. However, the biological
significance of virus introduction with coagulable saliva that
would solidify into the salivary sheath was unknown. However,
we hypothesized that the main pathway of viral entry into plants
hosts is the viral release from type III-cells and introduction
into watery salivary, which is owing to the highest number of
type III-cells and well liquidity and the high volume of watery
saliva. Therefore, most viral release is associated with the apical
plasmalemma of type III-cells, and the intermittent release from
salivary gland cells may be primarily controlled in type III-cells.

Because the viral replication, accumulation, and spread
in insect vectors are persistent, it was thought that salivary
glands acted as the key barriers that affected viral intermittent
release from salivary gland cells, leading to viral intermittent
transmission. Salivary glands acted as a viral reservoir. If the viral
release was simultaneous with viral replication, the viral titers
would be stable, and the viral titers would be non-distinctive
among the salivary glands of leafhoppers. However, we found that
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FIGURE 4 | RDV titers in the salivary glands of leafhoppers during the transmitting period were significantly lower than those in the salivary glands of viruliferous
leafhoppers during the intermittent period. (A) The profile of transmission rate of RDV by a group of leafhoppers per day. The transmission rate was determined using
RT-PCR to detect the presence of RDV P8 gene in plants. (B) Viral titers in the salivary glands of transmitting and viruliferous leafhoppers during the intermittent
period. An RT-qPCR assay of viral titers in the salivary glands of transmitting leafhoppers was highly significantly lower than that of the non-transmitting viruliferous
leafhoppers at 19 days padp. ∗ ∗ ∗P < 0.0001. (C) Immunofluorescence microscopy exhibiting low viral infection in the salivary glands of the transmitting
leafhoppers compared with viruliferous leafhoppers during the intermittent period. (D) Western blot of RDV P8 and GADPH in the salivary glands of transmitting
leafhoppers and viruliferous leafhoppers during the intermittent period. The samples were separated by SDS-PAGE and the presence of P8 was examined with
P8-specific antibodies. The relative intensities of bands in the analyses of P8 are shown below the bands. GADPH detected with GADPH-specific IgG is shown to
demonstrate the loading of equal amounts of protein.
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TABLE 1 | Pattern of daily transmission of RDV by individual leafhoppers.

Insect no. Day padp

13 14 15 16 17 18 19 20 21 22 23 24 25 26

1 ◦ • ◦ ◦ ◦ ◦ ◦ ◦ D

2 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • •

3 • ◦ ◦ • • ◦ • • • • • D

4 • ◦ D

5 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • • • •

6 ◦ ◦ ◦ • • • ◦ ◦ • ◦ D

7 • ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ • • • •

8 • ◦ • ◦ ◦ ◦ D

9 ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦

10 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • D

11 • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

12 ◦ ◦ • • ◦ D

13 ◦ • ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ •

14 ◦ ◦ ◦ ◦ ◦ ◦ • • • D

15 • ◦ ◦ ◦ D

16 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ •

17 • ◦ D

18 ◦ ◦ • ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦

19 ◦ ◦ ◦ ◦ ◦ • • • ◦ • ◦ • • •

20 ◦ • ◦ D

21 • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

22 ◦ ◦ ◦ ◦ • ◦ • ◦ • D

23 ◦ ◦ • ◦ D

24 ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦

25 ◦ ◦ ◦ ◦ • ◦ ◦ • D

26 ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • • • • ◦ •

27 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦

28 • ◦ ◦ D

29 ◦ • ◦ • • ◦ • D

30 ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

31 ◦ • ◦ D

32 ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ • • • • •

33 ◦ ◦ ◦ ◦ • ◦ D

34 ◦ ◦ ◦ ◦ • ◦ ◦ D

◦, tested plant was not infected; •, tested plant was infected; D, the insect died.

the viral titers within the salivary glands of leafhoppers during the
transmitting period was significantly lower than the viral titers
within the salivary glands of leafhoppers during the intermittent
period. Moreover, in the group of viruliferous leafhoppers during
the intermittent period, the viral titers in salivary glands were
not consistent, and different individuals had large variations
in viral titers (Table 2). Therefore, it was presumed that a
certain threshold of viral release likely existed during a period of
viral accumulation.

Viral Release Threshold
Among the viral titers in salivary glands of viruliferous
leafhoppers during the intermittent period, the highest viral
titer was likely to be close to the viral release threshold.
A model for viral intermittent transmission controlled by viral

TABLE 2 | Viral genome copies in the salivary glands of viruliferous leafhoppers
during the intermittent period.

Insect no. Copies/µg RNA

1 1.09E + 04

2 2.84E + 03

3 6.88E + 03

4 1.62E + 03

5 1.96E + 03

6 2.46E + 03

7 5.06E + 03

8 1.20E + 01

9 4.02E + 01

10 5.35E + 02

11 2.26E + 03

12 1.01E + 04

13 8.98E + 03

14 6.10E + 03

15 7.75E + 02

16 1.03E + 00

17 8.49E + 03

18 3.13E + 03

19 1.76E + 04

20 4.42E + 03

21 5.12E + 03

22 4.15E + 03

23 6.79E + 03

24 1.01E + 04

25 2.59E + 03

26 6.36E + 00

27 1.09E + 04

28 1.56E + 00

29 4.38E + 01

30 5.71E + 03

31 8.52E + 00

32 8.98E + 03

33 3.88E + 03

34 3.35E + 03

35 9.55E + 03

36 6.15E + 03

37 3.11E + 02

38 3.55E + 03

39 1.28E + 03

40 7.34E + 00

41 3.46E + 00

42 1.79E + 04

43 5.55E + 00

44 2.04E + 02

45 5.11E + 00

46 7.68E + 01

47 3.84E + 00

48 6.76E + 00

49 6.56E + 00

50 7.27E + 00

51 9.77E + 00

52 3.07E + 03
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FIGURE 5 | A proposed model for viral intermittent transmission controlled by the viral release threshold. Viruses first access the cytoplasm of salivary glands and
begin replication for the production of progeny virions. Abundant new virions are then formed and sequestered in vesicular compartments before their final release to
salivary cavities in an exocytosis-like manner. During this process, the level of viral accumulation is still below the virus release threshold, and the leafhopper does not
transmit the virus. Therefore, intermittent periods of viral transmission are observed. With the continued replication, the level of viral accumulation gradually exceeds
the virus release threshold. Thus, the newly formed virions traverse the apical plasmalemma and enter the salivary cavities in a free form or using virus-laden vesicular
compartments. The virions then enter the salivary duct. Once the insects feed or probe, virions are ejected with saliva into the phloem of plant hosts, causing viral
infection and transmission. Vp, viroplasm; APL, apical plasmalemma; BL, basal lamina; Cv, cavity; N, nucleus; SC, salivary cytoplasm; SD, salivary duct; VC,
vesicular compartment.

release threshold was then proposed (Figure 5). Viruses in the
salivary glands of viruliferous leafhoppers during the intermittent
period are still accumulating (Figure 5). Once the level of viral
accumulation exceeds the threshold, virions are released from
the salivary gland cells and infect the plant hosts. We consider
this to be the threshold-controlled viral release strategy. When
the level of viral accumulation decreases below the virus release
threshold, leafhoppers enter the intermittent period (Figure 5).
Once the level of viral accumulation reaches or exceeds the
virus release threshold, the leafhopper once again transmits the
virus (Figure 5).

An example of a viral release threshold that controls the release
of plant viruses has previously described to have taken place
during the infection of Southern rice black-streaked dwarf virus
(SRBSDV) in planthoppers (Lan et al., 2016). The reason why the
SRBSDV could infect but not be transmitted by the incompetent
vectors is that the viral titers in the midgut epithelium are unable
to reach the threshold needed for viral dissemination into the
midgut muscles and then into the salivary glands (Lan et al.,
2016). This suggests that the viral release threshold plays an

important and universal role in mediating the viral ability to
overcome barriers in insect vectors.

Viral Intermittent Transmission
The intermittent transmission of insect-borne plant viruses has
been shown to occur in leafhoppers, planthoppers, and whiteflies
(Gamez, 1973; Reynaud and Peterschmitt, 1992; Muniyappa
et al., 2000; Ammar and Nault, 2002; Pu et al., 2012). However, the
mechanism that underlies the intermittent transmission remains
unknown. Among rice-infecting viruses, the SRBSDV, which over
the past decade has caused the severe loss of rice production
throughout southern China and northern Vietnam, has been
recorded to be continuously transmitted by planthopper vectors
(Pu et al., 2012). The longest period of continuous transmission
of SRBSDV could be up to 22 days (Pu et al., 2012), while
we found that the period of continuous transmission for RDV
was only 5 days. Therefore, the longer period of continuous
transmission of SRBSDV compared with that of RDV may be one
of the reasons why SRBSDV has caused greater damage to rice
production than RDV.
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What is the biological significance of viral intermittent
transmission by insect vector? We hypothesize that there are
two points at least. (1) It was presumed that the intermittent
transmission correlated with the viral replication cycle, because
in the salivary gland cells, the period from the RDV replication
to the assembly of progeny virions, together with the induction
of various inclusion bodies formation, such as vesicles, requires
at least one cycle of viral replication (24 h) (Wei et al., 2006a,b;
Chen et al., 2012). (2) It is known that to establish an infection
in a plant host, a certain viral titer (dilution limit point)
is required. The virus, which accumulated to some degree,
guaranteed the successful and effective infection of the virus
into the plant host after release. From these perspectives, viral
intermittent transmission and the existence of virus release
threshold are reasonable. We anticipate that the viral release
threshold-mediated intermittent transmission by insect vectors
is the conserved strategy for the epidemic and persistence of
vector-borne viruses in nature.
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Viruses in genus Fijivirus (family Reoviridae) have caused serious damage to rice,
maize and sugarcane in American, Asian, European and Oceanian countries, where
seven plant-infecting and two insect-specific viruses have been reported. Because the
planthopper vectors are the only means of virus spread in nature, their migration and
efficient transmission of these viruses among different crops or gramineous weeds in
a persistent propagative manner are obligatory for virus epidemics. Understanding the
mechanisms of virus transmission by these insect vectors is thus key for managing the
spread of virus. This review describes current understandings of main fijiviruses and
their insect vectors, transmission characteristics, effects of viruses on the behavior and
physiology of vector insects, molecular transmission mechanisms. The relationships
among transmission, virus epidemics and management are also discussed. To better
understand fijivirus-plant disease system, research needs to focus on the complex
interactions among the virus, insect vector, insect microbes, and plants.

Keywords: plant-infecting fijiviruses, planthopper vectors, transmission, molecular determinants, virus epidemics

INTRODUCTION

Plant-infecting fijiviruses have double-shelled, icosahedral particles approximately 70 nm in
diameter, with spherical, short surface spikes (A spikes) on each of the 12 vertices of the icosahedron
(Harding et al., 2006; Attoui et al., 2012). The outer shell is very fragile, leaving the inner shell
with 12 B spikes (Teakle and Steindl, 1969; Hatta and Francki, 1977). The viral genome, which
contains 10 segmented double-stranded RNAs (dsRNA) varying from approximately 1.8–4.5 kb,
is approximately 29 kb within the core capsid of the virus particle (Milne et al., 1973). Segments
1–4, 6, 8, and 10 are monocistronic (only one open reading frame, ORF), while segments 5 (some
fijiviruses), each of 7 and 9 of plant-infecting fijiviruses contains two ORFs (Azuhata et al., 1992;
Isogai et al., 1998; Firth and Atkins, 2009; Shimizu et al., 2011; Huang and Li, 2020).

Fijiviruses are transmitted by delphacid planthoppers in a persistent-propagative manner (Pu
et al., 2012). In general, after eggs hatched, the nymphs will develop to adults through five instars
and both nymphs and adults can transmit viruses (Holder and Wilson, 1992). Planthoppers acquire
fijiviruses when feeding in infected plants using their piercing-sucking mouthparts. Then, the
virions enter and replicate into the midgut epithelia. After replication, the newly assembled virions
disseminate into the hemolymph or other tissues followed by moving into the salivary glands.

Frontiers in Microbiology | www.frontiersin.org 1 February 2021 | Volume 12 | Article 62826294

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2021.628262
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmicb.2021.628262
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2021.628262&domain=pdf&date_stamp=2021-02-24
https://www.frontiersin.org/articles/10.3389/fmicb.2021.628262/full
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-628262 February 18, 2021 Time: 19:6 # 2

Zhang et al. Fijivirus Transmission and Epidemiology

Finally, the virions are released from saliva to plant phloem cells
when feeding (Hogenhout et al., 2008; Danthi et al., 2010). The
viruses replicate and induce small tumors or enations in phloem
cells of susceptible plants in families Cyperaceae, Gramineae, and
Liliaceae (Huang and Li, 2020).

In nature, plant infecting fijiviruses are only spread by
planthoppers vectors except garlic dwarf virus (GDV) through
vegetative propagation materials (Nault, 1994). In most cases,
fijivirus epidemics around the world can largely be attributed
to the population density and transmission efficiency of their
planthopper vectors among the different crops or gramineous
weeds. Understanding the transmission mechanisms is crucial
for accurate forecast and management. This review summarizes
current insights of vectors for different fijiviruses, effect of
viruses on the behavior and physiology of vectors, molecular
determinants involved in the interaction between vector insects
and the viruses, and ecological impacts of transmission biology
on disease epidemiology.

FIJIVIRUSES, PLANT HOSTS, DISEASE
DESCRIPTION AND DISTRIBUTION

Eight plant-infecting fijiviruses (Table 1) and one insect-specific
fijivirus, Nilaparvata lugens reovirus, have been acknowledged by
The International Committee on Taxonomy of Viruses, ICTV)
(Attoui et al., 2012). Recently, another insect specific fijivirus,
Psammotettix alienus reovirus, was also reported (Fu et al.,
2020). Common plant hosts include flatsedge (Juncellus serotinus
[Rottb.] C. B. Clarke) and variable flatsedge (Cyperus difformis
L.) in family Cyperaceae, oat (Avena sativa L.), rice (Oryza
sativa L.), sugarcane (Saccharum officinarum L.), maize (Zea
mays L.), barley (Hordeum vulgare L.), rye (Secale cereale L.),
wheat (Triticum aestivum L.), and pangola grass (a sterile triploid
of Digitaria decumbens Stent) in family Gramineae, and garlic
(Allium sativum L.) in family Liliaceae (Boito and Ornaghi, 2008;
Li et al., 2012; Lefkowitz et al., 2018; Wu et al., 2020).

Fiji disease virus (FDV), the first of eight known plant
infecting fijiviruses, was reported in 1886 in Fiji (Egan et al.,
1989). By 1906, the virus had destroyed thousands of acres of
sugarcane (Hughes and Robinson, 1961). Now, FDV is known
to cause this serious disease of sugarcane in Southeast Asian
and Pacific countries, including New Guinea, Fiji, Australia,
Madagascar, Vanuatu, the Philippines, and Samoa (Harding et al.,
2006; Magarey et al., 2019). Its only known naturally infected
host is sugarcane (S. officinarum L.), but other Saccharum species,
Sorghum species, and maize can be experimentally inoculated
with viruliferous planthoppers (Hughes and Robinson, 1961;
Dhileepan et al., 2003). GDV, the only fijivirus that infects Allium
species, has only been reported from southeastern France where
it has caused occasional epidemics since 1988 (Lot et al., 1994).
Although it is considered to be of low economic importance
because of its limited distribution, the epidemics have caused
high yield losses (Lot et al., 1994). Maize rough dwarf virus
(MRDV) was initially found in northern Italy and then several
European countries, where it had severe outbreaks because of
the planting of maize hybrids that have higher yields but are

more susceptible to the virus (Milne and Lovisolo, 1977; Marzachi
et al., 1996). The hosts on which MRDV has so far been found
naturally occurring are maize and some gramineous weeds,
including Digitaria sanguinalis (L.) Scopoli, Echinochloa crus-
galli (L.) P. Beauv, and Cynodon dactylon (L.) Persoon (Lovisolo,
1971). Mal de Río Cuarto virus (MRCV), initially reported as
a strain of MRDV, was first reported at the end of the 1960s
in maize fields in Río Cuarto County in Argentina and is now
a major constraint to maize production in Argentina (Nome,
1981; Distefano et al., 2002). In addition to maize, it can also
infect winter small grains (barley, oat, rye, and wheat), spring–
summer grains (millet and sorghum) as well as several annual
and perennial weeds (Nome, 1981; Pardina et al., 1998; Ornaghi
et al., 2000). Oat sterile dwarf virus (OSDV), originally studied
simultaneously in the former Czechoslovakia and in Sweden
(Catherall, 1970), causes dwarfing, a dark blue-green leaf color,
and profuse tillering in infected oat plants, which remain green
and grass-like at harvest but lack heads. The same virus may also
have been found in Netherlands, Finland, Poland, and Britain
(Milne and Lovisolo, 1977). Pangola stunt virus (PaSV), first
described as a devastating disease of pangola grass in Surinam
(Dirven and van Hoof, 1960), is a serious threat to the cultivation
of pangola grass, a sterile triploid of Digitaria decumbens Stent
grown as a pasture grass on millions of hectares throughout
the world, particularly in Florida, the Caribbean islands, and
Central and South America. The virus has now been reported
in other countries (regions), including Guyana, Brazil, Peru, Fiji,
and Taiwan Province of China (Karan et al., 1994). Rice black
streaked dwarf virus (RBSDV) was first found in Japan, where it
has been present for decades but was only recognized as distinct
from rice dwarf virus by Kuribayashi and Shinkai (1952). Now, it
is considered to be the causal agent of rice black streaked dwarf
and maize rough dwarf diseases, responsible for intermittent
epidemics in East Asia and substantial yield losses over the last
decades. Rice, maize, wheat, oats, and barley are its natural hosts
with the similar symptoms as those of MRDV (Azuhata et al.,
1993; Wu et al., 2020). In 2008, a RBSDV-like new virus, southern
rice black streaked dwarf virus (SRBSDV), was reported in the
south of China (Zhou et al., 2008) and caused serious yield losses
in China, Vietnam and Japan during 2010s (Zhou et al., 2013).
The global distribution of plant-infecting fijiviruses is shown in
Figure 1.

VECTOR INSECTS

Plant-infecting fijiviruses are primarily transmitted by delphacid
planthoppers, which belong to a large, diverse superfamily
Fulgoroidea, even though the insect vector of GDV has not
been found yet. The species (Fiji disease virus, Mal de Río
Cuarto virus, Maize rough dwarf virus, Pangola stunt virus, Rice
black streaked dwarf virus, Southern rice black streaked dwarf
virus, Oat sterile dwarf virus and Garlic dwarf virus) in genus
Fijivirus and any known vectors are described in Table 1. FDV
is transmitted by Perkinsiella saccharicida Kirkaldy, Perkinsiella
vituensis, and Perkinsiella vastatrix (Toohey and Nielsen, 1972;
Mungomery and Bell, 1933; Hughes et al., 2008). Both MRDV
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TABLE 1 | Species of plant-infecting fijiviruses, their insect vectors and transmission characteristics.

Species Vector Acquisition Latency
period

Inoculation Transovarial
transmission

Citations

Subgroup 1

Fiji disease virus Perkinsiella saccharicida
Kirkaldy, P. vituensis,
Perkinsiella vastatrix Breddin

2 h 12–14 days 1 day Yes (no exact
data for
efficiency)

Mungomery and Bell, 1933;
Toohey and Nielsen, 1972;
Chang, 1977;
Egan and Ryan, 1986;
Hughes et al., 2008

Subgroup 2

Mal de Río Cuarto
virus

Delphacodes kuscheli Fennah,
Chionomus haywardi Muir,
Peregrinus maidis Ashmead,
Toya propinqua Fieber,
Caenodelphax teapae Fowler,
Pyrophagus tigrinus Remes
Lenicov, Tagosodes orizicolus
Muir

5 h 10 days 30 min Not assessed Remes Lenicov et al.,
1985; Velázquez et al.,
2003, 2006, 2017;
Mattio et al., 2008

Maize rough dwarf
virus

Laodelphax striatellus Fallén 10–15 min 10–15 days 15–30 min Yes, max. 4% Harpaz and Klein, 1969;
Conti, 1974;
Achon et al., 2013

Pangola stunt virus Sogatella furcifera Horváth,
Sogatella kolophon Kirkaldy

2 days 15–21 days 2–4 days No Greber et al., 1988;
Teakle et al., 1988

Rice black streaked
dwarf virus

Laodelphax striatellus Fallén,
Unkanodes sapporona
Matsumura, U. albifascia
Matsumura

30 min 7 days 5 min No Shinkai, 1962; Shikata and
Kitagawa, 1977;
Nault, 1994;
Wu et al., 2020

Southern rice black
streaked dwarf
virus

Sogatella furcifera Horváth 5 min 2–6 days 30 min No Jia et al., 2012;
Pu et al., 2012;
Zhou et al., 2013

Subgroup 3

Oat sterile dwarf
virus

Javesella pellucida Fabricius,
Calligypona pellucida Fabr.

30–60 min 3–4 weeks 30 min Yes, 0.2% Vacke, 1966;
Milne and Lovisolo, 1977

Subgroup 4

Garlic dwarf virus Unknown

and RBSDV are naturally transmitted by the small brown
planthopper Laodelphax striatellus Fallén (Achon et al., 2013;
Nault, 1994). Two other planthoppers Unkanodes sapporona
Matsumura and Unkanodes albifascia are not of great importance
for RBSDV epidemic because of their low density in the field,
though they also transmit RBSDV (Wu et al., 2020). Different
planthopper species in Argentina can transmit MRCV, but
Delphacodes kuscheli Fennah is the most plentiful and recurring
species in areas where the virus is endemic (Remes Lenicov et al.,
1985). Many other planthopper species, including Chionomus
haywardi Muir, Peregrinus maidis Ashmead, Toya propinqua
Fieber, Caenodelphax teapae Fowler, Pyrophagus tigrinus Remes
Lenicov and Tagosodes orizicolus Muir are also known to transmit
MRCV (Velázquez et al., 2003, 2006, 2017; Mattio et al., 2008).
MRCV epidemics are largely related to the abundance, frequency
and transmission efficiency of the vectors in early stages of the
maize crop (Ornaghi et al., 1999; Laguna et al., 2002; Velázquez
et al., 2003). The planthopper Javesella pellucida Fabricius is the
natural vector of OSDV, but the leafhopper Calligypona pellucida
Fabr also transmits OSDV (Milne and Lovisolo, 1977). Sogatella
kolophon Kirkaldy and Sogatella furcifera were shown to vector
PaSV (Greber et al., 1988; Teakle et al., 1988). SRBSDV has been
identified as being transmitted by S. furcifera, but L. striatellus can

also acquire it but not transmit to plants (Jia et al., 2012; Pu et al.,
2012; Zhou et al., 2013).

TRANSMISSION CHARACTERISTICS

Like other persistent and propagative viruses, plant-infecting
fijiviruses must initially infect and replicate in the epithelial cells
of the insect’s midgut, and then disseminate in different tissues,
eventually spread to salivary glands, where are excreted to plants
through saliva during insect feeding (Hogenhout et al., 2008;
Mainou and Dermody, 2012). To complete the whole cycle of
virus transmission, vector insects must undergo specific periods
for acquisition, latency and inoculation. Some fijiviruses can be
transovarially transmitted with low efficiency.

Acquisition
The acquisition periods range from several minutes to a few
days for most plant-infecting fijiviruses, which have been mainly
found in the phloem (Francki and Boccardo, 1983; Conti, 1984).
Generally, the virus is more efficiently acquired by nymphs
than by adults. In two similar examples, FDV is transmitted
by P. saccharicida only if the virus is acquired by first-instar
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FIGURE 1 | Distribution of plant-infecting Fijiviruses in the world.

nymphs, but not older instars or adults, and first-instar nymphs
of D. kuscheli transmit MRCV with higher efficiency compared
with older instar nymphs (Hutchinson and Francki, 1973;
Arneodo et al., 2005).

Latency and Inoculation
Once inside the planthoppers, the virus multiplies during a
1–4 weeks latency period when it is also disseminating into other
tissues, including the salivary glands (Greber et al., 1988). When
the latency period is complete, that is, the viral titre has reached
a certain level, the insects can frequently transmit virus in their
lifetime (Conti, 1984; Hughes et al., 2008; Argüello Caro et al.,
2013; Hajano et al., 2015). For RBSDV, the minimum inoculation
threshold has been shown to be as short as 5 min (Shikata and
Kitagawa, 1977), but the minimum so far observed for MRDV is
15–30 min (Conti, 1974).

Transovarial Transmission
Only a few studies have shown that fijiviruses are transovarially
transmitted in their planthopper vectors (Chang, 1977; Conti,
1985). For FDV, transovarial transmission in P. saccharicida was
reported but no data were included (Chang, 1977). Transovarial
transmission of MRDV in L. striatellus was reported to be
about 4% (Harpaz and Klein, 1969), but none of 300 progenies
from L. striatellus eggs deposited on sorghum were viruliferous
(Harpaz, 1972). For OSDV, only 0.2% transovarial transmission
was found in one case (Vacke, 1966) and no evidence found
in another case for J. pellucida (Lindsten, 1974). Also, RBSDV
and SRBSDV are not transmitted through the eggs of the vector
L. striatellus and S. furcifera (Shinkai, 1962; Pu et al., 2012). Times
for acquisition, latency and inoculation vary among the different
combinations of viruses and vectors and are shown in Table 1.

VIRUS EFFECTS ON BEHAVIOR AND
PHYSIOLOGY OF VECTOR INSECTS

Because fijiviruses must infect, multiply, and spread in their
vector insect cells, virus infections have multiple effects on
the behavior and physiology of their vector insects. Reports
on these effects, however, are contradictory. Adverse effects
include extending the nymphal stages, shortening the lifespan
of adults, decreasing survival rate or fecundity (Harpaz and
Klein, 1969; Nakasuji and Kiritani, 1970; Wei and Li, 2016).
For example, Harpaz and Klein (1969) reported that MRDV
viruliferous females of L. striatellus laid 30–50% fewer eggs than
non-viruliferous females did and that the viability of these eggs
was poor (14% vs. 99% for hatch from non-viruliferous). In
those cases where hatching did occur, the incubation period
was longer by up to 3 days (about 25%) than that of eggs
from non-viruliferous females, and the mortality of the resulting
larvae was high. Similarly, compared with non-viruliferous
S. furcifera, SRBSDV-viruliferous females deposited fewer eggs
and the viruliferous nymphs spent longer time developing into
adults (Xu et al., 2014). In contrast, Zhang et al. (2014) reported
that SRBSDV infection in rice led to an increase in the fecundity
of S. furcifera and population size of macropterous adults
(Zhang et al., 2014).

Feeding behavior of SRBSDV-viruliferous S. furcifera also
differs from that of non-viruliferous insects; the frequency of
phloem sap ingestion of viruliferous S. furcifera is significantly
higher, but total feeding duration does not increase markedly
(Xu et al., 2014). When SRBSDV-viruliferous S. furcifera feed on
uninfected plants, they spend longer time in salivation and have
more frequent phloem sap ingestion than did non-viruliferous
insects (Xu et al., 2014). These behavioral alterations might
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be adapted to the benefit of virus acquisition and inoculation
(Lei et al., 2016). The infection of certain plants by MRDV
can also modify the capacity of those plants to support MRDV
vectors (Klein and Harpaz, 1969; Harpaz, 1972). For example,
L. striatellus is unable to survive on non-infected Cynodon
dactylon (L.) Pers. (Bermuda grass) for longer than 4–7 days and
does not molt or lay eggs on this plant, but it can survive and
breed successfully when the plants are infected with MRDV or
the planthopper is already MRDV-viruliferous when placed on
the plant (Klein and Harpaz, 1969).

These adverse or beneficial changes might be due to the
changes of physiological and metabolic components caused
by virus-plant/insect interactions. The physiology is altered
in MRCV-infected wheat plants; the contents of total soluble
sugar, starch, protein and malondialdehyde levels increase
noticeably, but chlorophyll content decreases considerably. These
variations are indicative of oxidative damage associated with
biotic stress in these plants (Di Feo et al., 2010). MRCV-infected
wheat plants had more than 3,000 differentially accumulated
transcripts (DATs) at 21 days post inoculation, and exhibited
higher levels of soluble sugars, starch, trehalose 6-phosphate
(Tre6P), and organic and amino acids, but decreased transcripts
levels for TaSWEET13, which are involved in sucrose phloem
loading (de Haro et al., 2019). Similarly, the physiology
and metabolism of viruliferous insect vectors change greatly.
In SRBSDV-viruliferous S. furcifera with viral titer-specific
monotonic transcriptome changes: 1,906 genes increase and
1,467 genes decrease in expression (Wang et al., 2016). In gas
chromatography-time of flight-mass spectra, the major categories
of metabolites differentially regulated after SRBSDV infection are
nucleic acids and fatty acids, whereas the compounds relative
to tricarboxylic acid cycle, sugars, and polyols are differentially
regulated after temperature stress (Zhang et al., 2018).

COMPETITION OR SYNERGISM OF
CO-INFECTING VIRUSES IN RELATION
TO TRANSMISSION

Mal de Río Cuarto virus has been detected in co-infection
with an isolate of maize yellow striate virus (MYSV, genus
Cytorhabdovirus, family Rhabdoviridae) in maize (Dumón et al.,
2015, 2017). Both viruses can naturally infect maize and several
grasses through transmission by D. kuscheli. Although most
of planthoppers could be viruliferous after feeding on mixed-
infected plants, planthoppers with notably higher MRCV titers
are able to transmit the virus, meaning that efficient MRCV
transmission is positively correlated with virus accumulation in
the insect (Argüello Caro et al., 2013). Plants doubly-infected
by MRCV and the rhabdovirus showed typical symptoms of
MRCV earlier than that single infected with MRCV, but the
planthoppers fed on doubly-infected plants only acquired lower
MRCV titers and transmitted inefficiency, indicating that these
two viruses have antagonism in host plants and vector insects
(Dumón et al., 2017).

Conversely, the epidemics of rice ragged stunt virus (RRSV,
genus Oryzavirus, family Reoviridae), transmitted by Nilaparvata

lugens Stal, has become more frequent in southern China since
its co-infection with SRBSDV during 2010s (Wang et al., 2013).
Rice plants doubly-infected by both viruses showed earlier and
enhanced symptoms. S. furcifera and N. lugens, respectively,
acquired SRBSDV and RRSV from doubly-infected plants with
higher efficiency (Li et al., 2014). Furthermore, the non-
viruliferous N. lugens significantly preferred feeding on virus-free
plants, whereas viruliferous N. lugens preferred SRBSDV-infected
rice plants (Wang et al., 2013). The attractiveness of the SRBSDV-
or RRSV-infected rice plants to planthoppers is mainly caused
by the changes of rice volatiles (Lu et al., 2016). Fecundity of
N. lugens feeding on SRBSDV-infected rice plants is higher than
those that fed on uninfected plants, but nymphal duration of
males is significantly prolonged (Xu et al., 2016). Thus, these
two viruses may alter the vectors’ host preference to the benefit
of their spread.

INSECT MICROBES

Various microbes in vector insects have also been known to
directly affect virus infection or transmission (Mousson et al.,
2012; Kliot and Ghanim, 2013; Jupatanakul et al., 2014). The
symbiont Chromobacterium could reduce the susceptibility of
Aedes aegypti to dengue virus infection and another symbiont
Wolbachia in Aedes albopictus decreased virus transmission
efficiency through decreasing the titer of viruses in host cells
(Moreira et al., 2009; Jupatanakul et al., 2014; Kliot et al., 2014).
On the contrary, acquisition and transmission of tomato yellow
leaf curl virus by Bemisia tabaci were significantly enhanced by
Rickettsia (Kliot et al., 2014). Moreover, the microbiota might
contribute to the higher fecundity of L. striatellus, which in turn
may be associated with the outbreaks of the virus (Liu et al.,
2020). Besides microbes in vector insects, some insect-specific
viruses have also been found in L. striatellus or S. furcifera (Wu
et al., 2018, 2019). These new insect-specific viruses might affect
fijivirus replication and transmission.

MOLECULAR MECHANISMS INVOLVED
IN TRANSMISSION

Replication and spread of plant-infecting fijiviruses in different
organs of their vector insects require specific interactions between
virus and vector components. Some of these viral determinants
and insect components which might be related to transmission of
plant-infecting fijiviruses by their respective insect vectors have
recently been identified.

Viral Determinants Involved in Viral
Transmission
Complete genomic sequences are available for FDV, MRCV,
MRDV, RBSDV, and SRBSDV, but only partial sequence genome
information is available for OSDV. For RBSDV and SRBSDV, the
whole genome encodes 13 viral proteins, including six putative
structural proteins: P1 (the RNA-dependent RNA polymerase),
P2 (major core structural protein), P3 (capping enzyme), P4
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(outer shell B-spike protein), P8 (minor core protein), and
P10 (major outer capsid protein), seven putative non-structural
proteins P5-1, P5-2, P6, P7-1, P7-2, P9-1, and P9-2 (Attoui et al.,
2012). These viral proteins can directly or indirectly affect viral
transmission. The major outer capsid protein P10 plays key roles
for virus invasion and transmission in vector insects (Than et al.,
2016). P7-1 forms the tubule structures that serve as vehicles
to transport the virions across the basal lamina and enable
intercellular movement of the virus within insect cells (Jia et al.,
2014, 2016).Non-structural proteins P9-1, P6 and P5-1 indirectly
contribute to virus transmission since they constitute cytoplasmic
inclusion bodies called viroplasms where virus replication takes
place and in turn high replication and consequent high virus titers
result in successful transmission (Zhang et al., 2008; Maroniche
et al., 2010; Jia et al., 2012).

In plants and insects, small interfering RNA (siRNA) pathway
plays a key role in antiviral defense (Ding, 2010; Zvereva and
Pooggin, 2012; Gammon and Mello, 2015). In vector insects,
this pathway may affect virus titers, persistence and transmission
efficiency. Virus-derived siRNAs (vsiRNAs) mainly given rise by
Dicer-2 in Drosophila melanogaster and mosquitoes to limit viral
infection have been extensively studied (Fragkoudis et al., 2009;
Blair, 2011; Donald et al., 2012). VsiRNAs accumulate in RBSDV-
viruliferous L. striatellus, indicating that fijivirus replication
might induce an RNAi-mediated antiviral response in its insect
vector (Li et al., 2013). Similarly, SRBSDV infection induced
the siRNA pathway in the midguts of an incompetent vector
L. striatellus. Interfering with Dicer-2 significantly increased virus
replication in midgut epithelial cells of L. striatellus, so that viral
titers reached a threshold and disseminated to the L. striatellus
midgut muscle layer (Lan et al., 2016). de Haro et al. (2017)
also provided evidence that the silencing mechanism of plants
and insect vectors for MRCV could distinguish viral genomes,
and thus produced different vsiRNAs, which suggested fijiviruses
might encounter different and distinctive defense strategies both
in host plants and vector insects.

Insect Components Involved in
Transmission
For successful transmission, fijiviruses have to break through
various transmission barriers in midgut, salivary gland, and
defense immune response of their vector insects. Multiple
interactions among virus and vector components are necessary
for finishing above processes (Liu et al., 2018). Based on a
yeast two-hybrid system (Y2H), proteins in vector S. furcifera
were identified to interact with P6, P7-1 or P10 of SRBSDV.
Five proteins (bromodomain-containing protein [BRD],
succinyl-CoA ligase [ADP-forming] subunit beta [SUCLSB],
40S ribosomal protein SA [RPSA], toll-interacting protein
[TOLIP] and signal transducing adapter molecule 1 [STAM1])
interacted with SRBSDV P6, and they are mainly involved in
gene transcription, protein translation, protein post-translational
modification and protein synthesis (Zhao et al., 2019). In
S. furcifera, 18 proteins were confirmed interacting with SRBSDV
P7-1 and six of them (neuroglian, myosin light chain 2 [MLC2],
polyubiquitin, E3 ubiquitin ligase, ribophorin II, and profilin)

exhibited different levels in five organs: neuroglian, MLC2,
polyubiquitin and profilin highest in the gut, but ribophorin
II and E3 ubiquitin ligase highest in the salivary glands and
hemolymph, respectively, which indicated that they might
play specific roles in viral progresses in different organs (Mar
et al., 2014). Besides, 28 proteins interacted with the P10 of
SRBSDV were identified. The mRNA level of vesicle-associated
membrane protein 7 (VAMP7) was highest in the gut, but vesicle
transport V-SNARE protein (Vti1A) and Growth hormone-
inducible transmembrane protein (Ghitm) was highest in
malpighian tubule compared with other tissues (Than et al.,
2016). Based on the known data, we proposed a model for
SRBSDV trafficking in midgut epitheliums of its insect vector,
S. furcifera (Figure 2). SRBSDV virions invade into midgut
epithelial cells by endocytosis through the interactions between
the major outer capsid protein P10 and receptors in insects. Then
the virus replicates in the viroplasm where P5-1, P6, P9-1 play
vital roles in viroplasm formation. Insect proteins interacting
with P6 might also assist recruit P5-1 and P9-1. After replication,
the virions disseminate into hemolymph freely or in tubular
vehicles through the interaction between P7-1 and cytoskeleton.

VIRUS EPIDEMICS AND MANAGEMENT

As discussed earlier, transmission by insect vectors is essential for
the spread and epidemics of plant-infecting fijiviruses because
they are not transmitted by seeds or mechanical means. Here,
we discuss the impacts of transmission on virus epidemics in
different crops.

Relationship Between Transmission and
Epidemics
Fiji disease virus can cause Fiji leaf gall (FLG), a major problem
for Australian sugarcane industry. The virus epidemics led to
serious yield losses during 1970–1990 because FLG-susceptible
cultivar NCo310 was planted in a large area and the vector
P. saccharicida was present at a high density (Ryan, 1988).
Besides, the vector planthopper of FDV occurs in all sugarcane-
growing areas of Queensland and New South Wales. If only
a species of Perkinsiella in the sugarcane on the east coast of
Australia, the movement of insects from areas without FDV
to areas with FDV is not important (Egan and Ryan, 1986;
Egan et al., 1989; Dhileepan and Croft, 2003). On the other
hand, if a species exists in northern Queensland but not in
southern Queensland, and transmits FDV more efficiently than
the current population of P. saccharicida in southern Queensland,
then the migration of these northern insects will pose a risk to the
southern region (Magarey et al., 2019).

Mal de Río Cuarto disease is the most important maize viral
disease in Argentina (March et al., 1993, 2002; Lenardón et al.,
1998). Although the vector D. kuscheli does not reproduce on
maize, it breeds on MRCV susceptible winter cereals such as oat,
wheat and rye, which serve as virus reservoirs (Trumper et al.,
1996). Generally, viruliferous D. kuscheli migrate from senescent
winter cereals to maize and then transmit MRCV when it feeds on
maize (Ornaghi et al., 1993, 1999; March et al., 1995). If the major
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FIGURE 2 | Model of SRBSDV replication and transmission in midgut epithelium of Sogatella furcifera. SRBSDV enters into midgut epithelium by endocytosis
through the interactions between the major outer capsid protein P10 and receptors in cell membrane and replicates in viroplasms, which are composed of
non-structural proteins P9-1, P6, and P5-1. After replication, virions-containing P7-1 tubular structures directly pass across the basal lamina, traffic along the internal
muscle tissues and then disseminate virions into hemolymph.

immigration period of high density of insect vectors is consistent
with maize early growth stages (the first 3 weeks after maize
emergence) of susceptible maize genotypes, severe outbreaks
will occur (Ornaghi et al., 1993). Similarly, the epidemics of
maize rough dwarf disease caused by MRDV in Spain has close
relationship with the population density and distribution of its
vector L. striatellus, especially at early stages of crop development,
and to the susceptibility of the maize varieties (Conti, 1976;
Trumper et al., 1996). In northern China, a double-cropping
system for interplanted and intercropped maize and wheat was
widely implemented in the 1980s. Such cropping system provide
enough food sources for vector L. striatellus, resulting in its high
population density and the opportunity for overwintering. In
addition, the virus can be transmitted easily among different
hosts, leading to outbreaks of maize rough dwarf diseases in these
regions (Ren et al., 2016). As already mentioned, two fijiviruses,
RBSDV and SRBSDV, are known to infect rice and cause serious
yield losses in East Asian countries. For RBSDV or SRBSDV
epidemics, migration and virus transmission of L. striatellus
or S. furcifera among the different crops or gramineous weeds
are essential. Field investigations have shown that outbreaks
of SRBSDV-induced rice black streaked dwarf disease usually
coincide with mass long distance migration of S. furcifera
between or within Vietnam, Myanmar, Japan, South Korea, and
China (Figure 3). Typhoons may carry migrating insects from

southern China to northern Vietnam in the late fall or early
winter, and then overwinter in tropic regions (Zhao et al., 2011;
Matsukura, 2013), revealing that vector S. furcifera plays a crucial
role in the SRBSDV epidemics. Under normal circumstances,
the viruliferous macropterous adults are driven by winds to the
Pearl River Basin (Guangdong) and Honghe Prefecture (Yunnan)
in March. In central and eastern China, initial infection usually
occurs in late spring and early summer from the viruliferous
S. furcifera population that migrates with air flows from southern
provinces of China and northern Vietnam or Myanmar (Zhou
et al., 2013). In most regions with RBSDV epidemics in China,
the disease incidence is closely related to the population density
and viruliferous rate of the vector L. striatellus, which can finish
its life cycle and seasonally migrate in wheat, barley, and some
gramineous weeds in most regions (Wu et al., 2020).

Management
Integrated management strategies are urgently needed to reduce
heavy losses caused by fijiviruses. At present, an economical
and effective method for managing diseases is controlling vector
insects on account of lacking disease-resistant varieties. Covering
plant seedling nurseries with insect-proof nets is broadly used
to control black streaked dwarf diseases caused by RBSDV
or SRBSDV in China. Postponing sowing time of maize is
available to prevent the peak period of L. striatellus planthopper
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FIGURE 3 | The relationship between long distance migration of S. furcifera and SRBSDV epidemic in Eastern and Southeastern Asia.

immigration coinciding with the susceptible period of the rice.
Seed dressing with pesticides is also recommended before sowing,
and then the seedlings are applied pesticides three to 5 days
before transplanting (Ren et al., 2016). For the management of
Mal de Río Cuarto disease, the most important management
practice is to advance the sowing so that the vector population
peaks do not coincide with the emergency of the maize plants
consulting a predictive model based on temperature variables
and the disease intensity (March et al., 1995; Satapathy, 1998).
Except managing insects, using virus-free vegetative materials
and resistant varieties, removing infected stools or crops, and
quarantining are existing effective methods to control FLG in
Australia (Egan and Ryan, 1986; Dhileepan and Croft, 2003).

CONCLUDING REMARKS AND
PROSPECTS

In general, field epidemics of plant fijiviruses have three typical
stages: serious outbreak for 2–3 years, gradual mitigation over
the next 2–3 years, and negligible disease for several years;
thus, the disease tends to be intermittent over a longer period
(Achon et al., 2013; Wu et al., 2020). Although existing virus
management practices have played an important role during
virus management, the underlying reasons for the epidemics
are still poorly understood. Fijivirus epidemics are related to

various biotic and non-biotic factors, so to better understand
this complex pathosystem, and then provide accurate predictions
and control measures, further study of transmission biology
should be explored to reveal the reasons of the intermittent
epidemics. Many aspects need to be addressed, including (a)
the identification of determinants for vector specificity and
viruses breaking through various transmission barriers in their
vector insects. The roles of viral proteins, vector proteins,
and insect symbionts in determining vector specialization also
need to be further elucidated, which can provide targets for
molecular design to inhibit transmission (Hajano et al., 2020).
(b) Epigenetic RNA or DNA methylation of viral or host genes
and changes in gene splicing upon virus infection can also affect
interactions between the virus and vector insect and change
vector specificity and transmission efficiency (Rivera-Serrano
et al., 2017; Usama et al., 2019). (c) Global climate warming,
organic farming methods to reduce the use of pesticides, and the
commercialization of genetically modified crops that are resistant
to lepidopterans or beetles may indirectly lead to the changes of
planthopper population and the outbreaks of fijiviruses. Similar
works have been done for other virus–vector insect systems (Wei
and Li, 2016; Qin et al., 2018; Wang et al., 2019; Liu et al., 2020),
but whether these results also apply to fijiviruses and their vector
insects needs to be determined.

To further advance protection against these viruses,
multidisciplinary approaches are needed. (a) Cooperative
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research in plant pathology, insect ethology, ecology and other
disciplines can help clarify mechanisms underpinning the four-
way interactions in the plant–insect vector–virus–environment
network. (b) Entomologists, plant virologists, crop breeders,
and ecologists can coordinate and cooperate to advance the
selection, cultivation and rational distribution of resistant
varieties. (c) International exchange and cooperation should
be strengthened to solve disease problems from a global
perspective, focusing on the main places where the diseases
occur, ascertain the migratory pathways of the vectors and
the source of foreign insects, determine the source of the
virus, and prevent outbreaks of the disease on an international
scale. (d) A variety of experimental techniques for molecular
biology, biochemistry, and environmental biology can be used
to comprehensively study the pathogenic mechanism of viruses
and their interactions with vectors and develop virus inhibitors
or new technologies to block acquisition and transmission of
viruses by the vectors.
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1 Institute of Biology, Department of Botany, Warsaw University of Life Sciences – SGGW, Warsaw, Poland, 2 Department of 
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The cell wall is a complex and integral part of the plant cell. As a structural element it 
sustains the shape of the cell and mediates contact among internal and external factors. 
We have been aware of its involvement in both abiotic (like drought or frost) and biotic 
stresses (like bacteria or fungi) for some time. In contrast to bacterial and fungal pathogens, 
viruses are not mechanical destructors of host cell walls, but relatively little is known about 
remodeling of the plant cell wall in response to viral biotic stress. New research results 
indicate that the cell wall represents a crucial active component during the plant’s response 
to different viral infections. Apparently, cell wall genes and proteins play key roles during 
interaction, having a direct influence on the rebuilding of the cell wall architecture. The 
plant cell wall is involved in both susceptibility as well as resistance reactions. In this review 
we summarize important progress made in research on plant virus impact on cell wall 
remodeling. Analyses of essential defensive wall associated proteins in susceptible and 
resistant responses demonstrate that the components of cell wall metabolism can affect 
the spread of the virus as well as activate the apoplast- and symplast-based defense 
mechanisms, thus contributing to the complex network of the plant immune system. 
Although the cell wall reorganization during the plant-virus interaction remains a challenging 
task, the use of novel tools and methods to investigate its composition and structure will 
greatly contribute to our knowledge in the field.

Keywords: plant viruses, cell wall remodeling, defense response, hypersensitive reaction, ultrastructure

INTRODUCTION

Plant viruses are highly diversified and cause enormous alterations and deformations inside a 
plant host cell (Gergerich and Dolja, 2006). Their genome, which has the form of dsDNA, 
ssDNA, dsRNA, or ssRNA, is surrounded by a capsid consisting of coat protein molecules 
(Gergerich and Dolja, 2006; Hull, 2014). Generally, the viral genome encodes genetic information 
about proteins that play a crucial role in the induction and nondisturbed maintenance of viral 
infection via local/systemic transport (Hull, 2014). Thus, plant viruses are active only inside 
the host cell and induce multilevel changes in its internal system during infection.

Due to their constant exposure to a wide range of pathogenic microorganisms, plants have 
evolved both constitutive and inducible defense mechanisms (Underwood, 2012). Constitutive 
defenses of plants encompass physical barriers, such as waxy epidermal cuticles or cell walls on 
the surface, which prevent the penetration of pathogens. On the other hand, inducible defense 
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responses are activated in plants upon the recognition of potential 
pathogens by surveillance mechanisms (Jones and Dangl, 2006). 
Therefore, it can be  considered that plants do not remain as 
“static components” during their interaction/contact with a viral 
pathogen. Rather, they induce complex systems of response to 
the invading virus (Mandadi and Scholthof, 2013). The speed, 
strength, and level of effectiveness of this response determines 
the susceptibility or resistance of a plant host. The cell wall is 
not only an inherent structural component in plant cells but 
also acts as an important “contact platform” during plant-
pathogen interactions.

The structural polysaccharides present in the cell wall maintain 
the shape and size of the cell, while also providing mechanical 
strength required to endure extrinsic stresses and to preserve the 
inner turgor (Bacete et al., 2018; Voiniciuc et al., 2018). Numerous 
reviews have described that the polysaccharide (cellulose) and 
the non-saccharide fraction (lignin) of the plant cell wall play 
the main role in developmental, defense, and bioconversion processes 
(Chen et al., 2018a; Liu et al., 2018; Meents et al., 2018). According 
to the commonly known, classic model of cell wall structural 
networks, the surface of cellulose microfibrils is interconnected 
with hemicellulose fibers enclosed by a pectin matrix, which 
determines the flexibility or stiffness of the cell wall (Cosgrove, 
2018). Broxterman and Schols (2018) postulated that the two 
components are linked by distinctive and strong covalent interactions 
in the primary cell wall architecture. Moreover, cell wall 
polysaccharides serve as a repository of molecules that are involved 
in intercellular signaling and that elicit the immune response to 
microbial invasion (Cosgrove, 2018).

A majority of previous studies have focused on the changes 
occurring in the plant cell wall and put forth different models 
of plant-pathogen interactions for organisms such as bacteria, 
nematodes, and fungi, but not viruses. Research on the 
engagement of the plant cell wall is highly focused on the 
changes occurring in plasmodesmata during the regulation/
blockade of virus cell-to-cell transport. The results revealed 
the role of β-1,3 glucanase in controlling plant viruses during 
local and systemic transport (Beffa and Meins, 1996; Iglesias 
and Meins, 2000). However, recent studies indicate that the 
frequency of active remodeling and rebuilding of the cell wall, 
taking place in response to viral infection, is higher than 
assumed (Raggi, 2000; Ding et  al., 2008; Park et  al., 2017; 
Chen et  al., 2018b,c; Otulak-Kozieł et  al., 2018a). The process 
of wall rebuilding differs in susceptible and resistant plant 
hosts (Otulak-Kozieł et  al., 2018b, 2020). This review presents 
the current knowledge about the role of plant cell wall in 
susceptible and resistance responses of plants to viruses and 
summarizes the potential fields of future research for a better 
understanding of this aspect of plant-pathogen interactions.

CELL WALL IN VIRAL INFECTION OF 
SUSCEPTIBLE HOST

During host-pathogen interactions, plant viruses build a complex 
system to evade or suppress the defense response of the plant 
(Garcia-Ruiz, 2018, 2019). If the virus manages to overcome 

the defense/response system, the plant host becomes susceptible 
to infection (Jin et  al., 2018). The cell wall is a vital element 
of the host reaction system. Interestingly, novel comparative 
transcriptome profiling analysis as well as microarray gene 
expression analysis carried out in susceptible and resistant host 
plants after the viral infection has shown that the first target 
in the host cells is the cell wall (Shimizu et  al., 2007, 2013; 
Zheng et  al., 2013; Allie et  al., 2014). The earlier reports 
demonstrating the involvement of the cell wall were based on 
tobacco mosaic virus (TMV) infection in susceptible tobacco 
plants (Beffa and Meins, 1996; Bucher et al., 2001). The authors 
of these studies demonstrated that cell wall-associated proteins 
and enzymes were involved in controlling the virus cell-to-cell 
transport. One of the main cell wall-associated polysaccharides—
callose—was found to be  extremely important in the specific 
control of TMV transport. The presence/distribution of this 
protein in the apoplast area was directly regulated by the ratio 
of two enzymes: callose synthase (which catalyzes the callose 
synthesis) and β-1,3 glucanase (which hydrolyzes callose; Kauss, 
1996). In response to TMV (and other plant viruses), plants 
increase the synthesis and deposition of callose which can 
be observed near and inside the plasmodesmata. Callose deposited 
inside the plasmodesmata forms a physical barrier decreasing 
the size exclusion limit and blocking the cell-cell transport. 
However, this response could be  frequently counteracted by 
some viruses, including cucumber mosaic virus (CMV), potato 
virus X (PVX), or TMV, through a mechanism that is rather 
universal among viruses. The class II β-1,3 glucanase includes 
the pathogenesis-related protein PR-2, which acts as an important 
host cellular factor governing the movement of the virus (Beffa 
and Meins, 1996). Iglesias and Meins (2000) clearly showed 
that infection by TMV enhances PR-2 activity in tobacco while 
also increasing the mobility and distribution of plasmodesmata, 
thus facilitating virus movement. Therefore, degradation of the 
callose physical barrier (due to increased deposition of β-1,3 
glucanase) is essential for the maintenance of viral movement 
in a susceptible host (Bucher et  al., 2001). The increased 
deposition of β-1,3 glucanase allows TMV and other viruses 
to overcome the natural blocking mechanism and promotes 
pathogen transportation. The changes of the cell wall are 
associated not only with plasmodesmata but also with apoplasts. 
The South  African cassava mosaic virus is the first example 
reported to have this finding. Allie et  al. (2014) postulated 
that susceptible cassava genotype T200 infected by SCMV 
induced mRNA transcripts of several components including 
proteins belonging to pectin lyase superfamily or plant invertase/
pectin methylesterase inhibitor superfamily, which are responsible 
for the degradation of the plant cell wall. Similar transcriptome 
data were acquired by Zheng et al. (2013). The authors indicated 
that a susceptible rice cultivar (cv. Fengjin) responded to 
infection by rice stripe virus (RSV) by downregulating four 
genes that code for glycine-rich, cell wall structural protein, 
and a gene coding for cellulose synthase. Their results suggest 
that RSV and SCMV could structurally modify the cell wall 
by specific and complex regulation of cell wall structural proteins.

Changes occurring within the ultrastructure in a susceptible 
plant host were first reported for potato virus Y-NTN (PVYNTN) 
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infection by Otulak-Kozieł et  al. (2018a). We  ascertained that 
PVYNTN could be  folded into a loose structure. Moreover, they 
were associated with paramural bodies within the plasmodesmata 
in the affected portions of cell wall and with virus cytoplasmic 
inclusions. These changes correlated with alterations in the 
quantity and distribution of PR-2 and with the catalytic subunits 
of cellulose synthase (CesA4). Accumulation of PR-2 was 
noticeably elevated in the susceptible potato. Compared to 
mock-inoculated plants, the level of CesA4 was decreased in 
hosts that were susceptible to PVYNTN. This infection also 
changed the distribution of both proteins inside the cells of 
compatible plant hosts. In the infected susceptible potato, PR-2 
was more frequently accumulated in the cell wall and vacuoles 
compared to the healthy plants. Moreover, in susceptible plants, 
CesA4 was deposited in the cell wall, plasma membrane, and 
endoplasmic reticulum. This suggests that both the decrease 
in CesA4 and increase in PR-2 determined the susceptibility 
of potato (Otulak-Kozieł et  al., 2018a), most likely by enabling 
cell-to-cell movement of the virus.

The results reported by Otulak-Kozieł et  al. (2018b) shed 
some light on susceptible potato-PVY interactions (Figure  1). 
The authors studied the in-situ dissemination of various 
hemicellulosic cell wall matrix components during the interactions 
of susceptible and hypersensitive potato with PVYNTN. Xyloglucan 
was identified as the major hemicellulose of the primary cell 
wall and was associated with the changes initiated by the 
pathogen (Pauly et  al., 2013). Lotan and Fluhr (1990) and 
Bacete et  al. (2018) postulated that xyloglucan metabolism is 
linked with cell wall expansion, and thus influences the infection 
by a pathogen. Organisms such as viruses disrupt the plant 
cell wall, as well as inducing β-1,4 xylanase, resulting in the 
production of endoxylanases. We  ascertained that the cell wall 
loosening process occurs along with enhanced deposition of 
xylan in the event of susceptible interactions after infection 
of potato with the potyvirus. The cell wall of plants consists 
of several enzymes capable of modifying polysaccharides, of 
which xyloglucan endotransglucosylase/hydrolase (Xet, XTH) 
is of importance, as it is essential for wall architecture and 
elongation (Fry, 1995). It is commonly known that during the 
development of a plant, XTH/Xet is involved in cell wall 
loosening and expansion as well as improving its rigidity during 
infection by a pathogen (Rose et al., 2002). The PVY inoculation 
significantly redirected the deposition of xylan-1/xyloglucan 
and xyloglucan xyloglucosyl transferase (XTH-Xet5), compared 
to mock-inoculated tissues (Otulak-Kozieł et  al., 2018b). 
Moreover, immunogold localization showed that Xet5 was 
dominant in cell wall and its nearby vesicles in the host susceptible 
to infection. The involvement of xyloglucan endotransglucosylases 
was also identified in the case of interactions of hosts with 
potato leafroll virus (DeBlasio et  al., 2015) and with papaya 
meleira virus (Rodrigues et  al., 2011).

The rebuilding of the cell wall during the growth and 
development of the plant cell or during the interaction of a 
plant with nonviral pathogens in the area associated with 
extensins and expansins, has been postulated by Marowa et  al. 
(2016). However, Yang et  al. (2007) stated that in Arabidopsis 
the patterns of expression of cell wall-related genes, including 

pectin methylesterase 3 (PME3), expansin 10 (EXP10), and 
xyloglucan transferase 6 (XTH6), varied based on the areas 
in which the samples were harvested. The authors also noticed 
a reduction in mRNA transcript accumulation after infection 
by turnip mosaic virus (TuMV). In addition, they found that 
the genes PME3, XTH6, and EXP10 were activated against 
TuMV after 10  days of inoculation. Moreover, Chen et  al. 
(2018c) proposed that EXPA4 overexpression accelerated the 
replication of TMV and the development of symptoms in 
tobacco. Similar conclusions could be  drawn based on studies 
analyzing the role played by extensins and expansins during 
infection of susceptible potato by PVYNTN (Otulak-Kozieł et al., 
2020). Otulak-Kozieł et  al. (2020) indicated a remarkable 
induction of StEXPA3 and slight induction of StEXT4 during 
a susceptible response (Figure  1). In addition, the process of 
cell wall loosening occurred together with an increased deposition 
of StEXPA glycoproteins and hydroxyproline-rich glycoproteins 
(HRGPs) in PVYNTN-susceptible potato. Interestingly, the StEXPA 
signal gradually increased in susceptible PVYNTN-infected potato, 
unlike the resistance response which is often found within 
1–7  days of inoculation in vascular tissues and 14–30  days of 
inoculation in most of the leaf tissues. In addition, StEXPAs 
were detected in the symplast of cells, mainly in the epidermal 
and stomata regions and in vascular bundles, especially in cell 
walls (Otulak-Kozieł et  al., 2020). Furthermore, we  showed 
the presence of StEXPAs in the plasmodesmata during the 
susceptible reaction as well as near the cytoplasmic inclusions 
of PVY—distinctive for the Potyvirus group. However, based 
on the results obtained from the microarray analysis of the 
expression of cell wall-related genes following RSV infection, 
Shimizu et  al. (2007) reported marked suppression of other 
groups of extensins—proline-rich glycoproteins and glycine-rich 
glycoproteins. They concluded that different types of extensins 
could be up- or downregulated during interaction with different 
plant viruses.

PLANT CELL WALL AND THE  
PLANT-VIRUS RESISTANCE RESPONSE

Defense activation during the identification of exogenous or 
endogenous signals—known as pathogen-associated (PAMPs) 
and damage-associated molecular patterns (DAMPs), 
respectively—is the key function of innate immunity in plants 
(De Lorenzo et  al., 2019). Damage detection is essential for 
plant cell survival. Mechanical damage and infections disturb 
the homeostatic cellular processes, which are recognized as a 
threat by plants (De Lorenzo et  al., 2019). Perception of 
“damaged self ” occurs independently of the infecting organism. 
Hence, the induced response may not be  particular to a given 
pathogen (Heil and Land, 2014; De Lorenzo et  al., 2019). 
DAMPs might result from the damage caused to cell structures 
by injuries and consequently developmental breaks; therefore, 
they not only protect against infection but also play a crucial 
role in processes that are not related to pathogens, including 
tissue injuries and repair (De Lorenzo et  al., 2018). DAMPs 
can be exemplified by oligosaccharides discharged by the cell wall.  

108

https://www.frontiersin.org/journals/microbiology
www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Kozieł et al. Viruses Effect on Plant Cell Wall

Frontiers in Microbiology | www.frontiersin.org 4 March 2021 | Volume 12 | Article 656809

The structure of the plant cell wall is closely observed, upon 
cell wall remodeling. Moreover, it is significantly modified by 
mechanical injuries or by infection (Ferrari et  al., 2013; 
Bellincampi et  al., 2014; Hamann, 2015; De Lorenzo et  al., 
2019). According to the analyses of Benedetti et  al. (2015) 
and Gramegna et  al. (2016), the products resulting from the 
breakdown of homogalacturonan (HG), such as 
oligogalacturonides (OGs), are treated as DAMPs produced 
against microbial attack and as a local signal to repair mechanical 
damages. Moreover, Savatin et  al. (2014) stated that during 
an infectious event, OGs are produced by the effect of enzymes 

that degrade microbial pectin. The defense responses are actively 
induced by OGs consisting of 10–15 residues, whereas shorter 
oligomers reveal lower activity, according to Davidsson et  al. 
(2017). Cabrera et al. (2008) highlighted that the OGs function 
maximally when involved in calcium-mediated intermolecular 
ionic interactions that render these compounds with a 
conformational state referred to as “egg boxes.” Moreover, the 
extent of HG methyl-esterification or acetylation, which differs 
in organs during the development of plants, may decide the 
characteristics of OGs released and their biological activity. 
As analyzed by Benedetti et al. (2015), average OG accumulation 

A B
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D E

FIGURE 1 | Cell wall loosening in susceptible potato reaction to PVYNTN. (A) Loosening of the cell wall structure with the distribution of vesicles (*) as shown by 
transmission electron microscopic analyses. Bar: 2 μm. (B) Paramular bodies (arrows) connected with plasmodesmata in association with viral cytoplasmic inclusion 
(*). Bar: 2 μm. (C) Green fluorescence of PR-2 protein (*) observed in the vascular bundle, palisade mesophyll, and epidermis with stomata in susceptible potato leaf. 
Bar: 200 μm. (D) Fluorescence of xyl-1/xyloglucan observed in vascular bundle (arrows; xylem and phloem) and spongy mesophyll cells after 14 days of inoculation 
with PVYNTN. Bar: 20 μm. (E) StEXPA signal observed in the leaf tissues at 30 days of post inoculation—signals with the highest intensity (*) were observed in cell 
wall and symplast of necrotizing mesophyll cells, xylem tracheary elements, and stomata. Bar: 50 μm. (F) Schematic representation of the distribution changes of 
selected cell wall components in susceptible potato response to PVYNTN. CW, cell wall; Ep, epidermis; M, mitochondria; Pd, plasmodesmata; PMe, palisade 
mesophyll; Pr, peroxisome; SMe, spongy mesophyll cells; V, vacuole; VB, vascular bundles. (Based on Otulak-Kozieł et al., 2018a,b, 2020, modified).
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triggers an appropriate and stable immune response, whereas 
excess OGs may induce hyper immunity, affecting growth and 
ultimately leading to cell death.

The PAMP and DAMP response pathways associated with 
the cell wall were not precisely recognized for plant viral infections. 
In fact, numerous results indicate that the cell wall is actively 
modified during a plant resistance response against viral pathogens. 
Years of plant-virus co-evolution did not only lead to susceptibility 
but also lead to resistance. Generally, resistance, or high resistance 
(associated with hypersensitive reaction), results from well-
developed and effective defense mechanisms induced to prevent 
or limit the damage caused by infection by a viral pathogen 
(Soosaar et  al., 2005). Plant resistance genes confer hosts with 
resistance against various pathogens, including viruses (Soosaar 
et  al., 2005; Hull, 2014). The defense response initiated as a 
result of the recognition of a specific virus is stereotypical, and 
the associated cellular and physiological features have been  
well described by several authors (Soosaar et  al., 2005;  
Hashimoto et  al., 2016; Kumar, 2019).

The attribution of the cell wall to the resistance response 
against plant viruses is a newly emerging concept. Generally, 
several cell wall mutants or plants treated with cell wall 
biosynthesis inhibitors have been shown to exhibit a gamut 
of immune response, including the expression of defense 
genes and the accumulation of defense compounds, but it is 
rather limited in the case of plant-virus interactions (Hamann, 
2015). The first investigations of plant-virus interactions 
concerned plasmodesmata. Inhibition of β-1,3 glucanase enzyme 
led to an elevated deposition of callose in some parts of the 
cell wall, thereby leading to a reduction in size exclusion 
limit. As a result, both short- and long-distance transport 
of CMV, TMV, PVX, and tobacco necrosis virus was reduced 
(Iglesias and Meins, 2000; Peña and Heinlein, 2012). Plants 
with suppressed β-1,3 glucanase restricted the access of plant 
viruses to a limited number of cells, in which it was possible 
to induce programmed cell death, thus repressing or even 
stopping virus infection (Iglesias and Meins, 2000). A similar 
limitation, characteristic of TMV, was observed in potato 
with a hypersensitive response (HR) against PVYNTN (Otulak-
Kozieł et  al., 2018a). In this reaction, intense callose deposits 
were immuno-localized in plasmodesmata, accompanied by 
lower PR-2 deposition, as compared to the compatible 
interaction. In this case, PR-2 was mainly transported and 
deposited in vacuoles rather than in the cell wall. Apparently, 
potato actively redistributed this protein in the presence of 
the virus. In addition, resistant tobacco plants (VAM) that 
were infected with PVY responded with increased deposition 
of PR protein-related transcripts (Chen et  al., 2016). On the 
other hand, the data presented by Lionetti et  al. (2014) 
indicated the role of pectin methylotransferase inhibition in 
viral transport and plant resistance in Arabidopsis thaliana 
and Nicotiana tabacum. The authors showed that the 
overexpression of genes encoding pectin methylesterase 
inhibitors in Nicotiana tabacum and Arabidopsis thaliana from 
Actinidia chinensis generated some level of resistance and 
limited the transport of two different plant viruses namely 
TMV and turnip vein-clearing virus.

Moreover, the HR reaction of potato to PVYNTN infection 
also led to changes in other components of cell walls (Figure 2; 
Otulak-Kozieł et  al., 2018a,b, 2020). This included a decrease 
in the level of the catalytic subunit of cellulase synthase—
CesA4. These changes were more intense than those observed 
in susceptible potato, and caused rebuilding of cell wall 
ultrastructure, resulting in a reinforced/thicker cell wall. In 
many cases of reinforced cell walls, phenolic compounds were 
also deposited. Otulak-Kozieł et  al. (2019) postulated that 
respiratory burst oxidase homolog D (RbohD) and H2O2 were 
vital components of the resistance response in cell wall remodeling 
in potato-PVY pathosystem. Similarly, the reinforced cell wall 
and the role of H2O2 were suggested in the cases of immunity 
such as the reaction of quinoa to PDV (Kozieł et  al., 2020). 
Along these lines, Zheng et  al. (2013) showed that the HR 
response to RSV was associated with cell wall functions. The 
authors indicated that changes in peroxidase biosynthesis, 
glycine-rich cell wall structural protein, cellulose synthase, and 
XTH/Xet strengthened the physical barriers of rice against 
RSV. The role of xyloglucans in cell wall remodeling in HR 
was supported by the results of Otulak-Kozieł et  al. (2018b). 
It was ascertained that during HR, the xylan content decreased 
but the levels of XTH-Xet5 increased (engaged in xyloglucan 
metabolism) in cell wall, cytoplasm, and the trans-Golgi network. 
Therefore, we  postulated that the HR activated XTH-Xet5  in 
areas where xyloglucan endotransglucosylase is synthesized, 
and later the enzyme was transported to components such as 
cell wall, cytoplasm, and vacuoles. These findings were similar 
to those reported by Chen et al. (2016). Hypersensitive reaction 
is also associated with structural and modified cell wall proteins 
such as expansins and extensins. Park et  al. (2017) showed 
in Nicotiana benthamiana that the absence of expansin A1 
(EXPA1) gene leads to resistance against TuMV. Otulak-Kozieł 
et  al. (2020) indicated that the StEXT4 gene is often gradually 
activated and StEXPA3 is repressed during HR against PVYNTN. 
They demonstrated that the levels of StEXPAs in cell walls 
decreased, while the content of HRGPs dynamically increased 
in the reinforced cell walls; the HRGP extensins accumulated 
mainly in apoplast, but they were also observed to be deposited 
in the symplast in the case of resistant plants. Thus, we conclude 
that changes in the intracellular distribution of HRGPs and 
StEXPAs are differentially controlled based on the type of 
PVYNTN-potato interactions. These observations confirm that 
apoplast as well as symplast is involved in defense response  
mechanisms.

FUTURE PROSPECTS

Plant cell wall performs a number of important functions in 
the cell. So far, the structural properties and composition of 
the cell wall as well as its involvement in the interaction of 
plants with bacterial and fungal pathogens have been well 
described. However, modifications occurring in the cell wall 
during viral infection remain poorly understood. This review 
presents recent interesting insights into the role the cell wall 
plays in compatible (susceptible) and incompatible (resistance) 
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reactions. Significant progress has been made in identifying 
the important components of the cell wall. Results have shown 
that changes observed in the intracellular dissemination and 
accumulation of β-1,3 glucanase, components of hemicellulosic 
cell wall matrix, and cell wall structural and modifying proteins 
such as expansins, HRGPs, and extensins might be differentially 
controlled, based on the type of plant-virus interactions, leading 
to cell wall loosening or the appearance of a reinforced cell 
wall. This confirms that apoplast as well as symplast is activated 
as a mechanism of the defense response.

This research topic is promising and provides a better 
understanding of the multilevel complex network of plant 
responses to viruses. Further analysis of the functions of specific 
plant cell components is necessary to establish the regulatory 
pathways involved in communication between the plant and 
viral pathogen. This can be  possible with the use of tools 
such as atomic force microscopy (AFM). AFM images can 
show, at the nanometer scale, the heterogeneity of the cell 
wall as well as the spatial distribution of both soft and rigid 
polymers of the cell wall matrix (Gierlinger, 2018). AFM can 

A
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FIGURE 2 | Cell wall reinforced in resistance potato reaction to PVYNTN. (A) Folded (*) and invaginated cell wall (**) observed in the epidermis during HR. Phenolic 
compounds (arrowhead) and multivesicular bodies (arrows) found in a vacuole. Bar: 2 μm. (B) Deposition of callose material (*) between plasma membrane and cell 
wall in mesophyll cells during HR. Bar: 1 μm. (C) Fluorescence detection of XTH-Xet5 in leaflet tissues after 10 days of PVY inoculation. Bar: 20 μm. (D) HRGP 
extensin signal (*) observed in the vascular bundle at 14 days post inoculation in hypersensitive potato response to PVYNTN. Bar: 20 μm. (E) Schematic 
representation of the distribution changes of selected cell wall components in resistance potato response to PVYNTN. Ch, chloroplast; CW, cell wall; Ep, epidermis; 
PMe, palisade mesophyll cells; SMe, spongy mesophyll cells; VB, vascular bundles. (Based on Otulak-Kozieł et al., 2018a,b, 2020, modified).
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be  employed together with electron tomography to study the 
cell wall in mutants, for example, of cellulose synthase in the 
infected plants. Extensive computational simulations of 
mechanical properties may reveal the three-dimensional 
organization of the cell wall during interactions (Otegui and 
Pennington, 2019). Furthermore, spectroscopic techniques (such 
as confocal Raman spectroscopy) may non-disruptively indicate 
the cell wall structures and also be applied as a high-throughput 
method to describe the phenotypes of cell wall mutants. 
Transgenic/mutant plants are formed as a result of the generation 
of resistance to plant pathogens based on changes in cell wall-
associated elements (Moscetti et  al., 2013; Ferrari et  al., 2014; 
Lionetti et  al., 2014; Woo et  al., 2014). Insertion of 
polygalacturonase-inhibiting proteins from bean and 
overexpression of natural wheat xylanase inhibitor TAXI-III 
induced resistance in wheat against Fusarium graminearum 
(Moscetti et  al., 2013; Ferrari et  al., 2014). Mutants or 
overexpression lines with lignin modification have been analyzed 
by many researchers, and they seem to play an important role 
in the pathogen resistance—as a passive or active regulatory 
component of immune response, such as in the case of cotton 
resistance to wilt (Verticillium dahliae) as presented by Xu 
et  al. (2011) and Shi et  al. (2012). Several examples of cell 
wall change-mediated immune reaction in genetically engineered 
plants have been reviewed in detail by Miedes et  al. (2014), 
Smirnova and Kochotev (2016), and Bacete et  al. (2018). The 
promising techniques for the generation of cell wall mutants 
include the T-DNA insertions, TILLING lines, and especially 
CRISPR/Cas9 lines, where crucial cell wall components and 
genes are blocked or overexpressed. In particular, the CRISPR/
Cas9 system may provide an insight into the genetic control 
of the structure and functions of plant cell wall (Whitehead 
et  al., 2018; Cao et  al., 2020; McCarty et  al., 2020). At present, 
these methods are generally used in studies focusing on cell 

wall synthesis pathways (including enzymes) and analyzing the 
exact functions of cell wall elements (Zhang and Showalter, 
2020) for the improvement of crop products (Wang C. et  al., 
2019; Wang D. et  al., 2019). However, Makarova et  al. (2018) 
indicated the application of the CRISPR/Cas9 system for 
generating plant resistance (not precisely associated with cell 
wall) against various pathogens. Such studies can allow for a 
better understanding of the processes involved in the 
communication of the plant cell with viruses.
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Mixed viral infections in plants involving a potyvirus and other unrelated virus often result 
in synergistic effects, with significant increases in accumulation of the non-potyvirus 
partner, as in the case of melon plants infected by the potyvirus Watermelon mosaic virus 
(WMV) and the crinivirus Cucurbit yellow stunting disorder virus (CYSDV). To further explore 
the synergistic interaction between these two viruses, the activity of RNA silencing 
suppressors (RSSs) was addressed in transiently co-expressed combinations of 
heterologous viral products in Nicotiana benthamiana leaves. While the strong RSS activity 
of WMV Helper Component Proteinase (HCPro) was unaltered, including no evident 
additive effects observed when co-expressed with the weaker CYSDV P25, an unexpected 
negative effect of WMV P1 was found on the RSS activity of P25. Analysis of protein 
expression during the assays showed that the amount of P25 was not reduced when 
co-expressed with P1. The detrimental action of P1 on the activity of P25 was dose-
dependent, and the subcellular localization of fluorescently labeled variants of P1 and 
P25 when transiently co-expressed showed coincidences both in nucleus and cytoplasm. 
Also, immunoprecipitation experiments showed interaction of tagged versions of the two 
proteins. This novel interaction, not previously described in other combinations of 
potyviruses and criniviruses, might play a role in modulating the complexities of the 
response to multiple viral infections in susceptible plants.

Keywords: RNA silencing suppression, watermelon mosaic potyvirus, cucurbit yellow stunting disease crinivirus, 
plant virus mixed infection, virus pathogenesis in plants
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INTRODUCTION

The simultaneous presence of two unrelated viruses in mixed-
infected plants can lead to different outcomes, including 
synergisms, antagonisms, and neutral interactions (Syller, 2012; 
Syller and Grupa, 2016; Moreno and López-Moya, 2020). Despite 
being a situation common in natural conditions, our knowledge 
of the interactions taking place in mixed infections is still rather 
limited, even for those combinations that cause plant diseases 
with more than one etiological viral agent. Particularly unknown 
is how the virus-virus interactions could influence pathogenicity 
and condition the ecology and evolution of viruses, even resulting 
in generation of new variants or shaping the genetic structure 
of viral populations (Tollenaere et al., 2016; Alcaide et al., 2020). 
Hence, a better knowledge of virus-virus interactions during 
mixed infections might be  valuable for deploying efficient and 
durable virus control strategies (Syller, 2012; Wu et  al., 2019).

Although the outcome of a mixed infection is difficult to 
predict in general, synergistic interactions are often expected 
when one of the partners is a potyvirus, assuming that the 
other unrelated virus would be  “assisted” by the potyvirus. 
Initially characterized for the potyvirus Potato virus Y and the 
potexvirus Potato virus X (Damirdagh and Ross, 1967; Vance, 
1991), the interactions of potyviruses and unrelated viruses 
produced outcomes remarkably coincidental in many cases 
(Taiwo et  al., 2007; Zeng et  al., 2007; Mascia et  al., 2010). 
The identification of the potyviral Helper Component Proteinase 
(HCPro) as a candidate RNA silencing suppressor (RSS) 
(Anandalakshmi et  al., 1998; Kasschau and Carrington, 1998) 
provided a sort of mechanistic model to explain the outcome, 
but the multifunctional nature of HCPro, including the 
complexities of its activity as RSS (Lakatos et  al., 2006; Valli 
et al., 2018) makes specially challenging to reveal the underlying 
molecular aspects. Most of the interactions involving a potyvirus 
and an unrelated virus have been described only partially, 
mainly attending to the macroscopic and visible outcomes, 
likely leaving many unexplored molecular mechanisms. Indeed, 
the simplistic view in which a potent RSS would always work 
in a pro-viral direction for other viruses might not respond 
to the underlying complexities of these interactions. Interestingly, 
one remarkable exception to the potyvirus-assisted synergistic 
interactions was reported in sweet potato crops, where the 
potyvirus partners were benefited in co-infections with the 
crinivirus Sweet potato chlorotic stunt virus (SPCSV; Tairo et al., 
2005; Untiveros et al., 2007; Clark et al., 2012). For this exception, 
a gene product different of HCPro, the P1N-PISPO, was associated 
to RSS activity in the potyvirus Sweet potato feathery mottle 
virus (SPFMV; Mingot et  al., 2016; Untiveros et  al., 2016).

In the present work, we have considered the mixed infection 
of the potyvirus Watermelon mosaic virus (WMV) and the 
crinivirus Cucurbit yellow stunting disorder virus (CYSDV). These 
two viruses belong to different taxonomic families, Potyviridae 
(Wylie et  al., 2017) and Closteroviridae (Fuchs et  al., 2020), 
they are transmitted by different vectors, but they are commonly 
found together in melon and other cucurbits, causing high 
production losses (Juarez et al., 2013). WMV is a widely spread 
aphid-transmitted potyvirus with the usual genomic and biological 

characteristics of the genus (Revers and García, 2015; Valli 
et  al., 2015; Gibbs et  al., 2020), and a remarkable natural 
variability (Moreno et  al., 2004; Desbiez et  al., 2011; Verma 
et  al., 2020). CYSDV is a whitefly-transmitted crinivirus 
(Abrahamian and Abou-Jawdah, 2014; Wintermantel et al., 2017), 
and less widespread than WMV although lately it is becoming 
an emergent problem together with other whitefly-transmitted 
viruses (Navas-Castillo et  al., 2011, 2014). We  have already 
characterized the dynamic accumulation of these two partner 
viruses in melon and explored how that influences their vector-
mediated dissemination (Domingo-Calap et al., 2020), although 
many molecular details of their interaction remained unaddressed, 
such as those dealing with RNA silencing processes.

To infect a host plant, viruses need to counteract its RNA 
silencing mechanism, considered an innate immune response 
(Voinnet, 2001; Baulcombe, 2004), by producing suppressor 
proteins that target different steps of the pathway to block 
this antiviral response (Csorba et  al., 2015). In CYSDV, the 
role of RSS is associated to P25 (Kataya et  al., 2009), and in 
WMV, we  hypothesized that it might reside in HCPro, as this 
is the most common RSS in many other potyviruses (Valli 
et  al., 2018). This assumption about WMV HCPro acting as 
RSS was confirmed experimentally for the first time in the 
present study.

To further explore virus-virus interactions in mixed infections 
of WMV and CYSDV, we  decided to focus on their RNA 
silencing suppression machinery. In addition to the known 
RSSs, other viral gene products that might participate in the 
activity have been selected. For instance, the rather variable 
P1 of potyviruses (Valli et  al., 2007; Shan et  al., 2015) that 
has been considered a modulator of RSS in several viruses 
(Fernández et  al., 2013; Pasin et  al., 2014) and the P22 of 
CYSDV, the gene product downstream of the P25 region in 
the RNA1, located in a position where other criniviruses encode 
proteins involved in this function (Kreuze et al., 2005; Cañizares 
et  al., 2008; Weinheimer et  al., 2015; Kubota and Ng, 2016; 
Chen et  al., 2019; Orfanidou et  al., 2019).

In this study, thematically independent of our previous 
publication on the same mixed infection of WMV and CYSDV 
in melon (Domingo-Calap et al., 2020), we report an unexpected 
and dose-dependent negative effect of WMV P1 on the RNA 
silencing suppression activity of CYSDV P25 when co-expressed 
in a transient assay in Nicotiana benthamiana, and discuss its 
possible contribution to the complex virus-virus interactions 
during mixed infections.

MATERIALS AND METHODS

Plasmid Constructs
Gene fragments corresponding to CYSDV P25 (639 nts), CYSDV 
P22 (579 nts), WMV P1 (1,332 nts), and WMC HCPro (1,371 
nts) were RT-PCR-amplified using viral genomes extracted 
respectively from CYSDV (for P25 and P22) and WMV (for 
P1 and HCPro) infected plants, using Phusion High Fidelity 
PCR System (Thermo Sciences) and the specific primers shown 
in Table 1. A cis construct spanning P1HCPro was also prepared 
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using primers forward and reverse upstream P1 and downstream 
HCPro, respectively. The amplified PCR products were purified 
and cloned into pENTRY D-TOPO GATEWAY expression system 
(Invitrogen), resulting in the constructs pENTRY_CYSDV-P22, 
pENTRY_CYSDV-P25, pENTRY_WMV-P1, pENTRY_
WMV-HCPro, and pENTRY_WMV-P1HCPro. Subsequently, 
the different viral genes were mobilized through LR recombination 
into the different destination plasmid vectors (Tanaka et  al., 
2011), including pGWB-702 (containing the 35S promoter and 
the Ω enhancer) for silencing suppression analysis; pGWB-742 
(containing 35S promoter and N-terminal phusion to EYFP) 
and pGWB-745 (same promoter and N-terminal phusion to 
ECFP) for subcellular localization; pGWB 715 (providing 
N-terminal tag 3xHa) and pGWB 718 (providing N-terminal 
tag 4xMyc) for protein detection and co-immunoprecipitation 
assays. For bimolecular fluorescence complementation (BiFC) 
assays (see below), the destination plasmid vectors pBiFC2 and 
pBiFC3 were used (Azimzadeh et al., 2008; Ochoa et al., 2019).

Agroinfiltration and Green Fluorescent 
Protein  Imaging
Nicotiana benthamiana plants were grown at 23–25°C with a 
photoperiod of 16  h of light and 8  h of darkness. Cultures 
of Agrobacterium tumefaciens strain EHA105 carrying the 
different plasmids were grown overnight at 28°C, and cells 
were resuspended to an equal OD600 (=0.3) in induction buffer 
(10  mM MES/NaOH, pH 5.6, 10  mM MgCl2, 150  μM 
acetosyringone) for 3  h before agroinfiltration of patches in 
leaves of N. benthamiana plants at the 4–6-leaf growth stage. 
For co-infiltration, the A. tumefaciens cultures were adjusted 
to the same optical density at OD600 (=0.3) and mixed in 
induction buffer to be  agroinfiltrated at the same time.

The identification of RNA silencing suppression activity was 
done by visual inspection of green fluorescent protein (GFP) 
fluorescence in agroinfiltrated leaves, comparing the different 
independent viral proteins P22, P25, P1, HCPro, and the cis 
construct P1-HCPro when expressed transiently (see above) 
through co-agroinfiltrated with the construct pBIN-GFP, using 
always in every leaf for comparison purposes both a positive 

(corresponding to the CVYV P1b RSS) and negative (an empty 
vector named delta) controls kindly provided by Dr. A. Valli 
(CNB-CSIC, Madrid, Spain), and essentially following previously 
described procedures (Giner et  al., 2010; Mingot et  al., 2016). 
For the combinations of different constructs, the OD was 
adjusted to keep equal concentration of bacteria in the 
agroinfiltration solution. GFP fluorescence was observed under 
long-wavelength UV light (Black Ray model B 100AP, UV 
products), and pictures were taken using a Nikon digital camera.

Quantitative RT-PCR
Total RNA was extracted from two leaf disks of agroinfiltrated 
N. benthamiana plants using TRIzol reagent (Invitrogen) 
according to the provider’s instructions, including an additional 
ethanol precipitation step to improve purity of RNA. Quality 
and concentration of RNA was estimated using a NanoDrop® 
spectrophotometer (ND-8000). After DNase treatment to 
eliminate genomic DNA, about 1  μg of total RNA extracted 
from plant samples was used to produce cDNA with the High-
Capacity cDNA Reverse Transcription kit (Applied Biosystems™), 
following protocols provided by the manufacturer. SYBRGreen 
(Roche) was used to detect PCR products in a Light Cycler 
480 (Roche) equipment using triplicates of 100  ng of the 
resulting single-stranded cDNA. Specific primers previously 
described for GFP (Leckie and Neal Stewart, 2011) and ubiquitin 
(Lacomme et al., 2003) sequences were used. Statistical analysis 
was performed applying t-test to ∆Ct values using the program 
GraphPad Prism version 6.0.

Protein Extract Preparations and Western 
Blotting
Tagged versions of the different viral gene products were 
constructed using pGW 715 and pGW 718 backbones, and 
mobilized to A. tumefaciens for agroinfiltration in N. benthamiana 
(see above). Samples (four leaf disks) collected were processed 
from mock or agroinfiltrated N. benthamiana plants were 
collected and homogenized in 200  ul of extraction buffer 
(20  mM Tris-HCl pH 7.5, 30  mM NaCl, 1  mM EDTA, 0.5% 
NP-40, 2% b-mercaptoethanol). Cell debris were removed by 
centrifugation at 13,200 rpm at 4°C for 10 min, and an aliquot 
(30  μl) of the supernatant were boiled in Laemmli’s sample 
buffer (250  mM Tris-HCl pH 7.5, 40% Glicerol, 8% SDS, 20% 
b-mercaptoethanol). Samples were separated on 12% SDS-PAGE, 
transferred to Amersham Protran nitrocellulose blotting 
membrane and subjected to Western blot analysis. For detection, 
Anti-Myc Tag Antibody, clone 4A6 (Millipore) and Anti-Ha 
(Sigma-Aldrich) were used followed by incubation with adequate 
secondary anti-mouse antibodies. The proteins were visualized 
by chemiluminescence (Super Signal West Femto, Thermo 
Scientifics) according to the manufacturer’s instructions using 
a ChemiDoc imaging system (BioRad).

Subcellular Localization and 
Co-localization
The coding gene products for WMV P1 and CYSDV P25 
proteins were inserted in the vectors pGWB742 (35S pro, 

TABLE 1 | Sequence of primers used for cloning viral gene products.

Gene product Sense1 Primer sequence2

WMV P1 Fw 5' CACCATGGCAACAATCATGTTTGGAG 3'
Rv 5' TCAATAATGTTGAATATCTTCTATCTCC 3'

WMV HCPro Fw 5' CACCATGTCTCACACTCCAGAAG 3'
Rv 5' TCAACCAACCCTGTAAAACTTC 3'

CYSDV P22 Fw 5' CACCATGCAGAGTGTTGGAGTAG 3'
Rv 5' TCAAGGGATGGTGCCCATG 3'

CYSDV P25 Fw 5' CACCATGGGAGAAGATTTACAAGAAC 3'
Rv 5' CTACTCCAACACTCTGCATTC 3'

1Sequence corresponding to the viral genome are considered Forward (Fw), while 
complementary are Reverse (Rv).
2Bold nucleotides correspond to 5' additions required for properly oriented cloning in 
pENTR-TOPO. In the case of potyviral gene products, a methionine codon inserted in 
the forward primer for Helper Component Proteinase (HCPro) and sequences 
complementary to stop codons added in the reverse dowstream primers of both P1 
and HCPro are underlined.
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N-EYFP) and pGWB745 (35S pro, N-ECFP) respectively, 
generating constructs for expression of YFP-WMV-P1 and 
CFP-CYSDV-P25 fusion proteins. The transient expression 
of both products in N. benthamiana leaves was achieved 
co-agroinfiltrating the constructs with an additional plasmid 
for expression of the RSS P19 of TBSV, pBin-TBSV-P19 
(kindly provided by Dr. Montse Martin, CRAG, Barcelona, 
Spain). A confocal laser scanning Leica TCS SP5 (Leica 
Microsystems, Germany) microscope was used to observe 
the N. benthamiana epidermal cells at the adequate wavelengths 
for each reporter.

BiFC Assays
Expression of fusion proteins with N- and C-fragments of the 
reporter YFP, denominated, respectively YFPN and YFPC was 
achieved in A. tumefaciens strain EHA105 carrying plasmid 
for YFPC-WMV-P1, YFPN-WMV-P1, YFPC-CYSDV-P25, and 
YFPN-CYSDV-P25. Each construct and pBIN-TBSV-P19 were 
cultured separately and the cells were resuspended to an equal 
OD600 (=0.3). Equal volumes of the combinations YFPC- YFPN- 
and pBIN-TBSV-P19 were mixed in induction buffer (10  mm 
MES/NaOH, pH 5.6, 10  mm MgCl2, 150  μm acetosyringone). 
Nicotiana benthamiana plants at the 4–6-leaf stage were used 
for agroinfiltration. At 3, 5, and 7  days post agroinfiltration 
(dpa), epidermal cells of agroinfiltrated leaves were observed 
for fluorescence emission under a confocal laser scanning 
microscope (Leica TCS SP5) at a wavelength of 514  nm.

Co-immunoprecipitation of Tagged 
Proteins
For immunoprecipitation 50  ul of Anti-c-Myc agarose beads 
(Sigma) were washed before adding the samples with Phosphate-
Buffered Saline (PBS) 1x. Samples (about 1  g) of mock-, 
HA-WMV-P1, MYC-CYSDV-P25, or HA-WMV-P1 + 
MYC-CYSDV-P25 agroinfiltrated N. benthamiana leaves were 
collected, ground in immunoprecipitation buffer (20  mM 
Tris-HCl pH 7.5, 30  mM NaCl, 1  mM EDTA, 0,5% NP-40, 
2% b-mercaptoethanol) and cleared by centrifugation at 
13,200  rpm for 10  min at 4°C. Supernatants of the different 
lysates were added to samples of washed beads and incubated 
for 1  h at 4°C. After immunoprecipitation, beads were washed 
three times with ice-cold PBS 1x for 1 min each. Input extracts 
and eluates of immunoprecipitations were used for Western 
blot analysis (see above).

RESULTS

Confirmation of RNA Silencing 
Suppression Activity for Transiently 
Expressed Viral Gene Products
Individual gene products from the viruses WMV and CYSDV 
were selected for testing their activities, including already known 
RSSs and others with potential modulator effects. For the 
potyvirus, P1 and HCPro proteins were tested, and in the 
crinivirus, we  chose P25 and P22, both located in RNA1 

(Figure  1A). The different constructs were tested individually 
using the standard transient expression assay in N. benthamiana 
leaves with GFP as reporter, and the corresponding CVYV 
P1b and delta constructs as positive and negative controls, 
following described procedures (Giner et  al., 2010; Mingot 
et al., 2016). In the experiments with individual gene products, 
both WMV HCPro and CYSDV P25 exhibited activities as 
RSSs at 3 and 5  dpa, lasting up to at least 7  dpa in the case 
of HCPro, while P1 and P22 did not show detectable GFP at 
any of the tested time points, indicating that they do not 
suppress local RNA silencing in the assay (Figure  1B). These 
results served to confirm the RSS activity of the P25 protein 
in our CYSDV Spanish isolate, and to visually determine for 
the first time the RSS activity of the HCPro protein of WMV, 
as it was expected attending to the antecedents for many other 
viruses in the same genus (Valli et  al., 2018). Since P1 and 
HCpro are naturally expressed in cis as part of a larger 
polyprotein, the construct P1-HCPro with the two gene products 
in cis was also tested, showing again a strong RSS activity, 
indistinguishable of the activity exhibited by the WMV HCPro 
alone (Figure  1B).

To verify the correct expression of all viral products constructs, 
MYC-tagged versions were agroinfiltrated and samples analyzed 
by SDS-PAGE and Western blot (Figure  1C).

Combination of Heterologous Gene 
Products: Negative Effect of WMV P1 on 
the RSS Activity of CYSDV P25
To determine possible interactions between gene products of 
the two viruses considered, a set of experiments were designed 
to compare the performance in assays of RSS activity of different 
combinations involving WMV P1 or HCPro, paired together 
with CYSDV P22 or P25 (Figure  2A). In the combinations 
including WMV HCPro as one of the partners, the high RSS 
activity remained apparently unaltered when comparing in the 
same leaf patches infiltrated with HCPro alone or co-expressed 
along with either P22 or P25, suggesting that the assay was 
not sensible enough to detect an additive effect of P25 on 
top of the very high activity exhibited by HCPro. However, 
in the reciprocal combinations involving WMV P1, while its 
expression in the control with P22 remained non-functional 
as expected, a negative effect of the non-suppressor WMV P1 
was observed on the RSS activity of the CYSDV P25 protein. 
This unexpected result was consistently reproduced, always 
showing an obvious attenuation of the intensity of the GFP 
signal with respect to that observed when the suppressor was 
expressed alone (a representative example is shown in the 
upper left photograph of Figure  2A). The same effect could 
be observed along different time points during the experiment, 
as shown for 3 and 5  dpa, before the weak activity of P25 
faded after 7  dpa (Figure  2B). To further confirm these 
observations, we  performed relative qRT-PCR measuring the 
expression levels of the GFP mRNA (Figure  2C), showing 
that the negative effect was present as early as at 3  dpa, when 
visually only a weak RSS activity was observed in the patches 
co-agroinfiltrated with P1+P25 (Figure  2B, see below).
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A

B

C

FIGURE 1 | Confirmation of RNA silencing suppression (RSS) activity in individually expressed viral gene products of Watermelon mosaic virus (WMV) and Cucurbit 
yellow stunting disease virus (CYSDV). (A) Genome maps of WMV and CYSDV. Below the size rule in kilobases, the viral ssRNAs are shown as solid horizontal lines 
(10,035 nucleotides for WMV, and 9,123 and 7,976 for the RNA1 and RNA2 of the bipartite CYSDV, respectively). In the WMV genome, VPg is depicted as a solid 
circle at the 5' end, and the poly-A tail as An at the 3' end. Viral ORFs are depicted as boxes with the names of the mature gene products. The PIPO region is shown 
below the polyprotein of the potyvirus leading to the partially out-of-frame product P3N-PIPO, and the protease-specific cleavages sites are indicated by arrows 
above and matching symbols in the gene products responsible of the proteolytic process. The different frames are shown for the crinivirus gene products. (B) The 
left part of the panel shows schematically the organization of patches in the Nicotiana benthamiana leaves used to test RSS activity in co-agroinfiltration of the 
selected gene products with the reporter green fluorescent protein (GFP). The positions for positive and negative controls, corresponding to the P1b of Cucumber 
vein yellowing virus (CVYV) and an empty vector (delta), respectively, are also shown. Constructs for expression of the individual gene products and the P1-HCPro 
cis construct are indicated above the pictures of leaves. Pictures were taken at 5 days post agroinfiltration (dpa) under UV light. (C) A representative Western blot 
analysis of the N-terminus MYC-tagged gene products shown in the diagrams with their expected molecular weights shown in the table. A representative blot 
revealed after incubation with the indicated anti-MYC specific antibody and the corresponding anti-mouse, is shown with agroinfiltrated samples, collected at 3 and 
5 dpa time points, as indicated, and a non-agroinfiltrated N. benthamiana control lane labeled as C. M lane shows the migration of pre-stained molecular weight 
markers (sizes in KDa on the left side). RbcL corresponds to the Ponceau red-stained blot showing the large subunit of Rubisco protein as loading control.
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To rule out an unspecific effect on CYSDV P25 caused 
by co-expression of any other protein, we  tested as an 
additional control if the co-expression of CYSDV P22  
could also affect the RSS activity of P25. The experiment 

was performed as described above, finding that the  
capacity of P25 to exhibit RSS activity was unaltered by the 
co-expression of P22 at the same 3 and 5  dpa time points 
(Figure  2D).

A

B

D

C

FIGURE 2 | Effect on RSS activity of the combination of heterologous selected gene products of WMV and CYSDV. (A) Schematic organization of patches in  
N. benthamiana leaves and comparison of effects on RSS activity of individual and combined gene products when co-agroinfiltrated with the reporter GFP. The 
positions for positive and negative controls, corresponding to the P1b of CVYV and an empty vector (delta), respectively, are also shown in the left half of every leaf. 
In the right side of the pictures and adjacent to the patches are depicted the constructs for expression of the individual gene products of WMV (P1 or HCPro) and of 
CYSDV (P25 or P22), with their corresponding combinations in the lower row. Pictures were taken at 5 dpa under UV light. (B) Time course evolution of RSS activity 
at 3, 5, and 7 dpa for the individual gene products WMV P1 (upper right patches), CYSDV P25 (central right patches), and their combination (lower right patches). 
Positive and negative controls as in A (patches in left side halves). (C) Quantification of GFP mRNA by qRT-PCR, relative to the reference gene ubiquitin, at 3 dpa, in 
patches agroinfiltrated with the constructs indicated below the bars. Mean values and SDs of three independent replicates are plotted, indicating statistically 
significant differences after t-test analysis (**indicate p < 0.05, values of p = 0.0013 for P25 vs. P1, and p = 0.0022 for P25 vs. P1+P25). (D) Absence of effect on 
RSS activity of CYSDV P25 when co-agroinfiltrated with CYSDV P22. Positive and negative controls as in Figure 1B (patches in left side half). Pictures were taken 
at 3, 5, and 7 dpa under UV light.
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Dynamics of Protein Expression in Patches 
Agroinfiltrated With CYSDV P25 and WMV 
P1, Both Individually and in Combination
Epitope tagged versions of the two gene products were tested 
for expression after agroinfiltration. Two different tags, MYC 
in the case of CYSDV P25 (MYC-P25) and HA in the case 
of WMV P1 (HA-P1), were chosen to allow independent 
detection of each gene product in the co-agroinfiltrated patches, 
and samples (pooled of three leaves from three independent 
plants) were taken daily up to 8  dpa. Representative Western 

blot analysis with the corresponding specific antibodies is shown 
in Figure  3. In the patches agroinfiltrated individually 
(Figure  3A), a steady increase of MYC-P25 expression was 
observed, probably reflecting its own RSS activity, reaching the 
highest amount of detectable protein at the end of the sampling 
period (8  dpa), while HA-P1 expression apparently peaked as 
early as 2  dpa, later showing a slight reduction followed by 
near constant levels until the last day sampled. In the case of 
the patches co-agroinfiltrated with MYC-P25 and HA-P1, the 
analysis also showed detection of both proteins along the 

A

B

FIGURE 3 | Western blot analysis of selected N-terminus tagged proteins after transient expression, individually or combined. (A) Samples of N. benthamiana 
patches individually agroinfiltrated with MYC-P25 (left panel) and HA-P1 (right panel) constructs collected daily between 1 and 8 dpa are shown, besides a non-
agroinfiltrated N. benthamiana control lane labeled as C. The blots are revealed after incubation with the corresponding anti-MYC or anti-HA specific antibodies. 
(B) Samples of patches co-agroinfiltrated with MYC-P25 and HA-P1 collected daily between 1 and 8 dpa are shown, besides a N. benthamiana control lane labeled 
as C, and revealed with anti-MYC (left panel) or anti-HA (right panel) specific antibodies. For both (A,B) lanes labeled with M show the migration of pre-stained 
molecular weight marker (sizes in KDa on the left side), and RbcL correspond to the Ponceau red-stained blots showing the large subunit of Rubisco protein as 
loading control.
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complete period, with a delay in the peak of HA-P1 occurring 
around day 4, and a very similar dynamic of steady accumulation 
in the case of MYC-P25 (Figure  3B). These results proved 
that the reduced RSS activity of CYSDV P25 when co-expressed 
with WMV P1 was not caused by lack of expression.

Dose-Dependent Effect of the Presence of 
WMV on the RSS Activity of CYSDV P25
To evaluate if the observed negative effect was correlated 
to the relative expression levels of the two viral products, 
an experiment of dose-response was designed. Using the 
same concentration of A. tumefaciens culture transformed 
with the construct for expression of CYSDV P25, up to 
three dilutions of the culture harboring the partner product 
WMV P1 were tested for their effects on the RSS activity. 
Assuming that the quantities of CYSDV P25 were kept 
constant, the quantities of the partner WMV P1 were decreasing 
exponentially by a factor of 2, which correlated with a visible 
increase of GFP under UV light (Figure  4A), also detectable 
as a linear increase of mRNA levels corresponding to GFP 
(Figure  4B). These results indicated that the RSS activity of 
CYSDV P25 recovered when the relative amount of WMV 
P1 decreased.

Subcellular Localization of WMV P1 and 
CYSDV P25 in Nucleus and Cytoplasm
To investigate the subcellular localization of WMV P1 and 
CYSDV P25 proteins, we  cloned them into constructs fused 
to fluorescent markers using the plasmids pGWB742 (containing 
YFP for fusion to the N-terminus of the cloned protein) and 
pGWB745 (for fusion to CFP, also in N-terminus). The constructs 
were transformed into A. tumefaciens strain EHA105 and 
agroinfiltrated into N. benthamiana leaves. Confocal microscopy 
examination showed that both fusion proteins, WMV P1 tagged 
with YFP and CYSDV P25 tagged with CFP, were located in 
the nucleus and the cytoplasm of the agroinfiltrated cells, and 
that they apparently co-localize in both compartments (Figure 5).

Interaction of WMV P1 and CYSDV P25
To test if there was a direct interaction between WMV  
P1 and CYSDV P25 when co-expressed transiently in 
N. benthamiana, we performed BiFC and co-immunoprecipitation 
assays. As shown by confocal microscopy observations, the 
split YFP fragments fused to WMV P1 and CYSDV P25 did 
reconstitute a visible fluorescence with the appropriate filter, 
indicating that the two proteins could interact in the cytoplasm 
of the agroinfiltrated cells (Figure  6A).

A

B

FIGURE 4 | Dose response of the presence of WMV P1 on the RSS activity of CYSDV P25. (A) Schematic organization of patches in N. benthamiana leaves 
co-agroinfiltrated with the reporter GFP. The same fixed concentration of P25 is used together with different amounts of P1 to reach the indicated ratios as shown in 
each picture, with positive and negative controls included in the left half of every leaf as in Figure 1B. Pictures were taken at 3 dpa under UV light. (B) Quantitative 
values showing inverse correlation of the ratio of CYSDV P25: WMV P1 and the relative copies of GFP mRNA measured by qRT-PCR with ubiquitin as reference 
gene. The graph shows the values for average and SD corresponding to three biological replicates per treatment.
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Furthermore, when the same two tagged proteins with MYC 
and HA epitopes used in the previous time course analysis 
(see Figure  3) were co-agroinfiltrated and tested for 
co-inmunoprecipitation, a product corresponding to HA-P1 
was precipitated along with the MYC-P25, indicating that indeed 
the two proteins can interact (Figure  6B).

DISCUSSION

Despite the common occurrence of multiple viral infections in 
plants, in many cases our understanding of the interactions 
occurring when two or more unrelated viruses share the same 
plant is still incomplete (Moreno and López-Moya, 2020). As 
an example, our recent analysis of melon plants co-infected 
by WMV and CYSDV revealed a complex scenario, with dynamic 
changes along the progress of the infections, that could even 
affect the transmissibility of the viruses by their insect vectors: 
briefly, the initial synergism and boost of CYSDV accumulation 
was later moderated and accompanied by a sort of recovery 
phenotype (Domingo-Calap et  al., 2020). Intrigued by this 
peculiar behavior, we  have addressed if virus-virus interactions 
between WMV and CYSDV might help to explain the outcome 
of the mixed infection. To start exploring at the molecular 
level the interactions between the two partner viruses, we decided 

to consider first the RSS function. Experiments were designed 
to transiently express the gene products known to participate 
in this function during individual infections, and then to combine 
them in order to find out possible interactions. In addition to 
known RSSs, we  included other gene products that might 
modulate their activity in RNA silencing suppression. Following 
this strategy, an unexpected negative effect on the RSS activity 
of the P25 of CYSDV was observed when this viral product 
was expressed together with the P1 of WMV. To rule out a 
possible effect on the expression level of CYSDV P25 when 
co-expressed along with WMV P1, we have tested the amounts 
of tagged protein versions by Western blot analysis in 
agroinfiltrated patches. Compared with the individually expressed 
protein, we  did not observed lack of expression in CYSDV 
P25 at different time points, therefore supporting a true affectation 
of the RSS activity. Interestingly, the dynamic of accumulation 
of tagged WMV P1 appeared to be altered in the co-agroinfiltrated 
samples, with a delayed peak compared with the individually 
expressed control. Unfortunately, the damage suffered after 
agroinfiltration precluded longer analysis, but it is tempting to 
speculate if these changes along this limited time might reflect 
somehow the peculiar dynamics mentioned to occur during 
mixed infections (Domingo-Calap et  al., 2020).

To our knowledge, this is the first description of an interaction 
between viral gene products of two unrelated plant viruses 
that interfere on the RSS activity of one of them. Before 
speculating about the importance of this observation, a couple 
of previous considerations are cautionary needed: (i) the effect 
was observed in transient expression, not during viral infections; 
and (ii) it was occurring in a different plant of the natural 
common hosts where the two viruses might co-exist. Thus, 
we cannot assume directly that our observations after transient 
expression could reflect exactly what occurs during co-infection 
of the two viruses in a naturally infected cucurbit host. Indeed, 
the localization and behavior of the selected gene products 
expressed transiently in N. benthamiana might be quite different 
to what really happens during infections in cucurbits. In other 
words, could this negative interaction be  occurring as well 
during WMV and CYSDV co-infection? Unfortunately, this 
question is difficult to address. First, adequate infectious clones 
of CYSDV that could be manipulated for tagging gene products 
in plants are not yet available, being only reported a version 
capable to replicate in protoplasts (Owen et  al., 2016). 
We  attempted to use this tool for whitefly transmission assays 
and to recreate mixed infections, unfortunately with no success 
(unpublished data). Another limitation to directly study mixed 
infections of the two viruses derives from difficulties to infect 
N. benthamiana, the model plant species, where the transient 
expression observations were performed: despite being a highly 
susceptible plant for many viruses, including isolates of WMV 
(Lecoq et  al., 2011; Aragonés et  al., 2019), CYSDV appears 
not to be  able to infect and not even replicate in protoplasts 
of this species (Owen et  al., 2016). The alternative approach 
to test the activity of P25  in susceptible cucurbits previously 
infected with WMV would require to knock-out the activity 
of WMV HCPro, a rather complex task, which could compromise 
the infectivity of WMV or modify its pathogeneicity, as suggested 

FIGURE 5 | Subcellular localization of fluorescently labeled WMV P1 and 
CYSDV P25 proteins. Confocal laser microscopy of N. benthamiana leaves 
agroinfiltrated with the constructs indicated schematically on the left: P1-YFP 
(upper lane), P25-CFP (central lane) and with both constructs at the same 
time (bottom lane). The images labeled with YFP correspond to the yellow 
color field, those labeled with CFP to the blue color field, and in the last 
column the bright field is shown, the column. In the samples agroinfiltrated 
with individual constructs observations were also performed with the 
conditions for the two YFP and CFP, without detecting any cross fluorescence 
(not shown). Bar size 20 μm.
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by previous mutagenesis and variability studies performed with 
other potyviruses (Torres-Barceló et al., 2008; Han et al., 2016).

Regarding localization in the plant, our knowledge on the 
distribution of WMV and CYSDV during mixed infections is 
also incomplete. Crinivirus are phloem-restricted viruses, and 
CYSDV distribution within the plant is particularly variable 
(Marco et  al., 2003). A different crinivirus of cucurbits has been 
recently tagged with GFP (Wei et  al., 2018), but unfortunately 
constructing a similar tool for CYSDV is not feasible nowadays, 
as already mentioned. On the other hand, there are no specific 
studies on the distribution of WMV within different tissues and 
cells in the plant, but comparing to other potyviruses it was 
expected to invade more cell types (Kogovsek et  al., 2011). As 
a further complication, the distribution of viruses in mixed and 
individual infections could be  different, as it was shown for 
instance in combinations of potyvirus and cucumovirus (Ryang 
et al., 2004; Mochizuki et al., 2016). Interestingly, in sweet potato 
plants co-infected by SPCSV and potyviruses, crinivirus 
components were detected outside the phloem, in contrast with 
its restricted phloem localization in single infections (Nome 
et al., 2007). Despite the lack of information about WMV, we can 
still make an educated guess, considering that the presence of 

potyviruses in phloem has been shown in certain cases (Rajamäki 
and Valkonen, 2003; Ion-Nagy et al., 2006). Also, another potyvirus 
of cucurbits, Zucchini yellow mosaic virus (ZYMV), showed a 
broad distribution in Zucchini when tagged with a visual marker 
(Majer et  al., 2017). Although, at this point, we  cannot provide 
evidence for the presence of the two viruses co-infecting the 
same cells, there are sufficient antecedents to make this possibility 
plausible. Further studies will be  required to verify if indeed 
WMV and CYSDV might coincide in certain cells, and also if 
their distribution is altered or not during mixed infections.

With respect to intracellular localization, the P1 of potyviruses 
was found in the cytoplasm associated to other viral products 
(Lehto et  al., 1998), and also trafficking to the nucleolus as 
recently reported (Martinez et  al., 2014). Our results are 
compatible with these localizations. However, no information 
is available regarding intracellular localization of CYSDV P25, 
and only limited data are reported in other criniviruses and 
for other gene products, such as those involved in cell-to-cell 
movement (Qiao et  al., 2018). Again, further investigations 
will be  required to better understand if our observations of 
transiently expressed P25 reflect the intracellular localization 
of this viral protein during the virus infection.

A

B

FIGURE 6 | Interaction of WMV P1 and CYSDV P25. (A) Schematic representation of bimolecular fluorescence complementation (BiFC) constructs with the split 
YFP fused to WMV P1 and CYSDV P25, and the observation using confocal laser microscopy of N. benthamiana leaves agroinfiltrated simultaneously with the two 
constructs. The picture YFP corresponds to the yellow color field and the same area is shown under bright field illumination. Control samples agroinfiltrated with 
individual constructs were analyzed without detecting any fluorescence (not shown). Bar size 20 μm. (B) Immunoprecipitation of viral protein variants tagged with 
MYC or HA, as indicated. Western blot analysis with anti-MYC and anti-HA antibodies, and Ponceau staining of the large subunit of Rubisco (RbcL) as control of 
loading, are shown for the input fractions and the corresponding immunoprecipitation samples, as indicated.
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The function(s) played by the P1 of potyviruses has remained 
elusive, and only recently some insights about its role(s) as 
modulator of essential activities during infection are being 
revealed. As a first important point to consider, the P1 is a 
remarkably variable product among potyviruses, what argues 
for its participation in host range determination, as it has been 
suggested by different authors (Valli et  al., 2007; Revers and 
García, 2015; Cui and Wang, 2019; Nigam et  al., 2019). Works 
with Plum pox virus (PPV) showed that P1 is involved in 
replication and pathogenicity (Maliogka et al., 2012; Pasin et al., 
2014). Concerning RSS related functions, it has been proposed 
that P1 might stimulate the activity of HCPro (Anandalakshmi 
et  al., 1998; Pruss et  al., 2004; Rajamaki et  al., 2005), but it is 
unclear if this stimulatory effect could be exerted on other RSSs, 
especially considering the importance of their expression in cis 
(Fernández et al., 2013). Interestingly, partial truncation of P1 in 
PPV revealed an antagonistic role for P1  in self-processing with 
a negative impact in  local infection (Shan et  al., 2018), but 
again it is uncertain if similar effects can be  expected as well 
in other viruses. Our finding here might provide further clues 
to disentangle if the role(s) played by P1 are particularly relevant 
in the case of mixed infections. Indeed, although the interaction 
between CYSDV P25 and WMV P1 was revealed because it 
affected the RSS function of the crinivirus protein, the changes 
in the dynamic of accumulation of P1 observed in our western 
blot analysis might suggest an effect on the potyvirus infection.

It will be  interesting to find out if this kind of interactions 
might occur as well in other combinations of potyviruses plus 
criniviruses. Many important crops are susceptible to criniviruses 
(Tzanetakis et  al., 2013; Abrahamian and Abou-Jawdah, 2014; 
Fiallo-Olivé and Navas-Castillo, 2019; Ruiz Garcia and Janssen, 
2020), and therefore co-infections with potyviruses are very 
likely to occur. Particularly intriguing could be  the case of 
sweet potato, suffering strong synergism but in the opposite 
direction, with a boost of the potyviruses and other unrelated 
virus accumulation when co-infected by the crinivirus SPCSV 
(Untiveros et  al., 2007; Cuellar et  al., 2015). As mentioned, the 
RSS of sweet potato-infecting potyviruses appears to differ from 
the usual activity of HCPro, with the function shifted to a 
partially out-of-frame gene product P1N-PISPO produced after 
polymerase slippage (Mingot et al., 2016; Untiveros et al., 2016).

Finally, it should be noted that each one of the virus partners 
will be  producing several proteins simultaneously during a 
mixed infection, at least 10 and 13 different mature products 
for the potyvirus and the crinivirus, respectively. Thus, our 
analysis testing only a few heterologous products in combination 
of two by two elements is just a first attempt to start exploring 
a presumably much richer landscape of interactions. As a novel 

observation, we  hope our work will stimulate further research 
to better understand if these kind of interactions form part 
of the expected fine-tuning of RSS and other important functions 
during mixed infections, and how it can contribute to virus 
pathogenicity in the different situations.
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Geminiviruses are plant DNA viruses that infect a wide range of plant species and cause 
significant losses to economically important food and fiber crops. The single-stranded 
geminiviral genome encodes a small number of proteins which act in an orchestrated 
manner to infect the host. The fewer proteins encoded by the virus are multifunctional, a 
mechanism uniquely evolved by the viruses to balance the genome-constraint. The host-
mediated resistance against incoming virus includes post-transcriptional gene silencing, 
transcriptional gene silencing, and expression of defense responsive genes and other 
cellular regulatory genes. The pathogenicity property of a geminiviral protein is linked to 
its ability to suppress the host-mediated defense mechanism. This review discusses what 
is currently known about the targets and mechanism of the viral suppressor AC2/AL2/
transcriptional activator protein (TrAP) and explore the biotechnological applications of AC2.

Keywords: geminivirus, AC2/C2, transcriptional activator, suppressor protein, silencing suppressor, biopharming,  
genome-editing

INTRODUCTION

Geminiviruses are single-stranded (ss) DNA viruses that cause major losses to a number of 
economically important crops throughout the world (Scholthof et  al., 2011; Rojas et  al., 2018). 
Geminiviridae constitutes the largest family of plant viruses with nine genera and 485 species 
(Zerbini et  al., 2017). Geminiviruses are characterized by their small, circular, ssDNA genomes 
encapsidated in twinned-icosahedral particles. They are vector-transmissible and infect both 
monocotyledonous and dicotyledonous plants (Zerbini et  al., 2017). The viral genomes are 
either monopartite or bipartite with circular ssDNA molecules of 2.5 to 5.5  ×  103 nucleotides. 
Bipartite geminiviruses, with DNA A and DNA B components, possess a highly conserved 
common region (CR) of ~200 nucleotides. An inverted repeat within the CR forms a hairpin 
loop, and within the loop is the conserved 9-nt sequence 5'-TAATATT↓AC-3'.

Geminiviruses are classified into nine genera namely Becurtovirus, Begomovirus, Capulavirus, 
Curtovirus, Eragrovirus, Grablovirus, Mastrevirus, Topocuvirus, and Turncurtovirus, based on the 
genome organization, host-range, and the type of insect vector which transmits the virus (Zerbini 
et  al., 2017). Viruses in the genus Begomovirus have mono- or bipartite genomes while those 
of all other genera possess monopartite genome organization. Geminiviruses exhibit bidirectional 
transcription and encode 5–7 proteins that exploit and reprogram host machineries to establish 
infection (Hanley-Bowdoin et  al., 2013; Aguilar et  al., 2020). Two systems of gene nomenclature 
are currently in use. Both designate genes and gene products by numbers. One nomenclature 
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denotes genes as virion-sense (V) or complementary-sense (C), 
whereas the other indicates genes as oriented in the rightward 
(R; virion-sense; clockwise) or leftward (L; complementary-sense; 
counter clockwise) direction of the genome map. We have used 
in this review, the nomenclature based on the virion-sense (V) 
and complementary-sense (C) strands.

Begomovirus represents the largest and the best-studied 
geminivirus genus. The bipartite genomes of begomoviruses 
are designated as DNA A and DNA B (Figure  1A). DNA A 
encodes five or six open reading frames (ORFs) and DNA B 
encodes two ORFs. The virion-sense ORFs AV1 and AV2 of 
DNA A encode coat protein (CP) and pre-coat protein, respectively 
(Padidam et  al., 1996). The complementary-sense strand ORFs 
of DNA A encode the replication-associated protein (AC1/Rep), 
the transcriptional activator protein (AC2/TrAP), the replication 
enhancer protein (AC3/REn), and AC4 (Hanley-Bowdoin et al., 
2000). DNA B ORFs encode the nuclear-shuttle protein (BV1/
NSP) and the movement protein (BC1/MP; Schaffer et al., 1995).

Monopartite begomoviruses lack the DNA B component 
(Kheyr-Pour et al., 1991; Navot et al., 1991). The single, circular 
ssDNA genome encodes six ORFs, two in the virion-sense (V1 
and V2) and four in the complementary-sense (C1, C2, C3, 
and C4) strands (Figure 1B). Some monopartite begomoviruses 
do not cause typical disease symptoms in infected plants when 
acting alone. They require an ssDNA satellite molecule 
(betasatellite/alphasatellite/deltasatellites/defective satellites) to 
cause symptomatic disease and viral DNA accumulation 
(Saunders et  al., 2000; Fiallo-Olivé et  al., 2012, 2016).

Curtovirus genome organization is like that of monopartite 
begomoviruses (Figure  1C). The virion-sense strand of 
curtoviruses is more complex with three ORFS V1, V2, and 
V3. V1 encodes the coat protein and V3 encodes the movement 
protein. V2/Reg is a unique curtovirus protein that regulates 
relative ssDNA and dsDNA levels and hence the name “Reg” 
(Hormuzdi and Bisaro, 1993). The complementary-sense strand 
encodes four genes namely Rep/C1, C2, REn/C3, and C4 

A

B C

FIGURE 1 | Genomic organization of (A) bipartite begomovirus, (B) monopartite begomovirus, and (C) curtovirus. Virion-sense (V) or complementary-sense 
(C) strand open reading frames (ORFs) and corresponding protein products are coded by color. CR, common region; CP, coat protein; IR, intergenic region; 
MP, movement protein; NSP, nuclear shuttle protein; REn, replication enhancer protein; Rep, replication-associated protein; and TrAP, transcriptional activator protein.
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(Stanley and Latham, 1992; Stanley et  al., 1992). Rep/C1 
(Luna and Lozano-Durán, 2020) and Ren/C3 are highly conserved 
between curtovirus and begomovirus. Curtovirus REn was 
shown to functionally complement the REn mutation in a 
bipartite begomovirus (Hormuzdi and Bisaro, 1995). However, 
curtovirus C2, and the positional homolog of begomovirus 
AC2, display only partial sequence and functional homology 
between them (Luna and Lozano-Durán, 2020).

Although the position of AC2/C2 ORFs is conserved in most 
geminivirus genera, the functions of AC2/C2 are known only 
in curtovirus and begomovirus. AC2, a 15  kDa multifunctional 
protein, is also known as C2, L2, AL2, or transcriptional activator 
protein (TrAP). AC2 is a delayed early gene product which 
transactivates late viral genes, CP, and NSP (Sunter and Bisaro, 
1991, 1992; Haley et al., 1992; Shivaprasad et al., 2005), suppresses 
host defense mechanism (Bisaro, 2006; Raja et  al., 2010), and 
acts as a symptom determinant (Hao et  al., 2003; Rajeswaran 
et  al., 2007; Siddiqui et  al., 2008). C2, a positional homolog 
of AC2 in monopartite begomoviruses, is highly similar to 
AC2  in sequence and function (Figure  2A; Noris et  al., 1996; 
van Wezel et  al., 2001, 2002, 2003; Dong et  al., 2003; Gopal 
et al., 2007). The C2 protein which is encoded by the curtoviruses 
Beet curly top virus (BCTV), Beet severe curly top virus (BSCTV), 
and Spinach curly top virus (SCTV) exhibits very little sequence 
similarity when compared to begomovirus AC2/C2 except for 
the conserved Cys-His residues in the middle (Figures  2A,D; 
Luna and Lozano-Durán, 2020). AC2 has three highly conserved 
functional domains: (1) N-terminal basic domain with a bipartite 
nuclear localization signal (NLS), which consists of four 
consecutive arginine residues (Figures 2A–C; Dong et al., 2003; 
Trinks et  al., 2005). (2) A conserved zinc finger-like domain 
comprising the conserved cysteine and histidine residues (CCHC) 
which is present in the middle. (3) The C-terminal which 
possesses an acidic transactivation domain (Figures 2A,B; Trinks 
et al., 2005). This review focuses on the host targets and versatile 
mechanisms deployed by the geminiviral silencing suppressor 
protein AC2/C2 to counter the plant defense.

PLANT DEFENSE AND VIRAL 
COUNTER-DEFENSE MECHANISMS

RNA silencing is a very effective antiviral defense mechanism. 
RNA silencing has evolved as the first line of defense against 
invading nucleic acids including viruses, transposons, transgenes, 
and repetitive sequences (Baulcombe, 2004; Voinnet, 2005; 
Shabalina and Koonin, 2008). In addition to structured ssRNA 
viral genomes, DNA viral transcripts which are structured and 
overlapping transcripts also act as precursors for viral siRNA 
pathway (Blevins et al., 2011; Aregger et al., 2012). The dsRNA 
is processed into 21 nt siRNAs by DICER-LIKE4/DCL4 protein 
(Figure  3A; Akbergenov et  al., 2006; Blevins et  al., 2006). 
DCL2 expression stimulates transitivity and secondary siRNA 
production and increases silencing efficiency in the absence 
of DCL4 (Parent et  al., 2015). When DCL2 and DCL4 are 
present together, abundant RNAs from viruses and transgenes 
are processed hierarchically first by DCL4 which has high 

affinity and processivity to restrict off-target silencing caused 
by the secondary siRNAs generated by the transitivity-prone 
DCL2 (Parent et  al., 2015). DCL1-mediated processing of 
geminiviral dsRNA into 21 nt siRNA is inefficient (Blevins 
et  al., 2006); however, it acts as a positive regulator by making 
viral dsRNAs available to other DCLs to be  processed into 
siRNAs (Blevins et  al., 2006; Csorba et  al., 2015). DCL1 also 
acts as a negative regulator of viral silencing by downregulating 
DCL4 and DCL3 (Qu et al., 2008). The 21 nt siRNA generated 
by DCL4 cleaves the target viral transcript in association with 
ARGONAUTE (AGO) proteins. AGO2 acts as a second layer 
of defense when AGO1 is suppressed in Arabidopsis (Harvey 
et  al., 2011). AGO7 acts in coordination with AGO1 for viral 
clearance (Qu et al., 2008) but preferentially targets less structured 
viral RNA. The role of AGO7 in geminiviral defense is not clear.

The AGO-siRNA sliced target transcript serves as a template 
for RNA-DEPENDENT RNA POLYMERASE1/RDR1, RDR2, and 
RDR6 to convert it into dsRNA, which thereafter generates 
secondary siRNAs in RNA viruses (Garcia-Ruiz et  al., 2010). 
Interestingly, geminiviral mRNAs appear to be  poor templates 
for RDR-dependent secondary siRNA biogenesis. Aregger et  al. 
(2012) showed that the viral siRNAs which accumulate in Cabbage 
leaf curl virus (CaLCuV)-infected Arabidopsis are RDR1/2/6-
independent primary siRNAs. Interestingly, RDR6 was shown 
as a target of Mungbean yellow mosaic India virus (MYMIV) 
AC2 (Kumar et  al., 2015). Although DCL4 has been implicated 
in the generation of 21 nt siRNAs, DCL2 and DCL3 appear to 
work in concert to generate the antiviral response (Figures 3A,B). 
Abundance of 21, 22, and 24 nt siRNAs is observed in cassava 
and Nicotiana benthamiana infected with African cassava mosaic 
virus (ACMV; Akbergenov et  al., 2006). Prevalence of 21–22 nt 
siRNAs was observed in tomato infected with Tomato yellow 
leaf curl Sardinia virus (TYLCSV; Miozzi et  al., 2013) and 
preferential accumulation of 22 nt siRNAs was observed in tomato 
and N. benthamiana infected with Tomato yellow leaf curl China 
virus (TYLCCNV; Yang et  al., 2011). Interestingly, 24 nt siRNAs 
generated by DCL3 (Figure  3B) are the most abundant siRNAs 
in Arabidopsis infected with CaLCuV (Blevins et  al., 2006).

RNA-directed DNA methylation (RdDM) of cytosine residues 
and histone H3 lysine 9 dimethylation (H3K9me2) of chromatin 
are hallmarks of epigenetic defense mechanism evolved by the 
plants against invading DNAs including geminiviruses and 
transposons. The equilibrium between repressed and active 
viral chromatin determines the outcome of infection and 
symptom remission. Host recovery is tightly associated with 
the equilibrium favoring repressed state (Ceniceros-Ojeda et al., 
2016; Coursey et  al., 2018). The canonical RdDM machinery 
includes RNA DEPENDENT RDR2, DCL3, AGO4, and two 
plant-specific RNA polymerases, Pol IV and Pol V (Zhang 
et  al., 2018). Pol IV transcribes heterochromatic regions to 
produce a nascent transcript (Herr et al., 2005; Daxinger et al., 
2009), which is recruited to the cajal bodies in the nucleolus, 
where they are converted into dsRNA by RDR2 (Li et  al., 
2006). The resultant dsRNA is processed by DCL3 into 24 nt 
siRNAs, which are methylated by HEN1 and used by AGO4 
to base pair with the Pol V-generated scaffold transcript 
(Wierzbicki et  al., 2008) to mediate RNA-directed DNA 
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FIGURE 2 | Alignment of AC2 of bipartite, C2 proteins of monopartite begomovirus, and C2 of curtovirus. (A) Clustal alignment of AC2/C2 amino sequences of 
Tomato golden mosaic virus (TGMV; acc. no. NC_001507); Mungbean yellow mosaic virus (MYMV; acc. no. AJ132575); African cassava mosaic virus (ACMV; acc. 
no. NC_001467); Indian cassava mosaic virus-Singapore (ICMV-SG; acc. no. JX518289); Indian cassava mosaic virus-Dharwad (ICMV-Dha; acc. no. GQ924760); 
Cabbage leaf curl virus (CaLCuV; acc. no. NC_00386); Tomato yellow leaf curl Sardinia virus (TYLCSV; acc. no. L27708); Tomato yellow leaf curl virus (TYLCV; acc. 
no. AM282874); Papaya leaf curl China virus (PaLCuCNV; acc. no. FN256260); Beet curly top virus (BCTV; acc. no. AF379637); Beet severe curly top virus (BSCTV; 
acc. no. U02311); and Spinach curly top virus (SCTV; Acc. No. AY548948). The conserved N-terminal basic domain, the Cys-His residues in the middle and the 
C-terminal acidic activation domain are marked. The Tyr residue in ICMV-Dha strain and Cys residue in pathogenic ICMV-SG strain are highlighted in yellow. 
(B) Schematic representation of begomovirus AC2 involved in activation domain-dependent silencing suppression. (C) Schematic representation of begomovirus 
AC2 with deletion in activation domain (AC2ΔAD) involved in activation domain-independent silencing suppression. (D) Schematic representation of curtovirus C2 
involved in activation domain-independent silencing suppression. NLS, nuclear localization signal; ZFD, zinc-finger like domain; and AD, activation domain.
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methylation (Figure  3B). Scaffold transcripts which originate 
from intergenic non-coding sequences are required for silencing 
adjacent siRNA-generating loci (Wierzbicki et al., 2009). AGO4 
recruits chromatin modifying methyltransferase (MTase) and 
also slices the scaffold transcript which serves as a template 
for RDR2-mediated dsRNA production and amplification of 
24 nt siRNA. Methylation of the invading geminiviral genome 

is mediated by 24 nt siRNAs (Raja et  al., 2008; Buchmann 
et  al., 2009). Interestingly, Pol IV and Pol V were shown to 
be not essential for de novo methylation of geminiviral genome 
(Jackel et  al., 2016). Arabidopsis mutants pol IV and pol V 
reduced accumulation of all classes of virus-derived siRNAs 
suggesting that they are not so essential in viral siRNA biogenesis 
including 24 nt siRNA biogenesis. While Pol IV and Pol V 

A B

FIGURE 3 | Geminiviral siRNA pathways. (A) Post-transcriptional gene silencing (PTGS) pathway. The host RNA polymerase transcribes the replicative form of virus 
into structured/overlapping/aberrant transcripts which are processed into 21 nt siRNA by DICER-LIKE4/DCL4. DCL2 generates 22 nt siRNAs in the absence of 
DCL4. DCL1 acts as a positive regulator (+) by facilitating dsRNA access to other DCLs. The role of DCL1 as a negative regulator (┴) of DCL4 and DCL3 in 
geminiviral siRNA pathway is not clear (?). The 21 nt siRNAs-Argonaute1 (AGO1) target viral transcripts for slicing by the endo-ribonuclease activity of AGO1. 
The role of AGO7 in geminiviral defense is not clear (?). The sliced mRNA transcript serves as a template for RNA-DEPENDENT RNA POLYMERASE1/2/6 (RDR1, 
-2, -6) to convert it into dsRNA, which thereafter generates secondary siRNAs to amplify the host defense response. Suppression of PTGS by binding AGO1 and 
RDR6 by Mungbean yellow mosaic India virus (MYMIV) AC2 is denoted. (B) Transcriptional gene silencing (TGS) pathway. The Pol II transcribed dsRNA is processed 
by DCL3 (when DCL2 and DCL4 are saturated) into 24 nt siRNAs which cause de novo methylation of viral genome. The methylated viral genome is transcribed by 
Pol IV to produce a nascent transcript, which is converted to dsRNA by RNA-DEPENDENT RNA POLYMERASE2/RDR2. dsRNA is processed by DCL3 into 24 nt 
siRNAs. The complex of 24 nt siRNA-AGO4 targets the Pol V-generated scaffold transcript to mediate RNA-directed DNA methylation. DRB, double-stranded RNA 
binding proteins and HEN1, HUA ENHANCER1 methyltransferase.
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were not essential in establishing cytosine methylation in the 
viral genome, they were found to be  critical for maintenance 
and amplification of methylation. Incidentally, the mechanism 
involving Pol II-RDR6-mediated methylation of retrotransposon 
(Marí-Ordóñez et  al., 2013) was evoked to explain the de novo 
methylation of geminiviral genome (Jackel et  al., 2016; 
Figure  3B). A study by Marí-Ordóñez et  al. (2013) showed 
that EVADE (EVD), a retrotransposon, generates high levels 
of Pol II-RDR6 dependent dsRNA upon proliferation which 
could eventually quench the DCL2 and DCL4 dicers involved 
in 21 and 22 nt siRNA biogenesis. Thus, the Pol II-RDR6 
dependent dsRNA are processed by DCL3 into 24 nt siRNAs 
from transcribed regions of the retrotransposon. The key role 
of Pol IV and Pol V in establishing chromatin methylation 
and in enabling recovery emphasized the importance of these 
enzymes in mounting antiviral defense through methylation.

The presence of a robust viral counter defense mechanism 
is underscored by the ubiquitous presence of one or more 
silencing suppressor proteins in the armor of a virus. The 
arms race between silencing and silencing suppression results 
in resistance or susceptibility to the pathogen. Geminiviruses 
encode several proteins namely AC2/C2, AC4/C4, AV2/V2, 
βC1, and Rep that suppress RNA silencing by targeting various 
components of the post-transcriptional gene silencing (PTGS) 
machinery, transcriptional gene silencing (TGS) machinery, and 
cellular regulatory genes (reviewed in Hanley-Bowdoin et  al., 
2013; Kumar, 2019; Rishishwar and Dasgupta, 2019; Yang et al., 
2019; Guerrero et  al., 2020). Of all the known geminiviral 
suppressor proteins, AC2 is the most well-studied and is known 
to target multiple plant genes and proteins. In this review, 
we  have taken a comprehensive approach to document all 
known targets of the geminiviral suppressor protein AC2 and 
the interconnecting and/or unique mechanisms evolved by the 
viruses to counter the plant defense mechanism.

AC2-MEDIATED SUPPRESSION OF 
HOST DEFENSE MECHANISM

AC2 of begomoviruses and C2 of curtoviruses act as suppressors 
of silencing through two broadly classified mechanisms: (i) 
activation domain-dependent silencing suppression- begomovirus 
AC2 with a C-terminal acidic activation domain (Figure  2B) 
is involved in this mechanism and (ii) activation domain-
independent silencing suppression, which is manifested by 
curtovirus C2 which lacks the activation domain (Figure  2D) 
and certain begomovirus AC2 proteins with deletions of the 
activation domain (Figure  2C). AC2/C2 also interacts with 
and inactivates many cellular regulatory proteins to circumvent 
the innate defense mechanism which is independent of siRNA-
mediated silencing (Guerrero et  al., 2020).

Activation Domain-Dependent Silencing 
Suppression
Suppression activity of AC2 was first demonstrated by Voinnet 
et  al. (1999) in the N. benthamiana line 16c, in which the 
previously established silencing of gfp was reverted by the 

expression of the ACMV AC2 in a potato virus X (PVX) 
vector. Similar studies with C2 of Tomato yellow leaf curl virus-
China (TYLCV-C), a monopartite begomovirus, revealed that 
the suppression of silencing was associated with the presence 
of an intact zinc finger-like motif (van Wezel et  al., 2002) 
and an NLS (Dong et  al., 2003). East African cassava mosaic 
Cameroon virus (EACMCV) and Indian cassava mosaic virus 
(ICMV) are known to suppress silencing (Vanitharani et  al., 
2004). Although the mechanism of suppression is not clear, 
transient AC2 expression enabled ~8-fold increase in synergistic 
mixed infection with recovery type viruses ACMV and Sri 
Lankan cassava mosaic virus (SLCMV), which exhibit recovery 
from symptoms 2 to 3 weeks after infection (Vanitharani et al., 
2004). The activation domain-dependent silencing suppression 
is also known as “transcription-dependent silencing suppression” 
(Bisaro, 2006). Trinks et al. (2005) demonstrated the requirement 
of the intact activation domain of Mungbean yellow mosaic 
virus (MYMV) AC2  in addition to the NLS and Zn-finger 
motifs to suppress silencing. The need for NLS, Zn-finger motif, 
and activation domain of AC2 for efficient silencing suppression 
suggested that MYMV and ACMV AC2 and TYLCV-C C2 
regulate silencing suppression in the host cell nucleus and are 
dependent on DNA interaction and transcriptional activation.

Suppression of PTGS by Transactivation of Host 
Suppressor WEL1
Transient expression of MYMV and ACMV AC2 in Arabidopsis 
protoplasts upregulated the expression of 30 plant genes. One 
such gene was Werner’s exonuclease-like 1 (WEL1), a homolog 
of Werner Syndrome-like exonuclease (WEX). WEX, an RNase 
D exonuclease-like protein acts as a positive regulator of post-
transcriptional gene silencing (PTGS; Glazov et al., 2003). WEL1 
does not have the complete “DEDDY” signature conserved in 
WEX. Hence, AC2-mediated upregulation of WEL1 is likely 
to exert a dominant negative effect on WEX function (Figure 4A; 
Trinks et al., 2005). Thereby, a novel mechanism of AC2-mediated 
induction of host silencing suppressors was proposed by Trinks 
et  al. (2005). The authors showed induction of WEL1 and five 
other genes by MYMV and ACMV AC2  in Arabidopsis and 
Nicotiana plumbaginifolia protoplasts. However, upregulation of 
WEL1 upon ACMV or MYMV viral infection or an increase 
in viral load upon transgenic over-expression of WEL1 has 
not been demonstrated to date; thus, the role of WEL1 as a 
host silencing suppressor remains to be  confirmed. Similarly, 
the authors did not evaluate whether silencing of WEL1 abolished 
AC2-mediated suppression in N. benthamiana 16c line. 
Interestingly, Trinks et  al. (2005) demonstrated that mutations 
of all three functional domains (NLS1-, ZF-, and AD-) abolished 
transactivation as well as silencing suppression property of AC2. 
MYMV AC2 being a small, multifunctional protein, the loss 
of silencing suppression of AC2 mutants by impaired folding 
or loss of interaction with host factors cannot be  discounted.

Suppression of PTGS by Transactivation of 
Calmodulin-Like Protein
Tomato golden mosaic virus (TGMV) AC2 induces a  
calmodulin-like protein Nb-rgsCaM (Chung et  al., 2014). 
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FIGURE 4 | AC2-mediated suppression of host defense mechanism. Activation domain-dependent mechanism: suppression of PTGS by activating the host 
silencing suppressors (A) Werner’s exonuclease-like 1 (WEL1) by MYMV AC2, (B) calmodulin-like protein by TGMV AC2, and (C) RELATED TO ABI3 and VP1 
(RAV2), transcription repression and downregulation of H3K9 histone methyltransferase KRYPTONITE (KYP) by Indian cassava mosaic virus (ICMV) AC2. Activation 
domain-independent mechanism: (D) The methyl cycle and suppression of PTGS/TGS by inactivating adenosine kinase by TGMV AC2 and BCTV C2. 
(E) Suppression of PTGS by stabilizing S-adenosyl methionine decarboxylase1 by BSCTV C2. (F) Suppression of TGS by inhibiting KYP enzymatic activity by TGMV 
and CaLCuV AC2 binding. (G) Suppression mediated by inactivation of SNF1 kinase by TGMV AC2 and BCTV C2. (H) Suppression mediated by elevation of cellular 
cytokinin levels by TGMV AC2 and C2 of SCTV. (I) Suppression mediated by inhibition of jasmonate signaling pathway by C2 of TYLCSV. (J) Suppression mediated 
by competitive binding of C2 of TYLCV and PaLCuCNV to ubiquitin.
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rgsCaM over-expression leads to an increase in viral DNA 
load. rgsCaM was shown to be  induced by HcPro, a silencing 
suppressor of Tobacco etch virus (TEV; Anandalakshmi et  al., 
1998) and over-expression of rgsCaM was shown to reverse 
PTGS (Anandalakshmi et  al., 2000), suggesting the role of 
rgsCaM as an endogenous silencing suppressor. rgsCaM prevents 
TEV HcPro and Cucumber mosaic virus suppressor 2b from 
binding to dsRNAs/siRNAs and reduce the suppressor protein 
stability by autophagy, resulting in a more potent RNAi defense 
against viral infection. rgsCaM over-expressing lines were less 
susceptible to the virus (Nakahara et  al., 2012). In contrast, 
rgsCaM over-expression resulted in increased susceptibility 
to TGMV and CaLCuV (Chung et  al., 2014) likely because 
TGMV and CaLCuV are DNA viruses, whereas the viruses 
studied by Nakahara et  al. (2012) were RNA viruses. TGMV 
AC2 does not bind dsRNAs/siRNAs unlike RNA viral suppressors 
HcPro, P19, and 2b. rgsCaM self-interaction was observed 
in cytoplasm while interaction with TGMV AC2 sequestered 
rgsCaM to the nucleus (Figure  4B). It was speculated that 
AC2-mediated localization of rgsCaM to the nucleus is the 
likely mechanism evolved by TGMV to evade degradation of 
AC2 by autophagy and thereby effectively suppress the plant 
defense mechanism. The cajal bodies in the nucleolus are the 
sites of 24 nt siRNA biogenesis (Pontes and Pikaard, 2008). 
Chung et  al. (2014) speculated that nuclear localization of 
rgsCaM by TGMV AC2 might interfere with the overall host 
siRNA biogenesis and make the plants more susceptible to 
the virus. More studies are needed in future to confirm this 
hypothesis. TYLCCNV βC1 was shown to act as suppressor 
of PTGS by upregulating rgsCaM (Li et  al., 2014). A recent 
study showed that TYLCCNV βC1-upregulated rgsCaM interacts 
with Suppressor of Gene Silencing 3 (SGS3), a cofactor of 
RDR6 and induces autophagic degradation of it and thereby 
suppresses PTGS (Li et  al., 2017).

Suppression of TGS by Transactivation of Host 
Repressor
Indian cassava mosaic virus-Singapore (ICMV-SG) displayed 
higher pathogenicity in comparison to ICMV-Dharwad (ICMV-
Dha). A single point mutation that changes Tyr to Cys in 
ICMV-Dha AC2 (ICMVDhaY11C) significantly increased 
pathogenicity (Figure 2A; Sun et al., 2015). Increased ICMV-SG 
infection was associated with increased repression of H3K9 
histone MTase KRYPTONITE (NbKYP), a key enzyme for 
maintenance of chromatin methylation. Downregulation of KYP 
was directly correlated with an increase in RELATED TO ABI3 
and VP1 (RAV2), a transcription repressor. RAV2 is known 
to regulate RNA silencing and to get upregulated by suppressor 
proteins of potyvirus HcPro and cucomovirus P38 in Arabidopsis 
(Endres et al., 2010). Transient expression of ICMV-SG, ICMV-
Dharwad (ICMV-Dha), and the ICMV-DhaY11CAC2 mutant in 
N. benthamiana 16c-TGS reversed the TGS of the 16c line as 
evidenced by reactivation of green fluorescence (Sun et  al., 
2015). Silencing of NbRAV2 significantly reduced the viral titer, 
thus indicating a novel mechanism of silencing suppression. 
Activation of the putative transcription repressor NbRAV2 by 
ICMV-AC2 interferes with TGS by suppressing the expression 

of KYP (Figure  4C). It is not known whether the RAV2 
repressor protein directly binds to the KYP promoter sequence 
to downregulate its expression. A RAV2-dependent upregulation 
of Arabidopsis FIERY1 (FRY1) and CML38 (rgsCaM homolog) 
was observed in TuMV HC-Pro transgenic lines (Endres et  al., 
2010). It will be  useful to study whether ICMV-SG induced 
RAV2 protein can induce rgsCaM in N. benthamiana.

Activation Domain-Independent Silencing 
Suppression
Reports on AC2-mediated silencing suppression in TGMV 
suggest that not all viruses require C-terminal activation 
domain in AC2 for mediating silencing suppression. The 
activation domain-independent silencing suppression observed 
in TGMV is also referred as “transcription-independent silencing 
suppression” (Bisaro, 2006). The unique mechanism evolved 
by the viruses encoding activation domain-independent silencing 
suppressors is by interfering with the methyl cycle. S-adenosyl 
methionine (SAM) is the methyl donor for most 
transmethylation reactions and is an essential MTase co-factor. 
An increase in the accumulation of SAM analogs would 
competitively inhibit MTase and prevent methylation and 
associated silencing. Activation domain-independent silencing 
suppressors interfere with the methyl cycle and increase the 
cellular levels of SAM analogs which compete with SAM. In 
addition to methyl cycle interference, TGMV and CaLCuV 
AC2 directly target and inhibit the H3K9me2 histone MTase 
Su(var)3-9 homolog 4/Kryptonite (SUVH4/KYP), an enzyme 
critical for histone methylation.

Suppression of PTGS by Inactivating Adenosine 
Kinase
TGMV AC2 with activation domain deletion (AC2-∆AD; 
Figure 2C) and BCTV C2 (Figure 2D) interact with adenosine 
kinase (ADK) and inhibit the synthesis of 5'-AMP from 
adenosine and ATP (Figure  4D; Wang et  al., 2003). C2 of 
BCTV and C2 of SCTV, both curtoviruses, lack the 
transcriptional activation domain which is present in AC2/
C2 of begomoviruses (Sunter et  al., 1994; Baliji et  al., 2007). 
Although AC2 self-interacts and moves into the nucleus for 
transcriptional activation, AC2:ADK and C2:ADK complexes 
form in the cytoplasm (Yang et  al., 2007). This emphasizes 
the dispensability of the activation domain for ADK interaction. 
AC2/C2 expression inhibited ADK activity in Escherichia coli, 
yeast, and transgenic plants (Wang et  al., 2003). ADK plays 
a key role in the methyl cycle and in SAM-dependent MTase 
activity. MTase catalyzes methyl group transfer from SAM to 
a methyl acceptor converting SAM to S-adenosyl-homocysteine 
(SAH). S-adenosyl-homocysteine hydrolase (SAHH) hydrolyzes 
SAH to homocysteine (Hcy) and adenosine (Figure 4D). SAHH 
catalyzed reaction is reversible, and the removal of adenosine 
is essential to tilt the equilibrium of reaction toward hydrolysis 
of SAH, which otherwise lies strongly toward synthesis of 
SAH. SAH is also a competitive inhibitor of MTase. 
Phosphorylation of adenosine to 5'-AMP by ADK prevents 
resynthesis of SAH and promotes flux through the methyl 
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cycle to regenerate SAM. Removal of adenosine by 
phosphorylation facilitates methionine (Met) synthesis, wherein 
methionine synthase catalyzes the transfer of a methyl group 
from methylated folic acid [methyltetrahydrofolate (MTHF)] 
to homocysteine. Addition of adenosine to the sulfur group 
of methionine regenerates SAM. Thus, the removal of SAH 
is critical as it can strongly compete with SAM and inhibit 
MTase (Figure  4D). ADK-deficient plants displayed defects 
in silencing, thus implying an indirect role for ADK in regulating 
methyl cycle and silencing.

Wild-type AC2 and AC2-∆AD of TGMV and C2 of BCTV 
suppressed PTGS which was directed against gfp in the N. 
benthamiana 16c line in an activation domain-independent 
manner (Wang et  al., 2005). The local suppression caused 
by AC2 could be  mimicked by using an invert repeat of 
ADK or by addition of an adenosine homolog (A-134974) 
that inhibited ADK activity (Wang et  al., 2005). Methylation 
of the coding region of a gene is a hallmark of PTGS 
(Ingelbrecht et  al., 1994; English et  al., 1996). Thus, 
AC2-mediated inactivation of ADK is likely to have caused 
suppression of PTGS by its interference in the methylation 
of coding region (Raja et  al., 2010).

Suppression of PTGS by Stabilizing S-Adenosyl 
Methionine Decarboxylase1
BSCTV C2 interaction with S-adenosyl methionine 
decarboxylase1 (SAMDC1) and resultant suppression of de 
novo DNA methylation were observed in Arabidopsis (Zhang 
et  al., 2011). SAMDC1 is a key enzyme in the conversion 
of SAM to decarboxylate-S-adenosyl methionine (dcSAM). 
dcSAM acts as an aminopropyl donor for the biosynthesis 
of spermidine and spermine. dcSAM also competes with SAM 
and acts as a competitive inhibitor of MTase (Figure  4E). 
Hence, SAM/dcSAM balance is a key determinant of 
transmethylation. SAMDC1 possesses a conserved PEST 
(proline, glutamine, serine, and threonine) sequence that is 
associated with proteins with rapid turnover rates. BSCTV 
C2 interacts with SAMDC1  in the PEST region and stabilizes 
the enzyme by attenuating 26S proteasome-mediated 
degradation (Figure  4E). The resultant increase in dcSAM/
SAM ratio affects the host de novo methylation. Infection of 
wild-type plants with BSCTV C2− mutant strain (engineered 
by introducing a stop codon in the C2 ORF) or infection 
of SAMDC1 mutant plant with wild-type BSCTV strain resulted 
in enhanced DNA methylation, reduced viral titer and reduced 
susceptibility confirming the key role of C2 and SAMDC1  in 
regulating host DNA methylation. Agroinfiltration of BSCTV 
C2 and SAMDC1 genes reverted gfp silencing in N. benthamiana 
16c (Zhang et  al., 2011).

Suppression of TGS by Inactivating Adenosine 
Kinase and Stabilizing SAMDC1
Adenosine kinase phosphorylation of adenosine is a prerequisite 
for sustaining cellular SAM levels. Thus, AC2-mediated 
interaction and inactivation of ADK invoked the possibility 
of methylation-mediated repression of viral genome as a possible 

host defense mechanism against the virus. The Arabidopsis 
mutants adk, cmt3, drm1/2, drb3, clsy1, pol IV, and pol V 
(mutants of RNA-directed DNA methylation components) were 
hypersensitive to viral infection. Cytosine methylation level of 
the viral genome was significantly reduced in the hypersusceptible 
mutant plants (Raja et  al., 2008, 2014; Jackel et  al., 2016). 
Infection of Arabidopsis with a BCTV mutant lacking C2 (BCTV 
C2−) resulted in a host recovery phenotype. The viral DNA 
in the recovered tissue was hypermethylated, suggesting 
methylation of the viral genome to be the cause of host recovery. 
Interestingly, ago4, dcl3, drb3, and pol V mutant Arabidopsis 
plants did not recover when infected with BCTV C2− (Raja 
et  al., 2008, 2014; Jackel et  al., 2016), whereas pol IV and 
clsy1 mutants displayed a delayed recovery phenotype (Jackel 
et al., 2016). This finding underlined the requirement of AGO4, 
DCL3, DRB3, Pol IV, and Pol V for methylation of viral genome 
and resultant host recovery. These results confirmed that 
methylation of viral genome has been evolved as an epigenetic 
defense mechanism against geminiviruses (Raja et al., 2008, 2014; 
Jackel et  al., 2016; Coursey et  al., 2018).

The AC2/C2-mediated suppression of methylation was studied 
in the N. benthamiana (16-TGS) line, in which the 35S 
promoter-driven gfp transgene is transcriptionally silenced. 
The silencing of the 16-TGS plant was suppressed by wild-
type AC2 and AC2-∆AD of TGMV and CaLCuV and also 
by BCTV C2 when expressed from PVX vectors (Buchmann 
et  al., 2009). Knocking down of SAHH and ADK expression 
using a Tobacco rattle virus VIGS vector reversed gfp silencing 
in 16-TGS. These observations further implied that reversal 
of silencing mediated by inhibition of methyl cycle is one of 
the prominent mechanisms evolved by viruses to suppress 
silencing (Buchmann et al., 2009). Infection of N. benthamiana 
16-TGS with TGMV, CaLCuV, and BCTV restored GFP 
fluorescence in a manner consistent with the tissue tropism 
exhibited by the virus. TGMV and CaLCuV infection restored 
GFP expression in symptomatic vascular and mesophyll cells 
(Buchmann et al., 2009; Raja et al., 2010). Interestingly, BCTV-
mediated suppression of gfp silencing was confined to the 
vascular tissue, which corroborated well with the vascular 
specificity of the virus. Transgenic expression of AC2 and 
AC2-∆AD of TGMV, BCTV C2, and dsADK under a 
dexamethasone (dex)-inducible promoter reversed the 
methylation of transcriptionally silenced loci in Arabidopsis. 
The reversal of methylation by AC2 and AC2-∆AD of TGMV, 
and BCTV C2 was found to be  locus non-specific. Four 
independent regions, including one gene-coding region, two 
transposable elements, and one repetitive DNA region were 
used as markers to study the effect of AC2 and AC2-∆AD 
of TGMV, and BCTV C2 on cytosine methylation. Reversal 
of cytosine methylation resulted in ectopic expression of 
TGS-silenced loci namely, a putative F-box gene, a 
retrotransposon AtSN1 (SINE element), and Athila (LTR element) 
in all analyzed transgenic plants. The ability of AC2 and AC2-
∆AD of TGMV and BCTV C2 to suppress TGS indicates 
that the suppression is activation domain-independent. TGS 
in the CACTA-like transposon was reversed only upon wild-
type AC2 induction. This invoked the necessity of transcriptional 

136

https://www.frontiersin.org/journals/microbiology
www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Veluthambi and Sunitha Geminiviral Suppressor Protein AC2

Frontiers in Microbiology | www.frontiersin.org 10 April 2021 | Volume 12 | Article 645419

activation domain for mediating suppression of the CACTA 
TGS-loci. Thus, AC2 transgenic plants reduced cytosine 
methylation of a wide spectrum of genomic regions and reversed 
methylation of the TGS loci in Arabidopsis by non-specifically 
inhibiting cellular transmethylation reactions (Buchmann et al., 
2009). Although, methylation extension assays confirmed a 
decrease in 5-methylcytosine methylation of a wide range of 
genomic regions in AC2 and C2 transgenic lines (Buchmann 
et al., 2009), a whole-genome bisulfite sequencing would provide 
data on AC2 or C2-mediated reversal of genome-wide cytosine 
methylation at single-nucleotide resolution.

The attenuation of SAMDC1 degradation by BSCTV C2 
may also result in suppression of TGS. SAMDC1 stabilization 
resulted in an increase in dcSAM/SAM ratio, which in turn 
reduced the host de novo methylation. BSCTV-C2 mutant 
infection resulted in enhanced DNA methylation of the viral 
genome (Zhang et  al., 2011). In an interesting assay, an FWA 
genomic fragment containing tandem repeats in its promoter 
region was used to study the role of BSCTV C2 on de novo 
methylation. Methylation of the FWA promoter and consequent 
silencing of the FWA gene is essential for normal flowering. 
The absence of de novo methylation of FWA transgene in a 
MTase double mutant Arabidopsis plant (drm1/drm2) caused 
a delay in flowering (Cao and Jacobsen, 2002). Similar late 
flowering phenotype was observed when the FWA gene was 
transformed into C2-expressing transgenic lines (Zhang et  al., 
2011). This suggested a role for BSCTV-C2  in interfering with 
the de novo methylation of the FWA transgene.

Developmental Stage-Specific Silencing 
Suppression
CaLCuV AC2 with the transcription activation domain deletion, 
and BCTV C2 reversed PTGS and TGS in the vegetative phase 
of plants indicating a transcription-independent mechanism 
of silencing suppression. Interestingly, only CaLCuV AC2 but 
not BCTV C2 could reverse PTGS and TGS upon onset of 
flowering, indicating that a transcription-dependent activity is 
required during the reproductive transition. A third suppression 
mechanism was demonstrated in which CaLCuV AC21–114 lacking 
the transcription activation domain but not BCTV C2 effectively 
reversed TGS in reproductive plants (Jackel et  al., 2015). 
Although TGS reversal was observed only in the vegetative 
phase of plants (plants with prolonged vegetative growth), 
reduced ADK activity was observed in both vegetative and 
reproductive plants upon BCTV infection or by silencing of 
ADK suggesting that TGS and ADK inhibition are uncoupled 
in reproductive N. benthamiana plants. In contrast, SAHH 
silencing resulted in reversal of TGS in both vegetative and 
reproductive plants. Thus, a new mechanism of TGS reversal 
that is independent of both transcription activation and ADK 
inactivation was observed in reproductive N. benthamiana plants 
expressing AC21–114.

Suppression of TGS by Inhibiting KYP
Interestingly, TGMV and CaLCuV AC2 were shown to inhibit 
the enzymatic activity of KYP by binding to the catalytic 
domain and thereby decreasing CHH methylation in gene-rich 

regions (Castillo-González et  al., 2015). Over-expression of 
KYP enriched H3K9me2 mark of viral chromatin, leading to 
formation of viral heterochromatin. As a counter-defense strategy, 
inhibition of KYP activity by TGMV and CaLCuV AC2 protein 
restored the euchromatic status of the minichromosome which 
allowed active replication and transcription of viral genes and 
suppression of the host defense mechanism (Figure 4F). While 
kyp mutant was hypersusceptible to CaLCuV infection and 
accumulated significantly higher viral titers when compared 
to wild-type, over-expression of the KYP transgene in the kyp 
mutant reduced the disease severity significantly.

The necessity of functional AC2 for ssDNA accumulation 
(Hayes and Buck, 1989) and the requirement of AC2-mediated 
transactivation of the CP and NSP genes for systemic infection 
(Sunter and Bisaro, 1992) is well-known. CaLCuV AC2− strain 
was engineered by introducing a premature stop codon and 
was used to infect wild-type and kyp mutant plants. While 
CaLCuV lacking functional AC2 did not show any symptom 
or systemic accumulation of the mutant virus in wild-type 
plants, the kyp mutants showed low level of sustained systemic 
infection of the mutant CaLCuV. Although, the mutant viral 
titer was very low in kyp mutants, this exciting study confirmed 
the role of KYP in inhibiting viral replication. Whole genome 
bisulfite sequencing revealed that AC2 inhibited KYP-dependent 
CHH methylation. Interaction of AC2 with KYP blocks its 
methylation activity and relaxes the viral chromatin and facilitates 
viral replication (Figure  4F; Ré and Manavella, 2015).

Suppression of TGS by Ectopic Expression of 
VIM5
A recent work by Chen et  al. (2020) revealed a unique 
mechanism in which BSCTV-encoded C2 recruits a host 
imprinted gene VIM5 to evade host silencing. While over-
expressing BSCTV Rep transgene that also contained the C2-C3 
promoter sequence and C2 N-terminal sequence (C2N), the 
authors serendipitously observed accumulation of the C2N 
transcript in addition to the Rep transcript in one of the 
transgenic Arabidopsis lines. Additional transcription from the 
C2-C3 promoter was correlated with hypomethylation of the 
C2-C3 promoter. Ectopic vegetative transcription of the 
endosperm-imprinted E3 ubiquitin ligase-encoding gene 
VARIANT IN METHYLATION5 (VIM5) was observed only 
in the C2N transcript-expressing transgenic line, when compared 
to wild-type Arabidopsis. The role of VIM5 in hypomethylation 
was substantiated by over-expressing VIM5 in another Rep 
transgenic line that did not originally accumulate the C2N 
transcript; Over-expression of VIM5 triggered accumulation 
of the C2N transcript which correlated with decreased DNA 
methylation at the transgenic C2-C3 promoter. Infection with 
BSCTV resulted in transient expression of the host endosperm-
imprinted E3 ubiquitin ligase-encoding gene VIM5 in rosette 
leaf tissues. BSCTV infection of Arabidopsis vim5 mutants 
resulted in delayed accumulation of viral early gene transcripts 
C2 and C3, thus confirming the role of VIM5  in contributing 
to the early expression of C2 and C3 from the viral genome. 
VIM5 was shown to interact with host CG MTase MET1 and 
the CHG MTase CMT3 and promote 26S proteasomal 
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degradation of MET1 and CMT3. MTase mutant plants met1 
and cmt3 displayed reduced viral methylation at the C2-C3 
promoter. Similarly, infection of a modified BSCTV with 
substitutions at CG and CHG sites in the C2-C3 promoter 
showed higher viral accumulation in vim5 mutant when 
compared with the unmodified BSCTV. Thus, early expression 
of BSCTV silencing suppressor C2 and replication enhancer 
protein C3 immediately after the expression of Rep, by activating 
an imprinted E3 ubiquitin-ligase gene, is a strategy evolved 
by the virus to inhibit viral DNA methylation and establish 
disease (Chen et  al., 2020).

Suppression of PTGS by Inhibiting RDR6 and 
AGO1
Silencing suppression activity of MYMIV AC2 was demonstrated 
in gfp silenced Nicotiana xanthi plants (Karjee et  al., 2008; 
Rahman et al., 2012). The activation domain mutant of MYMIV-
AC2 possessed the suppression activity. A two-pronged 
mechanism involving physical interaction of AC2 with RDR6 
and AGO1 was shown as the basis of PTGS suppression of 
MYMIV AC2 (Figure  3A). AC2-mediated inhibition of 
RNA-dependent RNA polymerase activity and slicing activity 
of AGO1 protein resulted in reduced siRNA accumulation 
(Figure  3A; Kumar et  al., 2015). An in planta assay using 
invert repeat of RDR6 to reverse gfp silencing only partially 
mimicked the suppression activity of AC2. The possibility of 
RDR6 paralogs partially compensating for the absence of RDR6 
cannot be  discounted. Future studies involving rdr6 and ago1 
mutant plants and testing them for enhanced susceptibility 
would reveal any redundant function of paralogs.

Suppression of Defense Mechanism by 
Inactivating Cellular Regulatory Genes
Inactivation of SNF1 Kinase
AC2 of TGMV and C2 of BCTV have been shown to interact 
with SNF1-related kinase (SnRK1), a serine-threonine kinase, 
and inactivate it (Hao et al., 2003). SnRK1 has been implicated 
as a key regulator of cellular stress response including innate 
defense mechanism. AC2-SnRK1 interaction alters the cellular 
stress metabolism and causes a novel enhanced susceptibility 
(Hao et  al., 2003). Although SNF1 inactivation does not 
involve suppression of silencing, interaction of AC2 with ADK 
reduces the cellular AMP levels (Figure  4D; Wang et  al., 
2003). AMP acts as an activator of SNF1 (Figure 4G), suggesting 
a dual strategy evolved by the virus to attenuate the cellular 
metabolism by inactivating SNF1 by direct interaction and 
indirectly by reducing cellular AMP levels (Figure  4G). 
Arabidopsis SnRK1 was shown to phosphorylate the serine 
residue at 109 (S109) of CaLCuV AC2 protein. A phosphomimic 
mutation of the S109 reduced viral DNA accumulation and 
delayed symptom appearance in Arabidopsis, thus revealing 
phosphorylation of viral protein as a host defense mechanism 
against an invading virus (Shen et  al., 2014). Guerrero et  al. 
(2020) report that AC2 of all old world begomoviruses and 
cutoviruses C2 lack the S109 residue. While majority of the 
new world begomovirus AC2s possess the conserved SnRK1 

phosphorylation site, some new world begomoviruses including 
TGMV AC2 lack the S109 residue and hence are not 
phosphorylated. Instead, TGMV AC2 is shown to inhibit the 
kinase activity of SnRK1 (Hao et  al., 2003).

Elevation of Cellular Cytokinin Levels
Baliji et  al. (2010) demonstrated a novel consequence of ADK 
inhibition by AC2 of TGMV and C2 of SCTV. ADK has a 
role in maintaining the cellular cytokinin level. ADK-mediated 
phosphorylation of cytokinin converts the bioactive form of 
cytokinin to a less bioactive form (Figure  4H). Silencing of 
ADK in Arabidopsis increased the cellular cytokinin levels, 
substantiated by increased activity of a cytokinin-responsive 
promoter. Over-expression of CaLCuV AC2 and SCTV C2  in 
Arabidopsis resulted in increased expression of endogenous 
cytokinin-responsive promoters. Thus, geminivirus AC2, by 
inactivating ADK, increased the cellular cytokinin levels. An 
enhanced cytokinin level is a prerequisite for cell cycle 
progression and to maintain an active state of replication. 
Increased cytokinin resulted in an enhanced susceptibility 
phenotype. Interestingly, cytokinin is known to negatively 
regulate the expression of SULTR1;2, a high affinity sulfate 
transporter in Arabidopsis roots (Maruyama-Nakashita et  al., 
2004). Cytokinin binding to the receptor cytokinin response 
1/wooden leg/Arabidopsis histidine kinase 4 (CRE1/WOL/AHK) 
is the cue for negative regulation of sulfur assimilation, while 
cre1 mutant is insensitive to cytokinin. In sultr1;2 mutant, 
SULTR1;1 was downregulated by cytokinin. Downregulation 
of sulfate transporters by cytokinin correlated with the decrease 
in sulfate uptake. Another study by Ohkama et  al. (2002) 
showed that exogenous application of cytokinins upregulated 
sulfur responsive genes APS reductase 1 (APR1) and SULTR1;2 
through a pathway independent of sulfur starvation; likely 
through increasing sucrose concentration which is known to 
upregulate APR1 gene (Kopriva et  al., 1999). Exogenous 
application of cysteine and glutathione (GSH) resulted in 
downregulation of ATP sulfurylase, APS reductase, and sulfate 
transporter (Vauclare et  al., 2002).

TYLCSV-C2 transgenic plants repressed the expression of 
three genes involved in sulfur assimilation namely ATP sulfurylase 
3 (APS3), APS reductase 1 (APR1), and APS reductase 3 (APR3) 
and also accumulated reduced sulfur (Lozano-Durán et  al., 
2012). Adequate sulfate supply in tobacco plant resulted in a 
suppressed and delayed Tobacco mosaic virus (TMV) symptom 
development through a phenomenon named sulfur-induced 
resistance (SIR) or sulfur-enhanced defense (SED; Höller et al., 
2010), thus revealing a role for sulfur in plant defense. Exogenous 
treatment of the TYLCSV-C2 plants with methyl jasmonate 
(MeJA) reversed the repression of sulfur assimilation genes 
(Lozano-Durán et  al., 2012). TYLCSV-C2 transgenic plants 
over-accumulated cysteine and glutathione. The authors could 
not explain the reason behind the over-accumulation of cysteine 
and glutathione when the sulfur assimilation genes were repressed. 
Lozano-Durán et al. (2012) proposed that the C2 protein might 
suppress SIR/SED by suppressing jasmonate signaling pathway. 
However, it would be interesting to study in future if TYLCSV-
C2 plants had increased cellular cytokinin levels similar to 
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TGMV-AC2, CaLCuV-AC2, and SCTV-C2 plants. Also, it is 
relevant to study if upregulation of sulfur assimilation genes 
by cytokinin is initially through sucrose-dependent pathway. 
It is also important to study if the reduction observed in the 
expression of sulfur assimilation genes is because of the 
accumulation of cysteine and glutathione in TYLCSV-C2 
transgenic plants. It would be  informative to understand if 
the sulfate reduction in C2 transgenic plants might be  because 
of the negative regulation of sulfate transport pathway by 
cytokinin binding to CRE1 receptor. Further studies are necessary 
to understand cross-talk between cytokinin, jasmonate, and 
sulfur assimilation pathways.

Inhibition of Jasmonate Signaling Pathway
COP9 signalosome (CSN), a highly conserved protein complex 
with eight subunits that resembles the 19S lid of the 26S 
proteasome (Dohmann et  al., 2008), regulates the activity of 
E3 ligases. The CSN complex comprises eight subunits, named 
CSN1–CSN8, where CSN5 is the only catalytic subunit. TYLCSV 
C2 interacts with CSN5 and interferes with the cellular 
ubiquitination machinery (Lozano-Durán et  al., 2011). 
Ubiquitination occurs through a cascade of enzymatic reactions 
namely ubiquitin activation by E1, conjugation by E2, and 
ligation by E3. E3 ligase comprises the multisubunit Cullin 
RING Ligases (CRLs). Among CRLs, cullin 1-based group or 
SCF (for Skp1/Cullin1/F-box), is comprised of four proteins, 
cullin 1 (CUL1), S-phase kinase-associated protein (SKP1/
ASK), the RING subunit RBX1 (RING box 1) and an F-box 
substrate binding protein. The CRL activity is regulated by 
covalent attachment and removal of ubiquitin-like protein RUB 
(related to ubiquitin; Figure  4I). CSN5 is associated with the 
derubylation activity (Gusmaroli et  al., 2007). CSN is a 
multisubunit isopeptidase which removes the RUB moiety 
from CRLs to function in vivo. C2 of TYLCSV interacts with 
CSN5 and inhibits the derubylation of CRL (Figure  4I). 
Rubylated CUL1 alters several SCF-dependent hormonal 
processes and also suppresses jasmonate responses in C2 
transgenic plants. Jasmonate signaling has been implicated in 
defense response and suppression of jasmonate response resulted 
in enhanced susceptibility phenotype, which was reverted upon 
exogenous treatment of methyl jasmonate (MeJA). TYLCV 
C2 and BCTV C2 were also shown to interact with CSN5 
suggesting that CSN5-C2 interaction is a conserved function 
in geminiviruses (Lozano-Durán et  al., 2011).

Jasmonate receptor SCF complex is also the receptor for 
the bacterial toxin coronatine, which is secreted by the plant 
pathogenic Pseudomonas syringae pv. tomato DC3000 (Pto 
DC3000). Coronatine application on plants facilitates stomatal 
opening and increases infection (Melotto et  al., 2006; Geng 
et  al., 2014). The hindrance of SCF complex by TYLCV C2 
(Lozano-Durán et  al., 2011) makes TYLCV/TYLCSV C2 
transgenic plants less sensitive to coronatine, as evidenced by 
reduced Pto DC3000 bacterial growth (Rosas-Díaz et al., 2016). 
The mutant COR− strain and wild-type strain had similar 
bacterial growth in C2 transgenic plants (Rosas-Díaz et  al., 
2016) confirming the role of C2  in altering SCF function 
(Lozano-Durán et  al., 2011).

Jasmonic acid, which is involved in biotic and abiotic stress 
responses, is also known to induce the production of secondary 
metabolites including alkaloids, anthocyanins, and terpenoid 
compounds (Devoto et  al., 2005). Whitefly-infested plants 
showed increased terpenoid production which was decreased 
in virus-infected plants (Luan et  al., 2013). TYLCV-infected 
tobacco plants manifested increased survival and fecundity of 
whiteflies (Li et  al., 2019). Terpene synthesis genes were 
downregulated in TYLCV and TYLCV-whitefly co-infected 
plants compared to whitefly-infested plants. TYLCV C2 over-
expression lines had decreased expression of terpene synthesis 
genes including MYC2, a transcription factor. MYC2 is under 
the regulatory control of JAZ1 protein and ubiquitination-
mediated degradation of JAZ1 protein is the switch of MYC2 
activation (Niu et  al., 2011). TYLCV and Papaya leaf curl 
China virus (PaLCuCNV) C2 were shown to interact with 
RPS27A, a fusion protein consisting of ubiquitin at the N 
terminus and ribosomal protein S27a at the C terminus. C2 
interaction was with the ubiquitin moiety of RPS27A. Li et  al. 
(2019) demonstrated a novel suppression mechanism in which 
TYLCV C2 competitively bound to ubiquitin, which resulted 
in decreased JAZ1 protein ubiquitination (Figure  4J). 
Consequently, the MYC2 bound to JAZ1 is stabilized and 
interferes with the ability of MYC2 to induce the expression 
of downstream defense genes.

Suppression by Inhibiting Cell Cycle Regulator
Arabidopsis PEAPOD2 transcription factor (TIFY4B) was 
shown to interact with AC2 and promoter sequences of 
TGMV and CaLCuV CP (Lacatus and Sunter, 2009) and 
TGMV NSP (Berger and Sunter, 2013). TIFY4B is known 
to limit cell proliferation in leaf epidermis and vascular 
tissues (White, 2006), which is substantiated by increased 
TIFY4B expression in callus tissue and during inflorescence 
emergence (Vanholme et al., 2007). TIFY4B has three conserved 
domains: PPD, TIFY, and CCT_2. While TIFY4B was shown 
to localize to nucleus (Lacatus and Sunter, 2009), mutant 
versions of TIFY4B including an 84–150-amino acid version 
were localized in the cytoplasm (Chung and Sunter, 2014). 
TGMV and CaLCuV AC2 interaction with the mutant TIFY4B 
altered the localization to nucleus. Increased TIFY4B expression 
was observed upon viral infection while the geminivirus 
infection is expected to downregulate a repressor of cell 
cycle progression. Over-expression of TIFY4B resulted in 
increased mean latent period and reduced CP expression 
suggesting a role of TIFYB in antiviral defense, wherein 
TIFYB inhibits cell proliferation, and therefore, viral replication. 
Chung and Sunter (2014) proposed a suppression mechanism 
in which AC2 sequesters TIFY4B and inhibits its role in 
cell cycle regulation, thereby creating a conducive environment 
for viral replication.

SUMMARY

This review highlights the different targets and mechanisms 
evolved by geminivirus AC2/C2 to counter PTGS and TGS. 
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Recent studies on cellular proteins that are targets of AC2/C2 
have opened a third defense mechanism which does not involve 
PTGS and TGS (Table  1). Many studies show how a single 
suppressor protein like TGMV AC2 could deploy multiple 
targets. TGMV AC2 targets rgsCaM and ADK to suppress 
PTGS, targets ADK, and KYP to suppress TGS and inactivates 
SnRK1 and TIFY4B to inhibit the cellular defense response 
(Table  1). It is likely that silencing suppression is not limited 
to targeting of one viral protein and a host protein but rather 
involves a concerted effect on multiple host proteins as manifested 
in TGMV AC2. It would be  interesting to see if other viral 
suppressor proteins also act on multiple targets. Most of our 
current knowledge regarding suppressor proteins and their 
targets is from curtoviruses and begomoviruses. Positional 
homologs of AC2/C2 are observed in other geminiviruses 
namely Eragovirus, Topocuvirus, and Turncurtovirus; however, 
they are not known to encode functional AC2/C2. Advancing 
our knowledge of suppressor proteins in other genera is essential. 
For example, Grapevine red blotch virus (GRBV), the type 
member of Grablovirus, is known to be  a serious threat to 
the Californian wine industry. Understanding the GRBV 
suppressor proteins and their plant targets can present cogent 
strategies for mitigating this threat to a multibillion-dollar 
industry. Most of our current knowledge on silencing and 

silencing suppression is from dicot plants Arabidopsis and N. 
benthamiana. The genus Mastrevirus are monocot-infecting 
geminiviruses with 41 species. The only silencing suppressor 
protein identified till date in Mastrevirus is the Rep protein 
from Wheat dwarf virus which binds to ss- and ds-siRNA 
(Wang et  al., 2014). It would be  interesting to see if DCL5 
and AGO18, the unique silencing machinery components of 
monocots, are targets of Mastrevirus.

FUTURE DIRECTIONS

Future research in AC2 suppressor protein should be  focused 
on addressing the question of how the small AC2/AL2 protein 
(15  kDa) has evolved an ability to interact with so many 
different targets and make an impact on viral pathogenesis 
and plant metabolism. It would be  interesting to know which 
of the studied target/targets is relevant in viral pathogenesis. 
Editing of the target genes in plants and study of viral 
pathogenesis and RNA silencing in the mutant plants infected 
with viruses will help in a more thorough evaluation of the 
AC2-interacting plant proteins. Abutilon mosaic virus (AbMV) 
AC2 was shown to act as a brake in geminivirus replication 
and was reported to enhance PTGS rather than suppress it 

TABLE 1 | Geminivirus AC2/C2-plant protein interactions and associated functions.

Virus Suppressor Suppressing PTGS Suppressing TGS Cellular pathways

MYMV AC2 Upregulates host suppressor protein 
WEL1 (Trinks et al., 2005)

TGMV

BCTV

AC2

C2

Inactivates adenosine kinase (Wang 
et al., 2003, 2005)

Inactivates adenosine kinase 
(Buchmann et al., 2009)

Inactivates a serine-threonine kinase 
SnRK1 (Hao et al., 2003)

BSCTV C2 Stabilizes S-adenosyl methionine 
decarboxylase1 (SAMDC1; Zhang 
et al., 2011)

Activates VIM5, an endosperm-
imprinted E3 ubiquitin-ligase gene 
(Chen et al., 2020)

TGMV

CaLCuV

AC2

AC2

Upregulates rgsCaM (Chung et al., 
2014)

Inhibits histone methyltransferase KYP 
(Castillo-González et al., 2015)

Sequesters PEAPOD2 transcription factor 
(TIFY4B) and inhibits cell cycle regulation 
(Lacatus and Sunter, 2009; Chung and 
Sunter, 2014)

TGMV

SCTV

AC2

C2

Elevation of cellular cytokinin levels (Baliji 
et al., 2010)

TYLCSV

TYLCV

C2

C2

Interacts with CSN5 and inhibits 
jasmonate signaling (Lozano-Durán et al., 
2011; Rosas-Díaz et al., 2016)

Represses sulfur assimilation genes 
(Lozano-Durán et al., 2012)

ICMV-SG AC2 Upregulation of RAV2, transcription 
repressor and repression of H3K9 
histone methyltransferase 
KRYPTONITE (KYP; Sun et al., 2015)

MYMIV AC2 Interacts with RDR6 and AGO1(Kumar 
et al., 2015)

TYLCV C2 Downregulates terpene synthesis (Luan 
et al., 2013).

TYLCV

PaLCuCNV

C2

C2

Interaction with the ubiquitin moiety of 
RPS27A resulting in decreased JAZ1 
degradation (Li et al., 2019)

MYMV, Mungbean yellow mosaic virus; TGMV, Tomato golden mosaic virus; BCTV, Beet curly top virus; BSCTV, Beet severe curly top virus; CaLCuV, Cabbage leaf curl virus; SCTV, 
Spinach curly top virus; TYLCSV, Tomato yellow leaf curl Sardina virus; TYLCV, Tomato yellow leaf curl virus; MYMIV, Mungbean yellow mosaic India virus; ICMV-SG, Indian cassava 
mosaic virus-Singapore; and PaLCuCNV, Papaya leaf curl China virus.
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(Krenz et  al., 2015). It would be  interesting to study if any 
other geminiviral AC2/C2 function as a facilitator of silencing. 
Besides the uniqueness of AbMV AC2 acting as a PTGS 
enhancer, a greater challenge is to understand how AbMV 
AC2 evolved as an enhancer. Does this confer any advantage 
to the virus or did the host evolve to inhibit viral replication 
or symptom development?

One major focus of future study should be  in exploiting 
AC2 silencing suppressor function for biotechnological 
applications. The toxic effect of AC2, when expressed as a 
transgene, has been reported by several groups. This has limited 
the use of geminivirus AC2 in transgenic technology. Mutations 
of functional domains have been shown to alleviate the toxic 
effect (Rajeswaran et  al., 2007). A study to precisely identify 
the amino acid residue/residues that contribute to the toxic 
effect of the 135 aa AC2 protein is highly desirable. DNA 
viral vectors containing only the replication origin and with 
Rep gene provided in cis or in trans have found application 
in biopharming (Rybicki and Martin, 2014). Bean yellow dwarf 
virus (BeYDV), a mild dicot infecting Mastrevirus, has been 
deconstructed and used widely as a replicon vector (Regnard 
et  al., 2010). Huang et  al. (2010) demonstrated high level 
expression of Ebola virus glycoprotein GP1 (6D8) recombinant 
monoclonal antibodies in N. benthamiana leaves by co-expressing 
the transgene in BeYDV replicon along with Rep and Tomato 
bushy stunt virus (TBSV) p19, a ds siRNA binding suppressor 
protein. Earlier work by Lacombe et al. (2018) has demonstrated 
that a combination of P19, P0, and P1 suppressors, that act 
at distinct steps of the RNA silencing pathway, allowed the 
highest ectopic protein expression. If the toxic effect of 
geminiviral AC2 can be  negated without compromising on 
the silencing suppression function, AC2, which is known to 
target multiple steps of gene silencing, could find extensive 
use for over-expressing recombinant proteins in plants and 
plant cell cultures.

Both RNA and DNA viruses are widely used in Virus-
Induced Gene Silencing (VIGS). The ease with which DNA 
viruses can be  manipulated, the fact that geminiviral CP can 
be  replaced with the gene of interest without affecting the 
systemic movement of virus (only in certain viruses), the 
recombinant vector derived from replacing CP is not vector 
transmissible and the broad host range of DNA viral vectors 
makes DNA viruses a good choice for VIGS over RNA viruses 
(Robertson, 2004). While several studies have shown the 
application of geminivirus as VIGS vector (Yang et  al., 2017), 
the presence of suppressor proteins including AC2/C2 was 
shown to antagonize the silencing effect caused by the VIGS 
vector. The silencing efficiency is depleted as the suppressor 
protein accumulates in the plants. A null mutant in MYMIV-
AC2, when used as VIGS vector, increased the silencing efficiency 
(Pandey et  al., 2009). However, the mutation in the AC2 ORF 
reduced MYMIV replication efficiency by about 25%. A null 
mutation in CaLCuV AC2 abolished the viral replication 
(Castillo-González et  al., 2015). Hence, future studies should 
investigate the possibility of mutating the AC2/C2 to mute 
the suppression function alone without compromising on the 
replication efficiency of the VIGS vector. Geminivirus VIGS 

vectors will help in performing functional genomics in a wide 
range of plants.

Baltes et  al. (2014) demonstrated genome engineering using 
the BeYDV-based replicon system. Desired DNA changes were 
made when TALENs and CRISPR/Cas9 system were delivered 
using the BeYDV-based replicon system. A recent study by 
Mao et  al. (2018) showed improved gene-editing efficiency by 
silencing AGO1 or by co-expressing TBSV p19 protein as part 
of CRISPR/Cas9 cassette. The challenge of gene editing technology 
is in identifying the edited events. Mao et al. (2018) established 
a suave means to phenotypically identify the edited events in 
the T1 generation and T-DNA segregated events in T2 generation. 
By co-expressing p19 as part of the CRISPR/Cas9 cassette, 
the authors could group the T1 plants based on the severity 
of p19-induced leaf phenotype alteration. T1 plants displaying 
severe phenotype associated with p19 over-expression were 
selected as edited lines. T2 seedlings from the gene edited T1 
events were again grouped based on the leaf phenotype. 
Segregated plants with wild-type leaf phenotype were then 
identified as gene-edited plants from which the T-DNA was 
segregated out. The geminiviral suppressor protein AC2 can 
be  co-expressed to increase the genome editing efficiency. 
Interestingly, AC2 is more attractive than TBSV p19 for the 
following reasons: (1) AC2 over-expression is known to cause 
pronounced phenotype in leaf (Siddiqui et  al., 2008; Castillo-
González et al., 2015). (2) TGMV AC2 over-expression resulted 
in early flowering (Castillo-González et  al., 2015). (3) AC2 
over-expression is likely to result in genome-wide 
hypomethylation (Castillo-González et  al., 2015), and hence 
the tightly regulated genes involved in meiotic recombination 
are also likely to be  upregulated. (4) MYMV AC2 and ACMV 
AC2, when transiently expressed in Arabidopsis protoplasts, 
upregulated the expression of the meiotic recombination protein 
AtDMC1 (Trinks et  al., 2005; Da Ines et  al., 2013). Thus, 
future studies would pave way to the evolution of AC2 from 
a core viral protein to a potent molecular tool with 
myriad applications.
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Cucurbit chlorotic yellows virus (CCYV) is a cucurbit-infecting crinivirus. RNA silencing
can be initiated as a plant defense against viruses. Viruses encode various RNA silencing
suppressors to counteract antiviral silencing. P22 protein encoded by RNA1 of CCYV
is a silencing suppressor, but its mechanism of action remains unclear. In this study,
the cucumber ribosomal-like protein CsRPS21 was found to interact with P22 protein
in vitro and in vivo. A conserved CsRPS21 domain was indispensable for its nuclear
localization and interaction with P22. Transient expression of CsRPS21 in Nicotiana
benthamiana leaves interfered with P22 accumulation and inhibited P22 silencing
suppressor activity. CsRPS21 expression in N. benthamiana protoplasts inhibited CCYV
accumulation. Increasing numbers of ribosomal proteins are being found to be involved
in viral infections of plants. We identified a P22-interacting ribosomal protein, CsRPS21,
and uncovered its role in early viral replication and silencing suppressor activity. Our
study increases knowledge of the function of ribosomal proteins during viral infection.

Keywords: cucurbit chlorotic yellows virus, P22, ribosomal protein, silencing suppressor, virus accumulation

INTRODUCTION

The members of the genus Crinivirus cause significant yield and quality losses in many cucurbit
species (Kreuze et al., 2005; Navas-Castillo et al., 2011). Like most members of the genus Crinivirus,
cucurbit chlorotic yellows virus (CCYV) has a bipartite genome. The genomes of criniviruses
vary among species in the RNA1 3′ region downstream from RNA-dependent polymerase coding
region, where the number of open reading frames (ORFs) varies from zero to three (Kataya et al.,
2009). CCYV RNA1 contains four ORFs: ORF1a, ORF1b, ORF2, and ORF3. ORF1a encodes viral
methyltransferase and RNA helicase 1; ORF1b encodes an RNA-dependent RNA polymerase motif;
and ORF2 and ORF3 encode the predicted proteins P6 and P22, respectively. As RNA1 3′ ORFs are
quite variable among criniviruses, both P6 and P22 show no significant similarity to corresponding
proteins of other criniviruses (Okuda et al., 2010). In addition to CCYV P22, P22 proteins of tomato
chlorosis virus (ToCV) and sweet potato chlorotic stunt virus (SPCSV), P23 of lettuce chlorosis
virus (LCV), and P25 of cucurbit yellow stunting disorder virus (CYSDV) have also been identified
as RNA silencing suppressors (Kreuze et al., 2005; Canizares et al., 2008; Kataya et al., 2009; Kubota
and Ng, 2016; Orfanidou et al., 2019; Salavert et al., 2020).

Ribosomal proteins (RPs) are named according to their association with the small or large
ribosomal subunit (Kaltschmidt and Wittmann, 1970). In Arabidopsis, 81 different RPs encoded
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by 242 putatively functional RP genes have been identified
(Hummel et al., 2015). Apart from RNA chaperone activity,
some RPs regulate processes related to the cell cycle, apoptosis,
development, oncogenesis, and rDNA transcription (Chen and
Ioannou, 1999; Panic et al., 2007; Jeon et al., 2008; Lindstrom,
2009; Kim et al., 2014; Rajamaki et al., 2017). In plant viruses,
P6 of cauliflower mosaic virus (CaMV) is found to interact with
RPs L18, L24, and L13 (Bureau et al., 2004). These interactions
may be involved in the translation reinitiation of polycistronic
mRNAs (Bureau et al., 2004). RP L10 serves as the substrate for
the kinase domain of nuclear shuttle protein interacting kinase,
which is identified as a virulence target of the begomovirus
nuclear shuttle protein and negatively affected tomato golden
mosaic virus (TGMV) and tomato crinkle leaf yellows virus
(TCrLYV) infection (Fontes et al., 2004; Rocha et al., 2008;
Zorzatto et al., 2015). Many RP genes in N. benthamiana
are upregulated at the mRNA level in response to infection
by turnip mosaic virus (TuMV) and plum pox virus (PPV)
(Dardick, 2007; Yang et al., 2009). In the case of tomato
ringspot virus (ToRSV), the expression of plastid ribosomal
genes is repressed (Dardick, 2007). RP S6 in N. benthamiana
is involved in infections by various viruses and affects the
accumulation of cucumber mosaic virus (CMV), TuMV, and
potato virus A (PVA), but not turnip crinkle virus (TCV) or
tobacco mosaic virus (TMV) (Rajamaki et al., 2017). Although
increasing numbers of RPs are involved in viral infections of
plants (Chen and Ioannou, 1999; Bureau et al., 2004; Panic
et al., 2007; Jeon et al., 2008; Rocha et al., 2008; Rajamaki et al.,
2017), the role of RPS21 during viral infection, if any, has not
been characterized yet. In this study, we identified a cucumber
ribosomal-like protein CsRPS21 that interacts with CCYV P22
protein in vitro and in vivo. A conserved domain of CsRPS21
was found to be indispensable for its nuclear localization and
the interaction with P22; CsRPS21 interfered with the P22
accumulation to inhibit P22 silencing suppressor activity and
viral accumulation.

MATERIALS AND METHODS

Plant Materials and Agrobacteria
Inoculation
The N. benthamiana seeds were provided by Dr. Yanhong
Qin from Henan Academy of Agricultural Sciences, and the
plants were grown in pots in a growth room under a 16 h
light/8 h dark photoperiod at 25◦C with 60% humidity. For
agroinfiltration, agrobacteria GV3101 carrying relevant clones
were suspended in infiltration buffer (10 mM MgCl2, 10 mM
MES, and 200 µM acetosyringone, pH 5.6) at an OD600 of
1, kept at room temperature for 2–4 h, and infiltrated into
N. benthamiana leaves using a 1 ml needleless syringe.

Yeast Two Hybrid Screen and Interaction
Assay
The cucumber cDNA library screening was performed
according to the protocol handbook provided by
Matchmaker Gold Yeast Two-Hybrid System (Clontech,

CA, United States). The cucumber library was used to screen
P22 interacting proteins. The cDNA library screen and
interaction assay were performed as described previously
(Cheng et al., 2008).

Plasmid Construction
Supplementary Table 1 has the information regarding
primers used in this study. All the constructs used were
sequenced before use.

To construct vectors for yeast two-hybrid analysis, the
full length of CCYV P22 (KU507601) was amplified and
cloned into yeast vector pGBKT7 at the NdeI and BamHI
sites to generate the bait vector BDP22 using the primer pair
BDP22F and BDP22R. The full-length coding sequence of
CsRPS21 (XM_004145623) was amplified using the primer pair
ADCsRPS21F/ADCsRPS21R, and subcloned into the vector
pGADT7 at the EcoRI and XhoI sites to generate ADCsRPS21.
We used the primer pairs ADCsRPS2191F/ADCsRPS21R,
ADCsRPS21F/ADCsRPS21145R, ADCsRPS21128F/ADCsRPS
21R, ADCsRPS21F/ADCsRPS21127R, ADCsRPS2191F/ADCs
RPS21145R, ADCsRPS21F/ADCsRPS2190R, and subcloned into
the vector pGADT7 at the EcoRI and XhoI sites to generate
ADRP1, ADRP2, ADRP3, ADRP4, ADRP5, and ADRP6.

For bimolecular fluorescence complementation (BiFC)
analysis, the relevant vectors of P22, CsRPS21, and CsRPS211−145
were constructed using gateway strategy. P22, CsRPS21, and
CsRPS211−145 were cloned into entry vector pDONR221 using
primer pairs BPP22F/BPP22R, BPCsRPS21F/BPCsRPS21R,
and BPCsRPS21F/BPCsRPS21145R to generate BPCsRPS21,
BPCsRPS211−145 and BPP22. The resultant clones were
recombined into the binary expression vector pEarleyGate201-
YN and pEarleyGate202-YC (Lu et al., 2010) by the LR
reaction, constructing the gateway vector CsRPS21-cYFP,
CsRPS211−145-cYFP and P22-nYFP.

For nuclear localization assay, sequences corresponding
to 91-145 aa, 1-127 aa and 128-183 aa of CsRPS21 were
amplified and cloned into entry vector pDONR221 using
primer pairs BPCsRPS2191F/BPCsRPS21145R, BPCsRPS21F/
BPCsRPS21127R, and BPCsRPS21128F/BPCsRPS21R to generate
BPCsRPS2191−145, BPCsRPS211−127, and BPCsRPS21128−183.
The resultant clones together with BPCsRPS21 were used to
clone into the gateway vector pEarleyGate104 (Earley et al.,
2006) to obtain the expression vector YFP-CsRPS2191−145, YFP-
CsRPS211−127, YFP-CsRPS21128−183, and YFP-CsRPS21. BPP22
was cloned into pEG104 and pEG100-RFP to acquire YFP-
P22 and P22-RFP.

For interaction with other CCYV proteins, BD vectors of
P4.9, RNA1P6, RNA2P6, HSP70h, P9, P26, CP, CPm, and
P59 (KU507602) were constructed and stored in our lab
(Wang et al., 2015).

For P22 silencing suppressor activity, pGDFLag-P22 was
constructed by introducing P22 into pGDFlag (Goodin
et al., 2002) vector. P22 were amplified using primer pair
FLAGP22F/FLAGP22R. PCR product was digested by SalI and
BamHI, and cloned into pGDFlag vector to generate pGDFlag-
P22. pGDMyc-CsRPS21 was constructed by introducing
CsRPS21 into pGDMyc (Goodin et al., 2002) vector. CsRPS21
were amplified using primer pair MycRPS21F/MycRPS21R,
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digested by PstI and BamHI, then cloned into pGDMyc vector to
generate pGDMyc-CsRPS21.

Confocal Laser Scanning Microscopy
For BiFC and co-localization assay, agrobacteria carrying the
corresponding constructs were infiltrated into N. benthamiana
leaves as described previously (Walter et al., 2004). The leaves
were detached at 48 h post infiltration (hpi) for fluorescence
detection. Fluorescence signals were visualized under an inverted
spectral confocal laser scanning microscope (Cal Zeiss LSM 710).
Fluorescence of YFP and RFP was excited at 514 and 561 nm.
Fluorescence of chlorophy II was excited at 637 nm.

Quantification of GFP Fluorescence
Intensity
Images of GFP fluorescence from experimental and
corresponding control plants were taken under the Nikon
fluorescence microscope ECLIPSE Ti-S at 3 days post-infiltration
(dpi). Thirty fluorescent spots were selected at random from
two leaves, and the areas were measured using ImageJ2
software. Thirty independent images for each group were
measured and values were analyzed via t-test. Three biological
repeats were needed.

Western Blotting
Agro-infiltrated leaves were harvested at 3 dpi for western
blotting assay. Total protein was extracted from 0.2 g leaf tissues
using the extraction buffer containing 20% glycerol, 20 mM
Tris-HCl pH 7.5, 1 mM EDTA, 150 mM NaCl, 1 mM PMSF,
1 × Protease inhibitor cocktail (Sigma, China). Total protein
was separated in SDS-polyacrylamide gel electrophoresis,
followed by transfer to nitrocellulose membranes. The
membranes were probed using polyclonal anti-GFP (Sigma,
China), anti-Flag (Sigma, China), and anti-Myc (Abmart,
China) antibody followed by an HRP-conjugated secondary
antibody. The detection signals were developed using an ECL
reagent as instructed.

N. benthamiana Protoplasts Isolation
and Transfection
Protoplasts were isolated from N. benthamiana seedlings and
transfected using polyethylene glycol (PEG)-mediated method
with modifications (Bak and Folimonova, 2015). Approximately
200 µl of protoplasts (2 × 105) were gently mixed with 5 µg
of CCYV RNA1 and RNA2 which were obtained from in vitro
transcription and incubated at room temperature for 15 min. The
protoplasts were gently washed in W5 solution and incubated
in the dark at 25◦C. The transfected protoplasts were harvested
at 24 h post transfection and used for quantitative reverse
transcription PCR (RT-qPCR) analysis. Three independent
experiments were conducted and protoplasts from two tubes
were pooled for RNA isolation followed by RT-qPCR analysis.

Northern Blotting
Protoplasts, isolated from N. benthamiana seedlings and
transfected with CCYV for 24 h, were sampled and pooled

for total RNA extraction. RNA samples of 3 µg were used
to detect CCYV RNA1 mRNA. Northern blotting analysis was
conducted according to the manual of the Northern starter kit
(Roche Diagnostics, Basel, Switzerland). RNA was labeled in an
in vitro transcription reaction with CCYV RNA1 as a template
using a labeling mixture. Supplementary Table 1 shows the
probe primers used to detect the CCYV RNA1. The intensities
of bands for RNA1 were normalized against the intensities of
loading bands with the relative value of YFP control as 1.00. The
quantitative calculation of digital images of blots was done using
ImageJ2 software.

Transient co-expression of GFP and CsRPS21 or GUS (as a
control protein) in GFP-transgenic N. benthamiana plants (16c)
at 5 dpi, were sampled and pooled for total RNA extraction. RNA
samples of 3 µg were used to detect GFP mRNA with GFP probe.
The quantitative calculation of digital images of blots was done
using ImageJ2 software.

Quantitative Reverse Transcription PCR
Total RNA was extracted from harvested N. benthamiana
protoplasts using Trizol reagent (Invitrogen, United States)
and treated with RNase-free DNase I at 24 hpi. First strand
cDNA was synthesized using 500 ng total RNA, an oligo d (T)
primer, random primer, and M-MLV reverse transcriptase as
instructed. Ten-fold diluted cDNA product was used for PCR
on an Eppendorf Real-Time PCR system using an SYBR Green
master mix (Takara, Japan). The N. benthamiana actin gene
(AY179605) was used as the internal control. All the primers used
for RT-qPCR are listed in Supplementary Table 1. The relative
gene expression levels were calculated using the 2−MMCT method
(Livak and Schmittgen, 2001). Each treatment contains technical
triplicates and three independent experiments to confirm the
stable expression of genes of interest. T-test was performed on
data using GraphPad Prism (Inc., San Diego, CA, United States).
A two-sample unequal variance directional t-test was used to test
the significance of the difference (∗P < 0.05; ∗∗P < 0.01).

RESULTS

Identification of a P22-Interacting RPS21
Protein From Cucumber
To identify cucumber proteins that interact with CCYV P22
protein, we performed a yeast two-hybrid screen using a
cucumber cDNA library (Chen et al., 2019). The coding
sequence of P22 was placed in the pGBKT7 vector as bait.
After screening, one clone that contained the entire ORF of a
ribosomal-like protein was selected for further study (GenBank
accession number XM_004145623). Using blastx, the ribosome-
like protein identified here belonged to the ribosomal S21
superfamily, and showed 84.2% identity at the amino acid
level with 30S RP S21 from Cucurbita maxima; hence, we
designated it CsRPS21. Sequence analysis showed that RPS21
protein was conserved in cucurbits (Supplementary Figure 1).
The CsRPS21 coding sequence was cloned into pGADT7 and
the interaction with P22 was tested in the yeast strain Y2HGold
using yeast co-transformation. The interaction was seen on
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SD/–Leu/–Trp/–His/–Ade/Aba/X-α-gal plates (Figure 1A). To
confirm the interaction between P22 and CsRPS21 in planta,
we used BiFC analysis to test the interaction. The coding
sequences of CCYV P22 and CsRPS21 were cloned into pEG201-
YN and pEG202-YC, respectively, to generate P22-nYFP and
CsRPS21-cYFP for infiltration into leaves. Yellow fluorescent
protein (YFP) fluorescence was detected in N. benthamiana
leaves agroinfiltrated with P22-nYFP and CsRPS21-cYFP at
2 dpi. Fluorescence was observed mainly in the nucleus, with
weak fluorescence in the cytoplasm (Figure 1B). No such
interaction was found between P22-nYFP and cYFP or nYFP
and CsRPS21-cYFP (Supplementary Figure 2). To determine
if the interaction influenced the localization of CsRPS21 and
P22, YFP-CsRPS21 and YFP-P22 were transiently expressed in
N. benthamiana leaves. YFP-CsRPS21 fluorescence was found
mainly in the nucleus and some chloroplasts (Figure 1C). YFP-
P22 was observed in both the cytoplasm and nucleus (Figure 1D)
suggesting that the interaction changed the localization of
CsRPS21. Besides co-localization of YFP-CsRPS21 and P22-RFP

in N. benthamiana leaves showed the co-localization of P22 and
CsRPS21 in the nucleus (Supplementary Figure 3A).

Interactions Between CsRPS21 and
Other CCYV Proteins
The interaction between CsRPS21 and other CCYV proteins
was tested using yeast co-transformation methods. AD-CsRPS21
was co-transformed with BD vectors of P4.9, RNA1P6, RNA2P6,
HSP70h, P9, P26, CP, CPm, and P59, and plated on SD/–Leu/–
Trp/–His/–Ade/Aba/X-α-gal plates for selection. In addition to
P22, interactions with CsRPS21 occurred with P4.9, RNA2P6,
and P59 (Figure 2).

The Conserved NLS Domain of CsRPS21
Is Indispensable for Nuclear Localization
and P22-CsRPS21 Interaction
Since the interaction was observed mainly in the nucleus, we
identified the nuclear localization domain of CsRPS21 and tested

FIGURE 1 | Identification of the interaction between P22 and CsRPS21. (A) Growth of Y2HGold yeast cells co-transformed with ADCsRPS21 and BDP22 on
low-(SD/–Trp/–Leu) and high-(SD/–Trp/–Leu/–His/–Ade/Aba/X-α-gal) stringency selection media. ADT + BDP53 and ADT + BDLam served as positive and negative
controls, respectively. (B) Visualization of the interaction between P22 and CsRPS21 in N. benthamiana epidermal cells using BiFC. P22 fused with the N-terminal
portion of YFP (P22-nYFP) was transiently co-expressed with CsRPS21 fused with the C-terminal portion of YFP (CsRPS21-cYFP). Bar represents 10 µm. Photos
were taken at 2 dpi using a Zeiss LSM710 laser scanning microscope. (C) Localization of CsRPS21 in N. benthamiana epidermal cells. YFP-tagged CsRPS21
(YFP-CsRPS21) was expressed in planta. Confocal images were taken at 2 dpi. Nuclear localization protein DAB-CFP was used as a nucleus indicator. Bar
represents 10 µm. (D) Localization of P22 in N. benthamiana epidermal cells. YFP-tagged P22 (YFP-P22) was expressed in planta. Confocal images were taken at
2 dpi. Bar represents 10 µm.
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FIGURE 2 | Identification of the interaction between CsRPS21 and CCYV proteins (A,B) ADCsRPS21 was co-transformed with CCYV proteins, as P4.9, P1-6, P2-6,
P9, P26, CP, CPm, P59, and HSP70, into Y2HGold yeast cells and plated on a low-(SD/–Trp/–Leu) and high-(SD/–Trp/–Leu/–His/–Ade/Aba/X-α-gal) stringency
selection media. ADT + BDP53 and ADT + BDLam served as positive and negative controls, respectively.

its role in the interaction. Using the cNLS mapper program1,
the nuclear localization signal was predicted to be located
between amino acids 113 and 139 (Figure 3A). Using the
SMART protein prediction tool, the conserved domain of RP
S21 was identified at amino acids 91–145. Next, we constructed
the CsRPS21 deletion mutants YFP-CsRPS2191−145 (RP5), YFP-
CsRPS211−127 (RP4), and YFP-CsRPS21128−183 (RP3) and
observed fluorescence after agroinfiltration into leaves. The
nuclear localization signal was found to be located between amino
acids 91 and 145 (Figure 3B). We tested the necessity for the
localization signal in the interaction of P22 and CsRPS21 using
a series of CsRPS21 deletion constructs (Figure 3C, left). Yeast

1http://nls-mapper.iab.keio.ac.jp/

cotransformation results showed that AD-CsRPS211−145 (RP2)
interacted with BDP22, indicating that the N-terminal 145 amino
acids containing the nuclear localization signal are necessary
for the interaction (Figure 3C, right). Using BiFC analysis, YFP
fluorescence was detected in leaves agroinfiltrated with P22-
nYFP and CsRPS211−145-cYFP (RP2) at 2 dpi (Figure 3D and
Supplementary Figure 4).

CsRPS21 Negatively Regulates P22
Silencing Suppressor Activity
Previously, P22 was identified as a weak silencing suppressor
(Chen et al., 2019; Orfanidou et al., 2019). To determine whether
CsRPS21 expression affects the P22 silencing suppressor activity,
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FIGURE 3 | Nuclear localization signal determination and its involvement in the interaction. (A) The full amino acid sequence of CsRPS21. Amino acids constituting
the nuclear localization signal predicted using cNLS mapper are shown in red. The conserved ribosomal protein S21 domain predicted using the SMART protein
prediction tool is underlined. (B) Three YFP-tagged deletion mutants of CsRPS21 (YFP-CsRPS211−127, YFP-CsRPS21128−183, and YFP-CsRPS2191−145) were
transiently expressed in N. benthamiana leaves. Bar represents 20 µm. Photos were taken at 2 dpi using a Zeiss LSM710 laser scanning microscope. (C) Left panel:
schematic representation of the CsRPS21 deletion mutants. Six CsPRS21 deletion mutants were used: RP1 (residues 91–183), RP2 (residues 1–145), RP3 (residues
128–183), RP4 (residues 1–127), RP5 (residues 91–145), and RP6 (residues 1–90). Right panel: Interaction between BDP22 and the CsRPS21 deletion mutants.
Growth of Y2HGold yeast cells co-transformed with BDP22 and ADRP1, ADRP2, ADRP3, ADRP4, ADRP5, or ADRP6 on high-stringency selection medium
(SD/–Leu/–Trp/–His/–Ade/Aba/X-α-gal). (D) Interaction between P22 and CsRPS211−145 (RP2) in N. benthamiana epidermal cells using BiFC. P22 fused with the
N-terminal portion of YFP (P22-nYFP) was transiently co-expressed with CsRPS211−145 fused with the C-terminal portion of YFP (CsRPS211−145-cYFP). Bar
represents 20 µm. Photos were taken at 3 dpi using a Zeiss LSM710 laser scanning microscope.

we tested the ability of P22 to suppress RNA silencing by
ectopic expression of GFP together with CsRPS21 or GUS in N.
benthamiana and GFP-transgenic N. benthamiana plants (16c)
leaves. In these experiments, silencing of the GFP transgene was
initiated by infiltration with an Agrobacterium culture carrying a
second copy of the GFP gene. As shown in Figure 4A, at 5 dpi, the
amount of GFP fluorescence was observable in leaf patches co-
infiltrated with plasmids expressing GFP+ P22+ pGDMyc-GUS
and GFP+ P19+ pGDMyc-GUS (as the positive control). These

results demonstrated that P22 was able to suppress silencing
of the GFP gene in these infiltrated patches. In contrast, GFP
fluorescence was much lower in a patch co-infiltrated with GFP
and P22 plus pGDMyc-CsRPS21, indicating that the pGDMyc-
CsRPS21 could prevent P22 from suppressing silencing of the
GFP gene. Western blotting and northern blotting were done to
confirm that the levels of apparent GFP fluorescence correctly
reflected the level of GFP protein and mRNA accumulation in
the various patches (Figures 4B,C).
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FIGURE 4 | CsRPS21 negatively regulates P22 silencing suppressor activity (A–C) Silencing suppression ability of P22 was tested in 16c N. benthamiana plants,
with transient co-expression of GFP and CsRPS21 or GUS (as a control protein). GFP fluorescence was revealed by UV illumination at 5 dpi with Agrobacterium
constructs. Western blotting (B) and northern blotting (C) were used to detect the accumulation of GFP. (D) N. benthamiana leaves were infiltrated with a mixture of
three Agrobacterium cultures carrying pGDGFP, pGDFlag-P22, pGDMyc-GUS, or pGDMyc-CsRPS21 and photographed at 3 dpi. Images of GFP fluorescence from
agroinfiltrated leaves were taken under a Nikon ECLIPSE Ti-S fluorescence microscope. Bar represents 200 µm. (E) Western blotting analysis of protein extracted
from the N. benthamiana leaves indicated above. GFP, CsRPS21 and P22 expression were confirmed using anti-GFP, anti-Myc and anti-Flag antibody. Coomassie
Brilliant Blue (CBB) staining of the large subunit of Rubisco served as a loading control (Supplementary Figure 5).

Using fluorescence microscopy, strong GFP fluorescence was
observed in N. benthamiana leaves agroinfiltrated with pGDGFP
and pGDFLag-P22 together with pGDMyc-GUS (as control
treatment). When co-expression of pGDGFP + pGDFLag-
P22 and pGDMyc-CsRPS21, the fluorescence was weaker than
control indicating that CsRPS21 expression inhibits P22 silencing
suppressor activity (Figure 4D). The fluorescence intensity per
visual field of the GUS control was significantly higher than
that with the pGDMyc-CsRPS21 treatment (Supplementary
Figure 5). Western blotting showed that the expression
of GFP was consistent with previous findings. We also
detected the expression of pGDMyc-CsRPS21 and pGDFlag-
P22. CsPRS21 inhibited the P22 expression (Figure 4E). Based
on these results we speculate that CsRPS21 interfere with
P22 expression to attenuate the RNA silencing suppression
function of P22.

CsRPS21 Inhibits CCYV Accumulation in
N. benthamiana Protoplasts
To investigate the role of CsRPS21 in CCYV replication,
protoplasts were isolated from N. benthamiana leaves
agroinfiltrated with YFP-CsRPS21 and transfected in vitro

with CCYV RNA1 and RNA2 transcripts. At 1 dpi, the
total RNA of the transfected protoplasts was extracted and
analyzed by northern blotting and RT-qPCR. The results
showed that, with the increased CsRPS21 expression, CCYV
RNA1 accumulation was significantly decreased in YFP-
CsRPS21-treated protoplasts compared with the YFP control
(Figure 5), indicating the negative regulation of CCYV
accumulation by CsRPS21.

DISCUSSION

RPs are involved in processes related to the cell cycle, apoptosis,
development, oncogenesis, and control of rDNA transcription,
in addition to their RNA chaperone activity (Jeon et al., 2008;
Lindstrom, 2009; Kim et al., 2014). In Arabidopsis thaliana,
knockout of plastid RP S21 impaired the photosynthesis activity
and sugar response, possibly via reduced protein synthesis
(Morita-Yamamuro et al., 2004). Besides, plastid RPS21 plays
role in the response to C/N balance (Dong et al., 2020). In
microorganisms, S21 is involved in stress resistance, growth, and
motility (Akanuma et al., 2012; Metselaar et al., 2015; Koomen
et al., 2018). Different RPs like RPL10, RPL13, RPL18, RPL24, and
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FIGURE 5 | Transient expression of CsRPS21 in N. benthamiana protoplasts inhibited CCYV accumulation. (A,B) Accumulation of CCYV RNA1 of transfected
protoplasts was measured using RT-qPCR and northern blotting with the probe of CCYV RNA1 at 24 hpi. (C) Protoplasts isolated from YFP-CsRPS21 and YFP
agroinfiltrated N. benthamiana leaves were transfected with CCYV RNA1 and RNA2. Accumulation of CsRPS21 was measured using RT-qPCR at 24 hpi. Data were
pooled across experiments and statistically analyzed using t-tests. Bars represents the mean ± standard deviation (SD). Single and double asterisks indicate
significant differences at ∗p < 0.05 and ∗∗p < 0.01, respectively.

RPS6 are involved in viral infections of plants (Bureau et al., 2004;
Rocha et al., 2008; Hafren et al., 2013; Zorzatto et al., 2015; Chen
et al., 2016; Ivanov et al., 2016; Rajamaki et al., 2017; Li et al.,
2018). The function of RP S21 during viral infections of plants is
unknown. In our study we found that CsRPS21 interacted with
CCYV P22 and negatively regulated CCYV P22 accumulaiton
and silencing suppressor activity, and early viral accumulaiton.
CCYV P22, a weak silencing suppressor, is able to suppress local
RNA silencing induced by dsRNA (Orfanidou et al., 2019). Using
in vitro RNA binding analysis P22 is able to bind to ss and
ds long RNAs, in addition to ss and ds small interfering (si)
RNA molecules in vitro (Salavert et al., 2020). A previous study
reported that CCYV P22 interacts with SKP1 and F-box like
domain of CCYV P22 is essential for the RNA silencing activity
(Chen et al., 2019). In this study we found that the interaction
down-regulated the CCYV P22 accumulation, and interfered
with the silencing suppressor activity of CCYV P22 suggesting
that various pathways are possibly involved in the process of
CCYV P22 silencing suppression and host defense response.

ToCV P22 was found to be dispensable for viral replication
(Landeo-Rios et al., 2016), so the effect on replication is likely
due to interaction with viral proteins other than P22. Here, we
used protoplasts to uncover the possible role of CsRPS21 in the
early infection of CCYV (Figure 5). In a viral RNA transfection
experiment, the earliest steps in virus life cycles, such as genomic
RNA replication and translation, can be monitored because
the virus propagation is restricted within single protoplasts
(Zhu et al., 2014). Using northern blotting to detect CCYV
RNA accumulaiton we found that overexpression of RPS21
in N. benthamiana protoplasts caused slight down-regulation
of rRNAs indicating that RPS21 was negatively involved in
regulating rDNA transcription. As previously reported RPS6 was
involved in down-regulation of rRNA in Arabidospsis protoplast
(Kim et al., 2014).

CsRPS21 shares a high identity with chloroplast RPS21
from cucurbits, although we found that cucumber RPS21
localized in both the nuclei and chloroplasts of N. benthamiana
epidermal cells. The localization of other cucurbit RPS21s in
N. benthamiana is unknown. In Arabidopsis thaliana, cytosolic
RPS21 is localized in the cytosol and nuclear, and plastid RPS21 is
localized in the chloroplast (Wang et al., 2018; Dong et al., 2020).

Analysis combining the Nuclear Localization and SMART
Protein prediction tools indicated that the domains for
interaction and nuclear localization overlapped (Figure 3),
suggesting the importance of nuclear localization during the
interaction. The full length of the domain is important for nuclear
localization since both deletion mutants with half coverage of the
domain were localized in both the cytoplasm and nuclei.

According to our result CsRPS21 interacts with three other
CCYV encoded proteins besides P22 (Figure 2). It is possible
that CsPRS21 plays multifunctional roles during viral infection
through regulating different viral proteins at various infection
stages. Currently, the function of P4.9, P2-6, and P59 was
limitedly studied, the interaction will give a hint on the further
study of P4.9, P2-6, and P59.

We identified a cucumber ribosomal-like protein, termed
CsRPS21, that interacts with CCYV P22. A conserved CsRPS21
domain was identified and found to be indispensable for
its nuclear localization and interaction with P22. Transient
expression of CsRPS21 in N. benthamiana leaves interfered
with the P22 accumulation to inhibit P22 silencing suppressor
activity. In addition, CsRPS21 expression in N. benthamiana
protoplasts inhibited CCYV accumulaiton. These results suggest
that CsRPS21 negatively regulates CCYV infection, possibly
by inhibition of P22 accumulation and silencing suppressor
activity, and increase our knowledge of the function of RPs
during viral infection. RPS21 probably represents one of the
translation machinery that is usurped by CCYV P22 protein.
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It would be interesting to see if other RPs are involved in the
recognition of P22.
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Grapevine leafroll-associated virus 3 (GLRaV-3), an economically significant pathogen of
grapevines, is transmitted by Pseudococcus calceolariae, a mealybug commonly found
in New Zealand vineyards. To help inform alternative GLRaV-3 control strategies, this
study evaluated the three-way interaction between the mealybug, its plant host and
the virus. The retention and transmission of GLRaV-3 by P. calceolariae after access
to non-Vitis host plants (and a non-GLRaV-3 host) White clover (Trifolium repens L.
cv. “Grasslands Huia white clover”), Crimson clover (T. incarnatum), and Nicotiana
benthamiana (an alternative GLRaV-3 host) was investigated. For all experiments,
P. calceolariae first instars with a 4 or 6 days acquisition access period on GLRaV-3-
positive grapevine leaves were used. GLRaV-3 was detected in mealybugs up to 16
days on non-Vitis plant hosts but not after 20 days. GLRaV-3 was retained by second
instars (n = 8/45) and exuviae (molted skin, n = 6/6) following a 4 days acquisition
period on infected grapevines leaves and an 11 days feeding on non-Vitis plant hosts.
Furthermore, GLRaV-3 was transmitted to grapevine (40−60%) by P. calceolariae
second instars after access to white clover for up to 11 days; 90% transmission to
grapevine was achieved when no alternative host feeding was provided. The 16 days
retention period is the longest observed in mealybug vectoring of GLRaV-3. The results
suggest that an alternative strategy of using ground-cover plants as a disrupter of virus
transmission may be effective if mealybugs settle and continue to feed on them for 20
or more days.

Keywords: Pseudococcus calceolariae, grapevine leafroll-associated virus 3, alternative host, retention,
transmission, clover, Trifolium repens

INTRODUCTION

Grapevine leafroll-associated virus 3 (GLRaV-3) is the main and most widespread etiological agent
of grapevine leafroll disease (GLD) worldwide (Maree et al., 2013). GLD negatively affects berry
yield and qualitative characteristics like soluble solids, titratable acidity, and anthocyanins (Over de
Linden and Chamberlain, 1970; Cabaleiro et al., 1999; Charles et al., 2006; Lee and Martin, 2009;
Lee et al., 2009; Vega et al., 2011; Martelli, 2014; Montero et al., 2016). GLRaV-3 is transmitted by
propagation and grafting of infected grapevine material and by insect vectors, namely mealybugs,
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soft scale and scale insects (Maree et al., 2013). It has never been
demonstrated that GLRaV-3 is transmitted mechanically.

Mealybugs (Hemiptera: Pseudococcidae) are commonly
found in New Zealand vineyards. Two cosmopolitan species
are especially problematic because they transmit GLRaV-3:
Pseudococcus calceolariae and P. longispinus (Charles, 1993).

Pseudococcus calceolariae and P. longispinus are both
polyphagous, feeding on numerous plant species throughout
New Zealand, including horticultural crops such as apple
and pear, and ground-cover species such as white clover, red
clover, and doves foot (Charles, 1993; Charles et al., 2006).
New Zealand’s cool climate status means P. calceolariae and
P. longispinus have two to three generations per year, but can
reach a fourth generation under favorable warmer conditions
(Charles et al., 2006). Pseudococcus calceolariae colonizes all parts
of the grapevine, including the roots. Petersen and Charles (1997)
demonstrated that P. calceolariae first instars transmit GLRaV-3
efficiently but little is known about the length of time required
for virus to be acquired and retained by this vector species.

In New Zealand, mealybugs are the key contributor of
GLRaV-3 spread from infected grapevines to adjacent healthy
vines in vineyards (Bell et al., 2018). Consequently, active
control of mealybug populations is recognized as an integral
component of a successful GLRaV-3 management program (Bell
et al., 2018). Knowledge of virus acquisition, retention, and
transmission is fundamental to understanding the interaction
between plant viruses and the insect vectors in the context of
a range of mealybug plant hosts. Specifically, understanding
transmission biology and the impact of non-Vitis food sources
for mealybug could be important for the further development
and enhancement of GLRaV-3 management responses (Almeida
et al., 2013; Krüger et al., 2015).

Mealybug numbers are generally maintained at low
population densities in New Zealand vineyards through
spring applications of insecticides compatible with integrated
pest management (IPM; e.g., buprofezin). This response
helps facilitate biological control later in the growing season
(Charles et al., 2010). Thus, IPM-compatible chemistry and
biological control are believed to greatly minimize the risk of
vector-mediated transmission of GLRaV-3 (Bell et al., 2018). In
addition, grapevines identified as GLRaV-3 infected are rogued
(removed) to reduce inoculum in target areas, with the missing
vines replaced with those sourced from a nursery certified
by the wine sector to supply healthy vines (Bell et al., 2018).
However, within New Zealand’s Hawke’s Bay viticulture region,
two organically managed (minimal application of pesticides)
vineyards presented high initial GLD incidence but low GLRaV-3
transmission despite apparent high mealybug numbers observed
on the ground cover plants (Bell et al., 2018). Notably, mealybug
populations on grapevines in both vineyards were low (<3
mealybugs per 100 vine leaves inspected) for at least 6 years (Bell
et al., 2018). In other words, there was no evidence of large-scale
P. calceolariae migration from groundcover to grapevine in
either vineyard, an observation supported by a substantially
reduced influence of GLRaV-3 over time. In 2009, GLRaV-3
incidence was quantified at 10% in one organically managed
vineyard planted in mature Merlot vines, and at 16% in the

second planted in mature Cabernet Sauvignon. Once the initial
infected vines in each vineyard were removed, annual incidence
was consistently less than 1% from years 2 to 6, when monitoring
concluded (Bell et al., 2018). Therefore, high mealybug numbers
within vineyards may not always result in GLRaV-3 transmission
to grapevine. This may be associated with mealybug feeding on
ground-cover plants rather than grapevines.

Preliminary retention and transmission experiments were
carried out in 2015, with retention experiments repeated in 2019–
2020 (2020 Retention experiments). The aims of this study were
to determine (i) the GLRaV-3 retention period in viruliferous
first instar P. calceolariae after feeding on non-Vitis plant hosts,
(ii) whether GLRaV-3 is retained in second instar P. calceolariae
and exuviae molted by the first instar P. calceolariae after
feeding on non-Vitis plant hosts, and (iii) whether GLRaV-3 is
transmissible by viruliferous first and second instar P. calceolariae
after feeding on non-Vitis plant hosts. White clover (Trifolium
repens L. cv. Grasslands Huia white clover), Crimson clover
(Trifolium incarnatum) and Nicotiana benthamiana were used
as non-Vitis plant hosts, of which only N. benthamiana has been
demonstrated as an alternative host for GLRaV-3.

MATERIALS AND METHODS

Plant Material
For the retention and transmission experiments in 2015, GLRaV-
3-positive leaf material was obtained from V. vinifera cv. Pinot
noir and V. vinifera cv. Sauvignon blanc grapevines infected
with GLRaV-3 group I maintained in controlled growth rooms
(23◦C with a 16 h light and 8 h dark cycle). For GLRaV-
3-negative plant material, Cabernet franc were sourced from
a New Zealand grapevine collection (Lincoln, New Zealand;
New Zealand Winegrowers) and Merlot from Riversun Nursery
(Gisborne, New Zealand). The virus status of all plants was
confirmed by enzyme-linked immunosorbent assay (ELISA) or
immunocapture RT-qPCR (Blouin et al., 2017). White clover
(Trifolium repens L. cv. Grasslands Huia White clover) plants
were grown from seed and were used as the non-Vitis host plant.

For 2020 retention experiments, GLRaV-3 was obtained
from Pinot noir grapevines infected with at least two GLRaV-
3 genetic variants representative of phylogenetic groups I and
VI. White clover (Trifolium repens L. cv. Grasslands Huia
white clover), Crimson clover (Trifolium incarnatum) and
Nicotiana benthamiana plants were grown from seed and used
as supplied to P. calceolariae. These the non-Vitis host plants
were maintained within a glasshouse (at average 24◦C with 16 h
light and 8 h dark cycle) within separate, species-specific units
with adequate space between plants. To ensure each donor leaf
was infected with GLRaV-3 and sufficient GLRaV-3 was acquired
by mealybugs, the petiole from each grapevine donor leaf was
collected and tested by RT-qPCR (McGreal et al., 2019).

Pseudococcus calceolariae Colonies
Pseudococcus calceolariae mealybugs were reared and maintained
at The New Zealand Institute for Plant and Food Research
(PFR), Auckland campus, within vented, plastic containers
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held under controlled laboratory conditions (22◦C with 16 h
light and 8 h dark cycle). The colonies were sustained on
seed potatoes over multiple generations without exposure to
grapevines or GLRaV-3.

GLRaV-3 Retention by Pseudococcus
calceolariae
Retention experiments were performed in both 2015 and 2020 as
detailed below and summarized in Table 1.

2015 Retention Experiment (Days 1–4 on Grapevine
or a Non-Vitis Host)
Pseudococcus calceolariae eggs were collected from the colony
and placed on a moist, black filter paper for emergence of
first instars. Less than 24 h old nymphs were transferred
to excised GLRaV-3-positive Cabernet franc grapevine leaves
for an acquisition access period (AAP) or to GLRaV-3-free
grapevine leaves for a mock AAP. Excised leaves were kept in
good condition within vertically-orientated Petri dishes with the
petiole extending through a fitted foam plug placed through
the base of both lid and dish into a tube of water. After a
4 days AAP, P. calceolariae nymphs were transferred with a
paint brush to White clover (Virus/White clover), GLRaV-3-
free grapevine leaves (Virus/Grapevine), or maintained on the
virus-infected leaves as a positive control (Virus). After a 4
days mock AAP, nymphs were transferred to White clover (No
virus/White clover) or maintained on the uninfected grapevine
leaves as a negative control (No virus). For all five treatments
(Virus/White clover, No virus/White clover, Virus/Grapevine,
Virus, and No virus), first instar P. calceolariae were collected
after 1, 2, 3, and 4 days feeding on grapevine or the non-
Vitis host. To minimize disruption to mealybug feeding they
were collected from separate grapevine or White clover leaves
each day. Second instar and exuviae were collected from
four treatments (Virus/White clover, No virus/White clover,
Virus, and No virus). For the Virus treatment, late first instar

mealybugs close to molt (AAP 10–12 days) were transferred
onto moist filter paper in a Petri dish to ensure that no
nascent second instar mealybugs had an opportunity to feed
on GLRaV-3-positive leaves. A maximum of 10 first instar
mealybugs were transferred into each Petri dish, thereafter
the plates were checked daily for exuviae and second instar
mealybugs. The second instar mealybugs with recently removed
exuviae were identified based on their shiny brown skin and
the absence of the wooly appearance characteristic of first
instars. For treatments Virus/White clover, No virus/White
clover or No virus, second instar and exuviae were sampled
directly from White clover or virus-free grapevine leaves,
respectively. GLRaV-3 status in mealybugs and exuviae was
detected by one-step RT-qPCR as described previously (McGreal
et al., 2019). The GLRaV-3 retention assay was repeated
in the same year.

2020 Retention Experiment (Days1–40 on a Non-Vitis
Host)
Pseudococcus calceolariae egg masses with emerging nymphs
were added to an excised GLRaV-3 donor grapevine leaf (∼400
eggs per grapevine leaf). Each grapevine leaf was maintained
in a Petri dish as described above. After 24 h the unhatched
eggs were removed, leaving the newly emerged nymphs on the
leaf surface (∼300 mealybug nymphs/leaf). After a 6 days AAP
on virus donor grapevine leaves (two additional days to the
2015 experiment in an attempt to increase the percentage of
viruliferous individuals) viruliferous mealybugs were transferred
most delicately onto recipient plants by cutting donor grapevine
leaf pieces harboring ∼40 mealybugs (per non-Vitis host plant)
and placing the mealybug-loaded leaf piece(s) onto each non-
Vitis host plant. The grapevine leaf pieces were removed once
they were mealybug free. Mealybugs remained on each non-
Vitis host for up to 40 days, with harvesting of subsets at 5,
10, 16, 20, and 40 days. Once the mealybug collection was
completed, the remaining mealybugs were killed by spraying

TABLE 1 | Summary of retention experiments performed in 2015 and 2020.

Treatment name Year (number of
experimental
replicates)

Acquisition access period (AAP) or
mock (mealybug age)

Days post initial acquisition on grapevine or non-Vitis host
(mealybug age)

Virus 2015 (×2) GLRaV-3 positive grapevine (1–4 days old) Days 1–4 on original GLRaV-3 positive grapevine (5–8 days olda,b ′ )

Virus/White clover 2015 (×2) GLRaV-3 positive grapevine (1–4 days old) Days 1–4 on White clover (5–8 days olda,b)

Virus/Grapevine 2015 (×2) GLRaV-3 positive grapevine (1–4 days old) Days 1–4 on GLRaV-3 negative grapevine (5–8 days olda)

No Virus 2015 (×2) GLRaV-3 negative grapevine (1–4 days old) Days 1–4 on GLRaV-3 negative grapevine (5–8 days olda,b)

No Virus/White clover 2015 (×2) GLRaV-3 negative grapevine (1–4 days old) White clover (5–8 days olda,b)

Virus/White clover 2020 (×1) GLRaV-3 positive grapevine (1–6 days old) Days 1–40 on White clover (7–46 days oldc)

Virus/Crimson clover 2020 (×1) GLRaV-3 positive grapevine (1–6 days old) Days 1–40 on Crimson clover (7–46 days oldc ′ )

Virus/Nicotiana benthamiana 2020 (×1) GLRaV-3 positive grapevine (1–6 days old) Days 1–16 on Nicotiana benthamiana (7–22 days oldc ′ ′ )

aFirst instar mealybugs collected after 1, 2, 3, and 4 days after feeding on this plant host then tested for GLRaV-3.
bSecond instar and excuviae collected directly from this treatment then tested for GLRaV-3.
b ′Second instar and excuviae collected from this treatment following transfer of first instars at AAP 10–12 days to Petri dish, then tested for GLRaV-3.
cFirst instar mealybugs collected after 5, 10, 15, 20, and 40 days after feeding on this plant host then tested for GLRaV-3.
c ′First instar mealybugs collected after 5, 10, 15, and 20 days after feeding on this plant host then tested for GLRaV-3, as the plants were sprayed at day 35 to treat a
pest infestation.
c ′ ′First instar mealybugs collected after 5 and 10 days after feeding on this plant host then tested for GLRaV-3, as no mealybugs were present on the plant thereafter.
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the plants with insecticide (a mixture of Movento R©, Avid R©, and
Confidor R© with Partner R©).

To test GLRaV-3 retention in mealybugs after feeding on
clover or N. benthamiana, five mealybugs from each non-
Vitis host plant per time point were collected, with individual
mealybugs placed into Eppendorf tubes. Mealybug males in
cocoons were also included in the sample collection. No
mealybugs were present on N. benthamiana plants after 16 days.
At 35 days post-inoculation, Crimson clover plants were treated
with Confidor R© for an infestation of aphids, mites and whiteflies
that killed 14 plants. After the final mealybug sample collection
on day 40, all the plants were treated with a mixture of Movento R©,
Avid R©, and Confidor R© with Partner R©. At Day 0 (after 6 days
AAP), three mealybugs from each donor leaf were collected into
individual Eppendorf tubes. The individual donor petioles and
the individual mealybug samples were tested for GLRaV-3 as
described previously (McGreal et al., 2019). A negative mealybug
control (not fed on GLRaV-3 infected host plant) and a buffer
only control was included in each batch (10–22 mealybugs) of
RNA extractions and RT-qPCR to ensure that no false positives
were recorded within the 1,288 mealybug dataset. The GLRaV-3
status in mealybugs on the non-Vitis plant for 5, 10, 16, 20, and
40 days was assessed by RT-qPCR (McGreal et al., 2019).

GLRaV-3 Transmission by Pseudococcus
calceolariae
After a 4 days AAP on excised GLRaV-3-positive grapevine
leaves, P. calceolariae nymphs were transferred to White clover
leaves (as performed for the 2015 retention experiments).
Following either a 5 or 11 days non-Vitis plant feeding on White
clover, P. calceolariae nymphs were inoculated on GLRaV-3-free
Merlot grapevine plants, as first (Treatment 1) or second instars
(Treatment 2), respectively. As a positive control, P. calceolariae
nymphs were maintained on GLRaV-3-positive leaves for a total
of 10 or 16 days AAP, and thereafter transferred to GLRaV-
3-free Merlot grapevine plants as either first (Treatment 3) or
second instars (Treatment 4), respectively. For the inoculation
of GLRaV-3-free grapevine plants, large healthy leaves, two or
three nodes above the grapevine graft union, were selected.
White clover or GLRaV-3 positive leaves with 25–50 mealybugs
were secured to the underside of the grapevine leaf with Blu-
Tack (Bostik). Mealybugs were maintained for a 7–10 days
inoculation access period (IAP) on GLRaV-3-free grapevines,
thereafter plants were sprayed with Movento R©. Plants were
physically separated during the IAP. Grapevines were pruned
and maintained in the glasshouse for 5 months and were
sprayed with insecticides once a month. Previous research by
Cohen et al. (2004) showed that initial GLRaV-3 spread after
transmission was basipetal from the graft point. Therefore,
pruning of growth more than three nodes above the marked
leaf (on which the mealybugs were inoculated), should have had
a minimal effect on distribution of the transmitted GLRaV-3.
The GLRaV-3 transmission experiment was performed twice in
2015. Four (Block 2) to five months (Block 1) after GLRaV-
3 transmission onto previously GLRaV-3-negative grapevine
plants, each inoculated leaf to which mealybugs had been

transferred and basipetal cane sections were sampled and tested
for GLRaV-3 as described previously (McGreal et al., 2019). As
a negative control, GLRaV-3-free Merlot grapevine plants were
maintained in the glasshouse until all plants were tested for
GLRaV-3 (Prator et al., 2017).

Statistical Analysis
To provide accuracy when expected values are small, Fisher’s
Exact Test was used to analyze the proportion of GLRaV-3
positive mealybugs to the total number of mealybugs tested for
the different feeding treatments and to compare the proportion
of GLRaV-3 positive grapevine to the total number of grapevines.
To enable comparison between treatments where mealybugs
were fed on GLRaV-3 positive grapevine leaves (which was
skewed when compared with negative controls where mealybugs
were fed on GLRaV-3-free grapevine leaves), the 2015 retention
dataset was blocked based on expected positive samples (Virus,
Virus/White clover and Virus/Grapevine) and expected negative
samples (No virus and No virus/White clover). The following
variables were compared: GLRaV-3 status, days feeding on
alternate host (grapevine or non-Vitis), treatment, source plant
and alternate host. The false discovery rate correction (fdr) was
applied when performing multiple post-hoc pairwise comparisons
(Benjamini and Hochberg, 1995). Analyses were implemented in
R version 3.6.1 (Team, 2015).

RESULTS

GLRaV-3 Retention in Pseudococcus
calceolariae
2015 Retention Experiments: Days 1–4 on Grapevine
or a Non-Vitis Host
Samples positive for GLRaV-3 generated Ct values that ranged
between 24 and 38. The percentage of single, viruliferous
mealybugs was 7, 15, 81, and 84% after 1, 2, 3, and 4 days
post initial AAP, respectively (Figure 1A). Based on pairwise
comparison using the Fisher exact test and fdr correction, there
was evidence of a statistically significant difference between Day
1 (7%), and Day 3 (81%) and Day 4 (84%) (p < 0.001) and
between Day 2 (15%) and both Days 3 and 4 (p < 0.001). When
feeding on a non-Vitis host plant (Virus/White clover) or on
GLRaV-3-free grapevine leaves (Virus/Grapevine), P. calceolariae
nymphs retained GLRaV-3 for at least 4 days (Figure 1A).
For the Virus/White clover treatment, the percentage of
viruliferous mealybugs ranged over time from 18 to 31%.
Over time for the Virus/Grapevine treatment, the percentage
of viruliferous mealybugs ranged from 5 to 30%. For both
Virus/White clover and Virus/Grapevine treatments, there was
no evidence of statistically significant difference in the percentage
of viruliferous mealybugs (p > 0.05). The percentages of
viruliferous mealybugs varied for each of the GLRaV-3 retention
treatments (Virus/White clover, Virus/Grapevine and Virus) on
Days 3 and 4 post initial AAP (Figure 1A). At Day 3, there
was evidence of a difference between the Virus (81%) and both
Virus/White clover (31%) and Virus/Grapevine (10%) treatments

Frontiers in Microbiology | www.frontiersin.org 4 May 2021 | Volume 12 | Article 663948159

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-663948 May 6, 2021 Time: 17:48 # 5

McGreal et al. Retention and Transmission of GLRaV-3 by P. calceolariae

FIGURE 1 | Retention of grapevine leafroll-associated virus 3 (GLRaV-3) in Pseudococcus calceolariae after feeding on non-Vitis plant host based on results from
experiments conducted in (A) 2015 and (B) 2020. (A) Day 0 (Virus acquisition): First instar nymphs had a 4 days acquisition access period (AAP) on GLRaV-3
positive grapevine leaves, and a sub-sample were tested for GLRaV-3. Days 1–4: Nymphs were transferred to and allowed a 1–4 days access period on White
clover (Trifolium repens L.) (Virus/White Clover) or GLRaV-3 negative grapevines (Virus/Grapevine). As a positive control, mealybugs were left on GLRaV-3 positive
grapevine leaves for the duration of the experiment (Virus). Two negative controls were: mealybugs with a 4 days AAP on GLRaV-3 negative grapevine leaves, and
then transferred on to White clover (No virus/White Clover) and mealybugs left on GLRaV-3 negative grapevine leaves for the duration of the experiment (No virus).
Mealybugs were sampled each day and tested for GLRaV-3. (B) Day 0: First instar nymphs had a 6 days AAP on GLRaV-3 positive grapevine leaves and a
sub-sample was tested for GLRaV-3 (Virus). Days 5–40: Nymphs were transferred to allow a 5–40 days access period on Crimson clover (T. incarnatum), White
clover or Nicotiana benthamiana. Mealybugs were sampled from White clover (Virus/White clover), Crimson clover (Virus/Crimson clover), and N. benthamiana
(Virus/N benth) in ∼5 days increments and tested for GLRaV-3. Sample numbers (n) are included above each bar.
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(p = 0.028 and <0.001, respectively). Similarly, at Day 4, there
was evidence of a difference between the Virus (85%) and both
Virus/White clover (23%) and Virus/Grapevine (30%) treatments
(p < 0.001). All first instar mealybugs sampled from negative
control treatments for all blocks (No virus and No virus/White
clover treatments) tested negative for GLRaV-3. GLRaV-3 was
successfully detected in 17% of second instar P. calceolariae
from the Virus treatment. One second instar P. calceolariae,
which fed on GLRaV-3-free grapevine leaves, tested positive for
GLRaV-3 (No virus, n = 22), suggesting contamination during
the virus retention assay or total RNA extraction procedure.
GLRaV-3 was not detected in second instar P. calceolariae from
the No virus/White clover and Virus/White clover treatments.
Composite exuviae samples (10 exuviae per tube) were tested
for GLRaV-3. GLRaV-3 was successfully detected in 100% of
exuviae samples from the Virus treatment. GLRaV-3 was not
detected in exuviae from the No virus, No virus/White clover, and
Virus/White clover treatments.

2020 Retention Experiments: Days 1–40 on a
Non-Vitis Host
A total of 1,288 mealybugs was tested by RT-qPCR as single
mealybug samples comprising five time points; 5, 10, 16, 20,
and 40 days on a non-Vitis host plant. Samples positive for
GLRaV-3 generated Ct values that ranged between 31.5 and 35.
Notably, there was a gradual reduction of mealybugs collected
per time point as the experiment progressed. This result was
likely because of poor mealybug settlement on the non-Vitis
plant host (particularly for N. benthamiana) and the natural
attrition of Crimson and White clover plants and the mealybugs
they supported. The percentage of mealybugs that tested positive
for GLRaV-3 by RT-qPCR reduced gradually, with no GLRaV-
3 detected from 20 days on any of the non-Vitis host plants
(Figure 1B). The percent viruliferous mealybugs on Crimson
and White clover species was 19 and 18% at 5 days, 0 and 1%
at 10 days, and 2 and 3% at 16 days, respectively. By contrast,
at 10 and 16 days on N. benthamiana a greater percentage of
mealybugs tested GLRaV-3 positive (7 and 31%, respectively).
There was evidence of a statistically significant difference at Day
10 between Crimson clover and N. benthamiana (p < 0.01). At
Day 16, there was evidence of a statistically significant difference
between both clover species and N. benthamiana (p < 0.001).
There was no evidence of any statistically significant difference
for the N. benthamiana treatment between the different time
points (p > 0.05).

GLRaV-3 Transmission by First Instar
Pseudococcus calceolariae
GLRaV-3 was successfully transmitted by P. calceolariae nymphs
when they were transferred directly (Treatment 3) or indirectly
(via the non-Vitis host White clover, Treatment 1) to recipient
grapevines (Table 2). Greater transmission success was observed
for direct transfer of mealybugs to the recipient grapevines
compared with those that had an intermediary 5 days feeding
period on the alternative host. For the first instar positive control
(Treatment 3), GLRaV-3 was detected in 9 out of 10 grapevine
plants based on both cane and leaf samples. By contrast, GLRaV-3

was detected in only 6 out of 10 grapevine plants based on leaf and
cane samples for first instars fed intermediary on an alternate host
(Treatment 1). There was no evidence of a statistically significant
difference in transmission success between Treatments 1 and 3
(Fisher’s exact test; p = 0.23).

GLRaV-3 Transmission by Second Instar
Pseudococcus calceolariae
Overall for Block 1 and Block 2, GLRaV-3 was successfully
transmitted by second instar mealybugs when transferred directly
(Treatment 4) or indirectly (via the non-Vitis host White
clover, Treatment 2) to recipient grapevines (Table 2). Greater
transmission success was observed for the second instars directly
transferred (Treatment 4) compared to second instars fed on
the alternate host (Treatment 2). For the second instar positive
control (Treatment 4), GLRaV-3 was detected in six out of seven
grapevine plants based on leaf and cane samples. In contrast
when second instars were fed on White clover (Treatment 2),
GLRaV-3 was detected in four out of nine recipient grapevine
plants based on leaf samples, and five out of nine plants based
on cane samples. There were differences in transmission success
for second instars fed on White clover (Treatment 2) between
Block 1 and Block 2. For Block 1, GLRaV-3 was detected in one
out of four recipient grapevine plants compared to four out of
five grapevine plants for Block 2. Though there was a statistically
significant difference in transmission success between Block 1
and 2 for Treatment 2 (Fisher’s exact test; p = 0.015) there was no
evidence of a difference in transmission success between Block
1 and Block 2 for Treatment 4 (p > 0.05). GLRaV-3 was not
detected in any of the negative controls grown in parallel to the
inoculated grapevines (seven plants).

Pseudococcus calceolariae Internal
Control
A subset of RNA extracted from mealybugs was tested for
P. calceolariae elongation factor 1a gene and all samples were
positive (data not shown).

DISCUSSION

GLRaV-3 Persistence in P. calceolariae
Nymphs: GLRaV-3 Is Retained 16 Days
After Feeding on Non-Vitis Plant Hosts
but Lost by 20 Days
This study demonstrated that more than 4 days is needed to
ensure optimal virus acquisition by individual P. calceolariae
within the mealybug populations in this study. In the 2015
retention experiment, P. calceolariae nymphs were given a 4
days AAP on GLRaV-3-positive grapevine leaves and showed an
increased percentage of viruliferous mealybugs over time for the
positive control (Virus). In the 2020 retention experiment, a 6
days AAP was used and resulted in 81% acquisition of GLRaV-
3. Neither the 2015 nor the 2020 experiments resulted in a drop
in GLRaV-3 Ct values over time of mealybug feeding on the
non-Vitis host, thereby supporting a non-propagative interaction
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TABLE 2 | Transmission of grapevine leafroll-associated virus 3 (GLRaV-3) by first and second instar Pseudococcus calceolariae initially fed on GLRaV-3-infected
grapevine leaves and later transferred to White clover (Trifolium repens L., a non-Vitis host plant) prior to access to healthy grapevines for transmission of GLRaV-3
(Blocks 1 and 2).

Treatment AAPa NVFb IAPc Mealybugs
per plant

Positive
plants/Inoculated

plants

Mealybugs per plant Positive
plants/Inoculated

plants

Block 1e Block 2e Combined resultse

Leaf Cane Leaf Cane Leaf Cane

1—First instar White clover 5 days 5 days 1 week 30–37 3/5 1/5 47–52 3/5 5/5 6/10 6/10

2—Second instar White clover 5 days 11 days 1 week 31–38 0/4 1/4 50–52 4/5 4/5 4/9 5/9

3—First instar No alternate host 5 days 1 week 32–38 4/5 4/5 50 5/5 5/5 9/10 9/10

4—Second instar No alternate host 16 days 1 week 26–31 4/4 3/4 30–40 2/2d 3/3 6/6 6/7

Negative controls 0/7 0/7

aAcquisition access period.
bNon-Vitis feeding.
c Inoculation access period.
dLeaf samples were collected from two out of three grapevine plants, as the inoculated leaf on one of the plants senesced.
eLeaf and cane material collected from same plant.

between vector and virus. Variability in virus acquisition of
GLRaV-3 by mealybugs has been reported previously. Charles
et al. (2006) suggested that GLRaV-3 acquisition by mealybugs
is shorter than the typical AAP of other plant viruses, usually
occurring within 0.25–12 h. Krüger et al. (2006) reported that
P. longispinus first instar nymphs transmitted GLRaV-3 after an
AAP of 1.5 h. Mahfoudhi et al. (2009) detected GLRaV-3 in 58.3%
of first and second instar groups and 41.7% of composited adult
female P. ficus fed on GLRaV-3 positive grapevine leaves for a 7
days AAP. Sandanayaka et al. (2013) found P. longispinus adults
did not acquire GLRaV-3 in less than 24 h. Krüger et al. (2015)
found that P. ficus was able to transmit GLRaV-3 after a 15-min
AAP and a 15 min IAP, and for P. longispinus, GLRaV-3 was
transmitted after an AAP of 10 min and an IAP of 1 h.

The 2015 experiment used a single set of excised GLRaV-3-
positive Cabernet franc grapevine leaves on which all mealybugs
fed prior to distribution to White clover or GLRaV-3-free
grapevine leaves for collection at Days 1–4 (Table 1 and Figure 1).
The Virus treatment comprised those mealybugs that remained
on the original source leaves (Table 1). At Days 1 and 2 post
initial AAP the mealybugs for the Virus treatment had only a brief
time to recover from the disturbance caused by the distribution of
mealybugs from those leaves. This disturbance may have resulted
in less feeding and lower GLRaV-3 incidence at Days 1 and 2
compared with Days 3 and 4. Due to this presumed feeding
disturbance we altered the method in the 2020 experiment to a
gentler, mealybug-motivated movement from source grapevine
leaves to alternative host plant leaves.

This study demonstrated that the GLRaV-3 retention period
in P. calceolariae was at least 16 days, i.e., between when
the first instar acquired the virus and subsequently fed on
either White clover, Crimson clover or N. benthamiana. In
the 2015 experiments, GLRaV-3 was detected from 23.7% of
the mealybugs collected after 4 days of feeding on White
clover. Furthermore, GLRaV-3 was detected from 17% of second
instar citrophilus mealybugs left on GLRaV-3 positive grapevine

leaves for up to 9 days then removed to Petri dishes before
the mealybugs molted to become second instar mealybugs.
Moreover, GLRaV-3 was transmitted to grapevines even after the
inoculating mealybugs were sustained on White clover plants for
11 days. The 2020 experiments extended past 4 days access to
a non-Vitis host and GLRaV-3 was detected in P. calceolariae
after 16 days feeding on White clover or N. benthamiana,
but at 20 days and beyond, no GLRaV-3 was detected in
the test mealybugs.

Notably, the number of mealybugs available to be collected
from N. benthamiana plants dramatically declined during the
2020 experiment. This result was most likely because of the
poorer mealybug settlement on N. benthamiana compared with
the clover plants. The poor mealybug settlement and consequent
lack of feeding may have led to the slightly higher number
of GLRaV-3 positive mealybugs from N. benthamiana plants
compared with the clover as the virus would have had less
opportunity to be transmitted from the mealybug into the
solanaceous plant. GLRaV-3 detection in N. benthamiana plants
only occurs months after inoculation (Prator et al., 2017)
therefore this non-Vitis plant is unlikely to have provided
GLRaV-3 inoculum to mealybugs within the timeframe of this
retention experiment.

Reported GLRaV-3 retention time varies throughout the
literature and appears to differ with mealybug species, their
maturity, and the AAP. For example, it has been reported
that Planococcus citri nymphs lose GLRaV-3 after 1 h of being
removed from GLRaV-3 positive grapevines on which they had
been feeding for 3 days (Cabaleiro and Segura, 1997). In another
study, first and second instar nymphs of P. longispinus were found
to retain GLRaV-3 for more than 3 days, with the percentage
of viruliferous mealybugs declining over time from 81 to 17%
(Krüger et al., 2006). In addition, individual P. longispinus first
and second instar nymphs were reported to transmit GLRaV-3,
after an AAP of 5 days followed by 5 days of feeding on virus-free
plants (Douglas and Krüger, 2008). Krüger et al. (2015) observed
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GLRaV-3 retention in P. ficus for 8 days when feeding on a
non-virus host (Ficus benjamini) or GLRaV-3-free grapevine, and
for 2 days when starving. By contrast, P. longispinus retained
GLRaV-3 for at least 3 days when fed on GLRaV-3-free grapevine
or starving (Krüger et al., 2015). Several studies have also noted
that mealybug adults (which do not feed) have lower transmission
efficiency than first instar mealybugs (Petersen and Charles,
1997; Sandanayaka et al., 2013). First instar P. longispinus were
found to start feeding earlier in their life stage and feed for
longer than adults, suggesting they are more efficient vectors
(Sandanayaka et al., 2013).

Collectively, based on the acquisition and retention times
from previous studies, GLRaV-3 transmission by mealybugs has
been described as non-circulative, non-propagative, and semi-
persistent, i.e., GLRaV-3 does not breach the gut barrier of
the mealybug and is retained in the stylet or foregut prior to
transmission (Cabaleiro and Segura, 1997; Krüger et al., 2006,
2015; Cassone et al., 2014). Thus, GLRaV-3 is shed from the
maturing mealybug with the exuviae through the molt. From
the current study, the detection of GLRaV-3 in the exuviae
(n = 6/6) and the decrease in percentage viruliferous mealybugs
over time on clover or N. benthamiana and the eventual lack
of detection of GLRaV-3 in individual mealybugs by 20 days,
supports the non-circulative and non-propagative descriptors for
the transmission of GLRaV-3.

If GLRaV-3 was semi-persistent, the virus would likely be
bound to the stylet alimentary channel or the foregut epicuticle.
Cid et al. (2007) presented results that supported circulative
transmission in Pl. citri. When dissected after feeding on
GLRaV-3 infected grapevine leaves, in all cases GLRaV-3 was
detected in the salivary glands, mid-gut, hindgut, Malpighian
tubes, bacteriome, and exuviae, and in some instances, in the
reproductive apparatus, suboesophageal ganglion, and mouth
apparatus. The virus was not detected in bundles or replication
sites in Pl. citri, suggesting GLRaV-3 does not replicate inside
the insect (Cid et al., 2007). By contrast, the dissection of
P. maritimus after feeding on an in vitro solution with GLRaV-
3 revealed virus accumulation in the cibarium, a pumping
organ of the foregut located proximal to the esophagus
(Herrbach et al., 2017), but not in other body parts (Prator
and Almeida, 2020). Similarly, lettuce infectious yellows virus
(LIYV; genus Crinivirus, family Closteroviridae) is transmitted
by Bemisia tabaci (whitefly) in a non-circulative, semi-persistent
transmission and LIYV was shown to localize in the anterior of
the foregut or cibarium (Chen et al., 2011). The results from
the current study suggests GLRaV-3 or parts of the virus are
potentially moving further down the foregut of P. calceolariae
and/or are located in parts of the insect that are not removed
effectively during molt. GLRaV-3 was detected from mealybugs
after an extended amount of time on a non-Vitis host plant
(16 days) and in second instar mealybugs (n = 8/45), even
when first instars that had been feeding on GLRaV-3-positive
grapevine leaves were transferred to Petri dishes prior to molt
so that mealybugs could not feed as second instars prior to
virus testing. This raises the question of whether the detected
GLRaV-3 is present as a whole virion and is therefore still
infectious. Similar feeding/dissection studies of P. calceolariae

will validate the GLRaV-3 binding locations for this particular
mealybug species and virus, and may verify or refute the
previously reported circulative manner of the GLRaV-3-vector
interaction. These experiments could also be used to reveal
any differences between the transmission of GLRaV-3 genetic
variants (Diaz-Lara et al., 2018).

No difference in the retention of GLRaV-3 in mealybugs was
observed between the two clover species that are known to be
preferred hosts of P. calceolariae (Sandanayaka et al., 2018). Some
non-Vitis mealybug hosts, e.g., those with high lectin content,
may be capable of causing a faster decrease in mealybug GLRaV-
3 retention by blocking or competing for GLRaV-3 binding to
the cuticular surface of its insect vectors (Prator and Almeida,
2020). The effect of plant host, beyond grapevine, clover and
N. benthamiana, on GLRaV-3 retention by P. calceolariae is yet
to be determined. Given GLRaV-3 can be transmitted to at least
one non-Vitis host i.e., N. benthamiana, consideration must also
be given to the possibility of other plant species found within
vineyards being GLRaV-3 reservoirs (Prator et al., 2017).

GLRaV-3 Is Transmitted by Both First
and Second Instar P. calceolariae After
Feeding on Non-Vitis Plant Hosts of
Mealybugs
The ability of second instar P. calceolariae to transmit GLRaV-3
was demonstrated by the 90% transmission rate by second instar
nymphs following continuous feeding on GLRaV-3-infected
grapevine leaves and the 40–60% transmission rate after access
to white clover for up to 11 days. These data underscored the
importance of mealybug control in vineyards and demonstrated
that managing only the nascent mealybug instars is insufficient;
long-term management is required to reduce vector-mediated
GLRaV-3 transmission. A period of 16 days was assumed to
be sufficiently long for the mealybugs to molt and transition
into second instars. Thus, it is possible a small number of
mealybugs had not molted at the time of transfer from the
non-Vitis and Vitis (experimental positive control) plants. Future
transmission studies will benefit from transferring mealybugs
from plants to Petri dishes prior to molt, similar to the 2015
retention experiment. Furthermore, as noted above, the GLRaV-
3-P. calceolariae relationship would benefit from investigation
by feeding/dissection studies including second instar and later
life stages. In particular, the use of electron microscopy to view
immunologically tagged GLRaV-3 virions within mealybugs at
different time points in the life-cycle and on a non-Vitis plant,
in combination with transmission studies, would help elucidate
where the infectious virion is located within the vector. The
underlying question still remains, at what point in time does the
GLRaV-3 virion lose its infection capacity following mealybug
acquisition?

Previous studies have hypothesized that the GLRaV-3 genetic
variant has an effect on the efficiency of virus transmission by
mealybugs (Jooste et al., 2011; Chooi et al., 2013; Blaisdell et al.,
2015). It is also possible that the genetic differences between the
GLRaV-3 variants could affect the interaction between the virus
and its vector, with impacts on minimal required AAP and IAP.
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Such differences may be direct (e.g., affecting virus retention
within the insect) or indirect (e.g., affecting virus titre in the
grapevine and subsequently its transmission efficiency).

Implications for GLRaV-3 and Mealybug
Management
Mealybug instars influence the spread of GLRaV-3 within and
between vineyards by crawling between vines, movement via
vineyard management activities and aerial dispersal (Charles
et al., 2009). Dispersal of viruliferous mealybug nymphs result
in vine-to-vine spread of GLRaV-3, which is typically most
pronounced within vine rows (Bell et al., 2018). Several
epidemiology studies supported this form of dispersal, with
infection shown to spread more rapidly along rows than between
rows and often appeared clustered (Cabaleiro and Segura, 1997).
Vine management activities such as machinery use, leaf trimmers,
and machine harvesters may also transport mealybugs within the
vineyard and between adjoining vineyards (Charles et al., 2009).
Aerial dispersal of mealybugs, particularly nymphs can result in
movement of GLRaV-3 between blocks and vineyards (Charles
et al., 2006). There is a strong correlation between mealybug
numbers and GLRaV-3 infection levels in the subsequent seasons;
accordingly the rapid spread of GLRaV-3 is purported to be
a consequence of high-density mealybug populations (Charles
et al., 2009; Franco et al., 2009; Daane et al., 2012).

Here, we have shown that GLRaV-3 can be retained and
transmitted by first or second instar P. calceolariae after either
feeding on a non-Vitis mealybug host or GLRaV-3-free grapevine
leaves for up to 16 days. These results demonstrated the insidious
nature of GLRaV-3 in vineyards and they go some way to
explaining issues around virus persistence, spread, and barriers to
effective management. Measures to control GLRaV-3 spread that
do not rely on insecticides only could include the use of ground-
cover plants that host the mealybug vector but not the virus,
thereby interrupting the GLRaV-3 transmission pathway from
grapevine to grapevine. However, alternative hosts like clover
must be a sink for mealybugs for a period of time sufficient
to transition viruliferous individuals to non-viruliferous. In
New Zealand, this novel addition to the integrated response to

GLRaV-3 management is being evaluated (V. Bell unpublished
data), and comes at a time when the wine sector is actively
reducing its reliance on insecticides.
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Biological indexing is the method generally recognized for the certification of propagative
grapevines in many countries, and it is mandatory in the European Union. It consists of
the evaluation of the plant material after grafting on indicators that are inspected for
symptom development. This is a lengthy process that requires well-trained workers,
testing field, etc. Alternative diagnostic methods such as serology and RT-qPCR
have been discarded for certification because of their intrinsic drawbacks. In turn,
high-throughput sequencing (HTS) of plant RNA has been proposed as a plausible
alternative to bioassay, but before it is accepted, different aspects of this process
must be evaluated. We have compared the HTS of small RNAs with bioassays and
other diagnostic methods from a set of 40 grapevine plants submitted for certification.
The results allowed the authors the identification of numerous grapevine viruses in
the samples, as well as different variants. Besides, relationships between symptom
expression and viromes were investigated, in particular leafroll-associated viruses. We
compared HTS results using analytical and bioinformatics approaches in order to define
minimum acceptable quality standards for certification schemes, resulting in a pipeline
proposal. Finally, the comparison between HTS and bioassay resulted favorable for the
former in terms of reliability, cost, and timing.

Keywords: grapevine, high-throughput sequencing, bioassay, diagnostics, virus, viroid, certification, cost
analysis

INTRODUCTION

Plant viruses are responsible for billions of losses in the economies of many countries, damages that
are increased by unrestricted movements of infected plant materials, particularly in vegetatively
propagated crops (Mumford et al., 2016). In the case of grapevine, two main groups of viruses are
responsible for most of the losses, either in yield or quality of berries for wine-making. One is the
nepoviruses, such as grapevine fanleaf virus (GFLV) and Arabis mosaic virus (ArMV), responsible
for the so-called infectious degeneration that eventually can cause death of a plant. Others are those
responsible for grapevine leafroll disease (GLRD), caused by members of the family Closteroviridae
such as the closterovirus grapevine leafroll-associated virus 2 (GLRaV-2) and by a complex of
different species of the genus Ampelovirus (Almeida et al., 2013). Other diseases of viral origin
in vines, such as the rugose wood, are considered to be minority diseases, and their etiology is not
always well defined but sometimes, especially if there are multiple infections -which is very frequent
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in vines-, they can be harmful for a crop, e.g., in grafting
incompatibility (reviewed in Martelli, 2017). The economic losses
caused by all the grapevine viruses have not been established,
although for certain viruses and growing areas some estimates
have been made. For the most widespread GLRD causal agent,
grapevine leafroll-associated virus 3 (GLRaV-3), losses of around
20–40% of crop yield have been reported, representing over
€1,000 Ha/year (Maree et al., 2013). In the region of Galicia in
northern Spain, the accumulated losses from a 100% GLRaV-3-
infected vineyard over 30 years have been estimated at more than
€74,000 Ha (Cabaleiro et al., 2013).

Control of plant virus-borne diseases is mainly based on
two strategies: immunization and prophylaxis to limit virus
dispersion (Rubio et al., 2020). Immunization approaches, which
include introgression of genetic resistance by classical breeding
and genetic transformation, are not suitable for the control
of grapevine viruses. Natural sources of resistance to GLRD
viruses have not been found so far, although in some cases
lack of symptoms, in some infected varieties, has been reported
(Oliver and Fuchs, 2011), but in the case that it is, genetic
breeding is very difficult to carry out in this crop, given the
varietal identity requirements that are mandatory for grapevine
cultivation, especially for wine grapes, as well as the lengthy
processes of breeding in woody species. Therefore, all the control
measures for this crop must rely on preventive strategies such
as quarantine measures, certification, roguing of infected plants,
control of natural vectors, limiting the propagation of infected
material, cleaning of stocks by virus elimination by heat therapy,
and meristem tip culture, and importantly, the training of staff
at nurseries, agronomists, growers, etc. Many, if not all, of
the measures described for the control of grapevine viruses
rely on their effective identification and diagnostics. Given the
clonal multiplication of grapevine, the presence of viruses in a
propagation material is subjected to strict regulations in many
countries aiming at minimizing the impact of the diseases
produced by these viruses (Golino et al., 2017). Currently,
certification schemes for grapevine in the EU and specifically
in Spain rely on biological indexing (bioassay) assisted by other
diagnostic tools such as serology and RT-qPCR. This practice is
generally effective and provides reliable diagnostics for the five
viruses required in Spanish official certification scheme: GLRaV-
1, GLRaV-3, ArMV, GFLV, and grapevine fleck virus (GFkV) (this
lasts only in rootstocks). Serological analysis and RT-qPCR for
detection of grapevine viruses are limited by several factors. In
the case of serology, it depends on the availability of specific
antisera that are commercially purchased to providers that use
their own virus isolates for their obtention. Given the intrinsic
variability of grapevine viruses, specific detection is not always
produced. Another inconvenience of serology-based methods
is the lower sensitivity compared with other diagnostic tools
and that sometimes is limited by virus concentration in plant
tissues. This low sensitivity is overcome by molecular diagnostics
based on PCR, but in turn, it presents the inconvenience of
reliability, given that viruses, and, in particular, grapevine viruses,
present sequence variability that restricts the universality of
designed primers for effective amplification. Moreover, even if
general degenerate primers are designed that can detect all known

isolates of a given virus species, this does not ensure that they
will be able to detect new variants that may eventually appear.
Degenerate primers also increase the chance of false positive
results. In the experience of the authors and others, diagnosis
of grapevine viruses by serology or RT-qPCR sometimes offers
dubious results that require double-checking, increasing the cost
and difficulty of the analysis, even for experienced staff. In other
examples, some plants show virus symptoms, but there is no virus
detection. This is the case of GLRD that can be produced by
different virus species that, in addition, have intrinsically high
genetic variability.

Since the availability of high-throughput sequencing (HTS)
for plant transcriptomics, the detection and identification of plant
viruses by this technology has become widely used (reviewed in
Maliogka et al., 2018; Maree et al., 2018). Among the sources
of nucleic acids for determination of plant virus and viroids,
small RNA (sRNA) fraction has been revealed as a valuable tool
compared with total RNA (Pecman et al., 2017). Among the
sRNAs, and as product of the plant RNA silencing mechanism
appear the small interfering RNAs (siRNAs). They are produced
through the Dicer/RISC complex that targets viral dsRNAs,
product of virus replication, that results cleaved into the siRNAs,
that are more specifically called virus small interfering RNAs
(vsiRNAs). vsiRNAs are then used for HTS and subsequent virus
identification with bioinformatics pipelines. HTS raw sequences
that are usually massive.fastq files need to be processed in order
to extract the information required, which is the identification
of the viruses present in the samples. This involves trimming
the adapters and discarding the low-quality sequences. Given
that these sequences that are in the order of million reads
and of short length cannot be generally used directly for virus
detection in databases, thus de novo assembly of contigs must
be obtained prior to analysis (Seguin et al., 2014). This is
performed with different algorithms such as BinPacker, SPAdes,
Oases, Trinity, or Velvet (Geniza and Jaiswal, 2017). Unlike
Oases, SPAdes, Trinity and Velvet, which use de Bruijn graphs
to construct transcripts, BinPacker is based on a splicing graph
construction. Once the de novo contigs are obtained, then they
are submitted to BLASTN and BLASTX analysis of NCBI for
virus identification based on similarity to viruses present in the
databases. Several platforms have been offered to the community
for virus detection using HTS reads or contigs. ViroBLAST is
an online server that accepts .fasta files of up to 5M, and it
allows adjustment of several parameters and comparison with
several viral databases (Deng et al., 2007). Another pipeline is
VirFind, which performs de novo assembly from HTS reads
and compares with NCBI virus databases (Ho and Tzanetakis,
2014). More recently, a Yabi web-based analytical environment
has been developed for virus identification from sRNA sequences
(Barrero et al., 2017). A different approach was used through
a Galaxyweb-based platform that uses reference viral genomes
for mapping HTS reads (Miozzi and Pantaleo, 2015), producing
SAM files of alignments that can be visualized with, e.g., the
MISIS program (Seguin et al., 2016). Finally, VirusDetect is a
powerful tool specifically designed for the detection of viruses
from small RNA sequences (Zheng et al., 2017). The development
of such platforms and pipelines must offer not only reliability,
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specificity, and efficiency but also ease of use and traceability. In
addition, in order to include HTS in certification schemes, there
are some control points that must be addressed in order to reach
proficiency and reproducibility (Massart et al., 2019; Maree et al.,
2018).

High-throughput sequencing has been valuable in the
detection and characterization of grapevine viruses and viroids
in Spain (Velasco et al., 2014, 2015; Cretazzo and Velasco,
2017). In the country, only Instituto Murciano de Investigación
y Desarrollo Agrario (IMIDA) is qualified to perform sanitary
certification of grapevine, and it follows the methodology
described in the Spanish regulations, i.e., bioassay accompanied
by serological tests. Thus, we aimed to evaluate HTS as a
plausible approach for sanitary certification in comparison with
the bioassays. For this purpose, we selected a set of samples
among the candidate clones sent for certification to IMIDA. In
addition to investigating the feasibility of HTS derived from
grapevine sRNA in diagnostics, plants were specifically selected
to further research the etiology of GLRD. These samples were
processed for HTS in three batches, consisting of 6, 10, and 24
plants each, and for which different Illumina sequencing depths
were requested. HTS through a bioinformatics pipeline allowed
the determination of a number of grapevine viruses in the plants.
This process allowed the identification of key internal control
points to assess the quality of the diagnostics. The plants were
also evaluated in addition to the bioassays by DAS-ELISA and RT-
qPCR, and the results compared with HTS.Viruseq, a platform
for BLASTN and BLASTX analysis from de novo contigs for virus
determination was specifically developed (Velasco et al., 2016).
Finally, a pipeline for HTS certification of grapevine candidate
clones is proposed based on these results.

MATERIALS AND METHODS

Plant Material and Bioassays on
Indicators
A set of 40 samples received at IMIDA for sanitary certification
from 2015 to 2017 was analyzed for virus presence by four
methodologies: serology, RT-qPCR, bioassay, and HTS. The
samples consisted of dormant canes that are received annually
as submitted by nurseries and research institutions from all over
Spain. Bioassays consisted of bud grafting of the testing scions
on five plants each of Vitis vinifera Cabernet Sauvignon and
V. rupestris du Lot as indicators. Indexing was performed from
March to April, and plants were evaluated by visual inspection
of the symptoms using a 0–5 rating scale during a 3-year period.
Cuttings from the canes were rooted and kept in pots for RNA
extractions and DAS-ELISA diagnostics.

Serological Diagnostics
DAS-ELISA was performed using the following antisera from
Bioreba (Berna, Spain): ArMV, GFLV, GFkV, GLRaV-1, GLRaV-2,
GLRaV-3, GLRAV-4 strains 4–9, and GLRaV-4 strain 6, following
the indications of the manufacturer.

RNA Extractions for RT-qPCR Detection
RNAs were extracted from approximately 100 mg of phloem
scrapings of the canes at the stage of vine ripening with
the Spectrum Plant RNA kit (Sigma-Aldrich, St. Louis, MO,
United States). The RNAs were quantified using NanoDrop ND-
1000 (Thermo Fisher Scientific, Waltham, MA, United States).
For the RT-qPCR, we used 10 ng of total RNA extract from
each plant that was added to the AgPath-ID One-step RT-PCR
master mix (Applied Biosystems, Waltham, MA, United States)
supplemented with 200 nM of the forward and reverse primers
and 200 nM of the TaqMan probe to a final volume of 25 ml.
For the qPCR, we used specific primers for GFLV, GFkV, GLRaV-
1, GLRaV-2, GLRaV-3, GLRaV-3, GLRaV-4, GLRaV-4 strains 5,
and GLRaV-4 strain 9 (Osman et al., 2008). Reverse transcription
and qPCR cycling amplification conditions were as follows: 45◦C
for 35 min, 95◦C for 10 min, followed by 45 cycles of 95◦C
for 15 s and 60◦C for 1 min. The RT-qPCR was run in the
StepOne Plus thermocycler (Applied Biosystems, Waltham, MA,
United States). In each run, the StepOne Plus 2.0 software
(Ambion) plotted the fluorescence intensity against the number
of cycles and provided the quantification cycle (Cq) value.

RNA Extractions for HTS
sRNA-enriched samples were also obtained from 100 mg of
phloem tissue using the miRCURY RNA isolation kit (Exiqon,
Vedbaek, Denmark) following the recommendations of the
manufacturer. The samples were quantified using NanoDrop,
and the quality was assessed with Bioanalyzer 2100 using
RNA 6000 Nano Kit (Agilent Technologies, Santa Clara, CA,
United States). The sRNA fraction (1 ng, ∼21 nt length) from
the RNA extractions was eluted from polyacrylamide gels, and
the corresponding cDNA libraries were prepared. The libraries
were constructed for each extract using the TruSeq Small RNA
kit (Illumina, San Diego, CA, United States), and paired-end
2 × 50 pb RNAseq was performed on the Hiseq 2500 Illumina
deep sequencing platform of CRG (Barcelona, Spain). The 40
samples were processed in three batches, one consisting of six
samples separating them using sequence barcodes (Batch #1:
29085-30123), for which the sequencing depth in a single run was
>200 M reads, another consisting of 10 samples (Batch #2: 31004-
31099) for which a sequence depth in a run was >250 M reads,
and a third batch of 24 samples (Batch #3: 3200-33121) that were
processed in a run of >450 M reads.

Bioinformatics Analysis
The sequencing Illumina RNA adapter was removed from the
HTS raw sequences, and the low-quality reads were discarded
using Geneious prime v. 2019.2.3 (Biomatters, Auckland,
New Zealand). For the subsequent analysis, reads ranging from
18 to 24 nt were selected. These reads were assembled into contigs
by the de novo assembly function of Velvet v. 1.2.08 (Zerbino and
Birney, 2008) implemented in the SCBI Picasso server. For that,
we used the k-mer values 13, 14, 15, 16, and 17. Contigs obtained
from each accession were subjected to BLASTX and BLASTN
analysis against the non-redundant database of NCBI as available
in the ViruSeq v0.1a1 platform from the Picasso supercomputing
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SCBI server that can be freely accessed at: http://www.scbi.
uma.es/ingebiol/session/new/viruseq. BLASTN E-value was set
as default (1e-5); and for BLASTX, the parameter was adjusted
for optimization. In addition to the BLASTX and BLASTN
analysis, both the set of contigs and the 18–24 nt reads from
each sample were aligned to sequences of reference virus genomes
using the Map to Reference tool with default parameters as
available in Geneious to search for matches indicative of specific
virus sequences.

RESULTS

HTS Reads and Contigs Obtained From
the sRNAs
RNA extractions performed with the Exiqon kit from grapevine
phloem scrapings rendered specifically low-weight RNAs and
sRNAs (Supplementary Figure 1). Most of the samples produced
a high yield in the range of 18–24 nt length sRNAs (that
include the vsiRNAs), but in some cases, RNAs of higher
weight (50–150 nt) were majoritarian (e.g., samples 32000, 32014,
and 32019). Gel-purified sRNAs were used for cDNA library
preparation and sequencing. Illumina sequencing produced
4.95–29.15 M reads after discarding the low-quality reads and
adapter trimming. From this, after selecting the sequencing
reads ranging 18–24 nt, we obtained 2.7–19.4 M reads. This
makes a ratio between the total sRNA reads and the 18–21
ntsRNA reads of 32–81% (Supplementary Table 1). Within the
18–24 ntsRNAs those of 21 nt were predominant, averaging
44.6% (Supplementary Figure 2 and Supplementary Table 1).
Using different k-mer values, Velvet assembled the 18–24 nt
reads and produced contigs of different range of sizes and
number (Supplementary Table 2). For the first batch of samples,
we obtained 6331–8277, 2006–2936, and 815–1232 contigs for
k-mers 13, 15, and 17, respectively. In the second batch, the
k-mer values allowed the obtention of 4071–8500, 1446–3708,
and 534–1490 contigs for k-mers 13, 15, and 17, respectively. In
the third batch, we obtained contigs of 431-6550, 164-1787, and
75-789 for k-mer 13, 15, and 17 (Supplementary Table 2). Thus,
contigs generated with k-mer 13 produced more contigs than
when using k-mer 15 followed by k-mer 17 (Figure 1). However,
as can be seen in Supplementary Figure 3, the profiles generated
of contig sizes using k-mer 13 differed from those obtained with
k-mer 15 or k-mer 17. For k-mer 17, it produced contigs with
a minimal length of 33 nt, which reduced to 29 for k-mer 15
and to 25 when using k-mer 13 (Supplementary Table 2). The
length of the contigs generated with k-mer 13 is size-limited
(average 130 nt) while longer contigs were obtained with k-mer
15 (average 500 nt) or k-mer 17 (average 660 nt) (Figure 1).

For the taxonomic identification of viruses in the samples,
the contigs were submitted to BLASTX and BLASTN analysis
against the NCBI viral databases as implemented in the platform
Viruseq. For that, we used the contigs generated by Velvet for
k-mers 13, 15, and 17. Next, we adjusted the BLASTX E-value
for maximum reliability and tested the contigs generated with the
different k-mer values. Results showed that the highest number
of matches to grapevine viruses was obtained when k-mer was

15 and the E-value of BLASTX was 1e-3 (Supplementary File
1). Although k-mer13 produced a higher number of contigs than
k-mer 15, BLASTX produced the highest number of matches to
grapevine viruses when k-mer was 15, pointing many contigs
as artifacts (chimeras) when k-mer 13 was set in Velvet. The
results of virus identification using Viruseq that we describe
hereafter refer to the contigs generated for Velvet (k-mer = 15)
and BLASTX E-value = 1e-3. Ontology analysis of the contigs
allowed the determination of the cellular origin of the sRNAs
by BLASTX at the NCBI GenBank. Among the pool of contigs
from batch#1 of the set of samples used as representative of all
the samples, virus-derived contigs were in a high percentage,
being 1–12% of the total (Figure 2). Viroid contigs were also well
represented, although in a lower ratio (0.21–4.6%).

Identification of Grapevine Viruses From
the Contigs and HTS Reads
Among the virus species identified in the pool of samples
according to Viruseq BLAST analysis of each set of contigs
in addition to genetic analysis of the individual contigs,
results showed GLRaV-1, GLRaV-2, GLRaV-3, grapevine leafroll-
associated virus 4-like viruses (GLRaV-4LVs), GFLV, GFkV,
grapevine rupestris stem pitting-associated virus (GRSPaV),
grapevine rupestris vein feathering virus (GRVFV), grapevine
Red Globe virus (GRGV), grapevine Pinot Gris virus (GPGV),
grapevine virus A (GVA), grapevine virus B (GVB), and
grapevine virus L (GVL) (Tables 1, 2 and Supplementary File 1).
Among the viroids, grapevine yellow speckle viroid 1 (GYSVd-
1) and hop stunt viroid (HSVd) were present in all the samples.
In addition to Viruseq, we performed alignments of the sRNA
reads to the reference genomes (Supplementary Table 3) to
seek for virus sequences in the samples for which contigs were
not obtained. After examination of the reads matching with
the reference sequences, we set up a lower limit of less than
2% of genome coverage for discarding a given virus in the
sample, considering those reads as not specific. According to
this guideline, the result showed that the most frequent virus
found was GRSPaV, found in all the samples. Two different
variants of this virus seem to be present. The most frequent
variants were similar to isolate SK704-A (KX274274) found in
all but one sample (31099) where the variant present was similar
to GRSPaV isolate GG (JQ922417). The closterovirus GLRaV-2
was present in 26 samples (Table 1). Among the ampeloviruses,
GLRaV-1 was present only in samples 29170 and 31099. GLRaV-
4LVs were frequent, present in nine samples, while GLRaV-3 was
present in four samples. GFkV was found in 14 samples (Table 2).
GRVFV (12 samples) is another virus frequently found in the
pool of samples (Table 3). The vitivirus GVA was present in five
samples, whereas GVB was found in another seven. Other viruses
present were GPGV (32097) and GRGV (30039, 30123, 31004,
and 32097). GFLV was identified by HTS in one sample (33111)
but only from a few reads aligning to the reference genome.
All samples but one (32023) showed multiple virus infection,
harboring at least two different viruses.

Six groups of GLRaV-2 variants have been identified by the
workers so far, arranged in six distinct lineages represented by
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FIGURE 1 | Distribution of the contigs according to sizes as obtained from the 18–24 nt reads using Velvet (k-mer = 13, 15 or 17).

FIGURE 2 | Ontology of the contigs obtained from the samples of batch #1 after BLAST analysis. Virus and viroid contigs represent between 2 and 15% of the total
contigs derived from the HTS of sRNAs.

the type isolates 93/955, PN, PV20, RG, H4, and BD (Angelini
et al., 2017). These variants show a high degree of variations in
their genomic sequences and have been related to differences
in symptoms induced on their host or graft incompatibility.
We constructed the GLRaV-2 genomes from the scaffolds of
contigs and reads aligning to the reference genomic sequences.
As a result, 10 of the GLRaV-2 isolates present in the plants
investigated in this study were found phylogenetically clustered

with variant 93/955 (AY881628; Meng et al., 2005; Table 2
and Figure 3). These isolates were present in plants inducing
generally strong to very strong symptoms (rating 4–5) in the
bioassays, although in other three cases the symptoms were mild
to moderate (rating 2–3), whereas in one case there was no
symptom exhibition (29172) (Table 3). In other plants, genetic
and phylogenetic analysis clustered GLRaV-2 isolates with the
type variant PV20 (Acc. No. EF012721; Beuve et al., 2007) and
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TABLE 1 | Quantitation of contigs, and reads and percentage of genome coverage aligning to GLRD viruses.

Sample Virus Contigs (k-mer = 15) Reads (18-24 nt) Coverage Total reads 18-24 nt % Total reads

29085 GLRaV-2 93/955 282 2,510,386 99.7 12673748 19.81

29170 GLRaV-1 111 4,574 36.0 13134664 0.03

GLRaV-2 93/955 83 219,860 35.2 13134664 1.67

GLRaV-4 str. 6 82 5,960 19.3 13134664 0.05

29172 GLRaV-2 93/955 93 4,313 51.8 9026152 0.05

32000 GLRaV-2 93/955 1 254 17.7 0.00

30020 GLRaV-2 93/955 122 37,835 56.5 10,599,368 0.36

30039 GLRaV-2 93/955 351 2,328,022 75.5 18369925 12.67

30123 GLRaV-2 PN 1 1,043 53.0 9,583,027 0.01

31004 GLRaV-2 PN 154 1,702,792 96.9 11513269 14.79

31006 GLRaV-2 PN 163 34,550 93.4 9726535 0.36

31008 GLRaV-2 PV20 2 1,520 56.5 9344564 0.02

31032 GLRaV-2 93/955 40 176,963 17.0 10875760 1.63

31035 GLRaV-2 PV20 14 3,377 71.3 8023183 0.04

31036 GLRaV-2 PV20 5 2,325 66.1 8141625 0.03

31044 GLRaV-2 PV20 1 1,175 51.7 6121372 0.02

31052 GLRaV-2 PV20 232 13,504,528 99.8 19393837 69.63

31065 GLRaV-2 PV20 270 9,279,850 99.9 12550158 73.94

GLRaV-4 strn. 6 59 7,549 21.1 12550158 0.06

31099 GLRaV-2 PN 38 748,497 99.4 7313344 10.23

GLRaV-4 strn. 6 65 2,183 15.5 7313344 0.03

GLRaV-1 157 167,862 60.0 7313344 2.30

32000 GLRaV-2 PN 0 316 22.8 19393837 0.00

32001 GLRaV-2 PV20 16 8,920 80.0 5,328,968 0.17

32002 GLRaV-4 strn. 6 34 3,083 33.9 6,067,849 0.05

32007 GLRaV-2 93/955 530 1,037,609 99.6 6,828,892 15.19

32010 GLRaV-2 93/955 490 487,844 99.3 3,078,924 15.84

32014 GLRaV-2 93/955 307 920,915 98.9 4,230,205 21.77

GLRaV-4 strn. 5 11 3,083 35.1 4,230,205 0.07

32017 GLRaV-4 strn. 5 117 23,812 63.2 5,152,525 0.46

32019 GLRaV-2 93/955 696 7,219,608 100.0 16,936,974 42.63

32022 GLRaV-4 strn. 5 86 14,828 85.4 7,043,346 0.21

32075 GLRaV-2 PN 130 2,744,265 100.0 9,135,104 30.04

32097 GLRaV-2 PN 98 991,045 100.0 6,838,454 14.49

33109 GLRaV-3 group VI 54 1,346 6.8 6,792,474 0.02

33111 GLRaV-3 group II 43 32,164 83.6 4,017,775 0.80

GLRaV-4 strn. 5 0 2,110 25.7 4,017,775 0.05

GLRaV-2 PN 0 272 8.5 0.00

33115 GLRaV-3 group I? 0 9 1.0 4,998,909 0.00

GLRaV-2 PV20 0 157 10.1 4,998,909 0.00

33116 GLRaV-3 group II 136 85,633 94.8 5,692,071 1.50

GLRaV-4 strn. 6 31 7,131 29.5 5,692,071 0.13

33121 GLRaV-3 group VI 15 394 5.7 7,113,170 0.01

with 12G402B (MH814492; Rott et al., 2017), which is genetically
close to PV20. Remarkably, when isolates similar to variant PV20
were present in the samples, symptoms on the indicator plant
were mild (rating 2–3) or even absent (32001). However, strong
symptoms (rating 4) were induced by a plant harboring both a
GLRaV-2 PV20-like isolate and GLRaV-4 (31065). The GLRaV-
2 isolates present in other group of plants were phylogenetically
close to GLRaV-2 variant PN (AF039204; Zhu et al., 1998;
Table 1 and Figure 3). Plants harboring this variant induced
mild to very strong GLRD symptoms (rating 2–5) but resulted

asymptomatic in the bioassay in other two cases (31006 and
32003). This is, to the knowledge of the authors, the first
report distinguishing GLRaV-2 variants in Spain. With respect to
GLRaV-3, the variants found in the samples belonged to group
II and group VI (two samples each), and one plant possibly was
host of a GLRaV-3 group I isolate, after the identification of reads
aligning to this genomic sequence (Table 1). In all the cases when
GLRaV-3 was present, symptoms in the bioassay were strong or
very strong (rating 4–5) (Table 3). Regarding the GLRaV-4LVs,
genetic analysis using reference genomes revealed that GLRaV-4
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TABLE 2 | Quantitation of reads and percentage of genome coverage aligning to non-GLRD viruses identified by HTS.

GRSPaV GFkV GFLV GVA GVB GVL GPGV GRGV GRVFV

Sample Coverage Reads Coverage Reads Coverage Reads Coverage Reads Coverage Reads Coverage Reads Coverage Reads Coverage Reads Coverage Reads

29085 89.7 9,233

29170 88.7 9,575 7.2 212 26.3 1,046

29172 92 12,941

30020 91 11,694

30039 76.4 8,759 17.2 33,849 47 8,304

30123 87.4 7,910 37.5 8,306 36 24,843

31004 93.3 15,804 17.9 3,530 20.8 265 17.8 3,530

31006 93.6 15,456 12.9 1,045 22.7 564

31008 93.7 21,990

31032 90 9,144

31035 93.5 27,181 11.7 142

31036 92.3 21,986 15.8 325

31044 92.4 21,432 14.6 286

31052 90.1 9,544

31065 91.6 11,401 117 11

31099 90.1 11,725 24.6 5,659

32000 27.1 455

32001 72.6 3,069 34.1 898

32002 71.5 2,620

32003 84.4 5,749

32004 83.6 6,024

32007 53.7 759 60.3 5,336 14.3 5,364

32010 61.4 1,151 32.5 883 12.7 1,849

32013 82.1 4,772 51.9 3,583

32014 39.3 1,066 12.3 1,453

32017 85.9 8,841

32019 77.1 3,344 48.9 4,226

32022 87.5 5,580 14.3 282

32023 86.7 8,382 9.1 6,616

32024 77.8 5,050

32042 86 7,051 35.8 1,295

32049 85 7,200 50.6 3,177 3.2 89

32059 82.9 5,127

32063 85.2 8,294

32064 87.8 10,939

32075 86.4 6,393 11.1 362 16.2 731

32097 79 4,812 70.8 13,386 68.9 4,229 68 19,239

32113 75.9 4,713 11.2 411

33109 77.4 6,520 3.8 306 42 9,033

33111 54.5 3,906 2.1 104 12.3 884

33113 41.3 979

33115 49.1 1,147

33116 66.8 5,253

33121 79.9 5,756 9.1 628
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TABLE 3 | Comparison among the four diagnostics methods used in this study for the diagnostics of viruses in the grapevine samples.

Sample Cultivar Origin DAS-ELISA RT-qPCR RL Bioassay* CS Bioassay* HTS

29085 Malfar Extremadura Negative GLRaV-2 5 GLRaV-2 93/955, GRSPaV

29170 Verdejo Colorado Castilla y León GLRaV-1 Negative 2 GLRaV-4 str. 6, GRSPaV, GLRaV-1, GLRaV-2
93/955, GVA

29172 Verdejo Serrano Castilla y León Negative Negative 3 GLRaV-2 93/955, GRSPaV, GFkV

30020 Cayetana Extremadura Negative GLRaV-2 2 GLRaV-2 93/955, GRSPaV

30039 Godello Navarra GLRaV-2 GLRaV-2 4 GRGV, GLRaV-2 93/955, GRSPaV, GVB

30123 Carrasquín Asturias Negative GLRaV-2 2 GRVFV, GRGV, GRSPaV, GLRaV-2 PN

31004 Tempranillo Navarra Negative n/t 2 2 GRSPaV, GLRaV-2 PN, GRVFV, GRGV, GVB

31006 Tempranillo Navarra Negative n/t 2 GRSPaV, GLRaV-2 PN, GRVFV, GVB

31008 Tempranillo Navarra Negative n/t 2 GRSPaV GLRaV-2 PV20

31032 Tempranillo Madrid Negative n/t 4 GRSPaV, GLRaV-2 93/955

31035 Tempranillo Madrid Negative n/t 2 GRSPaV, GRVFV, GLRaV-2 PV20

31036 Tempranillo Madrid Negative n/t 2 GRSPaV, GRVFV, GLRaV-2 PV20

31044 Garnacha Madrid Negative n/t 2 GRSPaV, GRVFV, GLRaV-2 PV20

31052 Malvar Madrid GLRaV-2 n/t 3 GRSPaV, GLRaV-2 PV20

31065 Mandón Castilla y León GLRaV-4 strns. n/t 4 GLRaV-4 strain 6, GRSPaV, GLRaV-2 PV20,
GRVFV

31099 Garnacha Madrid GLRaV-1, GLRaV-2,
GLRaV-4 strns.

GLRaV-1, GLRaV-2,
GLRaV-5

5 GLRaV-4 strain5, GLRaV-1, GRSPaV, GLRaV-2 PN,
GVA

32000 Beba Extremadura GLRaV-1, GLRaV-4
strns., GFkV

GLRaV-1, GLRaV-9,
GLRaV-5, GFkV

3 2 GFkV, GLRaV-2 PN

32001 Beba Extremadura GLRaV-4 strns.,
GLRaV-4 strn. 6, GFkV

GLRaV-5, GFLV, GFkV 3 GLRaV-2 PV20; GFkV

32002 Beba Extremadura GLRaV-4 strns., GFkV GFLV, GLRaV-9, GFkV 4 GFkV, GLRaV-4 strn. 6

32003 Beba Extremadura Negative GLRaV-5 GRSPaV, GLRaV-2 PN

32007 Beba Extremadura Negative GLRaV-5, GLRaV-2, GFkV 2 5 GLRaV-2 93/955, GVB, GFkV

32010 Beba Extremadura GLRaV-2, GFkV GLRaV-2, GFkV 2 5 GLRaV-2 93/955, GVB, GFkV

32013 Beba Extremadura GFkV GLRaV-5, GLRaV-2, GFkV 2 GFkV, GRSPaV

32014 Beba Extremadura GLRaV-4 strns.,
GLRaV-4 strn. 6

GLRaV-5, GLRaV-2 3 GLRaV-2 93/955, GVB, GLRaV-4 strn. 5

32017 Beba Extremadura GLRaV-4 strns. GLRaV-5, GLRaV-2 5 GLRaV-4 strn. 5, GRSPaV

32019 Beba Extremadura GFkV, GLRaV-2 GLRaV-5, GLRaV-2, GFkV 4 5 GLRaV-2 93/955, GFkV

32022 ZocaZarra Navarra GLRaV-4 strns. GLRaV-5, GLRaV-2 2 GRSPaV, GLRaV-4 strn. 5, GRVFV, Betaflexivirus?

32023 Castellana Blanca Navarra Negative GRSPaV, GRVFV

32042 Blasco Andalucía GFkV 4 GFkV, GRSPaV

32049 Manto Negro Baleares GFkV GFkV 5 GFkV, GRSPaV, GRVFV, GVB

32059 Cabernet Sauvignon Valencia GFkV GLRaV-4, GFkV GFkV

32063 Riesling Valencia Negative GFkV GRSPaV

32075 Albillo Dorado Castilla-La Mancha Negative GLRaV-2, GFkV 4 5 GLRaV-2 PN, GRSPaV GRVFV, GFkV

(Continued)
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FIGURE 3 | ML phylogenetic tree of the 3′ end (2.7 Kb) of the genomes of
GLRaV-2 isolates. Reference genomic sequences for the type variants of the
virus are included and highlighted in bold. The closterovirus Citrus tristeza
virus (CTV) was included as outgroup. The sequences were aligned using
MAFFT, and the phylogenetic tree was generated with the PHYML plugin
(HKY85 substitution model, 100 bootstraps) available in Geneious. Branches
represent bootstrap support (%).

strain 5 (31099, 32014, 32017, 32022, and 33111) and GLRaV-4
strain 6 (29170, 31065, 32002, and 33116) were the only GLRaV-4
variants present in this set of samples (Table 1). Plants harboring
GLRaV-4LVs were host for another GLRD virus in six out of
the nine plants where this virus was present. In all these cases,
symptoms appeared in the bioassay. In other three plants, the
only GLRD virus present was GLRaV-4 strain 5 (32017, 32022)
or GLRaV-4 strain 6 (32002). In these three cases, the GLRaV-
4LVs induced symptoms that varied from mild (32022) to strong
(32017) (Table 3).

Quantitation of GLRD Viruses From
sRNA Reads
Availability of sRNA reads and contigs allowed the quantitation
of alignments to reference sequences for the viruses found in the
samples (Tables 1, 2). Comparison of the aligned reads (vsiRNAs)
provided an estimation of the virus titers in the phloem tissue
of the plants. In general, vsiRNAs aligning to GLRaV-2 were, in
most of the cases, majoritarian when compared with the other
virus species. In some of the cases, when this virus is present, a
high ratio of the total sRNAs corresponded to GLRaV-2 vsiRNAs.
For this virus, and in the three variants identified in the samples,
most of the 21 nt class vsiRNAs aligning to the genomes were
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of positive polarity (58.2–80.5%, depending on the isolate and
sample) (Supplementary Figure 4). Remarkably, in most cases
when isolates genetically clustered with the 93/955 variant were
present, their vsiRNAs were very abundant (Table 1). In sample
32019, GLRaV-2 93/955 vsiRNAs were 43% of the total (>7.2 M
reads). The GLRaV-2 variant PV20 included 69.6 and 74% of
the total vsiRNA in samples 31052 and 31065, respectively. In
sample 32072, the GLRaV-2 PNvsiRNAs were 30% of the reads
(2.7 M reads). However, in most cases the number of vsiRNAs
was much lower for PN and PV20 variants. Strikingly, there were
some samples that did not show contigs that matched GLRaV-
2 but did show few vsiRNAs that aligned with the PV20 or PN
variant. In particular, GLRaV-2 PV20-like isolates showed the
lowest number of vsiRNAs. Among the ampeloviruses, GLRaV-
3 showed the highest number of vsiRNAs, mostly of positive
polarity (51%) (Table 1 and Supplementary Figure 4). VsiRNAs
aligning to GLRaV4 strain 6 were mostly of positive polarity
(59%). On the contrary, most of the vsiRNAs aligning to GLRaV-
1 in samples 29170 and 31099 resulted from the negative strand
(55%). Remarkably, in this sample that is host both for GLRaV-1
and GLRaV-4, the number of aligning-vsiRNAs was in the same
magnitude order. However, in samples 33111 and 33116, specific
GLRaV-3-vsiRNAs accumulated about 10 times the number
of reads that aligned to GLRaV-4 strn. 5 or GLRaV-4 strn.
6 (Table 1).

Novel Grapevine Viruses in Spain Derived
From the HTS Analysis of the Samples
BLAST analysis of the contigs allowed the identification of
viruses not previously reported in Spain, besides the different
variants of GLRaV-2 described here. Sample 33109 (Albillo
criollo, Canary Islands) showed contigs matching to vitiviruses
(Supplementary File 1). When the contigs were analyzed,
they showed the highest similarity to Grapevine virus L
(GVL), a vitivirus recently described (MH681991; Debat et al.,
2019). Specific consensus primers were designed based on the
sequences of the contigs matching to the coat protein (CP)
gene of the virus (GVLF1: GCAGTCCCTTAGTAGTAATAT and
GVLR1: CCACCTGAGACTGAGCATCGA) and used for RT-
PCR, resulting one amplicon (488 bp) from the RNA extraction of
the sample. The amplicon was used for direct Sanger sequencing,
and the resulting sequence was compared with isolate resulting
98.2% identical in the nucleotide sequence to the corresponding
cp gene in GVL. This is, to the knowledge of the authors, the first
report of GVL in Spain. Other samples (32010, 32014) showed
hits in BLASTX matching to GVE (Supplementary File 1), but
close examination of the contigs revealed that they corresponded
instead to GVB. Finally, sample 32022 (Zocazarra) showed
contigs matching to genomic regions of different betaflexiviruses
(Supplementary File 2), indicating the plausible presence of an
unknown virus of the family.

Validation of HTS for Virus Detection
Using Internal Controls
To investigate the quality of the HTS process and its reliability for
virus detection in grapevine, we explored some other parameters

in addition to quality of the sRNA extraction and the total
number of HTS reads obtained. The consistent presence of two
viroids and GRSPaV in the samples provided internal references.
Hence, we investigated the number of vsiRNAs matching to
their genomes. Statistical analysis showed significant correlation
between the specific vsiRNA amounts of the three species in the
samples (Figure 4). There are clear differences in the samples
regarding the relative abundance of GRSPaV, GYSVd, and HSVd
vsiRNAs (Table 2 and Supplementary Table 4). Samples from
batches #1 and #2 showed higher viroid/GRSPaV vsiRNA titers
when compared with samples from batch #3. Significantly,
sample 32000 had the lowest number of viroid and GRSPaV
vsiRNAs. Moreover, inspection of the profiles of GSYVd vsiRNAs
and the ratio of the 21 nt vsiRNAs showed differences among the
samples (Supplementary Figure 2). Analysis of vsiRNAs aligning
to GYSVd-1 showed that among the 18–24 nt siRNAs, the 21 nt
followed by the 22 and 24 nt class of vsiRNAs were predominant,
averaging a of ratio 5:0.94:0.98 (∼5:1:1), indicating the major
involvement of Dicer-like protein 4 (DCL4) in the silencing
mechanism. This ratio is generally observed in the three batches;
however, for sample 32000, this ratio was not followed but was
instead 5:1.11:0.39. In sample 32007, the ratio was 5:0.45:0.45.
Plausibly, in these samples, a significant part of the population
of sRNAs was product of degradation of plant RNAs in the
extractions and not product of RNA silencing. In general, results
significantly deviating from the 5[21nt]:1[22 nt]:1[24 nt] ratio
should be considered as not acceptable.

Comparison of the Reliability of Different
Diagnostics Methods
Bioassays showed that 15 plants of the collection were capable of
inducing fleck-like symptoms on V. rupestris du Lot (Table 3),
one plant induced strong fanleaf symptoms in that indicator
(33111) and 29 plants induced GLRD symptoms in Cabernet.
From these, nine plants induced symptoms in both indicators.
Only four plants did not induce symptoms after grafting on
the indicators. Among them, according to HTS in one plant
(32063), the only virus present was GRSPaV; while in plant
32023 (Riesling), only GRSPaV and GRVFV were found. In
another plant (32003, Beba) only GRSPaV and GLRaV-2PN were
found. There was another plant (32059, Cabernet Sauvignon)
that did not induce symptoms in which HTS detected GFkV
and GRSPaV. All the plants that induced leafroll symptoms in
the indicator had at least a GLRD virus, according to HTS.
However, not all the plants harboring leafroll viruses were capable
of inducing symptoms; and in these cases, the virus present
was always some variant of GLRaV-2 (29172, 32003, 31006, and
32001). Two other plants that harbored GFkV failed to induce
symptoms in the indicators (32002 and 32059). Thus, the bioassay
and the HTS were not fully coincident, being HTS capable of
detecting viruses even if not inducing symptoms. Regarding
GFLV, the virus was not detected by the BLAST analysis of the
contigs in 33111, but it was identified after aligning to a reference
genome. Although the vitiviruses GVA, GVB, and GVL were
detected by HTS, unfortunately, in the bioassays, we dismissed
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FIGURE 4 | Correlation plot of vsiRNA reads amounts specific for GRSPaV, GYSVd, and HSVd. The statistical analysis was performed with Jamovi v.1.6.

the registration of rugose wood symptoms. Other viruses not
detected in the bioassays included GRVFV, GPGV, and GRGV.

Serology and RT-qPCR were, in general, more erratic, failing
in detecting viruses in some cases (Table 3). For example,
GLRaV-2 was detected by serology only in six plants out of the 26
testing positive to HTS. RT-qPCR detected GLRaV-2 in 10 of the
samples positive in HTS but provided positive results in another
five samples that tested negative in HTS. Compared with the
bioassay, serology detected GFkV only in eight of the 15 plants
that induced symptoms on Rupestris.GLRaV-1 diagnostic results
coincided in serology and RT-qPCR where the virus was detected
in three samples, while HTS revealed it in only two samples.
However, HTS failed to detect the virus in sample 32000 that,
according to reference values (Bioanalyzer and GRSPaV/GYSVd
reads), was of lower quality (Table 2, Supplementary Figure 1,
and Supplementary Table 4). Detection of GLRaV-3 by serology
was concurrent in the five plants that tested positive by
HTS. However, in plant 33115, HTS detected only few reads
corresponding to GLRaV-3. According to the Bioanalyzer results
and the scarce GRSPaV/GYSVd/HSVd reads used as a reference,
HTS from this sample should not be considered acceptable.
Serology detected GLRaV-4 variants in 13 samples, confirmed
by HTS only in nine samples. In contrast, one plant (29170)
positive in HTS to GLRaV-4 strain 6 resulted negative in serology
and RT-qPCR. It is worth mentioning that a plant that tested
negative both in the bioassay and HTS tested positive to GLRaV-
4 variants in DAS-ELISA (32001). RT-qPCR detected GLRaV-3
in four plants that were coincident with four of the five positives
of the serological test and HTS. Regarding GFLV, this virus was
detected only in one sample (33111) according to the bioassay,
serology, RT-qPCR, and few HTS reads aligning to the genome.

A Pipeline for Virus Certification Using
HTS of sRNAs in Grapevine
We devised a flux diagram for virus certification using HTS of
sRNAs in grapevine (Figure 5). In this process, we consider the
critical steps assessing the quality of the results. Hence, sRNA
quality is inspected through the Bioanalyzer prior to submitting
the RNA to HTS. A sequence depth of at least 10 M reads per

sample will be requested. Once the raw reads are received from
the sequencing service, FastQC1 or another equivalent tool will
help to inspect the quality of the readings, and a threshold will
be set to decide to continue with the analysis process (e.g., Phred
score > 34). Besides, a minimum number of 18–24 nt reads will
be necessary (>5 M reads). In addition, we recommend that
the ratio of 21 nt vs. 18–24 nt siRNAs in the sample should be
>30%. If there are viroids or GRSPaV in the sample, as frequently
happens in grapevine, an additional quality parameter could be
the titers and profile of vsiRNAs aligning to the viroid/GRSPaV
genomes (e.g., a ratio 5:1:1 in GSVd-1 for the 21, 22, and 24 nt
vsiRNAs). In the pipeline, contigs will be generated from the
18–24 nt reads using Velvet (combined k-mers 13, 15, and 17)
and submitted to BLASTN (E-value = 1e-5) and BLASTX (E-
value = 1e-3) against the virus databases of NCBI as available
in Viruseq. If there are hits with some of the viruses included in
the certification standards, the material may be reported as non-
compliant. If not, the 18–24 nt reads are aligned with reference
genomic sequences. Next, if significant reads appear (e.g., >50
reads aligning across the reference genome covering > 5% of
the genome), then the presence of regulated virus species will
be reported, and the material will be classified as unsuitable
for certification. Negative results from the alignments would
mean healthy plant material. Each diagnostic procedure could be
validated by including in the analysis a control plant that has been
previously analyzed. Finally, this certification scheme, provided
all the steps are carried out properly, would take about 6 months
after receipt of the plant material.

DISCUSSION

Virus Identification by HTS in the
Grapevine Samples
In the last years, performing RNA-sequencing analysis for
determination and discovery of plant viruses in crop plants
has become widespread (Rott et al., 2017; Zheng et al., 2017;

1http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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FIGURE 5 | Flux diagram of an HTS pipeline for virus certification in grapevine.

Maliogka et al., 2018; Massart et al., 2019; Rajamäki et al., 2019;
Mehetre et al., 2021). More specifically, Al Rwahnih et al. (2009)
pioneered the use of HTS for virus determination in grapevine;
and since then, it has proved a valuable tool (Coetzee et al.,
2010; Pantaleo et al., 2010; Al Rwahnih et al., 2015; Maree et al.,
2015; Jo et al., 2015; Czotter et al., 2018; Hily et al., 2018; Vigne

et al., 2018). In Spain, we have used Ion Torrent or Illumina
for sequencing sRNAs for the diagnostics and characterization of
these viruses (Velasco et al., 2014, 2015; Cretazzo and Velasco,
2017). VsiRNAs are present in a high rate in the pool of sRNAs
collected for HTS, making this class of RNAs suitable for virus
diagnostics. Their inconvenience is that the short reads obtained
can be prone to incorrect assembly leading to false positives that
can be overcome with longer reads obtained from total RNA
(Maliogka et al., 2018). However, the advantage of using the sRNA
fraction for HTS is the elevated rate of virus and viroid vsiRNAs
(Pecman et al., 2017; Santala and Valkonen, 2018). In the samples,
the sRNAs corresponding to viruses was 0.1–72%, averaging 9%.
Viroid siRNAs were 0.15% of the total sRNAs.

There are two types of questions regarding diagnostics that
usually need to be addressed by researchers. One is what virus
or virus combination is causing the disease symptoms in a given
plant, including novel viruses. The other is to determine whether
the plant is virus-free or has some already known viruses, i.e.,
in phytosanitary certification and quarantine controls. To give
answer to both type of questions, HTS reads must be processed
and compared with sequences already present in databases. The
first step after curating the raw reads is to perform de novo
assembly to generate contigs using SPAdes, Trinity, Velvet, or
some other tool appropriate for sRNAs. The algorithm of choice
should be carefully evaluated for each particular situation to
select the best option. Multiple k-mer mode tools such as the
one used in Oases, a derivative of Velvet, and SPAdes are
considered good for contig assembly of sRNAs (Pirovano et al.,
2015; Hölzer and Marz, 2019). Next, the contigs can be analyzed
by comparing with known reference viral genomes or submitting
to BLASTN and BLASTX that will render hits to viral sequences
present in databases. The advantage of this second method is
that novel viruses with similarity to other viruses, mainly in
the RNA-dependent RNA polymerase, can be identified. This
second method is computationally more demanding, and in
practice submitting a bulk of sequences directly to the BLAST
platform of NCBI is unfeasible. For this reason, several web-based
tools/services have been developed that, in some cases, include
the viral sequences or built-in databases of NCBI in their own
server that allows online analysis (Wang et al., 2013; Ho and
Tzanetakis, 2014; Zheng et al., 2017; reviewed in Jones et al.,
2017). ViruSeq was designed aiming at developing an easy-to-
use and quick platform for the identification of viruses in HTS
sequences. We observed that the number of reads and contigs
aligning to reference sequences or matching to grapevine viruses
decreased when reducing the sequencing depth, as previously
reported (Massart et al., 2019). In the analysis, obtention and
generation of contigs from the sRNA reads was performed with
Velvet, and it was shown that k-mer 15 was optimal for obtaining
a higher number of contigs with meaningful results. When
using k-mer 13, more contigs were obtained in each sample
but resulted in less significant results in BLASTX and BLASTN,
pointing out to the generation of chimeric contigs derived from
non-contiguous reads. Thus, the combined use of the contigs
generated with the three k-mer values 13, 15, and 17 for BLAST
analysis allowed reaching the optimal number of hits to grapevine
viruses. Similar results were reported in HTS analysis of sRNAs
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from grapevines collected in Hungary when using Velvet (Czotter
et al., 2018). In a wide cross-laboratory sRNA-derived HTS
study for identification of plant viruses, the authors reported the
combination of k-mer 13-15-17 as the most reliable in BLAST
analysis (Massart et al., 2019). In any case, the alignment of sRNA
reads to reference genomes allowed the identification of viruses
that were not detected by BLAST analysis of the contigs.

Among the ampeloviruses, in this study, we identified GLRaV-
1, GLRaV-3, and GLRaV-4LVs. In Spain, field surveys for
GLRaV-1 and GLRaV-3 are limited, but the latter appears to
be well distributed (Bertolini et al., 2010; López-Fabuel et al.,
2013; Pesqueira et al., 2016), corresponding with the general
observation of higher occurrence of GLRaV-3 worldwide (Maree
et al., 2013; Burger et al., 2017). Although GLRaV-4LVs have been
detected previously in Spain, scarce field data on the occurrence
of these viruses are available (Padilla et al., 2010a,b; Velasco
et al., 2014, 2015). Serological analysis showed recurrent GLRaV-
4LVs infections in candidate clones submitted for certification
(Padilla et al., 2012). Significantly, GLRaV-4 strain 5 and GLRaV-
4 strain 6 alone were able to induce leafroll symptoms in the
absence of other GLRD viruses. GLRaV-2 occurrence was very
high in the samples and was capable of inducing GLRD in
many cases, particularly if 93/955-like isolates were present. Not
surprisingly, as a result, many plants got infected by viruses not
included in regulations, such as GRSPaV and GFkV. The latter is
sanctioned in the EU regulations only for the rootstocks (Golino
et al., 2017). Thus, although it could eventually be detected by
serology during the selection programs of the varieties, the result
is not considered relevant. Other viruses frequently found in
the samples were the vitiviruses (GVA, GVB, and GVL) and
other non-regulated viruses, such as GRVFV, GRGV, and GPGV,
and some possible unknown-to-date virus. All the plants in this
study were hosts for at least one virus species and two viroids
(HSVd and GYSVd-1).

The relationship between virus titers and disease incidence has
been reported for plant viruses (Gray et al., 1991; Linak et al.,
2020). In the samples, the amount of GLRaV-3 vsiRNAs is 10
times higher than that of GLRaV-4LVs when co-infecting a plant.
In a previous study, we showed by RT-qPCR that GLRaV-3 titers
are one order of magnitude higher than those of GLRaV-4LVs
(Velasco et al., 2014). Differential ratios in titers of ampeloviruses
have been previously reported for the viral dsRNAs (Hu et al.,
1991), and it is corroborated by other authors (Aboughanem-
Sabanadzovic et al., 2017). Higher viral titers may be related
to the incidence of GLRaV-3, as it increases the likelihood of
a vector carrying the virus and its infectivity. Moreover, this
could contribute to the high occurrence of the closterovirus
GLRaV-2 for which, at present, the natural vector is unknown.
Another factor that has been correlated with viral titer is disease
severity, as reported in other pathosystems (Galipienso et al.,
2013). Evidence is accumulating relating GLRaV-4LVs with mild
to moderate GLRD symptoms when compared with GLRaV-3
(Aboughanem-Sabanadzovic et al., 2017). In this study, a vine
harboring only GLRaV-4 strain 6 induced strong symptoms
on the indicator plant when compared with the very strong
symptoms induced by cultivars bearing only GLRaV-3. Another
grapevine plant harboring GLRaV-4 strain 6 and GLRaV-2

variant PV20 induced strong leafroll symptoms on the indicator.
Other plants that showed mild or moderate symptoms were
host for GLRaV-4 strains in addition to GLRaV-2. Therefore,
besides the lower incidence, reduced virus titers may also explain
the lower GLRD symptomatology caused by GLRaV-4LVs as
compared with GLRaV-3.

HTS for Virus Certification in Grapevine
Prior to this study, a comparative study between bioassay
and HTS in grapevine virus certification has been performed
(Al Rwahnih et al., 2015). These authors reported that HTS
of dsRNAs was superior to the bioassay in terms of reliable
virus detection, independence of environmental conditions,
economical cost, and time required for the analysis. In fact, in
some cases, HTS was capable of detecting viruses not shown by
bioassays such as GRVFV and others, similar to what happened
in the samples with GRVFV, GPGV, GRGV, and, in some
cases, GLRaV-2, and GFkV. Another advantage of HTS is the
permanent availability of the sequences, that can be analyzed
at any time, including their re-evaluation for the detection
of newly identified viruses that is not possible for bioassays
once the assay has been completed and plants removed. In our
case, we dismissed rugose wood in the bioassays that could
not be inspected again in field after the removal of the plants.
All these advantages have led to the proposal of a plausible
standard internationally recognized “metagenome passport” for
propagative material resulting of HTS-generated metadata that
would include information on plant viromes (Saldarelli et al.,
2017). The use of HTS in grapevine certification is an opportunity
to be considered in the future EU and international regulations,
but before arriving at this “metagenome passport,” several points
need to be considered, such as which viruses should be included
in the certification schemes. For example, EU regulations on
the phytosanitary status of propagative grapevine plants follow
the Directive 68/193/EEC and Council Directive 2002/11/EC
that states: “The following test methods may be applied: for all
virus diseases the indexing methods in the case of vine plants;
for fanleaf, in addition to the preceding methods, the indexing
method in the case of herbaceous plants, and also the serology
method,” but harmonization among EU countries is far from
reaching a consensus regarding the phytosanitary status and the
diagnostics methods for certified propagation material (Golino
et al., 2017). Another issue to be addressed is the set of viruses
included in the regulations, which vary from country to country,
as some countries include rough wood diseases and/or GLRaV-2,
while in all cases GFkV is excluded, except for rootstocks.

Validation of a diagnostic test in plant virology depends
on its intrinsic characteristics that differ with respect to its
sensitivity, specificity, and selectivity (Roenhorst et al., 2018).
Therefore, agents such as nurseries, breeders, scientists, growers,
and regulators must reach a consensus to develop and establish
standard protocols for the application of HTS technologies
in grapevine certification. In addition, viruses excluded from
certification and in which conditions (e.g., in traditional minority
varieties, the presence of viruses could be accepted as long as no
healthy material is available) need to be determined. A standard
methodology for HTS certification should clarify the origin of
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the tissue for the analysis (phloem scrapings, leaves, petioles,
etc.), vegetative stage of the plant material (dormant, flowering,
ripening, harvesting), type of nucleic acid (dsRNA, sRNA, or total
RNA), and protocol for extractions and cDNA library generation.
For example, in addition to sRNAs, the dsRNAs, which are a
fraction of nucleic acids enriched in plant RNA viruses, can be
a highly valuable source for HTS (Gaafar and Ziebell, 2020).
They have been successfully used for virus characterization and
identification (Velasco et al., 2018, 2019), and specifically have
shown in grapevine to be suitable when compared with bioassays
(Al Rwahnih et al., 2015).

In any HTS certification pipeline, library quality, number of
reads per sample, and standard bioinformatics analysis must be
optimized and a consensus must be attained. For example, HTS
detection of GLRaV-1 in a cross-laboratory study required > 2.5
M sRNA reads for a sensitive detection at a percentage > 70–80%
(Massart et al., 2019). Therefore, minimum quality standards for
RNA extraction, libraries, and sequencing must be guaranteed.
Importantly, given the high sensitivity of HTS, special care must
be taken to avoid contamination among samples. The high
frequency of appearance of viroids in grapevine make them
plausible as internal controls of HTS efficiency and quality.
For example, Massart et al. (2019) reported the simultaneous
presence of HSVd and GYSVd-1 in four samples considered and
showed comparable results in terms of the number of reads and
proportions to those described in this study. A similar number
of HSVd and GYSVd-1 vsiRNAs have been reported in GLRaV-
3-infected and uninfected grapevines and in comparable ratios
to those found in the samples (Alabi et al., 2012). Finally, we
have previously reported the simultaneous presence of HSVd,
GYSVd-1, and GRSPaV in grapevine plants collected all over
Spain (Velasco et al., 2014; and unpublished results).

In this study, we have compared HTS versus bioassays
in terms of reliability, but the economic cost and time
required for both diagnostic methods, in addition to other
factors, must also be taken into account. In the case of
HTS, expenses include RNA extractions, library preparation,
sequencing, and bioinformatics analysis. For bioassays, we
must include indicator plants, soil preparation and sanitation,
grafting, plant maintenance, and symptom inspection visits over
3 years. Both methods require qualified personnel although
with different expertise. Although both methodologies currently
have a comparable cost (excluding personnel expenses), in the
case of HTS it will probably decrease in the coming years,
while bioassay costs are likely to remain the same, or may
increase considering inflation. Another advantage of HTS is
the ability to detect additional viruses and viroids in samples,
such as those that are not included in the regulations but
that may have effects on yield and quality. Finally, HTS offers
the possibility of achieving a widely accepted standard and
replacing bioassays.

CONCLUSION

We have analyzed 40 grapevine plants in three sets at
different HTS depths and quality of RNA extractions for

virus detection. Numerous grapevine viruses could be
identified in the samples, such as non-regulated viruses.
Leafroll viruses, even non-regulated ones, resulted capable
of inducing symptoms in indicator hosts in most of the
cases. The results have shown the suitability of HTS in
comparison with bioassays and other diagnostic tools.
As a result, we propose a pipeline using HTS for virus
certification in grapevine with the aim of addressing several
problems identified by workers and breeders: timely results,
identification of key parameters in sRNA extractions and
bioinformatics processing, a user-friendly platform for
BLAST analysis, and, finally, the procedure is susceptible
of validation using different controls. The HTS pipeline is
intended to be operated by non-scientific experts, so that
interpretation of results can be performed by a technician with
minimal training.
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Supplementary Figure 1 | Electropherograms of RNA extractions according to
the Bioanalyzer (Agilent) from phloem scrapings of grapevine canes. Except for the
Tempranillo sample that is included as a reference for which the total RNA was
extracted using the Sigma Plant RNA extraction kit, the RNAs of the samples for
HTS were extracted with the Exiqon RNA kit. RIN is the Agilent RNA integrity
number. The RNAs of about 18–24 nt are the small RNAs that
include the vsiRNAs.

Supplementary Figure 2 | Profiles of small RNA population (18–24 nt) and
specific vsiRNAs aligning to GYSVd-1 genomes for the samples
studied in this study.

Supplementary Figure 3 | Profiles of contig sizes generated at different k-mers
for representative samples belonging to batch #1 (A) 30020 and batch #3
(B) 32022.

Supplementary Figure 4 | (Left) Distribution of vsiRNA reads of different lengths
that align to reference virus sequences. Negative numbers refer to vsiRNAs
aligned to the negative strand of the viral genome. (Right) Alignment of the 21 nt
class vsiRNAs (reads) to the viral genomes of GLRaV-1, GLRaV-2 variant 95/933,

GLRaV-2 variant PN, and GLRaV-3 group II. Reads belong to samples 29170
(GLRaV-1; GLRaV-2 95/933), 32024 (GLRaV-2 PN), and 33116 (GLRaV-3). Reads
below the x-axes represent the vsiRNAs aligning to the negative strand of the viral
genomes. For the analysis, vsiRNA populations were aligned to the indexed
genomes and the BAM alignment file produced was processed using MISIS
(Seguin et al., 2016). The genomes are not to the same scale.

Supplementary Table 1 | Data of trimmed Illumina reads from the
grapevine small RNAs.

Supplementary Table 2 | Contigs generated from the Illumina reads of small
RNAs (18–24 nt) using Velvet 12.08 and different k-mer.

Supplementary Table 3 | Grapevine viruses and their GenBank numbers used as
references in this study.

Supplementary Table 4 | Number of vsiRNAs and genome coverage aligning to
Grapevine yellow speckle viroid 1 and Hop stunt viroid 1 in the samples.

Supplementary Table 5 | GenBank accession numbers of the sequences
obtained in this study.

Supplementary File 1 | Summary of the hits to viral sequences of the samples
studied in this study after submission to Viruseq BLASTN and BLASTX using
different k-mer values.

Supplementary File 2 | Result of Viruseq BLASTX analysis for sample 33109.
Contigs matching with betaflexiviruses are highlighted.
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Tomato yellow leaf curl virus (TYLCV) is one of the most notorious plant pathogens
affecting the production of tomato worldwide. While the occurrence of age-related
resistance (ARR) against TYLCV has been reported, the factors impacting its
development remain unknown. We conducted a series of experiments with three tomato
cultivars that vary in basal resistance to TYLCV to explore factors involved in the
development of ARR. Our data indicate that ARR is more pronounced in tomato cultivars
with higher basal resistance. Additionally, increased plant biomass in older plants does
not contribute to ARR. Virus source plants with a younger age at initial inoculation
facilitates virus acquisition by whiteflies. Finally, an analysis on plant hormones suggests
that salicylic acid (SA) may play a major role in the development of ARR in tomato
against TYLCV. These findings provide new insights into the developmental resistance
in tomato against TYLCV as well as clues for the deployment of ARR in the management
of diseases caused by TYLCV.
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INTRODUCTION

Plant viral diseases pose serious threats to the production of many crops worldwide (Jones, 2020).
In recent decades, diseases caused by tomato yellow leaf curl virus (TYLCV) (family Geminiviridae,
genus Begomovirus) have imposed substantial losses to tomato production (Navas-Castillo et al.,
2011; Dhaliwal et al., 2019). TYLCV infection in tomato plants results in yellowing and reduced
size of the apical leaves, curling of leaf margins and stunted plant growth (Cohen and Harpaz,
1964; Prasad et al., 2020). First discovered in Jordan Valley in the 1930s, TYLCV was biologically
characterized and named in 1960s (Cohen and Harpaz, 1964). Whilst TYLCV was confined to a few
countries in Middle East in the first few decades post its characterization, its global spread started
in 1980s when the Israel and Mild strains emerged and its whitefly vectors invaded many regions
worldwide (Lefeuvre et al., 2010). Subsequently, TYLCV has become one of the most important
plant pathogens in tomato production in dozens of countries around the globe as well as a focus
for research in plant virology (Lefeuvre et al., 2010; Mabvakure et al., 2016; Prasad et al., 2020).
Under natural conditions, TYLCV is transmitted by whiteflies of the Bemisia tabaci complex in a
persistent circulative manner (Fiallo-Olivé et al., 2020; Wang and Blanc, 2021).
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To date, various measures have been adopted to control
TYLCV, including chemical, cultural and physical strategies, and
breeding resistant plants (Rojas et al., 2018). Chemical control
of its whitefly vectors, whilst commonly used, has resulted in
the development of pesticide resistance and deleterious effects
on the environment and human health (Gilbertson et al., 2015;
Basit, 2019). Successful implementation of some cultural and
physical tactics such as the application of a whitefly host-free
period, colored shading nets and polyester covers, have also been
reported (Polston and Anderson, 1997; Ben-Yakir et al., 2012; Al-
Shihi et al., 2016). Nevertheless, increasing resistance in tomato
plants via breeding represents the most effective measure to
combat TYLCV (Islam and Wu, 2017; Dhaliwal et al., 2019).
In resistance breeding, the most widely used resistance genes
are Ty-1, Ty-2, and Ty-3 that originate from Solanum chilense
and S. habrochaites (Dhaliwal et al., 2019). However, to date
genetic resources against TYLCV have been found in only a few
wild relatives of cultivated tomato and introgression of resistance
into tomato cultivars may take years and end up unsuccessful
(Dhaliwal et al., 2019). More importantly, resistance break-down
has been found in southeast Spain where severe epidemics of
TYLCV in tomato cultivars carrying the Ty-1 gene were reported
(Torre et al., 2018). Therefore, alternative measures to improve
the resistance in tomato plants are needed.

Post entry of viruses into plants, the outcome of virus-
plant interaction may vary from immune to severe disease
progression depending on many intrinsic and environmental
factors (Osterbaan and Fuchs, 2019). Environmental factors,
such as temperature and water availability, may significantly
impact the interactions between plants and plant pathogens such
as viruses, leading to altered disease development (Velásquez
et al., 2018). Intrinsically, plant resistance and infectivity of
viruses represent the most important factors affecting virus-
plant interactions. On the plant side, many factors such as
plant cultivar and age, among others, have been shown to
modulate resistance to viruses (Osterbaan and Fuchs, 2019).
The increase of resistance with plant age, often referred to as
age-related resistance (ARR), has been shown to substantially
affect virus-plant interactions (Panter and Jones, 2002; Hu and
Yang, 2019). For example, the susceptibility of pepper to tomato
spotted wilt tospovirus and soybean to bean pod mottle virus
decreased with the increase of plant age (Moriones et al.,
1998; Beaudoin et al., 2009; Byamukama et al., 2015). Likewise,
the expression of genetic resistance to TYLCV was shown to
increase with plant age (Levy and Lapidot, 2008). However, our
knowledge of ARR in tomato against TYLCV is limited. Many
key questions remain, for example, does plant age impact virus
quantity in plants and in turn virus transmission by whiteflies
that acquire TYLCV from these plants? Moreover, the ecological
and molecular mechanisms underlying ARR against TYLCV in
tomato remain unknown.

In the present study, we explored the factors involved in
ARR against TYLCV in tomato plants. First, we compared
TYLCV resistance among three tomato cultivars. Second, we
characterized the impact of plant age on TYLCV resistance in
plants of these cultivars. Third, we examined the effects of plant
biomass at inoculation on ARR. Fourth, we analyzed the effects

of virus source plants with varying ages at initial inoculation on
acquisition and transmission of TYLCV by whiteflies. Finally,
we examined the roles of plant hormones in ARR. Our findings
provide insights into how ARR develops in tomato against
TYLCV and how it might be utilized to combat the diseases
caused by TYLCV.

MATERIALS AND METHODS

Plants and Insects
Three cultivars of tomato (S. lycopersicum Mill), namely Pufen7,
Pufen5, and Hezuo903, and one cultivar of cotton (Gossypium
hirsutum cv. Zhe-Mian 1793), were used. Tomato seeds were
purchased from Shanghai Funong Seed Co., Ltd., and cotton
seeds were provided by the Institute of Crop Sciences, Zhejiang
University. All plants were grown in insect-proof greenhouses
under natural lighting at 25 ± 3◦C. Unless specified otherwise,
all plants were watered with solutions containing 0.17 g/L
macromineral water-soluble fertilizer (DeMei LvYuan, China).
For insects, a culture of MEAM1 whiteflies of the B. tabaci
complex (mtCOI GenBank accession code: KM821540) was used.
Whiteflies were reared on cotton plants in insect-proof cages in
climate chambers at 26 ± 2◦C, 60–80% relative humidity and
14/10 h light/dark cycles. In all experiments, newly emerged
female whiteflies (0–3 days post emergence) were used. The
purity of the whitefly culture was assessed every 3 months using
PCR-restriction fragment length polymorphism and mtCOI
sequencing (Qin et al., 2013).

PCR and Quantitative PCR Detection of
TYLCV in Tomato Plants and Whitefly
For the detection of TYLCV in tomato plants, the first apical
fully-expanded leaves were harvested and subjected to DNA
extraction. For TYLCV detection in whiteflies, adults were
collected as groups of 15 and then subjected to DNA extraction.
DNA extraction was done using procedures described previously
(Pan et al., 2017). PCR detection of TYLCV was performed with
primers TYLCV-F (5′-ATCGAAGCCCTGATATCCCCCGTGG-
3′) and TYLCV-R (5′-CAGAGCAGTTGATCATG-3′).
Quantitative PCR (qPCR) analysis of TYLCV was performed
using SYBR Premix Ex Taq II (Takara, Japan) and CFX96 Real-
Time PCR Detection System (Bio-Rad, Unted States) with the
primers TYLCV-RTF (5′-GAAGCGACCAGGCGATATAA-3′)
and TYLCV-RTR (5′-GGAACATCAGGGCTTCGATA-3′) for
TYLCV, and primers WF-Actin-F (5′-TCTTCCAGCCATCCT
TCTTG-3′) and WF-Actin-R (5′-CGGTGATTTCCTT
CTGCATT-3′) for whitefly actin, and Tom-Actin-F (5′-
TGGAGGATCCATCCTTGCATCAC-3′) and Tom-Actin-R
(5′-TCGCCCTTTGAAATCCACATCTGC-3′) for tomato actin.

Standard Procedure of
Agrobacteria-Mediated Virus Inoculation
An infectious clone of TYLCV isolate SH2 (GenBank accession
code: AM282874.1), provided by Professor Xueping Zhou
(Institute of Biotechnology, Zhejiang University), was used
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(Wu et al., 2006). To perform agro-inoculation, agrobacteria
containing infectious clones of TYLCV were first cultured
until OD600 reached 1.5–2.0, and then resuspension buffer
(10 mM MgCl2, 10 mM MES, 200 µM Acetosyringone) was
used to re-suspend the agrobacteria. Re-suspended agrobacteria
were then incubated at room temperature for 1 h and 1 mL
syringes were used to introduce the agrobacteria into leaves
of tomato plants. In virus inoculation experiments using
agrobacteria, 0.6 mL of agrobacteria solution was introduced
into each seedling and the test plants were then cultivated
for 28 days before being sampled for PCR and qPCR
detection of TYLCV.

Standard Procedure of
Whitefly-Mediated Virus Inoculation
In virus inoculation experiments using viruliferous whiteflies,
TYLCV-infected Hezuo903 plants that were agro-inoculated
at two true-leaf stage and had grown to 7–8 true-leaf stage
were used as the source of inoculum. Whiteflies were collected
from the lab culture and released onto TYLCV-infected plants
to feed for 48 h for virus acquisition. Viruliferous whiteflies
were then collected and placed on leaves (enclosed with leaf-
clip cages) of test plants for 48 h for virus transmission.
The number of whiteflies per test plants was five. Leaf-clip
cages were made as reported before (Ruan et al., 2007).
Whitefly survival was recorded during virus transmission and
the live whiteflies were collected at the end of transmission
and subjected to TYLCV quantification. Immediately after
whitefly removal, imidacloprid (20 mg/L) was sprayed to
kill whitefly eggs and the plants were cultivated for a
further 28 days before being sampled for PCR and qPCR
detection of TYLCV.

Comparison of TYLCV Resistance
Among Three Tomato Cultivars
Tomato seedlings of the three cultivars were grown to two
true-leaf stage. Virus inoculation was conducted using the
standard procedure of agrobacteria-mediated virus inoculation
(Variable I, Table 1). Measurement of plant height (stem length
in centimeters from soil level to stem tip) was conducted
4 weeks post virus inoculation as described before (Murphy and
Bowen, 2006). In addition, two experiments of virus inoculation
by whiteflies were conducted: in experiment 1, the standard
procedure of whitefly-mediated virus inoculation was used;
in experiment 2, the durations of both virus acquisition and
virus inoculation were increased to 96 h and the number of
viruliferous whiteflies was increased to 10 per plant (Variable I,
Table 1).

Comparison of TYLCV Resistance
Among Plants of Different Ages
Tomato seeds were sown on a weekly basis, and seedlings
were transplanted when they had reached two true-leaf stage.
For each of the three cultivars, four batches of seedlings
with the age of 0, 7, 14, and 21 days post transplanting
(DPT), respectively, were prepared. Typical images of seedlings

at different ages are presented in Supplementary Figure 1.
Comparison of TYLCV resistance among plants of the four
age-batches were conducted using the standard procedures of
agrobacteria-mediated and whitefly-mediated virus inoculation
(Variable II, Table 1).

Comparison of TYLCV Resistance
Among Plants of the Same Chronological
Age With Different Biomass
Pufen7 and Hezuo903 seedlings at 0 DPT were prepared. For
each of the two cultivars, seedlings were divided into three
groups. The three groups of seedlings were watered with water,
a solution containing 0.17 g/L macromineral water-soluble
fertilizer and a solution containing 0.34 g/L macromineral water-
soluble fertilizer, respectively. At 21 DPT, virus inoculation was
conducted for the three groups of plants using the standard
procedure of agrobacteria-mediated inoculation (Variable III,
Table 1).

Comparison of Virus Acquisition and
Transmission by Whiteflies When Plants
Inoculated at Different Ages Were Used
as the Source of Inoculum
Two age groups of Hezou903 plants at 0 and 21 DPT were
prepared and then agro-inoculated. Four weeks later, whiteflies
were collected from the lab culture and released onto these plants
to feed for 48 h for virus acquisition. Some viruliferous whiteflies
were then collected and subjected to analysis of virus quantity.
Further, virus transmission capacity of the viruliferous whiteflies
from plants of each of the two age groups were tested with
Hezuo903 seedlings of 0 DPT using the standard procedure of
whitefly-mediated virus inoculation (Variable IV, Table 1).

Analysis of Salicylic Acid and
Jasmonates Contents
Pufen7 and Hezuo903 plants at 0 and 21 DPT were prepared.
For the analysis of salicylic acid (SA) and jasmonates (JA)
contents, leaves from three seedlings were mixed and used
as one sample. For each treatment (cultivar × plant age),
four and nine-ten replicates were conducted for SA and JA,
respectively. Samples were first powdered in liquid nitrogen
and then 0.15 g of leaf powder was transferred into centrifuge
tubes. Plant hormones were extracted using 1 mL of ethyl
acetate containing 10 ng of D4-SA and D6-JA. All samples
were vortexed and centrifuged and supernatants collected and
concentrated using a vacuum concentrator. The dry residues
were re-suspended in 110 µL of MeOH: H2O (50: 50, v/v).
After mixing and centrifugation, 100 µL of the supernatants
were collected. SA and JA were analyzed using an Agilent
6460 triple quadrupole mass spectrometer (Agilent Technologies,
United States) equipped with an electrospray ionization (ESI)
source that operated in the negative ion multiple-reaction
monitoring (MRM) mode. Agilent Mass Hunter Workstation was
used for data acquisition and processing.
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TABLE 1 | Variables tested in experiments for comparing resistance to Tomato yellow leaf curl virus (TYLCV) among tomato plants of different cultivars, of the same
cultivar with different ages and of the same age with different biomass as well as for examining the effects of age of inoculum virus-infected plants on virus acquisition
and transmission by whiteflies.

Variables Method of virus
inoculation

Duration of virus
acquisition (h)

Virus inoculation via whitefly feeding No. of treatments
/No. of replicates

No. of plants per
replicates

Duration (h) No. of whiteflies per plant

Variable I: TYLCV Agrobacteria n/a- n/a n/a 3/3 7–8

resistance among three Whitefly: experiment 1 48 48 5 3/3 7–8

tomato cultivars Whitefly: experiment 2 96 96 10 3/3 7–8

Variable II: TYLCV Agrobacteria n/a- n/a n/a 4/3 6–10

resistance among plants of four
different ages

Whitefly 48 48 5 4/3 6–10

Variable III: TYLCV resistance
among plants of the same age
with three different biomass

Agrobacteria n/a- n/a n/a 3/8–15 1

Variable IV: Effects of age of
inoculum virus-infected plants
on virus acquisition and
transmission by whitefly

Whitefly 48 48 5 2/3 8–9

n/a stands for not applicable.

Quantitative Reverse Transcription PCR
Analysis of SA Biosynthesis Genes
Seedlings of Pufen7 and Hezuo903 of different ages were
prepared. For each treatment (cultivar × plant age), six
replicates were conducted. Total RNAs were extracted with
TRIzol and cDNA was synthesized using the PrimeScript
RT reagent Kit with gDNA Eraser (Takara, Japan). qRT-
PCR was performed using SYBR Premix Ex Taq II (Takara,
Japan) and CFX96 Real-Time PCR Detection System
(Bio-Rad, United States) with the primers ICS1-RTF
(5′-GGCTTTAGCTGGAACACGG-3′) and ICS1-RTR (5′-
CAATCTTCTTCTTATGCACTCCC-3′) for ICS1, and primers
PAL-F (5′-CGTTATGCTCTCCGAACATC-3′) and PAL-R (5′-
GAAGTTGCCACCATGTAAGG-3′) for PAL, and Tom-Actin-F
(5′-TGGTCGGAATGGGACAGAAG-3′) and Tom-Actin-R
(5′-CTCAGTCAGGAGAACAGGGT-3′) for tomato actin, and
Tom-EF1α-F (5′-ATTGGAAATGGATATGCTCCA-3′) and
Tom- EF1α-R (5′-TCCTTACCTGAACGCCTGTCA-3′) for
tomato EF1α. Each gene was analyzed in two technical replicates.

Statistical Analysis
For the analysis of virus quantity, real time data were calculated
using 2 −M Ct as normalized to actin. For the analysis of gene
expression level, real time data were calculated using 2−M Ct

as normalized to the geometric mean of two reference genes
actin and elongation factor 1α (EF1α; Vandesompele et al., 2002).
All percentage data were arcsine square root transformed for
statistical analysis and back-transformed for presentation. For
the comparison of virus transmission efficiency, virus quantity,
plant hormone contents and gene expression level, one-way
analysis of variance (ANOVA) along with Fisher’s least significant
difference (LSD) was used when three or more treatments were
conducted, and Student’s independent t-test was used when only
two treatments were conducted. All data in this study were
presented as the mean± standard errors of mean (mean± SEM).

The differences between treatments were considered significant
when p < 0.05. All statistical analysis was performed using SPSS
20.0 Statistics and EXCEL.

RESULTS

Resistance to TYLCV in Three Tomato
Cultivars
Tomato yellow leaf curl virus infection did not induce noticeable
symptom in Pufen7 plants (Figure 1A). In Pufen5 plants
yellowing of several apical leaves was observed; in Hezou903
plants both yellowing and severe leaf curl were observed
(Figures 1B,C). TYLCV infection significantly reduced the
height of Pufen5 (by 32.1%) and Hezou903 (by 53.4%) plants,
but did not affect the height of Pufen7 plants (Figures 1D–F).
Some yellowing was observed in cotyledons and old leaves that
were agro-inoculated in both un-infected and TYLCV-infected
plants for each cultivar. Post agro-inoculation, 95.2% of Pufen7
plants and all the plants of Pufen5 and Hezou903 were infected by
TYLCV (Figure 2A). The highest quantity of TYLCV was found
in Hezou903, followed by Pufen5 and then Pufen7 (Figure 2B).
Similarly, two whitefly transmission assays revealed that the
highest TYLCV infection rate was always found in Hezou903,
followed by Pufen5 and then Pufen7 (Figures 2C,D). Notably,
no successful transmission was found for Pufen7 plants. During
virus transmission, there was no significant difference in whitefly
survival rate and TYLCV quantity in recovered whiteflies among
plants of different cultivars (Figures 2E–G).

Effects of Plant Age on TYLCV
Resistance in Pufen7 Plants
As whiteflies were unable to transmit TYLCV to Pufen7 plants,
TYLCV resistance in Pufen7 plants of different ages was assayed
only by agro-inoculation and virus infection status was assessed
4 weeks post inoculation. TYLCV infection rate decreased
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FIGURE 1 | Typical images and height of un-infected and tomato yellow leaf curl virus (TYLCV)-infected tomato plants of different cultivars. (A–C) Image of Pufen7,
Pufen5, and Hezuo903. (D–F) Height of un-infected and TYLCV-infected tomato plants. Photographing and measurement of plant height were conducted 4 weeks
post virus inoculation. Values are means ± SEM in panels (D–F) (n = 8–15). *Above columns indicate significant differences (independent t-test, p < 0.05).

FIGURE 2 | Resistance to tomato yellow leaf curl virus (TYLCV) in plants of tomato cultivars Pufan7, Pufen5, and Hezuo903. (A) Percentage of TYLCV-infected
plants in agro-inoculated plants; (B) Relative quantity of virus in agro-inoculated plants; (C) Percentage of TYLCV-infected plants in whitefly-inoculated plants when
the durations of both virus acquisition and transmission were 48 h and five whiteflies were used per test plant; (D) Percentage of TYLCV-infected plants in
whitefly-inoculated plants when the durations of both virus acquisition and transmission were 96 h and ten whiteflies were used per test plant; (E) Whitefly survival on
plants when five whiteflies were used per test plant; (F) Whitefly survival on plants when ten whiteflies were used per test plant; (G) Relative quantity of virus in
whiteflies recovered from plants post virus transmission when 10 whiteflies were used per test plant. Values are means ± SEM (n = 3 for panels (A,C,D) and in each
replicate 7–8 plants were used; n = 14 for panel (B); n = 24 for panels (E,F); n = 4 for panel (G)]. Different letters above the columns indicate significant differences
(one-way ANOVA, p < 0.05).
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FIGURE 3 | Resistance to tomato yellow leaf curl virus (TYLCV) in Pufen7
seedlings of 0, 7, 14, and 21 DPT. (A) Percentage of TYLCV-infected plants in
agro-inoculated plants; (B) Relative quantity of virus. Values are
means ± SEM (n = 3 and in each replicate 7–8 plants were used for panel
(A); n = 8 for panel (B)]. Different letters above the columns indicate significant
differences (one-way ANOVA, p < 0.05).

sequentially from 83.3 to 45.8% with the increase of plants age
(Figure 3A). An obvious reduction in TYLCV quantity was
observed with the increase of plant age (Figure 3B).

Effects of Plant Age on TYLCV
Resistance in Pufen5 Plants
When TYLCV was agro-inoculated into plants, TYLCV infection
rate in Pufen5 plants did not differ significantly between plants of
0 and 7 DPT. However, for plants of 7–21 DPT, a slight decrease
of TYLCV infection rate from 100 to 80.7% was observed with
the increase of plant age (Figure 4A). No significant difference
was found for TYLCV quantity in plants of different ages
post agro-inoculation (Figure 4B). When whitefly transmission
was used, TYLCV infection rate decreased from 87.5% at 7
DPT to 50% at 21 DPT (Figure 4C). Sequential decreases of
TYLCV quantity with the increase of plant age was observed
(Figure 4D). For whiteflies, during virus transmission their
survival rate on plants at 14 DPT (92.2%) was significantly
higher than that on plants at 0 DPT (77.1%) and 21 DPT
(81.7%) (Figure 4E). No significant difference in TYLCV

quantity in whiteflies recovered from plants of different ages was
found (Figure 4F).

Effects of Plant Age on TYLCV
Resistance in Hezuo903 Plant
There was no significant difference in TYLCV infection rate
in Hezuo903 plants of different ages when TYLCV was agro-
inoculated into plants (Figure 5A). However, TYLCV quantity in
plants decreased significantly from 0 to 7 DPT and did not differ
significantly among plants of 7, 14, and 21 DPT (Figure 5B).
When whitefly transmission was used, there was no significant
difference in TYLCV infection rate among plants of different ages
(Figure 5C), but again TYLCV quantity decreased significantly
with the increase of plant age (Figure 5D). For whiteflies, during
virus transmission their survival rate on plants was similar except
that survival rate on plants of 7 DPT was slightly lower than
that on plants of 21 DPT (Figure 5E). There was no significant
difference in TYLCV quantity in whiteflies recovered from plants
of different ages (Figure 5F).

Effects of Plant Biomass at Inoculation
on Virus Quantity
Plants differed in biomass (size) among the three fertilizer
treatments for both Pufen7 (Figure 6A) and Hezuo903
(Figure 6B). In the data of relative quantity of virus of the
three fertilizer treatments in Pufen7, we noted one outlier
with exceptionally high virus quantity in each of the three
treatments: 41.2, 18.9, and 23.1 for water, 0.17 g/L, and 0.34 g/L,
respectively. After elimination of the outliers, Kolmogorov–
Smirnov analysis showed that the remaining data followed a
normal distribution and thus were analyzed using ANOVA.
Following virus inoculation, virus quantity was significantly
higher in plants watered with a solution containing 0.34 g/L
macromineral water-soluble fertilizer than that in the other two
treatments for Pufen7 (Figure 6C). Virus quantity did not differ
significantly among plants of the three fertilizer treatments for
Hezuo903 (Figure 6D).

Effects of Virus Inoculum Plants
Inoculated at Different Ages on Virus
Acquisition and Transmission by
Whiteflies
Tomato yellow leaf curl virus-infected Hezuo903 plants that were
agro-inoculated at 0 and 21 DPT were presented to whiteflies for
virus acquisition. TYLCV quantity in whiteflies was significantly
higher when the source of inoculum was agro-inoculated at
0 DPT than that at 21 DPT (Figure 7A). Virus transmission
rate by whiteflies did not differ significantly between the two
treatments (Figure 7B).

Effects of Plant Age on the Contents of
SA and JA
For both cultivars, the level of endogenous SA was significantly
higher in seedlings of 21 DPT than that in seedlings of 0 DPT
(Figures 8A,B). Similarly, endogenous JA level was significantly

Frontiers in Plant Science | www.frontiersin.org 6 July 2021 | Volume 12 | Article 685382188

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-685382 July 24, 2021 Time: 17:13 # 7

Zhang et al. Age-Related Resistance Against TYLCV

FIGURE 4 | Resistance to tomato yellow leaf curl virus (TYLCV) in Pufen5 seedlings of 0, 7, 14, and 21 DPT. (A) Percentage of TYLCV-infected plants in
agro-inoculated plants; (B) Relative quantity of virus in agro-inoculated plants; (C) Percentage of TYLCV-infected plants in whitefly-inoculated plants; (D) Relative
quantity of virus in whitefly-inoculated plants; (E) Whitefly survival on tomato seedlings of different ages; (F) Relative quantity of virus in whiteflies recovered post virus
transmission. Values are means ± SEM [n = 3 and in each replicate 7–8 plants were used for panels (A,C); n = 7–8 for panels (B,D); n = 21–24 for panel (E); n = 4
for panel (F)]. Different letters above the columns indicate significant differences (one-way ANOVA, p < 0.05).

FIGURE 5 | Resistance against tomato yellow leaf curl virus (TYLCV) in Hezuo903 seedlings of 0, 7, 14, and 21 DPT. (A) Percentage of TYLCV-infected plants in
agro-inoculated plants; (B) Relative quantity of virus in agro-inoculated plants; (C) Percentage of TYLCV-infected plants in whitefly-inoculated plants; (D) Relative
quantity of virus in whitefly-inoculated plants; (E) Whitefly survival on tomato seedlings; (F) Relative quantity of virus in whiteflies recovered post virus transmission.
Values are means ± SEM [n = 3 and in each replicate 6–10 plants were used for panels (A,C); n = 7–8 for panels (B,D); n = 21–24 for E; n = 3 for panel (F)].
Different letters above the columns indicate significant differences (one-way ANOVA, p < 0.05).
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FIGURE 6 | Picture of tomato seedlings that were treated with water or solutions containing different concentration of fertilizer for 21 days and relative quantity of
virus in these plants post agro-inoculation. (A) Pufen7 seedlings; (B) Hezuo903 seedlings; (C) Relative quantity of virus in Pufen7 plants; (D) Relative quantity of virus
in Hezuo903 plants. Values are means ± SEM in panels (C,D) [n = 15 for panel (C) and 8 for panel (D)]. Different letters above the columns in panels (C,D) indicate
significant differences (one-way ANOVA, p < 0.05).

higher in seedlings of 21 DPT than that in seedlings of 0 DPT
(Figures 8C,D). Expression of gene ICS1 in Pufen7 increased
significantly at the early stages and then decreased to levels lower
than that at 0 DPT (Figure 8E). ICS1 expression in Hezuo903
decreased significantly from 0 to 14 DPT but then increased to a
level similar to that at 0 DPT (Figure 8F). For PAL, its expression
in Pufen7 increased significantly from 0 to 7 DPT but decreased
thereafter (Figure 8G). PAL expression in Hezuo903 decreased
significantly from 0 to 14 DPT and then increased to levels similar
to that at 0 DPT (Figure 8H).

DISCUSSION

In this study, we explored the influence of basal resistance to
TYLCV in tomato on ARR using three cultivars that differ in
TYLCV resistance. Our data indicate: (1) virus quantity in plants
mostly decreased with the increase of plant age at the initial
inoculation (Figures 3–5), (2) ARR appeared more evident in
cultivars with higher basal resistance (Figures 3–5), (3) tomato
plants with higher biomass at inoculation contained similar or
higher quantity of TYLCV later in the plants (Figure 6), and
(4) virus source plants with a younger age at initial inoculation
facilitated virus acquisition by whiteflies (Figure 7). In addition,
our analysis on plant hormones suggest that endogenous SA and
JA level increased with plant age (Figure 8).

In the management of TYLCV, resistance breeding by
introgression of genes from wild relatives of tomato into
cultivated tomato has been considered as one of the most
effective strategies in combating TYLCV (Islam and Wu, 2017;
Dhaliwal et al., 2019). As the genetic resources of resistance
from wild relatives of tomato are limited (Dhaliwal et al.,
2019), employment of ARR may facilitate better utilization
of them. Here we found that ARR is more pronounced in
tomato cultivars with higher basal resistance. Hence, ARR can
be used in combination with resistance from other sources such
as Ty-1, Ty-2, and Ty-3 to obtain higher overall resistance.
Moreover, even in the susceptible cultivar Hezuo903, reduced
TYLCV quantity was observed with increased plant age at
initial inoculation. The reduced TYLCV quantity may in turn
reduce the subsequent spread of the virus by whitefly vectors.
Therefore, maintaining tomato seedlings free of TYLCV to an
older age in well-protected nurseries before transplanting into
open fields can be a cost-effective measure in disease management
(Riley and Srinivasan, 2019).

Since plants of different ages differ significantly in biomass
and resistance to TYLCV, we sought to explore the contribution
of biomass in ARR. Intriguingly, tomato plants of the same
chronological age with higher biomass at inoculation contained
similar or higher quantity of TYLCV later in the plants, indicating
that increased biomass in older plants did not contribute to ARR.
As regards one outlier with exceptionally high virus quantity in
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FIGURE 7 | Tomato yellow leaf curl virus (TYLCV) quantity in whiteflies and
virus transmission efficiency by whiteflies when Hezou903 plants inoculated at
0 and 21 DPT were used as the source of inoculum. (A) TYLCV quantity in
whiteflies; (B) TYLCV transmission efficiency by whiteflies. Values are
means ± SEM (n = 4 for panel (A); n = 3 and each replicate contains 8–9 test
plants for panel (B). *Above columns indicate significant differences
(independent t-test, p < 0.05).

each of the three fertilizer treatments for Pufen7 (Figure 6C),
we suspect that the Pufen7 seeds used in the experiment,
which we obtained from a commercial source, may

contain a small proportion of seeds that were partially
susceptible to TYLCV.

As plants grow, substantial changes of many important traits,
such as physical barriers, chemical defense and innate immunity
may occur and contribute to ARR (Hu and Yang, 2019).
For example, physical barriers contributed to ARR in potato
against potato virus Y by modulating the systemic movement
of virions in the foliage (Chikh-Ali et al., 2020). In cucumber
fruit ARR against Phytophthora capsici can be attributable to
the increases in transcriptional level of R-genes and activity of
resistance related transcription factors (Mansfeld et al., 2020).
Additionally, SA or other components in the SA-signaling
pathway may contribute to ARR in Arabidopsis thaliana against
several pathogens (Carviel et al., 2010; Wilson et al., 2017). Here,
we analyzed the contents of SA and JA, two major defense-
related plant hormones (Pieterse et al., 2012; Pan et al., 2021;
Ye et al., 2021); we found that both endogenous SA and JA
increased with plant age. Since SA is well-known for conferring
resistance against biotrophic pathogens such as viruses (Pieterse
et al., 2012; Pan et al., 2021; Ye et al., 2021), we propose
that SA may play a major role in ARR against TYLCV in
tomato plants. However, whether JA contribute to ARR against
TYLCV warrants further investigations. Further, gene expression
analysis was conducted to determine whether increase in plant
hormone level resulted from increase in expression level of
plant hormone biosynthesis genes. So far, two SA biosynthesis
pathways have been identified in plants, namely phenylalanine
ammonia lyase (PAL)-mediated phenylalanine pathway and
isochorismate synthase (ICS)-mediated isochorismate pathway
(An and Mou, 2011; Chen et al., 2020). In the present study,
we found that the relative expression level of ICS1 and PAL
did not increase appreciably when tomato plants became older,
suggesting that the increased SA contents in older plants
may be due to the accumulation of this hormone in plants
during development.

FIGURE 8 | Contents of salicylic acid (SA) and jasmonates (JA) and relative expression of SA biosynthesis genes in Pufen7 and Hezuo903 seedlings. (A) Contents of
SA in Pufen7 seedlings of 0 and 21 DPT; (B) Contents of SA in Hezuo903 seedlings; (C) Contents of JA in Pufen7 seedlings; (D) Contents of JA in Hezuo903
seedlings; (E) Relative expression level of ICS1 in Pufen7 seedlings of 0, 7, 14, and 21 DPT; (F) Relative expression level of ICS1 in Hezuo903 seedlings; (G) Relative
expression level of PAL in Pufen7 seedlings; (H) Relative expression level of PAL in Hezuo903 seedlings. Values are means ± SEM [n = 4 for panels (A,B); n = 9–10
for panels (C,D); n = 6 for panels (E–H)]. * above columns in panels (A–D) and different letters in panels (E–H) indicate significant differences among plants of
different ages [independent t-test, p < 0.05 for panels (A–D); one-way ANOVA, p < 0.05 for panels (E–H)].
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SA is produced in a wide range of prokaryotic and eukaryotic
organisms (An and Mou, 2011). In plants, SA plays important
roles in regulating many biological processes including growth
and immune response (Koo et al., 2020). In the SA-signaling
pathway, SA binds to two classes of receptors NPR1 and
NPR3/NPR4, thereby regulating the expression of downstream
genes (Liu et al., 2020). So far, three main stages of plant-
virus interactions, namely intercellular trafficking, long-distance
movement and replication of viruses, have been found to be
regulated by SA (Zhao and Li, 2021). In addition, SA may
modulate plant-virus interactions indirectly by affecting other
antiviral pathways such as RNA silencing, pathogen-associated
molecular pattern-triggered and effector-triggered immunity
(Campos et al., 2014; Yang et al., 2015; Palukaitis and Yoon, 2020).
Here we found that SA may directly contribute to ARR in tomato
against TYLCV. However, how SA modulates resistance in an
age-dependent manner warrants further investigations.

Taken together, we have found that ARR against TYLCV
in tomato plants is more evident in plants with higher basal
resistance. We revealed that plant biomass does not contribute
to ARR in tomato against TYLCV, but virus source plants with
a younger age at initial inoculation facilitates virus acquisition
by whiteflies. We also showed that SA may directly contribute
to ARR. Our findings provide new knowledge of ARR in tomato
against TYLCV as well as clues for the deployment of ARR in the
management of diseases caused by TYLCV.
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Orthotospoviruses are responsible for serious crop losses worldwide. Orthotospoviral
diseases have spread rapidly in China over the past 10 years and are now found
in 19 provinces. Currently, 17 Orthotospovirus species have been reported in China,
including eight newly identified species from this genus. The number of new highly
pathogenic Orthotospovirus strains or species has increased, likely because of the virus
species diversity, the wide range of available hosts, adaptation of the viruses to different
climates, and multiple transmission routes. This review describes the distribution of
Orthotospovirus species, host plants, typical symptoms of infection under natural
conditions, the systemic infection of host plants, spatial clustering characteristics of virus
particles in host cells, and the orthotospoviral infection cycle in the field. The evolutionary
relationships of orthotospoviruses isolated from China and epidemiology are also
discussed. In order to effectively manage orthotospoviral disease, future research needs
to focus on deciphering the underlying mechanisms of systemic infection, studying
complex/mixed infections involving the same or different Orthotospovirus species or
other viruses, elucidating orthotospovirus adaptative mechanisms to multiple climate
types, breeding virus-resistant plants, identifying new strains and species, developing
early monitoring and early warning systems for plant infection, and studying infection
transmission routes.

Keywords: Orthotospovirus, species diversity, systemic infection, multiple transmission routes, monitoring and
early warning

INTRODUCTION

Orthotospoviruses have a worldwide distribution and cause serious economic losses in a variety of
crops (Komoda et al., 2017). Before 2017, orthotospoviruses were considered to be part of the genus
Tospovirus in the family Bunyaviridae and were divided into seven or nine serogroups based on
serology (Chen et al., 2012b, 2016). However, in 2020, the International Committee on Taxonomy
of Viruses (ICTV) announced that the genus Orthotospovirus belongs to the family Tospoviridae,
order Bunyavirales, class Ellioviricetes, realm Riboviria, subphylum Polyploviricotina, phylum
Negarnaviricota, and kingdom Orthornavirae (Hong et al., 2020).

As with other members of the order Bunyavirales, orthotospovirus particles are spherical, and
multi-virions form aggregations in host-derived vesicles. Mature virions range in diameter from
80 to 120 nm. The surface of the virions is composed mainly of two glycoproteins (Gn and Gc),
which are responsible for the virus acquisition and transmission by the thrips vectors. The core
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of the virion contains three viral RNA fragments, named L RNA,
M RNA, and S RNAs according to their lengths, encapsulated
by the nucleocapsid protein (N). The orthotospovirus are single-
negative-stranded, ambisense RNA viruses. The L RNA (∼8.9 kb)
encodes the RNA-dependent RNA polymerase (RdRp) in the
complementary (vcRNA) strand; M RNA (∼4.8 kb) encodes the
movement protein (NSm) in the viral (vRNA) strand and the
Gn and Gc proteins in the vcRNA strand; and RNA S (∼2.9 kb)
encodes the N protein in the vcRNA and silencing suppressor
(NSs) in the vRNA strand (Oliver and Whitfield, 2016).

To date, many articles have illustrated details of the global
occurrence, epidemiology, and molecular interactions between
orthotospoviruses and their thrips vectors (Pappu et al.,
2009; Oliver and Whitfield, 2016). In this article, we will
summarize the latest research progress on species diversity,
occurrence, distribution, epidemiology, and management of
orthotospoviruses in China.

SYMPTOMATOLOGY

Symptoms of orthotospoviral disease in host plants are very
similar, with only minor differences between species of virus.
The major symptoms are ringspots (including chlorotic, yellow,
necrotic, and zonate spots), bud necrosis, silver mottle, and
vein banding. Zonate spots are characteristic of orthotospovirus
infection. Although symptoms vary between disease stages,
chlorotic, yellow, and necrotic ringspots can occur at all stages
(early, middle, and late). Herbaceous plants with severe disease
die in the late stage. The symptoms occur in the leaves and fruit,
with a few cases of stem necrosis (Figure 1).

HOST RANGE

The host range of orthotospovirus has expanded from crops to
other plants, including weeds such as Bidens bipinnata (Zhang
et al., 2020) and even to woody plants such as kiwifruit, mulberry,
and macadamia nut (Fang et al., 2013; Meng et al., 2015;
Wang et al., 2016). Orthotospoviral diseases in China mainly
involve diseases of vegetables, fruits, tobacco, groundnuts, and
ornamental plants, including crops of the families Solanaceae,
Cucurbitaceae, Asteraceae, Brassicaceae, Fabaceae, Orchidaceae,
and Amaryllidaceae (Alliaceae), weeds (such as B. bipinnata
L.), and woody plants (such as kiwifruit, macadamia nut, and
mulberry) (Table 1).

DIVERSITY AND EVOLUTIONARY
RELATIONSHIPS

There are currently 30 Orthotospovirus species known
worldwide, comprising 11 definitive species (written in
italics) and 19 tentative species (written in upright letters)
(Figure 2A; International Committee on Taxonomy of Viruses
Executive Committee [ICTVEC], 2020; Zheng et al., 2020).
Orthotospoviruses can be divided into five phylogenetic
clades based on the amino acid sequence of nucleocapsid

(N) protein (Figure 2A), namely the tomato spotted wilt
orthotospovirus (TSWV) clade, watermelon silver mottle
orthotospovirus (WSMoV) clade, soybean vein necrosis-
associated orthotospovirus (SVNV) clade, iris yellow spot
orthotospovirus (IYSV) clade, and groundnut yellow spot
orthotospovirus (GYSV) clade (Peng et al., 2011; Oliver and
Whitfield, 2016). Based on the geography of the recent
epidemics, viruses from the WSMoV and IYSV clades are
mainly found in Asia and Europe (Figure 3A). Viruses from
the WSMoV clade are most commonly found in East Asia and
mainly infect crops in the families Solanaceae, Cucurbitaceae,
and Asteraceae, with several new species from this clade reported
in recent years (Dong et al., 2008; Yin et al., 2014b; Zheng et al.,
2017, 2020). Viruses from the IYSV clade are mainly found
in Central Asia and Europe. Some of the species in this clade,
including IYSV and tomato yellow ring orthotospovirus (TYRV),
were originally isolated from plants in the Middle East but have
become endemic in Europe in recent years (Bag et al., 2015;
Zarzynska-Nowak et al., 2016). Viruses in the GYSV clade,
which is also Asian, have been reported from Taiwan province,
China, and India (Satyanarayana et al., 1996; Chao et al., 2001).
The SVNV and TSWV clades belong to the group found in the
Americas. Soybean vein necrosis-associated orthotospovirus
(SVNV) and bean necrotic mosaic orthotospovirus (BeNMV),
two species in the SVNV clade, have been reported to infect
bean plants in the United States and Brazil (Zhou et al., 2011; de
Oliveira et al., 2012). Several members of the TSWV clade were
originally found in the Americas (Torres et al., 2012; Webster
et al., 2015). However, TSWV, which belongs to the TSWV clade,
is now widely distributed throughout the world, and indeed is
considered to be the most harmful of the Orthotospovirus species,
causing great damage and large crop losses globally (Pappu, 2008;
Pappu et al., 2009).

The country from which the largest number of
Orthotospovirus species has been reported is China. A total
of 17 Orthotospovirus species are known in China to date
(Table 1), comprising 8 definitive and 10 tentative species. These
species belong to four phylogenetic clades (TSWV, WSMoV,
IYSV, and GYSV) (Figure 2B). Of the Orthotospovirus clades
found in China, the WSMoV clade is the most diverse. Several
new virus species in this clade have been reported for the first
time in China (Dong et al., 2008; Yin et al., 2014b; Zheng et al.,
2017, 2020), and it has been speculated that the WSMoV clade
originated in China. TSWV, which belongs to the Americas
group (Pappu et al., 2009), has become the virus posing the
largest threat to agricultural production in China. Compared
with native WSMoV clade viruses, TSWV has wider geographical
adaptability (Figure 3B), and evidence of adaptive evolution of
TSWV in China can be found in the phylogenetic analysis of
TSWV N gene diversity (Mao et al., 2019; Liu et al., 2021).

OCCURRENCE AND GEOGRAPHICAL
DISTRIBUTION

Before 2000, only two Orthotospovirus species had been reported
from China. The earliest record of TSWV symptoms in peanuts
was published in 1986 by Xu in Guangdong and Guangxi

Frontiers in Microbiology | www.frontiersin.org 2 August 2021 | Volume 12 | Article 686025195

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-686025 July 29, 2021 Time: 16:25 # 3

Zhang et al. Orthotospoviruses Epidemiology in China

FIGURE 1 | Typical symptoms of host plants infected with orthotospoviruses under natural field conditions. (A) Zonate spot in leaf of chili pepper (Capsicum annuum
L.) infected with tomato zonate spot orthotospovirus (TZSV). (B) Necrotic spot in leaf of macadamia nut (Macadamia ternifolia F. Muell.) infected with watermelon
silver mottle virus (WSMoV) serogroup member. (C) Yellow spot and ringspot in tomato (Solanum lycopersicum L.) infected with tomato spotted wilt orthotospovirus
(TSWV). (D) Necrotic zonate spot in tomato infected with tomato necrotic spot-associated orthotospovirus (TNSaV). (E) Chlorotic spot in sweet pepper (C. annuum
L.) infected with TZSV. (F) Necrotic ringspot in potato (Solanum tuberosum L.) infected with TZSV.

provinces (Xu et al., 1986). Subsequently, TSWV-like virus
particles were observed using transmission electron microscopy
in tomato and tobacco from Sichuan and Yunnan provinces
(Su et al., 1987; Yao, 1992; Zhang et al., 1998). WSMoV was
first reported in Taiwan and identified as a new Orthotospovirus
species through sequencing analysis (Chu and Yeh, 1998).

After 2000, the new Orthotospovirus species tomato zonate
spot orthotospovirus (TZSV) was reported in tomatoes from
Yunnan province, based on whole-genome sequencing and viral
particle clustering characteristics in host cells (Dong et al.,
2008). TZSV has a wide host range, causing harm in tomato,
pepper, tobacco, and other crops, and it is now the dominant
Orthotospovirus species found in these crops in Yunnan province
(Huang et al., 2015; Zheng et al., 2015c).

Different Orthotospovirus species have been reported from
different provinces, but TSWV is currently spreading rapidly
from the south to the north of China. A total of 17
Orthotospovirus species have been reported from 19 Chinese

provinces (Table 1 and Figure 3B). Yunnan has extremely high
Orthotospovirus diversity, with 13 species identified, while most
other Chinese provinces harbor only one or two Orthotospovirus
species. Of all the Orthotospoviruses, TSWV has the most
extensive distribution, occurring in 18 provinces to date (Table 1
and Figure 3B).

Yunnan has a high incidence of orthotospoviral disease,
with diverse species of viruses and host plants, and a wide
distribution. We identified 13 Orthotospovirus species from areas
with very different climates (including tropical, subtropical,
temperate, and cold temperate) (Figure 3C) and more than
20 species of natural host plants in Yunnan. The natural host
range included most of the plants in China known to become
infected with orthotospoviruses (Table 1). The orthotospoviruses
isolated from Yunnan belonged to four phylogenetic clades,
with the majority (seven species) belonging to the WSMoV
clade. Three new Orthotospovirus species were first reported
in Yunnan: TZSV (Dong et al., 2008), hippeastrum chlorotic
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TABLE 1 | Orthotospoviruses reported by China.

Phylogenetic
cladea

Speciesb Abbreviation Region Host Citations

WSMoV Calla lily chlorotic spot
orthotospovirus

CCSV Taiwan, Zhejiang,
Yunnan

Calla lilies (Zantedeschia sp.),
Celtuce (Lactuca sativa var.
augustana), Tobacco (Nicotiana
tabacum L.)

Chen et al., 2005; Liu et al.,
2012; Wu et al., 2018

WSMoV Capsicum chlorosis
orthotospovirus

CaCV Taiwan, Sandong,
Yunnan, Hubei,
Guangdong

Phalaenopsis (Phalaenopsis
aphrodite Rchb. F.), Calla lilies,
Peanut (Arachis hypogaea Linn.),
Tomato (Lycopersicon esculentum
Mill.), Zucchini (Cucurbita pepo L.)

Chen et al., 2006, 2007,
Chen et al., 2012a; Zheng
et al., 2008; Huang et al.,
2010; Yin et al., 2015; Sun
et al., 2018

WSMoV Mulberry vein banding
orthotospovirus

MVBaV Guangxi Mulberry (Morus alba L.) Meng et al., 2015.

WSMoV Melon yellow spot
orthotospovirus

MYSV Taiwan, Guangdong,
Hainan

Watermelon (Citrullus lanatus
(Thunb.) Matsum. et Nakai),
Cucumber (Cucumis sativus L.),
Melon (Cucumis melo L.)

Chao et al., 2010; Chen
et al., 2010; Liu et al.,
2010; Peng et al., 2011

WSMoV Pepper chlorotic spot
orthotospovirus

PCSV Taiwan, Yunnan Sweet pepper (Capsicum
frutescens L.), Chili pepper
(Capsicum annuum L.)

Cheng et al., 2013; Zheng
et al., 2017

WSMoV Tomato necrotic
spot-associated
orthotospovirus

TNSaV Guizhou Tomato, Kiwifruit (Actinidia sp.) Yin et al., 2014b; Wang
et al., 2016; Zheng et al.,
2016

WSMoV Tomato zonate spot
orthotospovirus

TZSV Yunnan, Guangxi Tomato, tabacco, Potato(Solanum
tuberosum L.), Chili pepper, Iris
tectorum (Iris tectorum Maxim.)

Dong et al., 2008; Cai
et al., 2011; Li et al., 2014;
Huang et al., 2015; Zheng
et al., 2015a,c

WSMoV Watermelon bud necrosis
orthotospovirus

WBNV Taiwan Watermelon Li et al., 2011

WSMoV Watermelon silver mottle
orthotospovirus

WSMoV Taiwan, Yunnan,
Guangdong,

Watermelon Chu and Yeh, 1998; Chu
et al., 2001; Rao et al.,
2013; Yin et al., 2014a

WSMoV Chili yellow ringspot
orthotospovirus

CYRSV Yunnan Tomato, Chili Pepper Zheng et al., 2020

TSWV Groundnut ringspot
orthotospovirus

GRSV Yunnan Potato Ding et al., 2004

TSWV Impatiens necrotic spot
orthotospovirus

INSV Taiwan, Yunnan Hippeastrum.sp., Phalaenopsis,
Dendrobium (Dendrobium nobile)

Adam et al., 1993; Zhang
Q. et al., 2010

TSWV Tomato spotted wilt
orthotospovirus

TSWV Yunnan, Taiwan,
Beijing, Liaoning,
Guangdong,
Heilongjiang,
Shaanxi, Ningxia,
Sichuan, Qinghai,
Shandong, Gansu,
Guizhou, Tianjin,
Chongqin, Hubei

Tomato, Watermelon, Peanut,
Chrysanthemum morifolium, Chili
pepper, Celtuce, Allium sativum
L.Chinese, Parsley (Petroselinum
crispum), Tobacco,Potato,
Pelargonium hortorum, Bidens
bipinnata L.

Adam et al., 1993; Zhang
et al., 1998, 2017, 2020;
Liu et al., 2010; Ren et al.,
2014; Zheng et al., 2015b;
Gao et al., 2016, 2020; Jie
et al., 2017; Sun et al.,
2017; Zhu et al., 2017;
Song et al., 2019; Wang
et al., 2019; Liu et al., 2019;
Du et al., 2020; Jin et al.,
2020; Wu et al., 2020;
Zhang and Feng, 2020

IYSV Hippeastrum chlorotic
ringspot orthotospovirus

HCRV Yunnan Hippeastrum sp., Zephyranthes
candida

Dong et al., 2013; Xu et al.,
2013; Wu and Liu, 2017

IYSV Iris yellow spot
orthotospovirus

IYSV Yunnan Tobacoo Wu and Liu, 2017

GYSV Groundnut chlorotic
fan-spot orthotospovirus

GCFSV Taiwan, Peanut Chao et al., 2001

GYSV Groundnut yellow spot
orthotospovirus

GYSV Yunnan Chili pepper Zhang Z. K. et al., 2010

aList updated from clades defined by Peng et al. (2011) and Oliver and Whitfield (2016).
bDefinitive species write in italics and tentative species write in upright letters.
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FIGURE 2 | Phylogenetic tree of orthotospoviruses based on the amino acid sequence of nucleocapsid (N) protein. (A) Phylogenetic tree of 30 orthotospoviruses
reported worldwide. (B) Phylogenetic tree of the 17 orthotospoviruses reported from China. Bootstrap values on the branches represent support for the branches
based on 1,000 bootstrap replicates. Definitive species are written in italics and tentative species are written in upright letters. Abbreviations (and NCBI no.): ANSV,
Alstroemeria necrotic spot orthotospovirus (GQ478668); BeNMV, Bean necrotic mosaic orthotospovirus (NC_018071); CaCV, Capsicum chlorosis orthotospovirus
(NC_008301); CCSV, Calla lily chlorotic spot orthotospovirus (AY867502); CSNV, Chrysanthemum stem necrosis orthotospovirus (NC_027719); CYRSV, Chili yellow
ringspot orthotospovirus (MH779495); GBNV, Groundnut bud necrosis orthotospovirus (NC_003619); GRSV, Groundnut ringspot orthotospovirus; GYSV, Groundnut
yellow spot orthotospovirus (AF013994); HCRV, Hippeastrum chlorotic ringspot orthotospovirus (KC290943); INSV, Impatiens necrotic spot orthotospovirus
(NC_003624); IYSV, Iris yellow spot orthotospovirus (AF001387); LNRV, Lisianthus necrotic ringspot orthotospovirus (AB852525); MSMV, Melon severe mosaic
orthotospovirus (EU275149); MVBaV, Mulberry vein banding associated orthotospovirus (KM819701); MYSV, Melon yellow spot orthotospovirus (AB038343);
GCFSV, Groundnut chlorotic fan-spot orthotospovirus (AF080526); PCSV, Pepper chlorotic spot orthotospovirus (KF383956); PolRSV, Polygonum ringspot
orthotospovirus (KF383956); PNSV, Pepper necrotic spot orthotospovirus (HE584762); SVNV, Soybean vein necrosis-associated orthotospovirus (HQ728387);
TCSV, Tomato chlorotic spot orthotospovirus (S54325); TSWV, Tomato spotted wilt orthotospovirus (NC_002051); TNRV, Tomato necrotic ringspot orthotospovirus
(FJ489600); TNSaV, Tomato necrotic spot-associated orthotospovirus (KM355773); TYRV, Tomato yellow ring orthotospovirus (AY686718); TZSV, Tomato zonate
spot orthotospovirus (NC_010489); WBNV, Watermelon bud necrosis orthotospovirus (EU249351); WSMoV, Watermelon silver mottle orthotospovirus (NC_003843);
and ZLCV, Zucchini lethal chlorosis orthotospovirus (AF067069).

ringspot orthotospovirus (HCRV; Dong et al., 2013), and chili
yellow ringspot virus (CYRSV; Zheng et al., 2020). TSWV and
TZSV were the dominant species, based on disease epidemics
and severity (Zhang et al., 2016). The orthotospoviruses
in Yunnan province have caused serious harm to crops
including tomato, chili pepper, potato, and tobacco (Solanaceae);
zucchini, watermelon, and squash (Cucurbitaceae); Phalaenopsis
and Dendrobium (Orchidaceae); lettuce and chrysanthemum
(Asteraceae); soybean and groundnut (Fabaceae), and more than
10 weed species.

TRANSMISSION

Orthotospoviruses are becoming more and more harmful due
to their multiple transmission routes and wide host ranges.

The main transmission routes under natural conditions are via
the vector thrips, which are insects in the order Thysanoptera.
More than 14 species of thrips are known to act as vectors for
orthotospoviruses.

The thrips that are known to transmit orthotospovirus include
Ceratothrip oidesclaratris, Dictyothrips betae, Frankliniella
occidentalis, Frankliniella schultzei, Frankliniella gemina,
Frankliniella intonosa, Frankliniella cephalica, Frankliniella
bispinosa, Frankliniella fusca, Frankliniella zucchini, Scirtothrips
dorsalis, Neohydatothrips variabilis, Thrips palmi, and Thrips
tabaci (Pappu et al., 2009; Whitfield et al., 2015). A single
Orthotospovirus species can be transmitted by one or many
species of thrips (e.g., TSWV is transmitted by nine species of
thrips). A single species of thrips can transmit one or many
Orthotospovirus species (e.g., F. occidentalis can transmit five
Orthotospovirus species) (Whitfield et al., 2015).

Frontiers in Microbiology | www.frontiersin.org 5 August 2021 | Volume 12 | Article 686025198

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-686025 July 29, 2021 Time: 16:25 # 6

Zhang et al. Orthotospoviruses Epidemiology in China

FIGURE 3 | Geographic distribution of orthotospoviruses. (A) Worldwide geographic distribution of orthotospoviruses. (B) Geographic distribution of
orthotospoviruses in China. (C) Geographic distribution of orthotospoviruses in Yunnan province, China.

Besides transmission by thrips, other routes of transmission
facilitate spread of orthotospoviruses. Orthotospoviruses such as
SVNV spread through seeds (Groves et al., 2016). In addition,
spreading seedings infected with orthotospoviruses is also an
important source for the virus to spread in different places (Zhang
et al., 2020). Weeds, as an important primary infection source,
provide potential conditions for the secondary infection and
outbreak of orthotospoviruses in the field.

EPIDEMIOLOGY

Orthotospoviruses have spread rapidly through China in recent
years. Before 2015, orthotospoviral diseases mainly occurred

in Southwest and Southeast China. However, over the last
5 years, orthotospoviral diseases have also occurred in Central,
Northwest, and Northeast China. Although TSWV is the main
epidemical Orthotospovirus species, we have recently found
WSMoV, TZSV, and HCRV in Tibet, Hainan, and other Chinese
provinces. Orthotospoviruses tend to quickly replace other viral
pathogens (such as tobacco mosaic virus and cucumber mosaic
virus) or form complex/mixed infections with other viruses
(such as potato virus Y and whitefly transmitted geminivirus) in
solanaceous crops, based on our research results over the past
20 years in Yunnan province.

The main reasons for the rapid expansion of Orthotospovirus
species, especially TSWV, in China are as follows: (1) Over
the last 20 years, the rapid popularization and development
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of greenhouses in China has provided perfect conditions for
the propagation of the vector insects, thrips. Particularly in the
north of China, greenhouses provide suitable temperatures for
the overwintering of the virus-transmitting thrips, and indeed
the orthotospoviral diseases in most northern provinces occur
mainly in greenhouses (Jie et al., 2017; Liu et al., 2021). In
southern China, as well as the greenhouse-thrips-vegetables
infection pathway, a secondary infection cycle can be formed
by weeds and other intermediate hosts, and weeds also provide
thrips with overwintering habitats (Zhang et al., 2020). (2)
Changes in planting structure have also led to the rapid expansion
of TSWV. With the popularization of greenhouses, monocultures
of a single crop variety with susceptibility to orthotospoviruses,
such as pepper, tomato, and other Solanaceous crops, have been
planted in large quantities (Miao, 2018). This is particularly
obvious in Yunnan province, where the planting structure,
which usually includes flowers, tomatoes, peppers, tobacco, and
potatoes, provides very favorable conditions for the reproduction
of the thrips population and susceptibility to orthotospoviruses
(Zhao et al., 2021).

HISTOPATHOLOGICAL ASPECTS

Orthotospoviruses in host cells have distinct histopathological
characteristics that mainly relate to the virus species rather
than to the host plant species, and these characteristics have
important diagnostic value. The histopathological characteristics
differ between the different stages of infection. In general, at
3 days post inoculation (dpi), there are a large number of vesicles
in the host cells. At 7 dpi, virus particles form in the vesicles.
At this stage (in the early stages of infection), double-enveloped
virions (DEV) are also observed in host cells. At 9 dpi, virus
particle aggregates appear in the host cells. By 12 dpi (in the
late stages of infection), the cells are filled with virus particles
(Zhang, 2015).

The virus particle clustering characteristics differ among
Orthotospovirus species. TSWV virus particles always cluster in
the endoplasmic reticulum (ER) or in special vesicles (based
on transmission electron microscopy of ultrathin sections or
negative staining). TZSV virus particles usually cluster in a
moniliform structure in the ER membrane (vertical section) or
as double-enveloped virions (cross-section) (Zhang et al., 2016).
WSMoV virus particles always cluster in vesicles connected
to other empty vesicles or in host cell vacuoles (unpublished
data). Impatiens necrotic spot orthotospovirus (INSV) virus
particles usually cluster in the lumen of the ER (Zhang Z. K.
et al., 2010; Figure 4). Although these virus particle clustering
characteristics are not necessarily unique to these viruses in
the host cells, histopathological ultrastructure characteristics can
help to identify Orthotospovirus species.

Systemic Infection
To establish a systemic infection in a host plant, the TSWV
ribonucleoprotein (RNP) complex migrates along the ER
membrane. The N protein wraps with TSWV RNAs to form
the RNP complex, and these RNPs are subsequently driven

along the ER membrane and actin by the action of myosin,
after which the viral RNPs enter into the Golgi body, where
they form mature virus particles (Feng et al., 2013; Ribeiro
et al., 2013). To infect a new cell, the RNP complexes move to
the plasmodesmata, traversing the plasmodesmata through the
action of the viral movement protein NSm to reach a neighboring
cell. This process involves the interaction of the N-terminal of
the NSm protein with nucleocapsid protein N and assists the
movement of the RNPs toward the plasmodesmata using the
actin microfilament/ER transport system (Leastro et al., 2015;
Tripathi et al., 2015; Feng et al., 2016). The viral movement
protein NSm plays a decisive role in the intercellular and
long-distance movement of viral RNPs. However, research also
shows that nucleocapsid protein N plays a key role in long-
distance movement, and it has been confirmed that both TSWV
N and NSm are necessary for the long-distance movement
of movement-deficient TMV (Lewandowski and Adkins, 2005;
Zhang et al., 2011). Deletion mutations have demonstrated
that NSm mediates virus intercellular movement and long-
distance movement using different domains, suggesting that
the mechanisms by which NSm mediates virus intercellular
movement and long-distance movement are different (Li et al.,
2009). Interestingly, TSWV and TZSV virus particles with
vesicles have been also found in plant vascular tissue, suggesting
that viral particles can also load/unload from vascular tissues and
establish systematic infection through long-distance movement
(Zhang, 2015; Wen et al., 2020).

MANAGEMENT

Biological Control
Biological control is an effective method to control thrips-borne
orthotospovirus disease, which includes diversified prevention
and control measures. These include a reasonable rotation
or continuous replanting mode (Bokil et al., 2019); release
of predatory mites, mirids, and other natural enemies to the
greenhouse environment (Bouagga et al., 2020); and adding
beneficial microorganisms to the soil environment to help plants
enhance disease resistance (Beris et al., 2018; Bonanomi et al.,
2020). In disease management, integrated pest management
(IPM) has been proved to be more effective than chemical control
(Rodríguez et al., 2019).

Screening of Virus-Resistant Plant
Varieties
Growing highly virus-resistant plant varieties can be an effective
way to prevent and control viral diseases. TSWV-resistant tomato
and pepper varieties have been bred by Bayer, Syngenta, and other
companies. These varieties possess the Sw-5 and Tsw resistance
genes, respectively. After selection trials, virus-resistant plants
were grown in areas of high TSWV occurrence in China.
However, the resistance of these plants was poor, due to single-
gene resistance combined with the existence of complex/mixed
infections. To date, there are no varieties with high levels of
comprehensive resistance.
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FIGURE 4 | Histopathological characteristics of orthotospoviruses in host cells. (A) TSWV virus particles clustered in the cytoplasm of a tomato leaf cell.
Bar = 500 nm. (B) TZSV virus particles clustered in the endoplasmic reticulum (ER) membrane of a tomato fruit cell. Bar = 500 nm. (C) WSMoV virus particles
clustered in vesicles in a tomato fruit cell. Bar = 500 nm. (D) INSV virus particles clustered in the lumen of the ER in a tomato fruit cell. Bar = 20 nm. Ve, vesicle; V,
virus particle; Ch, chloroplast; M, mitochondrion; ER, endoplasmic reticulum; CW, cell wall.

Transgenic Resistance Breeding
Transgene technology is a rapid method for plants to acquire
resistance to orthotospoviruses. So far, transgenic tobacco
with broad-spectrum resistance against four other serologically
unrelated Orthotospovirus TSWV, GYSV, INSV, and GCFCV
has been developed by transforming the conserved motifs of
the RdRp gene of WSMoV through hagrobacterium-mediated
transformation (Kung et al., 2012; Peng et al., 2014).

Screening of Natural
Anti-orthotospoviral Chemicals
Natural chemicals have attracted increasing attention and have
become the most promising strategy in the defense against
pathogenic infections. These naturally occurring chemicals are
popular because they are environmentally friendly and leave
little residue, they are highly identifiable, and they have low
toxicity for the plant hosts. Because of the serious damage to
agricultural crops caused by TSWV infection, natural products

able to limit TSWV have attracted a great deal of interest. One
potential natural derivative is atin-3-acetonyl-3-hydroxyoxindole
(AHO), isolated from Strobilanthescusia, which is able to up-
regulate PR-10 genes in the salicylic acid (SA) pathway, as
well as up-regulate the levels of miRNAs (miR156, miR172f,
miR172g, miR408a) that contribute to inhibiting TSWV infection
(Chen et al., 2014, 2017). Actigard, imidacloprid, and Bacillus
amyloliquefaciens strain MBI600 have also been found to induce
the SA signaling pathway and to prevent TSWV infection (Csinos
et al., 2001; McPherson et al., 2005; Beris et al., 2018). The
terpenoid compound 3α-angeloyloxy-9β-hydroxy-ent-kaur-16-
en-19-oic acid (AHK) has been isolated from Wedeliatrilobata
and found to defend against TSWV activity and infection, with
an inhibition rate of 62.4% in curative effects assays and 76.5%
in protective effects assays, mainly through activation of the
jasmonic acid (JA) signaling pathway and inhibition of NSs,
NSm, and RdRp gene expression (Zhao et al., 2019). Tagitinin
A is a sesquiterpene isolated from Tithonia diversifolia and was
found to have even higher curative and protective effects against
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TSWV, with an inhibition rate of over 75%. Furthermore, the
expression of the genes NSs and NSm was inhibited in inoculated
and systemic leaves in the protective assay, with an inhibition rate
of more than 85% in systemic leaves (Zhao et al., 2017, 2020). It
is therefore possible that these natural products can be used as
chemical elicitors to trigger systemic acquired resistance (SAR),
stimulating natural plant immunity. There is a wide variety of
potential applications for such chemicals in agriculture.

The Use of Virus-Free Seeding
Viral infection at the seedling stage (a highly susceptible stage) is
the main reason for disease outbreaks in the middle and late plant
growth periods. To obtain virus-free seeds and effectively reduce
the occurrence and loss caused by orthotospovirus diseases,
seedlings should be grown in greenhouses with insect-proof
netting or maximal barrier precautions, yellow or blue sticky
plates should be used to attract and trap the vector insects
(thrips), and the virus carriage rate of the seedlings should be
regularly monitored. Comprehensive measures to reduce the
vector insects (thrips) should also be applied.

CONCLUDING REMARKS AND FUTURE
PROSPECTS

Orthotospoviruses are expected to further expand worldwide
because of their wide host range, multiple transmission routes,
and ability to adapt to diverse climates. Additionally, increases
in agricultural trade have accelerated global transmission.
In China, new species or strains with high pathogenicity
(because of mutation, reassortment, and recombination within
and/or among Orthotospovirus species) have increased the
frequency of disease. Orthotospoviruses are therefore a threat
to crop production because of their high pathogenicity and the
complex/mixed infections involving different Orthotospovirus
species or other viruses.

It is necessary to enhance the monitoring of orthotospovirus
infections and set up early warning systems in high-incidence
areas; to allow the rapid diagnosis of symptoms caused by
Orthotospovirus species in host plants; to assess virus carriage
rates in seeds, seedlings, thrips, and weeds; and to allow
dynamic monitoring of thrips levels. A deeper understanding
of the mechanisms of systemic infection, of the pathogenesis
of complex/mixed infections involving the same or different

Orthotospovirus species or other viruses, and of Orthotospovirus
adaptation mechanisms to multiple climate types is required, as
is the screening and breeding of virus-resistant plant varieties.
Furthermore, to ensure environmentally friendly prevention and
control of orthotospoviral diseases, highly effective biological
antiviral agents should be developed, and several techniques
should be popularized, including the use of virus-free seeds and
standardized seedling propagation technology (such as building
greenhouses with insect-proof nets, sterilizing tools before raising
seedlings, controlling the number of insects by using yellow
or blue sticky plates, and releasing predatory mites, mirids, or
the other natural enemies of thrips, and monitoring of virus
incidence on seedlings before transplantation).
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