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Editorial on the Research Topic

Cognitive Diagnostic Models: Methods for Practical Applications

Cognitive diagnostic models (CDMs) or diagnostic classification models are a relatively newer
psychometric framework for collecting, analyzing, and reporting diagnostic data. They have
received increasing attention in many disciplines, such as educational, psychological, and
psychiatric measurement. Specifically, CDMs aim to provide discrete multivariate fine-grained
diagnostic feedback information about examinees’ strengths and weaknesses for developing
targeted instruction and personalized support. In total, the 20 articles in this Research Topic
focus on the methods and applications that contribute to the broad CDM literature by providing
sustainable solutions to problems and issues emerged in practice.

Firstly, eight articles focus on providing new methods or insights that will guide the uses of
CDMs in different applications for practitioners. To provide practitioners with a comprehensive
guide of sample size on item recovery and classification accuracy, a thorough simulation study was
conducted by Sen andCohen to show the effects of sample size, test length, number of attributes and
base rate of mastery on item parameter recovery and classification accuracy of the C-RUM, DINA,
DINO, and LCDMREDUCED. Determination of the number of attributes is a fundamental issue in
CDM applications. Nájera et al. evaluated the performance of a variety of dimensionality detection
methods from the factor analysis literature, such as parallel analysis, minimum average partial, very
simple structure, DETECT, empirical Kaiser criterion, exploratory graph analysis, and a machine
learning factor forest model in discovering the number of attributes. They found that the parallel
analysis with Pearson correlations and mean eigenvalue criterion, factor forest model, and model
comparison with AIC are suitable in assessing the dimensionality of CDMs. A Q-matrix anchored
mixture Rasch model was developed by Tseng andWang for constructing a common scale between
latent classes regardless of the ability distribution. To demonstrate the practical utility of the model,
a real dataset from the Certificate of Proficiency in English was analyzed with the QAMRM, LCDM,
and GDM, they find the proposed model has better model fit indices. A joint cognitive diagnostic
model incorporating item responses and missing data mechanism was proposed by Shan and
Wang for handling missing data not at random in the CDM framework. They demonstrate the
practical value of the proposed method using the PISA 2015 computer-based mathematics data.
Introducing the thinking of semi-supervised learning into CDM, Xue and Bradshaw proposed a
semi-supervised learning-based diagnostic classification method using artificial neural networks.
In both the simulation and real data study, they showed that the proposed method has some merit
in improving the classification accuracy. The paper by Wang, Xin et al. proposed to train the BN
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first based on the ideal response pattern data and then to update
the parameters of BN based on observed item response data using
the EM or the GD algorithm. The simulation study and real data
study showed the advantages of the proposed method compared
to the BN training without adding the ideal response pattern data.
A sequential hierarchical CDM was developed by Zhang and
Wang and three absolute fit indices and five relative fit indices
are used to assess model-data fit. Xu et al. proposed the slice-
within-Gibbs sampler for estimating CDMs, and their simulation
results confirm the viability of the sampler and show that the new
method has the flexibility in incorporating a wider range of prior
distributions than the Gibbs sampler.

Secondly, six articles provide use case examples of CDMs
in real-world assessments, as well as demonstrate the merit
and shortcoming of CDM and related model in a variety
of educational and psychological research contexts. Ren et
al. demonstrated that the finer-grained diagnostic feedback
information from CDM can be used for targeted instruction
to improve students’ abilities effectively via an example with
six attributes (sort, median, average, variance, weighted average,
and mode) and the data distribution characteristic of the junior
high school mathematics curriculum in China. Similarly, Huang
et al. showed that CDMs are useful tool for developing and
implementing a multi-level remedial teaching scheme, by taking
electromagnetic induction as an example. Since many CDMs
have been proposed, selecting the most suitable DCM for each
item at the item level is a critical step in practical applications.
Dong et al. compared several CDMs for the second language
listening comprehension test at the test level and item level,
their results verified that mixed-CDMs had a better model and
person fit than the saturated GDINA model. This study provides
useful insights into a better understanding of subskills and the
underlying cognitive process for second language listening tests.
To provide a reference for practitioners to develop parallel
cognitive diagnostic tests for longitudinal learning, Tang and
Zhan presented a detailed process for constructing the parallel
rational number operations diagnostic tests. Three main phases
of the development process are the Q-matrix and test item
development, item quality monitoring, and test quality control.
Liu and Bian argued that multidimensional item response theory
(MIRT) model can be used for diagnostic purposes, and they
compare the model-data fit of the MIRT with the reduced
reparametrized unified model and generalized deterministic,
noisy, and gate model for a reading comprehension test
administered in China. They provide practitioners a suggestion of
using the MIRT model for the diagnostic analysis for the reading
test. To diagnose the strengths and weaknesses of the reading
comprehension ability of the primary students, the Diagnostic
Chinese Reading Comprehension Test was administered to a
large population of students (N = 21,466) in grades 2–6 from 20
schools in a district of Changchun City, China in Li, Zhen et al.
The essential components of the cognitive diagnostic assessment,
attributes specification, test development, Q-Matrix validation,
model comparison, reliabilities, validity, and skill profiles were
reported in their study.

Thirdly, six articles focus on cognitive diagnostic
computerized adaptive test and related fields. Wang, Zheng et al.

proposed a new test assembly method of maximizing the
minimum distance between latent classes by using mixed-integer
linear programming in cognitive diagnosis, and the simulation
results revealed that compared with the CDI test assembly and
random test assembly, the new test assembly method had the
highest accuracy rate in terms of attribute mastery pattern and
attribute correct classification rates. Two item selection methods,
maximum deviation global discrimination index and maximum
limitation global discrimination index were developed by
Li, Ma et al. to achieve better attribute coverage balance
and item exposure control in the context of CD-CAT. The
simulation results showed that the two new proposed methods
outperformed other existing item selection methods. Similarly,
Huijing et al. proposed two new item selection heuristic
methods minimum parameters–information–distance method
and minimum information–parameters–distance method for
assembling multiple test forms, and they find that the two new
methods yield better performance when the information curve of
the item pool has a unimodal distribution. Tang et al. presented a
simple and effective method, the theoretical construct validity to
predict that the upper bound of the pattern match ratio in CDM
tests through theoretical derivation and simulation study. They
found that the TCV is related to the distribution of knowledge
states and item categories and has nothing to do with the number
of items. Wang, Tu et al. developed a hybrid optimal design
for online estimation of item parameters and online calibration
of the Q-matrix for new items that can be used to develop
item bank effectively for cognitive diagnostic computerized
adaptive testing. Three adaptive designs under different practical
situations were investigated using simulation studies, the results
show that the new optimal design performs better than the
random design. Sun et al. investigated the influences of the
calibration errors of item parameters on the variable-length
cognitive diagnostic computerized adaptive testing in terms of
measurement accuracy, average test length, and test efficiency.
Results showed that calibration error has negative effect for the
deterministic input, noisy “and” gate model and the reduced
reparameterized unified model, but has less influenced for the
compensatory reparameterized unified model.

In summary, this collection of papers in this Research Topic
provides valuable tools, methods, insights, and examples for
practitioners in obtaining diagnostic feedback information using
CDMs or relevant methods.
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The Development of an Instrument
for Longitudinal Learning Diagnosis
of Rational Number Operations
Based on Parallel Tests
Fang Tang and Peida Zhan*

Department of Psychology, College of Teacher Education, Zhejiang Normal University, Jinhua, China

The precondition of the measurement of longitudinal learning is a high-quality
instrument for longitudinal learning diagnosis. This study developed an instrument for
longitudinal learning diagnosis of rational number operations. In order to provide a
reference for practitioners to develop the instrument for longitudinal learning diagnosis,
the development process was presented step by step. The development process
contains three main phases, the Q-matrix construction and item development, the
preliminary/pilot test for item quality monitoring, and the formal test for test quality
control. The results of this study indicate that (a) both the overall quality of the tests
and the quality of each item are good enough and that (b) the three tests meet the
requirements of parallel tests, which can be used as an instrument for longitudinal
learning diagnosis to track students’ learning.

Keywords: learning diagnosis, longitudinal assessments, rational number operations, parallel tests, longitudinal
cognitive diagnosis

INTRODUCTION

In recent decades, with the development of psychometrics, learning diagnosis (Zhan, 2020b)
or cognitive diagnosis (Leighton and Gierl, 2007), which objectively quantifies students’ current
learning status, has drawn increasing interest. Learning diagnosis aims to promote students’
learning according to diagnostic results which typically including diagnostic feedback and
interventions. However, most existing cross-sectional learning diagnoses are not concerned about
measuring growth in learning. By contrast, longitudinal learning diagnosis evaluates students’
knowledge and skills (collectively known as latent attributes) and identifies their strengths and
weaknesses over a period (Zhan, 2020b).

A complete longitudinal learning diagnosis should include at least two parts: an instrument
for longitudinal learning diagnosis of specific content and a longitudinal learning diagnosis model
(LDM). The precondition of the measurement of longitudinal learning is a high-quality instrument
for longitudinal learning diagnosis. The data collected from the instrument for longitudinal
learning diagnosis can provide researchers with opportunities to develop longitudinal LDMs
that can be used to track individual growth over time. Additionally, in recent years, several
longitudinal LDMs have been proposed, for review, see Zhan (2020a). Although the usefulness
of these longitudinal LDMs in analyzing longitudinal learning diagnosis data has been evaluated
through some simulation studies and a few applications, the development process of an instrument
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for longitudinal learning diagnosis is rarely mentioned (cf.
Wang et al., 2020). The lack of an operable development
process of instrument hinders the application and promotion
of longitudinal learning diagnosis in practice and prevents
practitioners from specific fields to apply this approach to track
individual growth in specific domains.

Currently, there are many applications use cross-sectional
LDMs to diagnose individuals’ learning status in the field of
mathematics because the structure of mathematical attributes is
relative clear to be identified, such as fraction calculations
(Tatsuoka, 1983; Wu, 2019), linear algebraic equations
(Birenbaum et al., 1993), and spatial rotations (Chen et al.,
2018; Wang et al., 2018). Some studies also apply cross-sectional
LDMs to analyze data from large-scale mathematical assessments
(e.g., George and Robitzsch, 2018; Park et al., 2018; Zhan et al.,
2018; Wu et al., 2020). However, most of these application
studies use cross-sectional design and cannot track the individual
growth of mathematical ability.

In the field of mathematics, understanding rational numbers
is crucial for students’ mathematics achievement (Booth
et al., 2014). Rational numbers and their operations are one
of the most basic concepts of numbers and mathematical
operations, respectively. The fact that many effects are put
into rational number teaching makes many students and
teachers struggle to understand rational numbers (Cramer
et al., 2002; Mazzocco and Devlin, 2008). The content of
rational number operation is the first challenge that students
encounter in the field of mathematics at the beginning
of junior high school. Learning rational number operation
is not only the premise of the subsequent learning of
mathematics in junior high school but is also an important
opportunity to cultivate students’ interest and confidence in
mathematics learning.

The main purpose of this study is to develop an instrument
for longitudinal learning diagnosis, especially for the content of
rational number operations. We present the development process
step by step to provide a reference for practitioners to develop the
instrument for longitudinal learning diagnosis.

DEVELOPMENT OF THE INSTRUMENT
FOR LONGITUDINAL LEARNING
DIAGNOSIS

As the repeated measures design is not always feasible
in longitudinal educational measurement, in this study, the
developed instrument is a longitudinal assessment consisting
of parallel tests. The whole development process is shown in
Figure 1. In the rest of the paper, we describe the development
process step by step.

Recognition of Attributes and Attribute
Hierarchy
The first step in designing and developing a diagnostic assessment
is recognizing the core attributes involved in the field of study
(Bradshaw et al., 2014). In the analysis of previous studies,

FIGURE 1 | The development process of the instrument for longitudinal
learning diagnosis.

the confirmation of attributes mainly adopted the method
of literature review (Henson and Douglas, 2005) and expert
judgment (Buck et al., 1997; Roduta Roberts et al., 2014; Wu,
2019). This study used the combination of these two methods.

First, relevant content knowledge was extracted according to
the analysis of mathematics curriculum standards, mathematics
exam outlines, teaching materials and supporting books, existing
provincial tests, and chapter exercises. By reviewing the
literature, we find that the existing researches mainly focus
on one or several parts of rational number operation. For
example, fraction addition and subtraction is the most involved
in existing researches (e.g., Tatsuoka, 1983; Wu, 2019). In
contrast, it is not common to focus on the whole part of
rational number operation in diagnostic tests. Ning et al.
(2012) pointed out that rational number operation contains 15
attributes; however, such a larger number of attributes does not
apply in practice.

Frontiers in Psychology | www.frontiersin.org 2 September 2020 | Volume 11 | Article 22469

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-02246 September 1, 2020 Time: 9:8 # 3

Tang and Zhan An Instrument for Longitudinal Learning Diagnosis

TABLE 1 | Attribute framework of the rational number operation.

Label Attribute Description

A1 Rational number Concepts and classifications

A2 Related concepts of the
rational number

Opposite number, absolute value

A3 Number axis Concept, number conversion,
comparison of the size of numbers

A4 Addition and subtraction of
rational numbers

Addition, subtraction, and addition
operation rules

A5 Multiplication and division of
rational numbers

Multiplication, involution, multiplication
operation rule, division and reciprocal;
Reduction of fractions to a common
denominator

A6 Mixed operation of rational
numbers

First involution, then multiplication and
division, and finally addition and
subtraction; if there are numbers in
parentheses, calculate the ones in the
parentheses first.

FIGURE 2 | Attribute hierarchy of the rational number operation. Note that
A1 = rational number; A2 = related concepts of rational numbers; A3 = axis;
A4 = addition and subtraction of rational numbers; A5 = multiplication and
division of rational numbers; and A6 = mixed operation of rational numbers.

Second, according to the attribute framework based on
the diagnosis of mathematics learning among students in
20 countries in the Third International Math and Science
Study–Revised (Tatsuoka et al., 2004), the initial attribute
framework and the corresponding attribute hierarchy (Leighton
et al., 2004) of this study were determined after a discussion
among six experts, including two frontline mathematics teachers
who have more than 10 years’ experience in mathematics
education, two graduate students majoring in mathematics, and
two graduate students majoring in psychometrics (see Table 1
and Figure 2).

Third, a reassessment by another group of eight experts
(frontline mathematics teachers) and the think-aloud protocol
analysis (Roduta Roberts et al., 2014) were used to verify
the rationality of the initial attribute framework and that
of the corresponding attribute hierarchy. All experts agreed
that the attributes and their hierarchical relationships were
reasonable. In the think-aloud protocol analysis, six items
were initially prepared according to the initial attribute
framework and attribute hierarchy (see Table 2). Then, six
seventh graders were selected according to above-average

TABLE 2 | Items in think-aloud protocol analysis (original items are written
in Chinese).

Please say out aloud your thoughts when you solve the problem.

(1) Which one of the following statement about rational numbers is correct? ().

(A) Rational numbers can be divided into two categories: positive rational
numbers and negative rational numbers

(B) The set of positive integers and the set of negative integers together
constitute the set of integers

(C) Integers and fractions are collectively called rational numbers

(D) Positive numbers, negative numbers, and zeros are collectively called
rational numbers

(2) Which rational number’s inverse equals to itself? ().

(A) () 1 (B) −1 (C) 0 (D) 0 and 1

(3) On the number axis, point A indicates −1. Now A starts to move, first move 3
units to the left, then 9 units to the right, and 5 units to the left. At this time, what
the number is point A indicates? ().

(A) −1 (B) 0 (C) 1 (D) 8

(4) Computing: 9+ (−13)− (−7)+ (−5) =

(5) Computing: (−2)× 14÷ (− 1
7 )× (−1)5

=

(6) Computing: (− 2
5 )× (− 3

7 )− 2
7 −

3
5 ÷ (− 7

3 ) =

performance, gender balance, willingness to participate, and
ability to express their thinking process (Gierl et al., 2008). The
experimenter individually tested these students and recorded
their responses; in the response process, the students were
required to say aloud their problem-solving train of thought.
Taking the responses of two students to item 6 as an
example, Figure 3 and Table 3 present their problem-solving
process and thinking process, respectively. Although different
students used different problem-solving processes, they all used
addition, subtraction, multiplication, and division to solve the
items of the mixed operation of rational numbers. Therefore,
mastering A4 and A5 are prerequisites to mastering A6,
and they validate the rationality of the attribute hierarchy
proposed by experts.

Finally, as presented in Table 1, the attributes of rational
number operation fell into the following six categories: (A1)
rational number, (A2) related concepts of rational numbers,
(A3) axis, (A4) addition and subtraction of rational numbers,
(A5) multiplication and division of rational numbers, and (A6)
mixed operation of rational numbers. The six attributes followed
a hierarchical structure (Figure 2), which indicates that A1–
A3 are structurally independent and that A4 and A5 are both
needed to master A6.

Q-Matrix Construction and Item
Development
According to the attribute hierarchy, A4 and A5 are both
needed to master A6. Therefore, the attribute patterns that
contain A6 but lack either A4 or A5 are unattainable.
Theoretically, there are 40 rather than 26 = 64 attainable
attribute patterns. Correspondingly, the initial Q-matrix (i.e.,
test blueprint) (Tatsuoka, 1983) was constructed based on these
40 permissible attribute patterns and with the following factors
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FIGURE 3 | (A,B) Problem-solving process of two students in the think-aloud protocol analysis. Note that in item 6, (− 2
5 )× (− 3

7 )− 2
7 −

3
5 ÷ (− 7

3 )with the required
attribute pattern (000111).

TABLE 3 | The thinking process of two students in think-aloud protocol analysis.

Student 1:

Step 1: Read the item, and judge that the content knowledge investigated in
this item is the mixed operation of rational numbers;

Step 2: Recall the rule for mixed operation of rational numbers: First power,
then multiplication and division, final addition and subtraction; If there are
parentheses, count them in parentheses first;

Step 3: Make sure multiply and divide first: (− 2
5 )× (− 3

7 ) = 6
35 , and change

division by (− 7
3 ) to multiply by(− 3

7 );

Step 4: Use multiplication: (− 3
5 )× (− 3

7 ) = 9
35 ;

Step 5: Use addition, and get the answer:

Student 4:

Step 1: Read the item, and judge that the content knowledge investigated in
this item is the mixed operation of rational numbers;

Step 2: Recall the rule for mixed operation of rational numbers: First power,
then multiplication and division, final addition and subtraction; If there are
parentheses, count them in parentheses first;

Step 3: Observe dividing by (− 7
3 ) can be changed to multiplying by (− 3

7 ), the
multiplication distribution law can be used;

Step 4: Use the multiplication distribution law, put (− 3
7 )outside of the

parentheses, then (− 2
5 )+ (− 3

5 ) = (−1) in the parentheses;

Step 5: Use subtraction, and get the answer.

Item 6: (− 2
5 )× (− 3

7 )− 2
7 −

3
5 ÷ (− 7

3 )with required attribute pattern (000111).

in mind: (a) the Q-matrix contains at least one reachability
matrix for completeness (Ding et al., 2010); (b) each attribute
is examined at least twice, and (c) the test time is limited
to a teaching period of 40 min to ensure that students have
a high degree of involvement. Finally, the test length was
determined as 18, including 12 multiple-choice items and 6
calculation items (see Figure 4). Notice that all items are
dichotomous scored in current study. To ensure that the
initial item bank contains enough items, we prepared 4–5
items for each of the 18 attribute patterns contained in the
initial Q-matrix. Finally, an initial item bank containing 80
items was formed.

Preliminary Test: Item Quality Monitoring
Participants
In the preliminary test, 296 students (145 males and 151 females)
were conveniently sampled from six classes in grade seven of
junior high school A1.

Procedure
To avoid the fatigue effect, 80 items were divided into two tests
(preliminary test I and preliminary test II, with 40 items in each
test). All participants took part in the two tests. Each test lasted
for 90 min, and the two tests were completed within 48 h.

Analysis
Item difficulty and discrimination were computed based on the
classical test theory. The differential item functioning (DIF)
was checked using the difR package (version 5.0) (Magis et al.,
2018) in R software.

Results
A total of 296 students took the preliminary test. After data
cleaning, 270 and 269 valid tests were collected in preliminary
test I and preliminary test II, respectively. The effective rates of
preliminary test I and preliminary test II were 91.22 and 91.19%,
respectively. Table 4 presents the basic sample information and
descriptive statistics of the raw scores. The distribution of the raw
scores for the two tests was the same.

Table 5 presents the average difficulty and the average
discrimination of the preliminary test (the difficulty and
discrimination of each item are presented in Table 6). In classical
test theory, item difficulty (i.e., the pass rate) is equal to the ratio
of the number of people who have a correct response to the
total number of people, and item discrimination is equal to the
difference between the pass rate of the upper 27% of the group

1Three schools were used in the complete study. In the instrument development,
students in schools A and B participated in the preliminary test and the formal test,
respectively; students in school C participate in the quasi-experiment.
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FIGURE 4 | Q-matrix, where blank means “0” and gray means “1.” Note that A1 = rational number; A2 = related concepts of rational numbers; A3 = axis;
A4 = addition and subtraction of rational numbers; A5 = multiplication and division of rational numbers; and A6 = mixed operation of rational numbers.

TABLE 4 | Basic sample information and descriptive statistics of raw scores in the
preliminary test.

Preliminary test Male Female Total Average score

I 133 137 270 14.77 (8.59)

II 133 136 269 14.78 (8.33)

Note that each test has a full mark of 40. The standard deviation is
indicated in parentheses.

TABLE 5 | Average difficulty and average discrimination of the preliminary tests
(based on classical test theory).

Preliminary test Average difficulty Average discrimination

I 0.37 (0.15) 0.52 (0.18)

II 0.37 (0.14) 0.51 (0.19)

Note that the standard deviation is indicated in parentheses.

and that of the lower 27% of the group. In general, a high-quality
test should have the following characteristics: (a) the average
difficulty of the test is 0.5, (b) the difficulty of each item is between
0.2 and 0.8, and (c) the discrimination of each item is greater than
0.3. Based on the above three criteria, we deleted eight items in
preliminary test I and seven items in preliminary test II.

Table 7 presents the results of the DIF testing of the
preliminary tests. DIF is an important index to evaluate the
quality of an item. If an item has a DIF, it will lead to a significant
difference in the scores of two observed groups (male and female)
in the case of a similar overall ability. In the preliminary tests, the
Mantel-Haenszel method (Holland and Thayer, 1986) was used
to conduct DIF testing. Male is treated as the reference group,
and female is treated as the focal group. The results indicated
that items 28 and 36 in preliminary test I had DIF, and no
item in preliminary test II had DIF. According to item difficulty
and discrimination in the above analysis, these two items were
classified as items to be deleted.

By analyzing item difficulty, item discrimination, and DIF, 65
items finally remained (including 32 items in preliminary test
I and 33 items in preliminary test II) to form the final item
bank. Among them, there are 3–5 candidate items corresponding
to each of the 18 attribute patterns in the initial Q-matrix.
Furthermore, based on the initial Q-matrix, three learning
diagnostic tests with the same Q-matrix were randomly extracted
from the final item bank to form the instrument of the formal
tests: formal test A, formal test B, and formal test C.

Formal Test: Q-Matrix Validation,
Reliability and Validity, and Parallel Test
Checking
It was possible that the initial Q-matrix was not adequately
representative despite the level of care exercised. Thus, empirical
validation of the initial Q-matrix was still needed to improve the
accuracy of subsequent analysis (de la Torre, 2008). Although
item quality was controlled in the preliminary test, it was
necessary to ensure that these three tests, as instruments for
longitudinal learning diagnosis, met the requirements of parallel
tests. Only in this way could the performance of students at
different time points be compared.

Participants
In the formal tests, 301 students (146 males and 155 females)
were conveniently sampled from six classes in grade seven of
junior high school B.

Procedure
All participants were tested simultaneously. The three tests (i.e.,
formal tests A, B, and C) were tested in turn. Each test lasted
40 min, and the three tests were completed within 48 h.

Analysis
Except for some descriptive statistics, the data in the formal
test were mainly analyzed based on the LDMs using the CDM
package (version 7.4-19) (Robitzsch et al., 2019) in R software.
Including the model–data fitting, the empirical validation of the
initial Q-matrix, the model parameter estimation, and the testing
of reliability and validity were conducted. In the parallel test
checking, the consistency of the three tests among the raw scores,
the estimated item parameters, and the diagnostic classifications
were calculated.

The deterministic-input, noisy “and” (DINA) model (Junker
and Sijtsma, 2001), the deterministic-input, noisy “or” (DINO)
model (Templin and Henson, 2006), and the general DINA
(GDINA) model (de la Torre, 2011) were used to fit the data.
In the model–data fitting, as suggested by Chen et al. (2013),
the AIC and BIC were used for the relative fit evaluation, and
the RMSEA, SRMSR, MADcor, and MADQ3 were used for
the absolute fit evaluation. In the model parameter estimation,
only the estimates of the best-fitting model were presented. In
the empirical validation of the initial Q-matrix, the procedure
suggested by de la Torre (2008) was used. In the model-based
DIF checking, the Wald test (Hou et al., 2014) was used. In the
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TABLE 6 | Item difficulty and discrimination of preliminary test (based on
classical test theory).

Items Difficulty Discrimination

Preliminary
test I

Preliminary
test II

Preliminary
test I

Preliminary
test II

1 0.56 0.52 0.68 0.66

2 0.56 0.18 0.59 0.15

3 0.47 0.54 0.68 0.67

4 0.37 0.50 0.49 0.70

5 0.18 0.43 0.18 0.51

6 0.65 0.22 0.56 0.64

7 0.75 0.64 0.45 0.63

8 0.32 0.36 0.37 0.37

9 0.13 0.52 0.18 0.75

10 0.48 0.30 0.67 0.40

11 0.41 0.41 0.62 0.51

12 0.50 0.49 0.56 0.59

13 0.37 0.33 0.45 0.41

14 0.38 0.31 0.30 0.36

15 0.26 0.28 0.42 0.26

16 0.30 0.42 0.37 0.41

17 0.28 0.20 0.78 0.38

18 0.27 0.38 0.75 0.51

19 0.32 0.27 0.75 0.78

20 0.21 0.12 0.29 0.19

21 0.26 0.26 0.78 0.74

22 0.23 0.32 0.68 0.82

23 0.21 0.33 0.74 0.42

24 0.14 0.15 0.38 0.22

25 0.65 0.22 0.53 0.67

26 0.54 0.24 0.60 0.12

27 0.47 0.20 0.62 0.75

28 0.27 0.65 0.27 0.62

29 0.28 0.54 0.29 0.62

30 0.37 0.31 0.51 0.51

31 0.33 0.64 0.40 0.58

32 0.53 0.47 0.77 0.63

33 0.17 0.21 0.16 0.26

34 0.40 0.38 0.45 0.48

35 0.50 0.33 0.53 0.32

36 0.19 0.52 0.40 0.79

37 0.40 0.39 0.73 0.44

38 0.38 0.50 0.56 0.52

39 0.41 0.29 0.62 0.25

40 0.27 0.41 0.77 0.73

Items to be deleted including items 5, 9, 20, 24, 28, 29, 33, and 36 in preliminary
test I, and items 2, 15, 20, 24, 26, 33, and 39 in preliminary test II.

testing of reliability and validity, the classification accuracy (Pa)
and consistency (Pc) indices (Wang et al., 2015) were computed.

Results
Descriptive statistics of raw scores
A total of 301 students took the formal test. After data cleaning,
the same 277 valid tests (including those from 135 males

TABLE 7 | Differential item functioning testing of preliminary test.

Items Preliminary test I Preliminary test II

p deltaMH Code p deltaMH Code

1 0.9012 0.0296 A 0.9446 −0.0276 A

2 0.1318 1.2167 B 0.9412 −0.0313 A

3 0.9508 0.1292 A 0.9317 0 A

4 0.7133 0.3546 A 0.9368 0 A

5 0.9155 −0.1626 A 0.9365 0 A

6 0.4241 0.7871 A 0.9457 0 A

7 0.9055 −0.182 A 0.9448 −0.0289 A

8 0.2583 1.333 B 0.9368 0 A

9 0.6578 0.4168 A 0.9428 0 A

10 0.1922 −0.9753 A 0.9445 0.0841 A

11 0.8356 −0.2203 A 0.9482 0 A

12 0.9223 0.0304 A 0.9455 0 A

13 0.7281 −0.3246 A 0.9383 0 A

14 0.3409 −0.8385 A 0.9416 0 A

15 0.4766 −0.6529 A 0.9483 0 A

16 0.5684 0.8441 A 0.9343 0 A

17 0.8443 0.4158 A 0.9441 0 A

18 0.7296 0.4761 A 0.9131 0 A

19 0.8582 0.2451 A 0.9269 0 A

20 0.9649 0.2428 A 0.9131 0 A

21 0.3897 1.4042 B 0.9272 0 A

22 0.9251 0.5733 A 0.9442 0 A

23 0.7546 0.5935 A 0.9179 0 A

24 0.9732 0.072 A 0.9145 0 A

25 0.5205 −0.4839 A 0.9448 0 A

26 0.9167 0.0326 A 0.9233 0 A

27 0.2342 0.9039 A 0.8897 0 A

28 0.0425 −1.5031 C 0.9448 0 A

29 0.8248 −0.251 A 0.9466 0 A

30 0.6341 0.4249 A 0.9442 0 A

31 0.3118 −0.7995 A 0.9445 0 A

32 0.3405 −0.9153 A 0.9429 −0.0299 A

33 0.7845 −0.3828 A 0.9403 0 A

34 0.4017 0.6477 A 0.9466 −0.0264 A

35 0.2172 −0.9052 A 0.9457 0 A

36 0.0365 1.9793 C 0.937 0 A

37 0.3919 −0.746 A 0.9449 0 A

38 0.8351 −0.2381 A 0.9454 −0.0271 A

39 0.8637 −0.2109 A 0.9464 0 A

40 0.1209 1.8533 C 0.9386 0.1058 A

DIF items in bold (p < 0.05); A, B, and C are the codes of effect size (i.e., the
absolute value of deltaMH), where A means negligible effect, B means moderate
effect, and C means large effect.

TABLE 8 | Descriptive statistics of raw scores in the formal tests.

Formal
test

Average
score

Mode Median Minimum Maximum

A 7.24 (4.95) 2 6 0 18

B 7.36 (5.03) 3 6 0 18

C 7.31 (4.98) 2 and 3 6 0 18

Note that the standard deviation is indicated in parentheses. The tests have a
full mark of 18.
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TABLE 9 | Relative and absolute model–data fit indices.

Formal test Model AIC BIC RMSEA SRMSR MADcor MADQ3

A DINA 4646.96 4918.76 0.038 0.057 0.041 0.055

DINO 4822.67 5094.47 0.050 0.096 0.066 0.071

GDINA 4635.77 4994.55 0.057 0.046 0.032 0.057

B DINA 4843.47 5115.27 0.065 0.061 0.046 0.064

DINO 4994.34 5266.14 0.048 0.094 0.069 0.067

GDINA 4834.38 5193.15 0.064 0.054 0.039 0.063

C DINA 4877.31 5149.11 0.041 0.070 0.048 0.062

DINO 4975.42 5247.22 0.040 0.093 0.065 0.066

GDINA 4822.55 5182.24 0.060 0.049 0.049 0.063

TABLE 10 | Revision suggestion based on the empirical validation of the initial Q-matrix.

Formal test Item Initial required attribute pattern Revision suggestion

A1 A2 A3 A4 A5 A6 A1 A2 A3 A4 A5 A6

A 9 0 0 0 1 0 0 0 0 1 1 1 1

B 9 0 0 0 1 0 0 0 1 1 1 1 0

C 9 0 0 0 1 0 0 0 0 1 1 0 0

TABLE 11 | Classification accuracy and consistency indices based
on the DINA model.

Attributes Formal test A Formal test B Formal test C

Pa Pc Pa Pc Pa Pc

A1 0.96 0.93 0.95 0.92 0.94 0.90

A2 0.93 0.88 0.98 0.97 0.97 0.94

A3 0.94 0.89 0.96 0.93 0.93 0.87

A4 1.00 1.00 1.00 1.00 1.00 1.00

A5 1.00 1.00 0.99 0.98 0.99 0.99

A6 1.00 1.00 1.00 0.99 1.00 0.99

Attribute pattern 0.85 0.74 0.89 0.84 0.85 0.77

TABLE 12 | Reliability of formal tests.

Formal test Cronbach’ α Split-half reliability

A 0.887 0.907

B 0.889 0.923

C 0.886 0.915

rAB 0.97**

rAC 0.96**

rBC 0.96**

Split-half reliability is calculated according to the items of odd and even numbers;
rAB = the parallel-forms reliability of tests A and B; rAC = the parallel-forms reliability
of tests A and C; rBC = the parallel-forms reliability of tests B and C; ∗∗p < 0.01.

and 142 females) were collected from each of the three
tests; the effective rate of the formal tests was 93.57%.
Table 8 presents the descriptive statistics of raw scores in the
formal tests. The average, standard deviation, mode, median,
minimum, and maximum of raw scores of the three tests were
the same.

TABLE 13 | Item parameter estimates in formal tests.

Items Formal test A Formal test B Formal test C

g s g s g s

1 0.4927 0.0861 0.3972 0.0433 0.3849 0.0348

2 0.0155 0.1101 0.3044 0.1604 0.3588 0.1948

3 0.1046 0.0978 0.0009 0.0412 0.0771 0.0775

4 0.0796 0.0770 0.1431 0.0510 0.1248 0.1016

5 0.1721 0.3809 0.1590 0.1940 0.1702 0.3689

6 0.2260 0.4177 0.2739 0.3422 0.2373 0.4373

7 0.2774 0.1514 0.2868 0.0431 0.2667 0.0669

8 0.1785 0.2215 0.2924 0.2209 0.2915 0.3311

9 0.2827 0.1860 0.2984 0.1746 0.3089 0.1629

10 0.2676 0.3429 0.2605 0.3315 0.2747 0.2124

11 0.2921 0.3247 0.3427 0.3018 0.2739 0.2673

12 0.1314 0.3891 0.2270 0.2827 0.2387 0.2271

13 0.0001 0.0001 0.0001 0.0119 0.0001 0.0468

14 0.0001 0.0233 0.0001 0.0468 0.0001 0.0119

15 0.0443 0.0001 0.0224 0.0417 0.0310 0.0001

16 0.0201 0.0001 0.0201 0.1881 0.0256 0.1310

17 0.0371 0.0711 0.0510 0.2085 0.0464 0.1626

18 0.0093 0.0532 0.0099 0.0403 0.0140 0.0583

Mean 0.1462 0.1630 0.1717 0.1513 0.1736 0.1607

g = guessing parameter; s = slip parameter.

Model–data fitting
The parameters in an LDM can be interpreted only when
the selected model fits the data. The fit indices presented in
Table 9 provide information about the data fit of three LDMs,
namely DINA, DINO, and GDINA, to determine the best-fitting
model. Absolute fit indices hold that values near zero indicate
an absolute fit (Oliveri and von Davier, 2011; Ravand, 2016).
The result indices indicated that all three models fitted the data
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TABLE 14 | Diagnostic classifications of students in formal test.

Attribute pattern Formal test A Formal test B Formal test C

Proportion Number of students Proportion Number of students Proportion Number of students

000000 20.06% 56 29.13% 81 19.02% 53

100000 0.00% 0 0.00% 0 6.89% 19

010000 19.38% 54 15.00% 42 6.82% 19

110000 6.59% 18 4.64% 13 11.43% 32

001000 6.16% 17 2.61% 7 5.35% 15

101000 0.00% 0 0.43% 1 1.50% 4

011000 0.92% 3 0.86% 2 1.81% 5

111000 12.99% 36 12.72% 35 14.01% 39

000100 1.53% 4 0.92% 3 0.00% 0

100100 0.00% 0 0.47% 1 2.09% 6

010100 0.75% 2 1.59% 4 1.80% 5

110100 2.58% 7 1.63% 5 1.50% 4

001100 0.00% 0 0.19% 1 0.30% 1

101100 1.09% 3 0.87% 2 0.84% 2

111100 0.50% 1 0.49% 1 1.05% 3

100010 0.23% 1 0.29% 1 0.00% 0

010010 0.49% 1 0.77% 2 0.42% 1

110010 0.56% 2 1.16% 3 0.71% 2

011010 0.00% 0 0.00% 0 0.26% 1

111010 1.56% 4 1.34% 4 0.72% 2

100110 2.06% 6 1.85% 5 1.09% 3

010110 0.00% 0 0.21% 1 0.32% 1

110110 0.51% 1 0.54% 1 0.00% 0

101110 0.00% 0 0.32% 1 0.00% 0

111110 0.98% 3 0.62% 2 0.71% 2

101111 0.48% 1 1.55% 4 0.00% 0

111111 20.56% 57 19.83% 55 21.34% 59

Attribute patterns with 0 person in all three tests are omitted.

well. For relative fit indices, smaller values indicate a better fit.
The DINA model was preferred based on the BIC, and the
GDINA model was preferred based on the AIC. According to the
parsimony principle (Beck, 1943), a simpler model is preferred
if its performance is not significantly worse than that of a more
complex model. Both AIC and BIC introduced a penalty for
model complexity. However, as the sample size was included in
the penalty in BIC, the penalty in BIC was larger than that in AIC.
The DINA model was chosen as the best-fitting model given the
small sample size of this study, which might not meet the needs of
an accurate parameter estimation of the GDINA model, and the
item parameters in the DINA model having more straightforward
interpretations. Therefore, the DINA model was used for the
follow-up model-based analyses.

Q-matrix validation
A misspecified Q-matrix can seriously affect the parameter
estimation and the results of diagnostic accuracy (de la Torre,
2008; Ma and de la Torre, 2019). Notice that the Q-matrix
validation can also be skipped when the model fits the data
well. Table 10 presents the revision suggestion based on the
empirical validation of the initial Q-matrix. In all three tests,
the revision suggestion was only for item 9. However, after the

subjective and empirical judgment of the experts (Ravand, 2016),
this revision suggestion was not recommended to be adopted.
Let us take item 9 (“Which number minus 7 is equal to −10?”)
in formal test A as an example. Clearly, this item does not
address the suggested changes in A3, A5, and A6. As the expert-
defined Q-matrix was consistent with the data-driven Q-matrix,
the initial Q-matrix was used as the confirmed Q-matrix in the
follow-up analyses.

Reliability and validity
Classification accuracy (Pa) and consistency (Pc) are two
important indicators for evaluating the reliability and validity of
classification results. According to Ravand and Robitzsch (2018),
values of at least 0.8 for the Pa index and 0.7 for the Pc index
can be considered acceptable classification rates. As shown in
Table 11, both pattern- and attribute-level classification accuracy
and consistency were within the acceptable range. Additionally,
Cronbach’s α, split-half reliability, and parallel form reliability
were also computed based on the raw scores (see Table 12).
The attribute framework of this study was reassessed by several
experts, and the Q-matrix was confirmed, indicating that the
content validity and the structural validity of this study were
good. To further verify the external validity, the correlation
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between the raw score of each formal test and the raw score of a
monthly exam (denoted as S; the content of this test is the chapter
on “rational numbers”) was computed (rAS = 0.95, p < 0.01;
rBS = 0.95, p < 0.01; rCS = 0.94, p < 0.01). The results indicated
that the reliability and validity of all three tests were good.

Parallel test checking
To determine whether there were significant differences in the
performance of the same group of students in the three tests,
the raw scores, estimated item parameters (Table 13), and
diagnostic classifications (Table 14) were analyzed by repeated
measures ANOVA. The results indicated no significant difference
in the raw scores [F(2,552) = 1.054, p = 0.349, BF10 = 0.0382],
estimated guessing parameters [F(2,34) = 1.686, p = 0.200,
BF10 = 0.463], estimated slip parameters [F(2,34) = 0.247,
p = 0.783, BF10 = 0.164], and diagnostic classifications [F(2,78)
≈ 0.000, p ≈ 1.000, BF10 = 0.078] in the same group of students
in the three tests.

As the three tests examined the same content knowledge,
contained the same Q-matrix, had high parallel-forms reliability,
and had no significant differences in the raw scores, estimated
item parameters, and diagnostic classifications, they could be
considered to meet the requirements of parallel tests.

CONCLUSION AND DISCUSSION

This study developed an instrument for longitudinal learning
diagnosis of rational number operations. In order to provide
a reference for practitioners to develop the instrument for
longitudinal learning diagnosis, the development process was
presented step by step. The development process contains three
main phases, the Q-matrix construction and item development,
the preliminary test for item quality monitoring, and the formal
test for test quality control. The results of this study indicate
that (a) both the overall quality of the tests and the quality of
each item are good enough and that (b) the three tests meet the
requirements of parallel tests, which can be used as an instrument
for longitudinal learning diagnosis to track students’ learning.

2 The Bayes factor (BF10) was calculated using the JASP software (Goss-Sampson,
2020) based on the Bayesian estimation. BF10 = 0.038 means that the current data
are 0.038 times more likely to occur under the alternative hypothesis (H1) being
true than under the null hypothesis (H0) being true. As suggested by Dienes (2014),
BF10 less than 1, 1/3, and 1/10 represents weak, moderate, and strong evidence for
the H0, respectively. By contrast, BF10 greater than 1, 3, and 10 represents weak,
moderate, and strong evidence for the H1, respectively.

However, there are still some limitations of this study. First, to
increase operability, only the binary attributes were adopted. As
the binary attribute can only divide students into two categories
(i.e., mastery and non-mastery), it may not meet the need for a
multiple levels division of practical teaching objectives (Bloom
et al., 1956). Polytomous attributes and the corresponding LDMs
(Karelitz, 2008; Zhan et al., 2020) can be adopted in future
studies. Second, the adopted instrument for longitudinal learning
diagnosis was based on parallel tests. However, in practice,
perfect parallel tests do not exist. In further studies, the anchor-
item design (e.g., Zhan et al., 2019) can be adopted to develop
an instrument for longitudinal learning diagnosis. Third, an
appropriate Q-matrix is one of the key factors in learning
diagnosis (de la Torre, 2008). However, the Q-matrix used
in the instrument may not strictly meet the requirements of
identification (Gu and Xu, 2019), which may affect the diagnostic
classification accuracy.
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In this paper, the slice-within-Gibbs sampler has been introduced as a method

for estimating cognitive diagnosis models (CDMs). Compared with other Bayesian

methods, the slice-within-Gibbs sampler can employ a wide-range of prior specifications;

moreover, it can also be applied to complex CDMs with the aid of auxiliary variables,

especially when applying different identifiability constraints. To evaluate its performances,

two simulation studies were conducted. The first study confirmed the viability of

the slice-within-Gibbs sampler in estimating CDMs, mainly including G-DINA and

DINA models. The second study compared the slice-within-Gibbs sampler with other

commonly used Markov Chain Monte Carlo algorithms, and the results showed that

the slice-within-Gibbs sampler converged much faster than the Metropolis-Hastings

algorithm and more flexible than the Gibbs sampling in choosing the distributions of

priors. Finally, a fraction subtraction dataset was analyzed to illustrate the use of the

slice-within-Gibbs sampler in the context of CDMs.

Keywords: the slice-within-Gibbs sampler, CDMs, DINA model, G-DINA model, Gibbs sampling, MH algorithm

1. INTRODUCTION

Cognitive diagnosis models (CDMs) aim to provide a finer-grained evaluation of examinees’
attribute profiles. As psychometric tools, CDMs have been employed in both educational and non-
educational contexts (Rupp and Templin, 2008; de la Torre et al., 2018). Thus far, several reduced
and general CDMs have been proposed. Examples of the former are the deterministic inputs, noisy
“and” gate (DINA; Junker and Sijtsma, 2001)model and deterministic inputs, noisy “or” gate (DINO;
Templin and Henson, 2006) model; whereas examples of the latter are the generalized DINA (G-
DINA; de la Torre, 2011)model, log-linear CDM (Henson et al., 2009), and general diagnosticmodel
(GDM; vonDavier, 2008).When applying CDMs, a fundamental issue is model identifiability of the
Q-matrix. For different models, different identifiability conditions have been proposed, including
strict identifiability (Liu et al., 2013; Chen et al., 2015; Xu, 2017) and milder identifiability (Chen
et al., 2020; Gu and Xu, 2020).

Basically, in the CDM literature, two estimation methods were widely used. The first is the
Expectation-Maximization (EM) algorithm within the frequentist framework (de la Torre, 2009,
2011; Huo and de la Torre, 2014; Chiu et al., 2016; George et al., 2016; Minchen et al., 2017; Kuo
et al., 2018). However, the main motivation of CDMs is to identify the latent attribute profiles
of examinees’ and Bayesian methods are often more natural to reach the goal. The second most
commonly used method is Markov chain Monte Carlo (MCMC) method (de la Torre and Douglas,
2004; Culpepper, 2015; Culpepper and Hudson, 2018; Zhan et al., 2018, 2019; Jiang and Carter,
2019). Usually, to use the MH algorithm, it is necessary to choose a proposal distribution that
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https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2020.02260
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2020.02260&domain=pdf&date_stamp=2020-09-25
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:xux636@nenu.edu.cn
mailto:shinz@nenu.edu.cn
https://doi.org/10.3389/fpsyg.2020.02260
https://www.frontiersin.org/articles/10.3389/fpsyg.2020.02260/full


Xu et al. Estimating CDMs

can lead to optimal sampling efficiency. However, empirically
determining the optimal proposal distribution can be challenging
in practice. Culpepper (2015) first introduced the Gibbs sampling
to the DINA model and Zhang et al. (2020) applied the Pólya-
Gamma Gibbs sampling based on auxiliary variables to DINA
model. Culpepper and Hudson (2018) introduced Bayesian
method to the Reduced Reparameterized Unified Model (rRUM;
DiBello et al., 1995; Roussos et al., 2007).

With the development of the identifiability, more complex
restrictions need to be taken into account. How to estimate
more general models incorporating to the corresponding
identifiability conditions has been a technically appealing task.
In this paper, a sampling method called the slice-within-
Gibbs sampler is introduced, in which the identifiability
constraints are easy to be imposed. The slice-within-Gibbs
sampler can avoid the boring choices of tunning parameters
in the MH algorithm and converges faster over the MH
algorithm with misspecified proposal distributions. In addition,
it has more flexibility over the Gibbs sampling in prior
choices and can be easier to apply to more general models
compared with the Pólya-Gamma Gibbs Sampling and the
Gibbs sampling. In line with the original idea of the slice-
within-Gibbs sampler, data would still be augmented with
auxiliary variables to make sampling from complicated posterior
densities feasible. Existing theoretical results on convergence
and stability of the slice-within-Gibbs sampler guarantees that
the method is equally applicable to psychometric models, in
general, and CDMs, in particular. As such, this paper focuses
mainly on demonstrating the usage, as well as evaluating the
performance of the slice-within-Gibbs sampler in conjunction
with CDMs.

The remainder of this paper is organized as follows. Section
2 provides an overview of CDMs, mainly the G-DINA and
DINA models. A detailed slice sampler algorithm for the
DINA model is presented in section 3, followed by some
advantages of the algorithm. In section 4, two simulations are
conducted to illustrate the feasibility of the sampler and its
advantages over other MCMC methods. Section 5 contains
an application of the slice-within-Gibbs sampler to fraction
subtraction data, and section 6 provides a discussion of the
findings and limitations of this work and possible future
research directions.

2. OVERVIEW OF CDMs

Suppose there are a total of I examinees and J items with K
required attributes in a test. Let Yij denote the binary response
of examinee i to item j, and Y = {Yij}I×J be the response
matrix. In CDMs, it is often assumed that the latent trait
of examinees is quantified by K−dimensional vectors, called
attribute profiles. That is, for ith examinee, the latent profile is
αi = (αi1,αi2, · · · ,αiK), where αik ∈ {0, 1} and αik = 1 means
that examinee i has mastered the kth attribute, whereas αik =

0 otherwise. Therefore, there possibly exist C = 2K different
attribute profile classes, denoted by αc = (αc1,αc2, · · · ,αcK),
c = 1, 2, · · · ,C. The association between items and attributes

is specified by Q-matrix Q=
{
qjk

}
J×K

(Tatsuoka, 1983), where

qjk = 1 means the kth attribute is required to answer jth item
correctly, and qjk = 0 otherwise.

CDMs model the item response Yij using the following
Bernoulli distribution,

P(Yij = yij|αi,Ωj) = f
yij
ij h

1−yij
ij , (1)

where fij = 1− hij = P(Yij = 1|αi = αc,Ωj) is the probability of
answering item j correctly for examinee i with attribute pattern
αc, and Ωj denotes the unknown parameter set of item j. The
likelihood of the data can be written by obtaining the weighted
sum across the different attribute profiles. More specifically,
assuming an identically and independently distributed latent
membership, πc = P(αi = αc), the joint likelihood can be
written as,

P (Y|Ω ,π) =

I∏

i=1

J∏

j=1

C∑

c=1

πcP(Yij = yij|αi = αc,Ωj). (2)

2.1. The G-DINA Model
The G-DINAmodel is a saturated CDM that subsumes a number
of reduced CDMs. In this model, P(Yij = 1|αi,Ωj) in Equation
(1) is expressed as a function of the main effects and interactions
of the required attributes for each item. Following de la Torre
(2011), let K∗

j =
∑K

k=1 qjk denote the number of required

attributes for item j. For notational convenience, but without
loss of generality, let the first K∗

j attributes be required for item

j, and let α
∗
ij = (αi1,αi2, · · · ,αiK∗

j
) be the reduced vector of αi

associated with item j. The fij in the G-DINA model for item j is,

P
(
Yij = 1

∣∣∣α∗
ij, δj

)
= δj0 +

K∗
j∑

k=1

δjkαik

+

K∗
j∑

k′=k+1

K∗
j −1∑

k=1

δjkk′αikαik′ · · · + δj12···K∗
j

K∗
j∏

k=1

αik, (3)

where δj0 is the intercept; δjk is the main effect of αik; δjkk′ is the
two-way interaction effect of αik and αik′ ; and δj12···K∗

j
is the K∗

j -

way interaction effect of αi1, · · · ,αiK∗
j
. Aside from the identity

link, the G-DINA model can be expressed using log and logit
links (de la Torre, 2011).

2.2. The DINA Model
The DINA model is one of most commonly used CDMs, and its
fij is given by

P
(
Yij = 1

∣∣∣α∗
ij, sj, gj

)
=

{
1− sj for α

∗
ij = 1,

gj otherwise,
(4)

where gj and sj are the guessing and slip parameters, and α
∗
ij =

1 = (1, 1, . . . , 1)T denotes that examinee i has possessed all the
required attributes of item j. In the DINA model, Ωj = {gj, sj}.
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As many researchers have already noted, the DINA model is
a special case of the G-DINA model. The former can be derived
from the latter by setting δj0 = gj, δj0 + δj12··· ,K∗

j
= 1 − sj, and

remaining parameters to zero. Thus, in the DINA model, only
theK∗

j -way interaction is taken into account, which indicates that

the response is expected to be correct only when all the required
attributes have been mastered.

2.3. Identifiability of Restricted Latent
Class Models
For most common statistical inferences, the identifiability of
the models is a precondition. To guarantee the identifiability
when estimating CDMs, we follow a set of sufficient conditions
presented by Xu (2017) for a class of restricted latent
class models. Specifically, these CDMs need to satisfy the
following assumptions:

(i) (Monotonicity relations) For any attribute profile αi
′,

P(Yij = 1|αi,Ωj,αi � qj) ≥ P(Yij = 1|αi
′,Ωj)

≥ P(Yij = 1|αi,Ωj,αi = 0); (5)

and (ii) If qj = ek for k = 1, 2, . . . ,K,

P(Yij = 1|αi,Ωj,αi = 1) > P(Yij = 1|αi,Ωj,αi � ek), (6)

where α � q holds if and only if αk ≥ qk for any k ∈ {1, 2, . . . ,K}
and α � q means there exists at least one k ∈ {1, 2, . . . ,K} such
that αk < qk; 0 = (0, 0, . . . , 0)T ; and ek is a vector whose kth
element is one and the rest elements are zero.

Both the G-DINA and DINAmodels are considered restricted
latent class models. Specifically, for the DINA model, the above
assumptions are equivalent to 1−sj > gj. For the G-DINAmodel,
the transformation is more complicated and will be discussed in
section 3.2.

Identifiability in restricted latent class models satisfies the
following sufficient conditions (Xu, 2017):

(C1) The Q-matrix is constructed such that

Q =



IK
IK
Q′


 ,

where IK is a K × K identity matrix; and
(C2) For any item in Q′, examinees who possess no

required attributes have the lowest success probabilities. That is,
min
αi 6=0

P(Yij = 1|αi,Ωj) > P(Yij = 1|αi = 0,Ωj), for j > 2K.

δLjk = max



max

i∈̥j



Uij −


δj0 +

K∗
j∑

k′=k+1

K∗
j −1∑

k=1

δjkk′αikαik′ · · · + δj12···K∗
j

K∗
j∏

k=1

αik






 , δ∗L



 , and

δRjk = min



min

i∈5j



1− Vij −


δj0 +

K∗
j∑

k′=k+1

K∗
j −1∑

k=1

δjkk′αikαik′ · · · + δj12···K∗
j

K∗
j∏

k=1

αik






 , δ∗R, 1−

∑

−jk

δj



 ,

3. INTRODUCING THE
SLICE-WITHIN-GIBBS SAMPLER FOR
CDMs

In this section, we introduce the slice-within-Gibbs sampler
as a method of estimating CDMs. Moreover, we list
its advantages.

3.1. Using the Slice-Within-Gibbs Sampler
to Estimate CDMs
First, the joint posterior distribution of model parameters (Ω ,π)
could be written as,

P (Ω ,π |Y) ∝ P (Y|Ω ,π ) P (Ω ,π) , (7)

where P (Ω ,π) denotes the joint prior distribution.
Step 1: Sample the positive auxiliary variables Uij and Vij from
the following posterior distribution,

Uij |Y ,Ω ,π ∼ Uniform(0, fij), if Yij = 1,

Vij |Y ,Ω ,π ∼ Uniform(0, hij), if Yij = 0. (8)

The joint posterior distribution P(Ω ,π ,U ,V|Y) is
proportional to

I∏

i=1

J∏

j=1

[
I(Yij=1)(Yij)I(0,fij)(Uij)+ I(Yij=0)(Yij)I(0,hij)(Vij)

]
P (Ω ,π) .

Note that P(Ω ,π |Y) =
∫ ∞

0

∫ ∞

0 P(Ω ,π ,U ,V |Y )dUdV ,
which means that considering the above posterior
distribution is enough to estimate (Ω ,π); I(·) denotes the
indicator function, and I(Yij=1)(Yij) = 1 if Yij = 1, and

I(Yij=1)(Yij) = 0 otherwise.

Step 2: Sample item parameters Ωj, j = 1, 2, . . . , J, from the
following truncated distribution:

Ωj

∣∣Y ,U ,V ,Ω−j,π ∼ P
(
Ωj

)
I(

ΩL
j <Ωj<ΩR

j

)(Ωj), (9)

whereΩL
j andΩR

j are derived from the identifiability restrictions,

and inequalities 0 < Uij < fij, and 0 < Vij < hij.
For example, in the DINA model, sLj = max{max

i∈▽j

{
Vij

}
, 0 },

and sRj = min{min
i∈△j

{
1− Uij

}
, 1 − gj} , where ▽j =

{i
∣∣∣Yij = 0,α∗

ij = 1 } and △j =
{
i
∣∣∣Yij = 1,α∗

ij = 1
}
. In the

G-DINA model,
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FIGURE 1 | Bias of the slip, guessing, and the latent membership parameters under four different noise levels. Given on the X-axis are the Q-matrix and αc, where a

black square denotes the presence of the attribute.

Frontiers in Psychology | www.frontiersin.org 4 September 2020 | Volume 11 | Article 226021

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Xu et al. Estimating CDMs

FIGURE 2 | RMSE of the slip, guessing, and the latent membership parameters under four different noise levels. Given on the X-axis are the Q-matrix and αc, where a

black square denotes the presence of the attribute.
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where 5j =
{
i
∣∣Yij = 0

}
, ̥j =

{
i
∣∣Yij = 1

}
, and δ∗L and δ∗R are

the lower and upper bounds, respectively, determined from the
identifiability conditions of the restricted models.
Step 3: Update the latent membership probabilities π and
the latent profile αi. Following Huebner and Wang (2011)
and Culpepper (2015), the prior of π is assumed to follow
Dirichlet(ϕ0, . . . ,ϕ0). The full conditional distribution of the
latent class probabilities π can be written as

π |α1, . . . ,αC ∼ Dirichlet (ϕ0

+

I∑

i=1

I(αi=α1)(αi), . . . ,ϕ0 +

I∑

i=1

I(αi=α1)(αi)

)
.

In this process, αi is sampled from the distribution

αi

∣∣Y i, s, g,π ∼ Multinomial (1, [ςi1, ..., ςiC]) , (10)

where

ςic = P (αi = αc|Y i,Ω ,π) =
πc

∏J
j=1 P

(
Yij

∣∣αi = αc,Ωj

)

C∑
c=1

πc
∏J

j=1 P
(
Yij

∣∣αi = αc,Ωj

) .

A number of differences exist in updating the item parameters
using the MH algorithm, Gibbs sampling, and slice-within-Gibbs
sampler. The MH algorithm samples the new value from a
proposal distribution pproposal(Ωj). In this paper, we adopted
truncated normal distributions as the proposal distributions.
Within the Gibbs sampling framework, samples are drawn from
the posterior distributions, which is a feature inherited by the
slice-within-Gibbs sampler. For practicability, conjugate priors
are normally employed for in the Gibbs sampling. In the “dina”
3 R package, for example, Culpepper (2015) used the Gibbs
sampler to estimate the DINA model. In contrast, to make
sampling more convenient and flexible to implement, the slice-
within-Gibbs sampler transforms the posterior distributions of
item parameters into a uniform distribution by introducing
auxiliary variables. However, for updating the latent membership
probabilities π and the latent profile αi, the same formula was
adopted by all the samplers.

3.2. About the Monotonicity Restrictions
When applying the slice-within-Gibbs sampler, the monotonicity
restrictions are needed to cooperate with Step 3 for identifiability.
For DINA model, it is easy to implement this constraint, that
is, sj + gj < 1. However for other complex CDMs, it is a bit
complicated. In this part, we present how to restrict parameters
specially in G-DINA model.

In this part, we only took K = 3 as an example. When
K = 3, there exist at most 2K = 8 parameters and corresponding
C classes in G-DINA model. The inequalities (5) and (6) are
actually equivalent to adopt the following inequality considering
all combinations of the q−entries.

0 ≤ δ0 ≤

δ0 + δ1
δ0 + δ2
δ0 + δ3

≤

δ0 + δ1 + δ2 + δ12
δ0 + δ1 + δ3 + δ13
δ0 + δ2 + δ3 + δ23

≤
δ0 + δ1 + δ2 + δ3

+δ12 + δ13 + δ23 + δ123 ≤ 1.

(11)

Therefore, the corresponding bound can be imposed as follows:

1. Consider δ
(t+1)
0 ∈ [δL0 , δ

R
0 ] and δL0 = 0, δR0 =

min{P(1, 0, 0), P(0, 1, 0), P(0, 0, 1)}, where P(α) = P(Yij = 1|α).

2. Consider δ
(t+1)
1 which is equivalent to consider δ∗ = δ

(t+1)
1 +

δ
(t+1)
0 and δ∗ ∈ [δ∗L, δ∗R]. And

{
δ∗L = δ

(t+1)
0 ,

δ∗R = min{P(1, 1, 0), P(1, 0, 1)}.

3. Apply similar formula to other main-effect parameters.

4. Consider δ
(t+1)
12 which is equivalent to consider δ∗ = δ

(t+1)
0 +

δ
(t+1)
1 + δ

(t+1)
2 + δ

(t+1)
12 and δ∗ ∈ [δ∗L, δ∗R]. And

{
δ∗L = max{P(1, 0, 0), P(0, 1, 0)},

δ∗R = P(1, 1, 1).

3.3. Some Advantages of the
Slice-Within-Gibbs Sampler
The MH algorithm typically relies heavily on the proposal
distributions to achieve sampling efficiency. Under
unidimensional cases, some researchers suggest that about
50% of candidates need to be accepted for an appropriate
proposal distribution to be optimal. The probability of
acceptance reduces to around 25% when sampling two- or
three-dimensional parameters (Patz and Junker, 1999). For
more complex CDMs, this probability needs to drop even more.
Compared with MH algorithm, the slice-within-Gibbs sampler
as an extension of the Gibbs sampler inherits the high efficiency
of the latter. Specifically, the slice-within-Gibbs sampler avoids
choosing a proposal distribution because the posterior acts
as its proposal distribution. This gives the slice-within-Gibbs
sampler acceptance probabilities equal to 1, which makes it
highly efficient.

In contrast to the Gibbs sampler, the slice-within-Gibbs
sampler has greater flexibility in choosing the prior distributions.

TABLE 1 | True Q-matrix for K = 3.

Item α1 α2 α3 Item α1 α2 α3

1 1 0 0 16 1 1 0

2 0 1 0 17 1 0 1

3 0 0 1 18 0 1 1

4 1 0 0 19 1 1 0

5 0 1 0 20 1 0 1

6 0 0 1 21 0 1 1

7 1 0 0 22 1 1 0

8 0 1 0 23 1 0 1

9 0 0 1 24 0 1 1

10 1 0 0 25 1 1 1

11 0 1 0 26 1 1 1

12 0 0 1 27 1 1 1

13 1 1 0 28 1 1 1

14 1 0 1 29 1 1 1

15 0 1 1 30 1 1 1
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TABLE 2 | True parameters of the G-DINA model items.

δj0 δj1 δj0 δj1

δj0 δj1 δj2 δj12 δj0 δj1 δj2 δj12

Item Item δj0 δj1 δj2 δj3 δj12 δj13 δj23 δj123

1 0.10 0.70 16 0.20 0.10 0.15 0.40

2 0.10 0.70 17 0.20 0.10 0.15 0.40

3 0.10 0.70 18 0.20 0.30 0.30 -0.05

4 0.10 0.70 19 0.20 0.30 0.30 -0.05

5 0.10 0.70 20 0.20 0.30 0.30 -0.05

6 0.10 0.70 21 0.20 0.20 0.20 0.00

7 0.10 0.70 22 0.20 0.20 0.20 0.00

8 0.10 0.70 23 0.20 0.20 0.20 0.00

9 0.10 0.70 24 0.20 0.20 0.20 0.00

10 0.10 0.70 25 0.20 0.10 0.10 0.10 0.05 -0.05 0.05 0.15

11 0.10 0.70 26 0.20 0.10 0.10 0.10 0.10 0.10 0.05 0.05

12 0.10 0.70 27 0.20 0.10 0.10 0.10 0.05 -0.05 0.05 0.15

13 0.20 0.10 0.15 0.40 28 0.20 0.10 0.10 0.10 0.05 -0.05 0.05 0.15

14 0.20 0.10 0.15 0.40 29 0.20 0.10 0.10 0.10 0.10 0.10 0.05 0.05

15 0.20 0.10 0.15 0.40 30 0.20 0.10 0.10 0.10 0.05 -0.05 0.05 0.15

TABLE 3 | Bias and RMSE for s, g, and π estimates under the DINA model.

True Bias RMSE

I s g π s g π s g π

500 0.100 0.100 0.031 0.008 0.004 0.000 0.029 0.017 0.008

0.200 0.100 0.031 0.011 0.002 0.000 0.033 0.023 0.009

0.100 0.200 0.031 0.006 0.004 0.000 0.038 0.018 0.009

0.200 0.200 0.031 0.009 0.002 0.000 0.044 0.024 0.010

1,000 0.100 0.100 0.031 0.003 0.001 0.000 0.022 0.012 0.006

0.200 0.100 0.031 0.005 0.001 0.000 0.023 0.016 0.006

0.100 0.200 0.031 0.004 0.002 0.000 0.030 0.013 0.006

0.200 0.200 0.031 0.003 0.001 0.000 0.031 0.017 0.007

3,000 0.100 0.100 0.031 0.001 0.000 0.000 0.012 0.007 0.003

0.200 0.100 0.031 0.003 0.000 0.000 0.013 0.010 0.004

0.100 0.200 0.031 0.001 0.000 0.000 0.017 0.008 0.004

0.200 0.200 0.031 0.001 0.000 0.000 0.019 0.011 0.005

TABLE 4 | Bias and RMSE for s, g and π estimates under the negatively

correlated DINA model parameters.

Bias RMSE

I s g π s g π

500 0.009 0.002 0.000 0.028 0.014 0.008

1,000 0.004 0.002 −0.000 0.018 0.011 0.006

3,000 0.002 0.000 0.000 0.011 0.006 0.003

Although highly efficient, finding easy-to-use conjugate prior
distributions renders the use of the Gibbs sampler challenging
in practice. However, this is not an issue with the slice-within-
Gibbs sampler - its efficiency is not affected by the choice of

TABLE 5 | Bias of δ and π estimates under the G-DINA model.

I K*
j

Intercept One-way Two-way Three-way π

500 1 0.007 −0.006 — —

2 0.008 −0.001 -0.007 — 0.000

3 0.017 0.021 −0.044 0.053

1,000 1 0.003 −0.003 — —

2 0.003 −0.000 −0.004 — 0.000

3 0.008 0.006 −0.016 0.020

3,000 1 0.001 −0.001 — —

2 0.001 0.000 −0.001 — 0.000

3 0.003 −0.001 0.000 −0.001

TABLE 6 | RMSE of δ and π estimates under the G-DINA model.

I K*
j

Intercept One-way Two-way Three-way π

500 1 0.022 0.035 — —

2 0.039 0.057 0.084 — 0.015

3 0.059 0.070 0.115 0.182

1,000 1 0.015 0.024 — —

2 0.028 0.042 0.061 — 0.012

3 0.040 0.051 0.080 0.122

3,000 1 0.009 0.015 — —

2 0.016 0.025 0.037 — 0.006

3 0.023 0.034 0.051 0.074

prior distributions. Even if misspecified priors are adopted, it can
obtain satisfactory results.

Thus, the slice-within-Gibbs sampler not only has a relatively
high convergence rate, but also overcomes the dependence on
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the conjugate prior. Moreover, based on Theorem 7 in Mira and
Tierney (2002), it can easily be shown that the slice-within-Gibbs
sampler when used with CDMs is uniformly ergodic because
fij is bounded by 1. However, it should be noted that a few
other MCMC algorithms exhibit this robust property (Mira and
Tierney, 1997; Roberts and Rosenthal, 1999).

4. SIMULATION STUDY

In this section, two simulation studies were conducted to evaluate
the performance of the slice-within-Gibbs sampler in the CDM
context. Simulation 1 was designed mainly to examine the
extent the slice-within-Gibbs sampler can accurately recover the
parameters of the DINA model and G-DINAmodels; Simulation
2 was designed to document the advantages of the slice-within-
Gibbs sampler over the MH algorithm and Gibbs sampling in
estimating the DINA model.

4.1. Simulation Study 1
4.1.1. Design

In Simulation Study 1, the number of attributes for the DINA
and G-DINAmodels was fixed to K = 5 and K = 3, respectively,
whereas the number of items was set to J = 30. The Q-matrices
for the DINA model given in Figures 1, 2 and for the G-DINA
model given in Table 1 were designed to ensure the identifiability
of restricted latent class models.

In this context, the number of examinees I is set as 500,
1000, 3000. As for item parameters of DINA model, five
different conditions were considered. Following Huebner and
Wang (2011) and Culpepper (2015), four noise levels (i.e.,
item qualities) were considered: (1) a low noise level - sj =

gj = 0.1; (2) a high noise level - sj = gj = 0.2; (3)
the slip parameter was higher than the guessing parameter -
sj = 0.2, gj = 0.1; and (4) the guessing parameter was
higher than the slip parameter - sj = 0.1, gj = 0.2. A
fifth condition was considered, where, as in Zhan et al. (2018),
the negative correlation between the item parameters based
on the empirical data was taken into account. Specifically, the

FIGURE 3 | Trace Plots of R̂ under G-DINA model for I = 1, 000.

guessing and slip parameters were generated from the following:

(logit(gj), logit(sj)) ∼ N(

(
-2.564
-1.995

)
,

(
1.233 -0.415
-0.415 0.571

)
). Under

this distribution, the mean guessing and slip parameters were
0.096 and 0.103, respectively; the corresponding maxima were
0.365 and 0.484, respectively. The true parameters of the G-DINA
model are listed in Table 2. Finally, the latent class membership
probabilities π were set to be equal for the different latent classes.

In this simulation study, all priors were set to be non-
informative. With respect to the item parameters, priors of the
slip and guessing parameters to the DINA model were set to be
Uniform(0, 1), whereas P(δ) ∝ 1 in the support set was assumed
for the G-DINA model.

Two criteria were used to evaluate quality of the parameter
recovery, namely, the bias and root mean squared error (RMSE)
of s, g, δ, π across 25 replications. In both simulation studies,
the slice-within-Gibbs sampler was iterated 20,000 times for
each replication, where the first 10,000 iterations were discarded
as burn-in.

To evaluate the convergence, four chains started at
overdispersed starting values were run. The potential scale
reduction factor (PSRF) R̂ (Brooks and Gelman, 1998) was
computed using the R package “coda” (Plummer et al., 2006). A
value of R̂ less than 1.1 (Brooks and Gelman, 1998) was used as
the criterion for chain convergence.

4.1.2. Results

It was verified that the number of iterations and burn-in were
sufficient for the chain to converge. For example, Figure 3 shows
the R̂ in G-DINA model for sample size I = 1000 that all the
parameters came down to 1.1 at the 7266th iteration.

Table 3 shows the parameter recovery results of the slice-
within-Gibbs sampler under the DINA model, Table 4 shows
the parameter recovery under the condition with negatively
correlated item parameters, and Tables 5, 6 the results under the
G-DINA model across different sample sizes and item qualities.

For the smallest sample size (i.e., I = 500), the maximum
absolute bias of the item parameter estimates was 0.011 and
0.053 for the DINA and G-DINA models; the RMSE was below
0.044 and 0.182 for the DINA and G-DINA models, respectively.
With the exception of the higher-order interaction terms when
K∗
j = 3, these results indicate that satisfactory estimates can

be obtained for the DINA and G-DINA models using the slice-
within-Gibbs sampler even with sample size as small as I = 500.
As the table shows, the performance of the slice-within-Gibbs
sampler improved as the number of examinees increased. When
I = 3, 000, the absolute bias and RMSE of all the item parameters

TABLE 7 | Bias and RMSE of the slice-within-Gibbs sampler and MH algorithm.

Slice sampler MH - Case 1 MH - case 2

Bias RMSE Bias RMSE Bias RMSE

s 0.005 0.027 0.006 0.026 0.013 0.035

g 0.002 0.016 0.004 0.018 0.001 0.020

π 0.000 0.008 0.000 0.008 0.000 0.008
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were smaller, and their maximum values dropped to 0.003 and
0.019, respectively, for the DINA model, and to 0.003 and 0.074,
respectively, for the G-DINAmodel. For the condition where the
item parameters were negatively correlated, the average bias and
RMSE were comparable to those obtained under the low-noise
level condition. Finally, for the latent membership probabilities,
all the parameters can be estimated extremely accurately (i.e.,
bias is 0.00) for both models. Moreover, the maximum RMSEs at
I = 500 were 0.010 and 0.015 for the DINA and G-DINAmodels,
respectively, and improved with larger sample sizes.

To better understand the properties of the slice-within-Gibbs
sampler, Figures 1, 2 show the detailed results for I = 500 size
under DINA model. Consistent with the results in Culpepper
(2015) and de la Torre (2009), which were obtained using
different estimation algorithms, worse results were obtained for
items that required more attributes. The deterioration in the
quality of item parameter estimates as the number of required
attributes increased can be clearly observed in Figure 2, which
displays the RMSE of the estimates. It should be noted that
the guessing parameter estimates did in fact slightly improve
with more required attributes; however, the improvement did
not compensate for the stark deterioration in the slip parameter
estimates. These results underscore that fact that, given a fixed
same sample size, the quality of item parameter estimates of
the DINA model can affected by of the number of required
attributes. Finally, Figures 1, 2 indicate that item quality had only
a small impact on the recovery on the individual latent class
membership probabilities.

In sum, the results of Simulation Study 1 indicates that the
slice-within-Gibbs sampler can provide accurate estimates of
the DINA and G-DINA model parameter estimates. Moreover,
it can provide results consistent with those of previously
implemented algorithms.

4.2. Simulation Study 2
This simulation study had two-fold goals: (1) to compare
the efficiency of the slice-within-Gibbs sampler to that of
MH algorithm; and (2) to compare the slice-within-Gibbs
sampler and Gibbs sampler in terms their flexibility in
specifying the priors. For this study, the MH algorithm, Gibbs

sampling and slice sampler were compared in the context of
DINA model.

4.2.1. Design

The simulated data contained I = 500 examinees, J =

30 items and K = 5 attributes. All the slip and guessing
parameters were set to 0.1, and the Q-matrix given in Figure 1

was used.
For the MH algorithm, there exist infinite choices of

proposal distributions. For demonstration purposes, this
simulation study only considered the following two cases of the
proposal distributions.

• Case 1: A larger step between iterations, where sj ∼ N(s
(t)
j , 1),

and gj ∼ N(g
(t)
j , 1); and

• Case 2: A smaller step between iterations, where sj ∼

N(s
(t)
j , 0.001), a gj ∼ N(g

(t)
j , 0.001).

For the Gibbs sampling, the Beta family distributions were the
conjugate priors of the items parameters. Following Culpepper
(2015), only the conjugate prior Beta (1, 1) was considered.

For the slice-within-Gibbs sampler, both conjugate and
non-conjugate priors were considered. Below are the two cases
of the priors and their specific instances.

• Case 3: For conjugate priors, Beta (1, 1) , Beta (1, 2) and
Beta (2, 2) were used; and

• Case 4: For non-conjugate priors, N (0, 1) I(0,1)(x),
N (2, 1) I(0,1)(x), Uniform(0, 2) I(0,1)(x), and Exp (1) I(0,1)(x)
were used.

TABLE 8 | Bias and RMSE of the slice-within-Gibbs sampler and Gibbs algorithm.

Slice sampler - Case 3 Slice sampler - Case 4 Gibbs

Bias RMSE Bias RMSE Bias RMSE

s 0.009 0.031 0.008 0.030 0.009 0.031

g 0.002 0.017 0.002 0.017 0.002 0.017

π −0.000 0.008 0.000 0.008 0.000 0.008

FIGURE 4 | The trace Plots of R̂ for the slice-within-Gibbs sampler and MH algorithms in Simulation Study 2.
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As in Simulation Study 1, bias and RMSE were calculated to
evaluate the quality of the parameter estimates. Similarly the
PSRF was computed to evaluate convergence.

4.2.2. Results

Table 7 presents the recovery results of the slice-within-
Gibbs sampler with uniform prior and MH algorithm
under Cases 1 and Case 2. The results show that the
accuracy of the MH algorithm parameter estimates was

greatly influenced by the variance of proposal distribution.
Specifically, the parameter estimates under Case 2 were
worse than those under Case 1, which indicates that, for
this particular condition, a smaller step between iterations
was not a good as a larger step. It is also noteworthy that,
despite the use of a uniform prior, the slice-within-Gibbs
sampler provided estimates that were as good as, if not
better than estimates obtained using the MH algorithm
under Case 1.

FIGURE 5 | Bias and RMSE of slip, guessing, and the latent membership parameters based on different conjugate priors. Given on the X-axis are the Q-matrix and

αc, where a black square denotes the presence of the attribute.

FIGURE 6 | Bias and RMSE of slip, guessing and the latent membership parameters based on different non-conjugate priors. Given on the X-axis are the Q-matrix

and αc, where a black square denotes the presence of the attribute.
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Figure 4, which contains the R̂s for the slice-within-Gibbs
sampler and MH algorithms across different iterations, shows
the differing convergence rates of the two methods. As can be
seen from the figure, π converged at the fastest rate, followed by

TABLE 9 | Convergence rates of the Gibbs and slice samplers.

Convergence observed

Sampler Iterations Time (min)

Slice 1,573 6.006

Gibbs 258 4.654

TABLE 10 | The Q-matrix of the fraction subtraction data.

Item α1 α2 α3 α4 α5

1 1 0 0 0 0

2 1 1 1 1 0

3 1 0 0 0 0

4 1 1 1 1 1

5 0 0 1 0 0

6 1 1 1 1 0

7 1 1 1 1 0

8 1 1 0 0 0

9 1 0 1 0 0

10 1 0 1 1 1

11 1 0 1 0 0

12 1 0 1 1 0

13 1 1 1 1 0

14 1 1 1 1 1

15 1 1 1 1 0

g. For the MH algorithm, Case 1 converged faster than Case 2
- Case 1 reached convergence by the 1000th iteration, whereas
Case 2 did not even reach convergence for some parameters. This
indicates that the variance of the proposal distribution in Case 2
was too small to sufficiently explore the posterior distribution. In
comparison, all the parameters estimated using the slice-within-
Gibbs sampler reached convergence by the 2000th iteration.

Table 8 presents the recovery results of the slice-within-Gibbs
sampler with Beta (1, 2) prior under Case 3 and N (0, 1) I(0,1)(x)
prior under Case 4. Figure 5 shows the bias and RMSE of the
slice-within-Gibbs sampler under Case 3 (i.e., conjugate priors)
and the Gibbs sampler under Beta (1, 1). It can be seen that
the slice-within-Gibbs sampler performed similarly to the Gibbs
sampler, particularly for gj and πc. Although the estimates of sj
had a larger variability across the four priors, none of them was
uniformly the best across the 30 items. The figure also shows
that the slice-within-Gibbs sampler provided comparable results
under the family of beta priors. Finally, regardless of the Beta
priors used, the bias and RMSE of sj were always higher than
those of gj and πc, which is consistent with the previous results.

Figure 6 presents the recovery of the slice-within-Gibbs
sampler under Case 4. It should be noted that the Gibbs sampler
does not work under these specific priors. In contrast, the slice-
within-Gibbs sampler can also be applied with different non-
conjugate, even misspecified priors. The figures shows that the
biases of sj, gj, and πc were close to zero, and the corresponding
RMSEs were below 0.05. Despite the use of non-conjugate priors,
these results were almost the same those obtained using the Gibbs
sampler under Beta (1, 1).

Table 9 compares the convergence rate of the Gibbs and slice-
within-Gibbs samplers. Specifically, the simulated data based on
the DINA model used I = 500 examinees, J = 30 items,
K = 5 attributes and the Q-matrix in Figure 1. For comparison
purposes, two criteria were used to evaluate the convergence

TABLE 11 | The EAP of the latent class parameters under G-DINA model.

Latent classes π̂ Latent classes π̂

α1 α2 α3 α4 α5 EAP SE α1 α2 α3 α4 α5 EAP SE

0 0 0 0 0 0.005 0.004 1 1 1 0 0 0.138 0.011

1 0 0 0 0 0.005 0.003 1 1 0 1 0 0.014 0.006

0 1 0 0 0 0.004 0.003 1 1 0 0 1 0.003 0.003

0 0 1 0 0 0.079 0.011 1 0 1 1 0 0.001 0.003

0 0 0 1 0 0.110 0.010 1 0 1 0 1 0.006 0.003

0 0 0 0 1 0.004 0.004 1 0 0 1 1 0.013 0.005

1 1 0 0 0 0.006 0.004 0 1 1 1 0 0.003 0.002

1 0 1 0 0 0.035 0.007 0 1 1 0 1 0.001 0.001

1 0 0 1 0 0.009 0.006 0 1 0 1 1 0.006 0.001

1 0 0 0 1 0.003 0.002 0 0 1 1 1 0.001 0.001

0 1 1 0 0 0.006 0.006 1 1 1 1 0 0.118 0.013

0 1 0 1 0 0.002 0.002 1 1 1 0 1 0.083 0.008

0 1 0 0 1 0.002 0.002 1 1 0 1 1 0.001 0.001

0 0 1 1 0 0.003 0.002 1 0 1 1 1 0.001 0.001

0 0 1 0 1 0.001 0.001 0 1 1 1 1 0.001 0.001

0 0 0 1 1 0.002 0.002 1 1 1 1 1 0.335 0.015
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FIGURE 7 | Trace Plots of R̂ for the real data in the GDINA model.

FIGURE 8 | Trace Plots of R̂ for the real data in the DINA model.

rates, namely, the iterations at which all the parameters reached
convergence and the time to reach 20,000 iterations. Based on 100
replications, Table 11 shows that the Gibbs sampler converged
much earlier and was about 1.29 times faster than the slice-
within-Gibbs sampler.

Overall, the results of Simulation Study 2 indicate that,
depending on the proposal distribution, the slice-within-Gibbs
sampler can be dramaticallymore or slightly less efficient than the
MH algorithm. However, theMH algorithm is advantageous only
to the extent that the proposal distribution is optimal, whereas
the slice-within-Gibbs sampler can be implemented with a wide
range of prior distributions. Similarly, although the slice and
Gibbs samplers are comparable, the former, unlike the latter, is
not restricted to the use of conjugate priors.

5. EMPIRICAL EXAMPLE

5.1. Data
The empirical example involved fraction subtraction data
previously analyzed by Tatsuoka (1990), Tatsuoka (2002) and

de la Torre (2009). The data analyzed here consisted of responses
of 536 students to 15 fraction subtraction items. The five
attributes measured by the test were: α1 subtracting basic
fractions; α2 reducing and simplifying; α3 separating whole from
fraction; α4 borrowing one from whole; and α5 converting whole
to fraction. The corresponding Q-matrix is given in Table 10.

5.2. Methods and Results
The DINA and G-DINA models were fitted to the data
and the corresponding parameters estimated using the slice-
within-Gibbs sampler, with monotonicity constraints imposed
to stabilize the estimates due to the relatively small sample size.
Incidentally, the Gibbs sampler was not considered for these
data due to the difficulty in finding conjugate priors that can
also accommodate the monotonicity constraints. The estimates
based on the expected a posteriori (EAP) and the corresponding
standard errors (SEs) were computed for DINA and G-DINA
models. Finally, the deviance information criterion (DIC) was
employed to select between the two models. Figures 7, 8 show
the R̂ for the G-DINA and DINA analyses of the empirical data,
respectively. In addition to the convergence of the chains, the
figures also show that the DINA model converged faster than the
G-DINA model for these data.

In terms of DIC, a model with smaller DIC is to be preferred
(Spiegelhalter et al., 2002). In fitting the fraction subtraction data,
the DICs of the DINA and G-DINA models were 27719.86 and
27017.43, respectively, which indicates that the G-DINA model
provided a better fit to data. Thus, only results pertaining to the
G-DINA model are presented below.

Table 11 contains the EAP estimates of the latent membership
parameters, π̂c, and their corresponding SEs under the G-DINA
model. The eight latent classes with the largest memberships
were: π(1, 1, 1, 1, 1) = 0.335, π(1, 1, 1, 0, 0) = 0.138,
π(1, 1, 1, 1, 0) = 0.118, π(0, 0, 0, 1, 0) = 0.110, π(1, 1, 1, 0, 1) =

0.083, π(0, 0, 1, 0, 0) = 0.079, π(1, 0, 1, 0, 0) = 0.035, and
π(1, 1, 0, 1, 0) = 0.014. They accounted for over 91% of the latent
class memberships. In terms of individual attribute mastery, α1

through α5 had the following prevalences: 0.771, 0.723, 0.812,
0.620, and 0.463, which makes α3 and α5 the easiest and most
difficult attributes to master, respectively. It can be noted that
latent classes which showed mastery of all but one of the three
easiest attributes to master, as in (0,1,1,1,1), (1,0,1,1,1), and
(1,1,0,1,1), had the lowest latent class memberships. In this
example, it can be noted that latent classes with the largest class
memberships also had the larger SEs.

Table 12 gives the G-DINA model estimates of the fraction
subtraction items in term of the latent group success probability
P(α∗

ij). The item parameter estimates clearly show why the G-

DINA model was preferred over the DINA model. For the DINA
model to provide a satisfactory fit to the data, all parameters
and except the intercept and the highest-order interaction effect
must be equal to zero. This was not the case with, say, items that
require two attributes (i.e., items 8, 9, and 12). For these items,
P(00) < P(10) and P(00) < P(01) indicating that the main
effects are not equal to zero. The remaining multi-attribute items
also indicate that the conjunctive assumption of the DINAmodel
was not tenable. As a rough measure of item discrimination,
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TABLE 12 | Results of the fraction subtraction data analysis under G-DINA model using the slice-within-Gibbs sampler and EM algorithm.

P(α∗

ij
)

0 1

00 10 01 11

000 100 010 001 110 101 011 111

0000 1000 0100 0010 0001 1100 1010 1001 0110 0101 0011 1110 1011 1101 0111 1111

00000 10000 01000 00100 00010 00001 11000 10100 10010 10001 01100 01010 01001 00110 00101 00011

Method Item 11100 11010 11001 10110 10101 10011 01110 01101 01011 00111 11110 11101 11011 10111 01111 11111

1 0.103 0.877

2 0.029 0.170 0.054 0.064 0.353 0.301 0.530 0.527 0.110 0.426 0.496 0.655 0.650 0.823 0.632 0.922

3 0.511 0.969

4 0.003 0.026 0.008 0.009 0.017 0.069 0.064 0.148 0.058 0.400 0.025 0.045 0.151 0.072 0.140 0.144

0.315 0.126 0.533 0.277 0.513 0.484 0.189 0.291 0.280 0.275 0.549 0.718 0.674 0.673 0.498 0.939

5 0.370 0.853

6 0.003 0.056 0.009 0.009 0.037 0.237 0.217 0.409 0.024 0.167 0.156 0.425 0.676 0.630 0.353 0.840

7 0.011 0.043 0.036 0.045 0.073 0.118 0.453 0.643 0.099 0.155 0.328 0.547 0.723 0.908 0.419 0.963

8 0.119 0.823 0.857 0.957

The slice 9 0.060 0.904 0.755 0.964

sampler 10 0.006 0.097 0.027 0.031 0.147 0.332 0.202 0.561 0.326 0.335 0.253 0.716 0.736 0.700 0.584 0.952

11 0.055 0.828 0.757 0.940

12 0.006 0.060 0.061 0.023 0.236 0.662 0.735 0.935

13 0.006 0.324 0.047 0.046 0.023 0.451 0.494 0.657 0.110 0.204 0.254 0.605 0.747 0.783 0.388 0.863

14 0.001 0.012 0.006 0.006 0.007 0.011 0.050 0.058 0.046 0.069 0.017 0.042 0.056 0.051 0.060 0.063

0.182 0.130 0.213 0.174 0.227 0.268 0.166 0.186 0.221 0.220 0.433 0.457 0.523 0.564 0.474 0.891

15 0.002 0.011 0.012 0.009 0.017 0.074 0.067 0.301 0.032 0.354 0.324 0.278 0.660 0.677 0.597 0.910

1 0.088 0.880

2 0.000 0.000 0.000 0.096 0.298 0.000 0.419 0.811 0.096 0.298 0.318 0.433 0.871 0.811 0.366 0.908

3 0.513 0.970

4 0.000 0.000 0.000 0.000 0.031 0.000 0.014 0.000 0.031 0.235 0.000 0.031 0.000 0.031 0.000 0.031

0.587 0.031 0.819 0.319 0.396 0.908 0.031 0.000 0.345 0.031 0.908 0.823 0.908 0.908 0.346 0.908

5 0.327 0.839

6 0.000 0.000 0.000 0.000 0.025 0.100 0.104 0.025 0.000 0.025 0.025 0.300 0.641 0.833 0.025 0.833

7 0.000 0.000 0.000 0.019 0.051 0.000 0.019 0.335 0.110 0.066 0.051 0.586 0.972 0.768 0.332 0.972

8 0.000 0.853 0.953 0.953

EM 9 0.032 0.912 0.721 0.971

algorithm 10 0.000 0.000 0.000 0.000 0.000 0.000 0.168 0.751 0.215 0.000 0.945 0.712 0.945 0.945 0.945 0.945

11 0.011 0.783 0.770 0.952

12 0.000 0.052 0.039 0.000 0.052 0.641 0.930 0.930

13 0.000 0.000 0.054 0.047 0.000 0.647 0.248 0.362 0.090 0.066 0.047 0.857 0.837 0.857 0.457 0.857

14 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.265 0.098 0.000 0.000 0.301 0.245 0.000 0.000 0.000 0.000 0.879 0.740 0.245 0.497 0.001 0.879

15 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.122 0.000 0.000 0.704 0.630 0.914 0.914

1j = Pj(1) − Pj(0), was computed. All but two items had
1j > 0.70, and the average item discrimination was 1̄j = 0.829.
These results indicate that the fraction subtraction items are
highly discriminating.

For comparison purpo ses, the EM estimates of the same items
were also obtained using the R package “GDINA” (Ma and de la
Torre, 2020), and are given Table 12. It can be noted that for
one-attribute items (i.e., items 1 and 5), the slice-within-Gibbs
sampler and EM estimates are highly comparable. However,
for multi-attribute items, the estimates can be quite disparate,

except for Pj(1) was comparable across the two methods. The
difference could be due to the small sample size relative to the
complexity of the G-DINA model for the multi–attribute items.
To better understand the behavior of the slice-within-Gibbs
sampler and EM algorithm vis-a-vis the fraction subtraction data,
we conducted a simulation study where data were generated
based on the parameters obtained using the slice-within-Gibbs
sampler. Figure 9 shows the mean absolute error (MAE) of the
two estimates across 100 replications. The figure indicates that
the slice-within-Gibbs sampler had smaller mean absolute biases
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FIGURE 9 | Mean absolute bias of the slice-within-Gibbs sampler and EM

estimates of data simulated based on the fraction subtraction data.

for most of the parameters, thus, a more reliable method for the
fraction subtraction data.

6. DISCUSSION

In this work, the slice-within-Gibbs sampler is introduced as
a method of estimating CDMs. Unlike the MH algorithm,
the slice-within-Gibbs sampler obviates the need to choosing
an optimal proposal distribution; unlike Gibbs sampler,
the slice-within-Gibbs sampler has the flexibility to work
with a wider range of prior distributions. As shown in
the simulation studies and empirical example, it can be
used to estimate complex CDMs, such as the G-DINA
model. Thus, the slice-within-Gibbs sampler provides an
alternative and viable estimation procedure in the context of
CDMs.

Based on the results of Table 9, additional work is needed to
speed up the implementation of the slice-within-Gibbs sampler
for researchers to be able to fully take advantage of the flexibility
of the sampler to estimate a wide range CDMs.

In the present work, only two CDMs (i.e., DINA and G-
DINAmodels) were employed to illustrate the slice-within-Gibbs
sampler. However, the slice-within-Gibbs sampler can be easily
extended to other CDMs (e.g., additive CDM, GDM), attribute
structure (e.g., higher-order CDMs; de la Torre and Douglas,
2004), and potentially to CDMs that incorporate various types
of covariates.

Finally, it should be noted that other MCMC sampling
procedures that use auxiliary variables are currently available.
One such procedure is the Hamiltonian Monte Carlo (Neal,
2011; Duane et al., 1987, HMC) algorithm. The HMC algorithm
is based on the Hamiltonian dynamics, and has a physical
interpretation and can provide useful intuitions. As an extension
of the MH algorithm, it exploits the gradient information to
draw samples from the posterior. Because HMC algorithm
often provides a large move with acceptance rates close to
one, its efficiency is higher than that of the MH algorithm.
Future research should systematically compare the performance
of the slice-within-Gibbs sampler and the HMC algorithm,
as well as other auxiliary-variable sampling procedures, in
estimating CDMs.
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Model data fit plays an important role in any statistical analysis, and the primary goal is
to detect the preferred model based on certain criteria. Under the cognitive diagnostic
assessment (CDA) framework, a family of sequential cognitive diagnostic models (CDMs)
is introduced to handle polytomously scored data, which are attained by answering
constructed-response items sequentially. The presence of attribute hierarchies, which
can provide useful information about the nature of attributes, will help understand
the relation between attributes and response categories. This article introduces the
sequential hierarchical CDM (SH-CDM), which adapts the sequential CDM to deal with
attribute hierarchy. Furthermore, model fit analysis for SH-CDMs is assessed using
eight model fit indices (i.e., three absolute fit indices and five relative fit indices). Two
misfit sources were focused; that is, misspecifying attribute structures and misfitting
processing functions. The performances of those indices were evaluated via Monte
Carlo simulation studies and a real data illustration.

Keywords: sequential hierarchical cognitive diagnostic model, polytomous response data, attribute hierarchy,
processing function, model fit

INTRODUCTION

Cognitive diagnostic assessment (CDA) has gained widespread use since its introduction, as it can
provide fine-grained feedback through pinpointing the presence or absence of multiple fine-grained
skills or attributes (Leighton and Gierl, 2007; Templin and Bradshaw, 2013) based on some cognitive
diagnostic models (CDMs). Many different names according to their different connotations (Rupp
et al., 2010; Ma, 2017) can be applied to refer to the CDM, in which the diagnostic classification
model (DCM; Rupp et al., 2010) is most widely applied.

For dichotomously scored items, a number of CDMs can be found in literature, among others,
the deterministic inputs, noisy “and” gate (DINA; Haertel, 1989; Junker and Sijtsma, 2001) model,
the deterministic inputs, noisy “or” gate (DINO; Templin and Henson, 2006) model, and the
additive CDM (A-CDM; de la Torre, 2011) were most widely used. Furthermore, three most general
CDMs, the general diagnostic model (GDM; von Davier, 2008), the log-linear CDM (LCDM;
Henson et al., 2009), and the generalized deterministic input noisy and gate model (GDINA; de
la Torre, 2011), were proposed to better understand and handle the above models. Specifically, the
GDINA model is equivalent to the LCDM when the logit link is used, and the GDM is a general
version of both of them.
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For polytomously scored items, which yield graded responses
with ordered categories or nominal responses, a few models have
been developed, such as the GDM for graded response (von
Davier, 2008), the nominal response diagnostic model (NRDM;
Templin et al., 2008), the partial credit DINA model (de la Torre,
2010), the polytomous LCDM (Hansen, 2013), the sequential
CDM (sCDM; Ma and de la Torre, 2016), and the diagnostic tree
model (DTM; Ma, 2019). Among them, only sCDM and DTM
can model the possible relation between attributes and response
categories. Furthermore, Liu and Jiang (2020) proposed the rating
scale diagnostic model (RSDM), which was a special version of
the NRDM with fewer parameters. Culpepper (2019) presented
an exploratory diagnostic framework for ordinal data.

On the other hand, attribute dependencies often occur
in practical applications, instead of that all attributes are
independent for each examinee. To this end, four different types
of attribute hierarchies (i.e., linear, convergent, divergent, and
unstructured) were considered to reflect attribute dependencies
(Gierl et al., 2007). An example of different types of attribute
hierarchies is shown in Figure 1. For an external shape, a directed
acyclic graph (DAG) is used to express the attribute hierarchy;
and for an internal organization, all possible attribute profiles
are provided. Let α1, α2, α3, α4 denote four attributes measured
by a CDA. Take the linear structure as an example, αk is the
prerequisite of αk+1 (k = 1, 2, 3), as a result, the number of
all possible attribute patterns is 5, which is less than 24 = 16.
To model attribute hierarchy, Templin and Bradshaw (2014)
proposed a hierarchical diagnostic classification model (HDCM).
Zhan et al. (2020) proposed a sequential higher-order DINA
model with attribute hierarchy to handle the higher-order and
hierarchical structures simultaneously using the sequential tree.
Interested readers can refer to Rupp et al. (2010) and von Davier
and Lee (2019) for detailed information.

It is a central concern to assess global-level fit (i.e.,
model fit) in the psychometric area. Model fit analysis can
be evaluated by two aspects: absolute fit analysis, which
assesses how well a given model reproduces the sample
data directly; and relative fit analysis, which recommends a
better-fit model through comparing at least two candidates.
Under the CDA framework, the sources of model misfit
include inaccurate item response function (IRF), Q-matrix
misspecification, misspecifying attribute pattern structures (Han
and Johnson, 2019), abnormal response behaviors (e.g., rapid
guessing, and cheating), local item dependence, and so on.

Regarding absolute fit assessment, for the sequential GDINA
model, Ma and de la Torre (2019) proposed category-level
model selection criteria based on the Wald test and the
likelihood ratio (LR) test to identify different IRFs; and
Ma (2020) used limited-information indices [i.e., Mord and
standardized mean square root of squared residual (SRMSR)]
to detect model misspecification or Q-matrix misspecification.
On the other hand, Lim and Drasgow (2019) proposed
the Mantel–Haenszel (MH) chi-square statistic to detect
latent attribute misspecification in non-parametric cognitive
diagnostic methods.

In terms of relative fit assessment, Sen and Bradshaw (2017)
compared the Akaike information criterion (AIC), Bayesian

information criterion (BIC), and adjusted BIC (aBIC), and
found that they performed poorly to differentiate CDMs and
multidimensional item response theory (MIRT) models for
dichotomous response data.

Furthermore, some researches focused on the performances
of both absolute fit indices (AFIs) and relative fit indices (RFIs)
for dichotomous CDMs. Under Bayesian framework, Sinharay
and Almond (2007) used Bayesian residuals, which are based
on the individuals’ raw scores, as AFI and deviance information
criterion (DIC) as RFI to distinguish different measurement
models. Chen et al. (2013) used both AFIs [i.e., abs(fcor), residuals
based on the proportion correct of individual items and the log-
odds ratios of item pairs] and RFIs (i.e., -2LL, AIC, and BIC)
to identify model and/or Q-matrix misspecifications. Hu et al.
(2016) investigated the usefulness of AIC, BIC, and consistent
AIC (CAIC) as RFIs, and limited information root mean square
error of approximation (RMSEA2), abs(fcor), and max(χ2

jj′
) as

AFIs to detect model or Q-matrix misspecification. Lei and
Li (2016) detected model and Q-matrix misspecifications using
AFIs [i.e., RMSEA, mean of absolute values of Q3 statistic
(MADQ3), mean of absolute values of pairwise item covariance
residuals (MADres), mean of absolute deviations in observed
and expected correlations (MADcor), and mean of all item pair
χ2

jj′
statistics (Mχ2

jj′
)] and RFIs (i.e., AIC and BIC). Empirically,

Han and Johnson (2019) assessed global-level fit for dichotomous
CDMs using both RFIs (i.e., AIC, BIC, and aBIC) and AFIs
[i.e., M2, RMSEA2, and maximum of all item pair χ2

jj′
statistics

(max(χ2
jj′

))] through a real data illustration.
As no prior studies have analyzed the CDM fit for polytomous

response data with attribute hierarchy, the current study
concentrates on a novel model, named as the sequential
hierarchical CDM (SH-CDM), and assesses model-data fit. This
study provides important evidence and insight to support the
usefulness of SH-CDMs in the future. The remainder of this
article is listed as follows. First, we introduce the sequential
hierarchical CDMs and review different model fit indices. Next,
simulation studies and a real data illustration are provided to
evaluate the performances of those indices. Finally, we end
with some concluding remarks. Supplementary Appendix A
and Supplementary Material are provided to complement the
detailed information and simulation results.

MATERIALS AND METHODS

Model Description
In this section, SH-CDMs are introduced based on Templin and
Bradshaw (2014) and Ma and de la Torre (2016). The sCDM
(Ma and de la Torre, 2016) is a special version of SH-CDM with
non-hierarchical attribute structure, and the HDCM (Templin
and Bradshaw, 2014) is a special version of SH-CDM when all
response data are scored dichotomously.

To analyze the polytomously scored data from constructed-
response items, the sCDM is built upon a sequential process
model. As a result, it can provide the detailed problem-solving
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FIGURE 1 | Types of hierarchical attribute structures. For the convergent structure, mastering α4 needs to master both α2 and α3 (Zhan et al., 2020), as well as α1.

procedures to support subsequent inference. For a constructed-
response test with J items, assuming item j (j = 1, 2, . . ., J)
involves Hj tasks that need to be solved sequentially; therefore,
if the 1st task is failed, the score should be 0; if the first h
(0 < h < Hj) tasks are successful but the (h + 1)th task is failed,
the score should be h; else if all tasks are successful, the score
should be Hj. To this end, Ma and de la Torre (2016) proposed
a
∑J

j=1 Hj –by–K category-level matrix, named as the Qc-matrix,
the element of which is a binary indicator of whether the task
of the corresponding item measures this attribute. In this article,
only the restricted Qc-matrix is considered. Mathematically, let
Qc = {qjh,k}, qjh,k = 1 if attribute k (k = 1, 2, . . . K) is measured by
item j for task h (h = 1, 2, . . ., Hj), otherwise, qjh,k = 0.

Let the processing function, Sjh(
→αg), be the probability of

examinees with attribute pattern →αg answering the first h tasks
of item j correctly given answering the first (h-1)th tasks
correctly, where g = 1, 2, . . ., G, and G denotes the total
number of latent classes. Notating→α∗l,jh as the reduced attribute
profile of examinee l (l = 1, 2, . . ., N), which contains all
the required attributes of item j for task h. Then, Sjh

(
→αg
)
=

S(→α∗l,jh). In this article, the DINA model, DINO model,
A-CDM, and GDINA model are considered, which represent
the conjunctive, disjunctive, additive, and general condensation
rules, respectively. Hereafter, only the identity link is considered
for the GDINA model, which is equivalent to the logit link1.
Assuming that all categories share the same condensation rule,
let K∗jh be the total number of required attributes by item j for
task h; the expressions for processing functions are summarized
in Table 1.

Furthermore, the existence of attribute hierarchy will reduce
the model complexity of IRF. To deal with attribute hierarchies,
the HDCM was proposed by Templin and Bradshaw (2014). As
the HDCM is nested within more general CDMs, the SH-CDM
is introduced by combining it with the sCDM. In the SH-CDM,
the influence of attribute hierarchy is reflected in the processing
function. Take the SH-GDINA model as an example, assuming
four linear attributes (Figure 1) are measured in the test and
three attributes are required by item j for task h, S

(
→α∗l,jh

)
=

1A simulation check has been done to test the equivalence using the GDINA
package; results indicated there was no significant difference between the identity
link and the logit link.

TABLE 1 | Summary of S(→α∗l,jh) for different processing functions.

Processing
function

Formula Notations

DINA S
(
→α∗l,jh

)
=

φjh,0 + φjh,12...K∗jh

∏K∗jh
k=1 αlk

Examinee parameters:
αlk is the kth attribute of
examinee l.

Item parameters:
φjh,0 is the intercept;
φjh,k is the main effect of
αlk ;
φjh,kk′ is the two-way
interaction effect of αlk and
αlk′ ;
φjh,12...K∗jh

is the K∗jh –way

interaction effect of→α∗l,jh

DINO S
(
→α∗l,jh

)
= φjh,0 + φjh,kαlk

A-CDM S
(
→α∗l,jh

)
=

φjh,0 +
∑K∗jh

k=1 φjh,kαlk

GDINA S
(
→α∗l,jh

)
=

φjh,0 +
∑K∗jh

k=1 φjh,kαlk +∑K∗jh
k′=k+1

∑K∗jh−1

k=1 φjh,kk′ αlkαlk′ +

. . .+ φjh,12...K∗jh

∏K∗jh
k=1 αlk

φjh,0 + φjh,k1αlk1 + φjh,k1k2αlk1αlk2 + φjh,k1k2k3αlk1αlk2αlk3 , where
the subscript of k denotes the order of the required attributes.

To ensure joint identifiability of the HDCMs, Gu and Xu
(2019) restricted that the sparsified version of Q-matrix had at
least three entries of “1”s in each column and Q-matrix can be
rearranged as Q = (Q0

Q∗ ), where Q0 was equivalent to a K-by-
K identity matrix IK under the attribute hierarchy and the
densified version of Q∗ contained K distinct column vectors.
In addition, if Q-matrix was constrained to contain an IK , the
HDCMs were identified. The SH-CDM identifiability shares the
same restrictions as those mentioned above. Interested reader
can refer to Gu and Xu (2019) for further discussion on model
identifiability.

Model Fit Indices
To assess global-level fit of CDMs, both absolute fit assessment
and relative fit assessment are done to identify adequate-
fit models and select the best-fit model, respectively.
To ensure the comparability of different AFIs, SRMSR,
100∗MADRESIDCOV, and MADcor are considered as they
share the same rule. To choose the best-fit model among all
candidates, five widely used RFIs [i.e., AIC, BIC, the second-
order information criterion (AICc), aBIC, and CAIC] are
evaluated and compared.
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Absolute Fit Index
The SRMSR (Maydeu-Olivares, 2013) is a measure of pairwise
correlations. As a standardized statistic, test length has few
influences on the performance of SRMSR. The SRMSR can be
calculated as

SRMSR =

√√√√ 2
J (J − 1)

∑
j<j′

(
rjj′ − r̂jj′

)2
, (1)

where rjj′ and r̂jj′ denote the observed and predicted pairwise item
correlations, respectively. The model with smaller SRMSR will be
identified as a good fit one.

The mean absolute deviation (MAD) is a fundamental
statistic to calculate the last two AFIs mentioned before, which
measures the discrepancy between the observed item conditional
probabilities of success and the predicted ones. The RESIDCOV
denotes the residual covariance of pairwise items. Then, we can
obtain the mean of absolute deviations of residual covariances
(MADRESIDCOV; McDonald and Mok, 1995) by replacing
the conditional probabilities in MAD by the RESIDCOVs. The
MADRESIDCOV measures the discrepancy between observed
and predicted pairwise item residual covariance (RESIDCOV).
Let,

γjj′ , RESIDCOVjj′ =
njj′,11njj′,00 − njj′,10njj′,01

n2

−
ejj′,11ejj′,00 − ejj′,10ejj′,01

n2 , (2)

Then, we can obtain

MADRESIDCOV =

∑J
j=1
∑

j6=j′
∣∣γjj′ − γ̂jj′

∣∣
J (J − 1)

. (3)

100∗MADRESIDCOV is used equivalently, as the magnitude
of MADRESIDCOV is usually small. The MADcor (DiBello
et al., 2007) is the mean of absolute deviations in observed
and expected correlations of pairwise items. The MADcor
equals 2

J(J−1)
∑

j<j′
∣∣rjj′ − r̂jj′

∣∣, where rjj′ and r̂jj′ have the same
meanings as those in SRMSR. For MAD-type indices, a smaller
value (i.e., value near to zero) denotes better fit.

Relative Fix Index
Different types of information criteria are calculated with respect
to the penalty term, the expressions of which are presented
in Table 2. AIC (Akaike, 1974) and BIC (Schwarz, 1978) are
most widely applied since their introductions. The second-order
information criterion (AICc; Sugiura, 1978) was derived to deal
with the small ratio of sample size to estimated number of
parameters case (i.e., less than 40; Burnham and Anderson, 2002).
As the sample size gets large, AICc converges to AIC. The aBIC
(Sclove, 1987) modified BIC by adjusting the sample size term to
handle the small sample size case well. The CAIC was proposed
by Bozdogan (1987), in which then penalty terms include both
the order of the model and the sample size. The candidate model
with smaller RFI is recommended.

TABLE 2 | Formulas of different relative fit indices.

Index Formula Notation

AIC AIC = –2ln(LL) + 2P
LL: likelihood
P: the effective
number of
parameters
N: sample size

BIC BIC = –2ln(LL) + P ln(N)

AICc AICc = AIC + [2P(P + 1)]/(N – P – 1)

aBIC aBIC = –2ln(LL) + P ln[(N + 2)/24]

CAIC CAIC = –2ln(LL) + (ln(N) + 1)P = BIC – P

AIC, Akaike information criterion; BIC, Bayesian information criterion; aBIC,
adjusted BIC; CAIC, consistent AIC.

Simulation Studies
The simulation studies aim (a) to examine parameter recovery
for SH-CDMs and (b) to compare the performances of different
AFIs and RFIs for SH-CDMs. Two different sources of misfit are
considered: the first type of misfit is due to attribute structures
misspecification, and the second type of misfit relies on different
processing functions. To this end, three simulation studies are
conducted: (I) to examine whether parameters of SH-CDMs
can be recovered well; (II) to investigate the performances of
model fit indices to identity attribute structures; and (III) to
investigate their performances to detect the processing function
misspecification, respectively.

The simulation conditions are summarized in Table 3. More
details will be given in the simulation design sections. In this
article, the GDINA R package (Ma and de la Torre, 2020) was
used to estimate different SH-CDMs and assess the model fit.
The source code including the computation of indices, which
were not provided in the GDINA R package, was provided
in Supplementary Appendix A. The mapping matrix method
(Tutz, 1997) and the expected a posteriori (EAP) method, which
are the default methods in the GDINA package for sequential
CDMs, were used to estimate item parameters and attribute
profiles, respectively. Five hundred replications were conducted
for each condition.

Study Design I
In this study, the GDINA model was chosen as the processing
function, as its generality. Attribute profiles were generated from
the uniform structure; that is, all the possible latent classes shared
the same probability. Sample size was 1,000. A 24-item test, in

TABLE 3 | Summary of simulation conditions.

Factors Studies I and II Study III

Sample size (N) 1,000 1,000; 3,000

Attribute structure Non-hierarchical; linear; convergent; divergent;
unstructured

Generation processing function GDINA DINA, DINO, A-CDM, GDINA

Calibration processing function GDINA DINA, DINO, A-CDM, GDINA

Item quality High: U(0.1, 0.2), low: U(0.2, 0.3)

Attribute generation Uniform structure

Test length (J) 24

Number of attributes (K) 4

Number of categories (G) 4
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TABLE 4 | Summary of parameter recovery when CM = GM.

Model Low item quality High item quality

AAR PAR RMSE bias RAbias AAR PAR RMSE bias RAbias

S1 0.9008 0.6742 0.1683 0.0000 6.8400 0.9787 0.9226 0.1336 0.0001 2.0298

S2 0.9623 0.8593 0.1842 0.0688 4.6691 0.9915 0.9664 0.2448 0.0961 4.5692

S3 0.9514 0.8240 0.1998 0.0655 4.4051 0.9904 0.9626 0.2552 0.0906 12.9081

S4 0.9518 0.8248 0.1715 0.0390 6.1866 0.9899 0.9604 0.2176 0.0544 3.7261

S5 0.9422 0.7938 0.1801 0.0396 10.9168 0.9903 0.9624 0.2242 0.0556 6.3453

AIC, Akaike information criterion; BIC, Bayesian information criterion; aBIC, adjusted BIC; CAIC, consistent AIC.

TABLE 5 | Summary of parameter recovery when data were fitted by S1.

GM Low item quality High item quality

AAR PAR RMSE bias RAbias AAR PAR RMSE bias RAbias

S2 0.9475 0.8154 0.4556 −0.0004 13.6676 0.9862 0.9486 0.4808 −0.0001 8.2845

S3 0.9490 0.8169 0.4077 0.0000 9.6069 0.9894 0.9595 0.4383 −0.0002 9.2714

S4 0.9369 0.7796 0.4300 −0.0002 11.2261 0.9837 0.9385 0.4452 0.0000 30.6335

S5 0.9255 0.7426 0.4159 −0.0001 13.1993 0.9825 0.9343 0.4057 0.0001 6.0283

GM, data generation model; AAR, attribute-wise agreement rate; PAR, pattern-wise agreement rate; RMSE, root mean square error; RAbias, average relative absolute bias.

TABLE 6 | Correct detection rates of RFIs for different hierarchical attribute structures.

GM CM Low item quality High item quality

AIC BIC aBIC CAIC AICc AIC BIC aBIC CAIC AICc

S2 S1 0 0 0 0 0 0 0 0 0 0

S2 0.99 1 1 1 1 0.998 1 1 1 1

S3 0.01 0 0 0 0 0.008 0 0 0 0

S4 0 0 0 0 0 0 0 0 0 0

S5 0 0 0 0 0 0 0 0 0 0

S3 S1 0 0 0 0 0 0 0 0 0 0

S2 0 0 0 0 0 0 0 0 0 0

S3 0.99 1 1 1 1 1 1 1 1 1

S4 0.01 0 0 0 0 0 0 0 0 0

S5 0 0 0 0 0 0 0 0 0 0

S4 S1 0 0 0 0 0 0 0 0 0 0

S2 0 0 0 0 0 0 0 0 0 0

S3 0 0 0 0 0 0 0 0 0 0

S4 1 1 1 1 1 1 1 1 1 1

S5 0 0 0 0 0 0 0 0 0 0

S5 S1 0 0 0 0 0 0 0 0 0 0

S2 0 0 0 0 0 0 0 0 0 0

S3 0 0 0 0 0 0 0 0 0 0

S4 0 0 0 0 0 0 0 0 0 0

S5 1 1 1 1 1 1 1 1 1 1

GM, data generation model; CM, calibration model; RFI, relative fit index; AIC, Akaike information criterion; BIC, Bayesian information criterion; aBIC, adjusted BIC;
CAIC, consistent AIC. The bold value means the largest value in a specific condition.

which there were 20 four-category items and four dichotomously
scored items, was used. For four-category items, four attributes
were measured totally and no more than three attributes were
required by each item. Without loss of generality, the last

four items were dichotomously scored with an identity subQ-
matrix to ensure model identifiability. Two manipulated factors
included attribute structure (non-hierarchical, linear, convergent,
divergent, and unstructured) and item quality (high and low).

Frontiers in Psychology | www.frontiersin.org 5 October 2020 | Volume 11 | Article 57901837

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-579018 October 5, 2020 Time: 13:20 # 6

Zhang and Wang Sequential Hierarchical CDM

TABLE 7 | CDRs of AFIs for different hierarchical attribute structures.

GM CM Low item quality High item quality

MADcor 100MAD RESIDCOV SRMSR MADcor 100MAD RESIDCOV SRMSR

S2 S1 0.282 0.226 0.270 0.292 0.210 0.304

S2 0.206 0.238 0.228 0.248 0.306 0.224

S3 0.150 0.162 0.174 0.128 0.150 0.136

S4 0.178 0.164 0.150 0.134 0.128 0.124

S5 0.184 0.210 0.178 0.198 0.206 0.192

S3 S1 0.296 0.260 0.308 0.302 0.266 0.298

S2 0.006 0.008 0 0 0 0

S3 0.280 0.312 0.274 0.294 0.314 0.292

S4 0.196 0.226 0.230 0.212 0.200 0.224

S5 0.222 0.194 0.188 0.192 0.220 0.186

S4 S1 0.426 0.364 0.396 0.410 0.37 0.420

S2 0 0 0 0 0 0

S3 0 0 0 0 0 0

S4 0.314 0.360 0.326 0.306 0.33 0.296

S5 0.260 0.276 0.278 0.284 0.30 0.284

S5 S1 0.510 0.446 0.496 0.454 0.42 0.458

S2 0 0 0 0 0 0

S3 0 0 0 0 0 0

S4 0.002 0.014 0.004 0 0 0

S5 0.488 0.540 0.500 0.546 0.58 0.542

GM, data generation model; CM, calibration model; CDR, correct detection rate; AFI, absolute fit index; SRMSR, standardized mean square root of squared residual. The
bold value means the largest value in a specific condition.

For each data set, item parameters and attribute profiles were
simulated separately and the Q-matrix was kept consistent.

The item parameter recovery was calculated in terms of
average root mean square error (RMSE), average bias, and
average relative absolute bias (RAbias), and the classification
accuracies were examined using pattern-wise agreement rate
(PAR) and attribute-wise agreement rate (AAR).

Simulation Result I
Hereafter, for convenience, let S1 = the SH-GDINA model with
non-hierarchical attribute structure; S2 = the SH-GDINA model
with linear attribute structure; S3 = the SH-GDINA model with
convergent attribute structure; S4 = the SH-GDINA model with
divergent attribute structure; S5 = the SH-GDINA model with
unstructured attribute structure.

Table 4 summarizes the estimation accuracy and precision of
SH-GDINA models. For different attribute structures, attribute
profiles in high item quality cases could be recovered better
than in the corresponding low item quality cases. The estimation
accuracy of item parameters had a similar trend except for
convergent attribute structure cases, although the values of RMSE
and bias in low item quality cases were smaller than those in high
item quality cases, which is because true item parameters’ values
in the low cases were smaller, and the smaller true values led to
larger RAbiases.

Furthermore, the SH-GDINA model with non-hierarchical
attribute structure, which was the most general one among these
models, was used to fit response data generated by different
SH-GDINA models. The parameter recovery is summarized
in Table 5. Compared with results shown in Table 4, AAR

and PAR were smaller, and RMSE and RAbias were larger. It
appears that specifying the attribute hierarchy can significantly
improve the estimation accuracy and precision, which supports
the introduction of SH-CDMs.

Study Design II
In this study, the same simulation settings as the simulation study
I were considered. Correct detection rates (CDRs) were used to
evaluate the performances of different indices. For AFIs, as there
is no sufficient evidence for the cutoff values of these AFIs to
support model fit assessment, the CDR is calculated as the rate
of the smallest values for all replications. Meanwhile, the box plot
of AFIs is also provided to compare the performances of different
AFIs intuitively.

Simulation Result II
A popular rule for AIC (Burnham and Anderson, 2002) is that
a difference of 2 or less is considered negligible and a difference
exceeding 10 constitutes strong support. In this article, the same
rule is used for all the RFIs. For the non-hierarchical attribute
structure, all AFIs of the data generation model had the smallest
values, and all RFIs recommended the true model with strong
support. For hierarchical attribute structures, Tables 6, 7 provide
CDRs of RFIs and AFIs, respectively.

As shown in Table 6, all RFIs could select the true model
with a probability larger than 0.99. Regarding the effectiveness of
detecting distinguished models with similar RFIs, we calculated
the rates of the differences between RFI values of two candidates,
which were smaller than 10, and named as the indistinguishable
proportion. When response data were generated by S2, the
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FIGURE 2 | Box plots of absolute fit indices (AFIs) in low item quality cases of simulation study II.
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FIGURE 3 | Box plots of absolute fit indices (AFIs) in high item quality cases of simulation study II.
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TABLE 8 | Selected results of CDRs of RFIs for different models.

Condition CM AIC BIC aBIC CAIC AICc

Non-hierarchical structure Low item quality, N = 1,000 GM = M4 M1 0 0 0 0 0

M2 0 0 0 0 0

M3 0 1 0.502 1 0.134

M4 1 0 0.498 0 0.866

Non-hierarchical structure Low item quality, N = 3,000 GM = M4 M1 0 0 0 0 0

M2 0 0 0 0 0

M3 0 0.76 0 0.978 0

M4 1 0.24 1 0.022 1

Convergent structure Low item quality, N = 1,000 GM = M4 M1 0 0 0 0 0

M2 0 0 0 0 0

M3 0 0.642 0.05 0.822 0.014

M4 1 0.358 0.95 0.178 0.986

Divergent structure Low item quality, N = 1,000 GM = M4 M1 0 0 0 0 0

M2 0 0 0 0 0

M3 0 0.888 0.02 0.988 0

M4 1 0.112 0.98 0.012 1

Unstructured structure Low item quality, N = 1,000 GM = M4 M1 0 0 0 0 0

M2 0 0 0 0 0

M3 0 0.894 0.002 0.998 0

M4 1 0.106 0.998 0.002 1

Unstructured structure High item quality, N = 3,000 GM = M4 M1 0 0 0 0 0

M2 0 0 0 0 0

M3 0 0.652 0.002 0.938 0

M4 1 0.348 0.998 0.062 1

GM, data generation model; CM, calibration model; CDR, correct detection rate; RFI, relative fit index; AIC, Akaike information criterion; BIC, Bayesian information criterion;
aBIC, adjusted BIC; CAIC, consistent AIC. The bold value means the largest value in a specific condition.

indistinguishable proportions of AIC to differentiate S3 were
4.8% and 27.2% for the high item quality case and the low item
quality case, respectively; and the indistinguishable proportion
of AICc was 0.2% for the high item quality case. To generate
response data using S3, for the high item quality case, the
indistinguishable proportion of AIC to differentiate S4 was 3.8%;
for the low item quality case, the indistinguishable proportion of
AIC to differentiate S4 was 29%, among them 1% of the time AIC
could not differentiate S3, S4, and S5. For the case in which data
were generated by S4, the indistinguishable proportion of AIC to
differentiate S4 and S5 was less than 6%. Other cases could be
differentiated well.

In terms of AFIs (Table 7), S1 mostly had the smallest AFIs.
The CDRs of different AFIs were similar. According to the box
plots of AFIs (Figures 2, 3), when generating data using S2,
it was very hard to differentiate these models. Similarly, it was
difficult to distinguish S3 from S1 and S5, S4 from S1 and S5,
or S5 from S1. High item quality led to large values of AFIs. It
appears that RFIs outperform AFIs for SH-GDINA models, and
RFIs distinguish SH-GDINA models with convergent attribute
structures from models with unstructured attribute structures
with difficulty.

Simulation Design III
In this study, attribute generation method, test length, and test
structure were kept the same as those in simulation studies I
and II. The manipulated factors included sample size (1,000 and

3,000), attribute structure (non-hierarchical, linear, convergent,
divergent, and unstructured), item quality (high and low),
and data generation/calibration model (SH-DINA, SH-DINO,
SH-ACDM, and SH-GDINA). To evaluate the performances
of different indices, the CDRs were reported. Hence, item
parameters and the Q-matrix were fixed for each condition, and
attribute profiles were simulated separately.

Simulation Result III
For convenience, let M1 = the SH-DINA model, M2 = the
SH-DINO model, M3 = the SH-ACDM, and M4 = the SH-
GDINA model.

Relative Fit Index
Limited by the space, we only provided the results when the
probabilities of true model selection by different RFIs were
different or incorrect in Table 8. The whole results (i.e., CDRs
of both RFIs and AFIs, box plots of AFIs) were provided in
the Supplementary Material. The different performances were
reflected in the SH-ACDM and the SH-GDINA model. Under
the conditions mentioned in Table 8, AIC and AICc always
chose the true model, BIC and CAIC always chose the alternative
model, and aBIC mostly selected the true model. Besides, for
linear attribute structures, when the data generation model was
the SH-ACDM, all RFIs recommended the SH-GDINA model
with a probability larger than 0.98. In other cases, all RFIs could
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TABLE 9 | CDRs of AFIs for different models with linear attribute structures.

GM CM Low item quality High item quality

MADcor 100MAD RESIDCOV SRMSR MADcor 100MAD RESIDCOV SRMSR

N = 1,000

M1 M1 0.158 0.142 0.114 0.176 0.144 0.126

M2 0 0 0 0 0 0

M3 0.53 0.526 0.528 0.42 0.472 0.454

M4 0.312 0.332 0.358 0.404 0.384 0.42

M2 M1 0 0 0 0 0 0

M2 0.082 0.082 0.056 0.042 0.044 0.036

M3 0.444 0.438 0.454 0.536 0.522 0.514

M4 0.474 0.48 0.49 0.422 0.434 0.45

M3 M1 0 0 0 0 0 0

M2 0 0 0 0 0 0

M3 0.554 0.548 0.558 0.554 0.592 0.54

M4 0.446 0.452 0.442 0.446 0.408 0.46

M4 M1 0 0 0 0 0 0

M2 0 0 0 0 0 0

M3 0.46 0.492 0.492 0.562 0.568 0.556

M4 0.54 0.508 0.508 0.438 0.432 0.444

N = 3,000

M1 M1 0.146 0.158 0.114 0.154 0.162 0.128

M2 0 0 0 0 0 0

M3 0.438 0.44 0.488 0.464 0.44 0.508

M4 0.416 0.402 0.398 0.382 0.398 0.364

M2 M1 0 0 0 0 0 0

M2 0.078 0.072 0.048 0.078 0.072 0.048

M3 0.422 0.438 0.46 0.422 0.438 0.46

M4 0.5 0.49 0.492 0.5 0.49 0.492

M3 M1 0 0 0 0 0 0

M2 0 0 0 0 0 0

M3 0.492 0.462 0.48 0.502 0.498 0.53

M4 0.508 0.538 0.52 0.498 0.502 0.47

M4 M1 0 0 0 0 0 0

M2 0 0 0 0 0 0

M3 0.558 0.49 0.554 0.562 0.542 0.544

M4 0.442 0.51 0.446 0.438 0.458 0.456

GM, data generation model; CM, calibration model; CDR, correct detection rate; AFI, absolute fit index; SRMSR, standardized mean square root of squared residual. The
bold value means the largest value in a specific condition.

FIGURE 4 | The Qc-matrix for Booklet 1 data from TIMSS 2007. 131 and 132 denote the 1st and 2nd tasks of item 13, respectively.

select the data generation model as the better fitting one with a
probability larger than 0.93.

When data were generated by M4 with non-hierarchical
attribute structures, in low item quality cases, the
indistinguishable proportions of aBIC and AICc to differentiate
M3 and M4 were about 10% for a small sample size; for
a large sample size, BIC could not differentiate M3 and

M4 5.4% of the time and the indistinguishable proportion
of CAIC was 1%.

For linear attribute structures, AIC could not distinguish
M1 from M3 or M4 for one or two replications under
different conditions. When the generation model was M2, the
indistinguishable proportions of AIC with high item quality
were similar to those in the “GM = M1” case. When response
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data were generated by M3 or M4, all RFIs could not
differentiate M3 and M4.

For convergent attribute structures, AIC could not distinguish
M2 from M4 in no more than one replication under different
conditions. M3 and M4 could not be distinguished well.
When generating response data using M3, the indistinguishable
proportions of AIC to differentiate M4 ranged from 45% to 69%,
the corresponding indistinguishable proportions of AICc ranged
from 3% to 27%, and BIC was not able to differentiate M3 from
M4 11% of the time for the high item quality case with small
sample size. When “GM = M4,” for the low item quality case

TABLE 10 | Summary of hierarchical attribute structures.

#structure DAG #structure DAG

2 α1 → α2 → α3 7 α2 → α3, α1

3 α1 → α3 → α2 8 α3 → α2, α1

4 α3 → α1 → α2 9 α3 → α1, α2

5 α1 → α2, α3 10 α1 → α2, α1 → α3

6 α1 → α3, α2 11 α3 → α1, α3 → α2

DAG, directed acyclic graph.

with the large sample size, aBIC was not able to differentiate M4
and M3 32% of the time, and the indistinguishable proportion
of CAIC was 8%; the indistinguishable proportions of AIC, BIC,
aBIC, CAIC, and AICc for the low item quality case with the
small sample size were about 1.6%, 39%, 7.8%, 30.2%, and 7.6%,
respectively; and for the high item quality case with the small
sample size, the indistinguishable proportions of BIC and aBIC
were 11.4% and 24.8%, respectively.

For divergent attribute structures, in one replication, AIC
could not distinguish M1 from M4. Furthermore, AIC was not
able to distinguish M3 from M4 about 8.4% of the time, and
the corresponding indistinguishable proportion of AICc was
2%. When data were generated by M4, the indistinguishable
proportions of BIC and CAIC for high item quality with the
small sample size were 7.2% and 14%; for low item quality,
the corresponding proportions of BIC, aBIC, CAIC, and AICc
with the small sample size were 7.6%, 5.2%, 2.8%, and 1.4%,
respectively, and those of BIC and CAIC with the large sample
size were 2.2% and 5.6%, respectively.

For unstructured attribute structures, distinguishing M3
from M4 using AIC would fail about 1.4% of the time, and
the indistinguishable proportions of BIC, aBIC, and CAIC

TABLE 11 | Model fit indices of SH-GDINA models for TIMSS data.

#structure MADcor 100MAD RESIDCOV SRMSR AIC BIC aBIC CAIC AICc

1 0.039 0.698 0.062 7904.80 8063.86 7946.41 8100.86 7910.36

2 0.038 0.687 0.063 7899.01 8036.58 7935.00 8068.58 7903.14

3 0.039 0.692 0.063 7899.95 8037.51 7935.93 8069.51 7904.08

4 0.039 0.703 0.062 7899.34 8036.90 7935.32 8068.90 7903.47

! 5 0.039 0.701 0.062 7901.89 8052.35 7941.25 8087.35 7906.85

6 0.038 0.690 0.063 7902.96 8049.12 7941.19 8083.12 7907.63

7 0.038 0.691 0.063 7902.46 8052.92 7941.82 8087.92 7907.42

8 0.039 0.703 0.063 7901.72 8052.18 7941.08 8087.18 7906.68

9 0.039 0.703 0.062 7902.13 8048.29 7940.36 8082.29 7906.80

10 0.038 0.687 0.063 7901.01 8042.87 7938.12 8075.87 7905.41

11 0.039 0.698 0.062 7904.80 8063.86 7946.41 8100.86 7910.36

The recommended attribute structures by RFIs were highlighted in gray. SRMSR, standardized mean square root of squared residual; AIC, Akaike information criterion;
BIC, Bayesian information criterion; aBIC, adjusted BIC; CAIC, consistent AIC; AICc, second-order information criterion. The bold value means the smallest value of an
index.

TABLE 12 | Summary of estimated proportion of each latent class.

#structure 000 100 010 001 110 101 011 111

1 0.487 0.030 0.001 0.035 0.014 0.000 0.021 0.412

2 0.535 0.033 – – 0.016 – – 0.417

3 0.535 0.041 – – – 0.000 – 0.424

4 0.517 – – 0.052 – 0.000 – 0.431

5 0.489 0.034 – 0.047 0.012 0.000 – 0.418

6 0.531 0.032 0.007 – 0.016 0.000 – 0.415

7 0.514 0.028 0.004 – 0.017 – 0.029 0.408

8 0.483 0.038 – 0.042 – 0.000 0.019 0.419

9 0.510 – 0.003 0.039 – 0.000 0.025 0.423

10 0.535 0.033 – – 0.016 0.000 – 0.417

11 0.511 – – 0.040 – 0.000 0.025 0.424

“–” denotes the latent class is impermissible.
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to differentiate M4 from M3 were about 11%, 2%, and 3%,
respectively. Overall, AICc can select the true model and almost
distinguish it from others for all manipulated conditions.

Absolute Fit Index
As M4 almost had the smallest values of AFIs for all conditions
except the linear attribute structure cases, only the results of
these cases were presented in Table 9. Both small sample size
and high item quality led to larger values of AFIs. For linear
attribute structures, it was hard to differentiate M3 and M4,
when to generate data using M4, the difference between AFIs
of M3 and M4 decreased as item quality became low. For other
structures, the trends were similar. This observation indicates
that AFIs cannot easily differentiate SH-CDMs that differ by
processing functions.

Real Data Illustration
Data Source
This example application is from the TIMSS 2007 eighth-grade
mathematics assessment, which is from Booklet 1 that measured
three attributes (Lee et al., 2013): Attribute 1 (α1): whole
numbers and integers; Attribute 2 (α2): fractions, decimals, and
percentages; and Attribute 3 (α3): data analysis and probability.
There are 12 dichotomously scored items and one three-category
item answered by 544 students from the United States.

The Qc-matrix based on the works by Lee et al. (2013)
and Ma (2019) is presented in Figure 4. According to general
knowledge about numeric, α2 cannot be the prerequisite of
α1. Hence, including the non-hierarchical attribute structure
(#structure = 1), 11 different attribute structures are analyzed.
The detailed DAGs of different hierarchical attribute structures
are shown in Table 10. Without loss of generality, the GDINA
model is chosen as the processing function in this section because,
in simulation studies, we noticed that it is not easy to differentiate
the SH-GDINA model from others. This dataset is analyzed using
the GDINA R package (Ma and de la Torre, 2020).

RESULTS

Table 11 shows the comparison among different structures using
both AFIs and RFIs. The smallest values are in boldface. Different
indices performed similarly to assess model-data fit that is
because most of the items required only one attribute. From
an item-level perspective, if only one attribute is required by
one item, there is no difference among candidate models with
different attribute structures.

On the other hand, Wang and Lu (2020) proposed two
predetermined cutoff values (i.e., 0.025 and 0.05) of estimated
proportions of latent classes to identify the labels for estimated
latent classes. The estimated proportions of latent classes were
shown in Table 12. All estimated proportions of (000), (100),
(001), and (111) were larger than 0.025, and except (000) and
(111), only (001) modeled using 4th structure had an estimated
proportion larger than 0.05. It is not enough to distinguish
different structures, which may be because the sample size of this
dataset was small.

CONCLUSION

In order to avoid possible misleading conclusion, model-data fit
must be thoroughly assessed before drawing the model-based
inference. Although there are abundant research examining
model fit assessment for CDMs, there is a lack of an effective
guidance on how to deal with polytomously scored items with
hierarchical attribute structures, and the aim of the present study
is to fill in this gap. In this paper, we developed a sequential
hierarchical cognitive diagnostic model to handle polytomous
response data with hierarchical attribute structures and further
evaluated model-data fit using both absolute fit indices and
relative fit indices.

Across all simulation conditions, the SH-CDM can be
recovered well, and aBIC and AICc are recommended for the
SH-CDMs due to their high CDRs and acceptable distinguishable
proportions. To distinguish different attribute structures for
SH-GDINA models, RFIs outperform AFIs. Furthermore, AFIs
used in this study are inappropriate to differentiate processing
functions of the SH-CDM.

This study was the first attempt at assessing global-level fit
of hierarchical CDMs and polytomous response data. However,
the results are limited to SH-CDMs using the same condensation
rules; future research pertaining to mixture measurement model
and different condensation rules for different tasks in one item
should be expanded to enhance the practicability of SH-CDMs.
Also, it is necessary to extend the study to deal with sparse
Q-matrix with large K. In addition, local-level (i.e., item-level) fit
should be further examined to complement global fit analysis. On
the other hand, as smaller values (close to zero) of AFIs indicate
a good model-data fit, it would be worthwhile to identify the
corresponding cutoff values using the resampling technique.
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The aim of cognitive diagnosis is to classify respondents’ mastery status of latent

attributes from their responses on multiple items. Since respondents may answer some

but not all items, item-level missing data often occur. Even if the primary interest is

to provide diagnostic classification of respondents, misspecification of missing data

mechanism may lead to biased conclusions. This paper proposes a joint cognitive

diagnosis modeling of item responses and item-level missing data mechanism. A

Bayesian Markov chain Monte Carlo (MCMC) method is developed for model parameter

estimation. Our simulation studies examine the parameter recovery under different

missing data mechanisms. The parameters could be recovered well with correct use

of missing data mechanism for model fit, and missing that is not at random is less

sensitive to incorrect use. The Program for International Student Assessment (PISA) 2015

computer-based mathematics data are applied to demonstrate the practical value of the

proposed method.

Keywords: cognitive diagnosis, item-level, missing data, missing data mechanism, cognitive diagnosis model

1. INTRODUCTION

Cognitive diagnosis has recently received increasing concern in psychological and educational
assessment, which can provide fine-grained classifications and diagnostic feedback for respondents
from their performance on test items (Leighton and Gierl, 2007; Rupp et al., 2010). It is a useful tool
to identify students’ mastery status of different latent skills based on their responses to test items and
to evaluate patients’ presence of mental disorders based on their responses to diagnostic questions.
More specifically, cognitive diagnosis has been used to study fraction subtraction (de la Torre
and Douglas, 2004), language proficiency (von Davier, 2008; Chiu and Köhn, 2016), psychological
disorders (Templin and Henson, 2006; Peng et al., 2019), and so forth.

Various cognitive diagnosis models (CDMs), also called diagnosis classification models, have
been developed, such as the deterministic inputs, noisy “and” gate (DINA) model (Macready and
Dayton, 1977; Junker and Sijtsma, 2001) and the deterministic inputs, noisy “or” gate (DINO)
model (Templin and Henson, 2006). Most CDMs are parametric and model the probability of item
response as a function of latent attributes. The simplicity and interpretability make the parametric
CDMs popular in practice. More general CDMs, such as the log-linear cognitive diagnosis model
(LCDM; Henson et al., 2009) and the generalized DINA model (de la Torre, 2011), assume a more
flexible relationship between the item responses and latent attributes. Moreover, higher-order latent
trait models for cognitive diagnosis (de la Torre and Douglas, 2004) have been introduced to link
the correlated latent traits by a general high-order ability.
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Multiple items are often used for cognitive diagnosis. When
respondents choose to answer some but not all items, item-level
missing data occur (Chen et al., 2020). Respondents may refuse
to answer items that they deem too difficult, quit the test early
because it is too long, or just skip items because of carelessness.
Missing data lead to loss of information and may result in biased
conclusions (Glas and Pimentel, 2008; Köhler et al., 2015; Kuha
et al., 2018).Many studies have employed a complete case analysis
that only use subjects without missing data (e.g., Xu and Zhang,
2016; Chen et al., 2017; Zhan et al., 2019a). In this case, the
subjects withmissing data cannot receive any diagnostic feedback
and, more importantly, may produce biased results when subjects
with complete data are systematically different from those with
missing data (Pan and Zhan, 2020).

In the literature, three missing data mechanisms should be
distinguished: missing completely at random (MCAR), missing
at random (MAR), and missing not at random (MNAR)
(Rubin, 1976; Little and Rubin, 2020). The MCAR holds if the
probability of missingness is independent of both the observed
and unobserved responses, whereas the MAR holds if the
probability of missingness is independent of the unobserved
responses given the observed responses. If either of these two
conditions cannot be satisfied, i.e., the probability of missingness
depends on the unobserved responses, the MNAR occurs. If the
missing data mechanism is MCAR or MAR, unbiased estimation
can be obtained from the observed data; if the missing data
mechanism is MNAR, a model for the missing data mechanism
should be included to obtain valid estimations of the primary
parameters. Limited approaches have been proposed in CDMs
incorporating missing data mechanisms. Ömür Sünbül (2018)
considered MCAR and MAR in the DINA model. Recently,
Ma et al. (2020) have used the sequential process model to
accommodate omitted items due to MNAR, where the first
internal task, i.e., making the decision to either skip the item or
respond to it, is assumed to be affected by a latent categorical
variable representing the response tendency. As stated by Heller
et al. (2015), CDMs have connections to knowledge space theory
(KST), which has been developed by Doignon and Falmagne
(1985) (see also Doignon and Falmagne, 1999; Falmagne and
Doignon, 2011). de Chiusole et al. (2015) and Anselmi et al.
(2016) have developed models for the analysis of MCAR, MAR,
and MNAR data in the framework of KST. In their work, the
MCAR holds if the missing response pattern is independent of
the individual’s knowledge state (i.e., the collection of all items
that an individual is capable of solving in a certain disciplinary
domain) and of the observed responses; the MAR holds if the
missing response pattern is conditionally independent of the
knowledge state given the observed responses; and the MNAR
holds if the missing response pattern depends on the knowledge
state. In CDMs, the attribute profile (i.e., the collection of all
attributes that an individual masters in a certain disciplinary
domain) is similar to the knowledge state in KST. In our study,
an additional latent categorical variable is introduced to indicate
missingness propensity. This latent categorical variable affects the
probability of missingness for each item and, in the meantime,
may affect the latent attributes through the influence of the
general high-order ability. The missing data mechanism can then

be incorporated into cognitive diagnosis. Similar ideas can be
seen in Holman and Glas (2005), Rose et al. (2015), and Kuha
et al. (2018).

In this paper, we propose a joint cognitive diagnosis modeling
including a higher-order latent trait model for item responses
and a missingness propensity model for item-level missing
data mechanism. We take the DINA model as an example
for illustration because of its popular use, and the latent
traits are linked by a general high-order ability. For a flexible
specification of the missingness propensity model, the latent
missingness propensity is represented by a categorical variable.
The MNAR holds if the distribution of the general high-order
ability depends on the latent classes, whereas the MCAR holds if
the distribution of the general high-order ability is independent
of the latent classes.

The rest of this paper is organized as follows. Section 2
presents the proposed joint model for item responses and
item-level missing data mechanism. The Bayesian approach is
then developed for model parameter estimation using JAGS.
In section 3, simulation studies are conducted to compare the
performance of the parameter recovery under different missing
data mechanisms. Real data analysis using the PISA 2015
computer-based mathematics data is given in section 4. Some
concluding remarks are given in section 5.

2. JOINT MODELING INCORPORATING
ITEM-LEVEL MISSING DATA MECHANISM

We consider N subjects taking a test of I items, and there are
K latent attributes to be evaluated. Let Yni be the response for
subject n(n = 1, · · · ,N) to item i(i = 1, · · · , I). Let Rni be a
missingness indicator corresponding to Yni, where Rni = 1 if Yni

is observed and Rni = 0 if Yni is missing.

2.1. The Missingness Propensity Model
Let ξn denote the latent missingness propensity for subject n. ξn
is unobserved and has C categories, which we refer to as latent
missingness classes. The missingess probability of (Rn1, · · · ,RnI)
is given by

p(Rn1, · · · ,RnI) =

C∑

c=1

{ I∏

i=1

p(Rni|ξn = c)
}
p(ξn = c), (1)

where p(Rn1, · · · ,RnI) is the joint probability of (Rn1, · · · ,RnI),
p(Rni|ξn = c) is the conditional probability of Rni given ξn = c
and p(ξn = c) is the probability of ξn = c.

The latent missingness propensity ξn is specified as the
categorical distribution

ξn ∼ Categorical(π), (2)

where π = (π1, · · · ,πC) and 6C
c=1πc = 1. The conditional

probability of Rni is specified as the logistic function

logit{p(Rni = 1|ξn = c)} = τ0i +

C∑

c=2

τciξ(c), (3)
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where τ0i and τci(c = 2, · · · ,C) are the intercept and slope
parameters, and ξ(c)(c = 2, · · · ,C) are dummy variables for the
missingness classes. A positive slope parameter τci is assumed,
which means that the missingness probability reduces in the
latter missingness class compared to the first class. Denote τ 0 =

(τ01, · · · , τ0I) and τ c = (τc1, · · · , τcI) for c = 2, · · · ,C. The
idea of introducing latent variables to model the non-response
mechanism have been proposed previously by, for example, Lin
et al. (2004) and Hafez et al. (2015). The missingness propensity
model is identifiable when C ≤ 2I/(1+ I).

2.2. The High-Order DINA Model
The DINA model describes the probability of item response as a
function of latent attributes as follows:

p(Yni = 1) = gi + (1− si − gi)

K∏

k=1

α
qik
nk
, (4)

where p(Yni = 1) is the probability of a correct response for
subject n to item i; si and gi are the slipping and guessing
probability for item i respectively, and 1 − si − gi is the item
discrimination index for item i (IDIi; de la Torre, 2008), αnk is
the kth (k = 1, · · · ,K) latent attribute for subject n, with αnk = 1
if subject n masters attribute k and αnk = 0 otherwise. The Q
matrix is a I × K matrix with binary entries qik (Tatsuoka, 1983).
For each i and k, qik = 1 indicates that attribute k is required to
answer item i correctly and qik = 0 otherwise.

Equation (4) can be reparameterized, and it is called the
reparameterized DINA model (DeCarlo, 2011) as

logit(p(Yni = 1)) = βi + δi

K∏

k=1

α
qik
nk
, (5)

where βi = logit(gi) and δi = logit(1 − si) − logit(gi) are called
item intercept and interaction parameter, respectively.

As stated in the literature (de la Torre and Douglas, 2004;
Zhan et al., 2018a), attributes in a test are often correlated, and
a higher-order structure for the attributes can be formulated by

logit(p(αnk = 1)) = γkθn − λk, (6)

where p(αnk = 1) is the probability of subject n’s mastery of
attribute k; θn is a general (higher-order) ability for subject n; and
γk and λk are the slope and intercept parameter for attribute k.
Denote γ = (γ1, · · · , γK) and λ = (λ1, · · · , λK). Following Zhan
et al. (2018a), a positive slope parameter is assumed, whichmeans
the probability of mastery of attribute k increases as the general
ability θn grows. Including a higher-order structure for cognitive
diagnosis can not only reduce the number of model parameters
for correlated latent attributes but also obtain an assessment for
subjects’ overall ability.

The distribution of the general ability θn may be affected by
the latent missingness classes of ξn, and we suppose that

θn|ξn = c ∼ N(µc, σ
2
c ), (7)

for n = 1, · · · ,N and c = 1, · · · ,C. If µc or σ 2
c (c = 1, · · · ,C)

may vary between different classes, the missing data mechanism

isMNAR, andwe setµ1 = 0 and σ 2
1 = 1 formodel identification.

If µc and σ 2
c remain unchanged for different c, the probability of

missingness does not depend on the responses and MCAR holds,
and this is where we set θn ∼ N(0, 1) for identification.

2.3. Bayesian Parameter Estimation
The parameters of the proposed model can be estimated using
the Bayesian MCMC approach. JAGS (version 4.2.0; Plummer,
2015) and the R2jags package (Su and Yajima, 2020) in R (R Core
Team, 2019) were used for estimation, and the JAGS code can be
found in the Supplementary Material. The priors of the model
parameters are given below. For the majority of the parameters,
the conjugate priors are used. The priors and the hyper priors
for the item parameters are assigned the same as those given
in Zhan et al. (2018a), please find them for details. Moreover,
the noninformative prior is used for Dirichlet distribution.
The (truncated) normal distribution and the inverted gamma
distribution priors are chosen to obtain dispersed values for each
corresponding parameter.

(π1, · · · ,πC) ∼ Dirichlet(1, · · · , 1),

µc ∼ N(0, 4), σ 2
c ∼ InvGamma(1, 1), (c = 2, · · · ,C),

γk ∼ N(0, 4)I(γk > 0), λk ∼ N(0, 4), (k = 1, · · · ,K),

τ0i ∼ N(0, 4), τci ∼ N(0, 4)I(τci > 0),

(i = 1, · · · , I; c = 2, · · · ,C),

(
βi

δi

)
∼ N

((
µβ

µδ

)
,6item

)
, (i = 1, · · · , I).

The hyper priors are specified:

µβ ∼ N(−2.197, 2), µδ ∼ N(4.394, 2)I(µδ > 0), 6item

∼ InvWishart(I, 2),

where I is a 2× 2 identity matrix. In this case, the mean guessing
and slipping probabilities are approximately equal to 0.1.

In this paper, the number of latentmissingess classesC is taken
as fixed. In fact, C can be selected by some information criterion,
for example, deviance information criterion (DIC; Spiegelhalter
et al., 2002), which can result in a statistically optimal number.
In practice, it is efficient to determine C beforehand, using latent
class analysis (Linzer and Lewis, 2011) just for the missingness
indicators. In the following simulation studies, the number of
latent missingess classes C is fixed to 2 for simplicity. For the
values of C >2, the results are similar and we report some results
for C = 3 in the Supplementary Material.

3. SIMULATION STUDY

Two simulation studies were conducted to evaluate the empirical
performance of the proposed method. Simulation 1 aimed to
examine the parameter recovery using the Bayesian MCMC
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FIGURE 1 | K-by-I Q matrix for simulation study 1. Blank means “0,” gray means “1”; “*” denotes items used in I = 15 conditions; K = the number of attributes; I =

test length.

FIGURE 2 | Recovery of the parameters in the item mean vector and the item covariance matrix. HM, high missingness; LM, low missingness.

algorithm when the simulated data were generated under
MNAR. Under different conditions, models with MCAR and
MNAR were fitted to the simulated data, respectively, where the
distribution of the general higher-order ability was unrelated or
related to the latent missingness classes in MCAR or MNAR.
In Simulation 2, our purpose was to study the sensitivity
of incorrect use of MNAR for model fit. Parameter recovery
related to diagnostic classification are reported here. The
other parameters about the missing data mechanisms can be
recovered well but not reported here since they are not our
primary interest.

3.1. Simulation Study 1
In Simulation 1, three factors were manipulated, including (a)
sample sizes (N) at two levels of 500 and 1,000; (b) test length (I)
at two levels of 15 and 30; and (c) the probability of missingness
for each item, high missingness (HM) and lowmissingness (LM).

Five attributes (K = 5) were measured and the simulated Q
matrices for two test length I = 15 and I = 30 were given
in Figure 1, which were used in Zhan et al. (2018b). Most of
the model parameters were assigned by referring to the real
data analysis presented in Zhan et al. (2018a). Specifically, π =

(0.3, 0.7), representing unequal probabilities for each latent class;
τ2i = 1.2 for all items, τ 0 = (0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5,
0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0) for high missingness with I = 15,
τ 0 = (0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5,
0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5)
for high missingness with I = 30, τ 0 =(1.0, 1.5, 1.0, 1.5, 1.0, 1.5,
1.0, 1.5, 1.0, 1.5, 1.0, 1.5, 1.0, 1.5, 1.0) for low missingness with
I = 15 and τ 0 =(1.0, 1.5, 1.0, 1.5, 1.0, 1.5, 1.0, 1.5, 1.0, 1.5, 1.0,
1.5, 1.0, 1.5, 1.0, 1.5, 1.0, 1.5, 1.0, 1.5, 1.0, 1.5, 1.0, 1.5, 1.0, 1.5, 1.0,
1.5, 1.0, 1.5) for low miss -ingness with I = 30, corresponding
to the missingness probability for each item between 0.22 and
0.31 in the case of high missingness and between 0.1 and 0.22 in
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the case of low missingness; µ2 = 1.0 and σ 2
2 = 0.5; γk = 1.5

for all attributes and λ = (−1.0,−0.5, 0.0, 0.5, 1.0), indicating
moderate correlations between attributes; µitem = (µβ ,µδ) =

(−2.197, 4.394) and

6item =

(
611 612

612 622

)
=

(
1.0 -0.8
-0.8 1.0

)
,

which was the mean vector and the covariance matrix for
a bivariate normal distribution generating βi and δi. Other
assignments for the model parameters, for example, equal
probabilities for each latent class as those used in Ma et al.
(2020), also make sense, and the results are similar to the above
parameter settings.

In each of the eight conditions, models with MCAR and
MNAR were fitted to the simulated data, respectively. Thirty
replications were implemented for each fitted model. Pilot runs
showed that the algorithm converged using 20, 000 iterations
with a burn-in phase of 10, 000 iterations. The convergence of the
chains was monitored by multivariate potential scale reduction
factor, which were < 1.1 (Gelman and Rubin, 1992). The
bias and the root mean square error (RMSE) of the Bayesian
estimates were computed to assess the parameter recovery.
For evaluating the classification of each attribute and attribute
profiles, the attribute correct classification rate (ACCR) and the
pattern correct classification rate (PCCR) were computed. More
formally, if the kth (k = 1, · · · ,K) latent attribute for subject n
(n = 1, · · · ,N), denoted as αk,n, is estimated by α̂k,n, ACCR for
the kth latent attribute and PCCR can be expressed as ACCR =∑N

n=1 I(α̂k,n = αk,n)/N and PCCR =
∑N

n=1[
∏K

k=1 I(α̂k,n =

αk,n)]/N, respectively. Here I(α̂k,n = αk,n) is an indicator
function such that I(α̂k,n = αk,n) = 1 if α̂k,n = αk,n and
zero otherwise.

Figure 2 presents the recovery of the item mean vector and
the item covariance matrix for the models with MCAR and
MNAR in all eight conditions. First, the patterns of the item
parameter recovery were similar between MCAR and MNAR,
especially the RMSEs of MCAR and MNAR were close in each
condition. The item mean vector can be well recovered, as the
bias were small and the RMSEs were relatively smaller than
those of the item covariance matrix. The bias of the item mean
vector under MNAR were smaller than those under MCAR at
a higher sample size N = 1, 000. The RMSEs of the item
mean vector decreased as test length increased. The bias and
RMSEs of the item covariance matrix were relatively higher,
and decreased as test length increased. The sample size had no
consistent impact on the estimates of the item covariance matrix.
Moreover, the missingness probabilities had little impact on the
item parameter recovery.

Table 1 summarizes the item parameter recovery for models
with MCAR and MNAR in high missingness conditions. The
results for low missingness are similar and presented in
Supplementary Figure 1. The mean absolute value (MAV) of the
bias and RMSE are reported. In each condition, the MAVs of the
bias and RMSE under MCAR and MNAR were close. Detailed
information about the recovery of each item parameter with
MCAR and MNAR was similar and not reported here.

TABLE 1 | Summary of the item parameters for high missingness conditions.

β δ

Bias RMSE Bias RMSE

I N MAR MNAR MAR MNAR MAR MNAR MAR MNAR

15 500 0.058 0.067 0.398 0.400 0.062 0.070 0.500 0.502

1,000 0.056 0.047 0.355 0.355 0.063 0.057 0.407 0.407

30 500 0.053 0.054 0.319 0.318 0.061 0.059 0.406 0.405

1,000 0.043 0.037 0.241 0.239 0.049 0.045 0.306 0.304

Table 2 summarizes the estimation of general ability
parameter in high missingness conditions. The results
for low missingness are similar and presented in
Supplementary Figure 2. The MAV and Range of the bias
and RMSE are reported. The correlation between the true and
the estimated general abilities is also given. The MAVs of the bias
under MCAR were much higher than those under MNAR, and
the bias under MCAR were all negative, which can be seen from
their Ranges. The MAVs of the RMSEs under MCAR were also
higher than those under MNAR. The correlations under MNAR
were higher than those under MAR. From the above results, we
find that when data are generated with MNAR, incorrect use of
missing data mechanism could lead to biased estimation of the
general abilities.

Figures 3, 4 presents the recovery of higher-order parameters
between the attributes and the general ability in each condition.
For the attribute slope parameters, the bias was closer to zero
and the RMSEs were relatively small. For the attribute intercept
parameters, their recovery under MNAR were good with small
bias and RMSEs. Under MCAR, the bias and RMSEs for attribute
intercept parameters were large, with absolute values >1.0, and
all the bias were negative.

Figure 5 shows the correct classification rates for each
attribute and attribute profiles in all conditions. All ACCRs were
> 0.90 and all PCCRs were > 0.70, which indicated a good
recovery of the mastery status of attributes. ACCRs and PCCRs
raised as test length increased and changed little as sample size
increased. The correct classification rates of MCAR and MNAR
were very close in each condition. These results may be caused
by the fact that the impact of the missing data mechanism on
the latent attributes is indirect through the general high-order
ability, and we assume the same model for item response under
both missing data mechanisms.

3.2. Simulation Study 2
The aim of Simulation 2 was to empirically examine the
sensitivity of incorrect use of MNAR for model fit. In this
study, the simulated data were generated with MCAR, i.e., the
distribution of the general higher-order ability is independent
of the latent missingness classes, and we set θn ∼ N(0, 1) for
identification. The other settings were the same as those used for
N = 500, J = 15 and low missingness in Simulation 1, which is a
weak condition studied in Simulation Study 1.
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TABLE 2 | Summary of the general ability for high missingness conditions.

Bias RMSE Cor

MAV Range MAV Range

I N MCAR MNAR MCAR MNAR MCAR MNAR MCAR MNAR MCAR MNAR

15 500 0.702 0.094 (−1.130, −0.311) (−0.342, 0.387) 0.966 0.656 (0.680, 1.286) (0.382, 1.012) 0.691 0.782

1,000 0.699 0.095 (−1.036, −0.291) (−0.283, 0.366) 0.965 0.647 (0.674, 1.335) (0.347, 1.045) 0.690 0.728

30 500 0.707 0.090 (−1.066, −0.328) (−0.283, 0.382) 0.943 0.610 (0.610, 1.272) (0.403, 0.873) 0.730 0.766

1,000 0.707 0.085 (−1.078, −0.344) (−0.404, 0.323) 0.939 0.588 (0.649, 1.230) (0.346, 0.899 0.742 0.776

MAV, mean absolute value; Range = (minimum, maximum).

FIGURE 3 | Recovery of the attribute intercept parameters. HM, high missingness; LM, low missingness.

Table 3 presents the bias and RMSE for the item mean
vector, the item covariance matrix and the higher-order structure
parameters. The recovery of the item parameter mean vector
and covariance matrix were similar under MCAR and MNAR.
For the higher-order structure parameters, unlike the results in
Simulation Study 1, the recovery of the parameters under MNAR
were as good as those under MCAR.

Table 4 summarizes the recovery of the item and the
general ability parameter, where the mean, standard deviation,
minimum, and maximum of the bias and RMSE are reported.
It also shows the correct classification rates for each attribute
and attribute profiles. The results under MCAR and MNAR were
similar, with mean bias close to zero and approximately equal
correct classification rates for the recovery of each attribute and

attribute profile. From Tables 3, 4, we found that when the data
were generated under MCAR, the missing data mechanism used
in the model fit had little impact on the results for diagnostic
classification in our framework.

4. REAL DATA ANALYSIS

To illustrate the application of the proposed method, the PISA
2015 computer-based mathematics data were used. The data
include item scores and response times for each item, and
we only select dichotomous item scores for illustration. Four
attributes belonging to the mathematical content knowledge
were evaluated, i.e., change and relationship (α1), quantity (α2),
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FIGURE 4 | Recovery of the attribute slope parameters. HM, high missingness; LM, low missingness.

space and shape (α3) and uncertainty and data (α4). I = 9
items with dichotomous responses were selected, with items IDs
CM033Q01, CM474Q01, CM155Q01, CM155Q04, CM411Q01,
CM411Q02, CM803Q01, CM442Q02, and CM034Q01. The Q
matrix was shown in Table 5. Item responses with code 0 (no
credit), code 1 (full credit), and code 9 (noresponse) were
considered here. The responses “nonresponse” (code 9) were
treated as missing data andmight be due to aMNARmechanism.
N = 758 test-takers from Albania with responses 0, 1, and 9 to
each of the nine items were used for analysis. The missing rate
(i.e., the proportion of “nonresponse”) for each item ranged from
0 to 14.78%. The models with missing data mechanisms MCAR
and MNAR were both fitted to the data. The number of latent
missingess classes C = 2 was determined by latent class analysis.
Then, the analysis was specified in the same way as the simulation
study. The DIC was applied to compare model fit for models
under different missing data mechanisms.

The DIC values under MCAR and MNAR were 11454.2
and 10406.3, respectively, which indicated that MNAR was
preferred with a lower DIC value. We were only interested in the
results concerning diagnostic classification. Table 6 reports the
estimated parameters and its corresponding standard deviations
for the item mean vector, the item covariance matrix, and the
attribute intercept and slope parameters. The results for the item
mean vector and covariance matrix were similar under different
missing data mechanisms, and the estimated 612 was −1.069,
which indicated that items with a higher intercept corresponded

to a lower interaction. µβ was estimated to be −2.033, which
means that the mean guessing probability was approximate
0.12. All estimated attribute intercept and slope parameters were
positive. The estimations for the item covariance matrix and
the attribute intercept and slope parameters were poor, which
were consistent with previous studies (de la Torre and Douglas,
2004; Zhan et al., 2018a). Table 7 reports the estimated item
parameters. All δi were positive, whichmeans that all items satisfy
gi < 1−si. Only βi for CM033Q01was positive, whichmeans that
the guessing probability of this item is higher than 0.5.

Though there were 16 possible attribute patterns for four
attributes, 15 attribute patterns except (0101) were found in the
estimated attributes under both MCAR and MNAR. Figure 6
presents the top five most frequent attribute patterns in the real
data under MCAR and MNAR. The most prevalent attribute
pattern was (0000) and the second most prevalent pattern was
(1111) under both MCAR and MNAR, where the corresponding
proportions were slightly different. The third and the fourth most
prevalent patterns under MCAR and MNAR were reverse. The
above results indicate that the missing data mechanisms have
some influences on the estimated attribute patterns.

5. CONCLUSIONS

When multiple items are used to classify subjects’ mastery
status of latent attributes, it is almost inevitable that item-level
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FIGURE 5 | The correct classification rates for each attribute and attribute profiles. HM, high missingness; LM, low missingness.

TABLE 3 | Recovery of the item mean vector, the item covariance matrix, the attribute slope, and intercept.

Index µβ µδ 611 612 622 λ1 λ2 λ3 λ4 λ5 γ1 γ2 γ3 γ4 γ5

MAR Bias 0.043 −0.005 0.080 0.028 0.158 0.001 −0.083 0.025 0.046 0.055 0.092 0.096 0.136 0.095 0.114

RMSE 0.265 0.263 0.394 0.357 0.454 0.271 0.221 0.232 0.278 0.230 0.487 0.552 0.438 0.372 0.367

MNAR Bias 0.045 −0.008 0.084 0.020 0.168 −0.052 −0.122 −0.028 0.019 0.024 0.070 0.062 0.104 0.067 0.095

RMSE 0.263 0.261 0.399 0.368 0.469 0.346 0.280 0.299 0.342 0.317 0.494 0.624 0.462 0.384 0.386

missing data will occur. It is possible that the missing data
mechanism is related to the item responses, and without very
strong assumptions, item-level non-response can be thought
to depend on some latent variables. Motivated by this idea,
we have proposed a joint modeling method incorporating
item responses and missing data mechanism for cognitive
diagnosis. A latent categorical variable is employed to describe
the latent missingness propensity, which can avoid distributional
assumptions and result in a more flexible model. Then, the latent
missingness classes are linked to each item missingness indicator
by the logistic function. Applying the hierarchical modeling
framework, the general higher-order ability’s distribution is
affected by the latent missingness class in the case of MNAR
and is independent of the latent missingness class in the case
of MCAR.

A Bayesian MCMC method is used to estimate the model
parameters under the missing data mechanisms MCAR and
MNAR. The simulation study demonstrates that when the data
are generated under MNAR, the estimated general ability and

the attribute intercept parameters have higher bias if an incorrect
missing data mechanism is used for model fit; when the data are
generated under MCAR, the results between different missing
data mechanisms do not have much difference. Similar results
about the impact of the missing data mechanisms have been
found by de Chiusole et al. (2015) in the framework of KST. The
PISA 2015 computer-based mathematics data are used to explore
the magnitude and direction of item and person parameters, and
the results support the MNAR in the real data analysis.

Our proposed method can be further investigated in several
aspects. First, the proposed model has good performance with
DINAmodel used for illustration, and the joint modelingmethod
can be extended to other types of CDMs for further studies.
Second, this study assumes that each latent attribute is a binary
variable. When polytomous attributes are involved in CDMs
(Zhan et al., 2019b), modified higher-order CDMs could be
utilized in the framework of our model. Third, multiple sources
of data about a subject behavior, for example, response time
and other process data, can be combined to build up a more
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TABLE 4 | Summary of the item parameter, general ability, and attributes.

Index β δ θ α1 α2 α3 α4 α5

MAR Bias Mean 0.036 0.054 0.100 ACCR 0.863 0.891 0.876 0.885 0.920

SD 0.040 0.062 0.126 PCCR 0.595

Min. −0.030 −0.077 −0.388

Max. 0.110 0.138 0.464

RMSE Mean 0.343 0.510 0.683

SD 0.177 0.131 0.097

Min. 0.175 0.401 0.431

Max. 0.853 0.909 1.060

Cor. 0.722

MNAR Bias Mean 0.028 0.027 0.111 ACCR 0.864 0.891 0.875 0.885 0.921

SD 0.045 0.067 0.129 PCCR 0.594

Min. −0.041 −0.091 −0.425

Max. 0.112 0.141 0.476

RMSE Mean 0.340 0.509 0.716

SD 0.171 0.124 0.097

Min. 0.171 0.399 0.462

Max. 0.823 0.871 1.049

Cor. 0.720

SD, standard deviation; Min., minimum; Max., maximum; Cor., correlation between true and estimated values.

TABLE 5 | The Q matrix in the real data.

Attribute CM033Q01 CM474Q01 CM155Q01 CM155Q04 CM411Q01 CM411Q02 CM803Q01 CM442Q02 CM034Q01

α1 0 0 1 1 0 0 0 0 0

α2 1 0 0 0 0 0 0 0 1

α3 0 1 0 0 1 0 0 1 0

α4 0 0 0 0 0 1 1 0 0

TABLE 6 | Estimates and standard errors of the parameters for the real data.

DIC Index µβ µδ 611 612 622 λ1 λ2 λ3 λ4 γ1 γ2 γ3 γ4

MCAR 11454.2 Est. −2.033 2.548 3.383 −1.069 1.451 0.677 2.051 1.421 1.888 3.843 3.795 4.208 3.259

SD 0.587 0.426 2.341 1.411 1.195 0.688 0.845 0.710 0.866 1.082 0.891 0.990 0.912

MNAR 10406.3 Est. −2.073 2.419 3.313 −1.105 1.269 2.828 2.653 3.055 3.852 2.261 1.787 2.099 1.675

SD 0.572 0.391 2.280 1.305 1.087 0.966 0.901 0.994 1.317 0.862 0.778 0.683 0.702

Est., Estimated values; SD, standard deviation of the posterior distribution.

TABLE 7 | Estimates and standard errors of the parameters for the real data.

Par. 033Q01 474Q01 155Q01 155Q04 411Q01 411Q02 803Q01 442Q02 034Q01

MCAR βi 0.155 −0.501 −0.665 −1.445 −1.737 −1.355 −4.227 −4.587 −2.945

(0.139) (0.156) (0.289) (0.185) (0.256) (0.166) (0.811) (0.846) (0.412)

δi 2.447 1.589 3.342 1.588 2.508 0.788 3.458 3.219 2.775

(0.588) (0.256) (0.678) (0.262) (0.333) (0.304) (0.824) (0.869) (0.456)

MNAR βi 0.019 −0.579 −0.676 −1.452 −1.761 −1.321 −4.073 −4.543 −3.347

(0.151) (0.145) (0.245) (0.164) (0.244) (0.139) (0.795) (0.740) (0.575)

δi 2.081 1.655 3.068 1.588 2.316 0.733 3.308 3.042 2.881

(0.432) (0.233) (0.500) (0.228) (0.295) (0.277) (0.809) (0.747) (0.570)

Par., estimated parameter; the first two letters for item IDs (i.e., “CM”) are omitted to save space.
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FIGURE 6 | Posterior mixing proportions for top 5 most frequent attribute patterns under MCAR and MNAR in the real data.

general model, which could provide a more comprehensive
reflection of individual behavior. Finally, the number of latent
missingness classes can be varied. For selecting it, Akaike
information criterion (AIC), Bayesian information criterion
(BIC) or DIC, can be utilized to compare different models under
various choices.
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Calibration errors are inevitable and should not be ignored during the estimation of item
parameters. Items with calibration error can affect the measurement results of tests.
One of the purposes of the current study is to investigate the impacts of the calibration
errors during the estimation of item parameters on the measurement accuracy, average
test length, and test efficiency for variable-length cognitive diagnostic computerized
adaptive testing. The other purpose is to examine the methods for reducing the adverse
effects of calibration errors. Simulation results show that (1) calibration error has negative
effect on the measurement accuracy for the deterministic input, noisy “and” gate (DINA)
model, and the reduced reparameterized unified model; (2) the average test lengths is
shorter, and the test efficiency is overestimated for items with calibration errors; (3) the
compensatory reparameterized unified model (CRUM) is less affected by the calibration
errors, and the classification accuracy, average test length, and test efficiency are slightly
stable in the CRUM framework; (4) methods such as improving the quality of items,
using large calibration sample to calibrate the parameters of items, as well as using
cross-validation method can reduce the adverse effects of calibration errors on CD-CAT.

Keywords: variable-length cognitive diagnostic computerized adaptive testing, calibration errors, classification
accuracy, test efficiency, cognitive diagnosis assessment

INTRODUCTION

Cognitive diagnostic assessment (CDA) has attracted lots of attention because of its advantage
that can provide the strengths and weaknesses of examinees for specific content domains rather
than just provide an overall score to indicate the position of one examinee relative to others
(Leighton and Gierl, 2007). One of the research areas of CDA is cognitive diagnostic computerized
adaptive testing (CD-CAT; Cheng, 2009). Compared with paper-and-pencil (P&P) test, CD-CAT
can generate suitable tests that match examinees’ latent attribute profiles to produce similar even
higher measurement accuracy (Chen et al., 2012; Mao and Xin, 2013; Chang, 2015). Meanwhile, the
generated tests have lesser items than the P&P test (Weiss, 1982).

The CD-CAT system has some important components such as item bank, item selection method,
psychometric model, and terminal rule, among which item selection method is the key element
(Chang, 2015), whereas the item bank is the fundamental factor. A large number of items should

Frontiers in Psychology | www.frontiersin.org 1 December 2020 | Volume 11 | Article 57514157

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2020.575141
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpsyg.2020.575141
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2020.575141&domain=pdf&date_stamp=2020-12-02
https://www.frontiersin.org/articles/10.3389/fpsyg.2020.575141/full
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-575141 November 26, 2020 Time: 20:46 # 2

Sun et al. Impact of SE on VL-CD-CAT

be included in the item bank to make sure that all possible latent
attribute profiles can be covered. Before the implementation
of CD-CAT, the parameters of items should be calibrated;
a commonly adopted method is using a limited number of
examinees to calibrate these items (Doebler, 2012; van der
Linden and Glas, 2000). For now, most studies treated the
calibrated parameters of items as their true values, and items
were chosen based on their calibrated parameters (Patton et al.,
2013). However, studies showed that using a small number of
examinees to calibrate items would produce large calibration
errors (Şahin and Weiss, 2015). In other words, the estimated
parameters of items in the item bank are different from their
optimal parameters because of the existence of calibration errors.
Researchers have demonstrated that the estimation of examinees’
latent traits would be biased systematically if the calibration
errors of items are ignored both in item response theory (IRT)–
based CAT and CD-CAT (e.g., Doebler, 2012; Patton et al., 2013;
Cheng et al., 2015; Huang, 2018).

Patton et al. (2013) examined the impacts of capitalization
on chance on classification accuracy, recovery of ability, and
test length in IRT-based variable-length CAT. Results showed
that test information would be spuriously overestimated when
the calibration sample size is small. In addition, the average
test length (ATL) for small calibration sample size was shorter
than for large calibration sample size, which indicated that small
calibration sample size caused the tests to terminate prematurely
(Patton et al., 2013). Huang (2018) investigated the influences
of calibration errors on the attribute classification accuracy and
measurement precision of attribute mastery classification by
using three simulation studies in the context of fixed-length CD-
CAT. The author found that calibration errors had negative effect
on the classification accuracy and test information when the
Deterministic Input Noisy Output “and” Gate (DINA; Junker
and Sijtsma, 2001) model was used, while the effect was small
for the compensatory reparameterized unified model (CRUM;
Templin, unpublished) because of its additive characteristics. In
addition, the author also found that using high-quality items,
larger sample size, or increasing test length could mitigate the
risks of calibration error and increase the measurement accuracy
(Huang, 2018).

Although studies conducted by Patton et al. (2013) and Huang
(2018) have examined the effects of standard error (SE) on the
measurement accuracy and test efficiency for IRT-based variable-
length CAT and fixed-length CD-CAT, respectively, the effect
of SE on variable-length CD-CAT is still unclear. Compared
with fixed-length CD-CAT, the posterior probability of attribute
profile was commonly used as the termination rule in variable-
length CD-CAT, which became more complicated because the
estimation of posterior probability mainly depended on the
parameters of items, and the measurement accuracy of attribute
profile was strongly related to the posterior probability (Hsu et al.,
2013; Hsu and Wang, 2015). The measurement accuracy would
be misleadingly estimated due to inaccurate estimates of the
posterior probability. For instance, the tests would be terminated
prematurely if the spuriously high posterior probability was
obtained, as in IRT-based CAT (Huang, 2018). Meanwhile,
differed from IRT-based variable-length CAT, which used the

conditional SE of ability as the termination rule, the variable-
length CD-CAT could not use the SE of attribute profile as the
termination rule directly because of the non-computability of
the SE. Therefore, the purpose of this study is to investigate the
impact of the SE of parameter calibration on the measurement of
variable-length CD-CAT.

The rest of the article is organized as follows. First, three kinds
of CDMs, which are the DINA model, reduced reparameterized
unified model (RRUM; Hartz, 2002), and CRUM, are introduced
briefly. Second, an item selection method used in the current
study is described. Third, a simulation study is conducted to
examine the performance of variable-length CD-CAT under
different levels of calibration error. Lastly, discussions and
conclusions are provided.

INTRODUCTION OF CDMS

The DINA Model
The DINA model is commonly adopted in CD-CAT framework
because of its simplicity (Cheng, 2009; Chen et al., 2012; Mao and
Xin, 2013). The model contains two item parameters, which are
the guessing and slipping parameters, and can be written as

P
(
Yij = 1|ηij

)
=
(
1− sj

)ηij g
1−ηij
j ,

where ηij =
∏K

k=1 (αik)
qjk is the ideal response, which is equal to

1 if the ith examinee masters all attributes that item j required,
and is equal to 0 if at least one of the required attributes of item
j is missing; K is the number of attributes; αik is the mastery
or deficiency of the kth attribute for the ith examinee; qjk is the
element of the Q-matrix; gj and sj are the guessing and slipping
parameters for item j, respectively.

The DINA model tends to classify examinees into two classes
for each item. Specifically, some are those who master all
attributes, and others are those who lack of at least one attribute
that the item requires, respectively.

The RRUM
Compared with the DINA model, the RRUM can classify
examinees into more than two classes for each item by using
different probabilities for different attribute profiles. The RRUM
has also attracted considerable attention in CD-CAT in recent
years (e.g., Dai et al., 2016; Huebner et al., 2018; Wang et al., 2020)
and can be expressed as

P
(
Yij = 1|αi

)
= πj ∗

K∏
k=1

r
∗(1−αik)qjk
jk ,

where π∗j , the baseline parameter, refers to the probability of
correct response to item j when individuals have mastered all
attributes that the item requires; r∗jk, the penalty parameter,
denotes the reduction in the probability of correct response to
item j when an individual lacks attribute k. Both π∗j and r∗jk
range from 0 to 1.

Frontiers in Psychology | www.frontiersin.org 2 December 2020 | Volume 11 | Article 57514158

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-575141 November 26, 2020 Time: 20:46 # 3

Sun et al. Impact of SE on VL-CD-CAT

The CRUM
Both of the DINA model and the RRUM are non-compensatory
CDMs; the CRUM, on the contrary, is the compensatory model.
The probability of correctly answering an item is defined as
the addition of intercept and main effect of attributes that the
item requires by using the logit as the link function (Templin,
unpublished). The item response function of the CRUM can be
written as

P
(
Yij = 1|α∗

i

)
=

exp
(

δj0 +
∑K∗j

k=1 δjkαikqjk

)
1+ exp

(
δj0 +

∑K∗j
k=1 δjkαikqjk

) ,

where δj0 is the intercept, which refers to the probability of
correctly answering item j when none of the required attributes
is mastered; δjk is the main effect of attribute k, representing the
change in probability when attribute k is mastered, and K∗j is the
number of attributes that item j requires.

ITEM SELECTION METHOD

A number of item selection methods have been developed
in CD-CAT, for instance, the Kullback–Leibler (KL) and the
Shannon entropy (SHE; Xu et al., 2003) strategies, the posterior-
weighted KL (PWKL; Cheng, 2009) strategy, the modified PWKL
(MPWKL) and the generalized DINA (GDINA; de la Torre,
2011) model discrimination index (GDI) strategies (Kaplan et al.,
2015), and the mutual information (MI; Wang, 2013) strategy.
Among these strategies, both of MI and MPWKL strategies can
produce high measurement accuracy when the test length is
short; in addition, the MPWKL strategy performs better than the
traditional WPKL method (Kaplan et al., 2015). The MPWKL
strategy is commonly used in CD-CAT (e.g., Huang, 2018;
Huebner et al., 2018; Wang et al., 2020); therefore, it will be
adopted in current study. The expression of the MPWKL for item
j can be formulated as

MPWKLij =

2K∑
d=1


2K∑

c=1

[ 1∑
x=0

log

(
P
(
Yij = x|αd

)
P
(
Yij = x|αc

) )

P
(
Yij = x|αd

)
π
(
αc|Yi,n−1

)π
(
αd|Yi,n−1

) ,

where P
(
Yij = x|α

)
is the item response function, Yi,n−1 is the

response vector for the first n—1 items for the ith examinee, and
π
(
α|Yi,n−1

)
is the posterior probability for attribute profile α ; the

rests are defined as above. Items with the largest MWPKL index
will be selected during the implementation of CD-CAT.

SIMULATION STUDY

Independent Variables
Several factors are manipulated in this study, including model
type, quality of the item bank, magnitude of calibration error,

TABLE 1 | Simulation design of the current study.

Independent variable Values

Model DINA, RRUM, CRUM

Calibration error 0, 0.1, 0.2, 0.3

Termination rule 0.7, 0.8

Item quality High DINA: s, g ∼ U (0.05, 0.25)

RRUM: π∗ ∼ U (0.75, 0.95); r∗ ∼ U (0.05, 0.40)

CRUM: δ0 ∼ U (−3, −1.1); P
(
Yj = 1

)
∼ U (0.85, 1.0)

Low DINA: s, g ∼ U (0.25, 0.45)

RRUM: π∗ ∼ U (0.55, 0.75); r∗ ∼ U (0.15, 0.50)

CRUM: δ0 ∼ U (−1.1, −0.2); P
(
Yj = 1

)
∼ U (0.6, 0.85)

Mix DINA: s, g ∼ U (0.05, 0.45)

RRUM: π∗ ∼ U (0.55, 0.95); r∗ ∼ U (0.05, 0.50)

CRUM: δ0 ∼ U (−3, −0.2); P
(
Yj = 1

)
∼ U (0.6, 1.0)

P
(
Yj = 1

)
refers to the probability of correctly answering item j.

and termination rule. Specifically, three CDMs, which are the
DINA model, RRUM, and CRUM, are adopted in this study, and
these models have been used in previous studies (e.g., Chen et al.,
2012; Mao and Xin, 2013; Wang, 2013; Huang, 2018; Huebner
et al., 2018; Wang et al., 2020). In addition, three levels are
manipulated for the quality of the item bank, which are high-,
low-, and mix-item quality (i.e., the mix of high- and low-quality
items), respectively, and the corresponding item parameters are
listed in Table 1. All these settings are modified from previous
studies (Chen et al., 2012; Huang, 2018; Wang et al., 2020).
As for the magnitude of calibration error, similar with Huang
(2018), four levels are adopted in this study, while the specific
values are different. A pilot study shows that when the models
are the DINA model and the RRUM in CD-CAT, the standard
deviations (SDs) of the calibration errors are smaller than 0.1
for different calibration sample sizes conditional on high-quality
items. Considering that the SD might be larger than 0.1 when the
quality of items is low, the SD values of calibration errors are 0,
0.1, 0.2, and 0.3, which are named true value, small, median, and
large errors, respectively. The mean value is set as 0 for all the
calibration errors. Consistent with previous studies (Hsu et al.,
2013; Hsu and Wang, 2015), the posterior probability of attribute
profile is used as the termination rule, and the termination criteria
are 0.7 and 0.8, respectively.

Control Variables
Five variables are fixed in current study. Specifically, 5 attributes
and 300 items, which are commonly adopted in empirical and
simulation studies (e.g., Liu et al., 2013; Mao and Xin, 2013;
Huang, 2018; Huebner et al., 2018; Wang et al., 2020), are used
in this study. The generation of Q-matrix is consistent with Chen
et al. (2012). Specifically, three basic Q-matrices, which include
items measuring one, two, and three attribute(s), respectively,
are generated, namely Q1, Q2, and Q3, respectively. Then, the
final Q-matrix is constructed by merging 20 basic matrix Q1,
14 basic matrix Q2, and 6 basic matrix Q3. In addition, the
number of examinees is set as 2,000, which is consistent with
Mao and Xin (2013) and Huang (2018). The generation of the
attribute profile is consistent with Cheng (2009), which assumes
that the probability that each examinee masters each attribute is
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FIGURE 1 | The correct classification rates for all conditions.

0.5. Meanwhile, the item selection method is MPWKL, and the
maximum number of items of the test is 30, which are adopted in
previous studies (Huebner et al., 2018).

There are 3× 3× 4× 2 = 72 conditions in total, among which
the termination rule is within-group variable, and the rest are
between-group variables. Twenty-five replications are generated
for each condition to reduce the sample error. The simulation
study is implemented in R software, and the codes are available
upon request from the corresponding author.

Measurement Criteria
Two indices are used to evaluate the measurement accuracy
of attribute classification, which include pattern correct
classification rate (PCR) and average attribute correct
classification rate (AACR). These two indices both range
from 0 to 1, and larger value indicates better performance. They
can be expressed as

PCR =
N∑

i=1

I
(
α̂i = αi

)/
N,

AACR =
N∑

i=1

K∑
k=1

I
(
α̂ik = αik

)/
(N × K),

where N is the number of examinees; I(·) is the indicator
function, which equals 1 if α̂i = αi(orα̂ik = αik) is true, and vice

versa; α̂i is the estimate of attribute profile, and αi is the true
attribute profile.

In addition to the evaluation of the measurement accuracy,
the relative measurement precision (RMP) index is also used to
evaluate the measurement precision of the estimated attribute
profile (Huang, 2018). Moreover, based on the study conducted
by Patton et al. (2013), the relative test efficiency (RTE) is used to
evaluate the test efficiency in CD-CAT. These two indices can be
written as

RMP =

∑N
i=1 max

c=1,2,··· ,2K

(
π
(
αc|Yi, δ̂

))
∑N

i=1 max
c=1,2,··· ,2K

(π (αc|Yi, δ))
and

RTE =

∑N
i=1
∑Ji

j=1 ĈDIj∑N
i=1
∑Ji

j=1 CDIj
,

where δ̂ and δ are vectors including all estimated and true item
parameters that examinee i answers, respectively. CDI is the
cognitive diagnostic index and proposed by Henson and Douglas
(2005), which can be regarded as the test information for each
examinee in current study. The details can be found in Henson
and Douglas (2005).
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FIGURE 2 | The average test length and the corresponding SDs for all conditions.

RESULTS

Figure 1 presents the estimated AACR and PCR for each
condition. Some meaningful findings can be summarized from
the figure. First, the calibration error has negative effect on the
AACR and PCR for the DINA model and RRUM irrespective
of the item quality and termination rule. With the increase
in SD of calibration error, the AACR and PCR decrease for
these two models. The effect of calibration error on CRUM
can be ignorable, especially for high- and mix-item quality. The
differences between the true value (SD = 0) and calibration errors
are small enough. Second, for the DINA model, the differences of
AACR and PCR between median (SD = 0.2) and large (SD = 0.3)
are small, regardless of the item quality and termination rule. The
same results are found for the RRUM under high- and low-item
quality, whereas the differences are large when the item bank is of
mixed quality. Third, the quality of the item bank has positive
effect on PCR, regardless of model type and termination rule.
Items with high quality produce higher PCRs than low-quality
items. Fourth, termination rule has a positive effect on PCR for
the CRUM, whereas the effects are complicated for the DINA
model and RRUM. When calibration error is zero, termination
rule has positive effect on PCR, while the positive effect of
termination rule on PCR tends to decrease with the increase of
calibration error. Fifth, the PCRs and AACRs are stable for all
conditions, and the SDs of PCR for the DINA model, RRUM,

and CRUM range from 0.005 to 0.013, 0.008 to 0.015, and 0.007
to 0.013, respectively. Meanwhile, the SDs of AACR range from
0.006 to 0.049, 0.006 to 0.044, and 0.004 to 0.016, respectively, for
these three CDMs.

Figure 2 shows the ATL and the corresponding SD. Some
meaningful points are summarized. First, the true value (SD = 0)
produces the longest ATL for the DINA model and RRUM, and
with the increase of calibration error, the ATL, in general, tends to
decrease, especially for the low-quality item. The CRUM, on the
contrary, produces similar ATL irrespective of calibration error.
Second, the quality of the item bank has an effect on ATL. Items
with high and mixed quality tend to produce shorter ATL than
low-quality items, and high- and mixed-quality items produce
similar ATL. Third, termination rule has positive effect on ATL,
especially for true and small calibration error. The ATLs are
relatively stable for median and large calibration error. These
results indicate that items with calibration error tend to terminate
prematurely for the DINA model and RRUM. The CRUM, on the
contrary, is not affected by calibration error.

Figure 3 depicts the RMPs with different calibration errors.
The RMPs are greater than one in all conditions. Specifically,
small calibration error produces the smallest RMPs for the
DINA model and RRUM irrespective of the item quality and
termination rule. The large calibration error, on the contrary,
produces the largest RMPs. In other words, items with calibration
error can produce spuriously high measurement precision,
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FIGURE 3 | The relative test efficiency with different calibration errors.

indicating that the posterior probability that an examinee belongs
to a specific attribute profile is overestimated substantially,
especially for low-quality items. By contrast, the RMPs are
closed to one for the CRUM, regardless of the item quality
and termination rule, suggesting that the CRUM can produce
similar measurement precision between true and calibration
error–affected items.

Table 2 lists the RTE for each calibration error. The results are
similar to those for the RMP. Overall, the smaller the calibration
error is, the better the RTE is for the DINA model and RRUM,
regardless of the item quality and termination rule. On the
contrary, the calibration error has ignorable effect on the RTE for
the CRUM. In addition, the calibration error has more serious
effect on the DINA model than the RRUM; the RTE indices are
larger than those for the RRUM.

DISCUSSION

CD-CAT can diagnose the strengths and weaknesses of
examinees with fewer items and provide feedback immediately

(Chen et al., 2012; Mao and Xin, 2013; Chang, 2015; Wang
et al., 2020). Before the implementation of CD-CAT, parameters
of items in the bank need to be calibrated. However, a limited
number of examinees are commonly used to calibrate the item
parameters to maintain the security of the item bank; therefore,
calibration errors exist in these items (van der Linden and Glas,
2000; Doebler, 2012; Patton et al., 2013; Huang, 2018). The
current study investigates the impacts of calibration error on
variable-length CD-CAT, as well as examines the methods for
reducing the adverse effects of calibration errors. Simulation
study indicates that calibration error has substantial effect on the
classification accuracy, the ATL, measurement precision, and test
efficiency. Meanwhile, several factors are found that can be used
to reduce the adverse effects of calibration errors.

Results show that for the DINA mode and the RRUM, with
the increase of calibration error, the correct classification rates
are decreasing, suggesting that the calibration error should not
be ignored when CD-CAT is used to diagnose the mastery of
examinees, or the results will be inaccuracy, which is consistent
with previous studies (Patton et al., 2013; Huang, 2018). At the
same time, compared with true item parameter, the ATL becomes

Frontiers in Psychology | www.frontiersin.org 6 December 2020 | Volume 11 | Article 57514162

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-575141 November 26, 2020 Time: 20:46 # 7

Sun et al. Impact of SE on VL-CD-CAT

TABLE 2 | The relative test efficiency for each calibration error.

Model Item
quality

Calibration
error

ε = 0.7 ε = 0.8

M SD M SD

DINA Low 0.1 2.456 0.016 2.299 0.029

0.2 18.782 0.200 19.528 0.259

0.3 45.504 0.703 45.149 0.460

High 0.1 5.149 0.034 5.117 0.039

0.2 6.752 0.050 6.777 0.047

0.3 8.442 0.064 8.408 0.049

Mix 0.1 4.008 0.026 3.998 0.035

0.2 5.160 0.055 5.346 0.053

0.3 11.294 0.069 11.251 0.076

RRUM Low 0.1 1.778 0.015 1.683 0.013

0.2 6.112 0.061 6.008 0.072

0.3 9.882 0.100 9.617 0.093

High 0.1 3.386 0.018 3.444 0.019

0.2 5.968 0.040 5.937 0.035

0.3 6.120 0.028 6.134 0.039

Mix 0.1 3.112 0.025 2.885 0.025

0.2 5.005 0.036 5.106 0.034

0.3 6.802 0.060 6.766 0.082

CRUM Low 0.1 1.019 0.002 1.017 0.002

0.2 1.041 0.004 1.026 0.004

0.3 1.076 0.006 1.054 0.008

High 0.1 1.007 0.000 1.005 0.000

0.2 1.013 0.001 1.006 0.001

0.3 1.065 0.001 0.983 0.001

Mix 0.1 1.007 0.000 1.013 0.000

0.2 0.997 0.001 0.978 0.001

0.3 1.098 0.002 1.059 0.001

shorter for these error-affected item parameters. In other words,
when true item parameters are used to select candidate items, to
obtain the prespecified posterior probability of attribute profile,
more items are needed. However, fewer items are sufficient to
obtain the prespecified posterior probability for these error-
affected item parameters. Such results indicate that the error-
affected item parameters would terminate the test prematurely
for examinees, and the similar results were found in IRT-based
CAT conducted by Patton et al. (2013).

In addition, the results based on the RMP demonstrate that
calibration error tends to produce spuriously high posterior
probability that an examinee belongs to a specific attribute
profile, which can be used to explain why the test is terminated
prematurely for error-affected item parameters. In variable-
length CD-CAT, the posterior probability is mainly used as the
termination rule, which is adopted in current study as well. When
items with calibration error are used in the test, the overestimated
posterior probability is obtained; therefore, it is easy to meet the
prespecified termination criteria; consequently, the test would
be ended. Huang (2018) also obtained the similar result in
the context of fix-length CD-CAT. Moreover, the results of the
RTE indicate that the calibration error-affected items produce

overestimated test information. This finding is consistent with
Patton et al. (2013), but inconsistent with Huang (2018). Huang
(2018) found that larger calibration errors produce lower CDI
values. One possible explanation for this inconsistence is that
the ways of calculating the CDI are different. In current study,
the CDI values are calculated based on the same items, but
the parameters are different, while both of the items and item
parameters are different in Huang’s (2018) study.

The results based on the CRUM show that calibration error,
in general, has ignorable effects on the attribute classification
accuracy, ATL, measurement precision, and test efficiency,
regardless of the item quality and termination rule. The
classifications of attribute and attribute profile are relatively
higher for the CRUM than for the DINA model and the
RRUM. The similar results are found in Huang’s (2018) study.
In addition, item quality has a negative effect on ATL for the
CRUM, which is low-quality item that produces the longest
test length. The differences of ATL between high and mixed
quality are comparable.

In summary, compared with the DINA and RRUM, the
presence of calibration error does not affect the measurement
accuracy of the CRUM, and the possible reason can be attributed
to the additive characteristic of this model (Huang, 2018). For
instance, some parameters may be overestimated, whereas others
may be underestimated for a specific item, and at this point,
the summon of these parameters may be consistent with the
true value because of the counterbalance of the overestimated
and underestimated parameters. The DINA model and RRUM,
on the contrary, do not possess the additive characteristic.
Specifically, the probability of answering correctly involves only
one parameter (the slipping or guessing) for the DINA model;
thus, the result would be inconsistent with the true value if
the calibration error is considered. Meanwhile, the characteristic
of the RRUM is multiplicative property rather than additive
property; therefore, the multiplication of the baseline and penalty
parameters contaminated by calibration error may produce the
final result that is different from the true value of the item.

According to the results of the simulation study, some factors
can be summarized to reduce the adverse effect of calibration
error on variable-length CD-CAT. First, considering that there
is negative relationship between calibration sample size and
calibration error of items (Huang, 2018), therefore increasing the
sample size of calibration should be a feasible way to achieve
this purpose. Second, compared with the low- and mixed-quality
items, the differences between contaminated by calibration error
and true item parameters are relatively smaller conditional on
the high-quality items, which means improving the quality of the
item bank is another way to achieve this purpose. In addition
to these factors, previous studies indicated that increasing the
test length could also relieve the negative effect of the calibration
error (Patton et al., 2013; Huang, 2018). Moreover, the cross-
validation method, which is used by Patton et al. (2013) in
the CAT framework, can also reduce the adverse effect of
calibration error. Results based on four conditions, including
the cross combination of the quality of the item bank (low
and high quality) and the SD of calibration error (0.2 and
0.3), show that using the cross-validation method can produce
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better performance of the measurement accuracy, RMP, and RTE
than the method without using cross-validation. Furthermore,
Huang (2018) also found that using the item exposure control
method, such as the Sympson and Hetter on line method with
freeze (SHOF method), could also relieve the negative impact
of calibration error. The item selection strategy with the SHOF
method produces slightly lower classification accuracy than
strategy without SHOF method, while the values of the RMP
produced by strategy with the SHOF method are close to one for
low-quality items (Huang, 2018).

Although some promising results are obtained in this study,
some possible directions can be investigated for future studies.
For instance, the complexity of Q-matrix has an important effect
on classification accuracy and is not considered in this study.
Future study can be conducted to explore the performance
of this factor. In addition, the setting of calibration error
may not represent the empirical situation sufficiently; therefore,
using different calibration sample size to calibrate the item
parameters may be an option for future study. Moreover, only
MPWKL strategy is used in the current study; other item
selection strategies such as MI and SHE strategies should be
adopted in the future. Furthermore, all CDMs used in the
current study are special cases of the GDINA model and
the log-linear cognitive diagnostic model (LCDM; Henson
et al., 2009). Compared with the GDINA model and LCDM,
the CDMs used in this study lack flexibility and have more

restrictions (Rupp et al., 2010). Therefore, general CDMs such
as the GDINA model and LCDM should be investigated
in the future.
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The purpose of cognitive diagnostic modeling (CDM) is to classify students’ latent

attribute profiles using their responses to the diagnostic assessment. In recent years,

each diagnostic classification model (DCM) makes different assumptions about the

relationship between a student’s response pattern and attribute profile. The previous

research studies showed that the inappropriate DCMs and inaccurate Q-matrix impact

diagnostic classification accuracy. Artificial Neural Networks (ANNs) have been proposed

as a promising approach to convert a pattern of item responses into a diagnostic

classification in some research studies. However, the ANNs methods produced very

unstable and unappreciated estimation unless a great deal of care was taken. In

this research, we combined ANNs with two typical DCMs, the deterministic-input,

noisy, “and” gate (DINA) model and the deterministic-inputs, noisy, “or” gate (DINO)

model, within a semi-supervised learning framework to achieve a robust and accurate

classification. In both simulated study and real data study, the experimental results

showed that the proposed method could achieve appreciated performance across

different test conditions, especially when the diagnostic quality of assessment was not

high and the Q-matrix contained misspecified elements. This research study is the first

time of applying the thinking of semi-supervised learning into CDM. Also, we used the

validating test to choose the appropriate parameters for the ANNs instead of using typical

statistical criteria.

Keywords: cognitive diagnostic classification, artificial neural networks, semi-supervised learning, machine

learning, co-training algorithm

1. INTRODUCTION

The purpose of cognitive diagnostic modeling (CDM; Templin and Henson, 2006) or diagnostic
measurement is to provide students’ skill/knowledge/attributes mastery status (mastery or non-
mastery) through their responses to items from carefully designed assessments. Because of the
ability to provide educators diagnostic feedback from students’ assessment results, CDM has been
the focus of much research in the last decade. Various types of diagnostic classification models
(DCMs), such as the deterministic inputs, noisy and gate (DINA; Junker and Sijtsma, 2001),
the reparametrized unified model/fusion model (RUM; Hartz, 2002), and the log-linear cognitive
diagnosis model (LCDM; Henson et al., 2009), are designed based on different cognitive theories or
assumptions about the relationship between a student’s response pattern and attribute profile.
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A principal research question of the previous research
studies in CDM is which model better describes the data.
When analysing a particular assessment dataset, selecting
inappropriate DCMs (model misspecification) impacts the
classification accuracy and parameter estimation. For example,
when the attributes measured by an assessment are non-
compensatory, which indicates that non-mastery on one
attribute cannot be compensated by mastery on another
attribute, selecting a compensatory model will decrease the
performance of classification and measurement. DINA model
and DINO (Templin and Henson, 2006) model achieved worse
fit than did the other more relaxed DCMs, such as G-
DINA (DeCarlo, 2011), LCDM, and RUM because both DINA
and DINO might be too restrictive to reflect actual students’
knowledge status (Yamaguchi and Okada, 2018). Some recent
research studies (Chiu and Köhn, 2019; Yamaguchi and Okada,
2020; Zhan, 2020) started to apply the non-compensatory or
conjunctive DCM, DINA model, and the compensatory or
disjunctive DCM, DINO model, to build up a more general item
response function (IRF) for CDM. However, these methods still
require pre-data analysis procedure and assumptions of IRF to
determine the hyperparameters contained in the mixture (or
hybrid) CDM.

A Q-matrix indicates the relationship between items and
attributes in an assessment. Q-matrices are often carefully
designed by assessment experts, whereas some existing research
and their experimental results have shown that Q-matrices
constructed by content experts do not always reflect the
relationship precisely and may require empirically-driven
modifications (Bradshaw et al., 2014; Tjoe and de la Torre,
2014). In CDM, the diagnostic quality of an item indicates the
discriminating power of the item to determine the success of
the diagnosis. The item with high discriminating refers to that
students who have mastered the attributes required by the item
are expected to have a high probability of responding to the item
correctly, while students who have not are expected to have a low
probability. Items with low discriminating power compromise
the accuracy of the estimate of student attribute mastery. In the
previous research studies, the performances of all DCMs are
sensitive to either the diagnostic quality of items or the accuracy
of Q-matrices (Kunina-Habenicht et al., 2012; Liu et al., 2017).

Because of the increase of data size and development
of computational power, artificial neural networks (ANNs;
Goodfellow et al., 2016) have been proposed as an attractive
approach to convert a pattern of item responses into a diagnostic
classification (Cui et al., 2016; Guo et al., 2017; Paulsen, 2019;
Xue, 2019). An ANN is a computational system inspired by
biological neural systems for information processing in animals’
brains. An ANN is built on inputs being translated to outputs
through a series of neuron layers. It consists of three types
of layers: an input layer, hidden layer(s), and an output layer.
Each layer consists of a number of neurons (or nodes), and
each node is connected to the nodes in the next layer. Each
layer (except for the input layer) uses the output of its previous
layer as the input. Supervised learning ANNs were applied
in some research studies (Cui et al., 2016; Guo et al., 2017;
Paulsen, 2019). To train the supervised learning ANNs, the

ideal response patterns were set as the input layer and the
associated attribute profiles as the output layer. Cui et al. (2016)
hypothesized DINA model with both slipping and guessing
equalling to 0 to synthesize ideal responses to train a multilayer
perceptron (MLP). The experimental results showed that the
classification accuracy of the supervised learning ANNs was not
appreciated even in the simulated study. Another disadvantage
of applying supervised learning ANNs for CDM is how to
create the ideal response patterns using a DCM because both
DCM and parameters are difficult to hypothesize. In addition
to supervised learning ANNs, Cui et al. (2016) used one type
of unsupervised learning ANNs, self-organizing map (SOM),
to classify test-takers into different latent groups for CDM.
One disadvantage of the unsupervised learning ANNs is that
some further data analysis approaches are required to label
the clusters. For example, although cluster analysis can place
test-takers into different latent groups, post hoc techniques are
required to discern the attributes from these latent groups. To
do cluster labeling, Xue (2018) proposed a modified autoencoder
network with a sparsely connected decoder explained the code
layer outputs by using a part of the Q-matrix information.
However, in both research studies, the unsupervised learning
ANNs cannot yield comparable classification results compared
with the DCMs, especially when the diagnostic quality of the
assessment was not high. In addition, the ANNs methods
produced very unstable and unappreciated estimation unless a
great deal of care was taken to conduct sensitivity analyses (Briggs
and Circi, 2017).

Regarding the disadvantages in supervised leaning ANNs and
unsupervised learning ANNs, in this research, semi-supervised
learning thinking is introduced to provide reasonable labels for
ANN training and provide accurate and robust classification
under different test conditions. In the machine learning field,
semi-supervised learning (Zhu, 2005) concerns the study of
how computers and natural systems learn in the presence of
both labeled and unlabeled data, and it is somewhere between
supervised learning and unsupervised learning. The research goal
of semi-supervised learning is to understand how combining
labeled and unlabeled data change the learning behavior, and
design algorithms that take advantage of such a combination.
Semi-supervised learning is a great interest in a wide range
of applications, such as image search (Fergus et al., 2009),
natural language parsing (Liang, 2005), and speech analysis (Liu
and Kirchhoff, 2014) because the labeled data is scarce
or expensive.

In this research, we firstly applied the semi-supervised
learning thinking into the ANNs-based CDM. Unlike the hybrid
CDM research studies, which used DINA and DINO models in
a mixture CDM, in this research, DINA and DINO models were
contained in a semi-supervised learning framework to improve
the accuracy and consistency of the ANN’s classification. In
the following sections, we will first briefly introduce the Co-
Training method, which is the semi-supervised learning method
we used in this framework. Then, we will describe the structure
of the ANNs will. Additionally, we will illustrate the experimental
results under simulated experiments to compare the proposed
method and five different DCMs. Lastly, we will outline the
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benefits and challenges of this methodology are summarized and
future research.

2. METHOD

2.1. Co-training Methods of Using DINA
Model and DINO Model
As one typical semi-supervised learning method, Co-
Training (Nigam and Ghani, 2000) methods use a pair of
classifiers with separate views of the data to iteratively learn and
generate additional training labels. Like the self-training scheme,
Co-Training is a wrapper method and widely applicable to
many tasks. Co-Training bears a strong resemblance to the self-
training scheme because each classifier uses its most confident
predictions on unlabeled instances to teach itself. Two classifiers
operate on different views of one observation, and the success of
CoTraining depends on the following two assumptions (Zhu and
Goldberg, 2009): (1) each view alone is sufficient to make good
classifications, given enough labeled data; (2) the two views are
conditionally independent given the class label.

Inspired by the typical Co-Training method, in this research,
we chose the DINA model and DINO model as two classifiers
to operate on different views of one response pattern to an item.
The DINA model is a non-compensatory, or conjunctive DCM
means that a lack of one attribute cannot be compensated by the
mastery of another attribute measured by an item. For each item,
the DINA model classifies students into two groups: those who
have mastered all the attributes required by the item and those
who have not. The jth item response probability of the ith student
can be written as:

P(yij = 1|ξij, sj, gj) = (1− sj)
ξijg

1−ξij
j (1)

where ξij = 1 indicates the ith student has mastered all required
attributes of jth item, and ξij = 0 refers to non-mastery status; sj
and gj are the slipping parameter and guessing parameter of the
jth item.

In contrast to the DINA model, the DINO model is a
compensatory or disjunctive DCM, which means that a non-
mastery on one latent attribute can be compensated for by
a mastery status on another attribute. The jth item response
probability of the ith student can be written as:

P(yij = 1|ωij, sj, gj) = (1− sj)
ωijg

1−ωij

j (2)

where the latent response ωij = 1 indicates that the ith
student has mastered at least one attribute measured by jth item,
and ωij = 0 indicates the absence of all required attributes.
Like DINA, sj and gj are the slipping parameter and guessing
parameter of the jth item.

The reason for selecting the DINA model and the DINO
model is to hold the two assumptions of successfully applying
Co-Training. First, in an assessment, either the DINA model or
the DINO model can be the correct model for different items.
For example, both the DINA and DINO models are the correct
models for a simple structure item, which only measures a single
attribute. Thus, using either the DINAmodel or the DINOmodel

is sufficient to make accurate classification results. Second, the
DINA model and DINO model’s item response functions are
represented based on different assumptions on the relationship
between response patterns and attribute profiles. When the true
latent class labels of students are known, for one item, the
students can be divided into two groups, DINA-type and DINO-
type, respectively. Considering the local independence (Wang
and Douglas, 2015), test-takers’ item responses from these two
groups are statistically independent conditional on the true latent
class labels.

In this paper, given the response data and Q-matrix, the
DINA model and the DINO model were fitted. For an individual
test-taker, we use two labels cDINA and cDINO. cDINA was the
estimated latent class under the assumption of using the DINA
model, and cDINO was the estimated latent class under the
assumption of using the DINO model. cDINA and cDINO could
be either the same or different. In this research, the One-Hot
encoding method (Harris and Harris, 2015) was applied to the
integer encoding cDINA and cDINO to create two new One-Hot

representation vectors cDINA = {ckDINA} and cDINA = {ck
′

DINA}.

ckDINA and ck
′

DINA ∈ {0, 1}, and
∑

k c
k
DINA =

∑
k′ c

k′

DINA = 1. In
machine learning, a One-Hot is a group of bits among which the
legal combinations of values are only those with a single 1 bit and
all the others 0 bits. For example, if there are 4 latent classes, the
integer encoding labels 1, 2, 3, and 4 are converted to One-Hot
encoding [0001], [0010], [0100], and [1000], respectively.

2.2. Semi-supervised Learning ANN for
Diagnostic Classification
As shown in Figure 1, the proposed semi-supervised learning
ANN consisted of four parts: the input layer, two hidden layers,
class layer, and the output layer. The number of nodes (the
circles in Figure 1) on the input layer was equal to the number
of items contained in the assessment. The number of nodes on
the class layer was equal to the number of latent classes. To
establish the relationship between the input and class nodes, we
used two hidden layers (i.e., hidden layer 1 and hidden layer
2) to convert observed response patterns to latent classes. The
numbers of nodes at these two hidden layers are 200 and 100. We
use the Rectified linear unit (ReLU; Goodfellow et al., 2016) as
the activation function for these two hidden layers and softmax
function as the activation function for the class layer. In deep
learning field, ReLU is widely used because the mathematical
form of ReLU is very simple and efficient, and RelU can avoid
a small derivative causing vanishing gradient problem. Softmax
function is used for amulti-classification problem in ANNs. Since
the number of nodes at the two hidden layers could be viewed
as a hyperparameters of ANNs, we selected the two numbers
(i.e., 200 and 100) for three reasons: (1) deep learning provides
information-theoretically optimal approximation of a very wide
range of functions and function classes used in mathematical
signal processing (Grohs et al., 2019); (2) Lu et al. (2017)
showed a universal approximation theorem for width-bounded
ReLU networks: width-(d + 4) ReLU networks, where d is the
input dimension, are universal approximators; (3) based on the
validation test in our previous research studies using ANNs for
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psychometrics (Xue, 2018, 2019; Xue et al., 2020), these two
values could achieve a balance between efficiency and accuracy.

In the supervised learning ANNs in CDM, only a single
label was used for each observation. For example, when only
using DINA classification as labels, the supervised learning ANN
was used to train the standard softmax regression or a sigmoid
regression (Pang et al., 2020) inputs to outputs without taking
into account incorrect labels.The incorrect labels will impact the
prediction performance of the ANNs for supervised learning
ANNs. In contrast, the output layer in our proposed semi-
supervised learning ANN consisted of three parts. The first part
(output 1 or Y1) corresponded to the DINA model classification,
the second part (output 2 or Y2) corresponded to the DINO
model classification, and the third part was the reconstructed
response pattern (X̃). The total number of output nodes was
equal to two times of the number of hidden classes plus the
number of items. For example, given an assessment with 30 items
that measured a total of 4 attributes, the input layer X consisted
of 30 input nodes (30 items), the class layer t consisted of 16
nodes (24 = 16 latent classes), and the output layer {Y1,Y2, X̃}
consisted of 62 nodes (16+ 16+ 30).

Let X ∈ {0, 1}I be the response patterns (I is the number
of items), cDINA and cDINO be the One-Hot encoding of the
DINA class labels and DINO class labels, respectively. Then we
introduced into our ANN model the “true” latent class label
(as opposed to the DINA and DINO class labels) as a latent
multinomial variable t ∈ {0, 1}C,

∑C
j tj = 1, where C is the

number of latent classes. Like cDINA and cDINO, t was also a One-
Hot encoding label for each response pattern. The output of the
class layers (or the input of the output layer) of our ANN was the
posterior over t using the softmax regression. The ith element of
t can be represented as:

P(tj = 1|X) =
P̃(tj = 1|X)

∑C
j′=1 P̃(tj′ = 1|X)

=
φj(X;w1)∑C

j′=1 φj′ (X;w1)
(3)

where P̃ denotes the unnormalized probability distribution,
8 = {φj(X;w1)}, j ∈ {1, . . . ,C} indicates the calculation from
the input layer to class layer’s output, and φj(X;w1) indicates the
jth node’s values on the class layer, the computation of φj(X;w1)
is as follows:

φj(X;w1) = σ (

100∑

m=1

200∑

n=1

wH2t
mj max(wH1H2

nm max(wXH1
in Xi, 0), 0))

(4)
where σ (·) is the softmax function, max(·, 0) is the ReLU
function, w1 = {{wXH1

in }, {wH1H2
nm }, {wH2t

mj }} indicate the all the

weights of the ANNs from the input layer to the class layer.

{wXH1
in } is the weights between input layer X and first hidden layer

H1; {w
H1H2
nm } is the weights between the first hidden layer H1 and

second hidden layerH2; {w
H2t
mj } is the weights between the second

hidden layer H2 and the class layer. w1 needs to be estimated in
the training of ANNs. Given the true label t, the output 1 (DINA
model classification) and output 2 (DINO model classification)

can be modeled using another softmax with logits as follows:

logit(P(Y1|X)) = logit(P(ckDINA = 1|X)) =

C∑

j=1

wtY1
jk

tj

logit(P(Y2|X)) = logit(P(ck
′

DINO = 1|X)) =

C∑

j=1

wtY2
jk′

tj

(5)

where the weights wtY1
jk

and wtY2
jk′

learn the log-probability of

the “true” label j as DINA class label k (the kth class in DINA
classification) and as DINO class label k′ (the k′th class in DINA
classification), respectively. Thus, in the proposed ANN, the joint
relationship between input layer x and the kth node of Y1 and
k′th node of Y2 can be represented as follows:

P(Y1,Y2|X) = P(ckDINA = 1, ck
′

DINO = 1|X)

=

C∑

j=1

P(ckDINA = 1, ck
′

DINO = 1, tj = 1|X)

=

C∑

j=1

P(ckDINA = 1|tj = 1)

P(ck
′

DINO = 1|tj = 1)P(tj = 1|X)

(6)

where P(tj = 1|X), P(ck
′

DINO = 1|tj = 1), P(ckDINA = 1|tj = 1) are
defined in Equations (3) and (5).

In addition to the difference between Co-Training labels
and Y1, Y2, we also added a regularization term, H(X, X̃), to
encourage the classification to be perceptually consistent. X is the
observed response pattern, and X̃ is the reconstructed response
pattern corresponding to the estimated latent class. The X̃ can be
calculated from the true label t as:

X̃i =

C∑

j=1

wtX̃
ji tj (7)

where wtX̃
ij is the connection weights between jth

class layer node and ith reconstructed output node.
The weights between class layer and output layer of
the ANNs is w2 = {{wjk}, {wjk′}, {wji}}. We could
perform training via stochastic gradient descent (SGD;
Bottou and Bousquet, 2007) to minimize the following
cost function:

{w} = argmin{H(Y1, cDINA)+H(Y2, cDINO)+ λH(X, X̃)} (8)

where {w} = {w1,w2} indicates all the weights of the ANNs
to be estimated, H(·, ·) is the cross-entropy to calculate
the difference between Y1 and One-Hot DINA labels
cDINA, and the difference between Y2 and One-Hot DINO
labels cDINO, and the difference between observed response
pattern X and reconstructed response pattern X̃. λ is a
scaling parameter which was determined through a validation
test (Xue et al., 2020).
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FIGURE 1 | The structure of the proposed semi-supervised learning ANN. The proposed semi-supervised learning ANN consisted of one input layer, two hidden

layers, one class layer and one output layer. The input X is response pattern of a test-taker; H1 and H2 are two hidden layers; t indicates the class layer; and the

output layer consists of three parts: Y1 is the classification under DINA assumption; Y2 is the classification under DINO assumption; X̃ is the reconstructed response

pattern of the test-taker.

Because of the large number of parameters contained in the
deep learning structure, the random initialization of parameters
may impact the optimization when the training sample size is
not large enough. Thus, one concern of using ANNs for CDM
is that using the feature extracted by deep learning through
a single training is risky or sensitive to the starting points
of the parameters (Briggs and Circi, 2017). Cui et al. (2016)
only set a maximum number of iterations (e.g., 10,000) to stop
training the supervised learning ANN in their research study.
We applied two methods to deal with this issue. The first
method was the early stopping, which is a simple, effective, and
widely used approach to avoid overtraining the ANNs. The early
stopping method is used to train on the training dataset but
to stop training at the point when performance on a validation
dataset starts to degrade. In addition, through the validating,
we determined the scaling parameter in Equation (10). In our
method, the whole data set was divided into two parts: the
training dataset consisted of 80% observations, and the validating
dataset consisted of the rest 20% observations. The second
method was that we conducted 100 ANN trainings individually,
produced a probability of latent class for each training, and then
averaged the 100 probabilities as the final probability of the latent
class for each test-taker.

3. EXPERIMENTAL STUDY

The aims of the experiment were (1) to examine the
attribute profile estimation and classification accuracy of
the proposed method under different test factors which
are expected to affect the estimates’ accuracy, and (2) to
compare the proposed method with the performance of five
DCMs: the DINA, DINO, G-DINA (De La Torre, 2011),
LCDM (Henson et al., 2009), and RUM (Hartz, 2002).
Thus, we conducted a simulation study under different
assessment conditions with a variety of fixed factors and four
manipulated factors.

3.1. Method
3.1.1. Manipulated Factors
Using item by latent class matrix, we manipulated
three assessment factors in the data generation for the
simulation, including the number of items (20 or 30),
number of attributes (three or four), and test diagnostic
quality (high or mixed). When estimating the conditions,
we also manipulated the Q-matrix accuracy (100 and
90% correct) as another factor expected to impact
classification accuracy.
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3.1.1.1. Test Length and Number of Attributes
The number of items (20 or 30) and the number of attributes
were selected to reflect the current real assessment applications,
which often contained between 20 to 30 items and measured
three or four attributes [e.g., MELAB data (Li and Suen, 2013);
DTMR data (Bradshaw et al., 2014)]. For three attributes, we
generated 20 items, and for four attributes, 20 and 30 items
were generated, respectively. The three Q-matrices (i.e., 20 items
measured 3 attributes, 20 items measured 4 attributes, and 30
items measured 4 attributes) for these conditions are shown in
Supplementary Tables 1–3, respectively.

3.1.1.2. Test Diagnostic Quality
Item discriminating power is another factor impact performance
of DCMs shown in previous research studies (e.g., Cui et al.
2016; Roussos et al. 2005). The item discriminating power di
is calculate as di = p(x = 1|α1) − p(x = 1|α0). α0 is the
attribute pattern where none of the attributes measured by the
ith item are mastered, and α1 is the attribute pattern where all
attributes measured by the ith item are mastered. If di > 0.3,
the Item i is a highly discriminating item, and if 0 < di ≤ 0.3,
the Item i is a lowly discriminating item. In the assessments
with high diagnostic quality, all items are of high discriminating
power; in the assessments with mixed diagnostic quality, 50%
items are of high discriminating power, and 50% items are of low
discriminating power.

3.1.1.3. Accuracy of Q-Matrix
Since the Q-matrices constructed by content experts do not
always reflect the relationship precisely and may require
empirically-driven modifications (Bradshaw et al., 2014; Tjoe
and de la Torre, 2014), two levels of Q-matrix accuracy were
also created for DCMs model fitting and Co-Training methods:
100% accuracy indicated that the Q-matrix were completely
known; 90% accuracy indicated that 10% of elements in each
Q-matrix were incorrect. We mis-specified the 10% elements in
Q-matrix randomly drawing a Q-matrix entries and changing its
value, with the constraint that each item must measure at least
one attribute (i.e., a randomly drawn value of “1” for a simple
structure item could not be changed to “0”). Such constrain
makes there is no all zero q-vector (e.g., [0, 0, 0], [0, 0, 0, 0])
in Q-matrix.

3.1.2. Generating Item Response Probabilities
Sample sizes of 1,000 were used for all conditions. The true
class probabilities of correct response for the items in the item
pools were simulated using the logic of a DCM with respect
to the Q-matrix defining the item-class relationships and the
probabilities following monotonicity constraints across non-
equivalence classes on an item (i.e., masters of all attributes
measured by the item having a higher probability of correct
response than masters of a proper subset of these attributes;
masters of no attributes measured by the item having a lower
probability of correct response than masters of a proper subset
of these attributes), but did not follow a particular existing DCM
item response function (e.g., the LCDM or DINA function).
Current DCM item response functions constrain the item

response probabilities to be equal within all equivalence classes;
our simulated data did not. Item-based equivalence classes are
latent classes that have the same attribute profile, or the same
pattern of mastery, for all attributes that are measured by
the item. Conversely, item-based non-equivalence classes differ
on the mastery status of one or more attributes measured by
the item.

We simulated data using a general I × C item by latent class
matrix (Xu and Zhang, 2016) according to DCM logic (i.e.,
defining latent classes by attribute profiles and specifying item-
latent class relationships by the Q-matrix) without the specific
mathematic representation of the item response function:

5 =




π1,1 π1,2 . . . π1,C

π2,1 π2,2 . . . π2,C

...
...

. . .
...

πI,1 πI,2 . . . πI,C


 . (9)

where the conditional probability that students in lth latent class
answer ith item correctly P(xi = 1|c) = πi,c, which is also known
as item response probability (IRP) for each class. I indicated the
number of items, C indicated the number of latent classes.

We denote πi,α0 , πi,α1 , and πi,αp as the IRPs for non-mastery
group, mastery group, and partial mastery group, respectively.
The mastery group contained students who mastered all of the
attributes required by ith item, the partial mastery group contains
students who onlymastered a proper subset of attributes required
by ith item, and the non-mastery group contained students who
mastered none of the attributes required by ith item.

As shown in Table 1, when simulating response patterns to
high discrimination items for the mastery group πi,α1 were
drawn from a uniform distribution U[0.65, 0.9]; for the non-
mastery group πi,α0 were drawn from a uniform distribution
U[0.15, 0.35]; and for the partial mastery group πi,αp were
drawn from a uniform distribution U[0.4, 0.6]. These draws
yielded an average item discrimination value of 0.530 in 3 highly
discriminating assessments. When simulating response patterns
to low discrimination items, for the non-mastery group πi,α0

were drawn from a uniform distribution U[0.2, 0.4]; for partial
mastery group πi,αp were drawn from a uniform distribution
U[πi,α0 ,πi,α0 + 0.2]; lastly for the mastery group (students who
mastered all the attributes required by ith item) πi,α1 were
based on a uniform distribution U[πi,αp ,πi,α0 + 0.3] for complex
items and U[πi,α0 ,πi,α0 + 0.3] for simple items. This yielded
an average item discrimination value of 0.387 in three mixed
discriminating assessments.

By drawing true item parameters in this way, the πi,cs in our
simulated data differs from IRPs simulated from the LCDM in
that partial mastery classes with the same attribute pattern with
respect to the measured attributes on a given item (the partial
mastery item-based equivalence classes) have different true item
response probabilities. The item response probabilities for these
classes are, however, drawn from the same uniform distribution,
so while they may be different values, they will be in the same
range. Taking Item 10 that measures Attribute 1 and Attribute 2
as an example (as shown in Supplementary Table 4), Classes C2,
C3, C6, and C7 are all partial mastery classes with respect to this
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TABLE 1 | The table of selecting πi,c for item by class matrix.

Latent groups High Low

discrimination discrimination

Non-mastery πi,a0 U[.15, .35] U[.20, .40]

Partial-mastery πi,αp U[.40, .60] U[πi,a0 ,πi,a0 + .15]

Mastery πi,a1 U[.65, .90]




U[πi,αp ,πi,a0 + 0.30], Complex items

U[πi,a0 ,πi,a0 + 0.30], Simple items

For each item, πi,a0 , πi,a1 , and πi,αp indicate the πi,c for non-mastery group, mastery group,

and partial mastery group, respectively.

item: Class C2 and C6 both have mastered Attribute 1 but not
Attribute 2, and Class C3 and C7 has both mastered Attribute 2
and not Attribute 1. Under the LCDM, Class C2 and C6 would
have the same IRP, while Class C3 and C7 would have the same
IRP; under our generating model, the IRP for all four classes
were drawn from the same interval, but the draws were different,
resulting in, Class C2 having an IRP of 0.509, Class C3 having
an IRP of 0.519, Class C6 having an IRP of 0.458, and Class C7
having an IRP of 0.429 (see Supplementary Table 4). For non-
mastery equivalence classes and mastery equivalence classes, the
true model did constrain draws to be equal within the interval
(i.e., Class C1 and C5 have IRP values of 0.33 and Class C4 and
C8 have IRP values of 0.891). Only for partial mastery item-based
equivalence classes were they allowed to differ. The purpose of
allowing this difference was to add some noise in the data while
still controlling the item discrimination level (IRP of mastery
group minus IRP of non-mastery group).

The values in the item by latent class matrix 5 for the 6
item pools are shown in Supplementary Tables 4–9, respectively.
These appendices showed that the DCMs primary monotonicity
assumptions held. Namely, the mastery group has the greatest
IRP, the non-mastery group has the lowest IRP, and the IRP of
partial mastery groups lie between them. These appendices show
this simulation procedure firstly held that 0.3 ≤ di < 0.75
for high discrimination items and 0.3 < di < 0.75 for low
discrimination items; it also again shows the DCMmonotonicity
assumptions that the mastery group has a greater IRP than the
non-mastery group held.

3.1.3. Estimation
In our simulated study, as a comparison, five types of widely used
DCMs were introduced as baselines to evaluate the diagnostic
classification performance of the proposed framework. DINA
and DINO models were selected as two baselines because
they were the two classifiers used for Co-Training method. In
addition, we chose three more general models, the G-DINA with
identity link function (De La Torre, 2011), the LCDM with the
logit link function (Henson et al., 2009), and the RUM (Hartz,
2002).

Results were analyzed in terms of classification accuracy of
the five DCMs and proposed method under 12 different test
conditions. Since in the proposed method, a validation test
was introduced for early stop in the training procedure to
avoid overtraining, the whole data set was divided to two parts:

training dataset which contains 80% observations; and validating
dataset which contains 20% observations. In the results shown in
Tables 2–4, we list three types of the results of using the proposed
ANNmethod:

1. ANN: the classification results of applying the trained ANN
structure to the whole dataset containing training set and
validation set;

2. ANN*: the classification results of applying the trained ANN
structure to the training dataset;

3. ANN**: the classification results of applying the trained ANN
structure to the validating dataset.

The data simulation and five DCMs were conducted using the
“CDM” package (George et al., 2016) in R. The proposed semi-
supervised learning ANN was conducted using the “tensorflow”
library (Pang et al., 2020) in Python. In the experimental study,
we conducted 100 replications. In each replication, new response
patterns were created based on the fixed values in the item by
latent class matrices in Supplementary Tables 4–9.

3.2. Results
First, we tested the effects of the four assessment factors of
test length, number of attributes, test diagnostic quality, and
Q-matrix accuracy on the attribute profile and classification
accuracy for the proposed method. Then we compared the
proposed method to the five DCMs, under 12 different test
conditions. Results are given in Tables 2–4.

3.2.1. Classification Accuracy and Four Assessment

Factors
We first focus on results for the proposed method. As mentioned
in the Estimation session, ANN, ANN* and ANN** in Tables 2–
4 indicate the classification accuracy on whole dataset (including
training set and validating set), the training set and validating
set, respectively. Results show that the proposed method (ANN)
works reasonably well and has classification accuracy values
>70% under 6 out of 12 assessment conditions (condition 1, 2,
3, 4, 9, and 10) when applying the trained ANN to the whole
data set (i.e., ANN). Condition 1–4 are all four test conditions for
the assessment measures 3 attributes using 20 items with either
highly diagnostic quality or mixed diagnostic quality. Condition
9 and 10 are the two test conditions for assessment measures 4
attributes using 30 items with highly diagnostic quality. Results
show classification accuracy increased in expected ways for
the proposed method. Namely, average classification accuracy
increases from 0.670 to 0.722 as test length increases from 20
to 30 for assessments measure 4 attributes (there is only one
test length of assessment that measures 3 attributes); when the
number of attributemeasured decreases from 4 to 3 in assessment
with 20 items, the average classification accuracy increases from
0.670 to 0.834; when the test diagnostic quality increases from
mixed to high, the average classification accuracy increases from
0.621 to 0.736; and when the accuracy of Q-matrix increases from
90 to 100%, the average accuracy increases slightly from 0.675
to 0.682. In addition, we can see that ANN* always achieves
the best performance with average classification accuracy 0.692,
ANN** always achieves the worst performance with average
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TABLE 2 | Comparison of classification rates for three attributes using 20 items.

Test Methods Quality Q-matrix Attribute 1 Attribute 2 Attribute 3 Class

condition accuracy

1 DINA High 100% 0.949 (0.00) 0.864 (0.02) 0.957 (0.01) 0.778 (0.02)

DINO 0.953 (0.01) 0.871 (0.02) 0.952 (0.02) 0.784 (0.04)

LCDM 0.96 (0.00) 0.917 (0.00) 0.957 (0.00) 0.842 (0.01)

G-DINA 0.96 (0.00) 0.917 (0.00) 0.957 (0.01) 0.842 (0.00)

RUM 0.953 (0.01) 0.91 (0.00) 0.958 (0.00) 0.827 (0.00)

ANN 0.956 (0.01) 0.915 (0.01) 0.957 (0.01) 0.834 (0.02)

ANN* 0.962 (0.01) 0.921 (0.01) 0.964 (0.02) 0.851 (0.02)

ANN** 0.945 (0.01) 0.901 (0.02) 0.942 (0.01) 0.818 (0.03)

2 DINA 90% 0.944 (0.00) 0.824 (0.01) 0.957 (0.00) 0.741 (0.02)

DINO 0.946 (0.01) 0.852 (0.01) 0.944 (0.01) 0.757 (0.02)

LCDM 0.956 (0.00) 0.897 (0.00) 0.958 (0.00) 0.819 (0.00)

G-DINA 0.956 (0.00) 0.897 (0.00) 0.958 (0.01) 0.819 (0.00)

RUM 0.949 (0.00) 0.879 (0.01) 0.958 (0.00) 0.794 (0.01)

ANN 0.955 (0.01) 0.900 (0.02) 0.958 (0.02) 0.821 (0.02)

ANN* 0.962 (0.01) 0.910 (0.02) 0.969 (0.02) 0.831 (0.03)

ANN** 0.945 (0.01) 0.881 (0.02) 0.932 (0.04) 0.807 (0.04)

3 DINA Mixed 100% 0.875 (0.00) 0.859 (0.01) 0.914 (0.00) 0.693 (0.01)

DINO 0.863 (0.01) 0.864 (0.00) 0.896 (0.01) 0.665 (0.01)

LCDM 0.879 (0.01) 0.884 (0.00) 0.913 (0.00) 0.712 (0.01)

G-DINA 0.879 (0.00) 0.884 (0.00) 0.913 (0.00) 0.712 (0.00)

RUM 0.873 (0.01) 0.9 (0.00) 0.917 (0.01) 0.724 (0.00)

ANN 0.883 (0.01) 0.884 (0.02) 0.915 (0.01) 0.720 (0.01)

ANN* 0.892 (0.01) 0.896 (0.01) 0.929 (0.02) 0.730 (0.02)

ANN** 0.868 (0.01) 0.878 (0.02) 0.911 (0.01) 0.704 (0.02)

4 DINA 90% 0.878 (0.01) 0.85 (0.01) 0.906 (0.00) 0.676 (0.02)

DINO 0.869 (0.00) 0.861 (0.00) 0.908 (0.00) 0.679 (0.01)

LCDM 0.878 (0.00) 0.85 (0.00) 0.918 (0.00) 0.685 (0.01)

G-DINA 0.877 (0.00) 0.85 (0.01) 0.918 (0.00) 0.684 (0.00)

RUM 0.877 (0.00) 0.85 (0.01) 0.915 (0.00) 0.685 (0.01)

ANN 0.874 (0.01) 0.888 (0.02) 0.908 (0.02) 0.704 (0.02)

ANN* 0.889 (0.01) 0.901 (0.01) 0.923 (0.01) 0.719 (0.01)

ANN** 0.867 (0.04) 0.871 (0.04) 0.890 (0.03) 0.683 (0.03)

ANN indicate the attribute profile estimation using the proposed method on whole data set. ANN* indicate the attribute profile estimation using the proposed method on the training

data set. ANN** indicate the attribute profile estimation using the proposed method on the validation data set.

classification accuracy 0.661, and ANN falls between ANN* and
ANN** with average classification accuracy 0.678. The reason is
that the parameters of ANN structure were trained based on the
training dataset but not considered the validation dataset.

Next, we examine the results for the five DCMs. Results
show that DINA model has classification accuracy values >70%
under 2 out of 12 assessment conditions (condition 1 and 2);
DINO model has classification accuracy values >70% under 2
out of 12 assessment conditions (condition 1 and 2); G-DINA
has classification accuracy values >70% under 5 out of 12 test
conditions (condition 1, 2, 3, 9, and 10); LCDM has classification
accuracy values >70% under 5 out of 12 test conditions
(condition 1, 2, 3, 9, and 10); and RUMhas classification accuracy
values >70% under 5 out of 12 test conditions (condition 1, 2,
3, 9, and 10). Condition 1 and 2 are two tests (high and mixed

diagnostic quality) with 20 itemsmeasures 3 attributes and the Q-
matrix accuracy is 100%; condition 3 is a test with high diagnostic
quality consists of 20 items to measure 3 attribute but the Q-
matrix accuracy is 90%; condition 9 and 10 are two tests (high and
mixed diagnostic quality) with 30 itemsmeasures 4 attributes and
the Q-matrix accuracy is 100%. We could also notice that the G-
DINA and LCDM achieved almost the same classification results
because the only difference between G-DINA and LCDM in the
CDM::gdina() is the link function. We chose “identity” function
for G-DINA and “logit” function for LCDM. In addition, like the
proposed method, results show classification accuracy increased
in expected way for the 5 DCMs. Namely, accuracy increases
as test length increases, as the number of attribute measured
decreases, as the test diagnostic quality increases, and as the
accuracy of Q-matrix increases.
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TABLE 3 | Comparison of classification rates for four attributes using 20 items.

Test Methods Quality Q-matrix Attribute 1 Attribute 2 Attribute 3 Attribute 4 Class

condition accuracy

5 DINA High 100% 0.908 (0.02) 0.924 (0.03) 0.79 (0.02) 0.893 (0.02) 0.591 (0.03)

DINO 0.909 (0.04) 0.928 (0.05) 0.858 (0.02) 0.899 (0.03) 0.653 (0.04)

LCDM 0.918 (0.01) 0.929 (0.02) 0.858 (0.00) 0.919 (0.01) 0.67 (0.01)

G-DINA 0.918 (0.01) 0.929 (0.01) 0.858 (0.01) 0.919 (0.00) 0.67 (0.01)

RUM 0.923 (0.02) 0.921 (0.01) 0.853 (0.02) 0.917 (0.01) 0.664 (0.03)

ANN 0.919 (0.01) 0.925 (0.01) 0.858 (0.03) 0.922 (0.04) 0.67 (0.03)

ANN* 0.931 (0.02) 0.942 (0.01) 0.870 (0.03) 0.941 (0.01) 0.691 (0.03)

ANN** 0.909 (0.03) 0.918 (0.02) 0.861 (0.01) 0.912 (0.04) 0.655 (0.03)

6 DINA 90% 0.909 (0.04) 0.922 (0.04) 0.74 (0.02) 0.886 (0.02) 0.56 (0.03)

DINO 0.903 (0.04) 0.924 (0.02) 0.852 (0.03) 0.879 (0.04) 0.621 (0.04)

LCDM 0.904 (0.01) 0.922 (0.00) 0.824 (0.01) 0.887 (0.01) 0.616 (0.01)

G-DINA 0.904 (0.01) 0.922 (0.01) 0.824 (0.01) 0.887 (0.02) 0.616 (0.01)

RUM 0.905 (0.02) 0.922 (0.02) 0.8 (0.02) 0.884 (0.01) 0.599 (0.03)

ANN 0.912 (0.04) 0.923 (0.01) 0.862 (0.03) 0.89 (0.02) 0.648 (0.03)

ANN* 0.924 (0.02) 0.931 (0.01) 0.877 (0.01) 0.901 (0.02) 0.657 (0.02)

ANN** 0.903 (0.01) 0.917 (0.02) 0.853 (0.03) 0.883 (0.02) 0.632 (0.03)

7 DINA Mixed 100% 0.854 (0.01) 0.836 (0.03) 0.824 (0.02) 0.851 (0.03) 0.503 (0.02)

DINO 0.863 (0.02) 0.817 (0.04) 0.854 (0.02) 0.816 (0.04) 0.484 (0.04)

LCDM 0.867 (0.01) 0.823 (0.01) 0.855 (0.02) 0.84 (0.03) 0.509 (0.01)

G-DINA 0.867 (0.01) 0.824 (0.02) 0.855 (0.04) 0.84 (0.03) 0.51 (0.01)

RUM 0.878 (0.03) 0.831 (0.02) 0.856 (0.03) 0.837 (0.04) 0.522 (0.03)

ANN 0.864 (0.04) 0.842 (0.02) 0.857 (0.03) 0.859 (0.02) 0.531 (0.02)

ANN* 0.879 (0.01) 0.855 (0.03) 0.870 (0.02) 0.871 (0.01) 0.550 (0.02)

ANN** 0.853 (0.03) 0.839 (0.02) 0.826 (0.02) 0.850 (0.04) 0.504 (0.05)

8 DINA 90% 0.856 (0.04) 0.826 (0.02) 0.744 (0.01) 0.854 (0.01) 0.448 (0.02)

DINO 0.854 (0.02) 0.817 (0.02) 0.855 (0.01) 0.851 (0.04) 0.503 (0.05)

LCDM 0.865 (0.00) 0.817 (0.01) 0.776 (0.02) 0.844 (0.01) 0.469 (0.01)

G-DINA 0.865 (0.02) 0.817 (0.01) 0.776 (0.00) 0.844 (0.01) 0.469 (0.01)

RUM 0.864 (0.03) 0.821 (0.01) 0.855 (0.04) 0.84 (0.01) 0.509 (0.03)

ANN 0.852 (0.02) 0.871 (0.02) 0.855 (0.03) 0.852 (0.01) 0.542 (0.04)

ANN* 0.869 (0.03) 0.883 (0.02) 0.867 (0.01) 0.870 (0.00) 0.558 (0.03)

ANN** 0.850 (0.04) 0.851 (0.02) 0.855 (0.02) 0.854 (0.03) 0.512 (0.05)

ANN indicate the attribute profile estimation using the proposed method on whole data set. ANN* indicate the attribute profile estimation using the proposed method on the training

data set. ANN** indicate the attribute profile estimation using the proposed method on the validation data set.

3.2.2. Comparison Classification With 5 DCMs
Simulation results indicated that when using the proposed
ANN, the classification rates were higher than rates from
the DINA and DINO models, the two initial classifiers
used in Co-Training. Compared to DINA and DINO
models, at the attribute level, the average improvements
of classification using ANN was 0.0218 and 0.0140, and
at the class level (i.e., attribute profiles level), the average
improvements were 0.0589 and 0.0432. Compared to the
general models LCDM and G-DINA, which often achieved
the best performance in classification, the performance
of ANN was also better than these two methods. The
improvements at the attribute level were 0.0056 and
0.0055 compared with LCDM and G-DINA models,
respectively. At the class level, the improvements were 0.0130
and 0.0132.

The simulated study also indicated that when the Q-matrix
became less accurate, the classification accuracy for each method
dropped at both attribute level and latent class level when holding
other test assessment factors. When the Q-matrix accuracy
decreased to 90% accurate, at the attribute level, the average
reductions of classification accuracy were 0.0071, 0.0055, 0.0114,
0.0114, 0.0095, and 0.0038 corresponding to DINA, DINO,
LCDM, G-DINA, RUM, and our ANN methods, respectively.
At the attribute pattern level, the average accuracy reductions
were 0.0163, 0.0138, 0.0298, 0.0302, 0.0243, and 0.0075 for
DINA, DINO, LCDM, G-DINA, RUM and, our ANN methods,
respectively. From this observation, we could find that firstly, the
relaxedmodels (LCDM,G-DINA, and RUM)weremore sensitive
to the accuracy of Q-matrix; secondly, the proposed ANN was
more robust to the noise within the Q-matrix compared to the
five DCMs.
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TABLE 4 | Comparison of classification rates for 4 attributes using 30 items.

Test Methods Quality Q-matrix Attribute 1 Attribute 2 Attribute 3 Attribute 4 Class

condition accuracy

9 DINA High 100% 0.937 (0.04) 0.938 (0.03) 0.814 (0.06) 0.892 (0.02) 0.641 (0.05)

DINO 0.942 (0.01) 0.941 (0.08) 0.854 (0.11) 0.902 (0.08) 0.681 (0.12)

LCDM 0.947 (0.01) 0.949 (0.00) 0.873 (0.02) 0.925 (0.02) 0.732 (0.02)

G-DINA 0.947 (0.00) 0.949 (0.01) 0.873 (0.02) 0.925 (0.03) 0.732 (0.02)

RUM 0.948 (0.02) 0.945 (0.00) 0.872 (0.04) 0.917 (0.03) 0.719 (0.05)

ANN 0.949 (0.01) 0.944 (0.02) 0.872 (0.03) 0.916 (0.02) 0.722 (0.03)

ANN* 0.955 (0.01) 0.952 (0.01) 0.880 (0.02) 0.935 (0.01) 0.741 (0.02)

ANN** 0.942 (0.02) 0.940 (0.02) 0.860 (0.04) 0.903 (0.03) 0.711 (0.04)

10 DINA 90% 0.934 (0.03) 0.94 (0.02) 0.853 (0.04) 0.853 (0.03) 0.64 (0.04)

DINO 0.935 (0.02) 0.924 (0.03) 0.855 (0.08) 0.874 (0.03) 0.644 (0.06)

LCDM 0.948 (0.00) 0.946 (0.01) 0.858 (0.02) 0.92 (0.03) 0.708 (0.04)

G-DINA 0.948 (0.02) 0.946 (0.01) 0.859 (0.03) 0.92 (0.03) 0.709 (0.03)

RUM 0.945 (0.01) 0.945 (0.01) 0.869 (0.02) 0.915 (0.01) 0.713 (0.03)

ANN 0.952 (0.02) 0.948 (0.01) 0.873 (0.02) 0.916 (0.01) 0.723 (0.02)

ANN* 0.960 (0.02) 0.954 (0.02) 0.890 (0.01) 0.926 (0.01) 0.733 (0.02)

ANN** 0.935 (0.03) 0.940 (0.04) 0.860 (0.02) 0.902 (0.04) 0.703 (0.04)

11 DINA Mixed 100% 0.903 (0.03) 0.876 (0.03) 0.801 (0.01) 0.882 (0.02) 0.56 (0.02)

DINO 0.911 (0.03) 0.884 (0.05) 0.858 (0.06) 0.858 (0.04) 0.586 (0.07)

LCDM 0.912 (0.03) 0.886 (0.02) 0.857 (0.02) 0.88 (0.02) 0.616 (0.03)

G-DINA 0.912 (0.02) 0.886 (0.01) 0.858 (0.02) 0.88 (0.01) 0.617 (0.02)

RUM 0.9 (0.02) 0.884 (0.01) 0.858 (0.02) 0.871 (0.03) 0.592 (0.03)

ANN 0.91 (0.01) 0.889 (0.02) 0.862 (.01) 0.881 (0.01) 0.616 (0.02)

ANN* 0.916 (0.02) 0.898 (0.01) 0.869 (.02) 0.900 (0.01) 0.623 (0.02)

ANN** 0.905 (0.02) 0.881 (0.03) 0.850 (.02) 0.881 (0.03) 0.605 (0.03)

12 DINA 90% 0.908 (0.03) 0.887 (0.03) 0.847 (0.01) 0.876 (0.03) 0.603 (0.02)

DINO 0.906 (0.03) 0.883 (0.07) 0.852 (0.08) 0.836 (0.07) 0.566 (0.09)

LCDM 0.908 (0.02) 0.891 (0.01) 0.863 (0.03) 0.868 (0.01) 0.605 (0.02)

G-DINA 0.908 (0.01) 0.891 (0.02) 0.863 (0.03) 0.868 (0.01) 0.605 (0.02)

RUM 0.905 (0.02) 0.891 (0.01) 0.864 (0.03) 0.861 (0.03) 0.602 (0.03)

ANN 0.909 (0.01) 0.885 (0.02) 0.859 (0.01) 0.871 (0.02) 0.61 (0.02)

ANN* 0.921 (0.01) 0.903 (0.02) 0.869 (0.01) 0.878 (0.01) 0.624 (0.01)

ANN** 0.901 (0.03) 0.889 (0.02) 0.850 (0.01) 0.857 (0.03) 0.603 (0.03)

ANN indicate the attribute profile estimation using the proposed method on whole data set. ANN* indicate the attribute profile estimation using the proposed method on the training

data set. ANN** indicate the attribute profile estimation using the proposed method on the validation data set.

Besides, high item discriminating was a positive impact
on the classification accuracy of all six methods. When the
discrimination of items decreased (from high to mixed), the
classification rate dropped 0.0301, 0.0383, 0.0458, 0.0458, 0.0392,
and 0.0397 for DINA, DINO, LCDM, G-DINA, RUM, and
our ANN at the attribute level. The reductions were 0.0780,
0.1095, 0.1318, 0.1318, 0.1137, and 0.1158 for DINA, DINO,
LCDM, G-DINA, RUM, and our ANN at the latent class
level. The reason that our ANN method dropped more than
DINA, DINO, and RUM (only at the attribute level) was that
when the items were high discriminating, the improvement
of classification rate using our ANN was more significant
than using mixed discriminating items. Even though the
performance of our ANN at both the attribute level and
the latent class level was the best among the six diagnostic
classification methods.

4. CONCLUSION

The purpose of this research is to solve two problems that exist
in current supervised learning ANN methods and unsupervised
learning ANNs: the supervised learning method requires ideal
response pattern to train the model; the classification accuracy
of unsupervised learning methods was not as good as DCMs.
We designed a novel semi-supervised learning ANN to do
diagnostic classification and evaluated the performances of the
proposed method through a simulation study. In the proposed
framework, we combined ANN with a semi-supervised learning
method, the Co-Training method. To hold the two assumptions
of successfully applying Co-Training, we used two DCMs, DINA,
and DINO models, as the two classifiers.

In the simulated study, we compared the proposed method
with five widely used DCMs, DINA, DINO, LCDM, G-DINA,
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and RUM. By varying the four assessment factors (item
discrimination, Q-matrix accuracy, number of attributes, and
items) which impact the performance of DCMs, the comparison
results indicated some advantages of the proposed method.

The first advantage is that the proposed ANN method
achieved comparable performance compared with the five DCMs
even under the ideal assessment condition (high diagnostic
quality and 100%Q-matrix accuracy). It means that the proposed
ANN method could be used for providing reasonable cognitive
diagnostic classification result without an appropriate DCM for
an assessment.

The second advantage is that proposed ANN was robust to
the Q-matrix mis-specification because the classification rate
dropped less than the other five DCMs when the Q-matrix
accuracy decreased to 90% accuracy. This advantage make the
proposed method can be used for real large scale assessment
because the Q-matrix of a large number of items can hardly be
guaranteed to be 100% accurate.

The last advantage is that although the classification rates of
the proposedmethod droppedmore thanDINA andDINOwhen
the item discriminating power reduced, the proposed method
was still more robust to the item discriminating reduction than
the general DCMs. In other words, the proposed method finds
a trade-off between classification accuracy and robustness to
the noise.

Generally, the proposed method could demonstrated the
ability to provide a reasonably accurate classification results
which can be used for either providing diagnostic classification.
In addition, the classification can be used to determine
the relationship between items and latent class. Then, the
relationship can help researchers to choose the appropriate
DCM to fit the data and estimate both personal variable and
item variables.

5. DISCUSSION

Although the study demonstrates promise for using the proposed
semi-supervised learning artificial neural networks, there are
still some limitations. One concern of this study is that the
current analysis only focused on the classification rate but
not consider the item parameters, which are very important
to provide appropriate item matching students’ ability in an
computer adaptive test or online adaptive learning environment.
Another concern of this study is that the missing response was
not considered in the proposed ANN. In the simulation, we
assumed that all test-takers responded all items, but in real
assessment, the missingness is a very common issue in CDM.
The last concern is that although we introduced the validating
test for early stop to avoid over training, this research did not
evaluate the prediction performance of the proposed method.
The reason is that in current CDM area, the research studies
focus on explaining data not doing prediction on a new dataset.
With regard to these three concerns, there will be three future
research topics.

The first future study is that the classification results could
be used to determine the item parameters to evaluate item

discriminating power among students’ mastery level for specific
attributes or determine the relationship between items and
attributes to explore the attribute structures. An appropriate
difficulty that matches a student’s momentary attribute profile is
expected to encourage the student to complete the item.

The second future research direction is to convert the
dichotomous response patterns to polychotomous response
patterns by considering missing values into the input response
pattern. Then a multiclass classification algorithm is applied
to classify the latent classes by considering the missing values
even the missingness is related to the latent class (i.e., non-
ignorable missingness).

The last future research is to evaluate the prediction
performance of the artificial neural network based cognitive
diagnostic classification method, and compare the performance
with the DCMs in doing prediction on new dataset, although
DCMs are proposed to interpret the current dataset (i.e., training
data). With regard to the knowledge in educational data mining
(EDM), the prediction will consist of two directions: (1) how
is the model’s performance on predicting new test-takers’ latent
variables; (2) how is the model’s performance on estimating new
item’s characteristics. For different directions, the ANN based
method will be built up using different architecture.
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Results of a comprehensive simulation study are reported investigating the effects of

sample size, test length, number of attributes and base rate of mastery on item parameter

recovery and classification accuracy of four DCMs (i.e., C-RUM, DINA, DINO, and

LCDMREDUCED). Effects were evaluated using bias and RMSE computed between true

(i.e., generating) parameters and estimated parameters. Effects of simulated factors on

attribute assignment were also evaluated using the percentage of classification accuracy.

More precise estimates of item parameters were obtained with larger sample size and

longer test length. Recovery of item parameters decreased as the number of attributes

increased from three to five but base rate of mastery had a varying effect on the

item recovery. Item parameter and classification accuracy were higher for DINA and

DINO models.

Keywords: diagnostic classification models, cognitive diagnostic models, sample size, item recovery,

classification accuracy

INTRODUCTION

Diagnostic classification models (DCMs), also known as cognitive diagnostic models (CDMs),
can be viewed as restricted versions of general latent class models (Rupp and Templin, 2008).
These models provide one way of classifying respondents into different diagnostic states. They are
computationally intensive and generally require use of iterative algorithms to obtain estimates of
model parameters. Both general and specific DCMs have been proposed in the educational and
psychological measurement literature. Examples of Specific DCMs include deterministic inputs,
noisy “and” gate (DINA; Haertel, 1989; Junker and Sijtsma, 2001), deterministic inputs, noisy “or”
gate (DINO; Templin and Henson, 2006), noisy-input, deterministic “and” gate (NIDA), and the
compensatory reparameterized unified model (C-RUM; Hartz, 2002). General DCMs include the
log-linear cognitive diagnostic model (LCDM; Henson et al., 2009), the general diagnostic model
(GDM; von Davier, 2005), and the generalized DINA (G-DINA; de la Torre, 2011) model. de la
Torre (2011) and von Davier (2014) have shown that these three general models are equivalent.

The LCDM specifies the conditional probability that examinee j with attribute pattern αc

provides a correct answer to item i as

P (Xic = 1|αc) =
exp

(
λi,0 + λ

T
i h

(
αc, qi

))

1+ exp
(
λi,0 + λ

T
i h

(
αc, qi

)) (1)
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where λi,0 represents the intercept, that is the logit of a correct
response for an examinee who has not mastered any of the
attributes required by item i. λT

i h
(
αc, qi

)
is the kernel function

as shown below:

λ
T
i h

(
αc, qi

)
=

A∑

a=1

λi,1,(a)αcaqia +

A−1∑

a=1

A∑

a
′
>1

λ
i,2,

(
a,a

′
)
αcaαca

′ qiaqia′
+...

(2)

The qi represents the ith row vector of the Q-matrix (Tatsuoka,
1983) that consists of 0 and 1 to indicate an item i gives
information about the presence of an attribute a (a = 1, . . . ,
A). That is, qia = 1 when item i requires attribute a for correct
response and 0 otherwise. The vector αc = (αc1, . . . ,αcA)T

includes the attribute mastery pattern that belongs to latent class
c. The total number of possible latent classes in a DCM equals
2A where A is the number of attributes that should be mastered
to respond to an item correctly. For instance, an item requiring
three attributes yields eight latent classes. A full LCDM can
have different item parameters including intercept [e.g., λ1,0],
main [e.g., λ1,1(2)], and interaction [e.g., λ1,2(3,4)]. Other DCMs
such as DINA, DINO, and C-RUM models can be obtained
from the full LCDM (see Equation 1) by modifying different
parameter constraints.

Suppose that a number of items measuring arithmetic
ability (addition, subtraction, multiplication, and division) were
included on the test. Some of the items may require only
addition (Attribute 1), and some may require only subtraction
(Attribute 2). However, some of the items can require two
attributes (multiplication and division) at the same time. Suppose
Item 1 (for example, 5×8/4 =) requires having two attributes:
multiplication (Attribute 3) and division (Attribute 4). The item
response function for Item 1 can be written as

P (X1c = 1|αc3,αc4)

=
exp(λ1,0 + λ1,1(3)αc3 + λ1,1(4)αc4 + λ1,2(3,4)αc3αc4)

1+ exp(λ1,0 + λ1,1(3)αc3 + λ1,1(4)αc4 + λ1,2(3,4)αc3αc4)
, (3)

where αc3 and αc4 are latent variables for Attribute 3 and 4,
respectively. This model includes one intercept (λ1,0), two main
effects [λ1,1(3) and λ1,1(4)], and a two-way interaction effect
[λ1,2(3,4)] between two attributes. The latent predictor variables
are combined by a series of linear modeling effects that can result
in compensatory or non-compensatory DCMs. These specific
DCMs do not include all of the terms in the item response
function. Each DCMmakes different assumptions about mastery
of attributes and their effects on the item response. For example,
the DINA model requires mastery of both attributes to be able to
correctly respond to this item. Thus, the item response function
for Item 1 includes an intercept and a two-way interaction term
as shown below:

P (X1c = 1|αc3,αc4) =
exp(λ1,0 + λ1,2(3,4)αc3αc4)

1+ exp(λ1,0 + λ1,2(3,4)αc3αc4)
(4)

The DINO model, on the other hand, functions differently than
the DINA, as it requires the mastery of at least one attribute

for a correct response. Students mastering either Attribute 3 or
Attribute 4 can get this item correct. Thus, the item response
function for this item can be written as

P (X1c = 1|αc3,αc4) =
exp

(
λ1,0 + λaA

)

1+ exp
(
λ1,0 + λA

) (5)

where λA = λ1,1(3)αc3 + λ1,1(4)αc4 − λ1,2(3,4)αc3αc4 (see also
Rupp et al., 2010, p. 163) As shown in the equation, the DINO
model includes two parameters (λ1,0 and λA). Finally, consider
Item 1 for the C-RUM. The C-RUM can be considered an LCDM
without an interaction effect as it includes only intercept and
main effects as shown below:

P (X1c = 1|αc3,αc4) =
exp(λ1,0 + λ1,1(3)αc3 + λ1,1(4)αc4)

1+ exp(λ1,0 + λ1,1(3)αc3 + λ1,1(4)αc4)
(6)

Slipping and guessing parameters are typically used in DCMs
to describe item characteristics. Slipping parameter is used for
a situation when a respondent who mastered all the required
attributes for an item but fails to answer the item correctly, and
guessing parameter refers to a situation when a respondent who
lacks at least one of the required attributes for an item correctly
answers the item. These parameters can be obtained using the
intercept, main, and interaction terms presented in Equations

(3)–(6). For instance,
exp(λ1,0)

1+exp(λ1,0)
can be used to estimate guessing

(gi) and
exp(λ1,0+λ1,2(3,4))

1+exp(λ1,0+λ1,2(3,4))
to estimate the one minus slipping

(1 – si) parameter in DINA model (Rupp et al., 2010). Slipping
parameter can be defined differently for other DCMs (see also
Rupp et al., 2010).

As is the case with many statistical models, model parsimony
is an important consideration in DCM selection, such that the
simpler model is generally preferred over the more complex
model. More complex DCMs require larger sample sizes to yield
accurate estimates and more reduced DCMs can usually be
estimated accurately with smaller sample sizes. Reduced models
also typically provide for more straightforward interpretations
and higher correct classification rates than more saturated
models, particularly when the sample sizes are small.

Complexities which require larger samples tend to increase
with the numbers of attributes and items. Sessoms and Henson
(2018) have shown that 61% of the studies of DCMs have used
sample sizes >1,000 and 31% have used sample sizes of 1,000–
2,000. Some research has been reported with samples as small
as 44 (Jang et al., 2015) and 96 (Im and Yin, 2009). Results of
these latter studies have been reported with low or negative item
discrimination values.

One concern with respect to sample size is that there is as yet
little information reported on use of DCMs with smaller samples
although a number of studies have been conducted on the effect
of sample sizes on different aspects of diagnostic models. For
instance, Akbay (2016) showed that the non-parametric cognitive
diagnosis approach (Chiu and Douglas, 2013) performs as well as
the CDM based empirical Bayes estimation method for attribute
classification in the presence of small sample sizes such as 250,
500, and 1,000. Sünbül and Kan (2016) investigated the effect of
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several factors including number of attributes and sample size
(i.e., 200, 500, 1,000, and 5,000) on model fit, item recovery,
and classification accuracy of the DINA model. The number
of attributes and sample size had positive effects on the model
estimates. Lei and Li (2016) investigated the performance of
several model-fit indices for selecting model and on Q-matrix
design under four sample size levels (500, 1,000, 2,000, and
4,000). Results indicated that performance of fit indices appeared
to increase as the sample size increased. Tzou and Yang (2019)
also compared the performance of model fit indices in CDMs
using small sample sizes (i.e., 50, 75, 100, and 200) and showed
that AIC (Akaike, 1974) performed better than other indices.
Similarly, Hu et al. (2016) evaluated model fit for CDMs using
sample sizes of 200, 500, and 1,000 and showed that performances
of the three relative fit statistics AIC, BIC (Schwarz, 1978), and
CAIC (Bozdogan, 1987) improved when sample size increased.
Başokcu (2014) found classification accuracy increased as the
number of attributes (1–5) decreased and sample size increased
in DINA and G-DINA models. Similarly de la Torre et al. (2010)
showed that sample size increase from 1,000 to 4,000 reduced the
bias in item parameter estimates.

In another sample size related simulation study, Cui et al.
(2012) showed that the asymptotic normal theory of classification
consistency index and classification accuracy index can be
applied with small sample sizes (100, 500 and 1,000) for
attribute classifications in DINA model. Paulsen (2019) also
investigated the effect of very small sample sizes including
25, 50, 150, and 1,000 simulated respondents on three CDMs
(DINA, non-parametric cognitive diagnosis, and the supervised
artificial neural network models) by focusing on characteristics
such as model performances and model fit. Results of that
study showed that those three models were able to estimate
examinee classifications at even the smallest sample size. Galeshi
and Skaggs (2016) conducted a simulation study using C-
RUM under different sample size levels including 50, 100, 500,
1,000, 5,000, and 10,000, and showed that attribute classification
was effected by different combinations of sample size and
test length.

Choi et al. (2010) found that relative model fit indices were
able to detect the correct DCM with samples of 200 or more.
Rojas et al. (2012) found attribute classification accuracy of
DINA, DINO, A-CDM, and G-DINA models was more accurate
when test length and sample size were large. Previous simulation
studies have focused on a limited number of models under
the assumption that test items measured a common underlying
model. However, this may not necessarily be the case as each
item may also be designed to reflect a specific DCM. Thus,
a more comprehensive simulation study is needed to examine
the effects of small sample size on the classification accuracy
and on parameter estimates when the test items reflect different
model structures.

The present study was designed to investigate the effects
of sample size on estimation and accuracy of parameter
estimates and on classification as a function of sample size
and for different types of DCMs. This study investigated
the performance of specific DCMs under a set of practical
testing conditions.

MATERIALS AND METHODS

Simulation Study Design
Parameter recovery and classification accuracy for the LCDMs
were assessed under several simulated conditions. In this regard,
five factors were manipulated: sample size (50, 100, 200, 300, 400,
500, 1,000, and 5,000), test length (12, 24, and 36 items), number
of attributes (3 and 5), base rate (0.25 and 0.50), and generating
model (the reduced LCDM, the DINA model, the DINO model,
and the C-RUM). A total of 100 replications were simulated
for each condition using the maximum likelihood estimation
algorithm as implemented in the Mplus 8.4 software package
(Muthén and Muthén, 1998–2019).

Constant Factors
For purposes of this study, tetrachoric correlation between
each pair of attributes, item quality, and Q-matrices were
held constant across simulation conditions. The tetrachoric
correlation between each pair of attributes was set to be 0.70.
This is within the typical range of correlations for subdomains
in national and international educational assessments (Kunina-
Habenicht et al., 2012).

Medium level item quality was used to simulate items that
were better at separating masters and non-masters of the
measured attributes. This was achieved with medium level
item discrimination based on the difference in the probability
of a correct response for two groups of students (i.e., item
discrimination value of 0.60 = 0.85–0.25). In this study, two
different Q-matrix specifications were used for models with three
and five attributes. The Q-matrix specification used in this study
was intended to reflect the kinds of Q-matrices used in previous
simulation studies with DCMs (e.g., Kunina-Habenicht et al.,
2012; de la Torre and Chiu, 2016). The Q-matrix of the models
with three attributes and 36 items used in this study is presented
in Table 1. The first 12 rows of the Q-matrix in Table 1 were used
for the 12-item models and the first 24 rows of the Q-matrix in
Table 1 were used for the 24-item models. The Q-matrix of the
models with 5 attributes and 36 items is presented in Table 2. The
12-item and 24-item models include the first 12 and 24 rows of
this table, respectively.

Manipulated Factors
The simulation study had five manipulated factors including
sample size, test length, number of attributes, base rate, and
generating models. The sample sizes were 50, 100, 200, 300, 400,
500, 1,000, and 5,000 simulated examinees. These values were
selected to represent a range of sample sizes from very small
(50) to large (5,000). The number of respondents were selected
to comply with studies reported in the DCM literature. Rojas
et al. (2012), for example, used 100, 200, 400, 800, and 1,600 and
Başokcu (2014) used 30, 50, 100, 200, and 400 for the sample size
conditions. In this study, we extended sample sizes to include
5,000 simulated examinees.

Test length included 12, 24, and 36 items. These were intended
to simulate small, medium, and long test lengths. For a math test,
for example, it usually takes about 1 ½ min per multiple-choice
item. For a 36-item test, this would actually be 48min, which
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TABLE 1 | Q-Matrix for conditions with three attributes.

Attribute Attribute

Item 1 2 3 Item type* Item 1 2 3 Item type*

1 1 0 0 LCDM** 19 1 0 0 DINO**

2 0 1 0 DINA** 20 0 1 0 C-RUM**

3 0 0 1 DINO** 21 0 0 1 LCDM**

4 1 1 0 C-RUM 22 1 1 0 DINA

5 1 0 1 LCDM 23 1 0 1 DINO

6 0 1 1 DINA 24 0 1 1 C-RUM

7 1 0 0 DINO** 25 1 0 0 LCDM**

8 0 1 0 C-RUM 26 0 1 0 DINA**

9 0 0 1 LCDM** 27 0 0 1 DINO**

10 1 1 0 DINA 28 1 1 0 C-RUM

11 1 0 1 DINO 29 1 0 1 LCDM

12 0 1 1 C-RUM 30 0 1 1 DINA

13 1 0 0 LCDM** 31 1 0 0 DINO**

14 0 1 0 DINA 32 0 1 0 C-RUM**

15 0 0 1 DINO** 33 0 0 1 LCDM**

16 1 1 0 C-RUM 34 1 1 0 DINA

17 1 0 1 LCDM 35 1 0 1 DINO

18 0 1 1 DINA 36 0 1 1 C-RUM

*Item type specified for LCDMREDUCED model across all items.

**The parameterization of four DCMs are the same for items requiring only 1 attribute.

TABLE 2 | Q-Matrix for conditions with five attributes.

Attribute Attribute

Item 1 2 3 4 5 Item 1 2 3 4 5

1 1 0 0 0 0 19 1 0 1 0 0

2 0 1 0 0 0 20 1 0 0 1 0

3 0 0 1 0 0 21 1 0 0 0 1

4 0 0 0 1 0 22 0 1 1 0 0

5 0 0 0 0 1 23 0 1 0 1 0

6 1 1 0 0 0 24 0 1 0 0 1

7 1 0 1 0 0 25 1 0 0 0 0

8 1 0 0 1 0 26 0 1 0 0 0

9 1 0 0 0 1 27 0 0 1 0 0

10 0 1 1 0 0 28 0 0 0 1 0

11 0 1 0 1 0 29 0 0 0 0 1

12 0 1 0 0 1 30 1 1 0 0 0

13 1 0 0 0 0 31 1 0 1 0 0

14 0 1 0 0 0 32 1 0 0 1 0

15 0 0 1 0 0 33 1 0 0 0 1

16 0 0 0 1 0 34 0 1 1 0 0

17 0 0 0 0 1 35 0 1 0 1 0

18 1 1 0 0 0 36 0 1 0 0 1

would be a relatively long amount of time for most students up to
and including high school age. These test lengths were set to be
multiples of four to produce items based on four different models
in the reduced LCDM model. The numbers of items included in

this study are typical of test lengths observed in real tests such as
the TIMSS and PISA tests. For example, TIMSS assessment items
are grouped into a series of item blocks, with ∼10–14 items in
each block at the fourth grade and 12–18 items at the eighth grade
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TABLE 3 | Item-to-profile table for item 4.

c1 c2 c3 c4 c5 c6 c7 c8

αc [0,0,0] [0,0,1] [0,1,0] [0,1,1] [1,0,0] [1,0,1] [1,1,0] [1,1,1]

LCDM λ4,0 λ4,0 λ4,0 + λ4,1(2) λ4,0 + λ4,1(2) λ4,0 + λ4,1(1) λ4,0 + λ4,1(1) λ4,0 + λ4,1(1) + λ4,1(2) + λ4,2(1,2) λ4,0 + λ4,1(1) + λ4,1(2) + λ4,2(1,2)

Mplus label t4_1 t4_1 t4_2 t4_2 t4_3 t4_3 t4_4 t4_4

TABLE 4 | Mplus syntax specifications for item 4 (Q-matrix entry 110).

Full LCDM C-RUM DINA DINO

NEW (l4_0 l4_12 l4_11 l4_212); NEW (l4_0 l4_12 l4_11); NEW (l4_0 l4_e); NEW (l4_0 l4_e);

t4_1 = –(l4_0); t4_1 = –(l4_0); t4_1 = –(l4_0); t4_1 = –(l4_0);

t4_2 = –(l4_0 + l4_12); t4_2 = –(l4_0 + l4_12); t4_2 = –(l4_0); t4_2 = –(l4_0 + l4_e);

t4_3 = –(l4_0 + l4_11); t4_3 = –(l4_0 + l4_11); t4_3 = –(l4_0); t4_3 = –(l4_0 + l4_e);

t4_4 = –(l4_0 + l4_11 + l4_12 + l4_212); t4_4 = –(l4_0 + l4_11 + l4_12); t4_4 = –(l4_0 + l4_e); t4_4 = –(l4_0 + l4_e);

! Order constrains ! Order constrains ! Order constrains ! Order constrains

l4_12 > 0; l4_12 > 0; l4_e > 0; l4_e > 0;

l4_11 > 0; l4_11 > 0;

l4_212 > –l4_11;

l4_212 > –l4_12;

level. Similarly, von Davier et al. (2019) notes that the number of
items administered in each assessment cycle of PISA consisted
of 28 items for reading in 2003 and 35 items for mathematics
assessment in 2009.

The numbers of attributes were three and five to reflect
numbers commonly found in educational and psychological tests
(Kunina-Habenicht et al., 2012). For instance, Chen and Chen
(2016) reported a Q-matrix with five attributes by employing
the five processes (skills) of reading under the PISA assessment
framework. Examples of simulation or real data studies with
three or five attributes include de la Torre and Douglas (2004), de
la Torre (2009), de la Torre and Lee (2010), Kunina-Habenicht
et al. (2012), Templin and Bradshaw (2014), de la Torre and Chiu
(2016), Hu et al. (2016), and Sen and Bradshaw (2017). The base
rate of mastery for an attribute is the proportion of examinees
who have mastered the attribute in the population. This was
set to 0.25 and 0.50. A base rate of 0.50 is commonly reported
in the literature (e.g., Kunina-Habenicht et al., 2012; Bradshaw
and Madison, 2016; Sen and Bradshaw, 2017). As in Sen and
Bradshaw (2017), the 0.25 base rate condition was added to
investigate item recovery and classification accuracy comparisons
under less optimal conditions. Base rate mastery and tetrachoric
correlations between each pair of attributes were generated using
the SAS macro created by Templin and Hoffman (2013). The
SAS code used to generate the 0.25 base rate is presented in
the Supplementary Data.

Four different data-generating models were simulated,
including (a) Reduced LCDM, (b) C-RUM, (c) DINA, and (d)
DINO. For the reduced LCDM, the underlying DCM structures
were generated to differ across the complex items with the
following common sub-models of the LCDM. For a 12-item test,
three complex items were generated under the DINA model,
three under the DINO model, three under the C-RUM, and

three under the saturated LCDM (see Table 1). The specific item
structures used in LCDMREDUCED model for 12-, 24-, and 36-
item tests are presented in Table 1. For the DINA, DINO, and
C-RUMmodels, the underlying DCM structure was generated to
be the same. That is, all of the items were of a common type. The
same patterns were used for the 5-attribute matrix presented in
Table 2.

Data Generation
Data generation was done using Mplus. First, a full saturated
LCDM syntax was created using MplusDCM_functions.R
function with the MplusAutomation (Hallquist and Wiley, 2018)
package in R. The MplusDCM_functions.R function created
by Andre Rupp and Oliver Wilhelm was used to build, run,
and parse Mplus syntax for estimation of the LCDM. After
generating the full LCDM syntax using this function, the syntax
for specific DCMs was created by modifying the syntax using
the descriptions provided by Rupp et al. (2010) and Sen and
Terzi (2020). The LCDM syntax for Item 4 from Table 1, for
example, included an intercept (λ4,0), two main effects [λ4,1(1)

and λ4,1(2)] for Attribute 1 and Attribute 2 and an interaction
effect [λ4,2(1,2)] between these two attributes. In this example, 3
attributes yield 8 attribute patterns or classes. Then, the LCDM
kernel (see Equation 2) was specified for each class and each item
to assign latent classes to an attribute pattern or profile. Finally,
unique item response functions for each item were specified in
the Item-to-Profile table (see Table 3). The following labels used
in the Mplus code as shown in Table 3 are t4_1, t4_2, t4_3, and
t4_4. These were created using the Item-to-Profile table.

The specific part of the Mplus syntax for LCDM is presented
in the first column of Table 4. As can be seen in the first column,
the LCDM syntax to estimate intercept, main effects, and the
interaction term is labeled as l4_0, l4_12, l4_11, and l4_212,
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TABLE 5 | Partial eta-squared values for manipulated variables in simulation.

RMSE Bias

Intercept Main e parameter Interaction Intercept Main e parameter Interaction

N 0.976* 0.983* 0.985* 0.960* 0.469* 0.674* 0.356* 0.407

Att 0.540* 0.810* 0.167* 0.788* 0.119* 0.349* 0.001 0.406

k 0.777* 0.903* 0.800* 0.835* 0.236* 0.197* 0.113* 0.739

BR 0.420* 0.460* 0.339* 0.452* 0.007 0.004 0.090* 0.038

Model 0.633* 0.446* 0.404* - 0.049* 0.001 0.018 -

N×Att 0.127* 0.314* 0.019 0.552* 0.094* 0.247* 0.236* 0.300

N×k 0.274* 0.543* 0.217* 0.772* 0.077* 0.492* 0.037 0.222

N×BR 0.137* 0.077 0.039 0.206 0.055* 0.022 0.164* 0.107

N×Model 0.328* 0.158* 0.080 - 0.053 0.014 0.054 -

Att×k 0.198* 0.334* 0.148* 0.354* 0.059* 0.092* 0.010 0.673

Att×BR 0.074* 0.005 0.575* 0.060 0.000 0.040* 0.042* 0.036

Att×Model 0.025 0.121* 0.247* - 0.040* 0.003 0.021 -

k×BR 0.048* 0.001 0.016 0.187* 0.015 0.037 0.025 0.091

k×Model 0.407* 0.224* 0.047* - 0.140* 0.045* 0.012 -

BR×Model 0.059* 0.001 0.070* - 0.034* 0.014 0.008 -

N, sample size; Att, number of attributes; k, test length; BR, base rate of mastery; Model, model type; *p < 0.01.

respectively. C-RUM, DINA, and DINO models are presented in
the next three columns of Table 4. The C-RUM does not include
any interaction effect. The DINA and DINOmodels only include
intercept and e parameters. The Mplus syntax for these latter
two models are not the same, however, due to differences in the
kernel function.

The MONTECARLO command in Mplus was used to
generate 100 data sets for each condition. The true generating
values for intercept, main, e parameter, and interaction effects
were set to be −1.1, 1.3, 3, and 0.24, respectively. These values
were selected to produce items withmedium-quality with an item
discrimination value of 0.60. The item discrimination is specified
by taking the difference in the probability of a correct response
for two groups of students (0.60= 0.85–0.25).

Estimation
All of the models were estimated using maximum likelihood
estimation (i.e., MLR) as implemented in Mplus. The following
Mplus options were used to obtain estimates of model
parameters: ANALYSIS: TYPE =MIXTURE; STARTS = 200 20;
PROCESSORS= 8;. Eight classes and 32 classes weremodeled for
the 3-Attribute and 5-Attribute models in theMODEL command
using the labels from Table 3. The MODEL CONSTRAINT
part in Mplus syntax was modified using the model constraints
described in Table 4. The vectors of attribute classifications were
obtained based on expected a posteriori estimation by specifying
the FILE = “respondents#.cprob”; option under SAVEDATA
command in Mplus. In total, 38,400 Mplus analyses (8 ×3 ×

2 × 4 × 2 × 100) were run using a Linux (64-bit Centos 7) high
performance computing (HPC) cluster. Item parameter estimates
for intercept, main, e parameter, and interaction effects and class
probability values were extracted from each Mplus files using
MplusAutomation package.

Evaluation Criteria
Recovery of item parameters were assessed using the root mean
square error (RMSE) and bias across replications. RMSE and bias
values for intercept, main, e parameter, and interaction terms
were calculated using the following formulas:

RMSE =

√√√√
∑R

r=1

(
λi − λ̂ir

)2

R
, (7)

Bias =

∑R
r=1 (λi − λ̂ir)

R
, (8)

where R is the total number of replications (r = 1, . . . R) and
λi is the true parameter value of intercept, main, e parameter or
interaction term for item i. λ̂ir refers to estimated item parameters
for item i under the rth replication. Classification accuracy
of attribute profiles under each condition was determined
by calculating the percentage of examinees whose estimated
attribute profile was the same as the simulated (i.e., true)
attribute profile.

RESULTS

Results of item recovery and classification accuracy were
obtained for the 384 conditions in the study. Mean RMSE
and mean bias values were computed over 100 replications.
The percentage of classification accuracy was also calculated for
each condition. Mean RMSE and bias values are presented in
Supplementary Tables 1–12. Figures 1–5 summarize the mean
RMSE and absolute mean bias results for each fitted model.
Separate plots are provided for intercept, main, e parameter, and
interaction effects in each figure. Each plot displays 12 labeled
lines representing 12 different conditions for the 2 attributes, 3

Frontiers in Psychology | www.frontiersin.org 6 January 2021 | Volume 11 | Article 62125183

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Sen and Cohen Sample Size Requirements for DCMs

test lengths, and 2 base rates. For instance, 3ATT12ITEM25BR
label represents a condition with 3 attributes, 12 items, and 0.25
base rate of mastery.

Item Parameter Recovery Results
Recovery of the C-RUM

Figure 1 presents the item parameter recovery results for the C-
RUM when model-data fit holds. As can be seen in Figure 1,
mean RMSE and bias values for the intercept and main
parameters of the C-RUM appear to decrease as the sample size
increases. Mean RMSE values for the intercept parameter ranged
from 0.040 to 0.759 (see Supplementary Tables 1–3). Mean bias
values for the intercept parameter were between 0.001 and 0.259.

Bias and RMSE values for the intercept parameter in 12-item
conditions was higher than in the 24-item conditions, which was
than the 36-item conditions. The 5-attribute conditions yielded
higher RMSE and bias values than the 3-attribute conditions,
and the 0.50 base rate conditions yielded higher RMSE and bias
values than 0.25 base rate conditions. Overall, the highest mean
RMSE values were for the 5-attribute× 12-item × 0.50 base rate
conditions and the lowest mean RMSE and bias values were for
the 3-attribute 36-item × 0.25 base rate conditions. Similarly,
the highest mean bias values were obtained in the 5-attribute ×
12-item for both 0.25 and 0.50 base rate conditions. The lowest
mean bias values were in the 3-attribute × 36-item × 0.25 base
rate conditions.

The RMSE and bias plots for intercept indicate that sample
size, test length, and base rate of mastery had effects on mean
RMSE and bias for the intercept parameter. It appears that
the number of respondents, test lengths, number of attributes,
and mastery base rates had an impact on the recovery of
intercept parameter. As the number of respondents increased
and test length, number of attributes, and base rate decreased,
the recovery of the intercept parameter appeared to increase.
Only conditions with 5,000 respondents produced RMSE values
<0.10. Some of the 1,000-respondent conditions also yielded
RMSE values <0.10. Mean RMSE values for the conditions <200
exceeded 0.20. The conditions with 12 items produced highest
bias values. A sharp decline was observed with other conditions
after 200 respondents.

In the lower panels in Figure 1, the item recovery values are
plotted for the main effect of the C-RUM. As can be seen, both
RMSE and bias values decreased as the number of respondents
increased. This pattern is clearer for the RMSE plot (see the left
lower panel) than of the bias plot (see the right lower panel).
Mean RMSE values for the main effect ranged from 0.080 to
1.210 (see Supplementary Tables 1–3). Mean bias values ranged
between 0.001 and 0.297. Item parameter recovery values for the
main effect parameter in the 12-item conditions was higher than
in the 24-item conditions and both were higher than in the 36-
item conditions. The 5-attribute conditions yielded higher RMSE
and bias values than the 3-attribute conditions. The pattern is
clearer for RMSE as some of the conditions showed reversals for
mean bias values. The 0.50 base rate conditions yielded higher
RMSE values than the 0.25 base rate conditions. Except for the
36-item conditions, the 0.50 base rate conditions yielded higher
bias values than the 0.25 base rate conditions.

Overall, the highest mean RMSE values were obtained with
the 5-attribute × 12-item × 0.25 base rate conditions while the
lowest mean RMSE values were observed with the 3-attribute
× 36-item × 0.50 base rate conditions. Similarly, the highest
mean bias values were obtained with 5-attribute × 12-item for
both 0.25 and 0.50 base rate conditions. The lowest mean bias
values were observed with 3-attribute × 36-item × 0.50 base
rate conditions. The RMSE and bias plots for the intercept
indicate that sample size, test length, and base rate of mastery had
effects on mean RMSE and bias for the main effect parameter.
The number of respondents, test length, number of attributes,
and base rate of mastery also had effects on the recovery of
the intercept parameter. As the number of respondents and
base rate increased and test length and number of attributes
decreased, the recovery of the main effect parameter increased.
Except for the 12-item conditions, only conditions with 5,000
respondents produced RMSE values <0.10. Mean RMSE values
for the main effect under conditions with <1,000 exceeded
0.20. The conditions with 12 items produced the highest bias
values. Bias values <0.10 were more likely under conditions with
more than 200 respondents. Overall, the recovery of intercept
parameter was found to be better than that of the main effect
parameter for the C-RUM.

Recovery of the DINA Model

Figure 2 shows item recovery results for the DINA model when
model-data fit holds. As can be seen in Figure 2, mean RMSE
and bias values for intercept and e parameter of the DINA
model decreased as sample size increased. Mean RMSE values
for the intercept parameter ranged from 0.037 to 0.628 (see
Supplementary Tables 4–6). Mean bias values for the intercept
parameter ranged from 0.001 to 0.218. When the data generating
model was the DINA, recovery values for the intercept parameter
in the 12-item conditions were higher than in the 24-item
conditions and both were higher than in the 36-item conditions.
The 5-attribute conditions yielded higher RMSE and bias values
than the 3-attribute conditions.

The 0.50 base rate conditions yielded higher RMSE values than
the 0.25 base rate conditions for the intercept parameter. The 0.50
base rate conditions produced lower RMSE values than the 0.25
base rate conditions for the 3-attribute conditions. However, the
0.25 base rate conditions produced lower values than for the 0.50
base rate conditions under most of the 5-attribute conditions.

Overall, the highest mean RMSE values were obtained with
5-attribute × 12-item × 0.50 base rate conditions while the
lowest mean RMSE values were observed with 3-attribute and
0.25 base rate conditions with 24 and 36 items. Similarly, the
highest mean bias values were obtained with 5-attribute × 12-
item conditions for both the 0.25 and 0.50 base rate conditions.
The lowest mean bias values were observed with the 3 attribute×
0.25 base rate conditions with 24 and 36 items. It appears that the
number of respondent, test length, number of attributes, and base
rate of mastery had an impact on the recovery of the intercept
parameter. As the number of respondents and test length
increased, and the number of attributes and base rate decreased,
the recovery of the intercept parameter appeared to increase.
Only conditions with 5,000 respondents with 24 and 36 items
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FIGURE 1 | Mean RMSE and bias plots for the C-RUM.

produced RMSE values <0.10. Mean RMSE values, however,
were found to be higher than 0.10 for 12-item conditions even
with 5,000 respondents. For 24- and 36-item conditions, mean
RMSE values exceeded 0.20 with sample sizes <200. This was
not the case with the 12-item conditions as conditions with 12
items also produced the highest bias values. Mean bias values
for the intercept parameter were found to be between 0.001 and
0.10 under most of the conditions except for two conditions: 5-
attribute× 12-item× 0.25 base rate and 5-attribute× 12-item×

0.50 base rate.
As can be seen in the lower part of Figure 2, similar patterns

were observed for recovery of the e parameter. However, both
RMSE and bias values of the e parameter were higher than for the
intercept parameter.

Mean RMSE values for the e parameter ranged from
0.080 to 1.067 (see Supplementary Tables 4–6). Mean bias
values for the e parameter were between 0.001 and 0.592.
When the data generating model was the DINA model,
item recovery values for the e parameter in the 12-item
conditions was higher than in the 24-item conditions and
both were higher than in the 36-item conditions. The 3-
attribute conditions yielded higher RMSE values than the 5-
attribute conditions for the 0.25 base conditions. However,
the 5-attribute conditions yielded higher RMSE values than

the 3-attribute conditions for the 0.50 base rate of mastery.
Mean bias results for the e parameter did not show any
clear pattern with respect to the number of attributes and
base rate.

Overall, the highest mean RMSE values for e parameter
were obtained with the 3-attribute × 12-item × 0.25 base rate
conditions while the lowest mean RMSE values were observed for
the 36-item × 0.50 base rate conditions with 3 and 5 attributes.
Similarly, the highest mean bias values for the e parameter were
obtained with the 5-attribute × 12-item conditions with both
the 0.25 and 0.50 base rates. The lowest mean bias values were
observed with 3-attribute × 0.25 base rate conditions with both
24 and 36 items. It appears that the number of respondents,
test length, number of attributes, and mastery base rates had
an impact on the recovery of the intercept parameter. As the
number of respondents and test length increased, the recovery
of the e parameter appeared to increase. The effect of number
of attributes and base rates appeared to be less clear. Only the
24- and 36-item conditions with 5 attributes produced RMSE
values <0.10 when the sample size was 5,000. As can be seen
in Supplementary Tables 4–6, a few RMSE values <0.20 were
observed, even with 1,000 respondents. Overall, the intercept
parameter of the DINA model appeared to be recovered better
than the e parameter based on mean RMSE and bias values.
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FIGURE 2 | Mean RMSE and bias plots for the DINA Model.

Recovery of the DINO Model

Item recovery results for the DINO model (see Figure 3),
indicate that mean RMSE and bias values for intercept and e
parameter of DINO model appear to decrease as the number of
respondents increases when model-data fit holds. Mean RMSE
values for intercept parameter ranged from 0.038 to 0.688 (see
Supplementary Tables 7–9). Mean bias values for the intercept
parameter ranged between 0.001 and 0.182. Item recovery values
for the intercept parameter in the 12-item conditions was higher
than in the 24-item conditions and both were higher than in
the 36-item conditions. The 5-attribute conditions yielded higher
RMSE and bias values than the 3-attribute conditions for the
intercept parameter.

The 0.50 base rate conditions yielded higher RMSE values
than 0.25 base rate conditions for the intercept parameter. The
0.25 base rate conditions also yielded lower values than the 0.50
base rate conditions under most of the 3-attribute conditions.
However, the 0.25 base rate conditions produced lower values
than the 0.50 base rate conditions for over half of the 5-
attribute conditions.

Overall, the highest mean RMSE values for the intercept
parameter were obtained for the 5-attribute × 12-item × 0.50
base rate conditions while the lowest mean RMSE values were
observed with the 3-attribute × 0.25 base rate conditions for
both 24 and 36 items. Similarly, the highest mean bias values

were obtained with the 5-attribute × 12-item × 0.25 base rate
conditions in addition to 5-attribute 12-item and 0.50 base rate
under the small sample size conditions (i.e., <200). However,
the highest mean bias values were obtained with the 3-attribute
× 12-item × 0.50 base rate conditions for sample sizes >200.
The lowest mean bias values for the intercept parameter of
DINOmodel were observed with the 3-attribute× 0.25 base rate
conditions for both 24 and 36 items. It appears that the number of
respondents, test length, number of attributes, and mastery base
rates had an impact on recovery of the intercept parameter. As the
number of respondents and test length increased, and number
of attributes and base rate decreased, the recovery of intercept
parameter appeared to improve. Conditions with 5,000 simulated
respondents produced RMSE values <0.100. The conditions
with 12 items also produced the highest bias values for the
intercept parameter. Mean bias values for the intercept parameter
were between 0.001 and 0.100 except for two conditions: The 5
attribute× 12 item× 0.25 base rate and the 5 attribute× 12 item
× 0.50 base rate conditions.

As can be seen in the lower panels of Figure 3, similar patterns
were observed with the recovery of the e parameter, although
both RMSE and bias values were higher than for the intercept
parameter. Mean RMSE values for the e parameter ranged from
0.076 to 0.934 (see Supplementary Tables 7–9). Mean bias values
for the e parameter ranged between 0.002 and 0.269. Recovery
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FIGURE 3 | Mean RMSE and bias plots for the DINO Model.

values for the e parameter in the 12-item conditions were higher
than in the 24-item conditions and both were higher than
in the 36-item conditions. The 3-attribute conditions yielded
higher RMSE values than 5-attribute conditions for the 0.25 base
conditions. However, the 5-attribute conditions yielded higher
RMSE values than 3-attribute conditions for the 0.50 base rate
conditions. For both 0.25 and 0.50 base rate conditions, mean
bias values of the e parameter for the 5-attribute conditions were
higher than for the 3-attribute conditions.

Overall, the highest mean RMSE values for the e parameter
were with 5-attribute× 12-item× 0.50 base rate conditions while
the lowest mean RMSE values were for the 3-attribute × 36-
item× 0.50 base rate conditions. Similarly, the highest mean bias
values for the e parameter were obtained with the 12-item× 0.25
base rate conditions with both 3 and 5 attributes while the lowest
mean bias values were observed with 3-attribute × 12-item ×

0.50 base rate conditions.
The number of respondents, test length, number of attributes,

and base rates of mastery appeared to affect recovery of the
intercept parameter. As the number of respondents and test
length increased, recovery of the e parameter increased. However,
the effects of the number of attributes and base rates were less
clear. Only the 5-attribute conditions × 5,000 respondents for
the 24 and 36 items yielded RMSE values <0.10. As can be seen
in Supplementary Tables 7–9, relatively few RMSE values <0.20

were observed evenwith 1,000 respondents. Overall, the intercept
parameter of the DINO model appeared to be recovered better
than the e parameter.

Recovery of the LCDMREDUCED Model

Figures 4, 5 are plots of the mean RMSE and bias results,
respectively, for the LCDMREDUCED model when model-
data fit holds. The mean RMSE and bias summaries are
presented separately as the number of estimated parameters in
the LCDMREDUCED model is higher than C-RUM, DINA,
and DINO models. Separate recovery plots are provided for
the intercept, main effect, e parameter, and interaction effects.
As can be seen in Figure 4, mean RMSE values for the
intercept, main, e parameter, and interaction effects of the
LCDMREDUCED model decreased as sample size increased.
Mean RMSE values for the intercept parameter ranged from
0.041 to 0.741 (see Supplementary Tables 10–12). Mean RMSE
values for main effects ranged between 0.096 and 1.206. Mean
RMSE values for the e parameter ranged from 0.078 to 1.266
(see Supplementary Tables 10–12). Mean RMSE values for the
interaction effects ranged between 0.158 and 1.569.

When the data generating model was the LCDMREDUCED,
mean RMSE values for the intercept, main effects, e parameter,
and interaction effects in the 12-item conditions were higher
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FIGURE 4 | Mean RMSE plots for the LCDMREDUCED Model.

than in the 24- and 36-item conditions. However, the 36-
item conditions yielded smaller RMSE values than the 24-item
conditions under more than half of the conditions. The 0.25 base
rate conditions yielded lower RMSE values than the 0.50 base rate
conditions except for the main effect parameters under the 12-
item conditions. The base rate did not show any clear pattern of
effects for the 24-item and 36-item conditions. Except for the 0.25
base rate for the e parameter, the 3-attribute conditions produced
lower mean RMSE values than the 5-attribute conditions for
intercept, main, e parameter, and interaction effects.

Overall, the highest mean RMSE values were obtained with
5-attribute × 12-item conditions for both 0.25 and 0.50 base
rate conditions for the intercept, main effects and interaction
parameters. The highest RMSE for the e parameter was observed
with the 3-attribute × 12-item × 0.25 base rate conditions. The
lowest mean RMSE values were observed with the 3-attribute
× 36-item × 0.50 base rate conditions for the main effects, e
parameter, and interaction effects. The 3-attribute × 24-item ×

0.25 base rate conditions yielded the lowest RMSE values for the
intercept parameter.

Separate bias plots are presented in Figure 5 for the intercept,
main effects, e parameter, and interaction effects. As can be
seen in Figure 5, mean bias values for intercept, main effect,
e parameter, and interaction effects of the LCDMREDUCED
model appeared to decrease as the number of respondents

increased. Mean bias plots of the intercept and e parameter
showed clearer patterns than those of the main and interaction
effects. Mean bias values for the intercept parameter ranged from
0.001 to 0.194 (see Supplementary Tables 10–12). Mean bias
values for main effects ranged between 0.001 and 0.232. Mean
bias values for the e parameter ranged from 0.002 to 0.718 (see
Supplementary Tables 10–12). Mean bias values for interaction
effects were between 0.002 and 0.750.

When the data generating model was the LCDMREDUCED,
mean bias values for the intercept, main, e parameter, and
interaction effects in the 12-item conditions were higher than in
the 24- and 36-item conditions. The 36-item conditions yielded
smaller bias values than the 24-item conditions formore than half
of these conditions. Mean bias values showed less clear patterns
with respect to base rate and number of attributes.

Overall, the highest mean bias values were obtained with the
5-attribute × 12-item conditions under both the 0.25 and 0.50
base rate conditions for intercept, main effects and e parameters.
In addition, the 3-attribute× 36-item× 0.25 base rate conditions
yielded higher RMSE values for sample sizes >400. The highest
mean bias values for the interaction effect were for the 3-
attribute × 12-item conditions under both 0.25 and 0.50 base
rate conditions. There was no clear pattern of lowest mean
bias values, however, for the intercept, main, e parameter, and
interaction effects.
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FIGURE 5 | Mean bias plots for the LCDMREDUCED Model.

It appears that the number of respondent, test length, number
of attributes, and base rate of mastery had an impact on
the recovery of LCDMREDUCED parameters. As the number
of respondents and test length increased, the recovery of
LCDMREDUCED parameter also improved.

Only the intercept parameter conditions produced RMSE
values <0.10 when the sample size was 5,000. Main effect RMSE
results were also very close to 0.10 when the sample size was
5,000. As can be seen in Supplementary Tables 10–12, RMSE
values tended to be higher than 0.20 even with 1,000 respondents.
Overall, the intercept parameter of the LCDMREDUCED model
appeared to be recovered better than the other parameter based
on mean RMSE and bias values, and recovery of the interaction
effect appeared to be less accurate than for the other parameters.

A Linear Model Analysis of Item Recovery

Statistics
Mean RMSE and bias results were summarized using a linear
model. Effects of each of the different conditions for each of the
RMSE and bias values were assessed using a factorial ANOVA.
Table 5 presents partial eta-squared values for each of the main
effects and the two-way interactions. As can be seen in Table 5,
sample size (N) was the most influential factor on RMSE and
bias for each item parameter except for interaction bias. Test
length (k) was the second most influential factor on RMSE and
bias values. Base rate of mastery was the least influential factor

on RMSE and bias calculated for intercept and the interaction
parameters. Model type was the least influential factor on RMSE
and bias calculated for the main effect parameters. Number of
attributes was the least influential factor on RMSE and bias for the
e parameter. Effects of two-way interactions between simulated
factors appeared to be less than for main effects (see Table 5).
Most of the main and interaction effects were found to have
significant effects on RMSE and bias values.

Classification Accuracy Results
Figure 6 presents the classification accuracy results for C-RUM,
DINA, DINO, and LCDMREDUCED models when model-data
fit holds. Classification accuracy percentages appear to increase
for the 12-item conditions (i.e., conditions 3ATT12ITEM25BR,
3ATT12ITEM50BR, 5ATT12ITEM25BR, 5ATT12ITEM50BR) as
the number of respondents increases. The classification accuracy
percentages appear to change only slightly for the 24- and 36-item
conditions across the different sample sizes.

For the C-RUM, classification accuracy percentages ranged
from 21.640 to 70.344 (see Supplementary Table 13). When the
data generating model was the C-RUM, classification accuracy
results were very close for the 24- and 36-item conditions.
Neither the number of attributes nor the base rate, however,
appeared to have a significant effect on the classification
accuracy for the 24- and 36-item conditions. The sample size
increase also appears to have slight effect on the classification
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FIGURE 6 | Classification accuracy plots for the C-RUM, DINA, DINO, and LCDMREDUCED Models.

accuracy for the 24- and 36-item conditions. C-RUM results
varied for the 12-item conditions. The 5-attribute × 12-
item × 0.50 base rate conditions had the lowest percentages
(see Figure 6). The 3-attribute × 12-item × 0.25 base rate
conditions produced the highest percentages for the C-RUM for
sample sizes >200.

For the DINA model, classification accuracy percentages
ranged from 47.480 to 80.210 (see Supplementary Table 13).
For the DINA generating model, classification accuracy results
for the 24- and 36- item conditions were very close. The
5-attribute conditions had higher percentages than the 3-
attribute conditions for the 24- and 36-item conditions. The
increase in sample size appeared to have a slight effect on
the classification accuracy for the 24- and 36-item conditions.
However, DINA model results varied for the 12-item conditions.
The 5-attribute × 12-item × 0.50 base rate conditions
produced the lowest percentages for the DINA model. The 3-
attribute × 12-item conditions for both 0.25 and 0.50 base
rates produced the highest percentages. Results for the 12-
item conditions appear to be stable for sample sizes of 200
or more.

For the DINO model, classification accuracy percentages
ranged from 51.00 to 88.27 (see Supplementary Table 13). When
the data generating model was the DINO model, classification
accuracy results were similar for the 24- and 36-item conditions.

The 5-attribute conditions had higher percentages than the 3-
attribute conditions for both 24- and 36-item conditions. The
sample size increase appears to have a slight effect on the
classification accuracy under the 24- and 36-item conditions. The
5-attribute × 12-item × 0.50 base rate conditions had the lowest
percentages for the DINO model. The 3-attribute × 12-item
× 0.25 base rate conditions produced the highest percentages.
DINO model results for 12 items appeared to be more stable for
samples of 200 or more.

For the LCDMREDUCED, classification accuracy percentages
ranged from 32.820 to 77.456 (see Supplementary Table 13).
When the data generating model was the LCDMREDUCED,
classification accuracy results were similar between the 24-
and 36-item conditions. The 5-attribute conditions had higher
percentages than the 3-attribute conditions for both 24- and 36-
item conditions. The sample size increase appears to have a slight
effect on the classification accuracy under the 24- and 36-item
conditions. LCDMREDUCED results were variable for the 12-
item conditions. The 5-attribute × 12-item × 0.50 base rate
conditions had the lowest percentages for the LCDMREDUCED,
and the 3-attribute× 12-item× 0.25 base rate conditions had the
highest percentages for LCDMREDUCED model.

The number of respondents, number of attributes, and
mastery base rate had an impact on the classification accuracy
of DCMs in the 12-items conditions. When all models were
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compared, the highest classification was observed with the
DINO model (the mean across all conditions = 66.35). The
models with the next highest classification percentages after
the DINO model were the DINA, LCDMREDUCED and C-
RUMmodels, respectively. The average classification percentages
across all conditions were 63.16, 57.54, and 52.82 for the DINA,
LCDMREDUCED, and C-RUMmodels, respectively.

DISCUSSION

The present simulation study was designed to investigate
the effects of sample size on item parameter recovery and
classification accuracy of four DCMs, the C-RUM, DINA, DINO,
and LCDMREDUCED. Effects of additional factors including
test length, number of attributes, and base rate of mastery were
also examined. Bias and RMSE values were computed between
true generating parameters and estimated parameters. Effects of
simulated factors on attribute assignment were also evaluated
using the percentage of classification accuracy.

The present study differed from previous studies (Rojas et al.,
2012; Başokcu, 2014) in several respects. Although previous
simulations on DCMs showed that classification accuracy and
item recovery can be poor with small sample sizes, they tended
to focus on a limited number of sample size conditions, making
results somewhat difficult to generalize to other practical testing
conditions. This study extended the sample size conditions from
50 to 5,000. Results showed that sample size appears to have an
impact on recovery of DCM model parameters. Larger sample
sizes showed better item parameter recovery. The effect of sample
size on item parameter recovery is consistent with previous
research (Rojas et al., 2012; Başokcu, 2014). Conditions with
sample sizes <200 showed poor results. In general, it appears
that sample sizes should be at least 500 for the four DCMs
considered in this study in order to obtain precise estimates. This
is consistent with previous research in which a sample size of 500
was considered to be a small sample size for DCMs (Bradshaw
and Madison, 2016; Madison and Bradshaw, 2018), although
small RMSE and bias values were difficult to obtain with samples
of 1,000 respondents under some conditions. The results of this
simulation study showed that a sample size as small as N = 1,000
would be sufficient to adequately recover all model parameters,
under all the given conditions, adequately for the DINA, DINO
and C-RUM models. However, the LCDMREDUCED model
does appear to require larger sample sizes for some model
parameters such as the interaction effect.

Another important finding from this study is that increase
in test length did result in more precise estimates of item
parameters. The average RMSE and bias values decreased as test
length increased from 12 to 36 items. This finding is consistent
with previous research indicating that the CDM framework
requires assessments that are at least of moderate test lengths of
15 or 20 items (de la Torre, 2009).

Another important finding obtained is the effect of number
of attributes on the recovery of item parameter estimates. The
recovery of item parameters worsened when the number of
attributes increased from three to five. This is important as

the most of the studies in DCM literature use more than
three attributes. For example, Sessoms and Henson (2018) has
conducted a literature review on the applications of DCMs and
found that number of attributes estimated varied from four to 23.
The average number of attributes estimated was 8 and almost half
of the application studies modeled 8 ormore attributes. As shown
in this simulation study, higher numbers of attributes clearly
required larger sample sizes. Results of this study, in other words,
suggest that tests with large numbers of attributes also need larger
sample sizes to accurately estimate model parameters.

Another important point to be noted is the distribution of
attributes over items. In this study, the distribution of attributes
over items was not equal for the five-attribute case. This does have
an effect on estimation. For instance, Madison and Bradshaw
(2015) compared performance of the LCDM using various Q-
matrix designs and found that classification accuracy varied
markedly for different Q-matrix designs. For a given number of
items an attribute is measured, classification accuracy increased
as the number of items measuring the attribute in isolation
increased. In contrast, classification accuracy suffered most when
a pair of attributes wasmeasured. In this study, the same numbers
of attributes over items were used in the LCDMREDUCED
model for the four models that were estimated (C-RUM, DINA,
DINO, and LCDM). It is important to note that operational tests
are constructed to meet the requirements of test blueprints so
may not have this type of regular pattern. As is the case for
any simulation study, the generalizability of the results of this
study is necessarily limited to conditions manipulated in this
study. It would be helpful, in this regard, to study the effects
of different patterns of attributes in future research. Among the
limitations of this study are the lacks of consideration of a general
model (e.g., LCDM) and of the number of attributes larger
than five.

This simulation study also showed that mastery base rate
had a varying effect on item parameter recovery. This effect
varied for item parameter types (i.e., intercept, main, e parameter,
and interaction effects) and model type. It appears that
intercept and e parameters were better recovered than main
and interaction parameters. Consistent with previous research
(Kunina-Habenicht et al., 2012; Bradshaw and Madison, 2016),
the recovery of the interaction terms was lower than for the
intercepts, main effects, and e parameters.

Parameters of DINA and DINO models were more likely to
be recovered well than C-RUM and LCDMREDUCED models
whenmodel-data fit holds. This was also the case for classification
accuracy. The DINO model had better fit with small sample
sizes than the other three DCMs. This result is consistent
with previous research (Roussos et al., 2007; de la Torre,
2011). Previous simulation studies generated data sets under the
assumption of a common underlying model for the whole test.
The simulation in the present study also considered different
underlying model for each model (i.e., the LCDMREDUCED
model). The LCDMREDUCED model consisted of four different
model structures including the C-RUM, DINA, DINO, and
full LCDM. The item parameter recovery and classification
accuracy of the LCDMREDUCED model was worse than for the
other DCMs.
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Patterns of bias and RMSE values computed between true
(i.e., generating) parameters and estimated parameters were
consistent for almost all conditions. However, some irregularities
were observed in which reversals occurred in the results for bias.
Previous research has also reported this finding in which different
patterns occurred for bias compared to RMSE (Harwell, 2018).
As Harwell has noted, it may be that average bias is masking
important patterns in recovery accuracy compared to RMSE.

Consistent with previous research (de la Torre et al., 2010;
Rojas et al., 2012), the sample size did not result in any
change in classification accuracy percentages for the 24 and 36
item conditions. Higher attribute assignments, however, were
observed with larger sample sizes in the 12-item conditions.
Overall, the classification accuracy rates were below 90% even
for the 5,000 sample size. Consistent with previous research (de
la Torre et al., 2010; Kunina-Habenicht et al., 2012; Lei and Li,
2016), results from the present study showed that sample size
explained only a small proportion of the variance in classification
accuracy. Higher attribute assignments were observed with the
12-item conditions, compared to the 24- and 36-item conditions.
This was expected as the longer test lengths provide more
information on which the classifications can be based.

Classifications with the DINO and DINA models were more
accurate than the C-RUM and LCDMREDUCED models. The
simulation study results showed that the DINO and DINA
models performed better in this regard for small samples than
other two DCMs.

Several practical suggestions may be made from this study
for researchers or practitioners who seek to design diagnostic
tests from a DCM framework. Results of this study showed
that simpler models were recovered better than more complex
models. Thus, before drawing any conclusion based on a specific
DCM, one might alternatively specify other appropriate DCMs,
which can capture potential relationships among the attributes.
Another finding of this study was the increasing accuracy of
the recovery of the item parameters as sample sizes increased.
For instance, to ensure model identifiability and consistent
estimation, it is necessary to collect sufficient data (i.e., typically
samples of 1,000 or more) that satisfy identifiability, when
designing the diagnostic tests. It was also shown that longer
tests produced more precise and consistent estimates. Results of

this study showed varying effects of mastery base rate on item
parameter recovery. It would be useful to explore this issue in
future research.

The probability of making a correct classification and
accurately recovering item parameters depends at least in part
on the fit of the model to the data. In this study, model-
data fit was assumed for each condition, as the generating
and estimated models were the same. It is difficult to know
in practice, however, whether the selected DCM is the best
fitting model to real test data. As Ma (2020) has noted, the
usefulness of DCMs depends on whether they can adequately fit
the data. It is for this reason that fit indices play an important
role in selecting the best fitting DCM. Several studies have
been conducted to examine the performances of absolute fit
(Hu et al., 2016) and relative fit indices (de la Torre and
Douglas, 2008; Hu et al., 2016; Sen and Bradshaw, 2017) in the
DCM framework. These studies can help guide practitioners to
choose appropriate model fit indices to estimate model fit under
various conditions.

Results of this study suggest that the precision of the
parameter estimates and classification accuracy are a function
not only of the sample size but also of test length, number of
attributes, base rate of mastery, and model type. Selection of the
appropriate DCMs needs to be guided in part by sample size.
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One purpose of cognitive diagnostic model (CDM) is designed to make inferences
about unobserved latent classes based on observed item responses. A heuristic
for test construction based on the CDM information index (CDI) proposed by
Henson and Douglas (2005) has a far-reaching impact, but there are still many
shortcomings. He and other researchers had also proposed new methods to improve
or overcome the inherent shortcomings of the CDI test assembly method. In this study,
one test assembly method of maximizing the minimum inter-class distance is proposed
by using mixed-integer linear programming, which aims to overcome the shortcomings
that the CDI method is limited to summarize the discriminating power of each item into a
single CDI index while neglecting the discriminating power for each pair of latent classes.
The simulation results show that compared with the CDI test assembly and random test
assembly, the new test assembly method performs well and has the highest accuracy
rate in terms of pattern and attributes correct classification rates. Although the accuracy
rate of the new method is not very high under item constraints, it is still higher than the
CDI test assembly with the same constraints.

Keywords: cognitive diagnosis, cognitive diagnostic model information index, cluster analysis, mixed-integer
linear programming, inter-class distance, correct classification rate

INTRODUCTION

The theory of cognitive diagnostic assessment (CDA) is an important part of personalized adaptive
learning (Sia and Lim, 2018). Since the cognitive diagnostic model (CDM) was put forward, it
has attracted much attention because of its ability to analyze and explain the test results in detail
(Hsu et al., 2020). On the other hand, the test is the bridge between the abstract and unobservable
ability of the examinees and the real observable item response data, so the quality of the test affects
the quality of diagnostic classification directly. A test that meets the test specification needs to
be selected from an item bank, then the test assembly will be restricted by many conditions and
requirements (Zijlmans et al., 2019; Tang and Zhan, 2020), such as the difficulty and discrimination
under the constraints of psychometrics, the maximum number of knowledge points allowed in a
test, or the requirements of parallel tests.

How to construct a test with higher quality has always been a research hotspot. In the aspect
of test assembly based on cognitive diagnosis, the test assembly method of CDM information
index (CDI) proposed by Henson and Douglas (2005) is of great influence. Henson et al. (2008)
put forward the attribute level discrimination index (ADI) under uniform and non-uniform
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distribution of attributes. However, neither the CDI method nor
the ADI method considers the attribute hierarchical structure.
When these methods are applied in practice, the performance
of CDI and ADI methods will be poor under some conditions
if the hierarchical structure exists between attributes (Kuo et al.,
2016). In addition, Finkelman et al. (2009) proposed a method
of test assembly based on genetic algorithm minimizing the
expected posterior error rate for attributes under the framework
of CDA. For example, the method of test assembly based
on genetic algorithm takes three fitness functions: the average
number of classification errors, maximum error rate, and ability
to hit attribute-level target error rates. This method can directly
optimize the classification errors, but its computational intensity
is considerably greater than that of analytic procedures like
the CDI. For classroom or formative assessment, we should
choose the algorithm with low computational complexity if other
algorithms for test assembly are sufficient to meet the needs
(Clark, 2013).

In terms of test assembly methods based on cognitive
diagnosis, researchers have proposed a large number of methods,
but most of these methods are based on a certain CDI, and there
are some problems such as lacking of global consideration or
requiring large amount of computation. Therefore, it is urgent to
consider the global information and the method of test assembly
with less calculation in cognitive diagnosis. The method of test
assembly based on CDI takes into account the sum of the whole
amount of information, but it has been found that this method
is not the optimal method of test assembly. In some cases, the
total amount of information is the largest, which may due to some
of the larger information on a non-trivial subset of the universal
set of latent classes (i.e., the set of all possible combinations
of attributes). The discriminating power of this strategy with
the largest CDI is not necessarily better than the strategy with
uniform distribution of information and less overall information.
Therefore, the goal of this study is to explore a new method
for test construction, and combine the idea of cluster analysis
(Guo et al., 2020) and mixed-integer linear programming method
(Kantor et al., 2020) to propose a method to maximize the
minimum distance (MMD) between latent classes, in order to
overcome the shortcomings of the existing methods.

METHODS

Cognitive Diagnostic Model
The purpose of cognitive diagnostic model is to describe
the relationship between examinee’s item response and his
or her potential cognitive attributes (Mao, 2014). It is a
psychometric model. The common cognitive diagnostic models
are the deterministic input noisy “and” gate (DINA) model,
the deterministic input noise “or” gate (DINO) model, and the
reduced-reparameterized unified model (R-RUM; Hartz, 2002).
The new method proposed in this study mainly focused on these
two cognitive diagnosis models. Let K be the number of attributes
to be measured by the test. The entry qjk in the Q-matrix indicates
whether the attribute k is measured in item j. When qjk = 1,
the attribute k is measured by item j. And 0 indicates that

it has not been measured. αik indicates the attribute status of
examinee i, that is, 1 indicates examinees’ mastery of attribute k,
and otherwise 0.

The DINA model is a completely non-compensatory model,
which requires that the examinees must master all the attributes
required by the item for correctly answering. As long as any
one of them is not mastered, it will lead to a wrong answer
or a very low probability of correct answer. For the value of

the ideal response ηij =
K∏

k=1
α

qjk

ik , a value of 1 indicates that

the examinee i has mastered all the attributes measured by
the item j, while a value of 0 means that the examinee has
not fully mastered the attributes measured by the item j. The
corresponding probabilities of correct answer to this item are
(1− sj) and gj respectively. The formula of DINA model is as
follows (Junker and Sijtsma, 2001)

P
(
Xij = 1|αi

)
=
(
1− sj

)ηij g(
1−ηij)

j . (1)

The DINO model is the compensatory model. As long as the
examinees have mastered any of the attributes measured by the
item, they can have a higher probability of correctly answering.

For the value of the ideal response -ij = 1−
K∏

k=1
(1− αik)

qjk is 1,

it means that the examinees have mastered at least one attribute
measured by item j. A value of 0 indicates that the examinees have
not mastered all the attributes of item j. The formula of the DINO
model is as follows (Templin and Henson, 2006)

P
(
Xij = 1|αi

)
= (1− sj)

-ij g
(1−-ij)
j . (2)

where sj is the slip probability for the examinees of the ideal
response with value 1 on item j, and gj is the guessing probability
for the examinees with value 0 on item j.

Like the DINA model, R-RUM is a non-compensatory model,
which is a simplified unified model of reparameterization. The
baseline parameter π∗j indicates the positive response probability
for examinees who have mastered all the attributes required by
item j. The values are all between 0 and 1. The penalty parameter
r∗jk for not possessing the kth attribute is defined at the level of
interaction between the item and the attributes and reflects the
importance of attribute k on item j. The formula of R-RUM is as
follows (Hartz, 2002)

P
(
Xij = 1|αi

)
= π∗j

K∏
k=1

r
∗(1−αik)qjk
jk . (3)

For simplify, the correct answer probability P
(
Xij = 1|αi

)
is

denoted by Pj(αi), where αi is the knowledge state of the
examinee i.

Kullback-Leibler Information Distance
Between Classes
Considering the existing cognitive diagnosis item bank, attribute
vectors of all items in the item bank have been specified (Wang
et al., 2020), and the parameters of each item have been estimated
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by the parameter estimation algorithm of cognitive diagnosis
model. The correct answer probability Pj(αc) of knowledge state
αc on item j can be calculated by item attribute vector qj and
item parameters, where αc is a knowledge state of the examinees
and is an element of the universal set of latent classes. Let M
be the size of the item bank. Kullback-Leibler (K-L; Cover and
Thomas, 2006; Debeer et al., 2020) information quantity or K-L
distance is the most commonly used to measure the distance
between any two probability distributions Pj (αu) and Pj (αv) for
two knowledge states αu and αv. Formally, item j is defined as the
K-L distance of the item response probability distributions under
the knowledge states of αu and αv

DK−L(αu, αv, j) = Pj (αu) log
[

Pj (αu)

Pj (αv)

]
+

(1− Pj (αu)) log

[(
1− Pj (αu)

)(
1− Pj (αv)

) ] . (4)

In fact, DK−L is the expectation of the function of the logarithmic
likelihood ratio of probability distributions Pj (αu) and Pj (αv).
Although this amount of information is called the distance
between the two distributions, and it does have statistical
significance for distance measurement, that is, with the increase
of DK−L, it is easier to distinguish the two distributions
statistically (Rao, 1962). But it is not symmetrical, that is,
DK−L(αu, αv) 6= DK−L(αv, α u) .

Kullback-Leibler distance is often used for computer adaptive
testing or cognitive diagnostic computer adaptive testing. For
instance, Chang and Ying (1996) firstly suggested that K-L
distance instead of Fisher information should be used as a more
effective item selection index in computer adaptive testing based
on one-dimensional IRT model. Madigan and Almond (1995)
use K-L distance for test selection strategy of belief networks.
Tatsouka and Ferguson (2003) use K-L distance and Shannon
entropy for sequential item selection and use it in cognitive
diagnostic computer adaptive testing. Different from the amount
of Fisher information, the K-L distance does not require that the
parameter space must be continuous, so it is suitable for CDM
where the attribute pattern is discrete.

Test Assembly Using Mixed-Integer
Linear Programming
In cognitive diagnosis, the probability of correct answer or the
expected vector of item response of knowledge state αc on test
length of J in a test is P (αc) = (P1 (αc) , P2 (αc) , . . . , PJ (αc)).
For knowledge state αc, the P(αc) can be regarded as the center
of the class. In pattern recognition or clustering methods, the
method of maximum distance between classes can usually be used
for classification. If the cognitive diagnostic test can maximize the
distance between the class centers of all potential classes αc ∈ Qs,
where Qs is the universal set of latent classes, it is easier to classify
knowledge states. It is just like in a jigsaw puzzle, if there is a big
difference between the sub-images, the difficulty of completing
the puzzle will be correspondingly lower.

In order to characterize the distinguishing power of item j
to knowledge states αu and αv, the following is DK−L as its

metric index. For any αu and αv, the discrimination power
matrix or K-L distance matrix Dj = (D(αu, αv, j)) is obtained.
If the cardinality (i.e., the number of elements) of Qs is T,
we know that the number of rows or columns is T in Dj.
In order to use the mixed-integer linear programming for
test construction, it is necessary to vectorize the matrix Dj
into a single stacked column vector. That is, the sequence of
rows in this matrix is composed of a long vector, and then
transpose the row vector to get the stacked column vector,
which is denoted as Vj = Vec(Dj). When the matrix Dj is
vectorized, we remove the main diagonal elements because these
values are zeros. For each item in the item bank, Vj can be
calculated, and the matrix V = (V1,V2, . . . ,VM) composed of
all the items can be obtained, where M is the number of
items in the item bank. Based on the mixed-integer linear
programming model, we will give a linear programming model
which takes into account the mean value of the distance between
all classes and maximizes the minimum distance between classes:

min
(
f1x+ f2y

)
, (5)

Subject to
Vx+ y ≥ b,

1Tx = J,

xj ∈ {0, 1}, j = 1, 2, . . ., M,

y ∈ R.

Among them, f1 = (f11, f12, . . . , f1M)
T , where f1j =

−

TT−1∑
v=1

Vvj/(T(T− 1)). The negative of f1j is used to

convert a maximization problem into a minimization one.

Here, f2 = J
T(T−1)∑

u=1

M∑
v=1

Vuv/(TM (T− 1)) is the weight of y,

x = (x1x2 . . . xM)
T , where x1x2 · · · xM is the 0-1 vector in the

decision vector of linear programming, and the value of the
xj indicated whether the test contains the item j. If xj = 1, it
means that the test contains the item j, otherwise it does not
include the item j, b = (b1, b2, . . . , bT(T−1))

T represents the
lower limit of K-L distance for all pairs of knowledge states.

You can set the bounded distance bt = J
M∑

j=1

(
Vtj
)
/M, which

is the average value of the distance between classes of J items
in the item bank. 1Tx = J represents the test length constraint,
where 1T is a M-dimensional column vector with all elements
1, and J is the test length. y captures the difference between
the t-th pair inter-class distance V(t)x and the target distance
bt , where V(t) is row t in V . Then, adding y to the constraint
condition, and adding f2y to the objective function, is to
maximize the minimum inter-class distance y. For example, if
the components in b are equal, and V(t)x is the smallest of all
the distances between classes, if V(t)x < bt , then V(t)x can at
least add bt − V(t)x to satisfy the constraint. Because the average
distance between other classes is larger than V(t)x, V(t)x needs
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to add bt − V(t)x to reach the constraint. And minimizing f2y
in the objective function is minimizing f2(bt − V(t)x).Because
f2y is positive and bt fixed, that is maximizing V(t)x which
is the minimum inter-class distance between classes. In the
objective function, we also consider the f1x, linear programming
model at the same time, that is, to maximize the distance
between all classes, because the model also contains 0-1 vector
x and real vector y, so this linear programming model is a
typical mixed-integer or mixed 0-1 linear programming model,
which can be solved by intlinprog function in Matlab2015a.
For the source codes, we provided a user-friendly code in
MATLAB into a public repository at the website: https:
//github.com/JXNU-EduM/MMD-Test-Assembly-for-CD/.

Simplify of K-L Distance Matrix
The distance index DK−L in this study needs to be calculated
for mixed-integer linear programming, so it is necessary to
process the distance index matrix with vectorizing, transposing
and merging. In the case of no hierarchical structure of attributes,
there are T = 2K possible mastery modes for K attributes,
and there are M items in the item bank. The size of the
distance matrix of M items on the 2K attribute mastery patterns
after vectorizing, transposing and merging is M∗2K(2K

− 1).
If M is 300 and K is 4, the size of the distance matrix
is 300∗240. Although the size of the matrix is within the
acceptable range, the amount of calculation for mixed-integer
linear programming is a little large, so if possible, the distance
matrix should be simplified.

If the u-th row and v-column element in Dj is denoted by
Djuv, and the corresponding element in Vj is denoted by Vjuv.

FIGURE 1 | Partial relation for eight possible attributes mastery patterns.

Djuv or Vjuv is the discriminating power for these two different
knowledge states of αu and αv, and one condition for the smallest
difference between the two knowledge states is that there is a
k-th attribute in the two attribute mastery patterns, which makes
the k-th attribute mastery status of the two patterns different,
and all mastery status except k are exactly the same. If only
the discriminating power among attribute patterns with the
least difference for the item is considered when vectorizing the
distance matrix, the Vjuv can be simplified. In the following, the
distance matrix index corresponding to the simplified Vjuv is
recorded as SDK−L. According to the characteristics of attribute
patterns, we know that if the number of attributes is K and a
certain attribute pattern is given, there are K attribute patterns
with the least difference from it. Because of the asymmetry of the
distance between αu and αv, that is, the DK−L distance from αu
and αv is different from that from αv to αu, both Djuv and Djvu
should be considered. If the number of attributes is three and
the attributes are independent and without hierarchical structure,
there are eight possible attribute mastery patterns, as shown in
Figure 1: the difference of attribute patterns with connections
between adjacent levels is the smallest. Thus, only 24 elements
needed to be considered in Dj is obviously smaller than the
number of non-diagonal elements in Dj, which can greatly save
the computational cost.

STUDY DESIGN

Some main factors that may affect the efficiency of constructing
test assembly should be considered: cognitive diagnosis model
(the DINA model, the DINO model, and the R-RUM), attribute
correlation coefficient (0 and 0.5), the number of examinees
was fixed at 10000, the size of item bank was fixed at 300,
the number of measured attributes was fixed at 4. Attribute
correlation coefficient is zero, implying that the attributes
were independent of each other, and the knowledge state was
distributed evenly. Under each condition, the experiment was
repeated for 200 times.

Assuming that the test measured K attributes, there are at
most 2K

− 1 possible item attribute vectors. First of all, all
possible item attribute binary vectors were converted to decimal
as 1, 2, . . . , 2K

− 1, and then 300 random integers in the range
[1, 2K

− 1] were randomly generated. Item attribute vectors of
300 items with corresponding numbers were selected to form the
Q-matrix for an item bank. Item parameters of each item were
randomly generated from specified distributions. The DINA and
DINO models have the guessing and slip item parameters, which
are randomly generated from a uniform distribution U (0.05,
0.4). Meanwhile the R-RUM also has the baseline and penalty
parameters, which are respectively randomly generated from the
uniform distribution U (0.75, 0.95) and U (0.2, 0.95). These were
the same as the experimental design of Henson and Douglas
(2005).

When the examinees are simulated, two aspects need to
be considered: one is attribute mastery status αki at the k-th
attribute for the i-th examinee and the other is the correlation
coefficient between attributes, denoted by ρ. Multivariate normal
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distribution can be used to simulate latent ability, α̃ i ∼

MVN(0, 6K∗K), where 0 is the zero vector with the length of K
and6 is the correlation matrix

6 =

 1 · · · ρ
...
. . .

...

ρ · · · 1

 . (6)

In this study, the value of ρ is 0 (independent structure) or 0.5.
After getting the value of α̃ki, we need to discretize it. The strategy
of discretization of αki is

αki =

{
1 if α̃ki ≥ 0,
0 otherwise.

(7)

Two groups of 10000 examinees were simulated. One group of
examinees was used to calculate the empirical distribution of
knowledge state, which will be applied as the prior distribution
for compute the posterior mode in the classification of the other
group. We have not changed this condition for the repetition
of the study of Henson and Douglas (2005). If a lager sample
is available for the calibration of item bank, the empirical
distribution of attribute patterns from the large sample will be
applied as the prior distribution to computing the posterior
mode in the classification of examinees who have taken the tests
constructed from the calibrated item bank.

For a set of given attribute mastery pattern, PXij = 1|αi
depending on the selected model is the probability of correct
response to item j for examinee i with attribute mastery pattern
αi. We supposed u was randomly generated from a uniform
distribution U (0, 1). The item response of the ith examinee on
item j can be obtained by discretizing the probability matrix

Xij =

{
1 if u ≤ P

(
Xij = 1|αi

)
0 otherwise.

(8)

Since the item parameters were known, the examinees’ item
responses on the selected items could be simulated, and then the
examinees were classified by maximum posterior estimation, and
then attribute correct rate (ACR) and pattern correct rate (PCR)
could be calculated. The formulas of ACR and PCR are as follows

ACR =
1

NK

K∑
k=1

N∑
i=1

I
(
αik = α̂ik

)
, (9)

and

PCR =
1
N

N∑
i=1

I
(
αi = α̂i

)
. (10)

In the above two expressions, N and K represent the number of
examinees and the number of attributes, respectively, and I(x =
y) is an indicative function, which is defined as follows: when
x = y, I(x = y) = 1, otherwise it is 0. The attribute correct rate
(ACR) is the proportion of examinees whose estimated attribute
status is equal to the simulated or true attribute status, while
the pattern correct rate (PCR) is the proportion of examinees
whose estimated attribute patterns is equal to the simulated or

true attribute patterns. These two indices are commonly used in
the simulation study for evaluating the correct classification rates
for attributes or attribute patterns. The higher PCR and ACR for
a test construct method implies that it yields considerably higher
correct classification rates.

The DK−L distance was used as the inter-class distance, and
the mixed-integer linear programming is used to maximize
the minimum inter-class distance with additional constraints.
The test length is 20 for all test design. The first constraint
was no constraint (No Constraints, NC), which directly used
the greedy algorithm to construct test, and did not set any
constraints based on the CDI or MDD. The second constraint
was item-level constraint (Item Constraints, IC), which controls
the number of items that measure a specific number of attributes
for test assembly. According to the suggestion of Henson and
Douglas (2005), among the 20 items that measure a total
of 4 attributes, 9 items measured three attributes, 7 items
measured two attributes, and the remaining 4 items measured
one attribute. The third constraint was the attribute number
constraint (Attribute Constraints, AC), which required that each
attribute must be measured at least 7 times in a test with four
attributes and 20 items.

STUDY 1: COMPARISON BETWEEN THE
PROPOSED METHOD AND ITS
SIMPLIFICATION

The proposed method uses mixed-integer linear programming to
maximize the minimum inter-class distance between classes and
comprehensively to consider the overall amount of information
in order to achieve better test assembly quality. However, when
the number of attributes measured was four, the calculation of
the distance matrix DK−L after vectorizing by the new method
was a bit large, so when using the new method to construct
test assembly, the distance matrix needs to be simplified. The
test assembly method using the original and simplified matrices
were denoted by DK−L and SDK−L, respectively. In fact, the
simplification of the distance matrix will reduce the constraints
of mixed-integer linear programming. The simplified matrix aims
to discriminate similar attribute patterns, but whether it will lose
the amount of information, if it is true, the size of the loss still
needs to be verified.

Research Purpose
The purpose of this study is to verify whether the simplified
distance matrix will lose information and lead to poor results.
Since this study only considered the effect of simplified
constraints on the efficiency of the MMD test assembly method,
a single factor or one-way analysis of variance (ANOVA) can
be performed on the two groups of ACR and PCR before
and after the simplification in order to measure the impact
of simplified constraints on ACR and PCR. In addition, the
mean of ACR or PCR before and after simplification and the
index of constructing test assembly time (in seconds) need to be
taken into account.
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TABLE 1 | Single factor analysis of variance for simplified and non-simplified constraints under the DINA model.

Correlation Accuracy Constraints SA SE F p-value

0 ACR NC 5.3222E-06 0.0054 0.3942 0.5304

IC 3.4223E-09 0.0168 0.0001 0.9928

AC 6.7185E-06 0.0059 0.4556 0.5001

PCR NC 6.9139E-05 0.0604 0.4559 0.4999

IC 9.8010E-07 0.0966 0.0040 0.9494

AC 6.4883E-05 0.0654 0.3951 0.5300

0.5 ACR NC 9.8533E-06 0.0052 0.7510 0.3867

IC 4.4944E-08 0.0177 0.0010 0.9747

AC 2.9618E-06 0.0050 0.2346 0.6284

PCR NC 1.2589E-04 0.0619 0.8099 0.3687

IC 4.6923E-07 0.1320 0.0014 0.9700

AC 3.4047E-05 0.0592 0.2290 0.6326

TABLE 2 | Single factor analysis of variance for simplified and non-simplified constraints under the DINO model.

Correlation Accuracy Constraints SA SE F p-value

0 ACR NC 1.1516E-05 0.0060 0.7602 0.3838

IC 1.2100E-10 0.0163 0.0000 0.9986

AC 6.0639E-06 0.0060 0.4025 0.5262

PCR NC 1.0040E-04 0.0670 0.5961 0.4405

IC 5.0625E-08 0.0939 0.0002 0.9883

AC 6.6831E-05 0.0668 0.3985 0.5282

0.5 ACR NC 5.8443E-06 0.0054 0.4343 0.5103

IC 3.8813E-07 0.0154 0.0100 0.9202

AC 2.2801E-06 0.0054 0.1688 0.6814

PCR NC 7.1234E-05 0.0658 0.4309 0.5119

IC 2.6732E-06 0.1209 0.0088 0.9253

AC 1.8966E-05 0.0654 0.1154 0.7343

TABLE 3 | Single factor analysis of variance for simplified and non-simplified constraints under the R-RUM model.

Correlation Accuracy Constraints SA SE F p-value

0 ACR NC 3.0360E-07 0.0082 0.0147 0.9035

IC 4.1598E-04 0.0114 14.4606 0.0002

AC 8.2369E-08 0.0085 0.0039 0.9505

PCR NC 4.1209E-06 0.0854 0.0192 0.8898

IC 1.3195E-03 0.0886 5.9273 0.0153

AC 1.6512E-06 0.0882 0.0075 0.9313

0.5 ACR NC 1.7222E-09 0.0051 0.0001 0.9908

IC 1.9847E-04 0.0058 13.6922 0.0002

AC 2.4602E-07 0.0051 0.0193 0.8896

PCR NC 2.3040E-07 0.0584 0.0016 0.9684

IC 1.1219E-03 0.0507 8.8060 0.0032

AC 3.2580E-06 0.0586 0.0221 0.8818

Experimental Steps
In order to achieve the purpose of this study, the experiment was
designed according to the following steps:

(1) According to the design of Section 3 (four attributes were
considered), we simulate two groups of examinees, in which
one group was used to calculate the prior distribution, and
the other group was used for classification. We simulate
the Q matrix and item parameters in the item bank, and

simulate the observed complete item response matrix of all
examinees on all items in the item bank.

(2) Calculate the DK−L distance and the simplified
DK−L distance of all items on all possible attribute
mastery patterns.

(3) Choose the items according to the strategies of no
restriction, attribute restriction and item restriction;

(4) Take out the response matrix of all the items on the
corresponding test according to the test items generated by
the test assembly algorithm;
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TABLE 4 | Comparison of simplified and non-simplified constraints under the DINA model.

Correlation Accuracy Constraints DK−L SDK−L SDK−L Outperforms DK−L Time for DK−L (seconds) Time for SDK−L (seconds)

0 ACR NC 0.9798 0.9795 0.4500 1.9195 0.7373

IC 0.9463 0.9463 0.9700 0.3661 0.1022

AC 0.9796 0.9793 0.4250 1.9718 0.7971

PCR NC 0.9260 0.9251 0.4500 1.9195 0.7373

IC 0.8356 0.8357 0.9800 0.3661 0.1022

AC 0.9253 0.9245 0.4150 1.9718 0.7971

0.5 ACR NC 0.9810 0.9807 0.4350 1.8395 0.7196

IC 0.9489 0.9489 0.9800 0.3429 0.0909

AC 0.9808 0.9806 0.4850 1.9187 0.7774

PCR NC 0.9292 0.9281 0.4400 1.8395 0.7196

IC 0.8349 0.8350 0.9800 0.3429 0.0909

AC 0.9286 0.9280 0.4800 1.9187 0.7774

TABLE 5 | Comparison of simplified and non-simplified constraints under the DINO model.

Correlation Accuracy Constraints DK−L SDK−L SDK−L Outperforms DK−L Time for DK−L (seconds) Time for SDK−L (seconds)

0 ACR NC 0.9794 0.9790 0.4300 1.7908 0.8185

IC 0.9457 0.9457 0.9800 0.3470 0.1052

AC 0.9793 0.9791 0.4700 1.8486 0.8369

PCR NC 0.9246 0.9236 0.4750 1.7908 0.8185

IC 0.8346 0.8346 0.9800 0.3470 0.1052

AC 0.9245 0.9237 0.4800 1.8486 0.8369

0.5 ACR NC 0.9814 0.9811 0.4450 1.7821 0.8107

IC 0.9494 0.9495 0.9950 0.3277 0.0955

AC 0.9811 0.9810 0.5150 1.8327 0.8403

PCR NC 0.9305 0.9297 0.4450 1.7821 0.8107

IC 0.8358 0.8360 0.9950 0.3277 0.0955

AC 0.9297 0.9292 0.5300 1.8327 0.8403

(5) Estimate the knowledge state of the examinees and calculate
the PCR and ACR, according to the selected response
matrix, and repeat experiments for a total of 200 times.

(6) A one-way analysis of variance was performed on the data
before and after the simplification. The specific steps of the
analysis method were as follows:

We conduct a statistical test to compare the means for the PCR
and ACR from two methods with the null hypothesis H0: The
simplified constraint has no significant effect on the ACR and
PCR of the MMD test assembly method.

In order to express the differences of the means for the PCR
or ACR from two methods, the simplified ACR (the same for
PCR analysis) is combined into a two-column matrix Yij, i = 1,2;
j = 1,2, . . . , n. The sum of samples is set to Yi. =

∑n
j=1 Yij, and the

sample mean is Ȳi =
1
n
∑n

j=1 Yij, then the calculation formula for
the total mean of the samples is

Ȳ =
1
n

2∑
i=1

n∑
j=1

Yij. (11)

The sum of squares of deviations is an indicator of the
degree of dispersion of all data. If the assumption H0 holds, the
simplified constraint will have no significant effect on ACR or

PCR, and then the difference of data in Yij is caused by other
random factors. If the assumption is not true, in addition to
random factors, the data difference in Yij also has the influence
of simplified constraints. If the influence of simplified constraints
is much greater than that of random factors, the simplified
constraints should be considered to have a significant impact on
ACR or PCR, otherwise it is considered to have no significant
impact. Among them, the calculation formulas for the sum of
squares between groups SA and the random error sum of squares
(or sum of squares within groups) SE are

SA =

2∑
i=1

n(Ȳi − Ȳ)2, (12)

and

SE =

2∑
i=1

n∑
j=1

(Yij − Ȳi)
2. (13)

In this study, only one factor was considered, so the degree of
freedom of SA was 1, and the total observation data was set to 2n,
then the degree of freedom of SE was 2n-2. From this, the formula
for the one-way analysis of variance F-test can be calculated

F =
SA

SE/(2n− 2)
. (14)
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TABLE 6 | Comparison of simplified and non-simplified constraints under the R-RUM model.

Correlation Accuracy Constraints DK−L SDK−L SDK−L Outperforms DK−L Time for DK−L (seconds) Time for SDK−L (seconds)

0 ACR NC 0.9514 0.9514 0.5250 3.3500 0.8915

IC 0.9332 0.9311 0.2600 0.3594 0.1072

AC 0.9513 0.9513 0.5150 3.4402 0.9404

PCR NC 0.8270 0.8272 0.5500 3.3500 0.8915

IC 0.7816 0.7780 0.3750 0.3594 0.1072

AC 0.8267 0.8269 0.5500 3.4403 0.9404

0.5 ACR NC 0.9590 0.9590 0.4950 3.3598 0.8921

IC 0.9457 0.9443 0.2750 0.3369 0.1024

AC 0.9590 0.9589 0.5000 3.4420 0.9420

PCR NC 0.8495 0.8495 0.5000 3.3598 0.8921

IC 0.8115 0.8081 0.3500 0.3369 0.1024

AC 0.8494 0.8492 0.5050 3.4420 0.9420

TABLE 7 | The accuracy rate of each condition for four attributes
under the DINA model.

Correlation Accuracy Constraints Random CDI SDK−L

0 ACR NC 0.8443 0.9692 0.9795

IC 0.8257 0.9173 0.9463

AC 0.8439 0.9730 0.9793

PCR NC 0.5803 0.8886 0.9251

IC 0.5507 0.7498 0.8357

AC 0.5806 0.9054 0.9245

0.5 ACR NC 0.8801 0.9733 0.9807

IC 0.8680 0.9401 0.9489

AC 0.8798 0.9756 0.9806

PCR NC 0.6588 0.9013 0.9281

IC 0.6377 0.8022 0.8350

AC 0.6587 0.9106 0.9280

After the observed value of F was obtained by analyzing and
calculating from the data, we can usually choose a significant
level of 0.05 or 0.01 according to the accuracy rate requirements.
Then, the p-value was computed based on the observed value
of F. Finally, the p-value is compared with 0.05 or 0.01 to

decide whether to accept the null hypothesis. In this study, the
significance level was set to 0.05.

Experimental Results
Tables 1–3 are results of the one-way analysis of variance of
ACR and PCR obtained by the simplified and non-simplified
constraint MMD test assembly method under the DINA model,
the DINO model and the R-RUM, respectively. It can be seen that
the p-value of DINA and DINO models are greater than 0.05 in all
relevant cases, indicating that there is no significant difference in
ACR or PCR between before and after the simplified constraints.
However, the p-value of item constraints on the R-RUM is lower
than 0.05, indicating that there is a significant difference in ACR
or PCR between before and after the simplified constraints. It
shows whether the constraints are simplified or not has little effect
on the efficiency of the MMD constructing test assembly, except
under the item constraints on the R-RUM.

Tables 4–6 respectively give a detailed comparison of
simplified and non-simplified constraints in terms of ACR and
PCR under each condition of the DINA model, the DINO model
and the R-RUM. The sixth column of the tables indicates that the
accuracy rate of simplified constraints higher than the accuracy
rate of non-simplified constraints.

TABLE 8 | Comparison of the accuracy rate of each method for four attributes under DINA model.

Correlation Accuracy Constraints CDI Outperforms Random SDK−L Outperforms Random SDK−L Outperforms CDI

0 ACR NC 1.0000 1.0000 0.9150

IC 0.9950 1.0000 0.9500

AC 1.0000 1.0000 0.8850

PCR NC 1.0000 1.0000 0.9250

IC 1.0000 1.0000 0.9550

AC 1.0000 1.0000 0.8600

0.5 ACR NC 1.0000 1.0000 0.8800

IC 1.0000 1.0000 0.9050

AC 1.0000 1.0000 0.8500

PCR NC 1.0000 1.0000 0.8850

IC 1.0000 1.0000 0.9300

AC 1.0000 1.0000 0.8500
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TABLE 9 | Comparison of the accuracy rate of each method for four attributes under DINO model.

Correlation Accuracy Constraints Random CDI SDK−L

0 ACR NC 0.8428 0.9687 0.9790

IC 0.8256 0.9173 0.9457

AC 0.8429 0.9728 0.9791

PCR NC 0.5779 0.8867 0.9236

IC 0.5510 0.7490 0.8346

AC 0.5786 0.9040 0.9237

0.5 ACR NC 0.8791 0.9739 0.9811

IC 0.8696 0.9409 0.9495

AC 0.8792 0.9758 0.9810

PCR NC 0.6566 0.9033 0.9297

IC 0.6406 0.8041 0.8360

AC 0.6573 0.9114 0.9292

TABLE 10 | Comparison of the accuracy rate of each method for four attributes under the DINO model.

Correlation Accuracy Constraints CDI Outperforms Random SDK−L Outperforms Random SDK−L Outperforms CDI

0 ACR NC 1.0000 1.0000 0.9250

IC 0.9850 1.0000 0.9800

AC 1.0000 1.0000 0.8750

PCR NC 0.9950 1.0000 0.9350

IC 0.9900 1.0000 0.9800

AC 1.0000 1.0000 0.8550

0.5 ACR NC 1.0000 1.0000 0.8550

IC 1.0000 1.0000 0.8950

AC 1.0000 1.0000 0.8500

PCR NC 1.0000 1.0000 0.8650

IC 1.0000 1.0000 0.9100

AC 1.0000 1.0000 0.8550

It can be seen from Table 4 that under the DINA model,
when the MMD test assembly simplifies the constraints, the
overall efficiency is less than 50% although the efficiency
of the simplified constraints is higher than that of the
non-simplified constraints. Therefore, the simplification of
the distance matrix will indeed lose information. From the
perspective of the overall mean, the loss of information has
a relatively low impact on the efficiency of the test assembly.
This conclusion is similar to the results of the one-way
analysis of variance. In terms of average time consumption,
simplifying the constraints will increase the operating efficiency
by 2 to 4 times. Comparing with the information of lost by
the simplified constraints, the improvement of the operating
efficiency is considerable. Therefore, the simplified constraints on
the distance matrix are feasible.

Tables 5, 6 shows that the efficiency of the simplified
constraints is higher than that of the non-simplified constraints,
the efficiency is more than 50% or close to 50% under the
attribute constraints, but the overall situation is still lower
than the non-simplified constraints and the difference is still
small under the DINO model and R-RUM. In terms of
time-consuming, the time-consuming for these two models is
similar to that under the DINA model, but simplifying the
constraints will still increase the operating efficiency by 2 to

4 times on average, so a similar conclusion can be obtained
with the DINA model.

STUDY 2: COMPARISON BETWEEN
SIMPLIFIED MMD METHOD AND CDI
METHOD

Experimental Purpose
Study 1 has verified that the simplified constraints on the
distance matrix is feasible, so how the new method itself
compares with the famous method needs to be discussed
further. In order to compare the simplified MMD test assembly
method and the CDI method (Henson and Douglas, 2005),
we performed the second simulation experiments by using
the similar condition settings as the study of Henson and
Douglas (2005). It should be noted that eight attributes were
considered in the second simulation study for exploring the
performance of the simplified MMD test assembly method under
different conditions.

Experimental Steps
Conduct the simulation experiment as follows:
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TABLE 11 | Comparison of the accuracy rate of each method for four attributes under R-RUM model.

Correlation Accuracy Constraints Random CDI SDK−L

0 ACR NC 0.8450 0.9386 0.9514

IC 0.8447 0.9258 0.9311

AC 0.8453 0.9408 0.9513

PCR NC 0.5418 0.7894 0.8272

IC 0.5446 0.7594 0.7780

AC 0.5427 0.7984 0.8269

0.5 ACR NC 0.8798 0.9504 0.9590

IC 0.8806 0.9416 0.9443

AC 0.8801 0.9518 0.9589

PCR NC 0.6230 0.8223 0.8495

IC 0.6272 0.7986 0.8081

AC 0.6240 0.8275 0.8492

TABLE 12 | Comparison of the accuracy rate of each method for four attributes under the R-RUM model.

Correlation Accuracy Constraints CDI Outperforms Random SDK−L Outperforms Random SDK−L Outperforms CDI

0 ACR NC 1.0000 1.0000 0.9750

IC 1.0000 1.0000 0.7400

AC 1.0000 1.0000 0.9700

PCR NC 0.9950 1.0000 0.9650

IC 0.9950 1.0000 0.7850

AC 1.0000 1.0000 0.9550

0.5 ACR NC 1.0000 1.0000 0.9650

IC 1.0000 1.0000 0.7050

AC 1.0000 1.0000 0.9700

PCR NC 1.0000 1.0000 0.9600

IC 1.0000 1.0000 0.7300

AC 1.0000 1.0000 0.9650

(1) According to the design of the first study, we simulated two
groups of examinees, one of groups was used to calculate the
prior distribution and the other was used for classification.
The Q matrix and item parameters in the item bank and
observed complete item response matrix of all possible
attribute mastering patterns on all items in the item bank
were simulated;

(2) Calculate the CDI and SDK−L of all items;
(3) Construct cognitive diagnostic test using the random way,

the CDI method, or the simplified MMD method, according
to the three strategies of no constraints, attribute constraints
and item constraints;

(4) Take out the response matrix of all the items on the
corresponding test according to the test items generated by
the test assembly algorithms;

(5) Estimate the knowledge state of the examinees and calculate
the PCR and ACR, according to the selected response
matrix, and repeat experiments for a total of 200 times.

Experimental Results
Table 7 shows the average accuracy rate of each condition under
measuring four attributes with the DINA model. In the table, CDI
represents the CDI test assembly method, SDK−L is the simplified

TABLE 13 | The accuracy rate of each condition for eight attributes
under the DINA model.

Correlation Accuracy Constraints Random CDI SDK−L

0 ACR NC 0.6234 0.8294 0.8181

IC 0.6489 0.7244 0.7289

AC 0.6234 0.8315 0.8181

PCR NC 0.0988 0.3305 0.3678

IC 0.1304 0.2525 0.2764

AC 0.0988 0.3438 0.3678

0.5 ACR NC 0.7474 0.8745 0.8664

IC 0.7672 0.8267 0.8259

AC 0.7474 0.8759 0.8664

PCR NC 0.3272 0.4683 0.4909

IC 0.3381 0.4479 0.4547

AC 0.3272 0.4766 0.4909

MMD test assembly method, and Random represents random
test assembly. Analyzing the data in Table 7 shows that the
new method has a higher improvement compared with the CDI
method. In terms of the three constraints, the overall accuracy
rate of the attribute constraints is slightly higher than the other
two constraints, and the accuracy rate for the item constraints is
the worst. Under the condition of item constraints, the ACR and
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TABLE 14 | Comparison of the accuracy rate of each method for eight attributes under the DINA model.

Correlation Accuracy Constraints CDI Outperforms Random SDK−L Outperforms Random SDK−L Outperforms CDI

0 ACR NC 1.0000 1.0000 0.1500

IC 1.0000 1.0000 0.6950

AC 1.0000 1.0000 0.0950

PCR NC 1.0000 1.0000 0.8850

IC 1.0000 1.0000 0.9600

AC 1.0000 1.0000 0.8350

0.5 ACR NC 1.0000 1.0000 0.1000

IC 1.0000 1.0000 0.4150

AC 1.0000 1.0000 0.0650

PCR NC 1.0000 1.0000 0.9400

IC 1.0000 1.0000 0.7800

AC 1.0000 1.0000 0.8900

TABLE 15 | The accuracy rate of each condition for eight attributes under the DINO model.

Correlation Accuracy Constraints Random CDI SDK−L

0 ACR NC 0.6208 0.8289 0.8171

IC 0.6479 0.7238 0.7296

AC 0.6208 0.8302 0.8171

PCR NC 0.0963 0.3319 0.3679

IC 0.1294 0.2525 0.2781

AC 0.0963 0.3435 0.3679

0.5 ACR NC 0.7444 0.8754 0.8665

IC 0.7666 0.8268 0.8264

AC 0.7444 0.8765 0.8665

PCR NC 0.3248 0.4706 0.4910

IC 0.3368 0.4488 0.4553

AC 0.3248 0.4776 0.4910

TABLE 16 | Comparison of the accuracy rate of each method for eight attributes under the DINO model.

Correlation Accuracy Constraints CDI Outperforms Random SDK−L Outperforms Random SDK−L Outperforms CDI

0 ACR NC 1.0000 1.0000 0.1900

IC 1.0000 1.0000 0.7200

AC 1.0000 1.0000 0.1600

PCR NC 1.0000 1.0000 0.8750

IC 1.0000 1.0000 0.9400

AC 1.0000 1.0000 0.8450

0.5 ACR NC 1.0000 1.0000 0.0700

IC 1.0000 1.0000 0.4350

AC 1.0000 1.0000 0.0400

PCR NC 1.0000 1.0000 0.8950

IC 1.0000 1.0000 0.8000

AC 1.0000 1.0000 0.8700

PCR of CDI, MMD, and random test assembly method are lower
than the other two constraints.

Table 8 shows the comparison of the accuracy rate of each
method when the number of attributes under the DINA model
is four in the 200 repeats. Among them, the last column
represents the proportion of MMD test assembly method with
SDK−L distance as the class distance index more efficient than
CDI in the 200 simulation repeats. The fourth or fifth column

respectively represents the proportion of CDI test assembly
method or MMD test assembly method with SDK−L distance
more efficient than the random test assembly method across
200 repetitions.

It can be seen from Table 8 that the MMD test assembly
method with SDK−L distance as an index is stable under
various conditions. In the existing conclusions, as the correlation
increasing, the accuracy rate of the MMD test assembly method
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TABLE 17 | The accuracy rate of each condition for eight attributes under the R-RUM model.

Correlation Accuracy Constraints Random CDI SDK−L

0 ACR NC 0.7427 0.8300 0.8336

IC 0.7572 0.8142 0.8231

AC 0.7427 0.8303 0.8336

PCR NC 0.1236 0.2648 0.2823

IC 0.1365 0.2433 0.2651

AC 0.1236 0.2660 0.2823

0.5 ACR NC 0.8243 0.8753 0.8787

IC 0.8300 0.8705 0.8745

AC 0.8243 0.8757 0.8787

PCR NC 0.3261 0.4175 0.4309

IC 0.3232 0.4183 0.4254

AC 0.3261 0.4189 0.4309

TABLE 18 | Comparison of the accuracy rate of each method for eight attributes under the R-RUM model.

Correlation Accuracy Constraints CDI Outperforms Random SDK−L Outperforms Random SDK−L Outperforms CDI

0 ACR NC 1.0000 1.0000 0.6350

IC 1.0000 1.0000 0.8700

AC 1.0000 1.0000 0.6350

PCR NC 1.0000 1.0000 0.8000

IC 1.0000 1.0000 0.8850

AC 1.0000 1.0000 0.7950

0.5 ACR NC 1.0000 1.0000 0.7900

IC 1.0000 1.0000 0.8450

AC 1.0000 1.0000 0.7800

PCR NC 1.0000 1.0000 0.8300

IC 1.0000 1.0000 0.6850

AC 1.0000 1.0000 0.8300

the CDI method based on SDK−L distance increases. Therefore,
as the correlation increasing, the gap between the two methods
will shrink. Thus, comparing with random test assembly, the
average value of each method is greater than the random
method. However, in the 200 simulation repeats, the CDI test
assembly method is occasionally outperformed by the random
test assembly method, which is similar to the simulation
results of Henson and Douglas (2005).

On the whole, the result of CDI test assembly method is
slightly different from that of Henson and Douglas (2005) in
comparison with random test assembly method under measuring
four attributes, because the random test assembly method itself
is uncertain. In addition, the case that the accuracy rate of CDI
test assembly method is lower than that of the random method is
concentrated under the item constraints.

Table 9 shows the comparison of several test assembly
methods for 200 repetitions under DINO model. From the data
in Table 9, it can be seen that the MMD method is still superior
to CDI method, and the MMD method with SDK−L distance as
the distance index does not have the situation that the average
accuracy rate is lower than CDI method.

Table 10 shows the comparison of the accuracy rate of each
method when the number of attributes is four across replications
under the DINO model. It can be seen from Table 10, the MMD

method with SDK−L distance as the distance index has slightly
better accuracy rate than the CDI method under the condition of
unconstrained and attribute constraints, respectively. However,
the accuracy rate of the MMD test assembly method under the
item constraints is better than under the other two constraints.
In the existing conclusions, with the increase of correlation,
the accuracy rate of MMD test assembly method with SDK−L
distance as the index decreased while that of the CDI method
increased. Therefore, with the increase of correlation, the gap
between the two methods narrowed.

Table 11 shows the comparison of several test assembly
methods for the 200 repetitions under the R-RUM. Like the
DINA and DINO model, the performance of MMD test assembly
method based on SDK−L distance is better than the other two
methods, and the performance is almost the same under the
condition of both no constraints and attribute constraints.

Table 12 shows the comparison of the accuracy rate of each
method when the number of attributes is four across replications
under the R-RUM. It can be seen from Table 12 that in the 200
simulation replications, the MMD test assembly method based
on SDK−L distance is better than the CDI test assembly method
in every case, and its performance on R-RUM is also better than
that of DINO model under the condition of both no constraints
and attribute constraints.
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Tables 13–18 show accuracy rates and comparison results for
eight attributes. The results of eight attributes are similar to that
of four attributes. On the whole, the new method is better than
the CDI test assembly method and the random assembly method
under the DINA model, the DINO model and the R-RUM.
Furthermore, the new method has a greater advantage over the
CDI method in terms of the PCR. Under the three models, the
PCR of the MMD test assembly method based on SDK−L distance
is higher than that of the CDI test assembly method, but the ACR
of the MMD test assembly method is slightly lower than the CDI
test assembly method. It means that the higher the averaged ACR,
the PCR is not necessarily higher. For example, the ACRs for two
attributes are 0.1 and 0.9 or 0.4 and 0.4. Although the average
of ACR for these two cases are 0.5 and 0.4, the former case has
the PCR of 0.09, while the latter case has the PCR of 0.16, if the
correct classification rates for two attributes are independent.

DISCUSSION

Simulation results show that the MMD test assembly method
with the simplified constraints has similar performance to the
new method with the full constraints under four attributes,
and the new simplified method performs better than the CDI
method for four and eight attributes in term of the PCR. The
MMD test assembly method with the full constraints suffers a
large computational burden due to the optimization problem
of complex constraints, but it is fast and performs relatively
well when the number of attributes is four. In order to simplify
computation, the MMD test assembly method with the simplified
constraints can simplify computation effectively and is suitable
for a larger number of attributes (i.e., eight attributes). We also
found that when the number of measured attributes increases,
the advantages in PCR for the MMD method are still obvious,
while its performance in ACR tends to be average. This is
related to the characteristics of the MMD and CDI-based test
assembly methods: the CDI test assembly method pays attention
to the local information, while the MMD focuses on the global
information. When the ratio of test length to attribute number
is large, the MMD test assembly method has enough room to
play and select enough high-quality tests to obtain sufficient
overall information, in order to make up for the lack of local
information. So, the MMD test assembly method has obvious
advantages at this condition.

We found that there is a considerably worse performance
for item constraints compared to attribute constraints, which is
consistent of results of Henson and Douglas (2005). The possible
explanations are as follows: First, we think this may be related to
the concept of statistical identification that is receiving a lot of
attention lately for the case of CDMs. Specifically, for the DINA
model, two identity matrices in the Q matrix and an additional
third item per attribute would be required (e.g., Chen et al.,
2015; Xu and Shang, 2018). This would be never satisfied in the
item constraint condition. Second, because the item constraints
required only 4 items measured one attribute, the Q-matrix is
not complete if all columns of the K × K identity matrix are

not contained in the Q-matrix. A simple example of a complete
Q-matrix is the K × K identity matrix I (Chiu et al., 2009; Cai
et al., 2018). Third, item-level expected classification accuracy of
attributes for 16 items measured two or three attributes in item
constraint condition is often lower than that for items measured
only one attribute (Wang et al., 2019).

Test constraints in this study are still rough, since it is only
a repetition of Henson and Douglas (2005) experiments. The
performance of each method under other constraints needs
to be studied. The MMD test assembly method with SDK−L
distance as the index is superior to CDI test assembly method
in performance, but the combination of this test assembly idea
and other distance indexes is worth discussing. This study does
not consider the relationship between the number of measured
attributes and the length of tests, the influence of the ratio of the
test length and number of attributes on the MMD test assembly
method, how about the specific relationship between them is,
and how to specify item constraints and attribute constraints
when the length of tests is different, all of above will need a
further investigation.

As in the study of Henson and Douglas (2005), the larger
sample in our study was only employed to obtain correct
classification rates more stability with simulated item parameters.
We have not considered the impact of item banks calibrated
by using larger or smaller sample sizes on the performance
of test construction methods. As the reviewer motioned, it is
true that larger sample sizes are likely to be used to calibrate
item banks (e.g., Liu et al., 2013; George and Robitzsch, 2014),
while the review of available empirical studies indicates that
sample sizes in cognitive diagnosis tend to be much smaller
(Sessoms and Henson, 2018). It would be an interesting question
to justify whether a difference in performance is expected
from the CDI and SDK−L methods for item banks calibrated
from different sample sizes. One limitation of this study is
that three simple CDMs (the DINA model, the DINO model,
and the R-RUM) were considered in the simulation study. If
we have a large sample size to calibrate an item bank, we
believe that the results can be generalized to a more general
model, such as the G-DINA model (de la Torre, 2011), or a
combination of reduced models (Ravand, 2016; Sorrel et al., 2017;
de la Torre et al., 2018).
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in Cognitive Diagnosis Modeling
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Cognitive diagnosis models (CDMs) allow classifying respondents into a set of discrete

attribute profiles. The internal structure of the test is determined in a Q-matrix, whose

correct specification is necessary to achieve an accurate attribute profile classification.

Several empirical Q-matrix estimation and validation methods have been proposed

with the aim of providing well-specified Q-matrices. However, these methods require

the number of attributes to be set in advance. No systematic studies about CDMs

dimensionality assessment have been conducted, which contrasts with the vast existing

literature for the factor analysis framework. To address this gap, the present study

evaluates the performance of several dimensionality assessment methods from the

factor analysis literature in determining the number of attributes in the context of CDMs.

The explored methods were parallel analysis, minimum average partial, very simple

structure, DETECT, empirical Kaiser criterion, exploratory graph analysis, and a machine

learning factor forest model. Additionally, a model comparison approach was considered,

which consists in comparing the model-fit of empirically estimated Q-matrices. The

performance of these methods was assessed by means of a comprehensive simulation

study that included different generating number of attributes, item qualities, sample

sizes, ratios of the number of items to attribute, correlations among the attributes,

attributes thresholds, and generating CDM. Results showed that parallel analysis (with

Pearson correlations and mean eigenvalue criterion), factor forest model, and model

comparison (with AIC) are suitable alternatives to determine the number of attributes

in CDM applications, with an overall percentage of correct estimates above 76% of the

conditions. The accuracy increased to 97% when these three methods agreed on the

number of attributes. In short, the present study supports the use of three methods in

assessing the dimensionality of CDMs. This will allow to test the assumption of correct

dimensionality present in the Q-matrix estimation and validation methods, as well as to

gather evidence of validity to support the use of the scores obtained with these models.

The findings of this study are illustrated using real data from an intelligence test to provide

guidelines for assessing the dimensionality of CDM data in applied settings.

Keywords: cognitive diagnostic models, dimensionality assessment, parallel analysis, machine learning, model

comparison, Q-matrix validation
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INTRODUCTION

The correct specification of the internal structure is arguably the
key issue in the formulation process of a measurement model.
Hence, it is not surprising that the determination of the number

of factors has been regarded as the most crucial decision in the
context of exploratory factor analysis (EFA; e.g., Garrido et al.,
2013; Preacher et al., 2013). Since the very first proposals to
address this issue, such as the eigenvalue-higher-than-one rule or
Kaiser-Guttman criterion (Guttman, 1954; Kaiser, 1960), many

methods have been developed for assessing the dimensionality in
EFA. Despite the longevity of this subject of study, the fact that

it is still a current research topic (e.g., Auerswald and Moshagen,
2019; Finch, 2020) is a sign of both its relevance and complexity.

In contrast to the vast research in the EFA framework,
dimensionality assessment remains unexplored for other
measurement models. This is the case of cognitive diagnosis
models (CDMs). CDMs are restricted latent class models in

which the latent variables or attributes are discrete, usually
dichotomous. The popularity of CDMs has increased in the last
years, especially in the educational field, because of their ability
to provide a fine-grained information about the examinees’

mastery or non-mastery of certain skills, cognitive processes, or
competences (de la Torre and Minchen, 2014). However, CDM
applications are not restricted to educational settings, and they
have been employed for the study of psychological disorders
(Templin and Henson, 2006; de la Torre et al., 2018) or staff
selection processes (García et al., 2014; Sorrel et al., 2016).

A required input for CDMs is the Q-matrix (Tatsuoka, 1983).
It has dimensions J items × K attributes, in which each q-
entry (qjk) can adopt a value of 1 or 0, depending on whether
attribute k is relevant to measure item j or not, respectively.
Hence, the Q-matrix determines the internal structure of the test,
and its correct specification is fundamental to obtain accurate
structural parameter estimates and, subsequently, an accurate
classification of examinees’ latent classes or attribute profiles
(Rupp and Templin, 2008; Gao et al., 2017). However, the Q-
matrix construction process is usually conducted by domain
experts (e.g., Sorrel et al., 2016). This process is subjective
in nature and susceptible to specification errors (Rupp and
Templin, 2008; de la Torre and Chiu, 2016). To address this,
several Q-matrix estimation and validation methods have been
proposed in the recent years with the aim of providing empirical
support to its specification. On the one hand, empirical Q-
matrix estimation methods rely solely on the data to specify
the Q-matrix. For instance, Xu and Shang (2018) developed
a likelihood-based estimation method, which aims to find
the Q-matrix that shows the best fit while controlling for
model complexity. Additionally, Wang et al. (2018) proposed
the discrete factor loading (DFL) method, which consists in
conducting an EFA and dichotomizing the factor loading matrix
up to some criterion (e.g., row or column means). On the other
hand, empirical Q-matrix validation methods aim to correct a
provisional, potentially misspecified Q-matrix based on both its
original specification and the data. For instance, the stepwise
method (Ma and de la Torre, 2020a) is based on the Wald test to
select the q-entries that are statistically necessary for each item,

while the general discrimination index method (de la Torre and
Chiu, 2016) and theHullmethod (Nájera et al., 2020) aim to find,
for each item, the simplest q-vector specification that leads to an
adequate discrimination between latent classes. These methods
serve as a useful tool for applied researchers, who can obtain
empirical evidence of the validity of their Q-matrices (e.g., Sorrel
et al., 2016).

Despite their usefulness, the Q-matrix estimation and
validation methods share an important common drawback,
which is assuming that the number of attributes specified by
the researcher is correct (Xu and Shang, 2018; Nájera et al.,
2020). Few studies have tentatively conducted either a parallel
analysis (Robitzsch and George, 2019) or model-fit comparison
(Xu and Shang, 2018) to explore the dimensionality of the Q-
matrix. However, to the authors’ knowledge, there is a lack of
systematic studies on the empirical estimation of the number of
attributes in CDMs. The main objective of the present research is
precisely to compare the performance of a comprehensive set of
dimensionality assessment methods in determining the number
of attributes. The remaining of the paper is laid out as follows.
First, a description of two popular CDMs is provided. Second,
a wide selection of EFA dimensionality assessment methods
is described. Third, an additional method for assessing the
number of attributes in CDMs is presented. Fourth, the design
and results from an exhaustive simulation study are provided.
Fifth, real CDM data are used for illustrating the functioning
of the dimensionality assessment methods. Finally, practical
implications and future research lines are discussed.

THE DINA AND G-DINA MODELS

CDMs can be broadly separated into general and reduced,
specific models. General CDMs are saturated models that
subsume most of the reduced CDMs. They include more
parameters and, consequently, provide a better model-data fit
in absolute terms. As a counterpoint, their estimation is more
challenging. Thus, reduced CDMs are often a handy alternative
to applied settings because of their simplicity, which favors both
their estimation and interpretation. Let denote by K∗

j the number

of required attributes for item j. Under the deterministic inputs,
noisy “and” gatemodel (DINA; Junker and Sijtsma, 2001), which
is a conjunctive reduced CDM, there are only two parameters per
item regardless of K∗

j : the guessing parameter (gj), which is the

probability of correctly answering item j for those examinees that
do not master, at least, one of the required attributes, and the slip
parameter (sj), which is the probability of failing item j for those
examinees that master all the attributes involved. The probability
of correctly answering item j given latent class l is given by

Pj (αl) = g
1−ηlj
j (1− sj)

ηlj (1)

where ηlj equals 1 if examinees in latent class l master all the
attributes required by item j, and 0 otherwise.

The generalized DINA model (G-DINA; de la Torre, 2011) is
a general CDM, in which the probability of correctly answering
item j for latent class l is given by the sum of the main effects of
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the required attributes and their interaction effects (in addition
to the intercept):

Pj
(
α
∗
l

)
= δj0 +

K∗
j∑

k=1

δjkαlk +

K∗
j∑

k′=k+1

K∗
j −1∑

k=1

δjkk′αlkk′ . . .

+δj12...K∗
j

K∗
j∏

k=1

αlk (2)

where α
∗
l
is the reduced attribute profile whose elements are the

K j
∗ required attributes for item j, δj0 is the intercept for item

j, δjk is the main effect due to αk, δjkk′ is the interaction effect
due to αk and αk′ , and δj12...K∗

j
is the interaction effect due to

α1, . . . ,αK∗
j
. Figure 1 depicts the probabilities of success of the

four possible latent groups for an item requiring two attributes
(K∗

j = 2) under the DINA and G-DINA models. For the DINA

model, the probability of success for the latent group that masters
all attribute is high (P (11) = 1 − sj = 1 − 0.2 = 0.8), while
the probability of success for the remaining latent groups is very
low (P (00) = P (10) = P (01) = gj = 0.1). For the G-DINA
model, the baseline probability (i.e., intercept) is also very low
(P (00) = δj0 = 0.1). The increment in the probability of success
as a result of mastering the first attribute (P (10) = δj0 + δj1 =

0.1+ 0.25 = 0.35) is slightly lower than the one due to mastering
the second attribute (P (01) = δj0 + δj2 = 0.1 + 0.35 = 0.45).
Finally, although the interaction effect for both attributes is low
(δj12 = 0.1), the probability of success for the latent group that
masters both attributes is high because the main effects are also
considered (P (11) = δj0 + δj1 + δj2 + δj12 = 0.1+ 0.25+ 0.35+
0.1 = 0.80).

DIMENSIONALITY ASSESSMENT
METHODS

In the following, we provide a brief explanation of seven
dimensionality assessment methods that were originally
developed for determining the number of factors in EFA and will
be explored in the present study.

Parallel Analysis
Parallel analysis (PA; Horn, 1965) compares the eigenvalues
extracted from the sample correlation matrix (i.e., sample
eigenvalues) with the eigenvalues obtained from several
randomly generated correlation matrices (i.e., reference
eigenvalues). The number of sample eigenvalues that are higher
than the average of their corresponding reference eigenvalues is
retained as the number of factors. The 95th percentile has also
been recommended rather than the mean to prevent from over-
factoring (i.e., overestimate the number of factors). However,
no differences have been found in recent simulation studies
between both cutoff criteria (Crawford et al., 2010; Auerswald
and Moshagen, 2019; Lim and Jahng, 2019). Additionally,
polychoric correlations have been recommended when working
with categorical variables. Although no differences have been
found for non-skewed categorical data, polychoric correlations

perform better with skewed data (Garrido et al., 2013) as long
as the reference eigenvalues are computed considering the
univariate category probabilities of the sample variables by, for
instance, using random column permutation for generating
the random samples (Lubbe, 2019). Finally, different extraction
methods have been used to compute the eigenvalues: principal
components analysis (Horn, 1965), principal axis factor analysis
(Humphreys and Ilgen, 1969), or minimum rank factor analysis
(Timmerman and Lorenzo-Seva, 2011). The original proposal
by Horn has consistently shown the best performance across
a wide range of conditions (Garrido et al., 2013; Auerswald
and Moshagen, 2019; Lim and Jahng, 2019). Simulation studies
have shown the superiority of PA above other dimensionality
assessment methods. Thus, it is usually recommended and
considered the gold standard (Garrido et al., 2013; Auerswald
and Moshagen, 2019; Lim and Jahng, 2019; Finch, 2020). As a
flaw, PA tends to under-factor (i.e., underestimate the number
of factors) in conditions with low factor loadings or highly
correlated factors (Garrido et al., 2013; Lim and Jahng, 2019).

Minimum Average Partial
The minimum average partial (MAP; Velicer, 1976) method
has also been recommended for determining the number of
factors with continuous data (Peres-Neto et al., 2005). It is based
on principal components analysis and the partial correlation
matrix. The MAP method extracts one component at a time and
computes the average of the squared partial correlations (MAP
index). The MAP method relies on the rationale that extracting
the first components, which explain most of the common
variance, will result in a decrease of the MAP index. Once the
relevant components have been partialled out, extracting the
remaining ones (which are formed mainly by unique variance)
will make the MAP index to increase again. The optimal number
of components corresponds to the lowest MAP index. A variant
where theMAP index is computed by averaging the fourth power
of the partial correlation was proposed by Velicer et al. (2000).
However, Garrido et al. (2011) recommended the use of the
original squared partial correlations, in addition to polychoric
correlations when categorical variables are involved. They found
that MAP method performed poorly under certain unfavorable
situations, such as low-quality items or small number of variables
per factor, where the method showed a tendency to under-factor.

Very Simple Structure
The very simple structure (VSS; Revelle and Rocklin, 1979)
method was developed with the purpose of providing the best
interpretable factor solution, understood as the absence of cross-
loadings. In this procedure, a loadingmatrix withK factors is first
estimated and rotated. Then, a simplified factor loading matrix
(S′vk) is obtained, given a prespecified complexity v. Namely, the
v highest loadings for each item are retained and the remaining
loadings are fixed to zero. Then, the residual correlation matrix is
found by

Rvk = R− Svk8kS
′
vk (3)
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FIGURE 1 | Illustration of item parameters and probabilities of success of the different latent groups for the DINA and G-DINA models involving 2 attributes (K = 2).

where R is the observed correlation matrix and 8k is the factor
correlation matrix. Then, the VSS index is computed as

VSSvk = 1−
MSRvk

MSR
(4)

whereMSRvk
andMSR are the average of the squared residual and

observed correlations, respectively. The VSS index is computed
for each factor solution, and the highest VSS corresponds to
the number of factors to retain. The main drawback of the
procedure is that the researcher must prespecify a common
expected complexity for all the items, which is usually v =

1 (VSS1; Revelle and Rocklin, 1979). In a recent simulation
study, the VSS method obtained a poor performance under most
conditions, over-factoring with uncorrelated factors and under-
factoring with highly correlated factors (Golino and Epskamp,
2017).

Dimensionality Evaluation to Enumerate
Contributing Traits
The dimensionality evaluation to enumerate contributing traits
(DETECT; Kim, 1994; Zhang and Stout, 1999; Zhang, 2007)
method is a nonparametric procedure that follows two strong
assumptions: first, a single “dominant” dimension underlies
the item responses, and second, the residual common variance
between the items follows a simple structure (i.e., without
cross-loadings). The method estimates the covariances of
item pairs conditioned to the raw item scores, which are
used as a non-parametric approximation to the dominant
dimension. If the data are essentially unidimensional, these
conditional covariances will be close to zero. Otherwise,
items measuring the same secondary dimension will have
positive conditional covariances, and items measuring different

secondary dimensions will have negative conditional covariances.
The DETECT index is computed as

D(P) =
1

J(J − 1)/2

∑

j<j′

(−1)
cjj′ (Ĉjj′ − C) (5)

where P represents a specific partitioning of items into clusters,
Ĉjj′ is the estimated conditional covariance between items j and

j′, C is the average of the estimated conditional covariances,
and cjj′ = 0 or 1 if items j and j′ are part of the same cluster
or not, respectively. The method explores different number of
dimensions and the one that obtains the highest DETECT index
is retained. Furthermore, the method also provides which items
measure which dimension. In a recent study, Bonifay et al. (2015)
found that the DETECT method had a great performance at the
population level, retaining the correct number of dimensions in
97% of the generated datasets with N = 10,000. As a limitation
of the study, the authors only tested a scenario in which the
generating model had no cross-loadings (i.e., simple structure).

Empirical Kaiser Criterion
The empirical Kaiser criterion (EKC; Braeken and van Assen,
2017) is similar to PA in that the sample eigenvalues are
compared to reference eigenvalues to determine the number of
factors to retain. Here, reference eigenvalues are derived from
the theoretical sampling distribution of eigenvalues, which is
a Marčenko-Pastur distribution (Marčenko and Pastur, 1967)
under the null hypothesis (i.e., non-correlated variables). The first
reference eigenvalue depends only on the ratio of test length to
sample size, while the subsequent reference eigenvalues consider
the variance explained by the previous ones. The reference
eigenvalues are coerced to be at least equal to 1, and thus it cannot
suggest more factors than the Kaiser-Guttman criterion would.
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In fact, EKC is equivalent to the Kaiser-Guttman criterion at
the population level. EKC has been found to perform similarly
to PA with non-correlated variables, unidimensional models,
and orthogonal factors models, while it outperformed PA with
oblique factors models and short test lengths (Braeken and van
Assen, 2017). The performance of EKCwith non-continuous data
remains unexplored.

Exploratory Graph Analysis
EGA (Golino and Epskamp, 2017) is a recently developed
technique that has emerged as a potential alternative for PA.
EGA was first developed based on the Gaussian graphical model
(GGM; Lauritzen, 1996), which is a network psychometric model
in which the joint distribution of the variables is estimated by
modeling the inverse of the variance-covariance matrix. The
GGM is estimated using the least absolute shrinkage and selector
operator (LASSO; Tibshirani, 1996), which is a penalization
technique to avoid overfitting. Apart from EGA with GGM,
Golino et al. (2020) recently proposed an EGA based on the
triangulated maximally filtered graph approach (TMFG; Massara
et al., 2016), which is not restricted to multivariate normal
data. Regardless of the model (GGM or TMFG), in EGA each
item is represented by a node and each edge connecting two
nodes represents the association between the two items. Partial
correlations are used for EGA with GGM, while any association
measure can be used for EGAwith TMFG. A strong edge between
two nodes is interpreted as both items being caused by the same
latent variable. A walktrap algorithm is then used to identify the
number of clusters emerging from the edges, which will be the
number of factors to retain. Furthermore, EGA also provides
information about what items are included in what clusters, and
clusters can be related to each other if their nodes are correlated.
EGAwithGGM seems to have an overall better performance than
EGA with TMFG (Golino et al., 2020). EGA with GGM has been
found to perform similarly to PA in most situations, with slightly
worse results with low factor correlations, but better performance
with highly correlated factors (Golino and Epskamp, 2017). On
the other hand, EGA with TMFG tends to under-factor when
there are many variables per factor or highly correlated factors
(Golino et al., 2020).

Factor Forest
Factor forest (FF; Goretzko and Bühner, 2020) is an extreme
gradient boosting machine learning model that was trained to
predict the optimal number of factors in EFA. Specifically, the
model estimates the probability associated to different factor
solutions and subsequently suggests the number of factors with
the highest probability. As opposed to the previously described
dimensionality assessment methods, the FF is not based on any
particular theoretical psychometric background, and its purpose
is to make accurate predictions based on a combination of
empirical results obtained from the training datasets. This is
commonly referred to as the “black box” character of themachine
learning models (Goretzko and Bühner, 2020). In the original
paper, the authors trained the FF model using a set of 181
features (e.g., eigenvalues, sample size, number of variables,
Gini-coefficient, Kolm measure of inequality) while varying

the sample size, primary and secondary loadings, number of
factors, variables per factor, and factor correlations, through
almost 500,000 datasets. The data were generated assuming
multivariate normality. The FF model obtained very promising
results, correctly estimating the number of factors in 99.30% of
the evaluation datasets. The Kolm measure of inequality and
the Gini-coefficient were the most influential features on the
predictions of the model. It is remarkable that some evaluation
conditions were different from those used in the training stage.
Thus, the FF model trained in Goretzko and Bühner (2020) for
the EFA framework will be explored in the present paper.

MODEL-FIT INDICES FOR DETERMINING
THE NUMBER OF ATTRIBUTES IN CDM

All the aforementioned methods were developed with the
purpose of assessing the number of factors in the EFA framework
and, thus, their assumptions might not fit the nature of CDM
data.Table 1 shows that some of themost important assumptions
required by some of the methods might be usually violated
when analyzing CDM data. There is, however, one additional
procedure that can be applied to CDMs without any further
assumptions: the model comparison approach based on model-
fit indices. This approach has also been widely explored in EFA.
Previous studies have shown that, even though the traditional
cutoff points for some commonly used fit indices (e.g., CFI,
RMSEA, SRMR) are not recommended for determining the
number of factors (Garrido et al., 2016), the relative difference
in fit indices between competing models might even outperform
PA under some conditions, such as small loadings, categorical
data (Finch, 2020), or orthogonal factors (Lorenzo-Seva et al.,
2011). Additionally, Preacher et al. (2013) recommended to use
AIC for extracting the number of factors whenever the goal of
the research was to find a model with an optimal parsimony-fit
balance, while they recommended RMSEAwhenever the goal was
to retain the true, generating number of factors.

In the CDM framework, relative and absolute fit indices have
been used to select the most appropriate Q-matrix specification.
Regarding relative model-fit indices, Kunina-Habenicht et al.
(2012) and Chen et al. (2013) found that Akaike’s information
criterion (AIC; Akaike, 1974) and Bayesian information criterion
(BIC; Schwarz, 1978) perform really well at selecting the correct
Q-matrix among competing matrices. In this vein, AIC and
BIC always selected the correct Q-matrix when a three-attribute
model was estimated for data generated from a five-attribute
model, and vice versa (Kunina-Habenicht et al., 2012). Regarding
absolute fit indices, Chen et al. (2013) proposed to inspect the
residuals between the observed and predicted proportion correct
of individual items (pj), between the observed and predicted
Fisher-transformed correlation of item pairs (rjj′ ), and between
the observed and predicted log-odds ratios of item pairs (ljj′ ).
Specifically, they used the p-value associated to the maximum z-
scores of pj, rjj′ , and ljj′ to evaluate absolute fit. While pj obtained
very bad overall results, rjj′ and ljj′ performed appropriately at
identifying both Q-matrix and CDM misspecification, with a
tendency to be conservative.
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TABLE 1 | Dimensionality assessment methods assumptions.

Method Based on Latent variable Essential unidim. Simple structure

PA Eigenvalues No No No

MAP Partial correlations No No No

VSSa Factor loadings Continuous No Yes

DETECT Conditional covariances Continuous Yes Yes

EKC Eigenvalues No No No

EGA Network psychometrics No No No

MC Model-fit indices Discrete No No

The methods assumptions that are aligned with cognitive diagnosis modeling characteristics are highlighted in bold. The factor forest (FF) model has not been included due to its

dependence on the conditions employed for training the model. Essential unidim., essential unidimensionality; PA, parallel analysis with principal components extraction; MAP, minimum

average partial; VSS, very simple structure; DETECT, dimensionality evaluation to enumerate contributing traits; EKC, empirical Kaiser criterion; EGA, exploratory graph analysis; MC,

model comparison based on fit indices.
aSimple structure (understood as a single factor being measured by each item) is technically assumed only by VSS with complexity v = 1.

The aforementioned studies pointed out that these fit indices
are promising for identifying the most appropriate Q-matrix.
However, further research is required to examine their systematic
performance in selecting the most appropriate number of
attributes across a wide range of conditions. The use of fit
indices to select the most appropriate model among a set of
competing models, from 1 to K number of attributes, requires
the calibration of K CDMs, each of them requiring a specified Q-
matrix. This task demands an unfeasible amount of effort if done
by domain experts, but it is viable if done by empirical means.
The idea of using an empirical Q-matrix estimation method to
generate Q-matrices for different number of attributes and then
compare their model-fit has been already suggested by Chen
et al. (2015). Furthermore, the edina package (Balamuta et al.,
2020a) of the R software (R Core Team, 2020) incorporates a
function to perform a Bayesian estimation of a DINA model
(Chen et al., 2018) with different number of attributes, selecting
the best model according to the BIC. In spite of these previous
ideas, the performance of fit indices in selecting the best model
among different number of attributes has not been evaluated
in a systematic fashion, including both reduced (e.g., DINA)
and general (e.g., G-DINA) CDMs. More details about the
specific procedure used in the present study for assessing the
number of attributes usingmodel comparison are provided in the
Method section.

GOALS OF THE CURRENT STUDY

Themain goal of the present study is to compare the performance
of several dimensionality assessment methods in determining
the generating number of attributes in CDM. Additionally,
following the approach of Auerswald and Moshagen (2019),
the combined performance of the methods is also evaluated
to explore whether a more accurate combination rule can be
obtained and recommended for applied settings. As a secondary
goal, the effect of a comprehensive set of independent variables
and their interactions over the accuracy of the procedures is
systematically evaluated.

Table 1 provides the basis for establishing some hypotheses
related to the performance of the methods. First, while CDMs
are discrete latent variable models, most methods do not

consider the existence of latent variables (PA with principal
components extraction, MAP, EKC, EGA) or consider the
existence of continuous latent variables (VSS, DETECT). The
violation of this assumption might not be too detrimental, given
that PA with component analysis violates EFA assumptions
and is the current gold standard. On the other hand, both
essential unidimensionality and simple structure assumptions are
expected to have a great disruptive effect, since CDMs are usually
highly multidimensional and often contain multidimensional
items. Accordingly, VSS with v = 1 (VSS1) and DETECT are
expected to perform poorly. Although VSS with complexity v >

1 is not technically assuming a simple structure (understood as a
single attribute being measured by each item), its performance
is still expected to be poor because of its stiffness and
inability to adapt to the usual complex structure (i.e., items
measuring a different number of attributes) of CDM items.
Even though the remaining methods (i.e., PA, EKC, MAP, and
EGA) do not assume a simple structure, their performance under
complex structures remains mostly unexplored. Assessing the
dimensionality of complex structures is expected to be more
challenging compared to simple structures, in a similar fashion
as correlated factors are more difficult to extract than orthogonal
factors. The extent to which the performance of these methods
is robust under complex structures is unknown. All in all, and
considering the assumptions of eachmethod, PA, EKC,MAP, and
EGA, as well as the CDM model comparison approach based on
fit indices (MC), are expected to perform relatively well, except
for their idiosyncratic weakness conditions found in the available
literature as previously described. Finally, the performance of
FF is difficult to predict due to its dependency on the training
samples. Even though no training samples were generated based
on discrete latent variables in Goretzko and Bühner (2020), the
great overall performance and generalizability of the FF model to
conditions different from the ones used to train the model might
extend to CDM data as well.

METHODS

Dimensionality Estimation Methods
Eight different dimensionality estimation methods, with a total
of 18 variants, were used in the present simulation study.
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The following text describes the specific implementation of
each method.

Parallel Analysis

Four variants of PA were implemented as a function of the
correlation matrix type (r = Pearson; ρ = tetrachoric) and the
reference eigenvalue criterion (m=mean; 95= 95th percentile):
PArm, PAr95, PAρm, and PAρ95. All variants were implemented
with principal components extraction and 100 random samples
generated by random column permutation (Garrido et al., 2013;
Lubbe, 2019). The sirt package (Robitzsch, 2020) was used to
estimate the tetrachoric correlations for PA, as well as for the
remainingmethods that alsomake use of tetrachoric correlations.

Minimum Average Partial

MAP indices were based on the squared partial tetrachoric
correlations computed with the psych package (Revelle, 2019).
The maximum number of dimensions to extract was set to
9 (same for VSS, DETECT, and MC), so there was room for
overestimating the number of attributes (the details of the
simulation study are provided in the Design subsection).

Very Simple Structure

VSS was computed using tetrachoric correlations and the psych
package. In addition to the most common VSS with complexity v
= 1 (VSS1), VSS with complexity v= 2 (VSS2) was also explored.

Dimensionality Evaluation to Enumerate Contributing

Traits

The DETECT index was computed using the sirt package,
which uses the hierarchicalWard algorithm (Roussos et al., 1998)
for clustering the items.

Empirical Kaiser Criterion

EKC was implemented by using tetrachoric correlations and the
semTools package (Jorgensen et al., 2019).

Exploratory Graph Analysis

Two variants of EGA were implemented: EGA with GGM
(EGAG) and EGA with TMFG (EGAT). The EGAnet package
(Golino and Christensen, 2020) was employed for computing
both variants.

Factor Forest

The R code published by Goretzko and Bühner (2020) at Open
Science Framework1 was used for the implementation of the FF
model trained in their original paper. With this code, FF can
recommend between one and eight factors to retain.

Model Comparison Based on Fit Indices

The MC procedure was implemented varying the number of
attributes from 1 to 9 as follows. First, the DFL Q-matrix
estimation method (Wang et al., 2018) using Oblimin oblique
rotation, tetrachoric correlations, and the row dichotomization
criterion was used to specify the initial Q-matrix, and the Hull
validation method (Nájera et al., 2020) using the PVAF index was
then implemented to refine it and provide the final Q-matrix.

1https://osf.io/mvrau/

Second, a CDM was fitted to the data using the final Q-matrix
with the GDINA package (Ma and de la Torre, 2020b). The CDM
employed to fit the data was the same as the generating CDM
(i.e., DINA or G-DINA). This resulted in a set of nine competing
models varying in K. Third, the models were alternatively
compared with the AIC, BIC, and rjj′ fit indices. For the AIC
and BIC criteria, the model with the lowest value was retained.
Regarding rjj′ , the number of items with some significant pair-
wise residual (after using Bonferroni correction at the item-level)
was counted. Then, themost parsimoniousmodel with the lowest
count was retained. The MC procedure with AIC, BIC, or rjj′

will be referred to as MCAIC, MCBIC, and MCr, respectively.
Given that the MC procedures rely on empirically specified Q-
matrices, their performance will greatly depend on the quality
of such Q-matrices. Even though the DFL and Hull methods
have provided good results in previous studies, their combined
performance should be evaluated to examine the quality of their
suggested Q-matrices. For this reason, the proportion of correctly
specified q-entries was computed for the estimated (i.e., DFL)
and validated (i.e., DFL and Hull) Q-matrices (more details are
provided in the Dependent variables subsection). The further the
DFL and Hull methods are from a perfect Q-matrix recovery,
the greater the room for improvement for the MC procedures.
In this vein, the set of nine competing models (using DFL
and Hull) were additionally compared to the model using the
generating Q-matrix, with the purpose of providing an upper-
limit performance for the MC methods when the Q-matrix is
perfectly recovered. The results of these comparisons will be
referred to as MCAIC−G, MCBIC−G, and MCr−G.

Design
Table 2 shows the factors (i.e., independent variables) used in the
simulation study: number of attributes (K), item quality (IQ),
sample size (N), ratio of number of items to attribute (JK),
underlying correlation among the attributes (AC), and attribute
thresholds (AT). The levels of each factor were selected in pursuit
of representativeness of varying applied settings. For instance, the
most common number of attributes (K) seen in applied studies
is 4 (Sessoms and Henson, 2018), while 5 is the most usual
value in simulation studies (e.g., de la Torre and Chiu, 2016;
Ma and de la Torre, 2020a). The levels selected for item quality
(IQ), sample size (N), and ratio of number of items to attribute
(JK) are also considered as representative of applied settings

TABLE 2 | Summary of the factors explored in the simulation study.

Factors Factor levels

Number of attributes (K) 4, 5, 6

Item quality (IQ) 0.40, 0.60, 0.80

Sample size (N) 500, 1,000, 2,000

Ratio of number of items to attribute (JK) 4, 8

Correlation among the attributes (AC) 0, 0.30, 0.60

Attribute thresholds (AT ) 0, 0.50, 1

Generating model (M) DINA, G-DINA
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(Nájera et al., 2019; Ma and de la Torre, 2020a). Regarding
the attribute correlations, some applied studies have obtained
very high attribute correlation coefficients, up to 0.90 (Sessoms
and Henson, 2018). It can be argued that these extremely high
correlations may be indeed a consequence of overestimating the
number of attributes, where one attribute has been split into
two or more undifferentiated attributes. For this reason, we
decided to use AC levels similar to those used in EFA simulation
studies (e.g., Garrido et al., 2013). Additionally, different attribute
thresholds (AT) levels were included to generate different degrees
of skewness in the data, given its importance in the performance
of dimensionality assessment methods (Garrido et al., 2013).
Finally, both a reduced CDM (i.e., DINA) and a general CDM
(i.e., G-DINA) were used to generate data. A total of 972
conditions, resulting from the combination of the factor levels,
were explored.

Data Generation
One hundred datasets were generated per condition. Examinees’
responses were generated using either the DINA or G-
DINA model. Attribute distributions were generated using a
multivariate normal distribution with mean equal to 0 for all
attributes. All underlying attribute correlations were set to the
corresponding AC condition level. Attribute thresholds, which
are used to dichotomize the multivariate normal distribution
to determine the mastery or non-mastery of the attributes,
were generated following an equidistance sequence of length K
between –AT and AT. This results in approximately half of the
attributes being “easier” (i.e., higher probabilities of attribute
mastery) and the other half being “more difficult” (i.e., lower
probabilities of attribute mastery). For instance, for AT = 0.50
and K = 5, the generating attributes thresholds were {−0.50,
−0.25, 0, 0.25, 0.50}.

Item quality was generated by varying the highest and
lowest probabilities of success, which correspond to the latent
classes that master all, P(1), and none, P(0), of the attributes
involved in an item, respectively. These probabilities were drawn
from uniform distributions as follows: P(0)∼U(0, 0.20) and
P(1)∼U(0.80, 1) for high-quality items, P(0)∼U(0.10, 0.30) and
P(1)∼U(0.70, 0.90) for medium-quality items, and P(0)∼U(0.20,
0.40) and P(1)∼U(0.60, 0.80) for low-quality items. The expected
value for the item quality across the J items is then 0.80, 0.60, and
0.40 for high, medium, and low-quality items, respectively. For
the G-DINAmodel, the probabilities of success for the remaining
latent classes were simulated randomly, with two constraints.
First, a monotonicity constraint on the number of attributes was
applied. Second, the sum of the δ parameters associated to each
attribute was constrained to be higher than 0.15 to ensure the
relevance of all the attributes (Nájera et al., 2020).

The Q-matrices were generated randomly with the following
constraints: (a) each Q-matrix contained, at least, two identity
matrices; (b) apart from the identity matrices, each attribute
was measured, at least, by another item; (c) the correlation
between attributes (i.e., Q-matrix columns) was lower than
0.50; (d) the proportion of one-, two-, and three-attribute
items was set to 0.50, 0.40, and 0.10. Constrains (a) and (b)
are in line with the identifiability recommendations made by

Xu and Shang (2018). Constrain (c) ensures non overlapping
attributes. Finally, constrain (d) was based on the proportion of
items measuring one-, two-, and three-attributes encountered in
previous literature. We examined the 36 applied studies included
in the literature revision by Sessoms and Henson (2018) and
extracted the complexity of the q-vectors from the 17 studies
that reported the Q-matrix (see Table 3). The reason why we
used a higher proportion of one-attribute items was to preserve
constrain a). For instance, in the condition of JK = 4, at least 50%
of one-attribute items are required to form two identity matrices.

Dependent Variables
Four dependent variables were used to assess the accuracy of
the dimensionality assessment methods. The hit rate (HR) was
the main dependent variable, computed as the proportion of
correct estimates:

HR =

∑
I
(
K̂ = K

)

R
(6)

where I is the indicator function, K̂ is the recommended number
of attributes, K is the generating number of attributes, and R
is the number of replicates per condition (i.e., 100). A HR of 1
indicates a perfect accuracy, while an HR of 0 indicates complete
lack of accuracy. Additionally, given that a model selection must
be done according to both empirical and theoretical criteria, it is a
recommended approach to examine alternativemodels to the one
suggested by a dimensionality assessment method (e.g., Fabrigar
et al., 1999). The close hit rate (CHR) was assessed to explore the
proportion of times that a method recommended a number of
attributes close to the generating number of attributes:

CHR =

∑
I
[
(K − 1) ≤ K̂ ≤ (K + 1)

]

R
(7)

Finally, the mean error (ME) and root mean squared error
(RMSE) were explored to assess the bias and inaccuracy of
the methods:

ME =

∑ (
K̂ − K

)

R
(8)

RMSE =

√√√√
∑ (

K̂ − K
)2

R
(9)

TABLE 3 | Complexity of q-vectors in applied studies (percentages).

q = 1 q = 2 q = 3 q > 3 q = K

Mean 34.9 42.7 14.2 8.2 1.5

Median 30.4 43.5 10.8 0 0

(q = 1, 2, 3) = q-vectors measuring 1, 2, or 3 attributes, respectively; (q > 3) = q-vectors

measuringmore than 3 attributes; (q=K)= q-vectorsmeasuring all the attributes included

in the Q-matrix.
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A ME of 0 indicates lack of bias, while a negative or positive
ME indicates a tendency to underestimate or overestimate the
number of attributes, respectively. It is important to note that an
ME close to 0 can be achieved either by an accurate method, or by
a compensation of under- and overestimation. On the contrary,
RMSE can only obtain positive values: the further from 0, the
greater the inaccuracy of a method.

Univariate ANOVAs were conducted to explore the effect of
the factors on the performance of each method. The dependent
variables for the ANOVAs were the hit rate, close hit rate,
bias, and absolute error, which correspond to the numerators of
Equations (6)–(9) (i.e., HR, CHR, ME, and RMSE at the replica-
level), respectively. Note that the RMSE computed at the replica

level is the absolute error (i.e.,
∣∣∣K̂ − K

∣∣∣). Effects with a partial

eta-squared (η2p) higher than 0.060 and 0.140 were considered as
medium and large effects, respectively (Cohen, 1988).

In order to explore the performance of the combination rules
(i.e., two or more methods taken together), the agreement rate
(AR) was used to measure the proportion of conditions under
which a combination rule recommended the same number of
attributes, while the agreement hit rate (AHR) was used to
measure the proportion of correct estimations among those
conditions in which an agreement has been achieved:

AR =

∑
I
(
K̂1 = K̂2

)

R
(10)

AHR =

∑
I
(
K̂1 = K|K̂1 = K̂2

)

∑
I
(
K̂1 = K̂2

) (11)

where K̂1 and K̂2 are the recommended number of attributes by
any two different methods. Note that these formulas can be easily
generalized for more than twomethods. Both a highAR andAHR
are required for a combination rule to be satisfactory, since this
indicates that it will be accurate and often applicable (Auerswald
and Moshagen, 2019).

Finally, for the MC methods, when the model under
exploration had the same number of attributes as the generating
number of attributes, the Q-matrix recovery rate (QRR) was
explored to assess the accuracy of the DFL and Hull methods.
Specifically, it reflects the proportion of correctly specified q-
entries. A QRR of 1 indicates perfect recovery. The higher the
QRR, the closer the methods based on model-fit indices (e.g.,
MCAIC) should be to their upper-limit performance (e.g., using
the generating Q-matrix as in MCAIC−G). All simulations and
analyses were conducted using the R software. The data were
simulated using the GDINA package. The codes are available
upon request.

RESULTS

Before describing the main results, the results for the QRR are
detailed. The overall QRR obtained after implementing both the
DFL and Hull method was 0.949. The lowest and highest QRR
among the factor levels were obtained with IQ = 0.40 (QRR =

0.890) and IQ = 0.80 (QRR = 0.985), respectively. These results
are consistent with Nájera et al. (2020). The DFL method alone
(i.e., before validating the Q-matrix with the Hull method) led
to a good overall accuracy (QRR = 0.939). However, despite this
high baseline, the Hull method led to a QRR improvement across
all factor levels (1QRR= [0.005, 0.013]).

Table 4 shows the overall average results, across all conditions,
for all the variants and dependent variables considered. The four
PA variants, FF, and MCAIC performed reasonably well, with a
HR > 0.700 and a CHR > 0.900. EGAG also obtained a high
CHR (CHR = 0.918), but a much lower HR (HR = 0.576). The
highestHRwas obtained by PArm (HR= 0.829), while the highest
CHR was provided by MCAIC (CHR = 0.954). Congruently with
these results, the PA variants, FF, MCAIC, and EGAG showed a
low RMSE (RMSE < 1), being the MCAIC the method with the
lowest error (RMSE= 0.633). The remaining methods (i.e., MAP,
VSS1, VSS2, DETECT, EKC, EGAT, MCBIC, and MCr) obtained a
poorer performance (HR ≤ 0.682 and CHR ≤ 0.853). Regarding
the bias, most methods showed a tendency to underestimate the

TABLE 4 | Overall performance for all dimensionality estimation methods.

Method HR CHR ME RMSE

PArm 0.829 0.947 −0.144 0.681

PAr95 0.801 0.919 −0.309 0.876

PAρm 0.805 0.938 −0.190 0.734

PAρ95 0.770 0.904 −0.369 0.941

MAP 0.518 0.618 −1.337 2.205

VSS1 0.278 0.378 −1.045 3.135

VSS2 0.424 0.522 −0.040 2.339

DETECT 0.492 0.691 1.043 1.956

EKC 0.502 0.625 2.200 3.988

EGAG 0.576 0.918 −0.257 0.870

EGAT 0.337 0.782 −0.831 1.231

FF 0.824 0.918 −0.191 0.746

MCAIC 0.768 0.954 0.010 0.633

MCBIC 0.682 0.824 −0.620 1.289

MCr 0.635 0.853 0.096 1.027

———————————————————————————————————

MCAIC−G 0.886 0.975 −0.022 0.458

MCBIC−G 0.713 0.829 −0.593 1.270

MCr−G 0.814 0.922 −0.086 0.774

The dashed line separates the MCmethods that are implemented using the generating Q-

matrix (i.e., MCAIC−G, MCBIC−G, MCr−G). Best results for HR, CHR, and RMSE are shown

in bold, considering the MCmethods with the generating Q-matrix separately. HR≥ 0.700

and CHR ≥ 0.900 results are underlined. HR, hit rate; CHR, close hit rate; ME, mean

error; RMSE, root mean squared error; PAr , parallel analysis with Pearson correlations;

PAρ, parallel analysis with tetrachoric correlations; PAm, parallel analysis with mean

eigenvalue criterion; PA95, parallel analysis with 95th percentile eigenvalue criterion; MAP,

minimum average partial; VSS1, very simple structure with complexity v = 1; VSS2, very

simple structure with complexity v = 2; DETECT, dimensionality evaluation to enumerate

contributing traits; EKC, empirical Kaiser criterion; EGAG, exploratory graph analysis with

Gaussian graphical model; EGAT , exploratory graph analysis with triangulated maximally

filtered graph; FF, factor forest; MCAIC, model comparison based on AIC; MCBIC, model

comparison based on BIC; MCr , model comparison based on the Fisher-transformed

correlations; MC*−G, model comparison using the generating Q-matrix when the number

of attributes coincides with the generating number of attributes.
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number of attributes, especially MAP, VSS1, and EGAT (ME ≤

−0.831). On the contrary, EKC and DETECT showed a tendency
to overestimate the number of attributes (ME ≥ 1.043). Among
the methods with low RMSE, FF (ME = −0.191), PArm (ME =

−0.144), and, especially, MCAIC (ME = 0.010), showed a very
low bias. Finally, the MC methods that rely on the generating
Q-matrix (i.e., MCAIC−G, MCBIC−G, MCr−G) generally provided
good results, outperforming their corresponding MC method.
Specifically, MCAIC−G obtained the highest overall accuracy (HR
= 0.886; CHR= 0.975; RMSE= 0.458).

Table 5 shows the results for the methods that obtained the
best overall performance as indicated by CHR > 0.900 (i.e.,
PArm, EGAG, FF, and MCAIC) across the factor levels. Only
PArm is shown among the PA variants because their results were
congruent and PArm obtained the better overall performance.
In addition to these methods, the MCAIC−G is also included to
provide a comparison with MCAIC. The results from Table 5 can
be easier interpreted by inspecting the main effect size values
obtained in the ANOVAs (see Table 6). These main effects offer
a proper summary of the results since only one interaction effect,
which will be described below, was relevant (η2p > 0.140).

Regarding the hit rate, IQ was the factor that most affected
all the methods (η2p ≥ 0.161), except for EGAG. These methods
performed very accurately with IQ = 0.80 (HR ≥ 0.916), but
poorly with IQ = 0.40 (HR ≤ 0.675). Other factors obtained a
medium effect size for one specific method. EGAG was affected
byM, obtaining a higher accuracy with the G-DINAmodel (HR=
0.709) than with the DINA model (HR = 0.443). On the other
hand, PArm was affected by N and AC. PArm obtained the highest
HR in most conditions, especially with large sample sizes (N =

2000), but was negatively affected by high correlations among the
attributes (AC = 0.60). In the cases in which PArm was not the
best performing method, the FF obtained the highest accuracy.
FF obtained the biggest advantage in comparison to the other
methods under N = 500 (1HR = 0.054). Results for the RMSE
showed a very similar pattern to those fromHR. Themost notable
difference was that MCAIC obtained the lowest RMSE under
most conditions, especially AC = 0.60 (|1RMSE| = 0.239). On
the contrary, PArm showed a smaller error with lower attribute
correlations, especially AC = 0.30 (|1RMSE|= 0.213).

The close hit rate of the methods was more robust than theHR
to the different simulation conditions. Only PArm and, especially,
FF were affected by IQ. PArm was also affected by AC, and FF by
JK. The CHR of both EGAG and MCAIC remained stable across
the factor levels. The highest CHR was obtained by MCAIC in
most conditions, obtaining the biggest advantage under AC =

0.60 (1CHR= 0.059). PArm and FF provided the highest CHR in
those conditions in which MCAIC did not obtain the best result.

With respect to the bias (i.e.,ME), Table 6 shows that the only
large effect was observed for AC on PArm. However, there was
a relevant effect for the interaction between AC and IQ (η2p =

0.194). This was the only interaction with a large effect among
all the ANOVAs. Namely, the strong tendency to underestimate
seen for PArm under AC = 0.60 was mainly due to IQ = 0.40.
Thus, under IQ = 0.40, PArm showed a strong tendency to
underestimate when AC = 0.60 (ME = −1.108), but a slight
tendency to overestimate when AC = 0 (ME = 0.258). With IQ

≥ 0.60 and AC ≤ 0.30, PArm obtained a low bias (ME ≤ |0.055|).
Apart from this interaction, other factors with relevant effect sizes
were: a) K, which had an effect on EGAG and MCAIC; b) IQ, with
an effect on PArm, FF, and MCAIC; and c) JK, which had an effect
on PArm, EGAG, and MCAIC. In general, the most demanding
levels of these factors (i.e., K = 6, IQ = 0.40, JK = 4) led to an
underestimation tendency for the methods. Finally, while PArm,
EGAG, and FF showed a negative bias (i.e.,ME< 0) across almost
all conditions, MCAIC showed a positive bias (i.e.,ME> 0) under
several conditions, especially K = 4 and the G-DINA model (ME
≥ 0.150).

Finally, MCAIC−G performed the best under almost all
conditions and dependent variables, with the only exception of
AC ≤ 0.30 and G-DINA generated data, where PArm obtained
slightly better results. As expected, MCAIC−G outperformed
MCAIC under all conditions. The ANOVA effects were similar
for both methods. One of the main differences is that the HR
of MCAIC−G was more affected by the sample size (a steeper
HR improvement as N increased) and the generating model
(performing comparatively better under the DINA model). On
the other hand, the ME of MCAIC−G was more robust under
different levels of K andM.

Table 7 shows the results for the combination rules split by
sample size. VSS1, VSS2, DETECT, EKC, and EGAT are not
included because they were not usually consistent with any other
method (i.e., AR < 0.50). Both the AR and the AHR tended
to increase as the sample size increased. As expected from the
results above, the best performing combination rules were mainly
formed by PA (especially PArm), FF, and MC (especially MCAIC).
The combination rule formed by PArm and FF obtained arguably
the best balance between agreement and accuracy (AR ≥ 0.70;
AHR ≥ 0.923), while FF and MCAIC obtained a higher accuracy
with a slightly lower agreement (AR ≥ 0.65; AHR ≥ 0.953).
The best accuracy was obtained by the combination rule formed
by MCAIC and MAP (AHR ≥ 0.980), although at the cost of a
lower agreement (AH ≈ 0.46). In addition to these two-method
combination rules, the performance of the three best methods
(i.e., PArm, FF, and MCAIC) taken together was also explored.
This combination rule showed a very high overall accuracy while
keeping anAR> 0.50. Specifically, forN = 500, 1000, and 2000, it
obtainedAHR (AR)= 0.976 (0.57), 0.985 (0.65), and 0.992 (0.70),
respectively.

REAL DATA EXAMPLE

Real data were analyzed to illustrate the performance of the
dimensionality estimation methods explored in the simulation
study. This section can be also understood as an illustration
of how to approach the problem of determining the number
of attributes in applied settings. The data employed for this
example was previously analyzed by Chen et al. (2020). The
dataset consists of dichotomous responses from 400 participants
to 20 items from an intelligence test. Each item consists of nine
matrices forming a 3 rows× 3 columns disposition, in which the
ninth matrix (i.e., the lower right) is missing. Participants must
select the missing matrix out of eight possible options. There
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TABLE 5 | Performance of the best methods by factor level.

K IQ N JK AC AT M

Method 4 5 6 0.40 0.60 0.80 500 1,000 2,000 4 8 0 0.30 0.60 0 0.50 1 D G-D

Hit rate (HR)

PArm 0.870 0.828 0.789 0.606 0.911 0.970 0.726 0.844 0.918 0.772 0.886 0.895 0.905 0.687 0.857 0.838 0.793 0.810 0.848

EGAG 0.662 0.571 0.494 0.447 0.625 0.655 0.543 0.590 0.594 0.525 0.627 0.607 0.591 0.529 0.565 0.586 0.576 0.443 0.709

FF 0.858 0.785 0.827 0.596 0.894 0.981 0.780 0.823 0.868 0.768 0.879 0.897 0.832 0.741 0.883 0.843 0.745 0.803 0.845

MCAIC 0.721 0.788 0.794 0.552 0.835 0.916 0.719 0.774 0.811 0.754 0.782 0.812 0.774 0.718 0.811 0.772 0.721 0.791 0.745

MCAIC−G 0.899 0.893 0.866 0.675 0.984 0.999 0.796 0.895 0.967 0.863 0.909 0.895 0.890 0.872 0.907 0.897 0.853 0.966 0.806

Close hit rate (CHR)

PAm 0.973 0.949 0.921 0.860 0.983 0.999 0.900 0.959 0.983 0.913 0.982 0.979 0.983 0.879 0.942 0.951 0.949 0.947 0.948

EGAG 0.951 0.929 0.875 0.855 0.954 0.946 0.898 0.926 0.931 0.902 0.934 0.944 0.934 0.877 0.879 0.934 0.942 0.891 0.945

FF 0.936 0.961 0.858 0.787 0.969 0.999 0.886 0.918 0.950 0.854 0.983 0.960 0.926 0.869 0.939 0.924 0.891 0.916 0.921

MCAIC 0.949 0.970 0.942 0.891 0.980 0.989 0.928 0.961 0.972 0.948 0.960 0.966 0.957 0.938 0.964 0.956 0.941 0.948 0.959

MCAIC−G 0.979 0.981 0.963 0.924 0.999 1 0.945 0.982 0.997 0.968 0.981 0.978 0.977 0.969 0.980 0.979 0.965 0.982 0.967

Mean error (ME)

PArm −0.076 −0.136 −0.219 −0.325 −0.100 −0.006 −0.228 −0.134 −0.068 −0.271 −0.016 0.100 −0.044 −0.487 −0.174 −0.148 −0.109 −0.150 −0.137

EGAG −0.007 −0.266 −0.498 −0.412 −0.275 −0.083 −0.240 −0.249 −0.281 −0.507 −0.007 −0.164 −0.217 −0.389 −0.169 −0.291 −0.310 −0.282 −0.232

FF −0.128 −0.258 −0.188 −0.430 −0.137 −0.008 −0.161 −0.227 −0.186 −0.309 −0.074 −0.126 −0.202 −0.245 −0.104 −0.178 −0.292 −0.217 −0.166

MCAIC 0.232 0.006 −0.207 −0.203 0.140 0.095 −0.107 0.021 0.118 −0.124 0.145 0.038 0.031 −0.037 0.047 0.042 −0.057 −0.129 0.150

MCAIC−G 0.067 −0.003 −0.129 −0.069 0.004 0.001 −0.069 0.002 0.003 −0.127 0.084 0.011 −0.012 −0.064 0.007 −0.009 −0.063 −0.056 0.013

Root mean squared error (RMSE)

PArm 0.491 0.661 0.844 1.098 0.389 0.184 0.926 0.619 0.386 0.858 0.436 0.447 0.403 1.014 0.708 0.656 0.677 0.690 0.672

EGAG 0.749 0.839 1.003 1.076 0.737 0.754 0.940 0.840 0.826 0.928 0.808 0.777 0.817 0.999 0.978 0.817 0.804 1.002 0.713

FF 0.685 0.663 0.871 1.201 0.452 0.149 0.884 0.724 0.604 0.921 0.514 0.520 0.693 0.958 0.635 0.708 0.875 0.759 0.733

MCAIC 0.671 0.555 0.668 0.925 0.477 0.348 0.748 0.600 0.533 0.669 0.596 0.555 0.616 0.719 0.562 0.624 0.706 0.642 0.625

MCAIC−G 0.416 0.405 0.539 0.781 0.134 0.024 0.646 0.411 0.205 0.513 0.395 0.425 0.441 0.502 0.406 0.429 0.528 0.339 0.551

Best results for HR, CHR, and RMSE are shown in bold, considering MCAIC−G separately. Results for HR, CHR, and RMSE that are higher than MCAIC−G are also underlined. K, number of attributes; IQ, item quality; N, sample size; JK,

ratio of the number of items to attribute; AC, correlation among the attributes; AT, attribute thresholds; M, generating model; D, DINA model; G-D, G-DINA model; PArm, parallel analysis with Pearson correlations and mean eigenvalue

criterion; EGAG, exploratory graph analysis with Gaussian graphical model; FF, factor forest; MCAIC, model comparison based on AIC; MCAIC−G, model comparison based on AIC and using the generating Q-matrix when the number

of attributes coincides with the generating number of attributes.
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TABLE 6 | Univariate ANOVAs main effect size values (η2
p ).

K IQ N JK AC AT M

Hit rate

PArm 0.014 0.251 0.076 0.041 0.117 0.009 0.005

EGAG 0.024 0.042 0.003 0.014 0.006 0.000 0.085

FF 0.009 0.218 0.013 0.031 0.041 0.034 0.005

MCAIC 0.009 0.161 0.011 0.001 0.012 0.011 0.004

MCAIC−G 0.005 0.344 0.103 0.012 0.002 0.013 0.131

Close hit rate

PArm 0.014 0.109 0.037 0.036 0.068 0.000 0.000

EGAG 0.016 0.031 0.003 0.004 0.014 0.012 0.011

FF 0.040 0.161 0.015 0.084 0.030 0.009 0.000

MCAIC 0.004 0.051 0.010 0.001 0.004 0.003 0.001

MCAIC−G 0.003 0.059 0.023 0.002 0.001 0.002 0.003

Bias

PArm 0.015 0.073 0.019 0.067 0.216 0.003 0.000

EGAG 0.074 0.035 0.001 0.111 0.018 0.008 0.001

FF 0.007 0.069 0.002 0.032 0.006 0.014 0.002

MCAIC 0.126 0.094 0.037 0.075 0.005 0.010 0.080

MCAIC−G 0.048 0.009 0.009 0.078 0.007 0.007 0.009

Absolute error

PArm 0.026 0.260 0.089 0.064 0.145 0.002 0.002

EGAG 0.029 0.056 0.005 0.013 0.014 0.005 0.071

FF 0.008 0.223 0.017 0.054 0.045 0.024 0.002

MCAIC 0.006 0.167 0.017 0.002 0.013 0.011 0.001

MCAIC−G 0.007 0.280 0.090 0.011 0.003 0.010 0.074

η2p > 0.060 and η2p > 0.140 are shown underlined and bolded, respectively. K, number of attributes; IQ, item quality; N, sample size; JK, ratio of the number of items to attribute;

AC, correlation among the attributes; AT, attribute thresholds; M, generating model; D, DINA model; G-D, G-DINA model; PArm, parallel analysis with Pearson correlations and mean

eigenvalue criterion; EGAG, exploratory graph analysis with Gaussian graphical model; FF, factor forest; MCAIC, model comparison based on AIC; MCAIC−G, model comparison based

on AIC and using the generating Q-matrix when the number of attributes coincides with the generating number of attributes.

are no missing data. The dataset is available at the edmdata
package (Balamuta et al., 2020b) and item definitions can be
found at Open Psychometrics.2 Chen et al. (2020) defined four
attributes involved in the test: (a) learn the pattern from the
first two rows and apply it to the third row, (b) infer the best
overall pattern from the whole set of matrices, (c) recognize
that the missing matrix is different from the given matrices
(e.g., applying rotations or stretching), and (d) recognize that the
missingmatrix is exactly as one of the givenmatrices. The authors
did not explicitly define a Q-matrix for this dataset because they
focused on the exploratory estimation of the item parameters.
However, they described a procedure to derive a Q-matrix from
the item parameter estimates by dichotomizing the standardized
coefficients related to each attribute (Chen et al., 2020, pp. 136).
This original Q-matrix, which is here referred to as QO, is shown
in Figure 2.

According to the findings from the simulation study, the
following steps are recommended to empirically determine the
number of attributes in CDM data: (a) if PArm, FF, and MCAIC

agree on their suggestion, retain their recommended number of
attributes; (b) if any two of these methods agree, retain their

2https://openpsychometrics.org/_rawdata/

recommended number of attributes; (c) if none of these methods
agree, explore the recommended number of attributes by those
that suggest a similar (i.e., ±1) number of attributes; (d) if these
methods strongly disagree, explore the recommended number
of attributes by each of them. Constructing several Q-matrices
is a very challenging and time-consuming process for domain
experts; thus, the Q-matrices suggested by the DFL and Hull
methods (which are already used to implement theMCmethods),
can be used as a first approximation. Domain experts should be
consulted to contrast the interpretability of these Q-matrices.

All the dimensionality assessment methods included in the
simulation study were used to assess the number of attributes of
the dataset. Their recommendations were as follows: 1 attribute
was retained by MAP and VSS1; 2 attributes by PAρ95, PAρm,
VSS2, and EGAT; 3 attributes by PArm, PAr95, and MCBIC; 4
attributes by EGAG, MCAIC, and MCr; 5 attributes by EKC
and FF; and 8 attributes by DETECT. In accordance with the
simulation study results, MAP, VSS1, and EGAT, which showed a

tendency to underestimate, suggested a low number of attributes,

while DETECT, which showed a strong tendency to overestimate,

suggested the highest number of attributes.
Following the previously described guidelines, we focused on

the recommendations of PArm, MCAIC, and FF (i.e., 3, 4, and
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TABLE 7 | Performance of the combination rules by sample size.

PArm PAr95 PAρm PAρ95 MAP EGAG FF MCAIC MCBIC MCr

N = 500

PAr95 0.816 (0.80)

PAρm 0.732 (0.93) 0.789 (0.80)

PAρ95 0.828 (0.74) 0.697 (0.92) 0.777 (0.79)

MAP 0.939 (0.52) 0.876 (0.55) 0.926 (0.50) 0.854 (0.53)

EGAG 0.848 (0.54) 0.841 (0.52) 0.837 (0.51) 0.833 (0.49) 0.904 (0.38)

FF 0.923 (0.70) 0.896 (0.70) 0.913 (0.67) 0.885 (0.67) 0.935 (0.53) 0.903 (0.52)

MCAIC 0.914 (0.66) 0.912 (0.64) 0.911 (0.62) 0.910 (0.60) 0.980 (0.47) 0.862 (0.49) 0.953 (0.65)

MCBIC 0.885 (0.61) 0.843 (0.62) 0.873 (0.58) 0.834 (0.59) 0.849 (0.57) 0.837 (0.45) 0.873 (0.62) 0.884 (0.59)

MCr 0.893 (0.56) 0.861 (0.56) 0.887 (0.53) 0.854 (0.53) 0.915 (0.42) 0.847 (0.40) 0.915 (0.56) 0.849 (0.61) 0.843 (0.52)

Single 0.726 0.687 0.687 0.646 0.507 0.543 0.780 0.719 0.572 0.584

N = 1,000

PAr95 0.891 (0.89)

PAρm 0.849 (0.96) 0.877 (0.89)

PAρ95 0.897 (0.84) 0.821 (0.95) 0.866 (0.88)

MAP 0.974 (0.53) 0.953 (0.54) 0.974 (0.51) 0.946 (0.52)

EGAG 0.900 (0.61) 0.885 (0.60) 0.884 (0.60) 0.871 (0.59) 0.899 (0.41)

FF 0.957 (0.79) 0.929 (0.80) 0.948 (0.77) 0.916 (0.78) 0.960 (0.54) 0.911 (0.58)

MCAIC 0.951 (0.73) 0.947 (0.72) 0.950 (0.71) 0.946 (0.69) 0.994 (0.46) 0.910 (0.52) 0.967 (0.70)

MCBIC 0.933 (0.70) 0.904 (0.72) 0.927 (0.69) 0.899 (0.69) 0.934 (0.55) 0.866 (0.52) 0.900 (0.73) 0.930 (0.65)

MCr 0.936 (0.63) 0.926 (0.62) 0.934 (0.61) 0.924 (0.59) 0.984 (0.38) 0.879 (0.44) 0.945 (0.60) 0.861 (0.67) 0.908 (0.56)

Single 0.844 0.815 0.818 0.781 0.522 0.590 0.823 0.774 0.684 0.645

N = 2,000

PAr95 0.937 (0.95)

PAρm 0.925 (0.98) 0.935 (0.95)

PAρ95 0.944 (0.92) 0.907 (0.97) 0.929 (0.95)

MAP 0.985 (0.53) 0.980 (0.53) 0.990 (0.52) 0.982 (0.52)

EGAG 0.935 (0.62) 0.922 (0.62) 0.927 (0.62) 0.911 (0.62) 0.883 (0.41)

FF 0.972 (0.86) 0.956 (0.87) 0.969 (0.86) 0.950 (0.87) 0.974 (0.54) 0.911 (0.61)

MCAIC 0.978 (0.78) 0.977 (0.77) 0.978 (0.77) 0.978 (0.75) 0.998 (0.45) 0.953 (0.50) 0.983 (0.73)

MCBIC 0.966 (0.80) 0.950 (0.81) 0.964 (0.79) 0.949 (0.79) 0.985 (0.53) 0.890 (0.57) 0.928 (0.81) 0.960 (0.70)

MCr 0.970 (0.65) 0.968 (0.64) 0.970 (0.65) 0.968 (0.63) 0.996 (0.36) 0.932 (0.41) 0.974 (0.62) 0.866 (0.72) 0.952 (0.59)

Single 0.918 0.900 0.909 0.884 0.526 0.594 0.868 0.811 0.791 0.675

Each cell shows the agreement hit rate (AHR) and the agreement rate (AR; within the parentheses) for each combination rule. The AHR of combination rules with AR > 0.70 are shown

in bold, and those with AR < 0.50 are shown in italics. PAr , parallel analysis with Pearson correlations; PAρ, parallel analysis with tetrachoric correlations; PAm, parallel analysis with

mean eigenvalue criterion; PA95, parallel analysis with 95th percentile eigenvalue criterion; MAP, minimum average partial; EGAG, exploratory graph analysis with Gaussian graphical

model; FF, factor forest; MCAIC, model comparison based on AIC; MCBIC, model comparison based on BIC; MCr , model comparison based on the Fisher-transformed correlations; N,

sample size.

5 attributes, respectively). Step c of the guidelines apply to this
case because none of the methods agreed on their suggestion,
but PArm and MCAIC, as well as MCAIC and FF, recommended
a close number of attributes. Thus, we explored solutions from
3 to 5 attributes in terms of model fit. A G-DINA model was
fitted using each of the Q-matrices from 3 to 5 attributes (Q3-
Q5) suggested by the DFL and Hull methods (see Figure 2).
Additionally, QO was also used to fit a G-DINA model for
comparison purposes. Table 8 shows the fit indices for each
model. Overall, Q4 obtained the best model fit. This result is in
agreement with the number of attributes defined by Chen et al.
(2020). Thus, a solution with four attributes was considered the
most appropriate. The differences between Q4 and QO were not

very pronounced: 81.25% of the q-entries were the same for both
matrices. In an applied study in which no original Q-matrix had
been prespecified,Q4 could be used as a starting point for domain
experts to achieve a Q-matrix specification that provides both
good fit and theoretical interpretability.

DISCUSSION

The correct specification of the Q-matrix is a prerequisite
for CDMs to provide accurate attribute profile classifications
(Rupp and Templin, 2008; Gao et al., 2017). Because the Q-
matrix construction process is usually conducted by domain
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FIGURE 2 | Q-matrices of the real data example. White cells represent qjk = 0 and black cells represent qjk = 1. QO is the Q-matrix from Chen et al. (2020); Q3 to Q5

are the suggested Q-matrices by DFL and Hull methods from 3 to 5 attributes.

TABLE 8 | Model-fit for the real data illustration Q-matrices.

−2LL np AIC BIC min.p(r) items(r)

Q3 8,584 59 8,702 8,938 0.006 5

QO 8,498 97 8,692 9,079 0.000 8

Q4 8,441 97 8,635 9,022 0.098 0

Q5 8,390 133 8,656 9,187 0.096 0

Best result for AIC, BIC, and items(r), as well as min.p(r) > 0.05, are shown in bold. −2LL, deviance; np, number of parameters; AIC, Akaike’s information criterion; BIC, Bayesian

information criterion; min.p(r), minimum p-value (adjusted for multiple comparisons) associated to the residual Fisher-transformed correlations; items(r), number of items showing a

statistically significant (adjusted for multiple comparisons) Fisher-transformed correlation with at least another item. Q3, Q4, Q5, Q-matrix specified by DFL and Hull methods with 3, 4,

and 5 attributes, respectively; QO, Q-matrix from Chen et al. (2020).
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experts, many Q-matrix validation methods have been recently
developed with the purpose of empirically evaluating the
decisions made by the experts. Additionally, empirical methods
to specify the Q-matrix directly from the data (i.e., Q-matrix
estimation methods), without requiring a previously specified
one, have been also proposed. The problem with the Q-matrix
estimation and validation methods proposed so far is that
they do not question the number of attributes specified by
the researcher. The assumption of known dimensionality has
not been exhaustively explored in the CDM framework. This
contrasts with the vast literature on dimensionality assessment
methods in the factor analysis framework, where this problem is
considered of major importance and has received a high degree
of attention (e.g., Garrido et al., 2013; Preacher et al., 2013). All
in all, the main goal of the present study was to explore the
performance of several dimensionality assessment methods from
the available literature in determining the number of attributes in
CDMs. A comprehensive simulation study was conducted with
that purpose.

Results from the simulation study showed that some
methods available can be considered suitable for assessing the
dimensionality of CDMs. Namely, parallel analysis with principal
components and random column permutation (i.e., PA), the
machine learning factor forest model (i.e., FF), and using the
AIC fit index to compare CDMs with different number of
attributes (i.e., MCAIC) obtained high overall accuracies (HR
≥ 0.768). PA with Pearson correlations and mean eigenvalue
criterion (i.e., PArm) obtained the highest overall accuracy, while
MCAIC obtained the best close accuracy, considering a range of
±1 attribute around the generating number of attributes. Item
quality was found to be the most relevant simulation factor,
severely affecting the performance of PArm, FF, and MCAIC.
Thus, the percentage of correct estimates varied from around
60% with low-quality items to more than 90% with high-quality
items. Apart from item quality, PArm was also affected by the
sample size and the correlation among the attributes, showing a
bad performance with highly correlated attributes. These results
are in line with previous studies (e.g., Garrido et al., 2013;
Lubbe, 2019). MCAIC and, especially, FF, were more robust
to the different explored conditions (other than item quality).
However, it should be noted that, unlike PArm and FF (which
consistently tended to underestimate the number of attributes
under almost all conditions), MCAIC bias might show a slightly
under- or overestimation tendency depending on the number of
attributes, item quality, ratio of number of items to attribute, and
generating model.

The remaining methods (i.e., MAP, VSS1, VSS2, DETECT,
EKC, EGAG, EGAT, MCBIC, and MCr) obtained an overall poor
performance, and thus their use cannot be recommended for
the assessment of CDM data dimensionality. Of these methods,
DETECT and EKC showed a heavy tendency to overestimate.
Even though EKCwas expected to perform better, it was observed
that the first reference eigenvalue was usually very high, leaving
the remaining ones at low levels. These resulted in the EKC often
performing identically to what the Kaiser-Guttman criterion
would (which is known for its tendency to overestimate the
number of dimensions). On the other hand, MAP, VSS1, EGAT,

and MCBIC showed a strong tendency to underestimate. Even
though a higher performance was expected for MAP and EGAT,
their underestimation tendency is aligned with previous findings
(Garrido et al., 2011; Golino et al., 2020). As for the MCmethods,
while both AIC and BIC have shown good results in selecting
the correct Q-matrix among competing misspecified Q-matrices
(Kunina-Habenicht et al., 2012; Chen et al., 2013), it is clear
that the higher penalization that BIC applies compared to AIC
is not appropriate for the dimensionality assessment problem.
Finally, EGAG was the only remaining method that obtained a
good performance in terms of close hit rate. However, its overall
hit rate was low, especially due to its poor performance when the
generating model was the DINA model.

Although the influence of the generating model was most
noticeable for EGAG, most dimensionality assessment methods
from the EFA framework performed worse under the DINA
model than under the G-DINAmodel. These results might be due
to the non-compensatory nature of the DINA model, in which
the relationship between the number of mastered attributes and
the probability of correctly answering an item clearly deviates
from being linear (in a more pronounced way that under the G-
DINA model, as illustrated in Figure 1). A greater depart from
linearity might produce a greater disruption to the performance
of all the methods that are based on correlations (e.g., PA, FF,
EGA). On the contrary, the MCmethods performed better under
the DINA model. Since the MC methods are precisely modeling
the response process, they benefit from the parsimony of reduced
models. The performance of the dimensionality assessment
methods under other commonly used reduced CDMs (e.g., the
deterministic inputs, noisy “or” gatemodel or DINO; Templin and
Henson, 2006) is expected to follow a similar pattern as the one
obtained for the DINA model.

An important finding regarding the MC methods is that
the performance of the variants that made use the generating
Q-matrix (e.g., HR = 0.886 for MCAIC−G) was notably better
than that of their corresponding methods (e.g., HR = 0.768
for MCAIC). Given that the Q-matrices specified by the DFL
and Hull methods obtained a very high overall recovery rate
(QRR = 0.949), these results imply that a small improvement
in the quality of the Q-matrices might have a big impact on the
dimensionality assessment performance of the MC procedures.
This reiterates the importance of applying empirical Q-matrix
validation methods such as the Hull method, even though
the improvement over the original Q-matrix (be it empirically
estimated or constructed by domain experts) might seem small.

The exploration of combination rules showed that PArm and
FF often agreed on the recommended number of attributes
(AR ≥ 0.70), providing a very high combined accuracy (AHR
≥ 0.923). FF and MCAIC obtained an even higher accuracy
(AHR ≥ 0.953) with a slightly lower agreement rate (AR ≥

0.65). When these three methods agree on their number of
attributes, which occurred in more than 60% of the overall
conditions, the percentage of correct estimations was, at least,
of 97.6%. Given these results, the following guidelines can be
followed when aiming to empirically determine the number of
attributes in CDM data: (a) if PArm, FF, and MCAIC agree on
their suggestion, retain their recommended number of attributes;
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(b) if any two of these methods agree, retain their recommended
number of attributes; (c) if none of these methods agree,
explore the recommended number of attributes by those that
suggest a similar (i.e., ±1) number of attributes; (d) if these
methods strongly disagree, explore the recommended number of
attributes by each of them. The number of attributes provided
by the dimensionality assessment methods should be understood
as suggestions; the final decision should consider theoretical
interpretability as well.

These guidelines were used to illustrate the dimensionality
assessment procedure using a real dataset. The number of
suggested number of attributes greatly varied from 1 attribute
(MAP and VSS1) to 8 attributes (DETECT). The best three
methods from the simulation study, PArm, MCAIC, and FF
recommended 3, 4, and 5 attributes, respectively. After inspecting
the model fit of the Q-matrices suggested by the DFL and Hull
methods from 3 to 5 attributes, it was found that 4 was the
most appropriate number of attributes, which was consistent
with Chen et al. (2020). The interpretability of the Q-matrices
suggested by the DFL and Hull method should be further
explored by domain experts, who should make the final decision
on the Q-matrix specification.

The present study is not without limitations. First, the
CDMs used to generate the data (i.e., DINA and G-DINA)
were also used to estimate the models in the MC methods. In
applied settings, the saturated G-DINA model should be used
for both estimating/validating the Q-matrix and assessing the
number of attributes to make sure that there are no model
specification errors. After these two steps have been fulfilled,
item-level model comparison indices should be applied to check
whether more reduced CDMs are suitable for the items (Sorrel
et al., 2017). The main reason why the DINA model was used
to estimate the models in the MC methods (whenever the
generating model was also the DINA model) was to try to
reduce the already high computation time of the simulation
study. Nevertheless, it is expected that the results of these
conditions would have been similar if the G-DINA model were
used to estimate these models: it provides similar results as
the DINA model given that the sample size is not very small
(i.e., N < 100; Chiu et al., 2018). Second, the generalization of
the results to other conditions not considered in the present
simulation study should be done with caution. For instance,
the range of the number of attributes was kept around the
most common number of attributes encountered in applied
settings and simulation studies. Highly dimensional scenarios
(e.g., K = 8) were not explored because the computation
time increases exponentially with the number of attributes and
the simulation study was already computationally expensive.
Hence, the performance of the dimensionality assessment
methods under highly dimensional data should be further
evaluated. In this vein, an important discussion might arise
when considering highly dimensional CDM data. As Sessoms
and Henson (2018) reported, many studies obtained attribute

correlations higher than 0.90. These extremely high correlations
imply that those attributes are hardly distinguishable, which
might indicate that the actual number of attributes underlying
the data is lower than what has been specified. It can be
argued that CDM attributes are expected to show stronger
correlations than EFA factors because attributes are usually
defined as fine-grained skills or concepts within a broader
construct. However, it is important to note that each attribute
should be still distinguishable from the others. Otherwise, the
interpretation of the results might be compromised. The proper
identification of the number of attributes might be of help in
this matter.

Finally, only one of the best three performing methods
(i.e., FF) can be directly implemented by the interested
researcher in assessing the dimensionality of CDM data, using
publicly available functions. With the purpose of facilitating
the application of the other two best performing methods,
the specific implementations of parallel analysis and model
comparison approach used in the present study have been
included in the cdmTools R package (Nájera et al., 2021). A
sample R code to illustrate a dimensionality assessment study of
CDM data can be found in Supplementary Materials.
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Mixture item response theory (IRT) models include a mixture of latent subpopulations
such that there are qualitative differences between subgroups but within each
subpopulation the measure model based on a continuous latent variable holds. Under
this modeling framework, students can be characterized by both their location on a
continuous latent variable and by their latent class membership according to Students’
responses. It is important to identify anchor items for constructing a common scale
between latent classes beforehand under the mixture IRT framework. Then, all model
parameters across latent classes can be estimated on the common scale. In the study,
we proposed Q-matrix anchored mixture Rasch model (QAMRM), including a Q-matrix
and the traditional mixture Rasch model. The Q-matrix in QAMRM can use class
invariant items to place all model parameter estimates from different latent classes on a
common scale regardless of the ability distribution. A simulation study was conducted,
and it was found that the estimated parameters of the QAMRM recovered fairly well.
A real dataset from the Certificate of Proficiency in English was analyzed with the
QAMRM, LCDM. It was found the QAMRM outperformed the LCDM in terms of model
fit indices.

Keywords: Q-matrix anchored mixture Rasch model, Q-matrix, anchor, mixture Rasch model, Rasch model

INTRODUCTION

Measurement invariance is a key assumption that enables score comparison across different groups
of respondents (Hambleton et al., 1991). In reality, the assumption may not hold and needs to be
checked empirically. In the context of Rasch measurement, different groups of respondents may
take different views on items, resulting in measurement non-invariance. Rost (1990) integrated
latent class analysis (LCA; Lazarsfeld and Henry, 1968) to the Rasch model (Rasch, 1960) and
derived the mixture Rasch model (MRM), which can be viewed as an extension of the Rasch model
that allows different groups (latent classes) of respondents to have different item parameters and
ability distributions. To the extent that these classes are substantively meaningful, the mixture
Rasch model provides a potentially important means to understanding how and why examinees
respond in different ways. It is assumed that a Rasch model holds in each class, but each class may
have different item and ability parameters. Specifically, the probability of a correct response in the
MRM can be given as:

P(Yij = 1) =

G∑
g=1

πg · P(Yijg = 1|g, θ) =

G∑
g=1

πg ·
exp(θig − bjg)

1+ exp(θig − bjg)
, (1)

where g is an index for the latent class, g = 1,..., G, i = 1,..., N examinees, πg is the proportion
of examinees for each class, θig is the latent ability of examinee i in latent class g, and bjg is the
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difficulty parameter of item j for latent class g. The MRM can
account for qualitative differences between latent classes and
quantitative differences within latent classes (Rost, 1990).

An important feature of the MRM or other mixture models
(von Davier and Yamamoto, 2007) is that the number of latent
classes must be explored from the data, which is an exploratory
approach. Usually, the Akaike information criterion (AIC),
Bayesian information criterion (BIC), or deviance information
criterion (DIC) are applied to determine the number of latent
classes but they do not always provide the same answer. Over-
or under-extraction of latent classes may occur, making the
interpretation problematic (Alexeev et al., 2011). It is desirable to
adopt a constrained approach to the identification of latent classes
when there are substantive theories or hypotheses.

Recent developments in the Q-matrix (Tatsuoka, 1983) for
diagnostic classification models (DCMs) may help with the
identification. Domain-specific assessment experts encode the
relationships that they believe exist between the diagnostic
assessment items and the latent variables that are used to classify
respondents into so-called Q-matrices. The attribute is a latent
characteristic of respondents in the Q-matrices.

Choi (2010) develop the diagnostic classification mixture
Rasch model (DCMixRM) which combines a Mixture Rasch
model with log-linear cognitive diagnostic model (LCDM;
Henson et al., 2009). In the DCMixRM, this model includes
mastery states of attributes as covariates. To be more specific,
in the measurement component, observed item responses are
jointly regressed on latent trait and attributes through the
Rasch model and the LCDM. Next, in the structural model,
ability is regressed on class membership, and class membership
is regressed on mastery profile to explain latent class as
covariates. Besides, Bradshaw and Templin (2014) develop the
Scaling Individuals and Classifying Misconceptions (SICM)
model which is presented as a combination of a unidimensional
IRT model and LCDM where the categorical latent variables
represent misconceptions instead of skills. In the SICM, IRT,
and LCDM assumed to be orthogonal as in the original
bifactor model (Gibbons and Hedeker, 1992). Theoretically,
SICM expected that subjects vary in ability even when they
possess the same misconception pattern, meaning a significant
correlation between ability and misconception pattern was not
expected or modeled.

On the other hand, we developed the Q-matrix anchor
mixture Rasch model (QAMRM) by incorporating the Q-matrix
into the MRM. The QAMRM is constrained because the number
of latent classes is specified by users rather than explored from
the data. The latent traits in the QAMRM can be compensatory
or non-compensatory. The Q-matrix contains a set of elements
qjk indicating whether attribute k is required to answer item j
correctly, and qjk = 1 if the attribute is required, otherwise it is
0. The total number of attributes and the value of qjk is assigned
by content experts. Similar Q-matrices have been adopted in IRT
to specify a priori which latent traits (components) have been
measured by which items, such as the linear logistic test model
(LLTM; Fischer, 1973), the multicomponent latent trait model
(Whitely, 1980), the loglinear multidimensional IRT model
for polytomously scored items (Kelderman and Rijkes, 1994),

the multidimensional random coefficients multinomial logic
model (Adams et al., 1997), the multidimensional componential
IRT model for polytomous items (Hoskens and De Boeck,
2001), and the multicomponent latent trait model for diagnosis
(Embretson and Yang, 2013).

The QAMRM uses the Q-matrix to check whether different
classes have different measurement characteristics. The utility of
this approach lies in the fact that the numbers of latent classes,
immediately observable through the Q-matrix, are defined in
advance and can be used to help explain item level performance
to discover how members in one class differ from another. It
is these Q-matrix differences in response propensities that help
explain the potential causes of these differential measurement
characteristics.

The approach proposed in this study provides the Q-matrix
by means of a design matrix describing the composition of
the different classes. We begin below by illustrating how the
QAMRM can be viewed as incorporating features from the
Q-matrix, and then through the Q-matrix to establish class
invariant items and allow all model parameter estimates across
latent classes to be on a common scale regardless of the
ability distribution.

THE Q-MATRIX ANCHOR MIXTURE
RASCH MODEL

We adapted Figure 1 from Wright and Stone (1979) about the
Rasch model to express the response difference between the
Rasch model, MRM, and QAMRM.

In the Rasch model diagram, person ability θi and item
difficulty bj jointly determine response P(yij). In the MRM
diagram, conditional on latent class g, person ability θig and item
difficulty bjg jointly determine response P(yijg). In the QAMRM
diagram, conditional on class g(α), person ability θig (α) and item
difficulty bjg (α) jointly determine response P(Yijg (α)). When there
is no Q-matrix, the number of classes is estimated from data, the
QAMRM simplifies to the MRM; when there is only single class,
the MRM simplifies to the Rasch model.

The QAMRM has multiple classes that follow the Q-matrix
design matrix. Like the MRM, it assumes that there may be
heterogeneity in response patterns at different classes which
should not be ignored (Mislevy and Verhelst, 1990; Rost, 1990),
but should consider the Q-matrix to form the number of classes
beforehand, rather than forming the number of classes during the
parameter estimation. Viewed in this way, the Q-matrix inside the
QAMRM captures the association between the items and classes.
The probability of getting a correct response in the QAMRM can
be given as follows:

P(Yij = 1) =

G∑
g(α)=1

πg(α) · P(Yijg(α) = 1|g(α), θ(α)) =

G∑
g(α)=1

πg(α) ·
exp(θig(α) − bjg(α))

1+ exp(θig(α) − bjg(α))
, (2)

Frontiers in Psychology | www.frontiersin.org 2 March 2021 | Volume 12 | Article 564976127

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-12-564976 February 26, 2021 Time: 20:15 # 3

Tseng and Wang QAMRM

FIGURE 1 | Comparison among the Rasch model, MRM, and QAMRM.

where Yijg (α) is the score of examinee i (i = 1, . . ., N) on item
j (j = 1, . . ., J) in class g conditional on attribute profile α

(α = α1, . . ., αK)’, θig (α) is the latent ability of examinee i within
class g conditional on attribute α, and bjg (α) is the difficulty
parameter of item j for class g conditional on attribute α. Like
the exploratory MRM, there is only one mixing proportion/
structural parameter/latent class membership probability in the
QAMRM, πg (α), which is the probability of being in class g
conditional on attribute pattern α.

THE Q-MATRIX SETS CLASS INVARIANT
ITEMS A PRIORI IN QAMRM

Paek and Cho (2015) posit four scenarios to establish a common
scale across latent classes in MRM and suggest proposing the use
of class-invariant items, which was also suggested by von Davier
and Yamamoto (2004). Those invariant items have the same item
difficulties across latent classes. Once a set of class invariant items
are available, this ensures a common scale across latent classes.

The challenge in MRM is to identify class invariant items,
because selecting the best measurement model regarding the
numbers of item parameters, latent groups, and dimensions are
mainly decided by statistical procedure post hoc. Some studies
exist in the MRM literature (e.g., Cho et al., 2016), where a
statistical procedure was applied as an attempt to locate class
invariant items in real data analyses, but how to find class
invariant items in the context of MRM until now remains unclear.

Paek and Cho (2015) suggest the use of class invariant items to
recover the parameter differences correctly in both item profiles
and ability distributions for latent classes when those differences
exist simultaneously in MRM; in QAMRM we do not need to
find class invariant items by statistical procedure post hoc to
let all model parameter estimates across latent classes be on
a common scale because the Q-matrix has already done that
a prior. The invariant items in MRM are data driven, but in
QAMRM, even though the latent classes follow different ability
distributions in terms of their means, we still can easily set
invariant items in QAMRM through the Q-matrix a priori.
Even though there are no ability distributions in the latent
class model, through the Q-matrix being set beforehand, the

invariance parameters of the DINA model (de la Torre and Lee,
2010) and LCDM model (Bradshaw and Madison, 2016) still hold
when the model fit the data.

LCDM is a flexible model that allows the relationships
between categorical variables to be modeled using a latent
class model, because most cognitive diagnosis models are
typically parameterized to define the probability of a correct
response, LCDM is re-expressed in terms of the log-odds of
a correct response for each item. In addition, von Davier
(2005) discusses the General Diagnostic Model (GDM) as a
general approach to log-linear models with latent variables,
where the latent variables are both continuous and discrete
in addition to focusing on ordered responses for items. As a
special case, the GDM general definition easily incorporates
LCDM with dichotomous latent variables for dichotomous (von
Davier, 2014). Besides, Hong et al., 2015 combines DINA model
and non-compensatory item response theory to form DINA-
NIRT model, which tries to combine continuous and discrete
latent variables in cognitive diagnosis. In contrast, the DINA-
NIRT is a special case of LCDM because it does not have
compensatory attributes. The QAMRM combines continuous
and discrete latent variables in the same framework, which
includes compensatory (disjunctive) and non-compensatory
(conjunctive) models.

In compensatory QAMRM, a low value on one latent variable
can be compensated for by a high value on another latent variable,
so it is not necessary to master all attributes that are required
by an item to produce a correct response within a class. On the
contrary, in non-compensatory QAMRM, a low value on one
latent variable cannot be compensated for by a high value on
another latent variable, so it is necessary to master all attributes
that are required by an item to produce a correct response within
a class. In the QAMRM, the relationship among latent variables,
either compensatory or non-compensatory, is assumed to be
identical across classes.

Substantive theories can help decide the numbers of attributes
and classes prior to parameter estimation, as done in the
Q-matrix. As an example, let there be 14 items measuring three
binary attributes in the QAMRM. In total, there will be eight
(23) attribute profiles, which are called classes g1-g8 as shown in
column 1 in Table 1.
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TABLE 1 | Class, Q-matrix and item difficulty for 14-item 3 attributes QAMRM.

Class Q-matrix Non-compensatory Compensatory

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

α1 α2 α3 Item α1 α2 α3 Item g1 g2 g3 g4 g5 g6 g7 g8 Item g1 g2 g3 g4 g5 g6 g7 g8

g1 0 0 0 1 1 0 0 1 2a 2 2 2 1 1 1 1 1 2 2 2 2 1 1 1 1

g2 0 0 1 2 0 1 0 2 2 2 1 1 2 2 1 1 2 2 2 1 1 2 2 1 1

g3 0 1 0 3 0 0 1 3 2 1 2 1 2 1 2 1 3 2 1 2 1 2 1 2 1

g4 0 1 1 4 1 1 0 4 2 2 2 2 2 2 1 1 4 3 3 2 2 2 2 1 1

g5 1 0 0 5 1 0 1 5 2 2 2 2 2 1 2 1 5 3 2 3 2 2 1 2 1

g6 1 0 1 6 0 1 1 6 2 2 2 1 2 2 2 1 6 3 2 2 1 3 2 2 1

g7 1 1 0 7 1 1 1 7 2 2 2 2 2 2 2 1 7 4 3 3 2 3 2 2 1

g8 1 1 1 8 1 0 0 8 2 2 2 2 1 1 1 1 8 2 2 2 2 1 1 1 1

9 0 1 0 9 2 2 1 1 2 2 1 1 9 2 2 1 1 2 2 1 1

10 0 0 1 10 2 1 2 1 2 1 2 1 10 2 1 2 1 2 1 2 1

11 1 1 0 11 2 2 2 2 2 2 1 1 11 3 3 2 2 2 2 1 1

12 1 0 1 12 2 2 2 2 2 1 2 1 12 3 2 3 2 2 1 2 1

13 0 1 1 13 2 2 2 1 2 2 2 1 13 3 2 2 1 3 2 2 1

14 1 1 1 14 2 2 2 2 2 2 2 1 14 4 3 3 2 3 2 2 1

aThe 2 represents the label we are using for the threshold in Item 1. Therefore, the whole line to label the first threshold of Item 1 is 2. More importantly, each parameter
with a label of 2 in Item 1 will be equated, thus providing the same value for the estimated threshold. The label 2 between each item is different; the 2 is the label, not the
number.

Columns 2–4 give the attribute profiles for g1-g8. Persons in g1
(0,0,0) have not mastered any of the three attributes; persons in g2
(0,0,1) have mastered α3 but have not mastered α1 and α2; and so
on for the other classes. Note that we follow substantive theories
to set g classes conditional on Q-matrix (2K) when saturated by
QAMRM a priori, if the class has almost no examinees in practice
(de la Torre and Lee, 2010; Templin and Bradshaw, 2014), and we
can thus cancel out the class.

Columns 6–8 show the Q-matrix for the 14 items. For
example, item 1 measures α1, item 4 measures α1 and α2, item
14 measures α1, α2, and α3.

Columns 10–17 list hypothetical difficulties of the 14 items
for the eight classes when the attributes are non-compensatory.
For example, the difficulty of item 1 is 2 for g1-g4 but 1 for
g5-g8. Because persons in g1-g4 have not mastered the attribute
that item 1 measures (α1), the item difficulty for them would be
equally high. On the contrary, persons in g5-g8 have mastered
α1, so the item difficulty for them would be equally low. That is,
although there are eight classes, item 1 has only two difficulties,
one for g1-g4 and the other for g5-g8. Likewise, item 4 have
difficulty of 2 for g1-g6 but 1 for g7-g8. Persons in g1-g6 have
not mastered all attributes that are measured by item 4 (α1 and
α2) so the item difficulty for them would be equally high; on the
contrary, persons in g7-g8 have mastered both α1 and α2 so the
item difficulty for them would be equally low. The other items
can be interpreted similarity.

Columns 19–26 list hypothetical difficulties of the 14 items
for the eight classes when the attributes are compensatory. Item
4 have difficulty of 3 for g1 and g2, and 2 for g3-g6, and 1 for
g7 and g8. Persons in g1 and g2 have not mastered any of the
attributes that item 4 measures (α1 and α2) so the item difficulty
for them would be equally high; persons in g3-g6 have mastered

one of α1 and α2 so the item difficulty for them would be equally
median; persons in g7 and g8 have mastered both α1 and α2 so
the item difficulty for them would be equally low. In other words,
although there are eight class, item 4 has three difficulties, one
for g1 and g2, one for g3-g6, and the other for g7 and g8, and the
three difficulties are expected to be ordered. The other items can
be interpreted similarity.

The 14 item parameters were specified according to the
Q-matrix. The Q-matrix is like a bridge to connect different
latent classes together and sets item parameter constraints across
different latent classes a priori, like anchor items in different
latent classes, hence the Q-matrix in QAMRM can be considered
as the “anchor attribute.”

For illustrative purposes, the item difficulties in the Table 1
are set as integers, when in reality, they can be real numbers.
However, the ordinal nature of 4 > 3 > 2 > 1 is expected. If
the Q-matrix was not adopted, there are 112 item parameters
(assuming there were eight latent classes and 14 item parameters
in each latent class), while according to the Q-matrix, in the
non-compensatory model, each of the 14 items has two difficult
parameters for the eight classes, so the total number of difficulty
parameters is 28, in the compensatory model, six, six, and
two items have two, three, and four difficult parameters for
the eight classes, respectively, so the total number of difficulty
parameters is 38.

SIMULATION STUDY

The primary goal of this section is to demonstrate that when the
QAMRM fits the item responses, through the Q-matrix setting
invariant items, all model parameter estimates across latent
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classes are on a common scale and will be invariant regardless of
the nature of the latent ability distributions across latent classes.

In the mixture Rasch model for binary data as described by
Rost (1990) who used the model constraint ∑

δig=0 in MRM,
where δig the item difficulty of the ith item is in the gth latent
class and the summation is over items at a given g, indicating
the summation of group specific item difficulty parameters over
items is 0 within a latent group, and compared item profiles
to characterize latent groups. The constraint can be used for
scale comparability only when there is no mean difference in
a continuous latent variable. Because we do not know the
“true” mean difference in real data sets, the constraint cannot
be sufficient for all empirical data sets (Cho et al., 2016). An
alternative to identifying a common scale is by making the mean
of the item parameters on latent ability zero (Wu et al., 1998), and
when calculating every item difficulty parameter in latent classes
conditional on Q-matrix, the QAMRM uses this setting.

Several aspects of the simulated data were held constant:
the number of attributes was fixed to K = 3, test length to
J = 14; the item parameters were generated as follows. For non-
compensatory QAMRM (in Table 1 columns 10–17), each item
had two levels of difficulty and the item parameter was set at
either −2 or 2. For compensatory QAMRM (in Table 1 columns
19–26), an item could have 2–4 levels of difficulty. When there
were two levels (items 1–3, 8–10), the item parameter was set at
−2 or 2; When there were three levels (items 4–6, 11–13), the
item parameter was set at−2, 1, or 2. When there were four levels
(items 7, 14), the item parameter was set at −2, −1, 1, or 2. The
eight classes were uniformly distributed, meaning that the mixing
proportion for each class was 12.5%. There were three sample
sizes (1,000, 2,000, and 4,000) for the latent ability distributions
that involve the QAMRM model, with ability distributions with
means µθ=0.0 and a common standard deviation σθ=1.0 been
used. Note that the mixture Rasch model is employed here for
discussion, where the slope parameters of items in the item
response function is unity. Therefore, the difference in σ2

g
does

not pose a problem in establishing a common scale between latent
classes (Paek and Cho, 2015).

A total of 1,000 replications were generated under each
condition. The item parameters were estimated via an EM
implementation of the marginal maximum likelihood estimation
(MMLE/EM) that was implemented using the computer program
Mplus (Muthén and Muthén, 2021). In the EM estimation,

TABLE 2 | Bias and 95% coverage rate for the item parameters in the
simulation study.

Sample size Non-compensatory Compensatory

Bias Coverage Bias Coverage

1,000 0.01 0.95 0.00 0.96

2,000 0.00 0.95 0.00 0.95

4,000 0.00 0.95 0.00 0.95

The detail simulation results about bias and coverage rate for individual parameters
can be found through the link: https://www.dropbox.com/sh/b3sb3ju4swk1pmi/
AABpbXMRLXFji52PfHmNbi0Za?dl=0.

maximum likelihood optimization was done in two stages. In
the initial stage, 20 random sets of initial values were generated.
An optimization was carried out for 10 iterations using each of
the 20 random sets of initial values. The final values from the
four optimizations with the highest log-likelihoods were used
as the starting values in the final stage optimizations (Muthén
and Muthén, 2021). The problems with the local maximum in
the QAMRM did not occur because the number of classes was

TABLE 3 | ECPE Q-Matrix and the skill profile.

Skill profile (α1, α2, α3) Q-matrix

Class α1 α2 α3 Item α1 α2 α3

g1 0 0 0 1 1 1 0

g2 0 0 1 2 0 1 0

g3 0 1 0 3 1 0 1

g4 0 1 1 4 0 0 1

g5 1 0 0 5 0 0 1

g6 1 0 1 6 0 0 1

g7 1 1 0 7 1 0 1

g8 1 1 1 8 0 1 0

9 0 0 1

10 1 0 0

11 1 0 1

12 1 0 1

13 1 0 0

14 1 0 0

15 0 0 1

16 1 0 1

17 0 1 1

18 0 0 1

19 0 0 1

20 1 0 1

21 1 0 1

22 0 0 1

23 0 1 0

24 0 1 0

25 1 0 0

26 0 0 1

27 1 0 0

28 0 0 1

α1, Morphosyntactic rules; α2, Cohesive rules; α3, Lexical rules.

TABLE 4 | Comparisons of model-data fit among the QAMRM, LCDM.

Model AIC BIC ABIC

LCDMa 85641.43 86125.81 85868.44

QAMRM 85131.55 85568.09 85336.14

Hierarchical LCDMb 85638.63 86045.08 85829.21

Hierarchical QAMRM 85125.80 85538.42 85319.18

aLCDM = log-linear cognitive diagnostic model; More details on these models can
be found in Templin and Hoffman (2013).
bHierarchical LCDM; More details on these models can be found in Templin and
Bradshaw (2014).
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TABLE 5 | Skill profile distributions obtained for the QAMRM, LCMD.

Skill profile QAMRM LCDMa Skill profile Hierarchical LCDMb Hierarchical QAMRM

(0,0,0) 0.44 0.30 (0,0,0) 0.34 0.44

(0,0,1) 0.11 0.13 (0,0,1) 0.11 0.08

(0,1,0) 0.00 0.01 (0,1,1) 0.18 0.13

(0,1,1) 0.10 0.18 (1,1,1) 0.38 0.34

(1,0,0) 0.00 0.01

(1,0,1) 0.01 0.02

(1,1,0) 0.00 0.01

(1,1,1) 0.33 0.35

aTemplin and Hoffman (2013).
bTemplin and Bradshaw (2014).

TABLE 6 | ECPE Q-matrix and hierarchical QAMRM item difficulty parameter estimates.

Item Skill Skill profile (α1, α2, α3)

α1 α2 α3 (0,0,0) (0,0,1) (0,1,1) (1,1,1)

1 1 1 0 −1.98 −1.98 −2.04 −3.99

2 0 1 0 −2.30 −2.30 −3.42 −3.42

3 1 0 1 −0.01 −0.01 −0.01 −2.08

4 0 0 1 −0.31 −2.54 −2.54 −2.54

5 0 0 1 −2.27 −5.14 −5.14 −5.14

6 0 0 1 −1.95 −4.18 −4.18 −4.18

7 1 0 1 −0.43 −1.58 −1.58 −4.98

8 0 1 0 −3.09 −3.09 −4.93 −4.93

9 0 0 1 −0.68 −2.14 −2.14 −2.14

10 1 0 0 −0.42 −0.42 −0.42 −3.73

11 1 0 1 −0.42 −1.86 −1.86 −4.10

12 1 0 1 2.68 0.30 0.30 −1.98

13 1 0 0 −1.45 −1.45 −1.45 −3.73

14 1 0 0 −0.68 −0.68 −0.68 −2.26

15 0 0 1 −2.20 −5.01 −5.01 −5.01

16 1 0 1 −0.37 −1.62 −1.62 −3.77

17 0 1 1 −2.94 −2.94 −4.54 −4.54

18 0 0 1 −2.11 −3.70 −3.70 −3.70

19 0 0 1 −0.14 −2.83 −2.83 −2.83

20 1 0 1 1.88 0.49 0.49 −2.16

21 1 0 1 −0.83 −2.46 −2.46 −3.69

22 0 0 1 1.06 −2.56 −2.56 −2.56

23 0 1 0 −1.62 −1.62 −4.31 −4.31

24 0 1 0 0.46 0.46 −1.12 −1.12

25 1 0 0 −0.50 −0.50 −0.50 −1.79

26 0 0 1 −0.86 −1.98 −1.98 −1.98

27 1 0 0 1.09 1.09 1.09 −1.34

28 0 0 1 −1.35 −3.97 −3.97 −3.97

The syntax and detail analysis results can be found in: https://www.dropbox.com/sh/b3sb3ju4swk1pmi/AABpbXMRLXFji52PfHmNbi0Za?dl=0.
For items 1, 3, 11–12, 16–17, and 20–21, by means of the Q-matrix we can see all of these items measuring two attributes, with those inside QAMRM compensatory.
Take item 1 for example; item 1 measures attributes α1 and α2; if the examiner masters attribute α1 and α2, he will have a high probability to answer the item 1 correctly,
with the item difficulty in item 1 being−3.99, while if the examiner does not master attributes α1 and α2 at the same time, and just masters attribute α2 compensatorily, he
will have a moderate probability to answer the item correctly, with the item difficulty becoming−2.04. However, if the examiner does not master attributes α1 and α2, he
will have a low probability of answering the item correctly, with the item difficulty becoming−1.98. The other items can be interpreted similarly.
If the examiner doesn’t master any skill, he will fall into latent class (α1, α2, α3) = (0, 0, 0) and will have the lowest probability of correctly answering all the items. If the
examiner just masters the α3 skill, but does not master the α1 and α2 skills, the examiner will fall into (α1, α2, α3) = (0, 0, 1), and the examine will have a higher probability
of correctly answering items 4–6, 9, 15, 18–19, 22, 26, 28 than the examiner who hasn’t mastered the α3 skill. The details can be seen in Table 6. The other items can
be interpreted similarly.
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specified by the user rather than explored from the data as in
finite mixture models.

The parameters in QAMRM included the mixing proportion,
latent class membership conditional on the attribute profile
specific item parameters, and the population parameters of latent
class conditional on the attribute profile specific continuous
latent variable. In the QAMRM, the Q-matrix was adopted
to constrain the item parameters to be invariant across latent
classes, which could reduce a large number of item parameters
and improve parameter estimation (see Table 1). Take non-
compensatory QAMRM in the simulation as an example, the
total parameters to be estimated were 36, including seven mixing
proportion parameters (the mixing proportion parameters
should add up to 1, so only seven parameters could be estimated
when there were three latent attributes and eight latent profiles),
one variance parameter, and 28 item parameters for the 14
items which were specified according to the Q-matrix. If the
Q-matrix was not adopted, the model became the MRM,
which would estimate 120 parameters, including 112 item
parameters (assuming there were eight latent classes and 14
item parameters in each latent class), seven mixing proportion
parameters, and one variance parameter. Such a large number of
parameters would require a large sample size, which would be a
practical constraint.

To evaluate the parameter recovery, we computed the bias, the
95% coverage rate for the item parameter estimates in Table 2.
Due to enhance readability, we do not report bias and coverage
rate for individual parameters; rather, we show the mean bias and
mean coverage rate across all parameters in Table 2.

The EM estimation method yielded very small bias. Besides,
the mean coverage was very close to 95%. The results of the
simulated data analysis indicate that the invariance property of
the QAMRM model is absolute in that the parameter estimates
were obtained using different calibration samples. By means
of the Q-matrix setting invariant items a priori in QAMRM,
all model parameter estimates across latent classes to be on a
common scale, which does not require any transformation for
them to be comparable.

REAL DATA ANALYSIS

We used the Certificate of Proficiency in English (ECPE) data,
which is available in the R package CDM (Robitzsch et al., 2011–
2014), to demonstrate the advantages of the QAMRM over the
LCDM. The ECPE data consist of responses from 2,922 test-
takers to 28 items, with each item measuring one or two out
of three skills. The data has been analyzed with the LCDM
by Templin and Hoffman (2013) and Templin and Bradshaw
(2014) and with the GDM by von Davier (2014). As shown
previously, when analyze the ECPE data, the LCDM and GDM
are mathematically equivalent (von Davier, 2014), hence we fit
the QAMRM to the data using Mplus and compared the results
with those under the LCDM (Templin and Hoffman, 2013;
Templin and Bradshaw, 2014).

The Q-matrix used in ECPE example was the result of
psychometric analyses on the ECPE by Buck and Tatsuoka (1998).

The analyses showed that items of the test were likely to measure
three distinct skills. The left side of Table 3 shows the skill profile
and the right side of Table 3 shows Q-matrix that maps each item
to the three skills. As shown, eight items measure only one skill,
seven items measure two skills, and zero items measure three
skills. The morphosyntactic (α1), cohesive (α2), and lexical (α3)
skills were each measured by 13, 6, and 18 items, respectively.

Therefore, we only report the skill distributions with latent
class pattern and model fit results with the values published
by Templin and Hoffman (2013) and Templin and Bradshaw
(2014) which agree with those obtained from the CDM R-package
(Robitzsch et al., 2011–2014).

We use AIC, BIC, and sample-size adjusted BIC (ABIC)
to select the best model (Templin and Bradshaw, 2014), the
information criteria selected the best model by small value.
Table 4 presents AIC, BIC, and ABIC for the QAMRM,
LCDM. It appears that the QAMRM had lower AIC (85131.55–
85641.43), BIC (85568.09–86125.81), and ABIC (85336.14–
85868.44). Table 5 shows the distributions of the eight skill
profiles (classes) obtained from the QAMRM, LCDM. The
distributions were very similar across models and only four skill
profiles were substantial: (0,0,0), (1,0,0), (1,1,0), and (1,1,1).

Templin and Hoffman (2013) analyzed a sample of 2,922
examinees who took the ECPE with the non-hierarchical LCDM.
But in the ECPE example, the data and results suggest a
linear attribute hierarchy: Examinees must master Attribute
3 (lexical rules) before mastering Attribute 2 (cohesive rules)
before mastering Attribute 1 (morphosyntactic rules). Gierl et al.
(2007) call this structure a linear hierarchy, where mastery of
each attribute follows a linear progression. Therefore, Templin
and Bradshaw (2014) introduce the hierarchical LCDM where
attribute hierarchies are present, the model fit of hierarchical
LCDM shown at the bottom of Table 4, the hierarchical LCDM
is used to test for the presence of a suspected attribute hierarchy
in ECPE, through model fit which confirming the data is more
adequately represented by hierarchical attribute structure when
compared to a crossed, or non-hierarchical structure.

We reanalyzed the data with hierarchical QAMRM, and
compare the model fit with hierarchical LCDM. Right column
of Table 5 shows the distributions of the four hierarchical
skill profiles (classes) obtained from the hierarchical QAMRM,
hierarchical LCDM. It also appears that the hierarchical QAMRM
had lower AIC (85125.80–85638.63), BIC (85538.42–86045.08),
and ABIC (85319.18–85829.21).

Table 6 presents Q-matrix in ECPE and hierarchical QAMRM
item difficulty parameter estimates. In items 4–10,13–15, 18–19,
22–28 only one attribute is measured, with all of these items
inside hierarchical QAMRM non-compensatory, having only two
different kinds of item difficulty; take item 4 for example; if the
examiner masters attribute α3, he will have a high probability
to answer item 4 correctly, with the item difficulty being −2.54,
while, on the other hand, if the examiner does not master
attribute α3, he will have a low probability to answer the item
correct, with the item difficulty becoming −0.31, and the other
items can be interpreted similarity.

If we only use the LCDM or Hierarchical LCDM for analysis,
a second calculation is still needed to find the probability
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of a correct response for each item, which may not easy
for practitioners.

CONCLUSION AND DISCUSSION

The QAMRM was used to describe for modeling the Q-matrix at
the mixture Rasch model. The model developed in this study used
features of a Rasch model, a restricted latent class model, and a
Q-matrix. The Q-matrix of the model provides an opportunity
to determine the number of latent class in advance through
substantive theory and not through model fitness or parameter
estimation post hoc. Information in the Q-matrix can be used
to reveal possible differences that might be due to differences
among latent classes.

A simulation study through the EM algorithm estimation was
presented to investigate the performance of the model. Generated
parameters were well recovered for the conditions considered.
The QAMRM makes it possible to describe the differential
item performance of target attributes using descriptions of
Q-matrix characteristics associated with the items compared with
characteristics associated with other items not in the same latent
classes. This description can then be used to provide the Q-matrix
with a framework within which to compare the results in their
latent classes and in the other latent classes. Examiners in each
of the latent class can be characterized by differences in attribute,
as well as by differences in response strategies, particularly at the
end of the test.

The real data comparison performed between the QAMRM,
LCDM, by means of the ECPE data, shows that when a Rasch
model is included inside the diagnostic classification models,
QAMRM achieves a more desirable result and has better fit
indices than the LCDM variants.

If we want to provide a single, continuous estimate of overall
ability and classify the subjects at the same time, we should
consider the QAMRM rather than mixture Rasch model or DCM.
In QAMRM, the Q-matrix sets class invariant items a priori,
if the Q-matrix design is not correct, then the analysis in the

QAMRM will be wrong. Kopf et al. (2015) who have discussed
anchoring strategies in details which can help to correct the
Q-matrix design. Future research can focus on the misspecify
Q-matrix design with the model unfit of the QAMRM.

On the other hand, future research can focus on the
estimation limitations of the QAMRM. Specifically, as the
number of attributes included in the Q-matrix increases and as
its complexity increases, the number of parameters estimated
by this model will also increase. In these cases, expectations
of its performance in estimated attribute mastery and item
parameters must be explored. In addition, model comparisons
using common indices such as the AIC, BIC, and ABIC must
continue to be explored, which could result to clear guidelines for
model identification. Finally, possible expansions of this model
such as the addition of a continuous ability measure to imply an
incomplete Q-matrix (much like what is used in the testlet IRT)
will be explored.
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In response to the big data era trend, statistics has become an indispensable part of

mathematics education in junior high school. In this study, a pre-test and a post-test

were developed for the six attributes (sort, median, average, variance, weighted average,

and mode) of the data distribution characteristic. This research then used the cognitive

diagnosis model to learn about the poorly mastered attributes and to verify whether

cognitive diagnosis can be used for targeted intervention to improve students’ abilities

effectively. One hundred two eighth graders participated in the experiment and were

divided into two groups. Among them, the interventionmaterials read by the experimental

group students only contained attributes that they could not grasp well. In contrast,

the reading materials of the control group were non-targeted. The results of the study

showed the following: (1) The variance and the weighted average were poorly mastered

by students in the pre-test; (2) compared with the control group, the average test

score of the experimental group was significantly improved; (3) in terms of attributes,

the experimental group students’ mastery of variance and the weighted average was

significantly improved than the pre-test, while the control group’s mastery was not. Based

on this, some teaching suggestions were put forward.

Keywords: cognitive diagnostic models, DINA, mathematics teaching, data distribution characteristics, formative

assessment

INTRODUCTION

For a long time, statistics has been the concern of a few researchers in the field of middle school
mathematics education (Burrill, 1990). The research of Garfield and Ahlgren (1988) showed that
until the 1980s, students still had few opportunities to learn statistics before entering the university.
However, since the beginning of the 21st century, the explosive growth of data accessibility has
made understanding and application of statistical literacy essential in all walks of life (Galesic
and Garcia-Retamero, 2010; Schield, 2010; Ridgway et al., 2011; Watson, 2014). Indeed, citizens
who lack statistical knowledge may not be able to distinguish between credible and unreliable
information, and it is difficult for them to make decisions based on data rather than feelings
(English andWatson, 2016). For the first time, people see the value of statistical literacy and widely
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regard it as an essential life skill for fully functional citizens
(Ridgway et al., 2011). In response to this trend, statistics has
become a focus of concern for many countries and has become
an indispensable part of the middle school math curriculum (Lee
and Lee, 2008; Arican and Kuzu, 2019). In the United States, the
National Council of Teachers of Mathematics [National Council
of Teachers of Mathematics (NCTM), 2000] explicitly regarded
data analysis and probability as one of the five content standards
for the mathematics curriculum. In China, the mathematics
curriculum standards included the content of “probability and
statistics” as an independent learning module for the first time
in 2001 (Ministry of Education of the People’s Republic of
China, 2001). Furthermore, studies have shown that an essential
part of middle schools’ statistics education is to teach students
to choose appropriate statistical methods to analyze data and
extract the information in the data (Franklin et al., 2007). In
the Curriculum Focal Points [National Council of Teachers of
Mathematics (NCTM), 2010], “analyzing and summarizing data
sets” is also regarded as one of the key points of middle school
math learning. In China’s mathematics curriculum standards,
it is clearly stated that students should master commonly used
methods of measuring the center and variation of data sets in
order to carry out an analysis. Therefore, this study will select the
data distribution characteristics: the center and variation of the
data as the research content.

Although the above statistical knowledge is highly valued,
studies have shown that there are often some problems in
the learning and teaching of this knowledge (Franklin et al.,
2007; Batanero and Díaz, 2012). Suppose we can accurately
obtain students’ mastery of relevant knowledge and conduct
analysis to provide teachers with teaching guidance. In that
case, we can help improve these learning and teaching problems
and enhance students’ ability to solve statistical problems.
Nevertheless, unfortunately, so far, most schools’ common
reporting practices in math tests are still based on classical test
theories, which means that each student can only be provided
with a total score. Although this can serve the purpose of
ranking students, selecting candidates for projects, etc., it should
be emphasized that the design of these assessments cannot
naturally provide students with more refined information about
their mastery (de la Torre and Minchen, 2014). Therefore, after
the test, many teachers can only lead all students to review
almost all the knowledge involved in the test and cannot give
targeted intervention according to each student’s knowledge
state. This not only limits the progress of students but also limits
teachers to reflect on and adjust their own teaching methods
and content. In recent decades, researchers have proposed
the cognitive diagnostic theory to solve the above problems
(Gentile et al., 1969; Embretson, 1998; Tatsuoka, 2009; Wu,
2019).

As a product of the combination of psychometrics and
cognitive psychology, the cognitive diagnostic theory is
considered the new generation of measurement theory.
Specifically, the cognitive diagnosis is a modeling approach
aimed at providing examinees’ fine-grained information on
unobservable (i.e., latent) attributes required to solve specific

items (Templin and Bradshaw, 2013). These attributes refer
to the knowledge, skills, strategies, etc., which describe mental
processing when solving the problem (Nichols et al., 1995;
Chen et al., 2012). We can analyze the students’ strengths and
weaknesses in specific learning fields to remedy students’
learning and improve teaching quality based on such
fine-grained information.

Researchers have carried out some research in statistics
or mathematics tests in middle schools based on cognitive
diagnostic theory. For example, Chen (2012) produced a
diagnostic description of urban and rural students’ cognitive
knowledge, abilities, and skills related to TIMSS 1999
mathematics items in Taiwan; Arican and Sen (2015) analyzed
the differences between Turkish and South Korean eighth-grade
students in attributes involved in the TIMSS 2011 mathematics
test and analyzed Turkish students’ strengths and weaknesses
on these attributes; Lee et al. (2011) used the data of TIMSS
2007 fourth grade mathematics test to show that when using a
specific cognitive diagnostic model, there is an incredible wealth
of fine-grained information that can be translated directly for
classroom application at the attribute level.

Although researchers have conducted some studies with
cognitive diagnosis in mathematical tests, unfortunately, most
of these studies (1) are based on large-scale assessments with a
large number of participants and many items covering a wide
range of content. Therefore, these studies may be used to provide
references for the macropolicy formulation, such as modifying
the focus of the curriculum in subsequent years, but they may
not be able to promote immediate changes in the teaching of
specific knowledge in a particular classroom; (2) use existing tests
in the analysis, which are not guided by cognitive diagnosis when
they are developed; (3) usually only use cognitive diagnosis to
analyze the test data but do not use the analysis results to carry
out targeted interventions on students, nor do they investigate
the effects of the interventions (Lee et al., 2011; Chen, 2012).

To sum up, based on the class’s actual teaching process, this
study selected a specific topic of junior high school mathematics
curriculum in China, specifically, the characteristics of the data
distribution as the research content, and used the cognitive
diagnosis to analyze the students’ knowledge mastery. Then,
guided by the analysis results, this study carried out targeted
interventions and verified the intervention effects. This research’s
primary purpose is to answer the following two questions in
the context of actual class tests: (1) how do students master
each attribute involved in the data distribution characteristics
and (2) whether the results of cognitive diagnosis can be used
to intervene with students so as to improve their mastery of
attributes effectively. By answering these two questions, this
study not only provides an example for in-service educators to
conduct cognitive diagnosis but also provides some suggestions
for classroom teaching on the data distribution characteristics
at both the classroom and individual levels. Besides, following
the cognitive diagnosis process, this study developed two sets
of instruments for measuring the knowledge about the data
distribution characteristics, which were used for pre- and post-
tests (the details will be mentioned later).
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MATERIALS AND METHODS

Participants
In this study, 105 eighth-grade students in two parallel classes
taught by the same mathematics teacher participated with no
payment offered. Among them, 52 students in the first class were
in the experimental condition, and 55 students in the other class
were in the control condition. In addition, three students in the
experimental group and two students in the control group failed
to participate on the test day. Therefore, in the end, there were 49
people in the experimental condition and 53 people in the control
condition. Gender distribution was as follows: 43 boys (42%) and
59 girls (58%) in total; 18 boys (37%) and 31 girls (63%) in the
experimental group; and 25 boys (47%) and 28 girls (53%) in the
control group.

It should be noted that although the students in the
experimental and control groups were directly grouped by class,
these students still had similar ability levels because of the
school’s class placement policy. Moreover, all participants were
taught by the same mathematics teacher, making it more likely
that students in these two classes have the same or similar
attribute mastery.

The participants were from an ordinary junior high school
in a central province of China. The educational situation in this
region is a good representative of the overall educational situation
in China.

Q-Matrix and Model
In general, in order to conduct cognitive diagnosis analysis, the
preliminary work is to determine the Q-matrix and select the
appropriate cognitive diagnosis model (CDM).

The Q-matrix is a binary matrix whose elements only take 0
or 1. In cognitive diagnosis, it represents the relations between
the test items and attributes; that is, it indicates which attributes
are required to correctly answer each item (Tatsuoka, 1983, 1985;
Henson et al., 2007; Ravand, 2016). Therefore, the Q-matrix can
guide the development of instruments from the perspective of
cognitive psychology, making it play an essential role in cognitive
diagnosis (Leighton and Gierl, 2007). The columns in the Q-
matrix represent attributes, and the rows represent items. Given
J items and K attributes, if the attribute k (k = 1, 2, . . . ,K) is
measured in item j (j = 1, 2, . . . , J), then the element qjk = 1,
otherwise qjk = 0. It should be noted that when constructing the
Q-matrix, the hierarchical structure between attributes should
be considered (Gierl et al., 2007). In the following instrument
development, the Q-matrix determined by this research will be
presented in detail.

In terms of CDMs, researchers have proposed a large
number of models in the past few decades. According to
different assumptions about the relationship between attributes,
these CDMs can be roughly divided into three categories: (1)
compensatory models, in which participants’ lack of specific
knowledge required for correct answers can be compensated
by other knowledge they mastered, such as linear logistic test
model (LLTM; Fischer, 1973) and deterministic inputs, noisy
“or” gate model (DINO; Templin and Henson, 2006); (2) non-
compensatory models, in which participants’ lack of knowledge

required for correct answers cannot be compensated by other
knowledge, such as rule space method (RSM; Tatsuoka, 1983,
2009) and deterministic inputs, noisy “and” gate model (DINA;
Haertel, 1989; Junker and Sijtsma, 2001); and (3) general models,
that is, models that can be converted into compensated or non-
compensated models after adding constraints, such as general
diagnostic model (GDM; von Davier, 2008) and log-linear CDM
(LCDM; Henson et al., 2009).

Among these models, the non-compensatory models may
be more appropriate for mathematical tests because all steps
must be successfully answered when solving a mathematical
problem, which is consistent with the assumption of the non-
compensatory models (Chen, 2012). Although theoretically, the
non-compensatory models are more suitable for the content of
this study, in the analysis process, we still considered both the
classic non-compensatory models and the compensatory models,
specifically DINA, DINO, and generalized DINA (G-DINA; de la
Torre, 2011), and compared their fitness.

Design and Procedure
This study followed an experimental design to verify the
effectiveness of the DINA model’s analysis results and the
analysis-based interventions in the context of the actual class test,
that is, a small number of participants in specific classes and
a small number of items with specific content. The study was
divided into three stages: pre-test, intervention, and post-test.
The pre- and post-tests were the same for the two groups, but
the intervention was different.

During the intervention, the experimental group was asked
to read the one-page targeted intervention materials, which
included explanations of their poorly mastered knowledge and
corresponding exercises. The control group was asked to read
the non-targeted intervention materials that contained all the
knowledge involved in the tests. In all reading materials, the
exercises were accompanied by ideas and answers. Students in
both groups had 2 days to read their materials on their own.

Before and after the intervention (also called experimental
treatment), pre- and post-tests were applied, respectively. Each
test had a proximate duration of 25min to respond to 17 items.
Moreover, the two tests were exactly the same in terms of item
format, and the items in the corresponding positions measured
the same attributes. In addition, since the composition of the
experimental group’s intervention materials was determined by
the analysis results of the DINA model, the interventions of the
experimental and the control groups started on the day after
the pre-test.

According to the Helsinki Declaration (World Medical
Association, 2013), we strictly followed the ethical principles for
psychological research. We informed all the participants of this
study’s purpose and ensured that they all understood our purpose
and the possible benefits of proper participation. It was possible
to drop out of the study, but no participant dropped out.

Instruments Development
In this study, following the development process of cognitive
diagnosis tests described below, two sets of instruments for
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measuring the knowledge about data distribution characteristics
were developed, which were used for pre- and post-tests.

The Attributes of Data Distribution Characteristics

and Their Hierarchical Structure
The quality of the diagnostic assessment is affected by how
correctly the attributes underlying the items of any given test have
been specified (Ravand, 2016). A variety of sources can be used
to define attributes involved in a test, such as test specifications,
analysis of item content, think-aloud protocol, and the results
obtained from related research (Leighton et al., 2004; Leighton
and Gierl, 2007).

Through studying the Chinese Mathematics Curriculum
Standards for Full-Time Compulsory Education, the think-aloud
protocol, and consulting experts, researchers determined the six
main attributes in the characteristics of the data distribution and
the hierarchies of these attributes. The six attributes were sort
(A1), median (A2), average (A3), variance (A4), weighted average
(A5), and mode (A6).

Then, the hierarchical structure between the above attributes
was preliminarily analyzed as follows.

First, consider the relationship between sort, average, and
median. For a set of data with odd numbers, as long as the
students master the concepts of sort and median, they can find
the median. However, for a set of data with even numbers,
students also need to calculate the average of the two numbers in
the middle. That is, they need to master the concept of average.
Therefore, the sort and average are the direct prerequisites for
the median.

Second, the average is a direct prerequisite for the variance.
Since the average is involved in the calculation of variance, the
average is a prerequisite for the variance. Moreover, there is no
such attribute. While it is a prerequisite for variance, the average
is its prerequisite. Therefore, the average is a direct prerequisite
for the variance.

Next, the average is also a direct prerequisite for the weighted
average. Only by mastering the average can students master
the weighted average, so the average is a prerequisite for the
weighted average. Furthermore, there is no such attribute. While
it is a prerequisite for the weighted average, the average is its
prerequisite. Thus, the average is said to be the direct prerequisite
for the weighted average.

Lastly, the mode is not related to other attributes. For a
particular set of data, students can find the mode of this set by
simple counting. On the other hand, if students do not master
the concept of mode, they may still master other attributes. For
this reason, the mode is independent of other attributes.

Then, we selected six students who were also in the eighth
grade to conduct think aloud. Then, the relationship between
these attributes was further analyzed through this method. This
process included three steps: training, formal experiment, and
analysis. First, the researcher explained the specific requirements
for thinking aloud and took three specific items as examples to
describe the thinking process in solving the problems. After the
students fully understood this process, we asked each student to
use the think-aloud method to report on the process of solving
10 items about the data distribution characteristics. Finally, the

students’ reports were summarized and analyzed. Based on the
above analysis and the opinions provided by the think-aloud
protocol and experts, it can be considered that the hierarchical
structure of these attributes is as follows.

Q-Matrix and Instrument Development
Based on the hierarchies, we can obtain the reachability matrix,
R, which reflects the direct and indirect connections between
attributes. If the attribute k is reachable from attribute k

′
, that

is, attribute k
′
is a prerequisite of attribute k, then rk′k =

1, otherwise, rk′k = 0. Therefore, the reachability matrix, R,
corresponding to Figure 1 is,

R =




1 1 0 0 0 0
0 1 0 0 0 0
0 1 1 1 1 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




.

The next step was to construct a set of potential items. In the case
of the six attributes in this study, if the hierarchical structure is
not considered, then the size of this set is related to the number of
attributesK (i.e., 26−1 = 63). Asmentioned above, the Q-matrix
can be used to display such a set of potential items. However, if
the attribute hierarchy is taken into consideration, how to obtain
a set of potential problems that can satisfy these hierarchies? Ding
et al. (2009) proposed that starting from the R matrix and using
the expansion algorithm, a set of potential items that conforms
to the hierarchical structure can be efficiently obtained. Based on
their method, this research obtained a set of all the potential items
that satisfy the hierarchies, denoted as initial Q-matrix, as shown
in Table 1 (if a row with all 0s was added, it can also represent all
possible knowledge states of students).

It should be pointed out that 10 items were removed from
the initial Q-matrix for the following three reasons. First, this
study’s sample size is relatively small, so if 27 items are all used, it
may bring challenges to model estimation. Second, in practice,
the attribute A1 (sort) is straightforward to be mastered by
middle school students, and it is often examined together with
the median in tests. Simultaneously, there are many (66.667%)
items related to the sort in the initial Q-matrix. Therefore, we
removed a part of those items that examined the sort without
examining the median at the same time. Third, for a daily class
test, it is unlikely to contain so many items. Therefore, based on
experts’ and teachers’ opinions, we selected 17 typical items from
the initial Q-matrix to form the final Q-matrix (Table 2).

Finally, this research developed the tests based on the final
Q-matrix. For example, according to the third row in the final
Q-matrix, the third item should only measure the attribute A3
(i.e., the average). Therefore, researchers compiled an item that
only measured the attribute A3, as shown in Table 3.

It is easy to know that this item onlymeasures the attribute A3,
which is consistent with the Q-matrix. According to this process,
the pre- and post-test papers, each containing 17 items, were
compiled. All items are multiple-choice items with four response
options, and all items are 0–1 scored, with a full score of 17.
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FIGURE 1 | The hierarchical structure of the six attributes of this study.

TABLE 1 | Initial Q-matrix.

Items A1 A2 A3 A4 A5 A6

1 1 0 0 0 0 0

2 0 0 1 0 0 0

3 1 0 1 0 0 0

4 1 1 1 0 0 0

5 0 0 1 1 0 0

6 1 0 1 1 0 0

7 1 1 1 1 0 0

8 0 0 1 0 1 0

9 1 0 1 0 1 0

10 1 1 1 0 1 0

11 0 0 1 1 1 0

12 1 0 1 1 1 0

13 1 1 1 1 1 0

14 0 0 0 0 0 1

15 1 0 0 0 0 1

16 0 0 1 0 0 1

17 1 0 1 0 0 1

18 1 1 1 0 0 1

19 0 0 1 1 0 1

20 1 0 1 1 0 1

21 1 1 1 1 0 1

22 0 0 1 0 1 1

23 1 0 1 0 1 1

24 1 1 1 0 1 1

25 0 0 1 1 1 1

26 1 0 1 1 1 1

27 1 1 1 1 1 1

Data Analysis
We conducted descriptive and inferential analyses of the
students’ responses. Specifically, the analysis of variance
(ANOVA) was used to examine the difference in average scores
between both the groups (experimental and control group) and

TABLE 2 | Final Q-matrix.

Items A1 A2 A3 A4 A5 A6

1 1 0 0 0 0 0

2 1 1 1 0 0 0

3 0 0 1 0 0 0

4 0 0 1 1 0 0

5 0 0 1 0 1 0

6 0 0 0 0 0 1

7 1 1 1 0 0 1

8 1 1 1 1 0 0

9 1 1 1 0 1 0

10 0 0 1 1 0 1

11 1 0 1 0 0 1

12 0 0 1 1 1 0

13 1 1 1 1 0 1

14 0 0 1 0 1 1

15 1 1 1 0 1 1

16 1 1 1 1 1 1

17 1 0 1 0 0 0

TABLE 3 | Item example.

Item Item content

Item 3 If the average of a set of data a, b, c, d is M, then the average of

another set of data 2a + 2, 2b + 2, 2c + 2, 2d + 2 is ().

A. 2M B. 2M + 1C. 2M + 1.5 D. 2M + 2

the moments (pre- and post-tests). We also used three CDMs
mentioned in Q-Matrix and Model to analyze the students’
responses and chose the most suitable CDM. It is then used
for item analysis and used to obtain the attributes of poor
mastery of students and students’ probability of belonging to
each knowledge state. In addition, the reliability of the model
was examined. In addition, it should be pointed out that the
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modeling with the selected CDM was carried out according to
the moment. In other words, for the selected model, a total of
two modeling was performed, and then, the person parameter
estimates were segmented by the condition. There are no missing
values. All the data analysis processes were completed in R, and
the CDM package was used.

RESULTS

Difference Analyses of the Tests Before
and After the Intervention
Table 4 shows descriptive analyses of the tests in experimental
and control conditions before and after the intervention and the
difference between these two moments.

TABLE 4 | Means and standard deviations of pre-test, post-test, and the

difference between tests in both groups.

Pre-test Post-test Pre–post

Group M SD M SD M SD

Experimental group 12.878 2.395 11.918 3.347 0.960 3.409

Control group 12.906 2.452 9.717 3.559 3.189 3.258

In order to further clarify whether the difference between
average scores in Table 4 is statistically significant, we took
an ANOVA with group (experimental and control) as an
intersubject variable and time (pre- and post-tests) as a within-
subject variable. In addition, Figure 2 shows the interaction
between time and groups in the ANOVA.

The results of the ANOVA show that the time × group
interaction is significant (F = 11.401, p = 0.001, partial η2 =

0.102). This shows that from the pre- to post-test, the difference
between the experimental group and the control group has
changed. Combining with Figure 2, we can know that (1)
the experimental and control groups did not show significant
differences in the average scores of the pre-test (b = −0.028, t =
−0.059, p = 0.953). To some extent, this confirms our previous
assumption that the knowledge mastery level of the two groups
of students should be basically the same (because the two groups
of students came from two parallel classes). (2) The experimental
and control groups showed significant differences in the average
scores of the post-test (b = 2.201, t = 3.211, p = 0.001).

In addition, it should be pointed out that students’ average

score in the post-test is lower than that in the pre-test, mainly
because the items in the post-test are more difficult. This study
took into account that the practice effect may cause the overall
students’ post-test scores to be too high, making it impossible to
distinguish the difference between the experimental group and
the control group. Therefore, although the pre- and post-test

FIGURE 2 | The illustration of time × group interaction.
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papers of this study were developed according to the same Q-
matrix, the post-test was more difficult.

Diagnosis Results of the Pre-test and
Post-test of the Two Groups
The following shows the fit of the three CDMs to the pre-test data,
and the most suitable model is selected for subsequent analysis.
Then, some reliability indicators of the model are shown. Last
but not the least, it presents the pre-test and post-test diagnosis
results of the students in two groups, which is an attribute-aspect
analysis of the pre- and post-test of the two groups.

Model Fit and Item Analysis
As mentioned earlier, we considered three CDMs (DINA, DINO,
and G-DINA). DINA and DINO are conjunctive and disjunctive
models, respectively, while G-DINA is a general model that
combines DINA and DINO (Sorrel et al., 2016). By evaluating
each model’s absolute and relative fit, the most suitable CDM can
be selected (Sessoms and Henson, 2018). Considering that the
DINA and DINO models are nested in the G-DINA model, the
DINA and DINO models will always have a lower log likelihood
(de la Torre, 2011). Therefore, the likelihood ratio (LR) test can
be used to assess whether the observed difference in model fit is
statistically significant. If LR is significantly different from 0, the
general model fits the data significantly better than the simplified
model. In addition, we present the Bayesian information criterion
(BIC) of the model, which can also measure the model fit.
The smaller the BIC, the better the model fit. Regarding the
absolute fit, we used the method proposed by Chen et al. (2012),
which is to evaluate the absolute fit. If the evaluated model fits
the data well, the maximum χ2 statistics should not be zero
significantly different.

Table 5 shows the relative fit and absolute fit indices calculated
for the G-DINA, DINA, and DINO models. Among them, the
BIC of the DINA model is the smallest. The two LR tests,
respectively corresponding to the comparison of the G-DINA
model with the DINA (LR = 124.572) andDINO (LR = 165.026)
models, are not significant (p > 0.05), which shows that the
more parsimonious models (DINA and DINO) do not result in
significant loss of fitting. Absolute item fit statistics also indicated
that the DINA model has a better fit than the other models. For
all three models, the maximum χ2 statistics were not significant
at a-level of 0.05 after applying the Holm–Bonferroni correction
(Holm, 1979). In short, the DINA model fits the pre-test best,
which is also consistent with the theoretical analysis mentioned
in Q-Matrix and Model. Thus, the DINO and G-DINA models
are discarded, and the DINA model is further examined for its
adequacy to model the post-test.

In addition, we also need to confirm whether the hierarchical
structure defined in Figure 1 and the final Q-matrix defined in
Table 2 are correct. To test the correctness of the hierarchy, we
modeled the pre-test using a saturated DINA model without
considering the hierarchical structure. The results show that the
BIC of the saturated model is 1915.794, which is slightly larger
than the simple model. According to the study of Akbay and de la
Torre (2020), this means that the structure is correct because the
simplermodel considering the hierarchical structure has a similar

TABLE 5 | Model fit indices for different cognitive diagnosis models.

LR test Absolute fit

Model Log-like BIC Np LR df p abs(fcor) max(χ2) p

G-DINA −671.300 2527 256 0.251 8.148 0.586

DINA −733.586 1749.295 61 124.572 195 0.999 0.271 5.413 1.000

DINO −753.813 1789.749 61 165.026 195 0.942 0.374 12.109 0.068

Np is the number of parameters.

TABLE 6 | Classification accuracy and consistency.

Attributes

Time Indicator Pattern A1 A2 A3 A4 A5 A6

Pre-test Accuracy 0.765 0.961 0.917 0.990 0.931 0.833 0.980

Consistency 0.784 0.980 0.931 0.980 0.902 0.824 0.961

Post-test Accuracy 0.817 0.931 0.906 0.960 0.936 0.941 0.941

Consistency 0.723 0.881 0.832 0.941 0.891 0.901 0.901

fit to the saturatedmodel where the probability for all the possible
latent classes is estimated (i.e., 26). For the Q-matrix, according
to the research of Sorrel et al. (2016), the modification of the Q-
matrix should make theoretical sense. For the test instruments
developed by this research, it is very clear whether each item
has measured specific attributes. Therefore, although a few rows
of the Q-matrix are suggested to be modified according to the
methods proposed by Chiu (2013) and de la Torre (2008), we did
not adjust the final Q-matrix.

Finally, the reliability of CDM scores was tested. According
to the pre- and post-test data, the classification accuracy and
consistency proposed by Cui et al. (2012) are calculated based
on simulation, as shown in Table 6. It can be seen that the
classification accuracy and consistency of the student pattern (i.e.,
the student’s knowledge states) are >0.75, and the classification
accuracy and consistency of the attributes are >0.9, except for a
few cases.

So far, it can be considered that by modeling the pre- and
post-test through the DINA model, we can obtain accurate
diagnosis results. The following are analyses of the items and the
attributes. Table 7 shows some information about the pre- and
post-test at the item level. It can be seen that although some
guess parameters are relatively large, the guessing parameters
and slipping parameters for most items are within a reasonable
range. As mentioned earlier, the tests are 0–1 scored, and no
points are deducted for wrong answers, which can partly explain
the larger guessing parameters. Simultaneously, due to the small
sample size, these estimates’ standard deviation may be large,
which brings some challenges to interpreting those extreme item
parameter estimates. These explanations need to be given in
conjunction with the specific item content, and interested readers
can contact us for the item content. In addition, according to the
standard of Kunina-Habenicht et al. (2009, 2012), 76.471% of the
items in the pre-test showmoderate or good fit [root mean square
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TABLE 7 | Item information.

Pre-test Post-test

Item Pc g s RMSEA Item Pc g s RMSEA

1 0.990 1.000 0.010 0.036 1 0.961 0.878 0.000 0.087

2 0.882 0.769 0.094 0.066 2 0.814 0.746 0.143 0.083

3 0.843 0.000 0.104 0.038 3 0.765 0.214 0.125 0.072

4 0.569 0.185 0.182 0.060 4 0.627 0.002 0.188 0.060

5 0.941 0.856 0.000 0.046 5 0.588 0.252 0.263 0.076

6 0.971 0.751 0.011 0.061 6 0.686 0.344 0.169 0.077

7 0.824 0.269 0.063 0.054 7 0.725 0.409 0.000 0.067

8 0.637 0.374 0.169 0.087 8 0.608 0.315 0.166 0.085

9 0.912 0.830 0.000 0.068 9 0.333 0.124 0.485 0.080

10 0.676 0.218 0.000 0.053 10 0.696 0.452 0.172 0.102

11 0.745 0.000 0.191 0.054 11 0.735 0.401 0.045 0.099

12 0.500 0.259 0.260 0.126 12 0.627 0.406 0.253 0.099

13 0.696 0.730 0.329 0.126 13 0.529 0.382 0.318 0.207

14 0.980 0.954 0.000 0.041 14 0.627 0.108 0.142 0.068

15 0.363 0.267 0.534 0.111 15 0.490 0.272 0.321 0.107

16 0.539 0.463 0.376 0.187 16 0.343 0.115 0.421 0.070

17 0.824 0.509 0.150 0.053 17 0.618 0.289 0.226 0.094

Pc is the proportion of correct; g and s are the item parameters involved in the DINAmodel,

representing the probabilities of slipping and guessing, respectively; RMSEA is the root

mean square error approximation.

TABLE 8 | The probabilities of students’ mastery of the attributes in both

conditions and moments.

Pre-test Post-test

Attributes Experimental

group

Control

group

Experimental

group

Control

group

A1 1.000 0.962 0.837 0.566

A2 0.857 0.830 0.776 0.566

A3 0.959 0.925 0.918 0.717

A4 0.551 0.717 0.878 0.679

A5 0.653 0.679 0.837 0.585

A6 0.959 0.887 0.837 0.585

error approximation (RMSEA) < 0.1], and the proportion in the
post-test is 82.353%.

The Probabilities of Students’ Mastery of the

Attributes
Table 8 shows the probabilities of students’ mastery of the
attributes. In the pre-test, the students’ mastery of the attributes
is generally good, and the probabilities of students’ mastery of
the attributes show consistent characteristics in both groups.
Specifically, students had a good grasp of A1, A2, A3, and A6 (the
probabilities are above 0.7) but had a poor grasp of A4 and A5
(the probabilities are around 0.6).

The intervention materials mentioned above were developed
based on the results of this analysis. For the experimental group,
the one-page targeted intervention materials they read only

include the explanation of A4 and A5 and the corresponding
exercises, while the materials read by the control group involve
all the six attributes, from A1 to A6.

In the post-test, compared with the control group, the
probabilities of experimental group show that the targeted
intervention was successful. Specifically, in the experimental
group, the probability of students’ mastery of A4 was increased
from 0.551 to 0.878 (χ2 = 12.800, p = 0.000), and the probability
of students’ mastery of A5 was raised from 0.653 to 0.837 (χ2 =

4.350, p = 0.037). However, in the control group, the probability
of students’ mastery of A4 was changed from 0.717 and 0.679 to
0.679 and 0.585 (χ2 = 0.179, p = 0.672;χ2 = 1.014, p = 0.314),
respectively. It indicates that from the pre-test to the post-test, the
probabilities of the experimental group students’ mastery of the
two attributes, A4 and A5, were increased obviously. However,
for the control group, the changes in the probabilities were
fluctuated and relatively smaller. What is more, the changes in
the control group were not significant. Therefore, it shows that
the post-test result of the control group, especially the students’
mastery of A4 and A5, is not as good as the experimental group.

The Probability of Students Belonging to Each

Possible Knowledge State
Table 9 shows the probability of students belonging to each
possible knowledge state, which can be seen as a more specific
expansion of Table 8. In the pre-test, although there are some
differences in the probabilities between the experimental group
and the control group, the knowledge states with higher
probability all correspond to not mastering A4 or A5 or both
of them. The results of the post-test show that except for the
knowledge state of 111111, the probability of the experimental
group students belonging to any other knowledge state is <0.1,
which indicates that the students in the experimental group
do not have a particularly poor grasp of any attribute, but
the students in the control group still have poor grasp of
certain attributes.

DISCUSSION

Through cognitive diagnosis, this study analyzed the junior
high school students’ mastery of the six attributes involved
in the data distribution characteristics and used the analysis
results to conduct targeted interventions on the students in
the experimental group. The results show that among the
attributes, students had a relatively poor grasp of A4 (variance)
and A5 (weighted average) before the intervention. After the
intervention, compared with those who read the non-targeted
material, those who read the targeted material significantly
improved their mastery of the variance and the weighted average.
These results answer the two questions raised by this research
very well.

On the one hand, the pre-test results in Table 5 directly
indicate that the probability of students mastering the attributes
A4 and A5 is low. At the same time, the analysis of the students’
knowledge states in Table 6 shows that before the intervention,
students have a higher probability of belonging to the following
knowledge states: 111111, 111001, and 101011. It is consistent
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TABLE 9 | The probability of students belonging to each possible knowledge

state in both conditions and moments.

Pre-test Post-test

Knowledge states Experimental

group

Control

group

Experimental

group

Control

group

000000 – – 0.082 0.283

100000 0.041 0.075 – –

001000 – – – –

101000 – – – –

111000 – – – –

001100 – – 0.020 0.038

101100 – – – –

111100 – – 0.061 0.094

001010 – – – –

101010 – – – –

111010 – – – –

001110 – 0.038 – –

101110 – – – –

111110 – – – –

000001 – – – –

100001 – – – –

001001 – – – –

101001 – – – –

111001 0.306 0.170 – –

001101 – – – –

101101 – – – –

111101 – 0.075 – –

001011 – – – –

101011 0.102 0.038 – –

111011 – – 0.041 0.038

001111 – – 0.061 0.113

101111 – 0.019 0.061 –

111111 0.551 0.585 0.673 0.434

In bold are the probabilities>0.1. The dashes indicate that these probabilities are<0.001.

with the analysis of attributes in Table 5 because most of these
states indicate that attribute variance or weighted average is
not mastered. In many previous studies, the weighted average
was also regarded as a difficulty (Pollatsek et al., 1981; Day
et al., 2014). However, except for a few studies, the variance is
rarely mentioned. In fact, as a measure of the data variation,
the variance is also difficult to grasp by students (Koparan,
2015). This is mainly due to the following two reasons: (1)
The calculation of variance involves multiple steps such as
calculating the average, square, and the sum of polynomials,
which makes it easy to make mistakes. (2) The concept of
variance is abstract (Sinitsky and Ilany, 2009). As for the weighted
average, it is calculated by averaging after assigning different
weights to each data. After communicating with the class’s
mathematics teacher, it was found that because she believed
that the weighted average was an extension of the average, she
did not spend much time explaining to the students in detail,
which may lead to students’ poor understanding of the concept
of weight.

On the other hand, the results show that those participants
who read the targeted material improved their mastery of the
variance and the weighted average. In contrast, those who read
the non-targeted material did not experience any significant
improvement, which reveals that the targeted reading material
is effective. In addition, since the targeted reading material was
developed based on the pre-test diagnosis results, the diagnosis
results are also valid.

According to the results of this research, some teaching
suggestions on data distribution characteristics can also be
provided. Here are some suggestions for classroom teaching
through the diagnosis results, the intervention, and the
communication with teachers. In the teaching of weighted
average, it is recommended that teachers should not only
teach students its calculation formula but also pay more
attention to the explanation of the concept of weight in the
weighted average. Considering the weight’s abstractness, it is
suggested that teachers should actively use examples from life
to help students understand the weight. On the one hand,
in the teaching of variance, it is necessary to help students
understand the concept as intuitively as possible. On the other
hand, since the calculation process of variance is relatively
complicated, more exercises should be given to students on the
variance calculation.

Furthermore, the following are some learning suggestions
on the individual level for certain knowledge states. These
knowledge states are those whose probabilities are >0.1 in the
pre-test or those who have mastered other attributes but not A4
or A5.

(1) The students with a knowledge state of 111011 only
have a poor grasp of variance, a difficult-to-understand
attribute, indicating that they have sufficient learning
ability. Therefore, it is recommended to conduct a targeted
review, grasp the basic concept, and calculation method
of variance.

(2) The students with a knowledge state of 111001 have a poor
grasp of the two attributes of weighted average and variance.
These two attributes are the attributes that the entire classes
have a poor grasp of. It is recommended that such students
review the definitions of weighted average and variance, find
examples in life to help understand, and do a certain number
of exercises.

(3) The students with a knowledge state of 111101 have a
poor grasp of the weighted average. It is recommended that
such students start with the concept of weight, grasp the
basic concept of weighted average, and do exercises to help
themselves master it.

(4) Students with a knowledge status of 101011 have a poor grasp
of the median and variance. Compared with other attributes,
especially the weighted average, it is not that difficult to
grasp the attribute of the median. It should also be noted
that the calculation of the median involves judging whether
the number of data is odd or even. Therefore, this kind of
students may not study hard and may think that they have
mastered certain attributes, when in fact they only know a
rough idea. It is recommended that they actively adjust their
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mentality, review the textbooks, and do a certain number of
exercises for the median and variance.

This study is not exempt from limitations. A major limitation
is that the post-testing items are too difficult. Consequently, the
diagnosis results show that in the post-test, the probabilities
of students’ mastery of certain attributes are lower than in the
pre-test. This brings certain difficulties to the interpretation of
the results and makes the results unintuitive. In addition, the
sample size of this study is indeed small, which brings certain
challenges to parameter estimation. Finally, the intervention
of this study can be further refined, such as conducting the
individual-based intervention.

In general, this study provides an example to show that in
the actual class tests that usually have few participants and few
items, the cognitive diagnosis can be used to obtain a relatively
accurate students’ knowledge state. Then, remedial teaching can
be developed based on these results. In other words, this study
guides in-service educators to use cognitive diagnosis to reflect
on their teaching methods, adjust teaching content, and carry out
remedial teaching in the teaching process. Finally, based on the
CDM, some suggestions for classroom teaching and individual
learning on the topic of data distribution characteristics are given.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Institutional Review Board of the Faculty of
Psychology, BNU. Written informed consent to participate in
this study was provided by the participants’ legal guardian/
next of kin.

AUTHOR CONTRIBUTIONS

HR provided original thoughts and completed the writing of
this article. NX and YL provided key technical support. SZ and
TY participated in all research procedures and gave important
guidance. All authors contributed to the article and approved the
submitted version.

FUNDING

Funding was provided by the Key Project of the Beijing
Educational Science Thirteenth Five-Year Plan Foundation in
China (Grant Number: CADA17079).

ACKNOWLEDGMENTS

Thanks to Yingshi Huang and Sijian Wang from Beijing Normal
University for their assistance in revising this article.

REFERENCES

Akbay, L., and de la Torre, J. (2020). Estimation approaches in cognitive

diagnosis modeling when attributes are hierarchically structured. Psicothema

32, 122–129. doi: 10.7334/psicothema2019.182

Arican, M., and Kuzu, O. (2019). Diagnosing preservice teachers’ understanding of

statistics and probability: developing a test for cognitive assessment. Int. J. Sci.

Math. Educ. 18, 771–790. doi: 10.1007/s10763-019-09985-0

Arican, M., and Sen, H. (2015). “A diagnostic comparison of Turkish and Korean

students’ mathematics performances on the TIMSS 2011 assessment,” in Paper

Presented at the 2015 Annual Meeting of the American Educational Research

Association (Chicago, IL).

Batanero, C., and Díaz, C. (2012). Training school teachers to teach probability:

reflections and challenges. Chil. J. Stat. 3, 3–13.

Burrill, G. (1990). Implementing the standards: statistics and probability. Math.

Teacher 83, 113–118. doi: 10.5951/MT.83.2.0113

Chen, P., Xin, T., Wang, C., and Chang, H. (2012). Online calibration methods for

the DINA model with independent attributes in CD-CAT. Psychometrika 77,

201–222. doi: 10.1007/s11336-012-9255-7

Chen, Y. H. (2012). Cognitive diagnosis of mathematics performance

between rural and urban students in Taiwan. Assess. Educ. 19, 193–209.

doi: 10.1080/0969594X.2011.560562

Chiu, C. Y. (2013). Statistical refinement of the Q-matrix in cognitive diagnosis.

Appl. Psychol. Meas. 37, 598–618. doi: 10.1177/0146621613488436

Cui, Y., Gierl, M. J., and Chang, H.-H. (2012). Estimating classification consistency

and accuracy for cognitive diagnostic assessment. J. Educ. Meas. 49, 19–38.

doi: 10.1111/j.1745-3984.2011.00158.x

Day, J., Holmes, N., Roll, I., and Bonn, D. (2014). “Finding evidence of transfer

with invention activities: teaching the concept of weighted average,” in Paper

presented at the 2013 Physics Education Research Conference (Portland, OR).

doi: 10.1119/perc.2013.pr.017

de la Torre, J. (2008). An empirically-based method of Q-matrix validation for

the DINA model: development and applications. J. Educ. Meas. 45, 343–362.

doi: 10.1111/j.1745-3984.2008.00069.x

de la Torre, J. (2011). The generalized DINA model framework. Psychometrika 76,

179–199. doi: 10.1007/s11336-011-9207-7

de la Torre, J., and Minchen, N. (2014). Cognitively diagnostic assessments

and the cognitive diagnosis model framework. Psicologia Educ. 20, 89–97.

doi: 10.1016/j.pse.2014.11.001

Ding, S. L., Zhu, Y. F., Lin, H. J., and Cai, Y. (2009). Modification

of Tatsuoka’s Q matrix theory. Acta Psychol. Sin. 41, 175–181.

doi: 10.3724/SP.J.1041.2009.00175

Embretson, S. E. (1998). A cognitive design system approach to generating

valid tests: application to abstract reasoning. Psychol. Methods 3, 380–396.

doi: 10.1037/1082-989X.3.3.380

English, L. D., and Watson, J. M. (2016). Development of probabilistic

understanding in fourth grade. J. Res. Math. Educ. 47, 28–62.

doi: 10.5951/jresematheduc.47.1.0028

Fischer, G. H. (1973). The linear logistic test model as an instrument in educational

research.Acta Psychol. (Amst) 37, 359–374. doi: 10.1016/0001-6918(73)90003-6

Franklin, C., Kader, G., Mewborn, D., Moreno, J., Peck, R., Perry, M., et al.

(2007). Guidelines for Assessment and Instruction in Statistics Education

(GAISE) Report: A PreK-12 Curriculum Framework. Alexandria, VA: American

Statistical Association.

Galesic, M., and Garcia-Retamero, R. (2010). Statistical numeracy for health: a

cross-cultural comparison with probabilistic national samples. Arch. Intern.

Med. 170, 462–468. doi: 10.1001/archinternmed.2009.481

Garfield, J., and Ahlgren, A. (1988). Difficulties in learning basic concepts in

probability and statistics: implications for research. J. Res. Math. Educ. 19,

44–63. doi: 10.2307/749110

Gentile, J., Kessler, K., and Gentil, K. (1969). Process of solving analogies items. J.

Educ. Psychol. 60, 494–502. doi: 10.1037/h0028379

Frontiers in Psychology | www.frontiersin.org 10 March 2021 | Volume 12 | Article 628607144

https://doi.org/10.7334/psicothema2019.182
https://doi.org/10.1007/s10763-019-09985-0
https://doi.org/10.5951/MT.83.2.0113
https://doi.org/10.1007/s11336-012-9255-7
https://doi.org/10.1080/0969594X.2011.560562
https://doi.org/10.1177/0146621613488436
https://doi.org/10.1111/j.1745-3984.2011.00158.x
https://doi.org/10.1119/perc.2013.pr.017
https://doi.org/10.1111/j.1745-3984.2008.00069.x
https://doi.org/10.1007/s11336-011-9207-7
https://doi.org/10.1016/j.pse.2014.11.001
https://doi.org/10.3724/SP.J.1041.2009.00175
https://doi.org/10.1037/1082-989X.3.3.380
https://doi.org/10.5951/jresematheduc.47.1.0028
https://doi.org/10.1016/0001-6918(73)90003-6
https://doi.org/10.1001/archinternmed.2009.481
https://doi.org/10.2307/749110
https://doi.org/10.1037/h0028379
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Ren et al. Remedial Learning Based on CDM

Gierl, M. J., Leighton, J. P., and Hunka, S. M. (2007). “Using the attribute hierarchy

method to make diagnostic inferences about respondents’ cognitive skills,” in

Cognitive Diagnostic Assessment for Education: Theory and Applications, eds J.

P. Leighton andM. J. Gierl (Cambridge: Cambridge University Press), 242–274.

doi: 10.1017/CBO9780511611186.009

Haertel, E. H. (1989). Using restricted latent class models to map the

skill structure of achievement items. J. Educ. Meas. 26, 301–321.

doi: 10.1111/j.1745-3984.1989.tb00336.x

Henson, R., Templin, J., and Douglas, J. (2007). Using efficient model based

sum-scores for conducting skills diagnoses. J. Educ. Meas. 44, 361–376.

doi: 10.1111/j.1745-3984.2007.00044.x

Henson, R. A., Templin, J. L., andWillse, J. T. (2009). Defining a family of cognitive

diagnosis models using log-linear models with latent variables. Psychometrika

74, 191–210. doi: 10.1007/s11336-008-9089-5

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scand. J.

Stat. 6, 65–70.

Junker, B. W., and Sijtsma, K. (2001). Cognitive assessment models with few

assumptions, and connections with nonparametric item response theory. Appl.

Psychol. Meas. 25, 258–272. doi: 10.1177/01466210122032064

Koparan, T. (2015). Difficulties in learning and teaching statistics: teacher views.

Int. J. Math. Educ. Sci. Technol. 46, 94–104. doi: 10.1080/0020739X.2014.941425

Kunina-Habenicht, O., Rupp, A. A., and Wilhelm, O. (2009). A practical

illustration of multidimensional diagnostic skills profiling: comparing results

from confirmatory factor analysis and diagnostic classification models. Stud.

Educ. Eval. 35, 64–70. doi: 10.1016/j.stueduc.2009.10.003

Kunina-Habenicht, O., Rupp, A. A., and Wilhelm, O. (2012). The impact of

model misspecification on parameter estimation and item-fit assessment

in log-linear diagnostic classification models. J. Educ. Meas. 49, 59–81.

doi: 10.1111/j.1745-3984.2011.00160.x

Lee, H. S., and Lee, J. T. (2008). “The use of intervals to help coordinate

understandings of center and spread: a preliminary report,” in Paper presented

at the 11th Conference on Research in Undergraduate Mathematics Education

(San Diego, CA).

Lee, Y. S., Park, Y. S., and Taylan, D. (2011). A cognitive diagnostic

modeling of attribute mastery in Massachusetts, Minnesota, and the U.S.

National sample using the TIMSS 2007. Int. J. Testing 11, 144–177.

doi: 10.1080/15305058.2010.534571

Leighton, J. P., and Gierl, M. J. (2007). Defining and evaluating

models of cognition used in educational measurement to make

inferences about examinees’ thinking processes. Educ. Meas. 26, 3–16.

doi: 10.1111/j.1745-3992.2007.00090.x

Leighton, J. P., Gierl, M. J., and Hunka, S. M. (2004). The attribute hierarchy

method for cognitive assessment: a variation on Tatsuoka’s Rule-Space

Approach. J. Educ. Meas. 41, 205–237. doi: 10.1111/j.1745-3984.2004.tb01163.x

Ministry of Education of the People’s Republic of China (2001). Mathematics

Curriculum Standards for Full-Time Compulsory Education (Experimental

Draft). Beijing: Beijing Normal University Press.

National Council of Teachers of Mathematics (NCTM) (2000). Principles and

Standards for School Mathematics. Reston, VA: National Council of Teachers

of Mathematics, NCTM.

National Council of Teachers of Mathematics (NCTM) (2010). Focus in Grades

6–8: Teaching with Curriculum Focal Points. Reston, VA: National Council of

Teachers of Mathematics, NCTM.

Nichols, P. D., Chipman, S. F., and Brennan, R. L. (1995). Cognitively Diagnostic

Assessment. Hillsdale, NJ: Lawrence Erlbaum Associates.

Pollatsek, A., Lima, S., and Well, A. D. (1981). Concept or computation:

students’ understanding of the mean. Educ. Stud. Math. 12, 191–204.

doi: 10.1007/BF00305621

Ravand, H. (2016). Application of a cognitive diagnostic model to a high-

stakes reading comprehension test. J. Psychoeduc. Assess. 34, 782–799.

doi: 10.1177/0734282915623053

Ridgway, J., Nicholson, J., and McCusker, S. (2011). “Developing statistical

literacy in students and teachers,” in Teaching Statistics in School

Mathematics-Challenges for Teaching and Teacher Education, eds C.

Batanero, G. Burrill, and C. Reading (Dordrecht: Springer), 311–322.

doi: 10.1007/978-94-007-1131-0_30

Schield, M. (2010). “Assessing statistical literacy: take care,” in Assessment

Methods in Statistical Education: An International Perspective, eds P.

Bidgood, N. Hunt, and F. Jolliffe (Milton: John Wiley and Sons), 133–152.

doi: 10.1002/9780470710470.ch11

Sessoms, J., and Henson, R. A. (2018). Applications of diagnostic classification

models: a literature review and critical commentary. Measurement 16, 1–17.

doi: 10.1080/15366367.2018.1435104

Sinitsky, I., and Ilany, B. S. (2009). “Conception of variance and invariance as a

possible passage from early schoolmathematics to algebra,” in Proceedings of the

Sixth Congress of the European Society for Research in Mathematics Education,

eds D. G. Viviane, S. L. Sophie, and A. Ferdinando (Lyon: Institut National De

Recherche Pédagogique), 639–648.

Sorrel, M. A., Olea, J., Abad, F. J., de la Torre, J., Aguado, D., and Lievens,

F. (2016). Validity and reliability of situational judgement test scores: a new

approach based on cognitive diagnosis models. Organ. Res. Methods 19,

506–532. doi: 10.1177/1094428116630065

Tatsuoka, K. K. (1983). Rule space: an approach for dealing with

misconceptions based on item response theory. J. Educ. Meas. 20, 345–354.

doi: 10.1111/j.1745-3984.1983.tb00212.x

Tatsuoka, K. K. (1985). A probabilistic model for diagnosing misconception

in the pattern classification approach. J. Educ. Behav. Stat. 12, 55–73.

doi: 10.3102/10769986010001055

Tatsuoka, K. K. (2009). Cognitive Assessment. An Introduction to the

Rule Space Method. New York: Routledge/Taylor and Francis.

doi: 10.4324/9780203883372

Templin, J., and Bradshaw, L. (2013). Measuring the reliability of

diagnostic classification model examinee estimates. J. Class. 30, 251–275.

doi: 10.1007/s00357-013-9129-4

Templin, J. L., and Henson, R. A. (2006). Measurement of psychological

disorders using cognitive diagnosis models. Psychol. Methods 11, 287–305.

doi: 10.1037/1082-989X.11.3.287

von Davier, M. (2008). A general diagnostic model applied to language testing data.

Br. J. Math. Stat. Psychol. 61, 287–307. doi: 10.1348/000711007X193957

Watson, J. (2014). “Curriculum expectations for teaching science and statistics,”

in Proceedings of the Ninth International Conference on Teaching Statistics,

eds K. Makar, B. deSousa, and R. Gould (Voorburg: International Statistical

Institute). Available online at: http://iase-web.org/icots/9/proceedings/pdfs/

ICOTS9_1A1_WATSON.pdf?1405041553

World Medical Association (2013). WMA Declaration of Helsinki: Ethical

Principles for Medical Research Involving Human Subjects. Ferney-Voltaire:

World Medical Association.

Wu, H. (2019). Online individualised tutor for improving mathematics learning:

a cognitive diagnostic model approach. Educ. Psychol. 39, 1218–1232.

doi: 10.1080/01443410.2018.1494819

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Ren, Xu, Lin, Zhang and Yang. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Psychology | www.frontiersin.org 11 March 2021 | Volume 12 | Article 628607145

https://doi.org/10.1017/CBO9780511611186.009
https://doi.org/10.1111/j.1745-3984.1989.tb00336.x
https://doi.org/10.1111/j.1745-3984.2007.00044.x
https://doi.org/10.1007/s11336-008-9089-5
https://doi.org/10.1177/01466210122032064
https://doi.org/10.1080/0020739X.2014.941425
https://doi.org/10.1016/j.stueduc.2009.10.003
https://doi.org/10.1111/j.1745-3984.2011.00160.x
https://doi.org/10.1080/15305058.2010.534571
https://doi.org/10.1111/j.1745-3992.2007.00090.x
https://doi.org/10.1111/j.1745-3984.2004.tb01163.x
https://doi.org/10.1007/BF00305621
https://doi.org/10.1177/0734282915623053
https://doi.org/10.1007/978-94-007-1131-0_30
https://doi.org/10.1002/9780470710470.ch11
https://doi.org/10.1080/15366367.2018.1435104
https://doi.org/10.1177/1094428116630065
https://doi.org/10.1111/j.1745-3984.1983.tb00212.x
https://doi.org/10.3102/10769986010001055
https://doi.org/10.4324/9780203883372
https://doi.org/10.1007/s00357-013-9129-4
https://doi.org/10.1037/1082-989X.11.3.287
https://doi.org/10.1348/000711007X193957
http://iase-web.org/icots/9/proceedings/pdfs/ICOTS9_1A1_WATSON.pdf?1405041553
http://iase-web.org/icots/9/proceedings/pdfs/ICOTS9_1A1_WATSON.pdf?1405041553
https://doi.org/10.1080/01443410.2018.1494819
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


ORIGINAL RESEARCH
published: 16 April 2021

doi: 10.3389/fpsyg.2021.608320

Frontiers in Psychology | www.frontiersin.org 1 April 2021 | Volume 12 | Article 608320

Edited by:

Ping Chen,

Beijing Normal University, China

Reviewed by:

Lan Shuai,

Haskins Laboratories, United States

Zhehan Jiang,

University of Alabama, United States

*Correspondence:

Yanyun Dong

maggiedong@mail.xjtu.edu.cn

Specialty section:

This article was submitted to

Quantitative Psychology and

Measurement,

a section of the journal

Frontiers in Psychology

Received: 20 September 2020

Accepted: 15 March 2021

Published: 16 April 2021

Citation:

Dong Y, Ma X, Wang C and Gao X

(2021) An Optimal Choice of Cognitive

Diagnostic Model for Second

Language Listening Comprehension

Test. Front. Psychol. 12:608320.

doi: 10.3389/fpsyg.2021.608320

An Optimal Choice of Cognitive
Diagnostic Model for Second
Language Listening Comprehension
Test
Yanyun Dong 1*, Xiaomei Ma 1, Chuang Wang 2 and Xuliang Gao 3

1 School of Foreign Studies, Xi’an Jiaotong University, Xi’an, China, 2 Faculty of Education, University of Macau, Taipa, China,
3 School of Psychology, Guizhou Normal University, Guiyang, China

Cognitive diagnostic models (CDMs) show great promise in language assessment for

providing rich diagnostic information. The lack of a full understanding of second language

(L2) listening subskills made model selection difficult. In search of optimal CDM(s) that

could provide a better understanding of L2 listening subskills and facilitate accurate

classification, this study carried a two-layer model selection. At the test level, A-CDM,

LLM, and R-RUM had an acceptable and comparable model fit, suggesting mixed

inter-attribute relationships of L2 listening subskills. At the item level, Mixed-CDMs were

selected and confirmed the existence of mixed relationships. Mixed-CDMs had better

model and person fit than G-DNIA. In addition to statistical approaches, the content

analysis provided theoretical evidence to confirm and amend the item-level CDMs. It

was found that semantic completeness pertaining to the attributes and item features

may influence the attribute relationships. Inexplicable attribute conflicts could be a signal

of suboptimal model choice. Sample size and the number of multi-attribute items should

be taken into account in L2 listening cognitive diagnostic modeling studies. This study

provides useful insights into the model selection and the underlying cognitive process for

L2 listening tests.

Keywords: cognitive diagnostic model, L2 listening subskills, model selection, mixed-CDMs, inter-attribute

relationship

INTRODUCTION

Cognitive diagnosis models (CDMs), also known as diagnostic classification models (Rupp et al.,
2010), show great promise for producing rich diagnostic information about students’ strengths and
weaknesses on a set of finer-grained attributes (Rupp and Templin, 2008). Although a wide array
of CDMs have been developed and widely used in language assessment, listening comprehension
receives little attention compared with other language skills in the second language (L2) research.

Previous studies, though sparse, have shown the feasibility of applying CDMs to L2 listening
comprehension tests and demonstrated the potential usefulness of cognitive diagnostic approaches
(CDAs) to understanding various subskills (Buck and Tatsuoka, 1998; Lee and Sawaki, 2009a;
Sawaki et al., 2009; Aryadoust, 2011; Meng, 2013; Yi, 2017). However, it is not very clear which
CDM should be used for L2 listening comprehension tests. Some studies used non-compensatory
models (e.g., Buck and Tatsuoka, 1998; Sawaki et al., 2009), whereas others concluded that
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compensatory and non-compensatory models produced striking
similar diagnostic results for listening comprehension tests
(Lee and Sawaki, 2009a). Still, others used G-DINA, which
allows compensatory and non-compensatory inter-attribute
relationships within the same test (Meng, 2013).

Selecting the right CDM(s) for a given test is of critical
importance because model selection affects the diagnostic
classification of examinees (Lee and Sawaki, 2009a) and thus
influences the accuracy of diagnostic feedback. Providing learners
with accurate diagnostic feedback to guide their remedial
learning is the ultimate goal of CDA (Lee and Sawaki, 2009b).
Wrong CDM(s) for a given dataset will lead to the wrong
classification of examinees and misleading feedback. In addition,
CDMs can provide information on the underlying inter-attribute
relationships (Yi, 2017), that is, whether a compensatory or non-
compensatory inter-attribute relationship can produce correct
answers. Wrong CDM(s) for given data will generate a wrong
interpretation of inter-attribute relationships and skill mastery
status. The sample size is also one concern. Reduced models
require a smaller sample size to be estimated accurately, although
the saturated model can provide better model-data fit at test
level compared with other reduced models; appropriate reduced
models can provide better classification rates than saturated
models, particularly when the sample size is small (Rojas
et al., 2012). Non-parametric models can accommodate small
samples, but they could not commonly use model-data fit
indices of parametric methods to compare with parametric
models. This is because it will be difficult to tell whether
parametric or non-parametric models are better for the given
data without parameter estimation. Therefore, it is inconvenient
to make a model selection with other commonly used
CDMs (Kang et al., 2019). Non-parametric models need prior
knowledge of the inter-attribute relationships (compensatory
or non-compensatory) of a given skill to decide whether a
compensatory or non-compensatory model should be selected
(Chiu and Douglas, 2013). In sum, inappropriate CDMs lead to
inaccurate diagnostic classification, wrong interpretation of skill
mastery status, and misunderstanding of inter-skill relationships.
Few empirical studies, however, have examined the model
comparison and selection for L2 listening comprehension tests,
and little is known about L2 listening inter-skill relationships.

THEORETICAL FRAMEWORK AND
LITERATURE REVIEW

Listening Comprehension Skills
Listening comprehension is the least-researched skill among
the four skills of reading, listening, writing, and speaking (Bae
and Bachman, 1998; Field, 2013). Although some researchers
assert that listening comprehension is a more integrated skill
(Levine and Revers, 1988) and not empirically multi-divisible
(Oller, 1983;Wagner, 2004), most researchers agree that listening
comprehension involves multiple subskills (Rivers, 1966; Carroll,
1972; Clark and Clark, 1977; Bae and Bachman, 1998; Buck and
Tatsuoka, 1998; Song, 2008; Rost, 2011; Field, 2013). Munby
(1978) and Richard (1983) presented a complete taxonomy of

subskills, but the inter-subskill relationships are hard to explain.
In contrast, Aitken (1978) provided a succinct taxonomy from
the communicative approach by recognizing major listening
subskills.Weir (1993) is along a similar line of defining important
listening subskills only. The idea of major listening subskills
benefits listening comprehension test development and studies
in terms of the construct validity of these tests, especially studies
with CDA (Buck and Tatsuoka, 1998; Lee and Sawaki, 2009a;
Sawaki et al., 2009; Yi, 2017).

In addition to the widely discussed issue of the divisibility
of listening comprehension (e.g., Bae and Bachman, 1998),
listening subskill relationships were manifested by factor analysis
of test-takers’ responses (Liao, 2007; Shin, 2008; Song, 2008).
Goh and Aryadoust (2015), however, argued that the structure
of interactive and interdependent listening subskills was much
more complicated than what factor analysis could represent.
This argument echoed the view of Buck (2001) that “various
types of knowledge involved in understanding language are not
applied in any fixed order—they can be used in any order,
or even simultaneously, and they are all capable of interacting
and influencing each other” (p. 3). It is worth noting that
the assertion of Buck (2001) shows the interactive and varied
subskill relationships of listening, which also implies that the
relationships among listening subskills are not yet clear.

Model Selection for L2 Listening
Comprehension Tests
Each CDM has unique assumptions about the latent attribute
relationships (e.g., compensatory or non-compensatory). Under
a compensatory CDM, successfully mastering only one or some
of the required attributes may compensate for the non-mastery
of others. In contrast, under a non-compensatory CDM, an item
can be correctly answered only if all the required attributes have
been mastered. If the assumption of a CDM does not match the
latent attribute relationships of given data, the CDM is improper
for the test and cannot offer accurate classification and diagnostic
feedback. Test-level model selection is based on clear inter-
attribute relationships. If the relationships are not clear, selecting
the most appropriate CDM(s) will be a challenge.

In the literature, both compensatory and non-compensatory
CDMs were applied to the L2 listening comprehension test.
Buck and Tatsuoka (1998) applied the rule-space model to an L2
listening comprehension test. Aryadoust (2011) used the fusion
model (FM) to a version of the International English Language
Testing System listening comprehension test, and Sawaki et al.
(2009) also used FM to the Test of English as a Foreign
Language iBT listening comprehension items. The rule-space
model and FM are both non-compensatory models. Meng (2013)
applied G-DINA to an L2 listening comprehension test. G-DINA
accommodates both compensatory and non-compensatory inter-
attribute relationships. In addition, Lee and Sawaki (2009a)
concluded that compensatory and non-compensatory models
produced strikingly comparable diagnostic results. Yi (2017),
however, argued that a compensatory model (C-RUM) was the
best to interpret the listening subskill relationships. As both
compensatory and non-compensatory CDMs were applied to L2
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listening comprehension tests in the literature, CDM selection for
L2 listening comprehension tests is still inconclusive and deserves
further exploration.

Cognitive Diagnostic Models
G-DINA model (de la Torre, 2011) is a saturated model and
considers all possible interaction effects among required subskills

for an item. It classifies examinees into 2
K∗
j latent groups based

on mastery of required skills for each item. K∗
j is the number of

attributes required for item j. α∗
lj
is the reduced attribute vector

whose elements are the required attributes for item j. If one
item needs two attributes, these two attributes lead to four latent
groups: those who mastered both attributes, one of the attributes,
or none of the attributes. Its item response function based on
P(a∗

lj
) is as follows:

P(α∗
lj) = δj0 +

K∗
j∑

k=1

δjkαlk +

K∗
j∑

k′=k+1

K∗
j −1∑

k=1

δjkk′αlkαlk′ ...

+δj12...K∗
j

K∗
j∏

k=1

αlk

δj0 is the intercept for item j, representing the baseline probability
of a correct response when none of the required subskills is
present. δjk is the main effect of mastering a single-skill αk,
representing the change in the probability of a right answer
(PRA) as a result of mastering a single skill. δjkk′ is the first-order

interaction effect due to mastering both αk and αk′ . δj12...K∗
j
is the

highest order interaction effect due to mastering all the required
subskills up to K∗

j (de la Torre, 2011). G-DINA is often used as

the benchmark model when the true model is not known (Chen
et al., 2013; Li et al., 2016).

Under the framework of G-DINA, there are some special cases
called the reduced models: DINA, DINO, A-CDM, R-RUM, and
LLM, which are used in this study and introduced as follows:

The DINA (deterministic inputs, noisy, “and” gate; Juncker
and Sijtsma, 2001) model is a special case by setting all the
parameters of G-DINA, except δj0 and δj12...K∗

j
, to zero. Thus,

DINA is a non-compensatory model, assuming that examinees
have to master all the required skills simultaneously to choose
the correct answer.

If setting the values of all the main and interaction effect
parameters of G-DINA to be the same or, in other words, the
main and interaction effects are identical to each other, then
DINO (deterministic input, noisy, “or” gate; Templin and Heson,
2006) is obtained. DINO is the compensatory counterpart of
DINA, assuming that examinees can have the same PRA whether
they master one required subskill or all.

A-CDM (additive CDM; de la Torre, 2011) can be obtained
when all the interaction effects in G-DINA are set to zero while
keeping the compensatory property. This model indicates that
mastering one subskill increases the PRA on an item, and its
contribution is independent of the other subskills.

R-RUM (Reduced Reparameterized Unified Model; Hartz,
2002) is a non-compensatory model with a log link, setting the

interaction terms to zero. It is considered a non-compensatory
counterpart of A-CDM (Hartz, 2002).

If using a logit link, setting the interaction terms to zero
and keeping the compensatory property, LLM (linear logistic
model; Hagenaars, 1990, 1993; Maris, 1999) is obtained. Similar
to A-CDM, it also assumes that the mastery of one subskill will
increase the PRA to the item.

There is another group of models, named non-parametric
models, which do not require a sample size. Because there is
no parameter estimation in non-parametric models, it is not
possible to make model comparisons with parametric models
based on common fit indices (Kang et al., 2019). Prior knowledge
of attribute relationships is required for non-parametric model
selection, but unknown attribute relationships in this study make
it more difficult to compare with parametric CDMs. As a result,
non-parametric models were not be used in this study.

The following research questions guided this study.
1. Which model is the best for the second language listening

comprehension test at the test level when the sample size is small?
2. Which model is the best for the second language listening

comprehension test at the item level when the sample size
is small?

3. What are the inter-attribute/subskill relationships of second
language listening comprehension?

METHODS

Participants
Participants were 500 freshmen (149 females and 351 males)
conveniently sampled from four universities in the northwest
region of China. They all majored in science and technology
and aged between 17 and 20 years old. This sample size is
of practical importance, although it was considered small in
previous simulation studies of CDMs (de la Torre and Lee, 2013;
Ma et al., 2016).

Instrument
L2 Listening Diagnostic Assessment (L2LDA)

L2LDA is part of the English as Foreign Language Listening
Diagnostic Test in the PELDiaG system (Personalized English
Learning Diagnosis and Guidance system) designed for the
diagnostic purpose (Meng, 2013; Ma and Meng, 2014; Du and
Ma, 2018). The original test in the PELDiaG system has two types
of items: multiple-choice items and sentence-dictation items.
Only the 19 multiple-choice items, which are dichotomously
scored, were used in this study. Sentence-dictation items were
not dichotomous and scored holistically within a score range
from 0 to 3.5 points. For the reason of convenience, these items
were excluded in this study. L2LDA has four sections of short
conversations, a long conversation, short passages, and a video
clip. The topics of it cover campus life, social life, and common
scientific knowledge, which largely reduced the possibility of bias
caused by topic preference. The participants’ total scores of the
L2LDA followed a normal distribution with amean score of 11.50
(out of a total score of 19) and a standard deviation of 4.05.
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Q-Matrix

A Q-matrix, a critical input of CDMs, specifies the relationship
between attributes and test items. Because sentence-dictations
(tapping into the attribute of Short-term Memory and Note
Taking) were excluded from this study, the attributes of Short-
term Memory and Note Taking were accordingly canceled from
the original Q-matrix (Dong et al., 2020), and then, six attributes
were retained in the Q-matrix (Table 1) for this study.

The six subskills/attributes for this study in relation to the
existing listening skill taxonomies are presented in Table 2. Their
definitions in accord with the ones identified by Meng (2013) are
the following:

A1: Sound Discrimination: Recognizing special phonological
and prosodic information, such as liaison and assimilation,
stress and weak forms, intonation.
A2: Less Frequent Vocabulary and Expressions:
Understanding less frequent words, oral expressions,
and slangs.
A3: Difficult Structures: Difficult sentence structure and
grammatical functions such as subjunctive mood, inversion,
and negation.
A4: Facts and Details: Understanding detailed expressions of
time, places, and relationships.
A5: Main Idea: Recognizing and summarizing main ideas and
major points.
A6: Situational Context and Cultural Background Inferences:
Obtaining motivations, purposes, reasons, and interactive
functions by inferring from the context, implied expressions,
and cultural background.

Data Analytical Procedure
Three major procedures were followed: (a) Model selection; (b)
Empirical comparisons between G-DINA, the most comparable
CDM with G-DINA at the test level and the selected CDM(s) at
the item level in terms of psychometric characteristics; and (c)
Content analysis that is required to confirm or amend the selected
item-level models.

CDM Selection
The R GDINA package (Ma and de la Torre, 2016) was used
for model estimation and selection. G-DINA was used as the
baseline model and was compared with the other reduced
models: DINA, DINO, R-RUM, A-CDM, and LLM. The absolute
model fit and the relative model fit were used to compare the
models. The absolute fit indices were calculated based on the
residuals between the observed and predicted Fisher-transformed
correlations of item pairs [Max.z(r)] and between the observed
and predicted log-odds ratios of item pairs [Max.z(l)]. The least
critical p-value was 1% (Chen et al., 2013). The second absolute fit
index is M2 (Maydeu-Olivares and Joe, 2006), which is a limited-
information fit statistic, and 0.05 is the critical p-value. The third
is the root mean squared error approximation (RMSEA), which
reflects the discrepancy between the predicted and the observed
tetrachoric correlation for all pairs of items. RMSEA value of 0.05
was used to assess model fit (Henson and Templin, 2007). The
fourth is the standardized root mean square residual (SRMSR),

which is the square root of the sum of the squared differences
of the observed correlation and the model implied correlation
of all item pairs. SRMSR below 0.05 indicates a good absolute
fit (Maydeu-Olivares, 2013). All the above are the absolute fit
indices provided by the G-DINA package, and they serve as
initial screening tools (Yi, 2017). Subsequently, the relative fit
indices play a more critical role in narrowing down the scope
of CDMs.−2Log-likelihood(-2LL), Akaike Information Criterion
(AIC), and Bayesian Information Criterion (BIC) values are
relative fit indices. Because−2LL always selects the saturated
model and BIC imposes the biggest penalty (Lei and Li, 2014),
AIC was used to compare G-DINA with the other models in
this study.

In addition to holistically selecting models at the test level,
CDMs were also selected at the item level. Language tests
commonly include two kinds of items in terms of how many
attributes are measured in each item: single-attribute item and
multi-attribute item. The Wald test was used to select the most
appropriate reduced CDMs for multi-attribute items (de la Torre
and Lee, 2013; Ma et al., 2016). For single-attribute items, no
distinction can bemade between general and reduced CDMs, and
then G-DINA was used. In L2LDA, Items 3, 4, 10, 11, 13, 16,
and 19 are two-attribute items, but all other items were single-
attribute. The reduced CDM whose p-value of Wald statistics
was > 0.05 was accepted. When more than one reduced model
was acceptable, the model with the largest p-value stayed. If
DINA or DINO was one of the retained models, the DINA
or DINO models were preferred over the other three models
because of their simplicity. If all reducedmodels were rejected for
an item, G-DINA was chosen. Thus, Mixed-CDMs were formed
for this test.

CDM Comparison
Accordingly, after the selection of Mixed-CDMs, psychometric
properties (i.e., absolute fit, absolute item fit, relative fit, person
fit, and attributes classification reliability) under G-DINA as a
baseline, the most comparable CDM with G-DINA at the test
level, Mixed-CDMs, and G-DINA were compared. The absolute
fit and relative fit used the same indices as in the test-level model
selection. The lzindex was used for person fit. The lzindex is
standardized, so a value of 0.0 reflects an ideally perfect typical
response string (Drasgow et al., 1985). lz > 2.0 indicates over-
fitness, whereas lzbelow −2.0 indicates poor fit. Test-level and
attribute-level classification accuracy indices estimated from the
GDINA function followed the approaches in Iaconangelo (2017)
and Wang et al. (2015).

Then item parameters under G-DINA and the selected
models were examined. Item parameter statistics can inform the
inter-attribute relationships, which give evidence to inference
interpretability analysis. Next, content analysis of the two-
attribute items was carried out to justify or modify the results
of model selection. Inter-attribute relationships can be informed
by item parameter estimations, which are different under
different CDMs. Content analysis was to examine whether the
inter-attribute relationships manifested by the selected model
were reasonable.
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TABLE 1 | Configuration of Q-matrix.

Attributes Attributes

A1 A2 A3 A4 A5 A6 A1 A2 A3 A4 A5 A6

Item 1 1 0 0 0 0 0 Item 11 0 1 0 0 0 1

Item 2 1 0 0 0 0 0 Item 12 0 0 0 0 0 1

Item 3 0 1 0 1 0 0 Item 13 0 0 0 1 1 0

Item 4 0 1 0 1 0 0 Item 14 0 0 0 0 0 1

Item 5 0 1 0 0 0 0 Item 15 0 0 0 0 0 1

Item 6 0 0 1 0 0 0 Item 16 0 0 1 0 1 0

Item 7 0 0 0 1 0 0 Item 17 0 0 0 0 0 1

Item 8 0 0 1 0 0 0 Item 18 0 0 0 0 1 0

Item 9 0 0 1 0 0 0 Item 19 0 0 0 1 1 0

Item 10 0 0 0 1 1 0

TABLE 2 | Listening attributes/subskills and relationship with existing listening skill taxonomies.

Listening

attributes/subskills and

definitions

Listening Cognitive

Ability of China

Standards of English (He

and Chen, 2017)

Field’s (2009) Aitken’s (1978) Sawaki et al.’s (2009)

A1: Sound discrimination Identify/retrieve Input decoding Understand prosodic

patterns

A2: Less frequent

vocabulary and expressions

Identify/retrieve Lexical search Understand vocabulary Understand vocabulary

A3: Difficult structures Identify/retrieve/analyze Parsing Understand syntactic

patterns

A4: Facts and details Identify/retrieve/analyze Meaning construction Understand important information

A5: Main idea Analyze/summarize/create Meaning construction;

Discourse construction

Understand overall topic/gist;

A6: Situational context and

cultural background

inference

Analyze/summarize/

create/evaluate

Meaning construction;

Discourse construction

Identify speaker’s purpose,

attitudes, views, and

intentions;

Making inferences;

Making inferences

Identify rhetorical devices. Understand the structure (rhetorical,

discourse).

The attributes and definitions stem from the study of Meng (2013, p. 78, p. 95).

RESULTS

Model Selection at Test Level
Table 3 summarizes the model fit results and the numbers

of parameters of the six models. G-DINA, A-CDM, LLM,

and R-RUM could be accepted with the significant levels

of both Max.z(r) and Max.z(l) being much higher than 1%

(the least critical p-value), whereas DINA and DINO could

not be accepted with the significant levels of Max.z(r) being
lower than 1%, and the p-values of Max.z(l) for them (0.0097,

0.01) were not good enough either. DINA was also rejected
by M2 with a p-value below 0.05. DINO was narrowly

accepted by M2 (p-value is 0.0799, close to 0.05). RMSEA
and SRMSR gave favorable acceptance to all the CDMs, but it
also indicated that the two indices might not be very sensitive
about the model selection. G-DINA is a saturated model that
can accommodate both compensatory and non-compensatory

inter-attribute relationships, whereas A-CDM and LLM are
compensatory models, and R-RUM is a non-compensatory
one. A-CDM and R-RUM had the same absolute model
fit at RMSEA (0 for both). These all indicated that both
compensatory and non-compensatory models fit the data and
the attributes of L2 listening, therefore, manifested both (non-
)compensatory relationships. As DINA and DINO were rejected
by Max.z(r) and Max.z(l), the inter-attribute relationships could
not be interpreted simply as what either of the two models
could accommodate.

Comparing among the three accepted reduced models (A-
CDM, LLM, and R-RUM), LLM performed the best with the
smallest−2LL (11268.92), AIC (11484.93), and BIC (11940.11).
LLM had the smaller AIC (11484.93) and BIC (11940.11) than
G-DINA (11489.23 and 11973.91, respectively). It does not mean
that LLM is better than G-DINA, just that G-DINA invites larger
penalties than LLM because AIC and BIC both introduce a
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TABLE 3 | Absolute fit.

CDMs #par Max.z(r) p Max.z(l) p M2 p RMSEA SRMSR -2LL AIC BIC

G-DINA 115 3.12 0.3046 2.89 0.6521 89.0495 0.128 0.0194 0.0431 11,259.24 11,489.23 11,973.91

DINA 101 4.68 0.0005 4.03 0.0097 118.336 0.0205 0.0257 0.0452 11,308.10 11,510.09 11,935.77

DINO 101 4.62 0.0006 4.02 0.0100 108.348 0.0799 0.0209 0.0209 11,300.98 11,502.98 11,928.65

A-CDM 108 3.34 0.1437 3.10 0.3272 75.9016 0.6686 0 0.0437 11,273.82 11,489.81 11,944.99

LLM 108 3.15 0.2831 2.96 0.5182 93.2377 0.1862 0.0166 0.0433 11,268.92 11,484.93 11,940.11

R-RUM 108 3.45 0.0947 3.21 0.2237 81.1406 0.5061 0 0.0441 11,278.34 11,494.35 11,949.52

(a) #par., number of parameters; (b) Max.z(r) & Max.z(l), maximum z-score for transformed correlation and log odds ratio; (c) M2, a limited-information fit statistic for dichotomous

response; (d) RMSEA, root mean square error of approximation; (e) SRMSR, standardized root mean square residual.

TABLE 4 | Wald statistics for multi-attribute items.

Selected CDM Wald statistics p-values

Item 3 DINO 5.51 0.06

Item 4 DINA 3.57 0.17

Item 10 LLM 0.00 0.99

Item 11 DINO 1.16 0.56

Item 13 DINA 2.69 0.26

Item 16 DINA 0.17 0.92

Item 19 DINO 2.73 0.26

penalty for model complexity. In this sense, LLM is the most
comparable model with G-DINA at the test level.

Model Selection at Item Level
As shown in Table 4, three models (DINO, DINA, and LLM)
were selected; four items manifested compensatory inter-
attribute relationships under DINO and LLM, whereas the other
three items illustrated non-compensatory relationships under
DINA. These results showed that the inter-attribute relationships
tapped into by L2LDA were compensatory in some multi-
attribute items and non-compensatory in others. Thus, the three
models plus G-DINA formed Mixed-CDMs.

Table 5 shows that Mixed-CDMs had a high level of absolute
fit, the significant levels of Max.z(r) and Max.z(l) were much
higher than 1%, the p-value of M2 (0.3609) was much larger than
0.05, and RMSEA (0.0097) and SRMSR (0.0435) were below 0.05.

Comparisons Among G-DINA, LLM, and
Mixed-CDMs
According to the results of the previous section, LLM was the
most comparable model to G-DINA at the test level. Then
Zoom-in comparisons were made among G-DINA, LLM, and
Mixed-CDMs, and relative fit, absolute item fit, person fit,
and the classification accuracy were concerned psychometric
characteristics. As for the absolute fit at the test level, the
three models all met the higher critical requirement (p >

0.10), but Mixed-CDMs were better than the other two with
an increase from 0.3046 for G-DINA and 0.2831 for LLM to
0.9120 on Max.z(r) statistics and from 0.6521 and 0.5182 to 1
on Max.z(l) statistics (see Tables 3, 5). Moreover, the RMSEA

of Mixed-CDMs was the smallest among the three. As for
AIC, Mixed-CDMs performed the best on the test relative fit
with the smallest value (11478.36), compared with G-DINA
(11,489.23) and LLM (11,484.93). As shown in Table 6, the
absolute item-level fit statistics for two items (Items 3 and 9)
got improvement under Mixed-CDMs, whereas no statistically
significant differences were noticed for other items. Mixed-
CDMs improved the significant levels of Max.z(r) and Max.z(l)
statistics from 3% for G-DINA and LLM to 10% and from 7%
for G-DINA and 6% for LLM to 18%, respectively. Thus, Mixed-
CDMs had better absolute item-level fit than G-DINA and LLM,
especially on Items 3 and 9.

Regarding person fit (Table 7), only one examinee (ID331)
was over-fit (lz> 2.0) under the three models. lzfor ID331 under
Mixed-CDMs was the smallest, and the mean absolute value
of lz(|lz|) was also the smallest under Mixed-CDMs. Therefore,
Mixed-CDMs were slightly better than G-DINA and LLM on
person fit. In addition, the classification accuracy at the test
level and attribute level were very close under Mixed-CDMs and
G-DINA, which means that Mixed-CDMs were as reliable as
G-DINA on the classification for the data.

Item parameters of multi-attribute items are presented in
Table 8. The standard errors were reduced under Mixed-CDMs
in comparison with G-DINA and LLM. The estimates of item
parameters under Mixed-CDMs were, therefore, statistically
more accurate than those under G-DINA and LLM. G-DINA had
the highest SE among the three CDMs.

The item parameters also displayed the inter-attribute
relationships via different PRAs (Table 8). If the PRA of an
attribute was higher than 0.50, this attribute could compensate
the other attribute with a more than 50% probability of giving
the right answer. If the PRA of an attribute was below 0.50, this
attribute could not compensate the other to give the right answer.
Some common features were found under the three models. For
Items 3 and 19, one attribute could compensate for the other
under the three models. For Item 10, A4 could compensate A5
but not vice versa. So, the inter-attribute relationships exhibited
compensatory traits in Items 3, 10, and 19 under the three
models. In addition, compared with LLM, G-DINA shared
more common features with Mixed-CDMs in terms of inter-
attribute relationships. For Items 11, A2, and A6 could mutually
compensate with each other under G-DINA and Mixed-CDMs,
whereas A6 could compensate A2, not vice versa, under LLM. For
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TABLE 5 | Model fit of mixed-CDMs.

#par Max.z(r) p Max.z(l) p M2 p RMSEA SRMSR -2LL AIC BIC

102 2.78 0.9120 2.72 1.0000 92.1224 0.3609 0.0097 0.0435 11,274.36 11,478.36 11,908.25

TABLE 6 | Absolute item-level fit.

Item 3 Item 9

Max.z(r) p Max.z(l) p Max.z(r) p Max.z(l) p

G-DINA 3.12 0.03 2.89 0.07 3.12 0.03 2.89 0.07

LLM 3.14 0.03 2.92 0.06 3.14 0.03 2.92 0.06

Mixed-CDMs 2.79 0.10 2.58 0.18 2.79 0.10 2.58 0.18

Items 13 and 16, under both G-DINA and Mixed-CDMs, PRA
for each attribute was below 0.50, which means that attributes
could not compensate mutually for a right answer. Under LLM,
however, compensatory traits were exhibited.

In addition to the inter-attribute relationships mentioned
earlier, conflicting relationships were also detected in Table 8.
For instance, under G-DINA, mastering both required subskills
lowered the PRA (0.66) for Item 10 compared with mastering
A4 only (PRA = 1). This sort of attribute conflict (mastering
both attributes has lower PRA than mastering one attribute
only) also existed in Item 11 under G-DINA and in Items 4
and 13 under LLM. However, this conflict was not exhibited
under Mixed-CDMs.

Content Analysis
The outcome of selecting models at the item level should be
examined, whether theoretically valid or not, through content
analysis. It deserved more attention when DINA and DINO
were rejected at the test level but accepted at the item level.
For better illustration, a special pair of attributes A2-A4 were
focused because they were measured in two items: DINO was
selected for one item, and DINA was for the other. Looking
closely into the content of these items (Table 9), it was found that
A2 (Vocabulary and Expressions) could compensate for the lack
of A4 (Facts and Details) in Item 3, but A4 could not provide
an equal probability of right answer if there were a lack of A2.
Whether A4 could give a 50% probability of the right answer was
partly because it was amultiple-choice item, and only two choices
were logically pertinent. Therefore, DINO that allowed attribute
to compensate for the lack of the other was not appropriate for
this item, whereas G-DINA, which provided the real picture of
the compensability: A2 could compensate for the lack of A4, but
A4 could not compensate equally, should be retained. Item 4,
in contrast with Item 3, required mastery of both A2 and A4.
The expression “run out of” was one attribute (A2) measured
in this item, but it did not provide a complete meaning unless it
was combined with the detailed information “milk” (A4), which
means when a test taker mastered both attributes, he/she could
find the right answer. Thus, DINA was justified to be chosen for
this item. In addition, mastery of the expression “run out of” (A2)
offered lower PRA than mastery of none under G-DINA. This is

unreasonable and uninterpretable, so G-DINA is not acceptable
for this item. Therefore, item-level model selection still needs
content analysis to detect flaws. The same pair of attributes
may be able to exhibit different relationships: compensatory or
non-compensatory, although DINO seemed to be improper for
Item 3.

Following the same way, the rest two-attribute items were
analyzed one by one. Interpretability is an important concern: if
the inter-attribute relationship under a model is uninterpretable,
then this model will be inferior, and the model that gives
reasonable relationships will be accepted. In this way, it was
found that the inter-attribute relationships under Mixed-CDMs
are more reasonable and interpretable without conflicts, and then
Mixed- CDMs were accepted for the rest two-attribute items.

DISCUSSIONS

The current study examined the selection of CDMs for an
L2 listening comprehension test. Two-layer model selections
mutually justified the mixed inter-attribute relationships of
L2 listening subskills. The significance of this study is that
statistically fit models at the item level require theoretical
evidence informed by content analysis. The procedure used in
this study can also serve as guidance for other studies aiming at
choosing optimal CDM(s).

At the test level, A-CDM, LLM, and R-RUMwere accepted and
had a comparable relative fit with that of G-DINA. Based on the
features of these CDMs, compensatory and non-compensatory
inter-attribute relationships coexisted in the test, rather than a
monotonous compensatory or non-compensatory one, which
is different from previous findings (e.g., Yi, 2017). However,
LLM and A-CDM have a smaller relative fit than R-RUM,
which seemingly indicates that the inter-attribute relationships
exhibit more compensatory than non-compensatory. However,
how exactly the attributes interact with each other cannot be
informed so far at the test level and would be overgeneralized
under the assumed framework of a single reduced CDM if it is
imposed on all items. Hence, multiple CDM selection at the item
level within the same assessment is tenable and warranted.
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TABLE 7 | Psychometric characteristics under both models.

Mean of | lz |

for person

fit

lz Index for ID331 Classification accuracy

Test-level A1 A2 A3 A4 A5 A6 Means

G-DINA 0.76 2.13 0.7176 0.8731 0.9119 0.9107 0.9253 0.9140 0.9152 0.9084

LLM 0.74 2.09 0.7954 0.8790 0.9931 0.9168 0.9274 0.9956 0.9197 0.9386

Mixed- CDMs 0.73 2.05 0.7157 0.8713 0.9158 0.9096 0.9083 0.9093 0.9138 0.9047

TABLE 8 | Item parameters estimates (EST) and standard errors (SE) of multi-attribute items.

Items Attributes G-DINA Mixed-CDMs LLM

P(00) P(10) P(01) P(11) P(00) P(10) P(01) P(11) P(00) P(10) P(01) P(11)

Item 3 A2 + A4 EST 0.48 0.82 0.57 0.89 0.47 0.88 0.88 0.88 0.45 0.61 0.82 0.89

SE 0.05 0.13 0.14 0.02 0.04 0.02 0.02 0.02 0.04 0.06 0.05 0.02

Item 4 A2 + A4 EST 0.34 0.17 0.57 0.71 0.35 0.35 0.35 0.74 0.33 0.31 0.71 0.69

SE 0.04 0.15 0.14 0.03 0.03 0.03 0.03 0.03 0.04 0.05 0.05 0.03

Item 10 A4 + A5 EST 0.22 1.00 0.37 0.66 0.29 0.63 0.36 0.71 0.32 0.66 0.32 0.67

SE 0.05 0.23 0.07 0.03 0.05 0.09 0.06 0.03 0.05 0.07 0.05 0.03

Item 11 A2 + A6 EST 0.23 0.79 1.00 0.89 0.26 0.90 0.90 0.90 0.31 0.38 0.89 0.92

SE 0.04 0.10 0.26 0.03 0.04 0.02 0.02 0.02 0.04 0.06 0.04 0.02

Item 13 A4 + A5 EST 0.43 0.44 0.26 0.87 0.42 0.42 0.42 0.89 0.40 0.87 0.35 0.85

SE 0.06 0.17 0.08 0.03 0.03 0.03 0.03 0.03 0.05 0.04 0.05 0.03

Item 16 A3 + A5 EST 0.34 0.29 0.35 0.82 0.34 0.34 0.34 0.84 0.28 0.73 0.37 0.80

SE 0.06 0.13 0.06 0.03 0.03 0.03 0.03 0.03 0.04 0.06 0.04 0.03

Item 19 A4 + A5 EST 0.59 0.74 0.95 0.97 0.58 0.97 0.97 0.97 0.61 0.88 0.86 0.97

SE 0.06 0.14 0.05 0.01 0.05 0.01 0.01 0.01 0.05 0.05 0.03 0.01

EST, estimates; SE, standard error; P(11) refers to the probability of the right answer (PRA) to the item when two attributes are mastered; P(10) stands for the PRA when the first attribute

is mastered; P(01) is the PRA when the second attribute is mastered.

At the item level, based on the selection criteria, DINA,
DINO, and LLM were selected by Wald test for the seven multi-
attribute items, G-DINA remained for 12 single-attribute items,
and Mixed-CDMs were hence formed for the whole assessment
by auto GDINA function. When the absolute fit, the relative
fit, and the person fit were considered, Mixed-CDMs performed
better over G-DINA and LLM, the most comparable with G-
DINA. It is easy to understand that LLM is not optimal because it
fails to postulate “both-and” relationships in its framework, even
it is the most comparable with G-DINA. However, it is against
the intuition that G-DINA is not superior to Mixed-CDMs for
this dataset, although saturated G-DINA accommodates all the
interactions among subskills and should have fit the data better.
Sample size likely contributed to the result because saturated G-
DINA needs a large sample size, and 500 was considered a small
sample in previous studies (e.g., Chen et al., 2013;Ma et al., 2016).
The small sample (n= 500) of this study might have constrained
G-DINA’s performance, which echoes the opinion that saturated
models are not always the best choice when the sample size is
small (Rojas et al., 2012; Ma et al., 2016). Based on the estimation
of item parameters, standard errors of the estimates were the
smallest under Mixed-CDMs, which suggests that the item
parameter estimation under Mixed-CDMs was more accurate.

These results largely agree with the claim of DiBello et al. (2007)
that specific (or reduced) CDMs could reduce the standard errors
when the sample size and the total number of items are small.
It also renders empirical evidence to the simulation study of Ma
et al. (2016) that “reduced CDMs usually require smaller sample
sizes for accurate parameter estimation” (p. 201).

Although Mixed-CDMs were reported to be able to perform
well-statistically, slightly better than G-DINA in some aspects,
theoretical supports informed by the content analysis were
needed. In this study, it was found that DINO selected by auto-
GDINA function was not appropriate for Item 3 because the
inter-attribute relationship manifested under the model could
not reflect the underlying cognitive process of that item. G-
DINA, however, could reflect this process and was thus retained
for that item. Inexplicable conflicting inter-attribute relationships
were found for some items under LLM and G-DINA (Table 8).
No literature could interpret the conflicts. One plausible reason
could be that LLM and G-DINA were not optimal models for the
data and could not exhibit the real inter-attribute relationship.
Content analysis of Item 4 showed that A2 (Vocabulary and
expressions) and A4 (Facts and details) were non-compensatory
with each other. DINA was accepted for this item, so inexplicable
conflicting inter-attribute relationships occur under LLM and
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TABLE 9 | Items tapping into attributes A2 and A4.

Item Attributes utilized

3. M: Nancy, why are you late

today?

W: I overslept and missed the

bus.

Q: Why is Nancy late?

a. The bus was late.

b. Her clock was slow.

c. She got up late.

d. She forgot her class.

The item requires two attributes,

A2 (Vocabulary and Expressions:

overslept) and A4 (Facts and

Details: missed the bus). A test

taker would find answer key (c) if

he/she only knows A2

(overslept), as it means the same

as the answer key. However, if

he/she only knows A4 (missed

the bus), he/she would find (b) or

(c), which means he/she has

around 50% probability to find

the right answer (c).

4. M: Where is Cindy?

W: She ran out of milk and went

to get some.

Q: Why did Cindy go out?

a. She went out jogging.

b. She had no more milk.

c. She went out for a walk.

d. She was delivering milk.

A test taker would find answer

key (b) only if he/she knows both

the attributes, A2 (Vocabulary

and Expressions: ran out of…)

and A4 (Facts and Details: milk).

G-DINA. These sorts of conflicts under G-DINA were also
mentioned in other studies (Meng, 2013; Chen and Chen, 2016;
Ravand, 2016), and no linguistic explanation was provided
because the interpretation of the conflicts was difficult based
on the available language acquisition theories (Ravand, 2016),
and they were considered as inherent inter-attribute relationships
(Chen and Chen, 2016). Given that G-DINA and LLM provided
inexplicable conflicts between subskills for some items, amended
Mixed-CDMs are preferred because they better capture the
inherent inter-attribute relationships of L2LDA and better reflect
the processing of L2 listening without attribute conflicts.

After the amendment of theMixed-CDMs by content analysis,
four items selected compensatory models, whereas three items
chose non-compensatory models. This provides evidence that
compensatory and non-compensatory models coexist in the
literature of listening tests (Buck and Tatsuoka, 1998; Sawaki
et al., 2009; Yi, 2017). The items that chose compensatory models
are slightly more than those that chose non-compensatory
models. This could explain why, at the test level, compensatory
LLM and A-CDM gained slight preference compared with
non-compensatory R-RUM. This could also imply that test-
level model acceptance could roughly predict inter-attribute
relationships, and the accepted model having a better relative
fit index could predict the dominant inter-attribute relationship.
The small differences can also be accounted for by the small
number of multi-attribute items (only seven items in this study),
which has also been detected in the study of Lee and Sawaki
(2009a) and the study of Yi (2017).

It is worth noting that two pairs of attributes were measured
repetitively: A2–A4 and A4–A5. A2 and A4 were either
compensatory or non-compensatory in two items of short
conversations. In Item 4, only when “run out of” (A2) was
combined with “milk” (A4), a complete semantic meaning could

be understood. Therefore, A2–A4was non-compensatory for this
item. However, A2–A4 was compensatory in Item 3 because
“overslept” (A2) and “missed the bus” (A4) each provided
complete semantic meaning for understanding. As we can see,
the semantic completeness of the target attributes may influence
the attribute relationships for short conversations. The A4–A5
pair also showed flexible relationships, compensatory or non-
compensatory. They were measured in a short conversation, a
long conversation, and a video clip, respectively. In the short
conversation, A4 (Facts and Details) was more important than
A5 (Main Idea) and compensated A5. In the long conversation,
A4 and A5 were not compensatory and had to work together
to give the right answer. It seems that understanding facts and
details (A4) is more important in processing less information
(a short conversation) than understanding the main idea (A5),
whereas understanding facts and details has to cooperate with
understanding the main idea in processing more information
(a long conversation). In the video item, A4 and A5 could
compensate each other. It was not clear whether visual aid
interacted with the two attributes in this item. The inconsistent
inter-attribute relationships of L2 listening subskills are also
congruent with the claim of Buck (2001) about varied patterns of
relations and interactions of listening subskills. It depicted more
detailed and varied relationships, which is in line with the finding
of Yi (2017) on the aspect of rendering indirect evidence against
the ability to define a hierarchy of contribution among listening
subskills. The relationships vary from one item to another, and
different features of items are likely to interact with subskills and
influence their relationships. This interaction was referred to as
“item–level interaction,” i.e., the same set of attributes may or
may not exhibit interaction depending on the items that measure
them (de la Torre et al., 2018). These findings imply that more
consideration must be taken in test construction and validation.
Compensatory relationships indicate that a correct answer could
not guarantee every attribute in an item is actually used by the
test taker.

Based on the discussion earlier, this study is significant in the
following aspects:

First, it is found that test-level model acceptance by absolute fit
indices can roughly predict inter-attribute relationships. This
can also suggest whether item-level model selection should
be needed or not. The model with a better relative fit index
and an acceptable absolute fit index can predict the dominant
inter-attribute relationship.
Second, the content analysis showed that the inexplicable
attribute conflicts could be a signal of suboptimal model
choice, and thus, item-level models are justified for better
interpretations. The conflicts were also found in other studies
(Meng, 2013; Chen and Chen, 2016; Ravand, 2016) but
were not discussed and considered inherent inter-attribute
relationships (Chen and Chen, 2016). Along this line, this
study makes a step forward.
Third, the Mixed-CDMs are comparable with G-DINA for
the L2 listening comprehension test and even better in some
aspects. The amended Mixed-CDMs are optimal for L2LDA.
Previous studies that involved the comparison between
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Mixed-CDMs and G-DINA were mainly based on simulations
(Ma et al., 2016). This study provides a piece of useful
empirical evidence for this topic and renders evidence to the
study of L2 listening inter-subskill relationships.
Fourth, it is found that both compensatory and non-
compensatory inter-subskill relationships exist in L2LDA, and
even the relationships between the same pair of attributes
are also non-fixed at different items. This is a new finding
because the previous research reported only compensatory L2
listening inter-subskill relationships based on model selection
(Yi, 2017). Semantic completeness of the attributes and item
features are likely to interact with the subskills and influence
the relationships. This was also rarely reported in previous
studies, even less in L2 listening CDA research.
Last but not least, this study is significant in the procedure
of model selection. Model selection is often seen in other
assessment studies (Li et al., 2016; Ravand, 2016; Yi, 2017), but
few on L2 listening assessment. In this study, the item-level
model selection was initiated or ignited by the results of test-
level model comparison and then was justified and amended
by content analysis. The logic of the procedure provides useful
insight into CDM studies.

LIMITATIONS AND SUGGESTIONS FOR
FUTURE RESEARCH

Although the findings of this research help provide a process of
selecting the right CDM for L2 listening diagnostic assessment
and shed some light on the inter-attribute relationships of L2
listening, part of the findings are possibly limited to the particular
dataset and test used in this study.

L2LDA consisted of only 19 items. Although individual
attributes were measured 4.15 times on average, one attribute was
measured twice. According to Rupp et al. (2010), each attribute
should bemeasured at least three times for accuratemeasurement
with CDA.

Restricted by the test, only a few attribute pairs (i.e., A2–
A4, A4–A5, A3–A5, and A2–A6) were measured. It may
be inaccurate to judge inter-attribute relationships when the
number ofmulti-attribute items is small. A3–A5 andA2–A6were
measured only once; this study did not opine what inter-attribute

relationships they are. Thus, further research is needed to
examine more pairs of attributes and more multi-attribute items.

Only one sample size (n = 500) was used in this study. Other
small sample sizes (e.g., n = 300 or n = 600) should also be
examined in future studies so that a feasible threshold of a small
sample can be found to decide whether G-DINA orMixed-CDMs
should be used.

This study only focused on dichotomous items, so future
studies are recommended to consider changing polychotomous
items into binary coding or using some CDMs that accommodate
polychotomous scales.
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Maximum deviation global discrimination index (MDGDI) is a new item selection method
for cognitive diagnostic computerized adaptive testing that allows for attribute coverage
balance. We developed the maximum limitation global discrimination index (MLGDI)
from MDGDI, which allows for both attribute coverage balance and item exposure
control. MLGDI can realize the attribute coverage balance and exposure control
of the item. Our simulation study aimed to evaluate the performance of our new
method against maximum global discrimination index (GDI), modified maximum GDI
(MMGDI), standardized weighted deviation GDI (SWDGDI), and constraint progressive
with SWDGDI (CP_SWDGDI). The results indicated that (1a) under the condition of
realizing the attribute coverage balance, MDGDI had the highest attribute classification
accuracy; (1b) when the selection strategy accommodated the practical constraints
of the attribute coverage balance and item exposure control, MLGDI had the highest
attribute classification accuracy; (2) adding the item exposure control mechanism to
the item selection method reduces the classification accuracy of the attributes of the
item selection method; and (3) compared with GDI, MMGDI, SWDGDI, CP_SWDGDI,
and MDGDI, MLGDI can better achieve the attribute-coverage requirement, control item
exposure rate, and attribute correct classification rate.

Keywords: balance attribute coverage, cognitive diagnostic computerized adaptive testing, attribute
discrimination index, item exposure control, mastery pattern correct classification rate

INTRODUCTION

Cognitive diagnostic assessment (CDA) is a recently popular assessment method in theoretical
studies on psychological testing. CDA was developed to measure cognitive skills (Leighton and
Gierl, 2007; Gierl et al., 2008). When based on the classical test theory (CTT), CDA provides
examinee scores. When based on the multidimensional item response theory, CDA provides
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multidimensional ability scores, which details the advantages and
disadvantages of the examinee in a given content domain, aiding
the assessment of the examinees by administrators (Yao and
Boughton, 2007; Lee et al., 2012).

Interest in cognitive diagnosis is largely motivated by the need
for formative assessments. Computerized adaptive testing (CAT)
combines test theory with computer technology to improve
testing efficiency (Weiss, 1982), which has become a promising
method in psychological and educational measurement. In
addition, items in CAT have been executed in examinations for
items that have matched the estimating ability for candidates
(Mao and Xin, 2013; Chang, 2015). Recently, to maximize the
benefits of both CDA and CAT, researchers have attempted to
combine CDA with CAT and named it cognitive diagnostic
CAT (CD-CAT) (Xu et al., 2003; McGlohen and Chang,
2008; Cheng, 2009a,b). CD-CAT, which has the characteristics
of a tailor-made test, is promising and will be influential
in future educational practices. CD-CAT has received an
increasing scholarly attention worldwide (Kang et al., 2017;
Huebner et al., 2018).

The goal of CAT is to conduct individualized item selection
tests based on the most currently estimated ability of the
participant; thus, the determination of an optimal item selection
method is key in CAT. Although many item selection strategies
have been constructed in the item response theory–based CAT,
few applicable item selection strategies are currently available in
CD-CAT. Therefore, this study aimed to construct a selection
strategy that is suitable for CD-CAT. Based on the difference
distribution criteria of the potential attribute-mastery pattern
at the item level, researchers have proposed a selection criteria,
such as the Kullback–Leibler (KL)-based global discrimination
index (GDI), Shannon entropy procedure (Xu et al., 2003), and
the posterior-weighted KL information (PWKL; Cheng, 2009a,b).
However, the aforementioned item selection methods focus on
the maximum information of the item without considering the
attribute coverage balance of the test and exposure control of the
item. Therefore, the aforementioned item selection methods face
the following two problems. First, attribute coverage imbalance
may cause the test results to be unreliable. Cheng (2010)
also pointed out that it is of great importance to ensure
that each attribute in the test has been measured adequately
or the reliability of the test will be reduced. Second, an
unevenly applied item bank will result in the following two
situations: (1) some items increase their exposure rate in a
different test, which endangers the security of the item bank,
and (2) if some items are applied adequately, the item bank
is poorly utilized and resources (including labor) are wasted.
Although CD-CAT is increasingly used in the classroom, test
security is not fundamental to the CD-CAT practices, whereas
security and property balance are critical to CD-CAT developers.
Specifically, the item bank must be secured because CD-CAT
is a complex and expensive project. As for every item written
for CD-CAT, it must be based on a complex blueprint of
cognitive requirements. In addition, when specific items are
used for each test, practice or memory effects may produce
invalid diagnostic information for candidates who has taken
the test repeatedly. Improving the utilization rate of an item

bank also constitutes a research problem for the practical
application of CD-CAT.

To balance the attribute coverage in CD-CAT, Cheng (2010)
developed the modified maximum global discrimination index
(MMGDI) to build the item selection method using the number
of items that measure each attribute as the MMGDI did. The
MMGDI method is based on the global discrimination index
(GDI) developed by Xu et al. (2003). Although the MMGDI
method achieves the balance in attribute coverage and improves
the accuracy of the attribute-mastery pattern, MMGDI does not
consider the exposure rate of items, which leads the MMGDI
to repeatedly select some items in different tests. Lin and
Chang (2018) proposed a method, the constraint progressive
with standardized weighted deviation GDI (CP_SWDGDI),
which allows for attribute coverage balance and exposure
control (named considering the attribute balancing and exposure
control). Although CP_SWDGDI considers both the attribute
coverage balance and exposure control, the CP_SWDGDI
selection method fails under some conditions, such as when the
attribute coverage balance is satisfied.

The objective of this article is to propose a maximum deviation
(MD) index and a maximum limit (ML) index, and combine
them with GDI for use in CD-CAT. We first developed an
item selection method MDGDI, which can achieve attribute
coverage balance. Subsequently, we added an exposure control
mechanism based on MDGDI and developed a CD-CAT item
selection method MLGDI, that can achieve attribute coverage
balance and items exposure control. The rest of this paper is
organized as follows.

First, we discuss the CDM used in this study and introduce
the four existing item selection algorithms for CD-CAT. Next,
we introduce the MDGDI and MLGDI methods. We then
evaluate MDGDI and MLGDI against the existing item selection
algorithms via two simulation studies. Finally, we discuss the
consequences of the simulation results and provide suggestions
for further research.

REDUCED REPARAMETERIZED UNIFIED
MODEL

The reduced reparameterized unified model (RRUM) is used in
the current study (Hartz, 2002; Hartz and Roussos, 2008), because
previous studies have demonstrated that the RRUM is very useful
for formative assessment in practice (Wang et al., 2011). The item
response function of the RRUM is defined as,

p(Yij = 1|ai) = π
∗

j

∏
k∈Aj

r
∗(1−aik)qjk
jk

where, 0 < π
∗

j < 1 is the probability of a correct answer for
an examinee who has mastered all the attributes required for
item j, and 0 < r

∗

jk < 1 is a penalty parameter that reduces the

probability of a correct response by a factor of r
∗

jk for examinees
who do not possess attribute k.
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EXISTING ITEM SELECTION METHODS

Global Discrimination Index (GDI)
The KL information was first introduced to CAT research
in Chang and Ying’s (1996) groundbreaking paper on global
information. The KL information has since been applied to
various studies on CAT. For example, CAT was established
based on a non-parametric item response theoretical model (Xu
and Douglas, 2006), and CAT has been applied to classification
(Weissman, 2007) and cognitive diagnostic applications
(McGlohen and Chang, 2008; Cheng, 2009a,b). The KL
information, which measures the distance or divergence between
two probability distributions f (x) and g(x) (Cover and Thomas,
1991; Kaplan et al., 2015), is defined as follows:

d[f , g] = Ef

[
log

[
f (x)

g(x)

]]
In CD-CAT, information refers to the ability of an item to
distinguish between a pair of attribute patterns. In this sense,
KL information in diagnostic classification reflects the distance
between two conditional distributions, that is, f (Xij|âi) is the
distribution on the currently estimated attribute under condition
Xij, and f (Xij|at) is the distribution in the real state under
condition Xij. This logic gives the KL equation of CD-CAT:

KLj(âi||at) =

1∑
x=0

log
(

p(Xij = x|âi)

p(Xij = x|at)

)
p(Xij = x|âi)

Xu et al. (2003), who considered that the true potential is
unknown and that 2k possible states exist, proposed the GDI with
the following formula:

GDIj(âi) =

2k∑
c=1

[ 1∑
x=0

log
(

p(Xij = x|âi)

p(Xij = x|âc)

)
p(Xij = x|âi)

]
This index is the sum of the KL distances between p(Xij|âi) and
all possible potential states p(Xij|âc). Items with large GDI values
have a correspondingly high recognition between the estimating
attribute patterns and all other possible cognitive profiles. An
item with a maximum GDI (MGDI) will be administered as the
next item for a specific examinee. In Xu et al. (2003), the MGDI
method exhibited a good performance in restoring the pattern of
student attribute mastery.

The Maximum Modified Global
Discrimination Index (MMGDI)
The disadvantage of the GDI approach is that it does not consider
property balancing or exposure control. Cheng and Chang (2009)
introduced the maximum priority index (MPI) method for the
selection of items that satisfy the constraints in the IRT-based
CAT. In a subsequent study, Cheng (2010) extended the MPI
method to CD-CAT to achieve balance attribute override. The
attribute coverage balance index (ABI) is defined as follows:

ABIj =

K∏
k=1

(
Bk − bk

Bk
)qjk

where, Bk is the lower bound of the number of items required to
measure attribute k, bk is the number of items measuring attribute
k that has already been selected, and qjk is the element of the Q
matrix. Cheng (2010) added the ABI to GDI and constructed the
MMGDI item selection method, which is defined as follows:

MMGDIj(âi) =

K∏
k=1

(
Bk − bk

Bk

)qjk

.GDI(âi)

Modified maximum GDI makes a GDI-based strategy more
precise. Specifically, MMGDI attributes in the balance tends only
toward the choice of measurement index in the selected item of
a single attribute (Mao and Xin, 2013), and, in ABI, there may
be situations where negative and negative multiply to be positive,
which affects the efficiency of the item selection method.

The Standardized Weighted Deviation
GDI Method (SWDGDI)
Lin and Chang (2018) proposed a new attribute-balancing
item selection criterion, namely the Weighted Deviation GDI
(WDGDI), which multiplies GDI by the Weighted Deviation
Index (WD). To place the WD and the GDI metrics on an equal
footing, they standardized the WD and GDI values and named it
the standardized WDGDI (SWDGDI). The SWDGDI method is
defined as follows:

SWDGDIj(âi) =

(
Max(WDj)−WDj

Max(WDj)−Min(WDj)

)
×

(
GDIj(âi)−Min(GDIj(âi))

Max(GDIj(âi))−Min(GDIj(âi))

)

WDj =

K∑
k=1

(WkDjLk)+

K∑
k=1

(WkDjUk)

DjLk =

{
Lk − qk, qk < Lk
0, qk ≥ Lk

DjUk =

{
qk − Uk, qk ≥ Uk
0, qk < Uk

where, Wk is the weight for the kth attribute, and DjLk and DjUk
correspond to the positive deviations from the minimal (i.e.,
lower boundary) and maximal (i.e., upper boundary) numbers,
respectively, of the items required to assess the kth attribute when
item j is included in the test. For each constraint k, DjLk is
defined as (Lk − qk)and DjUk is defined as (Uk − qk), where Lk
and Uk, respectively, denote the lower and upper bounds for
the kth attribute constraint. The term qk represents the expected
number of items measuring the kth attribute that would have been
obtained if item candidate j was included in the test.

With the attribute balancing considered, the largest SWDGDI
item is selected first in the test rather than the GDI’s largest
project.

The Constraint Progressive With
SWDGDI (CP_SWDGDI)
In order to balance the attribute coverage and control the item
exposure rate, Lin and Chang (2018) adopted a progressive
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exposure control algorithm in SWDGDI. The Constrained
Progressive Algorithm is described as follows:

P_INFOj =

(
1−

X
L

)
Rj +

X
L
× RjI

Rj = U(0, max(information)) RjI = U(LBj, UBj)

LBj = Infoj − (Infoj −Min)/s UBj = Infoj

+(Max− Infoj)/s

In the progressive exposure control algorithm constructed by
Lin and Chang (2018), the adjustment information interval
parameter s was added. However, with regard to practical
applications, Lin and Chang (2018) offered no specific
suggestions for determining the value of s. Therefore, the
appropriate value of s may differ between the conditions and
number of attributes, which makes determining the value of s
difficult in practical applications.

When replacing Infoj with SWDGDIj, the CP_SWDGDI
became:

CP_SWDGDIj(âi) =
r_ max

rj

×

[(
1−

X
L

)
Rj +

X
L
× RjI

]
RjI = U(LBj, UBj)

LBj = SWDGDIj(âi)− (SWDGDIj(âi)−Min)/s

UBj = SWDGDIj(âi)+ (Max− SWDGDIj(âi))/s

where, r_max is the maximum exposure rate for the title and rj is
the current exposure rate for the item.

PROPOSED ITEM SELECTION
METHODS

Maximum Deviation Index With GDI
(MDGDI)
In order to make all the attributes relatively balanced throughout
the test and to reduce the tendency of the selection strategy
to choose certain types of items more often due to the index
added, the maximum deviation index (MD) was developed.
MD limits the difference between the maximum and minimum
measurement times of an attribute within a certain range. The
definition of MD is as follows:

MDj =

{
1, max(qjk)−min(qjk) ≤ LB
0, max(qjk)−min(qjk) > LB

where, LB is the lowest number of attributes, qjk is the number of
attributes to be investigated if the next item is j, and MD is the
deviation index.

Now the maximum deviation global discrimination index
(MDGDI) becomes:

MDGDIj = MDj × GDIj

The item that yields the largest MDGDI is offered for a specific
examinee as the next item.

Combining MD Index and Limited
Exposure Control Index With GDI
(MLGDI)
Although CP_SWDGDI considers both the attribute coverage
balance and exposure control in the selection strategy, for the
exposure control part of CP_SWDGDI, the variablesmust be
established by the manager themself, and the appropriate s value
may differ under different conditions, which makes it difficult to
determine the value of s.

Limiting Exposure Index
In this study, we proposed a limiting exposure index to control
the exposure rate of items. The idea of limiting exposure index
was built upon with the aims of (1) eliminating the need to
determine the crucial parameter s in the random part and (2)
making the exposure index more concise. The limit exposure
index is comprised of two parts: the random part and the limit
maximum exposure. The random part is based on the idea of
asymptotic behavior, and the amount of information in item J
after increasing the random part is expressed as RIj, where RIj =

U(LIj, UIj) and RIj is generated randomly from the uniform
distribution U(LIj, UIj).

LIj = GDIj − (x/L)× (GDIj −min(GDI))

UIj = GDIj + (x/L)× (max(GDI)− GDIj)

where, GDI is the GDI information of the remaining items in
the item bank; x is the current test length; L is the maximum
test length; and LIj and UIj are the lower bound and upper line
of U(LIj, UIj), respectively. As the length of the test increases,
LIj and UIj approach the original GDIj, and the random
RIj approaches GDIj. Therefore, the information of the items
becomes more accurate.

In addition, the component that limits the maximum exposure
rate is as follows,

Lrj

{
1, rj < r
0, rj ≥ r

where, r is the maximum exposure rate and rj is the current
exposure rate of item j. If the exposure rate rj of the next problem
j is greater than or equal to the maximum exposure rate r of the
problem, then Lrj = 0; if rj is less than r, then Lrj = 1.

To maximize the participant’s exposure rate restrictions, the
GDI item selection method was applied with the limited exposure
index as follows:

LGDIj = Lrj × RIj

Combining MD Index and Limited Exposure Control
Index
According to the aforementioned MD index and limited exposure
index, this study proposed the maximum limitation global
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discrimination indexes that considers both the attribute coverage
balance and exposure control as follows:

MLGDIj = MDj × LGDIj

During the MLGDI procedure, an item with the maximum
MLGDI value will be selected for administration.

SIMULATION STUDY

Study I
Study I is a simulation conducted to investigate the performance
of MDGDI against GDI, MMGDI, and SWDGDI.

Item Pools
Item pools were constructed based on the study of Wang et al.
(2020). Three item pools were designed in this study, denoted
as the low discrimination (LD), high discrimination (HD), and
hybrid discrimination (HyD) item pools, respectively. Each item
pool contained 775 items and measured five attributes in total
(Wang et al., 2011; Huebner et al., 2018). In the LD item
pool, item parameters π

∗

j and r
∗

jk were generated from uniform
distributions U(0.75, 0.95) and U(0.15, 0.50), respectively. In
the HD item pool, π

∗

j and r
∗

jk were generated from uniform
distributions U(0.75, 0.95) and U(0.05, 0.40), respectively. In
the HyD item pool, π

∗

j and r
∗

jk were generated from uniform
distributions U(0.75, 0.95) and U(0.05, 0.50), respectively. Table 1
represents the descriptive statistics of item parameters of LD
item pool, HD item pool, and HyD item pool.

Examinee Populations
Three examinee populations were generated, each containing
3,200 examinees. The first population (denote as Unif) assumed
that the Attribute Mastery Pattern (AMP) of each examinee was
generated from the uniform distribution of 32 possible pattern
profiles with a probability of 1/32. In this way, each AMP had 100
examinees; meanwhile, each examinee had a 0.5 chance to master
each attribute. Considering that correlations among attributes
is common in practice, a multivariate normal distribution was
used to describe the relationship among attributes for the second
and third populations (denote as Norm). In these two groups,
the mastery probabilities for the five attributes are defined as
0.45, 0.50, 0.55, 0.60, and 0.65, respectively. The correlations
between attributes were set at 0.5 for the second population (low
correlation) and 0.8 for the third population (high correlation).
Table 2 represents the frequencies of examinees who possess each
possible number of attributes.

Constraints of Attribute-Balance Coverage
The minimum measurement time of each attribute was
Bk = 3. The s parameter in CP_SWDGDI was 1.6,
r_max = 0.2 and LB = 3.

We generated a total of 27 conditions in this study (3 item
pools× 3 examinee populations× 3 item selection methods). We
fixed the number of items in the test to have 20 in all conditions.
The first item was selected randomly from the item pool, with
a maximum a posteriori (MAP) method used to estimate the

examinee’s AMP, and the prior information of AMP assumed
to follow a uniform distribution. The study procedures were
implemented by the R software.

Evaluation Criteria
We evaluated the methods with respect to six criteria: attribute
correct classification rate (ACCR), average marginal match rate
(AAMR), mastery pattern correct classification rate (PCCR),
item-bank exposure rate χ2, test overlap rate (TOR), and
maximum exposure rate. The computation of the first five criteria
is as follows:

ACCRk =

N∑
i=1

I(̂aik = aik)/N

AAMR =
K∑

k=1

N∑
i=1

I(̂aik = aik)/(N∗K)

PCCR =
N∑

i=1

I(̂ai = ai)/N

TOR =
N ×

∑Nitem
j=1 er2

j

(N − 1)× L
−

1
N − 1

χ2
=

Nitem∑
j=1

(erj − J/Nitem)2/(J/Nitem)

where, α̂i and ai are the real and estimated values, respectively,
of the attribute of participant i mastering the pattern, I(...)

TABLE 1 | Descriptive statistics of item parameters of the LD, HD,
and HyD item pools.

π∗

j r∗
1 r∗

2 r∗

3 r∗
4 r∗

5

LD item pool Min 0.750 0.151 0.152 0.152 0.151 0.151

Mean 0.850 0.327 0.323 0.325 0.326 0.324

Max 0.950 0.500 0.499 0.499 0.499 0.497

SD 0.058 0.100 0.101 0.103 0.100 0.100

HD item pool Min 0.750 0.051 0.050 0.052 0.051 0.052

Mean 0.850 0.229 0.224 0.230 0.226 0.225

Max 0.950 0.399 0.399 0.398 0.399 0.397

SD 0.058 0.101 0.102 0.100 0.102 0.101

HyD item pool Min 0.750 0.051 0.052 0.052 0.053 0.050

Mean 0.849 0.273 0.268 0.279 0.275 0.275

Max 0.950 0.499 0.499 0.497 0.499 0.499

SD 0.057 0.127 0.133 0.129 0.129 0.135

LD item pool, low discrimination item pool; HD item pool, high discrimination item
pool; HyD item pool, hybrid discrimination item pool.

TABLE 2 | Frequencies of examinees exhibiting each possible number of
attributes in each population.

Number of attributes 0 1 2 3 4 5

Number of examinees Unif 100 495 999 1,005 494 107

Norm-0.5 208 338 400 541 691 1,022

Norm-0.8 486 270 265 301 431 1,447
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is an indicator function. A higher ACCR and AMMR value
indicate a more accurate estimate of each participant attribute.
A higher PCCR value indicates a more accurate estimate of the
participant’s overall knowledge status; erj is the exposure rate of
item j, Nitem is the size of the item bank, χ2 is the exposure rate
index of an item, and TOR is the overlapping rate index of the
test. The smaller the values of χ2 and TOR are, the more fully
and uniformly the item strategy utilizes the item bank.

Results
Table 3 compares the recovery rate of each attribute and
of the entire profile obtained from the four item selection
methods (GDI, MMGDI, SWDGDI, and MDGDI). Clearly,
the MMGDI, SWDGDI, and MDGDI methods outperformed
the GDI method especially in the entire pattern recovery

rate. This was because recovering the entire profile requires
correctly recovering every attribute and gain the attribute level
aggregates. This is in line with Cheng (2010) and Lin and Chang
(2018). Among the four methods, the MDGDI method was
superior. Besides, all of the methods performed best in the HD
item pool, followed by the HyD item pool, and the LD item
pool was the worst.

Study II
Study II evaluated the performance of MLGDI, which had
the item exposure control mechanism and was based on
MDGDI, against competing item selection strategies. The results
of Study 1 indicated that when the test termination rule
is reached, MDGDI has the highest classification accuracy

TABLE 3 | Accuracy of the attribute classification for five attributes.

Item selection method Attribute (ACCR) AAMR PCCR

A1 A2 A3 A4 A5

HD-unif GDI 0.910 0.814 0.975 0.949 0.956 0.921 0.642

MMGDI 0.968 0.964 0.965 0.976 0.968 0.968 0.853

SWDGDI 0.937 0.867 0.969 0.945 0.959 0.935 0.688

MDGDI 0.990 0.984 0.992 0.991 0.990 0.989 0.953

HD-norm-0.5 GDI 0.946 0.854 0.856 0.901 0.942 0.900 0.598

MMGDI 0.978 0.969 0.976 0.973 0.982 0.976 0.887

SWDGDI 0.962 0.944 0.948 0.944 0.967 0.953 0.778

MDGDI 0.991 0.988 0.991 0.991 0.995 0.991 0.959

HD-norm-0.8 GDI 0.833 0.871 0.882 0.939 0.907 0.886 0.592

MMGDI 0.967 0.971 0.964 0.980 0.970 0.971 0.864

SWDGDI 0.947 0.957 0.952 0.967 0.965 0.958 0.800

MDGDI 0.989 0.994 0.991 0.993 0.990 0.991 0.962

LD-unif GDI 0.973 0.852 0.982 0.913 0.821 0.908 0.599

MMGDI 0.955 0.946 0.964 0.937 0.939 0.948 0.769

SWDGDI 0.964 0.921 0.972 0.922 0.901 0.936 0.728

MDGDI 0.972 0.963 0.978 0.960 0.960 0.967 0.868

LD-norm-0.5 GDI 0.866 0.914 0.914 0.950 0.793 0.887 0.541

MMGDI 0.964 0.959 0.959 0.960 0.950 0.958 0.815

SWDGDI 0.928 0.944 0.949 0.953 0.908 0.936 0.715

MDGDI 0.977 0.975 0.981 0.985 0.967 0.977 0.900

LD-norm-0.8 GDI 0.912 0.866 0.885 0.913 0.935 0.902 0.595

MMGDI 0.958 0.960 0.958 0.954 0.973 0.961 0.819

SWDGDI 0.941 0.933 0.932 0.929 0.954 0.938 0.709

MDGDI 0.965 0.970 0.974 0.964 0.985 0.972 0.877

HyD-unif GDI 0.937 0.908 0.983 0.813 0.970 0.922 0.648

MMGDI 0.969 0.967 0.966 0.953 0.963 0.964 0.837

SWDGDI 0.946 0.953 0.975 0.865 0.970 0.942 0.728

MDGDI 0.985 0.990 0.989 0.977 0.988 0.986 0.938

HyD-norm-0.5 GDI 0.893 0.872 0.948 0.849 0.926 0.897 0.593

MMGDI 0.958 0.970 0.975 0.971 0.973 0.970 0.859

SWDGDI 0.935 0.947 0.964 0.940 0.963 0.950 0.764

MDGDI 0.988 0.993 0.990 0.989 0.991 0.990 0.953

HyD-norm-0.8 GDI 0.846 0.873 0.950 0.938 0.912 0.904 0.642

MMGDI 0.968 0.963 0.976 0.978 0.972 0.971 0.864

SWDGDI 0.949 0.930 0.975 0.971 0.965 0.958 0.803

MDGDI 0.984 0.993 0.995 0.997 0.994 0.993 0.964

Frontiers in Psychology | www.frontiersin.org 6 May 2021 | Volume 12 | Article 619771163

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-12-619771 May 12, 2021 Time: 17:0 # 7

Li et al. MDGDI and MLGDI Based Methods

TABLE 4 | Accuracy of the attribute classification for five attributes.

Item selection method Attribute (ACCR) AAMR PCCR

A1 A2 A3 A4 A5

HD-unif GDI 0.910 0.814 0.975 0.949 0.956 0.921 0.642

CP_SWDGDI 0.931 0.924 0.937 0.943 0.926 0.932 0.709

MLGDI 0.981 0.973 0.986 0.987 0.971 0.979 0.911

HD-norm-0.5 GDI 0.946 0.854 0.856 0.901 0.942 0.900 0.598

CP_SWDGDI 0.910 0.931 0.930 0.931 0.929 0.926 0.676

MLGDI 0.985 0.984 0.988 0.988 0.993 0.988 0.945

HD-norm-0.8 GDI 0.833 0.871 0.882 0.939 0.907 0.886 0.592

CP_SWDGDI 0.924 0.918 0.938 0.932 0.931 0.929 0.681

MLGDI 0.987 0.988 0.986 0.989 0.988 0.988 0.944

LD-unif GDI 0.973 0.852 0.982 0.913 0.821 0.908 0.599

CP_SWDGDI 0.903 0.914 0.919 0.906 0.903 0.909 0.643

MLGDI 0.956 0.949 0.967 0.939 0.944 0.951 0.811

LD-norm-0.5 GDI 0.866 0.914 0.914 0.950 0.793 0.887 0.541

CP_SWDGDI 0.895 0.903 0.904 0.900 0.886 0.898 0.580

MLGDI 0.968 0.976 0.963 0.973 0.952 0.966 0.859

LD-norm-0.8 GDI 0.912 0.866 0.885 0.913 0.935 0.902 0.595

CP_SWDGDI 0.890 0.879 0.897 0.902 0.908 0.895 0.555

MLGDI 0.963 0.960 0.969 0.961 0.974 0.965 0.850

HyD-unif GDI 0.937 0.908 0.983 0.813 0.970 0.922 0.648

CP_SWDGDI 0.923 0.918 0.927 0.913 0.912 0.919 0.658

MLGDI 0.973 0.978 0.980 0.964 0.971 0.973 0.885

HyD-norm-0.5 GDI 0.893 0.872 0.948 0.849 0.926 0.897 0.593

CP_SWDGDI 0.914 0.911 0.927 0.926 0.924 0.921 0.653

MLGDI 0.982 0.977 0.991 0.984 0.986 0.984 0.929

HyD-norm-0.8 GDI 0.846 0.873 0.950 0.938 0.912 0.904 0.642

CP_SWDGDI 0.903 0.912 0.930 0.919 0.919 0.917 0.642

MLGDI 0.978 0.986 0.990 0.988 0.988 0.986 0.934

compared with MGDI, MMGDI, and CP_SWGDI. MLGDI
is a new item selection method based on MDGDI with an
additional exposure control mechanism, whereas CP_SWGDI
is a new item selection method based on SWGDI with an
additional exposure control mechanism. We expect MLGDI
to have the highest attribute classification accuracy in MGDI,
CP_SWGDI, and MLGDI when the test satisfies the test
termination rule.

Study II was conducted to investigate the performance of
MLGDI against CP_SWDGDI and GDI. The data generation and
evaluation criteria are the same as study I.

Results
Table 4 lists the estimates of ACCR, AAMR, and PCCR in each
condition. The MLGDI stands out in both the recovery rate of
each attribute and the entire profile, followed by CP_SWDGDI.
As evident in Table 4, compared with the PCCR of CP_SWDGDI
(which also includes an exposure control mechanism), the
PCCR of MLGDI increased by approximately 0.15–0.30. Table 4
also indicates that when the test sample reached the test
termination condition, MLGDI exhibited the highest accuracy in
attribute classification.

MLGDI Can Reduce the Participant’s
Exposure Rate of MDGDI and Yield a
High Accuracy in the Attribute
Classification
Table 5 presents the exposure indicators of each item under
the different examinee populations, item pools, and six item
strategies (MGDI, MMGDI, SWDGDI, CP_SWDGDI, MDGDI,
and MLGDI). It is worth noting that, as the exposure control
index was added to the MLGDI, the decrease in PCCR was
relatively small compared to MDGDI which has the highest
PCCR comparing to the other selection item methods, but
result in a better item bank usage. As detailed in Table 5,
the chi-square value of the item-bank exposure rate of the
four item selection strategies without exposure restriction
exceeded 110, the TOR exceeded 0.15, and the maximum
item exposure rate reached >0.50. Although the accuracy of
the MDGDI’s attribute classification was the highest among
the six item strategies, the exposure rate of the relevant item
bank was also higher than those of the other five strategies.
For example, LD-norm-0.5, the chi-square value of MDGDI’s
exposure rate was as high as 250, the TOR was as high
as 0.349, and the maximum exposure rate of the title was
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TABLE 5 | Item exposure of each item selection method for five attributes.

Item selection
method

Index

χ2 TOR max_expose PCCR

HD-unif GDI 125.444 0.187 0.764 0.642

MMGDI 302.007 0.415 1.000 0.853

SWDGDI 121.937 0.183 0.566 0.688

MDGDI 326.991 0.448 0.936 0.953

CP_SWDGDI 0.025 0.026 0.030 0.709

MLGDI 75.726 0.123 0.190 0.911

HD-norm-
0.5

GDI 112.473 0.171 0.574 0.598

MMGDI 263.488 0.366 1.000 0.887

SWDGDI 139.819 0.206 0.433 0.778

MDGDI 250.257 0.349 0.753 0.959

CP_SWDGDI 0.031 0.026 0.032 0.676

MLGDI 75.008 0.122 0.190 0.945

HD-norm-
0.8

GDI 122.464 0.184 0.458 0.592

MMGDI 253.052 0.352 1.000 0.864

SWDGDI 181.618 0.260 0.488 0.800

MDGDI 264.183 0.366 0.660 0.962

CP_SWDGDI 0.038 0.026 0.032 0.681

MLGDI 78.197 0.126 0.190 0.944

LD-unif GDI 159.785 0.232 0.786 0.599

MMGDI 297.878 0.410 1.000 0.769

SWDGDI 136.547 0.202 0.595 0.728

MDGDI 291.227 0.401 0.893 0.868

CP_SWDGDI 0.024 0.026 0.030 0.643

MLGDI 67.731 0.113 0.190 0.811

LD-norm-
0.5

GDI 111.453 0.169 0.533 0.541

MMGDI 284.401 0.393 1.000 0.815

SWDGDI 141.231 0.208 0.480 0.715

MDGDI 235.690 0.330 0.693 0.900

CP_SWDGDI 0.032 0.026 0.031 0.580

MLGDI 72.465 0.119 0.190 0.859

LD-norm-
0.8

GDI 146.151 0.214 0.488 0.595

MMGDI 270.456 0.375 1.000 0.819

SWDGDI 179.267 0.257 0.491 0.709

MDGDI 253.893 0.353 0.642 0.877

CP_SWDGDI 0.036 0.026 0.033 0.555

MLGDI 79.315 0.128 0.190 0.850

HyD-unif GDI 178.761 0.256 0.843 0.648

MMGDI 250.533 0.349 1.000 0.837

SWDGDI 148.291 0.217 0.729 0.728

MDGDI 301.685 0.415 0.918 0.938

CP_SWDGDI 0.029 0.026 0.030 0.658

MLGDI 72.495 0.119 0.190 0.885

HyD-norm-
0.5

GDI 128.105 0.191 0.567 0.593

MMGDI 260.627 0.362 1.000 0.859

SWDGDI 151.950 0.222 0.429 0.764

MDGDI 263.093 0.365 0.691 0.953

(Continued)

TABLE 5 | Continued

Item selection
method

Index

χ2 TOR max_expose PCCR

CP_SWDGDI 0.038 0.026 0.032 0.653

MLGDI 80.168 0.129 0.190 0.929

HyD-norm-
0.8

GDI 151.469 0.221 0.525 0.642

MMGDI 286.640 0.395 1.000 0.864

SWDGDI 197.969 0.281 0.480 0.803

MDGDI 274.848 0.380 0.682 0.964

CP_SWDGDI 0.037 0.026 0.032 0.642

MLGDI 79.190 0.128 0.190 0.934

as high as 0.753. MLGDI was the selected item strategy
that integrated exposure inhibition based on MDGDI. As
indicated in Table 5, MLGDI could effectively reduce the
exposure index of each item while considering the high accuracy
of attribute classification. Similarly, the chi-square value of
MLGDI’s item exposure rate was 75, which was 175 less than
that of MDGDI. The TOR of MLGDI was 0.122, which was
less than that of MDGDI by 0.227. The maximum exposure
rate of the MLGDI’s item was 0.190, which was 0.563 lower
than that of MDGDI. With respect to the mastery pattern
correct classification rate, the PCCR value of MDGDI was
0.959, and that of MLGDI was 0.945. The mastery pattern
correct classification rate decreased by 0.014, and the attribute
classification accuracy remained high. In addition, the MLGDI’s
mastery pattern correct classification rate remained higher
than those of MGDI, MMGDI, SWDGDI, and CP_SWDGDI,
and its mastery pattern correct classification rate was second
only to that of MDGDI. Table 5 also indicates that although
CP_SWDGDI had the highest performance in each index of
item exposure rate, the excessive exposure inhibition component
added by CP_SWDGDI resulted in a low item selection efficiency
and a low accuracy in attribute classification. In the case of
LD-norm-0.5, the MLGDI’s PCCR value was 0.945, but that
of CP_SWDGDI’s was only 0.676, which was less than that
of MLGDI by 0.269. Therefore, although CP_SWDGDI can
reduce the items exposure rate, it has a low item selection
efficiency and a low accuracy in attribute classification. Therefore,
CP_SWDGDI cannot execute a desirable exposure control while
maintaining a relatively high classification accuracy in the
item selection test.

Table 6 shows the percentage of tests that met the
attribute-coverage requirement, both at the attribute and
overall test levels. For instance, the first entry in the table
is 0.675, meaning 67.5% of the tests under the GDI method
met the coverage constraint of the first attribute, or that
67.5% of the tests had at least three items measuring
the first attribute. Compared with the uncontrolled method,
MMGDI, SWDGDI, MDGDI, MLGDI, and CP_SWDGDI
produced noticeably better results in balancing the attribute
coverage: 100% of the tests met all the attribute coverage
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TABLE 6 | Attribute coverage balance of each item selection method under
five attributes.

Item selection
method

Attribute coverage balance Total balance

A1 A2 A3 A4 A5

HD-unif GDI 0.675 0.395 0.761 0.699 0.708 0.118

MMGDI 1.000 1.000 1.000 1.000 1.000 1.000

SWDGDI 1.000 1.000 1.000 1.000 1.000 1.000

MDGDI 1.000 1.000 1.000 1.000 1.000 1.000

CP_SWDGDI 1.000 1.000 1.000 1.000 1.000 0.999

MLGDI 1.000 1.000 1.000 1.000 1.000 1.000

HD-
norm-
0.5

GDI 0.883 0.607 0.697 0.739 0.747 0.276

MMGDI 1.000 1.000 1.000 1.000 1.000 1.000

SWDGDI 1.000 1.000 1.000 1.000 1.000 1.000

MDGDI 1.000 1.000 1.000 1.000 1.000 1.000

CP_SWDGDI 1.000 1.000 1.000 0.999 1.000 0.999

MLGDI 1.000 1.000 1.000 1.000 1.000 1.000

HD-
norm-
0.8

GDI 0.776 0.810 0.833 0.890 0.691 0.403

MMGDI 1.000 1.000 1.000 1.000 1.000 1.000

SWDGDI 1.000 1.000 1.000 1.000 1.000 1.000

MDGDI 1.000 1.000 1.000 1.000 1.000 1.000

CP_SWDGDI 1.000 1.000 1.000 1.000 1.000 1.000

MLGDI 1.000 1.000 1.000 1.000 1.000 1.000

LD-unif GDI 0.948 0.638 0.952 0.585 0.411 0.103

MMGDI 1.000 1.000 1.000 1.000 1.000 1.000

SWDGDI 1.000 1.000 1.000 1.000 1.000 1.000

MDGDI 1.000 1.000 1.000 1.000 1.000 1.000

CP_SWDGDI 1.000 1.000 1.000 1.000 1.000 1.000

MLGDI 1.000 1.000 1.000 1.000 1.000 1.000

LD-
norm-
0.5

GDI 0.763 0.844 0.880 0.918 0.466 0.241

MMGDI 1.000 1.000 1.000 1.000 1.000 1.000

SWDGDI 1.000 1.000 1.000 1.000 1.000 1.000

MDGDI 1.000 1.000 1.000 1.000 1.000 1.000

CP_SWDGDI 1.000 1.000 1.000 1.000 1.000 0.999

MLGDI 1.000 1.000 1.000 1.000 1.000 1.000

LD-
norm-
0.8

GDI 0.903 0.820 0.830 0.828 0.898 0.481

MMGDI 1.000 1.000 1.000 1.000 1.000 1.000

SWDGDI 1.000 1.000 1.000 1.000 1.000 1.000

MDGDI 1.000 1.000 1.000 1.000 1.000 1.000

CP_SWDGDI 1.000 1.000 1.000 1.000 0.999 0.999

MLGDI 1.000 1.000 1.000 1.000 1.000 1.000

HyD-
unif

GDI 0.699 0.671 0.928 0.382 0.860 0.125

MMGDI 1.000 1.000 1.000 1.000 1.000 1.000

SWDGDI 1.000 1.000 1.000 1.000 1.000 1.000

MDGDI 1.000 1.000 1.000 1.000 1.000 1.000

CP_SWDGDI 1.000 1.000 1.000 1.000 1.000 0.999

MLGDI 1.000 1.000 1.000 1.000 1.000 1.000

(Continued)

TABLE 6 | Continued

Item selection
method

Attribute coverage balance Total balance

A1 A2 A3 A4 A5

HyD-
norm-
0.5

GDI 0.785 0.781 0.926 0.586 0.718 0.275

MMGDI 1.000 1.000 1.000 1.000 1.000 1.000

SWDGDI 1.000 1.000 1.000 1.000 1.000 1.000

MDGDI 1.000 1.000 1.000 1.000 1.000 1.000

CP_SWDGDI 1.000 1.000 1.000 1.000 1.000 1.000

MLGDI 1.000 1.000 1.000 1.000 1.000 1.000

HyD-
norm-
0.8

GDI 0.818 0.789 0.898 0.900 0.815 0.542

MMGDI 1.000 1.000 1.000 1.000 1.000 1.000

SWDGDI 1.000 1.000 1.000 1.000 1.000 1.000

MDGDI 1.000 1.000 1.000 1.000 1.000 1.000

CP_SWDGDI 1.000 1.000 1.000 0.999 1.000 0.999

MLGDI 1.000 1.000 1.000 1.000 1.000 1.000

requirements. This was more pronounced at the overall test
level: with the GDI method, only approximately 10–54%
of the tests had an adequate attribute coverage among the
conditions, whereas the other three methods ensured that
every test is so.

As shown in Table 6, both the MDGDI and MLGDI methods
yielded a perfect attribute balancing, with 100% of the tests under
all the conditions fulfilling all attribute coverage, or 100% of
these tests having three or more items measuring each of the
five attributes.

In addition, the ABI of MDGDI and MLGDI incorporates
the dynamic balance of test attributes. Consequently, in the
entire test process, the measurement frequency of all attributes
is relatively balanced; that is, the difference between the
maximum and minimum number of attribute measurements
are kept within a given range, which increases the item
selection efficiency. Therefore, MDGDI and MLGDI have a
higher attribute classification accuracy than do MGDI, MMGDI,
SWDGDI, and CP_SWDGDI.

DISCUSSION AND CONCLUSION

Cognitive diagnostic CAT captures the advantages of both CDA
and CAT, allowing the individualized diagnostic feedback with
fewer items. In this article, two new item selection methods,
the MLGDI and MDGDI, were introduced, and their efficiency
were compared with the existing methods. The results indicated
that the MDGDI method successfully balanced the attribute
coverage in CD-CAT and the MLGDI method simultaneously
achieved balance over the attribute coverage and ensured
the test security.

Both the MDGDI and the MLGDI outperformed the
GDI, MMGDI, SWDGDI, and CP_SWDGDI in terms of
the classification accuracy. Compared with MDGDI, MLGDI
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provides a better item exposure control. The studies also showed
that items with HD or high correlations among attributes
provided better classification rates.

MDGDI and MLGDI Have Higher Pattern
Determination Rates
The study demonstrated that MDGDI and MLGDI had a
higher attribute correct classification rate than GDI, MMGDI,
SWDGDI, and CP_SWDGDI under the different conditions.
The PCCRs of MMGDI, SWDGDI, and CP_SWDGDI were
worse than those of MDGDI and MLGDI. This was attributable
to the multiplicative form of the attribute balance indicator
in the MMGDI (Cheng, 2010). In such a form, negative–
negative–positive cases can occur, which reduces the item
selection efficiency of MMGDI. In addition, in the process of
the prophase research item, because of the ABI, SWDGDI and
CP_SWDGDI (Lin and Chang, 2018) attribute the propensity
to choose more items. Specifically, Lin and Chang (2018)
found that compared with the simple q vector (i.e., a vector
with less or a single measurement attribute), an excessively
complex q vector (i.e., one with multiple measured attributes)
reduces the classification accuracy of the measurement (Madison
and Bradshaw, 2015; Huebner et al., 2018). The MD index
was adopted in MDGDI and MLGDI to achieve attribute
coverage balance. Consequently, the measurement drying of
all attributes are relatively balanced in the whole test process,
that is, the deviation between the minimum and maximum
number of attributes measured is within a given range. Therefore,
the attributes of MDGDI and MLGDI are more balanced
in the test process, which reduces the interference of the
original selection strategy of the index and disallows the
selection strategy from being more inclined to select some
types of items due to the addition of the ABI. Therefore,
MDGDI and MLGDI have a higher attribute classification
accuracy.

MLGDI Provides a Better Exposure
Control and High Attribute Classification
Accuracy
Studies have shown that MDGDI has the highest attribute
correct classification rate among MGDI, MMGDI, SWDGDI,
CP_SWDGDI, MDGDI, and MLGDI. However, MDGDI also
has problems such as the item overexposure, high TOR, and
overuse of some items. Therefore, we added the restricted
exposure index to MDGDI to construct the MLGDI item
selection method. We found that MLGDI (1) greatly reduced the
exposure rate and TOR but still had a high attribute classification
accuracy and (2) had a pattern determination rate that was
second only to MDGDI. In addition, the selected item strategy of
CP_SWDGDI considers both the attribute coverage balance and
exposure control. The exposure control method of CP_SWDGDI
contains two key parameters, namely the adjustment information
interval parameter s and the exposure parameter r, which is
the maximum exposure required for a specific test purpose.

Therefore, CP_SWDGDI uses the exposure parameterrand
the adjustment information interval parametersto control
the item exposure. However, determining the value of the
information interval parametersthat is appropriate for a given
test length and number of attributes is difficult, which makes
the CP_SWDGDI difficult to apply in practice (Zheng and
Wang, 2017). Compared with CP_SWDGDI, MLGDI only
realizes the exposure control of the participant through the
exposure parameterr. The absence of the information interval
parametersand the need to determine the appropriatesvalue
under the different conditions makes MLGDI more practicable.
In addition, MLGDI has a higher attribute classification accuracy
than does CP_SWDGDI. In conclusion, MLGDI can better
meet the requirements of exposure control and has a high
attribute classification accuracy, making MLGDI more suitable
for practical applications.

The simulation studies yielded the following conclusions:

(1) When only the accuracy of attribute classification and
attribute-coverage requirement are considered, MDGDI
had the best attribute classification accuracy among GDI,
MMGDI, SWDGDI, and MDGDI.

(2) When the accuracy of attribute classification, attribute-
coverage requirement, and control item exposure
rate are considered, MLGDI had the best attribute
classification accuracy among GDI, CP_SWDGDI, and
MLGDI.

(3) Adding a restricted item exposure mechanism to the item
selection method will reduce the classification accuracy of
the attributes of the item selection method.

(4) Compared with GDI, MMGDI, SWDGDI, CP_SWDGDI,
and MDGDI, MLGDI can better achieve the attribute-
coverage requirement, control item exposure rate, and
attribute correct classification rate.

Directions for Future Research
Future studies can build upon our analysis of the performance of
the six item selection strategies (GDI, MMGDI, SWDGDI,
CP_SWDGDI, MDGDI, and MLGDI) under different
conditions. (1) In the simulations, we found that MDGDI
and MLGDI methods can be well used in the selection
of CD-CAT projects. However, simulation results are
limited to the given simulation conditions. Therefore,
to further demonstrate the effectiveness of our method,
future research should involve the practical application of
the two proposed methods in the use of CD-CAT item
banks. (2) For simplicity, we assumed that the correlations
between the attributes were set at 0.5 and 0.8 in our
simulations. Future studies can test the effectiveness of
our thematic strategies (MDGDI and MLGDI) under more
realistic conditions. (3) Future studies can extend the MDI
and ML indexes to the method based on the expected
Shannon entropy and the method based on the a posteriori,
weighted KL information.
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Bayesian networks (BNs) can be employed to cognitive diagnostic assessment (CDA).

Most of the existing researches on the BNs for CDA utilized the MCMC algorithm to

estimate parameters of BNs. When EM algorithm and gradient descending (GD) learning

method are adopted to estimate the parameters of BNs, some challenges may emerge

in educational assessment due to the monotonic constraints (greater skill should lead

to better item performance) cannot be satisfied in the above two methods. This paper

proposed to train the BN first based on the ideal response pattern data contained in every

CDA and continue to estimate the parameters of BN based on the EMor the GD algorithm

regarding the parameters based on the IRP training method as informative priors. Both

the simulation study and realistic data analysis demonstrated the validity and feasibility

of the new method. The BN based on the new parameter estimating method exhibits

promising statistical classification performance and even outperforms the G-DINA model

in some conditions.

Keywords: Bayesian Networks, ideal response pattern, cognitive diagnostic model, parameter estimatingmethod,

cognitive diagnostic assessment

INTRODUCTION

Cognitive diagnosis models (CDMs) are psychometric models developed mainly to assess students’
specific strengths and weaknesses on a set of finer-grained skills or attributes within a domain.
Researchers have developed many kinds of CDMs for cognitive diagnostic assessment (CDA),
including the rule space model (Tatsuoka, 1985), the attribute hierarchy model (AHM, Leighton
et al., 2004), the deterministic inputs noisy and gate model (DINA, Junker and Sijtsma, 2001), the
Deterministic Input, Noisy Output “Or” gate model (DINO; Templin and Henson, 2006), the Log-
Linear Cognitive Diagnosis Model (LCDM, Henson et al., 2009), the General Diagnostic Model
(GDM, von Davier, 2005), the G-DINA model (de la Torre, 2011), and so on. In addition to these
traditional CDMs, some researchers also proposed to use Bayesian networks (BNs, Pearl, 1988) in
CDA (Mislevy, 1995; Mislevy et al., 1999; Almond et al., 2007, 2015; Wu, 2013; Levy and Mislevy,
2017). These literatures have documented the efficiency of BN used for diagnostic assessment,
especially in the construction of large-scale evaluation system (e.g., Steinberg et al., 2003; Levy and
Mislevy, 2004; Almond et al., 2015).
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In BNs for CDA, the observable variables are the item
responses and the latent variables are the knowledge states
that can be treated as missing data. In Bayesian Network, like
the traditional CDMs, the parameter estimation is also needed.
The parameter estimation algorithms include the Markov Chain
Monte Carlo (MCMC) method, the expectation maximization
(EM)method, and the gradient descent (GD) learningmethod. In
educational assessment, theMCMCmethod was used extensively
(Wu, 2013; Almond et al., 2015; Levy andMislevy, 2017), whereas
the EM and the GD algorithms are rarely used. Some researches
(Lauritzen, 1995; Russell et al., 1995; Korb and Nicholson,
2010) have described the algorithms. The EM algorithm is an
iterative method to find (local) maximum likelihood estimates of
parameters in BNs, in which the model depends on unobserved
latent variables. EM iteration alternates between performing an
expectation (E) step, which uses regular BN inference with the
existing BN to compute the expected value of all the latent
variables (missing data), and a maximization (M) step, which
computes parameters maximizing the log-likelihood of BN given
the resulting extended data (i.e., original data plus the expected
value of missing data). These parameter estimates are used to
determine the distribution of the latent variables in the next E
step. The GD learning method tries to minimize the objective
function of the negative log likelihood to determine the BN
parameters. This method can find a better BN by using BN
inference to calculate the direction of the steepest gradient and
to change the parameters to follow the steepest direction of the
gradient (i.e., maximum improvement). Actually, it uses a much
more efficient approach than always taking the steepest path, by
taking into account its previous path, which is why it is called the
conjugate gradient descent (Norsys Inc., 2004). However, both
the EM and the GD methods are sensitive to the initial condition
and liable to be trapped in a local optimization.Moreover, there is
a fundamental issue with using the EM and the GD algorithms in
BN. In educational applications, the variables (both proficiency
variables and observable outcomes) are usually ordinal, and the
parameters aremonotonic (greater skill should lead to better item
performance). However, most parameter estimation algorithms
do not force monotonicity constraints on the parameters. In the
case when informative priors are available, they might support to
keep the estimates from violating the monotonicity assumptions
(von Davier and Lee, 2019). Almond (2015) describes a flexible
parameterization for conditional probability tables based on item
response theory (IRT) that preserves monotonicity and extends
the EM algorithm to a generalized EM algorithm. However, this
method needs to map each configuration of parent variables to
an effective theta, a point on a latent normal scale, and calculate
the conditional probability tables using the IRT model. That is
to say, this method needs to introduce other models to assist
the parameterization.

Besides the above CDMs, researchers also proposed to use
machine learning algorithms for CDA, such as neural networks
(NNs, Gierl et al., 2008; Shu et al., 2013; Cui et al., 2016),
and support vector machines (SVMs, Liu and Cheng, 2018).
Gierl et al. (2008) were the first to propose using the ideal
response patterns (IRPs) and the corresponding attribute profiles
constructed in the cognitive model of the CDA as the training

data of NNs. The ideal response patterns are the students
with the knowledge states (attribute profiles) to answer the
questions with no slipping and guessing errors. The attribute
profiles are the entire possible attribute combinations in the
cognitive model. If there are K attributes in the test and the
attributes are independent, then the number of the attribute
profiles is 2K, while in the AHM, the number is <2K due to
the hierarchical relationship of the attributes. Shu et al. (2013)
also used this approach to train the NN and investigated its
performance in small samples. They pointed out that, “In doing
this all items are assumed to behave in the same way and so
no differentiation is made between items with respect to item
quality. A limitation of the use of a NN analysis with IRP
is that all ‘calibration’ of the model is based on connections
between response patterns and attribute patterns calibrated in
the training process, no empirical information (i.e., students’
response patterns) is used to influence the procedure.” Thus, they
proposed to combine the NN approach using IRP and a MCMC
estimation algorithm or a Joint Maximum Likelihood Estimation
(JMLE) algorithm. Inspired by this research, we propose to use
the IRP data to estimate the BN parameters first, then continue
to estimate the BN parameters by EM or GD methods, taking
the previously estimated parameters as informative priors. The
introduction of IRP into the EM or GD method can overcome
the inaccurate estimation limitation caused by the violations of
the monotonicity constraints. This combination also provides
suitable starting values to continue the EM or GD estimation to
overcome the local optimality problem. On the other hand, this
method can also improve the performance of the IRP method
without empirical information. And comparing to the solution in
Almond (2015), we propose to apply the information contained
in each CDA (IRP data) for the initial parameterization and do
not need to introduce othermodels to assist the parameterization.

To demonstrate the effectiveness of our proposed approach,
we performed a simulation study comparing the parameter
estimating algorithms in BN, including the EM method, the GD
method, the IRP training method, and the combinations of IRP
and EM or GD methods. We considered the classification rates
as the performance indicators of the algorithms and the G-DINA
model’s diagnostic classification performance as the evaluation
criterion. Also, we carried out a real data analysis to demonstrate
the validity of the proposed method.

Regarding the simulation method, usually various CDMs are
adopted as the data-generating models. The simulation data is of
great value in verifying the properties of the models. However,
there are also some limitations in the CDM-based data. Real data
do not necessarily conform to the assumptions of the CDMs.
Using a CDM to process the data conforming to the same
model assumption may overrate the properties of the model.
Thus, other data-generating methods are needed. Wu (2013)
proposed to generate data based on BNs, but the parameters
of BNs were determined based on traditional CDMs, and the
patterns of the simulated data by the BNs were essentially the
same as the CDM-generated data. This research introduced a
new simulation data generating method by using BNs to generate
data with the empirical data’s pattern and these simulated data
do not necessarily satisfy the G-DINA assumption. To evaluate
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the BN and G-DINA methods more objectively, we designed
the simulation study using both the G-DINA model and the BN
model to generate data.

OVERVIEW OF THE COGNITIVE
DIAGNOSTIC MODELS AND
BAYESIAN NETWORKS

The Cognitive Diagnostic Model
The G-DINA model is a general CDM and can be converted to
the constrained CDMs by setting appropriate constraints (de la
Torre, 2011). According to de la Torre (2011) notation, for a
test with J items and K attributes, let K∗

j represent the number

of required attributes for item j, and α∗
lj
be the reduced attribute

vector whose elements are the required attributes for item j. Then,
the item response function of the G-DINA model is expressed
as follows:

P(α∗
lj) = δj0 +

K∗
j∑

k=1

δjkαlk +

K∗
j∑

k′=k+1

K∗
j −1∑

k=1

δjkk′αlkαlk′ ...

+δj12...K∗
j

K∗
j∏

k=1

αlk

Where δj0 is the intercept for item j; δjk is the main effect due to
αk; δjkk′ is the interaction effect due to αk and αk′ ; and δj12...K∗

j
is

the interaction effect due to α1...αK∗
j
. This function is the identity

link function and the other two link functions can also be used
to express the G-DINA model according to de la Torre (2011),
namely, the logit link and the log link.

The Bayesian Networks
Bayesian networks (BN, Pearl, 1988) are a notation for expressing
the joint distribution of probabilities over both observed and
latent variables. They are used to represent knowledge in
an uncertain domain and have been successfully applied in
computer science, especially in artificial intelligence. A BN
consists of a directed acyclic graph (DAG) to represent their
structure and a corresponding set of conditional probability
distributions to represent the parameters (Culbertson, 2016;
Hu and Templin, 2019). In this graph, each node represents
a random variable and each edge constitutes the probabilistic
dependence relationship among the variables represented by
the two nodes that are joined. Each pair of connected nodes
has a directed edge flowing from a “parent” node to a “child”
node. A conditional probability distribution is specified for each
node, given its parent nodes. For discrete random variables, this
conditional probability is described with conditional probability
tables (CPTs). The structure of BNs effectively reflects the
conditional independent relationship between the variables.
According to the conditional independent relationship, a joint
probability distribution is decomposed into a product of a
series of conditional distributions, which reduces the number of
parameters required to define the joint probability distribution

of the variables, and to compute the posterior probabilities
efficiently, given the data.

A BN applied for cognitive diagnosis is shown in Figure 1. In
Figure 1, the item nodes (observed variables) can be connected
to the attribute nodes (hidden variables), similar to the Q-matrix
that represented relationships between attributes and items in
traditional CDMs (Tatsuoka, 1983; Almond, 2010). The attribute
nodes can also be connected to each other, denoting the attribute
hierarchical relationships. According to the specific structure of
the BN, the joint probability distribution of all the variables
can be factorized into a product of a series of conditional
probabilities. Once the structure of the BN has been determined,
we need to specify these parameters in the BN first in order to
make an inference, i.e., specify the conditional probabilities and
the marginal probabilities. If all the nodes of a discrete BN are
fully observed in a sample, the CPTs can be updated via a simple
counting algorithm. This is the case when we train the BN using
the IRP and the corresponding attribute profile data. If there are
missing values or latent variables, then the CPTs can be calculated
using the EM algorithm, the GDmethod, or the MCMCmethod.

After obtaining the structure and parameters of the BN, we
can use the BN to predict the students’ knowledge state by
probability inference. According to the Bayesian Theorem, the
probability inference is when the posterior probability of the
hidden variables (attributes) is calculated using the values of the
observed variables (e.g., item response) as input. This process is
also called network propagation or belief updating, which can
be realized by a number of algorithms, such as the message
passing algorithm (Pearl, 1988), or trees of cliques (Lauritzen and
Spiegelhalter, 1988; Jensen, 1996).

METHODS

Simulation Design
The study presented in this paper compared several parameters
estimatingmethods in Bayesian networks for cognitive diagnosis.
We conducted a simulation study to evaluate the performance
of different parameter estimating methods. The Q-matrix (see
Table 1) with 30 items and 5 attributes in de la Torre (2011) was
adopted. The interconnections between attributes and test items
in the Q-matrix could also be represented in a BN graph in which
the arcs connecting two nodes denoted the associations between
the corresponding items and the attributes.

The attribute patterns were generated in two different
methods. The first method sampled attribute patterns from a
uniform distribution with probability 1/2K of every possible
value. In the second method, the discrete attribute pattern α was
linked to an underlying multivariate normal distribution, MVN
(0K , Σ), with covariance matrix Σ , structured as

∑
=



1 ρ

...
ρ 1




and ρ = 0.5. Let θi = (θi1, θi2, . . . , θiK) denote the K-dimensional
vector of latent continuous scores for examinee i. The attribute
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FIGURE 1 | A Bayesian network applied for cognitive diagnosis.

TABLE 1 | The Q-Matrix of the simulation study.

A1 A2 A3 A4 A5 A1 A2 A3 A4 A5

I1 1 0 0 0 0 I16 0 1 0 1 0

I2 0 1 0 0 0 I17 0 1 0 0 1

I3 0 0 1 0 0 I18 0 0 1 1 0

I4 0 0 0 1 0 I19 0 0 1 0 1

I5 0 0 0 0 1 I20 0 0 0 1 1

I6 1 0 0 0 0 I21 1 1 1 0 0

I7 0 1 0 0 0 I22 1 1 0 1 0

I8 0 0 1 0 0 I23 1 1 0 0 1

I9 0 0 0 1 0 I24 1 0 1 1 0

I10 0 0 0 0 1 I25 1 0 1 0 1

I11 1 1 0 0 0 I26 1 0 0 1 1

I12 1 0 1 0 0 I27 0 1 1 1 0

I13 1 0 0 1 0 I28 0 1 1 0 1

I14 1 0 0 0 1 I29 0 1 0 1 1

I15 0 1 1 0 0 I30 0 0 1 1 1

pattern αi = (αi1,αi2, . . . ,αiK) was determined by

αik =

{
1, if θik ≥ 8−1( k

K+1 )

0, otherwise

The item response data that were used in our experiments were
generated using the G-DINA model.

The parameter setting include two conditions, one is that
both the g and s parameters in each item are fixed at 0.2, the
other is a mixed test with high-discriminating items and low-
discriminating items (10 items with g = 0.3, s= 0.3; 10 items with
g = 0.2, s= 0.2; and 10 items with g = 0.1, s= 0.1), which is more
realistic in practice. The success probabilities of the examinees
who master none and all attributes [i.e., P(0) and P(1)] were
fixed as g and 1 – s, and the success probabilities of examinees
with other attribute patterns were randomly generated from the

distribution of Unif [P(0), P(1)] with monotonic constraint. All
the above simulated data were generated by CDMs. We also

used BNs to generate the data. When using BNs to generate
the simulated data, the BN parameters need to be determined
first because these parameters reflect the patterns behind the
generated simulation data. Two datasets were used to estimate
the BN parameters (i.e., the CPTs), including the simulated data
previously generated by G-DINA, and the fraction subtraction
dataset. The fraction subtraction dataset contains 536 students,
15 items, and 5 attributes, and the Q-matrix was defined as
given by de la Torre (2009). Two BN models were constructed
to process the two datasets and the parameters of the BN models
were estimated based on the two datasets using IRP–EMmethod.
Then, we used the two BN models to generate two types of
simulated datasets. The patterns behind the two sets of simulated
data reflect the patterns of the two sets of data previously used to
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FIGURE 2 | A simple Bayesian network applied for cognitive diagnosis.

TABLE 2 | The ideal response pattern and the corresponding attribute profiles.

Attribute 1 Attribute 2 Item 1 Item 2

Case 1 1 1 1 1

Case 2 1 0 0 0

Case 3 0 1 0 1

Case 4 0 0 0 0

estimate the parameters. In other words, the BN-generated data
not only reflect the pattern of the G-DINA simulated data, but
also the pattern of the real test data.

Accordingly, four types of datasets were simulated by CDMs
(two level parameters × two different attribute profile sampling
method) and two types of datasets were simulated by BNs.
Each condition had two sample sizes of 500 and 1,000. And all
the simulations are repeated 30 times to compute the average
classification rate and the standard error.

The Realization of the IRP–EM and IRP–GD
Methods
The BN and G-DINA models were applied to analyze the data.
The parameter estimating method of BNs includes the EM
method, the GD method, the IRP training method, and the
combinations of IRP with EM or GD methods. The classification
rates are considered as the performance indicators of the
algorithms and the diagnostic classification performance of
the G-DINA model is considered as the evaluation criterion.
When using IRP and the corresponding attribute profiles to
train the BN, the CPT of the BN can be obtained through
counting the observed frequencies in the IRP training dataset
using algorithms (Neapolitan, 2004; Lee and Corter, 2011). A
sample BN based on the problem of diagnosing attributes is
shown in Figure 2. Table 2 presents the ideal response pattern
and the corresponding attribute profiles; Table 3 shows the
respective CPTs through counting the observed frequencies in
the training dataset.

The example with all the results presented above illustrated
the BN training process using the IRP information. Two different

TABLE 3 | The conditional probability table of the Bayesian network.

P (Attribute1) P (Attribute2)

Attribute 1 = 1 Attribute 1 = 0 Attribute 2 = 1 Attribute 2 = 0

2/4 2/4 2/4 2/4

P (Item 1|Attribute 1, Attribute 2)

Attribute 1 Attribute 2 Item 1 = 1 Item 1 = 0

1 1 1 0

1 0 0 1

0 1 0 1

0 0 0 1

P (Item 2|Attribute 1, Attribute 2)

Attribute 1 Attribute 2 Item 2 = 1 Item 2 = 0

1 1 1 0

1 0 0 1

0 1 1 0

0 0 0 1

types of IRP data were computed based on the DINA model
and the DINOmodel representing the non-compensatory model
and the compensatory model. After the BN was trained based on
the IRP data, the GD or EM algorithm were used to estimate
the parameters of BN treating the IRP parameters as priors.
Generally, the DINA–IRP data were used first and when the
GD or EM algorithms were trapped in the local optimality,
the algorithms transfer to use the DINO–IRP data to train the
BN model and continue to estimate the final parameters. No
matter which IRP was used to train the BN, they provided
the suitable starting values for the EM or the GD method
and this avoided the algorithms to be trapped in the local
optimality. The implementation of the parameter estimation
algorithm is realized by Netica (www.norsys.com), a professional
Bayesian network software. In this software, the IRP and the
corresponding attribute patterns information is first entered into
the constructed BN structure and the prior of the parameters in
BN is obtained. After that, it continues to incorporate empirical
data to update the BN posterior parameters based on the EM or
GD algorithm.

RESULTS

We evaluated the performance of each algorithm under the
conditions mentioned in the simulation design, using the average
attribute classification rate (AACR) and the pattern classification
rate (PCR) as the performance index for each condition. The
standard error of each classification rate indicator is computed
to evaluate the consistency of the methods. From Table 4, we
could observe that in each condition, the PCRs of BNs based
on EM or GD method were very low because the monotonic
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TABLE 4 | The PCR of BNs and G-DINA from the data generated by G-DINA.

gs Level Distribution Sample size EM_BN GD_BN IRP_BN IRP_EM_BN IRP_GD_BN G-DINA

g=s=0.2 Uniform 1,000 0.196 0.162 0.320 0.611 0.627 0.622

500 0.138 0.091 0.348 0.577 0.598 0.593

Mvnorm 1,000 0.064 0.013 0.374 0.647 0.654 0.698

500 0.112 0.084 0.344 0.627 0.641 0.681

Mixed gs (0.3, 0.2, 0.1) Uniform 1,000 0.076 0.024 0.197 0.536 0.574 0.567

500 0.002 0.000 0.190 0.471 0.536 0.533

Mvnorm 1,000 0.036 0.038 0.263 0.582 0.644 0.677

500 0.006 0.000 0.184 0.579 0.590 0.629

TABLE 5 | The AACR of BNs and G-DINA from the data generated by G-DINA.

gs Level Distribution Sample size EM_BN GD_BN IRP_BN IRP_EM_BN IRP_GD_BN G-DINA

g=s=0.2 Uniform 1,000 0.741 0.740 0.816 0.902 0.908 0.906

500 0.350 0.307 0.829 0.896 0.898 0.898

Mvnorm 1,000 0.736 0.660 0.831 0.916 0.921 0.933

500 0.358 0.421 0.831 0.910 0.916 0.924

Mixed gs (0.3, 0.2, 0.1) Uniform 1,000 0.740 0.714 0.757 0.880 0.887 0.885

500 0.412 0.275 0.763 0.862 0.872 0.871

Mvnorm 1,000 0.738 0.431 0.782 0.898 0.916 0.922

500 0.371 0.287 0.696 0.894 0.898 0.907

constraint was not satisfied. When the IRP training method
was applied to estimate the parameters of BNs, the PCR was
improved to some extent but still very low. In all these datasets,
the effect of sample size on accuracy was not straightforward.
When we used the IRP data to estimate the BN parameters
first and continue to estimate the BN parameters by EM or GD
methods by regarding the previously estimated parameters as
informative priors, the PCRs of the BNs based on these two
methods were significantly improved compared to the former
three methods. The PCR of BN based on the combination of
IRP and GD methods (denoted as BN–IRP–GD method) was
higher than the BN based on the combination of IRP and
EM method (denoted as BN–IRP–EM method) in these G-
DINA datasets. The sample size had a certain influence on the
accuracy rate, especially in the four G-DINA datasets processed
by the IRP–EM method. The performance gap between the
1,000 and 500 samples of the other conditions was not so high.
When comparing with the G-DINA analysis, in the four datasets
generated by G-DINA, the PCR of BN–IRP–GD method was a
little higher than the PCR of G-DINA if the attribute patterns
of the students conformed to the uniform distribution, and the
PCR of G-DINA was higher than the BN–IRP–GD method if the
attribute patterns of the students conformed to the multivariate
normal distribution.

From Table 5, the results of AACR were similar to the PCR
results. The AACRs of BNs based on EM or GD methods
were very low and it was improved by training the BNs with
the IRP data. The AACRs of BN–IRP–EM and BN–IRP–GD
methods were improved further and the best result was achieved
through the BN–IRP–GD method. When comparing with the

G-DINA analysis, in the four datasets generated by G-DINA,
the AACR of BN–IRP–GD method was a little higher than the
AACR of G-DINA if the attribute patterns students conformed
to the uniform distribution, and the AACR of G-DINA was
higher than that of the BN-IRP-GD method if the attribute
patterns of the students conformed to the multivariate normal
distribution. We have also evaluated the consistency of the BN–
IRP–EM method, the BN-IRP-GD method and the G-DINA
method through standard errors of the PCR and AACR in
Tables 6, 7. The standard errors of the AACR were lower than
that of the PCR. Most conditions are lower than 0.01. The
BN–IRP–GD method and the BN–IRP–EM method have the
similar level of standard errors as the G-DINA method in
all conditions.

The PCR and AACR by BN and G-DINA models from the
data generated by G-DINA and the data generated by BN based
on the G-DINA data and fraction data are shown in Table 8.
And the standard errors of each PCR and AACR are given in
parentheses. In the initial BN construction, the BN parameters
were estimated by IRP–EM method, then the BN models with
determined parameters were used to simulate two types of
datasets for analyzing. It can be expected that the results of the
simulated datasets analyzed by the IRP–EM method to be higher
than that analyzed by the IRP–GDmethod. Thus, these data were
not analyzed by IRP–EMmethod to avoid overrating the IRP–EM
method. The BN–IRP–GD method and the G-DINA model were
used to process these data. In the dataset generated by BN based
on the G-DINA data, the PCR and AACR of BN-IRP-GDmethod
was lower than the G-DINA model, and this result was similar to
the dataset directly generated by G-DINA as shown in Table 6.
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TABLE 6 | The standard error of PCR by BNs and G-DINA from the data generated by G-DINA.

gs Level Distribution Sample size IRP_EM_BN IRP_GD_BN G-DINA

s=g=0.2 Uniform 1,000 0.025 0.025 0.019

500 0.032 0.024 0.030

Mvnorm 1,000 0.014 0.027 0.019

500 0.038 0.036 0.044

Mixed gs (0.3, 0.2, 0.1) Uniform 1,000 0.027 0.021 0.024

500 0.061 0.069 0.037

Mvnorm 1,000 0.050 0.032 0.020

500 0.030 0.036 0.050

TABLE 7 | The standard error of AACR by BNs and G-DINA from the data

generated by G-DINA.

gs Level Distribution Sample size IRP_EM_BN IRP_GD_BN G-DINA

s=g=0.2 Uniform 1,000 0.006 0.007 0.005

500 0.002 0.008 0.009

Mvnorm 1,000 0.006 0.006 0.005

500 0.011 0.009 0.011

Mixed gs (0.3,

0.2, 0.1)

Uniform 1,000 0.008 0.007 0.007

500 0.020 0.023 0.011

Mvnorm 1,000 0.025 0.011 0.026

500 0.008 0.060 0.067

These two datasets were essentially conforming to the ideal G-
DINA model assumption. However, when empirical data is used
to estimate the BN parameters and generate data based on this
BN model, the simulated data pattern might violate the G-DINA
assumption or at least does not conform to the assumption of
the G-DINAmodel as ideally as the G-DINA generated data. The
BN-IRP-GD method provides higher classification rate than the
G-DINA model.

REAL DATA EXAMPLE

To demonstrate the real-world applicability of the BN method,
we used the dataset on the buoyancy concept developed by
Gao et al. (2020) for cognitive diagnosis. These data have seven
attributes, namely, (A1) know that the buoyancy direction is
vertically upward, (A2) identify not only the gravity but also
the buoyancy exerted on an object that is afloat, suspended, or
immersed in liquid, (A3) know that the density is an object
property, whose value is the mass divided by the volume, but
still invariant to mass or volume changes, (A4) understand
the meaning of a displaced liquid volume, (A5) calculate the
buoyancy magnitude by analyzing the forces on objects, (A6)
understand Archimedes’ Principle, and (A7) decide whether
objects will float or sink by comparing the object and liquid
densities. These seven attributes have the hierarchy relationship
as displayed in Figure 3. The Q-matrix with 14 items is shown
in Table 9. A total of 1,089 eighth-grade students were chosen
as subjects from 10 schools located in five east-coast cities in

China. After excluding the subjects with blank test answers,
1,036 subjects remained. Two physics experts were invited to
label the 50 randomly selected students on their mastery of the
above attributes.

According to the attribute hierarchy relationships and the
Q-matrix, we constructed a BN structure and trained the BN
based on the IRP data first, and continued to estimate the BN
parameters by GDmethod by regarding the previously estimated
parameters as informative priors. The attribute patterns of the
students could be predicted by BN based on the item response
data. These data were also analyzed by the G-DINA model.
From the previously selected 50 subjects, the estimated attribute
patterns by the BN and G-DINA methods were compared
with the labeling results obtained by the experts, and the PCR
and AACR were calculated. Table 10 showed the agreement
percentage of the BN and G-DINA analysis with the experts’
labeling attribute patterns in the randomly selected 50 samples.
We can see that the BN–IRP–GD method can achieve promising
classification performance, and even higher than the G-DINA
model in PCR. The agreement percentage between the BN and
experts’ labeling in each attribute was also a little higher than
that observed between the G-DINA and experts’ labeling. These
results demonstrated the validity and feasibility of the BN–IRP–
GD method.

DISCUSSION

In this research, we conducted a simulation study comparing
the parameter estimating algorithms in BN, including the EM
method, the GD learning method, the IRP training method,
and the combinations of IRP and EM (IRP–EM) or GD (IRP–
GD) methods. The classification rates are considered as the
performance indicators of the algorithms and the performance of
G-DINA was adopted as a criterion to evaluate the performance
of the improved parameter estimating method in BN. Real data
analysis is followed to demonstrate the validity of the proposed
method. The results show that the classification performances
of the BN–IRP–EM and BN–IRP–GD methods are promising
and even higher than the G-DINA model in certain conditions.
The classification rates of EM and GD method are very low due
to the reason that monotonic constraints may not be upheld.
Moreover, both the EM and the GD methods are sensitive to the
initial condition and liable to be trapped in a local optimality. We
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TABLE 8 | The PCR and AACR by BNs and G-DINA from the data generated by G-DINA and the data generated by BNs based on the G-DINA data and Fraction data.

DATA/model PCR AACR

GDINA IRP_GD_BN GDINA IRP_GD_BN

G-DINA-gen 0.701 (0.020) 0.658 (0.029) 0.931 (0.005) 0.919 (0.007)

BN-gen-based on-GDINA data 0.643 (0.015) 0.618 (0.008) 0.910 (0.046) 0.901 (0.008)

BN-gen-based on-Fraction data 0.502 (0.082) 0.670 (0.004) 0.850 (0.033) 0.908 (0.002)

FIGURE 3 | The attribute hierarchy relationship of the buoyancy.

introduce the IRP training method to estimate the parameters
of BN first, then continue to update the posterior values of
the parameters by taking the previously estimated parameters
as informative priors. The initial parameters estimated by IRP
training are better starting values for EM and GD algorithms and
can also solve the local optimality problems. The IRP data are
constructed theoretically in every CDA and reflect a fair amount
of test information. However, the IRP training method has no
empirical information and the IRP–EM and IRP–GD methods
can also solve these limitations and improve the classification
rate of the IRP training method if be provided enough empirical
samples.

This study demonstrated that, in the data generated by CDMs
condition, the analysis by G-DINA was a little higher than the

BN analysis based on the IRP–EM or IRP–GD method, which

was as expected because the pattern of the data conformed to
the assumption of G-DINA. However, in the data generated by
BN based on the empirical data condition, the BN analysis based
on the IRP-GD method outperformed the G-DINA analysis. But
we cannot conclude that the BN methods are superior than
the G-DINA model, just as we cannot claim that the G-DINA
model are better than the BN methods in the first condition of
the G-DINA simulated data. These two simulation conditions
jointly demonstrated that the BN and G-DINA models each has
their own advantages in the simulated data. From the above two
conditions, we can see that the BN-data-generating method is
more flexible. Different from the traditional CDMs, there are no
explicit assumptions in BN. The parameters of BN reflect the
patterns of the generated data and the parameters are determined
by the data used to estimate the BN model. When the G-DINA
data were used to estimate the parameters of the BN model, the
generated data based on this BN model are conforming to the G-
DINA assumption. Similarly, when the empirical data were used
to estimate the parameters of the BN model, the generated data

based on this BN model reflect the pattern of the empirical data,
and these data do not necessarily satisfy the G-DINA assumption.

In the empirical study, the consistency of classification
between BN and experts’ judgment are higher than that between
G-DINA and experts’ judgment. Although both the average
attribute classification rate and the pattern classification rate
in BN are higher than the G-DINA model in this case, we
are not intended to advocate that the BN model is more
beneficial than the G-DINA model. These results are merely
implying that the effectiveness of improved parameter-estimating
method in BN is validated. In fact, the G-DINA model is a
powerful framework that covers a wide variety of psychometric
models, and through the comparison with the G-DINA, it
demonstrates that if there are appropriate parameter-estimating
methods, BN is also another great modeling framework that is
compatible withmany different types of data patterns in cognitive
diagnostic assessment.

Shu et al. (2013) proposed to combine the NN trained by
IRP with the traditional CDM to improve the performance
of the traditional CDM. In their study, the IRP information
cannot directly be used in traditional CDM, and the NN cannot
incorporate the empirical information of samples. However, in
BN, the parameter estimation can be accumulated according
to the Bayesian theorem. First, the IRP and the corresponding
attribute profile data are used to train the BN as a supervised
learning method. Then the parameters obtained by the IRP
training are regarded as the prior of the next stage of parameter
estimation. When using EM or GD to continue the estimation,
only the practical item responses are available, and the values of
attributes are unknown and can be regarded as latent variable,
thus this estimation stage is an unsupervised learning method.
And the final parameters are the posterior probability according
to the Bayesian theorem. An independent and complete model
can accommodate the functions of both the NN and the
traditional CDM (Shu et al., 2013). In other words, the supervised
learning and unsupervised learning can be realized in the
same model. From this perspective, the proposed method is a
new progress.

BNs have been used extensively in the artificial intelligence
community as student models for intelligent tutoring systems.
The review article by Culbertson (2016) outlined many existing
research studies on BN in educational assessment and it
pointed that “BNs readily lend themselves to modular model
building in which fragments of BN may be developed separately
and combined freely based on a wide variety of types of
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TABLE 9 | The Q-matrix for buoyancy concept learning.

Item/attribute A1 A2 A3 A4 A5 A6 A7

1 1 0 0 0 0 0 0

2 0 1 0 0 0 0 0

3 0 0 1 0 0 0 0

4 0 0 0 1 0 0 0

5 0 0 1 0 0 0 1

6 0 0 1 0 0 0 1

7 1 1 0 0 1 0 0

8 1 1 0 0 1 0 0

9 0 0 1 1 0 0 0

10 0 0 1 1 0 1 0

11 1 1 1 0 1 0 1

12 0 0 1 1 0 1 1

13 1 1 1 1 0 1 0

14 1 1 1 1 1 1 1

TABLE 10 | The agreement of BN or G-DINA analysis with the experts’ labeling attribute patterns in randomly selected 50 samples.

A1 A2 A3 A4 A5 A6 A7 AACR PCR

G-DINA 0.96 0.96 0.92 0.94 0.88 0.76 0.88 0.90 0.50

BN 0.98 0.98 0.96 0.94 0.86 0.82 0.96 0.93 0.62

relationships.” This aspect of a BN renders it a great potential
for constructing the intelligent diagnostic assessment system
to realize personalized learning. And this goal of realizing
personalized learning is shared by CDA. But the BN can
accommodate more node variables (e.g., Levy and Mislevy,
2004; Shute et al., 2008), which is more attractive to the
educational assessment practice. In fact, in CDA, the MCMC
method was used extensively for estimating the parameters of
BNs (Wu, 2013; Almond et al., 2015; Levy and Mislevy, 2017).
However, the MCMC method has some limitations. The first
concern is the computational complexity and the efficiency,
especially in cognitive diagnosis that needs immediate feedback
of diagnostic information for instructions and learnings. Also,
this method depends on the starting values to obtain stable and
reliable estimates. The improved parameter-estimating method
proposed in this article provides another approach to realize
CDA based on BNs. And this method can be embedded
into the diagnostic assessment system to achieve immediate
feedback for personalized instruction. From the practical view,
the optimization of the EM or GD method can provide more
efficient computation compared to the MCMC method and
can promote the CDA to be used in classroom assessment in
which the instant feedback is needed. Moreover, due to the
feature of modular model building and freely combining, BN can
accommodate more attributes than traditional CDMs, which is
needed for a practical diagnostic assessment system.

Naturally, we are aware of certain limitations in this study.
The evaluation indicator of the BNs is relatively single and
only the classification rate is adopted as the criteria of the BN’s
performance in this article, similar to what Sinharay (2006)
described, “Model checking for BNs is not straightforward.

For even moderately large number of items, the possible
number of response patterns is huge, and the standard χ2 test
of goodness of fit does not apply directly.” Sinharay (2006)
applied the posterior predictive model checking (PPMC, Rubin,
1984) method to assess several aspects of fit of BNs applied
in educational assessment. The PPMC method is a popular
Bayesian model checking tool and combines well with the
MCMC algorithms (e.g., Gelman et al., 2003). From the model
comparison perspective, the most popular model fit indices
are the AIC (Akaike, 1973) and BIC (Schwarz, 1978) criteria,
which require knowing the number of free parameters to be
estimated in the model. It is not so straightforward in complex
BN model to count the number of parameters. Spiegelhalter
et al. (2002) introduce a measure called DIC, which includes
a Bayesian notion of dimensionality. But the DIC measure is
also based on the MCMC algorithms. Thus, developing the
new model fit indices of BN based on the IRP–EM or IRP–GD
parameter-estimating method is a desired investigation area for
future studies.

Additionally, Shu et al. (2013) combined the NN analysis
based on the IRP data with the MCMC method to estimate the
DINA model parameters in a small sample size. In traditional
CDMs, the item parameters can be estimated to reflect the test
quality. However, BNs have no straightforward item parameters
to evaluate test quality. In future studies, we plan to apply the
sensitivity analysis of BNs to determine the key attributes that
influence each item response performance and the key items that
determine each attribute diagnosis. Sensitivity analysis refers to
an uncertain analysis technique to quantify the contribution of an
observation node towards the uncertainty of the node of interest
in BN. The sensitivity analysis results might provide insights into
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the knowledge structure and cognitive process of the students
and assist in instruction design and personalized learning.
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Reading subskills are generally regarded as continuous variables, while most models

used in the previous reading diagnoses have the hypothesis that the latent variables

are dichotomous. Considering that the multidimensional item response theory (MIRT)

model has continuous latent variables and can be used for diagnostic purposes, this

study compared the performances of MIRTwith two representatives of traditionally widely

used models in reading diagnoses [reduced reparametrized unified model (R-RUM) and

generalized deterministic, noisy, and gate (G-DINA)]. The comparison was carried out

with both empirical and simulated data. First, model-data fit indices were used to evaluate

whether MIRT was more appropriate than R-RUM and G-DINA with real data. Then,

with the simulated data, relations between the estimated scores from MIRT, R-RUM,

and G-DINA and the true scores were compared to examine whether the true abilities

were well-represented, correct classification rates under different research conditions for

MIRT, R-RUM, and G-DINA were calculated to examine the person parameter recovery,

and the frequency distributions of subskill mastery probability were also compared to

show the deviation of the estimated subskill mastery probabilities from the true values in

the general value distribution. The MIRT obtained better model-data fit, gained estimated

scores being a more reasonable representation for the true abilities, had an advantage on

correct classification rates, and showed less deviation from the true values in frequency

distributions of subskill mastery probabilities, which means it can produce more accurate

diagnostic information about the reading abilities of the test-takers. Considering that

more accurate diagnostic information has greater guiding value for the remedial teaching

and learning, and in reading diagnoses, the score interpretation will be more reasonable

with the MIRT model, this study recommended MIRT as a new methodology for future

reading diagnostic analyses.

Keywords: continuous variable, diagnostic study, multidimensional item response theory, model selection, reading

comprehension test

INTRODUCTION

In the area of language testing, it is reasonable to expect diagnostic information because any
language assessment actually has the potential to provide some diagnostic information (Bachman,
1990; Mousavi, 2002), and indeed, there is a series of reading diagnostic studies that have
successfully been conducted. However, in the previous reading diagnoses, little discussion on the
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continuous nature of reading subskills has been provided,
though reading subskills are generally regarded as continuous
variables (Griffin and Nix, 1991; Lumley, 1993; Grosjean, 2001;
Smith, 2004). Although Buck and Tatsuoka (1998) noted that
dichotomizing continuous variables are a problem of their
diagnostic study, diagnostic studies focusing on the continuous
nature of reading comprehension test data have remained elusive.
Indeed, when previous reading diagnostic studies have been
performed, scarce diagnostic models could have addressed the
continuous latent variables, and this lack of diagnostic models
for continuous latent variables has been partially responsible for
dichotomizing continuous variables under the methodological
requirements in previous studies. Model selection is highly
important for data analyses (Burnham and Anderson, 2002),
and reading diagnostic analysis is no exception. The potential
to provide abundant diagnostic information about the reading
ability of each test-taker is what makes reading diagnoses
so attractive to teachers, administrators, and other language
educators who are concerned with teaching and learning of
reading, whereas, without a proper model, it is very difficult to
make accurate inferences about weaknesses and strengths of test-
takers, let alone to make the reading diagnosis truly become
the interface between learning and assessment (Alderson, 2005;
Kunnan and Jang, 2009). Reading comprehension test data
consisting of continuous latent variables are the target data
of this present study, and we investigate the performances
of different models when they are used in reading diagnoses,
aiming to determine whether a diagnostic model with continuous
latent variables will gain an advantage when used in reading
diagnostic analyses.

Reading Diagnostic Studies: Current
Status and Issues
The existence of distinguishable reading subskills (Grabe, 2009;
Bernhardt, 2011) implies the multidimensional nature of reading
ability, which renders the diagnostic score report possible. The
first batch of reading diagnostic studies is based on the rule-space
model (RSM), and the study by Buck et al. (1997) is representative
of this line of research. Buck et al. (1997) analyzed the reading
scores of 5,000 Japanese students on the Test of English for
International Communication (TOEIC), classified 91% of the
test-takers into their latent knowledge states, and provided them
with diagnostic information based on a set of attributes. The
study by Jang (2009) is typical of more recent research. In the
context of LanguEdgeTM test items, Jang suggested that the fusion
model with all C parameters being set to 10 [i.e., the reduced
reparametrized unified model, R-RUM, which was discussed in
detail by Jang (2005)] is appropriate and can provide test-takers
with more fine-grained diagnostic information regarding their
reading abilities. Readers interested in additional details about
previous reading diagnostic studies are referred to by Lee and
Sawaki (2009b) and Li et al. (2016). Meanwhile, we also observe
limitations in these reading diagnostic studies: the chief models
contain only dichotomous (mastery vs. non-mastery) subskills.

Regarding the subskill scale, the cognitively diagnostic
psychometricmodel has two categories, which are the continuous

scale and the discrete (i.e., dichotomous or polytomous) scale
(Fu and Li, 2007). The major distinction between them is the
type of the latent variables used: continuous latent variables are
used in the former, whereas discrete latent variables are used
in the latter (Rupp et al., 2010). Researchers have emphasized
that whether the variable in question is continuous or discrete
determines which type of model should be chosen for the actual
application (Stout, 2007). Specific to reading comprehension
tests, the variable in question is the reading subskill.

A continuous variable is a variable that can take on any
value in its possible range, which is in opposition to a discrete
variable (Mackey and Gass, 2005). Although a consensus is
lacking, many linguists believe that reading develops gradually
and that the reading subskills of individuals are at different
points on a continuous scale (Griffin and Nix, 1991; Lumley,
1993; Grosjean, 2001; Smith, 2004). Moreover, on reviewing the
subskills specified in previous reading diagnostic studies, it is
found that subskills are continuous in opposition to discrete
latent variables; regardless, the grain size of a subskill is larger
(Alderson, 2005; Lee and Sawaki, 2009b) or smaller (Jang, 2009).
The continuous nature of reading subskills implies that the
continuous scale model is theoretically more appropriate in the
context of reading comprehension test data.

The literature review, however, reveals that dichotomous scale
models are the traditional choice in reading diagnoses and
that virtually all previous reading diagnostic studies have used
dichotomous scale models (Lee and Sawaki, 2009b; Li et al.,
2016). Some problems may exist with this traditional choice
because, in general, statistical models should be used only for
data that meet their theoretical assumptions; moreover, it is
acknowledged that difficulty will arise in the score interpretation
of a reading diagnosis under the framework of a dichotomous
subskill scale (Jang, 2009). At present, continuous scale models
that are able to conduct diagnostic analysis are available. The
multidimensional item response theory (MIRT) model is one
of the most popular diagnostic models with a continuous scale
(Reckase, 2009), and it has already been used to report subskill
scores (Yao and Boughton, 2007; Haberman and Sinharay, 2010).
Considering the continuous nature of reading subskills, the
MIRT is expected to have an advantage in extracting diagnostic
information from reading comprehension tests.

Representative Models
Comparison studies have been conducted on the popular models
in reading diagnoses. Lee and Sawaki (2009a) compared the
functioning of three diagnosticmodels, i.e., the general diagnostic
model (GDM), the reparametrized unified model (RUM), and
the latent class analysis, when used to analyze the reading
and listening sections of the TOEFL iBT. Li et al. (2016)
to compare the performances of five models, namely, the
generalized deterministic inputs, noisy “and” gate (G-DINA),
additive cognitive diagnostic model (ACDM), the R-RUM, and
the DINA and DINO models, according to their applicability to
the Michigan English Language Assessment Battery (MELAB)
reading test.

Overall, the R-RUM has received a fairly intensive study
and shown good performances in previous research (Jang, 2009;
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Lee and Sawaki, 2009b), and Li et al. (2016) showed that G-
DINA is better fitted for use in a reading diagnostic study.
Consequently, in this study, the R-RUMandG-DINA are selected
as representatives of the traditionally widely used models for
comparison with the MIRT model. For the sake of brevity, the
introduction of the three models is relegated to the Appendix
(Supplementary Material).

In addition, it is necessary to indicate that, in this study,
the MIRT model considered is the compensatory MIRT model.
The two basic types of MIRT include the compensatory and
non-compensatory models. Bolt and Lall (2003) suggested that
the compensatory MIRT model fits the real data from an
English usage test better than the non-compensatory MIRT
and fits the data generated from the non-compensatory model
nearly as well as the non-compensatory model itself. Given the
comparison results of Bolt and Lall (2003) and the suggestion
of many current language researchers that reading subskills
are generally compensatory (Stanovich, 1980; Grabe, 2009), the
MIRT model considered in this study is the compensatory MIRT
model. In addition, MIRT analyses can be either exploratory or
confirmatory, and when used in diagnostic analyses, the model
should be confirmatory (Reckase, 2009), because it requires
a hypothesis for the structure of the response data, which is
identical to the Q-matrix in dichotomous subskill scale models.

As noted above, there have been continuous scale diagnostic
models. Given the diagnostic potential of the MIRT model
(Stout, 2007) and its capacity to be fitted to continuous latent
variables, we expect to determine whether the MIRT model
is more appropriate than the traditionally widely used models
in reading diagnoses. To that end, the performances of MIRT
and representatives of the traditionally widely used models (R-
RUM and G-DINA) are examined with both real and simulated
data based on a reading comprehension test. The first aim of
this study is to examine whether the MIRT model has a better
model-data fit. Second, we emphasize assessing the extent to
which the estimated subskill scores represent the true abilities of
the test-takers. Third, we put emphasis on assessing the person
parameter recovery with the correct classification rates. Finally,
this study is undertaken to compare the three candidate models
deviations from the true values on the frequency distribution of
subskill mastery probabilities. We believe that this comparison
will provide insight into model selection for cogitative diagnostic
analyses of reading comprehension tests.

MATERIALS AND METHODS

The reduced reparametrized unified model, G-DINA, and MIRT
were used to calibrate real and simulated data based on a reading
comprehension test, and their performances were compared in
this study. Different indices, such as the Akaike Information
Criterion (AIC) and Bayesian Information Criterion (BIC) can
be used to evaluate the model-data fit in a model comparison (Ma
et al., 2016); thus, in this study, first, these relative model-data fit
indices were compared across the three models with real data and
the absolute model-data fit indices were also provided to assess
whether the chosen model really fits the real data well. Then,

TABLE 1 | Q-matrix for this study.

Item Subskill 1

(retrieving

information)

Subskill 2

(making straightforward

inference)

Subskill 3

(making integrated

inference)

1 1 0 0

2 1 1 0

3 0 1 0

4 1 1 0

5 1 1 0

6 0 0 1

7 1 0 0

8 1 0 0

9 1 1 0

10 0 1 0

11 0 1 0

12 1 1 0

13 1 0 0

14 1 0 0

15 1 1 0

16 0 1 0

17 1 1 0

18 0 0 1

19 1 1 0

20 1 0 0

21 0 0 1

22 0 0 1

23 0 0 1

24 0 0 1

25 0 0 1

26 0 0 1

27 0 0 1

28 0 1 1

29 0 1 0

30 0 0 1

further analyses were conducted with simulated data. Because
the “true” values are known in simulation studies, the deviation
of the estimated values from “true” values is comparable. With
simulated data, the functioning of the threemodels was examined
in terms of the extent to which the true abilities were represented
and the correct classification rates under different research
conditions, and the corresponding frequency distributions of the
subskill mastery probabilities were also compared.

Real Data
Response data from 3,077 students on 30 reading comprehension
items were collected from a large-scale Grade 5 and 6 reading
comprehension test in Beijing, P.R. China. The test is an
existing reading comprehension test that was not designed
to be diagnostic, and the Q-matrix in Table 1, which was
built and validated through the literature review and think-
aloud protocols, displays the correspondence between the three
subskills and 30 items.
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TABLE 2 | True item parameters.

Item Discrimination d c

a1 a2 a3

1 1.10 0.00 0.00 2.51 0.23

2 0.61 0.72 0.00 0.54 0.17

3 0.00 0.98 0.00 1.12 0.15

4 0.85 0.77 0.00 0.49 0.29

5 0.70 0.58 0.00 −0.42 0.10

6 0.00 0.00 1.30 −0.53 0.56

7 1.38 0.00 0.00 0.48 0.53

8 1.32 0.00 0.00 −0.15 0.44

9 1.05 1.02 0.00 2.09 0.34

10 0.00 1.34 0.00 0.93 0.28

11 0.00 0.90 0.00 0.87 0.21

12 0.68 0.85 0.00 2.54 0.38

13 1.33 0.00 0.00 2.73 0.13

14 1.32 0.00 0.00 1.44 0.14

15 1.40 1.08 0.00 1.10 0.32

16 0.00 2.03 0.00 4.89 0.17

17 1.08 1.55 0.00 5.01 0.15

18 0.00 0.00 0.70 1.95 0.23

19 0.56 0.56 0.00 2.58 0.22

20 1.40 0.00 0.00 5.01 0.23

21 0.00 0.00 0.98 1.79 0.20

22 0.00 0.00 0.87 1.44 0.12

23 0.00 0.00 1.38 2.33 0.19

24 0.00 0.00 1.52 2.43 0.18

25 0.00 0.00 0.50 −0.30 0.16

26 0.00 0.00 1.60 3.17 0.17

27 0.00 0.00 1.07 0.94 0.07

28 0.00 0.93 1.04 1.10 0.23

29 0.00 0.53 0.00 0.23 0.23

30 0.00 0.00 0.69 0.58 0.13

Item d is a scalar parameter related to the difficulty of the corresponding item.

Simulation Study
We simulated response data based on the real data calibration
with the MIRT model, which is a typical choice when
multidimensional continuous latent variables are desired.

Item Parameters
The item parameters used to generate the simulated data were
obtained from the real data with a three-dimensional MIRT
calibration estimated by the flexMIRT software program (Cai,
2015). Table 2 shows the true item parameters. The first column
lists the item number, the second to fourth columns present
the three discrimination parameters for subskill 1, subskill 2,
and subskill 3, respectively, and the last two columns show the
intercept and guessing parameters.

Simulation Conditions
The abilities for 3,000 test-takers were generated from
multinormal distributions with the mean of (0, 0, 0) and σ

as the variance-covariance matrix, and the simulated response
datasets were produced with these abilities, in which:

σ =



a1 r1 r2
r1 a2 r3
r2 r3 a3




where, a1 = a2 = a3 = 1 and r1 = r2 = r3 = 0.1, 0.3, 0.5, 0.7,
and 0.9.

The manipulated design factor for the simulated data
generation was the subskill correlations (SCs). Considering that
their correlations can vary over a relatively wide range, from a
negligibly small value (Guthrie and Kirsch, 1987) to a moderately
and a relatively high relationship between reading subskills
(Droop and Verhoeven, 2003; Alderson, 2005), the SCs were
found to be 0.1, 0.3, 0.5, 0.7, and 0.9, as noted above, and the
correlations between the subskills were set equal to reduce the
simulation conditions to be studied (Yao and Boughton, 2007).

Therefore, we had five simulation conditions. Twenty-five
different seeds were used to obtain 25 replications across all
simulation conditions; thus, there were 125 simulated datasets
in total.

Subskillability Estimates and Classification

Procedures
For each simulated dataset, three calibrations using R-RUM, G-
DINA, and MIRT were performed. The R-package CDM was
used to estimate the R-RUM and G-DINA model, and flexMIRT
was used to estimate the MIRT model. R-RUM and G-DINA
report the MLE and MAP estimates of subskill mastery patterns
to each test-taker, and MLE estimates were used in this study;
they also provide the posteriormastery probabilities of test-takers
on each subskill. The MIRT model provides every test-taker a θ-
vector that indicates their proficiency on each subskill, which can
easily be transformed into vectors of mastery probabilities, given
the multinormal nature of the simulated datasets.

In this simulation part of the present study, there should
be four subskill scores per test-taker per subskill, i.e., one true
subskill score representing the true ability of the test-taker from
the simulated true value, and three estimated subskill scores
representing the estimated abilities of the test-taker from R-
RUM, G-DINA, and MIRT. The true subskill score and the
estimated subskill score from MIRT are the θ abilities on each
subskill, which would fall along a continuous subskill scale, and
the estimated subskill scores from R-RUM and G-DINA indicate
the classification result of “mastery” or “non-mastery,” termed
the mastery state, which would fall along a dichotomous subskill
scale. In this study, the extent to which the estimated subskill
scores represent the true abilities of the test-takers were evaluated
through comparison of relations between the estimated scores
from MIRT, R-RUM, and G-DINA and the true scores.

Furthermore, in the diagnostic study context, the classification
results are expected. Classifications of test-takers are the bases for
providing remedial strategies to facilitate learning, so whether
the remedial strategies provided for improvement are effective
depend mainly on the accuracy of the classification results.
Therefore, it is also very important for the diagnostic model
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selection to evaluate the extent to which the approximating
models classify the test-takers into their intended groups. As
mentioned above, we classify the performances of the test-takers
on a subskill into different groups, such as the “mastery” and
“non-mastery” group, and the classification result is termed the
mastery state. In this simulation study, there should be four
classification results per test-taker per subskill, i.e., one true
mastery state from the simulated true value, and three estimated
mastery states from R-RUM, G-DINA, and MIRT. We know
that the estimated mastery states from R-RUM and G-DINA
can be obtained directly, while true mastery states of the test-
takers and their estimated mastery states from MIRT cannot be
obtained unless we dichotomize each continuous θ scale with
a cut-off point (American Educational Research Association,
American Psychological Association, and National Council on
Measurement in Education, 2014). There is no natural cut-off
points for a continuous variable; in addition, the establishment
of a cut-off point should be based on a labor-intensive and
time-consuming process (Hambleton and Pitoniak, 2006), and
the implementation of this process is beyond the scope of this
present study. Therefore, in this simulation study, different cut-
off points were used to cover different practical needs: we set
the cut-off point to increase from 0.1 to 0.9 with a step of 0.01
on the subskill mastery probability scale transformed from the
θ scale, considering that a cut-off point is often defined in the
form of a value established on the subskill mastery probability
scale in diagnostic analyses (DiBello and Stout, 2008). In this way,
we obtained the true subskill mastery state and the estimated
subskill mastery state from the MIRT with each of the 81 cut-
off points. Consequently, the comparison of classification results
can be conducted. For example, if on subskill 1, the true mastery
probability of test-taker A is 0.11, the estimated mastery states
from R-RUM and G-DINA are “non-mastery” and “mastery,”
and the estimated mastery probability from MIRT is 0.15, then
with a cut-off point of 0.1, the true mastery state of test-taker
A on subskill 1 is “mastery,” and the estimated mastery states of
test-taker A to this subskill from R-RUM, G-DINA, and MIRT
are “non-mastery,” “mastery,” and “mastery,” which indicate the
successful estimations of G-DINA and MIRT and of the mastery
of subskill 1 of test-taker A; while with a cut-off point of 0.12, only
R-RUMwould correctly estimate the non-mastery of subskill 1 of
test-taker A.

We have five simulation conditions, i.e., the five subskill
correlations used in generating simulated data, and 81 cut-off
points are used to dichotomize each θ scale in each simulated
dataset, producing 405 (5 × 81) research conditions in total.

Evaluation Criteria
In the simulation section, the deviation of the estimated values
from true values was compared in three ways. First, we
compared the relations between the estimated subskill scores
and the true subskill score, with the former containing both the
estimated mastery states on each subskill reported in the subskill
mastery patterns from the two dichotomous scale models and
the estimated θ values on each subskill from MIRT. Second,
the subskill classification accuracies were compared, and the
indices are described in detail in the Results section. Finally,

the estimated frequency distributions of the subskill mastery
probabilities were compared to the true distribution too.

When comparing the subskill classification accuracies,
previous studies always use the correct classification rates to
evaluate the classification consistency between the true values
and the estimated values (Ma et al., 2016), which involves the
pattern correct classification rate (PCCR) and the subskill correct
classification rate (SCCR) in this study. PCCR and SCCR are
defined as,

PCCR =

∑Rep
r=1

∑N
i=1 ti

N × Rep
, (1)

where PCCR is the index used to evaluate the classification
recovery accuracy of the subskill mastery pattern, which refers
to a vector that involves the mastery states of a test-taker on all
subskills; N is the total number of test-takers; Rep is the number
of replications; and ti indicates whether the estimated mastery
pattern of a test-taker i is the same as the true pattern, with a
value of 1 if the two are identical and a value of 0, if not.

SCCR =

∑Rep
r=1

∑N
i=1

∑K
k=1 gik

N × K × Rep
, (2)

Where, SCCRk is the index used to evaluate the classification
recovery accuracy of subskill k, and gik indicates whether the
estimated mastery state of test-taker, i on subskill, k is the same
as the true state, with a value of 1 if the two are identical, and a
value of 0, if not.

In the present study, PCCRs and SCCRs were
compared among R-RUM, G-DINA, and MIRT across all
research conditions.

RESULTS

Model-Data Fit With Real Data
The real data are calibrated using the three models, i.e., R-RUM
and G-DINA with R-package CDM, and MIRT with flexMIRT,
and the estimations are based on the EM algorithm with the
default data (de la Torre, 2011; Cai, 2015; Robitzsch et al., 2015).
Indices, such as the AIC and BIC are used to evaluate the model-
data fit and to aid in the model comparison (Henson et al., 2009),
which is also used in the model selection for reading diagnoses
(Li et al., 2016). These goodness-of-fit (GOF) indices are reported
by both R-package CDM and flexMIRT and are used for model
selection. A summary of these model-data fit indices is presented
in Table 3, which contains the −2 × log-likelihood, AIC, and
BIC. The smaller values of these indices tend to accept the null
hypothesis, which indicates a good model-data fit.

As shown in Table 3, the GOF statistics are strikingly different
between the MIRT model and the two representatives of the
traditionally widely used models, where MIRT has the smallest
value in all three indices. Although G-DINA and R-RUM have
similar performances on these GOF statistics, the G-DINAmodel
has a smaller −2 × log-likelihood and AIC values and R-RUM
has a smaller BIC value. Given that the AIC performed better
in choosing diagnostic models (Li et al., 2016) and the BIC
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TABLE 3 | Summary of goodness-of-fit statistics of the three models.

Index R-RUM G-DINA MIRT

Number of parameters 76 85 99

−2 × log-likelihood 79,805.49 79,774.96 79,393.43

AIC 79,957.49 79,944.96 79,591.43

BIC 80,415.90 80,457.65 80,188.57

always has a strong penalty for highly parameterized models,
G-DINA is regarded as a model that fits the real data better
than R-RUM.

Considering the −2 × log-likelihood, since AIC and BIC
are all relative model-data fit statistics, absolute fit indices of
MIRT are required to evaluate whether it really fits data well-
absolutely: M2 and the corresponding root mean square error
of approximation (RMSEA) are calculated. M2 is a limited-
information GOF statistics, and it has the benefit of being less
sensitive to sparseness than the full-information statistics, such
as the Pearson’s X2 or the likelihood ratio G2 (Cai and Hansen,
2012). A statistic unaffected by the sample size and the model
complex degree, the RMSEA ranges from 0 to 1. A smaller
RMSEA implies a better GOF, and Browne and Cudeck (1992)
recommended 0.05 as the threshold for a close fit. In this case, the
value of M2 statistics is 2042.59 (df = 366, P < 0.0001) and M2

is rejected. The rejection is not surprising considering that M2

is sensitive to model misspecification. Fortunately, we have the
RMSEA index, which is calculated from M2 and can be used to
evaluate the severity of model misspecification (Cai and Hansen,
2012). The value of the RMSEA is 0.04, which suggests that the
MIRT model provides a good fit.

In short, based on the log-likelihood and information criteria,
the MIRT model is best fitted to the real reading comprehension
test data among the three models, followed by G-DINA and then
R-RUM; the advantage of MIRT over the other two models is
much greater than the improvement from G-DINA to R-RUM.
Based on theM2 and the RMSEA statistics, we conclude that the
MIRT model fits the real data well. Therefore, the GOF indices
provide strong evidence for the choice of MIRT.

Results With Simulated Data
Comparison of Subskill Scores
Under each research condition, we plotted the estimated subskill
scores from the three candidate models against the true subskill
scores on each subskill, for all the 75,000 (3, 000 × 25) simulated
test-takers with every 50th point being plotted. Dozens of scatter
plots were produced, because five subskill correlations, three
subskills, and three candidate models were used in this study.
Figure 1 presents the scatter plots of the estimated subskill
scores against the true subskill scores on only subskill 1, as
the same pattern was observed for both subskill 2 and subskill
3 conditions. In addition, we excluded the scatter plots under
subskill correlations of 0.3 and 0.7 in Figure 1 for the sake
of simplicity.

The comparison of the estimated subskill scores and the
true subskills scores on subskill 1 under subskill correlations

of 0.1, 0.5, and 0.9 is displayed in Figure 1, with a dual y-axis
coordinate system: the lower y-axis represents the estimated
subskill scores from MIRT, and the upper y-axis denotes the
estimated subskill scores from G-DINA. In the upper part of
Figure 1, each dark bar (|) represents a pair of scores for one
test-taker whose estimated subskill score from G-DINA is the
same as that from R-RUM, and each red bar represents that for
one test-taker whose estimated subskill score from G-DINA is
different to that from R-RUM. Therefore, the relations between
the estimated subskill scores from all the three candidate models
and their corresponding true values on subskill 1 are shown
in Figure 1.

Figure 1 displays the relations between the estimated
subskill scores from the two kinds of models and the true
values. The lower part of Figure 1 shows that the estimated
subskill scores from MIRT tend to increase as the true
subskill scores increase, and the correlation between the
estimated scores from MIRT and the true scores increases as
the correlation between the subskills increases. In addition,
the estimated subskill scores from MIRT are approximately
centered on their corresponding true subskill scores with
estimation bias, and the bias reduces when the subskill
correlation is higher. For example, under subskill correlation
of 0.1, for all the 305 test-takers with identical true subskill
score of 0 (being rounded to two decimal places), their
estimated subskill scores from MIRT are centered at 0.08 under
normality, with many estimated points being close to the
true value.

Regarding the estimated subskill scores from the dichotomous
models, R-RUM and G-DINA exhibit similar performances.
These two models also have a general tendency that as the true
subskill scores increase, the estimated subskill scores tend to rise
to score 1 (“mastery”). However, deviation from this tendency
clearly exists. The upper part of Figure 1 illustrates that there is
a large overlap in the true subskill scores between the estimated
groups of mastery and non-mastery, and test-takers whose true
subskill scores are located within this overlapping range may be
estimated as mastery or non-mastery of subskill 1, no matter
whatever be the scores of their true subskill ability. In addition,
the estimated scores from the dichotomousmodels may be totally
different for students who have exactly the same true ability.
For example, under subskill correlation of 0.9, for the 307 test-
takers with identical true subskill score of 0, 220 of them are
scored 1 by G-DINA, and 87 are scored 0 by the same model.
In brief, Figure 1 indicates that with R-RUM and G-DINA, a
large number of the true subskill abilities of the test-takers fall
into the broadly overlapping ranges in the true subskill score
between the groups of mastery and non-mastery estimated by the
two models; the large number of test-takers can be subdivided
into many subsets with exactly the same true subskill ability,
while test-takers in each subset may obtain totally different
estimated scores, and entirely different remedial interventions
may be provided to them even though actually they should have
identical treatment. This situation implies that the estimated
subskill scores from the dichotomous models may not be able
to represent the true abilities of the test-takers as well as the
estimated subskill scores from MIRT.
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FIGURE 1 | Plots of the estimated subskill scores from the three candidate models against the true subskill scores on subskill 1. (A) SC = 0.1, (B) SC = 0.5, and (C)

SC = 0.9.

Correct Classification Rates: SCCR and PCCR
Figure 2 illustrates the SCCRs for R-RUM, G-DINA, and MIRT
under all research conditions on only subskill 1, as the same
pattern was observed for both subskill 2 and subskill 3 conditions.
The specific correct classification rate of subskill 1 (SCCR1)
values under different conditions are also given in Table 1A (see
Supplementary Material).

Differences in the SCCR1s clearly exist among the three
models. Across the five simulation conditions, the average
SCCR1s includes 0.682–0.699 for R-RUM, 0.688–0.702 for G-
DINA, and 0.807–0.865 for MIRT. From Figure 2, we can clearly
observe that the SCCR1s for MIRT are the highest among the
three models under all research conditions and that there are
fewer differences across the three models when the subskill
correlations are lower. For example, when the subskill correlation
is 0.1 and the cut-off point is 0.5, the SCCR1 for MIRT is
0.759, which is higher than the SCCR1 of 0.732 from R-RUM
and the SCCR1 of 0.740 from G-DINA by 0.027 and 0.019;
when the subskill correlation is 0.5, the SCCR1 for MIRT is also
higher than the SCCR1s from R-RUM and G-DINA, and the
MIRT model outperforms R-RUM and G-DINA by 0.040 and
0.033, which is more evident than the improvements of 0.027

and 0.019 when the subskill correlation is 0.1. From Figure 2,
we can also observe that there are fewer differences across the
three models when the cut-off points are located near positions
where the true mastery proportions from the simulated data
are similar to the estimated mastery proportions from R-RUM
and G-DINA (the estimated mastery proportions from R-RUM
and G-DINA are about 0.66 and 0.63, respectively, which are
provided in detail in Table 2A in Supplementary Material). For
example, when the subskill correlation is 0.3 and the cut-off
point is 0.37, the SCCR1 for MIRT is 0.808, which is higher
than the value of 0.789 from R-RUM and the value of 0.787
from G-DINA by 0.019 and 0.021; when the cut-off point is
0.57, the SCCR1 for MIRT is also higher than the SCCR1s from
R-RUM and G-DINA, and the MIRT model outperforms R-
RUM and G-DINA by 0.074 and 0.063, which is more evident
than the improvements of 0.019 and 0.021 when the cut-off
point is 0.37. In addition, the SCCR1s for R-RUM and G-
DINA are close to each, with R-RUM being slightly better
when the subskill correlations are lower, G-DINA being slightly
better when the subskill correlations are higher, and the average
SCCR1s over the five simulation conditions for G-DINA being
slightly higher.
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FIGURE 2 | Comparison of SCCR1s among R-RUM, G-DINA, and MIRT.

Regarding the characteristics of the SCCR1s for the models
themselves, it is note that the SCCR1s increase as the correlations
between the subskills increase; for example, when the cut-off
point is 0.6, the SCCR1s for R-RUM increase from 0.676 to
0.698, as the subskill correlations increase from 0.1 to 0.9. The
SCCR1s for the MIRT model are the lowest when the cut-off
points depart from near the mean and increase as the cut-off
pointmoves farther away; for R-RUMandG-DINA, their SCCR1s
are the highest when the cut-off points are located near positions,
where the true proportions of masters are similar to the estimated
proportions of masters from R-RUM and G-DINA, and their
SCCR1s decrease as the cut-off points move farther away. For
instance, when the subskill correlation is 0.5, the SCCR1 of 0.783
is obtained when the cut-off point is 0.54, which is the lowest for
MIRT, and SCCR1 for MIRT increases as the cut-off point moves
from 0.54 to 0.1 or 0.9; under the same simulation condition,
the SCCR1 of 0.789 obtained with the cut-off point of 0.34 is the
highest for G-DINA and the SCCR1 for G-DINA decreases as the
cut-off point moves farther away from this point.

For the three models, the PCCRs exhibit similar performances
to the SCCRs: MIRT holds the highest values under all
research conditions and G-DINA is slightly better than R-
RUM, the differences among them are smaller when the subskill
correlations are lower, and in general, the PCCRs for each
single model increase as the correlations between the subskills
increase, and so on. Because the general change tendencies of
the PCCRs and SCCRs are quite similar, we only illustrate the
PCCRs in Figure 1A (see Supplementary Material) without a
detailed description.

Frequency Distribution of Subskill Mastery Probability
A comparison between the estimated frequency distributions and
the true distribution can show the deviation of the estimated
subskill mastery probabilities from the true values in the general
value distribution. Figure 3 shows the frequency counts of the
estimated subskill mastery probability vs. the true values, with the

subskills mastery probabilities on the x-axis and the frequency
counts on the y-axis.

The frequency distribution of the true value is almost
a straight line under any simulation condition. The overall
frequency distributions of the estimated subskill mastery
probability for MIRT are close to their corresponding true values,
with bias at the highest and lowest parts, and the bias decreases
as the correlation of the subskills increases. The frequency
distributions of the estimated subskill mastery probability for
R-RUM and G-DINA are similar in shape, which is in line
with the U-shaped distribution of Lee and Sawaki (2009b), with
overwhelming counts at the highest and lowest ends and very low
counts in the wide range of the middle of the x-axis; however,
they are somewhat different from the true values. Compared
to the true values, R-RUM and G-DINA underestimate a large
number of average-scoring and low-scoring test-takers and
overestimate many high-scoring test-takers. In addition, the
frequency distribution obtained with R-RUM and G-DINA also
reminds us that the overall frequency distributions obtained
from dichotomous scale models will be U-shaped even if the
true values are normally distributed and the corresponding true
frequency distribution is a straight line.

DISCUSSION

The MIRT model, which hypothesizes that the latent variables
are continuous, has a theoretical advantage in diagnostic analyses
of reading comprehension tests. In this research, empirical
and simulation studies were conducted to explore whether the
model with a theoretical advantage has a practical advantage in
reading diagnoses, and the findings demonstrated the practical
advantage of MIRT in several ways. First, MIRT and two
representatives of the traditionally widely used dichotomous
scale models (R-RUM and G-DINA) were compared on model-
data fit indices in the empirical analysis, and both the assessments
of relative model-data fit (i.e., the −2 × log-likelihood, AIC,
and BIC) and absolute model-data fit (i.e., M2 and the RMSEA)
revealed that MIRT should be the chosen model. Second, a
comparison of the relations between the estimated subskill scores
from the three models and the true values indicated that the
estimated subskill scores from R-RUM and G-DINA could not
represent the true subskill abilities of test-takers as well as the
estimated scores from MIRT. Third, the correct classification
rates for the three models were explored under different research
conditions in the simulation section, with the result that MIRT
achieved the highest PCCRs and SCCRs under all conditions,
and its improvement over the other two models increased
as the subskill correlations increased. Finally, the estimated
frequency distributions of the subskill mastery probability were
compared to the true distribution, and the results revealed that
the estimated frequency distributions of the subskill mastery
probability from MIRT were more similar to the true values
whereas, for R-RUM and G-DINA, the frequency distributions
were very different from the corresponding true values. The
wide variation between MIRT and the other two models in
the frequency distribution of the subskill mastery probability
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FIGURE 3 | Comparison of frequency distributions of subskill mastery probability.
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matched their different hypotheses on latent variables, which
also supported the inference that the continuous latent variable
hypothesis benefits MIRT in gaining advantages in reading
diagnostic analyses. These results were expected because the
MIRT model treats the latent variables in question as continuous
variables, which is in accordance with the nature of reading
subskills; while R-RUM and G-DINA treat the latent variables
in question as dichotomous variables, which would lead to
information loss correspondingly (Buck and Tatsuoka, 1998;
Bonifay and Cai, 2017).

Developing tests with a diagnostic purpose and retrofitting
existing tests for diagnostic purposes are the two main methods
presently available to obtain diagnostic information (DiBello
et al., 2007), and there are pros and cons in both the types
of methods. Developing tests with a diagnostic purpose will
ultimately provide the user with more fine-grained diagnostic
feedback, but the diagnostic reading test is barely in its infancy
(Alderson et al., 2015) and few reading tests have been designed
to provide diagnostic feedback until recently. Retrofitting existing
tests for diagnostic purposes is convenient because the items and
response data are already available, but it is certainly not the
optimal method to obtain diagnostic information because the
cognitive model being obtained in a post-hoc analysis depends
on the existing test, and a sufficient number of subskills cannot
be guaranteed due to the limited number of items in the existing
test (Li et al., 2016). In contrast to the latter method, the former
develops the diagnostic test with a well-articulated cognitive
model from the beginning and can fully reflect the principles
that underlie the cognitively diagnostic analysis, so developing
tests with a diagnostic purpose is of critical importance to
future reading diagnostic study (Jang, 2009). However, for now,
retrofitting existing tests for diagnostic uses is currently a feasible
approach to address the needs of diagnostic feedback from
reading assessments, and almost all the published studies on
reading diagnoses used the latter method (Buck et al., 1997;
Jang, 2009; Lee and Sawaki, 2009b; Li et al., 2016). The real and
simulated data of this study were based on an existing large-
scale reading comprehension test, which was not designed to be
diagnostic and was developed to measure the reading subskills
being generally regarded as continuous latent variables (Griffin
and Nix, 1991; Lumley, 1993; Grosjean, 2001; Smith, 2004). In
short, similar to previous reading diagnostic studies, the reading
diagnostic analysis in this study was conducted by retrofitting an
already existing reading test to a diagnostic function. In practice,
one of the central functions of reading diagnoses is to offer
diagnostic information about the reading abilities of learners
that may be used to guide teachers and learners in subsequent
remedial teaching and learning. In this study, the empirical
and simulation study results suggest that the MIRT model can
produce more dependable diagnostic feedback, which will lead
to more accurate reports about the weaknesses and strengths
of the test-takers. A suitable model is a necessary prerequisite
for a reading diagnosis to be useful. If traditional dichotomous
scale models had been selected, our inferences about the reading
abilities of far more test-takers would have deviated from the
truth, and the remedial plans based on such information would
be useless or misleading.

We should consider the dependability of feedback before
the diagnosis can claim to be successful (Kunnan and Jang,
2009); however, to maintain the practical usefulness of a reading
diagnostic analysis, the existence of dependable diagnostic
information is not sufficient. The scores should also be
understood and used properly; otherwise, even the best test
is worthless (Brennan, 2006). In reading diagnoses, the score
interpretation will be more reasonable with the MIRT model.
With traditional dichotomous scale models, it may be difficult
for teachers and students to properly understand the diagnostic
results. As noted by Jang (2009), studentsmay require a definition
of “master” and should know that “master” cannot be interpreted
as “no further action” in reading diagnoses. With dichotomous
subskill scales, it may be difficult to explain why the state
of “mastery” on a subskill is not equal to “flawless mastery.”
With continuous subskill scales, however, we tell students that
“mastery” means “strong ability,” which is related to scores
that are higher than the required score but are not equal to
“flawless mastery” because “mastery” implies an interval along a
continuous scale rather than a point on a dichotomous scale.

In reading instruction, diagnosis can be regarded as the
interface between learning and assessment (Alderson, 2005).
Without dependable diagnostic information and reasonable score
interpretation, however, it will be very difficult for a diagnosis to
truly become such an interface (Kunnan and Jang, 2009; Alderson
et al., 2015). In this regard, the MIRTmodel actually matters very
much in improving the practical usage of the reading diagnosis.

Moreover, when being used in diagnostic practices, the
MIRT model has other strengths, including more informative
diagnostic information and being able to extend to model testlets.
As a continuous subskill scale diagnostic model, in addition to
the traditional diagnostic report of the mastery states of test-
takers, MIRT is able to describe their locations on the continuous
score scale of each subskill, which can provide the teachers and
learners with more detailed diagnostic information. Another
important advantage of MIRT is that it is easy to extend to fit
data with testlets. Testlets commonly exist in current reading
comprehension tests, which are presented as a group of items
with the same stimulus developed and administered as a single
unit (Wainer and Kiely, 1987). It has been observed that the
bifactor model is successful in approximating response data on
testlets (McLeod et al., 2001; DeMars, 2006), and theMIRTmodel
is able to combine with the bifactormodel to fit multidimensional
data with testlets.

Nevertheless, we should know that the mastery states of test-
takers from MIRT may sometimes be hard to obtain, because
with MIRT, the two-step approach (estimating continuous θ

values and then dichotomizing them with cut-off points) should
be used to obtain these mastery states, and the establishment of
a cut-off point tends to be labor-intensive and time-consuming
(Hambleton and Pitoniak, 2006). For cases where the mastery
state from MIRT becomes realistically infeasible, the mastery
states from traditional diagnostic models in reading diagnoses
can be regarded as a viable alternative to provide the diagnostic
feedback under certain conditions, because though hypotheses
on the latent variable are different, bothMIRT and the traditional
diagnostic models are actually popular multidimensional models
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that can be used for diagnostic purposes. Thesemultidimensional
models can help us to provide diagnostic information, while
things would be difficult with the unidimensional model.Ma et al.
(2020) recently showed that the traditional diagnostic models
fitted the data from a cognitive diagnostic assessment better than
the unidimensional IRT model, and they could extract useful
diagnostic information while the general abilities estimated from
the unidimensional model were of little diagnostic utility. Indeed,
the diagnostic information previously obtained in reading
diagnoses are mostly based on the traditional diagnostic models,
and R-RUM and G-DINA are representatives of these models.

Regarding the comparison between R-RUM and G-DINA,
G-DINA performed slightly better on the average PCCRs and
SCCRs over the five simulation conditions; in addition, when
used with empirical reading comprehension test data, G-DINA
had slightly lower −2 × log-likelihood and AIC values and
slightly higher BIC values, which coincides with the finding of
Li et al. (2016) with the MELAB reading test. It should be noted,
however, that the performance of R-RUMwas only slightly worse
than G-DINA for the most part, and in other circumstances, it
had an edge over G-DINA, i.e., differences actually exist between
these two models, but there is no huge dissimilarity, and in
general, they perform similarly.

Considering that G-DINA is a saturated model, which would
obtain a better model-data fit and correct classification rates (de
la Torre, 2011), R-RUM actually performed well. Therefore, the
R-RUM can be regarded as a good choice when there is a lack
of diagnostic models with continuous scale, which also provides
some support to previous reading diagnostic research with R-
RUM, such as the studies by Jang (2009), Lee and Sawaki (2009b),
and Jang et al. (2013).

Finally, the starting point of this study is the contradiction
encountered in practice: statistical methods have theoretical
assumptions, and typically, they should only be applied to
data that meet their assumptions; however, in previous reading
diagnostic studies, dichotomous scale models, whose hypothesis
on latent variables are not in accordance with the continuous
nature of reading subskills, have always been the chosen
model. Therefore, the main focus of this study is to compare
the performances of MIRT and the traditionally widely used
dichotomous scale models when they are used in reading
diagnostic analyses. All efforts in this study were oriented
toward this practical requirement, including the criteria for
selecting the representative models and calibration software
programs: representatives of the traditionally widely used models
should be widely recognized in previous studies, and the chosen
software programs should be well-accredited and conveniently
obtainable. For similar reasons, we simulated only datasets
consisting of continuous latent variables in this study, with
one continuous scale diagnostic model and two dichotomous
scale diagnostic models being used to approximate them: using
all approximating models as generating models simultaneously
seems to be a more popular treatment; however, this study
is focused on model selection for reading diagnoses instead
of general model comparison, which means continuous latent
variables are of particular interest to us, and the discussion about
model performance on dichotomous latent variables has little

relevance in the aim of this present study: even if R-RUM and
G-DINA were used as generating models, the performances of
the three models on datasets generated by these two models do
nothing to aid in evaluating their abilities in reading diagnoses.
In fact, when discussing model selection in reading diagnoses,
we know that the theoretical assumption of MIRT on latent
variables is in accordance with the continuous nature of reading
subskills, and theoretically dichotomous scale models, such as
R-RUM and G-DINA are at a disadvantage in the context of
reading comprehension test data; so the aim of this present
study is to compare the performances of models with the
theoretical advantage to those of models traditionally chosen for
reading diagnoses.

Similar to the issue that Buck and Tatsuoka (1998) raised
more than 20 years ago, there is a longstanding contradiction
in reading diagnostic studies: the subskills required by reading
comprehension tests are generally regarded as continuous latent
variables, whereas dichotomous scale models have been the
traditional choice in previous reading diagnostic studies. This
study focused on whether the MIRT model, a model with a
continuous subskill scale and that can be used for diagnostic
purposes, has advantages when used to diagnose reading
comprehension tests. Based on comparisons on the model-
fit statistics, relations between the estimated subskill scores
and the true subskill score, correct classification rates, and
frequency distributions of the subskill mastery probability, this
study confirmed the MIRT model can produce more dependable
diagnostic information, which means more accurate inferences
about the weaknesses and strengths of test-takers and greater
guidance value for remedial teaching and learning. In addition,
with the MIRT model, the reading diagnosis is able to provide
more informative diagnostic information and a more reasonable
score interpretation and is convenient to extend to fit testlets.
These are all important bases for the reading diagnosis to
fulfill its practical function and to truly become the interface
between learning and assessment. Therefore, the MIRT model
warrants broad attention and is recommended for use in future
reading diagnoses.

This study was conducted with real and simulated data
based on the administration of a single reading comprehension
test; therefore, only one set of test items and one Q-matrix
was used. More conditions, such as different numbers and
grain sizes of subskills (Harding et al., 2015) and different
item qualities (being defined by item parameters), should be
considered in future studies for a more comprehensive and
detailed evaluation. In addition, only the commonly employed
correct classification rates based on simulated data were used
in the discussion of classification accuracies, while classification
accuracies may be empirically examined through approaches
used in the validation of diagnostic studies, such as interviews or
controlled remediation of students (Tatsuoka, 2009). Future work
is required to provide insights about the performances of these
empirical approaches as well as the classification accuracies of
competing models based on real data. Moreover, no polytomous
scale model was chosen as representative of traditionally widely
used models to compare with the MIRT model because scarce
reading diagnoses with this category of diagnostic model have
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been conducted. Although a polytomous scale with more than
two ability levels is considered to be a compromise between
the continuous scale and the dichotomous scale (Fu, 2005),
Haberman et al. (2008) have shown that polytomous scale models
are competitive with MIRT when there are four or more ability
levels for each subskill; thus, the performance of polytomous scale
models in reading diagnoses awaits investigation.

Last but not the least, though subskill scores estimated based
on a MIRT model are more accurate and reliable than the
estimates based onmany other subskill score estimation methods
(Fu and Qu, 2018), previous study reveals that if the subskill
scores are highly correlated, the subskill score may have no
added-value (Sinharay, 2010). Therefore, in practical uses of
subskill score estimation methods, we should first determine
whether reporting subskill scores is reasonable, especially when
the subskill scores are highly correlated.
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The implementation of cognitive diagnostic computerized adaptive testing often depends

on a high-quality item bank. How to online estimate the item parameters and calibrate

the Q-matrix required by items becomes an important problem in the construction of the

high-quality item bank for personalized adaptive learning. The related previous research

mainly focused on the calibration method with the random design in which the new items

were randomly assigned to examinees. Although the way of randomly assigning new

items can ensure the randomness of data sampling, some examinees cannot provide

enough information about item parameter estimation or Q-matrix calibration for the new

items. In order to increase design efficiency, we investigated three adaptive designs

under different practical situations: (a) because the non-parametric classification method

needs calibrated item attribute vectors, but not item parameters, the first study focused

on an optimal design for the calibration of the Q-matrix of the new items based on

Shannon entropy; (b) if the Q-matrix of the new items was specified by subject experts,

an optimal design was designed for the estimation of item parameters based on Fisher

information; and (c) if the Q-matrix and item parameters are unknown for the new items,

we developed a hybrid optimal design for simultaneously estimating them. The simulation

results showed that, the adaptive designs are better than the randomdesign with a limited

number of examinees in terms of the correct recovery rate of attribute vectors and the

precision of item parameters.

Keywords: cognitive diagnostic computerized adaptive testing, item bank, item parameter, the Q-matrix, optimal

design

INTRODUCTION

With the rapid growth of information technology and artificial intelligence in the era of big
data, the form of test administration is changing. The paper-and-pencil tests have traditionally
been widely used, but they are gradually being replaced by computer-based tests nowadays.
The computer adaptive test (CAT) selects test items sequentially based on the examinee’s
current ability. Compared with CAT based on item response theory (IRT), cognitive diagnostic
computerized adaptive test (CD-CAT), based on the cognitive diagnostic model (CDM) combines
the dual advantages of computerized adaptive testing and cognitive diagnostic assessment
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(Cheng, 2009; Wang and Tu, 2021). With using the idea of
CAT and adopting certain item selection strategies, CD-CAT
selects the items from the item bank that are most suitable
for the examinee’s attribute mastery pattern. Thus, CD-CAT
not only increases test efficiency, but also can provide the
examinee’s cognitive strengths and weaknesses (Magis et al.,
2017). The diagnosis feedback is useful for personalized learning
to customize learning for each examinee’s strengths, needs, skills,
and interests.

In the past 20 years, many item selection strategies
have been developed in CD-CAT, including the Kullback-
Leibler (KL) information method and Shannon entropy (SHE)
method (Xu et al., 2003), the Posterior-Weighted KL (PWKL)
method (Cheng, 2009), the restrictive progressive method
(RP; Wang C. et al., 2011), the mutual information (MI)
method (Wang, 2013), the modified PWKL (MPWKL) method
and the generalized deterministic inputs, noisy “and” gate
(G-DINA) model discrimination index (GDI; Kaplan et al.,
2015), the Jensen–Shannon divergence (JSD) method (Yigit
et al., 2019), and the attribute-balance coverage method (Wang
et al., 2020). A modified PWKL method that maximizes item
information per time unit was developed by Huang (2019).
For classroom assessment with small samples, Chang et al.
(2018) proposed non-parametric item selection (NPS) and
the weighted non-parametric item selection (WNPS) methods
based on the non-parametric classification (NPC) method (Chiu
and Douglas, 2013). The advantages of using non-parametric
methods are that it only requires the Q-matrix to specify the
relationship between items and attributes, and does not rely
on item parameters which are often required by parametric
models. And the study showed that the performance of these
two methods is better than the PWKL method when the
calibration samples are small. In addition, Yang et al. (2020)
proposed three stratified item selection methods based on
PWKL, NPS, andWNPS, named S-PWKL, S-NPS, and S-WNPS,
respectively. Among them, the S-WNPS and S-NPS methods
performed similarly and both of them are better than the S-
PWKL method.

All the above methods require an item bank whose Q-
matrix or item parameters is known to classify the examinees’
attribute mastery patterns. Item banks often require new items
or raw items to replace retired items. Thus, the specification
of the Q-matrix or the calibration of item parameters for the
new items is very important for the ongoing maintenance of
the item bank. If subject experts are invited to specify the
item parameters and attribute vectors for the new items, it
will not only have big expenses, but also have the subjective
components of uncertainty in experts’ opinions. In addition, the
precision of item parameters and the quality of Q-matrix will
also directly affect the classification accuracy of the examinees’
attribute mastery patterns. For example, Sun et al. (2020)
demonstrated the negative effects of the calibration errors during
the estimation of item parameters on the measurement accuracy,
average test length, and test efficiency for variable-length CD-
CAT. If the Q-matrix and the item parameters for new items
can be automatically calibrated and accurately estimated based
on examinees’ item response data in the framework of CD-CAT,

it can not only reduce labor costs, but also improve the efficiency
of expert judgment by providing the results of online calibration
(Chen and Xin, 2011).

In recent years, researchers have proposed three types
of online estimation methods in IRT-based CAT. The first
kind method includes maximum likelihood estimate (MLE),
Stocking’s Method A and Method B, which are based on
the conditional maximum likelihood estimation. Based on
the method A and the full-function maximum likelihood
estimation (FFMLE) method (Stefanski and Carroll, 1985), Chen
(2016) proposed the second method, called the FFMLE-Method
A method. The third is the marginal maximum likelihood
estimation with one EM cycle (OEM) proposed by Wainer and
Mislevy (1990).

There are some online estimation methods in CD-CAT,
including the CD-Method A, CD-OEM, CD-MEM method
proposed by Chen et al. (2012). Themethod for online calibration
item attribute vectors includes the intersection method proposed
by Wang W. Y. et al. (2011). Based on the joint maximum
likelihood estimation method, Chen and Xin (2011) proposed
the joint estimation algorithm (JEA), which can calibrate item
attribute vectors and estimate the item parameters for the
new items. Inspired by the JEA algorithm, Chen et al. (2015)
proposed the single-item estimation (SIE) method by taking
the uncertainty of the attribute mastery pattern estimates into
account and the simultaneous item estimation (SimIE) method
to calibrate multiple items simultaneously. Results showed that
the SIE and SimIE perform better than the JEA method in the
calibration of the Q-matrix as well as the estimation of slipping
and guessing parameters.

The related previous research in CD-CAT mainly focused
on the calibration method with the random design in which
the new items were randomly assigned to examinees. Although
the way of randomly assigning new items can ensure the
randomness of data sampling, some examinees cannot provide
enough information about item parameter estimation or Q-
matrix calibration for the new items. This becomes extremely
important under the situation that the number of examinees
is also limited and also would like to optimize the calibration
of all new items (Chen et al., 2015). Naturally, we are badly
in need of a design problem for how to adaptively assign new
items to examinees according to both the current calibration of
the new items and the current measurement of the examinees.
In order to increase design efficiency, we investigated three
adaptive designs under different practical situations: (a) because
the non-parametric classification method needs calibrated item
attribute vectors, but not item parameters, the first study
focused on an optimal design for the calibration of the Q-
matrix of the new items based on Shannon entropy; (b)
if the Q-matrix of the new items was specified by subject
experts, an optimal design was designed for the estimation
of item parameters based on Fisher information; and (c) if
the Q-matrix and item parameters are unknown for the new
items, we developed a hybrid optimal design for simultaneously
estimating them.

The rest of this paper is organized as follows: the next
section will describe the models and methods in details,
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including CDM, attribute mastery pattern estimation method,
item parameters estimation method, and three optimal designs
for online estimation and online calibration. The third section
shows the simulation study about the design for the Q-matrix
calibration based on Shannon entropy, the fourth section shows
the simulation study about the design for online estimation based
on Fisher information, and the fifth section shows the simulation
study about the design for online estimation and calibration.
The last section presents the summary and discussion, as well as
future research directions.

MODELS AND METHODS

The Deterministic Inputs, Noisy, “and”
Gate (DINA) Model
The DINA model (Macready and Dayton, 1977; Junker and
Sijtsma, 2001) is one of the most commonly used cognitive
diagnosis models. The observed item response Xij for examinee
i on item j is only right and wrong. If examinee i has mastered
attribute k, αik = 1, otherwise αik = 0. The latent response for
examinee i on item j is as follows:

ηij =
∏K

k=1
α
qjk
ik
, (1)

where K is the number of attributes, and the value of ηij is 0 or
1. ηij = 1 means that examinee i has mastered all the attributes
measured by item j, while ηij = 0 means that examinee i has
not mastered at least one of the attributes of item j. However,
it is not certain that if you master all the attributes examined
by the item j, you will be able to answer the item correctly. It
may be due to the examinees’ mistakes that the item will not be
answered correctly. Similarly, although they did notmaster all the
attributes of the item, they have the chance to guess the correct
answer. Therefore, the combination of slipping and guessing is
called noise. In other words, the two item parameters in theDINA
model, the slipping parameter sj and the guessing parameter gj,
represent the probability of noise on item j. They are defined
as follows:

sj = P
(
Xij = 0

∣∣ηij = 1
)
, (2)

gj = P
(
Xij = 1

∣∣ηij = 0
)
. (3)

When the latent response variable ηij, sj, gj is known, the item
response probability of examinee i on item j under the DINA
model can be calculated as follows:

P
(
Xij = 1 |αi

)
=

(
1− sj

)ηij g
(1−ηij)
j , (4)

where, P
(
Xij = 1 |αi

)
refers to the correct response probability

of item j for examinee i whose attribute mastery pattern is αi. A
high probability of getting the item right implies that examinees
mastered all the required attributes of an item. As long as the
examinees have not mastered a certain required attribute of an
item, they will answer the item correctly with a low probability.

Attribute Mastery Pattern Estimation
The estimation methods of examinees’ attribute mastery pattern
mainly include maximum a posteriori (MAP), expected a
posteriori (EAP), and maximum likelihood estimation (MLE).
This study uses the MLE method. Assuming the length of CD-
CAT is fixed at m, under the assumption of local independence,
the examinee’s conditional likelihood function is:

L (Xi |αc ) =
∏m

j=1
P

(
Xij

∣∣ αc

)

=
∏m

j=1

[(
1− sj

)Xij s
1−Xij

j

]ηcj
[
g
Xij

j

(
1− gj

)1−Xij
]1−ηcj

. (5)

Then the maximum likelihood estimation of the attribute
mastery pattern is the one that maximizes the value of the
conditional likelihood function:

α̂i = argmax
αc∈QS

{L (Xi |αc )} . (6)

Item Parameter Estimation Method
If we know the attribute vectors of the new items, the item
parameter estimation method can use the CD-Method Amethod
proposed by Chen et al. (2012). This method is extended from the
traditional CAT online calibration method called the Method A
to CD-CAT, by using maximum likelihood estimation method to
estimate item parameters.

Assuming that nj independent examinees have answered item
j, the logarithmic likelihood function given the observed response
xij on item j is calculated as follow:

ln Lj =
∑n

i=1

(
uij ln(Pj(α̂i))+ (1− uij) ln(1− Pj(α̂i))

)
.

(7)

We take the partial derivatives of the logarithmic likelihood with
respect to gj and sj and let them equal to 0

∂ ln Lj

∂gj
=

∑
i :

ηij=0

uij=0

−gj

gj
(
1− gj

) +
∑

i :
ηij=0

uij=1

1− gj

gj
(
1− gj

) = 0,

(8)

∂ ln Lj

∂sj
=

∑
i :

ηij=1

uij=0

1− sj(
1− sj

)
sj
++

∑
i :

ηij=1

uij=1

−sj(
1− sj

)
sj
= 0.

(9)

Then the estimated value of the guessing parameter is ĝj =

n2/(n1 + n2), where n1 represents the number of examinees
whose latent response is 0 and the observed response is
also 0, and n2 represents the number of examinees when
the latent response is 0 but the observed response is 1.
Similarly, the estimated value of the slipping parameter is
ŝj = n3/ (n3 + n4), where n3 represents the number of
examinees whose latent response is 1 but the observed
response is 0, and n4 represents the number of examinees
when the latent response is 1 and the observed response
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is also 1. Therefore, only the value of n1, n2, n3, and n4
is needed to calculate the estimated values of guessing and
slipping parameters.

An Adaptive Design for Q-Matrix
Calibration Based on Shannon Entropy
The adaptive design for Q-matrix calibration based on Shannon
entropy is designed to select the most suitable new item for the
examinees to answer, in order to determine the attribute vector of
the new item as soon as possible. The steps of the adaptive design
algorithm are as follows:

(1) Calculate the posterior probability of the attribute vector of
the new item j based on item response data and the examinee’s
attribute mastery pattern:

P
(
qr

∣∣∣X(j), α̂(j)
)
=

P
(
qr

)
L

(
X(j), α̂(j)

∣∣qr
)

∑
qr∈Qr

P
(
qr

)
L

(
X(j), α̂(j)

∣∣qr
) , (10)

where, Qr is the set of all possible of attribute vectors, the

prior probability P
(
qr

)
is set to a uniform distribution, α̂

(j) =(
α̂
(j)
1 , α̂

(j)
2 , ..., α̂

(j)
nj

)
is the attribute mastery pattern matrix

estimated by all examinees who has answered item j, X(j) =(
X1j,X2j, ...,Xnjj

)
is the vector of item responses for all examinees

answered item j, nj is the number of examinees answered item j,
and the likelihood function of the attribute vector qr is:

L
(
X(j), α̂(j)

∣∣qr
)

=
∏nj

i=1
P

(
Xij = x

∣∣∣α̂(j)
i , qr

)Xij (
1− P

(
Xij = x

∣∣∣α̂(j)
i , qr

))
1−Xij .

(11)

(2) Calculate the Shannon entropy of the current posterior
distribution of the attribute vector of the new item j:

SHEj = −
∑

qr∈Qr
P

(
qr

∣∣∣X(j), α̂(j)
)
log P

(
qr

∣∣∣X(j), α̂(j)
)
.

(12)

Assuming that examinee i, whose attribute mastery pattern is
estimated to be α̂i, with item response Xij = x on the candidate
new item j, then the posterior distribution of the attribute vector:

P
(
qr

∣∣∣X(j), α̂(j),Xij = x, α̂i

)

=
L

(
Xij = x, α̂i

∣∣qr
)
P

(
qr

∣∣∣X(j), α̂(j)
)

∑
qr∈Qr

L
(
Xij = x, α̂i

∣∣qr
)
P

(
qr

∣∣∣X(j), α̂(j)
) , (13)

where L
(
Xij = x, α̂i

∣∣qr
)

=

P
(
Xij = x

∣∣α̂i , qr
)x (

1− P
(
Xij = x

∣∣α̂i , qr
))1− x

(3) The Shannon entropy expectation of the item response Xij

on the candidate new item j is:

SHEij = −
∑1

x=0
P

(
Xij = x

)
(∑

qr∈Qr
P

(
qr

∣∣∣X(j), α̂(j),Xij = x, α̂i

)

log P
(
qr

∣∣∣X(j), α̂(j),Xij = x, α̂i

))
, (14)

where P
(
Xij = x

)
=

∑
qr∈Qr

L
(
Xij = x, α̂i

∣∣qr
)
P

(
qr

∣∣∣X(j), α̂(j),Xij = x, α̂i

)

(4) Choose the new item with the smallest difference between
SHEj and SHEij,

j = argmin
j∈N(i)

(
SHEij − SHEj

)
, (15)

where N(i) represents the set of new items that the examinee i
has not answered yet. The difference between SHEj and SHEij is
refered as Mutual information.

(5) Collect the item response Xij on item j and the attribute
mastery pattern α̂i of examinee i, adjoining them to the matrix

X(j) and α̂
(j), that is X(j) = (X(j),Xij) and α̂

(j) = (α̂(j), α̂i).
(6) Repeat steps 1 through 5 until the new item meets the

required number of examinees.
(7) When the number of examinees of item jmeets the specified

conditions, the MLE method is used to estimate its q vector

q̂j = argmax
qr∈Qr

{
L

(
X(j), α̂(j)

∣∣qr
)}

. (16)

An Adaptive Design for Item Parameter
Estimation Based on Fisher Information
The most commonly way of measuring the precision of
estimated parameters used in IRT is the Fisher information.
The more information there is in the sample, the more
accurate the estimated parameter is. The calculation formula is
as follows:

I (θ) = E

{(
∂ ln L(θ)

∂θ

)2
}
= −E

{
∂2 ln L(θ)

∂2θ

}
=

n∑

i=1

(
P
′

i

)2

PiQi
,

(17)

where L(θ) is the likelihood function.
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According to this theory, we apply it to CD-CAT and
propose an adaptive design for estimating item parameters.
One cognitive diagnosis model used in this study is the
DINA model having slipping and guessing parameters. For
the maximum likelihood estimation of the item parameter

vector γ̂ j = (ŝj, ĝj)
T , the estimation error of item parameters

can usually be described by the item information matrix
I(n)(γ̂ j). Therefore, we use the form of information matrix
to choose the most appropriate item for the examinee to
answer, so as to increase the precision of item parameter
estimation. That is, the item is selected based on the D-optimal
design criteria:

j = argmax
j∈N(i)

det(I(nj)(γ̂j)+ I(γ̂j; α̂i))− det(I(nj)(γ̂j))

det(I(nj)(γ̂ j)
, (18)

where I(nj)
(
γ̂ j

)
represents the current amount of information

of item j obtained by the sample size of nj, I
(
γ̂ j; α̂i

)
represents

the amount of information generated by the examinee i after
answering item j, det(•) represents the determinant value of the

matrix, and I(nj)
(
γ̂ j

)
is calculated as follows:

I(nj)(γ̂ j) =

nj∑

i=1

I(γ̂ j, α̂i), (19)

I(γ̂ j, α̂i) =
1

Pij
(
1− Pij

)



(
ηij

(
1− sj

)ηij−1
g
1−ηij
j

)2
0

0
((
1− ηij

)
g
−ηij
j

(
1− sj

)ηij
)2


 .

(20)

When ηij = 1 or ηij = 0, we have

I
(
γ̂ j, α̂i

)
=

1

Pij
(
1− Pij

)
[
1 0
0 0

]
=

1

sj
(
1− sj

)
[
1 0
0 0

]
, (21)

or

I
(
γ̂ j, α̂i

)
=

1

Pij
(
1− Pij

)
[
0 0
0 1

]
=

1

gj
(
1− gj

)
[
0 0
0 1

]
. (22)

Algorithms for Three Adaptive Designs
Item Attribute Vector Online Calibration Algorithm

Based on Shannon Entropy
The flow chart of the calibration of item attribute vector based
on Shannon entropy is shown in Figure 1. The specific steps are
as follows:

Step 1. For the examinee i, the SHE is used to select the
item from the operational item bank, and the item response
is collected.
Step 2. The MLE method is used to estimate the attribute
mastery pattern of examinee i.
Step 3. Repeat steps 1–2 until the examinee i has answered
12 operational items, and finally get the estimated attribute
mastery pattern.
Step 4. Based on the final estimated attribute mastery pattern,
the adaptive design for online calibration is adopted to select 6
new items from the new item bank for examinee i and collect
the responses on the new items.
Step 5. Update the posterior probability of the q-vector of the
new item and repeat the previous step.
Step 6. Use the MLE method to calibrate the q-vector of each
new item until the number of responses to the new itemmeets
the condition.

Item Parameter Online Estimation Algorithm Based

on Fisher Information
The flow chart of the estimation of item parameters based on
Fisher information is shown in Figure 2. The specific steps are
as follows:

Step 1. For the examinee i, SHE is used to select the item from
the operational item bank, and the item response is collected.
Step 2. Using the MLE method to estimate the attribute
mastery pattern of the examinee i.
Step 3. Repeat steps 1–2 until the examinee i has answered
12 basic items, and finally get the estimated attribute
mastery pattern.
Step 4. Based on the final estimated attribute mastery pattern,
the D-optimal method is adopted to select 6 new items
from the new item bank for the examinee i and collect item
responses on the new items.
Step 5. Estimate the item parameters by the CD-Method A
method, update Fisher information for the new items, and
repeat the previous steps.
Step 6. Use the CD-MethodAmethod to get the final estimated
item parameters until the number of responses to the new item
meets the condition.

Adaptive Design Algorithm for Online Estimation and

Calibration
The flow of online estimation and calibration of adaptive
design was shown in Figure 3. The specific algorithm steps are
as follows:

Step 1. For the examinee i, use the SHE to select items from the
operational item bank, and collect the response of the item.
Step 2. Using the MLE method to estimate the attribute
mastery pattern of the examinee i.
Step 3. Repeat step 1–2 until the examinee i has answered
12 operational items, and finally get the estimated attribute
mastery pattern of all the examinees.
Step 4. When the examinee answers to the position of the
preset new item, judge the value of n

N (n is the number of
the current examinees). If it satisfies n/N < 0.8, SHE-optimal
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FIGURE 1 | The flow chart of the calibration of item attribute vector based on Shannon entropy.
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FIGURE 2 | The flow chart of the estimation of item parameters based on information information.
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FIGURE 3 | Flow chart of adaptive design for online estimation and calibration.

criterion (or random method) will be used to assign the new
item to the examinee, and the response of the examinee to the
new item is also collected, and the posterior probability of the
attribute vector of the new item is updated. When n/N = 0.8,
the attribute vector q̂0 is estimated. If n/N > 0.8, adopts
D-optimal criterion (or random method) to select new items
for examinees, and then collects the responses of examinees
on the new items, the item parameters of the new item are
updated by the CD-Method Amethod and the attribute vector
q̂1 is estimated. When n/N = 1, the estimated values of item
parameters are ŝ0 and ĝ0.
Step 5. If q̂0 6= q̂1, update the attribute vector q̂0 and then
updates the item parameters ŝ0 and ĝ0.
Step 6. Repeat the above two steps until q̂0 = q̂1, gets the final
attribute vector and item parameter estimation.

SIMULATION STUDY 1

Simulation Design
The purpose of the first simulation study focused on the
calibration of Q-matrix to satisfy the requirements of the NPC
method. This study mainly discusses the influence of adaptive
or random design on the attribute vector calibration. The

TABLE 1 | Item parameters and Q-matrix in the new item bank.

New item index Slipping parameter Guessing parameter Q-matrix

1 0.32 0.30 1 0 0 1 0

2 0.18 0.12 0 0 1 0 0

3 0.39 0.32 1 0 1 0 0

4 0.13 0.18 0 1 1 0 0

5 0.38 0.24 0 1 0 0 0

6 0.37 0.20 1 0 1 0 1

7 0.15 0.15 0 0 0 1 0

8 0.16 0.39 0 0 0 1 0

9 0.39 0.13 0 1 0 0 0

10 0.23 0.39 0 1 0 1 1

11 0.30 0.27 1 0 0 0 0

12 0.14 0.18 0 0 0 1 1

simulation design in the study of Chen et al. (2015) was used
here. Matlab 8.6.0 (R2015b) and R (version 4.1.0) were used
in simulation studies. Because the adaptive designs of Fisher
information or Shannon entropy were successfully used to
sequentially select items based on the status of examinees in CAT
(Magis et al., 2017) or CD-CAT (Cheng, 2009).We expect that the
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TABLE 2 | The TSR for the two allocation strategies under different initial values of the item parameters.

Sample size TSR

Random allocation Item allocation based on Shannon entropy

0.05 0.15 0.25 0.35 0.05 0.15 0.25 0.35

100 0.61 0.60 0.59 0.61 0.66 0.68 0.64 0.61

200 0.73 0.73 0.71 0.74 0.80 0.78 0.78 0.74

400 0.84 0.83 0.82 0.83 0.86 0.88 0.86 0.83

800 0.91 0.91 0.89 0.91 0.96 0.96 0.91 0.91

1,600 0.97 0.97 0.97 0.95 1.00 0.99 0.99 0.95

proposed adaptive designs can be applied for online calibration
of attribute vectors and online estimation of item parameters for
new items.

Operational Item Bank
The items in the item bank mainly include Q-matrix and item
parameters. The number of independent attributes is K = 5.
Based on the recent research on online calibration, the number
of items in the operational item bank is 240, in which composed
of 16 Q1, 8 Q2 and 8 Q3. Q1, Q2 and Q3 consist of matrices
that examine one, two, and three attributes, respectively, as
shown below.

Q1 =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



Q2 =




1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1
0 1 1 0 0
0 1 0 1 0
0 1 0 0 1
0 0 1 1 0
0 0 1 0 1
0 0 0 1 1




Q3 =




1 1 1 0 0
1 1 0 1 0
1 1 0 0 1
1 0 1 1 0
1 0 1 0 1
1 0 0 1 1
0 1 1 1 0
0 1 1 0 1
0 1 0 1 1
0 0 1 1 1




The slipping and guessing parameters of each item in
the operational item bank followed a uniformly distributed
U (0.1, 0.4 ).

New Item Bank
The items in the new item bank also include theQ-matrix and the
item parameters (slipping and guessing parameters). According
to the simulation design in the study of Chen et al. (2015), there
are a total of 12 items in the new item bank (M = 12). The
item parameter distribution of the new items obeys the uniform
distribution U (0.1, 0.4). The item parameters and the Q-matrix
are listed in Table 1.

Simulation Procedures
In this study, we consider the influence of different sample
size on the calibration results. The sample size is set to N =

100, 200, 400, 800, and 1,600. We assume that each examinee
mastered each attribute with 50% probability. Each examinee
needs to answer 12 operational items and 6 new items (D =

TABLE 3 | The standard deviation of the attribute vector under the two allocation

strategies.

Sample size SD

Random allocation Item allocation based on

Shannon entropy

100 0.1280 0.1137

200 0.1039 0.1124

400 0.1030 0.0791

800 0.0782 0.0636

1,600 0.0447 0.0286

6). The number of examinees who answered each new item is
about C = (N × D ) /12.

For the random design, the balanced incomplete block design
(BIBD) is applied to guarantee that each examinee will answer
six different new items and the number of examinees to each
new item is balanced. For example, we called the function
find. BIB (12,100,6) in the R library and crossdes to search for
balanced incomplete block designs, where the sample size is 100,
the total number of new items is 12, and the number of new
items answered by each examinee is 6. After item responses are
collected, the MLE method is applied to estimate the q-vector for
the new item.

For the Shannon entropy allocation strategy, the procedures
of the calibration of Q-matrix under are the following: firstly,
item parameters and attribute mastery pattern estimates of
examinees are required to computer item response functions
under each possible attribute vector of the new item; secondly,
item response functions and item responses are used to update
the posterior distribution of the attribute vector of the new
item; thirdly, the mutual information is obtained for adaptively
choosing the next new item to the current examinee; finally,
the MLE method is applied to estimate the q-vector for the
new item.

For the two designs above, item parameters are required for
computer item response functions. However, item parameters for
the new items are unknown and cannot estimate item response
probabilities. Thus, the item parameters of all new items are fixed
as the same and four levels are considered to investigate the
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FIGURE 4 | The ISR for two strategies when the initial value of the item parameter is 0.05.

FIGURE 5 | The ISR for two strategies when the initial value of the item parameter is 0.15.

FIGURE 6 | The ISR for two strategies when the initial value of the item parameter is 0.25.

impact of different item parameters on the Q-matrix calibration.
The four levels are 0.05, 0.15, 0.25, and 0.35. The reason is that
for the NPC method, a frequently used distance measure is the
Hamming distance (Chiu and Douglas, 2013), which counts the
number of different entries in observed and ideal item response

vectors with binary data. For this case, slipping and guessing
parameters can be regarded as the same for all items. Thus, item
response probabilities are calculated from the DINA model by
using the same item parameters in the first design. Repeat R =

100 times under each condition.
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FIGURE 7 | The ISR for two strategies when the initial value of the item parameter is 0.35.

Evaluation Indices
Item specification rate (ISR) refers to the accuracy of estimating
q-vector for each new item. ISR can be written as

ISRj =
1

R

∑R

l=1
I(q̂

(l)
j = qj), (23)

where R represents the number of repetitions, q̂
(l)
j represents the

lth estimation, and the indicator function I (.) takes value 1 when

q̂
(l)
j = qj and value 0 when q̂

(l)
j 6= qj.

Total specification rate (TSR) refers to the average accuracy of
q-vectors for all new items. TSR can be written as

TSR =
1

JR

∑J

j=1

∑R

l=1
I(q̂

(l)
j = qj). (24)

The ISR and TSR are used to compare the performance of
the Shannon entropy allocation strategy and random allocation
strategy. The higher the ISR and TSR is, the more accurate the
calibration of Q-matrix is.

Standard deviation (SD) refers to the stability of the method
when the estimation accuracy of attribute vectors is similar.

SD =

√
1

R− 1

∑R

l=1
(TMRl − r)2. (25)

where total misspecification rate (TMR) equals to 1− TSR, and r
is the average of TMR. The smaller the standard deviation is, the
more stable the method is.

Simulation Results
Results about the accuracy of the two allocation designs are
shown in Table 2 for different the initial item parameters used
in both item allocation and estimation. From the table, no matter
the random or the Shannon entropy allocation strategy, the TSR
increases with the increase of the number of examinees. When
the sample size reaches a certain value (e.g., 1,600), the TSR is
close to 1. The TSR of Shannon entropy allocation strategy is
higher than that of the random allocation strategy, especially
when the sample size is 100, 200,400, or 800. Although the

initial values of item parameters are different, the TSR of the
two allocation designs under different item parameters is almost
the same. The reason for the small difference results from the
different attribute mastery pattern estimates of the examinees
under each condition.

Table 3 presents the stability of the two allocation designs
under the different initial item parameters. From the standard
deviation of the TMR, when the sample size is 400, 800, and
1,600, the SD from the Shannon entropy allocation strategy is
much smaller than that of the random allocation strategy. It
means that the calibration accuracy of the allocation strategy
based on Shannon entropy is more stable than the random
allocation strategy.

As can be seen from Figures 4–7, as the sample size gets
larger, the increase of ISR is very obvious. The difference in ISR
between the two allocation strategies is relatively small that in
TSR. Meanwhile, the ISR of items 1, 3, 5, 6, 9, 10, and 11 changes
obviously, and the performance of the two allocation strategies
on these items is obviously better than other items. This is due
to the fact that the item parameters of these items are larger
than that of other items. And when the true item parameters
are large, the ISR from the allocation strategy based on Shannon
entropy is higher than the random allocation strategy. The larger
the item parameters on the new item, the larger the sample size
of Q-matrix calibration required. But the sample size required
by Shannon entropy allocation strategy is less than the random
allocation strategy.

Figure 8 shows the distribution of attribute mastery patterns

selected by Shannon entropy allocation strategy for each new

item for the number of examinees of 1,600 and the initial item
parameters of 0.15. Each new item is assigned to∼800 examinees.
From Table 1, the true attribute vector is 00100 for item 2. We
found that the top five attribute mastery patterns for the item

are 01010, 11010, 10110, 10000, and 10001, respectively. Most
examinees with the third attribute mastery pattern can answer
the item correctly, while examinees with the other attribute
mastery patterns cannot answer the item correctly. Intuitively,
these attribute mastery patterns can effectively discriminate the
true attribute vector with other attribute vectors.
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FIGURE 8 | The number of examinees in various attribute mastery pattern assigned to each item under the Shannon entropy allocation strategy.
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6 SIMULATION STUDY 2

Simulation Design
The second simulation study is using random allocation strategy
and Fisher Information allocation strategy to estimate the item
parameters of the new items when the item attribute vector is
known. The design of this study is similar to the first study, except
that there are differences in the number of examinees and the
initial setting of item parameters, while other conditions remain
unchanged. Five different levels of sample sizes were used to
design the number of examinees, which were set to 20, 40, 80, 160,
and 320, respectively. The initial values of item parameters are
also set at five different levels, which are 0.05, 0.15, 0.25, 0.35, and
0.45, respectively. Repeat R= 100 times under each condition.

Evaluation Indices
Mean absolute deviation (MAD) is the average of the absolute
value of the difference between the estimated and true value. The
average absolute deviation is applied to measure the precision of
the online estimation of item parameters. The closer its value is
to 0, the better precision is. The formula is as follows:

MADx =
1

RJ

J∑

j−1

R∑

l=1

∣∣∣x̂(l)j − xj

∣∣∣, (26)

where x̂
(l)
j and xt represent the estimated and true values of item

parameters (guessing or slipping parameters), respectively.
Item root mean squared error (IRMSE) is used to estimate

the precision of a single item parameter. For a single item j, the
calculation formula is as follows:

IRMSEx =

√√√√ 1

R

R∑

l=1

(
x̂
(l)
j − xj

)2
, (27)

Root mean squared error (RMSE) is used to calculate the
estimation precision of all item parameters.

RMSEx =

√√√√√ 1

RJ

J∑

j=1

R∑

l=1

(
x̂
(l)
j − xj

)2
(28)

Simulation Results
The results of online estimation are shown in Table 4. It can
be analyzed from the table that as the number of examinees
increases, the MAD and RMSE of the item parameter estimates
are constantly decreasing. When the initial values of the item
parameters are different, the MAD and RMSE of the item
parameter estimates under the D-optimal criterion are almost the
same. It means that the initial values of the item parameters have
little influence on the precision of the item parameter estimates.
When the number of examinees is 20, 40, 80, and 160, the RMSE
of the D-optimal strategy is significantly lower than the random
strategy. When the number of examinees is 320, the MAD and
RMSE are very similar to the two strategies. For the precision
of different item parameters, the error of slipping parameters is
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FIGURE 9 | The RMSE of each item parameter of the D-optimal allocation strategy when the initial value of the item parameter is 0.05.

FIGURE 10 | The RMSE of each item parameter of the D-optimal allocation strategy when the initial value of the item parameter is 0.15.

greater than that of guessing parameters. It shows that guessing
parameters are easier to estimate than slipping parameters.

Figures 9–13 show the IRMSE for different sample sizes from
the D-optimal strategy under different initial values of item
parameters. Figure 14 shows the IRMSE for different sample
sizes from the random strategy. It can be seen that the D-optimal
strategy is better than the random strategy, especially for the
slipping parameters.

Figure 15 shows the distribution of attribute mastery patterns
selected by the D-optimal strategy for each new item when the
number of examinees is 320. Each new item is assigned to ∼160
examinees. From Table 1, the true attribute vector is 00100 for

item 2. We found that the top five attribute mastery patterns for

the item are 00101, 01111, 11001, 00100, and 01011, respectively.
Most examinees with the first, second, and fourth attribute
mastery patterns can answer the item correctly, while examinees

with the other attribute mastery patterns cannot answer the item
correctly. Intuitively, these attribute mastery patterns are very
useful for estimating slipping and guessing parameters.

SIMULATION STUDY 3

Adaptive Design of Online Estimation and
Online Calibration
When the item parameters and attribute vectors are unknown,
the item allocation strategies proposed in the previous two
studies are used to estimate the item parameters and calibrate
the attribute vector of the new item. From the conclusions of
the above two simulation studies, we can see that in order to
achieve the same estimation precision, the number of examinees
required for item parameter estimation will be less. Thus, the first
four fifths of examinees are used to calibrate attribute vectors,
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FIGURE 11 | The IRMSE of the D-optimal allocation strategy when the initial value of the item parameter is 0.25.

FIGURE 12 | The IRMSE of the D-optimal allocation strategy when the initial value of the item parameter is 0.35.

and the last one fifth are used to estimate item parameters.
The initial value of the item parameter for calibrating the
item attribute vector or estimating the item parameters is set
to 0.15. The five levels of sample sizes as the first study is
used here.

The simulation study considers four designs: (a) the Shannon
entropy and D-optimal strategy were used for calibrating
attribute vectors and estimating item parameters, respectively;
(b) the Shannon entropy and random strategy; (b) the random
and D-optimal strategy, and two random strategies. After the
examinees are all assigned by the D-optimal or random method,
the estimation of item parameters and the calibration of attribute
vector iterates until the estimated attribute vector unchanged.

Simulation Results
Table 5 show the TSR and the RMSE under different allocation
strategies combinations with or without iterations. As the
number of examinees increases, the accuracy of attribute vectors
and the precision of item parameters are increasing. Whenever
the D-optimal or random strategy is used, the Shannon entropy
strategy performs better than the random strategy in terms
of the TSR under the same sample size. Similarly, we found
that the D-optimal strategy can obtain the item parameter
estimates more accurately than the random strategy under the
same sample size, whenever the Shannon entropy or random
strategy is used. The performance of the method with the
combination of the Shannon entropy and D-optimal strategies
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FIGURE 13 | The IRMSE of the D-optimal allocation strategy when the initial value of the item parameter is 0.45.

FIGURE 14 | The IRMSE of the random allocation strategy.

is better than the method with only new adaptive strategy or two
random strategies.

CONCLUSIONS AND DISCUSSION

The CD-CAT combines the advantages of computerized adaptive
testing and cognitive diagnostic assessment. For obtaining higher
correct classification rates of attribute mastery patterns, the
CD-CAT requires a high-quality calibration item bank. Item
replenishing is very important for item bankmaintenance in CD-
CAT. The related previous research in CD-CAT mainly focused
on the calibration method with the random design in which
some examinees cannot provide enough information of item
parameter estimation or Q-matrix calibration for the new items.
In order to implement item replenishing efficiency, we propose

the adaptive design for item parameter online estimation and
Q-matrix online calibration.

We investigated the performance of three adaptive designs
under different conditions. The first study showed that the
optimal design based on Shannon entropy was better than the
randomdesign in the calibration of theQ-matrix of the new items
when the number of examinees is <1,600. When the number
of examinees reaches 1,600, the average estimation accuracy

of the two methods is very close. Although the TSR of the
two methods are similar, the standard deviation of TMR from
Shannon entropy-based allocation method (0.0286) is lower than
that of random allocation method (0.0447). It means that the
Shannon entropy-based allocation method is more stable than
the random allocation method. The second study suggested that
given the Q-matrix of the new items, the D-optimal design
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FIGURE 15 | The number of examinees in various attribute mastery pattern assigned to each item under D-optimal strategy.
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TABLE 5 | The TSR and the RMSE under different allocation strategies with iterations.

Item allocation

method

The number

of examinees

D-optimal Random

TSR RMSEs RMSEg TSR RMSEs RMSEg

Shannon entropy 80/20/100/100 0.65 0.1266 0.0896 0.61 0.1585 0.1014

160/40/200/200 0.80 0.0879 0.0699 0.80 0.1018 0.0724

320/80/400/400 0.90 0.0663 0.0559 0.90 0.0727 0.0548

640/160/800/800 0.97 0.0505 0.0418 0.97 0.0585 0.0431

1280/320/1600/1600 0.99 0.0460 0.0440 0.99 0.0455 0.0371

Random 80/20/100/100 0.62 0.1342 0.0856 0.59 0.1537 0.0856

160/40/200/200 0.75 0.1064 0.0684 0.74 0.1067 0.0676

320/80/400/400 0.87 0.0731 0.0503 0.86 0.0820 0.0525

640/160/800/800 0.94 0.0586 0.0428 0.93 0.0649 0.0433

1280/320/1600/1600 0.99 0.0423 0.0376 0.98 0.0474 0.0301

80/20/100/100 mean that Shannon entropy allocation strategy selected the first 80 examinees for obtaining the first calibration of attribute vector, the last 20 examinees were used for

the estimaion of item parameters, and then all examinees’ item responses were used to estimated iterately item parameters and attribute vector.

outperforms the random design in terms of the precision of item
parameters when the sample size is small. Finally, if the Q-matrix
and item parameters are unknown for the new items, the hybrid
of two optimal designs could efficiently simultaneously estimate
item parameters and calibrate the Q-matrix of the new items.
In summary, the adaptive designs for new items is promising in
terms of the accuracy of attribute vectors and the precision of
item parameters. The conditions for using these designs in CD-
CAT are as follows: (a) in the first design, the attribute vector
of the new items can be calibrated based on the item responses,
so as to meet the needs of the NPC method; (b) the second
design requires the determined Q-matrix to estimate the item
parameters; (c) the third design is suitable for situations where
the Q-matrix and item parameters of the new items are unknown.
The new design adaptively assigns new items to examinees
according to both the current calibration of the new items and
the current status of the examinees. It contributes to the ’adaptive’
aspect of CD-CAT. Not only can it accurately estimate the item
parameters of the new items and calibrate its Q-matrix when the
sample size is small.

There are still some limitations in the study. The independent
attribute structure was considered in this study. While Leighton
and Hunka (2004) think that the attributes were organized as
hierarchical structures, including linear, convergent, divergent,
and unstructured. The adaptive designs are worthy of further
study under hierarchical structures. At the same time, the
study was carried out under the DINA model, a simple non-
compensatory cognitive diagnosis model. So far, there are many
parametric models, such as the noise input, deterministic “and”
gate (NIDA) model (Maris, 1999; Junker and Sijtsma, 2001), the
deterministic inputs, noisy, “or” gate (DINO) model (Templin
and Henson, 2006), the general diagnostic model (GDM; von
Davier, 2005, 2008), the log-linear cognitive diagnosis model
(LCDM; Henson et al., 2009), the generalized DINA model
(G-DINA; de la Torre, 2011), and the CDINA model (Luo
et al., 2020). For the non-parametric method, the NPC method
has been extended to the general non-parametric classification

(GNPC; Chiu et al., 2018). Whether the adaptive designs can be
extended to these models is worth studying. Furthermore, the
dichotomous item response is only often used in multiple-choice
or fill-in-the-blank items. For polytomous scoring items (Gao
et al., 2020), the adaptive designs remain to be further studied.

Finally, the termination rule adopted in this study was fixed
for balancing the number of examinees assigned to all new items.
The variable length rule needs to be studied. For example, when
the posterior distribution of the attribute vector of the new item
reaches the preset value, the attribute vector will no longer be
calibrated. Termination rules for attribute mastery patterns in
CD-CAT (Guo and Zheng, 2019) may give you ideas for the
variable-length optimal design for online calibration.
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Cognitive diagnostic test design (CDTD) has a direct impact on the pattern match ratio

(PMR) of the classification of examinees. It is more helpful to know the quality of a test

during the stage of the test design than after the examination is taken. The theoretical

construct validity (TCV) is an index of the test quality that can be calculated without

testing, and the relationship between the PMR and the TCV will be revealed. The TCV

captures the three aspects of the appeal of the test design as follows: (1) the TCV

is a measure of test construct validity, and this index will navigate the processes of

item construction and test design toward achieving the goal of measuring the intended

objectives, (2) it is the upper bound of the PMR of the knowledge states of examinees, so

it can predict the PMR, and (3) it can detect the defects of test design, revise the test in

time, improve the efficiency of test design, and save the cost of test design. Furthermore,

the TCV is related to the distribution of knowledge states and item categories and has

nothing to do with the number of items.

Keywords: cognitive diagnostic test design, pattern match ratio, theoretical construct validity, prediction method,

upper bound

INTRODUCTION

Cognitive diagnosis (CD) has received much attention, providing diagnostic information of
knowledge or skills (often called “attributes” in the CD literature) to the examinees (de la Torre and
Douglas, 2004; de la Torre, 2008; DeCarlo, 2011; Liu et al., 2012; Kang et al., 2017; Huebner et al.,
2018). It is critical to ensure that high-quality cognitive diagnostic tests can accurately diagnose the
knowledge state (KS, i.e., the latent cognitive states) of examinees. The set of KSs is represented by
the QS matrix. In fact, cognitive diagnostic test design (CDTD) is the design of a Q matrix, called
Qt, i.e., rows representing attributes and columns representing attribute vectors, namely, items. By
anchoring the items with attribute vectors, proposition experts andmeasurement experts transform
items into measurable forms and then diagnose examinees. In a word, the design of the Qt matrix
is the problem of how to match the attribute vectors to achieve a certain predetermined goal.

The CDTDs can be divided into the following aspects based on different dimensions: the
dichotomous CDTD (Chiu et al., 2009; Ding et al., 2010) and the polytomous CDTD (Ding et al.,
2014a,b,c) according to the scoring methods; Boolean matrix CDTD (Samejima, 1995; Tatsuoka,
1995, 2009; Ding et al., 2011; Cai et al., 2018) and polytomous Qmatrix CDTD (Ding et al., 2015; Tu
and Cai, 2015) according to the values of elements in the Qt matrix; model-dependent CDTD (Chiu
et al., 2009; Kuo et al., 2016) and model-free CDTD (Shao, 2010) according to whether depending
on the cognitive diagnostic models (CDM) or not; cognitive diagnostic computerized adaptive
testing (CD-CAT) design (Cheng, 2010; Sun et al., 2019) and cognitive diagnostic testing (CDT)
design (Henson and Douglas, 2005; Henson et al., 2008; Ding et al., 2011) according to whether
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personalized diagnostic; independent structure CDTD
(Cheng, 2009, 2010; Liu et al., 2016) and dependent structure
CDTD (Ding et al., 2011; Kuo et al., 2016) according to
cognitive structure, and so on. In fact, almost all CDTDs
are multidimensional.

Until present, the studies on the CDTD methods are still
relatively weak, and they focus on the following two aspects:

(1) CDTD based on the perfect Q matrix

The so-called “perfect Q matrix” refers to the Qt matrix that
makes the ideal response pattern (IRP) and KS correspond one
to one. If the Q matrix in tests is a perfect Q matrix, the pattern
match ratio (PMR) improves no matter whether the CDTD is
either dichotomous or polytomous.

(i) Examples of dichotomous CDTD: For the four attribute
hierarchies of Leighton (Leighton et al., 2004), if the Qt matrix

is a Boolean matrix, and there is no compensation between the
attributes, then the reachablematrix (or it is equivalent classes)
acts as the submatrix of Qt which can achieve a one-to-one

correspondence between the set of IRPs and the set of KSs. The
more reachable matrices in the Qt matrix, the higher the PMR
(Ding et al., 2010, 2011). Ding et al. (2010) called such a Qt

matrix a sufficient and necessarymatrix, i.e., a perfect Qmatrix

(Cai et al., 2018). The results are similar to those of Chiu et al.
(2009), DeCarlo (2011), and Madison and Bradshaw (2015)
on independent structures. With the independent structure

and four attributes, Samejima (1995) believed that when the
Qt matrix was the identity matrix (i.e., the identity matrix of
independent structure is a reachable matrix), all of the KSs

would not be misjudged. Chiu et al. (2009) also found that the
Deterministic Input Noisy “AND”Gate (DINA)model and the
Deterministic Input Noisy Output “OR” gate (DINO) model
could diagnose all potential attribute mastery patterns when

the Qt matrix included the identity matrix. Similar results have
been addressed in other studies (DeCarlo, 2011; Madison and
Bradshaw, 2015).

(ii) Examples of polytomous CDTD: To achieve the one-to-one
correspondence between the set of KSs and the set of IRPs,
the rooted tree structure, the independent structure, and the

perfect Q matrices of the rhombus structure are introduced

under the item score rule that one ideal score is added if
mastering one attribute adhering to the item (Ding et al.,
2014a). In the initial stage of CD-CAT, each attribute can be
diagnosed by using the reachable matrix (Tu et al., 2013). In
CD-CAT, the higher the percentage of the examinees is, whose
testing items are (or contain) the reachable matrix according
to the selection strategy, the higher the PRM is.

(2) CDTD based on the index

The Cognitive Diagnostic Index (CDI) (Henson and Douglas,
2005) and the Attribute-level Discrimination Index (ADI)
(Henson et al., 2008) are based on the level of items and
attributes for CD. Kuo et al. (2016) indicated that each attribute
in the test must be measured at least three times to attain
better correct attribute classification, so they proposed modified
CDIs and ADIs, namely, MCDI and MADI. The Shannon’s

entropy (Xu et al., 2003) and posterior-weighted Kullback–
Leibler (PWKL) (Cheng, 2009) were introduced in CD-CAT.
Cheng (2010) believed that adequate coverage of each attribute
could improve the validity of the test scores, and then the
attribute-balancing index was proposed. Subsequently, the index
was further improved (Yu et al., 2011; Liu et al., 2018; Sun
et al., 2019). Adaptive multigroup testing method for cognitive
diagnosis (CD-AMGT) (Luo et al., 2018), which selects a group of
appropriate items in different diagnosis stages, has the advantages
of uniform use of item bank and less time to calculate.

The PMR is themain evaluation index for cognitive diagnostic
tests. In CDTD, the pretest evaluation of the PMR is more
positive than the posttest evaluation because the designed test
can be modified quickly, the designer can make up for possible
errors before testing, and material resources and time will be
saved. At present, the PMR is the posttest estimation based on
the data measured or simulated, so it is impossible to calculate
PMR immediately during the design process. Furthermore, it is
meaningful to discuss the maximum PMR for the pretest, and
the maximum PMR is related to the matching degree between
the designed test and the cognitive model, as well as the quality
and length of the test.

The rest of the study is organized as follows: First, the TCV
used in this study is briefly described. Second, the theoretical
proof of the relationships between the TCV and the PMR is
introduced in detail. The TCV is then evaluated in a simulation
study. The end of the study is the discussion and conclusion.

METHODS

Cognitive Diagnosis
The cognitive model is a prerequisite for CD. It is represented by
an attribute hierarchy, which specifies the psychological ordering
of the attributes required to solve test items. Attributes are those
basic cognitive processes or skills required to solve test items
correctly. There are five forms of basic hierarchical structures
(Leighton et al., 2004; Cheng, 2010), namely, A, B, C, D and E
(Figure 1).

Attribute 1 is considered a prerequisite to other attributes,
and attribute 5 depends on some attributes in models except
the independent model. The adjacency (A), reachability (R),
incidence (Q), and reduced incidence (Qr) matrices are specified
by Tatsuoka (1995). The columns of the Qr matrix indicate that
all possible items must be created to reflect the relationships
among the attributes in the hierarchy. The possible latent
cognitive states (i.e., KS), which is all the columns of the
incidence matrix, possess cognitive attributes that are consistent
with the hierarchy (when the hierarchy is based on cognitive
considerations), and they apply these attributes systematically
(when the hierarchy is based on procedural considerations)

(Gierl et al., 2007). Let qj =
(
qj1, qj2, · · · , qjK

)T (
j = 1, · · · ,m

)

denote the jth dichotomous column vector (i.e., the jth category
item) of theQr matrix. All KSs are represented by column vectors:
αi = (αi1,αi2, · · · ,αiK)T , where αik = 1(k = 1, · · · ,K)
indicates that the ith category examinee has mastered attribute
k, and αik = 0 otherwise. K is the total number of attributes

Frontiers in Psychology | www.frontiersin.org 2 September 2021 | Volume 12 | Article 704724213

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Tang et al. Predicting Pattern Match Ratio

FIGURE 1 | Five different hierarchical structures.

measured by the test. Let the Qs matrix denote all KSs, in fact,
including zero vector (denoted as 0̄, i.e., this kind of examinee
does not master any attribute) and the Qr matrix for cognitive
attribute consistency. Thus, αi and qj are all K-dimensional
vectors. The Qt matrix consists of some column vectors of the Qr

matrix. Based on the cognitive model (including attributes and
hierarchy among them), the Qr and Qs matrix can be obtained,
that is, all possible items and KSs can be obtained. On the
contrary, if the Qt matrix is known, some KSs can be obtained
through the augment algorithm (Ding et al., 2008; Yang et al.,
2008), and the cognitive model can be derived by comparing
the rows (Tatsuoka, 1995). In general, it is impossible for some
items (i.e., the Qt matrix) to replace all the items (i.e., the Qr

matrix), which express the cognitive structure, so some cognitive
structures extracted from the Qt matrix may be inconsistent with
the theoretical one.

The DINA Model
Cognitive diagnostic models have been proposed for many
years, including the rule space model (Tatsuoka, 1983),
the “Noisy Input Deterministic ‘AND’ Gate” (NIDA) model
(Maris, 1999), the fusion model (Hartz, 2002), the reduced

reparameterized unified model (R-RUM; Hartz, 2002), and the
DINA model (Haertel, 1989). The DINA model is completely
noncompensatory. The DINAmodel treats slipping and guessing
at the item level. Parameter sj indicates the probability
of “slipping,” and parameter gj denotes the probability of
“guessing.” The item response function, therefore, can be written
as follows:

P
(
Xij = 1|αi

)
=

(
1− sj

)nij g
j

1−nij
(1)

nij =

K∏

k = 1

α
qjk
ik

(2)

When nij = 1, the ith examinee should be able to answer item
j correctly, unless he/she “slips.” Similarly, when nij = 0, the
ith examinee should not be able to answer item j correctly, unless
he/she is a lucky guesser (Cheng, 2010).

Theoretical Construct Validity
Theoretical construct validity (TCV) is used to measure the
degree of consistency between the theoretical cognitive model
and the cognitive model implied in the Qt matrix (Ding et al.,
2012).
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Definition 1 Let
{
α1,α2, · · · ,αN1

}
denote N1 KS

of the theoretical cognitive model given by experts,{
β1,β2, · · · ,βN2

}
denote N2 KS derived from the Qt matrix,

and
{
γ1, γ2, · · · , γN3

}
=

{
β1,β2, · · · ,βN2

}
∩

{
α1,α2, · · · ,αN1

}

denote N3 KS. when γk = αi , the TCV for the Qt matrix can be
written as follows:

TCV =
∑

i

pi (3)

where pi represents the probability of the ith category examinees,
that is, the ratio of such examinees whose KS is αi in the
total population.

In particular, when all KS ratios in the total population are
equal, then

TCV =

{
N3+1
N1

; 0̄ /∈
{
β1,β2, · · · ,βN2

}
N3
N1

; Otherwise
(4)

In fact, the TCV is a measure of the degree to which the Qt matrix
represents the theoretical cognitive model (Ding et al., 2012). The
observed response pattern (ORP) and the CDM are necessary for
the set of the estimation of KSs of the examinees. The set of IRPs
is determined by the set of KSs, the test Q matrix, the element
value of the Qt matrix (the dichotomous or the polytomous),
the calculation method of the ideal score, the compensation
between attributes, and so on. The ORP is related not only to the
above mentioned factors but also to the item quality and random
factors. Thus, if there is no random factor, the better the item
quality, the closer the ORP is to the IRP. Due to the slipping and
the guessing in the answering process of examinees, the PMR
of the set of KSs estimated by the ORP is not higher than that
estimated by the IRP, that is, PMRORP ≤ PMRIRP. The PMRIRP
acts as the maximum PMRORP, and the smaller the slipping and
the guessing, the more accurate the KSs based on the ORP. How
to get the PMRIRP quickly is an interesting problem.

To clearly solve the interesting problem, a theoretical
explanation that makes sense of the complexity is firmly couched
within the examples.

Definition 2 Define the relationship between two attribute
vectors αi and qj as αi ≥ qj if and only if αik ≥ qjk , for k
= 1, 2, . . . ,K. Strict inequality between the attribute vectors is
involved (i.e., αi > qj ) if αik > qjk for at least one k (de la
Torre, 2011). αi ≤ qj and αi < qj can be defined similarly
as mentioned earlier. If the relationship does not exist, then αi

has nothing to do with qj . The definition of comparison between
column vectors also applies to row vectors.

Examples
The theoretical cognitive model is an independent structure of
three attributes, according to the methods suggested by Tatsuoka
for calculating the adjacency (A), reachability (R), incidence (Q),
and reduced incidence (Qr) matrices; then, adding zero vector to
the Qr matrix, there are 23 = 8 possible KSs, that is, N1 is 8. The

Qs matrix is represented by a 3× 8 matrix as follows:

Qs = (α1,α2, · · · ,α8) =



0 1 0 0 1 1 0 1

0 0 1 0 1 0 1 1

0 0 0 1 0 1 1 1


 (5)

where αi (i = 1, · · · , 8) is the ith category examinees.
Test items, represented by a 3 × 3 matrix, can be written

as follows:

Qt =
(
q1, q2, q3

)
=



1 0 1
0 1 0
0 0 1


 (6)

where qj is the jth item when items are not duplicated, otherwise
it represents the jth category item.

Calculation of TCV

A new matrix, called the Q+
t matrix, is made of the

Qt matrix and the two new columns. The two new columns based
on the augment algorithm (Ding et al., 2008; Yang et al., 2008)

are generated from the Qt matrix,



1 0 1
0 1 0
0 0 1




∣∣∣∣∣∣

1
1
0

∣∣∣∣∣∣

1
1
1

while the

non-zero vectors (0, 1, 1)T and (0, 0, 1)T in the Qs matrix cannot
be generated as follows:

Q+
t =



1 0 1 1 1

0 1 0 1 1

0 0 1 0 1


 (7)

Five KSs in the Q+
t matrix are derived from the Qt matrix,

that is, N2 is 5. There are five same possible latent cognitive
states between the theoretical cognitive model and the cognitive
model implied in the test design, that is, {γ1, γ2, γ3, γ4, γ5} =

{α2,α3,α5,α6,α8}, N3 is 5 (N1,N2, and N3 are the same as
Definition 1), when adding zero vector (0̄ = (0, 0, 0)T).

(1) When the probability distribution of the set of KSs in
the total population is discrete uniform, then TCV =

(5+ 1) /8 = 3/4.
(2) Otherwise, suppose the ratios of all αi are 0.1, 0.1, 0, 1, 0.2,

0.1, 0.2, 0.1, 0.1, respectively, TCV = 0.1+ 0.1+ 0.1+ 0.2+
0.1 = 0.6.

Calculation of PMRIRP

Ideal response (IR) depends on the relationship between αi and
qj . Let IR

(
αi , qj

)
= αi

oq j =
∏K

k = 1 (αik)
q jk = 1 denote

that the ith examinee responses correctly on the jth item, and
IR

(
αi , qj

)
= 0 otherwise. Clearly, IR

(
α1, q 1

)
= IR

(
α1, q 2

)
=

IR
(
α1, q 3

)
= 0 due to 0 ≤ α 1 < q 1 < q 3 and 0 ≤ α 1 < q 2;

IR
(
α2, q 1

)
= 1, IR

(
α2, q 2

)
= IR

(
α2, q 3

)
= 0 due to

q 1 ≤ α 2 < q 3; and α2 having nothing to do with q 2. Similarly,
the set of IRPs of the Qs matrix with respect to the Qt matrix is
represented by a 3× 8 matrix as follows:

IRP =



0 1 0 0 1 1 0 1

0 0 1 0 1 0 1 1

0 0 0 0 0 1 0 1


 (8)
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TABLE 1 | The relationships between the theoretical construct validity (TCV) and the PMRIRP of other structures.

Theoretical cognitive model Qs Qt Q+
t TCV IRP PMRIRP




0 1 1 1 1

0

0

0

0

1 1 1

0 1 1

0 0 0 0 1







1 1 1

0

0

1

0

1

1

0 0 1







1 1 1

0

0

1

0

1

1

0 0 1




4/5




0 1 1 1 1

0 0 1 1 1

0 0 0 0 1


 4/5




0 1 1 1 1 1

0

0

0

0

1 0 1 1

0 1 1 1

0 0 0 0 0 1







1 1 1

0

0

1

0

1

1

0 0 1







1 1 1

0

0

1

0

1

1

0 0 1




2/3




0 1 1 1 1 1

0 0 1 0 1 1

0 0 0 0 0 1


 2/3




0 1 1 1 1 1 1

0

0

0

0

1 0 1 0 1

0 1 1 1 1

0 0 0 0 0 1 1







1 1 1

1

0

0

1

0

1

0 0 1







1 1 1

1

0

0

1

0

1

0 0 1




∣∣∣∣∣∣∣∣∣∣∣

1 1

1 1

1

0

1

1

6/7




0 0 1 0 1 0 1

0 0 0 1 1 1 1

0 0 0 0 0 1 1


 6/7




0 1 1 1 1 1 1 1 1

0

0

0

0

1 0 0 1 1 0 1

0 1 0 1 0 1 1

0 0 0 0 1 0 1 1 1







1 1 1

1

0

0

1

0

1

0 0 1







1 1 1

1

0

0

1

0

1

0 0 1




∣∣∣∣∣∣∣∣∣∣∣

1 1

1 1

1

0

1

1

2/3




0 0 1 0 0 1 1 0 1

0 0 0 1 0 1 0 1 1

0 0 0 0 0 0 0 1 1


 2/3

In Equation 8, the row represents the item, and the column
represents α

′

is IRP. There are six different IRPs, that is, six KS
can be correctly estimated without taking the slipping and the
guessing into account. In essence, the estimated five KSs based
on five IRPs are the same as vectors in the Q+

t matrix (five
different categories), and adding estimated zero vector (because
the IRP is zero vector), there are six categories. α4 = (0, 0, 1)T

and α7 = (0, 1, 1)Tare the same categories to zero vector (α1 =

0̄) and α3 = (0, 1, 0)T , respectively; thus, no new categories
are generated.

The whole process of dividing the Qs matrix can be vividly
described as follows: the Qs matrix is similar to a line, and five
vectors in the Q+

t matrix are similar to five dots that classify the
line into six categories in which only one KS can be estimated
correctly; therefore, PMRIRP = 6

8 = 3
4 .

From calculations 1 and 2, it can be known that
TCV= PMRIRP.

Examples of other structures are shown in Table 1.
Although structures are different, convergent, or divergent,

the result of the relationship between the TCV and the
PMRIRP is the same: the number of vectors of the Q+

t matrix
in the convergent structure was 3, and then the Qs matrix
could be classified into four categories; the number of vectors
of the Q+

t matrix in the divergent structure was 5 due
to two new columns derived from the Qt matrix, and
then the Qs matrix could be classified into six categories.
For the linear structure and the unstructured, the results
are similar.

Notably, all items of the Qt matrix are different because
the repetition of items does not increase the “coverage” of
the cognitive model by the Qt matrix. Repeated items only

reduce random errors; thus, in the following discussion, it is not
necessary to consider the repeated items in the Qt matrix.

Theoretical Derivation of TCV = PMRIRP
Let R denote reachable matrix, the Qr matrix is a set of all possible
items that can be written as follows:

Qr =



q

′

j

∣∣∣∣∣∣
q
′

j =
⋃

q ∈qR

q , qR ⊆ R



 (9)

In fact, Qt ⊆ Qr , Qs =
{
0,Qr

}
.

For every αi (i = 1, · · · , n) (except for zero vector) in the Qs

matrix, there should be a q
′

j(∈ Qr ) corresponding to it, that is, α

i = q
′

j.

Based on the augment algorithm, the Q+
t matrix can be defined

as follows:

Q+
t =



q j

∣∣∣∣∣∣
q j =

∨

p∈Q

p ,Q ⊆ Qt , j = 1, . . . ,m



 (10)

where V represents the Boolean union operation, p ∈ Q means
that p is the item (column) of theQmatrix, andQ ⊆ Qt indicates
that the Q matrix is a subset of the Qt matrix and contains one
or more items. New columns of the Q+

t matrix can be obtained
by the Boolean union of two or more items in the Qt matrix.
There are m columns in the Q+

t matrix, adding zero vector, m+1
categories of the KSs are derived from the Qt matrix in total.
n is the number of the set of KSs derived from the theoretical
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cognitive model, that is, n columns in the Qs matrix, so the TCV
can be calculated as follows:

TCV = (m+ 1)/n. (11)

The maximum lower bound of αi can be found in the Q+
t matrix

by comparing αi with q j in the Q+
t matrix, and it can be defined

as follows:

q j′ = max
{
q j

∣∣q j ≤ αi, q j ∈ Q+
t ,αi ∈ Qs,

i = 1, 2, . . . , n; j = 1, 2, . . . ,m
}

(12)

In fact, j′is the subscript of the maximum item, that is, j′ =

argmax
{
q j

}
, j′ ∈ {1, 2, · · · ,m }.

Let
{
q j′

}
denote a set of αi with the same maximum lower

bound qj′ :

{
q j′

}
=

{
αi

∣∣q j ≤ αi, q j′ = max
{
q j

}}
(13)

If q j′ does not exist, then let
{
0
}
denote αi set as follows:

{
0
}
=

{
αi

∣∣q j > αi or αi has nothing to do with q j

}
(14)

All the α
′

is with the same IRP will be classified into one category
by comparing αi with all p items in the Qt matrix: based on the
definition of q j′ , if q j′ exists, it means that q j =

∨
p∈Q p ≤

q j′ ≤ αi, so the IRs between αi and p (p ≤ αi) are 1, that is,
IR(αi, p) = αi

op = 1, the IRs between αi and the rest of p in
the Qt matrix are 0, that is, IR(αi, p) = αip = 0. Therefore,

all the α
′

is in
{
q j′

}
have the same IR, and these α′

is belong to one
category. If q j′ does not exist, for all p items in the Qt matrix,
αi<p or αi has nothing to do with p, the IRs between αi and p is
0, IR is the same with zero vector

(
0
)
, and thus, these α′

is are the
same category as zero vector.

Proposition 1: All αis in the Qs matrix are classified into{
q j′

}
(q j′∈Q

+
t ) or

{
0
}
(i = 1, . . . ,n; j′ = 1, . . . ,m;m≤n).

First, there must be existed a αi for every q j′ in the Q
+
t matrix,

so that αi is equal to q j′ , so q j′ is the maximum lower bound of

αi, αi is an element of a set
{
q j′

}
. m α′

is are divided into m sets{
q j′

}
.

Second, for the remaining n-m α′
is,

(1) For every p in the Qt matrix, if αi < p or
αi has nothing to do with p, then q j′ does not exist, so αi

belongs to set
{
0̄
}
;

(2) If p ≤ αi , there must be existed q j′ acted as the maximum

lower bound of αi , so αi belongs to set
{
q j′

}
.

Combining (1) and (2), Proposition 1 is proved.
Proposition 2: If the number of q j in the Q+

t matrix ism, all

α
′

is in the Qs matrix are classified intom+1 categories.

FromProposition 1, the conclusion is clearly true, that is,m+1
categories of the set of KSs can be estimated correctly. Thus,
PMRIRP = m+1

n . The result of TCV = PMRIRP shows that
the TCV is equal to the PMR estimated by the set of IRPs. For
PMRORP ≤ PMRIRP = TCV , the TCV is the upper bound of

the PMR estimated by the ORP. When k is smaller, such as k ≤ 5,
the TCV can be calculated by pen, otherwise, it is easily derived
by using a computer.

SIMULATION STUDY

A simulation study was carried out to evaluate the relationships
between the TCV and the PMR.

Five attribute hierarchical structures were studied, namely,
independent, linear, convergent, divergent, and unstructured.
The number of attributes was set at 4, that is, K = 4. The
study needed to consider the influence of the distribution of
examinees, item attribute vector, and their proportions on the
TCV. Two kinds of distribution of the KSs of examinees were
discussed as follows: the average distribution (30 persons for
every KS) and the normal distribution. In particular, the standard
multivariate normal distributions in the independent structure
were investigated. The total number of examinees was the same.
In contrast, there were six Qt matrices for each structure, items
would be selected from the Qr matrix, and its proportions were
different. The test length was 20. The descriptive statistics of the
examinees and the Qt matrices are reported in Table 2.

To compare the effects of different slips on the TCV and the
PMR, the slips were 0.15 and 0.02, respectively. The set of IRPs
was obtained by the items of the Qt matrix and the set of KSs of
the Qs matrix. Let x denoted the IR score of an examinee on an
item, r randomly generated from Uniform (0, 1), if r> 1− s, x (x
was dichotomous) would be changed to 1–x, and x otherwise.

The DINA model and the maximum-likelihood estimation
method were used to estimate the KS. Considering the differences
in the distribution of examinees, the Qt matrix, and the slips,
there were 116 levels in total, and each level was tested 30 times.
The final PRM was an average of 30 PMRs.

The PMR index can be defined as follows:

PMR =

∑N
i = 1 αi−correct

N
(15)

where N is the number of examinees. αi−correct =

1 represents that the ith examinee is estimated correctly.

RESULTS

Table 3 compares the TCV and the PMR obtained from the
linear structure. The first column shows the different distribution
of examinees, and the other columns show the results of the
different Qt matrices.

Clearly, the TCV was superior: the TCV was uniformly higher
than the PMR regardless of the distribution of examinees and the
Qt matrices. Although the repetition of items in the Qt matrices,
the TCV was not changed when the distribution of examinees
and the category of items in the Qt matrices remain unchanged.
Therefore, this helped in explaining why repeated items were not
necessary to count. As is known to all, the smaller the slip is,
the higher the PMR is. But the TCV had nothing to do with
the slip, so the smaller the slip, the smaller the gap between the
TCV and the PMR. For all the attribute structures, when the
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TABLE 2 | The distributions of examinees and the proportions of items for five different hierarchical structures.

Attribute

structure

Distribution of

examinees

The ratio of examinees The Qt matrix The ratio of items

Linear The average

distribution

Each KS has the same ratio An item category: (1100)

Two item categories:

(1000) (1110)

①1:1 ②1:3

The normal

distribution

(0000):(1111):(1000):(1110):

(1100) = 1:1:2:2:4

Four item categories:

(1000, 1100, 1110, 1111)

①1:1:1:1②2:8:8:2

Convergent The average

distribution

Each KS has the same ratio Two item category:

(1100) (1010)

①1:1 ②1:3

The normal

distribution

(0000):(1111): (1000):(1110):

(1100):(1010) = 1:1:2:2:7:7

Four item categories:

(1000) (1100) (1010) (1110)

①1:1:1:1 ②2:8:8:2

Five item categories:

(1000) (1100) (1010)

(1110) (1111)

①1:1:1:1:1②2:4:8:4:2

Divergent The average

distribution

Each KS has the same ratio Two item category:

(1100) (1011)

①1:1 ②1:3

The normal

distribution

(0000):(1111): (1000):(1110):

(1100):(1011): (1010) =

10:10:21:21:42:42:64

Four item categories:

(1000) (1100) (1010) (1111)

①1:1:1:1 ②2:8:8:2

Six item categories: (1000)

(1100) (1010) (1011)

(1110) (1111)

①2:4:4:4:4:2②2:3:5:5:3:2

Unstructured The average

distribution

Each KS has the same ratio Four item categories:

(1000) (1010) (1101) (1011)

The normal

distribution

(0000):(1111): (1000):(1011):

(1100):(1101): (1010):(1110):

(1001) =

16:16:22:22:27:27:43:43:54

Six item categories:

(1000) (1100) (1001) (1101)

(1011) (1111)

①1:1:1:1 ②2:8:8:2

①2:4:4:4:4:2②2:3:5:5:3:2

Eight item categories:

(1000) (1100) (1010) (1001)

(1110) (1101) (1011) (1111)

①2:2:2:4:4:2:2:2②1::1:3:5:5:3:1:1

Independent The average

distribution

Each KS has the same ratio Eight item categories:

(1000) (0010) (1100) (1001)

(1110) (1101) (1011) (1111)

①2:2:2:4:4:2:2:2

②1::1:3:5:5:3:1:1

The normal

distribution

(0000):(1111):(1000):(0111):

(0100):(1011):(0010):(1101):

(0001):(1110):(1100):(0011):

(1010):(0101): (1001):(0110)

= 5:5:14:14:24:24:34:34:34:34

:38:38:43:43:48:48

Twelve item categories:

(1000) (0100) (0010) (0001)

(1100) (1010) (1001) (0101)

(0110) (0011) (1110) (1111)

①1:1:2:2:2:2:2:2:2:2:1:1

②1:1:1:1:3:3:3:3:1:1:1:1

The standard

multivariate normal

distribution

(0000):(1111):(1000):(0111):

(0100):(1011):(0010):(1101):

(0001):(1110):(1100):(0011):

(1010):(0101): (1001):(0110)

= 64:50:77:3:19:3:8:17:0:103:

90:0:28:3:13:2

Fifteen item categories:

(1000) (0100) (0010) (0001)

(1100) (1010) (1001) (0110)

(0101) (0011) (1110) (1101)

(1011) (0111) (1111)

①1:1:1:1:1:1:2:4:2:1:1:1:1:1:1

②1:1:1:2:2:2:2:2:2:2:2:2:1:1:1

The third column is the ratio of the knowledge state (KS); ① and ② are two different ratios of items in the Qt matrix; thus, there should be two different Qt matrices.

TCV was low, the PMR was also low and vice versa. Notably,
the more the item categories were, the larger the TCV would
be. In particular, if the Qt matrix contained the reachable matrix
that could augment all possible item categories, then TCV = 1,
regardless of the distribution of examinees. In other words, when
the reachable matrix was a submatrix of the Qt matrix, the PMR
would be higher than that of the Qt matrix that did not include
the reachable matrix if the other conditions were the same.

From Tables 4–7, the data of other structures show the same
results as linear. In addition, the lesser the structure, the greater
the difference between the TCV and the PMR.

DISCUSSION AND CONCLUSION

Guided by a cognitive model, the CD can detect how well
the examinees have mastered certain knowledge or skills. All
CDTDs aim at diagnosing examinees as much as possible,
and the main evaluation index is the PMR. The higher the
accuracy rate of the KSs, the higher the test construct validity.
It is more meaningful to be able to calculate the PMR
during CDTD. Tatsuoka (2009, p. 78–79) believed that the
sufficient Q matrix can improve the test construct validity.
However, how to measure the construct validity? Inspired by the
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TABLE 3 | The comparison between the TCV and the PMRORP of the linear structure.

Distribution of examinees 1 category 2 categories 4 categories

① ① ② ① ②

The average distribution TCV = 0.4

PMR = 0.4

(PMR = 0.4)

TCV = 0.6

PMR = 0.5956

(PMR = 0.6)

TCV = 0.6

PMR = 0.5780

(PMR = 0.6)

TCV = 1

PMR = 0.9413

(PMR = 1)

TCV = 1

PMR = 0.7867

(PMR = 0.9827)

The normal distribution TCV = 0.5

PMR = 0.5

(PMR = 0.5)

TCV = 0.5

PMR = 0.4971

(PMR = 0.5)

TCV = 0.5

PMR = 0.4851

(PMR = 0.5)

TCV = 1

PMR = 0.9164

(PMR = 0.9998)

TCV = 1

PMR = 0.8353

(PMR = 0.9849)

Values in brackets were the average of PMR when the slip was 0.02, and the following tables were similar.

TABLE 4 | The comparison between the TCV and the PMRORP of the convergent structure.

Distribution of examinees 2 categories 4 categories 5 categories

① ② ① ② ① ②

The average distribution TCV = 0.6667

PMR = 0.6583

(PMR = 0.6667)

TCV = 0.6667

PMR = 0.6398

(PMR = 0.6667)

TCV = 0.8333

PMR = 0.7726

(PMR = 0.8332)

TCV = 0.8333

PMR = 0.7370

(PMR = 0.8226)

TCV = 1

PMR = 0.8056

(PMR = 0.9935)

TCV = 1

PMR = 0.7600

(PMR = 0.9765)

The normal distribution TCV = 0.85

PMR = 0.8374

(PMR = 0.85)

TCV = 0.85

PMR = 0.8135

(PMR = 0.8498)

TCV = 0.95

PMR = 0.8748

(PMR = 0.95)

TCV = 0.95

PMR = 0.8954

(PMR = 0.9444)

TCV = 1

PMR = 0.8057

(PMR = 0.9987)

TCV = 1

PMR = 0.8167

(PMR = 0.9898)

TABLE 5 | The comparison between the TCV and the PMRORP of the divergent structure.

Distribution of examinees 2 categories 4 categories 6 categories

① ② ① ② ① ②

The average distribution TCV = 0.5714

PMR = 0.5610

(PMR = 0.5714)

TCV = 0.5714

PMR = 0.5316

(PMR = 0.5714)

TCV = 0.8571

PMR = 0.7773

(PMR = 0.8570)

TCV = 0.8571

PMR = 0.7095

(PMR = 0.8329)

TCV = 1

PMR = 0.8083

(PMR = 0.9740)

TCV = 1

PMR = 0.8390

(PMR = 0.9848)

The normal distribution TCV = 0.4952

PMR = 0.4883

(PMR = 0.4952)

TCV = 0.4952

PMR = 0.4835

(PMR = 0.4952)

TCV = 0.8

PMR = 0.6737

(PMR = 0.7997)

TCV = 0.8

PMR = 0.6694

(PMR = 0.7930)

TCV = 1

PMR = 0.7681

(PMR = 0.9937)

TCV = 1

PMR = 0.8300

(PMR = 0.9962)

TABLE 6 | The comparison between the TCV and the PMRORP of the unstructured structure.

Distribution of examinees 4 categories 6 categories 8 categories

① ② ① ② ① ②

The average distribution TCV = 0.6667

PMR = 0.6042

(PMR = 0.6665)

TCV = 0.6667

PMR = 0.5463

(PMR = 0.6548)

TCV = 0.7778

PMR = 0.6446

(PMR = 0.7727)

TCV = 0.7778

PMR = 0.6384

(PMR = 0.7683)

TCV = 1

PMR = 0.7078

(PMR = 0.9774)

TCV = 1

PMR = 0.7363

(PMR = 0.9641)

The normal distribution TCV = 0.5407

PMR = 0.4846

(PMR = 0.5407)

TCV = 0.5407

PMR = 0.4491

(PMR = 0.5362)

TCV = 0.6815

PMR = 0.5945

(PMR = 0.6780)

TCV = 0.6815

PMR = 0.5483

(PMR = 0.6785)

TCV = 1

PMR = 0.5662

(PMR = 0.9848)

TCV = 1

PMR = 0.7418

(PMR = 0.9815)

evaluation of the sufficient Q matrix by Tatsuoka (1995, 2009),
an evaluation index for cognitive diagnostic test (design) was
developed, i.e., TCV, which made up for the defects of Tatsuoka’s
idea (Tatsuoka, 1995, 2009).

This study proposes a simplified method for predicting the
PMR, namely, the TCV method for CD. The TCV intuitive
meaning is as follows: the set of KSs is derived from the Qt matrix
through the augment algorithm (i.e., this design can inspire some

latent cognitive states), and if the probability distribution of the
examinees in the population is known, then TCV =

∑
j pj .

In particular, when the probability distribution of the set of KSs
in the total population is discrete uniform, the TCV is equal to
the sum, which is the number of categories of the set of KSs
derived from the Qt matrix plus 1, divided by the number of
categories of the set of KSs in the population. In general, the
TCV measures the degree of consistency between the cognitive
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TABLE 7 | The comparison between the TCV and the PMRORP of the independent structure.

Distribution of examinees 8 categories 12 categories 15 categories

① ② ① ② ① ②

The average distribution TCV = 0.625

PMR = 0.4242

(PMR = 0.6094)

TCV = 0.625

PMR = 0.4515

(PMR = 0.6093)

TCV = 1

PMR = 0.6592

(PMR = 0.9597)

TCV = 1

PMR = 0.6417

(PMR = 0.9737)

TCV = 1

PMR = 0.6110

(PMR = 0.9433)

TCV = 1

PMR = 0.6285

(PMR = 0.9489)

The normal distribution TCV = 0.5813

PMR = 0.3987

(PMR = 0.5631)

TCV = 0.5813

PMR = 0.4223

(PMR = 0.5628)

TCV = 1

PMR = 0.6953

(PMR = 0.9520)

TCV = 1

PMR = 0.6390

(PMR = 0.9837)

TCV = 1

PMR = 0.6035

(PMR = 0.9472)

TCV = 1

PMR = 0.6438

(PMR = 0.9583)

The standard Multivariate

normal distribution

TCV = 0.9438

PMR = 0.5458

(PMR = 0.9014)

TCV = 0.9438

PMR = 0.6421

(PMR = 0.9254)

TCV = 1

PMR = 0.7148

(PMR = 0.9699)

TCV = 1

PMR = 0.7448

(PMR = 0.9792)

TCV = 1

PMR = 0.5848

(PMR = 0.9687)

TCV = 1

PMR = 0.6508

(PMR = 0.9490)

model derived from matrix Qt and the theoretical cognitive
model (Ding et al., 2012).

As the proof and the simulation showed, PMRORP ≤

PMRIRP = TCV . Therefore, the TCV can be used to predict
the PMR. Notably, the TCV is related to the distribution of
examinees and item category, not related to the proportion of
items. In other words, when calculating the TCV, repeated items
should be treated as one item.

The TCV is numerically equal to the PMR based on the
set of IRPs, and the factors that affect the set of IRPs are as
follows: the cognitive model (e.g., the number of attributes,
attribute hierarchy, and compensation between attributes), the
composition of the test matrix (e.g., Boolean matrix and
multivalued Q matrix), the item score (e.g., 0–1 score or
multilevel score). Whatever has an effect on the set of IRPs
influences the TCV. When the test Q matrix (Qt) is a Boolean
matrix, the score is 0 or 1, and the IR is 1 if and only if αi ≥ qj ,
the TCV is the upper bound of the PMR. The TCV has nothing to
do with the CDM (i.e., classification method); therefore, the TCV
is calculated by CDM-free. Thus, the conclusion is the same for
the DINA model, the AHM (Attribute Hierarchy Method, Gierl
et al., 2007)model, the RSM (Rule SpaceMethod, Tatsuoka, 2009)
model, and the GDD (Generalized Distance Discrimination, Sun
et al., 2011) model.

The number of attributes has an effect on the TCV. For
example, independent structure, if the probability distribution
of the set of KSs in the total population is equal, different
items containing only two attributes are selected, then when the
number of attributes K is 3, and the TCV is 5/8; when K is 4, the
TCV is 3/4; and when K is 5, the TCV is 27/32. However, under
the same conditions, the number of attributes does not affect the
conclusion that the TCV is the upper bound of the PMR at all
(as shown by the proof). Furthermore, the lower the number
of attributes, the higher the PMR. Therefore, the simulation
study selected fewer attributes (K = 4). Similarly, the smaller
the random in the ORP is, the higher the PMR is. To prove
that the TCV is the upper bound of the PMR, in the simulation
study, the random is relatively small (s = 0.02). According to the
abovementioned logic, the result that TCV is the upper bound of
the PMR is also true when the random is larger.

An interesting question arises as follows: the TCV is not equal
to the PMR, why the TCV is useful for predicting the PMR? There
are three reasons: First, the most important reason is that the
TCV can be obtained during CDTD, which is instructive to adjust
selected items at any time and to timely judge the test quality.
Second, the TCV is the upper bound of the PMR, the smaller the
slip, the smaller the gap between the TCV and the PMR. The TCV
does not change with the slip. If the TCV is high, the PMR is also
higher; therefore, it is feasible to use the TCV as an index of the
PMR to predict the test quality. Third, the TCV is easy to calculate
according to the formula.

The TCV can be used not only to predict the PMR but also,
more importantly, to detect the defects of CDTD. By using the
augment algorithm, the set of KSs can be derived from the Qt

matrix, and then, the TCV can be calculated. Under the same
conditions, if the TCV value is lower, it means that there are
fewer kinds of attribute vectors (i.e., items) of the reachable
matrix in the Qt matrix, and thus, the more KSs cannot be
accurately estimated. At this time, test designers can modify the
test Q matrix (i.e., the Qt matrix) before testing (not posttest
evaluation), that is, modify the test (such as filling the columns
of the reachable matrix or filling the columns expanded by the
reachable matrix through the augment algorithm). Adjusting the
selected items according to the TCV value at any time is not only
beneficial to evaluate the test quality in time in CDTD but also
can save cost and improve efficiency, which has the effect of two
times the result with half the effort. This method undoubtedly has
great advantages in CDTD.

If the test contains the reachable matrix, the cognitive model
derived from the test is consistent with the theoretical cognitive
model, and the TCV is 1. At this time, as long as the item
quality is good (i.e., the slip is low) and attributes are measured
a certain number of times, then the PMR is relatively high. In
most cases, however, the PMR is not equal to 1 because the test
is short, the quality of the items is poor, or the examinees do
not answer carefully. At this time, although the result is rough
when the TCV is used to predict the PMR, even so, under the
same cases, the test, which contained the reachable matrix (in this
case, the Qt matrix is complete Q matrix, Cai et al., 2018), has the
higher PMR.
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Although this study shows that the TCV method works
successfully with CD, it has limitations in several aspects: (1)
Since the TCV is determined by the Qt matrix, the Qt matrix
must be complete and reliable, which is the premise of using
the TCV. In some cases, this condition may be quite harsh. But
the RUM model allows the Qt matrix to be incomplete, and
the conclusion of this study cannot be applied. Furthermore,
the complete and accurate calibration of the Qt matrix is still a
very difficult problem. (2) If the score is 0 or 1 and IR is 1 if
αi ≥ qj , other IR rules are not applicable in this case. Nor does
it apply if there is compensation between attributes. (3) Only the
dichotomous and non-compensable attributes are considered, a
natural question that arises is how to get the TCV when the
scoring is polytomous and attributes are compensable. These will
be the interesting topics for future studies.
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Cognitive diagnostic assessment (CDA) has been developed rapidly to provide fine-grained 
diagnostic feedback on students’ subskills and to provide insights on remedial instructions 
in specific domains. To date, most cognitive diagnostic studies on reading tests have 
focused on retrofitting a single booklet from a large-scale assessment (e.g., PISA and 
PIRLS). Critical issues in CDA involve the scarcity of research to develop diagnostic tests 
and the lack of reliability and validity evidence. This study explored the development and 
validation of the Diagnostic Chinese Reading Comprehension Assessment (DCRCA) for 
primary students under the CDA framework. Reading attributes were synthesized based 
on a literature review, the national curriculum criteria, the results of expert panel judgments, 
and student think-aloud protocols. Then, the tentative attributes were used to construct 
three booklets of reading comprehension items for 2–6 graders at three key stages. The 
assessment was administered to a large population of students (N = 21,466) in grades 
2–6 from 20 schools in a district of Changchun City, China. Q-matrices were compared 
and refined using the model-data fit and an empirical validation procedure, and five 
representative cognitive diagnostic models (CDMs) were compared for optimal performance. 
The fit indices suggested that a six-attribute structure and the G-DINA model were best 
fitted for the reading comprehension assessment. In addition, diagnostic reliability, 
construct, internal and external validity results were provided, supporting CDM 
classifications as reliable, accurate, and useful. Such diagnostic information could 
be utilized by students, teachers, and administrators of reading programs and instructions.

Keywords: cognitive diagnostic assessment, cognitive diagnostic models, G-DINA, Q-matrix validation, reading 
comprehension assessment, primary students
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INTRODUCTION

Many existing learning and assessment systems generate scores, 
levels, and ranks to evaluate students’ learning outcomes. This 
single outcome evaluation form has caused many problems, such 
as hurting students’ self-esteem, heightening excessive competition, 
and increasing the learning burden, which are not conducive to 
the overall development of students (Lei, 2020). Therefore, new 
approaches are needed to improve outcome evaluation in the 
stage of basic education by keeping the evaluation content consistent 
with the curriculum criteria, providing diagnostic information 
on students’ strengths and weaknesses in learning, and offering 
evidence for schools to implement intervention measures.

Cognitive diagnostic models (CDMs) are confirmatory latent 
class models that combine cognitive theory and psychometric 
models to reveal the innate structure of a given ability by 
estimating an individual’s knowledge and skill mastery state 
(Leighton and Gierl, 2007). CDMs can group examinees into 
similar latent classes and thus can compensate for the deficiency 
of single outcome results generated via classical test theory 
and traditional item response theory (Ravand and Robitzsch, 
2018). Due to the need for formative evaluation and instructions, 
CDMs have become popular in educational settings. However, 
Ravand and Baghaei (2020) noted that over 95% of CDM 
studies are methodological or simulation-oriented, approximately 
4% are retrofitting, and less than 1% focus on real diagnostic 
test development in recent decades. Therefore, real CDM 
application studies have rarely found their ways into educational 
systems, probably because of the lack of reliability and validity 
evidence and thus limited confidence in the information provided 
by CDMs (Sessoms and Henson, 2018). There is still a wide 
gap between CDMs and educational practices, and true CDM 
studies to develop diagnostic tests from scratch are urgently 
needed (Alderson, 2010; Sessoms and Henson, 2018; 
Ravand and Baghaei, 2020).

CDA Framework
One of the ultimate purposes of CDMs is to make inferences 
about what attributes an examinee has mastered using a 
diagnostic assessment. That is, CDA offers valuable information 
on the diagnostic quality of test items as well as the skill 
mastery patterns of test-takers, classifying those who have not 
mastered the item’s required skills, named non-masters, as 
distinct from those who have, named masters. The CDA 
frameworks have been proposed and optimized since Rupp 
and Templin (2008) published the first didactic introduction 
(de la Torre and Chiu, 2016; Ravand and Baghaei, 2020). In 
general, the construction of CDA depends on two major 
elements: the implicit theory section and the CDM section.

The first step in CDA is to specify the implicit attributes 
that a test-taker must possess to solve an item. The generic 
term “attribute” is defined as posited knowledge and thinking 
skill (de la Torre and Douglas, 2004) or a description of the 
processes, subskills, and strategies that are vital for the successful 
execution of a particular test (Leighton et  al., 2004). Once 
the target attributes are defined via domain experts or think-
aloud protocols, individual test items can be  coded at the 

point of item development as a Q-matrix, an incidence matrix 
that transforms cognitive attributes into observable item response 
patterns (Tatsuoka, 1990; Li, 2011). It is essential to point out 
that diagnostic feedback is valid only when the attribute 
specification is complete, the items effectively measure the 
targeted attributes, and the attributes are correctly specified 
in the Q-matrix (Ravand and Baghaei, 2020). The quality of 
inferences about students is unlikely to be ensured in retrofitting 
studies, as they commonly include items that fail to adequately 
tap specific cognitive characteristics (Gierl and Cui, 2008; Chen 
and de la Torre, 2014).

Then, CDMs are utilized to group examinees with similar 
skill mastery profiles, to evaluate the diagnostic capacity of 
items and tests and thus to reveal the degree to which they 
can measure the postulated attributes (Ravand and Robitzsch, 
2018). CDMs make various assumptions to reveal the innate 
structure of a given ability by estimating the interactions 
among attributes (Leighton and Gierl, 2007). That is, 
representative CDMs can mainly be classified into three types: 
compensatory, non-compensatory, and general models. In 
compensatory CDMs, mastering one or more targeted attributes 
can compensate for other attributes that are not mastered. 
The deterministic input noisy-or-gate model (DINO; Templin 
and Henson, 2006) and the additive CDM (A-CDM; de la 
Torre, 2011) are the most representative compensatory CDMs. 
In contrast, if an attribute has not been mastered, the probability 
of a correct response in the non-compensatory CDM would 
be  low, as other mastered attributes cannot fully compensate 
for it. Representative non-compensatory CDMs include the 
deterministic input noisy-and-gate model (DINA; Haertel, 
1989) and the reduced reparameterized unified model (R-RUM; 
Hartz, 2002). General CDMs allow the estimation of both 
compensatory and non-compensatory interactions among 
attributes within the same test, which has influentially led 
to the unification of various CDMs. The most famous general 
model is the general DINA model (G-DINA; de la Torre, 
2011), which can be  transformed into the abovementioned 
CDMs simply by setting specific constraints to zero or changing 
link functions.

Like other statistical models, a CDM has no value if it fits 
the data poorly (de La Torre and Lee, 2010). Specifically, the 
fitness of CDMs can be  ascertained in two ways. Relative fit 
indices evaluate whether the fit of one model differs significantly 
from that of another, and the model with smaller relative fit 
values is judged to better fit the data (Lei and Li, 2016). 
According to previous research, three well-known relative fit 
indices are also applicable to CDM studies, including −2 
log-likelihood (−2LL), Akaike’s information criterion (AIC), 
and Bayesian information criterion (BIC; Lei and Li, 2016). 
In addition, absolute fit indices examine the adequacy of a 
single model (Liu et  al., 2017). For instance, a model can 
be  considered a good fit only if the value of the standardized 
root mean square residual (SRMSR) is less than 0.05 (Maydeu-
Olivares, 2013; George and Robitzsch, 2015). In addition, the 
max χ2, which is the mean of the χ2 test statistics of independence 
for all item pairs, was found to be  sensitive in specifying 
model misfit (Chen and Thissen, 1997; Lei and Li, 2016). 
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A significant value of p of max χ2 suggests that the model 
fits poorly (George and Robitzsch, 2015).

CDM Applications in Reading Tests
As one of the most frequently assessed skills, reading is considered 
a prerequisite for success in school and life (Kim and Wagner, 
2015). As complex and multiple-task abilities, the innate 
characteristics of reading comprehension have been widely 
discussed (Barnes, 2015). For example, the construction-integration 
model regards reading as a meaning-construction process that 
involves interaction between both reader and text and is influenced 
strongly by background knowledge (Kintsch, 1991; Snow, 2002). 
This model characterized reading as an iterative and context-
dependent process by which readers integrate information from 
a text (Compton and Pearson, 2016). In contrast, theorists of 
component models have pointed out that some important 
language knowledge, cognitive processes, and reading strategies 
make relatively independent contributions to reading 
comprehension (Cain et  al., 2004; Cain, 2009). These models 
indicate that subcomponents of reading, including but not limited 
to vocabulary, syntax, morphology, semantics, inference, reasoning, 
discourse comprehension, working memory, and comprehension 
monitoring, are strong and persistent predictors for readers from 
children to adults (Aaron et  al., 2008; Kim, 2017). Although 
many studies found that Chinese reading and English reading 
shared significantly in common (Mo, 1992; Chen et  al., 1993), 
a consensus has not been reached on the number of 
subcomponents involved at different developmental stages. For 
example, Mo (1992) proposed that the structure of Chinese 
language reading displayed a “replacing developmental pattern.” 
Factor analysis results of a reading test battery suggested that 
75% of the variance in grade-6 students’ reading ability was 
explained by six factors, including word decoding, integration 
and coherence, inference, memory and storage, fast reading, 
and transfer ability. As grades increased to the secondary and 
high school levels, the influences of the abovementioned factors 
remained important but were partly replaced by newly emerged, 
higher-level factors such as generalization ability, evaluation 
ability, and semantic inference ability.

Early research on reading cognitive diagnosis tried to explore 
the separability of reading ability and identify whether there are 
relatively independent cognitive components, processes, or skills 
in reading ability. For example, Jang (2009) found that evidence 
in Markov chain Monte Carlo aggregation supported the separability 
of reading into 9 attributes, and most LanguEdge test items have 
good diagnostic and discrimination power to measure the attributes 
well. Then, CDMs have been applied to retrofit the data of large-
scale reading assessments such as the Progress in International 
Reading Literacy Study (PIRLS), the Programme for International 
Student Assessment (PISA), the Test of English as a Foreign 
Language (TOEFL), the Michigan English Language Assessment 
Battery (MELAB), and the Iranian National University Entrance 
Examination (e.g., Jang, 2005; Sawaki et al., 2009; Li, 2011; Chen 
and de la Torre, 2014; Chen and Chen, 2016; Ravand, 2016; 
Ravand and Robitzsch, 2018; Javidanmehr and Sarab, 2019; George 
and Robitzsch, 2021; Toprak-Yildiz, 2021). Many studies have 
used one preset CDM for reading tests, including DINA 

(George and Robitzsch, 2021), Fusion (Jang, 2009; Li, 2011), 
LCDM (Toprak and Cakir, 2021), or G-DINA (Ravand, 2016) 
models. Only a few compared multiple CDMs and found that 
general models, such as G-DINA or LCDM, had better fits for 
reading assessment data (Chen and Chen, 2016; Li et  al., 2016; 
Ravand and Robitzsch, 2018; Javidanmehr and Sarab, 2019). In 
some cases, compensatory models such as A-CDM or LLM have 
shown a relatively close fit to those of general models (Li et  al., 
2016; Chen and de la Torre, 2014). Therefore, researchers called 
for further comparison of general and reduced CDMs for optimal 
performance and for an understanding of the interaction mechanism 
among reading attributes.

In the context of real CDA applications in reading assessment, 
research is relatively scarce. One notable effort was conducted 
by Xie (2014), in which a reading comprehension assessment 
of modern Chinese prose for junior high school students was 
developed and validated. Fusion model results revealed an 
unstructured attribute hierarchy of Chinese reading, which was 
composed of word decoding, formal schema, information 
extraction, information deduced, content analysis, content 
generalization, and text evaluation. In addition, Toprak and 
Cakir (2021) examined the second language reading 
comprehension ability of Turkish adults with a cognitive 
diagnostic reading test using the CDA framework.

We collected a total of 15 relevant empirical reading studies 
in diverse age groups with various language backgrounds and 
summarized a list of candidate attributes (see 
Supplementary Table  1 for details) and CDMs for the next 
phases of test development and analysis. This detailed review 
yielded 6 commonly specified cognitive attributes, including 
vocabulary, syntax, retrieving information, making inferences, 
integration, and evaluation. Text-related attributes, such as narrative 
text, expository text, and discontinuous text, were also specified 
in studies of PIRLS and PISA. However, the abovementioned 
large-scale reading assessments were generally designed and 
developed under a unidimensional item response theory approach. 
CDM implementations to extract diagnostic feedback may raise 
severe issues with model fit, item characteristics, and diagnostic 
inferences for retrofitting data (Rupp and Templin, 2008; 
Gierl et  al., 2010; Sessoms and Henson, 2018).

Primary students are in the key stages of reading development, 
during which they need to transition from “learning to read” 
to “reading to learn,” and begin to encounter difficulties in 
new comprehension requirements (Carlson et  al., 2014). The 
need for suitable instructions and reading materials as scaffolding 
is felt mostly at the primary level; therefore, assessing the extent 
to which the reading ability and subskills of students grow is 
valuable during their primary school years. However, students’ 
reading ability grows so much over the course of their schooling 
that a single-booklet testing design for all grades is beset with 
problems (Brennan, 2006). Multilevel booklet designs are typically 
adopted, of which the contents and difficulty can be purposefully 
differed to balance test precision and efficiency. However, to 
the best of our knowledge, all CDM implementations were 
conducted on a single reading booklet for second language 
learners or grade 4 students and above. Several authors (e.g., 
Ravand, 2016; Sessoms and Henson, 2018) have briefly noted 
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FIGURE 1 | An overview of the research processes.

that CDM applications might be specific to different characteristics 
of items or students. The construct equivalence of reading 
attributes and the generalizability of CDMs to other key 
developmental stages of reading remain unproven.

To address these issues, this study had three goals: (a) to 
illustrate how the cognitive diagnostic assessment (CDA) 
framework can be  applied to develop the Diagnostic Chinese 
Reading Comprehension Assessment (DCRCA) for primary 
students at various key stages, (b) to evaluate the attribute 
equivalence and model fit adequacy of the CDMs for different 
developmental stages, and (c) to validate the diagnostic inferences 
of the DCRCA about primary students’ reading subskills. To 
answer these questions, the study was mostly concerned with 
the construction of cognitive models of Chinese reading, the 
model-data fit evaluation of CDMs for three reading booklets, 
the validation of diagnostic psychometric properties, and the 
skill mastery profiles of primary students. This process can shed 
light on the limited CDA applications in reading test development 
and provide new methodologies for exploring reading skill 
structure. To the best of our knowledge, this is the first reading 
assessment whose CDM model fitness, diagnostic reliability and 
validity were examined at various developmental stages.

MATERIALS AND METHODS

The development and validation of the reading assessment 
followed the guidelines of the CDA framework (Ravand and 
Baghaei, 2020). The research processes are outlined in Figure 1.

Attributes Specification
Reading attributes were specified through multiple steps, involving 
domain experts and test-takers who participated in the 
determination of the core reading features for further curricular use.

 a. Literature review: Candidate attributes were summarized by 
reviewing 15 empirically validated studies (see 
Supplementary Table  1), particularly based on those of 
Chinese reading and native language reading of primary 
students (Xie, 2014; Yun, 2017; George and Robitzsch, 2021; 
Toprak-Yildiz, 2021). This detailed review yielded 6 commonly 
specified cognitive attributes, including retrieving information, 
making inferences, integration and summation, evaluation, 
vocabulary, and syntax, as well as three text-related attributes, 
including narrative text, expository text and discontinuous text.

 b. Expert panel’s judgments: As reading attributes are highly 
dependent on the characteristics of Chinese reading and 
the framework of reading education, researchers invited five 
experts in reading assessment or education to obtain their 
judgments of large-scale reading assessments and the Chinese 
Language Curriculum Criterion for Compulsory Education 
(abbreviated as the curriculum criterion). The “syntax” 
attribute was first excluded because the curriculum criterion 
does not advocate any grammar teaching or evaluation at 
the primary school level but emphasizes helping students 
comprehend naturally occurring materials in a real language 
environment (Ministry of Education, 2011). Vocabulary is 
considered as important as reading comprehension at the 
primary level, and therefore, this skill was excluded and 
evaluated by the Chinese Character Recognition Assessment 
in the test battery. Infrequent attributes were also discussed 
case by case. For example, formal schema (Xie, 2014) was 
excluded because it might blend text evaluation with text-
type attributes. The importance of literary text (i.e., narrative 
text and poetry) at the primary level has been emphasized 
by the curriculum criterion as well as large-scale assessments, 
including the PIRLS and PISA. However, inconsistencies in 
other text types have been observed. The curriculum criterion 
merges expository text (extracted from PIRLS) and 
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discontinuous text (extracted from PISA) into practical text, 
as they have similarities in their reading objectives and 
strategies (Compulsory Education Curriculum and Textbook 
Committee of the Ministry of Education, 2012). After 
discussion, all experts agreed that this inconsistency was 
worth further evaluation via empirical results.

 c. Student think-aloud protocols: To clarify the cognitive 
procedures that test-takers went through, 15 students from 
grades 2 to 6 were selected for think-aloud protocols. These 
students verbalized their thoughts when solving sample items. 
According to their answers and oral explanations, researchers 
identified clues to cognitive processes with an eye on the 
attributes inferred from the previous procedures. Overall, 
researchers specified and defined an initial set of eight 
attributes that might be  crucial for primary school students 
(Table  1).

Test Development
According to the curriculum criterion, reading education can 
be  divided into three key stages at the primary level. Key 
stage one is for grades 1 to 2, key stage two is for grades 3 
to 4, and key stage three is for grades 5 to 6. Therefore, 
three booklets of reading diagnosis items were compiled for 
students at each key stage. An initial common Q-matrix for 
the three booklets was intentionally designed, as each item 
reflects one of the four cognitive processes of reading 
comprehension (α1–α4) and one text-related attribute (α5, α6a, 
and α6b). The genre and complexity of texts were controlled, 
as they were important factors in assessing reading 
comprehension (Collins et  al., 2020). Fragments of literary 
texts (including fairy tales, stories, fables, narratives, novels, 
and children’s poems) and practical texts (including explanatory 
texts, simple argumentative articles, and discontinuous texts) 
were carefully selected and modified as item stems. A Chinese 
readability formula (Liu et  al., 2021) was adopted to calculate 
the length, token types, lexical difficulty, function word ratio, 
and overall difficulty of each text. The average text length of 
the three booklets ranges from 150.60 to 278.57 characters, 
and the average text difficulty levels for the three booklets 
are 3.38, 3.69, and 4.40 (for details, please see 

Supplementary Table  2). Therefore, the three booklets are 
composed of conceptually appropriate short texts with 
increased complexity.

The item generation procedures were as follows: mapping 
cognitive and text-type attributes to compile 73 draft multiple-
choice items, an expert review to cross-validate the Q-matrix, 
and item refinement following the expert review. Then, after 
the first pilot using two booklets for grade 1–2 and 3–6 
students (n = 378), 17 problematic items were removed 
according to the item discrimination index (item-total 
correlation <0.19), and several items were modified. Grade 
1 students were excluded from further study because they 
could not adapt to the computer assessment procedures. The 
second pilot included 56 items in three booklets, and each 
booklet consisted of 18–20 items. Pilot data were obtained 
from 5,949 grade 2–6 students. Both classical test theory 
and a 2PL item response model analysis were conducted. 
Five items with unsatisfactory discrimination (item-total 
correlation <0.30 or IRT discrimination <0.50) and three 
items with moderate to large differential item functioning 
issues on gender (effect size >0.88) were removed. A total 
of 48 items were retained, and four items were modified or 
rearranged for facility (passing rates by grade < 0.20 or > 0.90). 
The four cognitive attributes were intentionally balanced in 
testing frequency (4 to 5 times each attribute), and the 
proportion of literacy and practical texts were similar in the 
three booklets. Therefore, as shown in the last line of Table 2, 
the total testing frequencies of the attributes were similar 
in the three final booklets, with slight differences in item 
order and proportions of text type.

Measures
The Diagnostic Chinese Reading Comprehension 
Assessment (DCRCA)
DCRCA was developed as a multiple-choice, computer-based, 
online reading comprehension assessment to identify cognitive 
processes used during understanding literacy or practical short 
passages. The final DCRCA for grades 2 to 6 comprises 3 
booklets, and each booklet contains 16 items. These items required 
students to answer multiple-choice questions on their 

TABLE 1 | Definitions of the initial reading attributes.

No. Attribute Definition

α1 Retrieving information Retrieving information requires the abilities to understand a text literally and match the micro/macrolevel propositions to relevant 
parts of the text (Kintsch, 1991; O’Reilly and Sheehan, 2009; Xie, 2014).

α2 Making inferences Making inferences require combining reader background knowledge with contextual clues to determine implicit meaning and 
form a beyond surface-level understanding of the text (van Dijk and Kintsch, 1983; Toprak and Cakir, 2021).

α3 Integration and summation Integration and summation require an understanding of relationships across sentences and paragraphs as well as an 
understanding of the comparative importance of information (main and supporting; Grabe, 2009; O’Reilly and Sheehan, 2009).

α4 Reflective evaluation Reflective evaluation requires an understanding of the author’s purpose, mood, tone, and stance toward the subject as well as 
evaluating the quality or appropriateness of a text (Chen and de la Torre, 2014; Xie, 2014; Toprak and Cakir, 2021).

α5 Literary text Literary text includes stories, folktales, legends, fables, simple fiction, nursery rhymes, narrative poem, limerick, and shallow 
ancient poetry (Common Core State Standards Initiative, 2010; Ministry of Education, 2011).

α6 Practical text Practical text contains shallow expository text and discontinuous text at the primary school level (Common Core State 
Standards Initiative, 2010; Ministry of Education, 2011).

α6a Expository text Expository text includes illustrative text and simple argumentative text (Yun, 2017).
α6b Discontinuous text Discontinuous text displays digital sources on a range of topics and information in charts, graphs, or maps (Chen and Chen, 2016).
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TABLE 2 | Initial Q-Matrices.

Item
Booklet KS1 Booklet KS2 Booklet KS3

α1 α2 α3 α4 α5 α6 α6a α6b α1 α2 α3 α4 α5 α6 α6a α6b α1 α2 α3 α4 α5 α6 α6a α6b

1 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 1 0
2 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0
3 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0
4 0 1 0 0 0 1 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
5 0 0 1 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 1 0 0 0
6 0 1 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0
7 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 0 1 0 1
8 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0 1
9 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0
10 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0
11 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0
12 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0
13 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 1 0 0 0
14 0 1 0 0 0 1 0 1 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0 0
15 0 0 0 1 0 1 0 1 0 0 1 0 0 1 1 0 0 0 0 1 1 0 0 0
16 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0
Total 4 4 4 4 13 3 1 2 4 4 4 4 13 3 2 1 4 5 4 5 13 3 1 2

α1 = Retrieving information; α2 = Making inferences; α3 = Integration and summation; α4 = Reflective evaluation; α5 = Literary text; α6 = Practical text; α6a = Expository text; 
α6b = Discontinuous text.

comprehension of short passages. Students’ responses were scored 
dichotomously (0 = incorrect, 1 = correct) for each item. As already 
described, each item was intentionally constructed by experts 
to align with precisely one of the four processes of reading 
comprehension (α1–α4) and one text-related attribute (α5–α6). 
The total testing frequencies of the attributes were similar in 
the three final booklets, while the short passages in the three 
booklets were compiled with increased complexity. Cronbach’s 
α values for the assessment of the three booklets were 0.82, 
0.71, and 0.64.

The Chinese Word Recognition Assessment
The Chinese word recognition assessment was adopted for 
validation purposes, and it was adapted from the Chinese character 
recognition task (Li et  al., 2012) to measure students’ word 
recognition skills. Students listened to the sound of a word 
composed of a given Chinese character and then chose the 
correct character from three distracting character options. A 
total of 150 character items were collected based on Chinese 
language textbooks (Shu et  al., 2003). The maximum score of 
this assessment was 150. The internal reliability of the assessment 
was 0.91.

Sample
The study was conducted for a regional reading education 
project in Changchun City, China. The project aims to investigate 
the development of primary students’ reading ability, recommend 
books suitable for reading, and provide them with corresponding 
reading courses. A total of 21,466 grade 2 to grade 6 students 
from 20 primary schools completed the assessments in November 
2020, accounting for 94.1% of the total sample. Students were 
aged from 7.3 to 13.2 years, and the proportion of male students 
was 52.4% in total.

Procedure
Considering the large number of students participating in the 
DCRCA, the organization and implementation were completed 
by Chinese teachers and computer teachers of each class. Researchers 
trained all teachers and provided them with standardized assessment 
manuals. The assessments were administered collectively via an 
online web page, which presented one item at a time to students. 
The web page set all items as compulsory, so there was no missing 
value in the formal test as long as the student submitted successfully. 
Considering primary students’ computer proficiency, students only 
needed to click medium-size options with mice to answer all 
questions. Students took approximately 20 min to successively 
complete the test battery, including the Chinese Word Recognition 
Assessment and the DCRCA. All students received an assessment 
analysis report with a recommended reading list and learning 
suggestions 1 month after the testing.

Analysis
Data were analyzed using R studio (R Core Team, 2021). As a 
correctly specified Q-matrix is considered a prerequisite of model-
data fitness and low bias in diagnostic classifications (Rupp and 
Templin, 2008; Kunina-Habenicht et  al., 2012), both theoretical 
and empirical procedures (de la Torre and Chiu, 2016) were 
applied iteratively to obtain the best attribute numbers and the 
best item-attribute relationships using the “GDINA” package, version 
2.8.0 (Ma and de la Torre, 2020). The “CDM” package, version 
7.5–15, was used for fitting CDMs (e.g., DINA, DINO, R-RUM, 
A-CDM, and G-DINA) based on the MMLE/EM algorithm (George 
et  al., 2016; Robitzsch and George, 2019). The CDM package 
allows the estimation of rich sets of models, fit indices, and 
diagnostic validity with various emphases, which can help researchers 
find the most appropriate model. Two-parameter logistic item 
response theory (2PL-IRT) statistics were calculated using the 
ltm package (Rizopoulos, 2006).
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RESULTS

Q-Matrix Validation
Three types of Q-matrices were created for each booklet to 
evaluate the applicability of attributes. Q1 contained only the 
four commonly agreed-upon cognitive attributes (α1–α4), Q2 
added two text-type attributes (α5 and α6) to Q1 with reference 
to the curriculum criterion, and Q3 added three text-type attributes 
(α5, α6a, and α6b) to Q1 with reference to PISA and PIRLS. 
These Q-matrices were compared based on the model-data fit 
of the G-DINA model and likelihood ratio test (see Table  3).

The SRMSR values of all Q-matrices were acceptable (below 
the 0.05 rule of thumb suggested by Maydeu-Olivares, 2013), 
while none of Q1 could be  accepted based on the max χ2. 
The -2LL and AIC values suggested a direction of improvement 
from Q1 to Q2, while the fit values of Q2 and Q3 were close 
in all booklets. Likelihood ratio tests were adopted between 
the adjacent Q-matrices within each booklet. We  found that 
(1) all Q2 and Q3 values were significantly better than Q1 
values (p < 0.001); (2) the -2LL and AIC differences between 
Q2 and Q3 were small and unstable, as p values fluctuated 
around significance boundaries for booklets KS1 to KS3 
(p ≈ 0.006, 1.00 and 0.049 respectively); and (3) the BIC 
consistently favored Q2 over Q3, as it was more compact and 
efficient. In summary, the fit indices showed similarities across 
booklets, suggesting that the attribute structure was the same 
across key stages. Based on the above results, we  chose Q2 
as a basis to finalize the item-attribute relationship.

An empirical Q-matrix validation procedure was conducted 
on all Q2s to compare the proportion of variance accounted 
for (PVAF) by plausible q-vectors for a given item (de la Torre 
and Chiu, 2016). A given q-vector was deemed correct if it 
was the simplest vector with a PVAF above 0.95. The validation 
results suggested no modification for booklet KS2 or KS3 and 
generated suggested Q-vectors for items 6 and 15  in booklet 
KS1. This indicated a relatively high attribute-wise agreement 
between the provisional and data-driven Q-matrices across all 
booklets. After expert revisions and iterative modeling, researchers 
concluded that the suggested changes in the Q-matrix were 
consistent with what the item truly assessed. The likelihood 

ratio test suggested that the fit of finalized Q2 was significantly 
better than that of the initial Q2 and was slightly better than 
that of Q3 for booklet KS1. The final Q-matrices are given 
in Table  4.

Model Comparison
To select the optimal CDM for the whole assessment and to 
reveal the relationships among reading attributes, we compared 
five representative CDMs including DINA, DINO, R-RUM, 
A-CDM, and G-DINA models, for each booklet using the 
final Q-matrices. As Table  5 shows, the five CDMs performed 
stably across booklets. The AIC and -2LL values for the G-DINA 
models were the lowest in the three booklets, followed by the 
A-CDM and the R-RUM models, while the values of the more 
parsimonious DINO and DINA models were observably worse. 
The BIC favored A-CDM, G-DINA, and A-CDM in booklets 
KS1 to KS3. Likelihood ratio tests suggested that none of the 
other CDMs fit as good as the G-DINA model. For the absolute 
fit values, the SRMSR values of all CDMs were below 0.05. 
However, only the G-DINA had insignificant max χ2 values 
in all cases, indicating a good fit to the data, while the DINO 
and DINA models were stably rejected by the significance of 
max χ2 in all cases. It is evident that the G-DINA model fits 
the entire assessment data reasonably better than the more 
parsimonious reduced models.

Reliabilities and Validity
Pattern accuracy (Pa) and pattern consistency (Pc) indices show 
the degree to which the examinees were accurately and 
consistently classified as masters and non-masters (Cui et  al., 
2012). Therefore, they were adopted as indicators of reliability 
in Table  6. The Pa values for each separate attribute were 
between 0.68 and 0.95, and the Pc values were between 0.63 
and 0.92. Despite a lack of consensus on general guidelines 
for what constitutes a high or acceptable reliability (Templin 
and Bradshaw, 2013), these results indicated an above acceptable 
capacity of measuring students’ reading attributes.

Evidence of internal validity was provided using item 
mastery plots to quantify the various discriminatory and 

TABLE 3 | Model-data fitting results for Q-matrix validation.

Booklet Q-matrix Npars
Relative fit Absolute fit

-2LL AIC BIC SRMSR max χ2 p (max χ2)

KS1 Q1a 45 −38109.4 76308.7 76594.7 0.041 219.23 <0.001
Q2b 90 −37547.7 75275.5 75847.4 0.016 11.30 0.09
Q3c 97 −37540.7 75275.4 75891.8 0.015 9.32 0.27
Sug Q2c 94 −37537.9 75263.8 75861.2 0.015 7.45 0.76

KS2 Q1a 43 −86989.8 174065.6 174370.0 0.021 26.65 <0.001
Q2b 86 −86569.9 173311.7 173920.5 0.012 8.92 0.339
Q3b 93 −86570.9 173327.8 173986.1 0.012 8.16 0.514

KS3 Q1a 47 −85552.4 171198.8 171529.2 0.015 44.05 <0.001
Q2c 94 −85370.6 170929.2 171590.0 0.011 5.84 1
Q3b 101 −85371.6 170945.2 171655.3 0.010 6.00 1

Different letter superscripts in column 2 indicate significant model fit improvement between adjacent Q-matrices by likelihood ratio test within each booklet. The best relative fit results 
within each booklet are shown in bold.
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TABLE 4 | Final Q-Matrices.

Item
Booklet KS1 Booklet KS2 Booklet KS3

α1 α2 α3 α4 α5 α6 α1 α2 α3 α4 α5 α6 α1 α2 α3 α4 α5 α6

1 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1
2 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
3 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0
4 0 1 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1 0
5 0 0 1 0 1 0 1 0 0 0 0 1 0 0 1 0 1 0
6 0 1 0 1* 1 0 0 0 1 0 1 0 0 0 1 0 1 0
7 0 0 1 0 1 0 0 0 1 0 1 0 1 1 0 0 0 1
8 0 0 1 0 1 0 0 0 0 1 1 0 0 1 0 0 0 1
9 1 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 1 0
10 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 1 1 0
11 0 0 1 0 1 0 1 0 0 0 1 0 0 0 0 1 1 0
12 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0
13 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1 1 1 0
14 0 1 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 0
15 1* 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 1 0
16 0 1 0 0 1 0 0 0 0 1 1 0 1 0 0 0 1 0
Total 5 4 4 5 13 3 4 4 4 4 13 3 4 5 4 5 13 3

α1 = Retrieving information; α2 = Making inferences; α3 = Integration and summation; α4 = Reflective evaluation; α5 = Literary text; α6 = Practical text. The Q-matrix modifications were 
denoted by *.

diagnostic capacities of test items (Roussos et  al., 2007; von 
Davier and Lee, 2019). Figure  2 shows the item correct 
proportions for the masters versus the non-masters. The 
average item proportion correct difference was 0.53, and the 
differences in 41 out of the 48 items were greater than 0.40. 
This high value indicates a good fit between models and 
data, suggesting a strong diagnostic power of items and the 
DCRCA. In addition, this provided a valuable tool for finding 
poor items. For example, the differences of items 5 and 9  in 
booklet KS2 were smaller than 0.30. An in-depth examination 
suggested that these items were difficult; therefore, the item 
proportion correct for masters tended to be  close to that for 
non-masters.

To further verify the external validity, the correlations between 
the scores on the DCRCA and the Chinese word recognition 
test were calculated. Word recognition scores were positively 
correlated with reading scores [KS1, r (4251) = 0.69, p < 0.001, 
KS2, r (8863) = 0.65, p < 0.001, KS3, r (8352) = 0.57, p < 0.001]. 
To summarize, the results suggested that the reliability and 
validity of the DCRCA were satisfactory.

Skill Profiles
CDMs classify test-takers into latent classes, which represent 
skill mastery/non-mastery profiles for attributes specified in 
the Q-matrix. With the six-attribute Q-matrix structure, 64 
theoretically existing latent classes (2k) were identified. For 

TABLE 5 | Model fit comparison of CDMs using the final Q-matrices.

Booklet CDM Npars
Relative fit Absolute fit

-2LL AIC BIC SRMSR max χ2 p (max χ2)

KS1

DINAa 54 −38147.9 76403.8 76747.0 0.042 269.83 <0.001
DINOb 54 −38101.0 76310.0 76653.2 0.040 225.18 <0.001
RRUMc 72 −37600.7 75345.3 75802.9 0.019 11.56 0.08
A-CDMc 72 −37592.3 75328.6 75786.1 0.017 10.51 0.14
G-DINAd 94 −37537.9 75263.8 75861.2 0.015 7.45 0.76

KS2

DINAa 54 −86967.4 174042.8 174425.0 0.020 24.75 <0.001
DINOa 54 −86992.3 174092.6 174474.8 0.021 24.27 <0.001
RRUMb 70 −86653.9 173447.8 173943.3 0.013 13.97 0.02
A-CDMb 70 −86675.2 173490.5 173986.0 0.018 39.49 <0.001
G-DINAc 86 −86569.9 173311.7 173920.5 0.012 8.92 0.339

KS3

DINAa 54 −85647.9 171403.7 171783.4 0.017 21.80 <0.001
DINOb 54 −85641.5 171391.0 171770.7 0.017 26.65 <0.001
RRUMc 72 −85520.2 171184.3 171690.5 0.014 10.51 0.14
A-CDMd 72 −85484.2 171112.3 171618.5 0.012 9.38 0.26
G-DINAe 94 −85424.1 171036.2 171697.0 0.011 8.59 0.41

Different letter superscripts in column 2 indicate significant model-fit improvement among CDMs by likelihood ratio test within each booklet. The best relative fit results within each 
booklet are shown in bold.
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space considerations, only 15 skill profiles of the grade 2 students 
are presented in Table  7, as 49 classes showed lower posterior 
probabilities than 0.1%, suggesting that these skill classes may 
not be  relevant to the data. Among the remaining 15 classes, 
the latent class [111111], mastery of all the subskills, had the 
highest posterior probability, followed by [000000], mastery of 
none of the subskills. CDM revealed that other dominant latent 
classes were [000011] and [111100], to which 27.15% of the 
test-takers belong. The profile [000011] might reflect children’s 
knowledge and experiences in reading specific text genres in 
the given items, while the profile [111100] might reflect children’s 
skills and experiences in answering specific reading tasks. This 
result supported the RAND report (RAND Reading Study 
Group, 2002) that mastery of the first four cognitive attributes 
and the last two text attributes may be  relatively independent 
sources of variance in different reading comprehension scores.

DISCUSSION AND CONCLUSION

This study developed and validated an instrument for diagnosing 
the strengths and weaknesses of Chinese reading comprehension 
ability at the primary level. Due to the criticism about a lack 

of true CDA research for educational purposes, the DCRCA 
was designed to meet the requirements of the Chinese curriculum 
criterion under the CDA framework proposed by Ravand and 
Baghaei (2020). Multiple steps were applied to maximize the 
diagnostic capacity and effectiveness of the DCRCA, including 
(1) gathering information about previous reading models and 
assessments; (2) specifying attribute lists based on the literature, 
student think-aloud protocols and expert review; (3) standardized 
test development and pilots; (4) empirical comparisons and 
refinements of Q-matrices and CDMs; and (5) reliability and 

TABLE 6 | Mastery classification reliability.

Attributes
Booklet KS1 Booklet KS2 Booklet KS3

Pa Pc Pa Pc Pa Pc

α1 0.86 0.81 0.93 0.90 0.71 0.63
α2 0.90 0.86 0.89 0.88 0.80 0.78
α3 0.90 0.86 0.93 0.90 0.70 0.63
α4 0.91 0.88 0.92 0.87 0.68 0.63
α5 0.95 0.92 0.83 0.74 0.86 0.82
α6 0.86 0.85 0.87 0.88 0.77 0.85

FIGURE 2 | Item mastery plots.

TABLE 7 | Latent classes and posterior probabilities.

# Latent 
class

Posterior 
probability (%)

# Latent 
class

Posterior 
probability (%)

1 111111 32.84 9 111000 0.56
2 000000 26.14 10 011111 0.52
3 000011 19.85 11 101100 0.45
4 111100 7.29 12 111010 0.40
5 100000 4.47 13 011011 0.26
6 010011 2.68 14 110000 0.21
7 110011 2.21 15 101000 0.16
8 111011 1.48 Total 99.53
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validity analyses using the formal test data. The results indicate 
that the overall quality of the DCRCA is satisfactory and that 
the diagnostic classifications are reliable, accurate, and valid.

Following multiple procedures of attribute specification, 
model-data fit comparison, and empirical validation, the Q-matrix 
construction results yielded six final reading attributes, including 
four cognitive attributes that are consistent with cognitive 
processing and previous empirical studies of reading and two 
text-related attributes that were synthesized from large-scale 
assessment frameworks and the Chinese curricular criterion. 
Adding text-related attributes significantly improved the model-
data fits of Q-matrices, implying that pragmatic or background 
knowledge of different text types might be  vital in successful 
reading. The literacy text attribute is consistent with previous 
research, while the practical text attribute is a newly extracted 
attribute in CDM studies on reading. Our attempts to combine 
expository text with discontinuous text attributes may reveal 
their similarity in reading strategies and worth further 
investigation. The validation of text-related attributes also 
improved the application value and scope of the DCRCA 
because these attributes come from the experiences of educators 
and thus might be  easier to recognize and train (Perfetti et  al., 
2005). Besides, the six-attribute structure has been scrutinized 
as a theoretical framework of reading comprehension for students 
at different developmental stages. This result provides evidence 
regarding the construct of primary-level Chinese reading and 
the DCRCA from theoretical and empirical perspectives.

The selection of the CDMs is critical in all CDA studies, 
as the optimal model not only caters to the diagnostic demands 
of the assessment but also reveals the interrelationships of 
attributes in the given domain. Five representative CDMs 
were compared, and the superiority of the G-DINA model 
was supported by all booklets and model-data fit. Therefore, 
it is safe to analyze the DCRCA with the saturated G-DINA 
model, which appeared to be  flexible in accommodating 
various relationships among reading skills (Chen and Chen, 
2016; Li et  al., 2016; Ravand, 2016). The A-CDM model 
performed the closest level of fit indices to the G-DINA 
model. From a theoretical perspective, the A-CDM model 
could be a special case of the G-DINA model by only estimating 
the main effects of attributes, as the difference between the 
two models is that G-DINA allows additional estimation of 
interactions among latent skills (de la Torre, 2011). Therefore, 
given that the majority of the DCRCA items were designed 
to map one of the cognitive processes and one text type of 
reading, our findings support Stanovich’s (1980) interactive 
view of reading that holds both cognitive processes and text-
related attributes to be  crucial and interactive in successful 
execution of reading comprehension.

In addition, our results showed that the absolute fit indices 
preferred neither compensatory (A-CDM and DINO) nor 
non-compensatory (R-RUM and DINA) types of CDM, and max 
χ2 rejected all the reduced models in booklet KS2. Consequently, 
current results are not enough to assert that the relationship of 
reading attributes is either compensatory or non-compensatory. 
This is consistent with the findings of Jang (2009), Li et  al. 
(2016), and Javidanmehr and Sarab (2019), who also voted for 

the co-existence of compensatory and non-compensatory 
relationships among the latent reading subcomponents.

The present study examined the diagnostic reliability and 
validity of the DCRCA. Reliability evidence is generally considered 
essential support for interpreting test results. The pattern accuracy 
and consistency index (Cui et al., 2012) suggested that the DCRCA 
reliably measures multiple reading attributes. Validity analyses 
are rarely conducted, with less than 22% of studies providing 
such information according to the literature review (Sessoms 
and Henson, 2018). Therefore, construct, internal, and external 
validities are provided for the Q-matrix and the DCRCA. The 
Q-matrix validation results suggest that the provisional Q-matrices 
have an approximately 95% attribute-wise agreement rate across 
booklets, which provides strong evidence for the construct validity 
of Q-matrix constructions (Deonovic et  al., 2019). The internal 
validity evidence showed that the average proportion correct 
differences for each item were sufficiently large for most of the 
test items, indicating that these items have satisfying diagnostic 
capacity to differentiate masters from non-masters of reading. 
The mean score differences of only 4% of the items were less 
than 0.3, much lower than the proportion of 23% in retrofitted 
studies (Jang, 2009). This might be  because retrofitting studies 
had to include many items that were weakly associated with 
targeted attributes. The possible presence of nondiagnostic items 
could lead to critical issues in the validity of measures of skill 
competencies, and thus, the test inferences might be  limited.

The present study contributes to instructional practices at the 
elementary school level, as the assessment can provide reliable, 
valid and useful diagnostic information. This is the first empirical 
study that attempts to provide evidence in construct invariance 
of diagnosing Chinese reading attributes at different primary 
grades. As reading assessment can function as formative assessment, 
such diagnostic feedback could be  further utilized by teachers 
and educators for monitoring learning progressions, providing 
remedial instructions for reading courses and programs. However, 
some limitations are also worth enumerating. First, the present 
research did not examine how diagnostic feedback is perceived 
and utilized by students and teachers in a classroom setting. 
More studies are needed to reveal the influences of CDA 
applications. Second, as the DCRCA was not equated vertically, 
the attribute mastery states can be  compared only within each 
key stage. Future studies are needed to apply appropriate 
longitudinal CDMs (Zhan et  al., 2019) or vertical equating 
methods (von Davier et  al., 2008) for CDA to investigate the 
developmental course of students’ reading attributes. Third, the 
present study did not include a sufficient number of items to 
assess attributes a6a and a6b. The Q-matrices may not be exhaustive 
to capture all reading comprehension and likely lead to limitations 
of the present study. Therefore, caution should be  taken in 
interpreting our final results, and explorations of a more balanced 
Q-matrix construction are needed in the future. Last, although 
the results related to model fit and item parameters were fairly 
acceptable, future research should seek to improve the psychometric 
properties to make the report inferences more reliable. Therefore, 
the study was only a start. A deeper understanding of CDM 
application may be  deduced by interpreting the dominant skill 
classes as learning states and the combination of skill classes as 
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learning paths and learning progressions (Wu et al., 2020). Future 
studies are needed to help instructors design suitable learning 
plans with fine-grained diagnostic reports of students. In addition, 
more well-designed items can be generated and scaled as formative 
and summative assessments to satisfy expectations from the 
curriculum criterion. With the help of the DCRCA, teachers 
could design their own classroom reading materials and assessments 
as learning objectives that they wish students to attain.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will 
be  made available by the authors, without undue reservation.

ETHICS STATEMENT

The studies involving human participants were reviewed and 
approved by Ethics and Human Safety Committee, Faculty of 
Psychology, Beijing Normal University. Written informed consent 
to participate in this study was provided by the participants’ 
legal guardian/next of kin.

AUTHOR CONTRIBUTIONS

YL and JL conceived the study. YL and MZ organized the 
pilots and analyzed the original data. MZ developed the test 
items and conducted the think-aloud protocols. YL collected 
the formal test, analyzed the data, and wrote the manuscript. 
JL provided technical advices. All authors contributed to the 
article and approved the submitted version.

FUNDING

This work was supported by the National Natural Science 
Foundation of China (31861143039) and the National Key 
R&D Program of China (2019YFA0709503).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fpsyg.2021.786612/
full#supplementary-material

 

REFERENCES

Aaron, P. G., Joshi, R. M., Gooden, R., and Bentum, K. E. (2008). Diagnosis 
and treatment of Reading disabilities based on the component model of 
reading: an alternative to the discrepancy model of LD. J. Learn. Disabil. 
41, 67–84. doi: 10.1177/0022219407310838

Alderson, J. C. (2010). “Cognitive diagnosis and Q-matrices in language assessment”: 
a commentary. Lang. Assess. Q. 7, 96–103. doi: 10.1080/15434300903426748

Barnes, M. A. (2015). “What do models of Reading comprehension and its 
development have to contribute to a science of comprehension instruction 
and assessment for adolescents?” in Improving Reading Comprehension of 
Middle and High School Students. eds. K. L. Santi and D. K. Reed (Cham: 
Springer International Publishing), 1–18.

Brennan, R. L. (2006). Educational Measurement. 4th Edn. Rowman & 
Littlefield Publishers.

Cain, K. (2009). Making Sense of Text: Skills that Support Text Comprehension 
and Its Development, Perspectives on Language and Literacy. Springer.

Cain, K., Oakhill, J., and Bryant, P. (2004). Children’s Reading comprehension 
ability: concurrent prediction by working memory, verbal ability, and 
component skills. J. Educ. Psychol. 96, 31–42. doi: 10.1037/0022-0663.96.1.31

Carlson, S. E., Seipel, B., and McMaster, K. (2014). Development of a new 
reading comprehension assessment: identifying comprehension differences 
among readers. Learn. Individ. Differ. 32, 40–53. doi: 10.1016/j.lindif.2014.03.003

Chen, H., and Chen, J. (2016). Retrofitting non-cognitive-diagnostic reading 
assessment Under the generalized DINA model framework. Lang. Assess. 
Q. 13, 218–230. doi: 10.1080/15434303.2016.1210610

Chen, J., and de la Torre, J. (2014). A procedure for diagnostically modeling 
extant large-scale assessment data: the case of the programme for international 
student assessment in Reading. Psychology 05:1967. doi: 10.4236/
psych.2014.518200

Chen, M. J., Lau, L. L., and Yung, Y. F. (1993). Development of component skills 
in reading Chinese. Int. J. Psychol. 28, 481–507. doi: 10.1080/00207599308246933

Chen, W.-H., and Thissen, D. (1997). Local dependence indexes for item pairs 
using item response theory. J. Educ. Behav. Stat. 22, 265–289. doi: 
10.3102/10769986022003265

Collins, A. A., Compton, D. L., Lindström, E. R., and Gilbert, J. K. (2020). 
Performance variations across reading comprehension assessments: examining 
the unique contributions of text, activity, and reader. Read. Writ. 33, 605–634. 
doi: 10.1007/s11145-019-09972-5

Common Core State Standards Initiative (2010). Common Core State Standards 
for English Language Arts & Literacy in History/Social Studies, Science, 
and Technical Subjects. In Common Core State Standards Initiative.

Compulsory Education Curriculum and Textbook Committee of the Ministry 
of Education (2012). Interpretation of Chinese language curriculum standard 
for compulsory education (2011 Edition) (in Chinese). Beijing: Higher 
Education Press.

Compton, D. L., and Pearson, P. D. (2016). Identifying robust variations associated 
with reading comprehension skill: the search for pressure points. J. Res. 
Educ. Effect 9, 223–231. doi: 10.1080/19345747.2016.1149007

Cui, Y., Gierl, M. J., and Chang, H.-H. (2012). Estimating classification consistency 
and accuracy for cognitive diagnostic assessment. J. Educ. Meas. 49, 19–38. 
doi: 10.1111/j.1745-3984.2011.00158.x

de la Torre, J. (2011). The generalized DINA model framework. Psychometrika 
76, 179–199. doi: 10.1007/s11336-011-9207-7

de la Torre, J., and Chiu, C.-Y. (2016). A general method of empirical Q-matrix 
validation. Psychometrika 81, 253–273. doi: 10.1007/s11336-015-9467-8

de la Torre, J., and Douglas, J. A. (2004). Higher-order latent trait models for 
cognitive diagnosis. Psychometrika 69, 333–353. doi: 10.1007/BF02295640

de La Torre, J., and Lee, Y.-S. (2010). A note on the invariance of the DINA 
model parameters. J. Educ. Meas. 47, 115–127. doi: 10.1111/j.1745-3984.2009.00102.x

Deonovic, B., Chopade, P., Yudelson, M., de la Torre, J., and von Davier, A. A. 
(2019). “Application of cognitive diagnostic models to learning and assessment 
systems,” in Handbook of Diagnostic Classification Models: Models and 
Model Extensions, Applications, Software Packages. eds. M. von Davier and 
Y.-S. Lee. (Springer, Cham: Springer International Publishing).

George, A. C., and Robitzsch, A. (2015). Cognitive diagnosis models in R: a 
didactic. Quant. Meth. Psych. 11, 189–205. doi: 10.20982/tqmp.11.3.p189

George, A. C., and Robitzsch, A. (2021). Validating theoretical assumptions 
about reading with cognitive diagnosis models. Int. J. Test. 21, 105–129. 
doi: 10.1080/15305058.2021.1931238

George, A. C., Robitzsch, A., Kiefer, T., Groß, J., and Ünlü, A. (2016). The R 
package CDM for cognitive diagnosis models. J. Stat. Softw. 74, 1–24. doi: 
10.18637/jss.v074.i02

Gierl, M. J., Alves, C., and Majeau, R. T. (2010). Using the attribute hierarchy 
method to make diagnostic inferences about examinees’ knowledge and 
skills in mathematics: an operational implementation of cognitive diagnostic 
assessment. Int. J. Test. 10, 318–341. doi: 10.1080/15305058.2010. 
509554

233

https://www.frontiersin.org/journals/psychology
www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles
https://www.frontiersin.org/articles/10.3389/fpsyg.2021.786612/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpsyg.2021.786612/full#supplementary-material
https://doi.org/10.1177/0022219407310838
https://doi.org/10.1080/15434300903426748
https://doi.org/10.1037/0022-0663.96.1.31
https://doi.org/10.1016/j.lindif.2014.03.003
https://doi.org/10.1080/15434303.2016.1210610
https://doi.org/10.4236/psych.2014.518200
https://doi.org/10.4236/psych.2014.518200
https://doi.org/10.1080/00207599308246933
https://doi.org/10.3102/10769986022003265
https://doi.org/10.1007/s11145-019-09972-5
https://doi.org/10.1080/19345747.2016.1149007
https://doi.org/10.1111/j.1745-3984.2011.00158.x
https://doi.org/10.1007/s11336-011-9207-7
https://doi.org/10.1007/s11336-015-9467-8
https://doi.org/10.1007/BF02295640
https://doi.org/10.1111/j.1745-3984.2009.00102.x
https://doi.org/10.20982/tqmp.11.3.p189
https://doi.org/10.1080/15305058.2021.1931238
https://doi.org/10.18637/jss.v074.i02
https://doi.org/10.1080/15305058.2010.509554
https://doi.org/10.1080/15305058.2010.509554


Li et al. Validating Cognitive Diagnostic Reading Assessment

Frontiers in Psychology | www.frontiersin.org 12 December 2021 | Volume 12 | Article 786612

Gierl, M. J., and Cui, Y. (2008). Defining characteristics of diagnostic classification 
models and the problem of retrofitting in cognitive diagnostic assessment. 
Measurement 6, 263–268. doi: 10.1080/15366360802497762

Grabe, W. (2009). Reading in a Second Language: Moving From Theory to 
Practice. Cambridge University Press; Cambridge Core.

Haertel, E. H. (1989). Using restricted latent class models to map the skill 
structure of achievement items. J. Educ. Meas. 26, 301–321. doi: 10.1111/
j.1745-3984.1989.tb00336.x

Hartz, S. M. (2002). A Bayesian framework for the Unified Model for assessing 
cognitive abilities: Blending theory with practicality. [doctoral dissertation]. 
University of Illinois at Urbana-Champaign.

Jang, E. E. (2005). A validity narrative: Effects of reading skills diagnosis on 
teaching and learning in the context of NG TOEFL. [doctoral dissertation]. 
University of Illinois at Urbana-Champaign.

Jang, E. E. (2009). Cognitive diagnostic assessment of L2 reading comprehension 
ability: validity arguments for fusion model application to LanguEdge 
assessment. Lang. Test. 26, 031–073. doi: 10.1177/0265532208097336

Javidanmehr, Z., and Sarab, M. R. A. (2019). Retrofitting non-diagnostic Reading 
comprehension assessment: application of the G-DINA model to a high 
stakes reading comprehension test. Lang. Assess. Q. 16, 294–311. doi: 
10.1080/15434303.2019.1654479

Kim, Y.-S. G. (2017). Why the simple view of Reading is not simplistic: 
unpacking component skills of reading using a direct and indirect effect 
model of Reading (DIER). Sci. Stud. Read. 21, 310–333. doi: 
10.1080/10888438.2017.1291643

Kim, Y.-S. G., and Wagner, R. K. (2015). Text (Oral) Reading fluency as a 
construct in Reading development: an investigation of its mediating role 
for children from grades 1 to 4. Sci. Stud. Read. 19, 224–242. doi: 
10.1080/10888438.2015.1007375

Kintsch, W. (1991). “The role of knowledge in discourse comprehension: a 
construction-integration model,” in Advances in Psychology. Vol. 79. eds. G. 
E. Stelmach and P. A. Vroon (North-Holland), 107–153.

Kunina-Habenicht, O., Rupp, A. A., and Wilhelm, O. (2012). The impact of 
model misspecification on parameter estimation and item-fit assessment in 
log-linear diagnostic classification models. J. Educ. Meas. 49, 59–81. doi: 
10.1111/j.1745-3984.2011.00160.x

Lei, X. (2020). On the Issues of Educational Evaluation Reform in China. 
China Examinations, No. 341(09), 13–17.

Lei, P.-W., and Li, H. (2016). Performance of fit indices in choosing correct 
cognitive diagnostic models and Q-matrices. Appl. Psychol. Meas. 40, 405–417. 
doi: 10.1177/0146621616647954

Leighton, J. P., and Gierl, M. J. (2007). Cognitive Diagnostic Assessment for 
Education: Theory and Applications (1st Version). Cambridge University Press.

Leighton, J. P., Gierl, M. J., and Hunka, S. M. (2004). The attribute hierarchy 
method for cognitive assessment: a variation on Tatsuoka’s rule-space approach. 
J. Educ. Meas. 41, 205–237. doi: 10.1111/j.1745-3984.2004.tb01163.x

Li, H. (2011). Evaluating language group differences in the subskills of reading 
using a cognitive diagnostic modeling and differential skill functioning 
approach. [doctoral dissertation]. The Pennsylvania State University. Available 
at: http://www.pqdtcn.com/thesisDetails/99641D9398A8DB6ACEAE84A5915F
5CBF (Accessed September 20, 2021).

Li, H., Hunter, C. V., and Lei, P. -W. (2016). he selection of cognitive diagnostic 
models for a reading comprehension test. Language Testing. 33, 391–409. 
doi: 10.1z177/0265532215590848

Li, H., Shu, H., McBride-Chang, C., Liu, H., and Peng, H. (2012). 
Chinese children’s character recognition: visuo-orthographic, phonological 
processing and morphological skills. J. Res. Read. 35, 287–307. doi: 10.1111/j.
1467-9817.2010.01460.x

Liu, R., Huggins-Manley, A. C., and Bulut, O. (2017). Retrofitting diagnostic 
classification models to responses from IRT-based assessment forms. Educ. 
Psychol. Meas. 78, 357–383. doi: 10.1177/0013164416685599

Liu, M., Li, Y., Wang, X., Gan, L., and Li, H. (2021). Leveled Reading for 
primary students: construction and evaluation of Chinese readability formulas 
based on textbooks. Appl. Linguis. 2, 116–126. doi: 10.16499/j.
cnki.1003-5397.2021.02.010

Ma, W., and de la Torre, J. (2020). GDINA: An R package for cognitive diagnosis 
Modeling. J. Stat. Softw. 93, 1–26. doi: 10.18637/jss.v093.i14

Maydeu-Olivares, A. (2013). Goodness-of-fit assessment of item response theory 
models. Measurement 11, 71–101. doi: 10.1080/15366367.2013.831680

Ministry of Education (2011). The Chinese Language Curriculum Criterion for 
Compulsory Education. 2011th Edn. Beijing Normal University Press.

Mo, L. (1992). Study on the characteristics of the development Of Chinese 
reading ability structure of middle and primary school students. Acta Psychol. 
Sin. 24, 12–20.

O’Reilly, T., and Sheehan, K. M. (2009). Cognitively based assessment of, for, 
and as learning: a framework for assessing reading competency. ETS Res. 
Rep. Ser. 2009, i–43. doi: 10.1002/j.2333-8504.2009.tb02183.x

Perfetti, C. A., Landi, N., and Oakhill, J. (2005). “The Acquisition of Reading 
Comprehension Skill,” in The Science of Reading: A Handbook. eds. M. J. 
Snowling and C. Hulme (Blackwell Publishing)

R Core Team (2021). R: The R Project for Statistical Computing [Computer 
software]. Available at: https://www.r-project.org/ (Accessed August 31, 2021).

RAND Reading Study Group (2002). Reading for Understanding: Toward an 
R&D Program in Reading Comprehension. Santa Monica, CA: RAND.

Ravand, H. (2016). Application of a cognitive diagnostic model to a high-stakes 
reading comprehension test. J. Psychoeduc. Assess. 34, 782–799. doi: 
10.1177/0734282915623053

Ravand, H., and Baghaei, P. (2020). Diagnostic classification models: recent 
developments, practical issues, and prospects. Int. J. Test. 20, 24–56. doi: 
10.1080/15305058.2019.1588278

Ravand, H., and Robitzsch, A. (2018). Cognitive diagnostic model of best 
choice: a study of reading comprehension. Educ. Psychol. 38, 1255–1277. 
doi: 10.1080/01443410.2018.1489524

Rizopoulos, D. (2006). Ltm: An R package for latent variable modelling and 
item response theory analyses. J. Stat. Softw. 17, 1–25. doi: 10.18637/jss.
v017.i05

Robitzsch, A., and George, A. C. (2019). “The R package CDM for diagnostic 
Modeling,” in Handbook of Diagnostic Classification Models: Models and 
Model Extensions, Applications, Software Packages, 549–572. Cham: Springer 
International Publishing.

Roussos, L. A., DiBello, L. V., Stout, W., Hartz, S. M., Henson, R. A., and 
Templin, J. L. (2007). “The fusion model skills diagnosis system,” in 
Cognitive Diagnostic Assessment for Education: Theory and Applications. 
eds. J. Leighton and M. Gierl (Cambridge Core: Cambridge University 
Press), 275–318.

Rupp, A. A., and Templin, J. L. (2008). Unique characteristics of diagnostic 
classification models: a comprehensive review of the current state-of-the-art. 
Measurement 6, 219–262. doi: 10.1080/15366360802490866

Sawaki, Y., Kim, H.-J., and Gentile, C. (2009). Q-matrix construction: defining 
the link Between constructs and test items in large-scale reading and listening 
comprehension assessments. Lang. Assess. Q. 6, 190–209. doi: 
10.1080/15434300902801917

Sessoms, J., and Henson, R. A. (2018). Applications of diagnostic classification 
models: a literature review and critical commentary. Measurement 16, 1–17. 
doi: 10.1080/15366367.2018.1435104

Shu, H., Chen, X., Anderson, R. C., Wu, N., and Xuan, Y. (2003). Properties 
of school Chinese: implications for learning to read. Child Dev. 74, 27–47. 
doi: 10.1111/1467-8624.00519

Snow, C. (2002). Reading for Understanding: Toward an R&D Program in 
Reading Comprehension. RAND Corporation. Available at: https://www.rand.
org/pubs/monograph_reports/MR1465.html (Accessed September 20, 2021).

Stanovich, K. E. (1980). Toward an interactive-compensatory model of individual 
differences in the development of reading fluency. Read. Res. Q. 16, 32–71. 
doi: 10.2307/747348

Tatsuoka, K. K. (1990). “Toward an integration of item-response theory and 
cognitive error diagnosis,” in Diagnostic Monitoring of Skill and Knowledge 
Acquisition. eds. N. Frederiksen, R. Glaser, A. Lesgold and M. G. Shafto 
(Hillsdale, NJ: Erlbaum), 453–488.

Templin, J., and Bradshaw, L. (2013). Measuring the reliability of diagnostic 
classification model examinee estimates. J. Classif. 30, 251–275. doi: 10.1007/
s00357-013-9129-4

Templin, J. L., and Henson, R. A. (2006). Measurement of psychological disorders 
using cognitive diagnosis models. Psychol. Methods 11, 287–305. doi: 
10.1037/1082-989X.11.3.287

Toprak, T. E., and Cakir, A. (2021). Examining the L2 reading comprehension 
ability of adult ELLs: developing a diagnostic test within the cognitive 
diagnostic assessment framework. Lang. Test. 38, 106–131. doi: 
10.1177/0265532220941470

234

https://www.frontiersin.org/journals/psychology
www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles
https://doi.org/10.1080/15366360802497762
https://doi.org/10.1111/j.1745-3984.1989.tb00336.x
https://doi.org/10.1111/j.1745-3984.1989.tb00336.x
https://doi.org/10.1177/0265532208097336
https://doi.org/10.1080/15434303.2019.1654479
https://doi.org/10.1080/10888438.2017.1291643
https://doi.org/10.1080/10888438.2015.1007375
https://doi.org/10.1111/j.1745-3984.2011.00160.x
https://doi.org/10.1177/0146621616647954
https://doi.org/10.1111/j.1745-3984.2004.tb01163.x
http://www.pqdtcn.com/thesisDetails/99641D9398A8DB6ACEAE84A5915F5CBF
http://www.pqdtcn.com/thesisDetails/99641D9398A8DB6ACEAE84A5915F5CBF
https://doi.org/10.1z177/0265532215590848
https://doi.org/10.1111/j.1467-9817.2010.01460.x
https://doi.org/10.1111/j.1467-9817.2010.01460.x
https://doi.org/10.1177/0013164416685599
https://doi.org/10.16499/j.cnki.1003-5397.2021.02.010
https://doi.org/10.16499/j.cnki.1003-5397.2021.02.010
https://doi.org/10.18637/jss.v093.i14
https://doi.org/10.1080/15366367.2013.831680
https://doi.org/10.1002/j.2333-8504.2009.tb02183.x
https://www.r-project.org/
https://doi.org/10.1177/0734282915623053
https://doi.org/10.1080/15305058.2019.1588278
https://doi.org/10.1080/01443410.2018.1489524
https://doi.org/10.18637/jss.v017.i05
https://doi.org/10.18637/jss.v017.i05
https://doi.org/10.1080/15366360802490866
https://doi.org/10.1080/15434300902801917
https://doi.org/10.1080/15366367.2018.1435104
https://doi.org/10.1111/1467-8624.00519
https://www.rand.org/pubs/monograph_reports/MR1465.html
https://www.rand.org/pubs/monograph_reports/MR1465.html
https://doi.org/10.2307/747348
https://doi.org/10.1007/s00357-013-9129-4
https://doi.org/10.1007/s00357-013-9129-4
https://doi.org/10.1037/1082-989X.11.3.287
https://doi.org/10.1177/0265532220941470


Li et al. Validating Cognitive Diagnostic Reading Assessment

Frontiers in Psychology | www.frontiersin.org 13 December 2021 | Volume 12 | Article 786612

Toprak-Yildiz, T. E. (2021). An international comparison using cognitive diagnostic 
assessment: fourth graders’ diagnostic profile of reading skills on PIRLS 
2016. Stud. Educ. Eval. 70:101057. doi: 10.1016/j.stueduc.2021.101057

van Dijk, T. A., and Kintsch, W. (1983). Strategies of Discourse Comprehension. 
New York: Academic Press.

von Davier, A., Carstensen, C. H., and von Davier, M. (2008). “Linking 
competencies in horizontal, vertical, and longitudinal settings and measuring 
growth,” in Assessment of Competencies in Educational Contexts. eds. J. 
Hartig, E. Klieme and D. Leutner (New York: Hogrefe & Huber), 121–149.

von Davier, M., and Lee, Y.-S. (eds.) (2019). Handbook of Diagnostic Classification 
Models: Models and Model Extensions, Applications, Software Packages. Springer 
International Publishing. Cham.

Wu, X., Wu, R., Chang, H.-H., Kong, Q., and Zhang, Y. (2020). International 
comparative study on PISA mathematics achievement test based on cognitive 
diagnostic models. Front. Psychol. 11:2230. doi: 10.3389/fpsyg.2020.02230

Xie, M. (2014). The cognitive diagnostic assessment of junior high school 
students’ reading comprehension ability of modern Chinese Prose. [doctoral 
dissertation]. Jiangxi Normal University. Available at: http://cdmd.cnki.com.
cn/Article/CDMD-10414-1015402211.htm (Accessed September 20, 2021).

Yun, J. (2017). Investigating Structures of Reading Comprehension Attributes at Different 
Proficiency Levels: Applying Cognitive Diagnosis Models and Factor  
Analyses. [doctoral dissertation]. The Florida State University. Available at:  

https://www.proquest.com/docview/2017341448/EFEAC191350D4116PQ/14?accoun
tid=8554 (Accessed September 20, 2021).

Zhan, P., Jiao, H., Liao, D., and Li, F. (2019). A longitudinal higher-order 
diagnostic classification model. J. Educ. Behav. Stat. 44, 251–281. doi: 
10.3102/1076998619827593

Conflict of Interest: The authors declare that the research was conducted in 
the absence of any commercial or financial relationships that could be  construed 
as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product that may 
be evaluated in this article, or claim that may be made by its manufacturer, is 
not guaranteed or endorsed by the publisher.

Copyright © 2021 Li, Zhen and Liu. This is an open-access article distributed 
under the terms of the Creative Commons Attribution License (CC BY). The use, 
distribution or reproduction in other forums is permitted, provided the original 
author(s) and the copyright owner(s) are credited and that the original publication 
in this journal is cited, in accordance with accepted academic practice. No use, 
distribution or reproduction is permitted which does not comply with these terms.

235

https://www.frontiersin.org/journals/psychology
www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles
https://doi.org/10.1016/j.stueduc.2021.101057
https://doi.org/10.3389/fpsyg.2020.02230
http://cdmd.cnki.com.cn/Article/CDMD-10414-1015402211.htm
http://cdmd.cnki.com.cn/Article/CDMD-10414-1015402211.htm
https://www.proquest.com/docview/2017341448/EFEAC191350D4116PQ/14?accountid=8554
https://www.proquest.com/docview/2017341448/EFEAC191350D4116PQ/14?accountid=8554
https://doi.org/10.3102/1076998619827593
http://creativecommons.org/licenses/by/4.0/


fpsyg-13-786772 February 7, 2022 Time: 16:14 # 1

TECHNOLOGY AND CODE
published: 11 February 2022

doi: 10.3389/fpsyg.2022.786772

Edited by:
Tao Xin,

Beijing Normal University, China

Reviewed by:
Tour Liu,

Tianjin Normal University, China
Yu Bao,

James Madison University,
United States

*Correspondence:
Kang Chunhua
akang@zjnu.cn

Specialty section:
This article was submitted to

Quantitative Psychology
and Measurement,

a section of the journal
Frontiers in Psychology

Received: 30 September 2021
Accepted: 10 January 2022

Published: 11 February 2022

Citation:
Huijing Z, Junjie L, Pingfei Z and

Chunhua K (2022) Two Test Assembly
Methods With Two Statistical Targets.

Front. Psychol. 13:786772.
doi: 10.3389/fpsyg.2022.786772
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Two Statistical Targets
Zheng Huijing, Li Junjie, Zeng Pingfei and Kang Chunhua*

Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua,
China

In educational measurement, exploring the method of generating multiple high-quality
parallel tests has become a research hotspot. One purpose of this research is to
construct parallel forms item by item according to a seed test, using two proposed item
selection heuristic methods [minimum parameters–information–distance method (MPID)
and minimum information–parameters–distance method (MIPD)]. Moreover, previous
research addressing test assembly issues has been limited mainly to situations in which
the information curve of the item pool or seed test has a normal or skewed distribution.
However, in practice, the distributions of information curves for tests are diverse.
These include multimodal distributions, the most common type of which is the bimodal
distribution. Therefore, another main aim of this article is to extend the information curves
of unimodal distributions to bimodal distributions. Thus, this study adopts simulation
research to compare the results of two item, response, theory (IRT)-based item matching
methods (MPID and MIPD) using different information curve distributions for item pools
or seed tests. The results show that the MPID and MIPD methods yield rather good
performance in terms of both two statistical targets when the information curve has a
unimodal distribution, and two new methods yield better performance than two existing
methods in terms of test information functions target when the information curve has a
bimodal distribution.

Keywords: bimodal distribution, item matching test assembly methods, item response theory, information curve,
parallel forms of tests

INTRODUCTION

Constructing multiple equivalent forms with higher quality to be administered at different
timepoints and locations has always posed a challenge for developers of educational assessments
and licensure tests. The application of automated test assembly (ATA) procedures benefits test
developers in that it dramatically reduces their workload and ensures the quality of parallel test
forms. Over the past two decades, researchers have successfully implemented optimization-based
automated test assembly techniques such as mixed integer programming (MIP; Cor et al., 2009;
Finkelman et al., 2010) and enumerative heuristics (Armstrong et al., 1992; Finkelman et al., 2009;
Brusco et al., 2013).

The MIP methods convert test specifications (the test blueprint) into mathematical expressions
from which a globally optimal solution can usually be derived using available software packages
(Chen, 2014). Heuristics methods following stepwise procedures are of great influence even though
they often yield a locally optimal solution at each step, not a globally optimal one (Chen, 2014).
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Because of the nondeterministic polynomial (NP)-hard nature
of MIP problems, heuristic methods can improve both the
performance of MIP solvers and the quality of solutions
(Chen, 2015).

Mixed integer programming approaches look for the
optimal solution, so time is longer. Besides, many solvers
are commercially available and costly. For users with a weak
mathematical background, MIP approaches are not easily
accessible (Chen, 2014). Heuristic methods avoid the above
shortcomings. Although heuristic methods find the suboptimal
solution, the suboptimal solution is acceptable for test assembly,
so this article focuses on heuristic methods. There are many
heuristics (Armstrong et al., 1992; Finkelman et al., 2009; Brusco
et al., 2013), but most of them like greedy algorithms, random
and sampling algorithms are relatively old algorithms, which
are difficult to meet today’s demand for test papers with diverse
constraints. With the development of test theory, the trend
of test assembly is to assemble high-quality test papers that
meet the constraints under the test theory framework based
on seed test. Minimum information distance method (MID)
and minimum parameters distance method (MPD) are two
classical test assembly methods based on seed test under item
response theory.

When the seed test is available, one of the targets of test
assembly is to make test information curve of generated tests
similar to test information curve of the seed test, because an
important indicator for testing whether two tests are parallel tests,
is the similarity of test information curves of the two tests (Ali and
Van Rijn, 2016). The more similar they are, the more they can
be regarded as parallel tests. The core idea of the MID method
is to match item information curve item by item, so that the
test information curve of the seed test and generated tests will
be identical (Armstrong et al., 1992). Another indicator is the
test characteristic curve of two tests (Ali and Van Rijn, 2016).
Similar test information does not necessarily guarantee that the
test characteristic curve is the same. So the advantage of MID
is that the generated tests are similar to the seed test in terms
of test information curve, but the disadvantage is that the test
characteristic curve is not necessarily similar.

In order to meet both the two indicators, Armstrong
et al. (1992) have attempted to use the MPD method for
directly matching the item’s parameters, because test information
function and test characteristic function are both functions
composed of some parameters, which will inevitably be
decided by parameters.

In general, MID only focuses on test information curve, while
MPD has a wide range of influence. It can be inferred that
MID is better than MPD on test information curve matching
target, while MPD is better than MID on test characteristic
curve matching target (Armstrong et al., 1992). On the basis of
MID and MID, can new test assembly methods be produced to
make both test information curve and test characteristic curve
matching targets achieve more satisfactorily?

Moreover, the majority of previous research addressing test
assembly problems has focused on the condition when the
information curve of the item pool or the reference test
has a unimodal distribution by default (Chen et al., 2012;

Chen, 2014, 2015; Ali and Van Rijn, 2016; Shao et al., 2019).
However, information curves vary greatly in practice, and
they include both unimodal and multimodal distributions. The
bimodal distribution is a simple and typical representative of the
multimodal distribution. Accordingly, the present study explores
both unimodal and bimodal distributions. In sum, this study’s
goal is to develop two novel item, response, theory (IRT)-based
item matching test assembly methods based on the two previously
mentioned methods and then compare the four, using different
information curve distributions for the item pools and seed tests.

The article is organized as follows. First, we briefly review
two extant item matching test assembly methods (the minimum
parameters–distance method and the minimum information–
distance method), explaining their limitations and proposing two
new methods. Subsequently, we introduce information curves
for unimodal and bimodal distributions. Finally, we compare
the proposed methods with the two traditional item matching
methods, using different information curve distributions for the
item pools and seed tests based on several criteria.

TWO TRADITIONAL HEURISTIC
METHODS

Minimum Information Distance Method
The idea of the MID method is to find one item in the item pool
that is most similar with the item in the seed test in terms of
item information curve. The figure given below (Figure 1) is the
information curve of all the items in the item pool (gray curve)
and an item in the seed test (red curve).

According to the image, it is hard to judge which item in the
item pool has the closest information curve to the item in the seed
test, so it is necessary to calculate the information curve distance
(ID) between each item in the item pool and the item in the seed
test to find the minimum ID (MID), and this is in line with the
original intention of the MID method to assemble tests.

ID2
ij =

M∑
m=1

ωm
(
fi (θm)− fj (θm)

)2

FIGURE 1 | Item information function.
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The information distance is estimated by the following equation:
where IDij is the information distance between item i (in the seed
test) and item j (in the item pool). fi(θ) is the information for item
i at the ability level θ and fj(θ) is the information for item j at the
ability level θ. M is the number of the ability levels of interest, ωm
is weight coefficient and

∑M
m=1 ωm = 1, ωm > 0, ωm is selected

by the practitioner (Armstrong et al., 1992). The ability level θ

selected in this study are –2, –1, 0, 1, 2, and the weight of each
ability point is 0.2, the same for both.

The IRT model used in this study is a three-parameter logistic
model, so the calculation formula for item information curve f (θ)
is as follows:

f (θ) =
1.72
∗ a2
∗(1− c)

(c+ e1.7a(θ−b)) (1+ e−1.7a(θ−b))
2

where a, b and c are discrimination, difficulty, and guessing
parameters of an item, respectively.

The core objective of the MID method is to minimize the
differences in information statistics at crucial ability points
between the assembled test forms and the seed test, which directly
meets the criterion of test information matching.

Minimum Parameters Distance Method
In addition to matching the test information curve (TIC) of the
seed test, matching the test characteristic curve (TCC) of the seed
test is another important target of test assembly (Ali and Van
Rijn, 2016). Constraining the test information curve to be equal
does not necessarily guarantee similarity of the test characteristic
curve (Ali and Van Rijn, 2016). It can be concluded that the MID
method can only meet the matching requirements of TIC but
cannot meet the matching requirements of TCC.

The IRT model used in this study is a three-parameter logistic
model, so the calculation formula for item characteristic function
is as follows:

P(θ) = c+
1− c

1+ e[−1.7a(θ−b)]

where a, b, and c are discrimination, difficulty, and guessing
parameters of an item, respectively.

It can be concluded from the calculation formulas of item
characteristic curve (ICC) and item information curve (IIC) that
they are both functions of three parameters. The idea of the MPD
method is to find one item in the item pool that is most similar
with the item in the seed test in terms of item’s parameters. Tests
that match based on collective indices such as test, information,
function (TIF) may not be presumed to exhibit stable, similar
properties any more than can those based on item matching.
Tests built by matching item parameters (MIP) directly capture
the main properties of the items in the seed test, thereby ensuring
the satisfaction of all cumulative indices, including TIFs and
TCCs (Chen, 2015).

The figure below (Figure 2) is the item’s parameters of all
the items in the item pool (gray dot) and one item in the
seed test (red dot).

According to the image, it is difficult to judge which item in
the item pool has the closest item’s parameters to the item in

FIGURE 2 | Scatter plot of a- and b-parameters.

the seed test, so it is necessary to calculate the item’s parameters
distance (PD) between each item in the item pool and the item in
the seed test to find the minimum PD (MPD), and this is in line
with the original intention of the MPD method to assemble tests
(Wang et al., 2016). The IRT model in this study is a commonly
used three-parameters logistic model. The PD is estimated by the
following equation:

PD2
ij = ϕ1

(
ai − aj

)2
+ ϕ2

(
bi − bj

)2
+ ϕ3

(
ci − cj

)2

where PDij is the parameter’s distance between item i and item
j; ai, bi and ci are the discrimination, difficulty and guessing
parameters, respectively, of item i in the seed test; and aj, bj,
and cj are the discrimination, difficulty, and guessing parameters,
respectively, of item j in the item pool.

ϕ1, ϕ2, and ϕ3 are weight coefficient. ϕ1 ≥ 0, ϕ2 ≥ 0, ϕ3 ≥ 0
and ϕ1 + ϕ2 + ϕ3 = 1. They are selected by the practitioner
(Armstrong et al., 1992; Chen, 2015; Wang et al., 2021). Different
parameters have different effects on the test information function
and test characteristic function. Taking the three-parameters
logistic model as an example, for test information function,
the degree of discrimination and guessing parameters have a
greater impact on it, while for test characteristic function, the
degree of discrimination has the greatest influence, followed
by the difficulty and guessing parameters. Therefore, when
calculating the parameter distance, different weights are generally
given to the parameters. Chen (2017) found that these weights
(ϕ1 = 0.5, ϕ2 = 0.25, and ϕ3 = 0.25) were used to represent the
relative importance of a parameter to the information function
after examination of the TIC and TCC resulting from the
unweighted and weighted versions. The weights used in this
study are the same.

Test Assembly Procedure
1. Randomly select an item in the seed test.
2. Choose five items (the number of items is determined

by the number of parallel tests) from the item pool
according to MID or MPD.
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FIGURE 3 | Procedure 1–3.

3. Five items are randomly assigned to five parallel tests and
calculate the sum of the distances between the selected
items of the five parallel tests and the seed test.

4. Delete the selected item from the item pool to prevent
repeated selection.

5. Randomly select another item in the seed test again
and choose five items from the new item pool
according to MID or MPD.

6. The five items are allocated to five parallel tests based
on the sum of distances (procedure three). The principle
is that the greater the sum of the distances of parallel
paper, the more priority items with a smaller MID or MPD
are to be assigned to it, so as to reduce the difference
between parallel tests.

7. Repeat 4–6 until all the items in the seed test have been
selected.

As shown in the figure above (Figure 3), the upper left corner
is the distance matrix between the item in the item pool (row)
and the item in the seed test (column); the lower left corner is
the distance matrix of five parallel tests; the lower right corner
calculates the sum of the current distances of each parallel test.

The first step is to randomly select one item in the seed test
(item 3 in the seed test), the second step is to find the five
items with the smallest d value in the item pool (item 2, item
5, item 19, item 155, and item 160 in the item pool), and the
third step is randomly assigned to five parallel tests, and the total
distance is calculated.

The fourth step is to randomly select one item in the seed test
(item 6). The fifth step is to find the five items with the smallest
value of d in the item pool (item 1, item 66, item 68, item 142,
and item 149 in the item pool). The sixth step is to assign five

items. The total distance calculated in the third step is allocated
to the five parallel tests in reverse order (the smaller distance item
is assigned to the test with larger total distance) to reduce the
difference between parallel tests (Figure 4).

Repeat steps 3–6 until all items in the seed test
have been selected (Figure 5).

Two New Heuristic Methods
The MID method aims to make generated tests similar to the
seed test in terms of the test information curve, but fails to take
test characteristic curve into account. MPD method of directly
matching parameters expects to achieve two targets, but the result
of test information curve is inferior to method MID. The two
methods have their own strengths, so why not combine the two
distances together to construct a new distance index to assemble
tests?

Minimum
Parameters–Information–Distance
Method
In order to achieve the best result of TIF and TCC target
matching, the two methods are combined when constructing the
distance moment. The parameters–information–distance (PID)
is estimated by the following equation:

PID2
ij = (1− λ) ∗ (PDij)+ λ ∗ (IDij)

λ =
s− 1

test_length

where PIDij is the combined distance between item i (in the seed
test) and item j (in the item pool); PDij is the parameter’s distance
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FIGURE 4 | Procedure 4–5.

FIGURE 5 | Procedure 7.

between item i and item j; IDij is the information distance
between item i and item j; λ is the adjustment factor, and s is the
number of items that have been selected so far.

The progressive method of Revuelta and Ponsoda
(1998) is used as a template for our holistic item selection
index. The role of λ is to select and generate papers in
the previous stage in order to highlight the advantages
of the MPD method and match the TCC. As s increases,
it becomes larger and 1-s decreases, highlighting the

advantages of the MID method and matching the TIC at
the later stage.

Minimum
Information–Parameters–Distance
Method
It remains unknown whether the two methods’ sequence affects
test assembly results. It is feasible to reverse the order, producing
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a minimum information–parameters–distance (MIPD) method
for meeting a variety of practical demands. At the first stage, the
purpose of selecting items is to obtain smaller TIC differences,
and during the next stage, the aim is to minimize parameters’
distances. The procedure is exactly the opposite of the MPID
method. The information, parameters, and distance (IPD) is
estimated by the following equation:

IPD2
ij = (1− λ) ∗ (IDij)+ λ ∗ (PDij)

λ =
s− 1

test_length

The meaning of the letters in the formula is the same as above.

Bimodally Distributed Test Information
Curves
Bimodal distributions often appear in the fields of biology, life
sciences, geology, and so on. For example, in a clinical context,
the highest incidence of fibrolamellar hepatocellular carcinoma
(FLC) occurs between ages 15 and 19 and between ages 70 and 74;
that is, the curve representing the age of onset is bimodal (Ramai
et al., 2021). Of course, bimodal distributions are not uncommon
in the fields of psychology and pedagogy. Bimodal distributions
appear in many psychological tests (Steinley and McDonald,
2007). This often occurs with education examinations. Tang
(2018) has found that students’ English subject test scores in each
semester exhibit abnormal bimodal distributions (based on the
Academic Quality Monitoring and Evaluation Department).

Different disciplines have different definitions of bimodal
distributions. In this article, we are referring to a distribution
showing two obvious peaks—that is, a mixed distribution
composed of two unimodal distributions—where the two peaks
need not be equal.

As we can see from the formula of the item information
function, it is not surprising that the item information curve has
one peak, such as that shown in Figure 6. An item measures the
ability with greatest precision at the ability level corresponding to
the item’s difficulty parameter. The amount of item information
decreases as the ability level departs from the item difficulty and
approaches zero at the extremes of the ability scale.

FIGURE 6 | Item information function (a = 1, b = 0).

FIGURE 7 | Unimodally distributed test, information, function (TIF).

FIGURE 8 | Uniformly distributed test, information, function (TIF).

FIGURE 9 | Bimodally distributed test, information, function (TIF).

Because a test is used to estimate an examinee’s ability, we can
also obtain the amount of information yielded by the test at any
ability level. A test is a set of items; therefore, the test information
at a given ability level is simply the sum of the item information
values at that level. Consequently, the test information function
is defined as

I (θ) =

J∑
j=1

Ij (θ)

where I(θ) is the amount of test information at ability level θ, Ij(θ)
is the amount of information for item j at ability level θ, and J is
the number of items in the test.
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TABLE 1 | MSDTIC.

Unimodal
(D = 0)

Unimodal
(D = 1)

Bimodal
(D = 2)

Bimodal
(D = 3)

MPD 0.401 0.408 0.426 0.438

MID 0.302 0.331 0.363 0.406

MPID 0.296 0.315 0.339 0.348

MIPD 0.286 0.309 0.335 0.350

The test information function is an extremely useful feature
of item response theory. It provides a metric of how well the
test is doing in estimating ability over the range of ability scores
(Xiong et al., 2002). While the ideal test information function
often may be a horizontal line (Figure 7, n represents test length),
it may not be optimal for meeting specific demands. For example,
if one aims to construct a test to award scholarships, this ideal
function may not be appropriate. In this situation, one aims
to measure ability with considerable precision at ability levels
near that used to separate those who will receive the scholarship
from those who will not. The best test information function in
this case would have a peak at the cutoff score (Figure 8; Baker
and Kim, 2017). Other specialized uses of tests could require
different test information functions. For example, for a test
provided to award scholarships at several levels, the satisfactory
test information function would have multiple peaks at the cutoff
scores (a multimodal distribution). The bimodal distribution is
one of the simplest types (Figure 9).

Nevertheless, to our knowledge, there is little research
specifically on the information curves of bimodal distributions
in the context of automated test assembly. In some educational
measurement, not only is it required to have a demarcation
score with small error and strong discrimination at the boundary
between qualified and unqualified, but also hope to have another
demarcation score with small error and strong discrimination
at the boundary between excellent and non-excellent. This
requires that the target state of the test information function
be designed as a bimodal curve (Chen and Wang, 2010). It is
undoubtedly worthwhile to investigate the performance of test
assembly methods based on the item pool information curves of
bimodal distributions.

METHOD

The goal of the simulation study was to investigate the
performance of four item selection methods under various
conditions:

Pool size, test length, and number of forms: The size of the
item pool was 540, the test length was 30, and the number of
parallel tests was 5.

Item parameters: Each item was subject to 3PLM, the
discrimination parameter had a normal distribution, with a mean
value of 1 and a standard deviation of 0.3; the difficulty parameter
had a bimodal distribution, and the guessing parameter had a [0,
0.3] uniform distribution.

Non-statistical constraints. The items in the item pool covered
three content areas A, B, and C, whose proportions of the total
content were 40, 30, and 30%, respectively. The seed test consisted
of 30 items (content proportions identical to this in item pool).

Variables for bimodal curve of test information. The most
common bimodal distribution is a combination of two normal
distributions. Xu et al. (2013) first used Excel to randomly
generate two normally distributed datasets with a seed size of
1,000 and then extracted n × 1,000 random datapoints from
the first normal distribution and 1,000 – n × 1,000 random
datapoints from the second normal distribution (n is a ratio
ranging from 0 to 1). They extracted random datapoints from
the seed and then created a scatterplot and a histogram based
on the extracted data to obtain the bimodal distribution’s shape.
The procedure for producing bimodally distributed TIC is similar
to the preceding process, except it is a combination of two
unimodally distributed TICs. Different values of a will generate
bimodal distributions of different shapes. In Kim and Lee’s (2020)
study, the ratios of extraction from the normal component θ ∼

N (–1.8, 0.8) and the normal distribution θ ∼ N (0.8, 0.8) were
3:7, 5:5, and 7:3, composing three different bimodal distributions.
These three ratios can effectively represent the different forms
of the bimodal distribution. Therefore, in this study, we set
the mixing ratios of the bimodally distributed TICs to 3:7,
5:5, and 7:3. In addition to the mixing ratio, the horizontal
spacing between the double peaks will also affect the shape of
the bimodal curve. For this reason, we included the bimodal
horizontal distances of the TICs in our estimates, which we set
to 0, 1, 2, and 3. Simply put, the main variables of bimodal TICs
observed in this study were the bimodal mixing ratio and bimodal
horizontal spacing.

We repeated the test for R (1,000) times, each time randomly
generating the item pool parameters and seed tests that met the
preceding requirements, using the four item selection methods
to generate 5 parallel test papers. To accommodate the content
constraints of the test, we only directly determined the most
matching items from each content sub-item pool and did not use
weighting factors.

Evaluation Criteria
1. Mean square deviation indicator of test information

function (MSDTIC)
We used this indicator to evaluate the difference between
the assembled test and the seed test in terms of their TICs.
We calculated it using the following formula:

MSDTIC = (

N∑
n=1

(I(θn)− Is(θn))
2)/N

where I(θn) and Is(θn) represent test information of the
assembled test and the seed test at ability point θn (n = 1,
2,..., N), respectively. The number of capability nodes N
was set to 61, the capability range was –3 to 3, and the
step size was 0.1.

2. Mean square deviation indicator of test characteristic curve
(MSDTCC)
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FIGURE 10 | Test information curve (D = 0).

FIGURE 11 | Test information curve (D = 1).

Frontiers in Psychology | www.frontiersin.org 8 February 2022 | Volume 13 | Article 786772243

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-13-786772 February 7, 2022 Time: 16:14 # 9

Huijing et al. Automated Test Assembly

FIGURE 12 | Test information curve (D = 2).

FIGURE 13 | Test information curve (D = 3).
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TABLE 2 | MSDTCC.

Unimodal (D = 0) Unimodal (D = 1) Bimodal (D = 2) Bimodal (D = 3)

MPD 0.227 0.232 0.249 0.268

MID 0.255 0.288 0.368 0.485

MPID 0.193 0.208 0.233 0.247

MIPD 0.197 0.215 0.233 0.263

This indicator was used to evaluate the difference between
the TCCs of the assembled test and the seed test. We
calculated it using the following formula:

MSDTCC = (

N∑
n=1

(C(θn)−Cs(θn))
2)/N

where C(θn)and Cs(θn)represent TCCs of the assembled
test and the seed test at ability point θn (n = 1, 2,...,
N), respectively. The number of capability nodes N was
set to 61, the capability range was –3 to 3, and the
step size was 0.1.

RESULTS

The mixing ratio of the bimodal distribution has little effect on
the results, so to avoid cluttering the presentations, the following
only shows the results with a bimodal mixing ratio of 3:7. The
Supplementary Appendix presents the rest of the results for
interested readers.D represents the two peaks’ horizontal spacing.

Test Information Curve
Table 1 lists the mean values for the mean square deviation of the
five forms from the target test information at 61 ability points for
all test assembly methods.

As Table 1 illustrates, when the TIC has a unimodal
distribution, the MID method performs better than the MPD
methods and the MPID and MIPD methods achieve the same
MSD as the MID method. Furthermore, the MPD method rivals
the MID methods gradually and the MPID and MIPD method
perform best when the TIC has a bimodal distribution.

In sum, the MPID and MIPD method—regardless of the
bimodal horizontal distance—perform the best among all the
four methods. The performance of the MID method when the
TIC has two peaks is not as good as when the TIC has a single
peak, indicating that the MPID and MIPD method (especially
the former) are much more suited for use with bimodally
distributed TIC than is the MID method. The MPD method has
no advantage in TIC.

van der Linden (2005) argues that if the information function
curves of the two tests are very similar—that is, when the
difference in the amount of information between the assembled
test and the seed test at different abilities is small—then
the two tests can be considered statistically equivalent. The
proximity of the TCCs can also be used as an evaluation
criterion for the quality of the assembled test. Plotting the
test information function and test characteristic curve for the
assembled test and the seed test, one can intuitively judge
the pros and cons of the item selection methods (Wang
et al., 2021). Due to limited space, we show only some of
the results here.

Figures 10–13 show the test information curves resulting
from the four methods.

FIGURE 14 | Test characteristic curve (D = 0).
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FIGURE 15 | Test characteristic curve (D = 1).

FIGURE 16 | Test characteristic curve (D = 2).
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FIGURE 17 | Test characteristic curve (D = 3).

Test Characteristic Curve
Table 2 lists the mean values for the mean square deviation of the
five forms from the target test characteristic curve at 61 ability
points for all test assembly methods.

Regarding the MSDTCC, the MPD method shows its strength
of lowering the disparity between target test and assembly
tests, resulting in smaller MSDTCC and outperforming the
other methods. The MPID and MIPD methods’ performance
is close to that of MPD. Obviously, the MID method has no
advantage in TCC.

Figures 14–17 show the test characteristic curves resulting
from the four methods.

DISCUSSION AND CONCLUSION

As far as the two existing methods are concerned, MPD
has advantages in matching TCCs, while MID is superior
in matching TICs. Two new methods combining the two
methods (the MPID and MIPD method) can not only better
match TCCs but also TICs. Although the new method only
combines the original method with progressive coefficients,
we contend that this research may help test agencies needing
to generate multiple test forms for the sake of maintaining
test security when administering multiple tests at various
locations and times.

There are several reasons for our argument. First, it is
undeniable that the two indicators are very important, and
they have distinct meanings. The similar TCC results hold

for forms that are similar in difficulty; test forms with the
same TIF are similar in terms of precision (Ali and Van
Rijn, 2016). Hence, we expect that all two indicators will be
satisfactory (Chen, 2014). Then, the advantages of the new
method are especially reflected in the bimodal distribution
conditions. The MID method is susceptible to distribution.
Under the bimodal condition, the TCCs matching effect of
the two new methods is significantly better than the existing
method. Additionally, new methods separating item selection
phase into several stages and applying various methods in
each stage offer a simple perspective on how to integrate
diverse methods’ merits. Finally, this study’s consideration of the
different distributions of test information closely matches the
reality of test data.

This study has several limitations. The MPID and MIPD
methods presented here are simplified versions, and further
modification would make them more practical. Other important
issues must be addressed in future research, including the
setting of λ parameter, to take full advantage of each approach
(Liu and Chang, 2018). In addition, it is common knowledge that
the ability point specifications can influence the MID method’s
results. The issue of whether ability points (–2, –1, 0, 1, 2) suitable
for information of unimodal distributions are as appropriate for
bimodal distributions deserves additional attention (Chen, 2015).
Finally, the item, response, theory (IRT)-based ATA methods
proposed in this study focus on information curves of bimodal
distributions. Whether the results can be extended to test designs
with information curves of other multimodal distributions needs
further investigation.
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Multi-level teaching has been proven to be more effective than a one-size-fits-all learning 
approach. This study aimed to develop and implement a multi-level remedial teaching 
scheme in various high school classes containing students of a wide range of learning 
levels and to determine its effect of their learning. The deterministic inputs noisy and gate 
model of cognitive diagnosis theory was used to classify students at multiple levels 
according to their knowledge and desired learning outcomes. A total of 680 senior high 
school students from central provinces in China participated in the initial cognitive 
diagnostic test, and 1,615 high school sophomores from seven high schools in China 
participated in a formal cognitive diagnosis test. Thirty-six high school students from 
Southwestern China participated in the think-aloud protocols, and 258 seniors from three 
high schools in southwest China participated in the remedial teaching experiment. Through 
an analysis of students’ think-aloud protocols, cognitive errors of students at all levels 
were determined, and multi-level remedial teaching programs were designed to address 
these common cognitive errors. The remedial teaching programs were then implemented 
in three schools and compared with a control group. The results indicated that the students 
in the experimental group showed a more significant improvement. In this study, the steps 
of designing multi-level remedial teaching include assessment, classification, and preparing 
a teaching scheme, which are feasible and can have remarkable teaching effects. This 
process can be used for reference by teachers of various subjects.

Keywords: multi-level teaching, remedial teaching, electromagnetic induction, DINA model, cognitive diagnostic 
assessment

INTRODUCTION

Psychometry-based cognitive diagnostic assessment (CDA) is a method that can be  used by 
frontline teachers to determine students’ learning outcomes and classify them based on their 
diagnostic results for more personalized remedial teaching. At the core of the new generation 
of test theory are cognitive diagnosis models (CDMs)—models which are able to measure 
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more detailed information about participants’ knowledge, skills, 
and strategies. Currently, research on cognitive diagnosis has 
received worldwide attention from researchers, teachers, and 
evaluators alike, with a number of studies having implemented 
individualized remedial teaching for students based on 
diagnostic classifications.

One study by Wang et  al. (2021) applied the CDM to 
evaluate and classify urban and rural middle school students 
based on their mastery of a topic on linear equations. Remedial 
teaching based on cognitive results was implemented for the 
test group, while the traditional “answer-explanation” style of 
remedial teaching was implemented for the control group. 
Results showed that remedial teaching based on cognitive 
diagnosis results significantly improved the learning effect. 
Similarly, Ren et al. (2021) used the CDM to learn about the 
poorly mastered attributes of “data distribution characteristics” 
in teaching math to middle schoolers and found that verified 
cognitive diagnoses can be  used for targeted interventions to 
improve students’ abilities more effectively. Consistent with this, 
Fan et al. (2021) proposed an integrative framework of diagnosis 
which connects CDA to feedback and remediation, and they 
empirically demonstrated the application of the framework in 
an English as a Foreign Language (EFL) context.

These studies suggest that CDA can effectively diagnose 
students’ learning outcomes and be used to conduct personalized 
remedial teaching. However, the basis of remedial teaching in 
these studies was only whether or not attributes were mastered, 
but the level of mastery of attributes was not graded. With 
this being said, in order to be  truly personalized, the basis 
for classification in remedial teaching should not only 
be  dependent on whether the attribute is mastered, but also 
on the mastery level of knowledge, skills, and cognitive processes. 
Hence, in this study, multi-level remedial teaching refers to 
the remedial teaching for students based on their respective 
levels of knowledge or skills mastery for a specific topic after 
they have learned it in class.

Multi-level teaching and learning are widely regarded as 
an important way of improving teaching efficiency. In recent 
years, many studies have designed and developed methods 
to stratify students’ learning outcomes, with many of these 
methods in previous literature being based on computer 
algorithms (He et  al., 2016; Zhang et  al., 2016). For instance, 
Wu (2019) used CDA to classify fourth grade students based 
on their learning scores in order to provide personalized 
online remedial guidance, and results showed that the online 
personalized tutor program was superior to the traditional 
tutorial program. You et al. (2019) applied CDA’s deterministic 
inputs noisy and gate (DINA) model to develop a cognitive 
diagnostic system for Chinese learning, which was applied 
in all subjects of an experimental high school to provide 
personalized learning feedback for students and teachers. The 
study found that through this the efficiency and self-efficacy 
of students improved. Additionally, Shute et al. (2008) developed 
a multivariate probit model for CDA and applied it to the 
data from the Adaptive Content with Evidence-Based Diagnosis 
(ACED) evaluation study to verify the validity of the new 
model. These aforementioned studies developed adaptive 

learning systems based on cognitive CDA. However, to 
be  applied in schools, this requires the purchase of hardware 
and software which may be  difficult to use for some 
frontline teachers.

Computer-based adaptive learning is a process dependent 
on the use of a technological device, whereas teacher-student 
interaction is much more common in Chinese high schools. 
Therefore, our study provides frontline teachers with examples 
of multi-level teaching designs based on CDA without the 
need for large hardware or paid software services and integrates 
experiments and discussions into multi-level remedial teaching 
that human-computer interactions cannot provide.

Most of the abovementioned CDA application cases in 
educational practice are conducted in subjects such as 
mathematics (Groß et al., 2016) and second foreign languages 
(Liu et al., 2013), but its application in the sciences have not 
yet been thoroughly studied. Zhan et  al. (2019b) developed a 
new CDM which realized the assessment of scientific literacy 
and filled the gap in the application of CDA in scientific 
disciplines. Practical data from an eighth-grade physical circuit 
topic were used to examine the performance of the newly 
developed model (Zhan et al., 2019a). However, there is currently 
almost no empirical remedial teaching research on applying 
CDMs to the physics curriculum in high school education.

The present study aimed to design and implement a micro 
multi-level remedial teaching plan based on CDA that is easy 
to use in the classroom-setting and which may be  applied to 
high school physics remedial teaching plans. Electromagnetic 
induction is a very important chapter in high school physics. 
It is inherently logical and difficult to learn. This study takes 
the topic of electromagnetic induction as an example. This 
study intended to solve the following problems:

 1. How can multi-level classifying be  performed for students 
learning a certain topic?

 2. How can a multi-level remedial teaching plan be  developed 
according to the created classifications?

 3. Does the implementation of multi-level remedial teaching 
effectively improve students’ learning results?

MATERIALS AND METHODS

In this study, CDM was used to assess and classify students’ 
learning of electromagnetic induction topics in high school. 
To design multi-level remedial teaching, think-aloud protocols 
of students at different levels were collected to analyze their 
thinking and determine common cognitive errors of students 
at each level. Multi-level remedial teaching plans were then 
designed. After the multi-level remedial teaching experiment, 
the students completed a post-test, which was used to test 
the intervention effect. The research process is shown in Figure 1.

Assessment and Classification
The CDM was used to assess students’ learning on electromagnetic 
induction. Based on the results of the assessment, the students 
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were classified according to their level of learning of concepts 
and rules.

Multi-level Attributes
For the hierarchical diagnostic classification of learning result, 
attributes will be  identified by two dimensions: knowledge 
content and learning level.

In this study, to determine the attributes, five physics teachers 
with over 10 years of teaching experience in high school physics 
were invited to analyze the content and the learning result levels 
determined based on the questions in the question bank. The 
bank contained a total of 53 multiple-choice items on electromagnetic 
induction from five recent versions of the Chinese Higher Education 
Entrance Examination (2014–2018) and academic level examination 
review papers. According to the teachers, the question bank 
contents related to the topic of electromagnetic induction were 
the following: (1) electromagnetic induction phenomenon, (2) 
conditions to generate induced current, (3) Lenz’s law, (4) the 
right-hand rule, and (5) Faraday’s law. These concepts and laws 
comprise the first dimension of attributes (i.e., knowledge content).

Based on Benjamin Bloom’s research, Anderson et al. (2001) 
divided learning results in the cognitive domain into several 

progressive levels based on explicit behaviors that correspond 
to the degree to which students understand the subject. The 
learning results in the cognitive domain were divided into six 
levels: knowledge, comprehension, application, analysis, synthesis, 
and evaluation. In line with this, Lee et  al. (2011) divided 
the cognitive dimensions measured in the math items of Trends 
in Mathematics and Science Study (TIMSS) test into three 
levels: knowing, applying, and reasoning. In the present study, 
the five experts determined that the relevant questions could 
be  divided into four levels according to the learning results 
of the examination: (1) knowledge, (2) understanding, (3) 
application, and (4) integrated application.

Knowledge
If students were able to correctly answer questions that examine 
concepts, content of laws, and corresponding physical phenomena, 
their learning results were defined as “knowledge.” For example, 
the following question examines the attribute “electromagnetic 
induction phenomenon: knowledge.”

Which of the following phenomena is electromagnetic induction?
A. A current is subjected to a force in a magnetic field.
B. There is a magnetic field around the current.

FIGURE 1 | The multi-level remedial teaching research process.
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C. A soft iron bar can be  magnetized by a magnetic field.
D. The changing magnetic field causes an electric current to 

be  generated in a closed conductor.

Understanding
If students were able to correctly answer questions that use 
laws for calculation and reasoning, their learning results were 
defined as “understanding.” For example, the following question 
examines the attribute “conditions to generate induced current: 
understanding.”

Which situation can induce current?
A. The conductor moves in a cutting magnetic field line.
B. A part of the closed circuit moves parallel to the magnetic field.
C. A part of the closed circuit cuts the magnetic field lines 

in a magnetic field.
D. None of this is true.

Application
If students were able to correctly answer questions regarding 
two-related physical processes and two-related physical objects 
which do not involve knowledge beyond electromagnetism, 
their learning results were defined as “application.” For example, 
the following question examines the attribute “Lenz’s law: 
application.”

As shown in the Figure  2, two coils are wound around an 
iron core. One coil is connected to the switch and the power 
supply, and the other coil is connected in a loop with a straight 
wire placed horizontally in a north–south direction. A magnetic 
needle is suspended directly over the straight wire and stands 
still when the switch is off. Which choice is true?

A. At the instant after the switch is on, the N pole of the 
needle points inward to the paper.

B. After the switch is on and held for a period of time, the 
N pole of the magnetic needle points inward to the paper.

C. After the switch is on and held for a period of time, the 
N pole of the magnetic needle points out of the paper.

D. When the switch is closed for a period of time and then 
opened, the N pole of the magnetic needle points outward to 
the paper.

Integrated Application
If students were able to correctly answer questions regarding 
more than two-related physical processes and more than 
two-related physical objects which involve knowledge beyond 
electromagnetism, their learning results were defined as 
“integrated application.” For example, the following question 
examines the attribute “Faraday’s law: integrated application.”

As shown in the Figure  3, the smooth parallel metal with 
no resistance and spacing of L is horizontally placed in the 
uniform magnetic field with a magnetic induction intensity of 
B and direction of vertical downward, and the left end of the 
rail is connected with a resistance R. The metal bar MN with 
mass m and resistance R is placed on the rail and moves from 
rest under the action of the horizontal external force F perpendicular 
to the metal bar. The relationship between the F and the speed 
v of the metal bar is F F kv= +0  (F0 and k are constant).  
The metal bar and the rail are always vertical and in good 
contact. The induced current in the metal bar is i, the ampere 
force is FA, the voltage at both ends of the resistance R  
is UR, and the power of the induced current is P. Which graph 
might correctly represent the trend of physical quantities over 
time? (The options are shown in Figure  3).

On average, the consistency among the five experts for the 
knowledge content and learning result of each question was 83.0%. 
Based on the cognitive attributes marked by the experts, if three 
or more experts agreed on the level of learning results examined 
by the item, they were included as cognitive attributes. Ultimately, 
12 attributes were determined, which are shown in Table  1.

Concepts or rules that were not within the examination 
scope of college entrance exams and academic achievement 
tests (i.e., higher levels) were considered beyond the scope of 
this study and were thereby not included.

Preparing the Test
A Q-matrix which conforms to the goal of cognitive diagnostic 
was developed prior to compiling the cognitive diagnostic test. 
Based on the principle that each attribute must be  tested at least 
thrice, the Q-matrix was developed for two sets of parallel tests 
(Supplementary Table S1). Using the cognitive attributes and 
question bank items, two sets of 36 items which follow the 
measurement patterns were selected from the question bank for 
Form A (pre-test) and Form B (post-test): Electromagnetic Induction 
Cognitive Diagnostic Test (EICD). In the EICD test, the items 
that examined the attributes of “knowledge” were fill-in-the-blank 
questions; the other items were multiple-choice questions.

To test the EICD’s quality, 680 senior high school students 
were recruited by convenience sampling to participate in the 

FIGURE 2 | The circuit of example question that examines the attribute 
“Lenz’s law: application.”
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initial test: 442 answered Form A and 238 answered Form B. 
Before the test, the students and their guardians provided 
written informed consent for the study. The students were 
told that participation was voluntary and that they were allowed 
to withdraw at any time. In addition, participants were also 
told that the tests must be  accomplished independently and 
that their results will not be part of their physics class evaluation.

The overall quality of test and items was judged according 
to Classical Measurement Theory (CTT). The reliability of 
the EICD test (initial) was measured by the CTT-based 
Cronbach’s α coefficient. The CTT score is calculated as 2 
points for correct answers at the “knowledge” level items, 3 
points to the “understanding” level items, 4 points to the 
“application” level items, and 5 points for the “integrated 
application” level items. The α coefficients of EICD test (initial) 
Forms A and B were 0.7634 and 0.7364, respectively. Except 

for Item 3 and Item 11, the difficulty coefficient of the items 
was basically consistent with the learning level dimension of 
the attributes examined by the item. The difficulty coefficients 
ranged from [0.17, 0.97]. Item 3 and Item 11 were both 
“knowledge” level items, but the difficulty coefficients indicate 
that they were too difficult. Except for Item 11, the discrimination 
of items is between [0.21, 1.0]. Items with a difficulty coefficient 
above 0.4 accounted for more than half of the total items. 
Item 3 and Item 11 were replaced by items of the same level 
of assessment in the item bank. So far, after the initial test, 
the quality of the EICD test had been optimized, and the 
EICD test (formal) had been developed, with 36 items for 
each of the Form A and Form B, which are used for the 
formal test.

Formal Test
Because CDA requires a sufficient number of participants, 
approximately 1,000 responses were needed prior to form the 
response matrix with the test of the teaching experiment. In 
this section, the method for diagnostic classification will 
be  discussed.

Participants
Using stratified sampling, 1,615 senior high school students 
from seven high schools in Eastern, Northwest, Southwest, 
and Central China participated in the formal cognitive diagnostic 
test, which was conducted in June and July 2019. In total, 
861 participants effectively completed Form A, while 849 
participants effectively completed Form B. Of these, 95 
participants completed both Form A and B. Participants were 
given 1 h to complete the test. Written informed consent was 
provided by the participants and their guardians prior to 
the study.

FIGURE 3 | The circuit and options of example question that examines the attribute “Faraday’s law: integrated application.”

TABLE 1 | Multi-level attributes.

Attributes Detailed description

EIP Electromagnetic induction phenomenon: 
Knowledge

CIC1 Conditions to generate induced current: 
Knowledge

CIC2 Conditions to generate induced current: 
Understanding

LL1 Lenz’s law: Knowledge
LL2 Lenz’s law: Understanding
LL3 Lenz’s law: Application
RHR1 Right-hand rule: Knowledge
RHR2 Right-hand rule: Understanding
FL1 Faraday’s law: Knowledge
FL2 Faraday’s law: Understanding
FL3 Faraday’s law: Application
FL4 Faraday’s law: Integrated application
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Data Analysis
The quality of the EICD test(formal) was measured by CTT 
score. To examine whether the EICD test (formal) can reflect 
the real learning situation of students, 267 participants that 
completed the same Academic Level Test (2019 High School 
Academic Level Test in Yunnan Province) were selected. The 
grades of the Academic Level Test were A, B, and C from 
high to low. Correlations between Academic Level Test grades 
and EICD average scores were compared.

In order to explore whether Form A and B meet the 
requirements of parallel papers, the mean (M), standard deviation 
(SD), item difficulty (P), and item discrimination (D) of students’ 
scores in Form A and B were compared.

Model Selection
Selecting an appropriate CDM was a necessary condition for 
obtaining reasonable diagnostic feedback. In this study, because 
the attributes correspond to specific mastery levels, students were 
considered to have mastered an attribute (attaining a commanded 
mastery level) if the items were answered correctly. The hierarchical 
structure between attributes was not considered. Therefore, the 
DINA model and the GDM model, which were both 
non-compensatory and also do not consider hierarchical structure, 
were selected as alternative models in this study. The relative 
fitting parameters showed that the theoretical relative fitting degree 
of GDM model is the better fit (AIC  =  32673.6, BIC =  33392.1), 
than DINA model (AIC =  39938.5, BIC =  59765.5). During the 
formal test, when assessed with the DINA and GDM models, it 
was found that the same participant can have different patterns 
of attribute mastery. When participants with different diagnostic 
results were interviewed about the answered items and when the 
attribute lists were compared, the diagnostic accuracy rate of the 
DINA model appeared to be higher than that of the GDM model 
(Supplementary Table S2). Cai et  al. (2013) used the method 
of data simulation to compare the diagnostic accuracy of the 
five commonly used models for mastering patterns in different 
situations. The results showed that under any knowledge state 
distribution, with a large sample size of about 1,000, and in the 

case of a large number of cognitive attributes, the accuracy of 
the DINA model diagnosis is relatively good. Hence, the present 
study adopted the DINA model for CDA. The DINA model was 
first proposed by Macready and Mitchell (1977) and was 
subsequently improved by Haertel (1989). Currently, it has now 
become a comparative, basic, and commonly used model in 
research (Junker and Klaas, 2001; Templin and Henson, 2006). 
The answer matrix was analyzed on the flexCDMs.1

The cognitive diagnosis reliability of the 12 attributes was 
measured by the consistency index of the attribute test–retest 
reliability. Assuming that the students’ mastery probability of 
attributes remains unchanged, the two-by-two contingency tables 
on the correlation of the mastery of attributes in the test and 
retest may be  obtained and used as the index of attribute 
reliability in the cognitive diagnostic test (Templin and 
Laine, 2013).

Diagnostic Classification Method
The DINA model gives feedback on the mastery pattern of each 
student for the attributes. The mastery pattern of a student is a 
vector composed of 12 elements that equal 0 (attribute not 
mastered) or 1 (mastered attribute). In this study, the vector of 
mastery pattern was divided into five small mastery pattern vectors 
according to the five knowledge contents: (EIP), (CIC1 and CIC2), 
(LL1, LL2, and LL3), (RHR1 and RHR2), (FL1, FL2, FL3, and 
FL4). (See the notes to Table  1 for the full meaning of the 
acronyms). The five small mastery patterns were classified, as 
shown in Figure  4. The purpose of the diagnostic classification 
during the pre-test (Form A) was to identify the students’ level 
of learning regarding the five knowledge contents of electromagnetic 
induction. Different mastery patterns of the attributes imply different 
learning levels. Then, according to the results of diagnosis and 
classification, multi-level remedial teaching can be  carried out.

The purpose of post-test diagnostic classification was to 
test whether the student has achieved the target mastery pattern. 
Figure  4 shows the method of diagnostic classification and 

1 http://www.psychometrics-studio.cn/

FIGURE 4 | Classification schemes and learning paths based on attribute mastery pattern. The 12 attributes are divided into five groups according to the 
knowledge content. Students are categorized by their mastery pattern for each attribute group. 1 represents mastered the attribute, 0 represents not mastered the 
attribute, and X represents 1 or 0. The arrow represents the learning path after diagnosis and classification, the tail of the arrow represents the attribute mastery 
pattern of the pre-test, and the tip refers to the target attribute mastery pattern after the layered remedial teaching.
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learning paths for multi-level remedial teaching, with X 
representing either 0 or 1. Each student was classified five 
times according to the attribute mastery pattern of the five 
knowledge contents. In a knowledge content mastery pattern, 
students are classified according to the lowest level attributes 
that they have not mastered, and students with the same 
minimum level attributes are classified into one category. The 
end of the arrow is the diagnostic classification result of the 
attribute mastery pattern in the pre-test, and the tip of the 
arrow represents the target attribute mastery pattern in the 
post-test.

Multi-level Remedial Teaching Design
Before designing a multi-level remedial teaching plan, it is 
necessary to understand the cognitive errors of students at 
each mastery pattern classification. According to the diagnosis 
classification method, each student in the experimental group 
was classified into five groups in five knowledge contents. As 
shown in Figure  2, there were 17 groups in total. If a student 
was classified in groups without a 0 element, they were no 
longer included for remedial teaching. There was a total of 
12 mastery pattern classifications in which corresponding 
cognitive errors had to be  determined. In order to obtain the 
cognitive errors of students under each classification, three 
students were selected from each group for a total of 36 
students. The 36 students were then asked to restate their 
thoughts when they completed either form (A or B). The 
researchers recorded and analyzed the cognitive errors, and 
then summarized the common characteristics of the cognitive 
errors made at each classification. Afterward, remedial teaching 
schemes were then designed with the aim of addressing these 
cognitive errors.

Think-Aloud Protocols
Before the think-aloud protocols, the 36 students were 
informed by their physics teacher that this was a teaching 
research in which students would be  asked to repeat their 
thoughts during the test, that participation was voluntary, 
and that they could quit at any time during the process. 
The students were then asked to go into a classroom one-by-one 
and to repeat their thoughts aloud regarding Form A or 
Form B. The three researchers then noted the participants’ 
cognitive errors. Finally, the three researchers discussed the 
common cognitive errors made by the students, as shown 
in Table  2.

Multi-level Remedial Teaching Scheme
As Table  2 shows, students whose attribute mastery pattern 
was (EIP) = 0, (CIC1, CIC2) = (0X), (LL1, LL2, LL3) = (0XX), 
(RHR1, RHR2) = (0X), (FL1, FL2, FL3, FL4) = (0XXX) made 
errors in identifying related phenomena and concepts, repeating 
laws, and comprehending the essence of laws. Therefore, the 
remedial teaching scheme for these attribute mastery patterns 
focused on experiment and discussion. For students, whose 
attribute mastery pattern was (CIC1, CIC2) = (10), (LL1, LL2, 
LL3) = (10X), (RHR1, RHR2) = (10), (FL1, FL2, FL3, 

FL4) = (10XX), their cognitive errors involved the misuse of 
laws and not understanding the essence of the law. Therefore, 
the remedial teaching scheme for these attribute mastery patterns 
focused on experiment, speculation, and discussion. Lastly, for 
students whose attribute mastery pattern was (LL1, LL2, 
LL3) = (110), (FL1, FL2, FL3, FL4) = (110X) or (111X), their 
cognitive error involved not finding the relationship between 
multiple physical processes and quantities in the physical 
situation, or lacking a deep knowledge beyond the topic of 
electromagnetic induction. Therefore, the remedial teaching 
scheme for these levels of classification included guiding students 
in discussing the aforementioned topics together. Due to 
manuscript limitations, only three different levels of remedial 
teaching schemes are listed below. If readers are interested, 
the authors may be contacted for all of the multi-level remedial 
teaching schemes.

 (a) EIP = 0 level remedial teaching scheme
Based on the results of the think-aloud protocols, multi-

level remedial teaching should not only make students aware 
of electromagnetic induction, but it should also allow them 
to correctly distinguish electromagnetic induction from other 
electromagnetic phenomena. Based on this, the following 
remedial teaching plan was designed as:

[Teaching method] Experiment and discussion.
[Teaching aim] To be  able to distinguish three types of 

electromagnetic interactions.
[Experimental material] A core, two solenoids, a magnetic 

needle, a DC power supply, a switch, a slide rheostat, wires, 
a sensitive galvanometer, and a bar magnet.

[Experimental circuit i is shown in the Figure  5]
[Discussion topic i] Corresponding to cognitive error 1  in 

Table  2: Is there a power supply in the circuit? How does the 
pointer of the sensitive galvanometer deflect at the moment when 
the bar magnet enters and leaves the solenoid? Why is the 
pointer of the sensitive galvanometer deflected? What phenomenon 
does this process belong to?

[Experimental circuit ii is shown in the Figure  6]
[Discussion topic ii] Corresponding to cognitive error 1  in 

Table  2: Observe the change of the magnetic needle as the 
switch closes and opens. What kind of electromagnetic interaction 
is involved in each link of the experiment?

[Discussion topic iii] Corresponding to cognitive error 2  in 
Table  2: Discuss the difference and connection between the 
generator and motor.

 (b)(LL1, LL2) = (10) level remedial teaching scheme
According to the results of the think-aloud protocols, the 

following remedial teaching plans were designed to address 
the cognitive errors of students in order to reach the attribute 
mastery pattern of (LL1, LL2) = (11):

[Teaching method] Experiment, speculation, and discussion.
[Teaching aim] To use Lenz’s law to determine the direction 

of the induced current in a simple situation.
[Experimental material] A bar magnet and a Lenz’s 

law demonstrator.
[Experimental circuit i is shown in the Figure  7]
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TABLE 2 | The cognitive errors of each mastery pattern classification.

Mastery pattern No. Cognitive errors

EIP = 0 1
The interaction of electricity and magnetism was 
incorrectly considered as electromagnetic induction

2
Confusion over the physical principles on which 
generators and motors are based

(CIC1, CIC2) = (0X) 3
Misunderstanding that magnetic flux changes if the 
conductor cuts the magnetic field lines

(CIC1, CIC2) = (10) 4
Misunderstanding that an induced current can 
be generated if the conductor cuts the magnetic field lines

5
Misunderstanding that the unclosed coil has no magnetic 
flux, and the magnetic flux changes when it is closed 
again

6
Did not understand the magnetic field distribution around 
the bar magnet

(LL1, LL2, LL3) = (0XX) 7 Did not understand the concept of flux change
8 Could not describe Lenz’s law

(LL1, LL2, LL3) = (10X) 9
Could not translate a change in the physical situation into 
a change in the magnetic flux, thereby not knowing how 
to use Lenz’s law

10
Lenz’s law was not understood in terms of energy, and the 
transformation of functional relations in electromagnetic 
induction was not understood.

11
In the process of using the formula, the formula was 
mistaken for Lenz’s law

(LL1, LL2, LL3) = (110) 12
In physical situations, the hindrances of Lenz’s law were 
not used to determine the direction of the induced current

(RHR1, RHR2) = (0X) 13
Students could not distinguish between the right-hand 
rule, left-hand rule, and ampere rule

14
Misunderstanding that the direction of the conductor 
cutting magnetic field lines is the direction of the 
conductor force

15
It was incorrectly believed that the direction of the induced 
electromotive force is opposite to that of the induced 
current

(RHR1, RHR2) = (10) 16
Incorrectly used the left-hand rule to solve the 
electromagnetic induction problem

17
Did not understand the direction of the current or 
magnetic field lines in the diagram

(FL1, FL2, FL3, FL4) = (0XXX) 18 Did not know the basic concept of Faraday’s law

19
Could write Faraday’s law formula but could not explain 
Faraday’s law

20
Inability to distinguish between the rate of change and 
quantity of change

(FL1, FL2, FL3, FL4) = (10XX) 21 The left-hand rule was used

22
Did not understand the circuit knowledge. Misjudged the 
direction of current and potential inside the source

23
Did not know that the conductor cutting the magnetic field 
lines is equivalent to the power supply

(FL1, FL2, FL3, FL4) = (110X) 24
Did not know that the conductor cutting the magnetic field 
lines is equivalent to the power supply

25 Did not know the terminal voltage

26
Did not know that the uniform increase of B and δ B/δ t 
have the same meaning, and mistook the former for the 
magnetic flux uniform increase

(FL1, FL2, FL3, FL4) = (1110) 27
Could not find the functional relationship between each 
physical quantity and t

28 No in-depth understanding of the concept of acceleration

29
Did not consider that the width of the field is larger than 
the edge of the wire

30 Calculation error

EIP, Electromagnetic induction phenomenon: knowledge; CIC1, Conditions to generate induced current: knowledge; CIC2, Conditions to generate induced  
current: understanding; LL1, Lenz’s Law: knowledge; LL2, Lenz’s Law: understanding; LL3, Lenz’s Law: application; RHR1, Right-hand rule: knowledge; RHR2,  
Right-hand rule: understanding; FL1, Faraday’s law: knowledge; FL2, Faraday’s law: understanding; FL3, Faraday’s law: application; and FL4, Faraday’s law: integrated 
application.
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[Discussion topic i] Enter and leave the two aluminum rings 
in a bar magnet; which will generate the electromagnetic induction 
and why?

[Teaching aim i] Corresponding to cognitive error 9  in 
Table  2: To enable students to judge the change of magnetic 
flux in a closed loop in a physical situation, so as to judge 
the direction of the induced current.

[Speculation ii : The physical situation is shown in Figure 8]
[Discussion topic ii] Imagine the physical process of a speculative 

drawing shown in Figure  8. Hold the bar magnet and let the 

coil move. The induced current directions of the coil at positions 
a, b, and c are discussed. Is the force exerted on the coil at a 
and c by the bar magnet dynamic or resistance? Is the work done 
by the force of gravity on the coil fully converted to kinetic energy 
as if it were in free fall?

[Teaching aim ii] Corresponding to cognitive error 10  in 
Table  2: To clarify the relationship between work and energy 
in electromagnetic induction.

FIGURE 5 | Experimental circuit i of EIP = 0 level remedial teaching scheme.

FIGURE 6 | Experimental circuit ii of EIP = 0 level remedial teaching scheme.

FIGURE 7 | Experimental circuit i of (LL1, LL2) = (10) level remedial teaching 
scheme.

FIGURE 8 | The physical situation circuit of (LL1, LL2) = (10) level remedial 
teaching scheme.
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[Discussion topic iii] What is the fundamental reason for 
the use of the formula of “increase, reverse, decrease, same” and 
“come, go, refuse, and stay”?

[Teaching aim iii] Corresponding to cognitive error 11  in 
Table  2: To develop an in-depth understanding of Lenz’s law 
behind the formula.

 (c) (LL1, LL2, LL3) = (110), (FL1, FL2, FL3, FL4) = (110X) or 
(1110) levels remedial teaching scheme
The results of the think-aloud protocols showed that students 

usually fail to reach the “application” and “integrated application” 
level when they lack further physics knowledge and are unable 
to correctly relate two or more physical processes and laws. For 
these students, the remedial teaching method involved the teaching 
assistant leading the students in a discussion of the corresponding 
problems in classifications so that the students may better understand 
the connection between the physical processes from the analysis 
of the physical processes and the applied physical laws. With this, 
long-term remedial teaching should strengthen the application of 
additional physical knowledge. To improve the learning of the 
students, the remedial teaching plan was designed as follows:

[Teaching method] Discussion.
[Teaching material] Questions at the corresponding level 

in Form A.
[Discussion topic] Each student explains the reasons for 

their choice through a speech, other students give their opinions, 
and one student summarizes the results of the discussion.

[Teaching assistant (TA) guidance] The TA guides the students 
in analyzing the physical process involved in the questions 
and the physical laws corresponding to the physical process. 
Then, they find a physical quantity that connects multiple 
physical processes.

Implementing Multi-level Remedial 
Teaching and Post-test
Participants
Among the seven schools that participated in the formal test, 
the authors selected three schools of different levels from Ministry 
of Education evaluations in the same city to conduct the 
experiment. School 1 (S1) was a private high school belonging 
to the lowest level in the local area; school 2 (S2) was a general 
public high school belonging to the middle level in the local 
area; and school 3 (S3) was a Level 1 high school, which is 
considered a high-level high school in the local area. In each 
school, two parallel classes were selected as the experimental 
group and control group. Experimental groups S1, S2, and S3 
had 30, 52, and 48 participants, respectively, while the matching 
control groups had 29, 50, and 49 participants, respectively.

Multi-level Remedial Teaching Process
The students of the experimental groups and control groups 
were given 1 h to complete Form A. For the response matrix, 
the results of the experimental and control groups were then 
combined with those of the students who participated in the 
formal test of Form A. The DINA model was then used for 

cognitive diagnosis, and the experimental group was classified 
according to the method in stated in the “Diagnostic classification 
method” section. In the experimental group, researchers and 
teaching assistants completed multi-level remedial teaching 
according to the classification results, and each attribute mastery 
pattern classification group spent approximately 30 min learning. 
Each student in the experimental group could be  classified 
into multiple groups and could receive remedial teaching for 
up to 2.5 h. In the control group, in order to minimize the 
influence of the number of students on the teaching effect, 
the students in the control group were randomly divided into 
a group of approximately 10 students and received approximately 
2.5 h of instruction on the correct answers and solutions to 
the Form A questions. Table 3 shows the process of the multi-
level remedial teaching experiment.

Post-test
After remedial teaching was completed, students in both control 
and experimental groups spent 1 h simultaneously completing 
Form B. The response results were then combined with those 
of the students who participated in the formal test of Form 
B into the response matrix.

Data Analysis
The DINA model was used for cognitive diagnosis in post-test. 
We focused on whether students of each pre-test-based classification 
achieved the target attribute mastery pattern in the post-test, 
following the path in Figure  4. To test the effect of multi-level 
remedial teaching, the researchers defined a target attribute 
mastery pattern achievement rate index to determine whether 
post-test targets were reached. This rate was calculated as follows:

 
η i

i
i

n
N

= ,
 

(1)

where hi  is the achievement rate of the No. i attributes 
mastery pattern classification; Ni is the number of  
students in the No. i attributes mastery pattern classification 
in the pre-test; and ni  is the number of students who had 
achieved the target attribute mastery pattern in the post-test 
and were in the No. i attributes mastery pattern classification 
in pre-test.

To compare the differences in remedial teaching among the 
three schools, ANOVA was performed with the method of 
remedial teaching as the independent variable, while the students’ 
target attribute mastery pattern achievement rate was considered 
as the dependent variable. Microsoft Excel 2016 was used to 
perform a single factor ANOVA.

RESULTS

Assessment and Classification
Quality of the EICD Test
Figure  9 shows the relationship between the EICD test CTT 
scores of the participants and the grades of the Academic Level 
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Test. The grades of the Academic Level Test are A, B, and C 
from high to low, which are marked on the abscissa of Figure 9. 
The ordinate is the average score in the EICD test(formal) of 
the students who obtained the A, B, or C grade. The average 
score of the EICD (formal) test is basically linear and positively 
related to the Academic Level Test grades, indicating that the 
EICD test(formal) can reflect the real learning situation of students.

In order to explore whether Form A and B meet the 
requirements of parallel papers, Table  4 presents the mean 
(M), standard deviation (SD), item difficulty (P), and item 
discrimination (D) of students’ scores in Form A and B. It 
was found that the descriptive statistical indicators of the two 
Forms were basically the same. In addition, the one-way ANOVA 
with the test paper as the independent variable and the score 
as the dependent variable showed (p = 0.286) that the difference 
of the test paper had no significant effect on the total score. 
Finally, because the two Forms measured the same knowledge 
contents and learning level, containing the same number of 
questions, question types, and the same test Q-matrix, the 
Form A and Form B in this study can be  considered to meet 
the requirements of parallel tests.

The cognitive diagnostic reliability of the 12 cognitive 
attributes of Forms A and B is shown in Table  5. The 
cognitive diagnostic reliability of all cognitive attributes is 
above 0.9, which indicates that the reliability of cognitive 
attributes was sufficient and that the test truly reflects the 
learning results.

Classification Results
The students participating in the formal test were classified 
based on the classification method in the Figure  4. The 
classification results are shown in Table  6.

As shown in Table  6, if the attribute mastery pattern is 
all 1 (i.e., 1111), it means that the student reached the highest 
learning level and does not need to participate in remedial 
teaching. The proportion of the other 12 classifications was 
0.0702–0.3526, indicating that the classification scheme was 
able to basically stratify students according to the learning 
level of each knowledge content. However, the distinction 
between FL3 and FL4 was not obvious. In the attribute mastery 
pattern related to Faraday’s law (FL1, FL2, FL3, and FL4), the 
proportion of 1111 was 0.0702, while the proportion of 1111 
was 0.3263. This indicates that if students are able to achieve 
the “Faraday’s Law: Application” level, most of them would 
also be  able to reach the level of “Faraday’s Law: Integrated 
Application.” In solving Faraday’s law, most students who were 
able to solve two physical processes would also be  able to 
solve more than two physical processes and correlate other 
knowledge problems.

Effect of Multi-level Remedial Teaching
After receiving multi-level remedial teaching (experimental 
group) and the explanation of the answers to the test questions 
(control group), both groups completed Form B as the post-test.

TABLE 3 | The process of the multi-level remedial teaching experiment.

Day-period Experimental group Control group

Day1 Pre-test (Form A)
Day2 There is no task for students, while researchers complete the classification

Classification 
group/remedial 
teaching

S1(N) S2(N) S3(N) Remedial 
teaching 
method

S1(N) S2(N) S3(N)

Day3-1 EIP = 0 22 38 45 Explain the 
correct answers 
in Form A

8 13 13

Day3-2 (CIC1, 
CIC2) = (0X)

21 23 28

Day3-3 (CIC1, 
CIC2) = (10)

3 29 22

Day4-1 (LL1, LL2, 
LL3) = (0XX)

19 29 28 Explain the 
correct answers 
in Form A

7 13 12

Day4-2 (LL1, LL2, 
LL3) = (10X)

5 45 48

Day4-3 (LL1, LL2, 
LL3) = (110)

6 8 7

Day5-1 (RHR1, 
RHR2) = (0X)

17 11 3 Explain the 
correct answers 
in Form A

7 12 12

Day5-2 (RHR1, 
RHR2) = (10)

10 22 25

Day5-3 (FL1, FL2, FL3, 
FL4) = (0XXX)

22 17 20

Day6-1 (FL1, FL2, FL3, 
FL4) = (10XX)

5 26 24 Explain the 
correct answers 
in Form A

7 12 12

Day6-2 (FL1, FL2, FL3, 
FL4) = (110X)

2 18 6

Day6-3 (FL1, FL2, FL3, 
FL4) = (1110)

0 7 20

Day7 Post-test (Form B)
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Figures  10A–D show the target attribute mastery pattern 
achievement rate of 12 attribute mastery pattern classifications 
in the experimental group and control group in S1, S2, and 
S3, and the average of the three schools, respectively. Figure 10D 
shows that both multi-level remedial teaching and the traditional 
method of explaining answers are able to improve the learning 
level of students in 12 classifications, but multi-level remedial 
teaching was found to be  more effective and more efficient. 
The target achievement rates of the experimental group and 
the control group of the three schools also had their own 
characteristics. It should be  mentioned that we  focused on 
the classification where the experimental group had a greater 
than 20% target achievement rate compared to the control 
group. The effect of multi-level remedial teaching on the level 
of “knowledge” in school S1 was more obvious, but in school 
S2 and school S3, the difference between the experimental 
group and the control group of “electromagnetic induction 
phenomenon: knowledge” and “conditions for generating induced 
current: knowledge” was not as obvious. The experimental 
group in the (LL1, LL2, LL3) = (10X) and (110), (RHR1, 
RHR2) = (0X) and (10), (FL1, FL2, FL3, FL4) = (0XXX), (110X) 
and (1110) categories of the school S2 had a more obvious 

effect than the control group. In addition, the experimental 
group of (RHR1, RHR2) = (0X) and (10), (FL1, FL2, FL3, 
FL4) = (1110) of school S3 had more obvious effects of remedial 
teaching. Therefore, these results may be  related to the varied 
levels of the schools.

Since the three schools were of different levels and had 
large differences between them, the ANOVA of multi-level 
remedial teaching was not analyzed (Figure  10).

To compare the differences in remedial teaching among the 
three schools, ANOVA was performed with the method of 
remedial teaching as the independent variable. The students’ 
target attribute mastery pattern achievement rate was considered 
as the dependent variable. The results are shown in Table  7.

For the seniors at schools S1 (F = 4.77 > F crit = 4.41, 
p = 0.0424 < 0.05) and S3 (F = 7.80 > F crit = 4.301, p = 0.011 < 0.05), 
Table  7 reports that different remedial teaching method led 
to significant differences in the target attribute mastery pattern 
achievement rate. However, for school S2, the effect of remedial 
teaching method was not significant (F = 1.77 < F crit = 4.30, 
p = 0.197 > 0.05), indicating that there was no significant difference 
in the target level achievement rate among participants with 
different remedial methods.

DISCUSSION AND CONCLUSION

In order to study the effect of multi-level remedial teaching 
for students, we  used the CDA method to develop the EICD 
test and to carry out the multi-level classification for students 
on “electromagnetic induction”—a topic that is a part of the 
usual high school physics curriculum. The EICD test reliability 
was high, and the consistency of Forms A and B was good; 
thus, these could be  effectively used for the multi-level 
classification of the students. As for the cognitive errors 
analyzed from the think-aloud protocols, remedial teaching 
schemes for the different classified levels were then designed. 
The results of the experiment showed that the multi-level 
remedial teaching design used in this study was more effective 
for the improvement of students’ learning than the traditional 
way. In a region, the effect of CDA-based multi-level remedial 
teaching in promoting learning was found to be more significant 
in high-level and low-level schools, but not in secondary 
schools. Although this study only used the multi-level remedial 
teaching design method for one topic in high school physics, 
the developed multi-level remedial teaching method of 
assessment, classification, and remedial teaching design can 
theoretically be  used for any high school physics topic. The 
method designed in this study does not rely on purchasing 
hardware and software and costs an acceptable amount. For 
teachers, all progress requires a significant amount of time. 

FIGURE 9 | The relationship between the EICD test CTT scores and the 
grades of the Academic Level Test. The ordinate is the average score in the 
EICD test(formal) of the students who obtained the A, B, or C grade.

TABLE 4 | The statistical description results of Form A and B.

M + SD P D

Form A 59.3 + 18.3 0.58 0.48
Form B 61.3 + 21.9 0.60 0.48

M, Mean; SD, Standard deviation; P, difficulty; and D, discrimination.

TABLE 5 | The reliability of cognitive attributes.

EIP CIC1 CIC2 FL1 FL2 FL3 RHR1 RH2 FL1 FL2 FL3 FL4 Mean

Form A 0.9766 0.9847 1 0.9797 1 0.9829 1 0.9908 0.9972 0.9961 1 1 0.9923
Form B 0.9714 0.9649 0.9311 0.9369 1 0.9482 0.9734 0.9624 0.9896 0.9772 0.9812 0.9851 0.9684
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However, it enables students to study more efficiently, which 
benefits teaching efficiency. To further promote teaching 
efficiency, the completed teaching scheme can be  reused or 
revised for multiple classes.

Limitations
With the continuous development of research on CDMs, more 
refined and improved performance models are being developed 
by researchers, such as a series of longitudinal diagnostic 
classification models developed by Zhan et al. wherein attribute-
level growth may be  quantified in a more refined manner 

(Zhan et al., 2019a, Zhan, 2021; Zhan and He, 2021). A mixed 
model method can also be  considered so that different items 
in a test are calculated using different models. This is one of 
the limitations of this study; thus, a model with better fit 
should be  tried in future studies. Second, in order to analyze 
the cognitive errors of students learning about electromagnetic 
induction, a limited amount of think-aloud material was collected 
given the limited time. Hence, it is highly likely that not all 
cognitive errors were covered. Therefore, teachers on the frontline 
of teaching may be  able to accumulate more comprehensive 
and accurate cognitive errors during the teaching process, which 
can then be used to design other multi-level remedial teaching 

A B

C D

FIGURE 10 | Comparison of the achievement rate of 12 target attribute mastery patterns between the control and experimental groups in schools S1, S2, and S3. 
(A) is a bar graph comparing the achievement rate of 12 target levels between the control and experimental groups of participants at School S1. The achievement 
rate of (FL1,FL2,FL3,FL4) = (1110) was 0 because no student had mastered the attributive FL3, so no students should regard (FL1,FL2,FL3,FL4) = (1110) as the 
target attribute mastery. (B,C) show seniors at Schools S2 and S3. (D) Shows a bar comparison of the average achievement rate of 12 target levels between the 
control and experimental groups in Schools S1, S2, and S3.
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plans. Third, the classification of students in this study was 
limited to knowledge content and learning level, so future 
research should focus on improving the cognitive structure 
and developing potential traits as cognitive attributes.

Although the scheme of multi-level remedial teaching in 
this study revolved around the topic of electromagnetic induction 
in high school physics, the method of developing the design 
scheme may be  applied to other topics and other subjects as 
well. In terms of teaching, the program can be  constantly 
revised and improved to further enhance the teaching effect.
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