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Objectives

Breast malignancy is a serious threat to women’s health around the world. Following the rapid progress in the field of cancer diagnostics and identification of pathological markers, breast tumor treatment methods have been greatly improved. However, for invasive, ductal carcinomas and mammary fibroadenoma, there is an urgent demand for better breast tumor-linked biomarkers. The current study was designed to identify diagnostic and/or therapeutic protein biomarkers for breast tumors.



Methods

A total of 140 individuals were included, comprising 35 healthy women, 35 invasive breast cancers (IBC), 35 breast ductal carcinomas in situ (DCIS), and 35 breast fibroadenoma patients. Isobaric tags for relative and absolute quantitation (iTRAQ) proteomic analysis was employed to characterize differentially expressed proteins for potential biomarkers in IBC, DCIS, and fibroadenomas by comparisons with their matched adjacent tissues and/or normal breast tissues. The public databases Metascape and String were used for bioinformatic analyses.



Results

Using the proteomics approach, we identified differentially expressed proteins in tissues of different breast tumors compared to normal/adjacent breast tissues, including 100 in IBC, 52 in DCIS, and 44 in fibroadenoma. Among the 100 IBC differentially expressed proteins, 37 were found to be specific to this type of cancer only. Additionally, four proteins were specifically expressed in DCIS and four in fibroadenoma. Compared to corresponding adjacent tissues and normal breast tissues, 18 step-changing proteins were differentially expressed in IBC, 14 in DCIS, and 13 in fibroadenoma, respectively. Compared to DCIS and normal breast tissues, 65 proteins were differentially expressed in IBC with growing levels of malignancy.



Conclusions

The identified potential protein biomarkers may be used as diagnostic and/or therapeutic targets in breast tumors.





Keywords: invasive breast cancer, breast ductal carcinomas in situ, fibroadenomas, isobaric tags for relative and absolute quantitation, proteomics



Introduction

Breast cancer is the most common female malignancy and one of the primary causes of the cancer-associated morbidity and mortality (1). The Global Cancer Statistics estimated 268,600 new breast cancer cases and 41,760 deaths in the United States in 2019 (1). Fibroadenoma is a benign fibroepithelial tumor and is one of the most common breast masses (2), often detected in young females (3, 4). At present, breast tumor diagnostics rely mainly on pathological techniques (5, 6). According to the histopathological findings, breast cancer treatment usually proceeds toward surgical management, followed in most cases by chemotherapies (7). However, the choice of chemotherapies is often complicated by the heterogeneity of the cancers (8).

Application of molecular pathology and whole genome sequencing (WGS) technologies has extended understanding of the biological characteristics of malignant tumors in basic and clinical research (9–11). As a result, the improvements in early cancer diagnostics have resulted in a gradual decrease of breast cancer mortality (12). Simultaneously, great progress has been made in the development of individualized breast cancer treatment (13–15), owing largely to the application of the sequencing technologies. However, the differentially expressed breast tumor genes are generally identified at the DNA or RNA levels, even though protein molecules are responsible for maintenance and functioning of cells, tissues, and the whole organism (16). Therefore, cancer protein biomarkers should be more relevant functional targets.

However, it remains unclear which protein biomarkers may reflect the functional differences between invasive breast cancers (IBC), breast ductal carcinomas in situ (DCIS), fibroadenoma tissues, and their adjacent or normal breast tissues. Therefore, to improve diagnostics, it is important to determine which proteins are specifically expressed in IBC, DCIS, or fibroadenoma.

Isobaric tags for relative and absolute quantitation (iTRAQ) is a proteomic technique that provides high proteome coverage and labeling efficiency, with no aberrant effects on biochemical properties of the labeled proteins or peptides (17). With the development of iTRAQ reagents, the label-dependent quantitation has been continually improved. This technique is based on the chemical labeling of N-terminus (Nt) and Lys side chains of peptides with unique isobaric tags in up to eight different samples (18). iTRAQ is a promising technique for quantitative analysis of samples. As the protein is directly quantified, it can be compared directly among groups (19).

Many important breast tumor-related proteins have been identified using iTRAQ-based quantitative proteomic analyses (20–22), but few of differential values are known. The aim of the current study is to explore proteins that are differentially expressed in IBC, DCIS, and fibroadenoma. We compared functional proteome between cancerous and matched (adjacent) para-cancerous tissues for the identification of potential molecular targets for breast cancer diagnostics and targeted therapy. In the iTRAQ analysis of proteins isolated from IBC, DCIS, fibroadenoma, corresponding adjacent tissues and normal tissues, we identified several differentially expressed proteins in tissues of different breast tumors, including 100 in IBC, 52 in DCIS, and 44 in fibroadenoma. Our results indicate that these proteins may potentially be used as diagnostic and/or therapeutic targets in breast tumors.



Materials and Methods


Collection of Clinical Samples

A total of 140 individuals were included in this study, comprising 35 healthy women, 35 IBC, 35 DCIS, and 35 fibroadenoma patients. All patients were recruited at the Department of Breast Surgery, Harbin Medical University Cancer Hospital, from September to December 2018. The mean age of the individuals was 52.5 years (range, 32–73 years). The mean age at menarche was 15 years (range, 13–17 years). The mean age at first birth was 24.5 years (range, 16–31 years). The mean months of breastfeeding duration was 12 months (range, 3–29 months). Normal breast tissues were obtained using ultrasound-guided, hollow needle puncture technique. IBC, DCIS, fibroadenoma tissues, and their matched adjacent tissues were collected during surgical procedures and were assessed according to the patients’ surgical and pathological analyses. The healthy and fibroadenoma groups had no history of cancers. The breast tumor patients did not receive radiotherapy or chemotherapy treatments prior to surgical operations. The current study was approved by the human ethics committee of Harbin Medical University. All participating patients signed consents and were provided with the relevant information regarding the study.



Tissue Preparation and Protein Extraction

Tissue samples were sectioned and stored in liquid nitrogen. Proteins were extracted in lysis buffer combined with 1% phenylmethylsulfonyl fluoride (PMSF). Following this, protein samples were sonicated (25%W) on ice for 3 min using a pause pattern (10 s sonication, followed by 10 s break). To precipitate proteins, pre-chilled acetone was added to the samples (5 ml acetone: 1 ml samples). The mixture was stored overnight at −20°C. The suspension was centrifuged at 12,000 g for 10 min at 4°C. Then the supernatant was removed. The precipitate was mixed with 2 ml pre-chilled acetone. The mixture was centrifuged twice at 12,000 g for 15 min at 4°C. The pellet was air-dried at room temperature after the supernatant was removed. Following this, the precipitate was dissolved in 0.5 ml 1M TEAB (Sigma-Aldrich, Australia) and centrifuged for 15 min at room temperature. The collected supernatant was transferred to a fresh 1 ml tube and stored at −20°C until further analysis. Samples from patients diagnosed with the same type of disease were mixed. The protein concentration was quantified using the Bradford Protein Assay (TIANGEN, Beijing, China).



Isobaric Tags for Relative and Absolute Quantitation 8-Plex Labeling

The iTRAQ labeling procedures were conducted according to the manufacturer’s instructions (AB SCIEX, Shanghai, China). iTRAQ 8-plex experiments were performed to analyze tissue extracts. Two iTRAQ labels, 113 and 114, were chosen for the normal breast tissue analysis. Cancerous and matched adjacent tissues were tested using the following labels (in brackets): IBC tissues (115) and corresponding adjacent tissues (116), DCIS tissues (117) and corresponding adjacent tissues (118), fibroadenoma tissues (119), and corresponding adjacent tissues (121). The samples were analyzed using Triple TOF^TM 4600 (AB SCIEX). Proteins (100 μg) in each group were precipitated using fivefold acetone at −20°C for 1 h. Following this, the mixture was centrifuged at 12,000 g for 10 min at 4°C. The collected suspension of proteins was dried using a vacuum centrifuge. The dried protein was resuspended in 50 μl dissolution buffer, reduced by 4 μl reducing reagent for 1 h at 60°C, and alkylated by 2 μl cysteine blocking reagent for 10 min at room temperature. The protein samples were then digested with 50 μl trypsin (50 ng/μl) at 37°C for 12 h. Tryptic peptides were dried by vacuum centrifugation and labeled using the iTRAQ regents for 2 h at room temperature. Afterward, 100 μl distilled water was added to stop the reaction. After labeling, the samples were mixed at equal volumes, pre-classified into 12 components by high pH RP-HPLC, and then redissolved into 30 μl volume per component. Ten microliters input of each sample was extracted and the samples were dried using a vacuum centrifuge and stored till identification analysis.



Protein Identification

Protein identification and relative iTRAQ quantification were performed using ProteinPilot™ Software 4.5 (AB SCIEX) and Paragon™ algorithm for the peptide recognition. According to the iTRAQ experimental data obtained from ProteinPilot database, PDST (ProteinPilot Descriptive Statistics Template) data analysis software was used to further collate and analyze the iTRAQ data. Data files were submitted to ProteomeXchange via the PRIDE database (Website: http://www.ebi.ac.uk/pride; Project Name: iTRAQ in proteomic analysis of potential biomarkers in invasive cancer, ductal carcinoma in situ, and mammary fibroadenoma; Project accession: PXD019963). The screening criteria for this study were set as follows: 1) 114:113 (normal tissues)—between 0.8 and 1.2, P > 0.05; 2) 115/116/117/118/119/121:113—two times or above differences were considered as an evident indicator of differentially expressed proteins, P < 0.05; 3) 115:116; 117:118; 119:121—two times or above differences were considered as an evident indicator of differentially expressed proteins. For other forms of comparison (step-changing proteins or proteins with growing level of malignancy), protein expression data were directly compared.



Bioinformatics Analysis

The basic properties of differentially expressed proteins were analyzed using Gene Ontology (GO) and protein-protein interaction network at Metascape (https://metascape.org/gp/index.html) and STRING (https://string-db.org/), respectively (23, 24).




Results


Differentially Expressed Proteins in Invasive Breast Cancers, Invasive Breast Cancers-Adjacent, and Normal Breast Tissues

We analyzed differentially expressed proteins with ≥2-fold (higher or lower) differences in IBC, IBC-adjacent, and normal breast tissue comparisons. We identified IBC-linked 20 up-regulated proteins (including HSPA4, HSPA9, RRBP1, PGK1, PRKDC, MMP11, and others) compared to both adjacent and normal tissues (Supplementary Table 1). In the meantime, analysis of the differences between IBC and both adjacent and normal tissues showed 80 down-regulated proteins (including AZGP1, ALDH1A1, KRT families, APOA families, and others) in IBC tissues (Supplementary Table 2).

In the analysis of step-changing proteins, we identified seven proteins (including FLNA, PLEC, MMP11, and others) that were increased in IBC tissues compared to the IBC-adjacent and normal tissues (Supplementary Table 3). Additionally, 11 step-changing proteins (including KRT families, PRDX2, CALD1, and others) were decreased in the IBC tissues compared with both cancer-adjacent and normal (Supplementary Table 3).

Metascape was used to conduct GO analysis of 100 differentially expressed proteins (Supplementary Tables 1, 2). Moreover, pathway and process enrichment analyses were performed, with the network of the enriched terms. The enriched clusters for differentially expressed proteins in IBC vs. IBC-adjacent and normal breast tissues included those of “complement and coagulation cascades,” “regulation of IGF transport,” “negative regulation of immune system process,” “angiogenesis,” and others (Figures 1A–C, Supplementary Data Sheet 1). In addition, we performed a protein–protein interaction (PPI) enrichment analysis. The PPI network is shown in Supplementary Figure 1A. Then, MCODE was used to identify densely connected network components (Supplementary Figure 1B). Pathway and process enrichment analysis was independently applied to each MCODE component. The results showed that biological function was mainly related to “scavenging of heme from plasma,” “terminal pathway of complement,” “binding and uptake of ligands by scavenger receptors,” “positive regulation of cytokine production,” “regulation of cytokine production,” “PID UPA UPAR pathway,” “heterotypic cell-cell adhesion,” and “PID intergrin1 pathway” (Supplementary Figure 1C). Finally, string database was employed to analyze the interactive network of these proteins. The PPI was mainly concentrated in the relevance among SERPIN families, APO families, FGA, FGB, HRG, GC, CLU, etc. (Figure 1D).




Figure 1 | Gene Ontology (GO) and protein–protein interaction (PPI) analyses of differentially expressed proteins in invasive breast cancers (IBC) vs. cancer-adjacent and normal breast tissues. (A) The GO analysis of 100 differentially expressed proteins using Metascape database. The x axis shows the significance which is the value of –log10(P). (B) The enrichment network of representative terms is performed with Cytoscape (v3.1.2). Each term is represented by a circle node, the size of which is proportional to the number of input genes falling into that term, and the color represents its cluster identity. Terms with a similarity score > 0.3 are linked by an edge. One term from each cluster is selected to have its term description shown as label. (C) The same enrichment network has its nodes colored by p-value. The darker the color, the more statistically significant the node is. (D) The PPI network of the differentially expressed proteins was constructed using STRING.





Differentially Expressed Proteins in Ductal Carcinomas In Situ, Ductal Carcinomas In Situ-Adjacent, and Normal Breast Tissues

For DCIS tissues, compared with both DCIS cancer-adjacent and normal tissues, we detected four up-regulated (GAPDH, HSPA9, CCT4, and SCPEP1) (Supplementary Table 4) and 48 down-regulated proteins (including KRT10, APOA1, ALDH1A1, and others) (Supplementary Table 5) in DCIS tissues.

Step-changing proteins were identified in DCIS compared with cancer-adjacent and normal tissues, including increased expression of STAM, ARF5, ANXA6, SCPEP1, ME2, and WFS1 (Supplementary Table 6), and decreased expression of KRT1, KRT10, KRT6E, APOA1, DSP, LUM, ANK1, and F2 in DCIS tissues (Supplementary Table 6).

During GO analysis, we defined the enriched clusters for 52 differentially expressed proteins (Supplementary Tables 4, 5). The enriched clusters for differentially expressed proteins in DCIS vs. adjacent and normal breast tissues included those of “complement and coagulation cascades,” “extracellular structure organization,” “positive regulation of cell-substrate adhesion,” “regulation of protein secretion,” “regulation of hormone levels,” and others (Figures 2A–C, Supplementary Data Sheet 2). Then, we performed a Metascape PPI enrichment analysis. The PPI network and MCODE components identiﬁed in the lists are shown in Supplementary Figures 2A, B. The biological function was mainly related to “regulation of complement cascade,” “complement cascade” and “terminal pathway of complement” (Supplementary Figure 2C). Additionally, the String database was used to analyze the interaction network of these proteins. The PPI was mainly concentrated in the relevance among SERPIN families, APO families, FGA, A2M, KNG1, HRG, GC, etc. (Figure 2D).




Figure 2 | Gene Ontology (GO) and protein–protein interaction (PPI) analyses of differentially expressed proteins in DCIS vs. ductal carcinomas in situ (DCIS)-adjacent and normal breast tissues. (A) The GO analysis of 52 differentially expressed proteins using Metascape database. The x axis shows the significance which is the value of –log10(P). (B) The enrichment network of representative terms is performed with Cytoscape (v3.1.2). Each term is represented by a circle node, the size of which is proportional to the number of input genes falling into that term, and the color represents its cluster identity. Terms with a similarity score > 0.3 are linked by an edge. One term from each cluster is selected to have its term description shown as label. (C) The same enrichment network has its nodes colored by p-value. The darker the color, the more statistically significant the node is. (D) The PPI network of the differentially expressed proteins was constructed using STRING.





Differentially Expressed Proteins in Fibroadenoma, Fibroadenoma-Adjacent, and Normal Breast Tissues

For fibroadenoma tissues, compared with both fibroadenoma-adjacent and normal tissues, there were six up-regulated (ANXA6, VCP, SERPINH1, galactosidase alpha, NNT, and MMP11) (Supplementary Table 7) and 38 down-regulated (KRT10, KRT1, ALDH1A1, ECM1, and others) (Supplementary Table 8) proteins in fibroadenoma.

The step-changing proteins were detected in fibroadenoma, fibroadenoma-adjacent and normal breast tissues. We detected an increase in the expression of six proteins (NUDT19, FBN1, NONO, FLNA, SCPEP1, and galactosidase alpha) in fibroadenoma (Supplementary Table 9). Furthermore, the expression of seven step-changing proteins (KRT10, KRT1, KRT6E, PLIN1, HBA2, FHL1, and ME2) were decreased in fibroadenoma tissues compared to fibroadenoma adjacent and normal tissues (Supplementary Table 9).

The enriched clusters for differentially expressed proteins in Supplementary Tables 7, 8 were identified using GO analysis. The enriched clusters for differentially expressed proteins in fibroadenoma vs. adjacent and normal breast tissues included those of “complement and coagulation cascades,” “extracellular structure organization,” “cofactor catabolic process,” “ECM proteoglycans,” “triglyceride metabolic process,” “regulation of angiogenesis,” and others (Figures 3A–C, Supplementary Data Sheet 3). The String database was used to analyze the interaction network of these proteins. The PPI was mainly concentrated in the relevance among SERPIND1, APO families, FGA, FGB, A2M, KNG1, HP, GC, etc. (Figure 3D).




Figure 3 | Gene Ontology (GO) and protein–protein interaction (PPI) analyses of differentially expressed proteins in fibroadenoma vs. fibroadenoma-adjacent and normal breast tissues. (A) The GO analysis of 44 differentially expressed proteins using Metascape database. The x axis shows the significance which is the value of –log10(P). (B) The enrichment network of representative terms is performed with Cytoscape (v3.1.2). Each term is represented by a circle node, the size of which is proportional to the number of input genes falling into that term, and the color represents its cluster identity. Terms with a similarity score > 0.3 are linked by an edge. One term from each cluster is selected to have its term description shown as label. (C) The same enrichment network has its nodes colored by p-value. The darker the color, the more statistically significant the node is. (D) The PPI network of the differentially expressed proteins was constructed using STRING.





Specific Up- or Down-Regulated Differentially Expressed Proteins in Invasive Breast Cancers, Ductal Carcinomas In Situ, and Fibroadenoma Tissues

We further determined the proteins that were differentially expressed in IBC, DCIS, and fibroadenoma in a tissue-specific manner. Intersections of up-regulated and down-regulated proteins for IBC, DCIS, and fibroadenoma tissues were determined. We found that 14 proteins (hCG, TUFM, HSPA4, RRBP1, RPS3, PGK1, PRKDC, COL12A1, GDI2, IARS2, DHX9, GLA, UGDH, and NAMPT) were specifically up-regulated in IBC tissues, and 23 proteins (PIP, APOD, KRT2, APOA2, KRT6E, IL16, AZGP1,HBA2, KRT5, HBG1, ITIH2, SPTBN1, COL18A1,SERPINA4, PEBP1, APOL1, GGT5, MAOB, ITGB4,EHD2, APCS, ITGB1, and PTN) were specifically down-regulated in IBC tissues. In DCIS tissues, we found four specifically down-regulated proteins (SFRP1, KRT9, TGFBI, CSRP1) but not any up-regulated proteins. In fibroadenoma, four proteins were specifically up-regulated (ANXA6, VCP, Galactosidase alpha, and NNT), while no down-regulated proteins were not found (Supplementary Table 10).



Differentially Expressed Proteins Associated With Growing Levels of Malignancy in Invasive Breast Cancers and Ductal Carcinomas In Situ Tissues

As very few specific proteins from DCIS or IBC have been reported to date, we focused on those that were differentially expressed along with the growing levels in the degree of malignancy of the tumors. According to the data shown in Supplementary Tables 4, 5, we detected proteins that were expressed higher or lower in DCIS tissues compared to that in normal breast tissues. Following this, the identified proteins were compared with proteins in the IBC tissues. We found that increased expression of 10 proteins (RRBP1, HSPA9, PGK1, GAPDH, IARS2, CCT4, Galactosidase alpha, NAMPT, NNT, WFS1) coincided with the progression of malignancy (Supplementary Table 11). We also screened proteins whose expression declined gradually. We found that expression levels of 55 proteins (KRT10, KRT1, PIP, and others) were decreased along with the increase in a degree of malignancy (Supplementary Table 11). These proteins may play important roles in the development of breast cancer as cancer promoters or suppressors.

The enriched clusters for these proteins included those of “complement and coagulation cascades,” “extracellular structure organization,” “PPAR signal pathway,” “regulation of protein stability,” and others (Figures 4A–C, Supplementary Data Sheet 4). The PPI network and MCODE components identiﬁed in the lists are shown in Supplementary Figures 3A, B. The biological function was mainly related to “scavenging of heme from plasma,” “binding and uptake of ligands by scavenger receptors,” “cornification,” “interaction between L1 and ankyrins,” “COPI-mediated anterograde transport,” and “L1CAM interactions” (Supplementary Figure 3C). The String database was used to analyze the interaction network of these proteins. The PPI was mainly concentrated in the relevance among SERPIN families, APO families, HRG, A1BG, A2M, FGB, AMBP, etc. (Figure 4D).




Figure 4 | Gene Ontology (GO) and protein–protein interaction (PPI) analyses of differentially expressed proteins associated with growing level of malignancy in invasive breast cancers (IBC) and ductal carcinomas in situ (DCIS) tissues. (A) The GO analysis of 65 differentially expressed proteins using Metascape database. The x axis shows the significance which is the value of –log10(P). (B) The enrichment network of representative terms is performed with Cytoscape (v3.1.2). Each term is represented by a circle node, the size of which is proportional to the number of input genes falling into that term, and the color represents its cluster identity. Terms with a similarity score > 0.3 are linked by an edge. One term from each cluster is selected to have its term description shown as label. (C) The same enrichment network has its nodes colored by p-value. The darker the color, the more statistically significant the node is. (D) The PPI network of the differentially expressed proteins was constructed using STRING.






Discussion

In this study, we identified differentially expressed proteins in breast tumor tissues by the iTRAQ technology. Our work demonstrated that the selected proteins are important for tumor growth survival or spreading. To our best knowledge, this study was the first performed for assessing and comparing protein changes between normal, IBC, DCIS, mammary fibroadenoma, and matched adjacent tissues, providing new potential biomarkers of protein molecules for diagnosis/treatment of breast tumor patients (Figure 5).




Figure 5 | Schematic overview of the strategies used for isobaric tags for relative and absolute quantitation (iTRAQ) analyses. Using iTRAQ approach, we identified potential protein biomarkers that might be used as diagnostic and/or therapeutic targets in breast tumors.



Among the analyzed IBC tissues, we found 20 proteins (including HSPA4, HSPA9, RRBP1, PGK1, PRKDC, MMP11, and others) that showed more than a two-fold increase in expression relative to adjacent or normal breast tissues. Many of the identified proteins have been previously reported to be involved in oncogenesis and our results are in line with such findings. For instance, the higher expression of HSPA4 in cancers was associated with metastasis and poor prognosis in breast cancer patients (25). HSPA9, a member of the heat shock protein family, regulates Raf/MEK/extracellular signal-regulated kinase (ERK) and is associated with tumorigenesis, especially drug resistance in breast cancer treatment (26, 27). The highly expressed PRKDC could promote breast cancer cell growth and was associated with poor survival of the patients (28). MMP11 has also been reported as a novel prognostic factor in breast cancer (29). Associations with cancer progression have also been previously reported for RRBP1 (30), PGK1 (31), and C1QBP (32, 33) by us, and our results in this study provided further supports, with the expression levels of the above listed proteins highly correlated with breast cancer development and progression. Some of the screened proteins, like RPS3, GDI2, IARS2, were less investigated and their cancer-related mechanism and roles remain unclear in breast cancers. These proteins have a potential to serve as biomarkers and should be explored as diagnostic or therapeutic targets in breast cancers. Further investigation of these proteins may prove their potential use as anti-cancer targets in clinical treatment.

Tissue-specific proteins have been an extensively investigated topic in cancer research. We identified differentially expressed molecules that were specifically up- or down-regulated in IBC, DCIS, and fibroadenoma in the current study. Specifically, expression levels of HSPA4, RRBP1, PGK1, PRKDC, GLA, UGDH, and NAMPT were highly increased in IBC. They have been reported to be involved in the development of breast cancer. Therefore, we suggest that these proteins may be used as diagnostic markers in preoperative puncture-based pathological tests to distinguish IBC from DCIS. The set of proteins may provide a rich and robust reference for preoperative diagnosis and help to formulate future surgical plans.

The transition from DCIS to IBC should be clearly defined to direct clinical decisions during breast cancer development. Comparison of differential expression levels of proteins between IBC, DCIS, and normal tissues is therefore of great importance. A set of 10 up-regulated (RRBP1, PGK1, NAMPT, and others) and 55 down-regulated (KRT families, SERPIN families, ALDH1A1, and others) proteins with gradient changes identified in this study may prove to be useful biomarkers and further research may elucidate whether continuous changes in expression of these proteins may play significant roles in the progression of the breast malignancy.

Several proteins identified here to be specific are worth further investigating. Secreted proteins such as MMP11 (34) and COL12A1 (34) were shown to play important roles in breast carcinogenesis and identified as highly expressed in our study. Therefore, they can be potential blood markers for the diagnosis of early breast cancer. We also detected the higher expression of HCG in IBC. HCG can be used as a tumor marker as the protein is involved in regulation of tumorigenesis (35). Meanwhile, it has been shown to play an important role in treatment of breast cancer (35). The anti- or pro-tumorigenesis effects of HCG in breast cancer deserve to be further explored. FLNA has been reported as oncogene in some cancers (36) but as tumor suppressor in others (37, 38). Our results showed that it was higher in cancer tissues compared with adjacent tissues. Therefore, the role of FLNA as cancer promoting or suppressing effector requires further clarifications. Additionally, we noticed that the expression level of GAPDH, a reference gene commonly used in research, was gradually increased following the increases in the degree of malignancy. GAPDH was shown to be involved in regulation of tumor cell glycolysis and autophagy (39) and was also linked to microenvironment-associated hypoxia (40). Notably, most solid tumors are exposed to hypoxic conditions (39). Therefore, whether GAPDH can be used rightfully as a reference protein requires further investigations in breast cancers.

WGS technologies have played important roles in exploring the genesis and development of breast cancer (41). However, there is continuous generation and degradation of RNA during its biological functioning. Besides, RNA undergoes multi-step processing from mRNA to protein translation. Therefore, it is difficult to determine the role that RNA plays in the development of tumors, especially during the change of tumor properties. Compared to RNA, proteins are more stable molecules involved in direct execution of specific biological functions. The level of differentially expressed proteins in breast cancer remains unclear at different stages of oncogenesis. The identification of proteins responsible for cancer development is an important step for understanding of oncogenesis. Notably, we mixed the same type of samples together during the processing, which resulted in elimination of individual differences between patients. This technical procedure might be associated with certain defects in the experiment. The number of collected samples per group was rather small.

In summary, protein mass spectrometry helps to identify new protein targets for breast cancer. Regarding the clinical significance of our data, we suggest that the identified proteins be further confirmed as new potential biomarkers for breast tumor. Based on the current clinical application and the development of biomedical sciences, formalin-fixed and paraffin-embedded (FFPE) tissues or blood samples are much more easily collected and should be used for protein detection and identification by iTRAQ (42, 43). Seeing that these samples have high application values with the advantages of clear history, diagnosis and detailed clinical data, proteomics (iTRAQ) analyses on these samples from breast tumor patients are of great significance in the study of disease mechanisms and new biomarkers discovery. The aim of the present study was mainly to identify differentially expressed proteins and to pave the way for further studies on pathogenesis or evolution mechanisms in breast tumor. However, samples from larger groups involving larger number of participants should be collected to verify the detected expression differences. Then a strict training, test, and validation process will be conducted. Besides, it is notable that the current trend in modern cancer medicine is oriented toward individualized therapy. The analysis of each patient’s samples separately will provide more specific molecular targets and improve the treatment outcome.
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Supplementary Figure 1 | PPI analyses of differentially expressed proteins in IBC vs cancer-adjacent and normal breast tissues using Metascape. (A) PPI network of proteins encoded by differentially expressed proteins. (B) Modules selected from PPI network using MCODE. Nodes represent differentially expressed proteins; lines represent interaction relationships between nodes. (C) Independent functional enrichment analysis of MCODE components.

Supplementary Figure 2 | PPI analyses of differentially expressed proteins in DCIS vs cancer-adjacent and normal breast tissues using Metascape. (A) PPI network of proteins encoded by differentially expressed proteins. (B) Modules selected from PPI network using MCODE. Nodes represent differentially expressed proteins; lines represent interaction relationships between nodes. (C) Independent functional enrichment analysis of MCODE components.

Supplementary Figure 3 | PPI analyses of differentially expressed proteins associated with growing level of malignancy in IBC and DCIS tissues using Metascape. (A) PPI network of proteins encoded by differentially expressed proteins. (B) Modules selected from PPI network using MCODE. Nodes represent differentially expressed proteins; lines represent interaction relationships between nodes. (C) Independent functional enrichment analysis of MCODE components.

Supplementary Table 1 | 20 up-regulated proteins of IBC tissues compared to adjacent and normal tissues. Differentially expressed proteins with ≥2-fold higher differences in IBC compared to both IBC-adjacent and normal tissues were screened.

Supplementary Table 2 | 80 Down-regulated proteins of IBC tissues compared to adjacent and normal tissues. Differentially expressed proteins with ≥2-fold lower differences in IBC compared to both IBC-adjacent and normal tissues were screened.

Supplementary Table 3 | Step-changing of 7 up-regulated and 11 down-regulated proteins in IBC, adjacent and normal tissues. Differentially expressed proteins with ≥2-fold (higher or lower) differences in IBC or IBC-adjacent tissues compared to normal tissues were screened (P<0.05). Next, proteins with higher or lower differences in IBC compared to IBC-adjacent tissues were further screened.

Supplementary Table 4 | 4 up-regulated proteins of DCIS tissues compared to adjacent and normal tissues. Differentially expressed proteins with ≥2-fold higher differences in DCIS compared to both DCIS-adjacent and normal tissues were screened.

Supplementary Table 5 | 48 down-regulated proteins of DCIS tissues compared to adjacent and normal tissues. Differentially expressed proteins with ≥2-fold lower differences in DCIS compared to both DCIS-adjacent and normal tissues were screened.

Supplementary Table 6 | Step-changing of 6 up-regulated and 8 down-regulated proteins in DCIS, adjacent and normal tissues. Differentially expressed proteins with ≥2-fold (higher or lower) differences in DCIS or DCIS-adjacent tissues compared to normal tissues were screened (P<0.05). Next, proteins with higher or lower differences in DCIS compared to DCIS-adjacent tissues were further screened.

Supplementary Table 7 | 6 up-regulated proteins of fibroadenoma tissues compared to adjacent and normal tissues. Differentially expressed proteins with ≥2-fold higher differences in fibroadenoma compared to both fibroadenoma-adjacent and normal tissues were screened.

Supplementary Table 8 | 38 down-regulated proteins of fibroadenoma tissues compared to adjacent and normal tissue. Differentially expressed proteins with ≥2-fold lower differences in fibroadenoma compared to both fibroadenoma-adjacent and normal tissues were screened.

Supplementary Table 9 | Step-changing of 6 up-regulated and 7 down-regulated proteins in fibroadenoma, adjacent and normal tissues. Differentially expressed proteins with ≥2-fold (higher or lower) differences in fibroadenoma or fibroadenoma-adjacent tissues compared to normal tissues were screened (P<0.05). Next, proteins with higher or lower differences in fibroadenoma compared to fibroadenoma-adjacent tissues were further screened.

Supplementary Table 10 | Specific up- or down-regulated proteins in IBC, DCIS and fibroadenoma tissues. Differentially expressed proteins with ≥2-fold (higher or lower) differences in IBC/DCIS/fibroadenoma compared to matched tumor-adjacent tissues and normal tissues were screened. Intersections of upregulated and downregulated proteins for IBC, DCIS, and fibroadenoma tissues were determined using Wayne chart way.

Supplementary Table 11 | 10 up-regulated and 55 down-regulated proteins with growing level of malignancy in IBC and DCIS tissues. Differentially expressed proteins with ≥2-fold (higher or lower) differences in IBC or DCIS tissues compared to normal tissues were screened (P<0.05). Next, proteins with higher or lower differences in IBC compared to DCIS tissues were further screened.

Supplementary Data sheet 1 | Annotation and enrichment informations of up/down-regulated proteins of IBC tissues compared to adjacent and normal tissues.

Supplementary Data sheet 2 | Annotation and enrichment informations of up/down-regulated proteins of DCIS tissues compared to adjacent and normal tissues.

Supplementary Data sheet 3 | Annotation and enrichment informations of up/down-regulated proteins of fibroadenoma tissues compared to adjacent and normal tissues.

Supplementary Data sheet 4 | Annotation and enrichment informations of IBC vs DCIS-related proteins.
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IBC, invasive breast cancer; DCIS, breast ductal carcinomas in situ; iTRAQ, isobaric tags for relative and absolute quantitation; WGS, whole genome sequencing; A1BG, alpha-1B-glycoprotein; A2M, alpha-2-macroglobulin; ALDH1A1, aldehyde dehydrogenase 1 family member A1; APCS, antigen-presenting cells; APOA, apolipoprotein A; APOA1, apolipoprotein A1; ARF5, ADP ribosylation factor 5; AMBP, alpha-1-microglobulin/bikunin precursor; ANK1, ankyrin 1; ANXA6, annexin A6; APOA2, apolipoprotein A2; APOD, apolipoprotein D; APOL1, apolipoprotein L1; AZGP1, alpha-2-glycoprotein 1, zinc-binding; CALD1, caldesmon 1; CCT4, chaperonin containing TCP1 subunit 4; CLU, clusterin; COL12A1, collagen type XII alpha 1 chain; COL18A1, collagen type XVIII alpha 1 chain; DHX9, DExH-box helicase 9; DSP, desmoplakin; ECM1, extracellular matrix protein 1; EHD2, EH domain containing 2; F2, coagulation factor II, thrombin; FBN1, fibrillin 1; FLNA, filamin A; FGA, fibrinogen alpha chain; FGB, fibrinogen beta chain; FHL1, four and a half LIM domains 1; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; GC, GC vitamin D binding protein; GDI2, GDP dissociation inhibitor 2; GGT5, gamma-glutamyltransferase 5; GLA, galactosidase alpha; CSRP1, cysteine and glycine rich protein 1; HBA2, hemoglobin subunit alpha 2; hCG, human chorionic gonadotropin; HP, haptoglobin; HRG, histidine rich glycoprotein; HSPA4, heat shock protein family A member 4; HSPA9, heat shock protein family A member 9; IARS2, isoleucyl-TRNA synthetase 2; IL16, interleukin 16; ITGB1, integrin subunit beta 1; ITGB4, integrin subunit beta 4; ITIH2, inter-alpha-trypsin inhibitor heavy chain 2; HBG1, hemoglobin subunit gamma 1; KNG1, kininogen 1; KRT, keratin; LUM, lumican; MAOB, monoamine oxidase B; ME2, malic enzyme 2; MMP11, matrix metalloproteinase 11; NAMPT, nicotinamide phosphoribosyltransferase; NONO, non-POU domain containing octamer binding; NNT, nicotinamide nucleotide transhydrogenase; NUDT19, nudix hydrolase 19; RRBP1, ribosome binding protein 1; RPS3, ribosomal protein S3; PEBP1, phosphatidylethanolamine binding protein 1; PGK1, phosphoglycerate kinase 1; PIP, prolactin induced protein; PLEC, plectin; PLIN1, perilipin1; PRDX2, peroxiredoxin 2; PRKDC, protein kinase, DNA-activated, catalytic subunit; PTN, pleiotrophin; SCPEP1, serine carboxypeptidase 1; SERPINA4, serpina family A member 4; SERPINH1, serpina family H member 1; SFRP1, secreted frizzled related protein 1; SPTBN1, spectrin beta, non-erythrocytic 1; STAM, signal transducing adaptor molecule; TGFBI, transforming growth factor beta induced; TUFM, Tu translation elongation factor, mitochondrial; UGDH, UDP-glucose 6-dehydrogenase; WFS1, wolframin ER transmembrane glycoprotein; VCP, valosin containing protein.
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Endocrine therapy is the main treatment option for estrogen receptor-positive (ER+) breast cancer (BC). Compared with other clinical subtypes, ER+ BC patients usually have a more favorable prognosis. However, almost all ER+ BCpatients develop endocrine resistance and disease progression eventually. A large number of studies based on liquid biopsy suggest that ESR1 mutations may play a key role in this process. For patients with ER+ metastatic BC (MBC), ESR1 is an important prognostic factor and may associate with the resistance to endocrine therapy, like aromatase inhibitors. The advances of sequencing technologies allow us to conduct longitudinal monitoring of disease and unveil the clinical implications of each ESR1 sub-clone in ER+ MBC. Moreover, since the ESR1-related endocrine resistance has not been fully addressed by existing agents, more potent cornerstone drugs should be developed as soon as possible. Herein, we reviewed the recent progress of detecting ESR1 mutations based on liquid biopsy and different sequencing technologies in ER+ MBC and discussed its clinical impacts and prospects.
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Introduction

Endocrine therapy (ET) is the main treatment option for estrogen receptor-positive (ER+) breast cancer (BC), which accounts for 70% of all diagnosed cases (1, 2). Three main ET strategies, including aromatase inhibitors (AIs), selective ER modulators (SERMs), and selective ER down-regulators (SERDs), are available in targeting the estrogen pathway (3). With the use of these agents, the 5-year survival rate of ER+ BC patients has been greatly improved since 1990 (4). However, endocrine resistance remains a major clinical challenge. Almost all ER+ BC patients develop endocrine resistance and disease progression eventually, suggesting the need to develop more potent drugs, as well as technologies for predicting and longitudinally monitoring the ET resistance (5, 6). The liquid biopsy provides a noninvasive route of sample collection for cancer patients. Using cell-free DNA (cfDNA), circulating tumor DNA (ctDNA), and circulating tumor cells (CTCs), liquid biopsy has been widely utilized in the research of various tumors (7–10).

ESR1, the gene that encodes ERα and mediates the biological effects of estrogen, is associated with the incidence of ER+ BC (11, 12). Compared with the ESR1 mutations frequency of <5% in primary BC from the results of Cancer Genome Atlas project, Jeselsohn et al. reported a higher incidence of 12% (9/76) in advanced ER+ disease (13, 14). Allouchery et al. found that more hormone receptor-positive (HR+) BC patients had circulating ESR1 mutations at progression than those at first relapse (33%, 7/21 vs. 5.3%, 2/38) (15). Compared with patients at early treatment lines, metastatic patients at late treatment lines had a higher prevalence of circulating ESR1 mutations (16, 17). All the work mentioned above essentially underline the importance of detecting circulating ESR1 mutations in metastatic settings. In recent years, the sequencing technology has developed rapidly from Polymerase Chain Reaction (PCR) to Next-Generation Sequencing (NGS), which allows efficient and accurate detection of genomic alterations in cancer and accelerates the process of precision medicine (18, 19). Herein, we summarized recent progress of detecting ESR1 mutations based on liquid biopsy and different sequencing technologies in ER+ metastatic BC (MBC) and discussed its clinical implications and prospects.



ERα Structure and Signaling

The ERα is a member of nuclear HR superfamily and acts as a ligand-activated transcription factor (20). The structure of ERα consists of two activating function domains (AF1/2), a DNA-binding domain, a hinge domain, and a ligand-binding domain (LBD). The most studied domain of ERα, LBD, has 12 α-helices (helix 1-helix 12) that are mostly linked by loop regions (21).

The ERα is involved in both genomic and non-genomic signaling. In the nucleus, estradiol binds to the LBD of ERα, leading to a conformational change of helix 12. Then, the conjugate of ERα and estradiol binds to the estrogen responsive element (ERE) of ERα-target genes, resulting in the recruitment of coregulatory proteins (22). The activating ER pathway drives the cell from G1 phase to S phase and causes cell proliferation consequently (Figure 1A). Reversely, binding to an anti-estrogen agent like tamoxifen (TAM) will prevent the helix 12 of LBD from forming an active AF-2 conformation (21). In addition, the ERα can interact with several other transcription factors such as NF-kB and AP-1 to indirectly regulate DNA transcription activity in an ERE-independent way (23, 24). At the plasma membrane, ERα also interacts with some growth factor receptors (GFRs) to achieve a non-genomic or transcription-independent function, including insulin growth factor 1 receptor (IGF1R), human epidermal growth factor receptor 2 (HER2), and fibroblast growth factor receptor (FGFR) (25).




Figure 1 | Estrogen signaling pathway (A) and major mutation sites of ESR1 (B). In the nucleus, E2 directly mediates the transcription by binding to the ERE of target genes; E2 also binds with transcription factors such as AP1 and SP1, leading to indirect regulation of DNA transcription. E2, estradiol; ERE, estrogen response element; ERα, estrogen receptor α; AF, activation function; DBD, DNA binding domain; LBD, ligand binding domain.





Overview of ESR1 Mutations in MBC

The most commonly detected ESR1 point mutations locate in codons 380, 537, and 538 within the LBD (19, 26) (Figure 1B). Several large-scale clinical trials have investigated the prevalence of ctDNA ESR1 mutations in ER+ MBC patients (27–30). In a secondary-analysis to the BOLERO-2 study, ESR1 D538G and Y537S mutations were found in 28.8% and 13.3% of the samples, respectively (27). The PALOMA-3 study reported an ESR1 mutation rate of 25.3%, while both the SoFEA study and the FERGI study found relatively higher ESR1 mutation rates (39.1% and 37%, respectively) in ER+ MBC patients (28–30). As shown in Table 1, four studies (BOLERO-2, SoFEA, PALOMA-3, and FERGI) revealed a high prevalence of ESR1 mutations in second and higher treatment line, with a total mutation rate of 32% (684/2136), while one study (MONALEESA-2) evaluated the ESR1 mutations in first-line treatment and reported a low prevalence of ESR1 mutations (4%). Our previous work revealed an ESR1 mutation rate of 24.7% (169/685) in the HR+ MBC patients (19). And this proportion seemed to be higher (30%–40%) in ER+ HER2- MBC patients who had resistance to ET, especially to AIs (31).


Table 1 | Large-scale clinical trials of recent years detecting ESR1 mutations in metastatic breast cancer (MBC).





Endocrine Resistance Associated With ESR1

The endocrine therapeutic approaches including AIs, SERMs (preferably TAM), and SERDs (preferably FUL) have become the backbone of treatment for ER+ MBC (2, 3). AIs can specifically inactivate aromatase and reduce the level of estrogen in the blood to achieve the purpose of treating BC (32). According to the chemical structure, AIs have been divided into steroidal AIs (exemestane and formestane) and non-steroidal AIs (aminoglutethimide, letrozole, and anastrozole). Both SERMs and SERDs block the function of ER. The difference between them is that SERMs have mixed agonistic/antagonistic capacities and compete with the estrogen ligand, while SERDs possess exclusive antagonistic activity and induce ER protein degradation (33). For post-menopausal ER+ HER2- MBC patients who have not received any anti-estrogen therapy, AIs, TAM, and FUL are reasonable choices, while for those who have failed anti-estrogen therapy, AIs are the first choice. For pre-menopausal ER+ HER2- MBC patients, the first-line treatment could be TAM alone, AIs plus ovarian suppression, or appropriate ET with CDK4/6 inhibitors like palbociclib (2). Nevertheless, the problem of endocrine resistance may arise due to the selective pressure of therapy (34). Current data indicate that the presence of ESR1 mutations is one of the most common mechanisms of endocrine resistance (14, 35). Since it has been shown that the resistance to TAM is a partial resistance that could be overcome by increasing therapeutic dosage, we will concentrate on the implications of ESR1 mutations in the resistance to AIs and FUL (36, 37).



ESR1 Mutations and AIs

Aromatase is an enzyme of the cytochrome P450 family. This kind of enzyme catalyzes the conversion process of adrenal substrate androstenedione to estrogen in peripheral tissues such as the breast and liver. The rationale for using AIs in post-menopausal patients is to block the production of estrogen by inhibiting aromatase in the tumor and peripheral tissues (32). Patients develop ESR1 mutations primarily due to the estrogen deprivation therapy including AIs and oophorectomy (38). These mutations are frequently selected in therapy with AIs in metastatic settings, but are rarely acquired in adjuvant therapy with AIs (39). It was shown that detecting circulating ESR1 mutations at the end of AIs-based adjuvant therapy had no clinical significance, while these mutations could be monitored from first relapse to progression to guide interventional studies (15).

Major genotypic and phenotypic heterogeneity exists among AIs-resistant diseases. Plenty of potential mechanisms have been reported in animal models, but to date the only mechanisms of resistance to ET reported in the clinical practice are HER2 gene amplification and ESR1 mutations (38, 40). After being constitutively activated by ESR1 mutations, the ER becomes active without binding to its ligand, conferring complete or partial resistance to AIs (41). This constitutively ligand-independent ERα activity could be explained by a shift in helix 12 within the LBD, which leads to a resemblance to the ligand-bound active state (42). Importantly, numerous studies have identified the prognostic role of ESR1 mutations in MBC patients who received AIs 17, 27, 39, 43, 44). The rate of ESR1 mutations in ER+ MBC patients who progressed on AIs treatment was significantly higher than that of AIs-naïve patients (25.8% vs. 0%; P = 0.015) (43). Li et al. demonstrated that the change of MAF in circulating ESR1 was an important biomarker in ER+ MBC, which could predict the resistance to AIs (44). However, the predictive role of ESR1 mutations in endocrine resistance needs to be validated in further high-quality studies.



ESR1 Mutations and FUL

As the only SERD approved currently for clinical practice, FUL (ICI182780) has 100 times higher affinity to the ER than TAM (3, 45). Pre-clinical and clinical data showed that FUL was active even in TAM-resistant models (46, 47)). American Society of Clinical Oncology has recommended FUL 500 mg to be the standard treatment for post-menopausal ER+ ABC patients who fail in the first-line ET (48). In 2016, the FALCON study further proved FUL as an effective first-line ET for post-menopausal HR+ ABC patients (49). Recent data from one real-world study indicated that FUL users with shorter PFS had a significantly higher mutation rate of ESR1 (0/6 vs. 6/10; Fisher’s exact P = 0.03) (50). Different ESR1 sub-clones in vitro may contribute to the differing response to FUL (51). ESR1 Y537S mutants required the highest dose to completely block transcriptional activity and cell proliferation compared with other mutants (52). The selection of ESR1 Y537S was identified as the variant that most likely promoted the resistance to FUL (19, 53). Even though the biochemical mechanism of the FUL relative resistance has not been elucidated, patients with mutations in the ESR1 LBD may benefit from higher-dose or more potent SERMs/SERDs (6, 14, 33).



Advances in Liquid Biopsy Technologies for Detecting ESR1 Mutations

Traditional tissue biopsy has high detection rate and accuracy, but it would take a month or later to obtain results. Repeated invasive operations can cause significant harm to the patient and increase staff burden (54). In contrast, liquid biopsy is non-invasive, rapid, and can be conducted in patients with tumors that are inconvenient for biopsy. Nevertheless, the detection rate and sensitivity of liquid biopsy could be low as the CTCs are rare in the blood (≤ 1/ml) and the presence of background DNA (55, 56). Using ultra-deep sequencing to increase detection sensitivity could be unaffordable. Fortunately, the cost of sequencing has been gradually decreasing with the advances of sequencing technology, thus improving its clinical feasibility.

The two most commonly used methods for liquid biopsy in MBC are droplet digital PCR (ddPCR) and NGS. The ddPCR has long been preferred to detect ESR1 mutations for its higher sensitivity and accuracy (57). Whereas, NGS can interrogate larger regions such as gene panels without prior knowledge of the mutations (19, 58, 59). Several common commercially available NGS technologies include Guardant360 (Guardant Health), FoundationOne Liquid and FoundationACT (Foundation Medicine Inc). Guardant360 is the first analysis tool that combines liquid biopsy and NGS. It can analyze 73 genes of ctDNA in blood samples to guide treatment decisions in seven days (60). FoundationOne Liquid is the only FDA-approved blood-based test to analyze over 300 genes with high accuracy. This test also reports blood tumor mutational burden, microsatellite instability, and tumor fraction values (61). As the predecessor assay of FoundationOne Liquid, FoundationACT detects substitutions, indels, copy number amplifications, and rearrangements in 62 genes and targets ~141 kbp of the human genome (62). As there are certain technical differences between these technologies, researchers must know the scope of detected genes and consult with the company before starting sequencing (63). Recently, substantial effort has been invested in improving the sequencing technologies of liquid biopsy (31, 64–69). The main features of emerging detection technologies such as eTAm-Seq and PredicinePLUS™ were summarized in Table 2. Despite the advances of sequencing technologies, there remain some issues to address, including the increasing proportions of false positives and negatives at low MAF and the reproducibility of high throughput technologies (70, 71).


Table 2 | Selected studies of emerging detection technologies for ESR1 mutations in MBC.





Prognostic Role of ESR1 Mutations in ER+ MBC

ERα-positivity is a favorable prognostic factor for BC, nevertheless, ER+ BC patients tend to lose ERα-positivity as a result of temporal and spatial heterogeneity and can recur several years after the completion of adjuvant therapy (35, 72). ESR1 mutations accumulate during treatment and may generate a more aggressive phenotype via transcriptional changes (16, 27). Many studies have demonstrated that circulating ESR1 mutations may be poor prognostic factors for ER+ MBC (27, 39, 50, 73–76). A recent meta-analysis demonstrated that plasma ESR1 mutations carriers had significantly worse progression-free survival (PFS) and OS (P < 0.0001) compared with wild-type ESR1 (75). In AIs-treated MBC patients, ESR1 mutations carriers also showed significantly shorter PFS than non-carriers (P = 0.017) (76). The prognostic value of ESR1 mutations may be more significant in patients receiving second-line and above ET because of the much higher mutation rates, compared with patients receiving first-line ET (27–30). The cfDNA ESR1 mutations were associated with shorter overall survival (OS) of MBC patients receiving second-line and above ET from the BOLERO-2 study (27). In real world data, ESR1 mutations were also found to be related to poor PFS in higher-line fulvestrant (FUL) users (50). However, the ESR1 ctDNA dynamics in advanced BC (ABC) patients from the PALOMA-3 study offered limited prediction of clinical outcomes (77). This could be explained by the frequent sub-clones of ESR1, which will be further discussed in a later section.



Longitudinal Monitoring and Sub-Clones

Given that cancer is an evolving process based on the clonal theory of tumor evolution, it is somewhat one-sided to only link genomic profile at a certain time point to the prognosis (78). In contrast, longitudinal monitoring of disease may provide more comprehensive information of prognosis and disease progression (44, 79, 80). Patients with persistently elevated CTCs/ctDNA with ESR1 LBD mutations showed shorter PFS than patients who did not (P = 0.0007), while baseline ESR1 LBD mutation status was not prognostic (79). Dynamically monitoring ctDNA ESR1 mutations may predict the resistance to AIs (44). Furthermore, circulating ESR1 variants were shown to be more sensitive in monitoring the evolution and predicting potential resistance than contemporary staging methods (80).

With the genomic profile changing constantly during disease evolution, sub-clones with much aggressive biological behaviors and acquired drug resistance may be selected under the pressure of multiple-line treatment (81). Recent progress suggests that the tumor sub-clones are involved in the metastatic progression and chemotherapy resistance (82). In ER+ MBC patients, detection of CTCs revealed high levels of intra- and inter-tumor heterogeneity (83). Takeshita et al. found that 72.7% (8/11) MBC patients with cfDNA ESR1 mutations had the poly-clonal mutations during the treatment course, suggesting the differential response of individual ESR1 mutations to treatments (84). Another study by the same team detected distinct populations of ESR1 mutations in plasma and corresponding metastatic tissues. Each ESR1 mutation could have unique clinical significance, and it would be intriguing to investigate them all (19, 85). O’Leary et al. sequenced the ctDNA samples of patients from the PALOMA-3 study. The results showed that 28.9% (33/114) baseline ESR1 mutations were poly-clonal with the majority of poly-clonal samples featuring a D538G mutation (87.9%, 29/33) (77). D538G mutants demonstrated an enhanced estrogen-dependent response in ER+ T47D cell models, while Y537S mutants showed no estrogen dependence (86). Therefore, longitudinal analysis of cfDNA may help optimizing therapeutic regimens for patients with dominant D538G ESR1-expressing clones. Moreover, given that clonal selection of hotspot ESR1 mutations can occur at the early stage of disease, assessing circulating ESR1 mutations as soon as first relapse happens may help to guide clinical interventions (15, 76).



The Crosstalk Between Estrogen and Other Signaling Pathways

Interactions between ER and GFR signaling such as IGF1R, HER2, and FGFR have been described, suggesting an additional therapeutic strategy to block ESR1 mutant-driven BC by targeting non-genomic signaling pathways (25, 35, 87–90). IGF1R signaling was upregulated in ESR1 mutant over-expression models and involved in the resistance to TAM (87). IGF1R inhibitor (OSI906) and FUL were shown to induce synergistic growth inhibition in Y537S and D538G ESR1 mutant BC cells (88). HER2, a well-established therapy target in BC, has been shown to phosphorylate and increase ER transcriptional activity when aberrantly activated (89). HER2 amplification was correlated with reduced ER expression, reduced sensitivity to ER targeted therapies, and poor outcomes (91). Toy et al. identified an ESR1 mutation rate of 7.9% (10/126) in ER+ HER2+ patients, suggesting a potential role of ESR1 mutations in HER2+ patients. Therefore, it would be necessary to further determine the differences in the treatment outcomes between HER2+ patients with or without ESR1 mutations (52). FGFR, the receptor that binds to members of the fibroblast growth factor family, regulates a series of physiologic cellular processes (90). The deregulation of FGFR signaling has been observed in a subset of cancers (92). Formisano et al. identified FGFR1 signaling as a mechanism of drug resistance in ER+ MCF-7 cells treated with the CDK4/6 inhibitor ribociclib plus FUL. In addition, the presence of ctDNA FGFR1 alterations was associated with a shorter PFS in the MONALEESA-2 study, suggesting that aberrant FGFR signaling was a potential mechanism of escape from ET plus CDK4/6 inhibitors (19, 93).

On the other hand, the interactions between ER and GFR can activate downstream signaling components such as PI3K/AKT/mTOR pathways (94). The ER and PI3K pathways often play a synergistic role in tumor progression (95). More ER+ MBC patients with progressive disease exhibited increased PIK3CA mutation frequency than those without progressive disease (56.25% vs. 0%; P = 0.002). In addition, GATA3 and ESR1 mutations correlated with PIK3CA mutation, and the combination of everolimus (an mTOR inhibitor) and chemotherapy effectively suppressed these gene mutations (96). The NOTCH signaling pathway, a highly conserved cell signaling system, includes four different receptors (NOTCH1/2/3/4) in mammals (97). Elevated NOTCH expression was correlated with poor survival among BC patients (98, 99). High expression of NOTCH target genes was exhibited in ESR1 mutants and blocking NOTCH signaling could reduce mammosphere-forming efficiency and migratory potential. These findings warrant further investigation of treatment targeted at NOTCH pathway in ESR1 mutant BC (100).



Pre-Clinical Studies on Novel SERDs/SERMs

Enhanced ET could potentially overcome resistance caused by the activated somatic mutants and other mechanisms (101). Although FUL has displayed clinical benefit in ABC patients despite its inconvenience and poor bioavailability of intramuscular injections, the drug-resistant phenotypes of the ESR1 mutants underline the need to develop more potent SERDs/SERMs that are also orally bioavailable (102). GLL398, a boron-modified GW5638 analog, has shown superior ER degrading efficacy and oral bioavailability (103, 104). Compound ERD-148 is a novel orally bioavailable degrader of ERα. ERD-148 inhibited the growth of ER+ BC cells via specifically antagonizing the ERα receptor with comparable potency to FUL and marginal non-specific toxicity (105).. Bazedoxifene is a potent anti-estrogen agent that is clinically approved for hormone replacement therapy. Fanning et al. found that bazedoxifene possessed improved inhibitory potency against the D538G and Y537S mutants compared with TAM and had additional inhibitory activity when combined with a CDK4/6 inhibitor palbociclib. Elacestrant, a novel oral SERD, presented growth inhibition in cells and patient-derived xenograft models resistant to all three approved CDK4/6 inhibitors, providing a scientific rationale for evaluating elacestrant in patients pre-treated with CDK4/6 inhibitors (106). Several ongoing clinical trials involving potential novel SERDs were presented in Table 3.


Table 3 | Ongoing clinical studies of novel SERDs in ER+ MBC patients (registered in clinicaltrials.gov until 13 July 2020).





Conclusions and Prospects

The sequencing technology has been developing towards higher sensitivity and accuracy in recent years. Taking advantage of the advances in liquid biopsy, we can reveal more comprehensive genomic landscape of cancer patients, as well as the potential relationship between genomic alterations and disease progression that is helpful in improving treatment decision-making. Numerous clinical studies based on liquid biopsy have identified the prognostic role of ESR1 mutations in ER+ MBC, while monitoring ESR1 mutations alone has not been clinically used for treatment prediction yet. Importantly, ESR1 mutations may play a key role in the resistance to ET and several potential mechanisms were proposed by some pre-clinical studies. For example, the constitutive activity of ER led by ESR1 mutations may contribute to resistance to AIs and ESR1 Y537S sub-clone could be the variant most likely promoting resistance to FUL. In general, large-scale prospective trials are desperately needed to advance the clinical management of ESR1 mutations in MBC.

Frequently-acquired ESR1 mutations alongside enhanced estrogen-regulated genes expression, intractable drug resistance, and the defects of existing drugs collectively provide a strong rationale to develop more potent SERMs/SERDs. Moreover, the crosstalk between ESR1 and other signaling pathways, such as IGF1R and NOTCH, may offer additional therapy targets and chances to improve survival for patients who have developed ET resistance. Despite encouraging results of the combination of CDK4/6 inhibitors and ET being obtained in previous large-scale clinical studies such as studies of PALOMA series and MONALEESA series, many questions remain unaddressed. For example, can ESR1 mutations in ER+ MBC patients be reversed due to the effective targeted therapy? Or will there be differences in PFS and OS between ESR1 mutations carriers and non-carriers in the setting of CDK4/6 inhibitors plus ET? Future studies should focus on developing novel sequencing technologies to further unveil the biological and clinical implications of ESR1 mutations in ER+ MBC, especially the relationships between each ESR1 sub-clone and endocrine resistance.
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Introduction

To investigate the prognostic and predictive effect of the American Joint Committee on Cancer (AJCC) 8th edition pathological prognostic staging system in patients with T1-2N1micM0 breast cancer who underwent mastectomy.



Methods

Data from T1-2N1micM0 breast cancer patients who underwent mastectomy from 2010–2014 were obtained from the Surveillance, Epidemiology, and End Results program. The chi-square test, binomial logistics regression, receiver-operating characteristics curve, competing-risk regression model, Cox proportional hazards regression model, and proportional hazard assumption were used for statistical analyses.



Results

We identified 4,729 patients, including 1,062 patients were received postmastectomy radiotherapy (PMRT). Stage change occurred in 88.2% of the patients, of which 84.4% were downstaged and 3.7% were upstaged. Patients with higher pathological prognostic stages were independently predicted to receive PMRT. The 5-year breast cancer-specific survival (BCSS) was 97.5, 93.7, 90.1, 86.0, and 73.5% in disease stages IA, IB, IIA, IIB, and IIIA, respectively, according to the 8th edition criteria (P < 0.001). The AJCC 8th edition demonstrated moderate discriminative ability, and it had a significantly better ability to predict the BCSS than the AJCC 7th edition criteria (P < 0.001). The multivariate prognostic analysis showed that the new pathological prognostic staging was an independent prognostic factor affecting the BCSS. The BCSS worsened with an increase in the stage. The PMRT did not affect the BCSS regardless of the pathological prognostic stage. Similar trends were found using the competing-risks regression model.



Conclusions

The 8th AJCC breast cancer pathological prognostic staging system downstaged 84.4% of patients with T1-2N1micM0 disease and the survival outcome prediction with this staging system was more accurate than the AJCC 7th edition system. Our study does not support using the prognostic stage as a guideline to escalate of PMRT.
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Background

Routine pathological assessment of the prognostic and predictive biological factors of breast cancer, including estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) status, and tumor grade, determine the treatment decision and the response of breast cancers to therapy (1–4). Recognizing this, the American Joint Committee on Cancer (AJCC) 8th edition staging system for breast cancer introduced the clinical and pathological prognostic stages by incorporating biological factors into the traditional anatomic stages (5, 6). Compared with the 7th AJCC anatomic staging system, 8th AJCC pathological prognostic stages incorporating these biological factors provide a more refined prognostication in terms of survival estimates for patients receiving appropriate multidisciplinary treatment (7–10).

With advances in surgical and histopathological techniques of breast cancer, an increased number of patients were diagnosed as having micrometastatic disease (N1mic, ≤2 mm axillary nodal metastasis; 15–20%), which were labeled as node-negative (N0) by routine histological assessment (11–13). However, the prognostic significance for this population remains controversial. Several prior studies have shown comparable disease-free survival (DFS) and/or overall survival (OS) between patients with N1mic and those with N0 disease (14, 15). Other studies have found that N1mic breast cancer does indeed confer a lower survival and that adjuvant therapy should be performed to improve survival outcomes (16–19). The DFS appears to be only slightly lower among N1mic breast cancer patients (20). Also, it remains unknown whether such patients would benefit from postmastectomy radiotherapy (PMRT). In recent years, several studies have attempted to explore the clinical value of PMRT in T1–2 (tumor size ≤5 cm) and N1mic breast cancer, but all studies have yielded negative results (21–25). It is anticipated that the biological factors in breast cancer may inform the decision to carry out PMRT for this population. In light of this, we performed this study to investigate the prognostic effect of the AJCC 8th pathological prognostic staging in T1-2N1micM0 breast cancer patients undergoing mastectomy using a large, population-based cohort. In addition, we also investigated the role of the AJCC 8th pathological prognostic staging on the decision-making of PMRT for this population.



Methods and Materials


Patients

Patients were identified from the Surveillance, Epidemiology, and End Results (SEER) database in this study. The SEER database includes cancer incidence and survival information from 18 registries and covers 28% of the United States population (26). We identified female breast cancer patients diagnosed between 2010 and 2014 and met the following criteria: T1-2N1micM0 invasive breast cancer; had undergone mastectomy with and without PMRT; available variables, including age, race/ethnicity, tumor grade, ER, PR, HER2 status, and chemotherapy administration. Patients with metastatic disease at diagnosis, those with no positive pathology diagnosis; unknown radiation status; unknown tumor grade; as well as unknown or borderline ER, PR, and HER2 status were excluded. Because the SEER database contains publicly available data for de-identified patients, Institutional Review Board approval was waived.

The following variables were extracted for analysis: age, race/ethnicity, tumor stage (T1 and T2), tumor grade (grades I, II, and III), hormone receptor status (negative, positive), HER2 status (negative, positive), chemotherapy (no, yes), and PMRT (no, yes). The tumor/node/metastasis (TNM) staging system was based on the anatomic staging according to the AJCC 7th edition staging system, and pathological prognostic staging was determined according to the AJCC 8th edition of the breast staging manual (5, 6). Grade III disease included poorly differentiated and undifferentiated histological grades.

The primary outcomes of this study were breast cancer-specific survival (BCSS) and breast cancer-specific mortality (BSCM). BCSS was estimated from the time of diagnosis of breast cancer to the time of death from breast cancer. Patients who were still alive at the last follow-up or died of other causes were excluded from the analysis. BCSM was defined as the interval from the initial diagnosis of breast cancer to the date of death from breast cancer.



Statistical Analysis

Descriptive statistics were compared between patients with and without PMRT using the chi-square test. Independent predictive factors that correlated with PMRT were investigated using binomial logistics regression. BCSS curves were generated by the Kaplan-Meier method and compared using the log-rank test. A competing-risk regression model was used to estimate the cumulative incidence of BCSM. The area under the curve (AUC) was estimated using the receiver-operating characteristics (ROC) curve to investigate the discriminatory ability of 7th and 8th AJCC staging criteria to predict the BCSS. Univariate and multivariate analyses were performed using the Cox proportional hazards regression models and competing-risks regression models in the Cox model framework to determine the predictive performance of variables with respect to BCSS and BCSM, respectively. The proportional hazard assumption was tested both graphically and using the Schoenfield residual test. A two-sided P value of < 0.05 was considered statistically significant. All statistical analyses were performed by SPSS software version 22.0 (IBM Corp., Armonk, NY), Stata/SE version 14 (StataCorp, TX, USA), and R version 3.1.1 (https://www.r-project.org/).




Results


Patient Characteristics

A total of 4,729 patients were included in this study. Of these patients, 88.0% (n = 4,161), 86.2% (n = 4,077), 85.3% (n = 4,036), 82.2% (n = 3,885), and 77.2% (n = 3,651) were ER-positive, invasive ductal carcinoma, HER2-negative, grade II–III, and PR-positive, respectively. Table 1 lists the patient characteristics. Moreover, 22.5% (n = 1,062) and 53.1% (n = 2,513) of the patients received PMRT and chemotherapy, respectively. A total of 2,456 (51.9%) and 2,273 (48.1%) patients were categorized into disease stages IB and IIB, respectively, according to the 7th AJCC staging system. A total of 2,571 (54.4%), 1,201 (25.4%), 373 (7.9%), 407 (8.6%), and 177 (3.7%) patients were categorized into disease stages IA, IB, IIA, IIB, and IIIA, respectively, according to the 8th AJCC pathological prognostic staging system.


Table 1 | Patient baseline characteristics.





Stage Migration

Among all patients, 88.2% of patients had stage changed, of which 84.4% were downstaged and 3.7% were upstaged. In the 7th AJCC stages, 93.7% of the stage IB patients were downstaged to stage IA according to the 8th edition criteria, and there were no patients upstaged. Among patients classified as disease stage IIB according to the 7th edition classification, 74.3% of patients were downstaged, of which 11.8, 46.1, and 16.4% of patients were downstaged to disease stages IA, IB, and IIA, respectively, according to the 8th AJCC staging criteria. In addition, 177 (7.8%) patients had been upstaged to stage IIIA disease according to the 8th edition criteria.



Predictive Factors Associated With Postmastectomy Radiotherapy

Results of the univariate analysis showed that patients with younger age (< 50 years), higher tumor grade (grade III), larger tumor size (T2), ER-negative, PR-negative, and HER2-positive disease were more likely to receive PMRT (all P < 0.05). In addition, the percentage of patients who received PMRT increased with the staging (P < 0.001). We used two binomial logistic regression models to assess the independent predictive factors related to the receipt of PMRT (Table 2). In the first model, without including pathological prognostic staging, the results showed that younger age, invasive lobular carcinoma, grade III, T2, and PR-negative were the independent predictive factors associated with the receipt of PMRT. The new pathological prognostic staging was included in the second model, and the results showed that younger age, invasive lobular carcinoma, and higher pathological prognostic stages were independent predictors of PMRT receipt. Using stage IA as the reference, the odds ratios (ORs) for PMRT receipt in stages IB, IIA, IIB, and IIIA was 1.692 (95% confidence interval [CI] 1.433–1.997), 1.966 (95% CI 1.533–2.520), 1.967 (95% CI 1.541–2.509), and 3.727 (95% CI 2.708–5.130), respectively.


Table 2 | Predictive factors associated with postmastectomy radiotherapy receipt.





Survival and Prognostic Analysis

A total of 493 deaths occurred at a median follow-up of 49 months. Of these, 234 (47.5%) and 259 (52.5%) of patients died of breast cancer and other causes, respectively. The 5-year BCSS for stages IB and IIB disease in the 7th AJCC classification system were 97.0 and 90.8%, respectively (P < 0.001; Figure 1A). The 5-year BCSS were 97.5, 93.7, 90.1, 86.0, and 73.5% in stage IA, IB, IIA, IIB, and IIIA breast cancer classified according to the 8th edition criteria, respectively (P < 0.001; Figure 1C). When staged using the 7th edition AJCC system, the 5-year cumulative incidence of BCSM was 2.9% and 8.8% for stages IB and IIB, respectively (P < 0.001; Figure 2A). When staged using the 8th edition criteria, the 5-year cumulative incidence of BCSM was 2.5, 6.0, 9.7, 13.2, and 25.4% in stages IA, IB, IIA, IIB, and IIIA breast cancer, respectively (P < 0.001; Figure 2B), which were similar to the results using Kaplan-Meier analysis.




Figure 1 | Breast cancer-specific survival curves and the evaluation of the proportional hazards assumption in survival analysis by the AJCC 7th edition (A, B) and 8th edition (C, D) staging systems.






Figure 2 | Cumulative incidence of breast cancer-specific mortality by the AJCC 7th (A) and 8th (B) edition staging systems.



Univariate and multivariate analyses were performed to determine the prognostic performance of variables with respect to BCSS and BCSM, respectively. As more than half of the deaths did not occur from breast cancer, we used two multivariate prognostic models, including the Cox regression model and the competing-risks regression model to assess the independent risk factors influencing patient survival. Univariate analysis showed that the prognostic staging was associated with patient survival (Table 3). The results of both multivariate prognostic models also revealed that pathological prognostic staging was an independent prognostic factor of patient survival. As the stage increased, the BCSS decreased (Cox regression model) and the risk of BCSM increased (competing-risks regression model) (Table 3). In addition, age was an independent risk factor affecting BCSM. However, PMRT was not found to affect patient survival in either model. Similarly, chemotherapy also did not affect patient survival.


Table 3 | Univariate and multivariate prognostic analysis using the Cox regression model and competing-risks regression model.



The effect of 7th (Figure 1B) and 8th (Figure 1D) AJCC staging on BCSS met the proportional hazard assumption, which indicated that the constant hazard ratios from the Cox model were reliable. The ROC was assessed using BCSS as the dependent variable, and the 8th edition AJCC staging system demonstrated moderate discriminative ability [AUC = 0.711, standard error (SE) = 0.018, 95% CI 0.698–0.724], which was significantly better than the 7th edition AJCC staging system in predicting the BCSS (AUC = 0.625, SE = 0.015, 95% CI 0.611–0.639; P < 0.001).



Effect of Postmastectomy Radiotherapy by Pathological Prognostic Stages

As patients with increasing stages were at a higher risk of breast cancer-related death, we further evaluated the value of PMRT in patients with different pathological prognostic stages. Univariate analysis using the Kaplan-Meier method (Figure 3) and competing-risk regression model (Figure 4) did not find any association between BCSS survival and PMRT in different pathological prognostic stages. The details of univariate Cox regression analysis and competing-risks regression analysis were showed in Table 4. After adjusting for age, race/ethnicity, histology, and chemotherapy, PMRT receipt was also not associated with better BCSS or lower BCSM compared to no PMRT, regardless of the pathological prognostic stage (Table 4).




Figure 3 | Effect of postmastectomy radiotherapy on breast cancer-specific survival by different pathological prognostic stages (A, stage IA; B, stage IB; C, stage IIA; D, stage IIB; E, stage IIIA).






Figure 4 | Cumulative incidence of breast cancer-specific mortality with and without postmastectomy radiotherapy according to different pathological prognostic stages (A, stage IA; B, stage IB; C, stage IIA; D, stage IIB; E, stage IIIA).




Table 4 | Univariate and multivariate prognostic analysis using the Cox regression model and competing-risks regression model by pathological prognostic stages.






Discussion

The traditional anatomic TNM staging system might not be enough to predict the prognosis and make treatment decisions in breast cancer. The AJCC 8th edition staging system, which includes various biomarkers, could better reflect the prognostic information and selection of therapy for breast cancer (5, 6). In this study, we verified the prognostic effect and predicted the survival benefits of PMRT using the new pathological prognostic system in T1-2N1micM0 breast cancer. Our results indicated that the AJCC 8th edition staging system could refine the prognostic information for this population, but PMRT was not associated with better BCSS regardless of the pathological prognostic stages.

Regarding the 7th AJCC staging system, T1-2N1micM0 was represented by disease stages IB and IIB. We sought to determine the probability of patients staged with the 7th edition criteria to be restaged according to the new pathological prognostic stages. Several population-based and larger cohort studies with stages I–III patients have shown that 36.6–53.2% of patients were restaged from the 7th anatomic stages to the 8th pathological prognostic stages, of which 19.4–29.7% were downstaged and 6.8–31.2% were upstaged (8, 9, 27). In our study, 88.2% of patients were restaged, including 84.4% and 3.7% of patients were assigned to more and less favorable stages (downstaged and upstaged), respectively. Differences in the distributions of biological factors between stage N1mic and other nodal status may be a possible explanation for the higher percentage of patients who were downstaged in our study. In this study, 88.0% of patients were ER-positive, which was similar to the results from Bae et al., who found that there was a significantly higher percentage of ER-positive (87.4% vs.75.9–81.3%) and PR-positive (75.7% vs. 62.4–73.0%) diseases among patients with N1mic breast cancer than patients with N0 and N1a breast cancers (28).

The 8th AJCC pathological prognostic stages were the first time incorporated biological factors, including ER, PR, HER2, and tumor grade into the staging classification system. Several recent studies have confirmed that the new staging system is more reliable than the AJCC 7th edition system for accurately predicting the survival outcome of breast cancer patients (7–10). Similarly, our study also revealed that the 8th AJCC pathological prognostic staging system provided a better distinguish of survival outcomes compared with the 7th AJCC staging system, suggesting that the 8th edition stages also hold true when adjusted by T1-2N1micM0 breast cancer. When comparing the rates of BCSS and BCSM, the application of the AJCC 8th edition staging system resulted in an incremental reduction in BCSS and an increase in BCSM for each stage increase. The superior fit of the AJCC 8th edition staging system makes it a useful tool to discuss survival for this population. Our findings support the concept that biological factors rather than lower nodal burden are the primary driver of survival in N1mic breast cancer.

Breast cancer is predominantly a disease of aging, and increased age has a direct effect on non-breast cancer mortality. In our study, of the 493 death events, 47.5% of the deaths were from breast cancer, while 52.5% were non-cancer mortality or deaths from other cancers, which was similar to the findings reported in previous studies (29, 30). Therefore, in addition to the Cox regression model, we used the competing-risks regression model to avoid overestimation of the risk of BCSM (31), while similar results were found between the Cox regression model and the competing-risks regression model.

There is a paucity of prospective studies to answer the question regarding the effect of PMRT in T1-2N1micM0 breast cancer. In our study, patients with adverse prognostic factors such as younger age, grade III, larger tumor size, and PR-negative status were more like to receive PMRT. Regarding the pathological prognostic stages, patients with advanced stages were more likely to receive PMRT, suggesting that biological factors were also essential indicators to support the decision to administer PMRT. However, whether PMRT had an impact on the survival of T1-2N1micM0 patients remains controversial. The current guidelines of breast cancer recommend strong consideration of PMRT for patients with T1-2N1 (one to three positive axillary nodes) breast cancer after mastectomy, but whether or not N1mic contributes to the positive lymph node count is uncertain (1). Several studies have attempted to answer this question. Mamtani et al. studied 141 N1mic patients who received mastectomy, most of them received appropriate multidisciplinary treatment, including chemotherapy (95%), anti-HER2 targeted therapy (92% of patients with HER2 positive), and endocrine therapy (96% of patients with ER-positive), and they reported that PMRT was not associated with lower locoregional recurrence (LRR) rate (21). Another large cohort study from the MD Anderson Cancer Center (MDACC) found no difference in the LRR rate among N1mic patients with and without PMRT (22). The National Cancer Database included 14019 T1-2N1micM0 patients who underwent mastectomy, and the probability of PMRT receipt (18.5%) and chemotherapy receipt (59.4%) was similar to those reported in our study (23). The results showed that PMRT conferred no benefit to the OS regardless of patient age, hormone receptor status, and tumor grade (23). Moreover, another study by Patel et al. included 5,878 patients from the SEER database, 20% of whom were treated with PMRT. The results showed that PMRT was not associated with better BCSS and OS (24). Finally, in a multicentric cohort study investigated French patients with N0-1mic breast cancer, more than half of them were treated with PMRT. The results indicated that PMRT was not related to improvement in the survival outcomes irrespective of the number of associated recurrence risk factors (25). In our study, 22.5% of patients received PMRT, and PMRT administration did not lead to any significant effect on the BCSS. Thus, none of the abovementioned studies support the significant effects of PMRT in the LRR, BCSS, and OS of N1mic patients.

We further analyzed the differences in patient survival with and without PMRT across different stages as patient survival significantly differed between the two staging systems used. However, although the 5-year BCSM in stages IIB and IIIA reached 13.2 and 25.4%, respectively, PMRT did not improve survival in these stages. The purpose of PMRT was to reduce the LRR and to improve survival (32). The insignificant improvement of survival in different pathological prognostic subgroups may be related to the extremely low LRR rate. The SEER database does not record LRR information. However, several previous studies have investigated the LRR rate in T1-2N1micM0 patients. Mamtani et al. showed that only 3.5% of 141 patients who did not receive PMRT developed LRR (21). The results from the MDACC also showed a 10-year LRR of 3.8% in patients who underwent sentinel lymph node biopsy alone with no PMRT (22). The results from a French multicentric cohort study also showed only 1% of 5-year LRR in patients with N0-1mic breast cancer (25). Similarly, Bazan et al. reported low event rates in N1mic patients after mastectomy, and the 6-year LRR and distant metastasis rates were 0 and 5.8%, respectively, and the LRR and distant metastasis rates showed no significant association with systemic therapy (33). However, we should note that the small number of N1mic patients enrolled in the abovementioned studies. Thus, it was difficult to evaluate the risk of LRR based on biological factors. In our previous study, we performed multigene panel testing based on the 21-gene recurrence score and found that PMRT did not improve the survival of patients with T1-2N1micM0, but only ER-positive and HER2-negative patients were included in this study (34). Appropriate identification of patients with excellent or inferior outcomes is key to identifying patients who may be offered de-escalating and escalating treatment strategies, respectively. Therefore, in the future, more studies are needed to explore the impact of new pathological prognostic staging on decision-making of PMRT in this population.

This is the first study to validate the prognostic effect and determine the survival benefit of PMRT in T1-2N1micM0 breast cancer according to the 8th AJCC pathological prognostic staging system. Although we included a large population-based cohort of patients, our study is limited by its retrospective nature and the potential for selection bias. Second, the SEER database does not include complete details on the specifics of the systemic treatments administered. However, the survival trends by the 8th AJCC pathological prognostic staging system observed in our study indicated that most of the patients included in the analysis should also receive appropriate multidisciplinary treatment. Third, the follow-up time in our study was relatively short, which may impact the prognostic and predictive effect of the pathological prognostic stages for this favorable cohort. Furthermore, our findings are not generalizable to the populations of low- and middle-income countries, wherein routine testing of molecular markers and anti-HER2-targeted therapy may not be available. Finally, the SEER database lacks information on locoregional and distant recurrence data, which has a defined correlation with PMRT in this population.



Conclusion

In conclusion, the 8th AJCC breast cancer pathological prognostic staging system downstaged 84.4% of patients with T1-2N1micM0 disease and could provide more accurate predictions for the survival outcome compared to the AJCC 7th edition staging system. However, our study does not support the use of pathological prognostic staging as a guideline to offer PMRT. Thus, long-term follow-up studies are necessary to further study the role of PMRT in this population.
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Objective

Invasive lobular carcinoma (ILC) and invasive ductal carcinoma (IDC) account for most breast cancers. However, the overall survival (OS) differences between ILC and IDC remain controversial. This study aimed to compare nonmetastatic ILC to IDC in terms of survival and prognostic factors for ILC.



Methods

This retrospective cohort study used data from the Surveillance, Epidemiology and End Results (SEER) Cancer Database (www.seer.cancer.gov). Women diagnosed with nonmetastatic ILC and IDC between 2006 and 2016 were included. A propensity score matching (PSM) method was used in our analysis to reduce baseline differences in clinicopathological characteristics and survival outcomes. Kaplan-Meier curves and log-rank test were used for survival analysis.



Results

Compared to IDC patients, ILC patients were diagnosed later in life with poorly differentiated and larger lesions, as well as increased expression of estrogen receptors (ERs) and/or progesterone receptors (PRs). A lower rate of radiation therapy and chemotherapy was observed in ILC. After PSM, ILC, and IDC patients exhibited similar OS (HR=1.017, p=0.409, 95% CI: 0.967–1.069). In subgroup analysis of HR-negative, AJCC stage III, N2/N3 stage patients, or those who received radiotherapy, ILC patients exhibited worse OS compared to IDC patients. Furthermore, multivariate analysis revealed a 47% survival benefit for IDC compared to ILC in HR-negative patients who received chemotherapy (HR=1.47, p=0.01, 95% CI: 1.09–1.97).



Conclusions

Our results demonstrated that ILC and IDC patients had similar OS after PSM. However, ILC patients with high risk indicators had worse OS compared to IDC patients by subgroup analysis.
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Introduction

Invasive lobular carcinoma (ILC) is the second most common histological subtype of invasive breast cancer and contributes to 5%–15% of all breast cancer cases (1–4). The incidence of ILC is increasing, especially in women older than fifty (5, 6). At present, most of the systemic therapy decisions for ILC are derived from randomized clinical trials based on invasive ductal carcinoma (IDC), which may explain why the St Gallen International Expert Consensus guidelines and the National Comprehensive Cancer Network (NCCN) still recommend that ILC be treated with the same treatment paradigms as IDC; however, ILC has many unique features.

Compared to IDC, ILC has better prognosis, being almost invariably positive for hormone receptors, with low histological grade, negative for HER2 and with a generally good response to endocrine therapy (1, 3). In general, ILC tends to grow in a multicentric or multifocal pattern, which makes resection for negative margins difficult when performing breast-conserving surgery (7–10). In addition, ILC patients tend to be at risk for distant recurrence for greater than 5–10 years (11) and have an unusual metastatic site with involvement of the gastrointestinal tract, pelvic organs and peritoneal sites (12, 13). Therefore, the clinical response of ILC has unique aspects and deserves special attention. ILC is considered to be less chemo-sensitive for either adjuvant or neoadjuvant chemotherapy compared to IDC, which is thought to be mediated by molecular features, such as low-grade and estrogen receptor (ER) positivity (1, 3, 4, 9, 14, 15).

There are conflicting data regarding the prognosis between ILC and IDC. Long-term outcomes for ILC have been reported as worse (16–19), no different (20–23), and better (3, 4, 24, 25) than for IDC. Whether differences exist with respect to disease-free survival (DFS) and overall survival (OS) between ILC and IDC is still controversial. Furthermore, differences in prognosis between ILC and IDC with the same molecular subtypes are not clear. Our study used a large database to further compare survival between IDC and ILC across a range of subgroups and to identify prognostic factors for early breast cancer patients with ILC.



Materials and Methods


SEER Database

This study cohort employed data from the National Cancer Institute’s Surveillance, Epidemiology, and End Results (SEER) 18 tumor registry database that was updated in November 2016. The SEER program registries contain population demographics, tumor characteristics, nodal staging, surgery information, vital status, and follow-up information from 18 geographic regions with more than 3 million patients, covering approximately 28% of the U.S. population. The database emphasizes quality control and stipulates a less than five percent error rate (26). We defined IDC patients according to the International Classification of Diseases (ICD) histological code 8500/3 and ILC patients according to the ICD histological code 8520/3.

We were granted permission to access the cancer files from the SEER program along with other treatment information, including chemotherapy and radiation therapy with a reference number of 19952-Nov2018. The requirement for informed consent was waived because personal information of patients was not involved.



Case Selection

We first identified 288,216 IDC patients and 30,190 IDC patients from 2006 to 2016 according to the following criteria: female breast cancer patients aged 18–90 years old; primary cancer only; unilateral and known laterality; ductal and/or lobular carcinoma; availability of detailed information about grade, T/N stages, ER status, and PR status; and availability of detailed data about survival (Table 1). We used PSM to equate the two groups, and the final cohort consisted of 58,398 patients, 29,199 IDC patients, and 29,199 ILC patients.


Table 1 | Stepwise inclusion and exclusion counts.



To eliminate differences in treatment measure and to ensure corresponding follow-up, this research period was from 2006 to 2016, and the cut-off date was December 31, 2016. Tumor and nodal stage were coded in line with the American Joint Committee on Cancer (AJCC) staging system for breast, using the 6th edition criteria for patients diagnosed from 2006 to 2009 and the 7th edition criteria for patients diagnosed from 2010 to 2016. Undifferentiated, anaplastic and poorly differentiated grade cases were considered grade III cases.



Data and Statistical Analysis

Differences in the characteristic variables between ILC and IDC were compared by Chi-square test. The multivariate relationship of tumor characteristic variables and survival outcomes were examined by Cox proportional hazard model. Statistical significance was set at 0.05. OS was used as the survival endpoint in this survey and was analyzed using the Kaplan–Meier method. OS was defined as the time between confirming breast cancer to any cause of death. The log-rank test was utilized to calculate the hazard ratio (HR) and 95% confidence interval (95% CI) for OS. Our study utilized the propensity score matching method to diminish baseline differences in clinicopathological characteristics and survival outcome. Cases were 1:1 matched between ILC and IDC patients in accordance with age, histological grade, tumor stage, nodal stage, ER status, PR status, and so on. Statistical analysis was performed using Statistical Product and Service Solutions (SPSS) software (version 22; SPSS Inc., Chicago, USA). The propensity score matching method was calculated using the “MatchIt” package in R software (version 3.6.2, Synergy Software, Inc., Essex Junction, VT, USA).




Results


Patient Characteristics Between ILC and IDC

The SEER tumor registry database was used to identify 1,097,908 patients diagnosed with ILC and IDC. After selecting patients based on specific inclusion and exclusion criteria, the remaining 318,406 patients were included in our research. Table 1 shows the patient selection process. Finally, 30,190 patients (9.48%) were assigned to the ILC group and 288,216 patients (90.52%) were assigned to the IDC group. Table 2 summarizes the clinical characteristics of the ILC and IDC groups.


Table 2 | Comparison of clinical characteristics between invasive lobular carcinoma (ILC) and invasive ductal carcinoma (IDC) group in unmatched population.



People diagnosed with ILC tended to be older (median age of 63 years old in the ILC group versus 59 years old in the IDC group; p<0.0001), exhibit poorly differentiated and larger lesions, be ER/PR positive and were administered less radiation therapy and chemotherapy.

Given the surgical procedures, ILC had a higher percent of mastectomy compared to IDC cases (50.0% versus 39.2%, respectively). A lower rate of radiation therapy and chemotherapy was observed in the ILC group (55.3% versus 56.7%; 34.0% versus 45.5%, respectively; p<0.0001).



Survival Outcomes Between ILC and IDC Group

Due to significant differences in clinical characteristics between ILC and IDC groups, our research used the propensity score matching method, based on age, histological grade, tumor stage, nodal stage, ER status, PR status, surgery type, chemotherapy, and radiation therapy, to reduce discrepancies in survival outcomes between the two groups. Each ILC patient was matched to one IDC patient. As shown in Table 3, both ILC and IDC groups comprised 29,199 patients with similar baseline clinicopathological characteristics for further analysis.


Table 3 | Comparison of clinical characteristics between invasive lobular carcinoma (ILC) and invasive ductal carcinoma (IDC) groups after matching.



The median OS was not reached in either group. During follow up, 2,999 patients (10.28%) in the ILC group died and 3,057 patients (10.46%) in the IDC group died. Based on comparison of the unmatched population database, IDC patients exhibited better OS (HR=1.045, P=0.025, 95% CI: 1.007–1.085) compared to ILC patients. Figure 1 presents the Kaplan-Meier plots of overall survival in patients with ILC compared to those with IDC in the matched population. The median follow-up time for overall survival was 54 months (95% CI, 53.29–54.71 months) in the ILC cohort and 57 months (95% CI, 56.28–57.72 months) in the IDC cohort. Shown in Figure 1, ILC and IDC patients have similar OS (HR=1.017, P=0.409, 95% CI: 0.967–1.069).




Figure 1 | Kaplan-Meier survival curves of all matched patients.





Survival Outcomes Between IDC and ILC Groups in the Subgroup Analysis

Overall survival of patients in the entire cohort and subgroups is shown in a Forest plot (Figure 2). ILC patients were associated with higher risk of mortality compared to IDC patients who were HR-negative, AJCC stage III, N2/N3 stage, or in those who received radiotherapy. Matched patients were divided into different subtypes to further examine factors affecting prognosis. In patients with positive hormone receptor, ILC and IDC groups exhibited similar OS (p=0.728, HR=0.99, 95% CI 0.94–1.04, Figure 3A). However, in patients with negative hormone receptor, the ILC group exhibited reduced OS compared to IDC patients (p=0.040, HR=1.26, 95% CI 1.01–1.58, Figure 3B). ILC presented a similar OS compared to IDC in AJCC stage I and II (p=0.127, HR=0.95, 95% CI 0.90–1.01, Figure 3C) but had worse OS in AJCC stage III (p=0.048, HR=1.09, 95% CI 1.00–1.19, Figure 3D). ILC had similar OS compared to IDC in N0 and N1 stage (p=0.111, HR=0.95, 95% CI 0.90–1.01, Figure 3E) but had worse OS in N2 and N3 stage (p=0.007, HR=1.15, 95% CI 1.04–1.27, Figure 3F). ILC had similar OS compared to IDC in patients who did not receive radiotherapy (p=0.062, HR=0.94, 95% CI 0.88–1.00, Figure 3G) but had worse OS in patients who received radiotherapy (p=0.041, HR=1.08, 95% CI 1.00–1.17, Figure 3H).




Figure 2 | Forest plot of overall survival for patients in the entire cohort and subgroups.






Figure 3 | Kaplan-Meier survival curves of patients in different subgroups. (A) Overall survival (OS) between invasive lobular carcinoma (ILC) and invasive ductal carcinoma (IDC) group in the hazard ratio (HR)-positive cohort. (B) OS between ILC and IDC group in the HR-negative cohort. (C) OS between ILC and IDC group in the stage I/II cohort. (D) OS between ILC and IDC groups in the stage III cohort. (E) OS between ILC and IDC group in the node stage 0/1 cohort. (F) OS between ILC and IDC groups in the node stage 2/3 cohort. (G) OS between ILC and IDC groups of patients who not received radiotherapy. (H) OS between ILC and IDC groups of patients who received radiotherapy.



We stratified patients by treatment to further validate the differential prognosis by whether the patients received chemotherapy or not between the ILC and IDC cases. Among patients who received chemotherapy, the ILC group exhibited poorer OS compared with the IDC group in HR-negative patients (p=0.010, HR=1.47, 95% CI 1.09–1.97, Figure 4B). In contrast, the ILC and IDC groups presented similar OS in HR-positive patients (p=0.871, HR=0.99, 95% CI 0.91–1.09, Figure 4A). Among patients who did not receive chemotherapy, the ILC group had a similar OS compared to IDC group in both HR-positive and HR-negative patients (p=0.865, HR=1.00, 95% CI 0.94–1.06; p=0.839, HR=1.04, 95% CI 0.74–1.45, respectively. Figures 4C, D).




Figure 4 | Kaplan-Meier survival curves of subgroups stratified by whether patients received chemotherapy. (A) Overall survival (OS) between invasive lobular carcinoma (ILC) and invasive ductal carcinoma (IDC) groups in the hazard ratio (HR)-positive cohort of patients who received chemotherapy. (B) OS between ILC and IDC groups in the HR-negative cohort of patients who received chemotherapy. (C) OS between ILC and IDC groups in the HR-positive cohort of patients who did not receive chemotherapy. (D) OS between ILC and IDC groups in the HR-negative cohort of patients who did not receive chemotherapy.



HER2 status is a very important prognostic and predictive factor in breast cancer. Therefore, we extracted patients with available HER2 status from the matched population, obtaining 39,684 patients in the HER2 cohort, of which 19,442 were IDC patients and 20,237 were ILC patients. Among these, there were 2,241 HER2+ patients (11.52%) and 17,206 HER2- patients (88.48%) in the IDC group and 981 HER2+ patients (4.85%) and 192,566 HER2- patients (95.15%) in the ILC group.

We further generated Kaplan–Meier survival curves and conducted a pairwise comparison between the two different HER2 statuses in IDC and ILC groups. We found that HER2 status was not a prognostic indicator for OS between IDC and ILC groups (HER2+: 92.99% vs. 94.60%, p>0.05; HER2-: 94.36% vs. 94.41%, p>0.05; Figures 5A, B).




Figure 5 | Kaplan-Meier survival curves of patients with available HER2 status. (A) Overall survival (OS) between invasive lobular carcinoma (ILC) and invasive ductal carcinoma (IDC) groups in the HER2-positive cohort. (B) OS between ILC and IDC groups in the HER2-negative cohort.






Discussion

ILC is the most common subtype of breast cancer that tends to have poor prognosis due to higher rates of lymph node metastasis compared to patients with IDC and tends to present with larger tumor size (27–29). However, ILC is also associated with favorable prognosis for patients with lower histologic grade, hormone receptor positivity and HER2 negative status (1, 3). Thus, the prognosis of ILC compared to IDC is still controversial. Our study was based on a retrospective analysis of a relatively large cohort of data retrieved from the population-based SEER database. After adjustment for patient and treatment characteristics, we found that the survival of ILC and IDC was equivalent in this analysis of outcomes for with two large patient cohorts. However, compared to IDC, we identified negative hormone receptor and positive lymph node statuses as adverse predictors for ILC.

In this study, we observed several differences in demographic and tumor characteristics between ILC and IDC in accordance with prior studies. ILC patients were older and had larger tumors than IDC patients. Moreover, ILC tumors were more often hormone receptor positive and of lower histological grade than IDC. The characteristics of these patients tended to be similar to prior studies reported for ILC (4, 11, 15, 30–32). The lower rate of chemotherapy can be attributed to the positivity of hormone receptors and low histological grade for most ILC patients, while the lower rate of BCS can be attributed to relatively larger tumor size. Furthermore, we found that the rate of lymph node positivity was higher in ILC in agreement with previous literature (15, 29, 32).

HER2 status is a very important prognostic and predictive factor in breast cancer. However, the majority of ILCs lack HER2 overexpression or amplification, and previous studies have reported that HER2 positivity occurs in 3%–5% of ILCs (30, 33). In our study, the rate of HER2 positivity was 4.85%, which is in accordance with data published previously. Furthermore, we found that HER2 status was not a prognostic indicator for OS HER2+ patients (HER2+: 92.99% vs. 94.60%, p>0.05; HER2-: 94.36% vs. 94.41%, p>0.05).

Previous studies comparing survival between IDC and ILC have reported conflicting results. Identifying 1034 patients who participated in six clinical trials from the M.D. Anderson Cancer Center, Cristofanilli et al. (4) demonstrated that ILC is characterized by lower rates of pathological response to neoadjuvant chemotherapy but better long-term outcomes compared to IDC. However, in a retrospective review of 171 ILC patients and 1,011 IDC patients, Fortunato et al. (23)found that ILC had no significant differences in outcomes compared to IDC and suggested that ILC can be treated similarly to IDC with good results. Wasif et al. used the SEER database to compare survival between ILC and IDC and reported that prognosis is better for patients with ILC than for those with IDC after stage matching (29). They reported that this outcome may be due to high expression of hormone receptors. However, they did not analyze the molecular subtype among ILC and IDC samples, and their study period was from 1993 to 2003. Thus, Adachi et al. (17) retrospectively analyzed the effect of chemotherapy in the Aichi Cancer Center among 1661 patients with luminal IDC and 105 patients with luminal ILC and found that luminal ILC had worse outcomes than luminal IDC. However, this study focused on the hormone receptor positive subtype. In our study, due to significant differences in clinical characteristics between ILC and IDC groups, we used the propensity score matching method to reduce discrepancies in survival outcomes. After each ILC patient was matched to one IDC patient, there was no difference in OS between the two groups. However, the prognosis of ILC was significantly worse than for IDC when stratified by negative hormone receptor and positive lymph node status. We believe that this may be related to ILC’s resistance to either adjuvant or neoadjuvant chemotherapy compared to IDC. In high risk patients, such as those who are hormone receptor negative and lymph node positive, adjuvant, or neoadjuvant chemotherapy was generally performed (ILC: 63% of HR-, 68% of LN+, 34% of all the ILC patients). Among patients who received chemotherapy, the ILC group had worse prognosis compared to the IDC group in HR-negative patients (HR 1.469; 95% CI 1.093–1.973; p=0.01), whereas ILC and IDC groups presented similar OS in HR-positive patients (HR 0.992; 95% CI 0.905–1.088; p=0.871).

The effect of neoadjuvant chemotherapy on ILC has been reported by several retrospective studies, with pCR rates ranging from 0-11% for ILC compared to 9%–25% for IDC (1, 4, 14, 15, 34). A total of 1,051 patients with ILC were included in a pooled analysis by Loibl et al. (22, 35, 36), and the end point was pathological complete response (pCR). There was a 6.2% pCR for ILC and 17.8% in HR negative and high-grade subgroups. A previous study also provided evidence that biologically aggressive ILCs (HR- and G3) achieved a higher pCR rate. However, the pCR rate is still lower in HR-negative ILC compared to HR-negative IDC (1). pCR, a surrogate endpoint marker, has been correlated with improved long-term outcomes, such as disease-free or overall survival (37–39), which could explain our result that HR-negative ILC exhibited worse OS than IDC. Furthermore, Huober et al. conducted a retrospective analysis to identify factors predicting relapse based on the GBG meta-database that includes five neoadjuvant trials (19). Their study demonstrated that the prognosis of patients with ILC was worse than IDC, even if all reached pCR. The reason for this result is that the majority of patients included in this study had triple negative breast cancer or HER2 positive breast cancer, in agreement with our study that ILC patients with HR-negative status have worse prognosis.

As mentioned above, ILC patients do not respond as well to neoadjuvant chemotherapy compared to IDC patients. This may explain a general assumption that ILC patients also have a poor response to adjuvant chemotherapy compared to IDC, but there is currently no data to support this notion. However, several studies have attempted to evaluate the effect of chemotherapy in ILC and reported no benefits followed by chemotherapy. Truin et al. (40) retrospectively examined the effect of chemotherapy in a multicenter cohort of postmenopausal patients with pure or mixed type ILC and found additional beneficial effects (10-year OS 66% vs 68%, p=0.45). Marmor et al. (41) also reported a similar result in patients with ER-positive, HER2-negative, stage I/II ILC who received endocrine therapy, demonstrating that they did not benefit from the addition of adjuvant chemotherapy. However, by analyzing 2,318 patients with ILC, Nonneville et al. (42) reported that ILC patients exhibited significant differences in DFS or OS benefit from chemotherapy in high-risk patients, such as those who were lymph node positive or presented with lympho-vascular invasion. In agreement with previous results, we identified negative HR, N2/N3, stage III, and receiving radiotherapy as predictors for long-term adverse outcomes in ILC. According to guidelines of the St Gallen International Expert Consensus and the National Comprehensive Cancer Network (NCCN), ILC patients are recommended the same systemic treatment as IDC patients. Systemic therapies include chemotherapy, radiotherapy, and endocrine therapy. Although previous studies have suggested that the sensitivity to radiotherapy is similar for ILC and IDC patients (43), the prognosis for ILC patients is still worse than IDC patients. Our explanation is that patients who receive radiotherapy tend to present positive lymph nodes and a larger tumor size, which are risk factors of worse survival. Chemotherapy is recommended for these patients with high risk. However, ILC patients are less sensitive to chemotherapy compared to IDC patients, which means that the treatment strategy of ILC may not completely be referred to that of IDC. ILC patients have their unique characteristics and might require additional stronger systemic treatments to improve survival. Previous studies analyzed the effect of adjuvant chemotherapy in HR-positive patients; however, the differential efficacy of adjuvant chemotherapy or not between HR-negative ILC and IDC has not been investigated. In agreement with previous results, among patients who received chemotherapy, we found that the ILC group had a worse prognosis compared to the IDC group in HR-negative patients (HR 1.469; 95% CI 1.093–1.973; p=0.01), whereas the ILC and IDC groups had similar OS in HR-positive patients (HR 0.992; 95% CI 0.905–1.088; p=0.871).

Some limitations of our study should to be considered. One limitation of this study is that we were unable to distinguish between ‘‘pure’’ ILC and ‘‘mixed’’ type ILC among the different geographic regions of SEER. Each histological subtype has different outcomes in ILC, for example, pleomorphic ILC with aggressive clinical features has a worse prognosis than classical ILC (7, 30). Second, our study is a retrospective cohort study performed using the SEER database, so there is selection bias and missing data.

In conclusion, our research demonstrated that there was no significant difference in overall survival between ILC and IDC patients after matching for several known covariates. In the subgroup analysis stratified by negative hormone receptor and positive lymph node status, we found that the prognosis of ILC was significantly worse compared to IDC. Among patients who received chemotherapy, the ILC group had worse prognosis compared to the IDC group in HR-negative patients, whereas the ILC and IDC groups exhibited similar OS in HR-positive patients. These results may indicate that we should enhance treatment among these special subgroups to prolong survival.
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The inhibitor of growth (ING) family was discovered as the type II tumor suppressors, which regulated the proliferation, apoptosis, differentiation, angiogenesis, metastasis, and invasion of tumor cells through multiple pathways. ING3, a new member of ING family, has been reported to be downregulated in several types of tumors. However, few studies on ING3 in breast cancer have been reported. In this study, we investigated the expression of ING3 and determined its prognostic value in breast cancer. The immunohistochemistry was performed to evaluate the expression of ING3 in tissue microarrays (TMA) including breast cancer tissues (n=211) and normal breast tissues (n=50). In normal breast tissues, ING3 protein was detected in both the cytoplasm and nucleus. In breast cancer tissues, ING3 protein was principally detected in the cytoplasm. Compared with normal breast tissues, the expression of ING3 in nucleus was remarkably reduced in breast cancer tissues. The downregulated ING3 in nucleus was significantly correlated with clinicopathological characteristics including histological grade, lymph node metastasis, and the status of ER and PR. In HER2 positive-type and triple-negative breast cancer (TNBC) patients, it had the lower rate of nuclear ING3 with high expression than that in luminal-type. Moreover, Kaplan-Meier curves demonstrated that the reduced expression of ING3 in nucleus was correlated with a poorer 5-DFS and 5-OS of breast cancer patients. Importantly, multivariate Cox regression analysis suggested that the reduced expression of ING3 in nucleus was an independent prognostic factor in breast cancer. Our study comprehensively described the expression of ING3 in breast cancer for the first time and proved that it was an independent prognostic predictor of breast cancer, as well as a new idea for study of breast cancer.
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Introduction

Breast cancer, ranking second in cancer-related death among women worldwide, is the most common malignant tumor in women, which pose a serious threat to women’s physical and mental health (1). In the process of tumorigenesis, a variety of tumor suppressor genes mutate frequently, even though more targeted drugs are used in clinic, but most of them are achieved by suppressing overexpressed oncogenes. However, the treatment and recovery of lost tumor suppressor genes is still a key link (2).

Compared with most other tumors, the loss of tumor suppressor gene function plays a key role in the development of breast cancer (3). P53 is a tumor suppressor gene that has been widely studied at present. The inhibitor of growth (ING) family is the type II tumor suppressors, including ING1, ING2, ING3, ING4, and ING5, which participates in different stages of biological processes such as growth, proliferation, DNA repair, invasion, migration and apoptosis of tumor cells through a variety of mechanisms (4). ING3, a new member, is an important cofactor of p53, and it has become a research hotspot because of its structural differences from other family genes. ING3 is considered to be a tumor suppressor gene because of its biological functions such as inhibiting cell growth, regulating cell cycle arrest and inducing apoptosis in a p53-dependent manner (5). ING3 is usually expressed in normal human tissues, and its downregulation or deletion has been proved to be involved in the occurrence and development of a variety of tumors. Gunduz et al. found that the level of ING3 mRNA decreased in half of the primary head and neck squamous cell carcinoma, and the expression of ING3 decreased significantly in advanced and poorly differentiated tumors (6, 7). This suggests that the expression of ING3 is closely related to the staging and differentiation of the tumor. Yang H Y et al. reported that the low expression of ING3 protein is associated with tumor invasion of hepatocellular carcinoma (8). In addition, Wang et al. found that nuclear ING3 expression decreased while cytoplasmic ING3 expression increased in melanoma, and nuclear ING3 expression was negatively correlated with tumor size, depth of invasion, dedifferentiation, clinicopathological stage and poor prognosis (9). This suggests that the expression of ING3 in the nucleus can be used as a basis for evaluating and predicting the prognosis of patients with primary melanoma.

Although there is no related report of ING3 in breast cancer at this stage, ING4 and ING5, as members of the ING family, participate in the occurrence of breast cancer. Studies has shown that compared with benign epithelium, the nuclear expression of ING4 is decreased, and the cytoplasmic expression of ING4 is positively correlated with the expression of HER2 in breast cancer, which suggests that ING4 plays a role in the pathogenesis of breast cancer (10). The expression of ING4 was negatively correlated with histological grade of breast cancer. At the same time, the expression of ING4 is negatively correlated with the histological grade of breast cancer (11), and overexpressed ING4 can inhibit the formation of microvessel in tumor tissue to inhibit the occurrence and development of breast cancer and improve the disease-free survival rate (12). Some researchers have confirmed that the expression of ING5 in paracancerous tissues of breast cancer is significantly higher than that in cancerous tissues. And the expression of ING5 in primary tumor was higher than that in distant metastatic tumor (13). In addition, the overexpression of ING5 leads to decreased glucose metabolism, fat accumulation, autophagy and apoptosis in breast cancer cells (14). These finds suggested that the ING family might be closely related to breast cancer. While, the members of the ING family are highly homologous, whether the expression of ING3 relates to the prognosis of breast cancer is still elusive.

To investigate the role of ING3 in the development and prognosis of breast cancer, Tissue microarray (TMA) technology and immunohistochemistry were performed to evaluate ING3 expression in breast cancer. Furthermore, the correlation between the nuclear ING3 expression and clinicopathologic variables, the patient of 5-year disease-free survival (5-DFS) and 5-year overall survival (5-OS) were analyzed in breast cancer.



Materials and Methods


Tissue Samples

Formalin-fixed, paraffin-embedded tissues from breast cancer tissues (n=211) and normal breast tissues (n=50) were used for immunohistochemistry (IHC) analysis in this study. All specimens were randomly obtained from the 2002 to 2008 archives of the Department of Pathology, Renmin Hospital of Wuhan University. All samples of primary invasive breast cancer receiving no treatment prior to surgery. The most representative tumor areas were carefully selected to make tissue microarray (TMAs) by two professional breast pathologists. All clinicopathologic data were obtained from medical archives and were re-evaluated in the light of the latest pathological diagnostic criteria of WHO by two professional breast pathologists. Follow-up data were retrospectively obtained from all of the patients. All Patients were followed up for 5 years. The follow-up data of the postoperative outcomes were obtained from the first date of diagnosis to the date of metastasis/recurrence or death or last follow-up time. The use of human breast cancer was approved by the Ethics Committee of Renmin Hospital of Wuhan University.



Immunohistochemical Staining

To analyze the expression of ING3 in breast cancer, TMA slides were used for immunohistochemistry (IHC) analysis by the Envision method in this study. ING3 antibody (1:1000, Proteintech, 10905-1-AP), Secondary antibody (DakoCytomation K0672), AEC/peroxidase (PO) (Maixin Biotechnology, AEC-0037). Two independent pathologists evaluated the expression of ING3 in nucleus and cytoplasmic by a double-blind manner. Considering the heterogeneity of immunohistochemical staining intensity and distribution, the evaluation of ING3 was scored by applying a semi-quantitative immunoreactivity scoring (IRS) system as described by Wang et al. (9). According to the staining intensities, the expression of ING3 in nucleus and cytoplasmic were categorized into four grades as follows: 0 (absence of staining, non-staining), 1 (weak staining, light yellow), 2 (moderate staining, brown yellow), and 3 (strong staining, dark brown). The percentage of ING3-positive cells in normal breast with nucleus and cytoplasmic and in breast cancer with nucleus were categorized into four grades as follows: 0 (0%), 1 (1%–33%), 2 (34%–66%), and 3 (67%–100%). According to the intensity and percentage scores, the final ING3 nuclear or cytoplasmic staining score was defined as follows: 0 to 3 as low expression, and 4 to 6 as high expression.



Statistical Analysis

The SPSS 17.0 software was used to analyze data in this study. The χ2 test was applied to evaluate the differences of nuclear ING3 expression between breast cancer tissues and normal breast tissues. The Spearman’s rank correlation analysis was used to evaluate the correlation between the nuclear ING3 expression and the clinicopathologic variables, including age, histological grade, lymph node metastasis, TNM stage, the status of ER, PR and HER2, The Kaplan-Meier method and log-rank test were applied to evaluate the correlations between nuclear ING3 staining and patient 5-DFS and 5-OS. Cox regression model was applied for multivariate analysis. P<0.05 is considered significant.




Results


The Characteristics of the Tissue Samples

All tissue samples, breast cancer tissues (n=211) and normal breast tissues (n=50), were collected from the Department of Pathology, Renmin Hospital of Wuhan University. None of the breast cancer patients had received treatment, including chemotherapy, radiotherapy or adjuvant treatment, prior to surgery. The age of all breast cancer patients at the time of diagnosis ranged from 29 to 78 years old (median, 48.1 years). The main clinicopathologic variables in this study were shown in Table 1.


Table 1 | The nuclear ING3 expression and clinicopathological parameters in breast cancer.





Nuclear ING3 Expression in Breast Cancer Tissues Is Lower Than That in Normal Breast Tissues

To investigate the expression of ING3 in breast cancer, we performed the immunohistochemistry staining on TMA slides. In normal breast tissues, ING3 was located both in the cytoplasm and nucleus (Figure 1A). While, in breast cancer tissues, ING3 was principally located in the cytoplasm, and was rarely expressed both in the cytoplasm and nucleus (Figures 1B–D). The ration of the nuclear ING3 high expression was 46.4% (98/211) in breast cancer tissues, was 10% in normal breast tissues. The χ2 test showed that the expression of nuclear ING3 in breast cancer tissues was significantly lower than that in normal breast tissues (P<0.001) (Figure 1E).




Figure 1 | The expression and distribution of ING3 in representative tissue specimens. (A) The expression of ING3 in normal breast tissues. (B) Negative nuclear ING3 staining in breast cancer tissues. (C) Moderate nuclear ING3 staining in breast cancer tissues. (D) Strong nuclear ING3 staining in breast cancer tissues. (A–D) Magnification, ×200. (E) The summary of nuclear ING3 staining in breast cancer tissues and normal breast tissues. The intensity of nuclear ING3 expression in breast cancer tissues and normal breast tissues are indicated as follows: Low expression (light gray) and High expression (black). The expression of nuclear ING3 are significantly decreased in breast cancer tissues (P < 0.001).





The Correlation Between the Nuclear ING3 Expression and the Clinicopathologic Characters in Breast Cancer

The χ2 test was performed to investigate the correlation between the nuclear ING3 expression and the clinicopathologic characters. As shown in Figure 2, in breast cancer tissues, the expression of nuclear ING3 in pathological grade III group (13/52) was lower than that in pathological grade I–II group (85/159) (χ2 = 12.759, P<0.001) (Figures 2A, B), which suggested that the nuclear ING3 expression was negatively correlated with the histological grade (P<0.001) (Figure 2C).




Figure 2 | Analyses of nuclear ING3 expression in breast cancer with low-grade and high-grade. (A, B) The representative of nuclear ING3 staining in low-grade and high-grade breast cancer. (A, B) Magnification, ×400. (C) The χ2 test and Spearman’s rank result of nuclear ING3 staining in breast cancer with low-grade and high-grade (P < 0.001).



Then, we used the same method to study the correlation between the nuclear ING3 expression and the status of ER, PR, and HER2 in breast cancer tissues. The representative images of nuclear ING3 expression in different status of ER, PR and HER2 were shown in Figure 3A. The expression of nuclear ING3 was positively related to the status of ER and PR, that is the patients with ER or PR positive has a higher expression of nuclear ING3 (Figures 3B, C). By comparison, the expression of nuclear ING3 revealed no marked difference between HER2 positive and negative patients (P=0.067) (Figure 3D). In addition, we also found that the expression of nuclear ING3 was correlated with lymph node metastasis (P=0.029), but not with TNM stage and age (P=0.194 and P=0.471).




Figure 3 | Analyses of nuclear ING3 expression in breast cancer with status of ER, PR and HER2. (A) The representative images of nuclear ING3 staining in different status of ER, PR and HER2. (A) Magnification, ×400. (B–D) The χ2 test and Spearman’s rank result of nuclear ING3 staining in breast cancer with in different status of ER, PR and HER2.





The Difference Expression of Nuclear ING3 in Molecular Subtypes of Breast Cancer

According to the expression of ER, PR, and HER2, breast cancer can be divided into luminal-type (ER+, PR+, HER2-), HER2 positive-type (ER-, PR-, HER2+), and triple negative breast cancer (TNBC) (ER-, PR-, HER2-) (15). The representative images of nuclear ING3 expression in different molecular subtypes of breast cancer were shown in Figure 4A. The expression of nuclear ING3 in luminal-type patients was significantly higher than that in HER2 positive-type and TNBC patients (Figures 4B, C). At the same time, the nuclear ING3 expression showed no marked difference between HER2 positive-type and TNBC patients (Figure 4D). Thus, these results indicated that the low expression of ING3 in nucleus is correlated with more aggressive behavior of breast cancer, and ING3 may be one of the prognostic factors of breast cancer.




Figure 4 | Analyses of nuclear ING3 expression in breast cancer with different molecular subtypes. (A) The representative images of nuclear ING3 staining in different molecular subtypes. (A) Magnification, ×400. (B–D) The χ2 test and Spearman’s rank result of nuclear ING3 staining in breast cancer with in different molecular subtypes.





High Expression of the Nuclear ING3 Is Associated With a Good Prognosis of Breast Cancer

To investigate whether the decreased nuclear ING3 staining serve as a prognostic biomarker in breast cancer, we followed all of the 211 patients and used the Kaplan-Meier method and log-rank test to analyze the follow-up data. The rate of 5-year disease-free survival (5-DFS) was 70.4% (69/98) in patients with high expression of nuclear ING3, while the 5-DFS rate was 55.8% (63/113) in those with low expression of nuclear ING3. The rate of 5-year overall survival (5-OS) was 85.7% (84/98) and 74.3% (84/113) in patients with high and low expression of nuclear ING3, respectively. Moreover, the K-M survival curves indicated that the nuclear ING3 expression was positively correlated with 5-DFS (P=0.016) and 5-OS (P=0.026) (Figures 5A, B). Collectively, these results indicated that the high expression of nuclear ING3 might be a good prognostic biomarker of breast cancer.




Figure 5 | K-M survival curves for the correlation of the nuclear ING3 expression in breast cancer patients. (A) Patients with low expression of nuclear ING3 staining had a significantly worse 5-DFS than those with high expression of ING3 staining in 211 cases of breast cancer. (B) A similar conclusion for 5-OS.



The above results indicated that there were differences in the expression of nuclear ING3 in different molecular subtypes of breast cancer. Next, we explored whether the expression of nuclear ING3 affects the prognosis of different molecular subtypes of breast cancer. As displayed in Figure 6, the K-M survival curves indicated that the nuclear ING3 expression was positively correlated with 5-DFS (P=0.036) and 5-OS (P=0.018) in luminal-type patients (Figures 6A, B), but it could not well evaluate the prognosis of HER2 positive-type (P=0.229) and TNBC (P=0.973) patients (Figures 6C, D). In addition, we also found that nuclear ING3 could predict the prognosis of breast cancer patients in lymph node metastasis (LN+) group (Figures 6E, F) (P=0.043 and P=0.019), but not in lymph node negative (LN-) group (Figures 6G, H) (P=0.221 and P=0.499). These results suggested that nuclear ING3 played an important role in the prognosis of breast cancer.




Figure 6 | K-M survival curves for the correlation of the nuclear ING3 expression in breast cancer patients. (A) Patients with low expression of nuclear ING3 staining had a significantly worse 5-DFS than those with high expression of ING3 staining in luminal-type patients. (B) A similar conclusion for 5-OS in luminal-type patients. (C, D) K-M survival analysis of the nuclear ING3 expression was not statistically significant for 5-DFS in HER2 positive-type and TNBC patients. (E–H) K-M survival curves for the correlation between the nuclear ING3 expression and 5-DFS and 5-OS in breast cancer patients with or without lymph node metastasis. LN-, lymph node metastasis negative; LN+, lymph node metastasis positive.



To further verify the prognostic significance of nuclear ING3 in breast cancer, multivariate Cox regression analysis was performed. Related clinicopathologic variables were showed in Tables 2, 3. The histological grade, lymph node metastasis, TNM stage and the status of HER2 had significant influences on 5-DFS and 5-OS. The status of ER and PR had no impact on 5-DFS and 5-OS. Meanwhile, the patients with high expression of nuclear ING3 had longer 5-DFS than those with low expression of nuclear ING3 (P=0.027; HR=1.771; 95% CI=1.066-2.994), but no similar conclusion was reached in 5-OS (P=0.129). These results indicated that the nuclear ING3 was an independent predictor for 5-DFS in breast cancer.


Table 2 | Multivariate Cox regression analysis of prognostic variables including classical prognostic factors and nuclear ING3 for 5-year DFS in 211 cases of breast cancer patients.




Table 3 | Multivariate Cox regression analysis of prognostic variables including classical prognostic factors and nuclear ING3 for 5-year OS in 211 cases of breast cancer patients.






Discussion

ING3 is widely expressed in normal human tissues, such as heart, skeletal muscle, thymus, spleen, kidney, liver, pancreas, colon, ovary, testis, prostate, peripheral blood leukocytes, etc (16). In normal human tissues, ING3 is principally distributed in the cytoplasm, but it is occasionally observed in both the cytoplasm and nucleus, including tongue, esophagus, lung, skin, bladder, cervix and breast cells (17). In our study, ING3 was distributed both in the cytoplasm and nucleus in normal breast tissues, which was consistent with the report. Meanwhile, we also observed that, ING3 was mainly expressed in the cytoplasm in breast cancer tissues, and the expression of ING3 in the nucleus was significantly decreased. Similarly, the expression of ING3 decreased in many tumors, including human cutaneous melanoma (9), human head and neck cancers (7) and human primary hepatocellular carcinoma (8). Although the nuclear ING3 expression was significantly reduced in breast cancer tissues compared with normal breast tissues, it is not clear how the nuclear ING3 is reduced. Studies has shown that there might be a translocation of ING3 from nucleus to cytoplasm in melanoma (9). However, in our study, we did not notice that the significantly decrease of nuclear ING3 was accompanied by a remarkably increase in the expression of cytoplasmic ING3. One possible explanation for this discrepancy was that the nuclear to cytoplasm translocation of ING3 may be a partial reason for significantly reduce of nuclear ING3 in breast cancer tissues. The nuclear localization of ING3 protein was determined by the nuclear localization sequence (NLS) of ING3 gene (18). At the same time, Chen G et al. found that the decreased expression of ING3 in melanoma was degraded by ubiquitin-proteasome signal pathway (19). Therefore, the mechanism of the decreased expression of nuclear ING3 in breast cancer needs to be further studied.

In our study, we found that there was a correlation between the downregulation of ING3 in nucleus and clinicopathologic characters in breast cancer. The nuclear ING3 was negatively related with histological grade, which suggests that the decreased expression of ING3 in the nucleus was involved in the differentiation and played a continued role in the advancement and development of breast cancer. As the homologs of ING3, the degree of inhibition of ING4 protein expression was related to clinical stage, and the expression of ING4 in patients with lymph node metastasis was lower than that in patients without lymph node metastasis, indicating that ING4 participated in the occurrence and development of colon cancer (20). In breast cancer patients with the larger the tumor, the higher the stage, and the lower the expression of ING4 were more prone to lymph node metastasis (12). On the other hand, the nuclear ING3 was also negatively correlated with lymph node metastasis, which suggested that nuclear ING3 was related to the migration and metastasis of breast cancer. In agreement with our findings, Lu M et al. suggested that overexpression of ING3 might inhibit the migration and metastasis of hepatocellular carcinoma cells (21).

In addition, the nuclear ING3 was positively correlated with ER and PR status, which were closely related to endocrine therapy of breast cancer. Previous study had shown that low expression of ING4 reduced the efficacy of tamoxifen in breast cancer, by inhibiting ER activity in hormone-dependent breast cancer (22). As the homologous of ING4, ING3 might also be related to endocrine therapy of breast cancer. In this study, it had shown that there were no relationship between expression of ING3 in nucleus and age, TNM stage and HER2 status. Interestingly, the deletion of ING4 gene was associated with HER2 status in breast cancer (23). Meanwhile, the rate of high expression nuclear ING3 in breast cancer with luminal-type was higher than that with HER2-enriched and TNBC, which suggested that nuclear ING3 might play a role in distinguishing different subtypes of breast cancer.

All the above finding suggested that nuclear ING3 might play a key role, at least in part, in predicting the prognosis of breast cancer. Prognostic molecular biomarkers are valuable for evaluating the survival status of patients and assisting tumor control. It had been well demonstrated that ING3 might be a positive independent factor in melanoma, human primary hepatocellular carcinoma and head and neck cancer (6, 8, 9). Similarly, our survival analysis also showed that in luminal-type breast cancer and lymph node metastasis group, the lower nuclear ING3 expression, the poorer 5-DFS and 5-OS. Moreover, the independent prognostic biomarker of nuclear ING3 in breast cancer patients was revealed based on the multivariate Cox regression analysis.

In conclusion, our study showed that the expression of nuclear ING3 was significantly decreased in breast cancer, which was closely related to the clinicopathological parameters and might be used as an independent prognostic factor to evaluate the 5-DFS breast cancer patients. This study implemented a comprehensive analysis of the expression of ING3 in breast tissue for the first time, which provided a new idea and direction for better comprehensive understanding of breast cancer.
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Purpose

To validate the 8th edition of the American Joint Committee on Cancer (AJCC) pathological prognostic staging system for breast cancer patients with internal mammary lymph nodes (IMN) metastasis (N3b disease, stage IIIC in 7th AJCC anatomical staging).



Methods

Breast cancer patients with IMN metastasis diagnosed between 2010 and 2014 were retrieved from the Surveillance, Epidemiology, and End Results program. Chi-squared test, Log-rank test, Kaplan-Meier method, and Cox proportional hazard analysis were applied to statistical analysis.



Results

We included 678 patients with N3b disease in this study. Overall, 68.4% of patients were downstaged to IIIA and IIIB diseases from the 7th anatomical staging to 8th pathological prognostic staging. The new pathological prognostic staging system had better discriminatory value on prognosis prediction among IMN-metastasized breast cancer patients, with a 5-year breast cancer-specific survival (BCSS) of 92.7, 77.4, and 66.0% in stage IIIA, IIIB, and IIIC diseases, respectively (P<0.0001), and the 5-year overall survival (OS) rates was 85.9, 72.1, and 58.7%, respectively (P<0.0001). The results of the multivariate prognostic analysis showed that the new pathological prognostic staging was the independent prognosis related to BCSS and OS, the 8th AJCC pathological prognostic stages showed worse BCSS and OS with gradually increased hazard ratios.



Conclusion

The 8th AJCC pathological prognostic staging system offers more refined prognostic stratification to IMN-metastasized breast cancer patients and endorses its use in routine clinical practice for this specific subgroup of breast cancer.
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Introduction

Breast cancer (BC) is most frequently diagnosed in females and the leading cause of female cancer death in the majority of countries around the world (1). BC is prone to have lymphatic metastasis at early stages due to its abundant lymphatic drainage, which mainly includes the axillary lymph node (ALN) area and internal mammary lymph node (IMN) area. The majority of breast lymph drainage runs into the ALN chain, of which 9–45% also flows into the IMN chain (2). A literature review, including 9,817 BC patients, showed that 2.9–32.7% of patients presented IMN metastasis (3). It was estimated that 28–52% of patients with ALN metastasis might also have IMN metastasis, while the incidence of IMN metastasis decreased to 5–17% in patients with ALN-negative disease (4). There were significantly different disease characteristics between patients with and without IMN metastasis (5). IMN metastasis was more likely to occur in BC patients with advanced disease, medially located tumors, and ALN metastasis (6, 7). However, the detection and treatment of IMN metastasis have long been debated, and the impact of IMN metastasis on the prognostic assessment in BC patients remains controversial. Previous studies have demonstrated that IMN-metastasized BC has a worse prognosis, whereas several studies showed that IMN metastasis was not correlated with an inferior outcome (5, 8–10). Therefore, biological heterogeneity may be presented for this population, and the traditional primary tumor (T)-regional lymph nodes (N)-distant metastasis (M) staging system could no longer accurately predict the survival outcomes of IMN-metastasized BC patients in the era of biomarkers.

In the traditional anatomical staging, IMN metastasis was staged as IIIC regardless of the T category. Although multiple revisions have been made to reflect the improvements in diagnosis and treatment since the AJCC breast cancer staging system was first published, the biologic factors were not integrated into the staging system until the 8th American Joint Committee on Cancer (AJCC) BC staging manual was introduced (11). In the 8th AJCC BC staging manual, the important biologic factors in BC, including grade, estrogen receptor (ER) status, progesterone receptor (PR) status, and human epidermal growth factor receptor 2 (HER2) status, were integrated into this newly revised staging system (12). For BC patients who received standardized systemic therapy, this staging system could provide better stratification regarding prognostic prediction (11), and several validated studies have confirmed the better performance in the prognostic assessment of the new staging compared to the 7th staging (13–21). However, studies regarding the validation of the new staging system for IMN-metastasized breast cancer are limited. A recent study from Korea analyzed the value of prognostic prediction of the newly proposed 8th AJCC pathological prognostic staging system in IMN-metastasized BC, but only 66 patients were included (16). Therefore, this retrospective study aimed to evaluate the accuracy of the 8th AJCC pathological prognostic stages in the prognostic assessment of the IMN-metastasized BC patients using the data from the Surveillance, Epidemiology, and End Results (SEER) program.



Materials and Methods


Patients

Women diagnosed with BC from 2010 to 2014 were identified using the SEER database. SEER program was established by United States (US) National Cancer Institute as a cancer registry, which collected cancer data on demographics, clinicopathological features, the first course of therapy, and follow-up for vital status (22). We identified patients who met the following criteria: T1-4N3bM0 BC with IMN metastasis; treatment with breast-conservation surgery or mastectomy; available variables including age, race/ethnicity, marital status, histology, histologic grade, T category, ER status, PR status, HER2 status, adjuvant radiotherapy, and chemotherapy. The definition of the N3b included metastases to the axillary lymph nodes and in the presence of positive ipsilateral internal mammary lymph node metastases by sentinel node biopsy, fine needle aspiration/core needle biopsy, or imaging. Patients aged <18 years, non-positive pathological diagnoses, and unavailable for local treatment procedures were excluded. There is no need to apply for approval from the Institutional Review Board of the First Affiliated Hospital of Xiamen University due to the de-identified information in the SEER database.



Variables

The following variables were included: age, race/ethnicity, marital status, histology, histologic grade, T category, ER status, PR status, HER2 status, surgery methods, the receipt of chemotherapy, and radiotherapy. The pathological prognostic stages were assigned according to the newly proposed AJCC BC pathological prognostic staging manual, and the T category was according to the 7th AJCC staging system (12).



Statistical Analysis

Chi-square test or fisher’s exact test was used to compare patients’ characteristics after stratification by stage change. The area under the curve (AUC) was used to investigate the discriminatory ability of the 8th AJCC pathological prognostic stages in predicting survival outcomes using the receiver operating characteristics (ROC). Survival curves were drawn using the Kaplan–Meier method, and the significant differences among different stages were compared using the log-rank test. Multivariate Cox regression analysis was used to determine the independent prognostic factors associated with breast cancer-specific survival (BCSS) and overall survival (OS). All statistical analyses were conducted by the IBM SPSS 26.0 software package (IBM Corp., Armonk, NY). P values <0.05 were considered statistically significant.




Results

A total of 678 breast cancer patients were included. The median age of the cohort was 52 years (range, 20–93 years). Four hundred and seventeen (61.5%) patients were white, and 366 (54.0%) patients were married. T categories were T1 in 106 (15.7%), T2 in 266 (39.2%) patients, T3 in 154 (22.7%) patients, and T4 in 152 (22.4%) patients. ER, PR, and HER2 status was positive in 431 (63.5%), 322 (47.5%), and 191 (28.2%) patients, respectively. A total of 622 (91.7%) patients received chemotherapy, and 485 (71.5%) patients received adjuvant radiotherapy. Overall, 30 (4.4%), 203 (30.0%), and 445 (65.6%) patients were well-differentiated (G1), moderately differentiated (G2), and poorly/undifferentiated (G3) tumors, respectively. The detailed patient and tumor characteristics are shown in Table 1.


Table 1 | Patient characteristics.



According to the traditional anatomical stages, N3b patients were staged as the IIIC stage, regardless of the T category. Among the 678 patients in the anatomic IIIC stage, 464 patients (68.4%) had their stage reassigned and all of them were downstaged, whereas 214 patients (31.6%) remained unchanged according to the novel AJCC staging system. These patients were separated into three stages of IIIA (n=167, 24.6%), IIIB (n=297, 43.8%), and IIIC (n=214, 31.6%) according to the 8th edition criteria. All patients in G1 disease and 94.6% of patients in G2 disease were downstaged, whereas 45.6% of those in G3 disease were unchanged. In addition, all patients with double hormone receptors (HoR)-positive disease (ER-positive and PR-positive) were downstaged, whereas 49.6% of the single HoR-positive disease (ER-positive or PR-positive) patients were unchanged. Furthermore, all patients with HER2 positivity were downstaged, 45.0% of which were double HoR-negative disease (ER-negative and PR-negative). Regarding the breast cancer subtype, 99.3% of the triple-negative (TNBC) patients had their stage unchanged, and only 1 TNBC patient was downstaged. Although 70.8, 68.8, 70.8, and 63.8% of patients in T1, T2, T3, and T4 categories were downstaged, respectively, there was no statistical significance in the distribution among the stage migration. Tumor characteristics of stage migration are presented in Table 2.


Table 2 | Comparisons of tumor characteristics among stage change.



With a median follow-up of 41 months (interquartile range=30–59 months), the BCSS and OS rates at 5-years of the entire cohort were 77.8 and 71.4%, respectively (Figure 1). The new pathological prognostic staging system had better discriminatory value on prognostic prediction among IMN-metastasized breast cancer patients, with a 5-year breast cancer-specific survival (BCSS) of 92.7, 77.4, and 66.0% in stage IIIA, IIIB, and IIIC diseases, respectively (P<0.0001) (Figure 2A), and the 5-year overall survival (OS) rates was 85.9, 72.1, and 58.7%, respectively (P<0.0001) (Figure 2B). The ROC analysis showed that the pathological prognostic staging demonstrated moderate discriminative ability in predicting the BCSS (AUC 0.638, 95%CI 0.588–0.688, P<0.001) and OS (AUC 0.633, 95%CI 0.586–0.680, P<0.001) (Figure 3).




Figure 1 | Kaplan–Meier survival curves of breast cancer-specific survival (A) and overall survival (B) in breast cancer patients with internal mammary lymph nodes metastasis.






Figure 2 | Survival curves according to different stages using the 8th edition of the American Joint Committee on Cancer pathological prognostic staging system (A, breast cancer-specific survival; B, overall survival).






Figure 3 | Receiver operating characteristics analyses for prediction the breast cancer-specific survival (A) and overall survival (B) using the 8th edition of the American Joint Committee on Cancer pathological prognostic staging system.



Two prognostic models were used to assess the independent prognostic factors associated with BCSS and OS. In the first model, including the biologic factors in the multivariate prognostic analysis, the results showed that infiltrating lobular carcinoma subtype, higher tumor grade (G3), HER2-negative, and ER-negative were the independent adverse prognostic factors related to inferior BCSS (Table 3). Moreover, older age (aged ≥50 years), infiltrating lobular carcinoma subtype, HER2-negative, and ER-negative were the independent adverse prognostic factors related to inferior OS (Table 3). In the second model, the 8th AJCC pathological prognostic staging was included in the multivariate prognostic analysis, and the results indicated that the pathological prognostic staging was the independent prognostic factors related to BCSS and OS, the 8th AJCC pathological prognostic stages showed worse BCSS and OS with gradually increased hazard ratios (Table 4).


Table 3 | Multivariate analysis of prognostic factors using the Cox-regression model (including biologic factors).




Table 4 | Multivariate analysis of prognostic factors using the Cox-regression model (including 8th AJCC pathological prognostic staging).





Discussion

IMN-metastasized breast cancer is a unique subgroup with biological heterogeneity, whereas the influences of biological factors on staging migration and prognosis prediction were not fully explored for this population. Thus, to distinguish these patients and accurately predict prognosis, the current study analyzed the clinical significance of the AJCC 8th breast cancer staging system for IMN-metastasized patients. In our study, the new pathological prognostic staging system showed that 68.4% of patients were downstaged to stage IIIA or IIIB using the 8th AJCC criteria, and the 8th AJCC pathological prognostic stages showed worse BCSS and OS with gradually increased hazard ratios. Our results showed that the 8th AJCC staging system also hold true in BC patients with IMN metastasis.

In the era of precision medicine, oncologists believe that biological markers are as important as tumor burden. The 8th BC pathological prognostic staging system of AJCC integrated four biological factors (tumor grade, ER, PR, and HER2 status) and anatomical TNM factors. This new staging system has been verified by many researchers in various breast cancer subtypes (13–21). In our study, 68.4% of patients were downstaged to IIIA and IIIB diseases using the 8th AJCC criteria, which was similar to the results from Joo et al. (61%) (16). The 8th AJCC pathological prognostic staging enabled a distinct classification of prognosis based on disease stage subtype compared to that observed using the traditional anatomical staging.

To the best of our knowledge, our study was the second study to assess the role of the 8th AJCC staging system in IMN-metastasized breast cancer patients. A previous study from Korea only included 66 patients with IMN metastasis, and they found significant differences in locoregional recurrence rate, distant metastasis-free survival, progression-free survival, and OS after stratification by the new stages (16). However, the survival outcomes were comparable between stage IIIA and IIIB disease using the Cox-regression model (16). In our study, a large sample size of patients in this rare BC subgroup were included (n=678), and we found that worse survival outcomes with gradually increased hazard ratios in the 8th AJCC staging system. Our results showed that the 8th AJCC pathological prognostic staging provided accurate prognostic information for this population. In addition, the application of the new AJCC staging system will help update follow-up strategies, make treatment decisions, and make risk stratification when designing clinical trials in the future.

Currently, ER and PR are known as biomarkers for guiding endocrine therapy and can provide information on prognosis. Compared with ER-negative and PR-negative tumors, those patients with ER-positivity or PR-positivity tend to be associated with lower stage and have a better prognosis (23–26). In our study, patients with ER-positive disease were also associated with better survival outcomes in BC patients with IMN metastasis. Moreover, we found that all patients with double HoR-positive tumors were downstaged. According to the study from Wang et al. (15), including patients with IIIA–IIIC tumors according to the 7th AJCC anatomical staging criteria, 57.1% of the double HoR-positive tumors were downstaged, whereas only 0.1% of the single HoR-positive tumors were downstaged. A study also suggested that the double HoR-positive subgroup exhibited better survival outcomes than those with single HoR-positive tumors (27). Although our study found that PR-negative tumors did not have prognostic value for this population, the significant differences in the survival curves allowed us to assume that the nonsignificant difference of PR status on prognosis did not bias our risk estimates using the new staging.

HER2-positive status instead of HER2-negative status should be deemed as a better prognostic factor in the era of anti-HER2 therapy (28). In our study, 100% of HER2-positive patients were downstaged to IIIA or IIB regardless of HoR status, while 43.9% of HER2-negative patients had their stages unchanged after using the novel prognostic staging system of BC. However, of the HER2-negative subtype, TNBC is a unique subset. In the present study, 99.3% of the TNBC subtype patients had their stages unchanged, and only 1 TNBC patient was downstaged, which might lead to a surmise that the new BC prognostic staging system did not show superior abilities to distinguish the prognoses of TNBC patients in comparison with the traditional anatomical stages of BC. A study (n=31,941) from He et al. also challenged the validity of the AJCC 8th breast cancer staging system in stage I to IIIC TNBC patients (18). Therefore, the validity of the new AJCC breast cancer staging system in IMN-metastasized TNBC patients is in question, and further studies of large cohorts are needed.

Histologic grade was an important prognostic factor for BC patients, including patients with IMN metastasis (29–32). Our study also showed that the tumor grade was an independent prognostic factor in IMN-metastasized BC. Our study showed that 45.6% of patients with G3 disease have their stages unchanged, while all patients with G1 disease and 94.6% of patients with G2 disease were downstaged. Therefore, histologic grade plays a significant role in giving accurate staging and should be integrated into the novel pathological prognostic staging system.

Most patients determined in the AJCC 8th breast cancer staging system received multimodal therapy, including chemotherapy, hormone therapy, and anti-HER2 therapy in the era of pluralistic treatment. Therefore, the prognoses reflected by the new pathological prognostic staging system were the prognoses in the context of comprehensive and standardized treatment based on the unique tumor characteristics and biologic behaviors of each patient (12, 33). Although patients included in our study did not have a record on hormone therapy and anti-HER2 therapy, most patients in our study received chemotherapy, and our results proved that the new AJCC breast cancer staging system could accurately evaluate the prognoses of these N3b patients. So, we can assume that most patients in our study received corresponding adjuvant therapy. In addition, it should be noted that the premise of the AJCC 8th edition stages can accurately predict the prognosis is the routine utilization of anti-HER2 therapy. Therefore, the newly proposed AJCC staging system should be applied with caution in areas where anti-HER2 therapy cannot be routinely applied.

The primary strength of this study was that we investigated the incorporation of the biologic factors into staging for patients with internal mammary lymph nodes metastasis, which may help to further define this framework. However, several limitations should be acknowledged in this study. Firstly, our study was retrospective, and the inherent biases of a retrospective study should not be neglected. Secondly, there was no record on chemotherapy regimen, hormone therapy, anti-HER2 treatment, radiotherapy dose, and radiotherapy volume in the SEER database, which might impact the prognostic estimates. Thirdly, we limited our study to patients diagnosed between 2010 and 2014 because the information regarding HER2 status was initiated in 2010, which led to a relatively short follow-up period. Moreover, 28.5 and 8.3% of the patients did not receive postoperative radiotherapy and chemotherapy, respectively, which may influence the prognostic assessment of this patient subset. Finally, the patients’ information extracted from the SEER program should be validated with a larger cohort, especially from the Chinese population. Due to the rarity of this specific BC subgroup, a larger cohort study included patients’ data from multiple institutes should be performed to validate our findings.



Conclusion

In conclusion, our study suggests that IMN-metastasized BC is an independent disease entity whose prognosis depends on biological characteristics. The AJCC 8th pathological prognostic staging system could provide more refined prognostic stratification for IMN-metastasized BC patients. Longer follow-up studies are needed to confirm the validity and accuracy of its prognostic prediction and to customize a treatment program in IMN-metastasized BC patients.
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Breast cancer is the most common type of cancer diagnosed among women, and basal-like breast carcinoma (BLBC) has been associated with a more aggressive histology, poorer prognosis, and non-responsiveness to hormone therapy. In the present study, the role and molecular mechanism of circular (circ)_NOTCH3 in the development and progression for BLBC was identified. circ_RNAs array was used to screen the ectopic expression of hsa_circ_0109177 (circ_NOTCH3) in BLBC. RT-qPCR was conducted to evaluate the circ_NOTCH3 expression in BLBC tissues and paired normal tissues, as well as related cell lines. Cell function changes were analyzed following circ_NOTCH3 or micro (mi)RNA overexpression or co-expression. Bioinformatics analysis and dual-luciferase reporter assay were performed to predict and verify the binding sites between circ_NOTCH3 and miRNAs. Gene expression changes were assessed using western blotting. circ_NOTCH3 had a significantly higher expression in BLBC tissues and cell lines. The upregulation of circ_NOTCH3 promoted the proliferation, migration, invasion and inhibited the apoptosis for BLBC cells. The opposite results were observed following miR-205-5p overexpression. However, the co-expression of circ_NOTCH3 and miR-205-5p resulted in those restoration. circ_NOTCH3 is capable of binding to miR-205-5p, and upregulating its target gene KLF12, which can be downregulated by miR-205-5p overexpression and restored by the co-expression of circ_NOTCH3 and miR205-5p. circ_NOTCH3, being an protooncogene and a powerful biomarker, can function as a sponge, compete with miR-205-5p, modulate KLF12 expression, and promote the development and progression of BLBC.
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Introduction

Breast cancer is the most common type of cancer diagnosed among women in the USA, and the second leading cause of cancer mortality among US women after lung cancer (1, 2). Breast cancer incidence rates in women have been seeing a slight annual rise (by ~0.3% per year) since 2004 in US (1, 2). The 5-year relative survival rate for female breast cancer (90%) is highest in the USA (1). In 2015, breast cancer was the most commonly diagnosed cancer among Chinese women and the 6th leading cause of cancer mortality among Chinese women (3). Breast cancer alone is expected to account for 15% of all new cancers in Chinese women (3). Breast cancer has been a major public health problem worldwide (1–3).

Breast cancer presents as a heterogeneous disease, not only from a clinical and histological perspective, but also from the view of genetic expression; in addition, the intrinsic subtype classification (4) of basal-like breast carcinoma (BLBC) has been associated with a more aggressive histology, poorer prognosis and non-responsiveness to hormone therapy (5–7).

Covalently closed circular (circ)_RNA molecules were originally found in viroid (8) and hepatitis delta virus (9). For a long time, circular RNAs were considered a by-product of splicing errors and lacking biological function (10). However, high-throughput sequencing has identified thousands of circ_RNAs from back-spliced exons in multiple human cell lines (11–13), and it was suggested to function as micro (mi)RNA sponges (12, 14). There is a diversity of circ_RNAs in biological systems. circ_RNAs can be produced by the direct ligation of 5’ and 3’ ends of linear RNAs, or by back-splicing (15). They do not have 5’ caps or poly-A tail structures and are highly stable (16). They have unique properties, including the potential for rolling circle amplification of RNA, ability to rearrange the order of genomic information, protection from exonucleases and constraints on RNA folding (15). They can function as templates for viroid and viral replication, as intermediates in RNA processing reactions, as regulators of transcription in cis, as snoRNAs, and as miRNA sponges (15). circ_RNAs affect human disease, such as changes in the level of ciRS-7/CDR1as (the miR-7 circ_RNA sponge), and alter the levels of miR-7 target genes (both endogenous and reporter) (12, 14, 17). circ_RNAs also play a pivotal role in the pathogenesis and development of a diversity of cancers, such as liver (18, 19), colon (20, 21), gastric (22, 23), lung (24, 25), kidney cancer (26, 27) and endometrial cancer (28, 29).

miR-205-5p was previously identified as a tumor suppressor gene, which directly targeted downstream protooncogene KLF12 and was involved in the progression of BLBC cells (30, 31). What’s more, further circ_RNA array and bioinformatics analysis revealed that circ_NOTCH3 might function as a potential sponge for miR-205-5p. However, direct experimental evidence and detailed mechanisms supporting this model are still lacking. The aim of the present study was to explore circ_NOTCH3 by functioning as a sponge for miR-205-5p modulating KLF12 and its role in the development and progression of BLBC.



Materials and Methods


Clinical Specimens

Ten fresh samples of BLBC and paired normal breast tissues which adjacent to tumor from same patient were collected from patients who underwent surgery between January 2017 and December 2018 in the Shanghai 6th People’s Hospital Jinshan Branch and never received preoperative radiotherapy or chemotherapy. The samples were immediately snap-frozen in liquid nitrogen and stored at −80°C for DNA/RNA extraction. Hematoxylin and eosin and immunohistochemistry sections were reviewed and histologically confirmed by two independent pathologists, according to the standard of estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2-), epidermal growth factor receptor (EGFR+) and/or cytokeratin 5/6+ (6, 7). The research protocol was officially approved by the Shanghai 6th People’s Hospital Jinshan Branch Medical Ethics Committee, and informed consent was obtained at the time of sample collection.



Cell Culture

A human BLBC MDA-MB-468 cell line was obtained from the Cell Bank of the Chinese Academy of Sciences and cultured in L-15 medium supplemented with 1% streptomycin and penicillin, and 10% fetal bovine serum (FBS), which were placed in an incubator with 100% air and 37°C for maintenance culture. A human mammary epithelial MCF-10A cell line was obtained from Shanghai Zhong Qiao Xin Zhou Biotechnology Co., Ltd. and cultured in ZQ-1311 special medium, which was then placed in a 5% CO2, 37°C incubator for maintenance culture.



Circ_RNA Array

Total cellular RNA was isolated by TRIzol (Thermo Fisher Scientific, Inc.). Following the removal of linear RNA and rRNA, cDNA was synthesized and amplified and followed by sample labeling using a labeling kit (Aksomics). Next, the labeling samples were mixed pairwise and hybridized with Human circ_RNA Array V2.0 (Aksomics). Finally, the array was scanned and data was extracted for further analysis.



Plasmid Construction and Transfection

The human cDNA sequences of circ_NOTCH3 were cloned into a PUC57 vector (Fenghuishenwu). MDA-MB-468 cells were transfected with small interfering (si)RNA-circ_NOTCH3, pcd-circ_NOTCH3 expression vector, circ_NOTCH3+mimics-NC, miR-205-5p+mimics-NC and their matched negative controls (Shanghai GenePharma Co., Ltd.) using Lipofectamine 2000 (Thermo Fisher Scientific, Inc.), according to the manufacturer’s instructions.



Cell Counting Kit-8 (CCK-8) Assay

MDA-MB-468 cells were seeded into 96-well plates at a density of 1x104 cells/ml. Following incubation at 37°C overnight, the cells were transfected with pcd-NC, pcd-circ_NOTCH3, pcd-NC+mimics-NC, pcd-circ_NOTCH3+mimics-NC, pcd-NC+miR-205-5p or pcd-circ_NOTCH3+miR-205-5p. A total of 10 μm CCK-8 solution (Beyotime Institute of Biotechnology) was added into each well following incubation for 0, 24, 48, 72 and 96 h. Following 1 h of incubation, the optical density value of each well was measured at 450 nm using a microplate reader.



Transwell Assay

A Transwell assay was performed to evaluate the migration and invasion of tumor cells. The cell migration experiment was carried out in an 0.8-μm 24-well chamber (FALCON). The cell invasion experiment was carried out in a BioCoat™ Matrigel® 24-well chamber with 0.8 μm (BioCoat). Medium (700 μl) containing 10% FBS was added into the lower chamber, and 500 μl cell suspension (cell concentration, 2x105/ml) was added into the upper chamber. The cells were further incubated for 24 h in a CO2 incubator. Media were then aspirated, and cells in the upper chamber were removed with a cotton swab and fixed with formaldehyde for 30 min at room temperature. The lower side of the chamber membrane was stained with crystal violet for 30 min at room temperature. The polycarbonate film from each chamber was then excised, attached to a slide, covered with a cover slide and sealed with neutral gum. The number of cells was counted in random visual fields under a microscope, and statistical analysis was then performed.



Flow Cytometry

An apoptosis assay was conducted using Annexin V-fluorescein isothiocyanate (FITC) kit (Beyotime Institute of Biotechnology). A total of 105 resuspended cells were centrifuged at 1,000 x g for 5 min and the supernatant was discarded. Annexin V-FITC binding solution (195 µl) was added and slightly resuspended the cells. Next, 5 µl Annexin V-FITC and 10 µl propidium iodide was added, mixed and incubated for 10–20 min in the dark at room temperature. Apoptosis was measured by flow cytometry (FACSVerse™; BD Biosciences). The data were analyzed using CellQuest software.



RT-qPCR

Total cellular RNA was extracted using TRIzol (Thermo Fisher Scientific, Inc.), dissolved in RNase-free water, and reverse-transcribed to cDNA using a Reverse Transcription kit (Thermo Fisher Scientific, Inc.). Subsequently, RTqPCR was conducted to amplify the target gene using 2x Master Mix (Roche Diagnostics) and the gene relative expression was normalized to that of GAPDH using the 2-ΔΔCt method. The detailed sequences of the primers used in the present study are presented in in Table 1.


Table 1 | Primer sequences used in this study.





Western Blotting

MDA-MB-468 cells were lysed in radio-immunoprecipitation assay buffer supplemented with protease inhibitors (Thermo Fisher Scientific, Inc.). The proteins were separated by 10% sodium dodecyl sulphate-polyacrylamide gel and then electro-transferred to a polyvinylidene fluoride membrane, followed by blocking with 5% non-fat milk dissolved in Tris-buffered salin Tween 20 (TBST) at room temperature for 3 h. The membranes were incubated with primary antibodies against KLF12 (dilution, 1:1,000; ProteinTech Group, Inc.) and GAPDH (dilution, 1:1,000; ProteinTech Group, Inc.) at 4°C overnight. Following washing 3 times with TBST buffer, the membranes were incubated with horseradish peroxidase-conjugated goat-anti-rabbit secondary antibody (dilution, 1:5,000; Abcam) for 2 h. The protein bands were washed 3 times with TBST buffer and visualized using an enhanced chemiluminescence system (Thermo Fisher Scientific, Inc.).



Dual-Luciferase Reporter Assay

Luciferase reporter assay was conducted to evaluate the miR-205-5p binding site within the 3’ untranslated region (UTR) of circ_NOTCH3. HEK293T cells were seeded into 48-well plates, and the wild/mutated-type psi-CHECK2 dual-luciferase vectors containing miR-205-5p binding site on circ_NOTCH3 3’-UTR were co-transfected with miR-205-5p mimics or scramble control into the HEK293T cells using Lipofectamine 2000 (Thermo Fisher Scientific, Inc.). After 48 h, the samples were measured for luciferase activity using a Dual-Luciferase Reporter Assay System (Promega Corporation). The relative luciferase signal was represented by the normalization of firefly luciferase to that of Renilla.



Statistical Analysis

All experiments were repeated at least in triplicate. Values are presented as the mean ± SD. Paired t-test and two-way ANOVA were used to analyze the statistical significance between two and multiple groups, respectively. All analysis was conducted with SPSS 21.0 software (International Business Machines Corp). P<0.05 and P<0.01 were considered to indicate a statistically significant difference.




Results


circ_RNA Array Expression Analysis

The circ_RNAs expression profiles were first evaluated between BLBC tumor (n=3) and normal breast (n=3) tissue using circular RNA array. Array scanning data was extracted and a log2 fold change (log2FC)>2 was defined as the entry threshold. A total of 164 circ_RNAs were identified to be different between BLBC tumor tissues and the normal control, with 103 circ_RNAs upregulated (log2FC>2) and 61 downregulated (log2FC<−2; Figure 1). circ_NOTCH3, which had the highest log2FC value (7.8 times), was selected for further research.




Figure 1 | Heat map of circ_RNA array. The left row contains circ_RNAs. The column contains normal breast tissues and BLBC tumor tissues expression value. circ_NOTCH3, which the most upregulation log2FC times, was selected for further analysis. (log2FC>2). BLBC, basal-like breast carcinoma; FC, fold change; circ, circular.





circ_NOTCH3 Is Highly Expressed in BLBC Tissues and Cell Lines

BLBC histopathological features were characterized by a high histological grade, pushing margins, syncytial architecture with no glandular structures, regions of necrosis and a prominent tumor-infiltrating lymphocyte infiltrate (Figure 2A). The tumors were negative for hormone receptors (ER and PR) and HER2 (triple-negative), and they variably expressed basal markers, such as cytokeratin (CK)5/6, CK14, EGFR (Figure 2A).




Figure 2 | circ_NOTCH3 is overexpressed in BLBC. (A) BLBCs were characterized by a high histological grade, syncytial architecture with no glandular structures, regions of necrosis, and a prominent tumor infiltrating lymphocyte infiltrate. The tumor cells were negative for ER, PR and HER2 (triple-negative), and variably expressed CK5/6, CK14 and EGFR. The relative expression of circ_NOTCH3 was significantly higher in (B) BLBC tissues and (C) BLBC cell lines. **P < 0.01. BLBC, basal-like breast carcinoma; ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor 2; EGFR, epidermal growth factor receptor; CK, cytokeratin; H&E, hematoxylin and eosin.



The relative expression of circ_NOTCH3 in 10 BLBC and paired normal breast tissues (adjacent to tumor from same patient) were detected by RT-qPCR, and it was shown to be significantly higher in BLBC than in normal breast tissue (Figure 2B; **P<0.01).

Next, the relative expression of circ_NOTCH3 in BLBCL cell lines (MDA-MB-468) and normal breast epithelial MCF-10A cell lines was further detected, and it was found to be significantly higher in MDA-MB-468 than in MCF10A cell lines (Figure 2C; **P<0.01).



circ_NOTCH3 Promotes Proliferation and Inhibits Apoptosis in BLBC Cells

To understand the role of circ_NOTCH3, si-circ_NOTCH3 and pCD-circ_NOTCH3 were transfected into MDA-MB-468 cells. The relative expression of circ_NOTCH3 was knocked down by siRNA transfection, and upregulated by pCD-RNA transfection (Figure 3A; *P<0.05, **P<0.01).




Figure 3 | circ_NOTCH3 promotes proliferation and inhibits apoptosis. (A) The relative expression of circ_NOTCH3 was knocked down by siRNA and upregulated by pCD-circ_NOTCH3 transfection. (B) CCK-8 assay showed that the upregulation of circ_NOTCH3 expression markedly increased cell viability. (C) Cell viability was significantly increased by the overexpression of circ_NOTCH3, decreased by the overexpression of miR-205-5p, and restored by the simultaneous co-expression of circ_NOTCH3 and miR-205-5p. (D) The apoptosis assay showed that cell apoptosis was decreased by the overexpression of circ_NOTCH3 and significantly increased by the overexpression of miR-205-5p. Cell viability was decreased by the overexpression of miR-205-5p. Cell apoptosis was restored by the simultaneous co-expression of circ_NOTCH3 and miR-205-5p. *P < 0.05 and **P < 0.01. OD, optical density; circ, circulating; mi, micro; si, small interfering; CCK-8, cell counting kit-8.



CCK-8 assay showed that the upregulation of circ_NOTCH3 expression markedly increased the cell viability of MDA-MB-468 cells (Figure 3B; **P<0.01). Following the transfection of pCD-circ_NOTCH3+mimics-NC into MDA-MB-468 cells, the cell viability was significantly increased, as compared with pCD-NC+mimics-NC (Figure 3C; **P<0.01). Transfecting pCD-NC+miR-205-5p into MDA-MB-468 cells, the cell viability was decreased (Figure 3C; **P<0.01). Cell viability was restored by the simultaneous co-expression of circ_NOTCH3 and miR-205-5p, as compared with the overexpression of circ_NOTCH3 and miR-205-5p (Figure 3C; *P<0.05 and **P<0.01, respectively).

The apoptosis assay showed that transfecting pCD-circ_NOTCH3+mimics-NC into MDA-MB-468 cells decreased cell apoptosis (%), as compared with the transfection of pCD-NC+mimics-NC (Figure 3D; *P<0.05). Following the transfection of pCD-NC+miR-205-5p into MDA-MB-468 cells, cell apoptosis (%) was significantly increased (Figure 3D; **P<0.01). Cell apoptosis (%) was restored by the simultaneous co-expression of circ_NOTCH3 and miR-205-5p, as compared with the overexpression of circ_NOTCH3 and miR-205-5p (Figure 3D; *P<0.05, **P<0.01, respectively).



circ_NOTCH3 Promotes Migration and Invasion in BLBC Cells

Transwell migration assay showed that the upregulation of the circ_NOTCH3 expression increased the number of MDA-MB-468 migrating cells (Figure 4A; *P<0.05). Following the transfection of pCD-circ_NOTCH3+mimics-NC into MDA-MB-468 cells, the number of migrating cells was significantly increased, as compared with pCD-NC+mimics-NC (Figure 4B; **P<0.01). Following the transfection of pCD-NC+miR-205-5p into MDA-MB-468 cells, the number of migrating cells was decreased (Figure 4B; *P<0.05). The number of migrating cells was restored by the simultaneous co-expression of circ_NOTCH3 and miR-205-5p, as compared with the overexpression of circ_NOTCH3 and miR-205-5p (Figure 4B; **P<0.01 and *P<0.05, respectively).




Figure 4 | circ_NOTCH3 promotes migration and invasion. (A) Migration assay showed that the upregulation of circ_NOTCH3 increased the number of migrating cells. (B) The number of migrating cells was significantly increased by the overexpression of circ_NOTCH3, decreased by the overexpression of miR-205-5p, and restored by the simultaneous co-expression of circ_NOTCH3 and miR-205-5p. (C) The invasion assay showed that the number of invading cells was increased by the upregulation of circ_NOTCH3. (D) The number of invading cells was increased by the overexpression of circ_NOTCH3, decreased by the overexpression of miR-205-5p, and restored by the simultaneous co-expression of circ_NOTCH3 and miR-205-5p. *P < 0.05 and **P < 0.01. circ, circulating; mi, micro.



A Transwell invasion assay showed that the increase in circ_NOTCH3 expression increased the number of invading MDA-MB-468 cells (Figure 4C; *P<0.05). Following the transfection of pCD-circ_NOTCH3+mimics-NC into MDA-MB-468 cells, the number of invading cells was increased, as compared with pCD-NC+mimics-NC (Figure 4D; *P<0.05). Following the transfection of pCD-NC+miR-205-5p into MDA-MB-468 cells, the number of invading cells was decreased (Figure 4D; *P<0.05). The number of invading cells was restored by the simultaneous co-expression of circ_NOTCH3 and miR-205-5p, as compared with the overexpression of circ_NOTCH3 and miR-205-5p (Figure 4D; *P<0.05 and *P<0.05, respectively).



circ_NOTCH3 Functions as a Molecular Sponge for MiR-205-5p in BLBC Cells

Following bioinformatics prediction, a putative binding site was identified between circ_NOTCH3 and miR-205-5p (Figure 5A). Next, circ_NOTCH3 wild type and its mutant type were sequenced (Figure 5A). Dual-luciferase reporter gene assay was performed in order to confirm the speculation. The assay results showed that the relative luciferase activity of circ_NOTCH3 wild type was markedly decreased by miR-205-5p overexpression (Figure 5B; **P<0.01). By contrast, it had no effect on the relative luciferase activity of circ_NOTCH3 mutant type (Figure 5B).




Figure 5 | circ_NOTCH3 functions as a molecular sponge for miR-205-5p. (A) Putative binding site between circ_NOTCH3 and miR-205-5p, and sequences of circ_NOTCH3 wild and mutant type. (B) Dual-luciferase assay showed that the relative luciferase activity of circ_NOTCH3 was markedly decreased. **P < 0.01. circ, circulating; mi, micro.





circ_NOTCH3 Binds to Mir-205-5p and Modulates Its Downstream KLF12 Expression

RT-qPCR analysis showed that, following the transfection of si-circ_NOTCH3 and pCD-circ_NOTCH3 into MDA-MB-468 cells, the relative expression of KLF12 was knocked down by siRNA transfection, and upregulated by pCD-RNA transfection (Figure 6A; *P<0.05 and *P<0.05). Following the transfection of pCD-circ_NOTCH3+mimics-NC into MDA-MB-468 cells, the relative expression of KLF12 was markedly increased, as compared with pCD-NC+mimics-NC (Figure 6B; **P<0.01). Following the transfection of pCD-NC+miR-205-5p into MDA-MB-468 cells, the relative expression of KLF12 was decreased (Figure 6B; *P<0.05). The relative expression of KLF12 was restored by the simultaneous co-expression of circ_NOTCH3 and miR-205-5p, as compared with the overexpression of circ_NOTCH3 and miR-205-5p (Figure 6B; *P<0.05 and *P<0.05, respectively).




Figure 6 | circ_NOTCH3 promotes the progression of BLBC by regulating KLF12 expression through sponges miR-205-5p. (A) RT-qPCR showed that the relative expression of KLF12 was knocked down by siRNA transfection and upregulated by pCD-RNA transfection. (B) The relative expression of KLF12 was markedly increased by the overexpression of circ_NOTCH3. The relative expression of KLF12 was decreased by the overexpression of miR-205-5p and restored by the simultaneous co-expression of circ_NOTCH3 and miR-205-5p. (C) Western blotting showed that the relative protein expression of KLF12 was knocked down by siRNA transfection and upregulated by pCD-RNA transfection. (D) The relative protein expression of KLF12 was significantly increased by the overexpression of circ_NOTCH3, markedly decreased by the overexpression of miR-205-5p, and restored by the simultaneous co-expression of circ_NOTCH3 and miR-205-5p. *P < 0.05 and **P < 0.01. circ, circulating; mi, micro; si, small interfering; BLBC, basal-like breast carcinoma.



Western blotting showed that, following the transfection of si-circ_NOTCH3 and pCD-circ_NOTCH3 into MDA-MB-468 cells, the relative protein expression of KLF12 was knocked down by siRNA transfection, and upregulated by pCD-RNA transfection (Figure 6C; *P<0.05 and *P<0.05). Following the transfection of pCD-circ_NOTCH3+mimics-NC into MDA-MB-468 cells, the relative protein expression of KLF12 was significantly increased, as compared with pCD-NC+mimics-NC (Figure 6D; **P<0.01). Following the transfection of pCD-NC+miR-205-5p into MDA-MB-468 cells, the relative protein expression of KLF12 was markedly decreased (Figure 6D; **P<0.01). The relative protein expression of KLF12 was restored by the simultaneous co-expression of circ_NOTCH3 and miR-205-5p, as compared with the overexpression of circ_NOTCH3 and miR-205-5p (Figure 6D; **P<0.01 and **P<0.01, respectively).




Discussion

circ_RNAs play an important role in cancer pathogenesis and progression (17, 21, 32). Due to intrinsic structure features, circ_RNAs lack 3’poly-A tails and 5’ end caps, and have long half-lives, which makes them resistant to regular mechanisms of linear RNA decay, so they can serve as efficient miRNA sponges (14, 16, 33, 34). Therefore, circ_RNAs could potentially be powerful biomarkers of cancer, given their long half-lives and resistance to common degradation pathways (35–37). However, direct circ_RNA research and its related miR/mRAN axis about BLBC were still lacking.

In the present study, the circ_RNA expression between BLBC tumor tissue and its NC was first screened using circ_RNAs array. Among the circ_RNAs with a differential expression, circ_NOTCH3 had the highest log2FC value (7.8 times), but its NC expression was 0. Furthermore, RT-qPCR results confirmed that circ_NOTCH3 had a significantly high expression in BLBC tissues and cell lines, and their NC expression was also 0. Given the circ_RNAs’ long half-lives and resistance to common degradation pathways, it supported that circ_NOTCH3 could be a powerful biomarker for BLBC.

Secondly, the role of circ_NOTCH3 in BLBC development and progression was evaluated. The siRNA and overexpression plasmid were transfected into MDA-MB-468 cells, and the relative expression of circ_NOTCH3 was knocked down and upregulated, respectively. The upregulation of circ_NOTCH3 significantly promoted proliferation vitality, inhibited cell apoptosis, and promoted cell migration and invasion. The upregulation of miR-205-5p markedly inhibited the proliferation vitality, promoted cell apoptosis, and inhibited cell migration and invasion. The simultaneous co-expression of circ_NOTCH3 and miR-205-5p restored proliferation vitality, and cell apoptosis, migration and invasion. In combination, these results suggested that circ_NOTCH3 played an important role in BCLC development and progression.

miRNAs are important post-transcriptional regulators of gene expression that act by direct base-pairing to target sites within UTRs of messenger RNAs (38, 39). circ_RNAs are highly stable and rich in miRNA reaction elements, making them highly efficient as miRNA sponges (12, 14, 17). In the present study, the most upregulated circ_RNA was found to be circ_NOTCH3, miR-205-5p, which targeted KLF12 (30, 31), bioinformatics analysis predicted its possible miR-205-5p binding sites, and dual-luciferase reporter assay finally supported the function of circ_NOTCH3 as a sponge for miR-205-5p. Further experiments showed that the relative expression of KLF12 was knocked down by siRNA transfection, and upregulated by the overexpression of circ_NOTCH3. The upregulation of circ_NOTCH3 expression led to an increase in the KLF12 mRNA and protein expression. P-regulation of the miR-205-5p expression led to a decrease in the KLF12 mRNA and protein expression. The simultaneously co-expression of circ_NOTCH3 and miR-205-5p restored the KLF12 mRNA and protein expression. This experimental evidence suggested that circ_NOTCH3 could be a protooncogene, function as a sponge and compete with miR-205-5p, modulating the KLF12 expression in BLBC.

Breast cancer has been a major public health problem worldwide among women (1–3), and thus breast cancer research has an important social significance. Recently, many related studies have shown that circ_RNF111 and circ_ABCB10 contribute to paclitaxel resistance in breast cancer (40, 41), circ_ZEB1 acts as an oncogene in triple-negative breast cancer (42), circ_TFF1 contributes to breast cancer progression (43), circ_0000526 blocks the progression of breast cancer (44), circulating circ_RNA hsa_circ_0001785 acts as a diagnostic biomarker for breast cancer (45), etc. In the present study, the major focus was on BLBC molecular subtype, and protooncogene circ_NOTCH3 was first identified to act as a sponge for miR-205-5p, which played a crucial role in its development and progression. The present results were also consistent with the more progression pathological features of BLBC. According to diagnostic molecular pathology, breast cancer is divided into surrogate subtype classification (6, 46), intrinsic subtype classification (4) and integrative cluster classification (47–49). However, only tissue from one subtype/cell line was analyzed. Considering the complexity of breast cancer classification, the present study revealed only the tip of the iceberg. The true number of circ_RNAs in breast cancer is almost certainly much larger. Due to the limitation of our clinical samples, we could not conduct more subtype research and related clinical treatment and prognosis studies, but aim to do so in the future.

In conclusion, the present experimental evidence suggested that circ_NOTCH3 functions as a sponge, competes with miR205-5p and modulates the KLF12 expression in BLBC. As a protooncogene, circ_NOTCH3 plays an important role in the development and progression of BLBC. circ_NOTCH3 can be a powerful biomarker for BLBC. Over time, it is highly likely that increasing evidence will emerge and enable us to better assess the clinical validity and utility of circ_NOTCH3 for the treatment of BLBC.
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Background

Autophagy is a “self-feeding” phenomenon of cells, which is crucial in mammalian development. Long non-coding RNA (lncRNA) is a new regulatory factor for cell autophagy, which can regulate the process of autophagy to affect tumor progression. However, poor attention has been paid to the roles of autophagy-related lncRNAs in breast cancer.



Objective

This study aimed to construct an autophagy-related lncRNA signature that can effectively predict the prognosis of breast cancer patients and explore the potential functions of these lncRNAs.



Methods

The RNA sequencing (RNA-Seq) data of breast cancer patients was collected from The Cancer Genome Atlas (TCGA) database and the GSE20685 database. Multivariate Cox analysis was implemented to produce an autophagy-related lncRNA signature in the TCGA cohort. The signature was then validated in the GSE20685 cohort. The receiver operator characteristic (ROC) curve was performed to evaluate the predictive ability of the signature. Gene set enrichment analysis (GSEA) was used to explore the potential functions based on the signature. Finally, the study developed a nomogram and internal verification based on the autophagy-related lncRNAs.



Results

A signature composed of 9 autophagy-related lncRNAs was determined as a prognostic model, and 1,109 breast cancer patients were divided into high-risk group and low-risk group based on median risk score of the signature. Further analysis demonstrated that the over survival (OS) of breast cancer patients in the high-risk group was poorer than that in the low-risk group based on the prognostic signature. The area under the curve (AUC) of ROC curve verified the sensitivity and specificity of this signature. Additionally, we confirmed the signature is an independent factor and found it may be correlated to the progression of breast cancer. GSEA showed gene sets were notably enriched in carcinogenic activation pathways and autophagy-related pathways. The qRT-PCR identified 5 lncRNAs with significantly differential expression in breast cancer cells based on the 9 lncRNAs of the prognostic model, and the results were consistent with the tissues.



Conclusion

In summary, our signature has potential predictive value in the prognosis of breast cancer and these autophagy-related lncRNAs may play significant roles in the diagnosis and treatment of breast cancer.





Keywords: long non-coding RNA, autophagy, breast cancer, The Cancer Genome Atlas, prognostic signature



Introduction

Breast cancer is the most common malignant tumor and the leading cause of cancer-related deaths in women worldwide, with an incidence and mortality of 24.2% and 15.0%, respectively (1, 2). Current treatment options for breast cancer usually combine surgery with a variety of adjuvant therapies, such as chemotherapy, radiotherapy, endocrine therapy, targeted therapy, and immunotherapy (3–8). Most patients respond to initial treatment within a certain period of time, but there are still some breast cancers, especially triple negative breast cancer, that will develop into a more invasive tumor form, resulting in a poor prognosis (9–11). Because of the strong heterogeneity of breast cancer, multi-parameter signals are more valuable than single biomarkers in predicting the prognosis of breast cancer.

Autophagy is a physiological process that guides the degradation of damaged, denatured, or senescent proteins and damaged organelles in lysosomes. There are two states of autophagy activation: normal state and pathological state. Autophagy responds to various stresses by providing circulating metabolic substrates needed for survival under normal physiological conditions (12). Recent studies further indicate that abnormal autophagy is considered to be a potential cause of many diseases, including cardiovascular and cerebrovascular diseases, liver diseases, and cancer (13, 14). Autophagy is closely related to the occurrence, development, and metastasis of tumor. Multiple studies have reported that autophagy may play especially important roles in supporting cell growth and drug resistance to targeted therapy in BRAF-mutant melanoma (15–17). Some researchers found that MIR106A-5p upregulation suppressed autophagy and accelerated malignant phenotype in nasopharyngeal carcinoma (18). Furthermore, recent findings have revealed the autophagy drugs such as sirolimus and arsenic trioxide can induce autophagy of tumor cells and improve the outcome of certain cancer patients. However, only a limited proportion of patients benefited from autophagy-based treatment. Therefore, establishing predictive biomarkers for autophagic drug therapy response is required to identify patients who can benefit from autophagy-based treatment.

LncRNA is a small RNA with a length of more than 200bp and no protein coding function (19). Although they cannot be translated into proteins, they are involved in the process of protein translation (20). LncRNA plays a critical role in complex autophagy regulatory networks by regulating the biological effects of a variety of autophagy-related DNA, RNA, or proteins (21). Some studies have reported that lncRNA-HOTAIRM1 regulates autophagy and degrades tumor protein PML-RARA, during differentiation arrest of bone marrow cells, suggesting that lncRNA is a potential therapeutic target for leukemia (22). Other researchers have found the expression of lncRNA MEG3 is significantly down-regulated in glioma tissues and cells, and its overexpression can significantly inhibit cell proliferation and promote apoptosis and autophagy of glioma cells (23).

Considering the significance of lncRNA and autophagy in breast cancer biology, we determined an autophagy-related lncRNA signature to predict the prognosis of breast cancer patients and provide a theoretical basis for the diagnosis and treatment of breast cancer.



Materials and Methods


Datasets Preparation

The workflow of our analysis is illustrated in Figure 1. TCGA (https://cancergenome.nih.gov) RNA-Seq data of breast cancer patients was used as a training set to construct a signature composed of autophagy-related lncRNAs. The training cohort includes TGGA mRNA expression (FPKM) in 1,109 breast cancer patients and related clinical information. We collected an independent dataset GSE20685 (series matrix files), which was performed using the platform GPL570 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20685). In order to validate the predictive capability and the universal applicability of the signature, GSE20685 dataset including 327 breast cancer patients was employed as a testing set in our present study.




Figure 1 | Flowchart for identification and validation of an autophagy-related lncRNA signature in breast cancer patients. The study was carried out in TCGA and GSE20685 database. The TCGA training set was used to identify prognostic lncRNAs. The multivariate Cox hazard model analysis was performed to construct a prognostic signature based on the prognostic lncRNAs. The prognosis signature was validated in the GSE20685 testing set.





LncRNAs and Autophagy Genes Mining

LncRNAs and mRNAs were extracted based on the annotations provided by GENCODE (https://www.gencodegenes.org). Obtain the list of autophagy gene from the human autophagy data (HADb, http://autophagy.lu/clustering/index.html) and extract the mRNA related to autophagy gene. Analyze the correlation between lncRNAs and autophagy-related genes in breast cancer by using Pearson method. LncRNAs with correlation coefficient R2 > 0.3 and P < 0.001 are considered to be autophagy-related lncRNAs. Extract the shared lncRNAs from autophagy-related lncRNAs and GSE20685 for the following analysis. Then, the shared lncRNAs in TCGA were used as a training dataset (n=1,109), and the shared lncRNAs in GSE20658 were used as a testing dataset (n=327). All RNA-sequencing data were normalized by log2 conversion.



Signature Development

Univariate Cox regression analysis was executed to obtain the prognosis-related lncRNAs from the training dataset. Then the lncRNAs with P < 0.05 were included in the multivariate Cox hazard model analysis to produce an autophagy-related lncRNA signature model. In order to avoid over-fitting, Akaike Information Criterion (AIC) was conducted to select the stepwise signature, and the signature with the lowest AIC value was considered to be the optimal signature. The risk score of each patient with breast cancer was calculated according to the following formula: Risk score= β lncRNA1 × exprlncRNA1+ βlncRNA2 × exprlncRNA2+ …. + βlncRNAn × exprlncRNAn. β is the regression coefficient of the corresponding lncRNA, expr is the expression level of lncRNA, and its unit is FPKM. Based on the median risk score, 1,109 patients with breast cancer in the training dataset were divided into two groups: high-risk group and low-risk group. In order to compare the difference of OS between high-risk group and low-risk group, Kaplan Meier-plotter was implemented. In addition, ROC curve was performed to evaluate the predictive ability of the signature by using the SurvivalROC package. Finally, 327 breast cancer patients with credible prognostic data from the GSE20685 set were regarded as a testing set to evaluate the predictive capability of the signature. All P<0.05 were regarded as a significant difference.



Gene Set Enrichment Analysis

GSEA was executed to discover changes in the expression of predefined gene sets rather than individual gene, so it can be performed to identify whether gene sets show statistically remarkable differences between the two biological states of samples. In our analysis, GSEA version 4.0.3 was used to verify whether the differentially expressed gene sets between the low-risk group and high-risk group were enriched in cancer-related and autophagy-related processes.



Cell Culture

Human normal breast cells (HBL-100) and breast cancer cells (MCF-7 and T-47D) were purchased from the Cell Bank of the Chinese Academy of Sciences, Shanghai, China. All cells were incubated in RPMI-1640 medium (Solarbio, Beijing, China) supplemented with 10% fetal bovine serum (Biological Industries, Israel, USA), 100 units/ml penicillin G, and 100 ìg/ml streptomycin. Cells were maintained at 37°C in a damp incubator, which was supplemented with 5% CO2.



LncRNAs Validation Using qRT-PCR

After being isolated by TRIzol reagent (Invitrogen, Carlsbad, CA, USA) and quantified by NanoDrop 2000 (Thermo Fisher Scientific Inc, Rockford, IL, USA), 1 µg of total RNA underwent reverse transcription by UEIris II RT-PCR System for First-Strand cDNA Synthesis (US EVERBRIGHT INC, Suzhou, China) according to the manufacturer’s instruction. The product was then used for real-time PCR by Universal SYBR Green qPCR Supermix (US EVERBRIGHT INC, Suzhou, China). PCR was conducted as follows: predegeneration at 95°C for 5 min; denaturation at 95°C for 5 sec, annealing at 60°C for 30 sec, repeating the previous process 40 times. GRAPDH was used as internal references, and experiment of each group was repeated three times. Quantification of the relative expression levels of lncRNA by 2-△△Ct method. Primers sequences are presented in Table 1.


Table 1 | Primer sequences for RT-PCR analysis.





Statistical Analysis

All statistical analysis and drawings were carried out using R software (version 3.6.3) and Bioconductor. The co-expression network was constructed by Cytoscape to visualize candidate lncRNAs related to prognosis. The autophagy-related lncRNAs in patients with breast cancer were analyzed with R software package “ggalluvial,” “ggplot2,” and “pheatmap.” Then Sankey diagram, risk score, survival status, and lncRNA heat map were drawn. Kaplan Meier-plotter was performed to evaluate the OS differences between high-risk group and low-risk group of the signature. Univariate and multivariate Cox regression were constructed to assess whether the prognostic signature was independent of clinical characteristics such as age, gender, clinical stage, and TNM stage. And the Cox regression also was used to confirm the clinical value of the signature in age, gender, clinical stage, and TNM stage. The above operations are implemented using the R software package “Survival.” The nomogram was implemented using rms R package to predict the OS. All P<0.05 was regarded as a significant difference. The Limma package was used to identify the differently expressed lncRNAs in view of |log2 fold change (FC)|≥1 and false discovery rate (FDR)<0.05 based on 9 lncRNAs. All P<0.05 were considered statistically significant.




Results


Construction of Autophagy-Associated lncRNAs Co-expression Network

We identified a total of 19,658 mRNAs and 14,142 lncRNAs, which were screened from the TCGA dataset. According to 222 autophagy genes in Human Autophagy Database, we developed a co-expression network to determine autophagy-related lncRNAs. The Pearson correlation analysis showed that 1,270 lncRNAs were associated with autophagy-related genes in breast cancer (R2 > 0.3, P < 0.001). Finally, we obtained 180 shared lncRNAs from 1,270 autophagy-related lncRNAs and 1,146 lncRNAs of GSE20685 (Figures 2A, B).




Figure 2 | Identification of an autophagy-related lncRNA signature in breast cancer. (A) Venn diagram describes 180 shared lncRNAs from 1,270 autophagy-related lncRNAs and 1,146 lncRNAs of GSE20685. (B) The network of autophagy-genes and lncRNAs. The blue nodes indicate autophagy genes and the pink nodes indicate lncRNA. The co-expression network is performed by CYTOSCAPE 3.7.2. (C) Univariate Cox regression analysis was used to confirm the lncRNAs associated with autophagy were strongly with patients’ OS in training dataset. (D) Multivariate Cox regression analysis to construct the prognostic signature.





Identification of an Autophagy-Related lncRNA Signature in Breast Cancer

By using univariate cox regression analysis, we identified 25 lncRNAs that were strongly with patients’ OS from 180 autophagy-related lncRNAs in training dataset (Figure 2C) (P<0.05). Stepwise multivariable cox proportional hazards regression analysis were carried out to identify the optimal prognostic lncRNAs among the 25 candidate lncRNAs. Subsequently, 9 candidate lncRNAs were identified to be independent prognostic factors for breast cancer patients (Figure 2D). We then developed autophagy-related lncRNAs co-expression networks based on the 9 genes (Table 2, Figure 3A). Next, we constructed a signature of 9 autophagy-related lncRNAs using a risk score method. The prognostic risk score formula of the signature was as follows: prognostic score = (0.2520 × KMT2E-AS1) + (-0.4604 × USP30-AS1) + (-0.5304 × ST7-AS1) + (-0.2505 × VPS9D1) + (-0.5438 × TFAP2A-AS1) + (0.2797 × OTUB6DB-AS1) + (- 0.1847 × HOXB-AS1) + (- 0.0873 ×LINC01087) + (- 0.4423×MAPT-AS1) (P<0.05) (Table 3). Based on the median risk score, 1,109 patients with breast cancer in training dataset were divided into two groups: high-risk group and low-risk group. In Figure 3B, we can see 7 lncRNAs are favorable prognostic factors (USP30-AS1, ST7-AS1, VPS9D1-AS1, TFAP2A-AS1, HOXB-AS1, LINC01087, and MAPT-AS1) and 2 lncRNAs are unfavorable prognostic factors (KMT2E-AS1, OTUB6DB-AS1) for breast cancer patients.


Table 2 | Correlation between autophagy genes and lncRNAs in breast cancer.






Figure 3 | A depiction of the regulation network of the prognostic lncRNAs and autophagy-related genes in breast cancer. (A) The blue nodes indicate autophagy genes and the pink nodes indicate lncRNA. The co-expression network is performed by CYTOSCAPE 3.7.2. (B) Among the risk types, the lncRNAs linked to dark green is protective lncRNAs, and dark red lncRNAs represents risk lncRNAs.




Table 3 | The 9 autophagy-related lncRNAs significantly associated with OS in the training set.





Validation of Prognostic Performance of the Autophagy-Related lncRNA Signature in Breast Cancer

To further assess the capability of the signature on the prognosis of breast cancer, Kaplan-Meier survival analysis and ROC curve analysis were operated in the training cohort from the TCGA dataset. The results demonstrated that the OS of breast cancer patients in the high-risk group was poorer than the low-risk group based on the prognostic signature (HR: 1.794, 95% CI: 1.556–2.069; P<0.001) (Figure 4A). Additionally, Figure 4B illustrated that risk score of the signature had an AUC of 0.806 under the ROC curve, indicating a credible diagnostic value. The risk score of the prognostic signature in the low-risk group and high-risk group, survival status of breast cancer patients, and the expression heat map are displayed in Figure 4C. To assess the robustness of the signature in OS prediction of breast cancer patients, we further examined it in the testing cohort from the GSE20685 dataset using the same formula. The results revealed that the OS of patients with high-risk score was also worse than those with low-risk score in the GSE20685 cohort (HR: 1.215, 95% CI: 1.105–1.336; P<0.001) and the AUC of the ROC curve of the prognostic model was 0.788 (Figures 5A–C). This result is consistent with the training set. Finally, Cox regression analyses were used to confirm the possibility that risk score of the signature can be regarded as an independent predictor of prognosis in breast cancer patients. The results indicated that whether in the training dataset or the testing dataset, the risk score of the signature could significantly help to forecast the prognosis of breast cancer patients, eliminating the influence of clinical features (gender, age, clinical stage, and TNM stage) (P<0.001) (Table 4, Figures 6A–D).




Figure 4 | Risk score analysis of the prognostic signature in the training dataset. (A) Kaplan-Meier survival analysis for high-risk group and low-risk group. (B) ROC curves for predicting OS based on risk score. (C) Risk score distribution, survival status, and expression heat map.






Figure 5 | Risk score analysis of the prognostic signature in the testing dataset. (A) Kaplan-Meier survival for low-risk group and high-risk group. (B) ROC curves for predicting OS based on risk score. (C) Risk score distribution, survival status, and expression heat map.




Table 4 | Predictive values of related clinical features and risk score in the training dataset and the testing dataset.






Figure 6 | Cox regression analysis of clinical characteristics related to OS in training dataset and testing dataset. (A, B) Univariate and multivariate Cox regression analysis of clinical characteristics related to OS in training dataset. (C, D) Univariate and multivariate Cox regression analysis of clinical characteristics related to OS in testing dataset.





Clinical Value of the Prognostic Signature in Patients With Breast Cancer

We further evaluated the clinical value of the signature in breast cancer patients by determining the correlation between lncRNA and the clinical characteristics (age, gender, clinical stage, and TNM stage) of breast cancer patients. The results showed that the risk score of patients over 65 years old (t= -2.673, P=0.003), stage III–IV (t= -2.433, P=0.000) and N1–3 (t= -1.799, P=0.013) tends to increase significantly, suggesting that older age, advanced stage, and lymphatic metastasis may be correlated with the progression of breast cancer (Table 5).


Table 5 | Clinical impact of risk score signature for the TCGA cohort.





Gene Set Enrichment Analysis

To further explore the potential biological behavior of this signature in breast cancer patients, we determined a total of 25 gene sets using GSEA, which were notably enriched with a nominal P value of < 0.05 and FDR q-value < 0.25 (Table 6). The results revealed that the differentially expressed genes between the high-risk and low-risk groups were enriched in the cancer-related and autophagy-related pathways. As shown in Table 5 and Figures 7A–F, stromal and carcinogenic activation pathways were markedly enriched in high risk group, such as cell adhesion, ECM receptor interaction, TGF beta signaling pathway, Renal cell carcinoma pathway, and Prostate cancer pathway. Surprisingly, we also found that glucose metabolic pathways were significant such as Glycolysis/Gluconeogenesis pathway, TCA cycle pathway, and starch and sucrose metabolism pathway enriched in high risk groups (Figures 7G–I). It is worth noting that TGF-β signaling pathway and glucose metabolism pathway are closely related to autophagy. The results from GSEA have revealed these autophagy-related genes contribute to carcinogenic activation pathways and autophagy-related pathways, which may provide sufficient evidence for targeted therapy of breast cancer.


Table 6 | Gene set enrichment analysis based on the signature of 9 autophagy-related lncRNAs.






Figure 7 | Gene set enrichment analysis. (A–F) GSEA suggested notably enrichment of cancer-related pathways in the high-risk group based on training set. (G–I) GSEA suggested significant autophagy-related enrichment based on training set.





The Nomogram Establishing and the Prognostic Value Validating Base on 9 lncRNAs in TCGA Dataset

Based on these autophagy-related lncRNAs of the signature, a nomogram was constructed. Multivariate Cox analysis was performed to assign the points in the nomogram to each variable. By drawing a vertical line between the total point axis and each prognostic axis, the estimated survival rate of breast cancer patients at 1, 3, and 5 years can be calculated, which may help professionals make clinical decisions for breast cancer patients (Figure 8A). In order to further explore the prognostic value of the 9 lncRNAs, the Kaplan Meier curve was built to confirm the relationship between these lncRNAs and OS. In our analysis, a total of 6 of the 9 lncRNAs (USP30-AS1, ST7-AS1, VPS9D1-AS1, OTUB6DB-AS1, LINC01087, and MAPT-AS1) were identified. The results indicated that the 6 autophagy-related lncRNAs were correlated to the OS in breast cancer patients (Figure 8B).




Figure 8 | The nomogram establishing and the prognostic value validating base on 9 lncRNAs in TCGA dataset. (A) Establishment of a nomogram for 1-, 3-, and 5-year OS prediction in breast cancer. (B) Validation the prognostic value of these 9 autophagy-related lncRNAs in breast cancer by Kaplan Meier-plotter curve.





Validation the Expression of 9 lncRNAs in Breast Cancer Tissues and Cells

To further validate the expression profiles of the 9 lncRNAs, we explored the expression levels of the lncRNAs in breast cancer tissues based on TCGA database as well as in breast cancer lines by qRT-PCR. The results showed that USP30-AS1, TFAP2A-AS1, MAPT-AS1, and LINC01087 expression were significantly increased and HOXB-AS1 expression was significantly decreased in breast cancer tissues compared with normal breast tissue (Figure 9A, P<0.001). qRT-PCR results showed that USP30-AS1, TFAP2A-AS1, MAPT-AS1, and LINC01087 were overexpressed and HOXB-AS1 was lowexpressed in MCF-7 and T-47D cell lines compared to HBL-100 cell line (Figures 9B–F, P<0.05).




Figure 9 | The expression of 9 lncRNAs in breast cancer tissues and cells. (A) Heat map of 5 lncRNAs with significantly differential expression in breast cancer tissues. (B–E) qRT-PCR results showed that USP30-AS1, TFAP2A-AS1, MAPT-AS1, and LINC01087 expression were higher in breast cancer cell lines than in the normal cell lines. *P<0.05, **P<0.01 (F) qRT-PCR results showed that HOXB-AS1 expression was lower in breast cancer cell lines than in the normal cell lines. ***P<0.001.






Discussion

Breast cancer is characterized by the accumulation of abnormal cells, which may be attributed to the imbalance of cell proliferation, apoptosis, and autophagy regulation disorder. Autophagy plays a dual role in inhibiting and promoting the occurrence and development of cancer at different stages (24). Increasing evidence shows that lncRNAs and autophagy are closely associated with the occurrence, development, and prognosis of many different tumors. Recent evidence suggests that lncRNA NAMPT-AS promoted breast cancer progression and regulated autophagy through the mTOR pathway (25). Existing studies showed that there is a positive relationship between the expression of lncRNA LCPAT1 and LC3β in lung cancer (26). Other studies showed that lncRNA DICER1-AS1 expression was up-regulated in osteosarcoma cells, while knockdown of DICER1-AS1 could inhibit the proliferation, migration, and invasion of osteosarcoma cells, and reduce the protein expression levels of ATG5, LC3, and Beclin1, indicating that knocking down DICER1-AS1 can inhibit autophagy of osteosarcoma cells (27).

The specific mechanisms of lncRNAs regulating autophagy can be divided into three categories: lncRNAs act as competitive endogenous RNAs (ceRNAs) combined with miRNAs to regulate the expression of miRNAs, thus affecting the process of autophagy (28); lncRNAs can also affect the expression of ATG gene cis or trans (24); lncRNAs promote tumor progression by inhibiting autophagy-mediated apoptosis through AKT/mTOR pathway (29). LncRNAs regulate the occurrence and development of autophagy in both directions, which provides new ideas and ways for further research on the prevention and treatment of autophagy-related diseases, such as cancer. At present, using high-throughput biotechnology to detect genetic changes to predict tumor recurrence and metastasis has become a research hotspot. However, a single lncRNA may not be sufficient to forecast the prognosis of the breast cancer patients. Therefore, it is urgent to construct an autophagy-related lncRNA signature to predict the survival of breast cancer patients.

In our analysis, the TCGA dataset and GSE20685 dataset were downloaded to investigate the prognosis signature of autophagy-related lncRNAs for breast cancer patients. Firstly, we identified 1,270 lncRNAs associated with autophagy-related genes in breast cancer (R2 > 0.3, P < 0.001). Because the breast cancer samples in TCGA and GEO databases are different, the extracted lncRNAs are not exactly the same. We analyzed the common lncRNAs in the two databases to ensure that these lncRNAs are general and universal in breast cancer samples, and narrow the scope of biological marker screening. Then we obtained 180 shared lncRNAs from TCGA dataset and GSE20685 dataset. We further identified a signature composed of 9 autophagy-related lncRNAs that could divide breast cancer patients into high-risk group or low-risk group. Among the 9 autophagy-related lncRNAs, USP30-AS1, ST7-AS1, VPS9D1-AS1, TFAP2A-AS1, HOXB-AS1, LINC01087, and MAPT-AS1 are protective factors, while KMT2E-AS1 and OTUB6DB-AS1 are risk-related factors. In addition, it was also found that the OS of breast cancer patients in the high-risk group was poorer than that in the low-risk group based on the prognostic signature. The validation in training set and testing set revealed that the prognostic signature has better diagnostic capability. Besides, we used Cox regression analysis that concluded that the signature is an independent factor of breast cancer. We also evaluated the clinical value of the signature in age, gender, clinical stage, and TNM stage and found that the signature may be associated with the progression of breast cancer. To further analyze these 9 lncRNAs of the signature, we developed a nomogram and validated their prognostic value and expression. We found USP30-AS1, ST7-AS1, VPS9D1-AS1, OTUB6DB-AS1, LINC01087, and MAPT-AS1 were correlated to the OS in breast cancer patients. And we further verified that USP30-AS1, TFAP2A-AS1, MAPT-AS1, and LINC01087 were significantly increased and HOXB-AS1 was significantly decreased in breast cancer tissues and cells.

Moreover, in our analysis, we found that several pathways have been established in cancer such as ECM receptor interaction, TGF beta signaling pathway, cell adhesion, Renal cell carcinoma pathway, and Prostate cancer pathway, which were markedly enriched in high risk group. We also detect that the glucose metabolism pathways were enriched in high-risk patients, especially glycolysis, gluconeogenesis, and tricarboxylic acid cycle. Previous studies have shown that abnormal cell metabolism, especially glucose metabolism, is related to the occurrence and progression of tumors (30, 31). Tumor cells absorb a large amount of glucose and tend to carry out glycolysis in the cytoplasm even under the condition of sufficient oxygen supply, thus promoting the rapid growth and proliferation of cells (31, 32). Recent studies have found an unexpected link between glucose metabolism and autophagy. They found that increase of glycolysis in autophagic cells can promote Ras-mediated adhesion-independent transformation, indicating autophagy may promote Ras-driven tumor growth in a specific metabolic environment (33). This is consistent with our present findings.

However, the molecular mechanism of these 9 autophagy-related lncRNAs is still inadequately understood in breast cancer, and further investigation of the underlying mechanisms may be meaningful. So we established a nomogram to more intuitively predict the OS in 1, 3, and 5 years. Subsequently, we discover the prognostic value of these 9 autophagy-related lncRNAs using the Kaplan-Meier survival analysis and the results were basically consistent with the prognostic analysis results of TCGA dataset. Furthermore, targeted analysis on a specific histological group of breast cancer patients will increase the specificity and individuality of the autophagy-related lncRNAs. In our further study, we will analyze and verify these lncRNAs in breast cancer patients with the specific morphological and molecular features.

Taken together, our study defines an innovative autophagy-related lncRNA signature in breast cancer. It is a comprehensive analysis of RNA sequencing data and clinical information available in TCGA database. The autophagy-related lncRNA signature may provide new insights into predicting the prognosis of patients with breast cancer. More importantly, the functions and approaches associated with our signature may contribute to the development of a new therapeutic strategy for breast cancer.
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Background

To date, breast cancer remains the most common malignant tumor in women. In recent years, a growing number of studies on polycomb proteins have been conducted. The Ring finger protein1 (RING1), an essential component of the polycomb family of proteins, plays vital roles in the tumorigenesis of various cancer types. However, further research is required in determining RING1 expression and prognostic value in breast cancer.



Method

RING1 expression level in multiple cancer types was evaluated using the XENA and UALCAN databases. Real-time quantitative PCR (real-time qPCR) and immunohistochemistry (IHC) were used to confirm this expression. The prognostic value was analyzed using our follow-up data and the Kaplan–Meier plotter website. RING1 co-expressed genes and its promoter methylation level were calculated using the cBioPortal and UALCAN online tools. The gene ontology (GO) and the Kyoto encyclopedia of Genes and Genomes (KEGG) pathway enrichment were analyzed using the DAVID online analysis tool.



Result

RING1 expression was upregulated in CHOL (Bile Duct Cancer), ESCA (Esophageal Cancer), LIHC (Liver Cancer), and PCPG (Pheochromocytoma & Paraganglioma). However, its expression level was decreased in COAD (Colon Cancer), KICH (Kidney Chromophobe), KIRP (kidney papillary cell carcinoma), THCA (Thyroid Cancer), and BRCA (Breast carcinoma). RING1 low expression is an unfavorable prognostic factor in many cancer patients, especially in breast cancer patients. For breast cancer, the IHC result showed that RING1 protein expression significantly and negatively correlates with tumor size (P = 0.029), LNM (P = 0.017), TNM stage (P = 0.016), ER (P = 0.005), Ki67 (P = 0.015), and p53 status (P = 0.034). Moreover, the multivariate Cox regression model indicated that RING1 (P = 0.038) and ER (P = 0.029) expressions were independent prognostic markers for breast cancer. RING1 co-expressed genes were selected and included HDAC10, PIN1, CDK3, BAX, and BAD. GO analysis and KEGG pathway analyses revealed that RING1 related genes, were mainly enriched in “regulation of transcription”, “apoptotic process”, “protein transport”, “protein binding”, “Notch signaling pathway”, and “Homologous recombination”.



Conclusion

RING1 expression was downregulated in breast cancer, and its low expression was associated with worse disease outcomes. RING1 may act as a new prognostic biomarker for breast cancer.





Keywords: ring finger protein1 (RING1), breast cancer, prognostic factor, differentially expressed genes, survival, biomarker, functional enrichment analysis



Introduction

The polycomb group of proteins consists of two major polycomb repressive complexes (PRCs): PRC1 and PRC2 (1) that are known to play an important role in stem cells’ self-renewal (2) and in the regulation of tumorigenesis (3, 4). The transcription factor RING1 is a member of PRC1 that contains the RING finger motif. It has been found to be associated with several regulatory proteins and plays an important role in regulating cell proliferation and transformation (5–7). Recent studies have showed that RING1 is overexpressed in various types of human cancers, including lymphoma, non-small cell lung cancer, and prostate and liver cancers (8–12). RING1 interacts with several human PcG proteins, indicating that RING1 plays an important role within the PcR complex. RING1 overexpression leads to cellular transformation via enhancing the expression of the proto-oncogenes, c-jun, and c-fos (5). A recent study reported that Ring1 is upregulated in hepatocellular carcinoma tissues and that it can directly ubiquitinates p53 and promotes cancer cell proliferation, leading to poor outcomes in patients (11). Moreover, RING1 overexpression induces the transformation of hepatic progenitor cells into cancer stem cells through the activation of the Wnt/β-catenin signaling pathway (13). These pieces of evidence highlighted the importance of RING1 in malignant transformation and hepatocellular carcinoma development. However, RING1 role in breast cancer is largely unexplored.

In this study, the dysregulation of RING1 was observed in multiple types of cancers and was associated with poor outcomes. Moreover, we found that the low RING1 expression predicts poor survival in breast cancer. We further investigated the relationship between RING1 expression and breast cancer clinicopathological features. Then the potential function of RING1 was explored using bioinformatic analyses of public datasets. Overall, the obtained results indicate that RING1 is associated with breast cancer tumorigenesis and that it can be used as a prognostic biomarker for breast cancer.



Method and Materials


The Ring Finger Protein1 mRNA Expression, Methylation Status, and Survival Analysis

The UCSC XENA browser (14) was used for the evaluation of RING1 mRNA expression level, methylation status, and overall survival time in breast cancer and Pan-cancer. UALCAN (http://ualcan.path.uab.edu) is a comprehensive, user-friendly, and interactive web resource for analyzing TCGA and MET500 data, and that was used to explore the mRNA expression and methylation status based on various molecular subtypes of breast cancer (15). The Kaplan–Meier plotter (http://kmplot.com//analysis) can assess the prognostic value of 54k genes (mRNA, miRNA, protein) in 21 cancer types. The primary aim of this tool was to discover and validate survival biomarkers that were mainly based on GEO, TCGA, and EGA databases (16). In this study, Kaplan–Meier plotter in breast cancer or Pan-cancer was used to detect the OS, RFS, and DMFS of RING1 to explore its prognostic value in human cancers.



Tissue Microarrays and Immunohistochemical Staining

A tissue microarray (TMA) that included 237 breast cancer samples and 19 normal tissues, and 30 breast cancer and paired normal breast tissue slides that were collected by the Harbin Medical University Cancer Hospital, was generated according to a previously described method (17). Informed consent from each patient who participated in this study was obtained. Briefly, the tissue section was baked, deparaffinized, hydrated, and antigen retrieved in citrate buffer (pH 6.0). The TMA was incubated with a peroxidase blocking solution and then with a RING1 primary antibody at a 1:100 dilution (Abcam, Cambridge, MA, USA). After three times washing with PBS, the slide was incubated with secondary antibodies for 1 h at room temperature, and DAB was used as a chromogen. Subsequently, the section was counterstained with hematoxylin, and the IHC scoring was performed as previously described by Dong et al. (18). RING1 expression was independently analyzed and scored by two observers and was based on the intensity and the distribution of positively stained tumor cells, which were demarcated by nuclear yellow particles. The histologic score was calculated by multiplying the intensity and distribution values. Briefly, the distribution of positive cells was scored as follows: 0 (no positive cells); 1 (<25%); 2 (25–50%); 3 (50.01–75%); and 4 (>75%). The staining intensity was graded as follows: 0 (no signal); 1 (weak); 2 (moderate); and 3 (strong). A total score with a possible range of 0 to 12 was calculated and graded as follows: negative (score: 0), weak (score: 1–2), moderate (score: 3v6) or strong (score: 7–12). Scores of “ negative” and “weak” were considered to indicate low expression levels, whereas scores of “moderate” and “strong’ were considered to indicate high expression levels.



Screening for The Ring Finger Protein1 Co-Expressed Genes and Correlative Analysis of The Ring Finger Protein1 Expression

cBioPortal (https://www.cbioportal.org/) can analyze the genomic data of tumor samples through multifunctional visualization and realize the integrated analysis of complex tumor genome and clinical features (19). This study used the gene expression information from the BRCA database (TCGA, Nature2012) of the cBioPortal platform and the UALCAN web tool to screen for RING1 co-expression genes. The Spearman correlation coefficient was set to |R|≥0.3 as the screening condition for co-expressed genes. The correlation between RING1 mRNA expression and its promoter methylation level or co-expressed genes was analyzed using cBioPortal.



Gene Ontology Term and Kyoto Encyclopedia of Genes and Genome Pathway Analysis of The Ring Finger Protein1 Co-Expressed Genes

The Database for Annotation, Visualization, and Integrated Discovery (DAVID; https://david.ncifcrf.gov/) is an integrated biological information database that can provide a comprehensive annotation information on a biological function for a large-scale gene list (20). To understand the function of RING1 co-expression genes, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway (21) and Gene Ontology (GO) enrichment analyses (22) were analyzed by the DAVID platform.



Statistical Analysis

The analysis of RING1 expression between two groups was examined by the t-test or chi-square using Graphpad prism 8.0 (version 8.0; GraphPad, San Diego, CA, USA). The χ2 test was performed to determine the correlation between RING1 expression and the clinicopathological features using the SPSS software (version 22; SPSS, Chicago, IL, USA). The overall survival was estimated using the Kaplan–Meier method. P < 0.05 was considered significant.




Results


The Ring Finger Protein1 Is Differently Expressed in Human Pan-Cancer and Reveals a Unique Prognostic Factor for Cancer Patients

RING1 transcriptional level in various human cancers was analyzed using TCGA database. Compared with solid normal tissue groups, RING1 mRNA expression level was significantly upregulated in the primary tumor groups (Figure 1A). The result also showed that RING1 expression was upregulated in several types of cancers, including CHOL (Bile Duct Cancer), ESCA (Esophageal Cancer), LIHC (Liver Cancer), and PCPG (Pheochromocytoma & Paraganglioma) (Figure 1B) and when compared to their non-cancer counterpart tissues. Besides, we noticed that RING1 expression level was decreased in COAD (Colon Cancer), KICH (Kidney Chromophobe), KIRP (kidney papillary cell carcinoma), and THCA (Thyroid Cancer) when compared to the corresponding normal tissues (Figure 1B).




Figure 1 | RING1 is differently expressed in human pan-cancer and is a unique prognostic factor for cancer patients. (A) RING1 mRNA level was upregulated in primary tumor group compared to normal solid tissues. (B) RING1 expression level was analyzed in human pan-cancer according to The Cancer Genome Atlas (TCGA) dataset. The red columns indicate cancer tissues, and the blue columns indicate normal tissues. (C) Kaplan–Meier survival analysis for pan-cancer by log-rank test. All the above results were obtained from the XENA website. **p < 0.01; ***p < 0.001; ****p < 0.0001.



Moreover, RNA-Seq data of 9,130 pan-cancer samples from TCGA datasets was analyzed using the XENA website tools to explore the correlation between the RING1 mRNA expression level and survival status in patients. The Kaplan–Meier curve and log-rank test results revealed that patients with high RING1 mRNA expression level have higher OS (overall survival) compared to the low expression group (Figure 1C).

We further conducted survival analyses using the website of Kaplan–Meier Plotter to determine whether RING1 has a favorable or unfavorable prognostic role in different types of cancers in patients. We found that RING1 low mRNA expression is related to worse OS in ESCC (esophageal squamous cell carcinoma), KIRP (kidney papillary cell carcinoma), LUAD (lung adenocarcinoma), OV (ovarian cancer), PDAD (pancreatic ductal adenocarcinoma), and THYM (thymoma) (Figures 2A–F). Breast cancer patients with an increased RING1 mRNA level had better OS, RFS, and DMFS than those with a low expression level (Figures 2G–I). When combining these results with the result of the expression profiling analysis, we found that RING1 low expression is an unfavorable cancer prognostic factor.




Figure 2 | RING1 high expression is associated with better outcome. RING1 high expression is associated with better OS in ESCC (A), KIRP (B), LUAD (C), OV (D), PDAD (E), and THYM (F); RING1 high expression is associated with better OS (G), RFS (H), and DMFS (I) in breast cancer. All the above Kaplan–Meier survival curves were performed via the Kaplan–Meier plotter web tool. OS, overall survival; RFS, relapse free survival; DMFS, distant metastasis free survival; ESCC, esophageal squamous cell carcinoma; KIRP, kidney papillary cell carcinoma; LUAD, lung adenocarcinoma; OV, ovarian cancer; PDAD, pancreatic ductal adenocarcinoma; THYM, thymoma; HR, hazard ratio.





Relationship Between The Ring Finger Protein1 Expression and Clinicopathological Parameters of Breast Cancer Patients

Next, we then focused our study on the role of RING1 in breast cancer. Considering that invasive ductal carcinoma (IDC) and invasive lobular carcinoma (ILC) are the two most common pathological types of breast cancer, we first analyzed RING1 expression level in breast cancer, based on histological subtypes. The results showed that RING1 is downregulated in IDC compared to ILC (Figure 3A). Moreover, we found that in the IDC subgroup, patients with a high RING1 expression level had better OS than those with low RING1 expression level (Figure 3B). Unfortunately, the relationship between RING1 expression and patient survival status was not found to be statistically significant in the ILC subgroup (Figure 3C).




Figure 3 | RING1 was downregulated in breast cancer and predicted poor outcome. (A) Analysis of RING1 mRNA expression level in IDC and ILC according to the TCGA data. Kaplan–Meier survival analysis for patients with IDC (B) or ILC (C) by log-rank test and according to the TCGA data. (A–C) results were calculated by the XENA web tool. (D) Quantification of positive and negative RING1 expression in breast cancer and normal tissues by χ2 test. (E) High expression of RING1 is correlated with better overall survival. IDC, Infiltrating Ductal Carcinoma; ILC, Infiltrating Ductal Carcinoma; ***p < 0.001, ****p < 0.0001.



RING1 protein expression in breast cancer and normal tissue was investigated using IHC on a tissue microarray (TMA), containing 237 human breast cancer specimens and 24 normal tissues (Figure 4). As shown in Figure 3D and Table 1, a low RING1 expression level was found in 164 out of 237 (69.2%) breast cancer specimens; however, this level of expression was only found in a small proportion (20.83%) of normal tissues. The results showed a significantly lower RING1 expression in breast cancer compared to that in normal tissues (P = 0.0003). Moreover, IHC analysis of 30 breast cancer slides and paired normal tissues also supported the above conclusion (Supplementary Figure 1). Consistent with previous research results, we found that RING1 low protein expression was associated with poor overall survival in breast cancer patients (Figure 3E). Next, we analyzed the correlation between RING1 protein expression and a series of clinicopathological features, including patient and tumor characteristics. As shown in Table 2, RING1 protein expression significantly and negatively correlated with tumor size (P = 0.029), LNM (P = 0.017), TNM stage (P = 0.016), ER (P = 0.005), Ki67 (P = 0.015), and P53 status (P = 0.034). However, there were no significant associations between RING1 protein expression and age (P = 0.574), histologic grade (P = 0.074), PR (P = 0.157), and Her-2 status (P = 1.00). Univariate and multivariate analyses were performed to explore the potential clinical significance of RING1 expression in breast cancer. The univariate analysis showed that ER (P = 0.008), P53 (P = 0.013), and RING1 (P = 0.015) were protective factors in breast cancer prognosis, while Her-2 was a risk factor. Moreover, the multivariate Cox regression model indicated that RING1 expression (P = 0.038) and ER (P = 0.029) were independent prognostic markers (Table 3).




Figure 4 | Representative immunohistochemical staining of RING1 for negative, weak, moderate, and strong expression levels in tissue microarray. Scale bar, 20 μm. ND, not detected.




Table 1 | The protein expression level of RING1 in breast cancer compared to normal tissues.




Table 2 | Correlation between RING1 expression and clinicopathologic features.




Table 3 | Prognostic factors in Cox proportional hazards model.



Taken together, these results show that RING1 is expressed a low level in breast tumors and may serve as an unfavorable prognostic maker.



The Ring Finger Protein1 Expression Is Downregulated by Promoter Hypermethylation

Since promoter hypermethylation is an important cause for a low expression of a tumor suppressor gene in cancer (23, 24), we hypothesized that the low expression of RING1 is regulated by its promoter hypermethylation. To validate this hypothesis, we investigated whether the DNA methylation level of the RING1 promoter was upregulated in breast cancer tissues compared to normal tissues. As expected, using the UALCAN dataset (http://ualcan.path.uab.edu), we found that the level of DNA methylation of the RING1 promoter was higher in breast cancer tissues compared to that in normal tissues (P < 0.0001) (Figure 5A). Moreover, we also calculated the correlation between RING1 mRNA expression and its promoter DNA methylation via the cBioPortal online tool (http://www.cbioportal.org/) for breast invasive carcinoma (The Cancer Genome Atlas, nature 2012), which includes Pearson’s correction. The results showed a significantly negative correlation between RING1 mRNA expression and its promoter DNA methylation level (Figure 5B). Furthermore, we analyzed RING1 mRNA expression and its promoter DNA methylation level in each subgroup according to PAM50 subtypes. Compared with the normal, luminal, and TNBC groups, RING1 expression in the HER2 group was significantly reduced; however, its promoter methylation level was significantly increased in the HER2 group (Figures 5C, D). Taken together, these data indicate that RING1 expression is reduced due to the upregulation of its promoter hypermethylation.




Figure 5 | RING1 expression is regulated by promoter methylation. (A) Analysis of the levels of RING1 promoter methylation in normal or primary breast tumors according to TCGA using the XENA web tool. (B) The correlation between RING1 mRNA expression and its promoter methylation levels was analyzed using the cBioPortal web tool. Analysis of RING1 mRNA expression (C) and promoter methylation levels (D) according to the PAM50 subgroup using the UALCAN web tool. TCGA, The Cancer Genome Atlas; BRCA, Breast carcinoma; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.





Functional and Pathway Enrichment Analyses of The Ring Finger Protein1 Co-Expressed Genes in Breast Cancer

Since co-expression gene analysis is a systematic and effective method to analyze the potential regulatory pattern of a target gene (25), RING1 co-expressed genes were calculated by analyzing their mRNA expression via the cBioPortal and UALCAN online tools for breast invasive carcinoma (The Cancer Genome Atlas, PanCancer Atlas). A total of 2,275 and 998 co-expressed genes, with a Spearman or Pearson correlation coefficient ≥0.3, were screened through the cBioPortal and UALCAN databases, respectively (Supplemental File 1). As shown in the Venn diagram, a total of 778 co-expressed genes overlapped among the two datasets (Figure 6A). The results identified several significantly positive co-expressed genes, including HDAC10, PIN1, CDK3, BAX, and BAD (Figures 6B–F). Their functional and pathway enrichment analyses were performed using DAVID online tool (https://david.ncifcrf.gov/). The Go enrichment analysis was composed of three aspects: biological processes, cellular components, and molecular functions. For the biological process function, the genes were mainly enriched in GO terms, such as, regulation of transcription, apoptotic process, and protein transport (Figure 7A). Notably, the cell component enrichment of those genes mostly involved the nucleus, cytoplasm, and nucleolus (Figure 7B). Regarding the molecular function, the genes were mainly enriched in protein, metal ion, and nucleotide binding (Figure 7C). The enriched KEGG pathway included the Notch signaling pathway, viral carcinogenesis, spliceosome, homologous recombination, protein processing in the endoplasmic reticulum, and RIG-I-like receptor signaling pathway (Figure 8). Taken together, these results suggest that RING1 may play a crucial biological function in breast cancer tumorigenesis.




Figure 6 | RING1 co-expressed genes in breast cancer. (A) A Venn diagram showing RING1 overlapped co-expression genes that were screened by cBioPortal and UALCAN. RING1 mRNA expression correlates with the mRNA expression of HDAC10 (B), PIN1 (C), CDK3 (D), BAX (E), BAD (F). BRCA, breast carcinoma.






Figure 7 | RING1 Go function enrichment and its co-expressed genes in breast cancer was predicted by the DAVID web tool. GO enrichment analysis based on three aspects: (A) biological processes, (B) cellular components, and (C) molecular functions.






Figure 8 | RING1 KEGG pathway enrichment analysis and its co-expressed genes in breast cancer was calculated by the DAVID web tool. KEGG, Kyoto encyclopedia of Genes and Genomes.






Discussion

Due to the limited number of studies, the role of RING1 in breast cancer is unclear. In this study, we found that RING1 is downregulated in breast cancer and that its low level of expression is associated with better OS, RFS and DMFS (Figure 2 and Figures 3B–D). Moreover, we provided evidence that the reduction of RING1 expression is associated with the upregulation of its promoter methylation (Figure 5). In light of our results that showed that RING1 protein expression significantly and negatively correlates with tumor size, LNM, TNM stage, ER, Ki67, and P53 status (Table 2), it is adequate to suggest that RING1 plays a key role in promoting breast cancer cells’ growth and metastasis, though the activation of p53 protein expression. In addition, the multivariate Cox regression model indicated that RING1 and ER expression are independent prognostic markers (Table 3). The bioinformatic analysis indicated that RING1 may be involved in apoptosis and Notch signaling pathway.

Cancer is considered a genetic disease, in which abnormal gene expression causes tumor cells to lose normal characteristics (26). One group of genes that plays a vital role in maintaining normal cellular characteristics belongs to the Polycomb group (PcG). Polycomb group (PcG) proteins consist of two major polycomb repressive complexes: PRC1 and PRC2 (1, 2). RING1 that was first discovered as a transcriptional repressor that exerts tumorigenic activity, is a central component of PRC1. Together with RNF2 and BMI1, these factors act as a E3 ubiquitin ligase that monoubiquitinate histone H2A. However, only a limited number of studies on the role of RING1 in cancer, is available. In this study, we first found that RING1 was abnormally expressed in different type of cancers. RING1 expression was significantly elevated in some cancers, such as liver cancer, whereas its expression was decreased in other solid cancers, such as Colon Cancer (Figure 1A). Regarding its prognostic value, previous studies considered that RING1 overexpression is an unfavorable prognostic factor in a part of tumors, however, an obvious heterogeneity that affected the prognostic value, was found in other tumors. These two opposite reports make the exact prognostic value of RING1 uncertain. This study indicated that RING1 overexpression predicts better prognosis in some type of cancers (Figure 2).

Previous studies proved that the RING1 protein was ubiquitously expressed in different types of normal tissues. For cancer, recent studies have shown that the abnormal gene expression of RING1 leads to the development of a variety of cancers (27). RING1 was significantly overexpressed in high GS (Gleason score) prostate cancer, extraprostatic extension, and positive surgical margins, and can be used as a valuable predictive marker for PSA recurrence after radical prostatectomy (9). For bladder cancer, a study detected RING1 expression in 85 of 93 samples, but the median relative expression was 19.98 (range 0–91.36) (28). Therefore, we speculated that RING1 is expressed at a relatively low level in bladder cancer, which requires further studies to prove. Although an anomalously low expression of RING1 was observed in a few proportions of Hodgkin and Reed-Sternberg (HSR) cells, most of Hodgkin’s lymphoma (HS) cases expressed a high level. Additionally, a RING1 and E2F6 co-expression was found in the same HL cells (10).

RING1 was overexpressed in non-small cell lung cancer (NSCLC), where it promoted cell growth. RING1 high expression significantly correlated with short overall survival and unfavorable prognosis (8). Interestingly, Wang et al. reported that the LncRNA XIST promotes NSCLC growth and metastasis by inhibiting the miR-744/RING1/Wnt/β-catenin axis (29). At present, most of the research about RING1 focuses on liver cancer and RING1 overexpression was also observed in hepatocellular carcinoma (HCC) specimens (11–13). RING1 stabilized endogenous p53 protein level by targeting p53 degradation, which ultimately promoted the migration and proliferation of liver cancer cells (11). Chen et al. reported that RYBP (RING1 and YY1 binding protein), another PcG complex member, binds to MDM2 and reduces p53 ubiquitination, leading to its stabilization (30). This result might support the notion that PcG proteins, containing RING1 and RYBP, may be involved in the regulation of p53 expression. RYBP plays a tumor suppressor gene role in breast cancer by inhibiting breast cancer cell proliferation and metastasis (31). Overexpression of RYBP inhibits ESCC proliferation by downregulating CDC6 and CDC45 in the G1-S phase transition and predicted a better outcome of ESCC patients (32). As a binding protein of RING1 and YY1, RYBP can exert a tumor suppressor effect and a good prognostic factor may depend on the role of RING1. These results may indicate that RING1 may play a tumor suppressor genes’ role from another aspect. Zhu et al. found that RING1 overexpression promotes colony formation, cell multiplication and invasion of hepatic progenitor cells (HPCs), and that it also drives their malignant transformation by activating the Wnt/β-catenin signal pathway (13). Consistently, Xiong et al. revealed that the upregulation of RING1 expression accelerates the proliferation of HCC cells by promoting cell cycle progression and indicates poor prognosis (12).

To sum up, the expression of RING1 was found to significantly vary among different cancer types suggesting that further research is required to explore the potential role of RING1 cancer. However, recently published studies on RING1 role in cancer are preliminary, and additional in vivo and in vitro studies are needed to clarify the function of RING1, especially in breast cancer. Importantly, we have provided new evidence that RING1 is a useful biomarker and a prognostic predictor in breast cancer.



Conclusion

In summary, our study found that RING1 expression was downregulated in breast cancer, and its low expression was associated with worse disease outcomes. RING1 may act as a new prognostic biomarker for breast cancer.
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Recent statistics show that breast cancer is among the most frequent cancers in clinical practice. It is also the second-leading cause of cancer-related deaths among women worldwide. CircRNAs are a new class of endogenous regulatory RNA molecules whose 5’ end and 3’ end are connected together to form a covalently closed single-stranded loop by back-splicing. CircRNAs present the advantages of disease-specific expression and excellent expression stability, and they can modulate gene expression at posttranscriptional and transcriptional levels. CircRNAs are abnormally expressed in multiple cancers, such as breast cancer, and drive the initiation and progression of cancer. In this review, we describe current knowledge about the functions of circRNAs and generalize their roles in various aspects of breast cancer, including cell proliferation, cell cycle, apoptosis, invasion and metastasis, autophagy, angiogenesis, drug resistance, and tumor immunity, and their prognostic and diagnostic value. This may add to a better understanding of the functions and roles of circRNAs in breast cancer, which may become new diagnostic and predictive biomarkers of breast cancer.
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Introduction

Breast cancer is among the most frequent malignant tumors globally and the second top cause of cancer fatalities among women globally (1, 2). It poses a serious threat to lives of women. Cases of breast cancer have been mounting over the past decade (3, 4). Breast cancer is a complex and highly diverse disease (5, 6). According to its histological features, breast cancer can be grouped into four distinct molecular sub-kinds, i.e., luminal A, luminal B, HER-2-overexpressing, and triple-negative breast cancer (TNBC), based on the expression of ER, PR, HER-2, and Ki-67 (5). TNBC is responsible for 15%–20% of all breast cancers and remains the most challenging subtype of breast cancer. For a specific molecular target therapy in the prognosis of patients with TNBC, there is seldom clinically meaningful improvement; therefore, TNBC is one of the worst prognosis among breast cancer subtypes of all types due to the high propensity for progression, difficulty of identifying effective targets, and lack of specific targeted therapy, leading to a greater recurrence and metastasis potential and shorter overall survival (7, 8). The heterogeneity of breast cancer causes great confusion in diagnosis and treatment and affects the survival rate, treatment response, and tumor growth rate (9, 10). Some scholars in the United States have found that if early detection of breast cancer patients and high-quality treatment services can be provided, this can accelerate the reduction of breast cancer mortality (11). Therefore, the betimes diagnosis of breast cancer is a pivotal component of breast cancer treatment. However, because early breast cancer usually does not present the typical symptoms and signs of breast cancer and women often ignore breast self-examination and clinical examination, breast cancer is still generally diagnosed at a late stage (12, 13). The complexity of the pathogenesis of breast cancer and the diversity of its molecular characteristics and clinical manifestations lead to inconsistent prognosis in the majority of patients, resulting in an inability to achieve the desired effect. Therefore, it is of great significance to study the molecular mechanism and signal transduction pathway of breast cancer progression and to identify early diagnostic biosignatures and novel treatment targets for the more effective treatment of breast cancer.

CircRNAs constitute a new class of endogenous regulatory RNAs exhibiting covalently closed continuous ring structures, no 5’ to 3’ polarity and polyadenylate tails. Because circRNAs lack free ends, they are not easily broken down by nucleic acid exonucleases and are more stable relative to linear RNAs. CircRNAs not only present the advantage of stability but also show the unique advantages of a high richness and breadth (14–17). Numerous circRNAs are expressed in various tissues of mammals, and 30,000 different circRNAs have been found in human tissues alone (18). CircRNA research has led to many surprising findings, and circRNAs play very important roles in biology and pathobiology (19). Recently, a mounting number of circRNAs have been discovered and reported to exhibit different expression levels in breast cancer. These abnormal circRNAs are involved in the biological processes of breast cancer consisting of cell proliferation, cell death, metastasis, drug resistance, as well as its prognosis (6, 20). Moreover, because of their high degree of conservation and tissue specificity, circRNAs have the capacity to serve as a tumor marker, as well as therapeutic target for breast cancer. Moreover, the regulation of circRNA may be an underlying mechanism of breast cancer and an indispensable component of its diagnosis and treatment.



Biogenesis of circRNA

CircRNA was first discovered in plant viruses by Sanger’s group in 1976. Studies have shown that circRNAs are circular, single-stranded, and covalently closed RNA biomolecules (21). Initially, most circRNA molecules were thought to be byproducts of transcriptional noise or the cell splicing machinery (22–24). Through mutation analysis of circRNA expression vectors and the treatment of HeLa cells with isoginkgetin, a splicing inhibitor that blocks spliceosome assembly, it was found that the biogenesis of circRNA is dependent on the typical splicing mechanism (19) resulting from the reverse splicing of the pre-mRNA (25). CircRNAs are widely distributed and are a diverse family of natural components of endogenous noncoding RNAs that are involved in miRNA inhibition, epithelial-mesenchymal transformation, and tumorigenesis, potentially regulating mammalian gene expression (26, 27). The composition of circRNAs can be divided into three categories. (1) Exonic circRNAs (EcircRNAs) are mainly generated in two ways: lariat-driven circularization relied on exon skipping and intron pairing-driven circularization. The former is formed by excision of introns after covalent binding of exons and splicing recipients, while the latter is formulated by excision of introns after two introns are complementary paired to form a ring structure (28) [Figure 1(I)]. (2) circRNA (ciRNA) is the source of introns generated by the partial degradation of introns after the formation of the lasso structure [Figure 1(II)]. (3) circRNA (EIciRNA), which is composed of exons and introns, is cyclized during splicing. In 2013, Jeck proposed that exon skipping and intron pairing reduce the distance between splicing sites and promote the reverse splicing of premRNA. This leads to the deletion of the 3’ and 5’ ends of circRNAs (29) [Figure 1(III)]. In general, linear RNA production involves the removal of introns and the sequential binding of exons. Thus, circRNA formation is precisely controlled. Two introns located on the side of the ring exon can increase Alu duplication, thus improving the efficiency of ring formation (25).




Figure 1 | Biogenesis and functions of circRNAs. (I) exon circRNA (EcircRNA) is formed by lariat-driven circularization and intron pairing-driven circularization. (II) circRNA (ciRNA) is the source of introns generated by the partial degradation of introns after the formation of the lasso structure. (III) circRNA (EIciRNA), which is composed of exons and introns, is cyclized during splicing. (A) The adsorption of miRNA by circRNA results in the formation of the circRNA/miRNA/mRNA regulatory axis by reducing miRNA expression and releasing mRNA from functional inhibition. (B) CircRNA can act as a RNA-binding protein sponge, binding with RBPs to form an RNA-protein complex (RPC). RBPs are mainly involved in posttranscriptional regulatory processes. (C) A small number of small open reading frames in circRNAs actually have the potential to encode peptides or proteins. (D) CircRNAs in the nucleus is involved in transcription regulation.



Compared with linear homologous RNA, circRNAs exhibit different reverse splicing and alternative RNA splicing patterns. The selection of the selective backshear site is related to the competition of presumed RNA pairs between introns containing selective backshear sites. The diversity of selective reverse splicing and alternative RNA splicing in circRNAs provides a valuable resource for describing the complexity of circRNA formation (30, 31). The majority of circRNAs in the cytoplasm come from exon sources. Intron sources and circRNAs consisting of exons, as well as introns are mainly located in the nucleus. It has been proven that circRNA is widely expressed in a variety of organisms in a manner that is specific to species, tissues, diseases, and developmental stages and is an important biological regulatory factor that serves a pivotal role in the pathogenesis and progression of breast cancer (32). CircRNA has been shown to regulate all attributes of breast cancer development (such as cell proliferation, apoptosis, metastasis, drug resistance, and prognosis). CircRNAs are highly stable and can be secreted outside of the body, with no cells being found in the saliva and blood plasma (25). Further investigation of circular RNA interactions with tumors to understand their crosstalk and regulatory modes may identify promising therapeutic targets and biomarkers of disease (33) for evaluation and prognosis prediction in the early diagnosis and treatment of tumors and tumor gene therapy (34, 35).



The Functions of circRNAs


miRNA Sponging

MicroRNA (miRNA) is an important posttranscriptional regulator of gene expression acting on target sites in untranslated regions of mRNAs through direct base pairing. In 2011, Salmena et al. (36), for the first time, advanced the theory of ceRNA. They suggested that one miRNA can modulate diverse target genes and that the same target gene can be modulated by different miRNAs. These RNAs regulated by the same miRNA exhibit a competitive relationship and are therefore referred to as ceRNAs. Some circRNAs possess miRNA-binding sites and serve as ceRNAs to regulate miRNA-inhibitory gene expression, thereby upregulating target gene expression. As a widely studied type of competitive endogenous RNA, circRNA can regulate multiple biological processes and play an important role in regulating human gene expression, cancer occurrence, and progression (37, 38). Since miRNAs are key regulators, their deregulation can lead to gene deregulation, which can lead to serious diseases such as cancer. CircRNA can act as a miRNA sponge, which is the most studied function of circRNA. The strongest evidence of this sponging effect comes from the first discovery of the binding of CDR1as to an miRNA that contains sequences matching 74 miR-7 seeds and is tightly bound by the AGO protein (miRNA-binding protein), which strongly inhibits the activity of miR-7 in nerve tissue and leads to an increase in the miR-7 targeting level, thus affecting the development of tumors (31, 39). CircRNAs regulate miRNA expression in the cytoplasm by acting as miRNA sponges and absorbing miRNAs or other targets to regulate tumor metabolism (7, 40, 41). The adsorption of miRNA by circRNA results in the formation of the circRNA/miRNA/mRNA regulatory axis by reducing miRNA expression and releasing mRNA from functional inhibition (42) (Figure 1A). The circRNA/miRNA/mRNA axis has been shown to be associated with the development of 427 different diseases (43). Most circRNAs accumulate only a few molecules per cell. To act as miRNA sponges, these circRNAs may require additional miRNA-binding sites at very low levels (44). Hansen et al. (45) have demonstrated that ciRS-7 is a distinct sponge for miR-7, repressing the expression of diverse oncogenes modulated by miR-7, indicating that the ciRS-7/miR-7 cascade serves a pivotal role in cancer-linked cascades, as well as clinical applications.



Combination With RBPs

CircRNA can act as a RNA-binding protein sponge, binding with RBPs to form an RNA-protein complex (RPC), which serves a crucial role in a multiple cellular processes. RBPs are mainly involved in posttranscriptional regulatory processes, such as the selective splicing, transcription, and translation of RNA, thus affecting the transcription of linear parental genes, regulating the expression of related proteins, and playing a vital role in the progression of tumors (46, 47) (Figure 1B). Many studies have confirmed that many circRNAs interact with RBPs. For example, circRNA CDR1as is widely related to the AGO protein. CircRNA Mbl contains conserved muscleblind (MBL) protein-binding sites. In addition, circRNA PABPN1 can bind to HuR, prevent HuR from binding to PABPN1 mRNA and reduce the translation of PABPN1 (48).



Translation of Proteins or Peptides

Conventional wisdom is that circRNAs are nonprotein-coding RNAs, but recent evidence suggests that a small number of small open reading frames in circRNAs actually have the potential to encode peptides or proteins. These peptides/proteins serve a pivotal role in modulating the energy biometabolism of tumors, the transformation of cancer cells from the epithelium to the stroma, the stableness of the c-myc oncoprotein, as well as the ubiquitination and degeneration of proliferating cell nuclear antigen (PCNA). These peptides/proteins further constitute prospective drug targets for repressing tumor multiplication or a biomarker for estimating the prognosis of cancer patients (49, 50) (Figure 1C). Researchers have found that circRNADb contains 32,914 human circRNAs, among which 16,328 may contain ORFs with at least 100 amino acids (51). Zhou et al. (43) found that circ-ZNF609 could be translated into proteins during the in vitro differentiation of mouse and human myoblasts by shear-dependent and cap-independent methods.



Transcription Regulation

Research evidence chronicles that circRNAs participate in the modulation of transcription, or alternative RNA splicing (Figure 1D). For instance, Ashwal-Fluss et al. detailed that circMBL is produced by the 2nd exon of MBL, which competed with the canonical pre-mRNA splicing. The flanking intron of circMBL and circMBL has conservative MBL binding sites, which are firmly and distinctly bound by MBL. The regulation of MBL level remarkably influences the generation of circMBL, which relies on the binding site of MBL in the lateral intron sequence. These data imply that general splicing parameters, like MBL, may affect alternative RNA splicing, regulate circRNA biogenesis, and canonical splicing (52). Eukaryotic transcription is mainly modulated at the activation stage, forming a pre-activation complex at the enhancer. All known transcription factors aggregate to further stabilize the complex and stimulate the transcription rate. Nuclear run-on tests were conducted with nuclei isolated from circEIF3J, as well as circPAIP2 silenced cells. Consequently, it was chronicled that the silencing of circEIF3J, as well as circPAIP2 resulted in down modulated EIF3J and PAIP2 transcription. Nonetheless, the silencing of EIF3J, as well as PAIP2 using siRNA exhibited no remarkable influence on their transcription. Both circEIF3J and circPAIP2 were reported to be co-localized with the genomic loci of their parental genes as revealed by RNA-DNA double FISH. These data collectively indicates that circEIF3J and circPAIP2 may regulate the expression of their aboriginal genes in cis (53). Exon-intron circRNAs (EIciRNAs) in humans facilitate circRNA host gene transcription via correlation with U1 snRNP. Similarly, EIciRNAs have been reported in plants and participate in gene modulation in biotic stress reactions (54). CircSEP3 in Arabidopsis stems from the SEPALLATA3 (SEP3) gene modulates transcription, as well as splicing of their linear mates [Figure 1D)]. CircSEP3 binds firmly to its correlated DNA locus to generate an RNA: DNA hybrid; however, the counterpart linear RNA binds much more weakly to the DNA. The formation of circRNA: DNA hybrid leads to transcriptional pausing and results in the generation of differentially spliced SEP3 mRNA with exon skipping (55). Collectively, these data imply that circRNAs can coordinate gene expression at both splicing, as well as transcription levels. In maize, three kinds of circRNAs are generated from CRM1, each with varying sizes however the same back-splicing region. These circRNAs have the potential to interact and bind to centromeric chromatin via the R-loops. The two R-loop regions in a single circRNA enhance the generation of chromatin loops. RNAi targeting the back-splicing region of the circNAs, diminishes the contents of R-loops, as well as the chromatin loops generated by the circRNAs; nonetheless, the Rloops of the two forms of linear RNAs with similar R-loop generation regions escalated. The elevated contents of R-loops and diminished contents of chromatin loops in the CRM1 sites result in a diminished CENH3 localization in the RNAi plants. Besides, the back splicing process in retrotransposons was reported to be conserved in various species of crops (56).




Figure 2 | The roles of circRNAs in breast cancer. CircRNAs included in our study were divided into eight parts according to their clinical characteristics.






CircRNA and Breast Cancer


Proliferation

In eukaryotes, a decrease in CDK1/cyclinB1 complex formation is associated with G2/M accumulation. P21 is a mitotic regulator that can block the activation of CDK1 by binding with the CDK1/cyclinB1 complex and inhibiting the growth and proliferation of breast cancer cells in G2/M phase (57). CircDDX17 inhibits cell proliferation by regulating cell cycle-related factors (CDK1 and P21) (58). circRNA_ 103809 overexpression can directly regulate the function of miR-532-3p and block G2/M phase, and it can repress the proliferation and metastasis of BC cells by interfering with the EMT signaling cascade (59). Zheng et al. (60) designed a circSEPT9 overexpression vector and constructed three siRNAs targeting the circSEPT9 junction regions. The qRT-PCR findings revealed that the circSEPT9 expression was markedly up-modulated or down-modulated in the cellular TNBCs transfected with the designated vectors or siRNA segments, respectively. The colony generation, CCK-8, as well as EdU tests, was utilized to assay for cell viability. The findings revealed circSEPT9 silencing markedly repressed TNBC cell proliferation. In vitro findings indicated that circHMCU remarkably enhances breast tumor cell proliferation by influencing the G1 stage cell cycle checkpoint. Further in vivo reports have detailed that the excessive expression of circHMCU contributes to aggressive proliferation (61). Based on the in vitro studies, circ-VRK1 expression is down modulated in BC cell lines comprising MDA-MB-231, BT474 and MDA-MB-453 relative to the normal immortalized breast epithelial cell lines (MCF10A), and circ-VRK1 represses tumor cell multiplication (62). Studies have chronicled that hsa_circ_0131242 silencing represses breast cancer cell growth. Bioinformatics estimations and luciferase enzyme reporter assessments posited that hsa_circ_0131242 sponges hsa-miR-2682. Besides, the co-transfection of hsa-miR-2682 repressor and si-hsa _circ_0131242 abolishes cell proliferation, as well as migration in the BT549 and MDA-MB-468 cell lines (63).



Cell Cycle

Many studies have shown that the cell cycle serves as the convergence point of oncogenic signaling cascades, and atypical cell cycle development is an important characteristic of cancer. Tumor cells, whose cell cycle is usually regulated in a disordered state, can easily avoid the restriction point without any preparation, resulting in unrestricted proliferation (64). Mechanistic assessment suggests that circAGFG1 may serve as a competitive endogenous RNA (ceRNA) for miR-195-5p, mitigating the inhibitory influence of miR-195-5p on its target cyclin E1 (CCNE1). CircAGFG1 silencing may repress the segregation of E2F1 with RB through CCNE1-triggered changes in RB phosphorylation, resulting in decreased transcriptional activity of E2F1, as well as G1/S cell cycle arrest. That is, circAGFG1 is a ceRNA that promotes CCNE1-mediated proliferation in TNBC by inducing miR-195-5p (65). The depletion of hsa_circ_0008039 distinctly represses the proliferation (in vivo), inhibits cell cycle progression, and reduces migration of BC cells by acting as ceRNA to sponge miR-432-5p and downregulated E2F3 (3). After circ_0067934 were knocked out in MCF-7 and SKBR3 cells, the proportion of G0/G1 cells escalated and the proportion of S cells diminished. Studies showed that BC cell cycle was regulated after the downregulation of circ_0067934 in vitro. Further experimental results showed that circ_0067934 could regulate cell cycle by up-regulating Mcl-1 (66). CircEIF3M was highly up-modulated in the TNBC cells, as well as tissues and remarkably enhanced the development of TNBC cells. Additionally, circEIF3M, as the ceRNA of miR-33a, activates the expression of CCND1, which synergistically regulates cell cycle progression with cyclin-dependent kinase 4 (CDK4). The activity of CCND1-CDK4 is dysregulated in a variety of cancers, such as melanoma and breast cancer, and circEIF3M downregulation can result in cell cycle arrest (67).



Apoptosis

Apoptosis is a type of programmed active death of cells that occurs under gene regulation, usually characterized by nuclear enrichment, wrinkling, membrane foaming, and DNA fragmentation. Under physiological conditions, apoptosis is beneficial to maintain the stability of the intracellular environment and allow better adaptation to changes in the living environment (68). The occurrence of tumors is mainly due to uncontrolled proliferation and apoptosis inhibition, so inducing tumor cell apoptosis is an important strategy to prevent the occurrence and development of tumors. Chen et al. (69) studied the expression profile of human circRNA in TNBC tissues and uncovered circEPSTI1 (hsa_ circRNA_000479) as a remarkably up modulated circRNA. By knocking out circEPSTI1 in three TNBC cell lines and conducting MRE examination and luciferase enzyme reporter gene analysis, circEPSTI1 was found to bind to miRNA as a common target gene of miRNA sponges and miRNAs. CircEPSTI1 contents in 240 TNBC patients were assessed by ISH, and the findings showed that the downregulation of the circEPSTI1 gene induced apoptosis. Hsa_circ_0007534 expression was markedly increased in BC tissues and cell lines, while miR-593 expression was remarkably decreased. Down-regulation of hsa_circ_0007534 can promote BC cell apoptosis. Hsa_circ_0007534 was established as the target of miR-593, and the expression of miR-593 in BC cells could be inversely modulated by hsa_circ_0007534 (70).



Invasion and Metastasis

Breast cancer metastasis is among the leading causes of fatalities in cancer patients. It has been reported that the 5-year survival rate of patients showing metastasis at the time of diagnosis is only 26% (71). Epithelial to mesenchymal transformation (EMT) is a key step in breast cancer cell metastasis, in which epithelial cells progressively lose their polarity and adhesion ability, while mesenchymal characteristics are acquired through the downregulation of epithelial markers such as E-cadherin and upregulation of mesenchymal biomarkers such as N-cadherin as well as vimentin. At the same time, it has been extensively accepted that TGF-signaling is the main EMT inducer by activating the initiation of the Smad complex, which translocases into the nucleus to modulate gene expression. EMT is an important mechanism of malignant tumor metastasis, and this signaling pathway may be regulated by circRNA (9). CircANKS1B makes full use of miR-148a-3p, as well as miR-152-3p to escalate the expression of the transcription factor USF1; therefore, upregulating the expression of TGF-β1 and activating the TGF-β1/Smad signal to promote EMT (72). Functional studies showed that the downregulation of hsa_circ_001569 significantly inhibited the growth and metastasis potential of BC cells. Studies of molecular mechanisms showed that the inhibition of hsa_circ_001569 inhibited the activation of the PI3K/AKT signal in BC cells. Hsa_circ_001569 may promote the development of BC by regulating the PI3K/AKT pathway (73). Some researchers have used MCF-7, MDA-MB-231, qRT-PCR, as well as western blotting to analyze the expression profile of circRNA chips and quantitatively express circASS1 and its parent gene ASS1. Wound healing, migration, and infiltration tests were conducted. A luciferase detection system was employed to assess the hidden miRNAs. Results revealed that CircASS1 expression in MDA-MB-231 cells was down modulated relative to the MCF-7 cells, and the overexpression of CircASS1 repressed the infiltration and migration. CircASS1 repressed the infiltration and migration of breast cancer cells (74). RT-PCR was used to quantitatively detect the expression of circRNA_100876 in 50 pairs of BC tissue samples and corresponding adjacent samples. Additionally, qRT-PCR was further employed to detect the expression level of circRNA_100876 in BC cell lines. In addition, the circRNA_100876 knockout model was constructed in a lentivirus and transfected into BC cells. Subsequently, the effects of circRNA_100876 on BC cell function were analyzed using cell count kit-8, Transwell, and clone formation experiments. The interaction between circRNA_100876 and microRNA-361-3-p was verified by a luciferase enzyme reporter assay and cell reverse assay. The qRT-PCR results showed that the expression of circRNA_100876 in BC tissues was remarkably higher than that in paracancer tissues and that its expression in patients with distant metastasis was distinctly elevated relative to the patients without distant metastasis (75). MMPs, especially MMP9 and MMP2, are important biomarkers for breast cancer migration and invasion. By measuring MMP levels and conducting transwell measurements, we found that increased MMP2 and MMP9 levels in cells under hypoxia increased cell migration and invasion, while the silencing of circDENND4C inhibited cell migration. We hypothesized that the antimetastatic effect of circDENND4C silencing may be related to epithelial mesenchymal transformation, which requires further study in the future. These findings imply that circDENND4C is a therapeutic target in breast cancer patients (76). Circ_0006528 can suck the endogenous miR-7-5p and repress its bioactivity. We also identified Raf1, which activates the MAPK/ERK signaling cascade, as the target of miR-7-5p, and established that circ_0006528 enhances the growth, infiltration, and migration of breast cancer and activates the MAPK/ERK cascade by enhancing the expression of Raf1 (77).



Autophagy

Autophagy is a conserved, ubiquitous process and participates in an energy cycle that can deliver damaged organelles, misfolded proteins and intracellular components to lysosomes for degradation (78, 79). Autophagy leads to the dysregulation of various pathological behaviors in eukaryotic cells, promoting disease progression, including that of cancer. Autophagy provides energy and helps keep cancer cells alive when they are under stress (lack of oxygen and hunger) (80). mTOR is a downstream molecule of AKT1, and the AKT/mTOR pathway is one of the classical signaling pathways mediating tumor metabolic homeostasis. The AKT/mTOR axis can promote anabolism, including protein synthesis, and block catabolic activity, such as autophagy, which is ultimately beneficial to the growth of GC cells. mTORC1 slows the aging of GC cells by inhibiting catabolic activity (including autophagy), thus promoting cell growth. mTORC1 phosphorylates ULK1 to prevent its activation by AMPK, a key activator of autophagy (81). The effects of circSEPT9 knockdown on TNBC autophagy have been described in the relevant literature. Immunofluorescence analysis showed that circSEPT9 depletion induced the generation of LC3-II puncta and autophagy accumulation. The total number of LC3-II puncta per cell in the si-circSEPT9 group was remarkably greater relative to the control group. After the knockout of circSEPT9, the transformation of the autophagy biosignature LC3 from LC3-I to LC3-II was markedly elevated, and the levels of the autophagy-correlated proteins ATG5 and ATG7 were distinctly increased (60). Circ-ABCB10 has been found to mediate the autophagy of BC cells through the Let-7A-5P/DUSP7 axis (82). We additionally established that ectopically expressed circ-DNMT1 could interact with p53, as well as AUF1, enhancing the nuclear translocation of both proteins. Nuclear translocation of p53 triggered cellular autophagy while AUF1 nuclear translocation diminished DNMT1 mRNA instability, causing elevated DNMT1 translation. From here, functional DNMT1 could then translocate into the nucleus, repressing p53 transcription. Highly expressed circ-DNMT1 binds and regulates oncogenic proteins in breast cancer cells. Ectopic circ-DNMT1 increases the proliferation and survival of breast cancer cells by triggering autophagy (83).



Angiogenesis

Angiogenesis serves a pivotal role in tumor growth, as well as metastasis. It ensures a continuous blood supply for the abnormal proliferation and expansion of tumor cells and promotes tumor cell growth (84–86). The signaling pathways contributing to tumor angiogenesis include those involving the hypoxia-inducible factor (HIF) family, platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF) family, TGF-β, tumor necrosis factor-α (TNF-α), interleukin, fibroblast growth factor (FGF), αvβ3 integrins, Eph-B4/ephrinB2, VE-cadherin, plasminogen activator/plasmin, matrix metalloproteinases (MMPs), and three UTRs of CYP4Z2P and CYP4Z1-3′UTR pseudogenes, which promote breast tumor angiogenesis by isolating miRNAs, including miR-211, miR-125a-3p, miR-197, miR-1226, as well as miR-204. These ceRNAs therefore allow CYP4Z1 translation and jointly promote breast cancer angiogenesis by activating the PI3K and ERK1/2 cascades (87). Liu et al. (88) confirmed through experiments that the downregulation of hsa_circRNA_002178 can inhibit aggressive malignant behaviors such as angiogenesis. At the same time, some scholars found that hsa_circ_0000515 and miR-296-5p modulated BC cell angiogenesis stimulated by CXCL10 specifically (89).



Drug Resistance

Several studies have analyzed the expression of circRNA in resistant breast cancer and found that circRNA may serve a role in enhancing or reversing chemical drugs resistance in breast cancer. At present, chemotherapy and endocrine drugs play a vital role in the therapy of breast cancer after surgery, but there are still some patients showing drug resistance, which hinders their treatment. TNBC is the most lethal sub-kind of breast cancer, characterized by high diversity and invasiveness and a lack of therapeutic options. Chemotherapy remains the standard regimen for TNBC therapy, but patients unfortunately often develop drug resistance (90). Drug resistance constitutes the main factor that limits systemic chemotherapy for advanced metastatic breast cancer and is one of the main reasons for the low relapse-free survival rate in breast cancer and other cancers. Multiple genes serve an important role in the occurrence and progression of drug resistance, such as MDR1, which encodes P-glycoprotein, and multidrug resistance-related proteins (MRPS). Breast cancer drug-resistant protein (BCRP) belongs to the ATP binding box (ABC)-superfamily multidrug exudation pump, and glutathione s-transferase (GST) and O6-methylguanine DNA methyltransferase (MGMT) are a phase II detoxification enzyme and DNA repair enzyme, respectively. The intracellular accumulation of various chemotherapy drugs is reduced (87, 91) and circ_MTO1 (hsa_circ_0007874) is downregulated in monastrol drug-resistant cell lines (MDA-MB-231R and MCF-7R), which regulates the TRAF4/Eg5 axis by targeting the Eg5 protein, binding TRAF4 to the Eg5 gene and thereby inhibiting BC cell activity and promoting monastrol-induced cytotoxicity (92). By upregulating miR-7, the repression of circRNA CDR1as can escalate the chemical sensitivity of 5-FU-resistant BC cells, implying that CDR1as may be a prospective tool for establishing and optimizing chemotherapy approaches for BC (93). To investigate the role of circRNAs in tamoxifen resistance, we established a tamoxifen-resistant MCF7/TR cell line and screened its circRNA expression profile by RNA sequencing. Hsa_circ_0025202 is a significantly reduced circRNA. Functional studies have shown that tumor repression and the tamoxifen sensitization of are achieved through the hsa_circ_0025202/miR-182-5p/FOXO3a axis. Hsa_circ_0025202 has an anticancer effect in HR-positive breast cancer and can be used as a new biomarker for the treatment of tamoxifen breast cancer (94). Gao et al. (95) investigated the expression of circ 0006528 in ADM-resistant cell lines (MCF-7/ADM and MDA-MB-231/ADM) and tissues (n = 40) using qRT-PCR. The findings showed that the circ 0006528 expression in the ADM-resistant cell lines and tissues were elevated relative to the respective ADM-sensitive groups. This suggests circRNAs may participate in breast cancer chemoresistance. It has also been found that circKDM4C is down-regulated in adriamycin resistant breast cancer cells. CircKDM4C silencing or overexpression led to significant increase or decrease of adriamycin resistance (96).



Tumor Immunity

The immune response associated with cancer can protect the host by destroying or inhibiting the growth of cancer cells. Additionally, the development of a tumor-specific adaptive immune response can be promoted by selecting tumor escape variants or establishing certain conditions in the tumor microenvironment (97). CircRNA is involved in mediating the immune response. Studies have shown that circRNA CDR1as may serve a distinct role in immune and stromal cells invasion in tumor tissue of BC, particularly those of CD8+ T cells, activated NK cells, M2 macrophages, cancer-correlated fibroblasts (CAFs), and endothelial cells (98).




CircRNAs Act as Diagnostic and Prognostic Biomarkers

Prognostic assessment plays an important role in prolonging the survival of cancer patients. Many studies have shown that circRNAs are involved in various pathological processes of breast cancer. Therefore, circRNAs are attracting increasing attention as potential prognostic biomarkers of breast cancer (23). Yang et al. (99) knocked out circ_0103552 in MCF7 cells and evaluated the effect of circ_0103552 on cell viability by using cell count kit 8 (CCK8) and clone formation experiments. The results showed that the cell viability of the MCF7 cell line decreased significantly after circ_0103552 was silenced. In addition, the increase of circ_0103552 was closely related to clinical severity in BC patients (including advanced TNM and positive lymph node infiltration). The upregulation of circ_0103552 is an independent prognostic indicator for patients undergoing therapeutic surgery. KIF4A, a member of the drive protein family, has been identified as an oncogene that is overexpressed in many malignancies, including breast cancer. High KIF4A expression is significantly associated with poor prognosis in a variety of cancers. KIF4A is critical to cancer progression and shows potential as a prognostic biomarker and therapeutic target. CircKIF4A regulates the expression of KIF4A by sponging miR-375, thus exerting its regulatory function in TNBC. The circKIF4A-miR-375-KIF4A axis regulates the TNBC process through a ceRNA-related mechanism. Therefore, circKIF4A can be used as a prognostic biomarker and therapeutic target for TNBC (100). CircHMCU is a miRNA sponge of the let-7 family, which plays a carcinogenic role in breast cancer and can be used as a new biomarker for the diagnosis and prognosis of BC (61). Some studies have demonstrated that hsa_circ_0104824 is down-regulated in BC tissues and peripheral blood of patients. ROC curve analysis shows that hsa_circ_0104824 has high diagnostic value for BC. Therefore, it can be speculated that hsa_circ_0104824 can be used as a potential biomarker for the diagnosis and treatment of BC (101). Jia et al. (102) have demonstrated that hsa_circ_0007255 plays a new oncogene role in the occurrence and development of BC by regulating the miR-335-5p/SIX2 axis and is expected to become a biomarker for the treatment of BC.



Conclusions

BC is an important disease that endangers women’s health, so it is very important to study BC in depth. CircRNA has attracted the attention of researchers due to its unique properties and has become a new research hotbed in recent years. Mounting number of studies have shown that circRNA can be specifically expressed in tissues and differentially expressed in tumor and nontumor tissues. Because of the large number of circRNAs in saliva, blood, and exosomes, circRNAs can be employed as potential biosignatures for the diagnosis or prediction of disease, especially related to the occurrence, development, and prognosis of cancer. Some circRNAs show stable abnormal expression in BC that can be detected with good sensitivity and specificity and have been proven to be linked to a dismal prognosis, providing a new option for the early diagnosis of BC and the design of prognostic markers. However, there are still many problems surrounding circRNAs that require further clarification: 1. Although circRNAs play multiple roles, little is known about their roles in BC. 2. The mechanism of action of circRNAs still need to continue to be explored, and their clinical application will require the continuous efforts of more researchers and clinical workers. 3. In studies on the mechanism of the circRNA regulation of BC progression, single tumor cells have been targeted, but it is unclear whether circRNA is abnormally expressed in the tumor microenvironment, whether it is abnormally expressed in different cells in the microenvironment, and whether these circRNAs can be transmitted to different cells to promote tumor progression. 4. Despite advancements in diagnosis and therapy, the treatment of locally advanced breast cancer (LABC) remains a major clinical problem.
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Background

Yes-associated protein 1 (YAP1) is a transcription factor regulated by the Hippo pathway and functions as an oncogene in various solid tumors under dysregulated Hippo pathway. However, the role of YAP1 in breast cancer remains controversial. Here, we investigated the impact of different levels of nuclear YAP1 expression on the clinical characteristics and survival outcome in patients with breast cancer.



Patients and Methods

Retrospectively obtained 455 breast tumor samples at Gangnam Severance Hospital were examined for YAP1 expression by immunohistochemistry, and the clinical data were analyzed. External validation was performed using a retrospective cohort and tissues in 482 patients from Severance Hospital.



Results

High nuclear YAP1 expression was associated with hormone receptor negativity and aggressive tumor behavior, including lymph node metastasis, high Ki67 labeling index and inferior distant metastasis-free survival (DMFS, hazard ratio [HR] 2.271, 95% confidence intervals [CIs] 1.109–4.650, P = 0.0249), and also confirmed inferior disease free survival (HR 3.208, 95% CIs 1.313–7.833, P = 0.0105) in external validation cohort. In patients with triple-negative breast cancer (TNBC), high nuclear YAP1 expression was an independent significant determinant of poor DMFS (HR 2.384, 95% CIs 1.055–5.386, P = 0.0367).



Conclusion

Our findings suggest that nuclear YAP1 expression is a biomarker of adverse prognosis and a potential therapeutic target in patients with breast cancer, especially in TNBC.
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Background

Breast cancer is the most common cancer among women worldwide, and approximately 15 million people are diagnosed with this disease each year. In recent years, owing to advanced treatment modalities and the identification of new drug targets, breast cancer mortality has decreased by approximately 2.3% per year (1). So far, well known biomarkers such as including ER and HER2, as well as others, including pSTAT3 expression, LDH, and tumor-infiltrating lymphocytes, etc. – have been studied to elucidate breast cancer biology and survival outcome (2–4), further endeavor is still required to understand tumor nature. Despite these improvements, metastatic breast cancer still results in poor survival. In order to further enhance treatment efficacy, new drug targets with specific roles in metastatic cascades must be unveiled.

Lymph node metastasis is the most important prognostic factor in breast cancer, and is associated with high relapse and mortality (5–8). The mechanisms underlying lymph node metastasis are still poorly understood. It has been reported that the transcriptional co-activator, Yes-associated protein 1 (YAP1), plays an important role in lymph node metastasis (9). Enhanced YAP1 activity increases fatty acid oxidation, ultimately leading to lymph node metastasis. The Hippo signaling regulates organ size and development (10), and restricts transcription co-factor YAP1 and transcriptional coactivator with PDZ-binding motif (TAZ) by cytoplasmic retention followed by protein degradation (11). However, dysregulated Hippo signaling results in the nuclear accumulation of non-phosphorylated YAP1 and TAZ. These interact with transcriptional enhanced associated domain (TEAD)-containing transcription factors in nucleus, promoting the expression of genes related to cell proliferation and epithelial-mesenchymal transition (EMT) (12, 13). Moreover, YAP1 was reported to induce TEAD-dependent focal adhesion kinase phosphorylation, ultimately promoting tumor invasiveness (14). Activated YAP1 contributes to cancer development by promoting a malignant tumor phenotype. In particular, YAP1 stimulates cancer stem cell proliferation and epithelial-mesenchymal transition, induces drug resistance, inhibits apoptosis, and promotes tumor overgrowth (10, 15–18). Several studies have reported a correlation of YAP1 expression with aggressive clinical characteristics and low survival (19–29). This evidence suggests that YAP1 is a potential therapeutic target, and that its pharmacologic or genetic inactivation may suppress tumor progression and improve drug sensitivity. However, the association between clinical data and YAP1 expression in patients with breast cancer has been poorly explored. In addition, the possible clinical relevance of YAP1 subcellular localization is not clearly defined.

The aim of this study was to correlation between the level of nuclear YAP1 expression and the clinical characteristics and survival rates of patients with breast cancer. The impact of YAP1 expression on survival was also evaluated in patients with triple negative breast cancer (TNBC).



Materials and Methods


Patients

We retrospectively collected the tumor tissues from the patients undergoing primary curative surgery for breast cancer at the Gangnam Severance Hospital in Seoul, Korea from February 1992 to April 2017 and at the Severance Hospital in Seoul, Korea from January 2000 to December 2010. A validation cohort consisted of 482 patients from the Severance Hospital. Inclusion and exclusion criteria were as follows:

	1) Inclusion criteria:

- Patients age ≥ 20 years

- Breast cancer confirmed by pathologic diagnosis (stage I–III)

- Available YAP1 immunohistochemical staining with tissue microarray

	2) Exclusion criteria:

- Any other carcinoma in situ

- Other cancer history (except thyroid cancer and carcinoma in situ)

- Not assessable electronic medical record



All subjects were diagnosed with stage I–III primary breast cancer. All patient treatments were performed according to standard protocols. The following data were collected: age at surgery, tumor size, lymph node status, histological grade (HG), status of estrogen receptor (ER), status of progesterone receptor (PR), status of human epidermal growth factor receptor-2 (HER2), lymphovascular invasion (LVI), Ki67 leveling index, tumor-infiltrating lymphocytes (TILs), treatment modalities, recurrence, and death. Tumor HG was determined by applying the modified Scarff-Bloom-Richardson grading system. The study protocol was approved by the institutional review board (IRB) of the Gangnam Severance Hospital (local IRB No. 3-2019-0188). The need for informed consent was waived under the approval of the IRB due to the retrospective design.




Immunohistochemistry (IHC) and Molecular Subtyping

As previously described (30), 3-µm thick tissue sections were cut from formalin-fixed paraffin-embedded (FFPE) tissue microarray (TMA) blocks. After deparaffinization and rehydration with xylene and alcohol graded solutions, respectively, IHC was performed by using a Ventana Discovery XT Automated Slide Stainer (Ventana Medical System, Tucson, AZ, USA). Cell Conditioning 1 (CC1) buffer (citrate buffer, pH 6.0; Ventana Medical System) was used for antigen retrieval. The appropriate positive and negative controls were included.

IHC staining was evaluated with light microscopy (BX53 upright microscope, Olympus, Tokyo, Japan). Nuclear staining values of 1% or higher were considered indicative of ER (clone SP1; dilution 1:100; Thermo Scientific, San Diego, CA, USA) and PR (clone PgR; dilution 1:50; DAKO, Glostrup, Denmark) positivity (31). HER2 (polyclonal; dilution 1:1500; DAKO) staining was interpreted based on the 2018 American Society of Clinical Oncology/College of American Pathologists guidelines (32). Only samples with strong and circumferential membranous HER2 immunoreactivity (3+) were considered positive, while those with 0 and 1+ HER2 staining were considered negative. Cases with equivocal HER2 expression (2+) were further evaluated for HER-2 gene amplification by silver in situ hybridization (SISH). Positive nuclear Ki-67 (clone MIB; dilution 1:1,000; Abcam, Cambridge, UK) staining was assessed based on the percentage of positive tumor cells, defined as Ki-67 labeling index.

The specimens were categorized as follows: i) Luminal/HER2-negative (ER- and/or PR-positive and HER2-negative); ii) HER2-positive (HER2-positive regardless of ER and PR status); iii) TNBC (ER-, PR-, and HER2-negative).



Evaluation of Nuclear YAP1 Expression by Tissue Microarray and IHC Staining

Hematoxylin and eosin-stained slides from the resected breast cancer specimens were examined, and the representative areas were marked. The matched tissue cores (2 mm) were extracted from FFPE tumor blocks and placed into 5 × 10 recipient TMA blocks.

For IHC, each TMA slide was stained with anti-YAP1 antibody (clone 63.7; dilution 1:200; Santa Cruz Biotechnology, Dallas, TX, USA). After staining, nuclear YAP1 expression was assessed by a pathologist (400× magnification). YAP1 expression was evaluated in both the cytoplasm and nuclei of the tumor cells. Cytoplasmic staining was evaluated by the H-score, which was obtained by multiplying staining intensity (0, 1, 2, or 3) by percentage of stained area (%). As nuclear expression was rare and mostly focal, only the intensity of nuclear staining was examined (0, 1+, 2+, 3+), regardless of the corresponding cytoplasmic staining. The intensity of nuclear staining of the myoepithelial cells was assigned a value of 2+ and used as an internal control. Weaker and stronger signals were assigned a value of 1+ and 3+, respectively. Negative and weak (1+) nuclear staining were considered indicative of low expression, while moderate (2+) and strong (3+) nuclear expression were indicative of high expression (Figure 1). The IHC results were interpreted blindly, without any information regarding clinical parameters or outcomes.




Figure 1 | Immunohistochemical analysis of nuclear YAP1 expression. Nuclear YAP1 expression was evaluated in high-power fields (400× magnification) by an experienced pathologist. The samples were classified as negative (A), 1+ (B), 2+ (C), and 3+ (D), based on the intensity of YAP1 nuclear staining.





Statistical Analysis

Distant metastasis-free survival (DMFS) was defined as the time from the primary curative surgery to the first breast cancer-derived distant metastasis, or death due to any cause, or end of follow-up. Overall survival (OS) was defined as the time from the primary curative surgery to the end of follow-up, or death due to any cause. Disease-free survival (DFS) was defined as the time from the primary curative surgery to cancer recurrence, second cancer, or death. The data of patients who did not exhibit relevant events were censored at the end of follow-up.

The continuous variables between the two groups were compared using the Student’s t-test or the Mann-Whitney test. The categorical variables were compared by using the Chi-square test or the Fisher’s exact test. Survival curves were obtained by the Kaplan-Meier method and two-group comparisons were made using log-rank test. Univariate and multivariate Cox proportional hazard models were used to identify the factors associated with survival outcome (DMFS and OS). The variables showing statistically significant differences in the univariate analysis were used in the multivariate Cox proportional hazard models.

Statistical analysis was performed by using SPSS version 24 (SPSS: Chicago, IL, USA) software. The threshold for statistical significance was set at P <0.05, with a 95% confidence interval not including 1.



Results


Impact of Nuclear YAP1 Expression on the Baseline Characteristics of Patients With Breast Cancer

A total of 455 breast cancer patients at Gangnam Severance Hospital were included in this study. The median age was 50 (25–86) years. The median DFS and OS were 59 (10–325) and 60 (12–325) months. Low and high nuclear YAP1 expression were found in the tumors of 344 (75.6%) and 111 (24.4%) patients, respectively. The clinical characteristics were examined in relation to nuclear YAP1 expression (Table 1). High nuclear YAP1 expression was associated with aggressive tumor features, including hormone receptor negativity, high HG, lymph node metastasis, and high Ki67 expression. Patients were classified into three subtypes based on IHC analysis: luminal/HER2-negative (243 patients), HER2-positive (62 patients), and TNBC (146 patients). High nuclear YAP1 expression was associated with the TNBC subtype.


Table 1 | Clinical characteristics in relation to nuclear YAP1 expression.



Validation cohort included 482 patients at Severance Hospital. Median DFS and OS were 65 (5–139) and 65 (12–241) months. Of the 482 patients, 428 (88.8%) exhibited low nuclear YAP1 expression, and 54 (11.2%) exhibited high nuclear YAP1 expression. Clinical characteristics were compared to nuclear YAP1 expression in Supplementary Table 1. Also, high nuclear YAP1 expression was related to TNBC subtype.



Prognostic Significance of Nuclear YAP1 Expression

There were 41 patients with developing distant metastasis. Among them, 14 had bone metastasis, 11 lung metastasis, five liver metastasis, three brain metastasis, while 17 had developed metastases to other sites (including duplication). There were 18 mortality events. High nuclear YAP1 expression was significantly associated with decreased distant metastasis-free survival (DMSF) [Figure 2A; hazard ratio (HR), 2.271, 95% confidence intervals (CIs) 1.109–4.650, P = 0.0249, log rank test], and was a significant predictor of poor overall survival (Figure 2B; HR 3.856, 95% CIs 1.321–11.26, P = 0.0135, log rank test).




Figure 2 | Kaplan-Meier survival curves of distant metastasis-free survival (DMFS) and overall survival (OS) in relation to nuclear YAP1 expression. Patients with high nuclear YAP1 expression exhibited poor DMFS and overall survival (OS) (A, HR 2.271, 95% CI 1.109–4.650, P = 0.0249; B, HR 3.856, 95%CI 1.321–11.26; P = 0.0135, log-rank test, respectively).



Negative hormone receptor status, tumor size >2 cm, and high nuclear YAP1 expression were significantly associated with decreased DMFS, as assessed by univariate analysis (Table 2). High nuclear YAP1 expression was still a significant determinant of decreased DMFS after adjustment for hormone receptor status, tumor size, and nuclear YAP1 expression by the Cox proportional hazards model (HR 1.893, 95% CIs 1.009–3.552, P = 0.047).


Table 2 | Hazard ratios (HRs) and 95% confidence intervals (CIs) for distant metastasis-free survival (DMFS).



In the univariate Cox proportional hazard model, negative hormone receptor status, high histologic grade, tumor size > 2 cm, and high nuclear YAP1 expression were found to be significant prognostic factors for OS (Supplementary Table 2). However, in the multivariate analysis, nuclear YAP1 expression was not a significant predictor of OS (Supplementary Table 2, HR 1.576, 95% CIs 0.616–4.034, P = 0.343).

In validation cohort, high nuclear YAP1 expression was significantly predictive of decreased DFS (Supplementary Figure 1; HR, 3.208, 95% CIs 1.313–7.833, P = 0.0105, log rank test). ER negativity, PR negativity, tumor size >2 cm, lymph node metastasis, and high nuclear YAP1 expression were significant factors in the multivariate analysis of DFS (Supplementary Table 3). When adjusted for other factors, high nuclear YAP1 expression was a significant factor in reduced DFS (HR 2.112, 95% CIs 1.083–4.119, P = 0.028).



Prognostic Significance of Nuclear YAP1 Expression in TNBC Patients

The impact of nuclear YAP1 expression on survival and clinical characteristics was evaluated in patients with TNBC (Supplementary Table 4). Of the 146 TNBC patients, 80 (54.8%) had tumors with low nuclear YAP1 expression, while 66 (45.2%) had tumors with high nuclear YAP1 expression. In TNBC patients, the clinical characteristics were not significantly affected by the level of nuclear YAP1 expression. However, high nuclear YAP1 expression was associated with poor DMFS (Figure 3; HR 2.384, 95% CIs 1.055–5.386, P = 0.0367, log rank test). Lymph node metastasis and high nuclear YAP1 expression were significant determinants of poor DMFS in the univariate analysis (Supplementary Table 5). Adjustment for significant factors in the univariate analysis confirmed that high nuclear YAP1 expression was significantly associated with DMFS (HR 2.329, 95% CIs 1.016–5.339, P = 0.046).




Figure 3 | Kaplan-Meier survival curves of distant metastasis-free survival (DMFS) in relation to nuclear YAP1 expression in triple-negative breast cancers (TNBCs). Patients with high nuclear YAP1 expression exhibited poor DMFS (HR 2.384, 95% CI 1.055–5.386, P = 0.0367; log-rank test).






Discussion

In this study, the nuclear expression of YAP1 was evaluated in a large number of breast cancer specimens, was found to be significantly associated with the occurrence of distant metastasis (HR 2.271, 95%CIs 1.109–4.650, P = 0.0249). Furthermore, nuclear YAP1 expression was a strong determinant of metastasis in TNBC (HR 2.384, 95%CIs 1.055–5.386, P = 0.0367), an aggressive subtype of breast cancer. These findings indicate that targeted therapy for YAP1 may potentially improve the survival outcomes, particularly metastasis, of the patients with breast cancer.

The activation of YAP1, along with that of another transcriptional co-activator TAZ, is associated with dysregulated Hippo signaling (33, 34). YAP1 overexpression promotes EMT, inhibits apoptosis, and induces growth factor-independent cell proliferation. Based on these findings, it was speculated that YAP1 may play a role as a proto-oncogene (23). In addition, several studies have reported a negative impact of YAP1 activation on the survival of patients with gastric, colorectal, ovarian, bladder, and non-small cell lung cancer (22, 29, 35–37).

Currently, the role of YAP1 in breast cancer remains controversial. For instance, Lehn and colleagues reported that YAP1 expression is inversely correlated with HG and tumor cell proliferation, and that low YAP1 mRNA levels are associated with decreased recurrence-free survival and tamoxifen-resistance in luminal A subtype breast cancer (38). Also, some have reported that YAP1 promotes cell proliferation, tumorigenesis, EMT, and drug resistance, and is associated with TP53 mutation, ER negativity, and poor survival (18, 39). However, several other studies have suggested that survival is not significantly affected by YAP1 expression in breast cancer (39, 40), or YAP1 may in fact act as a tumor suppressor (26, 41). Among the most of previous studies mentioned above, the specific argument on subcellular localization of YAP1 in previous studies were unclear. Although Vlug et al. showed upregulated YAP1 expression in invasive lobular carcinoma, but its prognostic impact was not evaluated (39). Kim et al. evaluated the differential expression of YAP and phosphorylated YAP in the each of molecular subtypes of breast cancer and found that nuclear YAP expression was associated with shorter survival (20). However, in previous study, nuclear YAP expression in multivariate analysis did not have statistical significance. Given that nuclear YAP1 expression is a surrogate marker of an activated form of YAP1 (9), we focused on the nuclear YAP1 expression in this study, and found that nuclear YAP1 expression is an independent prognostic predictor for distant metastasis, particularly in the TNBC patients.

TNBC is simply defined as a breast cancer that satisfied the ER, PR, and HER2 negativities, however it is not a uniform subtype rather a complex heterogeneous collection of molecularly different subtypes (42). Unlike hormone receptor-positive type or HER2-type breast cancer, there is currently limited therapeutic targets for TNBC, Although immune checkpoint inhibitors are now applied in TNBC in combination with chemotherapy (43, 44), demanding on targeted therapy is still existed, and YAP1 could be the one of candidate of potential therapeutic target.

Our study has several limitations. First, it was a retrospective study. Second, the TNBC subtype was overrepresented due to selection bias during sample collection. Third, TMA slide staining may underestimate the rate of YAP1 positivity compared to whole-slide examination. Although our study is difficult to compare with previous IHC studies (20, 26, 38, 40, 41, 45), as these did not clarify whether the employed antibodies were specific for phosphorylated YAP1, nor was the intracellular localization of the antigen established, we specifically examined the nuclear YAP1 expression and confirmed its prognostic effect. In our study, no correlations were found between cytosolic YAP1 staining and survival (data not shown). Despite these limitations, the results demonstrated that nuclear YAP1 expression was a clinical prognostic factor in breast cancer, especially TNBC.

In conclusion, we suggested that nuclear YAP1 expression is a clinical prognostic factor for breast cancer. In addition, YAP1 is a potentially valuable therapeutic target for patients with breast cancer, especially in TNBC.
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Purpose

Machine learning (ML) can extract high-throughput features of images to predict disease. This study aimed to develop nomogram of multi-parametric MRI (mpMRI) ML model to predict the risk of breast cancer.



Methods

The mpMRI included non-enhanced and enhanced T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), apparent diffusion coefficient (ADC), Ktrans, Kep, Ve, and Vp. Regions of interest were annotated in an enhanced T1WI map and mapped to other maps in every slice. 1,132 features and top-10 principal components were extracted from every parameter map. Single-parametric and multi-parametric ML models were constructed via 10 rounds of five-fold cross-validation. The model with the highest area under the curve (AUC) was considered as the optimal model and validated by calibration curve and decision curve. Nomogram was built with the optimal ML model and patients’ characteristics.



Results

This study involved 144 malignant lesions and 66 benign lesions. The average age of patients with benign and malignant lesions was 42.5 years old and 50.8 years old, respectively, which were statistically different. The sixth and fourth principal components of Ktrans had more importance than others. The AUCs of Ktrans, Kep, Ve and Vp, non-enhanced T1WI, enhanced T1WI, T2WI, and ADC models were 0.86, 0.81, 0.81, 0.83, 0.79, 0.81, 0.84, and 0.83 respectively. The model with an AUC of 0.90 was considered as the optimal model which was validated by calibration curve and decision curve. Nomogram for the prediction of breast cancer was built with the optimal ML models and patient age.



Conclusion

Nomogram could improve the ability of breast cancer prediction preoperatively.
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Introduction

Breast cancer is the most frequently diagnosed malignancy among women worldwide and accounts for 30% of all new cancer cases in 2018 (1). It is estimated that one in eight women will be diagnosed with breast cancer in their lifetime and that one patient will be diagnosed with breast cancer every 10 min (2). Therefore, the diagnosis of breast cancer is crucial for every patient with breast lesions.

Dynamic contrast-enhanced MRI (DCE-MRI) is a powerful tool for detecting breast cancer. It has the highest sensitivity of all methods for the examination of breast lesions (3). However, because of an overlap of the morphologic and kinetic features of benign and malignant lesions, the limited specificity of DCE-MRI could lead to the misdiagnosis of malignant lesions, overtreatment of benign lesions, and unnecessary breast biopsies and surgery (4, 5). Therefore, it is necessary to combine multi-parametric MRI (mpMRI), which includes conventional sequences such as pre-enhanced and enhanced T1-weighted imaging (T1WI) and T2-weighted imaging (T2WI), and also function sequences such as diffusion weighted imaging (DWI) and pharmacokinetic DCE (Pk-DCE) to improve diagnosing efficiency in breast cancer.

Nevertheless, not every parameter in mpMRI will increase the diagnostic specificity of breast cancer. Given the huge amount of information offered by mpMRI, it is challenging to select the most effective method for the diagnosis of breast cancer in humans (6). Machine learning (ML), which is a branch of artificial intelligence, can extract high-throughput features of lesions that are imperceptible to human eyes, learn the characteristics of lesions, and make a diagnosis based on them using computer-aided technology (7–13). Although, ML on mpMRI is widely under investigation for the diagnosis of breast lesions (8, 9, 14–23), there are few studies that focus on nomogram of the optimal mpMRI model to diagnose breast cancer. In this study, our aim is to provide an effective nomogram of the optimal ML model based on mpMRI for the risk prediction of breast cancer preoperatively.



Materials and Methods


Patient Inclusion Criteria

This study was approved by our institution and informed consent was obtained from all study participants. The patients were selected based on the inclusion criteria as follows: 1) all patients underwent an MRI examination before treatment or biopsy; 2) breast lesions were identified as primary malignant and benign lesions via pathology; 3) the mpMRI for every patient enrolled must include consistent sequences, pre-enhanced and enhanced T1WI, T2WI, DWI, and Pk-DCE. The exclusion criteria were the following: 1) the patient was undergoing biopsy or surgery at an external institution and the pathological results were not available; 2) the Pk-DCE sequence could not be processed to generate pharmacokinetic parameter maps; 3) DWI sequence could not generate clear apparent diffusion coefficient (ADC) map; and 4) lesions on the image could not be identified so that they could not be annotated.



Pathological Examination

All patients underwent surgical resection, and the removed specimens were fixed in formalin and embedded with paraffin. The specimens were stained with hematoxylin and eosin to determine the histological type. According to the Scarff, Bloom, and Richardson histologic grade, invasive ductal carcinoma of breast cancer was classified as Grade I, Grade II, or Grade III (24). All pathological diagnoses were obtained by two experienced pathologists.



MRI Protocol

MRI was performed with the patient lying in the prone position, with 4-channel bilateral breast coils covering both breasts on a 3.0 T MRI scanner (Verio, Siemens Healthcare, Erlangen, Germany). The parameters of the sequences were as follows: (1) T2WI with a repetition time/echo time (TR/TE) of 4,300/61 ms, 34 slices, a field of view (FOV) of 340–400 mm, a slice thickness of 4 mm, and an acquisition time of 2 min 45 s; (2) DWI with a TR/TE of 7,100/95 ms, b = 50 and 800 s/mm2, 24 slices, an FOV of 320–380 mm, a slice thickness of 4 mm, and an acquisition time of 3 min 12 s; (3) axial, vibe fat-suppressed T1WI with a TR/TE of 3.61/0.96 ms; flip angles of 3°, 6°, 9°, 12°, and 15° successively, 30 slices, an FOV of 380–420 mm, a slice thickness of 4 mm, and an acquisition time of 8 s per scan. The next similar sequence with a flip angle of 12° was performed for 40 scans continuously, and after the second period, MRI contrast agent Omniscan (GE Healthcare Co., Ltd.) with 0.2 ml/kg was injected into an antecubital vein via a catheter at rate of 2 ml/s using a power injector (Medrad, Warrendale, PA), followed by a 20 ml saline flush.



Pk-DCE Data Processing

Pk-DCE datasets were processed using Omni-Kinetics (O.K.) software (GE Healthcare). First, the acquired Pk-DCE images were processed by a Markov-random-field based three-dimensional non-rigid registration algorithm to correct for the patient motion that occurs between the phases of dynamic data due to respiration and other involuntary movements. Second, the individual arterial input function was obtained from a region of interest (ROI) in the thoracic aorta. Third, using an extended Tofts model, Ktrans, Kep, Ve, and Vp maps were obtained for each case (25).



ROI Segmentation

All the maps were preprocessed to ensure that their matrices were consistent. ROIs were segmented manually in the enhanced-T1WI map over the entire lesion to avoid the partial volume effect and exclude necrosis, cystic areas, and vessels using ITK-SNAP software (version 3.0; www.itksnap.org) separately by two radiologists who had more than 10 years of experience in breast MRI analysis. If the boundary of tumor area was blurred or the results were inconsistent, two radiologists negotiate each other and reached a consensus. The maximum diameter of the lesion was measured in the enhanced-T1WI map to compare the lesion sizes. The ROIs in the enhanced-T1 weighted map were firstly resampled and transformed to physical space which was shared by all maps. Then the ROIs in physical space were transformed back to voxel space of other maps. The radiologist would tweak and exam other maps (i.e., the non-enhanced T1WI, T2WI, ADC, Ktrans, Kep, Ve, and Vp) to make sure ROIs’ right place. This step was completed using SimpleITK (Version 1.2.0, http://www.simpleitk.org).



ML and Statistical Analysis


Radiomics Features Extraction

Radiomics features extraction was performed using Pyradiomics (26) (Version 2.1.0). With this package, a total of 1132 features of each lesion were extracted from all eight MRI parameter maps, including first-order, shape, and texture features.




Principal Component Analysis of Features Extracted by Random Forest Model

The top-10 principal components from each MRI parameter were extracted construct a random forest model with the breast lesion labels of benign and malignant. The top 22 out of 80 principal components in coefficient ranking were chosen to analyze by the method of Random forest models with the breast lesion labels of benign and malignant. All of the above steps were performed in Python 3.6.



Feature Selection

To avoid overfitting, feature selection was implemented. In this stage, different statistical methods were applied to features to calculate the scores. And features were selected or removed according to their rank. F-test, Pearson Correlation Coefficient, Mutual information, L1 based method, Tree based method and Recursive Feature Elimination were used in our study. Feature selection was implemented using the Deepwise Research Platform (https://research.deepwise.com/).



Single-Parameter ML Models

Twelve classifiers (Logistic Regression, SVM, Linear SVC, Decision Tree, Random Forest, Ada Boost, Bernoulli NB, Gaussian NB, K Nearest Neighbors, Linear Discriminant Analysis, SGD and Multilayer Perceptron) were used to construct discriminative models for each MRI parameter with features selected. Models were trained and validated for 5-fold cross-validation with 10 rounds on all the lesions using the Deepwise Research Platform. The final performance of each single-parameter model was average of the all models from all ten rounds. The area under the receiver operating characteristic (ROC) curve (AUC) values of the model was calculated using ground truth label and score. The AUC, accuracy, specificity, and sensitivity of the eight single-parameter models were evaluated to determine their diagnostic efficiency for breast cancer.



Multi-Parametric ML Models

The appropriate classifiers were chosen to construct a multi-parametric model based on the results of the single-parametric ML models. There were 247 potential combinations of eight MRI parameters. In addition to classifier selection, models were also trained and validated for 5-fold cross-validation with 10 rounds on all the lesions using the Deepwise Research Platform. The average of the 10 verification scores from all 10 rounds was used as the final verification score of every multi-parametric ML model. Same metrics were used to evaluate the diagnostic efficiency as single-parameter ML methods. For the multi-parametric ML models, the one with highest diagnostic efficiency was determined to be the optimal ML model. The overall ML scheme was described in Figure 1, which showed how the features of the MRI parametric images are handled.




Figure 1 | The machine learning workflow with the features of multi-parametric MRI images. (A) The features of the single and Multi-parametric MRI parametric images are extracted and selected to construct machine learning models. (B) Machine Learning Models were trained and validated for 5-fold cross-validation with 10 rounds on all the lesions.





Validation of the Optimal ML Model

The performance of the validation was tested in the validation cohort. The value of the optimal ML model as a predictor of benign and malignant lesions was evaluated with the index of consistency in calibration curve. The net benefit was calculated by subtracting the proportion of all patients who were false positive from the proportion who were true positive in the decision curve.

The calibration curve was created using RMS package in RStudio 1.1., while the decision curve was plotted in python 3.6 with matplotlib package.



Breast Cancer Risk Model Built by Nomogram

The clinicopathologic characteristic of breast lesions were statistically analyzed using the software of GraphPad Prism 6. A parametric test (unpaired t‐test) was applied when normality assumptions and homogeneity of variance were satisfied. Otherwise, the equivalent non‐parametric test (Mann–Whitney test) was used. P < 0.05 indicated statistical significance. The clinicopathologic characteristics with statistical difference between benign and malignant lesions and the optimal ML model were used to construct breast cancer risk model. Nomogram was created to construct the risk model to assess the risk of breast cancer using the RMS package in RStudio 1.1.




Results


Enrolled Patients

As shown in Figure 2, from October 2016 to June 2018, 210 breast lesions (144 malignant lesions and 66 benign lesions) from 199 female patients met the above criteria and were enrolled in the study. There were nine patients with two benign lesions, one patient with bilateral malignant lesions, and one patient with 1 benign lesion and 1 malignant lesion. The clinicopathologic characteristics of patients, including age, lesion size, pathological type and histologic grade, were summarized in Table 1. The average age of patients with benign and malignant were 42.5 years old and 50.8 years old respectively, which had statistically significant difference. The size of the benign lesions was not significantly different from that of the malignant lesions.




Figure 2 | Flow diagram of inclusion and exclusion about the cohort data in this study.




Table 1 | Clinicopathologic characteristics of the study cohort.





The Sixth Principal Component of Ktrans Was the One With the Highest Importance

The top-10 principal components of every parameter were extracted from 1,132 features to construct a random-forest model, which had AUC of 0.84 and accuracy of 0.81. In this model, the sixth and fourth principal component of Ktrans were about twice as important as the other principal components (Figure 3A).




Figure 3 | (A) The principal component analysis of each parameter by Random forest model. The top-10 principal components of every parameter were extracted. The top 22 out of 80 principal components in coefficient ranking were chosen to construct a model by the method of Random forest model. The sixth and fourth principal component of Ktrans were obviously more important than other principal component of parameters. (B) Machine learning models with 12 classifiers were constructed to select the appropriate classifier according to the AUC of the single parameter models. The models with Logistic Regression, SVM, Multilayer Perceptron had relatively high AUC values (>0.80) and this three classifiers were considered as appropriate classifiers in our study.





Single-Parameter ML Model


The Ktrans ML Model Had the Best Discriminative Performance in the Single-Parametric ML Models

The models of Ktrans, Kep, Ve, Vp, non-enhanced T1WI, enhanced T1WI, T2WI, and ADC maps had AUC values of 0.86, 0.81, 0.81, 0.83, 0.79, 0.81, 0.84, and 0.83 for the validation cohort, respectively. The sensitivity, specificity, and accuracy of each parameter model was listed in Table 2. The Ktrans ML model was the optimal single-parametric model with the best discriminative performance.


Table 2 | The AUC, sensitivity, specificity, and accuracy of single-parameter models and the joint optimal model.





Classifiers Selection During Single-Parametric ML Models

In unbalanced data, AUC was more appropriate than accuracy, sensitivity and specificity to evaluate the performance of a model. We can see from Figure 3B that the models using the classifiers of Logistic Regression, SVM and Multilayer Perceptron had higher AUC values (>0.80), which were considered to be relatively good classifiers for constructing the breast cancer discriminative model in this study. These three feature classifiers were chosen to analyze the combined multiple parameters in the next section.




The Optimal mpMRI ML Model

A total of 247 experiments with mpMRI ML models were performed using six feature selection methods and three classifiers. The AUC values of every single and multi-parametric models were shown in Figure 4. The model that combined of Ktrans, non-enhanced T1WI, T2WI, and ADC, achieved the highest AUC value of 0.90 with multilayer perceptron as classifier in our study (Figure 4B).




Figure 4 | (A) All the models including single and multiply parameters were built with Logistic Regression, SVM and Multilayer Perceptron. One model combined with Ktrans, non-enhanced T1WI, T2WI and ADC had an AUC of 0.90, and was highest in all experiments. (B) ROC curve of the optimal model was constructed by four parameters with the AUC value of 0.90 in the diagnosis of breast cancer. (C) Calibration curves of the optimal ML model for the diagnosis of breast cancer based on the mpMRI. The y-axis represented the actual probability. The x-axis represented the predicted probability. The diagonal gray line represented a perfect prediction by an ideal model. The black solid line represented the performance of the optimal ML model, of which a closer fit to the diagonal gray line represented a better prediction. (D) Decision curve analysis for the optimal ML model based on the mpMRI for the diagnosis of breast cancer. The y-axis measured the net benefit. The x-axis represented the threshold probability. The blue line represented the optimal ML model. The dotted line represented the assumption that all patients had breast cancer. Thin black line represented the assumption that no patients had breast cancer. The net benefit was calculated by subtracting the proportion of all patients who were false positive from the proportion who were true positive, weighting by the risk of malignant lesions compared with the lesions. According to the Youden index in the validation cohort, when the threshold probability (Pt) was 0.80, the net benefit was 0.42. When Pt was 0.17–0.95, the net benefit of the optimal model was better than the treat-all or treat-none strategies.



It was showed that the 16 high-weight features in the optimal model were chosen by a Pearson correlation analysis from the features of four MRI parameters, and Ktrans had seven features beyond the other three parameters in Figure 5A. Each lesion’s score predicted by the optimal ML model was displayed in Figure 5B. The sensitivity, specificity, and accuracy rates of the optimal ML model were 81%, 89%, and 85%, respectively (Table 2).




Figure 5 | (A) Features of the optimal model constructed by Ktrans, non-enhanced T1WI, T2WI, and ADC. The joint multi-parameter model was constructed by the top 16 features in the weight coefficient ranking of features. Red represented that the lesion with higher weight feature was possible of malignant lesion in the model. Blue represented that the lesion with higher weight feature was possible of benign lesion in the model. (B) Score of the optimal model constructed by Ktrans, non-enhanced T1WI, T2WI and ADC for each lesion. Scores above zero meant malignant lesions in the model. Scores below zero meant benign lesions in model. Red represented malignant lesions in pathology, while blue represented benign lesions.





Validation of the Optimal Model

The index of concordance in the optimal ML model was 0.90 for the calibration curve in Figure 4C. The decision curve in Figure 4D shows that the clinical usefulness of the optimal model on the validation cohort. A greater net benefit was obtained when the threshold probability (Pt) was between 0.17 and 0.95, comparing Treat-none or Treat-all. Besides, according to the Youden index in the validation cohort, when the Pt was 0.80, the corresponding result was 0.42 on the decision curve, which meant that the optimal model was able to detect 42 breast-cancer-positive patients per 100 patients without increasing false-positives.



Nomograms of the Optimal ML Model

There was significant statistical difference in the patient age between benign and malignant lesions. The nomograms were built to predict the risk of malignant breast lesions by using the optimal ML model scores and patient age (Figure 6). In the nomogram, the older a person with breast disease and the higher radiomic score in the optimal ML model, the greater the risk of breast cancer.




Figure 6 | Nomogram for the risk prediction of breast cancer with patient age and the optimal ML model. The risk of breast cancer was positively correlated with the patient age and radiomic score of every lesion in the optimal ML model.






Discussion

In the present study, the principle components of Ktrans were more important than the principle components of other parameters, and the ML model of Ktrans map had the highest AUC, accuracy, and sensitivity of all single-parameter ML models. This indicated that Pk-DCE may be an important functional MRI with a high ability to identify breast cancer. The ML model combined of Ktrans, non-enhanced T1WI, T2WI, and ADC had the highest AUC value, accuracy, and specificity as well as a higher sensitivity than the other single-parameter and multi-parameter models for the breast cancer diagnosis. This four-parameter ML model could improve the discrimination ability of breast lesions. The calibration curve and decision curve demonstrated that the optimal ML model has good clinical value. In addition, patient age was significantly different for benign and malignant lesions. We created nomograms by combining the optimal ML model and clinical data, which could be helpful in the prediction of breast cancer risk.

This study was the first ML research on breast mpMRIs with conventional and functional sequences. First, we noted that ML was superior to the previous diagnostic analysis because it can recognize texture features that hardly be found by human eyes. Furthermore, the functional MRI, especially Pk-DCE, was suitable for identifying breast cancer. Additionally, breast cancer can be diagnosed not only by single parameter but also by combinations of multiply parameter. However, we found that the optimal ML model was not a single-parametric model nor a model that combined all the parameters, but instead was a model that combines four parameters, Ktrans, non-enhanced T1WI, T2WI, and ADC. The optimal ML model, with AUC 0.90, specificity 89% and accuracy 85%, was a good tool for preoperatively breast cancer diagnosing. The calibration curve and the decision curve analysis revealed that the optimal ML model was clinically useful. Nowadays, pathological diagnosis after surgery or biopsy was predominately used as the gold standard. However, sampling error was inevitable and invasive procedures may have adverse effects on patients (27).

The nomograms built by the optimal ML model could be beneficial for preoperatively predicting the risk of breast cancer in patients, enabling them to avoid unnecessary interventions for benign lesions.

The nomograms revealed that the optimal ML model was an important factor for predicting the risk of malignant breast lesions. In addition to the optimal ML model, the patient age played important roles in the prediction of breast cancer risk. The median age at breast cancer diagnosis was 61 years (28). Moreover, 81% of breast cancers were diagnosed among females 50 years old and older (29). In our study, the average age of patients with breast cancer was 50.8 years old. The age distribution in the literature was somewhat different to that of our study, which may be caused by the different samples.

There have been a few studies on breast mpMRI that applied conventional analytical methods (3, 25, 30–33). Truhn et al. used radiomics and deep learning to analyze breast mpMRI but the breast mpMRIs in their study only included T2WI and contrast-enhanced subtracted or non-subtracted images (23). In our study, we diagnosed breast lesions not only with conventional sequences, non-enhanced and enhanced T1WI as well as T2WI, but also with the functional sequences, DWI and Pk-DCE.

For the lesion segmentation of mpMRI images, the consistency of ROI annotation was a prerequisite to ensuring the accuracy of feature extraction (23). To improve the accuracy of lesion segmentation, we marked lesion ROIs on the enhanced T1WI image. We then matched this image and the lesion ROIs with the other multi-parametric images and the corresponding target areas using the software ITK-SNAP, whose powerful image processing facilitated the development of multiple MRI parameter-based ML methods.

This study had some limitations. First, the inherent limitation of ML was that the complex decision-making process of the model is difficult to understand, which resulted in ML often being called a “black box.” Additionally, the number of cases was relatively small and the appropriate external validation data were difficult to obtain. It was impossible to do a ML study based on histologic grade. In the next step, we plan to expand the sample for further study of ML methods in breast mpMRIs.



Conclusion

The ML based on mpMRI with functional sequences in the current study could extracted more image features of breast lesions that naked eyes could detect and had certain advantages in the diagnosis of breast cancer over the traditional analysis method. The nomograms with the optimal ML model based on mpMRI will clearly improve the efficiency of breast cancer prediction.
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Neratinib has great efficacy in treating HER2+ breast cancer but is associated with significant gastrointestinal toxicity. The objective of this pilot study was to understand the association of gut microbiome and neratinib-induced diarrhea. Twenty-five patients (age ≥ 60) were enrolled in a phase II trial evaluating safety and tolerability of neratinib in older adults with HER2+ breast cancer (NCT02673398). Fifty stool samples were collected from 11 patients at baseline and during treatment. 16S rRNA analysis was performed and relative abundance data were generated. Shannon’s diversity was calculated to examine gut microbiome dysbiosis. An explainable tree-based approach was utilized to classify patients who might experience neratinib-related diarrhea (grade ≥ 1) based on pre-treatment baseline microbial relative abundance data. The hold-out Area Under Receiver Operating Characteristic and Area Under Precision-Recall Curves of the model were 0.88 and 0.95, respectively. Model explanations showed that patients with a larger relative abundance of Ruminiclostridium 9 and Bacteroides sp. HPS0048 may have reduced risk of neratinib-related diarrhea and was confirmed by Kruskal-Wallis test (p ≤ 0.05, uncorrected). Our machine learning model identified microbiota associated with reduced risk of neratinib-induced diarrhea and the result from this pilot study will be further verified in a larger study.


Clinical Trial Registration

ClinicalTrials.gov, identifier NCT02673398. 
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Introduction

Neratinib is a potent small molecule tyrosine kinase inhibitor (TKI) that inhibits human epidermal growth factor receptors (HER1, HER2, and HER4). Neratinib has recently been granted FDA approval as extended therapy for early stage HER2+ breast cancer and in combination with capecitabine for treatment of HER2+ metastatic breast cancer (1–3). Despite excellent efficacy data, neratinib is associated with significant gastrointestinal (GI) toxicity, with grades 1–4 diarrhea observed in 95% of patients and grade 3–4 diarrhea in over 40% of patients in earlier trials (3–5). In nine trials of neratinib alone or in combination with other therapy, dose reductions due to diarrhea ranged from 20%–53% (1, 3, 6–12). Analysis of the ExteNET trial showed neratinib-associated diarrhea had a distinct and predictable clinical course, with 28.6% of patients having grade 3 events during the first month, then decreasing to ≤ 6% after month 3. Grade 3 events are generally short-lived and occur within the first month of treatment, allowing targeted preventive management with antidiarrheal prophylaxis early in the treatment course (13).

Older adults with breast cancer undergoing therapy with neratinib are particularly vulnerable to severe diarrhea due to potential changes in absorption, drug metabolism and distribution with increased age. An investigator-initiated clinical trial was designed to evaluate the safety and tolerability of neratinib in adults 60 and older with metastatic HER2+ breast cancer (NCT02673398). A total of 25 patients were enrolled and here we report gut microbiome analysis using 16S rRNA gene sequencing of longitudinally collected stool specimen in 11 patients.

The human gut contains a dense microbiome ecosystem that is essential in maintaining a healthy host physiology, and disruption of this ecosystem has been linked with increased risk of toxicities from systemic cancer therapy (14–19). The bacteriomic profile of the gut microbiome can be an indicator of general health and disease such as inflammation, digestive inefficiencies, and the presence of pathogens. The advent of next-generation sequencing technologies such as 16S rRNA gene or metagenome sequencing have enabled characterization of the gut microbiome architecture in an affordable and culture-free approach (20).

The objective of this study was to understand the association of host gut microbiome and neratinib-induced diarrhea. Utilizing 16S rRNA gene sequencing data, a machine learning model was built for prediction of diarrhea from baseline intestinal microbiota data in breast cancer patients.



Materials and Methods


Patients

A phase II, single arm, open label study was conducted between 09/2015 and 12/2019 (NCT02673398). Eligibility criteria were histologically proven metastatic breast cancer; HER2+ defined by ASCO/CAP guideline; age ≥ 60; Eastern Cooperative Oncology Group (ECOG) performance status (PS) 0–2. Patients were started with a neratinib dose of 240 mg oral daily in a 28-day cycle. Diarrhea prophylaxis with loperamide was mandatory during the first cycle of treatment and was used as needed beyond the first cycle. Adverse events (AEs) were assessed by NCI Common Terminology Criteria for Adverse Events (CTCAE) 4.0. This study was approved by City of Hope’s regulatory and ethics committees and was conducted in accordance with the Declaration of Helsinki and the principles of Good Clinical Practice. All participants provided written informed consent.



Sample Collection

Stool samples were collected at baseline, Cycle 1 Day 15, Cycle 2 Day 1, Cycle 2 Day 15, and Cycle 3 Day 1. Fifty samples from 11 patients were collected using Zymo DNA/RNA Shield Fecal Collection tubes. For the machine learning model, stool samples and patient adverse event of diarrhea at any time over the course of treatment were analyzed.



Microbiome Analysis

DNA was extracted using the MagMax Microbiome Ultra Extraction Kit (AA2358, Thermo-Fisher, Waltham, MA), with prior bead beating on a TissueLyser (Qiagen), using the KingFisher Magnetic Extraction Instrument (ThermoFisher). DNAs were quantitated by the BactQuant assay (21). 16S rRNA libraries were created as described by Kozich et al. (22), using modified primers described by Walters et al. (23), that amplify the 16s rRNA variable region 4 (V4) of the rRNA gene of bacteria and archaea. More than 16,000 reads per sample were produced. Reads were quality filtered, trimmed and chimeras removed then taxonomically classified using the Silva database using QIIME2 (24, 25). The relative abundance of 26 taxa present at ≥ 5% in any one sample within this cohort was reported to the genus level or above. Shannon’s diversity index was also calculated to examine gut microbiome dysbiosis.



Explainable Tree-Based Predictive Modeling

To classify which patients would have neratinib-related diarrhea, microbial relative abundance data from the 11 patients (50 specimens) were utilized for predictive modeling. Input features were fed into machine learning models to classify which patients would have diarrhea. A non-parametric and non-linear gradient-boosted tree approach [xgboost package (26)] was utilized for classification. For model performance assessment, a leave-one-patient-out approach was chosen. In each iteration, input data from one patient was held out while data from the rest of the patients were used for training a model. Default set of regularization and hyperparameters were used to fit the model. The fitted model was then applied only on the pre-treatment baseline data from the hold-out patient. Receiver Operating Characteristic (ROC) and Precision-Recall Curves (PRC) were used for model assessment. Subsequently, the entire dataset was used to fit a final model. A tree-explainer was used to compute local explanations [probabilistic SHAP value, shap package (27, 28)] based on the associated exact shapley values generated for each feature from individual patient’s data. The overall feature importance was obtained by calculating the mean absolute SHAP values of individual features. Post-hoc analyses were then performed on the most important features using Kruskal-Wallis tests to assess the differences of the most important microbiota relative abundance between patients without and without neratinib-induced diarrhea. Python 3.7.6, scikit-learn 0.22.1, xgboost 1.0.1, shap 0.35.0, and scipy 1.4.1 were used for machine learning modeling and statistical analysis.




Results


Patients

A total of 11/25 patients who were accrued between December 2016 and March 2019 provided 50 longitudinal stool samples. Patient and disease characteristics are summarized in Supplementary Table 1. The median age was 66 years old (60–78). Sixty-four percent were Caucasian and 36% were Asian, with 27% of Hispanic ethnicity. Eighty-two percent were hormone receptor positive HER2+ metastatic breast cancer. Seventy-three percent developed grade ≥ 1 diarrhea attributed to neratinib over the course of treatment.



Microbiome Analysis

16S rRNA gene analysis was performed and the relative abundance of 26 taxa present at ≥ 5% in any one sample within this cohort was reported to the genus level or higher as classified by QIIME2 (25) (Figure 1A). Bacteroides (green) is a common anaerobic gut inhabitant that comprises a large proportion of the human gut microbiome, is responsible for fermentation of long chain carbohydrates, produces butyrate, and dominates in populations who eat a Western diet. Bacteroides sp. were present in most patients in this study (9/11, 82%), and were predominant at baseline and throughout treatment. Prevotella 9 (pink/violet) is a member of the same family as Bacteroides, but is more prevalent in non-Westernized populations. Two out of 11 (18%) patients had Prevotella during treatment. Akkermansia (orange) is associated with a healthy gut, and has anti-inflammatory effects. Five out of 11 (45%) patients had Akkermansia during treatment.




Figure 1 | 16S rRNA gene sequencing analysis. (A) Relative abundance of top 26 taxa by patient and cycle; (B) Shannon’s alpha diversity by patient and cycle.



Shannon’s alpha diversity (29) measures the evenness in the fecal communities. Shannon diversity was calculated to examine gut microbiome dysbiosis (Figure 1B). A normal healthy gut microbiome usually has a Shannon diversity index of 3.5 or greater. Several samples fell below this threshold; however, no clear association of Shannon alpha diversity index and diarrhea was identified.



Explainable Prediction Model for Diarrhea Due to Neratinib

The cohort for machine learning modeling included patients 1, 2, 5, 7–11 with at least one occurrence of diarrhea (n = 8), and patients 3, 4, 6 with no diarrhea (n = 3). The Area Under ROC (AUROC) and Area Under PRC (AUPRC) of the classification model were 0.88 and 0.95, respectively (Figures 2A, B).




Figure 2 | Model assessment. (A) Area Under Receiver Operating Characteristic (ROC) Curve; (B) Area Under Precision-Recall Curve (PRC).



The bar plot of mean absolute SHAP values of individual features associated with the final optimal model suggests Ruminiclostridium 9 and Bacteroides sp. HPS0048 are the two most impactful features overall for predicting risk for treatment-related diarrhea (Figure 3A). A beeswarm plot (27) shows each row corresponding to one feature and each dot corresponding to one patient in the full dataset (Figure 3B). The color of each dot corresponds to normalized feature value (qualitative: blue for low values, red for high values) whereas its position along the x-axis depicts the SHAP value describing the impact on the model prediction. Using the beeswarm plot, the directionality of the relation between individual features and outcome can be observed, along with the magnitude of the relation. Specifically, patients with larger relative abundance of Ruminiclostridium 9 and Bacteroides sp. HPS0048 may have reduced risk of treatment-related diarrhea. A heatmap displays the relative abundance of Ruminiclostridium 9 and Bacteroides sp. HPS0048 in log10 scale (Figure 4). Using Kruskal-Wallis tests, statistically significant differences between patients with and without diarrhea for Ruminiclostridium 9 (p = 0.04, uncorrected) and Bacteroides sp. HPS0048 (p = 0.05, uncorrected) were identified. No statistically significant difference was observed for the next three important features (D_5__Subdoligranulum: p = 0.21; D_4__Lachnospiraceae_d: p = 0.21, D_5__Tyzzerella 4: p = 0.24, uncorrected).




Figure 3 | Feature importance and local explanation of final model. (A) Bar plot of mean absolute SHAP values of individual features; and (B) Beeswarm plot showing feature values and impact on the model prediction.






Figure 4 | Heatmap showing differences in microbiota relative abundance between patients with and without neratinib-induced diarrhea (in log10 scale). *Kruskal-Wallis test with p ≤ 0.05 uncorrected.






Discussion

Using the relative abundance of microbiome taxa data, we have developed an explainable tree-based predictive model to estimate the risk of diarrhea associated with neratinib treatment in patients ≥ 60 with HER2+ metastatic breast cancer. Utilizing a nested cross-validation approach, we achieved a promising 0.88 AUROC and 0.95 AUPRC for model performance. We also identified the most important features that could predict diarrhea and the risk with the associated directionality: patients with higher relative abundance of Ruminiclostridium 9 and Bacteroides sp. HPS0048 may have a reduced risk of treatment-related diarrhea. The findings were confirmed by Kruskal-Wallis tests (p ≤ 0.05, uncorrected). Both species produce short chain fatty acids (SCFAs) including acetate, propionate, and butyrate, which are important metabolites for maintaining intestinal homeostasis. In addition, butyrate also has important immunomodulatory functions and may activate signaling cascades that control immune functions (30).

Multiple studies have shown that the gut microbiota has the potential to influence the efficacy of cancer therapy (31, 32). There are several potential mechanisms of action for TKI induced diarrhea, including direct target inhibition, chloride secretion, intestinal inflammation, and a dysbiotic microbiome (31). Both preclinical and clinical studies have demonstrated decreased total bacterial abundance and diversity, as well as decreases in commensals such as Lactobacillus and Bifidobacteria, with increases in Bacteroidetes and Escherichia coli contributing to TKI-induced diarrhea (32). The translocation, immunomodulation, metabolism, enzymatic degradation, reduced diversity (TIMER) model proposed by Alexander and colleagues has outlined how the functions of the microbiome may have a central role in determining the extent and intensity of diarrhea induced by systemic therapy (33). Heshiki et al. investigated the contribution of the intestinal microbiome on treatment outcomes in a heterogeneous cohort that included multiple cancer types to identify microbes with a global impact on immune response (34). This human gut metagenomic analysis revealed that responders had significantly higher microbial diversity and different microbiota compositions compared to non-responders, and species such as Bacteroides ovatus and Bacteroides xylanisolvens were positively correlated with treatment outcomes. In the current study, no clear association of Shannon alpha diversity index and diarrhea was identified. This likely reflects the relatively small sample size.

Machine learning and deep learning models are being widely used for precision oncology research (35). Although the predictive models often have impressive predictive performance, they are typically difficult to explain. Explaining predictive models is one of the key factors driving their use in a clinical setting (36, 37). To correlate model prediction accuracy and explainability, various approaches have been proposed to generate intuitive interpretations on predictive models (27, 28, 38, 39). Using a concept in game theory, Lungberg et al. proposed a unified framework called SHAP (SHapley Additive exPlanations) that works for essentially all predictive models including tree-based and deep learning models (38). In SHAP, each feature is assigned an importance value (SHAP value) and the addition of all SHAP values leads to the actual prediction. A model prediction can be decomposed into a unique set of SHAP values associated with the features, allowing clinicians and scientists to utilize contributions of individual feature SHAP values and their interactions to draw insight from the dataset.

The current pilot study is limited by its small sample size. Longitudinal samples were collected from 11 patients with 50 specimens. To reduce potential bias due to training a predictive model with limited sample size, we have adopted a robust train-test split approach where the test dataset in each leave-one-patient-out loop was kept entirely independent of the train dataset (40). Increased cohort size and an external dataset would boost the utility of this model. Nevertheless, the high model performance (AUROC and AUPRC) with meaningful feature explanation offers a foundation for future studies. Our study also contributes to the new field of gut microbiome in oncology by providing a novel predictive model associating host gut microbiota with treatment-induced diarrhea. TKIs have been broadly used in current oncology practice and diarrhea is a common and challenging side effect. Modulation of the microbiota may support cancer therapy and improve patient’s quality of life in the future (34).



Conclusion

Our machine learning model identified microbiota associated with reduced risk of neratinib-induced diarrhea and the result from this pilot study will be further verified in a larger study.



Data Availability Statement

The original contributions presented in the study are publicly available. This data can be found here: https://github.com/cwwong-alec/Analysis-of-Gut-Microbiome-Using-xML-Predicts-Risk-of-Diarrhea-Associated-With-TKI-Neratinib



Ethics Statement

The studies involving human participants were reviewed and approved by City of Hope’s IRB-approved protocol. All procedures were carried out in accordance with The Code of Ethics of the World Medical Association (Declaration of Helsinki) and Recommendations for the Conduct, Reporting, Editing, and Publication of Scholarly Work in Medical Journals. Privacy rights were observed and written informed consent was obtained from all participants of this study under IRB15342 and ClinicalTrials.gov NCT02673398. The patients/participants provided their written informed consent to participate in this study.



Author Contributions

CW and YY made substantial contributions to conception and design, analysis, and interpretation of data, drafting and revising the manuscript, and final approval for publication. JL and SY contributed to database management, chart review, data analysis, manuscript preparation, and revision. JG, MF, LR, and SH performed the 16S rRNA gene sequencing and analysis. ZE, JM, and SH revised the manuscript and provided final approval for publication. YY is the guarantor and agrees to be accountable for all aspects of the work. All authors contributed to the article and approved the submitted version.



Funding

Puma sponsored the trial and provided neratinib. This study was supported by COH Pathology Research Services Core and Biostatistics and Mathematical Modeling Core (National Cancer Institute of the National Institutes of Health under award number P30CA033572).  The authors also thank the NIH R03 AG050931-02(PI YY) STOP Cancer Foundation (PI YY), NIH K-12 Career Development Award (K12CA001727, PI JM), and NIH 1R01CA206911-01A1 (PI Emily Wang). Puma was not involved in the study design, collection, analysis, interpretation of data, the writing of this article or the decision to submit it for publication.



Acknowledgments

The authors gratefully acknowledge Puma Biotechnology Inc. for sponsoring the clinical trial. Research reported in this publication includes work supported by the National Cancer Institute (NCI). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.



Supplementary Material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fonc.2021.604584/full#supplementary-material



References

1. Saura, C, Oliveira, M, Feng, YH, Dai, MS, Chen, SW, Hurvitz, SA, et al. Neratinib Plus Capecitabine Versus Lapatinib Plus Capecitabine in HER2-Positive Metastatic Breast Cancer Previously Treated With >/= 2 HER2-Directed Regimens: Phase III NALA Trial. J Clin Oncol (2020) 38(27):3138–49. doi: 10.1200/JCO.20.00147

2. Singh, H, Walker, AJ, Amiri-Kordestani, L, Cheng, J, Tang, SH, Balcazar, P, et al. US Food and Drug Administration Approval: Neratinib for the Extended Adjuvant Treatment of Early-Stage HER2-Positive Breast Cancer. Clin Cancer Res (2018) 24(15):3486–91. doi: 10.1158/1078-0432.Ccr-17-3628

3. Chan, A, Delaloge, S, Holmes, FA, Moy, B, Iwata, H, Harvey, VJ, et al. Neratinib after trastuzumab-based adjuvant therapy in patients with HER2-positive breast cancer (ExteNET): a multicentre, randomised, double-blind, placebo- controlled, phase 3 trial. Lancet Oncol (2016) 17(3):367–77. doi: 10.1016/s1470-2045(15)00551-3

4. Rugo, HS, Di Palma, JA, Tripathy, D, Bryce, R, Moran, S, Olek, E, et al. The characterization, management, and future considerations for ErbB-family TKI-associated diarrhea. Breast Cancer Res Treat (2019) 175(1):5–15. doi: 10.1007/s10549-018-05102-x

5. Barcenas, CH, Hurvitz, SA, Di Palma, JA, Bose, R, Chien, AJ, Iannotti, N, et al. Improved tolerability of neratinib in patients with HER2-positive early-stage breast cancer: the CONTROL trial. Ann Oncol (2020) 31(9):1223–30. doi: 10.1016/j.annonc.2020.05.012

6. Meric-Bernstam, F, Johnson, AM, Dumbrava, EEI, Raghav, K, Balaji, K, Bhatt, M, et al. Advances in HER2-Targeted Therapy: Novel Agents and Opportunities Beyond Breast and Gastric Cancer. Clin Cancer Res (2019) 25(7):2033–41. doi: 10.1158/1078-0432.Ccr-18-2275

7. Freedman, RA, Gelman, RS, Anders, CK, Melisko, ME, Parsons, HA, Cropp, AM, et al. TBCRC 022: A Phase II Trial of Neratinib and Capecitabine for Patients With Human Epidermal Growth Factor Receptor 2-Positive Breast Cancer and Brain Metastases. J Clin Oncol (2019) 37(13):1081–9. doi: 10.1200/jco.18.01511

8. Murthy, RK, Loi, S, Okines, A, Paplomata, E, Hamilton, E, Hurvitz, SA, et al. Tucatinib, Trastuzumab, and Capecitabine for HER2-Positive Metastatic Breast Cancer. N Engl J Med (2020) 382(7):597–609. doi: 10.1056/NEJMoa1914609

9. Rabindran, SK, Discafani, CM, Rosfjord, EC, Baxter, M, Floyd, MB, Golas, J, et al. Antitumor activity of HKI-272, an orally active, irreversible inhibitor of the HER-2 tyrosine kinase. Cancer Res (2004) 64(11):3958–65. doi: 10.1158/0008-5472.Can-03-2868

10. Tiwari, SR, Mishra, P, and Abraham, J. Neratinib, A Novel HER2-Targeted Tyrosine Kinase Inhibitor. Clin Breast Cancer (2016) 16(5):344–8. doi: 10.1016/j.clbc.2016.05.016

11. Connell, CM, and Doherty, GJ. Activating HER2 mutations as emerging targets in multiple solid cancers2017. ESMO Open 2(5):e000279. doi: 10.1136/esmoopen-2017-000279

12. Ben-Baruch, NE, Bose, R, Kavuri, SM, Ma, CX, and Ellis, MJ. HER2-Mutated Breast Cancer Responds to Treatment With Single-Agent Neratinib, a Second-Generation HER2/EGFR Tyrosine Kinase Inhibitor. J Natl Compr Cancer Network (2015) 13(9):1061–4. doi: 10.6004/jnccn.2015.0131

13. Mortimer, J, Di Palma, J, Schmid, K, Ye, Y, and Jahanzeb, M. Patterns of occurrence and implications of neratinib-associated diarrhea in patients with HER2-positive breast cancer: analyses from the randomized phase III ExteNET trial. Breast Cancer Res (2019) 21(1):32. doi: 10.1186/s13058-019-1112-5

14. Aarnoutse, R, Ziemons, J, Penders, J, Rensen, SS, de Vos-Geelen, J, and Smidt, ML. The Clinical Link between Human Intestinal Microbiota and Systemic Cancer Therapy. Int J Mol Sci (2019) 20(17). doi: 10.3390/ijms20174145

15. Khan, MAW, Ologun, G, Arora, R, McQuade, JL, and Wargo, JA. Gut Microbiome Modulates Response to Cancer Immunotherapy. Dig Dis Sci (2020) 65(3):885–96. doi: 10.1007/s10620-020-06111-x

16. Cheng, Y, Ling, Z, and Li, L. The Intestinal Microbiota and Colorectal Cancer. Front Immunol (2020) 11:615056:615056. doi: 10.3389/fimmu.2020.615056

17. Helmink, BA, Khan, MAW, Hermann, A, Gopalakrishnan, V, and Wargo, JA. The microbiome, cancer, and cancer therapy. Nat Med (2019) 25(3):377–88. doi: 10.1038/s41591-019-0377-7

18. Elinav, E, Garrett, WS, Trinchieri, G, and Wargo, J. The cancer microbiome. Nat Rev Cancer (2019) 19(7):371–6. doi: 10.1038/s41568-019-0155-3

19. Schwabe, RF, and Jobin, C. The microbiome and cancer. Nat Rev Cancer (2013) 13(11):800–12. doi: 10.1038/nrc3610

20. Osman, MA, Neoh, HM, Ab Mutalib, NS, Chin, SF, and Jamal, R. 16S rRNA Gene Sequencing for Deciphering the Colorectal Cancer Gut Microbiome: Current Protocols and Workflows. Front Microbiol (2018) 9:767. doi: 10.3389/fmicb.2018.00767

21. Liu, CM, Aziz, M, Kachur, S, Hsueh, PR, Huang, YT, Keim, P, et al. BactQuant: an enhanced broad-coverage bacterial quantitative real-time PCR assay. BMC Microbiol (2012) 12:56. doi: 10.1186/1471-2180-12-56

22. Kozich, JJ, Westcott, SL, Baxter, NT, Highlander, SK, and Schloss, PD. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol (2013) 79(17):5112–20. doi: 10.1128/AEM.01043-13

23. Walters, W, Hyde, ER, Berg-Lyons, D, Ackermann, G, Humphrey, G, Parada, A, et al. Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems (2016) 1(1). doi: 10.1128/mSystems.00009-15

24. Caporaso, JG, Kuczynski, J, Stombaugh, J, Bittinger, K, Bushman, FD, Costello, EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods (2010) 7(5):335–6. doi: 10.1038/nmeth.f.303

25. Bolyen, E, Rideout, JR, Dillon, MR, Bokulich, NA, Abnet, CC, Al-Ghalith, GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol (2019) 37(8):852–7. doi: 10.1038/s41587-019-0209-9

26. Chen, T, and Guestrin, C. XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. (2016). pp. 785–94. doi: 10.1145/2939672.2939785

27. Lundberg, SM, Erion, G, Chen, H, DeGrave, A, Prutkin, JM, Nair, B, et al. From local explanations to global understanding with explainable AI for trees. Nat Mach Intell (2020) 2(1):56–67. doi: 10.1038/s42256-019-0138-9

28. Lundberg, SM, Nair, B, Vavilala, MS, Horibe, M, Eisses, MJ, Adams, T, et al. Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nat BioMed Eng (2018) 2(10):749–60. doi: 10.1038/s41551-018-0304-0

29. Shannon, CE. The mathematical theory of communication. 1963. MD Comput (1997) 14(4):306–17.

30. Parada Venegas, D, De la Fuente, MK, Landskron, G, González, MJ, Quera, R, Dijkstra, G, et al. Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Front Immunol (2019) 10:277. doi: 10.3389/fimmu.2019.00277

31. Secombe, KR, Van Sebille, YZA, Mayo, BJ, Coller, JK, Gibson, RJ, and Bowen, JM. Diarrhea Induced by Small Molecule Tyrosine Kinase Inhibitors Compared With Chemotherapy: Potential Role of the Microbiome. Integr Cancer Ther (2020) 19:1534735420928493. doi: 10.1177/1534735420928493

32. Ma, W, Mao, Q, Xia, W, Dong, G, Yu, C, and Jiang, F. Gut Microbiota Shapes the Efficiency of Cancer Therapy. Front Microbiol (2019) 10:1050. doi: 10.3389/fmicb.2019.01050

33. Alexander, JL, Wilson, ID, Teare, J, Marchesi, JR, Nicholson, JK, and Kinross, JM. Gut microbiota modulation of chemotherapy efficacy and toxicity. Nat Rev Gastroenterol Hepatol (2017) 14(6):356–65. doi: 10.1038/nrgastro.2017.20

34. Heshiki, Y, Vazquez-Uribe, R, Li, J, Ni, Y, Quainoo, S, Imamovic, L, et al. Predictable modulation of cancer treatment outcomes by the gut microbiota. Microbiome (2020) 8(1):28. doi: 10.1186/s40168-020-00811-2

35. Azuaje, F. Artificial intelligence for precision oncology: beyond patient stratification. NPJ Precis Oncol (2019) 3:6. doi: 10.1038/s41698-019-0078-1

36. Char, DS, Shah, NH, and Magnus, D. Implementing Machine Learning in Health Care - Addressing Ethical Challenges. N Engl J Med (2018) 378(11):981–3. doi: 10.1056/NEJMp1714229

37. Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat Mach Intell (2019) 1(5):206–15. doi: 10.1038/s42256-019-0048-x

38. Lundberg, SM, and Lee, S-I. A unified approach to interpreting model predictions. In: . Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, California, USA: Curran Associates Inc. (2017).

39. Bach, S, Binder, A, Montavon, G, Klauschen, F, Muller, KR, and Samek, W. On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation. PloS One (2015) 10(7):e0130140. doi: 10.1371/journal.pone.0130140

40. Vabalas, A, Gowen, E, Poliakoff, E, and Casson, AJ. Machine learning algorithm validation with a limited sample size. PloS One (2019) 14(11):e0224365. doi: 10.1371/journal.pone.0224365



Conflict of Interest: YY has contracted research sponsored by Merck, Eisai, Novartis, Puma, Genentech, Celgene, and Pfizer; is a consultant for Puma, Pfizer, Immunomedics, and is on the Speakers Bureau for Eisai, Novartis, Genentech, AstraZeneca, Daiichi Sankyo, Pfizer, Merck and Immunomedics.

The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Wong, Yost, Lee, Gillece, Folkerts, Reining, Highlander, Eftekhari, Mortimer and Yuan. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.




ORIGINAL RESEARCH

published: 11 March 2021

doi: 10.3389/fonc.2021.588136

[image: image2]


Prognosis and Genomic Landscape of Liver Metastasis in Patients With Breast Cancer


Chonglin Tian 1,2†, Sujing Liu 3†, Yongsheng Wang 2* and Xianrang Song 2*


1 Graduate School, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China, 2 Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China, 3 Department of Radiation Oncology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China




Edited by: 
Shengtao Zhou, Sichuan University, China

Reviewed by: 
Pengfei Wang, Capital Medical University, China

Wei Wang, Huzhou Maternity & Child Health Care Hospital, China

*Correspondence: 
Yongsheng Wang
 wangysh2008@aliyun.com
 Xianrang Song
 basiclab@163.com


†These authors have contributed equally to this work


Specialty section: 
 This article was submitted to Women’s Cancer, a section of the journal Frontiers in Oncology








Received: 28 July 2020

Accepted: 01 February 2021

Published: 11 March 2021

Citation:
Tian C, Liu S, Wang Y and Song X (2021) Prognosis and Genomic Landscape of Liver Metastasis in Patients With Breast Cancer. Front. Oncol. 11:588136. doi: 10.3389/fonc.2021.588136




Objective

The prognosis of breast cancer liver metastasis (BCLM) is poor, and its molecular mechanism is unclear. We aimed to determine the factors that affect the prognosis of patients with BCLM and investigate the genomic landscape of liver metastasis (LM).



Methods

We described the prognosis of patients with BCLM and focused on prognosis prediction for these patients based on clinicopathological factors. Nomogram models were constructed for progression-free survival (PFS) and overall survival (OS) by using a cohort of 231 patients with BCLM who underwent treatment at Shandong Cancer Hospital and Institute (SCHI). We explored the molecular mechanism of LM and constructed driver genes, mutation signatures by using a targeted sequencing dataset of 217 samples of LM and 479 unpaired samples of primary breast cancer (pBC) from Memorial Sloan Kettering Cancer Center (MSKCC).



Results

The median follow-up time for 231 patients with BCLM in the SCHI cohort was 46 months. The cumulative incidence of LM at 1, 2, and 5 years was 17.5%, 45.0%, and 86.8%, respectively. The median PFS and OS were 7 months (95% CI, 6–8) and 22 months (95% CI, 19–25), respectively. The independent factors that increased the progression risk of patients with LM were Karnofsky performance status (KPS) ≤ 80, TNBC subtype, grade III, increasing trend of CA153, and disease-free interval (DFS) ≤ 1 year. Simultaneously, the independent factors that increased the mortality risk of patients with LM were Ki-67 ≥ 30%, grade III, increasing trend of CA153, pain with initial LM, diabetes, and DFI ≤ 1 year. In the MSKCC dataset, the LM driver genes were ESR1, AKT1, ERBB2, and FGFR4, and LM matched three prominent mutation signatures: APOBEC cytidine deaminase, ultraviolet exposure, and defective DNA mismatch repair.



Conclusion

This study systematically describes the survival prognosis and characteristics of LM from the clinicopathological factors to the genetic level. These results not only enable clinicians to assess the risk of disease progression in patients with BCLM to optimize treatment options, but also help us better understand the underlying mechanisms of tumor metastasis and evolution and provide new therapeutic targets with potential benefits for drug-resistant patients.
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Introduction

Breast cancer (BC) is a malignant tumor with the highest incidence in women, and the trend of rejuvenation is significant (1). Metastatic breast cancer (mBC) is constantly diagnosed, and the position of metastatic organs strongly correlates with survival time, despite progress has been made in the treatment and prognosis of early BC (2–4). The prognosis of liver recurrence is the second-worst outcome after brain metastasis (2, 4). About half of the patients with mBC eventually develop liver metastasis (LM) (5), and this probability is increasing every year (6).

The American Joint Committee on Cancer Staging is most commonly used to predict the prognosis of cancer patients. It includes TNM staging, pathological grade, and tumor expression status of biological indicators such as estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER-2). Additionally, some investigations have pointed out that biological and pathological parameters could be used for predicting the recurrence or prognosis of patients with BC (7, 8). However, an authoritative prediction model for the prognosis of patients with breast cancer liver metastasis (BCLM) has not yet been developed.

In the early years, the mechanisms of BCLM were not explored extensively, and mainly the inherent structure and microenvironment of the liver were focused on. For example, the high expression of Claudin-2 can enhance the adhesion to extracellular matrix proteins, thereby increasing the potential of BC cells to transfer to the liver (9). Another example is that the interaction between chemokine receptors on tumor cell membranes and chemokines in the microenvironment, such as CCL2 (10, 11) and CXCR4-CXCL12/SDF-1 (12–14), plays important roles in LM. Moreover, with the rapid development of sequencing technology in the recent years, a large number of early BC gene maps have been reported, along with several reports on the overall mutation characteristics of mBC (15–18). However, the genetic landscape related to LM alone has not yet been characterized.

In this study, we aimed to focus on prognosis prediction and construct nomogram models for progression-free survival (PFS) and overall survival (OS) by using clinicopathological characteristics, especially the innovative application of the dynamic changes of hematological indicators, in a cohort of patients with BCLM who underwent treatment at Shandong Cancer Hospital and Institute (SCHI). We investigated the molecular mechanism of LM and constructed driver genes, mutation signatures (MSs) by using a targeted sequencing dataset from the Memorial Sloan Kettering Cancer Center (MSKCC), which was verified with the dataset of the Predictive Oncology team of the University of Aix-Marseille (POTUAM) (Figure 1).




Figure 1 | Article structure frame diagram. SCHI, Shandong Cancer Hospital and Institute; MSKCC, Memorial Sloan Kettering Cancer Center; POTUAM, Predictive Oncology team of the University of Aix-Marseille; NGS, next-generation sequencing; WES, whole-exome sequencing.





Materials and Methods


SCHI Cohort

Patients who met the following criteria were eligible for this study: (1) diagnosed with BCLM and treated continuously with SCHI (Figure 1) from December 2008 to December 2018, (2) complete clinical pathology records, (3) age ≥ 18 and ≤ 75, and (4) Karnofsky performance status (KPS) ≥ 60. Patients who met any of the following criteria were excluded from the study: (1) bilateral BC, (2) primary and/or metastatic liver cancer, (3) other invasive malignant diseases within five years, and (4) medical records deemed unqualified according to the investigator’s opinion. All the medical records of patients with BCLM diagnosed by pathology or imaging were collected retrospectively. This study was approved by the Institutional Review Board, and the personal information of all patients and attending doctors was also deleted from the data set. Clinical features, pathological features, imaging examinations, treatment methods, and survival information were collected by two independent researchers according to a standardized process, and disagreements were resolved through discussions with a third expert.

The date of LM diagnosis was based on the date of the imaging examination or the date of biopsy pathology report. Disease-free interval (DFI) refers to the length of time from BC diagnosis to relapse or metastasis. PFS refers to the length of time from the diagnosis of BCLM to disease progression. OS refers to the length of time from BCLM diagnosis to death from any cause or the last follow-up. All surviving patients at the time of analysis were censored at the date of their last follow-up.



MSKCC Dataset and POTUAM Dataset

The targeted sequencing dataset of 217 samples of LM and 479 unpaired samples of primary breast cancer (pBC) via MSK-IMPACT, a hybridization capture which has the ability to detect all protein-coding mutations, structural rearrangements, selected promoter mutations and copy number alterations in 410 cancer-associated genes on Illumina HiSeq sequencers, was extracted from the MSK-IMPACT Clinical Sequencing Cohort (19) (Figure 1) (https://www.cbioportal.org/study/summary?id=msk_impact_2017). MSK-IMPACT gene panels can be found here: https://github.com/cBioPortal/datahub/tree/master/reference_data/gene_panels. The POTUAM dataset contains the whole-exome sequencing results of 268 LM samples and 349 other metastasis samples (15) (Figure 1) (https://github.com/gustaveroussy/mBC_WES_Fabrice_Andre_2019).



Significant Mutant Genes and Mutational Signatures

Significantly mutant genes were identified with Maftools (20) across the entire cohort of pBCs and LMs. Oncodrive based on the algorithm oncodriveCLUST (21) was used to identify cancer genes (driver) from a given mutant allele fractions. We then used the NMF (22) algorithm to decompose MSs based on the set of known signatures from the COSMIC database (23), and calculated the cosine similarity to identify the best match.



Statistical Analysis

Chi-square test or Fisher’s exact test was used to evaluate differences in count data. Comparisons of tumor mutational burden were performed using Mann–Whitney U test. We used the Kaplan–Meier method for survival analysis and evaluated the difference between the Kaplan–Meier curves by applying the log-rank test. p < 0.05 was considered statistically significant. The Cox proportional hazards model was used to analyze the univariate and multivariate factors associated with survival. Finally, we used the RMS r package to draw the nomograms. All statistical analyses were performed using SPSS software for mac v26 and R v4.0.0.




Results


Clinicopathological Characteristics of the SCHI Cohort

Between December 2008 and December 2018, 410 patients with BCLM were admitted to our hospital. A total of 231 patients were eligible. Of the 231 patients, 213 had first recurrent LM and 18 had subsequent recurrent LM. Among the patients with first recurrent LM, 69 had only LM, and 144 had metastasis to other organs. (Figure 1). The median follow-up time in this study was 46 months (range, 12–118 months). The clinicopathological characteristics of the patients at baseline are shown in Table 1. The median age at diagnosis of mBC was 45 years (range: 26–72 years), of which 76 (32.9%) patients were ≤ 40 years old and 155 (67.1%) were menopausal. The most common anatomical location of the breast lump was the outer upper quadrant (39.4%), and the most common molecular subtype was HER-2 (33.8%). The number of patients in grades I-II and grade III was approximately equal (51.9% vs. 48.1%). A total of 183 patients (79.2%) with non-metastatic pBC eventually developed metastatic disease, while 48 (20.8%) presented with stage IV mBC at initial diagnosis. When diagnosed with mBC, 86 (37.2%) patients had 1 metastatic lesion, 82 (35.5%) had 2 metastatic lesions, and 63 (27.3%) had 3 or more metastatic lesions. The most commonly involved sites, apart from the liver, were the bone (n = 108), lung (n = 51), and brain (n = 9). During the course of the disease, 78 patients (33.8%) experienced clinical symptoms caused by LM. The most common symptoms of LM were abdominal pain (33.8%), vomiting (5.2%), and jaundice (2.6%). The median time from the diagnosis of BC to LM was 23 months [95% confidence interval (CI), 20–25]. The cumulative incidence of LM at 1, 2, and 5 years was 17.5%, 45.0%, and 86.8%, respectively.


Table 1 | Clinicopathological characteristics of patients (N = 231).





Survival Following LM and Prognostic Factors

One hundred and eighty-nine (81.8%) patients died by the end of the follow-up. For the 231 patients with BCLM in the SCHI cohort, the median PFS and OS were 7 months (95% CI, 6–8) and 22 months (95% CI, 19–25), respectively (Figures 2A, B). PFS at 1 year was 25.1%, and the OS at 1 and 2 years was 77.1% and 45.8%, respectively. Median PFS for patients with “first recurrent only LM” was longer than that for patients with “first recurrent LM with other organs” and “subsequent recurrent LM,” even no statistical difference was found (8 m 95% CI, 6–10 vs. 7 m 95% CI, 6–8 vs. 7 m 95% CI, 3.5–10, p = 0.0813). Meanwhile, the median OS for patients with “first recurrent only LM” was longer than that for patients with “subsequent recurrent LM with other organs” and “subsequent recurrent LM” (26 m 95% CI 19–33 vs. 22 m 95% CI 19–25 vs. 18 m 95% CI 11.5–28, p = 0.0036) (Figures 2C, D). Compared with other molecular subtypes, patients with TNBC were associated with shorter PFS (14 vs. 8 vs. 10 vs. 6 months, p = 0.000179) and shorter OS (34 vs. 23 vs. 21 vs. 15 months, p = 0.00053), and were more prone to LM at an early stage (43 vs. 24 vs. 31 vs. 15 months, p = 0.000046) (Figures 2E–G).




Figure 2 | Survival of patients with LM. (A) Kaplan–Meier PFS curve of 231 patients with LM. (B) Kaplan–Meier OS curve of 231 patients with LM. (C) Kaplan-Meier plots illustrating PFS of patients with “only LM initially”, “LM with other organs initially”, and “subsequently recurrent LM”, respectively. No significant difference in PFS among groups (8 vs. 7 vs. 7 months, p = 0.0813). (D) Kaplan-Meier plots illustrating OS of patients with “only LM initially”, “LM with other organs initially”, and “subsequently recurrent LM”, respectively. Patients with only LM initial presence were associated with longer OS (26 vs. 22 vs. 18 months, p = 0.0036). (E) Kaplan-Meier plots illustrating PFS of patients with different molecular subtypes. Patients with TNBC were associated with shorter PFS (14 vs. 8 vs. 10 vs. 6 months, p = 0.000179). (F) Kaplan-Meier plots illustrating OS of patients with different molecular subtypes. Patients with TNBC were associated with shorter OS (34 vs. 23 vs. 21 vs. 15 months, p = 0.00053). (G) Kaplan-Meier plots illustrating time from pBC to LM (TTLM) of patients with different molecular subtypes. Patients with TNBC were associated with shorter TTLM (43 vs. 24 vs. 31 vs. 15 months, p = 0.00005).



Univariate and multivariate factors associated with survival were identified using the Cox proportional hazards model. Prognostic monogram models were established (Figure 3). The independent factors that increased progression risk of patients with LM were KPS ≤ 80 [hazard ratio (HR): 1.68, 95% CI: 1. 15–2.45; p = 0.007], TNBC subtype (HR: 2.61, 95% CI: 1.35–5.04; p = 0.038), grade III (HR: 2.09, 95% CI: 1. 48–2.96; p < 0.001), increasing trend of CA153 (HR: 2.79, 95% CI: 1. 86–4.16; p < 0.001), and DFI ≤ 1 year (HR: 4.09, 95% CI: 2.37–7.07; p < 0.001) (Table 2, Figure 3A). Simultaneously, the independent factors that increased death risk of patients with LM were Ki-67 ≥ 30% (HR: 2.74, 95% CI: 1.45–5.02; p = 0.001), grade III (HR: 2.19, 95% CI: 1. 53–3.14; p < 0.001), increasing trend of CA153 (HR: 2.32, 95% CI: 1. 60–3.37; p < 0.001), pain with initial LM (HR: 2.02, 95% CI: 1.18–3.44; p = 0.010), diabetes (HR: 4.47, 95% CI: 2.48–8.08; p < 0.001), and DFI ≤ 1 year (HR: 2.42, 95% CI: 1.32–4.43; p = 0.011) (Table 3, Figure 3B).




Figure 3 | Nomograms of prognosis for patients with LM. (A) The nomogram of prognosis for patients with PFS (C-index = 0.743). (B) The nomogram of prognosis for patients with OS (C-index = 0.718).




Table 2 | Univariate and multivariate models for PFS with BCLM patients (n = 231).




Table 3 | Univariate and multivariate models for OS with BCLM patients (n = 231).





Genetic Changes During BCLM

Analysis of the immunohistochemical status of 64 patients with LM and paired pBC in the SCHI cohort showed that the molecular subtype mutation rate of LM was 32.8% (21/64) compared with paired pBC. (Fisher’s exact test, p = 1.92 × 10−11) (Figure 4). This indicates that breast cancer cells have mutated during metastasis to the liver. To verify the heterogeneity between LM and pBC, and to further explore the somatic changes in patients with BCLM, we re-analyzed the targeted sequencing results of the MSKCC dataset, which contains the sequencing data of 217 samples of LM and 479 samples of pBC extracted from the MSK-IMPACT Clinical Sequencing Cohort (19). Overall, we used the maftools R package to identify the top 10 significantly mutanted genes (SMGs) in LM: TP53 (43%), PIK3CA (33%), ESR1 (20%), GATA3 (16%), MLL3 (11%), CDH1 (9%), NF1 (9%), AKT1 (8%), ERBB2 (7%), and MAP3K1 (7%) (Figure 5B). Compared with the mutated genes identified in the pBC (Figure 5A), ESR1, ARID2, BLM, FGFR4, APC, ERBB2, ROS1, ATR, IGF1R, NF1, JAK1, FAT1, NOTCH2, and AKT1 mutation frequencies were significantly different in LM. Among them, the driver genes were ESR1 (20%), AKT1 (8%), ERBB2 (7%), and FGFR4 (4%) (Figures 5C, D). Additionally, their mutation frequencies among the LM samples in the POTUAM dataset were 24% (ESR1), 7% (AKT1), 6% (ERBB2), and 1% (FGFR4) (Supplementary Figure 1).




Figure 4 | Comparison of molecular subtypes between LMs and paired pBCs (p = 1.92 × 10−11). (A) Components of molecular subtypes of pBC. (B) Components of molecular subtypes of LM.






Figure 5 | Somatic mutations in pBCs and LMs. (A, B) Top 20 SMGs in pBCs and LMs, respectively. (C) Comparison of SMGs between pBCs and LMs. (D) Comparison of the top 10 SMGs between pBCs and LMs. (The genes in the red box represent the driver genes, *p < 0.05, **p < 0.01, ***p < 0.001) (E) Comparison of TMB between pBCs and LMs (p < 0.001). SMG, significantly mutanted gene; TMB, Tumor Mutation Burden.



Notably, we observed highly accumulated ESR1 mutations in LM, and the ESR1 mutation rate of LM (20%) was significantly higher than that of pBC (3%) (Fisher’s exact test, p = 6.20 × 10−12) (Figure 5D). TP53, as the gene with the highest mutation rate, mutated exclusively with ESR1 in LM (pair-wise Fisher’s exact test, p = 6.11 × 10−5) (Figures 5B, 6A). ERBB2, which also had a high mutation frequency in LM, was another gene that was mutually exclusive with the ESR1 mutation (Figures 5B, 4A). Moreover, we found that almost all GATA3 mutations were accompanied by ESR1 mutations (Figure 6A), and the incidence of GATA3 mutations in LM was slightly higher than that in pBC. ESR1 mutations in LM patients were not only more frequent but also more concentrated in mutation sites, in contrast to the low frequency and scattered mutation patterns in patients with pBC. Thirty-five LM samples in total carried mutations were resistant to ESR1 aromatase inhibitor (AI) (D538G:19, Y537S/N:16), compared with only three pBC samples (D538G:1, Y537S/N:2) (Fisher’s exact test, p = 8.37 × 10−16) (Figure 6B).




Figure 6 | Mutation patterns in patients with LM. (A) Mutually exclusive or co-occurring set of genes. (B) Lolliplot of ESR1 mutation rate in the patients with pBC and LM. (C, D) Enrichment of known Oncogenic Signaling Pathways (Tumor suppressor genes are in red, and oncogenes are in blue font).



To discover the biological pathways that play a key role in LM, we enriched the mutation matrix with known oncogenic signaling pathways in TCGA cohorts (24). Four oncogenes (FGFR4, ERBB2, ROS1, and IGF1R) and one suppressor gene (NF1) in the RTK-RAS pathway, which ranked first, were mutated more frequently in LM (Figures 6C, D).



Three MSs in Patients With BCLM

For the purpose of clarifying the etiological mechanism of the different mutation rates between LM and pBC in the MSKCC dataset, and explaining the potential mechanism of BC metastasis to the liver, non-negative matrix factorization (NMF) created by Nik-Zainal S et al. (22) was used to extract MSs from 96 subtypes of three-base context of mutations. A total of three prominent signatures were matched (Figure 7A): MS1, best matched to COSMIC signature 13 (cosine-similarity: 0.822), is characterized by C > T mutations at the TpC dinucleotide and an APOBEC Cytidine Deaminase (C > G) phenotype; MS2, best matched to COSMIC signature 7 (cosine-similarity: 0.605), is characterized mainly by C > T and T > C mutations with other types of base substitutions contributing less and intricate patterns formed due to exposure to ultraviolet; and MS3, best matched to COSMIC signature 6 (cosine-similarity: 0.724), is mainly characterized by C > T mutations and a map caused by defective DNA mismatch repair (Figure 7B).




Figure 7 | MSs in patients with LM. (A) Correlation between the MSs derived from the patients with LM and previously defined signatures from COSMIC. A pair-wise cosine correlation was performed between the COSMIC and LM signatures. The most correlated COSMIC signatures were used to determine the identity of each LM signature. (B) Three MSs identified in patients with LM.






Discussion

We described the prognosis of patients with BCLM, established a prognostic prediction model based on clinical pathological factors, and characterized the genomic landscape of patients with LM with external dataset in this study. We innovatively incorporated the dynamic changes of traditional tumor markers, such as CEA, CA153, and blood indicators, such as granulocyte-lymphocyte ratio, in the early stage of treatment into the prognostic analysis of LM. It is encouraging to note that the dynamic changes of CA153 greatly improved the prediction performance of the model.

The median follow-up time for the 231 patients with BCLM in the SCHI cohort was 46 months. In this cohort, the cumulative incidence of LM within 5 years was as high as 86.8%. The median PFS and OS were 7 months (95% CI, 6–8) and 22 months (95% CI, 19–25), respectively (Figures 2A, B). PFS at 1 year was 25.1%, and the OS at 1 and 2 years was 77.1% and 45.8%, respectively. We found that the OS of patients with first recurrent only LM (n = 69) was significantly longer than that of patients with first recurrent LM with other organs (n = 144) and subsequent recurrent LM (n = 18) (p = 0.0036). This may be because patients with LM as the only first site of metastasis had better KPS (chi-square test, p = 0.005). Conversely, patients who are accompanied by metastasis to other organs tend to have heavier tumor burden and higher tumor heterogeneity, and are more susceptible to drug resistance. In addition, our results support the view that the natural process of LM is also strongly influenced by the biology of BC subtypes, which is consistent with previous studies (6, 25, 26). Patients with TNBC subtype were more prone to LM in the early postoperative period (Figure 2G) and had shorter PFS (Figure 2E) and OS (Figure 2F). Considering that the molecular subtypes of 64 LMs obtained a 32.8% (21/64) mutation rate compared with the paired pBCs (Figure 4), biopsies of metastasis are useful for the reassessment of the metastatic sites to define a more effective treatment strategy for patients with BCLM (27). Thus, the ER, PR, and HER-2 statuses need to be reassessed by biopsy when LM occurs. The indicators of KPS, Ki-67, and grade were recorded in previous reports of mBC. KPS ≤ 70 (28), Ki-67 ≥ 20% (29, 30), and grade III (31) were independent risk factors for the prognosis of mBC. These results are generally consistent with those of our study. Moreover, in a study by Nishimura et al. (29), DFI is inversely correlated with the Ki-67 values. We also observed that the shorter the DFI, the worse the prognosis of patients with LM. Finally, our data showed, for the first time, that patients with diabetes and initial pain in the liver have a shorter OS.

In addition to the above factors that have an impact on the prognosis of LM, we have included the dynamic changes of CA153, CEA, and granulocyte-lymphocyte ratio after two cycles of LM treatment as prognostic factors into consideration for the first time. The increasing trend of CA153 showed a strong correlation with shorter PFS (HR: 2.79, 95% CI: 1. 86–4.16; p < 0.001) and OS (HR: 2.32, 95% CI: 1. 60–3.37; p < 0.001). More importantly, the dynamic changes of CA153 could reflect the curative effect in a timelier and more accurate manner, and help decision makers adjust the treatment plan according to the curative effect. To summarize, we established a prognostic model for BCLM based on these clinical and pathological factors (Figure 3). Compared with the prognostic nomogram model without CA153_trend (Supplementary Figure 2), the prognostic nomogram model including the dynamic changes of CA153 had greatly improved predictive ability (C-index: 0.743 vs. 0.693 for PFS, 0.718 vs. 0.673 for OS). Aiding with this nomogram, clinicians might be able to assess the risk of disease progression in patients with BCLM to optimize treatment options and speculate the patient’s risk of death to avoid meaningless treatment.

In the SCHI cohort, the critical cause of the 32.8% molecular subtype mutation rate of LMs relative to pBCs is changes at the genome level. The genomic landscape of early BC has been reported many times. In addition, there is evidence that genomic changes are obtained in the process of cancer metastasis and progression and the genomic pattern of early cancers cannot represent lethal cancers (32–36). Recently, there have been subsequent reports on the genomic landscape of mBC (16–18). However, the molecular mechanism for LM remains an area that has not yet been fully developed (37). In view of the above, we decoded the genomic landscape of LM by using the MSKCC dataset (19). Among the 14 SMGs in the LM samples, we identified four driver genes: ESR1 (20%), AKT1 (8%), ERBB2 (7%), and FGFR4 (4%). Compared with the 21 potential driver genes (TP53, ESR1, CDH1, MAP3K1, GATA3, CBFB, ARID1A, ERBB2, RUNX1, MAP2K4, GPS2, FOXA1, TBX3, NCOR1, PTEN, PIK3CA, KMT2C, RB1, AKT1, CDKN1B, and NF1) of mBC in the study by Angus et al. (16), most of the four driver genes (3/4, ESR1, AKT1, and ERBB2) of LM were more consistent, verifying that ESR1, ERBB2, and AKT1 can drive LM. The other 18 inconsistent driver genes of mBC also indicate that the driver genes of LM are not exactly the same as those of other metastases, that is to say these inconsistent driver genes of mBC may play a role in metastasis in other organs, but not in liver. To further verify our results, we quoted the POTUAM dataset. The mutation frequencies of the four driver genes in the MSKCC dataset were highly consistent with those in the POTUAM dataset (Supplementary Figure 1). Furthermore, in the POTUAM dataset, except for FGFR4, which had a low mutation rate, the mutation frequencies of ESR1, AKT1, and ERBB2 in the LM were higher than those in other metastases. Moreover, LM had a significantly different mutation spectrum from other metastases (Supplementary Figure 3). Our study characterized the driver genes of LM isolated from other metastases, making the molecular targets of LM clearer and more focused.

Interestingly, ESR1 and TP53 were the most mutually exclusive mutant gene pair in LMs (pairwise Fisher’s exact test, p = 6.11 × 10−5). As previously reported (15, 38), ESR1 mutations were enriched in patients with LMs (Fisher’s exact test, P < 0.001). In contrast to the low frequency and scattered mutation patterns in the pBC cohort, the ESR1 mutations were mainly concentrated in D538G and Y537S/N. This is consistent with a previous study published in the journal JAMA Oncology (39). Another notable gene is NF1. In a recent study, Bertucci et al. (15) performed whole-exome sequencing of 617 tumor samples from patients with metastatic BC and revealed that the mutation frequency of NF1 is negatively correlated with the prognosis of patients with HR +/HER-2- mBC. In the current study, we found that as a tumor suppressor gene, NF1 had the most frequent mutation in the RTK-RAS pathway in patients with LM. To better understand which mutation processes facilitated the progression of LM, we further evaluated the distribution of MSs. LMs matched three prominent signatures: S13 (APOBEC cytidine deaminase), S7 (ultraviolet exposure), and S6 (defective DNA mismatch repair). According to previous reports, APOBEC activation can mediate secondary resistance to endocrine therapy (40). Evaluating BCLM using a next-generation sequencing approach helps us better understand the underlying mechanisms of tumor metastasis and evolution and provide new therapeutic targets with potential benefits for drug-resistant patients. Moreover, owing to the improvement of the current circulating tumor DNA detection technology, if the mutant LM driver genes can be detected in the circulating blood, it may be a powerful tool for early warning of LM. Finally, by comparing the TMB between LMs and pBCs (2.77 vs. 1.98, U test, p < 0.001), we also confirmed that metastatic foci are more genetically complex than primary foci, as in previous studies (32, 33, 35).

Our study has several limitations. First, this research was retrospective, so there may be some unavoidable biases. Second, the construction of the prognosis prediction model was based on a SCHI single-center cohort; thus a prospective multi-center verification is required before subsequent promotion. Third, we used an external sequencing dataset to characterize the genomic landscape of BCLM, and further exploration requires the support of more cell and animal experiments.

In summary, BCLM is a complex process that involves many factors. This study systematically describes the survival prognosis and the characteristics of LM from clinicopathological factors to the genetic level. The independent factors that increased the progression risk of patients with LM were KPS ≤ 80, TNBC subtype, grade III, increasing trend of CA153, and DFI ≤ 1 year. Simultaneously, the independent factors that increased the mortality risk of patients with LM were Ki-67 ≥ 30%, grade III, increasing trend of CA153, pain with initial LM, diabetes, and DFI ≤ 1 year. Mutations in the driver genes ESR1, AKT1, ERBB2, and FGFR4, and the MS APOBEC cytidine deaminase, ultraviolet exposure, and defective DNA mismatch repair may provide convenience for LM. We believe that our study makes a significant contribution to the literature because it can help clinicians evaluate the risk of disease progression in patients with BCLM to determine the optimal treatment strategy. Our results also provide a better understanding of the mechanisms underlying BCLM progression and evolution and provide new therapeutic targets that can potentially benefit drug-resistant patients or be eligible for clinical trials.
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The mortality associated to breast cancer is in many cases related to metastasization and recurrence. Personalized treatment strategies are critical for the outcomes improvement of BC patients and the Clinical Decision Support Systems can have an important role in medical practice. In this paper, we present the preliminary results of a prediction model of the Breast Cancer Recurrence (BCR) within five and ten years after diagnosis. The main breast cancer-related and treatment-related features of 256 patients referred to Istituto Tumori “Giovanni Paolo II” of Bari (Italy) were used to train machine learning algorithms at the-state-of-the-art. Firstly, we implemented several feature importance techniques and then we evaluated the prediction performances of BCR within 5 and 10 years after the first diagnosis by means different classifiers. By using a small number of features, the models reached highly performing results both with reference to the BCR within 5 years and within 10 years with an accuracy of 77.50% and 80.39% and a sensitivity of 92.31% and 95.83% respectively, in the hold-out sample test. Despite validation studies are needed on larger samples, our results are promising for the development of a reliable prognostic supporting tool for clinicians in the definition of personalized treatment plans.




Keywords: invasive breast cancer, cancer recurrence, late recurrence, feature importance, machine learning, prognosis



Introduction

Breast cancer (BC) is the second most frequently diagnosed cancer and the fifth cause of cancer mortality worldwide, responsible for 6.6% of all deaths (1). The mortality associated to this pathology is in many cases related to metastasization (2)

and recurrence (or relapse) (3). Relapse is documented in 10–15% of all patients (4) and, moreover, it has been proven to be a relevant prognostic factor and a key indicator of BC behavior, intrinsically related to mortality. Early BC is typically treated by surgery, chemotherapy, biological and hormonal therapies, and radiotherapy (5) according to tumor biology and clinical stage of disease, with a curative intent. However, local or distant relapse can occur at any time. Recurrence free survival is the length of time in which the patient remains without signs or symptoms of cancer from the start of the primary curative treatment. It reflects the efficacy of an oncological therapy and it is used as a treatment quality measure. A significant topic in medical research is the improvement of the therapeutic efficacy of BC treatments and thus the recurrence free survival time.

Personalized treatment strategies are critical for the improvement of the BC patients follow-up. An important step has been made in medical practice through Clinical Decision Support Systems (CDSSs). They are computerized systems that analyze several data to support clinical decision-making by improving its quality. However, there are differences in how particular CDSSs are developed, in how patients’ data are included and in the way they are used in clinic. Defining data classification techniques and relative prediction models take on an important role to enhance the reliability of the decision-making system in the breast cancer recurrence (BCR) prognostic prediction. Recent revisions of published works haveproved that achieving a representative data-set for BCR is an arduous task (6, 7). Furthermore no agreement was reached about the most appropriate set of predictors for this disease. In literature, studies with the aim to predict cancer prognosis are limited and, mostly about BCR, so this is still an open question.

High accuracy results are often reached, but sometimes sensitivity is compromised. Moreover, there are often missing data in the patient records which needs an appropriate pre-processing before its use to train a machine learning algorithm. Nonetheless, the mixture of different machine learning techniques together with the identification of suitable features predictive of BCR appears to be the key to achieve better results.

The main state-of-the-art studies use different kinds features mainly attributable to patients’ characteristics (such as age at diagnosis, menarche age, number of children and familiarity for cancer), tumor histopathological characteristics (such as tumorsize, number of involved and dissected lymph nodes, receptor status, histological grade, etc.), type of surgery and oncological treatment performed (chemotherapy, hormone therapy, biological therapies and radiotherapy) (8–11).

The general goal of our research was to develop a reliable CDSS for physicians to predict the probability of disease recurrence after a BC (12).

In this paper, we used histopathological, and therapeutic information of subjects who have had BC and for whom therapeutic follow-up is known at 5 and 10 years after the cancer diagnosis. In order to evaluate the usefulness of collected data, firstly we developed different feature importance techniques, then we evaluated the performance of the most important features subset by training different classifiers at state-of-the-art.



Materials and Methods


Materials


Inclusion and Exclusion Criteria

For this study, we have considered women referred to I.R.C.C.S. Istituto Tumori “Giovanni Paolo II” of Bari (Italy).

Patients were included in the study if:

	they had a first early invasive BC,

	they were disease-free for at least 10 years or presented a disease recurrence within 10 years,

	they were not metastatic ab initio.



Disease recurrence was defined as local recurrence, or the appearance of distant visceral and soft tissue metastases. Patients who developed a controlateral invasive BC or a second malignancy in other organs, and patients who had undergone primary chemotherapy for BC were excluded from the study. In this first phase of the study, we preferred not to include patients treated with primary chemotherapy to obtain a homogeneous sample and to avoid any interference in the analysis of the same chemotherapy. In fact, it would have required the insertion and analysis of many other additional information relating to the characteristics of the tumor after surgery, the therapy itself, its course and success. This would require a much larger sample of patients to obtain meaningful results and a dedicated analysis before being integrated into a generalized mode.



Experimental Dataset

A total of 256 patients were collected. Together with our medical oncologists, we have identified the main potentially informative features in order to predict BCR.

Data were collected from the patients’ medical records of our Institute. In addition to the age at the first tumor diagnosis, in the analysis we included the main breast cancer-related and treatment-related factors predictive of recurrence for each patient: Histological subtype (HI: ductal, lobular, other), Carcinoma In Situ associated with invasive component (CIS: present/absent), Vascular Invasion (VI: Absent, Focal, Extended, Present but not typed), Estrogen Receptor expression (ER,% value), Progesterone Receptor expression (PR,% value), cellular marker for proliferation (Ki67,% value), epidermal growth factor receptor-2 (Her2: negative/positive), histological Grade (G, Elston-Ellis scale: 1, 2,3), Tumor size stage (T: staging system classify), lymph Nodes stage (N, staging system classify), Number of Positive lymph nodes (NP), type of Surgery (S: Quadrantectomy/Mastectomy), ChemioTherapy (CT: Yes/No), Trastuzumab Therapy (TT: Yes/No), Hormone Therapy (HT: Yes/No). Therefore 16 features were collected for each patient. Our Institute’s Scientific Board approved the retrospective observational study.




Methods

We have developed two different models, one to predict BCR within 5 and one within 10 years after the first diagnosis.

For this purpose, we have developed a feature selection process by identified the most stable ones in three different feature importance techniques, that is, those features that more than others seem to make a real contribution to the classification problem regardless of the training sample. After defining a ranking of features collected, we have evaluated the recurrence prediction performances by training three classifiers known to the state-of-the-art on the best features subset. Specifically, the performance of the models was assessed using the hold-out method where the dataset was split into two randomly exclusive sets (80% training and 20% test sets). 100 10-fold cross-validation rounds were used to identified the best features subset and evaluate the best classification models on hold out training set; therefore, the data of the same patient cannot be in training and testing data-set simultaneously. Moreover, we have tested also the best features subset on the other sample (13).

In Figure 1, a schematic overview of our analysis approach is shown.




Figure 1 | Flow-chart of the proposed model. The performance of the models was assessed by using the hold-out method where the dataset was split into two randomly exclusive sets (80% training and 20% test sets). On training sample of hold-out sampling, we have evaluated the important of features by means three different techniques and identified the best features subset by compering the performances of three different classifiers on 100 10-fold cross-validation rounds. Then, we have tested the best features subset on the test set of hold-out sampling.



In our study, among 256 patients, 162 subjects had complete information (14).

In our work, missing clinical attribute values were treated according to the predictive value imputation method by replacing missing values with the average of the attribute observed in the training set (15).

Our dataset consisted of both categorical and continuous variables. Despite the problem of combining both categorical and continuous data, usually referred to as “mixed data”, in learning algorithms is well known in literature (16) and usually requires sophisticated and dedicated strategies (17). However, it is known that some algorithms, like the ones used in this work, can manage these data (for several purposes) using simple numeric encoding (18–21).

Feature importance techniques and classification models were performed using the MATLAB R2018a (Mathworks, Inc.,Natick, MA, USA) software.


Feature Importance Techniques

On the training set of hold-out validation sampling, we have used three different feature importance techniques, such as Neighborhood Component Analysis (NCA), Random Forest (RF) and Support Vector Machine Recursive Feature Elimination (SVM-RFE).

NCA is a non-parametric method to select features with the goal of maximizing prediction accuracy of classification algorithms; the algorithm estimates the feature weights by using a diagonal adaptation of neighborhood component analysis (22, 23).

RF is a know popular machine learning algorithm provide good predictive performance and low over-fitting (24, 25). It provides a measure of features importance ranking them based on how well they improve the purity of the node represented by the single feature; indeed, at each node the algorithm identifies a feature cut-off value that optimizes the division of the dataset into the real classes of belonging. In our work, the impurity measure used was Gini’s diversity index calculated by permuting out-of-bag observations among the trees.

SVM-RFE is a feature importance algorithm that filters relevant features and remove relatively insignificant feature variables in order to achieve higher classification performance (26, 27). SVM-RFE is an iterative procedure of backward feature elimination which utilizes the cost function as the ranking criterion. In particular, firstly, the SVM classifier is trained using training objects to optimize the weights with respect to cost function defined; then, all features are ranked using the weight calculated by the SVM classifier, and finally, the feature with the smallest criterion was eliminated at each iterative step to generate the ranking list of all features.

For each considered techniques, we have calculated the final feature ranking as average of the scores of importance calculating on 100 10-fold cross-validation.



Performance Evaluation

Three different state-of-the-art machine learning classifiers, such as Naive Bayesian, RF, and SVM were trained to solve the binary discrimination problem (recurrence vs. control cases) by selecting an increasing features number previously sorted by the average importance score.

Naive Bayes classifier is a probabilistic machine learning model that is used for classification task based on the Bayes theorem (28). They require a small amount of training data to estimate the necessary parameters; despite their apparently over-simplified assumptions, Naive Bayes classifiers worked well in many real-world situations.

RF classifier is robustness against over-fitting and is easy to tune as it depends only on two parameters such as the number of trees to be grown and the number of features to pick at each node split. Therefore, it was a good choice for an exploratory analysis. A standard configuration of RF was adopted with 100 trees and 20 features [as described in Breiman (24)] randomly selected at each split because more complicated architectures did not give any significant classification improvement. Moreover, in order to control the over-fitting risk, we have fixed a small number of observations per tree leaf, such as 5.

SVM classification algorithm estimates a hyperplane separating points in a high dimensional space, so that the examples of the categories are divided by a clear gap that is as wide as possible; new examples are then mapped into that same space and are predicted to belong to a category based on the side of the gap on which they fall (29). In our study, the radial basis function kernels and standard configuration of SVM were used.

The three classifiers considered are characterized by a different approach to solving the classification model. In fact, while Naive Bayesian classifier has a probabilistic approach to classification problem, RF classifier is an ensemble technique, i.e. it combines many decision trees in a single model, so that the forecasts made by decision trees, which may be individually inaccurate, combined together aim to improve performance and reduce over-fitting; finally, SVM classifier has a mathematical approachto the problem because it estimates a hyperplane in the training vector space which optimizes the classification performance.

The performance of the prediction classifiers are evaluated on 100 10-fold cross-validation rounds on the training set of hold-out validation sampling, in terms of Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) curve and, once identified the optimal threshold by Youden’s index on ROC curves (30), we have also calculated:

	


where TP and TN stand for true positive (number of true recurrence cases identified) and true negative (number of true control cases identified), while FP (number of control cases identified as recurrence cases) and FN (number of recurrence cases identified as control cases) are the false positive and the false negative ones, respectively. Performing 100 rounds of cross-validation allowed having an estimate of the error on the average performance values.

Moreover, the same metrics were used to evaluate the classification performances on the test set of hold-out validation sampling.





Results

As described above (see section 2.2.1), in order to explore the discriminating power of the features collected from patient medical records, we have implemented three feature importance techniques; in this way we have identified those really useful for the development of an accurate model for predicting the BCR.


Patients and Cancer Characteristics

Characteristics of the patients are summarized in Table 1. A total of 256 patients aged between 24 and 77 (with a median age of 52 years) were included in sample studied. 159 (62%) had no recurrence within 10 years from first diagnosis, whereas, 97 patients (38%) presented recurrence within the first ten years, and among them 54 patients relapsed within 5 years from the first diagnosis.


Table 1 | Patients characteristics.





Feature Importance Analysis

We have performed the importance feature analysis on 80% of the sample, that is on 205 patients, considering recurrence both within five and ten years after the first tumor. Specifically, the training set of hold-out validation sampling was made up of 132 cases without recurrence (control cases) and 73 cases with recurrence within ten years after first breast tumor; 41 out of these 73 were recurrences within five years.

Table 2 shows the feature ranking obtained by different feature importance techniques for predicting BCR within five years after the first diagnosis. The presence of carcinoma in situ associated with invasive component was the most informative feature for each of the three techniques developed. NCA technique have identified as more important features also presence of vascular invasion, age, histological grade, tumor size and lymph nodes stage; whereas, the most informative features identified by RF and SVM-RFE techniques were also ki67 and ER hormonal receptors.


Table 2 | Ranking of the most important features to predict BCR within five years after the first diagnosis of BC obtained by NCA, RF, and SVM-RFE techniques.



Table 3 shows the ranking of the most important features to predict BCR within ten years after the first event. The rankings obtained have not changed significantly compared to those identified for the prediction within the 5 years. For this prediction task, respect to previous ranking, NCA technique identified among the most important also type of surgery and HER2; instead, the PR and Vascular Invasion features was more informative for RF and SVM-RFE feature importance techniques, respectively.


Table 3 | Ranking of the most important features to predict BCR within ten years after the first diagnosis of BC obtained by NCA, RF, and SVM-RFE techniques.






Recurrence Prediction Model


Classification performances evaluated on the training set of hold-out validation sampling

In order to identify the optimal features subset useful for accurately predicting the probability of recurrence, we estimated the performances of three classifiers known to the state of the art, such as Naive Bayesian, RF, and SVM on the same 80% of the sample. Specifically, we have trained each classifier on an increasing number of features previously sorted by average importance score calculated by the three techniques described above.

Figure 2 shows average AUC values and their standard errors of the BCR classification models within five years after first tumor evaluated on 100 10-fold cross-validation rounds for each feature importance technique




Figure 2 | Classification performances for predicting BCR within five years after the first diagnosis for increasing features number sorted by the average importance score. Mean and standard error AUC values evaluated on 100 10-fold cross-validation rounds for each feature importance techniques and classifier.



In general terms, RF classifier reached a classification performance of about 68% with the most important feature identified by NCA and RF techniques, i.e. Carcinoma In Situ associated with invasive component; specifically, with the only this features, the classifier showed an average accuracy of 66.40%, a sensitivity of 45.80% and a specificity of 73.54%. Therefore this component does not seem to be able to relapse disease. Indeed, the same classifier showed an average AUC value over around 85% when the features number used to train the model increases, regardless of the method of assessing the importance of the features used. Naive Bayes classifier showed an average AUC value around 71% when the features number selected by the RF technique to train the model was over three; instead, SVM classifier showed an AUC average value around 81% when it trained with a number of features between 3 and 7 selected by RF technique, value beyond which the prediction performances plummet.

In Table 4 we summarized the classification performances also in terms of accuracy, sensitivity, and specificity in correspondence of the maximum value of average AUC. The best classification performances were obtained by RF classifier; specifically, when it trained on the three features identified as the most informative by SVM technique (i.e. Carcinoma In Situ associated with invasive component, ki67, and ER) the model reached an AUC value of 90.36 ± 0.21%, an accuracy of 77.05 ± 0.94%, a sensitivity of 94.15 ± 1.59%, and a specificity of 71.74 ± 1.70%. Despite, considering the six most important features identified by SVM-RFE technique (i.e. adding lymph Nodes stage, Tumor size stage, histological Grade than those identified by RF technique) the trade off between sensitivity and specificity is reduced (86.59 ± 2.03% and 76.44 ± 2.05%, respectively), without significant reduction of AUC value and accuracy (89.14 ± 0.25% and 78.84 ± 1.10%).


Table 4 | The best classification performances for predicting the BCR within five years after first diagnosis.



It should be underlined that SVM classifier trained on the six features identified as more important by RF technique (i.e. the same 3 features above indicated and moreover type of Surgery, Number of positive lymph node involvement and Her2) showed a higher accuracy (85.84 ± 0.64%) but a lower sensitivity (73.90 ± 0.89% i.e. a lower probability to identify recurring cases.

Figure 3 shows the prediction performances of the BCR within ten years after first tumor for each feature importance technique and classifier model trained. The trend of the three classifiers trained on increasing features number sorted by average importance score calculated with the three techniques described above, follows a similar trend to that observed for the prediction problem within five years. Similarly to the prediction model of recurrence within five years, RF classifier still showed classification performance and reached an AUC value of about 68% with a single feature (Carcinoma In Situ associated with invasive component) identified as best feature by NCA and RF techniques; moreover, it showed an average AUC value over 86% as the number of features used to train the model increases, regardless of the method of assessing the importance of the features used. Naive Bayes classifier showed an average AUC value around 73% when the feature number used to train model by using the subset features selected by NCA or RF techniques was over four, whereas SVM classifier showed an average value of AUC around 81% when it is trained with a number of features between 2 and 8 selected by RF technique.




Figure 3 | Classification performances for predicting BCR within ten years after the first diagnosis for increasing features number sorted by the average importance score. Mean and standard error AUC values evaluated on 100 10-fold cross-validation rounds for each feature importance techniques and classifier.



The best classification performances in terms of average AUC value are obtained by RF classifier. Specifically, with the four most important feature identified by NCA technique (i.e. Carcinoma In Situ associated with invasive component, Vascular Invasion, histological Grade, and type of Surgery) the model reached an AUC value of 89.45 ± 0.10%, an accuracy of 83.66 ± 0.68%, a sensitivity of 70.68 ± 1.84%, and a specificity of 90.83 ± 0.02% (Table 5). With the same classifier when trained with the five most important features identified by the RF or SVM-RFE techniques, the sensitivity raised to about 95% but the specificity fell to 67%. It should be underlined that SVM classifier trained on the five features identified as more important by RF technique (i.e. Carcinoma In Situ associated with invasive component, Vascular Invasion, ER, ki67, and type of Surgery) showed a best trade-off between sensitivity and specificity (77.67 ± 0.58% and 87.73 ± 0.57%, respectively), with an accuracy of 84.15 ± 0.29%.


Table 5 | The best classification performances for predicting the BCR within ten years after first diagnosis.





Classification Performances Evaluated on the test set of Hold-Out Validation Sampling

On the training set of hold-out validation sampling, we have found the best prediction model learning to five years follow-up reached an AUC value, accuracy, sensitivity and specificity of 89.14 ± 0.25%, 78.84 ± 1.10%, 86.59 ± 2.03%, and 76.44 ± 0.05%, respectively, with only six features, that is Carcinoma In Situ associated with invasive component, ki67, ER, lymph Nodes stage, Tumor size stage, and histological Grade selected by SVM-RFE technique and RF classifier. Indeed, the best prediction model learning to 10 years follow-up reached an AUC value of 89.25 ± 018%, an accuracy of 77.17 ± 0.48%, a sensitivity of 95.34 ± 89%, and a specificity of 67.12 ± 1.15% with only five features, i.e. Carcinoma In Situ associated with invasive component, Vascular Invasion, ER, ki67 and type of Surgery selected by RF technique an classifier.

We have evaluated the classification performances of the best models on 20% of the sample, that is on 51 patients, both with reference to recurrence within five years tumor and within ten years after the first tumor (Figure 4). The test set of holdout validation sampling was made up of 27 cases without recurrence (control cases) and 24 cases with recurrence within ten years after first breast tumor. 13 out of these 24 were recurrences within five years. On the test set of holdout validation sampling, the classification model learning to 5 years follow-up reached an AUC value, accuracy, sensitivity and specificity of 87.75%, 77.50%. 92.31%, and 70.37%, respectively, whereas the performances of the model learning to 10 years follow-up were 91.20%, 80.39%, 95.83%, and 66.67% (Table 6).




Figure 4 | ROC curves of classification performances for predicting BCR within five and ten years after the first diagnosis evaluated on test set of hold-out sampling.




Table 6 | The classification performances for predicting the BCR within five and ten years after the first diagnosis evaluated on test set of hold-out sampling.







Discussion

The goals of this work is to evaluate the prognostic power, histopathologic, and therapeutic patient characteristics in order to develop a machine learning model to predict BCR.

In this our preliminary work, firstly we implemented several feature importance techniques and then we evaluated the prediction performances of BCR within 5 and 10 years after the first diagnosis by means different classifiers at the state-of-the-art.

The standard duration of adjuvant endocrine treatment has been 5 years for a long time. Nevertheless, based on the evidence of data reported in the literature, the extension of hormone therapy up to 10 years should be evaluated (31, 32). Therefore, a purpose of our research is also to predict patients with high probabilities of late relapse to adjust individual follow-up programs and the long-term hormonal treatment.

Our experimental results showed that RF classifier have reached high performances both with reference to the disease recurrence prediction model within 5 years and within 10 years. As mentioned above, RF classifier is an ensemble model i.e. it provides a classification on the majority result with respect to singularly trained trees generating a more accurate classification than mathematical or probabilistic models, which need more stringent parametric requirements.

Specifically, on the test set of hould-out validation sampling, the prediction model learning to 5 years follow-up reached an AUC value, accuracy, sensitivity and specificity of 87.75%, 77.50%. 92.31%, and 70.37%, respectively, with only six features, that is Carcinoma In Situ associated with invasive component, ki67, ER, lymph Nodes stage, Tumor size stage, and histological Grade selected by SVM-RFE technique.

Indeed, the prediction model learning to 10 years follow-up reached an AUC value of 91.20%, an accuracy of 80.39%, a sensitivity of 95.83%, and a specificity of 66.67% with only five features, i.e. Carcinoma In Situ associated with invasive component, Vascular Invasion, ER, ki67 and type of Surgery selected by RF technique.

As proved in several studies, tumor size stage, vascular invasion, histologic Grade, lymph Nodes stage are associated with a higher risk of recurrence (33, 34). It difficult to define a threshold value tumor size below or above which the tumor can be considered as having a bad or good prognosis, except for very small tumors, and the risk assessment cannot be separated from considering the other prognostic parameters. The results of the MIRROR study showed that also the presence of isolated cells or micro-metastases in the regional lymph nodes is associated, in the absence of adjuvant therapies, with a worse disease-free survival (35). A high histological grade (G3) is considered an unfavorable prognostic factor (36).

Proliferative activity measured with the Ki67 labeling index (percentage of tumor cell nuclei that stain with the antibody for the Ki67 protein encoded by the KI67 gene) is now a recognized prognostic indicator of increased cancer recurrence (37). Moreover, some studies have shown its prognostic value and its usefulness in predicting the response and clinical outcome (38). The new ASCO recommendations for the immunohistochemical determination of ER and PR hormone receptors consider tumors with at least 1% of positive cells to be positive (39).There is a relationship between the levels of positive receptors and the benefits obtained with hormonal treatments, i.e. tumors with high levels of receptors are those that are more likely to benefit from hormone therapy. Moreover, patients with ER-positive BC maintain a significant recurrence rate during extended follow-up (40).

Several studies have shown vascular invasion (defined as the presence of clear signs of invasion in at least ten microscopic fields) is predictive of worse shooting-free survival and overall survival in patients with other risk factors such as histological grade, tumor size and hormone receptor status (41, 42).

Conversely, Ductal Carcinoma In Situ associated with invasive carcinoma is not universally accepted as a prognostic factors. Ductal Carcinoma In Situ associated with invasive carcinoma is characterized by proliferation of ductal epithelial cells confined within the ductal-lobular system and is a potential precursor of invasive BC. Indeed, while Ductal Carcinoma In Situ is not life threatening, it does increase a woman’s risk of developing invasive BC later in life, which subsequently could lead to a BC-specific death. In a few studies, investigators showed that various histopathological characteristics of Ductal Carcinoma InSitu, such as lesion size, marginal status, histological grade, architectural patterns, and presence of necrosis were associated with recurrence. The size of the Ductal Carcinoma In Situ component after conservative breast surgery and radiotherapy can increase the risk of recurrence as well as the positivity of surgical resection margins and the presence of unfavorable histopathological features (high grading, comedonecrosis in Carcinoma In Situ). Mastectomy in the presence of extensive intraductal component is therefore indicated (43, 44).

Table 7 summarizes the results of the proposed method and the main state-of-the-art works for predicting BCR. In general terms, most of the works proposed in literature have developed prediction models of disease recurrence within 5 years. Variables used in the considered studies were mainly of three types, that are patient characteristics, cytological characteristics, and treatments, and only one used also textural ones. We have considered works that used both public and private database; since all the databases collect heterogeneous data, often not coming from the same research centers, this comparison is justified. Finally, as these works used different databases and classifier models, the comparison is purely qualitative.


Table 7 | Performance comparison of the proposed models with respect to the literature.



The performances of our model was high performing with respect to considered works. The models proposed in Chaurasia and Pal (9) and Beheshti et al. (45) have shown a low probability of predicting disease recurrence. Specifically, Chaurasia et al. Chaurasia and Pal (9) used a sample numerically comparable with ours and reached a sensitivity of about 32% by using a parametric statistical model. Kim et al. (11) used hold-out validation method (70% training set; 30% test set) and reported the algorithm performances on the test set comparable with our results with the same sampling strategy. Mohebian et al. Mohebian et al. (8) had identified as age at diagnosis, tumor size, lymph node involvement ratio (defined as ratio of involved to dissected lymph nodes), number of involved axillary lymph nodes, PR, hormone therapy, and type of surgery, as more important factors to predict BCR within 5 years. Their model evaluated by using hold-out validation method (70% training set; 30% test set) have reached an overall accuracy of 90.0% but a sensitivity of 81.0%. Compared to Mohebian et al. (8), Kim et al. (11), our models showed a higher sensitivity (92.3%), i.e. a higher predictive accuracy of patients who will experience a relapse of disease in the short term.

A limit of our work was the presence of missing data which can introduce bias and reduce efficiency (14). However, this situation occurs in real applications, therefore we preferred not to eliminate the subjects with the missing data, but to estimate such incomplete data. Moreover, it should be emphasized that for the definition of a decision support system useful in clinical practice, it is necessary to evaluate this tool on a necessarily larger and more representative sample of patients with breast cancer. Nevertheless, our preliminary results are encouraging and the sample studied is numerically comparable with other studies at the state of the art as indicated in Table 7. Although the model reaches a relevant level of accuracy, specificity, i.e. the forecast of patients who will not relapse within 5 or 10 years is not sufficiently high for the use of this system in clinical practice. In fact, this performance value would compromise the efficiency of this tool in the most appropriate therapeutic choice, suggesting a more aggresive therapeutic treatments and probably less appropriate. Therefore in future studies it is necessary to improve prediction performances also by evaluating the introduction of new features of a different kind, such as for example radiomic ones extracted from images of first level instrumental exams (mammograms or ultrasounds), and optimizing the models will be optimized through an appropriate parameter tuning study.

After an important and systematic evaluation phase of the model on a larger data set, such automated support tool might be used by clinicians to significantly extend patient life (12). Specifically, it could be useto define an appropriate treatment strategy by suggesting to the multidiscipinary team (i.e. breast radiologists, surgeons, and medical and radiation oncologists) the most promising therapeutic treatment (surgery, and chemio, hormone or biological therapy) or the combination of them in terms of probabilities of recurrence free-survival at 5 or 10 years (12). This tool, in association with the expertise of professional figures, would have a significant impact on clinical activity due to the real-time availability of a probable prognostic result objectively evaluated on the retrospective data and to the best interpretation of the latter. The containment of any subjective assessment errors would lead to an invaluable improvement in the quality of life of patients and the general satisfaction of professionals.



Conclusions

In this work we presented preliminary results of a feature importance analysis collected by patient records aimed to develop of an automated system to predict the BCR. Although different approaches have been used in the literature, it is still an open task which includes the collecting of suitable and quality data-set, the defining of a proper features selection procedure and the training of an accurate prediction model. Despite occasionally BC patients relapsed after more than 5 years after initial treatment and sometimes also with highly aggressive disease, most of the works proposed in literature has developed prediction models of disease recurrence within 5 years. In our work, we also obtained encouraging results for the forecast of the recurrence of disease in the long term, that is, beyond 5 years of follow-up.

Indeed, our proposed models for predicting BCR within 5 and 10 years after diagnosis showed highly performances using a small number of features. Specifically, our experimental results showed a high prediction sensitivity, i.e. the probability to predict disease recurrence. This represents an important requirement for a reliable support prognostic tool because it provides a useful indication for clinicians for defining a personalized treatment plan.

The most important feature was Carcinoma In Situ associated with invasive component both to predict no recurrence within five and ten years. Indeed, although it is not yet universally accepted as a prognostic factor, recent studies have shown invasive Ductal Carcinoma accompanied by Ductal Carcinoma In Situ was associated with lower local recurrence (46). The prognostic value of Ductal Carcinoma In Situ component in decision-making process could be considered as a new independent prognostic marker (47). Future works include validation studies for testing the robustness of the obtained results in a larger population that will be framed in a multi-centre research project funding by Ministry of Health. In order to improve the diagnostic accuracy, the model will be optimized by means appropriate parameter tuning study. Moreover, we will evaluate the usefulness of radiomic features in BCR prediction and the contribution of other types of features with respect to those used in this work. Indeed, despite some studies show their predictive prognostic power, in literature there are few studies using them, whereas the most of them concern the development of computer aided diagnosis systems for the cancers characterization (48–53).
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This study was to assess the prognosis stratification of the clinical-pathologic staging system incorporating estrogen receptor (ER)-negative disease, the nuclear grade 3 tumor pathology (CPS + EG), Neo-Bioscore, and a modified Neo-Bioscore system in breast cancer patients after preoperative systemic therapy (PST). A retrospective multicenter cohort study was conducted from 12 participating hospitals’ databases from 2006 to 2015. Five-year disease free survival (DFS), disease specific survival (DSS), and overall survival (OS) were calculated using Kaplan–Meier Method. Area under the curve (AUC) of the three staging systems was compared. Wald test and maximum likelihood estimates in Cox proportional hazards model were used for multivariate analysis. A total of 1,077 patients were enrolled. The CPS + EG, Neo-Bioscore, and modified Neo-Bioscore could all stratify the DFS, DSS, and OS (all P < 0.001). While in the same stratum of Neo-Bioscore scores 2 and 3, the HER2-positive patients without trastuzumab therapy had much poorer DSS (P = 0.013 and P values < 0.01, respectively) as compared to HER2-positive patients with trastuzumab therapy and HER2-negative patients. Only the modified Neo-Bioscore had a significantly higher stratification of 5-year DSS than PS (AUC 0.79 vs. 0.65, P = 0.03). So, the modified Neo-Bioscore could circumvent the limitation of CPS + EG or Neo-Bioscore.


Clinical Trial Registration

ClinicalTrials.gov, identifier NCT03437837.
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Introduction

Assessment of breast cancer prognosis is critical for clinicians to make therapeutic decision. Previous studies demonstrated that the same chemotherapy regimen used as preoperative systemic therapy (PST) or adjuvant therapy in individual studies did not significantly improve prognosis of the patients’ survival (1, 2). However, pooled analysis showed that patients who achieved a pathological complete response (pCR), defined as the histologically absence of invasive cancer cells in the breast and axillary nodes (ypT0/is ypN0), significantly had superior disease free survival (DFS) after PST, as compared with patients who had residual disease (3). These studies indicated that patient’s responses to PST can predict the disease outcomes, and the residual cancer burden (RCB) can be used to stratify the prognosis of patients after PST (4). On the other hand, most of the patients with hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative subtypes still had a favorable prognosis although they achieved a low pCR rate (5–7). As demonstrated from recent meta-analysis, pCR was a less strong prognostic factor in luminal type breast cancers, and the prognosis of non-pCR patients varied a lot (3, 8). These studies suggest that the prediction, based primarily on final pathologic assessment of post-treatment cancer residues in the breast and axilla, is not reliable, and a better prognostic approach that integrates biologic markers into clinical and pathological staging systems is needed to improve the prediction of non-pCR patients and some of pCR patients as well for development of therapeutic strategy for postoperative treatments.

The clinical-pathologic staging system incorporating estrogen receptor (ER)-negative disease, the nuclear grade 3 tumor pathology (CPS + EG staging system) (9, 10) and the updated Neo-Bioscore (11) are two score systems that incorporate aspects of tumor biology into staging system. The Neo-Bioscore was developed to validate the CPS + EG staging system using a new definition of ER positivity, and it also incorporated the HER2 status into the previously developed CPS + EG staging system. It can better stratify disease specific survival (DSS) for patients who didn’t achieve pCR. Recent studies have demonstrated that treatment of HER2-positive tumors with trastuzumab has been shown to improve survival in the adjuvant (12, 13) and neoadjuvant setting (14–16). Thus, HER2-negativity has been assigned as an unfavorable prognostic factor on the basis that patients with HER2-positive tumors are routinely treated with trastuzumab and have better prognoses in the Neo-Bioscore prognostic stratification system. This is the same criterion as the prognostic stage in the eighth American Joint Committee on Cancer (AJCC) (17). Interestingly, the distribution of breast cancer subtypes varies within the broad racial/ethnic groups. It appears that Korean, Filipina, Chinese, and Southeast Asian women had a higher incidence of HR-negative/HER2-positive breast cancers compared with non-Hispanic white women (18). Unlike the routine administration of trastuzumab for HER2-positive patients in the United States and other developed countries, most of HER2-positive breast cancer patients could not access trastuzumab because of expensive medical cost and patient’s financial hardship in China. In addition, some of HER2-positive patients who were initially treated with trastuzumab had to withdraw the therapy because of cardiac, no-cardiac toxicity, unfavorable compliance or lack of response during PST. Because both CPS + EG and Neo-Bioscore systems have not incorporated the HER2-positive patients without trastuzumab treatment, the potential to predict the outcome of HER2-positive patients treated without trastuzumab is largely limited. Thus, an accurate prediction for those subgroups of HER2-positive patients needs to be developed.

Here, we conducted a retrospective multicenter cohort study in patients with primary invasive breast cancers who underwent PST and surgery. Our objective of this study was to validate CPS + EG and Neo-Bioscore system and determine the accuracy of prediction of not only DSS, but also DFS and overall survival (OS). We also developed a modified Neo-Bioscore system to stratify the prognosis after PST in more detail.



Material and Methods


Patients and Study Design

The study was approved by the central ethics committee at the Peking University First Hospital. All breast cancer patients who met the inclusion criteria were recruited from participating hospitals’ databases from 2006 to 2015. The detailed protocol was published elsewhere (19). The data was recorded by professional clinicians and double-checked by independent research staff for accuracy. The retrospective data was retrieved from the hospitalization and follow-up patient databases from multiple institutes or hospitals.



Treatment and Standard Procedures

All patients received the first-line of taxanes (T)- and/or anthraclines (A)-based neoadjuvant regimen and other interventions as standard procedures, as described previously (19).



Statistical Evaluation

The CPS + EG score and Neo-Bioscore were determined for each patient as previously reported (9, 11). Considering HER2-positive patients without trastuzumab therapy as a poor risk factor, we assigned two scores in our modified Neo-Bioscore staging system. The detailed staging systems were summarized in Table 1. The Kaplan–Meier method was used to calculate five-year DFS, DSS, and OS for patients’ sub-grouped with multiple staging systems: (1) pretreatment clinical stage (CS), (2) post-treatment pathological stage (PS), (3) CPS + EG score, (4) Neo-Bioscore, and (5) modified Neo-Bioscore. Within each staging system, DFS, DSS, and OS among subgroups were compared using the log-rank test. Area under the curve (AUC) was calculated for the multiple staging systems and compared using the time-dependent ROC package (20). Wald test and maximum likelihood estimates (MLE) in Cox proportional hazards model for DFS, DSS, and OS were used to estimate hazard ratios when the covariates of age, menopause, progesterone receptor (PR), and Ki67 were included together with prognostic scores of the CPS + EG, Neo-Bioscore, or modified Neo-Bioscore staging system, respectively.


Table 1 | Point Assignment for the CPS + EG, Neo-Bioscore, and Modified Neo-Bioscore Staging Systems.






Results


Patient and Tumor Characteristics

A total 1,930 patients with primary breast cancer from 12 top hospitals in China were recruited, of which 1,077 cases met the inclusion criteria and therefore enrolled in this study. A total of 853 patients were excluded from the study (Figure 1). Of the 1,077 enrolled patients, pre-menopausal status was in 589 cases (54.7%) and post-menopausal status was in 488 patients (45.3%). The median age at the time of diagnosis was 49 (range 22–74) years old (Table 2). The ER status was lower than 1% in 445 patients (41.3%) and 1% or higher in 632 cases (58.7%). A total of 315 patients (29.2%) were HER2 positive; 45.1% of whom received trastuzumab as a component of their PST regimen and consecutive to 1 year, and 54.9% of HER2-positive case did not receive trastuzumab treatment. A total of 762 cases (70.8%) were HER2 negative. A total of 70 cases (6.5%) had clinical stage I disease, 717 patients (66.5%) had clinical stage II disease (29.5% IIA, 37.0% IIB), and 290 cases (26.9%) had clinical stage III disease (16.2% IIIA, 5.4% IIIB, 5.4% IIIC). A total of 166 patients (15.4%) achieved pCR, and 911 cases (84.6%) were non-pCR after PST. Of 911 patients with residual tumor, pathologic stage I was in 264 cases (29.0%), IIA was in 261 cases (28.6%), IIB was in 128 patients (14.1%), IIIA was in 156 patients (17.1%), and IIIB was in 102 cases (11.2%). The median follow-up time was 45 months (range, 11–107 months). The estimated 5-year DFS rate, 5-year DSS rate, and 5-year OS rate for the entire study population were 85.8% (95% CI, 82.9–88.3%), 90.9% (95% CI, 88.4–92.9%), and 89.1% (95% CI, 86.2–91.4%), respectively.




Figure 1 | Flow of participants.




Table 2 | Cohort Characteristics of Patients (N = 1,077) with Primary Breast Cancer.






Five-Year DFS, DSS, and OS Outcomes by CPS + EG and Neo-Bioscore Staging Systems

The estimated 5-year DFS, DSS, and OS outcomes by clinical stage, pathologic stage, CPS + EG staing system, and Neo-Bioscore were summarized in Table 1. Because a small number of patients had advanced stagings of CPS + EG and Neo-Bioscore, they were combined with either staging 5 or 6 or 7. The CPS + EG score and Neo-Bioscore staging systems for each patient were determined according to the previously published staging system (10, 11). Five-year DSS, DFS, and OS outcomes stratified by the CPS + EG scores or the Neo-Bioscore scores are shown in Figures 2 and 3, respectively. Both staging systems of CPS + EG and Neo-Bioscore were significantly associated with DFS, DSS, and OS. Five-year DFS decreased in a step-wise fashion with increasing staging score from 94.03% for score 0 of CPS + EG and 94.74% for score 0 of Neo-Bioscore to 58.77 and 56.69% for advanced stage scores, respectively (Figure 2A and Figure 3A). Similar step-wise decreases in DSS and OS were seen in the advanced scores for CPS + EG, and Neo-Bioscore staging systems too (Figures 2B, C, and 3B, C). Because nearly 45.9% of HER2-positive patients received trastuzumab-containing therapy, and the other 54.1% of HER2-positive were treated in the absence of trastuzumab, we evaluated the DSS, DFS, and OS outcomes of breast cancer patients stratified by HER2 status in the presence or absence of trastuzumab treatment. Interestingly, 5-year DSS, DFS, and OS for Neo-Bioscore score 3 were all reduced by 32–35% in the HER2-positive patients with the absence of trastuzumab treatment as compared to the same score HER2-positive patients with trastuzumab therapy and HER2-negative patients (Figures 4C, 5C, and 6C, with all P < 0.001). In addition, 5-year DSS and OS for Neo-Bioscore score 2 were also significantly reduced in the HER2-positive patients without trastuzumab treatment (Figure 4B and Figure 6B, both P = 0.013).




Figure 2 | Kaplan–Meier survival curves determined by CPS + EG in patients with breast cancer receiving preoperative systemic therapy (PST). (A) Disease free survival (DFS); (B) Disease specific survival (DSS); (C) Overall survival (OS).






Figure 3 | Kaplan–Meier survival curves determined by Neo-Bioscore in patients with breast cancer receiving preoperative systemic therapy (PST). (A) Disease free survival (DFS); (B) Disease specific survival (DSS); (C) Overall survival (OS).






Figure 4 | Kaplan–Meier survival curves for disease specific survival (DSS) determined by Neo Bioscore staging system for different HER2 status subgroup. Group 1: HER2-positive patients with trastuzumab therapy and HER2-negative patients; Group 2: HER2-positive patients without trastuzumab therapy. (A) DSS of different HER2 status subgroup in Neo-Bioscore scores 0 and 1; (B) DSS of different HER2 status subgroup in Neo-Bioscore score 2; (C) DSS of different HER2 status subgroup in Neo-Bioscore score 3; (D) DSS of different HER2 status subgroup in Neo-Bioscore scores 4, 5, and 6.






Figure 5 | Kaplan–Meier survival curves for disease free survival (DFS) determined by the Neo-Bioscore staging system for different HER2 status subgroup. Group 1: HER2-positive patients with trastuzumab therapy and HER2-negative patients; Group 2: HER2-positive patients without trastuzumab therapy. (A) DFS of different HER2 status subgroup in Neo-Bioscore scores 0 and 1; (B) DFS of different HER2 status subgroup in Neo-Bioscore score 2; (C) DFS of different HER2 status subgroup in Neo-Bioscore score 3; (D) DFS of different HER2 status subgroup in Neo-Bioscore scores 4, 5, and 6.






Figure 6 | Kaplan–Meier survival curves for overall survival (OS) determined by the Neo-Bioscore staging system for different HER2 status subgroup. Group 1: HER2-positive patients with trastuzumab therapy and HER2-negative patients; Group 2: HER2-positive patients without trastuzumab therapy. (A) OS of different HER2 status subgroup in Neo-Bioscore scores 0 and 1; (B) OS of different HER2 status subgroup in Neo-Bioscore score 2; (C) OS of different HER2 status subgroup in Neo-Bioscore score 3; (D) OS of different HER2 status subgroup in Neo-Bioscore scores 4, 5, and 6.



To improve the accuracy of prediction of HER2-positive patients without trastuzumab therapy, we developed a novel staging system, a modified Neo-Bioscore, by adding a point to the Neo-Bioscore for HER2-positive patients without trastuzumab therapy (Table 1). We assume that the modified Neo-Bioscore would amend the limitation of CPS + EG and Neo-Bioscore staging systems and provide a better prediction for HER2-positive patients in the absence of standard trastuzumab therapy. The estimated 5-year DFS, DSS, and OS outcomes by the modified Neo-Bioscore were summarized in Table 3, and advanced stagings were combined with either staging 6, 7, or 8 because of the small number patients. As shown in Figure 7, our modified New-Bioscore score system was also able to predict the outcomes of DFS, DSS, and OS stratified by the modified breast cancer scores (all P values <0.001). We assessed the survival data by area under the curve (AUC) in multiple staging system and found that three staging scores of CPS + EG, Neo-Bioscore, and modified Neo-Bioscore had similar prognostic value for 5-year DFS (Figure 8). In addition, three staging scores of CPS + EG, Neo-Bioscore, and modified Neo-Bioscore had much better prognosis than CS for DFS, DSS, and OS (all P values <0.001) (Table 4). The modified Neo-Bioscore had a 5-year DSS AUC that was significantly higher than PS (0.79 vs 0.73, P value = 0.03), whereas neither CPS + EG (0.78 vs 0.73, P = 0.1) nor Neo-Bioscore staging system (0.76 vs 0.73, P = 0.39) had a significant better prediction of 5-year DSS than PS. Neither Neo-Bioscore nor the modified Neo-Bioscore demonstrated an improved discrimination AUC of DFS, DSS, and OS as compared with CPS + EG score. At 5 years, the modified Neo-Bioscore system had a DSS AUC of 0.79 (95% CI 0.74–0.84) that was comparable to the Neo-Bioscore staging system [0.76 (95% CI 0.70–0.81)].


Table 3 | Five-Year DFS, DSS, and OS Outcomes by Clinical Stage, Pathologic Stage, CPS + EG Staging System, Neo-Bioscore, and Modified Neo-Bioscore.






Figure 7 | Kaplan–Meier survival curves determined by modified Neo-Bioscore in patients with breast cancer receiving preoperative systemic therapy (PST). (A) Disease free survival (DFS); (B) Disease specific survival (DSS); (C) Overall survival (OS).






Figure 8 | Survival data assessed using the areas under the curves (AUCs) for the pretreatment clinical stage (CS), post-treatment pathological stage (PS), CPS + EG, Neo-Bioscore, and modified Neo-Bioscore. (A) Five-year disease free survival (DFS) assessed using AUCs in multiple staging systems; (B) Five-year disease specific survival (DSS) assessed using AUCs in multiple staging systems; (C) Five-year overall survival (OS) assessed using AUCs in multiple staging systems.




Table 4 | Survival Data Assessed by Area Under the Curve (AUC) in Multiple Staging Systems.



To determine if the confounding factors of age, menopause, PR, and Ki67 status influence the disease survival of breast cancers, we performed multivariate analyses, using the Wald test and maximum likelihood estimates (MLEs) in Cox proportional hazards model for DFS, DSS, and OS to estimate hazard ratios. As shown in Table 5, we found that the menopause status was an independent prognostic factor besides the prognostic scores of the CPS + EG, Neo-Bioscore, or modified Neo-Bioscore staging system scores. The hazard ratios of menopause status for DSS and OS were 2.45 and 2.42, respectively (both P < 0.05) in the CPS + EG staging systems, while the hazard ratios of menopause for DSS and OS were 2.67 and 2.61, respectively, in the Neo-Bioscore staging system (both P = 0.01), and 2.54, 2.50, respectively, in the modified Neo-Bioscore staging system (both P < 0.05). In addition, we noted that age might be an independent factor of prognosis when the modified Neo-Bioscore system was used for prognosis.


Table 5 | Multivariate Analyses Using Wald test and Maximum Likelihood Estimation (MLE) in Cox Proportional Hazards Model.







Discussion

The AJCC published the eighth edition Cancer Staging Manual, and included the traditional anatomic stage groups and the prognostic stage groups which incorporated biomarkers such as ER, PR, HER2 status, and tumor histological grade (17). Both CPS + EG and Neo-Bioscore staging systems are better than the previous CS and PS, which conform to the same point as the AJCC eighth edition that they also take the biomarkers into consideration.

In our previous studies, we demonstrated that both CPS + EG and Neo-Bioscore could predict the disease outcomes well; but they still have obvious limitations (21). The CPS + EG score was developed before the routine test of HER2 status and the use of HER2-targeted therapy. To overcome this limitation, the Neo-Bioscore was developed, which incorporates HER2 status into the CPS + EG. Neo-Bioscore hypothesized that all HER2-positive patients have received anti-HER2 treatment. However, the treatment regimens the patients actually received are not ideal and could have a profound impact on the prognosis (22). For example, HER2 positive could be considered either as a favorable factor if the patients were treated with anti-HER2 treatment, or as a poor prognostic factor if the HER2-positive patients were treated in the absence of trastuzumab therapy (23–25). It is considered in the eighth edition of the AJCC that the prognostic value of these Prognostic Stage Groups relies on populations of patients with breast cancer that have been offered and mostly treated with appropriate endocrine and/or systemic chemotherapy and/or routine use of trastuzumab (17). Data from our hospital breast disease center also showed that the prognostic outcomes (DFS, OS) of the stage I HER2-positive patients was worse than those of the stage II because higher proportion of patients with stage II were treated with trastuzumab than patients with stage I (26).

In fact, insufficient anti-HER2 treatment is common. In this study, we found that of 1,077 patients enrolled from our multicenter approximately 29% (315/1077) of breast patients were HER2-positive; only 45% of them (142/315, HER2+) received trastuzumab, and more than half of HER2-positive cases (173/315, HER2+) were treated in the absence of anti-HER2 treatment. In other countries, patients’ with HER2-positive cancer access to trastuzumab therapy was also limited (27–29). In the United States, for example, a retrospective study that enrolled 915 HER2-positive cases reported that 28% of the HER2-positive patients did not receive anti-HER2 therapy initially (30). Another study reported approximately 41% of 585 American women discontinued trastuzumab therapy mostly because of side effects (31). Early trastuzumab discontinuation was thought to be a powerful independent predictor of cardiac events and clinically significant relapse, and both might contribute to poor survival (31, 32). Thus, the number of HER2-positive patients who do not receive trastuzumab still remains substantial.

We demonstrated that CPS+ EG and Neo-Bioscore staging systems exhibited overall expected outcomes not only of DSS in agreement with other studies (33), but also of DFS and OS which offer more comprehensive information about the long-term prognosis. However, in the same Neo-Bioscore stratum, score of 2 and 3, HER2-positive patients without trastuzumab treatment had obviously worse DSS, DFS, and OS than HER2-negative patients and HER2-positive patients with trastuzumab treatment. However, there were no differences in the higher score group, possibly because of the smaller number of cases or the more important roles of CS and PS staging system played. Our study suggests that an accurate prediction for HER2-positive patients in the absence of trastuzumab treatment needs to be developed for this subgroup of breast cancer patients.

In this study, we developed a modified staging system by assigning HER2-positive without trastuzumab administration as a poorer prognostic factor and gave two points in the modified Neo-Bioscore staging system. We demonstrated that modified Neo-Bioscore had a significant improvement of five-year DSS AUC as compared to PS scoring system (0.79 vs 0.73, P < 0.05), whereas neither CPS + EG (0.78 vs 0.73, P = 0.1) nor Neo-Bioscore staging system (0.76 vs 0.73, P = 0.39) had a significant better prediction of five-year DSS. A possible explanation of failure of the CPS + EG and the Neo-Bioscore prediction is that the characteristics of breast cancer cases in China (e.g. age and menopausal status) and the HER2-positive patients without trastuzumab therapy compromised the extent of survival stratification (34). The improvement in the prognosis of breast cancer patients was small; however, we anticipate it may show greater improvement in the predictive value of this novel, modified Neo-Bioscore scoring system once a larger cohort is enrolled in the study.

Unlike the characteristic of breast cancer in the United States, the proportion of young (<40 years old), pre-menopuasal women with breast cancer in China was much higher (34, 35). Pre-menopausal breast cancers were found to comprise a substantially higher proportion of all incident breast cancers in less developed countries (average 47.3%) compared to more developed countries (average 18.5%) (36). Interestingly, multivariate analysis of our study revealed the menopausal status was an independent factor of disease survival prediction besides the scores of the CPS + EG, Neo-Bioscore, modified Neo-Bioscore staging systems. Besides, age also shows a tendency with clinical outcome using modified Neo-Bioscore. Therefore, our future studies will enroll more young breast cancer patients in developing countries to adjust the modified Neo-Bioscore staging system.

The strength of this study was the use of data quality control strategies that are common in the performance of multicenter clinical trials. The study devoted significant attention to data quality at multiple stages, including case ascertainment, data extraction, and data management. However, the study has some limitations which are common in a retrospective design. Higher score groups were ended up with few cases so that the advanced scores were combined for statistical analyses, and a larger cohort study is needed to confirm the finding in future.

We performed a large-scale, multicenter retrospective study and analyzed 1,077 breast cancer patients to validate CPS + EG, Neo-Bioscore, and modified Neo-Bioscore staging systems after PST. We found patients in the absence of trastuzumab therapy had much poorer survival prognosis in the same stratum of Neo-Bioscore scores 2 and 3 as compared to HER2-positive cases with trastuzumab therapy and HER2-negative patients. The modified Neo-Bioscore could circumvent the limitation of CPS + EG or Neo-Bioscore and had a significant improvement of five-year DSS prediction as compared to PS due to mixed trastuzumab therapy in clinical practice. The menopausal status was an independent prognostic factor. Thus, whether menopausal status should be incorporated into the staging system need to be studied and validated with larger samples. Furthermore, it will be our future study to see if other unfavorable prognostic factors, such as insufficient treatment, are incorporated into existing staging system with TNM and biological characteristics, the staging system would have a broader clinical implication in the real world.
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Breast cancer (BC) is a highly heterogeneous disease encompassing multiple subtypes with different molecular and histopathological features, disease prognosis, and therapeutic responses. Among these, the Triple Negative BC form (TNBC) is an aggressive subtype with poor prognosis and therapeutic outcome. With respect to HER2 overexpressing BC, although advanced targeted therapies have improved the survival of patients, disease relapse and metastasis remains a challenge for therapeutic efficacy. In this study the aim was to identify key membrane-associated proteins which are overexpressed in these aggressive BC subtypes and can serve as potential biomarkers or drug targets. We leveraged on the development of a membrane enrichment protocol in combination with the global profiling GeLC-MS/MS technique, and compared the proteomic profiles of a HER2 overexpressing (HCC-1954) and a TNBC (MDA-MB-231) cell line with that of a benign control breast cell line (MCF-10A). An average of 2300 proteins were identified from each cell line, of which approximately 600 were membrane-associated proteins. Our global proteomic methodology in tandem with invigoration by Western blot and Immunofluorescence analysis, readily detected several previously-established BC receptors like HER2 and EPHA2, but importantly STEAP4 and CD97 emerged as novel potential candidate markers. This is the first time that the mitochondrial iron reductase STEAP4 protein up-regulation is linked to BC (HER2+ subtype), while for CD97, its role in BC has been previously described, but never before by a global proteomic technology in TNBC. STEAP4 was selected for further detailed evaluation by the employment of Immunohistochemical analysis of BC xenografts and clinical tissue microarray studies. Results showed that STEAP4 expression was evident only in malignant breast tissues whereas all the benign breast cases had no detectable levels. A functional role of STEAP4 intervention was established in HER2 overexpressing BC by pharmacological studies, where blockage of the STEAP4 pathway with an iron chelator (Deferiprone) in combination with the HER2 inhibitor Lapatinib led to a significant reduction in cell growth in vitro. Furthermore, siRNA mediated knockdown of STEAP4 also suppressed cell proliferation and enhanced the inhibition of Lapatinib in HER2 overexpressing BC, confirming its potential oncogenic role in BC. In conclusion, STEAP4 may represent a novel BC related biomarker and a potential pharmacological target for the treatment of HER2 overexpressing BC.
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Introduction

Breast cancer (BC) is one of the most frequently diagnosed malignancies and the leading cause of cancer-related death in women worldwide, with more than one million estimated new cases and nearly five thousand related deaths each year (1, 2). It is also the second leading cause of cancer-related mortalities globally trailing lung cancer (2). BC is a very heterogeneous disease and based on gene expression profiling as well as immunohistochemistry it can be classified into five major molecular subtypes, Luminal A and Luminal B subtypes that express estrogen and progesterone receptors (ER and PR), HER2 overexpressing (HER2+) subtype which is characterized by the overexpression of the HER2 receptor, Triple Negative (TN) subtype that lacks expression of ER, PR and HER2 and normal-like that is ER and PR positive and HER2 negative (3). While Luminal and normal-like subtypes carry a good prognosis and therapeutic response, HER2+ (about 20% of all BC) and TN subtypes (15-20% of all BC) are associated with poor prognosis, frequent disease relapse and poor therapeutic outcome (4, 5). Although established targeted therapies like trastuzumab and Lapatinib have considerable efficacy in HER2+ BC patients, inherent and acquired drug resistance results in relapse and progression of the disease (6, 7). With respect to TNBC, the first targeted agents, including poly (ADP-ribose) polymerase inhibitors (olaparib and talazoparib) and an immune checkpoint inhibitor (atezolizumab), have been very recently approved for the treatment of TNBC patients (8, 9). However, up to now the mainstay of treatment has been chemotherapy alone (10, 11). Consequently, new targeted diagnostic or therapeutic agents for HER2+ BC and TNBC are urgently needed to improve disease outcomes, which was the main focus of the current study.

We decided to focus our analysis in membrane protein targets due to their central role in all physiological functions, such as cell signalling, cell-cell interactions and cell homeostasis and over all implication in the development and progression of a variety of human cancers (12, 13). However, due to their relatively low abundance and hydrophobicity, membrane protein analysis is a common inherent proteomic challenge. To overcome potential analytical difficulties, we employed a commercially available membrane protein extraction kit to enrich integral membrane and membrane-associated proteins from different BC cell lines and the enriched membrane proteins were subjected to high resolution Mass Spectrometry (MS) analysis.

MS-based proteomics is currently the backbone of cancer biomarker discovery as the technology affords the high throughput study of proteins from complex biological samples aiming to the investigation of their ontology, classification, expression levels and properties (14, 15). The development of protein-level separation by 1D-SDS-PAGE followed by high resolution LC-MS/MS analysis referred to as GeLC-MS/MS, provides a powerful analytical tool for recovering and studying low-abundance, hydrophobic and basic membrane proteins (14, 16, 17). The GeLC-MS/MS approach has been applied to several types of cancer, including BC (18–22).

In this study, we leveraged on a label-free GeLC-MS/MS technique to compare the membrane proteomes of two representative and regularly used epithelial BC cell lines, such as the HCC-1954 (HER2+) and the MDA-MB-231 (TNBC) to a breast benign control cell line, MCF-10A. Several hits of potential interest were generated with CD97 and the iron reductase six-transmembrane epithelial antigen of prostate 4 (STEAP4) distinguished as the most novel and promising of these hits. STEAP4 protein was selected for further downstream analysis by employing Immunohistochemical (IHC) analysis on tumors derived from xenografted mice inoculated with the BC cell lines and on two independent BC tissue microarrays (TMAs). We also performed proof-of-principle functional studies on STEAP4 to assess its involvement in cancer pathophysiology. The STEAP4 pathway was pharmacologically targeted in BC cells, with an iron chelating drug (Deferiprone) with simultaneous blockage of the HER2 pathway with the tyrosine kinase inhibitor Lapatinib, which demonstrated an additive therapeutic potential involvement of STEAP4 in cancer.

Overall, our data suggest that STEAP4 may constitute a novel BC biomarker or a promising new target for HER2+ BC therapy.



Materials and Methods


Cell Culture

The BC cell lines HCC-1954 (CRL-2338), SKBR3 (HTB-30), BT474 (HTB-20), and MDA-MB-231 (HTB-26), and the breast benign epithelial cell line MCF-10A (CRL-10317) were obtained from the American Type Culture Collection (ATCC; Manassas, VA, USA). The HCC-1954, the SKBR3 and the BT474 cells were cultured in RPMI 1640 and the MDA-MB-231 in Dulbecco’s modified Eagle’s (DMEM), both medium were supplemented with 10% fetal bovine serum (FBS) and 1% antibiotics (penicillin/streptomycin). The MCF-10A was cultured in DMEM supplemented with 10% FBS, epidermal growth factor (20 ng/mL), cholera toxin (100 ng/mL and hydrocortisone (0.5 μg/mL). All cells were incubated in a humidified atmosphere at 37°C, 5% CO2 and regularly screened for mycoplasma using the MycoAlert™ Mycoplasma Detection Kit (Lonza, USA). All experiments were performed on cell cultures passaged no more than six times from frozen stock vials of passage 20 for HCC-1954 and SKBR3, 15 for BT474, 25 for MDA-MB-231, and 2 for MCF-10A.



Subcellular Fractionation and Membrane Enrichment Procedure

Enriched membrane fractions from the BC cell lines HCC-1954 and MDA-MB-231 and the breast benign control cell line MCF-10A were prepared and separated from cytosolic fractions using a commercially available kit (Mem-PER Plus Membrane Protein Extraction Kit) according to the manufacturer’s instructions. Briefly, 5 × 106 cells were harvested and the cell suspension was centrifuged at 300 × g for 5 min. Then the cell pellet was washed with 3 mL Cell Wash Solution, centrifuged at 300 × g for 5 min and the supernatant was discarded. The cells were resuspended in 1.5 mL Cell Wash Solution, transferred to small tube and centrifuged again at 300 × g for 5 min. The cell pellet was then mixed with 0.75 mL of Permeabilization Buffer, vortexed briefly to obtain a homogeneous cell suspension and incubated 10 min at 4°C with constant mixing. The permeabilized cells were centrifuged for 15 min at 16,000 × g and the supernatant containing the cytosolic proteins was carefully collected to a new tube and stored at -80°C for future use. Subsequently, the protein pellet was resuspended in 0.5 mL of Solubilization Buffer, incubated at 4°C for 30 min with constant mixing and centrifuged at 16,000 × g for 15 min at 4°C. Finally, the supernatant containing solubilized membrane and membrane-associated proteins was transferred to a new tube and stored at -80°C for further analysis. Meanwhile, whole cell lysate fractions were isolated using the Ripa Buffer cell lysis protocol, as described before. The protein concentrations of the resulting membrane cell lysate fractions were measured using the Bradford assay.



GeLC-MS/MS Analysis

One-dimensional SDS-PAGE and in-gel trypsin digestion were performed as previously reported (23). Briefly, 10 μg of the enriched membrane fractions from individual cell lines were run in 12% SDS PAGE, and stained with Coomassie Colloidal Blue overnight. Bands were excised from the gels and cut into small pieces (1-2 mm). Gel pieces were destained in 40% acetonitrile and in 50 mM NH4HCO3, reduced in 10 mM DTE and 100 mM NH4HCO3, and alkylated in 50 mM IAA and 100 mM NH4HCO3. Samples were dried using the Savant Speedvac™ concentrator (ThermoFisher Scientific, Waltham, MA, USA) and trypsinized overnight with 600 ng trypsin, using a trypsin stock solution of 10 ng/μL in 10 mM NH4HCO3. The extraction of peptides was performed with sequential washes of the trypsinized gel pieces with 50 mM NH4HCO3, followed by two washes with 50% acetonitrile, 5% formic acid for 15 min at room temperature, with agitation. The extracted peptides were dried using the Savant Speedvac™ concentrator and analyzed by nano-LC-MS/MS analysis.



LC-MS/MS Analysis

All LC-MS/MS experiments were performed on a Dionex Ultimate 3000 UHPLC system coupled with the high resolution nano-ESI Orbitrap-Elite mass spectrometer (Thermo Finnigan, Bremen, Germany), as previously described (24). Briefly, 5 μL corresponding to 5 μg of the peptide mixture were analyzed on a nanoflow system (Dionex™, Camberly, UK). After loading on a Dionex 0.1×20 mm, 5 μm C18 nanotrap column at a flow rate of 5 μL/min in 98% mobile phase A (0.1% formic acid) and 2% mobile phase B (100% acetonitrile, 0.1% formic acid), the sample was eluted into an Acclaim PepMap C18 nanocolumn 75 μm × 50 cm (Dionex™, Sunnyvale, CA, USA), 2 μm 100 Å, at a flow rate of 0.3 μL/min. The trap and the nanoflow column were maintained at 35°C. The samples were eluted with a gradient of solvent A: solvent B starting at 2%B for 10 min, rising to 5%B at 11 min, 15%B at 73 min and 55%B at 95 min. The column was then washed and re-equilibrated prior to injection of the next sample. The eluant was ionized using a Proxeon nanospray ESI source, operating in positive ion mode into an Orbitrap Elite FTMS (Thermo Finnigan, Bremen, Germany). Ionization voltage was at 2.2 kV and the capillary temperature was at 250°C. The mass-spectrometer was operated in MS/MS mode scanning from 300 to 2200 amu. The resolution of ions in MS1 was 60,000 and 15,000 for HCD MS2. The top 10 multiply charged ions were selected from each scan for MS/MS analysis using HCD at 33% collision energy. Data analysis was performed with Proteome Discoverer 1.4 software package (Thermo Finnigan), using the Sequest search engine and the Uniprot human reviewed database, updated on May 30, 2016, including 20,204 entries. The search was conducted using carbamidomethylation of cysteine as static and oxidation of methionine as dynamic modifications. Two missed cleavage sites, a precursor mass tolerance of 10 ppm and fragment mass tolerance of 0.05 Da were allowed. False discovery rate (FDR) validation was based on q value: target FDR (strict): 0.01, target FDR (relaxed): 0.05. SEQUEST results were filtered for false-positive identifications. The MS proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier PXD021819.



LC-MS/MS Quantification Analysis

Quantification analysis was performed using a label-free approach based on the peak area intensities of identified proteins (24, 25).

The peak area intensity measuring and comparing is the most widely used label-free quantification method which is based on the precursor signal intensity as determined by the extracted ion chromatogram (XIC). Precursor signal intensity is strongly correlated with peptide abundance in a specific sample (26). The peak area-based quantification uses precursor ions to assess the relative abundance of identified proteins in the label-free data. Precursor ion chromatogram for each peptide is extracted from individual LC-MS/MS runs and their peak area is calculated during data processing in Proteome Discoverer (Thermo Scientific) by using the Precursor Ions Area Detector node. For the accuracy of protein identification, the individual aligned peak must correspond to its precursor ion, retention time, charge state, and fragmented ion. After the alignment process, identified peptides from each sample are measured and normalized for their calculated peak areas and then equated for a comparative amount of protein. Protein abundance in each sample was calculated as the sum of all normalized protein areas.

Area intensity normalization for each identified protein based on total ion count is a necessary step to eliminate bias in signal intensity (27). The area intensity for each protein was normalized according to the following formula: Normalized Area = (Protein Area/Total Area) × 106. Finally, statistical analysis and comparison of Normalized peak area intensities was performed in order to determine the significance of changes between the biological samples (e.g., cell line A versus cell line B). Comparison of the area intensity for each identified protein from multiple LC-MS/MS datasets is suitable for clinical biomarker discovery, which normally requires high-throughput sample analysis (28, 29).



Western Blot Analysis

Cells were lysed in ice-cold RIPA lysis buffer (50 mM Tris-HCl at pH 7.5, 150 mM NaCl, 1 mM EGTA, 5 mM Na2EDTA, 0.1% SDS, 1% NP-40, 0.5% sodium deoxycholate, 8 mM sodium fluoride, 1 mM sodium orthovanadate) containing protease and phosphatase inhibitor cocktail (Roche, UK). Protein concentration was determined using the Pierce BCA assay kit (Pierce, Rockford, IL, USA) according to the manufacturer’s specifications. Equal amounts of protein extracted from the HCC-1954, the MDA-MB-231, the SKBR3, the BT474, and the MCF-10A cell lysates (10 μg of protein/cell line), along with NuPAGE Sample Reducing agent and NuPAGE LDS Sample Buffer were then separated by 10% SDS-PAGE gel electrophoresis and transferred onto polyvinylidene difluoride (PVDF) membranes. After blocking with 5% non-fat dried milk in TBS-T buffer (20 mM Tris, pH 7.6, 137mM NaCl, 0.1% Tween 20) for 1 h at room temperature, the membranes were incubated with primary antibodies overnight at 4 0C and then with horseradish peroxidase (HRP)-conjugated secondary antibodies for 2h at room temperature. The primary antibodies used were: mouse monoclonal anti-ErbB2 (1:1000 dilution; cat. no. ab8054, Abcam, UK), rabbit monoclonal anti-EPHA2 (1:3000 dilution; cat. no. 6997S, Cell Signaling Technology, USA), rabbit monoclonal anti-CD97 (1:1000 dilution; cat. no. ab108368, Abcam, UK) and rabbit polyclonal anti-STEAP4 (1:2500 dilution; cat. no. 11944-1-AP, Proteintech, USA). For normalization of protein concentration, the rabbit monoclonal anti-β-actin (1:10000 dilution; cat. no. ab190476, Abcam, UK) was used as loading control. The secondary antibodies used were: horseradish peroxidase (HRP)-conjugated goat anti-rabbit or horse anti-mouse IgG (1:2000 dilution; cat. no. 7074S and 7076S, Cell Signaling Technology, USA). Reactive protein bands were visualized by incubation of the membranes with Enhanced Chemiluminescence substrate (GE Healthcare, UK) and exposure to x-ray films. All Western blot analyses were repeated at least three times.



Immunofluorescence (IF) Analysis

HCC-1954, MDA-MB-231, SKBR3, BT474 and MCF-10A cells were grown onto coverslips in 24-well plate at a density of 1 × 104 cells at 37°C. The next day, the culture media was discarded, cells were rinsed with PBS three times and then fixed with 100% methanol at -20°C for 10 min. The cells were further washed twice with ice-cold PBS (5 min per wash) to remove fixative agent. Subsequently, 200 μL of blocking buffer (5% goat serum, 0.1% Triton in PBS) was added to the cells and incubated for 1 h at room temperature to block nonspecific binding with antibody. After blocking, the cells were incubated with the following primary antibodies overnight at 4°C: rabbit polyclonal anti-STEAP4 antibody (1:500 dilution; cat. no. 11944-1-AP, Proteintech, USA), mouse monoclonal anti-ErbB2 (1:100 dilution; cat. no. ab8054, Abcam, UK), rabbit monoclonal anti-EphA2 (1:200 dilution; cat. no. 6997S, Cell Signaling Technology, USA) and rabbit monoclonal anti-CD97 (1:200 dilution; cat. no. ab108368, Abcam, UK). Cells were then washed twice with ice-cold PBS, and incubated with the secondary antibody conjugated to Alexa Fluor 568 donkey anti-rabbit IgG (1:500 dilution; cat. no. ab175470, Abcam, UK) for 2 h in the dark at room temperature. The coverslips containing the cells were then washed twice with ice-cold PBS and mounted on glass slides with ProLong Gold anti-fade reagent containing DAPI (1.5 μg/mL) (Invitrogen Inc., Eugene, OR, USA). Dapi was used to stain the cell nucleus. Immunofluorescent stained cells were dried overnight in the dark at 4°C and the analyses were made using the fluorescence microscope (Leica Microsystems) with a 400 × objective. To allow direct comparisons, all images were captured using the same parameters. The fluorescence intensity was quantified using ImageJ software.



Immunohistochemistry (IHC) Analysis of Xenografts and Tissue Microarrays

Formalin fixed, paraffin-embedded tissues derived from xenografted mice inoculated with the HCC-1954 and the MDA-MB-231 cell lines were obtained for IHC analysis of STEAP4 expression as previously described (30). For the generation of the xenograft tumor sections, female NOD/SCID mice were injected in each flank with 3 × 106 HCC1954 or MDA-MB-231 cells. When tumors reached 100–150 mm3, 2-hydroxypropyl β-Cyclodextrin (HP-b-CD) was administered daily by intraperitoneally (IP) injection. After 18 days, tumors were excised, fixed in neutral buffered formalin, paraffin embedded and sectioned. All animal procedures for the data in xenografted mice were approved by the Bioethical Committee of BRFAA based on the European Directive 86/609.

Two human BC tissue microarray slides (catalog # BRC961; Pantomics, Rockville, MD and catalog # BR251c; US Biomax, Rockville, MD) containing duplicate cores from a total of 36 different cases of BC with 12 cases of normal and benign tumor tissues and 6 quadrupole cases of breast invasive ductal carcinoma with matched adjacent normal breast, respectively, were used for expression studies of STEAP4 in clinical samples. For the TMAs, all human tissues were collected under HIPPA approved protocols, as described in the the providers of the tissue microarrays, US Biomax, Inc. (https://www.biomax.us/FAQs), and US Pantomics, Inc. (https://www.pantomics.com/technical-faqs). The characteristics of the samples derived from TMAs can be viewed in the Pantomics and Biomax Web site (https://www.pantomics.com/Masterdatas/ArrayCatalog/Tissue-Arrays/BRC961 and https://www.biomax.us/tissue-arrays/Breast/BR251c). IHC of xenografts and TMAs was performed according to the Biomax standard protocols (https://www.biomax.us/Support). In brief, paraffin-embedded xenograft and TMA sections were warmed in a 60°C oven for about 10-30 min, were deparaffinized in xylene, rehydrated in a graded series of ethanol solutions (100, 95, 70 and 50%), and subjected to antigen retrieval treatment in Tris-EDTA buffer (pH 9.0). After quenching of endogenous peroxidase activity with 3% H2O2 for 15 min and blocking with normal serum for 1 h, sections were incubated with primary rabbit polyclonal anti-STEAP4 antibody (1:150 dilution; cat. no. 11944-1-AP, Proteintech, USA) overnight at 4°C. Slides were then incubated with biotinylated secondary anti-rabbit IgG (H+L) antibody (1:200 dilution; cat. no. 14708S, Cell Signaling, UK) for 30 min at 37°C, followed by Streptavidin-HRP (1:200 dilution; cat. no. 3999S, Cell Signaling, UK). Sections were finally developed with 3, 3’-diaminobenzidine (DAB) substrate solution (DAKO, CA) as chromogen and counterstained with hematoxylin for microscopic visualization. A scale of 1 to 4, representing negative (1), weak (2), moderate (3) and strong (4) staining, respectively, was used to grade the intensity of staining. The stained sections were evaluated by a certified pathologist, who was blinded to the information of sections during microscopic examination and evaluation. Specimens assigned scores of 1 to 2 were considered to have low expression, whereas those with scores 3 to 4 were regarded as having high expression.



Cell Viability Assays

For the pharmacological studies, Lapatinib (cat. no. HY-50898) was purchased from MedChem Express and Deferiprone (3-hydroxy-1,2-dimethyl-4(1H)-pyridone) from Sigma-Aldrich.

HCC-1954, SKBR3, BT474 and MCF-10A cells were seeded at a density of 5 × 103 cells per well on 96-well plates. After 24 h incubation (37°C, 5% CO2), the cell medium was removed, and the cells were treated with various concentrations of Lapatinib (10 nM-30 μM) and deferiprone (10 nM-30 μM), either alone or in combination for 72 h. The medium was then removed and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) solution (0.3 mg/mL in PBS) was added to cells for 3 h, after which the MTT solution was removed and the formazan crystals were dissolved in 100 μL DMSO. The optical density was measured at 570 nm and at a reference wavelength of 650 nm using an absorbance microplate reader (SpectraMax 190, Molecular Devices, Sunnyvale, CA, USA). The 50% cytostatic concentration (IC50) was calculated based on a four-parameter logistic equation using GraphPad Prism 5 (GraphPad Software, Inc.).



siRNA Transfection and Cell Viability Assays—Knockdown of STEAP4 in HCC-1954 Cells

Three different siRNA duplexes specific for STEAP4: A-siRNA (cat. no. SR312522A), B-siRNA (cat. no. SR312522B), C-siRNA (cat. no. SR312522C) and a Universal Scrambled negative control siRNA (NC-siRNA) duplex (cat. no. SR30004) were purchased from OriGene (OriGene, Rockville, MD). HCC-1954 cells were transfected with a final concentration of 10 nM siRNA, using siTRAN 2.0 transfection reagent (OriGene, Rockville, MD), according to the manufacturer’s protocol. Control cells were mock transfected with transfection reagents. HCC-1954 cells (2 x 105 per well) were seeded in 6-well plates and cultured until they reached 60% - 70% confluency. The cells were incubated with transfection mixtures containing 10 nM of STEAP4-siRNA or NC-siRNA (non-silencing of STEAP4) for 14 h and then the culture supernatant was replaced with fresh culture medium. The cells were harvested after 48 h and evaluated for their silencing efficiency using Western Blot, as described above.

To determine the proliferative ability of cells, HCC-1954 cells at a density of 5 × 103 cells per well were cultured in 96-well plates. The cells were initially transfected with STEAP4-siRNA or NC-siRNA. After 24, 48 and 72 h of transfection, the cell medium was removed and MTT solution (0.3 mg/mL in PBS) was added to cells for 3 h at 37°C. The optical density was measured at 570 nm and at a reference wavelength of 650 nm using an absorbance microplate reader (SpectraMax 190, Molecular Devices, Sunnyvale, CA, USA).

To investigate the effect of siRNA on Lapatinib IC50 values, HCC-1954 cells were seeded into 96-well plates (5 × 103 cells/well) and allowed to attach for 24 h (37°C, 5% CO2). Then, cells were treated with 10 nM of STEAP4-siRNA or NC-siRNA for 14 h at 37°C in a 5% CO2 incubator. After incubation, the culture supernatant was replaced with fresh culture medium containing serum and different concentrations of Lapatinib (10 nM-30 μM) for a total time of 72 h. After incubation, the cell viability was detected using the same MTT assay described above.



Statistical Analysis

The results presented herein are expressed as mean ± SD. Correlations between STEAP4 expression and clinicopathological parameters were determined using the Chi-square test. Statistical analyses and calculation of all IC50’s were performed by GraphPad software. Each point was the result of three independent experiments performed in triplicate for statistical analysis. Statistical significance was determined using the Student’s t-test. A P value of less than 0.05 was considered significant.




Results


Membrane Protein Enrichment and Isolation

Our key methodological principle was to increase the threshold of sensitivity to ensure that even low-abundant cell membrane proteins in aggressive subtypes of BC could be detected. Thus, our initial step was to perform an efficient subcellular fractionation of three well characterized BC epithelial cell lines: HCC-1954 (HER2 overexpressing), MDA-MB-231 (TNBC) and MCF-10A (benign control). Enriched membrane fractions were isolated and separated from the cytosolic fractions using a commercially available kit, whereas whole cell lysate fractions were prepared using the Ripa Buffer cell lysis protocol (Figure 1A). The whole uncropped images of the original Western blots for Figure 1A are provided in Supplementary Figure 4. To verify the successful enrichment of the membrane isolation protocol, we performed Western blot analysis of well-established BC biomarkers, the EGFR and HER2, which served as our positive control. As shown in Figure 1A strong expression of EGFR and HER2 was observed in the isolated membrane fractions compared to the cytosolic fractions.




Figure 1 | Experimental workflow for identification of candidate Breast Cancer (BC) biomarkers or drug targets using a strategy that combines a membrane enrichment protocol with GeLC-MS/MS technique. (A) Membrane enriched, cytosolic and whole cell lysate fractions from the breast cancerous MDA-MB-231 (MDA) and HCC-1954 (HCC) cell lines were isolated and analyzed by Western blot, using well established BC membrane targets (HER2 and EGFR), to verify the success of the membrane enrichment. (B) Membrane enriched fractions were then subjected to 1D SDS-PAGE gel electrophoresis, in-gel trypsin digestion, and tandem mass spectrometric analysis on a high resolution Orbitrap. Protein identification and quantification was performed using bioinformatic tools (Sequest database search). Cell, whole cell lysate fraction; cyt, cytosolic fraction; mem, membrane fraction.





Proteomic Analysis of the Membrane Enriched Fractions

Following the successful fractionation, a global proteomic profiling was performed in order to identify new pharmacological targets or biomarkers for HER2+ and TNBC. For such a demanding proteomic analysis we utilized the Global Discovery-based GeLC-MS/MS approach on a high resolution Orbitrap Mass analyzer. The technique is based on the initial separation of the protein mixture by one-dimensional SDS-page gel electrophoresis followed by in-gel tryptic digestion and finally on the Mass Spectrometric and Bioinformatic analysis of the peptide mixture (Figure 1B). Four biological replicates were used for each cell type, and from the analysis of replicates of the HCC-1954 cell line, an average of 2200 proteins were identified, whereas an average of 2500 proteins were identified from the MDA-MB-231 cell line and an average of 2100 proteins were identified from the MCF-10A cell line. Since we were interested in easily accessible cell membrane and membrane associated proteins that can be exploited for drug design and for diagnostic purposes, the list of identified proteins was refined for the selection of membrane associated proteins based on their subcellular location (Source: Uniprot database http://www.uniprot.org). Given the heterogeneous nature of BC, only proteins that were present consistently in 75% of cancer biological replicates and at above the limit of detection (Normalized Area ≥ 70) were chosen for downstream analysis. Refining the search with those criteria, a total of 536, 641 and 604 membrane-associated proteins were selected from the HCC-1954, the MDA-MB-231 and the MCF-10A cell lines, respectively.

In order to investigate the quantitative similarities and differences in protein expression resulting from malignant transformation of the breast epithelium, comparative proteomic analysis was performed among the described BC cell lines. The Venn diagrams in Figures 2A, B display the comparisons of the membrane-associated proteins identified between each BC cell line (HCC-1954 and MDA-MB-231) and the benign control cell line (MCF-10A). In the comparison of HCC-1954 versus MCF-10A cells, 426 proteins were common, whereas 110 and 178 proteins were unique in the HCC-1954 and the MCF-10A, respectively. Also, in the MDA-MB-231 versus the MCF-10A comparison there were 451 common identifications, while there were 191 and 153 unique protein identifications in the MDA-MB-231 and the MCF-10A, respectively. The original lists of all the membrane-associated proteins found in the HCC-1954 cells compared to the MCF-10A cells and in the MDA-MB-231 cells compared to the MCF-10A cells along with their Normalized Areas are provided in Supplementary Tables 1 and 2, respectively.




Figure 2 | Comparison of the membrane-associated proteins identified in breast cancer (HCC-1954 and MDA-MB-231) versus benign control (MCF-10A) cell lines by GeLC-MS/MS analysis. Proteins from 4 biological replicates of each breast cancer cell line were combined for this comparison. (A) Venn diagram depicting the comparison of HCC-1954 vs. MCF-10A cells, of which 426 proteins were commonly identified, while 110 and 178 proteins were uniquely identified in HCC-1954 and MCF-10A, respectively. (B) Venn diagram depicting the comparison of MDA-MB-231 vs. MCF-10A cells, of which 451 proteins were commonly identified, while 191 and 153 proteins were uniquely identified in MDA-MB-231 and MCF-10A, respectively.





Selection of Promising Candidate Drug Targets or Biomarkers for HER2+ or TNBC

Quantitative comparison of HCC-1954 (HER2+) and MDA-MB-231 (TNBC) versus MCF-10A cells based on the average Normalized Area of each protein entry revealed promising molecules to investigate further as potential specific biomarkers or drug targets for HER2+ BC or TNBC. To narrow down the list of candidate targets in HER2+ BC and TNBC the following criteria were applied:

	(1) Candidate proteins were only detected in the cancerous cell lines (HCC-1954 and MDA-MB-231) compared to the normal control cell line (MCF-10A).

	(2) Protein expression levels in the normal cell line were defined as those proteins that were identified in at least three replicates with a Normalized Area ≥ 70; Candidate proteins were highly abundant. The proteins with the highest Normalized Area were reported.

	(3) The percent Coefficient of Variation (% CV) between replicates of each candidate protein was ≤ 40, based on statistical analysis. Applying these criteria led to the selection of the top 30 candidate protein targets in HER2+ BC and TNBC as shown in Tables 1 and 2, respectively.




Table 1 | Selected membrane associated proteins specifically identified in HCC-1954 compared to MCF-10A cells.




Table 2 | Selected membrane associated proteins specifically identified in MDA-MB-231 compared to MCF-10A cells.



Notably, among the list of identified candidates exclusively found in the HER2+ BC cell line (Table 1) the most abundant was the driver proto-oncogene and key biomarker that characterizes this type of cancer, the human epidermal growth factor receptor 2 (ERBB2, also known as HER2) (31), verifying the reliability and validity of the described proteomic methodology. Furthermore, several well-established HER2+ BC proteins as well as novel BC protein targets were specifically identified in the HER2+ BC cell line (Table 1). Among the proteins previously known to be up-regulated in HER2+ BC, were GRB7, STARD3 and EPHA2. Specifically, the adapter protein, GRB7, and the cholesterol-binding protein, STARD3, have been shown to be coamplified and co-overexpressed as part of HER2/ERBB2 17q12 amplicon in HER2+ BC and thus they have been suggested to promote proliferation and contribute to the aggressive behaviour of HER2+ BC (32–35). They have also been implicated in resistance to trastuzumab and Lapatinib treatment (35, 36). Of note, the receptor tyrosine kinase EPHA2 has been involved in breast tumor initiation and metastatic progression of HER2+ BC by amplifying HER2 signalling (37, 38). Furthermore, EPHA2 overexpression in HER2+ BC cells has been demonstrated to confer innate resistance to trastuzumab, indicating that it could be used as a drug target or prognostic marker for patients with trastuzumab-resistant HER2+ BC (39, 40). The above findings constitute confirmation of our methodological approach. Interestingly, some novel BC related proteins (STEAP4, CLPTM1L, TMEM41A, DHCR24, etc., shown in Table 1) were also discovered, which have been reported to be involved in other cancer types. Among the novel BC proteins identified, the six-transmembrane epithelial antigen of the prostate 4 (STEAP4) drew our strong interest due to its key role in iron and copper homeostasis and previous reports in prostate and colon cancer (41–43). Due to its membrane-bound localization and its high expression in prostate and colon cancer, STEAP4 has been suggested as a promising therapeutic target (42, 43).

With respect to TNBC, among the list of identified candidates specifically found in the TNBC cell line (Table 2), there were some proteins (CD74, EPHA2, CD97, AXL and LDLR) previously known to be overexpressed or implicated in TNBC. More specifically, the overexpression of the transmembrane glycoprotein CD74 has been significantly correlated with TNBC and lymph node metastasis (44, 45). The receptor tyrosine kinase EPHA2 overexpression has been found in the basal-like molecular subtype of BC and has been proposed to promote tumor invasiveness in TNBC and correlate with poor recurrence-free survival (RFS) in TNBC (46, 47). Remarkably, the G protein-coupled receptor (GPCR), CD97, was found for the first time in TNBC by a global proteomic profiling approach, confirming the potential of our proteomic strategy in identification of low abundant molecules with challenging detection, such as GPCRs. However, its implication in TNBC has been previously reported in some studies (48, 49). CD97 is the most broadly expressed member of the epidermal growth factor seven-span transmembrane (EGF-TM7) subfamily of adhesion GPCRs, that is involved in cell proliferation, differentiation, and apoptosis (50). CD97 has been demonstrated to confer an invasive phenotype and its interaction with its ligand, CD55, has been shown to contribute to tumorigenesis through cell adhesion, migration, and angiogenesis through G-protein dependent or G-protein-independent signaling (50, 51). The receptor tyrosine kinase AXL has been demonstrated to be preferentially upregulated in TNBC and its high expression levels has been associated with reduced RFS and OS in TNBC patients treated with anthracycline–taxane-based adjuvant chemotherapy (52, 53). Moreover, the elevated expression of the low density lipoprotein receptor (LDLR) in TNBC cells has been demonstrated to be consistent with the aggressive and metastatic nature of TNBC (54, 55). Four candidate membrane proteins from the lists of specifically detected proteins in HER2+ BC and TNBC cell lines (Tables 1, 2) were chosen for further verification of the proteomic approach, based on their implication in cancer, their significance in each subtype of BC, their identified high expression levels and their novelty. Among them, were two well-established BC receptors (HER2 and EPHA2), a previously studied GPCR in TNBC (CD97) and a novel BC involved metalloreductase STEAP4. Remarkably, CD97 and STEAP4 emerged as novel candidate markers for TNBC and HER2+ BC, respectively. CD97 expression levels have been previously reported in a TNBC cell line (48, 49), but never before by a global proteomic technology. Regarding STEAP4, to our knowledge this is the first time that its up-regulation is associated with BC, and more specifically with HER2+ BC.



Verification of Selected Candidate Protein Targets via Western Blot and IF Analysis

To further verify the expression pattern of the four selected candidate membrane protein targets, Western blot and Immunofluoresence (IF) analysis of HER2, STEAP4, EPHA2 and CD97 were performed from the whole cell lysates of the HCC-1954, the MDA-MB-231 and the MCF-10A cell lines. Results are depicted in Figure 3. The Western blot analysis was in good agreement with the proteomic results, since HER2 and STEAP4 expression was detected only in the HCC-1954 cell line (Figures 3A, B), CD97 was identified only in the MDA-MB-231 cell line (Figure 3D) and EPHA2 was solely increased in the HCC-1954 and the MDA-MB-231 cell lines compared to a low expression in the MCF-10A cell line (Figure 3C). The whole uncropped images of the original Western blots for Figure 3 are provided in Supplementary Figure 4. IF analysis further confirmed the proteomic data, Protein specific IF staining demonstrated that HER2 and STEAP4 expression was upregulated in the HCC-1954 cell line compared to the MDA-MB-231 and the MCF-10A cell lines (Figures 3A, B), whereas CD97 was predominantly present in the MDA-MB-231 cell line (Figure 3D). Finally, IF staining of EPHA2 showed that it was abundantly identified in the HCC-1954 and the MDA-MB-231 compared to almost no expression in the MCF-10A cell line (Figure 3C). Further validation studies by Western blot and IF analysis of STEAP4, confirmed its expression in other HER2+ BC cell lines, SKBR3 and BT474 (Supplementary Figure 1).




Figure 3 | Verification of the expression pattern of the selected protein targets identified by GeLC-MS/MS with Western blot and Immunofluorescence (IF) analysis. (A, B) Consistent with the proteomic results, Western blot detection of HER2 and STEAP4 in BC cell lines was only found in HCC-1954 (HER2+) cells. IF qualitative and relative quantitative results of HER2 and STEAP4 confirmed their overexpression in HCC-1954 cells as compared to the control MCF-10A and the MDA-MB-231 (TNBC) cells (***p < 0.001). (C) EPHA2 was highly expressed in MDA-MB-231 and HCC-1954 but faintly detectable in the control MCF-10A cells by Western Blot and IF qualitative and quantitative analysis, as we expected from the proteomic results (***p < 0.001). (D) CD97 expression was only detected in MDA-MB-231 (TNBC) through Western blot and IF results (**p < 0.01, ***p < 0.001). Scale bars in the IF images represent 40 µm.



In conclusion, the differential expression levels of these proteins confirmed the findings derived from the proteomic data analysis. While the presence of the adhesion GPCR CD97 has been previously described in BC, the mitochondrial iron reductase STEAP4, to the best of our knowledge, has not been previously implicated in BC (HER2+ subtype). Thus, the novelty and abundance of STEAP4 prompted us to select it for further evaluation and pharmacological analysis.



Tissue Array Profiling of STEAP4 Expression Association With Clinicopathological Parameters

To assess the clinical relevance of STEAP4 in BC and normal breast tissues, IHC analysis of STEAP4 was conducted initially on tissues derived from mice inoculated with the HCC-1954 and MDA-MB-231 cell lines and on two independent BC TMAs (BRC253, BRC961) containing a total of 18 benign and 42 malignant breast tissues.

Consistent with Western blot and IF results, the HCC-1954 xenograft tissues were positive for STEAP4, whereas the MDA-MB-231 xenograft tissues were negative as shown in Supplementary Figure 2. Representative IHC images of varying levels of STEAP4 expression in the TMAs of non-neoplastic and neoplastic breast tissues are depicted in Figure 4. STEAP4 showed a cytoplasmic and focally paranuclear staining pattern in both xenografts and TMAs; however, a plasma membrane localization was also detected in our IF investigation, which is in concordance with previous studies (41, 43).




Figure 4 | Immunohistochemical analysis of STEAP4 expression in human BC tissues. STEAP4 expression was assessed in 2 independent tissue microarray (TMA) slides, containing 6 cases of invasive ductal carcinoma and adjacent normal breast tissue (BR251c) and 36 cases of breast cancers and 12 cases of normal and benign breast tissues (BRC961). Representative IHC images (100x and 400x magnifications, scale bars = 40 μm) of (A) negative STEAP4 expression in a non-neoplastic breast tissue, (B) high STEAP4 expression, in an invasive ductal carcinoma, (C) low STEAP4 expression in an invasive ductal carcinoma and (D) negative STEAP4 expression in an invasive ductal carcinoma from the TMAs are depicted.



Association between STEAP4 expression and clinicopathological features derived from the two TMAs are merged and summarized in Table 3. The data were expressed in terms of STEAP4 positive versus negative cases. Notably, STEAP4 expression was found only in malignant breast tissues whereas all the benign breast cases/tissues had no detectable levels of STEAP4 (p < 0.01). In addition, 49% (20/41) of the BC tissues showed positive STEAP4 expression while 51% (21/41) of the BC cases were STEAP4 negative (Table 3). STEAP4 expression was significantly associated with the tumor grade (p < 0.01). However, no statistically significant correlations were observed between STEAP4 expression and all the other clinicopathological features, although a strong trend was evident with lymph node metastasis and a weaker one with pT status. These results clearly indicated that STEAP4 is involved in the pathogenesis of human BC, however possibly due to the small number of the clinical samples we couldn’t determine significant associations between STEAP4 and specific clinicopathological parameters such as HER2 status, age, pT status, histology grade, lymph node metastasis or pathological stage.


Table 3 | Association of STEAP4 expression with patient’s clinicopathological features in the TMA slides.



Remarkably, due to its membrane-bound localization and its high over-expression in neoplastic compared to non-neoplastic tissues, STEAP4 constitutes an ideal pharmacological target for cancer therapy.



Synergistic Efficacy Through Combination of HER2 and STEAP4 Inhibition in HER2+ BC

Based on our findings, STEAP4 could be used as a novel candidate therapeutic target for HER2+ BC. A recent study has shown that an FDA-approved iron chelator, Deferiprone (DFP), can inhibit the STEAP4 pathway (42). Therefore, in order to evaluate the pharmacological relevance of STEAP4 in HER2+ BC, a combination of DFP with a typically used HER2 inhibitor, Lapatinib, was employed for the testing treatment of a STEAP4+ and a STEAP4- BC cell lines. We hypothesized that these two drugs could have a synergistic effect on the growth of the HER2+ BC cells only, and could ultimately improve the efficacy and tolerability of Lapatinib therapy due to resistance issues.

Given the fact that Lapatinib is a dual EGFR/HER2 inhibitor, we chose the HER2 overexpressing BC cell line, HCC-1954, and the EGFR overexpressing benign control cell line, MCF-10A, for further evaluation. Moreover, STEAP4 expression levels were highly and consistently detectable in the HCC-1954 cell line whereas the MCF-10A cell line had undetectable levels of expression, based on our results. We therefore studied the sensitivity of the selected BC cell lines to Lapatinib and DFP, either alone or in combination after a 72-hour treatment. As shown in Figures 5A, B, Lapatinib alone produced a gradual dose-dependent growth inhibition in both the HCC-1954 and the MCF-10A cell lines whereas DFP alone had very limited cytotoxic effect. More specifically, after 72-h exposure to Lapatinib, the IC50 values in the HCC-1954 and the MCF-10A cells were 2.3 ± 0.2 and 4.6 ± 0.2 μM, respectively, whereas after DFP treatment, the IC50 values in the HCC-1954 and the MCF-10A, were 120 ± 12 and 84 ± 4 μM, respectively. Importantly, when cells were exposed to increasing doses of Lapatinib (10 nM-30 μM) in combination with DFP at 25 μM or 50 μM, synergistic activity was observed only in the HCC-1954 cells, resulting in a ~60% growth-inhibition, with an IC50 of approximately 1 μM (p < 0.001). Given the fact that the growth of the MCF-10A cells was not affected by the combination treatment with Lapatinib and DFP, we concluded that the additive growth inhibitory effect in the HER2+ cell line, HCC-1954, could also be mediated through the STEAP4 pathway inhibition. A summary of the IC50 values of Lapatinib and DFP, either alone or in combination is provided. A similar synergistic cell growth inhibitory effect (~50%) was also observed for Lapatinib in combination with 25 μM Deferiprone in the other tested HER2+ BC cells, SKBR3 and BT474 (p < 0.001), as shown in Supplementary Figure 3. It should be noted that Lapatinib sensitivity of the SKBR3 and the BT474 cells was much higher than that of the HCC-1954 cells, a finding that is consistent with the literature (56–58).




Figure 5 | In vitro MTT cytotoxicity of Lapatinib compared to combined treatment of Lapatinib and Deferiprone in HCC-1954 (HER2+) cells. (A) A synergistic cell growth inhibitory effect of Lapatinib in combination with 50 μM Deferiprone on HCC-1954 cells was found (p < 0.001). (B) A similar synergistic cell growth inhibitory effect was determined for Lapatinib in combination with 25 μM Deferiprone on HCC-1954 cells (p < 0.001). The results represent the mean values ± SD of three independent experiments.





Knockdown of STEAP4 Suppressed Cell Proliferation and the IC50 of Lapatinib in HCC-1954 Cells

To examine the silencing efficiency of siRNAs on STEAP4 protein, three siRNA duplexes (A-siRNA, B-siRNA and C-siRNA) and a negative control (NC-siRNA), which is absent in human genomes, were used for transfection of the HCC-1954 cells. The effects of the specific siRNAs on STEAP4 protein expression were evaluated by Western blot analysis, after the treatment of 10nM for each siRNA. The results indicated that STEAP4 expression was significantly decreased in the A-siRNA and B-siRNA treated groups compared with the C-siRNA, NC-siRNA treated groups and untreated group (Figure 6A). Transfection with NC-siRNA did not alter STEAP4 expression levels, indicating that the inhibitory effect of STEAP4 siRNA was specific. Taken together, the A-siRNA and B-siRNA were considered as optimal interference sequences, which were used for subsequent experiments.




Figure 6 | Effect of STEAP4 silencing on cell proliferation and Lapatinib inhibition in HCC-1954 (HER2+) cells. (A) Knockdown efficiency of the three siRNA duplexes on STEAP4 protein expression in HCC-1954 cells, as assessed by Western blot analysis 48 h after transfection with 10nM siRNAs. (B) HCC-1954 cell growth curves at 24, 48, and 72 h after transfection with 10nM siRNAs. Cell proliferation OD values were detected by MTT assay. STEAP4 A-siRNA and B-siRNA significantly reduced cell proliferation at 72 h of transfection as compared to the NC-siRNA (non-silencing of STEAP4) or Control group (**p < 0.01). (C) Dose–response curves and the IC50 values after siRNA and Lapatinib treatment. HCC-1954 cells were treated with a fixed concentration of siRNAs (10 nM) and different concentrations of Lapatinib for 72 h to assess the effect of A-siRNA and Lapatinib on cell viability using the MTT assay. NC-siRNA (non-silencing of STEAP4) was used as the negative control for comparison (p < 0.01). The results represent the mean values ± SD of three independent experiments.



After A-siRNA, B-siRNA and NC-siRNA of STEAP4 were transfected into HCC-1954 cells for 14 h, the cells were cultured for 24, 48, and 72 h and then treated with the MTT solution. The NC-siRNA was used as a negative control to compare nonspecific toxicity. Absorbance in the cells was detected respectively after which the cell growth curve was drawn (Figure 6B). The cell growth in the A-siRNA, and B-siRNA groups at 24 and 48 h was not significantly affected when compared with the NC-siRNA and the Control (mock transfected) groups. However, cell proliferation at 72 h was significantly inhibited (p < 0.01) in the A-siRNA and B-siRNA groups.

Since A-siRNA had the most marked silencing effect among the three siRNAs assessed (Figure 6A), it was selected for further pharmacological evaluation.

To investigate the effect of siRNA-A treatment on the chemosensitivity of HCC-1954 cells to Lapatinib treatment, cells were treated with 10 nM of A-siRNA or NC-siRNA for 14 h followed by treatment of different concentrations of Lapatinib. The IC50 values of Lapatinib following transfection were determined (Figure 6C). After 72 h exposure to increasing doses of Lapatinib (10 nM-30 μM), the IC50 values in the A-siRNA transfected HCC-1954 cells were 1.6 ± 0.5 μM, whereas the IC50 values in the NC-siRNA transfected were 3.6 ± 0.6 μM. These results indicated a statistical significant increase in the Lapatinib inhibition of the HCC-1954 cells when treated with A-siRNA compared with the control group (p < 0.01).




Discussion

Our study was not limited to presenting a wide dynamic range, sensitive and robust approach for BC proteomic analysis, but it also advanced our understanding on the proteomic profile of BC with the discovery of potential biomarkers and therapeutic candidate targets for pharmacological intervention. The combination of a membrane enrichment protocol with the label-free GeLC-MS/MS quantitative proteomic profiling generated a total of 536, 641 and 604 reliable membrane-associated proteins from the HCC-1954, the MDA-MB-231 and the MCF-10A cell lines. Deep-dive proteomic data analysis showed that 110 and 191 proteins were exclusively present in the HCC-1954 and the MDA-MB-231 cell lines, respectively compared to the MCF-10A cell line. Several of the proteins identified in our study have been reported previously to be elevated in HER2+ BC and TNBC, suggesting that the GeLC-MS/MS methodology is a powerful screening tool for the identification of novel biomarkers for aggressive subtypes of BC. To our knowledge, this is the first time that the six-transmembrane epithelial antigen of prostate 4 (STEAP4) which emerged from our screening efforts is linked to BC, and provides a novel pharmacological target with potential clinical translation.

STEAP4 is an iron-metabolism-related mitochondrial protein that functions as a metalloreductase involved in cellular iron and coper homeostasis and its expression has been modulated in response to inflammation, oxidative stress and metabolism of fatty acids and glucose (41). Regarding its crucial role in carcinogenesis, STEAP4 overexpression has been previously described in human colon cancer (CRC) and androgen-dependent prostate cancer (PCa) compared to normal colon and prostate (42, 59). Additionally, STEAP4 has been shown to increase reactive oxygen species (ROS) in PCa cells through its iron reductase activity, which may promote PCa tumorigenesis and progression. Mitochondrial iron dysfunction via STEAP4 has also been implicated in increased oxidative stress in colon tissues and as a result promoting inflammatory tissue injury and colitis-associated colon cancer. The localization of STEAP4 in the mitochondria and differential expression in normal and cancer tissue make STEAP4 a potential candidate as a biomarker or a therapeutic target in CRC and androgen-dependent PCa.

The overexpression of STEAP4 in the HER2+ BC cells which emerged for the first time in our screening efforts, in tandem with the IHC results in the TMAs, was the inflection point which triggered us to proceed to the pharmacological evaluation of the STEAP4 in HER2+ BC models.

A frequently used iron chelating drug, DFP, has been recently demonstrated to inhibit STEAP4 and as a result it could be used as a promising pharmacological regime against various types of cancer where STEAP4 overexpression is observed. Iron chelators have been previously explored as cancer chemopreventive and chemotherapeutic agents (60). DFP is a well-tolerated orally administered iron chelator, used clinically, which has shown great patient compliance and efficacy in the removal of potentially toxic excess iron from the heart (60, 61) and tissues (62, 63). DFP has been shown to inhibit cancer cell growth through a variety of mechanisms such as involving inhibition of iron-dependent translational and enzymatic processes (61, 62) and molecules, such as STEAP4 (42).

With respect to HER2+ BC, there have been significant therapeutic advances in the field over the last decade, with several potent targeted treatments clinically available, including trastuzumab and Lapatinib alone or in combination with chemotherapeutics and new agents targeting other related to HER2 pathways (6, 64). Lapatinib, the small molecule tyrosine kinase inhibitor which targets HER2 and EGFR, has considerable anti-tumor activity against HER2+ BC cells, including trastuzumab resistant cells. It has also an acceptable safety profile for the treatment of HER2+ BC and unlike trastuzumab, has less cardiotoxicity and may penetrate the blood brain barrier better in the context of CNS metastases (65, 66). However, Lapatinib treatment is associated with hepatobiliary toxicities and frequent disease recurrence due to either innate or acquired drug resistance (67). Therefore, simultaneous pharmacological targeting of crucial metabolic pathways with a combination of targeted agents, as in other types of co-administration clinical models, could prevent or delay the onset of resistance phenomena and possibly contribute to liver safety events in HER2+ BC patients. In this context, we hypothesized that pharmacological blockage of the STEAP4 pathway with the iron chelator DFP in combination with Lapatinib may improve efficacy and/or overcome drug resistance in HER2+ BC.

Consistent with our hypothesis, the dual drug inhibition of HER2 and STEAP4 by the combinational treatment of Lapatinib with the DFP significantly decreased cell proliferation in the HER2+ BC cell lines (HCC-1954, SKBR3, BT474) than either drug alone, suggesting a new pharmacological treatment scheme for HER2+ BC. Future preclinical studies on the appropriate dose adjustment during this combinational treatment may be needed to minimize untoward Lapatinib-related hepatotoxicities. Furthermore, silencing of STEAP4 using small interfering RNA also resulted in a significant reduction in cell growth and enhanced the inhibition potential of the Lapatinib in the HCC-1954 cells.

Based on our pharmacological findings via the combinatorial treatment with the iron chelator, DFP, and lapatinib, and given STEAP4’s role in intracellular iron import, we hypothesize that the mitochondrial iron pathway plays a potentially critical and understudied role in the pathogenesis and/or progression of HER2+ BC. Supporting evidence of this is provided by studies that correlate HER2 overexpression and elevated iron levels (68, 69). Evidence in the literature associates STEAP4 with metabolic dysregulations in cancer and other diseases, where inflammation is a central hallmark. Inflammatory cytokines like IL17, have been linked with STEAP4 upregulation and cancer progression (70). Other key proinflammatory cytokines like TNFα, IL-6 and IL-1β were also associated with STEAP4 overexpression (41). In a similar pattern, the HER2 overexpression has also been shown to consistently activate multiple inflammatory pathways, including the secretion of high levels of IL-6 (71, 72). Muraro et al. demonstrated that increased levels of IL-6 and IL-1β were found in the serum of HER2+ patients compared to HER2 negative patients (73). However, despite these findings we are not aware of a published direct linkage between STEAP4 and HER2, necessitating further research on this topic. We hypothesize that in the inflammatory tumor microenvironment, STEAP4 and HER2+ are somehow interconnected with an unidentified direct or indirect mechanism involving inflammatory cytokines that eventually contributes to increased intracellular iron accumulation, which in turn could lead to enhanced oxidative stress promoting HER2+ BC progression (41, 74). Further proteomic and gene expression profiling studies in lapatinib and/or DFP treated, untreated and STEAP4-silenced HER2+ BC cells need investigation in order to identify key signaling differences, direct interacting partners and pathway enrichment correlating with STEAP4 expression. Given the fact that there are no specific STEAP4 inhibitors, the elucidation of the molecular mechanism by which STEAP4 affects the development of HER2+ BC could highlight novel druggable partners for more selective targeting of STEAP4 in HER2+ BC therapy.

In conclusion, STEAP4 may represent a potential BC related biomarker and a promising new pharmacological target for the treatment of HER2+ BC. Further validation studies involving a larger clinical sample size would be necessary to clarify the association of STEAP4 with clinical parameters and its potential role in the tumorigenesis and treatment of HER2+ BC.
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Supplementary Figure 1 | Verification of the STEAP4 expression by Western blot and Immunofluorescence (IF) analysis in HER2+ BC cells. (A) STEAP4 expression levels were detected in SKBR3 and BT474 (HER2+) cells, by Western blot analysis. (B) IF results of STEAP4 also confirmed its expression in SKBR3 and BT474 cells. Scale bars in the IF images represent 40 µm.

Supplementary Figure 2 | Immunohistochemical analysis of STEAP4 expression in human BC xenograft tissues. STEAP4 expression was examined in the HCC-1954 and MDA-MB-231 xenograft tissues. Representative IHC images (200x magnifications, scale bars = 40 μm) of (A) positive STEAP4 expression in the HCC-1954 xenograft tissues and (B) negative STEAP4 expression in the MDA-MB-231 xenograft tissues are illustrated. 

Supplementary Figure 3 | In vitro MTT cytotoxicity of Lapatinib compared to combined treatment of Lapatinib and Deferiprone in HER2+ BC cells. (A) A synergistic cell growth inhibitory effect of Lapatinib in combination with 25 μM Deferiprone on SKBR3 cells was found (p < 0.001). (B) A similar synergistic cell growth inhibitory effect was determined for Lapatinib in combination with 25 μM Deferiprone on BT474 cells (p < 0.001). The results represent the mean values ± SD of three independent experiments.

Supplementary Figure 4 | Uncropped Western blot images from the main text (provided as a separate PDF file). Pictures depict membranes probed with antibodies as indicated on the blots. Black boxes represent final cropped regions shown in manuscript. All top to bottom images are different exposure from the same membrane. (A) Whole, uncropped Western blots of Figure 1A. Samples order in the frames from left to right were: MDA-MB-231 cell lysate fraction (MDA cell), MDA-MB-231 cytosolic fraction (MDA cyt.), MDA-MB-231 membrane fraction (MDA mem.), HCC-1954 cell lysate (HCC cell), HCC-1954 cytosolic fraction (HCC cyt.), HCC-1954 membrane fraction (HCC mem.). (B–D) Whole, uncropped Western blots of Figure 3. Three biological replicates were loaded for each sample on the same gel. Samples order from left to right for each blot were: HCC-1954 cell lysate, MDA-MB-231 cell lysate, MCF-10A cell lysate (N=3). (E) Whole, uncropped Western blots of Figure 6A. Two biological replicates were loaded for each sample on the same gel. Samples order from left to right for each blot were: HCC-1954 cell lysate, NC-siRNA cell lysate, A-siRNA cell lysate, B-siRNA cell lysate, C-siRNA cell lysate (N=2).

Supplementary Table 1 | Complete lists of membrane proteins found in the HCC-1954 cells and MCF-10A cells (provided as a separate excel file). Combined lists of all the membrane-associated proteins found in four replicates of the HCC-1954 cells compared to four replicates of the MCF-10A cells along with their Normalized Areas. Bold letter proteins represent the top 30 candidate protein targets shown in the Table 1 of the main text.

Supplementary Table 2 | Complete lists of membrane proteins found in the MDA-MB-231 cells and MCF-10A cells (provided as a separate excel file). Combined lists of all the membrane-associated proteins found in four replicates of the MDA-MB-231 versus the MCF-10A cells along with their Normalized Areas. Bold letter proteins represent the top 30 candidate protein targets shown in the Table 2 of the main text.
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Ovarian cancer (OV) has become the most lethal gynecological cancer. However, its treatment methods and staging system are far from ideal. In the present study, taking the advantage of large-scale public cohorts, we extracted a list of immune-related prognostic genes that differentially expressed in tumor and normal ovarian tissues. Importantly, an individualized immune-related gene based prognostic model (IPM) for OV patients were developed. Furthermore, we validated our IPM in Gene Expression Omnibus (GEO) repository and compared the immune landscape and pathways between high-risk and low-risk groups. The results of our study can serve as an important model to identify the immune subset of patients and has potential for use in immune therapeutic selection and patient management.
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Introduction

With patients often diagnosing at an advanced stage, Ovarian Cancer (OV) has become the most lethal gynecological cancer (1). Patients with OV may have no symptoms or mild symptoms until the cancer is in its advanced stages (1), which then responds poorly to treatment. According to the International Federation of Gynecology and Obstetrics (FIGO) staging system, treatments for OV patients usually include debulking surgery and adjuvant or neoadjuvant chemotherapy. However, even if patients have similar clinical characteristics and the same stage, clinical outcome of them may vary (2), so FIGO staging system currently used is far from ideal. As a result of the molecular heterogeneity, a large amount of OV patients develop metastases and relapses earlier than other patients. Gene expression of biomarkers in tumor tissues has been proved to be reliably related to clinical outcome (3, 4). Hence, in the context of additional clinical therapy, it is vital to identify the subcategory of patients with poor survival outcomes and higher mortality. In ovarian cancer, it is of primary importance to recognize a more comprehensive prognostic signature that includes the biological context. To do so, extensive databases of the biological characteristics and accessibility of all-encompassing public cohorts with data on their gene expression have been established.

Current first-line treatments for OV involve debulking surgery followed by chemotherapy and target therapy. Even though this initial therapy shows a better curative effect to more than 80% of patients, chemotherapy resistance will appear when most patients relapse (5). Also, the emergence of immunotherapy for the treatment of ovarian cancer has led to the rise of the most promising methodologies and options. The association of the abundance of tumor infiltrating cells (TIICs) with higher levels of survival for OV patients (6–8), remains evident. In light of this, immunotherapies possess crucial importance in enhancing cancer outcomes, which are also applicable to OV. Algorithms (9, 10) have been designed to predict the infiltration of TIICs. For instance, an algorithm named ESTIMATE (Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data) (9), which develop by Yoshihara et al, could predict the infiltration of immune cells and stromal cells by calculating immune scores and stromal scores based on gene expression data from TCGA database. Many previous study have applied the algorithm to various types of cancer, such as breast cancer (11), colon cancer (12), gastric cancer (13) and brain cancer (14). Thus, the effectiveness of such big-data based algorithms has already been shown, although the utility on OV has not been studied in detail.

In the present study, taking the advantage of large-scale public cohorts, we extracted a list of immune-related prognostic genes that differentially expressed in tumor and normal ovarian tissues. Importantly, an individualized immune-related gene based prognostic model for OV patients was developed. Furthermore, we validated our immune prognostic model (IPM) in Gene Expression Omnibus (GEO) repository and compared the immune landscape and pathways between high-risk and low-risk groups. The results of our study can serve as an important model to identify the immune subset of patients and has potential for use in immune therapeutic selection and patient management.



Methods and Materials


Data Acquisition

388 gene expression profiling and the corresponding clinical information were downloaded from the Cancer Genome Atlas (TCGA) data portal (https://tcga-data.nci.nih.gov/tcga/) (up to July 10, 2019) (15). The gene expression profile matrix files and clinical information from GSE9891 based on platform Affymetrix Human Genome U133 Plus 2.0 Array (containing 285 OV samples) were obtained from Gene Expression Omnibus (GEO) repository (16). In addition, we downloaded the gene expression profiling of 88 normal ovarian tissues from the Genotype-Tissue Expression (GTEx) project, which used for comparing with tumor tissues (17). The next processing excluded cases lacking important clinical feature, such as age, stage, and overall survival. Finally, 374 samples from TCGA-OV and 275 samples from GSE9891 were retained for further study. Upon the discovery of data duplication, we utilized the average value of the RNA expression. We generated the data according to the policies of GEO and TCGA on their data accessibility and based our analyses on existing regulations and protocols.



Recognition of Differentially Expressed Genes (DEGs)

We performed differentially expression analysis between high and low immune score groups (|log2 FC| > 1.8 and FDR<0.05), tumor and normal tissues (|log2 FC| > 1 and FDR<0.05). Package limma (18) was used to perform differentially expression analysis.



Functional Enrichment Analysis

To analyze the DEGs we identified, we utilized the v 6.8 of the Database for Annotation, Visualization and Integrated Discovery (DAVID). Moreover, we also used an enrichment analysis known as gene ontology (GO) to verify the cellular components, signaling pathways, biological processes, and molecular functions that are linked to these differentially expressed genes (19). Our statistical significance level was set at a p-value of <0.05.



Evaluation of Immune Infiltration Level

CIBERSORT algorithm was used to evaluate the proportion of tumor-infiltrating lymphocytes. CIBERSORT (20) is a widely accepted computing method to analyze immunological characteristics based on a gene expression signature matrix containing hundreds of marker genes. We downloaded a gene signature matrix with interpretation, known as the LM22, from the webpage of CIBERSORT (http://cibersort.stanford.edu/), which outlined 22 subtypes of immune cells. These cells are comprised of activated and resting dendritic cells, activated and resting NK cells, and activated and resting mast cells. Additionally, the 22 subtypes also include neutrophils and eosinophils, naive and memory B cells, plasma cells, seven kinds of T cells, M0-M2 macrophages, and monocytes. For every sample file, we accounted for the root mean squared error and p-value of the CIBERSORT to enhance the deconvolution algorithm’s accuracy. The number of permutations that the algorithm utilized under standard signature matrix was 100. For the succeeding analysis, we specifically chose and filtered data that had a CIBERSORT p-value<0.05. Additionally, using the algorithm of the CIBERSORT, we analyzed the immune cell fractions of the samples we generated from GEO and TCGA cohorts. The gene expression data across 32 different kinds of cancer from TCGA is comprised of 10,897 samples. TIMER conducts another set of analysis to compute the abundance of immune cells that have infiltrated the tumor. There are six subcategories and they are the neutrophils, CD8 T and CD4 cells, macrophages, dendritic cells, and B cells. This could be certainly used for discovering the association of TIICs with the other parameters. Then, we obtained the matrix of immune cells that are infiltrating the tumor of ovarian cancer patients. Finally, we computed the association of the IPM risk score with the immune infiltration.



Association Between TFs and Immune-Related Prognostic Genes

To reveal potential regulatory mechanisms of immune-related prognostic genes, we explored which TFs have ability in regulating these genes. Cistrome Cancer (21) is a comprehensive web database that incorporates the TCGA’s data on cancer genomics that have accessible profiles of 23,000 chromatin and ChIP-seq, necessary to generate the governing association of TFs with the transcriptomes. Additionally, this is a valued system for empirical and computational study on the biology of cancer. Moreover, it encompasses 318 clinically relevant TFs that are responsible for establishing the governing network of the possible TFs and existing IRGs.



Construction of Immune Prognostic Model

528 genes both differentially expressed in normal vs tumor tissues and high immune score vs. low immune score groups were analyzed via univariate Cox analysis to define the prognostic value of these genes. At P<0.05, we regarded the genes as statistically significant in this research. Original proportional hazards regression does not apply to genes that are highly associated, leading to our use of the least absolute shrinkage and selection operator (LASSO) with L1-penalty. This is a renowned methodology that evaluates the rules that predict and handle the collinearity (22). Using the LASSO method, we selected the primary immune genes from the significant cohort in the univariate analysis of the Cox regression. This approach enabled us to determine a sub-category of the immune genes that are included in the prognosis of hepatocellular carcinoma (HCC) patients. This was executed by taking into account the decrease of the regression coefficient through the pressing of a penalty comparative to their size. Finally, a small number of indicators that have a nonzero weight persisted while the majority of the possible indicators were contracted to zero. Hence, we applied the proportional hazards regression that has been calculated by LASSO to further decrease the presence of immune genes. In this study, we generated samples of an already existing sample dataset repeatedly for 1000 times. Then, we selected the immune genes that were repeated N900 times (23). Using the “glmnet” R package, we completed the LASSO Cox analysis (Version: 2.0–16; https://cran.r-project.org/web/packages/glmnet/index.html). Then, we established a prognostic immune-related model by using the beta coefficients from the multivariate Cox regression analysis. These coefficients are multiplied to the expression level of each immune gene. Finally, to investigate the best threshold or cutoff for patients with HCC, we applied the X-tile 3.6.1 software (Yale University, New Haven, CT, USA).



Evaluation of Performance of Our IPM

Kaplan-Meier survival analysis and receiver operating characteristic (ROC) analyses were used to evaluate the accuracy of our IPM. To verify if the forecast of the prognostic model is independent of the conventional clinical features, multivariate Cox analysis after univariate selection were performed based on TCGA-OV dataset and GSE9891 dataset. Only samples with entire clinical information were subjected in this study.




Results


Immune Scores Are Significantly Associated With Immune Infiltration in OV

One of the reassuring approaches for the treatment of OV has been immunotherapy. To raise the efficacy of anti-tumoral immunotherapy, a fundamental factor must be taken into account is the microenvironment of the tumor. This is due to its composition that is largely comprised of immunosuppressive cell types that promote immune escape that also weaken the antitumor immunity (9, 24, 25). Numerous studies (12, 26, 27) have confirmed an immune score generated by the ESTIMATE algorithm was a reliable index to evaluate the concentration of the TIICs. As the TCGA database provided our access to the clinical characteristics and gene expression profiles of 388 ovarian cancer patients, we could confirm the performance of immune score in OV. The distribution of our immune scores occurred from -1,781.66 to 2529.21 based on the ESTIMATE algorithm. Then, we determined the ability of the immune score to forecast the infiltration of immune cells in OV by utilizing the recently reported CIBERSORT, which could evaluate the fraction of 22 kinds of TIICs. Figure 1A summarizes the outcome achieved from 388 OV patients. As is shown in Figure 1B, fractions of immune cells varied significantly among high and low immune score groups (based on the median value 411.13). Compared with low immune score groups, high immune score groups contains a higher proportion of T cells CD8 (P value=0.000), T cells CD4 memory activated (P value=0.000), T cells regulatory (Tregs) (P value=0.001), Monocytes (P value=0.005), Macrophages M1(P value=0.000), Macrophages M2 (P value=0.006) and Dendritic cells resting (P value=0.001), while B cells naïve (P value=0.038), Plasma cells (P value=0.015), Macrophages M0 (P value=0.044) and Dendritic cells activated (P value=0.001) were lower (Table 1). The quantity of immune cells differs across the groups. Hence, the proportional differences amongst the TIICs may serve as a representation of an essential immune characteristic that sets the two groups apart. Additionally, the weak to moderate correlation of the various subpopulations of tumor-infiltrating lymphocytes were evident (Figure 1C). Correlations were analyzed between the immune scores and the immune cell infiltration level based on the table matrix (the density of 6 types of immune cells in all TCGA samples) downloaded from TIMER (https://cistrome.shinyapps.io/timer/). Immune scores showed a moderate to strong correlation with tumor-infiltrating immune cells (Figure 1D). Above all, immune score developed by Yoshihara et al. is a reliable indicator of immune infiltration. On one hand, in the groups with high immune scores, the local immune signature may present a stronger immune phenotype. On the other hand, a weaker immune infiltration is seen in groups with low immune scores.




Figure 1 | The landscape of immune infiltration in low and high immune score OV patients. (A) Relative fractions of immune cells in high and low immune score groups. (B) The proportion of different types of immune cells in high and low immune score groups. High immune score groups contains a higher proportion of T cells CD(P value=0.000), T cells CD4 memory activated (P value=0.000), T cells regulatory (Tregs) (P value=0.001), Monocytes (P value=0.005), Macrophages M1(P value=0.000), Macrophages M2 (P value=0.006) and Dendritic cells resting (P value=0.001), while B cells naïve (P value=0.038), Plasma cells (P value=0.015), Macrophages M0 (P value=0.044) and Dendritic cells activated (P value=0.001) were lower. (C) Correlation matrix of all 22 immune cell proportions. (D) Correlations between immune score and immune infiltrating level of 6 types of immune cells.




Table 1 | Relative proportion of 22 types of immune cells in high and low immune score groups.





Identification of Immune-Related Differentially Expression Genes With Prognostic Value Between Tumor and Normal Tissues in OV

To unveil the OV profiles’ association with immune scores, we executed a differential expression analysis occurring in both high and low immune score groups (|log2 FC| > 1 and FDR<0.05) using the “limma” package. Volcano plots (Figure 2A) reveal the unique gene expression profiles of patients under the low and high immune score groups. To outline the potential function of the DEGs, we performed functional enrichment analysis of the 1049 up-regulated or down-regulated genes in high immune score group. As expected, top gene ontology (GO) terms identified included T cell activation, leukocyte migration, leukocyte cell−cell adhesion, regulation of T cell activation, regulation of lymphocyte activation, regulation of leukocyte proliferation (Figure 2B), which suggest that these genes significantly relate to immune signal transduction. Thus, we specified differentially expression genes between high and low immune score groups as immune-related genes for further study. “Limma” package also helps us to recognize genes that are differentially expressed in tumor and normal tissues. As is shown in Figure 2C, 10594 differentially expression genes were obtained (|log2 FC| > 1 and FDR<0.05). Among the 10594 DEGs investigated, 528 are immune-related genes (Figure 2D). Then, we tried to gauge the prognostic predictive ability of these immune-related DEGs and performed our analysis using the univariate Cox regression, which discovered the significant association of 59 out of 528 immune-related DEGs to overall survival (Figure 2E). P value<0.05 was set as the cut-off value. Table 2 exhibits genes that first report in OV.




Figure 2 | Identification of immune-related prognostic expressed genes in OV. (A) Genes with differential expression between the low and high immune score groups. (B) Top GO terms which DEGs between high and low immune score groups enriched. (C) Genes with differential expression between tumor and tumor adjacent tissues. (D) Among 10594 up-regulated or down-regulated in tumor tissue, 528 are immune-related genes. (E) The Hazard ratios of identifying immune-related prognostic genes.




Table 2 | First reported immune microenvironment- related genes in OV.





Characteristics of 59 Immune-Related Prognostic Genes

“External side of plasma membrane”, “T cell activation” and “chemokine activity” were most frequently enriched in GO terms among cellular components, biological processes and molecular functions. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were most significantly associated with cytokine-cytokine receptor interaction (Figure 3A). To study possible molecular mechanisms corresponding to the clinical significance of our prognostic immune-related genes, we assessed the regulatory mechanisms of these genes. Figure 3B shows our examination of 318 expression profiles of transcription factors (TFs). From this, we determined 95 differentially expressed genes between tissues from OV and normal ovary. Out of these 95 TFs, 5 were linked to the overall survival of patients with ovarian cancer tissue at p-value<0.05 (Figure 3C). Based on these 5 TFs and 59 prognostic genes that are immune-related, we created a regulatory network. We established the cut-off value to be at a correlation score of greater than 0.3 and P-value<0.001. As is shown in Figure 3D, the intense illustration by the TF-based regulatory schematic of the regulatory connections amongst these prognostic immune-related genes is evident. FOXP3 is a key TF that has a positive correlation with high-risk immune-related genes (HR>1). Meanwhile, EGR2 is significantly correlated with low risk immune-related genes (HR<1).




Figure 3 | Characteristics of 59 immune-related prognostic genes. (A) Top GO terms and KEGG pathways enriched by IRPG. (B) Volcano plots reveal differentially expressed transcript factors (TFs) between tumor and adjacent tissues. (C) The Hazard ratios of identified TFs with prognostic value. (D) TF-based regulatory schematic.





Construction of Immune Prognostic Model

The results of the multivariate Cox regression analysis enabled us to establish a prognostic signature to classify the patients with ovarian cancer into two groups with discrete clinical outcomes depending on their risk score. The formula is: risk score= [Expression level of CXCL9 * (-0.01752)] + [Expression level of VCAN * (0.02584)]. We computed for each patient’s risk score and categorized them according to the level of risk according to the optimal cut off point provided by the X-tile software. 0.180 was served as the cutoff value to classify the OV patients into high and low risk groups. Figures 4A, B shows the risk score of the publicly available samples and the expression of included genes. Survival curve (Figure 4C) reveals that patients with a lower risk score had a higher overall survival than their counterparts (P<0.001). The time independent ROC (Figure 4D) shows a good performance of our immune prognostic model, the area under the ROC curve was 0.666 at 0.5 year, 0.670 at 1 year, 0.658 at 3 year and 0.703 at 5 year. In addition, the multivariate Cox analysis (Table 3) revealed that our IPM is an independent predictor for prognosis of OVs (HR=2.844, P<0.001).




Figure 4 | The performance of our IPM in TCGA and GEO cohort. (A, E) Rank of risk score and distribution of groups. (B, F) The expression of included genes, CXCL9 and VCAN. (C, G) Survival curve of risk score. Patients with a higher risk score had a higher overall survival than their counterparts. (D, H) The time independent ROC.




Table 3 | Associations with overall survival and clinicalopathologic characteristics in TCGA patients using COX regression.





Validation of Performance of IPM in GEO Cohort

To evaluate whether the performance of IPM was robust, we downloaded another OV cohort (GSE8191) from GEO database as test cohort, which includes 285 OV patients. According to risk scores calculated by the same formula and the optimal cutoff point (0.510), patients in train cohort were grouped into high-risk and low-risk group. As is shown in Figures 4E–H, people assigned into low-risk group had an obviously favorable prognosis than which assigned into high-risk group (P=0.003). Meanwhile, the AUC of IPM at 0.5, 1, 3, and 5 years was 0.722, 0.679, 0.622, and 0.556 respectively. In multivariate Cox analysis (Table 4), IPM is also an independent predictor for prognosis of OVs (HR=1.774, P=0.006), along with Figo stage (HR=1.748, P=0.006) and age (HR=1.027, P=0.007).


Table 4 | Associations with overall survival and clinicalopathologic characteristics in GEO patients using COX regression.





Immune Landscape Between the Low- and High-Risk OV Patients

Combining the CIBERSORT methodology with gene expression profiling acquired from TCGA database, we evaluated the variations among low and high-risk OV patients in terms of the immune infiltration of 22 different kinds of immune cells. Figure 5A shows the results of immune landscape obtained from 202 OV patients after filtering (20). Within and between groups, the proportion of immune cells in OV varies (Figure 5A, Table 5). Low risk groups share a higher fraction of Plasma cells (P<0.001), T cells CD8 (P<0.001), T cells CD4 memory activated (P<0.001), T cells regulatory (P=0.045), T cells gamma delta (P=0.026) and Macrophages M1 (P<0.01). The proportions of different types of immune infiltrating cells were weakly to moderately correlated (Figure 5B). In addition, the outcome of correlation analysis between risk score and the abundance of immune infiltrating cells was exhibited in Figure 5C. The density of B cells, CD4+ T cells, CD8+ T cells, neutrophil cells, dendritic cells in OV were significantly associated with risk score. Thus, the results suggest that our IPM could serve as a predictor of the level of immune infiltration. Also, the heterogeneity and abnormality of immune infiltration amongst OV patients are possible prognostic indicators and targets for immunotherapy, which may also have vital clinical relevance.




Figure 5 | Immune landscapes of the low- and high-risk OV patients. (A) The proportion of different types of immune cells in high and low risk groups. Low-risk groups share a higher fraction of Plasma cells (P<0.001), T cells CD8 (P<0.001), T cells CD4 memory activated (P<0.001), T cells regulatory (P=0.045), T cells gamma delta (P=0.026) and Macrophages M1 (P<0.01). (B) Correlation matrix of all 22 immune cell proportions. (C) Correlations between risk score and immune infiltrating level of 6 types of immune cells.




Table 5 | Relative proportion of 22 types of immune cells in high and low risk score groups.



Recent studies reported that tumor cells acquire escape mechanisms to evade host immunity in the tumor microenvironment. The immune checkpoints play a significant role to promote tumor enhancement by tumor immunosuppressive effects (28). Some prominent immune checkpoints could serve as a biomarker for predicting the efficacy of immunotherapy (29). Therefore, we calculated the Pearson’s correlation between expression of several prominent immune checkpoints (CTLA−4, LAG−3, PD−1, TIGIT and TIM-3) and risk score (Figure 6A). The results showed that patients’ risk score was significantly negative correlated to expression of immune checkpoints (P<0.05) and the expression of immune checkpoints are positively correlated between themselves. In addition, we access the expression of CTLA-4, LAG-3, PD-1, TIGIT and TIM-3 in high-risk and low-risk groups. As is shown in Figure 6B, the expression of CTLA-4, PD-1, TIGIT and TIM-3 in low-risk groups was significantly higher than in high-risk groups.




Figure 6 | Enrichment analysis of the immune prognostic model. (A) Correlation between expression of several prominent immune checkpoints and risk scores. (B) Comparison of the expression of selected immune checkpoint in high and low risk groups. (C) Heatmap of differentially expressed genes in high and low risk groups. (D) Circular plot of the biological processes enriched for the immune genes. (E) GO enrichment analysis.





Different Pathways Enriched in High-Risk and Low-Risk Groups

In this study, we used the GO analysis to study the biological impacts of the IPM. For the low and high-risk groups of OV patients, 340 genes were differentially expressed (Figure 6C)  (|log2 FC| > 1 and FDR<0.05). These genes were determined to be associated with the risk scores and underwent the GO analysis for the specification of their possible biological implications (FDR< 0.0001). The results revealed the underlying mechanism of the genes associated with risk score, which primarily play a role in lymphocyte differentiation, activation and proliferation of the immune system. The pathway enriched included T cell differentiation, T cell activation, regulation of T cell activation, regulation of mononuclear cell proliferation, and regulation of lymphocyte proliferation (Figures 6D, E).




Discussion

We acknowledge that in the context of immunotherapies, research on the importance of immune-related biomarkers and clinical prognosis has become increasingly prevalent (30, 31). Previous studies revealed that recurrent ovarian cancer patients could have some significant immune subset of patients really suitable to have immune therapeutic option when secondary cytoreduction is impossible (32, 33). However, specific investigations on the whole profiling of related genomes that delve into tumor-infiltrating immune cells related genes that are relevant to ovarian cancer have yet to be executed. This extensive and cohesive analysis of immune-related genes in ovarian cancer improves our appreciation for their clinical relevance while it highlights possible molecular mechanisms.

Many previous study have applied ESTIMATE algorithm to various types of cancer, including breast cancer (11), colon cancer (12), gastric cancer (13) and brain cancer (14). However, the utility of OV has not been studied in detail. In this study, to validate its performance in OV, we estimated the difference of immune infiltration between high and low immune score groups and discovered that the proportion of subtypes of immune cells is obviously varied. In correlation analysis based on TIMER reanalyzes gene expression data, immune score moderately to strongly correlates to immune infiltration level. Although the prognostic value is not significant, immune score calculated by ESTIMATE algorithm is still a reliable predict factor of immune infiltration level and significantly relates to the subtypes of immune microenvironment cells.

Then by the comparison the gene expression data of tumor vs. normal tissues and high vs. low immune score tissues, we extracted a list of immune-related genes and demonstrated that they were significantly concerned in human immune response and regulation of lymphocytes, as shown in enrichment analysis of GO terms. Then, we identified genes with prognostic value among them using univariate Cox analysis. Importantly, a few of these genes were first reported in OV, which could serve as potential biomarkers for OV patients and provide a new landscape for immunotherapy. To discover the fundamental mechanisms at the molecular level that corresponds to the possible clinical significance, we established a network mediated by TF to identify vital TFs that could regulate genes we identified as immune-related prognostic genes. In this network, FOXP3 and EGR2 were notably acknowledged. Previous immunological researches have revealed that FOXP3 and EGR2 serve as transcript factors that play important roles in regulation of lymphocyte function. Study of breast cancer suggested that FOXP3 function as a key tumor suppressor through the up-regulation of CXCR4 and down-regulation of CXCL12, which thereby stimulate cell migration (34). Furthermore, FOXP3, is acknowledged as a major and specific marker of Tregs, the cellular expression of which is correlated with suppressive activities. EGR2 is highly correlated members of the Egr zinc finger transcription factor family with significant function in regulating the self-tolerance of lymphocytes and the differentiation of T cells and NKT cells (35–37). Above all, the coexpression and differential expression based regulatory networks of transcript factors and immune-related prognostic genes we constructed may provide a great help to direct future mechanism analysis.

Considering that the immune score could not significantly predict the clinical outcome, thus we focused on constructing a prognostic signature based on these immune-related prognostic genes and produced an IPM that is 2-gene-based, which could assess OV patients that are at a high risk of developing poor prognoses in the future. In fact, CXCL9 and VCAN, which constitute our IPM has been described as the promising therapy target. CXCL9 is an IFN-γ-inducible chemokine as well as one of the main ligands for CXCR3 (38). The increasing expression level of CXCR3 could accelerate the accumulation of tumor microenvironment (TEM) cells by helping TEM cells rapidly migrating into inflamed tissues (39). Another previous study revealed a close association between the CXCL9 and CCL5 expressions in OV and other cancers. Their coexpression, which had a phenotype that was molecularly immunoreactive, is correlated with the TEM cells (40). VCAN is an enormous matrix comprised of proteoglycan with activities classified as immunoregulatory. It amasses in the tumors’ extracellular matrix (41). Also, it is known for its contribution toward inflammations that are either cancerous or non-cancerous through its stimulation of inflammatory mediators derived by leukocytes (42, 43). Moreover, it influences immunodeficiency through the dysfunction of dendritic cell (DC) (44). The infiltration of the T-cell is promoted by the versikine and matrikine that were derived from VCAN. The process involved the regulation of a unique DC subset, known as the Batf3-dependent dendritic cells, which is vital for the migrating of effector T cell (45), reaction to numerous modes of immunotherapy (46–48), and antitumor immunity mediated by the T cell (49, 50). Additionally, the literature on colorectal cancer and multiple myeloma recommends the antagonistic feature of versikine towards the tolerogenic actions of the whole VCAN. Hence, this could generate a promising antitumor strategy (51, 52).

The high density of tumor-infiltrating immune cells is associated with positive clinical prognosis and enhanced response rates to checkpoint inhibitor therapy, which is a main form of presentation immunotherapy for cancer (53). Here, we evaluated the proportion of different types of TIICs, immune infiltrating level and the expression of immune checkpoint in low- and high-risk group to identify the difference of immune mechanisms between low- and high-risk scores and possible use of our IPM to immunotherapy in ovarian cancer. The results indicated that low risk score OVs contained a higher fraction of T cells regulatory (Tregs), T cells CD8, Macrophages M1, T cells CD4 memory activated than high risk score patients. The immune score is negatively correlated to the infiltration level of B cell, CD4+ T cell, CD8+ T cell, neutrophil and Dendritic. Interestingly, the expression of several prominent immune checkpoints (CTLA-4, PD-1, TIGIT, TIM-3) is also higher in low risk score groups. CD8+ T cell is a main kind of effector cell in antitumor immune response, the important role of which in suppressing tumor has been publicly recognized (54). Tregs are involved in cancers and many other autoimmune diseases and also be known as the immunosuppressive subset of CD4+ T cells that maintain the immune homeostasis by suppressing the function of T cells (55). The various types of effector lymphocytes are suppressed by Tregs migrating into the inflammatory site (56). Thus, Tregs also expresses a function similar to immune checkpoints. The outcome suggested that low risk score patients suffer a stronger immunosuppress, although with a higher overall survival and a higher level of immune infiltration. Thus, in our IPM, the risk score was consistency with the antitumor ability of TIICs, revealing that the favorable prognosis of the low-risk patients may be caused by the higher proportion of immune effecter cells and a higher level of immune infiltration than high-risk patients. The expression of immune checkpoint is one of the most effective predictors of response rates to immunotherapy (57). Thus, compared with high-risk patients, these outcomes also indicate the increased benefits of the checkpoint inhibitor therapy toward low-risk patients, thereby further improving overall clinical outcomes for OV patients.

The GO terms enrichment analysis of differentially expressed genes between high and low risk groups revealed the difference of local immune signature between these two groups. 29 Genes most up-regulated in low risk groups significantly enriched in 5 immune-related pathways, including T cell activation, regulation of T cell activation, regulation of lymphocyte activation, leukocyte cell-cell adhesion and regulation of leukocyte proliferation. Additionally, the expression of CTLA-4, TIGIT and PDCD1 is significantly higher in low risk groups, suggesting that patients in the low risk group suffering a stronger immunosuppress. These results are consistent with our previous discovery, namely low risk score is associated with higher immune infiltration level and intense immunosuppress.

Our study provides new insights into the OV immune microenvironment by mining a list of novel immune microenvironment-associated genes. Furthermore, we develop a straightforward 2 gene-based immune-related prognostic models that reflect the overall immune landscape and have independent prognostic significance for OV patients. However, our study has some limitation. First, transcriptional changes are also the main contributors to functional alterations (58). When the studies are founded on genomic alterations, these are not representative of the overall situation. Second, as samples from TCGA (n=388) and GEO (n=285) of our study were relatively small, larger sample size data are needed for verification. Additionally, our retrospective study produced results that need to be further verified by prospective studies.
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Molecular chaperones play important roles in regulating various cellular processes and malignant transformation. Expression of some subunits of molecular chaperone CCT/TRiC complex have been reported to be correlated with cancer development and patient survival. However, little is known about the expression and prognostic significance of Chaperonin Containing TCP1 Subunit 2 (CCT2). CCT2 is a gene encoding a molecular chaperone that is a member of the chaperonin containing TCP1 complex (CCT), also known as the TCP1 ring complex (TRiC). Through the Cancer Genome Atlas (TCGA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) databases, we systematically reviewed a total of 2,994 cases with transcriptome data and analyzed the functional annotation of CCT2 by Gene ontology and KEGG analysis. Univariate and multivariate survival analysis were performed to investigate the prognostic value of CCT2 in breast cancer. We found CCT2 was significantly upregulated in various tumors. In breast cancer, CCT2 expression was significantly upregulated in HER2-positive (HER2+) group, and more malignant group. In addition, we investigated correlations between CCT2 and other CCT members. Interestingly, almost all CCTs expression were positively correlated with each other, but not CCT6B. Survival analysis suggested that CCT2 overexpression was independently associated with worse prognosis of patients with breast cancer, especially in luminal A subtype. In summary, our results revealed that CCT2 might be involved in regulating cell cycle pathway, and independently predicted worse prognosis in breast cancer patients. These findings may expand understanding of potential anti-CCT2 treatments. To our knowledge, this is the largest and most comprehensive study characterizing the expression pattern of CCT2 together with its prognostic values in breast cancer.




Keywords: breast cancer, CCT2 expression, prognostic, molecular chaperone, prognosis



Introduction

According to the “global cancer statistics” released by the World Health Organization (WHO) in 2015, approximately 1.15 million new cases of breast cancer are diagnosed every year and it accounts for 23% of all female malignancies; there are approximately 410,000 deaths every year, accounting for 14% of deaths due to cancer in women worldwide (1). Although breast cancer is one of the solid tumors of best prognosis and outcome, given that the figure differs significantly among different subtypes, there are still many problems to be solved urgently. With the beginning of the new era of precision medicine, we should give more emphasis on individualized and accurate diagnosis and treatment of breast cancer. Therefore, to seek for novel and promising biomarker for both diagnosis and treatment as well as effective therapeutic target is a major and pressing issue for us.

Although the hardened armors of cancer such as genomic instability, uncontrolled proliferation, metastasis, and so on make it a well-equipped army to fight against our various therapeutics (2, 3), it does have a soft spot: its dependency on major cellular processes like transcription, translation, splicing, protein degradation, and protein-folding (4). During this significant process, proteostasis network (PN), contributing a lot to keep proteome balanced, plays an important role in maintaining native function of proteins and guaranteeing the health of cell and organism. As the central components of the PN, one substance called chaperonin is a key player (5). There are various of proteins participating in proliferation, angiogenesis, survival, and migration, which are vitally essential for tumor formation, progression, and metastasis. To produce these proteins, cancer cells become more highly addicted to molecular chaperones since there are more imbalances caused by overexpression of oncogenes and chromosomal abnormalities (6).

Apart from the HSP90 inhibitors, which were found two decades ago and then abandoned due to incomplete inhibition of HSP90, dose-limited toxicity, and insufficient downregulation of client proteins (7, 8), there is another class of protein-folding complexes named chaperonins in recent years. As a large hetero-oligomeric ATP-dependent complex, this type II chaperonin named CCT is constructed by two stacked back-to-back rings, each creating a place called central chamber to sequester and fold substrate polypeptides that are newly synthesized or misfolded (9–12). CCT is composed of eight paralogous subunits: CCT1-8, also known as CCT α, β, γ, δ, ϵ, ζ, η, θ (13). Approximately 10% of newly synthesized proteins in eukaryotic cells are bound and folded under the assistance of CCT (14), and this figure is observed more in cancer cells. Moreover, the substrates in cancer cells consist of some oncogenic proteins as well as mediators such as STAT3, KRAS, and so on (15–18). Given the evidence that CCT facilitates neoplastic transformation, it is a newly emerging and promising substance that could probably serve as diagnostic marker as well as therapeutic target.

Considering the CCT was a complex that many previous studies focused on, without taking its structure constructed by eight different subunits into account, the importance of a single subunit, for example chaperonin containing TCP1 subunit 2 (CCT2 or CCTβ), was considerably undetermined.

According to several limited published studies, increased expression of CCT2 was observed in various tumor cell lines as compared to normal tissues, including liver, prostate, cholecyst, lung, colorectal, and breast cancers (15, 19–23). In terms of breast cancer, though several studies had illustrated the correspondence between CCT2 expression and the growth of breast cancer cells, there was no comprehensive and detailed conclusion based on clinical data towards different biological, clinical, and molecular characteristics of each distinct subtype (19, 24, 25). Therefore, many unknown factors regarding the expression and prognostic significance of CCT2 in breast cancer must be clarified.

In the present study, we assessed the CCT2 expression status and related biological process by characterizing transcriptome data across two comprehensive genomic databases including a total of 2,994 breast cancer samples. Further, we also explored relationships between CCTs gene family, and their prognostic value. To our best knowledge, this is the largest and most comprehensive study characterizing CCT2 expression in whole grade breast tumor masses.



Methods and Materials


Data Acquisition

TCGA dataset on breast invasive carcinoma was downloaded and processed using GDCRNATools (access date: Feb 01, 2020) (26). Raw counts data normalized by TMM implemented in edgeR (27) was then transformed by voom in limma (28), and only genes with cpm > 1 in more than half of the samples were kept. Sieved TCGA breast cancer clinical data was kindly provided by Dr. Hai Hu and Dr. Jianfang Liu in Chan Soon-Shiong Institute of Molecular Medicine at Windber. HER2 status was recalled using DNA copy number for cases without an IHC or FISH status. Standardized survival data from TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR) (29) was utilized in this study. METABRIC dataset (30) on breast cancer (METABRIC, Nature 2012) acquired from cBioPortal (http://www.cbioportal.org/) were utilized for this study (access date: Feb 01, 2020). CCT2 expression data in GSE15852, GSE54002, GSE45827, and GSE42568 datasets were collected from GENT2 database (31) (http://gent2.appex.kr/gent2/), a newly updated platform for exploring gene expression patterns across tumor and normal tissues. Gene expression patterns of CCT2 across tumor and normal tissues were assessed using GENT2 database.



Kaplan-Meier Plotter Database Analysis

The Kaplan Meier plotter database (32) is capable to assess the effect of 54k genes on survival in 21 cancer types, breast cancer is the largest dataset in Kaplan-Meier plotter containing a total of 6,234 samples. The effect of CCT2 expression on survival together with hazard ratio (HR) with 95% confidence intervals and log-rank P-value in breast cancer was estimated by Kaplan-Meier plotter (http://kmplot.com/analysis).



TIMER Database Analysis

TIMER database (https://cistrome.shinyapps.io/timer/) is a comprehensive web platform containing 10,897 samples for systematical analysis of immune infiltrates across 32 cancer types from TCGA database (33). The “DiffExp” module was used to explore the differential expression of CCT2 between tumor and adjacent normal tissues, and Wilcoxon test was applied to determine statistical significance of differential expression.



Functional Enrichment Analysis

GO (34) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment (35) was performed using clusterProfiler package in statistical software R version 3.6.0. (http://www.r-project.org/). GO terms and KEGG pathways with adjusted P-value less than 0.05 were considered to be statistically significant. Dot plot of enriched KEGG pathways were plotted using clusterProfiler package (36).



Statistical Analyses

Chi-square tests were performed to assess possible associations between CCT2 expression and clinicopathological characteristics. One-way analysis of variance (ANOVA) or T-test was used to determine the differences in CCT2 expression between clinicopathologic characteristics. Survival analysis was estimated using the Kaplan-Meier method, and any differences in survival were evaluated with log-rank test. Univariate and multivariable Cox proportional hazards regression was used to assess association with OS. Gene expression correlation was analyzed by Pearson correlation coefficient. All statistical tests were performed using R software version 3.6.0. P-value <0.05 was considered statistically significant.




Results


Expression Pattern of CCT2 in Various Cancers

To determine the mRNA levels of CCT2 in multiple human cancers, we analyzed expression of CCT2 using RNA-sequencing (RNA-seq) data derived from TCGA database. The expression of CCT2 in tumor and adjacent normal tissues across all tumors in TCGA were shown in Figure 1A. CCT2 expression was significantly higher in BLCA (bladder urothelial carcinoma), BRCA (breast invasive carcinoma), CHOL (Cholangiocarcinoma), COAD (colon adenocarcinoma), ESCA (Esophageal carcinoma), HNSC (head and neck cancer), KIRP (Kidney renal papillary cell carcinoma), LIHC (liver hepatocellular carcinoma), LUAD (lung adenocarcinoma), LUSC (Lung squamous cell carcinoma), PRAD (Prostate adenocarcinoma), READ (Rectum adenocarcinoma), STAD (stomach adenocarcinoma), and UCEC (Uterine Corpus Endometrial Carcinoma) when compared with adjacent normal tissues. However, CCT2 expression was significantly lower in only two types of cancers, that were, KICH (Kidney Chromophobe) and KIRC (Kidney renal clear cell carcinoma). To validate the expression pattern of CCT2 in various cancers, we further analyzed CCT2 expression in 72-paired tissues across more than 68,000 samples using GENT2 database. Both results from GPL570 and GPL96 microarray platforms revealed that global CCT2 expression was higher in tumor tissues compared with normal tissues (Figures 1B, C). CCT2 was higher in most of the tumor tissues when compared with normal tissues. Particularly, the global expression of CCT2 in breast cancer tissues was higher than normal tissues.




Figure 1 | CCT2 expression levels in multiple types of human cancers. (A) CCT2 expression levels in all tumors and adjacent normal tissues across TCGA (*P < 0.05, **P <0.01, ***P < 0.001). (B, C) Expression levels of CCT2 in 72-paired cancer and normal tissues derived from GPL570 and GPL96 microarray platform.





Association Between CCT2 Expression and Clinical Characteristics of Breast Cancer Patients

Expression of CCT2 were dichotomized into low- and high-expression groups using the median as a cut-off value. We analyzed the associations of CCT2 expression and clinical characteristics in both TCGA cohort (n = 1090) and METABRIC cohort (n = 1904), results can be found in Tables 1 and 2. We found both two cohorts showed that CCT2 expression was significantly associated with HER2 status. CCT2 expression was associated with American Joint Committee on Cancer (AJCC) stage and age in METABRIC cohort, but not TCGA cohort. CCT2 expression was significantly associated with TNM stage in TCGA cohort, but not ER status. Moreover, CCT2 expression was found to be associated with tumor grade in METABRIC cohort, but not tumor size and ER status.


Table 1 | Clinicopathologic characteristics according to expression level of CCT2 mRNA in TCGA database.




Table 2 | Clinicopathologic characteristics according to expression level of CCT2 mRNA in METABRIC database.





CCT2 mRNA Expression Pattern in Breast Cancer

We further explored the differences in CCT2 expression between different clinicopathologic groups. CCT2 expression is significantly higher in PR positive (PR+) group (p = 0.013) and HER2 negative (HER2−) group (p = 0.014) (Figures 2A, B), and CCT2 overexpression in HER2+ group was also validated in TCGA cohort, but not PR− group (Figures 2E, F). In METABRIC cohort, CCT2 expression was higher in basal, HER2-enriched, luminal B group when compared with normal-like group (Figure 2C). CCT2 overexpression was found to be significant in Grade 3 when compared with Grade 1 (P < 0.0001) (Figure 2D). In TCGA cohort, elevated expression of CCT2 was found in higher T stage, and more aggressive subtype. CCT2 expression was significantly higher in tumor tissues compared with normal tissues (P < 0.0001) (Figures 2G–I), and this result was further validated in four independent microarray datasets derived from GEO database (Figures 3A–D).




Figure 2 | CCT2 expression in different molecular subtypes and stage of transcriptional classification scheme in TCGA and METABRIC cohort. (*P < 0.05, **P < 0.01, ***P < 0.001, ***P < 0.0001), expression pattern of CCT2 in METABRIC database (A–D), expression pattern of CCT2 in TCGA database (E–I). ns, no significance.






Figure 3 | CCT2 expression between cancer and normal tissues in four independent microarray datasets (A–D).





Association of CCT2 Expression and Patient Survival in Breast Cancer

We explored the prognostic value of CCT2 expression using KM-plotter database containing a total of 6,243 breast cancer samples. Kaplan-Meier analysis revealed that higher CCT2 expression was associated with both worse overall survival (OS), relapse-free survival (RFS), and distant metastasis-free (DMFS) but not postprogression survival (PPS) (Figures 4A–B, D–E). CCT2 higher expression significantly correlated with worse OS was further validated in independent METABRIC cohort and TCGA cohort (Figures 4C, F). Furthermore, we assessed the prognostic value of CCT2 expression in subtype level, we found that higher expression significantly predicts worse OS in luminal A group in both KMplotter database (P < 0.0001) and TCGA cohort (p < 0.0001) (Figures 5A, E, G), but not luminal B, HER2, and basal group (Figures 5B–D, F, H).




Figure 4 | Kaplan-Meier survival curves comparing the high and low expression of CCT2 in breast cancer. (A, B, D, E) Survival analysis derived from KMplotter database, and overall survival (OS), relapse-free survival (RFS), postprogression survival (PPS), and distant metastasis-free (DMFS); Hazard ratio, HR. (C, F) Survival analysis of CCT2 expression using TCGA and METABRIC cohorts.






Figure 5 | Kaplan-Meier survival curves comparing the high and low expression of CCT2 in breast cancer molecular subtype. (A–D) Survival analysis of CCT2 in breast cancer molecular subtype using KMplotter database. (E–H) Survival analysis of CCT2 in TCGA.





Univariate and Multivariate Analyses

Expression level of CCT2 mRNA was a significant factor in univariateunivariate analysis of both TCGA (HR, 1.306; 95% CI, 1.037–1.644; p = 0.023) and METABRIC (HR, 1.18; 95% CI, 1.075–1.295; p < 0.001) datasets (Table 3). We also found CCT2 was an independent significant prognostic factor for breast cancer according to multivariate analysis of TCGA cohort after adjusting for age, AJCC stage, ER status, PR status, as well as HER2 status (Figure 6A). Interestingly, CCT2 expression was also an independent prognostic factor for breast cancer in multivariate analysis of METABRIC cohort after adjusting for age, AJCC stage, Grade, ER status, PR status, as well as HER2 status (Figure 6B).


Table 3 | Univariable analyses using TCGA and METABRIC databases.






Figure 6 | Multivariate analysis of CCT2 expression adjusting for ER, PR, HER2, AJCC stage, age, and stage in TCGA cohorts (A) as well as METABRIC cohort (B). *P < 0.05, **P < 0.01, ***P < 0.001.





CCT2-Related Signaling Pathways Identified Using Functional Enrichment Analysis

To explore the potential functional role of CCT2, genes correlated with CCT2 expression (Pearson |R|>=0.4) were screened out (n = 140) (Table S1), these genes were further used to do functional enrichment analysis in R using cluster Profiler package (35). Interestingly, GO analysis revealed that these genes were mainly involved in protein folding and binding biological processes (Table S2). KEGG enrichment analysis revealed that these genes were significantly enriched in cell cycle, oocyte meiosis, progesterone-mediated oocyte maturation, and RNA transport as well as p53 signaling pathway (Figure 7).




Figure 7 | Functional enrichment analysis shows KEGG enriched pathways of CCT2-related genes.





Correlations Between CCTs Gene Family and Prognostic Value

We calculated the correlations of CCTs with each other by analyzing their mRNA expressions in TCGA cohort. Interestingly, we found almost all CCT genes were significantly positively correlated with each other, including CCT1, CCT2, CCT3, CCT4, CCT5, CCT6A, and CCT7 as well as CCT8, but not CCT6B (Figure 8). Furthermore, we systematically assessed the prognostic value of CCTs gene family using univariate analyses in both TCGA and METABRIC cohort (Table 4). CCT4 expression in METABRIC dataset can’t be accessed thereby prognostic value in METABRIC cohort was unknown. In summary, only CCT2 and CCT5 were significantly correlated with OS in both two cohorts.




Figure 8 | Correlations between CCTs gene family. Corr denotes Pearson correlation coefficient. P-value <0.05 was considered statistically significant. No significant correlations were shown in blank.




Table 4 | Univariate analysis of CCTs in TCGA and METABRIC cohort.






Discussion

Our work revealed that CCT2 tends to be overexpressed in tumor tissues compared with normal tissues. Moreover, CCT2 was overexpressed in more malignant grades and molecular subtypes of breast cancer. Genes correlated with CCT2 expression were mainly enriched in cell cycle pathway and also P53 signaling pathway. To the clinical aspects, our results indicated CCT2 expression was independently associated with worse prognosis of patients with breast cancer, especially in luminal A subtype. Additionally, we also explored potential relationships between CCTs gene family and their prognostic role in breast cancer.

Many previous studies have focused on colorectal cancer, gallbladder cancer, liver cancer, prostate cancer, small cell lung cancer, and so on. For example, Park et al. found that the tissues of human colorectal cancer showed greater CCT2 expression than did the normal colon tissues, which indicated that higher CCT2 expression in tumor tissues from colorectal cancer patients reduced their survival rate. Besides, on the basis of the research conducted by Zou et al., in gallbladder cancer, the positive expression of PDIA3 and CCT2 was significantly associated with clinicopathological features of both squamous carcinoma/adenosquamous carcinoma and adenocarcinoma specimens, consisting of lymph node metastasis and high TNM stage (22). Though there were several valuable outcomes, much more work related to BLCA, ESCA, HNSC, STAD, UCEC, and renal tumors remains to be done, which will inevitably lead to a much more comprehensive understanding of the function of CCT2 in numerous cancers.

With regard to breast cancer, there were some published researches concerning CCT2 of high-quality. The first one was a study conducted by AH Charpentier et al. released in 2000, they illustrated that Pescadillo and chaperonin CCT2 were two presumptive autocrine/paracrine factors of potential function in the regulation of the growth of breast cancer cells, which were identified to be highly upregulated by E2 (17beta estradiol) (24). Besides, the research conducted by Stephen T. Guest et al. represented some unique new findings. They identified that CCT1 and CCT2 were necessary for growth/survival of breast cancer cells in vitro and were determinants of overall survival in breast cancer patients (19). Apart from that, another research conducted by Anne E. Showalter et al., published in this year also drew some conclusions. By depleting or overexpressing the subunit in breast cancer and breast epithelial cells, they found that increasing CCT2 in cells by 1.3–1.8-fold also increased other CCT subunits’ (CCT3, CCT4, and CCT5) levels, while silencing the expression of CCT2 by ~50% was able to cause other CCT subunits to reduce. Besides, their study also represented that cells expressing higher CCT2 were more invasive and showed a higher proliferative index, and depletion of CCT2 in a syngeneic murine model of triple negative breast cancer (TNBC) had a potential to prevent tumor growth (25).

Though all these previous studies laid emphasis on the significance of CCT2 in breast cancer, what they focused on was only the growth and survival of breast cancer cells. There was no comprehensive and detailed conclusion towards different biological, clinical, and molecular characteristics of each distinct subtype. More importantly, transcriptome data we used in this study were derived from the top two biggest independent breast cancer databases, which enabled our outcomes much more overall and reliable.

As for other functions of CCT2, Park et al. found that reduction in CCT2 inhibited tumor induction by Gli-1, and ubiquitination-mediated Gli-1 degradation by β-TrCP occurred during incomplete folding of Gli-1 in hypoxia. CCT2 correlates with Gli-1 expression is an important determinant of survival in the colorectal cancer patients. Besides, based on the study conducted by Lu et al., they discovered that as an essential enzyme in de novo synthesis of purine, phosphoribosylformylglycinamidine synthase (PFAS) interacted with several proteins which played physiological roles in tumor development including CAD, CCT2, PRDX1, and PHGDH, and it was also able to deamidate PHGDH, and induce other posttranslational modification into CAD, CCT2, and PRDX1 (37). When it comes to other subunits of CCT complex, previous studies have reported some valuable points. In various cancers, the expression levels of different CCT subunits were upregulated in varying degrees: CCT3 in hepatocellular carcinoma (38), and CCT8 in hepatocellular carcinoma and glioblastoma (39, 40). Based on study conducted by Hallal et al., extracellular vesicles from neurosurgical aspirates identified CCT6A as a potential glioblastoma biomarker with prognostic significance (41). Another group found that overexpression of CCT1 in yeast did not exert any effect on levels of assembled complex, but the CCT1 subunits which were remained soluble in the cytosol had inherent activity of protein-folding (42). In terms of CCT subunits acting as monomers, scientists found that CCT4 was able to produce a protrusion phenotype by interacting with microtubules and p150glued (43, 44). CCT5 and CCT8 could colocalize with actin fibers outside of the oligomer54, and CCT5 also played a key role in the transcriptional regulation of actin (45). Previous study also represented CCT5 had correspondence with breast cancer. Ooe A et al. discovered that CCT5, RGS3, and YKT6 mRNA expressions, which were upregulated in p53-mutated breast cancers, might be involved in resistance to docetaxel and clinically feasible in distinguish the subset of breast cancer patients who may or may not be benefit from docetaxel therapy (46). Apart from that, CCT5 was identified to be closely related to lung cancer. Gao H et al. showed that CCT5 could induce an autoantibody response in non-small cell lung cancer (NSCLC) sera and showed higher expression in NSCLC tissues by Western blot and immunohistochemistry (47). Knockdown of CCT5, PIP4K2A, EXO1, CMBL, OPN3, and KMO, genes within 200 kb up/downstream of the three SNPs that were corresponded with small cell lung cancer (SCLC) overall survival (48). In addition, CCT5 also participated in replication of hepatitis C virus genome through interaction with the viral NS5B protein (49). However, the role of CCT in many diseases, including cancer, is far from fully characterized, needing much more researches and studies towards that.

Consistent to our results, some studies also reported the potential role of inhibiting cancer cell by targeting CCTs. For instance, Showalter Anne E et al., discovered one CCT inhibitor named CT20p, which had access to kill cancer cells in a CCT-dependent manner. In cancer cells where the CCT was inhibited, they were resistant to CT20p killing, while cells where the expression of CCT was increased were susceptible (15, 23). However, given the fact that the complexity of CCT and its multiple subunits, as well as the lack of a complete understanding of CCT substrate selectivity in vivo, there are inevitably some challenges that impede the development of feasible and effective therapeutics like CT20p (25). In summary, we discussed the role of CCT2 in tumors together with current researches regarding CCTs gene family. Future research focus on investigating the underlying molecular mechanisms of CCT2 in promoting cancer might yield novel insights for possible treatments by targeting CCT2.
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Introduction

The axillary lymph node (ALN) status of breast cancer patients is an important prognostic indicator. The use of primary breast mass features for the prediction of ALN status is rare. Two nomograms based on preoperative ultrasound (US) images of breast tumors and ALNs were developed for the prediction of ALN status.



Methods

A total of 743 breast cancer cases collected from 2016 to 2019 at the Second Affiliated Hospital of Harbin Medical University were randomly divided into a training set (n = 523) and a test set (n = 220). A primary tumor feature model (PTFM) and ALN feature model (ALNFM) were separately generated based on tumor features alone, and a combination of features was used for the prediction of ALN status. Logistic regression analysis was used to construct the nomograms. A receiver operating characteristic curve was plotted to obtain the area under the curve (AUC) to evaluate accuracy, and bias-corrected AUC values and calibration curves were obtained by bootstrap resampling for internal and external verification. Decision curve analysis was applied to assess the clinical utility of the models.



Results

The AUCs of the PTFM were 0.69 and 0.67 for the training and test sets, respectively, and the bias-corrected AUCs of the PTFM were 0.67 and 0.67, respectively. Moreover, the AUCs of the ALNFM were 0.86 and 0.84, respectively, and the bias-corrected AUCs were 0.85 and 0.81, respectively. Compared with the PTFM, the ALNFM showed significantly improved prediction accuracy (p < 0.001). Both the calibration and decision curves of the ALNFM nomogram indicated greater accuracy and clinical practicality. When the US tumor size was ≤21.5 mm, the Spe was 0.96 and 0.92 in the training and test sets, respectively. When the US tumor size was greater than 21.5 mm, the Sen was 0.85 in the training set and 0.87 in the test set. Our further research showed that when the US tumor size was larger than 35 mm, the Sen was 0.90 in the training set and 0.93 in the test set.



Conclusion

The ALNFM could effectively predict ALN status based on US images especially for different US tumor size.
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Introduction

Axillary lymph node (ALN) status has been considered to be the most important prognostic indicator for breast cancer and the main determinant of adjuvant systemic therapy (1, 2). However, the role of ALN status in the treatment of breast cancer is still a controversial topic. In addition, breast surgery tends to be less invasive and painless (3). ALN dissection (ALND), sentinel lymph node biopsy (SLNB) and axillary sampling are currently used for pathological examination of the ALNs. Although less commonly reported, secondary injury involving anaphylaxis, infection, hematoma, seroma and paresthesia could lead to a prolonged surgical time and financial burden to the patients (4); even axillary biopsy is an invasive procedure. With the increasing detection of small-size or early-stage breast cancer, the incidence of lymph node metastasis has decreased worldwide. Previous studies showed that approximately 65% to 75% of sentinel lymph nodes (SLNs) are negative; thus, SLNB may not be necessary for those patients, which has become a controversial issue (5, 6).

In recent years, medical researchers have attempted to explore some noninvasive methods for predicting SLN status preoperatively to avoid unnecessary ALND, SLNB or lymph node puncture biopsy. The diagnostic value of mammograms and computed tomography (CT) for predicting ALN status is not high (7). Both magnetic resonance imaging (MRI) and positron emission tomography-computed tomography (PET-CT) are not common imaging methods for breast lesions because of their high cost and lack of universal coverage (8, 9). Therefore, ultrasound (US) is widely used in the preoperative examination of breast cancer lesions. With the development of US technology, the strategy of ALN management has been further improved. Preoperatively, determining the ALN status can improve personal and multidisciplinary treatment plans. Currently, there is no unified diagnostic standard for US detection of ALN status. A large number of clinical trials have confirmed that although ALNs cannot be found by US, ALN metastasis may be present (10, 11). In several studies, scholars applied preoperative and postoperative data to establish an SLN metastasis prediction model, and the performance could reach 0.70 to 0.79 (12–14). The prediction effect was not ideal, especially for postoperative prediction, with little clinical application value.

This research aimed to explore the preoperative sonographic features of ALNs and breast masses and clinicopathological features related to ALN status to build two nomograms for predicting ALN status. These models were expected to have better accuracy than the previous methods, provide a more valuable reference for clinical treatment, and make it possible to avoid invasive axillary surgery (ALND, SLNB or lymph node biopsy) to minimize trauma.



Methods

A total of 1059 patients with breast tumors were collected from the Second Affiliated Hospital of Harbin Medical University from Nov. 10, 2016, to Dec. 30, 2019. For breast masses that were suspected to be malignant preoperatively, a preoperative core needle biopsy of the breast masses and suspicious ALNs could be performed first. Neoadjuvant therapy (neoadjuvant chemotherapy, targeted therapy and endocrine therapy) could be used for patients with large masses, those who needed breast conservative surgery, and those with local late-stage disease and stage II disease with poor molecular biological characteristics. For patients with operable masses, a comprehensive surgical treatment (modified radical mastectomy, mastectomy and SLNB, breast conservative surgery, and reconstruction) could be selected based on the patient’s condition. Postoperative radiotherapy, chemotherapy, targeted therapy, endocrine therapy, immunotherapy, and traditional Chinese medicine treatment were selected according to the patient’s condition. The procedure used for patient selection is shown in Figure 1. The inclusion criteria were as follows: invasive breast cancer patients with complete clinical information and US images, patients with preoperative breast mass core needle biopsy, and those with ALNs with SLNB, ALND or core needle biopsy, the patients selected in our study were all before neoadjuvant therapy or not received neoadjuvant therapy. The exclusion criteria were as follows: benign lesions, noninvasive carcinoma, and presence of other malignant tumors. According to the above criteria, 743 patients were finally selected for model construction. US examinations were performed by a board-certified sonographer with 8 years of experience in breast US imaging using a Supersonic Imagine Aixplorer (France) coupled with linear probe arrays of 10 to 2 MHz and 15 to 4 MHz. To maintain consistency, after scanning the entire breast and ipsilateral ALN using B-mode US and color Doppler flow imaging (CDFI), the sonographer selected images of the target tumor and ALN in sagittal and transverse planes and stored dynamic and static images for a double-blind analysis.




Figure 1 | Recruitment process for study patients.



The expression levels of the estrogen receptor (ER) and progesterone receptor (PR, positive, >1% of cells staining positive) (15), human epidermal growth factor receptor 2 (HER-2/neu, positive, score of 3+ on immunohistochemistry, score of 2+ on fluorescence in situ hybridization) (16), and Ki-67 index (threshold over 14%) (17) were determined by immunohistochemical staining by applying routine methods after preoperative core needle biopsy. Core needle biopsy or mastectomy was used to determine breast pathology. SLNB, ALND, or core needle biopsy was used to determine macrometastasis of the ALNs.


Analysis of US Features

Gray-scale US features were evaluated according to the uniform American College of Radiology Breast Imaging-Reporting and Data System (ACR-BI-RADS) (18), and the color Doppler flow grade was determined according to the Alder classification criteria (19). To ensure consistency of the image analysis results, two sonographers with 10 and 12 years of clinical experience with breast US were responsible for independent retrospective analysis of the images. In cases of disagreement, a consensus was reached. Because there is no unified diagnostic standard for ALN ultrasound, some high-level related literature was consulted (20–22). All features are shown in Table 1. Based on the above features, we developed the following two models: the primary tumor feature model (PTFM) was established using clinical features and US features of primary breast tumors, and the ALN features model (ALNFM) was developed by considering clinical features and US features of primary breast tumors and US features of ALNs. The optimal model was screened out and extensively studied according to tumor size.


Table 1 | Patients: all patients, patients according to training set or test set and comparison of the composition ratio between groups.






Statistical Analysis

A data analysis framework was proposed. Descriptive statistics were applied to assess the frequency distribution among all patients in the study. Interobserver comparisons were evaluated with Cohen’s kappa statistics (23). According to the type of data, the Chi-square test, Mann-Whitney U test and independent t-test were used to compare the two groups (training set vs test set). Univariate logistic regressions were used to evaluate the relationship between each feature and ALN status. Features (P<0.05) in the univariate logistic regression analysis that were assessed with the stepwise logistic regression method were used to construct the nomograms. According to the size of the regression coefficient of all independent variables, the scoring standard was established. The risk of predicting ALN status curves and the features value were plotted according to the scales of these scores. Then, a nomogram was developed by plotting a vertical line from the scale of the total score to the scale of the predicted probability.

Using receiver operating characteristic (ROC) curve analysis, the area under the curve (AUC) was obtained, and the Hosmer-Lemeshow (HL) test was applied to assess the fitting accuracy of the final model. The AUC comparison between the two models was performed by DeLong’s test. In addition, ROC curve analysis was used to select the cut-off point of tumor diameter according to ALN status. The bias-corrected AUC and calibration curves were obtained by the bootstrap resampling method and applied for internal and external verification. Decision curve analysis was used to assess the clinical utility of the prediction nomogram. The odds ratio (OR) and 95% confidence interval were used to quantify the association between the features and lymph node status. The conventional statistical analyses were two-sided. Every feature with a P value < 0.05 was considered statistically significant, and P values were obtained from the Wald test. The statistical software R version 3.5.0, 2.15.3 (http://www.R-project.org/) and Bioconductor packages (http://www.bioconductor.org/) were used for all statistical analyses.




Results


General Results

Mastectomy, breast conservative surgery, reconstruction, and neoadjuvant therapy were performed for 75.23% (559/743), 9.29% (69/743), 0.27% (2/743), and 15.21% (113/743) of patients, respectively. In total, 384 and 246 patients received ALND and SLNB, respectively. Preoperative ALN core needle biopsy was carried out in 438 cases; 113 received neoadjuvant therapy, whereas 325 patients did not receive neoadjuvant therapy but underwent ALND or SLNB. A total of 743 patients were randomly divided into two groups: the training set (n=523) and the test set (n=220). The clinical and US characteristics of the patients are summarized in Table 1. There were no significant differences between the training and test sets (P>0.05). The unweighted values of interobserver agreement determined by Cohen’s kappa statistics ranged from 0.65 to 0.94, which showed that there was good consistency among the observers.



Critical Predictors Obtained by Logistic Regression Analysis

Based on the univariate analysis of 20 variables for the training set (US tumor size, quantity, shape, orientation, margin contour, main posterior echo, microcalcification, echogenicity pattern, CDFI, HER-2 status, US of the lymph node, aspect ratio, cortical thickness, and central hilum), 14 predictive variables were significantly associated with ALN status (P<0.05). Age, margin, boundary, ER status, PR status, and Ki-67 index did not correlate with lymph node status (P≥0.05), as summarized in Table 2.


Table 2 | Critical predictors obtained by univariate logistic regression analysis.



Finally, the results of the PTFM are presented in Table 3. The following features showed a statistically significant relationship with ALN status: US tumor size, shape, orientation, CDFI, and HER-2 status. The P values obtained by applying the HL test were 0.214 and 0.865 in the training and test sets, respectively, which did not indicate a significant difference. The original assumption was accepted, and there was no significant difference between the predicted value and the real value.


Table 3 | Results of the PTFM.



The results of the ALNFM are displayed in Table 4. The following features demonstrated a significant difference that correlated independently with ALN status: US tumor size, orientation, HER-2 status, US of the lymph node, cortical thickness and central hilum. The P value obtained by applying the HL test was 0.369 in the training set and 0.045 in the test, which did not correspond to a significant difference. The results showed that the original assumption was accepted, and there was no difference between the predicted and actual values in the model.


Table 4 | The results of ALNFM.





Nomograms for Predicting ALN Status

The stepwise regression analyses were designed to facilitate the generation of two nomograms for predicting ALN status (Figure 2). Irregular shape (Figure 3A), multiple tumors and higher CDFI classification (Figure 3B) were greatly associated with ALN metastasis in the PTFM nomogram. In both nomograms, nonparallel orientation growth (Figure 3A), main posterior shadowing, larger tumor size, microcalcification (Figure 3C), and HER-2 gene overexpression correlated highly positively with ALN status. In addition, a tumor margin contour that was angular or spiculate, no lymph nodes found, aspect ratio<2, thickened lymph node cortex, and absent central hilum (Figure 3D) correlated highly positively with ALN metastasis in the ALNFM.




Figure 2 | (A) The PTFM nomogram for predicting ALN status in the training set. (B) The ALNFM nomogram for predicting ALN status in the training set. Sin, Single; Mul, Multiple; O, Oval; R, round; Irr, Irregular; Par, Parallel; NP, Not parallel; Smo, Smooth; Lob, Lobulate; A, Angular; S, Spiculate; E, Enhancement; I, Indifferent; Sha, Shadowing; Abs, Absent; Pre, Preserved; N, Negative; P, Positive; NLNF, No lymph nodes found; LNF, Lymph nodes found; AR, Aspect ratio; T, Thickness; ST, Symmetric thickness; AT, Asymmetric thickness; PA, Partially absent; CA, Completely absent.






Figure 3 | (A) US image from a 64-year-old woman with ALN metastasis showing the irregular shape and nonparallel growth of the tumor. (B) US images from a 38-year-old woman with ALN metastasis showing rich blood flow signals with the application of color Doppler flow. (C) US images in a 40-year-old woman with ALN metastasis, which shows microcalcification and an irregular shape. (D) US images from a 62-year-old woman with ALN metastasis showing the absence of a central hilum.





Reliability and Validation of the Nomograms

The discriminatory performance of the nomograms for predicting ALN status was evaluated by ROC curves. The sensitivity (Sen), specificity (Spe), and accuracy (Acu) of the PTFM were 0.70, 0.68 and 0.69, respectively, in the training set, and 0.70, 0.64 and 0.67, respectively, in the test set. The AUC values of the PTFM in the training set and the test set were 0.69 (95% CI, 0.65–0.73) and 0.670 (95% CI, 0.61–0.73), respectively (Figure 4A). Moreover, internal and external verification were performed using a bootstrapping method with 1000 resamples in the training and test sets. After bias correction, the AUC of the PTFM was 0.67 (−0.025) and 0.67 (−0.001) in the training set and the test set, respectively. Calibration using a bootstrapping method with 1000 resamples was also estimated graphically in the training set (Figure 5A) and test set (Figure 5B).




Figure 4 | (A) ROC curves of the PTFM in the training set (green curve) and test set (red curve). (B) ROC curves of the ALNFM in the training set (green curve) and test set (red curve).






Figure 5 | The calibration curves of the PTFM nomogram in the training set (A) and test set (B). The calibration curves of the ALNFM nomogram in the training set (C) and test set (D). The 45-degree diagonal line demonstrates perfect matching between the nomogram-predicted probabilities (X-axis) and the true value (Y-axis). The distances were closer between the two lines, and the prediction accuracies of the ALNFM nomogram were higher than those of the PTFM.



The Sen, Spe and Acu of the ALNFM were 0.78, 0.93 and 0.86, respectively, in the training set, and 0.80, 0.88 and 0.84, respectively, in the test set. The consistent AUCs of the ALNFM in the training set the test set were 0.86 (95% CI, 0.83–0.89) and 0.84 (95% CI, 0.79–0.89), respectively (Figure 4B). Moreover, internal and external validations were performed using a bootstrapping method with 1000 resamples in the training and test sets. After bias correction, the AUC of the ALNFM was 0.85 (−0.003) and 0.81 (−0.034) in the training and test sets, respectively. Calibration using a bootstrapping method with 1000 resamples was also estimated graphically in the training set (Figure 5C) and test set (Figure 5D). The distance between the two lines of the ALNFM was less than that of the PTFM. Compared with the PTFM, the ALNFM achieved the best performance in both the training and test sets (P<0.001).



Prediction Performance of the ALNFM Using US Tumor Size

ROC curve analysis was used to select the cut-off point of tumor diameter according to ALN status, and the cut-off value was 21.5mm (Supplementary Figure 1). The cut-off values of the Sen and Spe were assessed by application of the ALNFM. When the US tumor size was ≤21.5 mm, the Spe was 0.96 and 0.92 in the training and test sets, respectively. Moreover, with the decrease in US tumor size, the Spe increased significantly. When the US tumor size was greater than 21.5mm, the Sen was 0.85 in the training set and 0.87 in the test set. Furthermore, when the US tumor size increased, the Sen also increased significantly. Our further research showed that when the US tumor size was larger than 35mm, the Sen was 0.90 in the training set and 0.93 in the test set (Supplementary Table 1).



Clinical Value of Evaluation of the Nomograms

Decision curve analysis was used to assess the clinical utility of the two prediction nomograms (Figure 6). It showed that there was an ideal high net benefit. The nomogram constructed with the ALNFM showed the most clinical benefits for predicting ALN status when the risk threshold probability for patients ranged from 0.07 to 0.99. The nomogram constructed with the ALNFM showed more benefit than the nomogram constructed with the PTFM. Therefore, our nomogram constructed with the ALNFM performed better.




Figure 6 | Decision curve analysis of the two nomograms. The net benefit is shown by the y-axis. The advantages minus disadvantages are equal to the net benefits. When the risk threshold probability is between 0.07 and 0.99, the ALNFM nomogram (red curve) showed more benefit for patients for predicting ALN status than the PTFM nomogram or the treat-all and treat-none schemes.






Discussion

ALN status has been considered an important factor for determining treatment and prognosis of patients (25, 26). Currently, the treatment of breast cancer patients is developing toward to a less invasive treatment of the ALNs, involving less pain and close follow-up (3). If the ALN status can be effectively predicted preoperatively, the surgical plan can be optimized and unnecessary invasive examination of the ALNs can be omitted to reduce trauma. US imaging for diagnosis of ALN status has become a concern in recent years, but this issue is still in the early stages of research, and there is no uniform diagnostic standard. Few studies have been performed on the US features of breast masses to predict ALN status; therefore, we attempted to use easily acquired clinical features and preoperative US features of breast masses and ALNs to predict ALN status and develop forecasting nomograms. A profound study of new methods of traditional US has been performed, which should be brought to the attention of clinical doctors. Further research on traditional US still has a broad application prospect and high application value with the current rapid development of US technology.

To compare the performance of the prediction model of clinical features and US features of primary breast tumors with the model combined with US features of ALNs, we established two nomograms in this study. We found that the ALNFM was more significant than the PTFM (p<0.001). The PTFM nomogram included the characteristics of breast tumors and did not include the characteristics of the ALNs. This nomogram used an indirect method, while the ALNFM used a more direct method. Thus, the PTFM nomogram was less significant than the ALNFM nomogram. However, except for the association of the same features (nonparallel orientation growth, main posterior shadowing, microcalcification, larger tumor size, and HER-2 gene overexpression) with ALN metastasis, the PTFM nomogram incorporated more US features of primary breast tumors, such as multiple tumors, irregular tumors, and abundant blood supply. Sonographers should be reminded to pay special attention to the status of ALNs when they find the above features during a scan.

The performance of the ALNFM (AUC: 0.86 and 0.84 in the training set and the test set, respectively) was not only better than that of the PTFM, but it was also better than that of other previous methods, including dynamic contrast-enhanced MRI, clinicopathological features and the previous Memorial Sloan-Kettering Cancer Center (MSKCC) model, and the AUCs of previous studies ranged from 0.67 to 0.82 (12, 13, 27). The MSKCC model has been verified in other countries in succession, and the AUC ranged from 0.63 to 0.78 (28–30). Meanwhile, our results were also reliable and objective. First, there was little bias in the AUC values in the internal and external verification. The calibration curves were closer to the 45 degree diagonal line, and the prediction accuracies were higher. Second, decision curve analysis showed a higher clinical application value and better clinical practicability. The results of some studies were also consistent with those of our study, with AUCs ranging from 0.85 to 0.86 (31, 32). The nomogram showed that nonparallel orientation growth, a tumor margin contour that was angular or spiculate, main posterior shadowing, larger tumor size, microcalcification, aspect ratio<2, thickened lymph node cortex, absent central hilum, and HER-2 gene overexpression were likely to be associated with ALN metastasis. Therefore, if a breast tumor is detected by preoperative US and accompanied by any of the above conditions, especially larger tumor size, thickened lymph node cortex, or absent central hilum, metastasis of the ALNs could be predicted, and preoperative core needle biopsy, SLNB or ALND should be performed. The Spe of the ALNFM was higher (0.93 and 0.88 in the training and test sets, respectively). Moreover, if the breast tumor was not accompanied by any of the above conditions and the ALNs were predicted to be negative, unnecessary preoperative core needle biopsy, SLNB or ALND may be avoided to a certain extent. Despite the rapid development of US technology, traditional US is still dominant and irreplaceable; at the same time, traditional US combined with clinicopathological characteristics for predicting ALN is currently the most practical and concise new method and is easier to perform and more stable than the radiomics method or elastography (33, 34). In particular, US is a noninvasive and routine method for evaluating breast cancer and can be widely used, even in some underdeveloped areas.

After the best model was selected, we performed in-depth research on the clinical significance of the ALNFM nomogram developed from traditional US and further explored the critical US features associated with ALN metastasis. This study showed that the US tumor size was associated with ALN metastasis, and the results were in agreement with those of a previous study (35, 36). Furthermore, the threshold was 21.5 mm, which was surprisingly similar to the endpoint value (20 mm) of T1 and T2 and this result was consistent with those of previous studies that showed that a tumor size greater than 20 mm was an important independent risk factor for ALN metastasis (37). The study showed that when the US tumor size was ≤21.5 mm, the Spe was ideal(with values of 0.96 and 0.92 in the training and test sets, respectively); when the US tumor size was greater than 21.5 mm, the Sen was very high (0.85 and 0.87 in the training and test sets, respectively); when the US tumor size was larger than 35 mm, the Sen was ideal(with values of 0.90 and 0.93 in the training and test sets, respectively), and previous studies believe that it was ideal when the false negative rate (1-sensitivity) of a model was less than 10% (38). Thus, when the US tumor size was ≤21.5 mm, the ALN status was predicted to be negative, SLNB or core needle biopsy may not be recommend for surgical staging, and close follow-up should be recommend to some small tumors. when the US tumor size was >21.5 and ≤35 mm, the ALN procedure was selected based on the combination of clinical and ultrasound features related to ALN metastasis. If the US tumor size was greater than 35mm and ALN is predicted to be negative, invasive ALN biopsy, sentinel lymph node biopsy and dissection may be avoided and when the ALN status was predicted to be positive, core needle biopsy, SLNB or ALND was absolutely necessary. Thus, the clinical application value of the ALNFM according to US tumor size was obviously significant.

Our study indicated that the shape, orientation and CDFI were markedly independently associated with ALN metastasis. The presence of multiple tumors, a margin contour that was angular or spiculate, posterior echo shadowing, hypoechoic and microcalcification were obviously associated with ALN metastasis based on univariate logistic regressions analysis. The results were consistent with those of previous studies (22, 27). We thought that the results might be related to the biological behavior of tumors; the more likely a tumor is to metastasize, the faster it grows, the larger it grows, the greater the number of tumors, the more unbalanced it is, the more angular or spiculate it is, the more irregular its shape is, the more likely it is to grow in a nonparallel orientation, and the more abundant the blood supply is. Furthermore, because it is growing too fast, the nutrition is often in poor supply, so the tumor is more prone to microcalcification and more likely to be accompanied by posterior echo shadowing (39). The study also showed that aspect ratio<2, thickened lymph node cortex and absent central hilum were independently positively associated with ALN metastasis. Clinical studies have confirmed that cancer cells transfer to the lymph nodes and destroy the cortex, medulla and central hilum, leading to enlarged ALNs, a thickened cortex, enhanced lateral growth, and a diminished aspect ratio (40, 41). When the ALNs were found by ultrasound, the impacts of ALN features on the predicting results will be highlighted. Our research found that even if ALNs were not found by ultrasound, there were 22.90% (49/214) ALN metastases. When the ALNs were not found by ultrasound, the impacts of the ALN features on the predicting results were absent, therefore, the impacts of No lymph nodes found on the predicting results will be highlighted. These may explain why no lymph nodes found correlated highly positively with ALN metastasis. This study also confirmed that the molecular phenotype was related to ALN status, and patients with HER-2 positivity had a higher metastasis risk, which was consistent with the results of other experts who found that HER-2 gene overexpression in breast cancer was associated with a higher degree of malignancy and an increased likelihood of metastasis (24).

Regardless of the development of US technology in the future, the simple and easy-to-use traditional US always has broad application prospects in predicting ALN status. Compared with difficult, challenging, and expensive methods, US has great importance in clinical practice; moreover, it had greater guiding significance in the procedure of ALNs than previous studies and postoperative methods. Therefore, irrespective of how many models there are, application value is the most important determinant.
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Background and Purpose

Although tumor size and nodal status are the most important prognostic factors, it is believed that nodal status outperforms tumor size as a prognostic factor. In particular, when patients have a nodal stage greater than N2 (more than nine positive lymph nodes), it is well accepted that tumor size does not retain its prognostic value. Even in the newest American Joint Committee on Cancer (AJCC) prognostic staging system, which includes molecular subtype as an important prognostic factor, T1-3N2 patients are categorized as the same population. The same is true for T1-4N3 patients. Moreover, some physicians have speculated that for tumors staged N2 or greater, the smaller the tumor is, the more aggressive the tumor. Thus, this study aims to investigate the prognostic value of tumor stage (T stage) in patients with extensive nodal involvement and to compare the survival of T4N × M0 and T × N3M0.



Patients and Methods

Female breast cancer patients with nine or more positive lymph nodes or with T4 tumors were identified in the SEER registry between 2010 and 2015. The effect of T stage on breast cancer-specific survival (BCSS) was assessed using the Kaplan–Meier survival curve method and risk-adjusted Cox proportional hazard regression modeling. Survival comparison of T4NxM0 and TxN3M0 patients was also achieved using the Kaplan–Meier survival curve method and risk-adjusted Cox proportional hazard regression model.



Results

Overall, 21,696 women with N2-3 tumors were included from 284,073 patients.T stage, nodal stage (N stage), ER, PR, HER2 and grade were all independent prognostic factors  (p <0.001). HRs for ER, PR, HER2, grade, and N stage were 0.662 (0.595–0.738), 0.488 (0.438–0.543), 0.541 (0.489–0.598), 1.534 (1.293–1.418) and 1.551 (1.435–1.676), respectively. Notably, HER2 positivity was correlated with better BCSS possibly due to the wide adoption of anti-HER2 therapy. Using T1 as a reference, HRs of T2, T3, and T4 were 1.363 (1.200–1.548), 2.092 (1.824–2.399) and 3.497 (3.045–4.017), respectively. The same results held true when subgroup analysis based on N stage were conducted. In the two subgroups, namely, women staged as T1-3N2 and women staged as T1-4N3, T stage was also a significant negative prognostic factor independent of ER, PR, HER2 and grade. Moreover, 8,328 women staged as T4 with different nodal statuses were also identified from the whole database. When we compared T4Nx with TxN3, it was found that T4 tumors exhibited worse outcomes than N3 tumors independent of other prognostic factors. When molecular subtype was included in the subgroup analysis, survival could not be distinguished between T4 and N3 only in TNBC.



Conclusions

In patients with extensive nodal status, tumor stage remains a prognostic factor independent of other factors, such as ER, PR, HER2, and grade. In patients with T4Nx or TxN3 tumors, T4 tumors exhibit worse outcomes than N3 tumors independent of other prognostic factors. The AJCC staging system should be modified based on these findings.
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Background and Purpose

Several classical and well-accepted prognostic factors have been reported in breast cancer, including tumor size, axillary lymph node (LN) status, histologic grade, hormone receptor status, HER2/neu status, and the presence of lymphovascular invasion (LVI) (1–5). Among these factors, axillary LN status and tumor size are two of the most important factors included in the American Joint Committee on Cancer (AJCC) staging system (6). Due to screening and early diagnosis, breast cancer patients are diagnosed at earlier stages (7). Nevertheless, 10–15% of breast cancer patients have been diagnosed with extensive nodal involvement in the US (8), and the situation in developing countries is even less optimistic (9). Although tumor size and axillary LN status are the most important prognostic factors, it is believed that LN nodal status outperforms tumor size as a prognostic factor. In particular, when patients have a nodal stage greater than N2 (more than nine positive lymph nodes), it is well accepted that tumor size does not retain its prognostic value according to the AJCC staging system (6, 10). Even in the newest AJCC prognostic staging system, which includes molecular subtype as an important prognostic factor, T1-3N2 patients are categorized as the same population as that in the traditional AJCC pathological staging system. The same is also true for T1-4N3 tumors. Moreover, some physicians speculated that for N2 or greater staged tumors, the smaller the tumor is, the more aggressive the tumor (8). Thus, this study aims to investigate the prognostic value of tumor stage (T stage) in patients with extensive nodal involvement and to compare the survival of T4NxM0 (categorized as IIIB in the AJCC staging system) and TxN3M0 (categorized as IIIC in the AJCC staging system) patients.



Patients and Methods


Data Source

We abstracted data from the Surveillance, Epidemiology, and End Results (SEER) 18 Registries Research Data + Hurricane Katrina Impacted Louisiana Cases. In total, this database covers approximately 28% of the total US population. The data reported in this study represent the recent follow-up data (December 31, 2015) available in the SEER database (11).



Cohort Selection

We used SEER*Stat version 8.3.5 to generate a case list. We extracted cases of female breast cancer diagnosed from 2010 to 2015 because HER2 status was included in these data. We selected women who had a diagnosis of histologically confirmed first invasive breast cancer without distant metastasis. We generated a case listing with information on the following variables: year of diagnosis, age at diagnosis, AJCC pathological stage, AJCC tumor stage and size, AJCC nodal stage, estrogen receptor (ER) and progesterone receptor (PR) status, ERBB2 status (formerly HER2 or HER2/neu), cause of death and survival (months). We used the cause of death to site recode variables in SEER 18 to extract patient status at the time of the last follow-up. Based on this information, we grouped all patients into categories of alive or dead due to other causes and dead due to breast cancer. We used the survival time (months) variable to extract information on time from date of diagnosis to last follow-up. SEER*Stat estimates survival time in months by subtracting the date of diagnosis from the date of last contact (the study cutoff). The study cutoff date was December 31, 2015, which is the date of the last update on the follow-up time.



Statistical Analyses

Descriptive statistics were used to examine the following baseline characteristics of breast cancer cases: year of diagnosis, age at diagnosis, American Joint Committee on Cancer (AJCC) pathological stage, AJCC tumor stage and tumor size, AJCC nodal stage, estrogen receptor (ER) and progesterone receptor (PR) status, ERBB2 status, cause of death and survival (months). To create a subcohort of women for whom the positivity or negativity of all three receptors (ER, PR, and ERBB2) was known, we excluded women whose ER and PR status were coded as borderline, undetermined whether positive or negative, or unknown. We further excluded women whose ERBB2 status was coded as borderline, equivocal, indeterminate, undetermined whether positive or negative, or unknown. We classified breast cancers into four groups: HR positive/ERBB2 negative, HR positive/ERBB2 positive, HR negative/ERBB2 positive and HR negative/ERBB2 negative. BCSS (breast cancer-specific survival) was used as the primary study outcome of the SEER data, which was calculated from the date of diagnosis to the date of breast cancer-specific death. The causes of death were categorized as either breast cancer related or non-breast cancer related. Patients who died of non-breast cancer related causes were censored according to the date of death. The effect of T stage on BCSS was assessed using the Kaplan–Meier survival curve method and risk-adjusted Cox proportional hazard regression modeling. The survival comparison of T4NxM0 and TxN3M0 were also conducted using the Kaplan–Meier survival curve method. We computed 95% confidence intervals for all point estimates (ORs and HRs). A P-value of 0.05 or less was considered statistically significant. All P-values were 2-tailed. All statistical analyses were performed using IBM SPSS Statistics 22.




Results


Multivariate Survival Analyses in N2-3 Patients

Overall, 21,696 women with N2-3 tumors were included from 284,073 patients (Figure 1). Table 1 summarizes the sample demographics according to N stage. T stage, nodal stage (N stage), ER, PR, HER2 and grade were all independent prognostic factors (p <0.001). HRs of ER, PR, HER2, grade, and N stage were 0.662 (0.595–0.738), 0.488 (0.438–0.543), 0.541 (0.489–0.598), 1.534 (1.293–1.418) and 1.551 (1.435–1.676), respectively (Table 2). Notably, HER2 positivity was correlated with improved BCSS, possibly due to the wide adoption of anti-HER2 therapy. To further explore the prognostic value of HER2 status, we performed subgroup survival analyses according to ER status. Moreover, we found that HER2-positive status correlated with better outcome in ER negative patients but lost its prognostic value in ER-positive patients (Figure 2).




Figure 1 | Patient flow chart for inclusion and exclusion.




Table 1 | Baseline characteristics according to N stage in N2–3 patients.




Table 2 | Multivariate survival analysis by Cox proportional hazard regression modeling in TxN2-3M0 breast cancer patients.






Figure 2 | The prognostic value of HER2 in ER negative (A) and positive (B) tumors.





Tumor Size Still Impacts Prognosis in Breast Cancer With Extensive Nodal Involvement

When T1 is used as a reference, HR values of T2, T3, and T4 were 1.363 (1.200–1.548), 2.092 (1.824–2.399) and 3.497 (3.045–4.017), respectively (Table 1). The same results held true when subgroup analysis was performed according to N stage. In the two subgroups of T1-3N2 and T1-4N3 women, T stage was also a significant negative prognostic factor independent of ER, PR, HER2, and grade. In T1-3N2 tumors, when we used T1 as reference, HR values of T2 and T3 were 1.899 (1.269–2.812) and 2.593 (1.661–4.047), respectively. In T1-4N3 women, when we use T1 as reference, HR values of T2, T3, and T4 were 1.146 (0.955–1.375), 1.803 (1.494–2.174) and 2.776 (2.293–3.359), respectively (Table 3).


Table 3 | Multivariate survival analysis by Cox proportional hazard regression modeling in T1–3N2M0 and T1–4N3M0 breast cancer patients.





T4NxM0 Indicates Worse Prognosis Than TxN3M0

In total, 8,328 women staged as T4 with different nodal statuses were also identified from the whole database (Figure 3). T4N1-2 patients are categorized as IIIB in the AJCC pathological staging system, while T1-4N3 patients are categorized as IIIC. However, when we compared T4Nx with TxN3 tumors in this SEER database, T4 tumors had worse outcomes than N3 tumors independent of other prognostic factors (Figure 4A). When ER and HER2 status were included in subgroup analysis, we found that T4 indicated worse prognosis than N3 if tumors were ER or HER2 positive (Figures 4B–D). Only in ER-HER2− patients (mostly triple negative tumors), T4 exhibited a similar prognosis as N3 (Figure 4E). Given that the malignant degree of ER-HER2- breast cancer is too high, it is possible that the influence of traditional T and N stage will be relatively small.




Figure 3 | Patient selection for survival comparison of T4 and N3 tumors.






Figure 4 | The survival comparisons of T4 and N3 tumors in whole population (A), HR+HER2- (B), HR+HER2+ (C), HR-HER2+ (D) and HR-HER2- (E) subgroups.






Discussion

Breast cancer staging is a classical and even outdated proposition. The traditional tumor stage is becoming less important with the development of molecular subtyping and precision treatment. The latest version of the AJCC prognostic staging system is a fusion of molecular subtypes and traditional pathological indicators. However, in recent years, some studies on T stage and N stage have been performed to explore the correlation between these two factors and their influence on prognosis. Yu et al. found that in LN-negative diseases, the relationship between tumor size and breast cancer-specific mortality (BCSM) was piecewise. Using 21- to 30-mm tumors as the reference, the HR of BCSM increased with increasing tumor size until it reached a peak at 41 to 50 mm, after which increasing tumor size was unexpectedly related to reduced hazard ratios, with a nadir at 61 to 80 mm (12). More interestingly, Jennifer Y. Wo’s work indicated that small tumors with four positive LNs might predict higher BCSM compared with larger tumors. In extensive node-positive disease, very small tumor size may be a surrogate for biologically aggressive disease (8). Therefore, in the field of traditional staging, some controversial results are noted. In the AJCC staging system, the prognostic value of T staging is ignored when nodal staging is higher. For instance, T1-3N2 patients are categorized as the same population. The same is true for T1-4N3 patients. However, is that truly the case? Does tumor size truly lose its prognostic value when lymph nodes are extensively involved? After exploring a large database, we found that it was not the case. In our study, we found that in T1-3N2 and T1-4N3 women, T stage was still a significant prognostic factor independent of ER/PR/HER2/grade. To better illustrate the prognostic value of T stage, 8,328 women staged as T4 with different nodal statuses were also identified from the whole database. When we compared T4Nx with TxN3, T4 tumors had worse outcomes than N3 tumors independent of other prognostic factors. However, T4 was classified as IIIB, while N3 was classified as IIIC in the 8th AJCC staging system. The underlying mechanism of our outcome might also be explained as follows. It has been proposed that a higher fixed proportion of cancer cells with stem-cell properties of self-renewing and pluripotency, which we refer to as cancer stem cells (13), may be present, and these cells may allow small tumors to metastasize to distant sites. However, the degree of malignancy of cancer stem cells is determined by two factors: migration ability and proliferation ability. Tumors with extensive lymph node involvement when they are small tend to have strong migration ability but not proliferation ability, whereas large tumors with extensive lymph node involvement tend to have strong migration and proliferation abilities.

To the best of our knowledge, this is the largest and most recent study evaluating the prognostic significance of tumor size in extensive node-positive breast cancer, and the results pose a challenge to the AJCC staging system. However, there are still limitations that should be mentioned. First, this is a retrospective study with inevitable bias. Additionally, the SEER database does not contain treatment information, so the effect of treatment on prognosis cannot be excluded.

In summary, in patients with extensive nodal status, tumor stage remains a prognostic factor independent of other factors, such as ER, PR, HER2, and grade. In patients with T4Nx or TxN3 tumors, T4 tumors have worse outcomes than N3 tumors independent of other prognostic factors. The AJCC staging system should be slightly modified based on these outcomes.
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In this study, we demonstrated that miR-640 is significantly downregulated in breast cancer (BC) tissues and cell lines. Overexpression of miR-640 inhibited the proliferation and migration of BC in vitro and in vivo, while depletion of miR-640 exhibited the opposite effect. Importantly, miR-640 could directly target Wnt7b, thereby regulating Wnt/β-catenin signaling pathway in BC. In conclusion, miR-640/Wnt7b suppresses BC cells tumorigenesis via Wnt/β-catenin signaling pathway, which might be novel targets for BC targeted therapy.
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Introduction

Breast cancer (BC) is well recognized as the most frequently diagnosed cancer in women worldwide with high incidence and mortality rates (1). Despite major breakthroughs in therapy strategies and therapeutic modalities of BC, the mortality rates of BC remain high due to metastasis and recurrence. Thus studies focusing on the mechanism of pathogenesis and metastasis of BC as well as new prognostic markers for precise are urgently needed.

Wnt signaling pathway, an important extracellular pathway, participates in a large set of cellular processes, including cell proliferation, differentiation, migration and apoptosis (2). The Wnt signaling pathway mainly comprises canonical Wnt pathway and noncanonical Wnt pathway according to whether β‐catenin is affected (3). The canonical Wnt pathway is highly evolutionary conserved and mainly involves β-catenin. Previous studies have shown that aberrant activation of Wnt/β-catenin signaling pathway has a critical role in oncogenesis and development of various cancers, including BC (4, 5). Several Wnt proteins, such as Wnt1 (6, 7), Wnt3a (8), Wnt7a (9), Wnt7b (10) and Wnt9a (11) have been reported to initiate canonical Wnt/β-catenin signaling by combining with Frizzled (FZD) or low‐density‐lipoprotein receptor‐related proteins 5/6 (LRP5/6), leading to the disassembly of the β-catenin destruction complex and nuclear translocation of β-catenin. Then β-catenin could combine with T-cell factor/lymphoid enhancer-binding factor (TCF/LEF), thereby promoting transcription of Wnt target genes (3, 12, 13).

Wnt7b is highly-expressed in many cancers and aberrant Wnt7b expression contributes to the pathogenesis of several cancers, such as pancreatic adenocarcinoma, bladder cancer and osteosarcoma (10, 14, 15) (Figure S1). More importantly, high expression of Wnt7b is associated with aggressive clinicopathologic features and poor clinical outcome of BC patients (16), indicating it an independent prognostic biomarker in BC.

MicroRNAs (miRNAs) are a group of non-coding small RNA molecules that inhibit the expression of target mRNAs post-transcriptionally (17). Multiple miRNAs or miRNA families/clusters have been recognized play vital roles in BC. For example, miR-424 plays an anti-oncogenic role in BC by inhibiting CDK1 expression (18). MiR-135b could promote BC cell growth and disrupt the cell cycle by regulating LATS2 (19). Recent studies indicate that miR-640 could aggravate intervertebral disc degeneration via NF-κB and WNT signaling pathway (20). In addition, miR-640 suppresses the progression of HCC via HIF-1α signaling Pathway (21). However, the role of miR-640 in BC is still unknown.

In this study, we found miR-640 was downregulated in BC tissues and cell lines. In addition, miR-640 plays an anti-oncogenic role in vitro and in vivo by inhibiting BC cells proliferation and migration. More importantly, we demonstrated that Wnt7b is a direct target of miR-640, so that miR-640 could act as a suppressor in BC via canonical Wnt/β-catenin signaling pathway.



Materials and Methods


Clinical Tissue Samples

50 tumor tissues and their adjacent normal tissues were collected from BC patients who underwent operation in the Department of Breast and Thyroid Surgery of Shanghai Tenth People’s Hospital of Tongji University (Shanghai, China). Patients receiving chemotherapy or radiotherapy before surgery were excluded. This study was approved by Institutional Ethics Committees of Shanghai Tenth People’s Hospital. We have obtained informed consent from all patients. All tissue specimens were snap-frozen in liquid nitrogen immediately for further use.



Cell Culture and Transfection

We obtained the human BC cell lines MDA-MB-231, BT549, MCF-7, SKBR3 and normal breast epithelial cell line MCF-10A from Chinese Academy of Sciences (Shanghai, China). All BC cell lines were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) (Gibco, USA) with 10% Fetal Bovine Serum (FBS) (Gibco, USA), penicillin (100 units/ml) and streptomycin (100 μg/ml) (Enpromise, China), and mycoplasma elimination reagent (Yeasen, China). MCF-10A were cultured in Mammary Epithelial Basal Medium (MEBM) (Cambrex, USA). All these cells were cultured at 37°C with 5% CO2. MiR-640 mimics, miR-640 inhibitor and non-specific miR-negative control (miR-640-NC) oligo were purchased from RiboBio (Guangzhou, China). The specific siRNA of Wnt7b (si-Wnt7b) and negative control (si-NC) were purchased from Generay (Shanghai, China). Hieff Trans™ Liposomal Transfection Reagent (Yeasen, China) was used for transfection according to the protocols.



RNA Extraction and RT-qPCR

We extracted total RNA from frozen tissues and cultured cells using Trizol reagent (Invitrogen, Carlsbad, CA, USA). The concentration and purity of RNA was assessed by Nanodrop 2000 spectrophotometer (Thermo Fisher Scientific, USA). We conducted quantitative real-time polymerase chain reaction (RT-qPCR) by using the Hieff® qPCR SYBR® Green Master Mix (Yeasen, China). Primer sequences were designed and synthesized by RiboBio (Guangzhou, China). Expression of miRNAs and mRNAs were assessed by threshold cycle (CT) values and analyzed using the 2-ΔΔCt method. U6 and β-actin were used as internal control. Primers used in this study were shown in Table S1.



MTT Assay

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to evaluate cell proliferation. Cells were seeded in 96-well plates at 1*104 cells/ml after 24h transfection. 1, 2, 3, 4, 5 day later, 20 μl MTT (at a concentration of 5 mg/ml; Sigma Aldrich) was added per well, and cells were cultured at 37°C with 5% CO2 for 4-6h. 150 μl DMSO was added after the discarding supernatant. The OD 490 nm optical density was detected by a microplate reader (BioTek, USA).



Colony Formation Assay

Transfected BC cells were seeded into 6-well plates (1000 cells per well). After 2 weeks, cell colonies were gently washed with cold 1 x PBS, fixed with 75% ethanol and stained with 0.1% crystalline purple. Then colonies were photographed and counted by Image J.



Wound Healing Assay

Transfected BC cells were seeded in 12-well plates. When the cells reached more than 90% confluent, we produced a scratch by using a 200-μl-pipette tip over the surface of cells. Then cells were cultured with DMEM medium with 2%FBS. The scratch area was observed and measured under the microscope (Leica Microsystems, Mannheim, Germany) at 0h and 24h. Image J was used to measure the scratch area.



Migration Assay

We used transwell chambers (Corning, Inc., Lowell, MA, USA) to measure the migration ability of MDA-MB-231 cells in 24-well plates. Transfected cells were placed in the upper chamber with 200 μl serum-free medium and medium with 10% FBS was added in the lower chamber. 14h later, noninvasive cells in the upper chamber were removed by cotton swabs and invasive cells on the opposite side were fixed with 95% ethanol for 10 min, stained with 0.1% crystal violet for 10 min. Pictures of invasive cells were taken with a microscope (Leica Microsystems, Mannheim, Germany) and migrated cells were counted in 3 randomly-selected fields.



Luciferase Reporter Assay

Wild-type and mutant-type reporter plasmids of Wnt7b 3’-UTR were designed and synthesized by IBSBio (Shanghai, China). These two reporter plasmids were co-transected with miR-640 mimics or miR-640-NC into HEK293T cells. After 48h, luciferase activities were measured by the Dual-Luciferase® Reporter Assay kit (Yeasen, China).



FISH Assay

Specific probes for miR-640 were designed and synthesized by IBSBio (Shanghai, China). 4’,6-Diamidino-2-Phenylindole (DAPI) was used to stain cell nuclei. Ribo™ Fluorescent In Situ Hybridization Kit (Ribo, China) was used in FISH assay. Fluorescence microscope (Olympus BX53 Biological Microscope) was used to capture the images of cells.



Western Blotting Assay

Proteins were isolated with RIPA lysis buffer (Beyotime, Jiangsu, China) after 48h of transfection. Protein lysates were separated by 10% sodium dodecyl sulfate-polyacrylamide gels and then transferred to nitrocellulose membrane (Beyotime, Jiangsu, China). Nitrocellulose membrane with proteins were immunoblotted overnight at 4°C with primary antibodies: anti-PCNA (Proteintech, USA), anti-Wnt7b (Proteintech, USA), β-catenin (Proteintech, USA), Gsk-3β (Proteintech, USA), cyclin D1 (Abcam, USA), C-myc (Wanlei, China). Subsequently, the membranes were incubated in secondary antibodies for 1h at room temperature. Dilutions of all antibodies used in this study were 1:1000. Odyssey Infrared scanning system (Li-Cor, Lincoln, NE, USA) was used to visualize protein bands.



Xenograft Tumor Assay

Athymic nude mice (age, 4–6 weeks; weight, 18–22 g) were obtained from the laboratory animal center of Shanghai and maintained in specific pathogen-free (SPF) conditions. Nude mice were randomly divided into two groups of 4 each. Approximately 1 × 106 MDA-MB-231 cells with stable expression of miR-640 or miR-640-NC were injected into the second mammary fat of the mice. The growth of tumors was monitored every 1 week according to the following formula: Volume (mm3) = 0.5 * width2 * length. After 7 weeks, the mice were sacrificed and the tumors were collected. The animal procedure was approved by the ethics committee of Tongji University.



Immunohistochemistry (IHC)

IHC were performed on formalin-fixed, paraffin-embedded sections of fresh tumor tissue samples from the nude mice. The paraffin-embedded tissue was incubated with anti-Wnt7b antibody (Proteintech, USA) at 1:250 dilution to measure Wnt7b expression overnight at 4°C. Images were captured under a microscope (Leica Microsystems, Mannheim, Germany) at the appropriate magnification.



Statistical Analysis

The significance of differences between groups from three independent experiments was assessed by GraphPad Prism (GraphPad, CA, USA). All data were presented as the means ± standard deviation (SD). The Student’s t-test was used for comparison between groups and P-value < 0.05 was considered statistically significant.




Results


MiR-640 Was Down-Regulated in BC Cell Lines and Tissues

We searched several cancer research databases for characterizing the expression of miR-640, but there is no related report over the expression of miR-640 in BC. Thus, we first assessed the expression of miR-640 by RT-qPCR in 50 pairs of BC tissues and adjacent normal tissues. Our results showed that the expression of miR-640 was significantly downregulated in BC tissues (35/50, 70%) (Figures 1A, B). Additionally, we found the expression of miR-640 was lower in BC cell lines than in MCF-10A, especially in basal-like cohort and luminal cohort (Figure 1C). Then, we performed FISH assay to detected the localization of miR-640 and revealed that miR-640 was mostly stained in cytoplasm of MDA-MB-231 and MCF-7 (Figure 1D). Results of subcellular fractionation further verified the above results (Figures 1E, F). To better verify the role of miR-640 in BC, we analyzed the relationship between the expression of miR-640 and the clinical pathological variables in 50 BC patients. As shown in Table 1, high expression of miR-640 was negatively associated with TNM stage, tumor size and distant metastasis, but had no correlation with age and lymph node metastasis.




Figure 1 |  MiR-640 was down-regulated in BC cell lines and tissues. (A, B) MiR-640 had low expression in BC tissues compared with adjacent normal tissues. (C) MiR-640 had low expression in BC cell lines. (D) Detection of colocalization of miR-640 in cytoplasm by FISH assay (magnification, × 400). Red, miR-640; Blue, DAPI. (E, F) Expression levels of cytoplasmic control transcripts (GAPDH), the nuclear control transcript (U6), and miR-640 were determined by RT-qPCR in the cytoplasmic and nuclear fractions of BC cells. ***p < 0.001; ****p < 0.0001.




Table 1 | The relationship between the expression of miR-640 and various clinicopathological variables.





MiR-640 Suppressed Cell Proliferation of BC Cells

The transfection efficiency of miR-640-mimics and miR-640-inhibitor were verified by RT-qPCR (Figures 2A, B). Then, the MTT assay and colony formation assay revealed that upregulation of miR-640 caused a significant decrease in BC cells viability relative to the control group (Figures 2C, F). Meanwhile, the expression of proliferation marker PCNA was inhibited by miR-640-mimics demonstrated by western blotting (Figures 2G, H). All results above indicated that miR-640 act as an anti-tumor miRNA in BC.




Figure 2 | MiR-640 suppressed cell proliferation of BC cells. (A, B) Expression of miR-640 was confirmed by RT-qPCR in MDA-MB-231 and MCF-7 cells. (C, D) Effect of miR-640 on proliferation in MDA-MB-231 and MCF-7 cells by MTT assay. (E, F) Effect of miR-640 on proliferation in MDA-MB-231 and MCF-7 cells by colony formation assay. (G, H) Effect of miR-640 on proliferation in MDA-MB-231 and MCF-7 cells by western blotting. **p < 0.01; ***p < 0.001; ****p < 0.0001.





MiR-640 Suppressed Cell Migration of BC Cells

The wound healing assay and transwell migration assay were performed to determine whether miR-640 affect BC cells migration. The results showed that the scratched area healing rate of the miR-640-mimics group was smaller compared to miR-640-NC group after 24 hours (Figures 3A, B). Consistently, we found that elevated miR-640 decreased the number of cells that passed through the membranes of transwell chamber in MDA-MB-231cell line via transwell migration assay (Figures 3E, F). The miR-640-inhibitor group showed the opposite results (Figures 3C, D, G, H). These results indicated that miR-640 inhibit the migration of MDA-MB-231 cells.




Figure 3 |  MiR-640 suppressed cell migration of BC cells. (A–D) Wound healing assays were performed in MDA-MB-231 cell line treated with miR-640-mimics or miR-640-inhibitor (miR-NC as negative control). (D–H) Cell migration assays were performed in MDA-MB-231 cell line treated with miR-640-mimics or miR-640-inhibitor (miR-NC as negative control). ***p < 0.001.





Wnt7b Is a Direct Target of miR-640

Wnt7b was predicted have a direct binding site with miR-640 according to Targetscan (Figure 4A). Thus, luciferase reporter assay was performed to verify that Wnt7b is the direct target gene of miR-640. We constructed Wnt7b 3′-UTRs plasmids containing wild-type and mutant-type miR-640 binding sites. Through co-transfection of luciferase reporter plasmids and miR-640-mimics or miR-640-NC, we verified that wild-type Wnt7b 3′-UTR luciferase activity was remarkably decreased upon miR-640-overexpression (Figure 4B). After confirming Wnt7b is a direct target of miR-640, we further validated the effects of miR-640 on Wnt7b. Wnt7b expression in miR-640-overexpression or miR-640-depletion MDA-MB-231 and MCF-7 cells were determined by RT-qPCR. The results showed that the mRNA level of Wnt7b was remarkably downregulated via miR-640-overexpression while upregulated via miR-640-depletion (Figure 4C). Consistently, the results of western blotting indicated that miR-640 overexpression reduced Wnt7b, β-catenin, C-myc, and cyclin D1 protein levels whereas increased Gsk-3β protein level (Figures 4D–F). The miR-640 depletion showed the opposite results. More importantly, miR-640 upregulation inhibited the expression of β-catenin in the nuclear fraction of BC cells (Figures 4G, H). The above results prompted us to explore whether miR-640/Wnt7b suppresses BC cell tumorigenesis via Wnt/β-catenin signaling pathway.




Figure 4 | Wnt7b is a direct target of miR-640. (A) Putative complementary site within miR-640 and Wnt7b predicted by bioinformatics analysis (TargetScan). (B) Luciferase reporter assay demonstrated that Wnt7b is a direct target of miR-640. (C) Wnt7b mRNA level was determined by RT-PCR in MDA-MB-231 and MCF-7 cells with different treatment. (D–F) Representative Western blotting and quantification of Wnt7b, β-catenin, Gsk-3β, Cyclin D1 and C-myc in MDA-MB-231 and MCF-7 cells with different treatment, β-actin was used as a control. (G, H) Representative Western blotting and quantification of β-catenin in nuclear fraction and cytoplasm fraction of BC cells with different treatment, LaminA was used as a control. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. "ns" means not statistically significant and represents P < 0.05.





Depletion of Wnt7b Rescued the Effect of miR-640-Inhibitor on BC Cells

We designed rescue assays to further determine whether miR-640 affects the proliferation and migration of BC cells via Wnt7b. MDA-MB-231 and MCF-7 cells were co-transfected with miR-640-inhibitor and si-Wnt7b. Based on the results in Figure 5, the promotive effect of miR-640-inhibitor on BC cells was partially reversed by Wnt7b silence (Figures 5A–F). Consistently, the effect of miR-640-inhibitor on Wnt7b protein level was also partially reversed by si-Wnt7b (Figures 5G, H). More importantly, expression of β-catenin in the nuclear fraction showed the same changes with Wnt7b (Figures 5G, I).




Figure 5 | Depletion of Wnt7b rescued the effect of miR-640-inhibitor on BC cells. (A–D) Knockdown of Wnt7b partially reversed miR-640-inhibitor-induced promotion of proliferation in MDA-MB-231 and MCF-7 cells determined by MTT assay and colony assay. (E, F) Knockdown of Wnt7b partially reversed miR-640-inhibitor-induced promotion of migration in MDA-MB-231 and MCF-7 cells determined by transwell assay. (G–I) Western blotting analysis for Wnt7b/β-catenin protein level in MDA-MB-231 and MCF-7 cells. **p < 0.01, ***p < 0.001, ****p < 0.0001.





Overexpression of miR-640 Inhibited BC Growth In Vivo

We established the MDA-MB-231 cell xenograft model to verify the effect of miR-640 in BC in vivo. As shown in Figure 6A, MDA-MB-231 cells were stably infected by lentiviral(lv-miR-640 or lv- miR-640-NC). 7 weeks later, tumors from the nude mice were collected and measured. Obviously, tumors in the miR-640-overexpresssion group were significantly smaller than those in miR-640-NC group, indicating that tumor growth was significantly inhibited by the miR-640 (Figures 6B, C). Then proteins were extracted from mice tumors and western blotting results indicated that the protein level of Wnt7b decreased in the miR-640-overexpression group (Figure 6D). Moreover, IHC analysis further elucidated that tumors of miR-640-overexpression had lower Wnt7b expression (Figure 6E). Taking all results in vivo and in vitro together, we confirmed that miR-640/Wnt7b suppresses BC cells tumorigenesis via Wnt/β-catenin signaling pathway. The mechanism was generated in Figure 6F.




Figure 6 | Overexpression of miR-640 inhibited BC growth in vivo. (A) Overexpression of miR-640 in MDA-MB-231 cells was verified by RT-qPCR. (B) Representative images of xenograft tumors in nude mice. (C) The growth curves of xenografts. (D) Extract protein from tumors and measuring the expression of Wnt7b by Western blotting. (E) Immunohistochemistry (IHC) staining of Wnt7b in xenografts. (F) The mechanism diagram was generated to illustrate the mechanism  of miR-640/Wnt7b/Wnt-β-catenin axis in BC. ****p < 0.0001.






Discussion

As a group of small non-coding RNAs, miRNAs play key roles in the gene regulatory network of tumors by binding to the 3’ untranslated region (3’-UTR) of target mRNAs to inhibit gene expression. In recent years, multiple studies have focused on the function and mechanism of miRNAs in BC, so that many miRNAs have been found related to the initiation and progression of BC. Additionally, miRNA−based therapies have already been used as vital strategies in BC (22). In recent years, several studies revealed that miR-640 participate in numerous different biological processes. MiR-640 could promote Kupffer cells inflammation via restraining LRP1 and Wnt signaling pathway, indicating it a potential target for the therapy of acute liver injury in the future (23). MiR-640 participates in the process of sevoflurane-induced abnormal cognition via regulating ZFP91 (24). In addition, miR-640 plays a pivotal role in mediating the proangiogenic effect of H2S (25). However, there is no related reports over the role of miR-640 in the tumorigenesis and progression of BC. This study is the first to show that the expression of miR-640 in BC and the first to report the mechanism and clinical significance of miR-640 in BC.

In the present study, we first investigated the expression of miR-640 in 50-paired clinical BC tissues and adjacent normal tissues, and revealed that miR-640 expression is dramatically downregulated in BC. Of note, high expression of miR-640 was negatively associated with TNM stage, tumor size and distant metastasis of BC. Consistent with its expression pattern, overexpression of miR-640 could remarkably inhibit the proliferation and migration of BC in vitro and in vivo. Based on the expression level and function of miR-640 in BC, we further hypothesized that miR-640 could directly inhibit Wnt7b according to according to prediction from Targetscan.

Wnt7b, an important member of the Wnt proteins family, have been reported highly-expressed in many malignant tumors, including BC (26–28). Wnt7b could activate mTORC1 via PI3K/AKT signaling pathway to promote bone formation (29). Moreover, Wnt7b promotes cancer cell androgen-independent growth by activating protein kinase C isozymes in advanced prostate cancer (26). Of note, Wnt7b have been reported facilitate several cancers tumorigenesis via regulating canonical Wnt/β-catenin signaling (28, 30, 31). To verify whether miR-640 could directly target Wnt7b, luciferase reporter assay was performed. Then, according to the results of RT-qPCR and western blotting, both mRNA and protein level of Wnt7b were negatively regulated by miR-640. Consistently, protein levels of total β-catenin, cyclinD1 and C-myc were negatively regulated by miR-640 while Gsk-3β showed opposite results. More importantly, miR-640 upregulation inhibited the expression of β-catenin in the nuclear fraction, indicating the inhibitory effect of miR-640 on canonical Wnt/β-catenin signaling pathway. Finally, the rescue experiment further verified miR-640 suppresses BC via Wnt7b/β-catenin signaling pathway.

In conclusion, our findings demonstrated that miR-640 is downregulated in BC tissues and cell lines, and is able to suppress BC tumorigenesis in vitro and in vivo through directly targeting Wnt7b and Wnt/β-catenin signaling pathway. Therefore, the miR-640/Wnt7b/β-catenin axis might be novel targets for BC targeted therapy.
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Background

The Glycine N-acyltransferase (GLYAT) gene encodes a protein that catalyzes the transfer of acyl groups from acyl CoA to glycine, resulting in acyl glycine and coenzyme A. Aberrant GLYAT expression is associated with several malignant tumors, but its clinical importance in human breast cancer (BC), has yet to be fully addressed. This study aims to evaluate the clinical function of GLYAT in BC patients.



Methods

GLYAT expression was determined by immune blot and immunohistochemistry in three BC cell lines and primary cancer tissues. The MDA-MB 231 cell line was used for GLYAT gene knockdown experiments while the MCF7 cell line for overexpression experiments. Colony formation experiments, soft agar experiments, and transwell assays were utilized for further inspection of cell proliferation and migration capabilities. Immunofluorescence and western blot were used to detect markers of the epithelial-mesenchymal transition (EMT) and changes in the PI3K/AKT/Snail pathway. The role of GLYAT in tumor growth and metastasis was also assessed in nude mice in vivo. Also, a correlation analysis was performed between clinicopathological features and GLYAT expression in BC patients.



Results

GLYAT was decreased in human BC tissues and cell lines. Functional analysis showed that knockdown of GLYAT augmented BC cell proliferation in vitro and in vivo. However, this phenomenon was reversed when GLYAT was overexpressed in the transfected cells. Moreover, downregulation of GLYAT promoted the migratory properties of BC cells, likely through the activation of PI3K/AKT/Snail signaling, which subsequently induced the EMT. IHC analysis indicated that GLYAT was decreased in human BC tissues and lower GLYAT expression was correlated with histological grade, tumor TNM stage, Ki-67 status, and poorer survival in BC patients. Furthermore, lower GLYAT expression seemed as an independent risk factor related to poor prognosis in BC patients based on Cox regression analyses.



Conclusion

Our findings demonstrate that downregulation of GLYAT expression in human breast cancer is correlated with EMT via the PI3K/AKT/Snail pathway and is also associated with histological grade, tumor TNM stage, Ki-67 status, and poor survival in breast cancer patients.
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Introduction

Breast cancer (BC) amongst women has been on the rise and it is fast becoming the most common malignancy in this population (1). Leading cancer statistics show that the incidence and mortality of breast cancer remain high worldwide (2, 3). Although surgery, chemoradiotherapy, endocrine therapy, and molecular targeted therapy have greatly improved the survival of BC patients, those with advanced BC are often left with very limited therapeutic options (4, 5). Many factors influence the prognosis and probability of responding to systemic therapies (e.g., TNM stage, ER, PR, and HER2 status), but clinically, we have observed that even patients with the same TNM stage, molecular typing, and other diagnostic markers still experience varied prognosis despite being given the same treatment modalities (4). While early diagnosis and initiation of treatment are crucial in improving survival rates of this debilitating disease, there is an urgent need for a deeper understanding of its molecular biology in order to aid in the development of more personalized and targeted treatment.

The EMT involves the dedifferentiation of epithelial cells into mesenchymal cells (6, 7). Cells which have undergone EMT demonstrate more malignant features that promote metastasis, treatment resistance, as well as relapse (8–10). The EMT participates in tumor invasion and metastasis through multiple pathways. Many studies have indicated the EMT is strongly linked to breast cancer development (11–13). The EMT is regulated by multiple factors, among which the primary signaling pathway is the PI3K/AKT pathway (14).

The glycine N-acyltransferase (GLYAT) gene was first discovered in the mitochondria of the bovine liver in 1953 and isolated in the human liver and kidneys in 1976 (15). It contains more than 23,000 base pairs over six exons and is situated chromosome 11 at position 11q12 (16). GLYAT catalyzes acyl group transfer from acyl CoA to glycine, resulting in acyl glycine and coenzyme A (acyl-CoA) (17). Several catabolic and anabolic reactions are catalyzed by acyl-CoA esters (18). Almost all catabolic reactions produce acyl-CoA, the product of which is an important source of oxidative phosphorylation and lipogenesis. Studies have shown that GLYAT expression is suppressed in human hepatocellular carcinomas and may be a critical molecule in the transition between the differentiation and carcinogenesis of liver cells (19). Nevertheless, literature is scarce surrounding GLYAT expression and its impact on human breast cancer.

The current investigation uncovered markedly suppressed GLYAT expression in breast cancer cells and tissues, which correlated with poorer prognosis and highly malignant clinicopathologic features in individuals with breast cancer. Interestingly, the EMT pathway appeared to be inhibited in the presence of GLYAT, working to decrease in vivo and in vitro breast cancer cell migration through alteration of the PI3K/ATK/Snail signaling pathway. In conclusion, our study is the first of its kind to implicate GLYAT to be a breast cancer anti-oncogene. These findings lay the foundation for future research on the biological behavior and targeted therapy of BC.



Materials and Methods


Datasets and GLYAT Expression Analysis

The public data used in this study were obtained from UALCAN dataset (http://ualcan.path.uab.edu/index.html) (20), GEPIA (http://gepia.cancer-pku.cn/index.html) (21), and the Human Protein Atlas dataset (http://www.proteinatlas.org) (22). For UALCAN data, we analyzed the heat map of GLYAT expression between normal and breast cancer samples; For GEPIA data, we scrutinized differently GLYAT expression level and survival data in breast cancer. The relationship between patient survival and GLYAT levels were also analyzed using information available from the Human Protein Atlas data.



Cell Lines

Human BC cell lines MDA-MB-231, MCF-7, and SKRB-3 were supplied by The Stem Cell Bank, Chinese Academy of Sciences (Shanghai, China). Cells were maintained at 37°C in a humidified cubicle containing 5% CO2 and 10% fetal bovine serum (FBS) in DMEM (all from Gibco, Carlsbad, CA, USA).



Plasmid Formation of GLYAT Knockdown and Overexpression in Breast Cancer Cells

The pGPU6/mCherry/Puro-shRNA-GLYAT plasmid was purchased from GenePharma Company (Shanghai, China). The pOGP-T2A-CKNeo-GLYAT overexpression plasmid was purchased from JTS Scientific Company (Wuhan, China). The target sequences of GLYAT were indicated in Supplementary Table 1. Lipofectamine 3000 (Thermo Fisher Scientific, US) was used to transfect plasmids into cells as reported by the manufacturer’s instructions. Cells transfected with GPU6/mCherry/Puro-shNC or pOGP-T2A-CKNeo-NC were used as controls. Transfected cells were screened using 3 ug/mL puromycin or 400 ug/mL G418 for 2 weeks. Stable cells were cultured in complete medium with 0.25 ug/mL puromycin or 100 ug/mL G418 (Beyotime, Nanjing, China). Positive clones were then selected and amplified for further analyses.



Cell Proliferation Assay

For colony forming experiments, six-well plates were used to house stable GLYAT-shRNA and NC cells. The cells were maintained at a concentration of 500 cells/well for 12 days in DMEM supplemented with 10% FBS, with media changed once every three days. Cells were then methanol-fixed and treated with crystal violet (Sigma, St Louis, MO, USA) prior to manual counting and photographing of the visible colonies. For soft agar experiments, Cells are harvested and pipetted well to become single-cell suspension in complete culture media in 1x 106/ml. A mixture of 0.9 ml 4% soft-agar (Sigma) with 4.1 ml pre-warmed 10% FBS DMEM was added into a 60-mm culture dish to make the bottom layer. The top layer contained 3 x 104 cells in 3 ml of 10% FBS DMEM and 0.36% agar. The soft-agar colony dish was marked and placed at a 37°C incubator for 3 weeks. cells were harvested and fully mixed to form a single-cell suspension in media of 1 x 106/ml. The upper layer included 3 x 104 cells, 3 ml of 10% fetal bovine serum, DMEM, combined with 0.36% agar (Sigma), while the bottom layer contained 0.9 ml 4% soft-agar, 4.1 ml pre-heated 10% fetal bovine serum, and DMEM in a 60-mm culture dish. Labeled colony dishes were placed in an incubator at 37°C for 3 weeks. Ten fields of each group were selected and the colony size was measured using Image J software (vision 1.53 National Institutes of Health, USA). All experiments were performed in triplicate and repeated at least three times.



Transwell Migration Assay

Costar chambers containing 8 μm pore inserts were used (Millipore-Sigma, Danvers, MA, USA). The top chamber was used to house suspended cells transfected with GLYAT KD, GLYAT OE, or NC in 200 μl of serum-free medium, while media with 20% FBS was applied to the bottom chamber. The upper chamber was removed after 36 hours of incubation, with the bottom cartridge fixed with methanol and DAPI-stained to determine the migrated number of cells using a microscope to visualize the cells across five randomly selected fields (Olympus, Tokyo, Japan). Cell numbers were quantified manually.



Western Blot Analysis

The proteins in BC cells were first extracted and separated. Skimmed milk (5%) was used to block endogenous reactions. Membranes were left to incubate with antibodies of GLYAT (1:1000, Abcam, Cambridge, MA, USA), E-cadherin, vimentin, N-cadherin, fibronectin (1:1000 dilution respectively, Cell Signaling Technology, Boston, MA, USA), p-AKT Ser473, AKT (1:1000 and 1:5000 dilution, Signalway Antibody, Baltimore, MD, USA), PI3K p58 and SNAI1 (1:10000 and 1:1000 dilution, Proteintech, Rosemont, IL, USA) in agreement with the protocols set by the manufacturer. Anti-β-actin (1:10000 dilution, Proteintech, Rosemont, IL, USA) was used as the internal control. After three rinses with TBS-T for 5 minutes, the membranes were incubated with the corresponding secondary antibody and observed with an ECL Plus kit. The relative levels of individual target proteins to the control were determined by the densitometric analysis using the ImageJ software.



Immunofluorescence Staining

Cells were subjected into 8 well chamber slides (Millipore-Sigma, Danvers, MA, USA) and for 20 hours incubation then rinsed with PBS containing 10% FBS. Pre-cooled methanol was used to fix the cells prior to further incubation with 0.2% Triton. BSA (5%) was used to block cells. The cells were next incubated overnight with primary antibodies E-cadherin, vimentin (1:200 dilution respectively) before being washed and re-incubated with fluorescein-conjugated secondary antibodies (1:500 ZSGB-Bio, Beijing China) for one hour. Then, DAPI and a fluorescence microscope (Olympus, Tokyo, Japan) were used for visualization and intensity analysis. For dewaxed sections, the process was similar like above, and primary antibodies dilution of E-cadherin, vimentin and p-AKT Ser473 were 1:100 respectively.



In Vivo Metastasis Assay

The HFK BIOSCIENCE CO., LTD (Beijing, China) provided 5 weeks old BALB/c (nu/nu) female nude mice (18–20 g). These animals were divided into four cohorts with five mice each. Food and drinking water were provided every day. All mice received subcutaneous injections into their left breast fat pads with 100 microliters of PBS containing 2.0 × 106 MCF7 cells with or without GLYAT OE and MDA-MB-231 cells with or without GLYAT KD. At time of MCF7 cells injection, E2 pellets (60-day release, 1.5 mg/pellet; Innovative Research of America, Sarasota, Florida USA) was implanted subcutaneously at the mammary fat pad. Four days measurements and volume calculation ((mm3) =length × width2/2) of the tumors were performed. The mice were sacrificed and underwent tumor removal after 24 days. The tumors were processed with 4% paraformaldehyde solution for immunofluorescence staining analysis.



Patients and Samples

Two independent breast cancer patient cohorts from the Shengjing Hospital of China Medical University were collected for this investigation. The first cohort consisted of 21 breast cancer patients (seven for Luminal A/B, seven for HER2 positive, and seven for TNBC) and 20 normal controls. Samples from the cancer patients and normal controls were analyzed for GLYAT expression. The second cohort comprised of 310 chemoradiotherapy-naïve breast cancer patients who had distinctive pathological diagnoses and possessed complete follow-up data from 2006 to 2008. Additional follow-up of these patients was carried out until September 2012.



Immunohistochemistry

The dewaxed sections were retrieved with Tris/EDTA (pH9.0) and quenched with 0.3% H2O2. Sections then underwent an overnight incubation with GLYAT primary antibody (1:100, Abcam, Cambridge, MA, USA). PBS was used to rinse the samples prior to repeat incubation with secondary biotinylated antibodies at room temperature for 45 minutes. Coloration was visualized with 3,3 ‘-diaminobenzidine tetrachoric acid (Sigma-Aldrich), Vector hematoxylin QS (Vector Laboratories) was reverse-stained, Zeiss Mirax MidiSlide scanner was analyzed, and image collection was performed with 3 CCD color cameras and Panoramic Audience (3DHISTECH, Budapest Hungary). H-score was calculated as the percentage of positive tumor cells multiplied by the intensity of staining (0, no staining; 1, weak; 2, mild to moderate; 3, strong staining) and the overall H-score ranged from 0 to 300. An H-score of more than 100 was set as cut-off value to define high/low level for GLYAT expression.



Statistical Analysis

Data were analyzed using SPSS version 25.0 (SPSS, Inc., Chicago, IL, USA) and expressed as means ± SD. The Kaplan-Meier method was used to estimate survival curves. Cox regression model was applied to carry out univariate and multivariate statistical analysis. Comparison between two groups was assessed by Chi-square. P value of less than 0.05 was considered statistically significant.




Results


Characterization of GLYAT Expression Profiling in Human BC

The heat map and box plot analysis of the UALCAN and GEPIA dataset showed lower expression of GLYAT protein and mRNA in BC tissues in contrast to healthy samples (Figures 1A, C). However, the expression of GLYAT was not statistically significant change in other cancer types, besides BRCA, LIHC and CHOL (Supplementary Figure 1), which indicated that GLYAT may have specific function in breast cancer. Additionally, analysis of data published in another study in Nature (23) which compared mRNA expression levels of GLYAT in normal breast tissues with invasive ductal and invasive lobular carcinoma revealed that two breast carcinoma subtypes had lower GLYAT mRNA levels (Figure 1B). A Kaplan-Meier analysis from GEPIA dataset and a scatter plot from the Human Protein Atlas dataset suggested that patients with low GLYAT expression in breast cancer tissues had worse overall survival (OS) (Figures 1D, E), further highlighting the suppressive function of GLYAT in BC progression.




Figure 1 | Characterization of GLYAT expression profiling in human breast cancer. (A) Heatmaps showing the clustering patterns of differentially expressed GLYAT between normal and breast cancer specimens. (B) Box plot analysis of the GLYAT mRNA levels in IDBC, ILBC and normal breast tissue samples. (C) Box plot analysis of the GLYAT mRNA levels in BC and NC tissues. T, tumor; N, normal. (D, E) Kaplan-Meier plots of OS in BC patients with different levels of GLYAT. *p < 0.05.





GLYAT Suppresses BC Cell Proliferation and Metastasis

Three typical breast cancer cell lines were scrutinized for GLYAT expression. These cell lines included SK-BR3 (Her-2 positive subtype), MDA-MB-231 (triple negative subtype) and MCF-7 (luminal A subtype). Western blotting showed that the MDA-MB-231 cell line had the highest GLYAT expression, while the MCF-7 cell line had the lowest amount (Figure 2A). Therefore, these two cell lines above were selected for further experiments.




Figure 2 | GLYAT suppresses BC cell proliferation and metastasis. (A) GLYAT protein level was assessed in different BC cell lines. (B) MDA-MB-231 cells were transfected with GLYAT KD plasmid and a scrambled plasmid as control. The suppression of GLYAT in MDA-MB-231 cells was confirmed at the protein level. (C) MCF-7 cells were transfected with GLYAT OE plasmid and a scrambled plasmid as control. The over expression of GLYAT in MCF-7 cells was confirmed at the protein level. (D, E) GLYAT KD in MDA-MB-231 cells significantly increased colony numbers and size compared with the scramble cells. (F) Transwell assay revealed that the migration ability of MDA-MB-231 cells was significantly increased following transfection with GLYAT KD1 and KD2 compared with the scramble control. (G) Transwell assay revealed that the migratory ability was significantly decreased in MCF-7 cells GLYAT OE compared with scramble control. **p < 0.01. Scale bars for (E) are 100μm and 25μm, and for (F, G) are 100μm.



In vitro assays were carried out in MDA-MB-231 cells with GLYAT knockdown (KD) and overexpression (OE) in MCF-7 cells to determine the impact of GLYAT expression on breast cancer behavior (Figures 2B, C). The tablet colony formation and soft agar colony formation experiments revealed that GLYAT KD in MDA-MB-231 cells significantly increased colony numbers and size in contrast to control cell lines (Figures 2D, E). Transwell migration assay revealed artificially altered MDA-MB-231 cells with GLYAT KD also had stronger migratory abilities in contrast to the control cells (Figure 2F). In line with these results, the converse was seen in MCF-7 cells with OE GLYAT (Figure 2G). These results indicate that GLYAT may hinder the proliferative and metastatic abilities of breast cancer cells.



GLYAT Suppresses the EMT Phenotype in BC Cells

Given the prominent role of EMT in tumor spread, we postulated that GLYAT may be involved in the EMT process. In vitro assays were performed in MDA-MB-231 with GLYAT KD and in MCF with GLYAT OE. Both vimentin and E-cadherin were analyzed for their nucleic location via immunofluorescence assays. In GLYAT KD cells, we found an increase in vimentin but a decrease in E-cadherin expression (Figures 3A, B). Western blotting of EMT-related proteins was consistent with the immunofluorescence results, showing a reduction in E-cadherin, but increase in levels of vimentin, N-cadherin, and fibronectin in MDA-MB-231 GLYAT KD cells (Figures 3C–G). On the contrary, MCF-7 GLYAT OE cells demonstrated raised E-cadherin protein expression and lowered vimentin levels (Figures 3H–J). These results suggest that EMT formation could be suppressed by GLYAT.




Figure 3 | GLYAT suppress EMT phenotype in BC cells. (A, B) Immunofluorescence assay showed that E-cadherin expression was decreased and the vimentin expression was increased after the treatment of GLYAT KD. (C–G) Protein levels of E-cadherin was reduced, whereas the levels of Vimentin, N-cadherin, and Fibronectin were increased in MDA-MB-231 cells following GLYAT inhibition. (H–J) Protein levels of E-cadherin was increased whereas the expression of Vimentin was reduced in GLYAT OE MCF-7 cells. *p < 0.05, **p < 0.01. Scale bars are 25μm.





GLYAT Suppresses the EMT of BC Cells via the PI3K/Akt/Snail Pathway

EMT process is highly regulated by the PI3k/Akt/Snail pathway. We therefore hypothesized that GLYAT might suppress breast cancer metastasis by modulation of this pathway. Western blot assays indicated that p-AKT, AKT, PI3K p58, and SNAI1 were significantly activated in cells with GLYAT KD (Figures 4A–E). OE cells on the other hand, demonstrated markedly suppressed levels of p-AKT, AKT, PI3K p58, and SNAI1 in contrast to control cells (Figures 4F–J). Our results indicate the involvement of the PI3K/Akt/Snail signaling pathway in GLYAT-mediated EMT suppression in BC cells.




Figure 4 | GLYAT regulated breast cancer cells EMT progression through PI3K/Akt signaling Pathway. (A–E) Protein levels of p-AKT,AKT, PI3K and SNAI1 were significantly activated in GLYAT KD MDA-MB-231 cells. (F–J) Protein levels of p-AKT,AKT, p-PI3K and SNAI1 were significantly reduced in GLYAT over expressed OE MF-7 cells. *p < 0.05, **p < 0.01, and p < 0.05 was considered to be statistically significant.





GLYAT Suppresses In Vivo BC EMT, Proliferation and Metastasis

In vivo experiments were performed on nude mice that were received subcutaneous injection with either stable MDA-MB-231 GLYAT KD or MCF-7 GLYAT OE cells (Figure 5A). The mice injected with stable GLYAT KD cells developed bigger and heavier tumors (Figures 5B–D). In contrast, the mice injected with stable GLYAT OE MCF-7 cells had markedly smaller and lighter tumors (Figures 5E–G). Then immunofluorescence assays for E-cadherin, vimentin, and p-AKT were performed using serial sections of mouse tumor tissues. These assays revealed that GLYAT silencing in MDA-MB-231 cells significantly decreased E-cadherin levels, but increased vimentin and p-AKT levels (Figure 5H). In contrast, in GLYAT OE MCF-7 cells, E-cadherin was increased, whereas vimentin and p-AKT were decreased (Figure 5I).




Figure 5 | GLYAT suppress breast cancer proliferation, metastasis and EMT in vivo. (A) Schematic diagram of the metastasis model in mice. (B–D) The mice injected with stable GLYAT KD MDA-MB-231 cells had markedly bigger and heavier tumors. (E–G) The mice injected with stable GLYAT OE MCF-7 cells had markedly smaller and lighter tumors. (H) Immunofluorescence assay of serial sections mouse tumor tissues revealed that GLYAT KD MDA-MB-231 cells significantly decreased the expression of E-cadherin whereas increased the expression of Vimentin and p-AKT. (I) Immunofluorescence assay of serial sections mouse tumor tissues revealed that, in GLYAT OE MCF-7 cells, the expression of E-cadherin was increased whereas Vimentin and p-AKT were decreased. (J) The schematic diagram of the role of GLYAT in BC. *p < 0.05, **p < 0.01. Scale bars are 50μm.





Lower GLYAT Expression Is Correlated With Poorer Prognosis and Malignant Clinicopathological Features in Human Breast Cancer Tissues

Immunohistochemical experiments found that breast cancer tissues possessed markedly decreased GLYAT expression in contrast to healthy breast tissue (Figures 6A, B). Additionally, GLYAT expression in BC tissues correlated positively with the degree of pathological differentiation. (Figure 6C). Based on these results, we conclude GLYAT may act as an anti-oncogene in BC.




Figure 6 | GLYAT is less expressed in BC tissues and correlated with worse survival. (A, B) Immunohistochemical staining showed that GLYAT was downregulated in BC tissues compared with NC. (C) Immunohistochemical staining showed that the lower differentiation of the breast cancer, the less expressed of GLYAT in breast cancer tissues. (D) Kaplan-Meier analysis of DFS in BC patients with different levels of GLYAT. (E–H) Kaplan-Meier analysis of DFS in luminal A, luminal B, HER2 positive and triple negative BC patients with different levels of GLYAT. (I–L) Kaplan-Meier analysis for DFS by Ki67, ER, PR, HER2 status in BC patients with different levels of GLYAT. *p < 0.05, **p < 0.01. Scale bars for (A) are 200μm, and for (B) are 50μm and 200μm.



We then studied the correlation between clinicopathological features and GLYAT expression in 310 patients who were recruited for this investigation. Table 1 demonstrates their characteristics. All individuals were women between 29 to 78 years old. No one had a previous history of malignancy and were chemoradiotherapy-naïve. The patients were grouped based on their GLYAT levels-low (n=143) or high (n=167) expression groups. We found GLYAT expression correlated with TNM stage, histological grade, and Ki-67 status (Table 1; all P<0.05). Additionally, we did not uncover any relationship between GLYAT level and menopausal status, age, receptor status (HER2, ER, PR), tumor size, node status, pathologic or molecular subtype (Table 1; all P>0.05). These findings suggest GLYAT is associated with malignant clinicopathological characters of BC.


Table 1 | Correlation between GLYAT expression level and clinicopathological features in patients with breast cancer.



BC patients were analyzed for their GLYAT status and prognosis via Kaplan-Meier survival analysis as well as log-rank tests after being followed up for an average of 61.75 months (range, 9–77 months). We found that those with decreased GLYAT levels experienced poorer disease-free survival (DFS) (Figure 6D; P=0.012). GLYAT expression was a significant indicator of DFS rates in breast cancer patients based on univariate Cox regression analysis, demonstrating a hazard ratio (HR) of 1.565 [P<0.05; 95% confidence interval (CI) 1.098-2.232] (Table 2). Further multivariate analysis revealed that GLYAT expression was significantly related to DFS (HR, 0.145; 95% CI, 0.031-0.690; P=0.015) (Table 2) and represented an independent risk factor of prognosis for BC.


Table 2 | Univariate and multivariate analyses of clinicopathological risk factors for disease-free survival among breast cancer patients.



Patients were then divided into five subgroups based on their molecular subtype, Ki67, ER, PR and HER2 status in order to investigate the effect of GLYAT on prognosis.

In the subgroup analyses by molecular subtype, patients were grouped into triple negative or HER2 positive, Luminal A, or Luminal B subgroup. We found that GLYAT had a negative impact on DFS in all groups, especially in the Luminal A subgroup, where there was a statistically significant difference (P=0.014, Figures 6E–H).

In the subgroup analyses based on Ki67, those with low GLYAT levels were found to have shorter DFS in comparison to those with high GLYAT, regardless of whether they had high or low Ki67. This difference was statistically significant in those with low Ki67 (P=0.014, Figure 6I). Similarly, those with low GLYAT levels also experienced shorter DFS in contrast to those with high GLYAT, irrespective of ER+ or ER- status. There was a significantly statistical difference in those of ER+ status (P=0.011, Figure 6J). The same pattern of findings also applied to subgroup analyses based on PR. We also observed a statistically significant difference in the subgroup of PR+ patients (P=0.011, Figure 6K). Likewise, HER2 status did not change the impact of low GLYAT on shorter DFS, with statistically significant changes observed in both HER+ or HER- status groups (P=0.046 and P=0.045, Figure 6L).




Discussion

Advanced breast cancer is a condition that carries high morbidity and mortality, despite the existence of several diagnostic markers and treatment strategies (24). Therefore, we sought to determine novel molecular components involved in the biology of BC that may be useful in the management of this condition.

A potential candidate is the GLYAT protein, which is involved in glycine conjugation of xenobiotics such as benzoic acid, and plays a role in many anabolic and catabolic reactions (25). In cancerous cells, GLYAT functions as a key metabolite that inhibits glycine uptake or biosynthesis, impairing growth of these cells likely through inhibition of nucleic acid synthesis (26). Previous reports have highlighted the role of this molecule in musculoskeletal growth and development as well as in hepatocellular carcinoma progression (19). Nevertheless, there has been no study on its oncological effect in breast cancer.

Our series of experiments found that human breast cancer cells and tissues contained remarkably suppressed levels of GLYAT. We further uncovered that lower GLYAT level was associated with more malignant clinicopathological characteristics, including higher TNM stage, histological grade, and Ki-67 status. DFS of those with lower GLYAT levels were also shorter. Our findings are consistent with information available in public databases. As breast cancer is related to hormone and has different molecular types, we further divided patients into five separate subgroups based on molecular subtype, Ki67 status, ER status, PR status, and HER2 status to analyze the correlation between GLYAT expression and prognosis of breast cancer. We found that breast cancer patients with low expression levels of GLYAT had poorer DFS regardless of the molecular subtype, Ki67 status, ER status, PR status, and HER2 status. Especially in the Luminal A subgroup, the Ki67 low status subgroup, the ER+ subgroup, the PR+ subgroup, and both the HER+ and HER- subgroups, there was a statistically significant difference (all P<0.05). We postulate that the lack of statistical significance for other subgroups, such as the Ki67 high status subgroup, the ER- subgroup, and the PR- subgroup, can be attributed to small sample sizes or an inadequate follow-up time. However, perhaps more importantly, ER and PR status are intricately linked to breast cancer initiation, development and prognosis. GLYAT may act in combination with ER or PR status to impact breast cancer prognosis. Additional experiments are needed to clarify this question in further research.

We further discovered GLYAT to be an independent prognostic factor for BC. These findings indicated that GLYAT acts as antioncogene and is associated with malignant clinicopathological features that may enhance breast cancer metastasis and progression. Our findings based on DFS alone are suggestive of the potential of this molecule to prognosticate breast cancer. Our findings are consistent with bioinformatics analyses and the data reported by Matsuo M et al., who indicated that GLYAT was suppressed in human hepatocellular carcinomas (19). Given that our study is the first to analyze the correlation between GLYAT and breast cancer, future investigations and follow up investigations regarding OS information (not available in our study due to short follow-up time) are still required.

We further demonstrated that GLYAT regulates breast cancer migration and invasion via EMT modulation. EMT is reduced via alteration of the PI3K/ATK/Snail signaling pathway both in vitro and in vivo. The EMT process participate in cancer metastasis (27). Numerous studies reported that EMT is regulated by several signaling pathways, for example Notch-, Wnt-, PI3K/Akt- and NF-κB-dependent pathways (28–30). Previous studies have confirmed that the EMT enhances tumor cell mobility and invasiveness, thus, contributing to the development of chemotherapy resistance and metastasis (31, 32). Additionally, breast cancer recurrence and prognosis have been reported to be affected strongly by EMT (13). We believe there may be other mechanisms in addition to the PI3K/AKT/Snail pathway by which GLYAT promotes metastasis that need to be further explored. One example by Ren et al. using a Drosophila model demonstrated GLYAT to be a critical modulator of the c-Jun N-terminal kinase (JNK) signaling pathway (33). GLYAT downregulation suppresses JNK-dependent ROS activation, which is a key facilitator of several important biological functions.

Besides the impact on metastasis, the proliferation ability of BC cells was increased after inhibiting GLYAT both in vitro and in vivo, further highlighting the tumor suppressed role of GLYAT. Our research is the only study to illustrate the role of GLYAT in BC patients, revealing that down-regulated GLYAT induces EMT and tumor metastasis via PI3K/AKT/Snail signaling.



Conclusion

Collectively, our data revealed that GLYAT downregulated in human BC cells and tissues, and lower GLYAT expression was related to poor clinical outcomes. GLYAT suppresses BC cell proliferation and migration through EMT induction via the PI3K/AKT/Snail pathway in vitro and in vivo. Our study puts forth GLYAT as a novel biomarker in BC and may also represent a therapeutic target for BC treatment.
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Chromodomain-helicase-DNA-binding protein 4 (CHD4) is an epigenetic regulator identified as an oncogenic element that may provide a novel therapeutic target for the treatment of breast cancer (BC). CHD4—the core component of the nucleosome remodeling and deacetylase (NuRD) complex—may be mutated in patients with this disease. However, information on CHD4 mutants that might allow their use as biomarkers of therapeutic success and prognosis is lacking. The present work examines mutations in CHD4 reported in patients with breast cancer and included in public databases and attempts to identify their roles in its development. The databases revealed 81 point mutations across different types of breast cancer (19 of which also appeared in endometrial, intestinal, nervous system, kidney, and lymphoid organ cancers). 71.6% of the detected mutations were missense mutations, 13.6% were silent, and 6.2% nonsense. Over 50% affected conserved residues of the ATPase motor (ATPase and helicase domains), and domains of unknown function in the C-terminal region. Thirty one mutations were classified in the databases as either ‘deleterious’, ‘probably/possibly damaging’ or as ‘high/medium pathogenic’; another five nonsense and one splice-site variant were predicted to produce potentially harmful truncated proteins. Eight of the 81 mutations were categorized as putative driver mutations and have been found in other cancer types. Some mutations seem to influence ATPase and DNA translocation activities (R1162W), while others may alter protein stability (R877Q/H, R975H) or disrupt DNA binding and protein activity (R572*, X34_splice) suggesting CHD4 function may be affected. In vivo tumorigenecity studies in endometrial cancer have revealed R975H and R1162W as mutations that lead to CHD4 loss-of-function. Our study provides insight into the molecular mechanism whereby CHD4, and some of its mutants could play a role in breast cancer and suggest important implications for the biological comprehension and prognosis of breast cancer, identifying CHD4 as a novel therapeutic target for BC patients.
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Introduction

Breast cancer (BC) is the most common type of cancer worldwide. At least five clinical subtypes have been identified at the molecular level: hormone receptor positive (progesterone receptor and/or estrogen receptor-positive or negative-HR+/−, i.e., luminal A and luminal B), human epidermal growth factor receptor-2 positive (HER2-positive or ERBB2+), basal-like, normal-like, and triple-negative breast cancer (TNBC) (1–3). Hormone receptor positive/HER2 negative (HR+/HER2−) tumors account for 70% of all BC, HER2 positive tumors (HER2+) account for 15-20%, and triple-negative for 15% (4). This classification system helps oncologists prescribe the most appropriate treatment, i.e., endocrine therapy, chemotherapy (alone or combined), and/or HER2-targeted therapy (2, 5, 6). Being able to predict tumor behavior avoids over-treating patients likely to respond well, while those less likely to do so can be given more aggressive treatment (7–10).

Epigenetic factors that mediate reversible changes at the chromatin level may be involved in regulating tumorigenesis, as well as the plasticity and heterogeneity of tumor cells in BC (11–13). Identifying these factors and the signaling pathways they mediate could help reveal candidates for next-generation anti-cancer drugs. One such epigenetic regulator, chromodomain-helicase-DNA-binding protein 4 (CHD4)—a chromatin remodeler that can reposition, eject and replace histones within the nucleosome using energy from the hydrolysis of ATP—may possess oncogenic and treatment resistance-related activities in different cell types. The ATPase subunit of CHD4 (also known as Mi-2β) is the major catalytic component of the nucleosome remodeling and deacetylase (NuRD) complex, also including the histone deacetylases HDAC1 and 2, among other proteins. CHD4/NuRD therefore regulates chromatin accessibility, transcription, chromatin assembly, the response to DNA damage, the maintenance of genome integrity, and progression through the cell cycle; it has also been associated with the formation of metastasis (14–17). In addition, CHD4/NuRD is reported to be involved in lineage commitment in the immune system, the nervous system, and in striated muscle differentiation (18–20). CHD4 has also been implicated in the regulation of transcriptional events involved in oncogenesis and cancer progression through different molecular pathways in several types of cancer. Certainly, it has been implicated in the maintenance of cell stemness in a hepatocellular carcinoma model (21), and its overexpression is associated with poor prognosis in several cancer types, including BC (21–28). Indeed, in the PANCAN study, CHD4 was identified as one of the 12 most important cancer-driving genes involved in chromatin epigenetics (29, 30). Moreover, the large number of somatic mutations in CHD4 seen in different cancer types (carcinomas, gliomas, medulloblastoma, hematopoietic, and lymphoid) in different tissues (gynecological, nervous system, lymphoid organs, intestine, kidney, lung, etc.) (31–38) make this epigenetic regulator worthy of attention.

The present work collates CHD4 mutations in patients with BC as recorded in public databases and attempts to identify their roles in this disease. The literature regarding CHD4 as a prognostic biomarker and potential therapeutic target in BC is also discussed.



Material and Methods

Three databases—the cBioPortal (39), COSMIC (40), and TCGA-BRACA (https://www.cancer.gov/tcga) databases—were searched to identify somatic mutations in CHD4 in patients with BC. These databases provide information on CHD4 mutations in different types of cancer, as well as their potential functional impact (as determined by the Mutation Assessor, Polyphen-2 and SIFT tools). The following keywords were used in searches: somatic mutations (confirmed and/or previously reported), tumor sample, mutant impact (pathogenic and neutral), and mutation type (single mutation, small insertions and deletions, frameshifts and splice variants). Copy number variations and fusions were not taken into account. Additional information, regarding CHD4 as a potential therapeutic target was sought via a PubMed search (articles written in English; keywords: breast cancer, cancer risk, CHD4, CHD4 mutations, and CHD4 breast cancer).



Results


Somatic CHD4 Mutations in Breast Cancer

The database search revealed that 253 BC patients (3%) had somatic mutations, fusion and variation in copy number in the CHD4 gene. In this study, we focus only on the 81 point mutations found in these tumors (Supplementary Table 1). The majority were found in all the checked databases, although a small percentage (<1%) was recorded only in the cBioPortal database. The CHD4 point mutations were found in several types of BC (lobular and ductal carcinoma, invasive, metastatic, neuroendocrine, phyllodes), with different BC clinical classification [see Supplementary Table 1 and Figure 1, (41–54)]. Nineteen of them were also found in endometrial, intestinal, nervous system, kidney, and lymphoid tissue cancers (Supplementary Table 1). These 81 mutations, classified as either single nucleotide polymorphisms (SNPs), small insertions/deletions, frameshifts or splice variants, occurred in different places across the whole gene. Under 5% were small deletions or insertions; <3% involved splicing sites (Table 1). Most of these 81 mutations were missense (71.6%), followed by coding-silent (13.6%) and nonsense (6.2%). Mutations influencing BC phenotypes were observed to affect CHD4 PHD finger 2, the double chromodomain (CHD), both lobes of the ATPase motor (ATPase and helicase domains), and the C-terminal domains of unknown function (DUFs) (Figure 1). Over 50% of these mutations affected the ATPase motor and the C-terminal DUFs (Supplementary Table 1 and Figure 1).




Figure 1 | Overview of CHD4 protein structure and somatic mutations in BC tumors analyzed in this study. (A) Schematic structural representation of CHD4 protein, showing its domains and the locations of the potential damaging point mutations found in BC patients. N-terminal domain, was first characterized through nuclear magnetic resonance (NMR) spectroscopy analysis. This domain is implicated in directing CHD4 to DNA double strand breaks, thus enhancing its chromatin remodeling properties (41). The Plant homeodomains (PHD1/2) are characterized by conserved Cys-His-Cys modules (42). Each PHD has the ability to specifically bind to the amino-terminal tails of histone 3 (H3) of the nucleosomes in an independent and simultaneous way (43). Chromodomains (CHD1/2), are highly conserved domains found in a large array of organisms, from protozoans to mammals. These domains display DNA and nucleosome binding activities (44–45). The ATPase motor, is common to all CHD protein family members and has important roles in nuclear processes, such as transcriptional regulation, chromosomal maintenance and stability, and it is critical for the ATPase/helicase function. Mutations in this domain often lead to severe consequences in patients with developmental syndromes such as Sifrim–Hitz–Weiss (46–47) and in cancer (32, 48–49). Regarding the Domains of unknown functions (DUFs), CHD4 contains two of these domains (DUF1/2) in the C-terminal part of the protein (50). This domain may possess a repressive transcriptional activity, since CHD4 and CHD3 have been described to interact through this region with numerous co-repressors (hunchback, NAB2, RFP among others). (B) Somatic CHD4 mutations in BC patients discussed in this work: (i) Prediction of the functional effect of the CHD4 mutations in the protein activity, according to the following criteria: deleterious (according with SIFT) and probably/possibly damaging (according to polyphen), and/or high/medium (according to mutation assessor); (ii) presence of these mutations in different BC clinical types; (iii) presence of these mutations in other cancers. PR+, progesterone receptor positive; ER+, estrogen receptor positive; PR−, progesterone receptor negative; ER−, estrogen receptor negative; HER2+, human epidermal growth factor receptor-2 positive; HER2−, human epidermal growth factor receptor-negative; Nd, non-available data; hCHD4-human chromodomain-helicase-DNA-binding protein 4. *stop codon.




Table 1 | CHD4 mutations in breast cancer.



Six point mutations detected in BC samples—R572*, R877Q, R877W, P904T, R975H and R1162W—were also frequently detected in endometrial cancers (Supplementary Table 1). R877Q/W and R1162W are located in the ATPase and helicase 2 domain, respectively (Figure 1), involving residues highly conserved both evolutionarily speaking and among closely related gene family members.



Prediction of the Functional Effects of CHD4 Mutations in Breast Cancer

Supplementary Table 1 shows the data extracted from the different databases for the 81 mutations detected, and their classification as either deleterious according to the SIFT tool, probably/possibly damaging according to the Polyphen tool, and/or as high/medium pathogenic according to the Mutation Assessor tool (see Figure 1). According to these classifications a total of 31 mutations were identified as pathogenic, suggesting that these mutations may disrupt the function of the CHD4 protein. (Note: It should be remembered that few functional studies have been undertaken to confirm these predictions). Nineteen of these 31 mutations are located in the ATPase motor subunit. Five further nonsense mutations (R572*, W621*, W1314*, E1645*, and E1809*) not classified by the above tools but known to produce truncated proteins, were also deemed likely harmful. R572* is of particular interest because it has been reported in different cancers of the endometrium and large intestine. However, the bioinformatics tools used did not allow for classification of the following mutations as pathogenic or not: a) the single splice mutation X34_splice, and b) two small in-frame deletions K119del and E139del. These mutations are located in the N-terminal region of CHD4 possibly giving rise to alternative proteins that could also be harmful (see next section).



Putative Driver Mutations of CHD4 in Breast Cancer

A further search of cBioPortal served to identify eight putative driver mutations [see Table 2, (39, 55–57)]. One of these is a splicing type mutation located at residue 34 detected in invasive lobular carcinomas and uterine endometrioid carcinoma. This variant is associated with exon 1 splicing donor disruption (G>A) that could lead to a short truncated protein of 51 aminoacids (transcript ID ENST00000644132.1; protein ID A0A2R8Y539), or to nonsense-mediated decay. Therefore, it is predicted that the mutation impact of X34_splice is loss of CHD4 function. The other two in-frame small deletions K119del and E139del, have been identified in ductal, invasive ductal, and mixed carcinomas; and in other tissues such as central nervous system (see Table 2). No information about possible impacts on protein functionality is available for these mutations. Hence, it could be that these mutations could affect transcription leading to nonsense-mediated decay or to the synthesis of a CHD4 protein with reduced stability or activity.


Table 2 | Putative driver mutations in the CHD4 gene according to cBioPortal.



A further four point mutations (R8777Q/W, R975H, R1162W) are located in the ATPase motor domain. This site plays important roles in chromatin remodeling with impacts on transcriptional regulation, chromosome maintenance and stability, and is therefore critical for ATPase/helicase function. These missense mutations are found in invasive ductal carcinomas and have been identified in other tissues such as endometrium, intestine, and hematopoietic and lymphoid tissues (see Table 2). The last putative driver mutation examined here is a nonsense one (R572*) located in the first chromodomain (CHD1), with a role in DNA and nucleosome binding activities. It is found mainly in invasive ductal cancer but has also been observed in other tissues such as endometrium and large intestine.




Discussion


Somatic Mutations of CHD4 in Breast Cancer

Many somatic mutations of CHD4 have been reported to be associated with different carcinomas, gliomas, medulloblastoma, hematopoietic, and lymphoid carcinomas (31–36, 47). In the last decade, large-scale exome sequencing has revealed a CHD4 gene mutation frequency of 17–20% in different types of endometrial cancers (32, 36), and the gene is also frequently mutated in different types of gynecological cancers (37, 38).

The present results confirm that CHD4 is also mutated in certain types of BC, but at a lower frequency than in other gynecological cancer (<3% of the BC tumors examined showed somatic mutations in CHD4). Some of these mutations may change or promote the loss of CHD4 activity, in some cases driving oncogenic transformation (17, 32, 56) and perhaps leading to specific cancerous phenotypes (driver mutations). Other mutations are considered passenger mutations that confer no growth characteristics but that just happened to be present in the ancestor cancer cell line when it acquired one of its driver mutations (58).

The present work reports on 81 mutations in the CHD4 gene (Supplementary Table 1). Using bioinformatics tools, we identified 36 as potentially harmful (Figure 1) and eight of them as putative drivers of cancer (Table 2). Nineteen of the 36 potentially harmful mutations located in the ATPase/helicase functional domain of CHD4 are highly conserved residues and have been also found in endometrial cancer (32, 56, 59). The eight CHD4 mutations identified here classified as putative drivers mutations (see Table 2) could confer a growth advantage to cells carrying them and have been positively selected during the evolution of breast cancer. These driver point mutations observed in breast cancer patients are located in the first chromodomain (R572*) and mainly in the ATPase motor domain (R877Q/W; R975H, R1162W). According to their location, it is clear that the majority of these putative CHD4 driver mutations in breast cancers negatively affect CHD4-ATPase and/or its remodeling activity (Table 2). It is conceivable that a reduction in overall CHD4 activity in healthy cells contributes to cancer genesis and progression. Further, although less frequent, other identified CHD4 gene frameshift small deletions or splicing mutations (X_34splicing; K119del, and E139del) will similarly affect CHD4 activity.

Effects on the activity of some CHD4 mutations have been examined (i) using Drosophila melanogaster CHD4 homolog dMi-2 as a model (55), (ii) by cryoelectron microscopy to study the structure of Homo sapiens CHD4 engaged with a nucleosome core particle (57), (iii) in functional studies of engineered cancer cells (56), and (iv) using bioinformatics functional annotation tools (SIFT, Polyphen-2, Mutation Assessor). Some CHD4 mutations influence CHD4 ATPase and DNA translocation activity (R1162W, H1196Y, H115R, and L1215P), while others seem to alter the protein’s stability (L912V and C464Y) or disrupt its DNA binding activity (V558F and R572Q). For example, Residue 572 located in the CHD is involved in DNA-binding, and functional studies have shown SNP R572G to be involved in disruption of contact with the tracking DNA strand, reducing DNA binding affinity, thus provoking the loss of full remodeling and ATPase activities (55).

Few functional studies are available to confirm the harmful nature of the 31 somatic mutations predicted and/or the impacts of the eight putative driver mutations reported in this study (see Figure 1 and Table 2). However, the effects of the hot-spot mutations R975H and R1162W have been investigated in endometrial cancer cells (56). These mutations showed no impairment of CHD4–DNA interaction or NuRD complex formation, but did show reduced CHD4 protein stability, mimicking a loss of function leading to the up-regulation of the cancer stem cell marker CD133. This phenotype was then verified by invasive capacity, spheroid formation, and in vivo tumorigenicity studies. Patients with mutant CHD4 also showed overexpression of CD133. The authors concluded that these mutations can promote endometrial tumorigenesis through the TGFβ signaling pathway, and that endometrial cancer might be treated by TGF-beta inhibition. In agreement with these observations, functional analyses indicate that the arginine at position 1162 in the ATPase motif VI forms an arginine finger that interacts with the ATP analog adenylyl imidodiphosphate (AMP-PNP) within the protein itself, and that replacing this residue with glutamine impairs ATP hydrolysis (55, 57), revealing how CHD4 function is perturbed at the molecular level.

The R572*, R877Q/W, P904T, R975H, and R1162W mutations detected in the present BC samples all involve highly conserved residues. These mutations have been identified in endometrial, large intestine, hematopoietic, and lymphoid cancers (Supplementary Table 1). In particular, R877Q/W and R1162W are located in the ATPase domain and in the helicase domain respectively (Figure 1), being strongly conserved residues. When these residues undergo germline or de novo mutation in CHD4, they cause Sifrim–Hitz–Weiss syndrome or neurodevelopmental disease. The same corresponding mutations occurring in SMARCA1, SMARCA4, and SMARCA2 (components of a closely related chromatin remodeling complex known as SWI//SNF) cause Schimke immune-osseous dysplasia, Coffin–Siris syndrome and Nicolaides–Baraitser syndrome (32, 47, 53, 54). These findings strongly support the idea that the somatic mutations in the ATPase/helicase domain of CHD4 are associated with BC. The mechanisms whereby these variants may influence breast tumorigenesis are largely unknown and merit further investigation.

More functional studies are needed to classify CHD4 mutations as driver or passenger mutations and to thus determine whether they contribute to breast cancer genesis. Our results show that missense mutations (76%) predominate, so we suggest that the mutated CHD4 protein itself may contribute to tumor transformation via gain of function or dominant negative mechanisms. Considering the functional data available for some CHD4 mutations (see Table 2), it is possible that these mutations cause changes in the position of some nucleosomes in vivo, thus making regulatory sequences that control gene transcription more or less accessible. This could therefore be the molecular mechanism that contributes to activation of oncogenes or repression of tumor suppressor genes (17, 23), consistent with the control by CHD4 of repression of tumor suppressor genes during DNA damage (16, 38). As the ATPase function of CHD4 is required for this process, more work is needed to elucidate the functional consequences of mutations that lead to reduced ATPase catalytic activity (e.g. R877Q/W, R975H, and R1162W). CHD4 mutations might also affect the whole assembly and activity of the NuRD complex. NuRD combines CHD4 nucleosome remodeling activity with HDAC1/2 histone deacetylase activities, and other proteins are part of this complex (MTAs, MBD2/3, GATAD2A/B, and RBBP4/7). Early work has suggested that remodeling is a pre-requisite for efficient nucleosome deacetylation. Thus, altered CHD4/NuRD assembly and complete activity are likely to have an impact, not only on DNA binding or nucleosome positioning, but also on histone acetylation.

Breast tumor initiation and progression are predominantly driven by acquired genetic alterations, although micro-environmental and epigenetic changes also play an important role in these processes (60). Our analysis suggests that CHD4 mutations are found in different types of breast cancer, concurring alongside mutations in tumor suppressor genes or oncogenes including BRCA2, TP53, ERBB2, PIK3CA, E2F3, ATM, etc. (data not shown), as have been indicated by other authors’ (38). The individual contribution of CHD4 mutations to malignant transformation is, therefore, difficult to assess due to the few functional data available. However, CHD4 mutations found in BC tumors have revealed defects in different structural domains that could give rise to diverse effects such as lower ATPase activity, decreased nucleosome binding, inefficient coupling of ATPase and remodeling activities, and altered nucleosome positioning (e.g. R877Q/W, R975H, R1162W, R572*). This heterogeneity of defects and consequences implies that the presence of CHD4 mutations in breast cancer cells may create different epigenetic frameworks that could affect the progression of breast cancer in interplay with mutations in other genes. The interpretation of all this information may benefit BC patients.



CHD4 in Breast Cancer: Lessons From In Vitro CHD4 Loss of Function Studies

The role of CHD4 in transcriptional gene regulation in both normal and cancer cells has been well documented. As a component of the NuRD complex, CHD4 controls chromatin accessibility and mediates the downregulation of many genes whose products contribute to the DNA damage response, tumor malignancy, and cell cycle control (16, 17, 22, 24, 29–31). An oncogenic role for CHD4 has been defined in initiating and supporting tumor suppressor gene (TSG) silencing in human colorectal cancer (23). Further, there is evidence that, in response to DNA damage, CHD4 can act in a NuRD dependent or independent manner (17). In this context, CHD4 mutations that diminish its function could increase the sensitivity to some treatments and therefore the interpretation of these mutations could benefit patients. Less attention has been paid to the role of CHD4 in breast cancer, and the known implications of CHD4 mutations in this pathological process are scarce. We here review in vitro data arising from loss of function studies in different types of breast cancer cells using CHD4 knockdown models (Figure 2). These studies are relevant to understand the role of CHD4 in different types of breast cancer, and help interpret CHD4 mutations in breast cancer. There are different molecular mechanisms by which CHD4 interacts with different factors to promote cancer development according to the cell context (see Figure 2). In BC cells, several authors have described that: (i) through transcriptional mechanisms, CHD4 regulates downstream pathways essential for cellular proliferation, migration, invasiveness, differentiation, and autophagy (25–28, 61–64). Further, CHD4 has been identified as an oncogene involved in epigenetic suppression of multiple tumor suppressor genes via modulation of promoter activity (25–27) (Figures 2A, B); (ii) CHD4 maintains genome stability in BC cells through non-transcriptional mechanisms and cell proliferation (Figure 2C).




Figure 2 | Cellular mechanisms of actions of CHD4-knock down in different BC models. (A) CHD4-KD in TNBC cells. Left; MDA-MB-231/468 and HS578T BC cells. Luo et al. (26) reported the E-cadherin transcriptional repression by HDAC/NuRD-dependent deacetylation of its promoter. Knockdown of CHD4 induced hyperacetylation of E-Cadherin promoter, E-cadherin protein accumulation and the subsequent Reduction in migration and invasiveness. Middle; 4T-1 BC cells. Ou-Yang et al, 2019 (27) showed that CHD4 transcriptionally regulates β1-integrin expression to regulate BC cell proliferation. Furthermore, CHD4-KD in these cells produces β1-integrin downregulation and reduced cell proliferation. Right; MDA-MB-231 and HS578T BC cells. Hou et al., 2017 (25) described HDAC1 recruitment to CDK1A (p21) promoter and repression of p21. CHD4-KD in this case induced accumulation of p21 and G0/G1 arrest. (B) CHD4-KD in MCF10DCI.com BC cell line. D’Alesio et al. (61) reported the effect of the CHD4 silencing in these cells. They found that the down-modulation of CHD4 induced a G0/G1 cell cycle arrest due to a p53-independent p21 accumulation and downregulation of Cyclins A2, B1, and E2, with the subsequent reduction in cell proliferation and mouse-xenograft tumor growth. (C) CHD4 in ERBB2+ BC cells. D’Alesio et al. (62) reported the effect of the CHD4-KD in two ERBB2+ BC cell lines (SKBR-3 and BT474). In these cells, CHD4 regulated both ERBB2 signaling and autophagy. CHD4 silencing in these cells resulted in ERBB2 Tyr1248 phosphorylation, ERK1/2 and AKT dephosphorylation, and downregulation of both ERBB2 and PI3K protein levels. CHD4 KD also late stages of autophagy, with increased levels of p62, LC3II/I ratio and lysosomal enlargement and an accumulation of autolysomes, everything resulting in reduced tumor proliferation. (D) CHD4 mediates HIF activation in BC during hypoxia. Upon hypoxia (28), CHD4 recruits HIF1/2a to the Hypoxia Response Elements (HRE), together with p300, thus stimulating the transcription of a subset of HIF target genes, such as LOX, ANGPTL4, and VEGFA, promoting tumor progression (left). CHD4 silencing would inhibit this tumor growth (right).



In triple negative breast cancer cells (TNBCs), CHD4 regulates β1 integrin, E-cadherin, and p21 expression to control cell migration, invasiveness, and proliferation through different mechanisms (25–27) (Figure 2A). Data from CHD4-KD studies in human TNBC cells (MDA-MB-231, Hs578T, MDA-MB-468), have shown diminished β1 integrin expression at the level of protein and mRNA, suggesting that CHD4 works as an upstream mediator. Thus, an important role was described for CHD4 as a mediator in epithelial–mesenchymal transition (EMT), as vimentin, ß-catenin, and Snail expression were also reduced in these human TNBC cells (27). Using next-generation sequencing and bioinformatics techniques, these authors were able to confirm that CHD4 regulates β1 integrin in TNBC cells, indicating that the CHD4–β1 integrin axis might serve as a predictive marker of prognosis in patients with this disease (27). These in vitro findings were confirmed in vivo since co-expression of β1 integrin and CHD4 was directly linked to the appearance of metastasis and disease recurrence in TNBC patients (27).

The role of CHD4 in the malignant behavior of TNBC (MDA-MB-231, Hs578T, MDA-MB-468) and non-TNBC (H184B5F5) cell lines was examined by Luo et al. (26). These authors reported that high levels of CHD4 correlate positively with cell motility and mortality and that CHD4 mediates epithelial–mesenchymal transition (EMT) through E-cadherin, N-cadherin, and fibronectin expression. At the molecular level, CHD4 silencing promotes the up-regulation of E-cadherin through the hyperacetylation of histone H3 at the E-cadherin promoter, reducing migration and invasiveness (Figure 2A).

It has also been reported that CHD4 deficiency impairs cell survival by increasing the expression of p21 in BRCA-proficient BC cell lines (MDA-MB-231, Hs578T cells), i.e., models of TNBC (25) (Figure 2A). The authors indicate that CHD4 deficiency impairs the recruitment of histone deacetylase 1 (HDAC1) to the p21 promoter, inducing its transcription, CHD4 KD increased the sensitivity of these cells to cisplatin. The knockdown of p21 in these CHD4-depleted cells therefore overcomes cisplatin resistance and poly-(ADP-ribose) polymerase (PARP) inhibitor-mediated growth suppression (25).

In human TNBC (BT-549) cells, it was recently shown that the MUC1-C-dependent activation of CHD4, as part of the NURD complex, drives the differentiation of cells from luminal to basal (64). In this case, the oncogenic mucin 1 C-terminal subunit (MUC1-C) was reported to bind directly to the MYC HLH-LZ domain that, in turn, positively regulates the transcriptional expression of some NuRD complex components, such as MTA1 and MBD3. In contrast, MUC1-C/MYC does not affect CHD4 mRNA levels but increases its protein expression at the post-transcriptional level in basal but not luminal BC cells.

In addition to transcriptional regulation, emerging data indicate that CHD4 also plays important roles in other processes that ensure proper DNA replication, cellular integrity, proliferation and genome integrity. Therefore, non-transcriptional mechanisms by which CHD4 maintains genome stability are also being described in BC cells (63). Using genome-wide shRNA screening in BRCA2 ovarian (PEO1) and BC cells (HCC1937, SUM1315MO2, both BRCA1 mutant), it was found that the loss of CHD4 alters the response to cisplatin (63). At the molecular level, the same authors demonstrated that CHD4 depletion enhances PCNA monoubiquitilation only in the ovary BRCA2 mutant cells. Further, CHD4 depletion was found to enhance γH2AX foci and reduce the proliferation of BRCA1 BC cells (HCC1937, SUM1315MO2).

The construction of epigenetic libraries via in vitro and in vivo shRNA screening in human BC cells (MCF10DCIS.com line) recently identified CHD4 as an essential regulator of BC growth (61) (Figure 2B). Moreover, in vitro CHD4 depletion in TNBC (one of the most aggressive BC subtypes) was reported to significantly reduce cell proliferation and migration, and dramatically reduce tumor mass in vivo (61). The same was also seen in luminal B and triple negative PDX models, as well as in a transgenic mouse model (MMTV/NeuT), all of which expressed an activated rat ERBB2 ortholog (61). These authors suggested that the pharmacological inhibition of CHD4 might improve the treatment of TNBC and could also overcome resistance to approved drugs in the case of HER2+ breast cancers. In addition to its involvement in chromatin assembly, CHD4 seems to regulate BC cell cycle progression, and its silencing leads to the accumulation of cells in the G0 phase, a dramatic reduction of DNA synthesis, and an up-regulation of the tumor suppressor p21, independent of p53 (61). In fact, the depletion of CHD4 in the human mammary epithelial cell line MCF10A abrogated its tumorigenic potential without affecting cell proliferation and migration. This strongly suggests that CHD4 could be targeted to impair BC progression (61).

How CHD4 might promote the progression of BC is still a matter of debate. Work with HER2+ BC cell lines, SKBR-3 (ER-, PR-) and BT474 (ER+, PR+) has shown that CHD4 depletion leads to a significant inhibition of cell proliferation, inducing p27KIP1 up-regulation, Tyr1248 HER2 phosphorylation, ERK1/2 and AKT dephosphorylation, as well as the downregulation of both HER2 and PI3K (62) (Figure 2C). It is speculated that CHD4 depletion might have an inhibitory effect on the downstream ERBB2 signaling cascade, due to a post-translational mechanism. In addition, CHD4 silencing was reported to impair the late stages of autophagy, resulting in increased levels of LC3 II and SQSTM1/p62 proteins, lysosomal enlargement and the accumulation of autolysosomes. It has been suggested that CHD4, as part of NuRD, regulates at the transcription level molecules related to autophagy through the mTOR pathway (65). Of clinical interest, there is evidence that CHD4 depletion and the presence of trastuzumab also prevents cell proliferation. The authors of the latter study suggest that CHD4 plays a critical role in modulating cell proliferation, the HER2 signaling cascade, and autophagy, allowing speculation that CHD4 could be a target as part of treatment for HER2+ BC.

In hypoxic breast cancer cells, CHD4 physically interacts with hypoxia-inducible factors (HIFs), promoting the progression of BC (Figure 2D). In this study, Wang et al. (28), using in vitro BC cells (MDA-MB-231 and T47D), described that CHD4 physically interacts with both HIF1 and HIF2 under conditions of hypoxia. CHD4 enhances HIF transcriptional activity independent of its helicase activity and the NuRD complex: it requires mutual binding of CHD4 and HIF to target genes, recruiting RNA Pol II to HIF target genes through p300. Loss-of-function studies of two independent CHD4-knockdowns (CHD4-KD), revealed significantly decreased HIF transcriptional activity in hypoxia in MDA MB-231 cells, compared with sh-Scramble. Under hypoxia in these cells, CHD4 enhances the expression of a subset of HIF downstream target genes related to angiogenesis (e.g. VEGFA), response to hypoxia, extracellular matrix organization, collagen catabolic processes, apoptosis, and cell proliferation. In addition, functional studies in MDA MB-231 cells have also shown that CHD4 KD decreases colony growth and cell invasion under conditions of both normoxia and hypoxia. These authors also examined the role of CHD4 in tumor growth in an orthotopic breast cancer xenograft mouse model. Breast tumor growth was significantly attenuated in NSG mice bearing CHD4-KD MDA MB-231 cell xenografts. In summary, CHD4 enriched at the chromatin regions near hypoxia response elements (HREs) induces a subset of HIF target genes in breast cancer cells in a setting of hypoxia and xenograft tumor. CHD4 may promote the progression of BC as a coactivator of hypoxia-inducible factors (28).

Further research is needed to determine whether CHD4 is involved in any other pathways that might prevent or promote BC. The CHD4-KD studies discussed here highlight the importance of identifying mutations in CHD4 responsible for CHD4 depletion. This knowledge will help us address how CHD4 mediates the chemotherapeutic response, and thus identify which patients with breast cancer are more likely to benefit from the different treatments. In the absence of studies directly examining the role of CHD4 mutations in BC, indirect data from endometrial cancer suggest that the hot spot mutations R975H and R1162W disrupt protein function, promoting the loss of CHD4 in endometrial cancer cells, which induces a cancer stem cell phenotype to promote cancer progression. Hence, these and other loss of function mutations could have the same impact in BC.



Clinical Relevance of CHD4 Expression and CHD4 Mutations in Breast Cancer

The clinical relevance of the role of CHD4 in BC has been confirmed by the different authors using in vivo patient data from various breast cancer databases. Here we assess whether CHD4 expression level is a marker of poor prognosis, and if depletion of CHD4 could impact the therapeutical approach used in breast cancer. The clinical data available are summarized in Table 3 and discussed below.


Table 3 | Summary of studies describing the clinical relevance of CHD4 expression as a biomarker of prognosis in different breast cancer patients.



In vivo data clearly indicate that high CHD4 expression is a biomarker of poor prognosis in different BC types, especially the more aggressive ones such as TNBC (see Table 3). The clinical relevance of CHD4 and its function in p21 regulation in breast cancer have been analyzed using patient tissues and a bioinformatics approach. This study has shown inverse correlation between CHD4 and p21 expression, suggesting CHD4 may be a useful target in the treatment of BRCA-proficient BC (25). Some authors showed that overall survival was higher in patients with low co-expression levels of CHD4 and β1 integrin (51 patients, 27). In this latter study, IPA analysis identified 10 proteins involved in CHD4-mediated β1 integrin: Snail1 and 2, Notch-1, SMARCA4, JUN, VCAM1, BRD4, CD4, IL4, and MYC. This suggests that some of these proteins could bind to CHD4 silencing several tumor suppressor genes and regulating oncogenic functions. These findings suggest that β1 integrin inhibitors might be of benefit to patients with TNBC who show high CHD4 expression levels (27).

Wang et al. (28) observed CHD4 mRNA up-regulation in the BC subtypes luminal A, luminal B, HER2+ and basal-like. Remarkably, CHD4 up-regulation was mutually exclusive to other known HIF coactivators. Conclusions were that CHD4 coactivates HIF to promote breast tumor growth, and that different mRNAs were also up-regulated in human breast tumors (ZMYND8, KDM4C (JMJD2C), CDK8, CREBBP (CBP), KAT), suggesting the heterogeneity of epigenetic regulation of HIF in breast cancer. As summarized in Table 3, Kaplan–Meier analysis of the TCGA dataset revealed positive correlation between high CHD4 mRNA levels and the poor overall survival of patients with breast cancer. These authors suggested that CHD4 is up-regulated and positively associated with HIF target genes in human BC, and that CHD4 is an independent risk factor for women with BC.

Luo et al. (26), through IHC staining of biopsy specimens from 60 TNBC patients, observed significant correlation between high CHD4 expression and metastatic stage, tumor recurrence, and survival status in these patients. Kaplan–Meier survival analysis revealed that patients with high CHD4 expression showed significantly shorter survival compared with patients with low CHD4 expression. In addition, a multivariate Cox regression model for CHD4 protein expression level and various clinical parameters also identified CHD4 expression as a significant predictor of overall survival. These authors suggest that CHD4 could be a prognostic biomarker in TNBC.

In vitro experiments have recently suggested that CHD4 depletion may be a therapeutic target in different types of BC, as it could lead to reduced tumor proliferation, migration, invasiveness, and growth (27, 28, 61–64) (Figure 2). Thus, CHD4 status could determine the response of BC patients to current treatments, and pharmacological inhibition or targeting of CHD4 expression could improve the clinical outcome in breast cancer patients according to breast cancer type. Thus, some authors have suggested that CHD4 depletion (via low CHD4 mRNA expression) might modulate the response to cisplatin in ovarian and BRCA2 breast cancers (63). Pharmacological inhibition of CHD4 may improve treatment in TNBC (61). Further, CHD4 depletion could increase sensitivity to trastuzumab treatment of HER2+ breast cancer cells (62), and CHD4 silencing improves sensitivity to cisplatin and PARP1 inhibitor in TNBC cells (25, 26). These data are promising as approximately 15% of BC patients have TNBC, in which neither estrogen/progesterone receptors nor HER2 expression can be detected, and these patients cannot benefit from currently available receptor-targeted systemic therapies. Systemic treatment for patients with triple negative disease is currently limited to chemotherapy, and their survival is poor compared to patients with other cancer subtypes.

For the CHD4 mutations described here, no sensitivity or resistance data are available for the current pharmacological BC treatments. For the majority of mutations, available data are scarce or inconclusive such that more functional studies are required. We could, nevertheless, speculate that HER2-positive patients carrying R975H (found in HER2+ BC) will be good candidates for HER2-targeted therapy and could have a favorable outcome because of sensitivity to current pharmacological treatments such as trastuzumab. Clinically, the presence of CHD4 mutations in breast cancer cells creates different epigenetic settings that could impact the progression of breast cancer and modify the response to current therapies. Further, some CHD4 mutations have been shown to diminish their function, which indicates that interpretation of this information may provide benefit for patients. Compelling evidence indicates that CHD4 is a biomarker of drug sensitivity in cancer cells and that pharmacological inhibition of CHD4 expression could improve clinical outcome in breast cancer patients.

Some of our results warrant further investigation. Particularly, the frequency and functional and clinical implications of putative driver mutations and those classified as pathogenic need to be investigated in large cohorts. These results, nevertheless, anticipate important implications of CHD4 for the biological comprehension and prognosis of breast cancer, and point to this gene as a novel therapeutic target for BC patients.



Summary

The present work shows that somatic mutations in CHD4 occur at low frequency in BC compared to other gynecological cancers. A total of 81 point mutations in CHD4 were identified in patients with BC, 19 of which also appeared associated with other cancers. Many of these mutations are located in highly conserved residues of the CHD4 ATPase motor subunit. Some mutations (e.g., R1162W) influence ATPase activity and DNA translocation activity, while others seem to modify protein stability (R877Q/H, R975H) or disrupt DNA binding (R572*, X34_splice). According to data from in vitro and in vivo studies, some CHD4 mutations could play a role in breast cancer and confer sensitivity to current pharmacological BC treatments. Low CHD4 expression may promote either resistance or sensitivity to therapeutic agents [cisplatin, poly-ADP-ribose polymerase (ARP) inhibitor, or trastuzumab] via different molecular pathways according to the type of BC in question. However, data on CHD4 mutations are scarce, and the functional importance of many of the mutations discussed here requires further investigation.
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Background

Accurate prediction of recurrence is crucial for personalized treatment in breast cancer, and whether the radiomics features of ultrasound (US) could be used to predict recurrence of breast cancer is still uncertain. Here, we developed a radiomics signature based on preoperative US to predict disease-free survival (DFS) in patients with invasive breast cancer and assess its additional value to the clinicopathological predictors for individualized DFS prediction.



Methods

We identified 620 patients with invasive breast cancer and randomly divided them into the training (n = 372) and validation (n = 248) cohorts. A radiomics signature was constructed using least absolute shrinkage and selection operator (LASSO) Cox regression in the training cohort and validated in the validation cohort. Univariate and multivariate Cox proportional hazards model and Kaplan–Meier survival analysis were used to determine the association of the radiomics signature and clinicopathological variables with DFS. To evaluate the additional value of the radiomics signature for DFS prediction, a radiomics nomogram combining the radiomics signature and clinicopathological predictors was constructed and assessed in terms of discrimination, calibration, reclassification, and clinical usefulness.



Results

The radiomics signature was significantly associated with DFS, independent of the clinicopathological predictors. The radiomics nomogram performed better than the clinicopathological nomogram (C-index, 0.796 vs. 0.761) and provided better calibration and positive net reclassification improvement (0.147, P = 0.035) in the validation cohort. Decision curve analysis also demonstrated that the radiomics nomogram was clinically useful.



Conclusion

US radiomics signature is a potential imaging biomarker for risk stratification of DFS in invasive breast cancer, and US-based radiomics nomogram improved accuracy of DFS prediction.





Keywords: breast cancer, radiomics, ultrasound, disease-free survival, nomogram



Introduction

Recurrence remains the principal cause of breast cancer-related death, which seriously endanger the health of women (1, 2). More intensive therapy seems to improve prognosis for patients at high risk of recurrence (3). For predicting breast cancer recurrence, many prognostic models have been developed based on the clinicopathological factors like tumor size, nodal status, and Ki-67 expression, but the performance of most models declined for some independent populations (4). Gene tests have been reported to predict patient outcome (5), but they are difficult to be widely used in clinically due to the high price and complex operation. More convenient and appropriate methods to enhance recurrence prediction for breast cancer is the need of the hour.

Radiomics holds promise in predicting breast cancer recurrence due to its high-dimensional features extracted from medical images (6), which are not only related to the multigene assay recurrence scores of breast cancer but also associated to the recurrence survival (7–9). However, most previous studies about radiomics and breast cancer survival conducted thus far were based on magnetic resonance imaging (MRI). Ultrasound (US) is a safe, inexpensive, and widely available modality. US radiomics features could distinguish benign breast tumors from malignant tumors, could predict axillary lymph node metastasis, and could assist clinicians with accurate prognosis prediction in breast cancer (10–12). Therefore, whether US radiomics features could be used to predict breast cancer recurrence is merits further investigation.

Considering the above findings, a multiple-feature-based radiomics signature extracted from preoperative US images was developed for predicting disease-free survival (DFS) of invasive breast cancer in our study and its additional value added to the clinicopathological predictor was further assessed.



Materials and Methods


Patients

This study has obtained the ethical approval from the institutional review board, the informed patient consent was waived due to the nature of retrospective analysis. From February 2014 to November 2016, 812 consecutive women of breast cancer were identified. The inclusion criteria included: (1) patients with complete clinicopathological data and follow-up information; (2) primary unilateral invasive breast cancer confirmed by histopathology; (3) US examination performed within 2 weeks preoperatively (4); patients with no anticancer therapy before US examination; and (5) patients without history of breast cancer and/or other malignancy. The exclusion criteria included: (1) patients who received preoperative neoadjuvant chemotherapy; (2) patients presenting with metastatic disease; (3) insufficient quality of images and/or only partial tumor included in the images; and (4) patients lost to follow up. Finally, we enrolled 620 patients (mean age: 49.62 years, range: 27–87 years) (Figure S1) and divided them into the training cohort (n = 372) and validation cohort (n=248) randomly.



Clinicopathological Data

Medical records were reviewed to acquire the clinical and pathological data, including: age; status of menopausal; history of risk factors for breast cancer (including family history of breast cancer and/or benign breast disease history); surgery type and adjuvant treatment (radiotherapy, chemotherapy, endocrine therapy, targeted therapy); pathologic tumor size; histologic type; TNM stage; T stage; N stage; lymphovascular invasion (LVI); invasion of nerves; associated ductal carcinoma in situ (DCIS); and status of estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), and Ki-67, which were assessed by immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH). ER/PR was defined as positive if nuclear staining was present in ≥1% cells (13). The HER2 status was scored as 0, 1+, 2+, or 3+. Scores 0 and 1+ were defined as negative, and score 3+ as positive. Score 2+ was considered indeterminate and was further confirmed with FISH (14). According to results of IHC and FISH, tumors were categorized into the following four subtypes: luminal A, luminal B, HER2-enriched and triple-negative (15). The targeted therapy was anti-HER2 therapy using trastuzumab. The American Joint Committee on Cancer TNM Staging Manual, 7th edition (16), was used for tumor stage.



Follow-Up

DFS was considered as the end point of the present study, which was defined as the interval time between the surgery and recurrence or breast cancer-related death, whichever came first. Recurrence means locoregional recurrence, distant metastasis, or contralateral breast cancer (17). Physical examination, histopathology, and imaging modalities such as US, computed tomography, MRI were used to demonstrated the recurrence. At the last follow-up, patients without an event and/or died of non-breast cancer related events were censored; two patients died from cardiovascular disease in this study.



Imaging Acquisition, Radiomics Analysis and Radiomics Signature Construction

Figure S2 shows the radiomics workflow. US images were collected in different machines (Table S1) and exported from the data system of our hospital. Radiologist 1 (6 years’ experience) selected one greyscale image with the largest cross-section for every breast tumor, and drew a single region-of-interest (ROI) along the tumor margin by Photoshop software (Figure S3). Then, the ROIs were validated by radiologist 2 (10 years’ experience). The radiologists did not know the results of pathology. For multifocal (MF) or multicentric (MC) disease (18), we chose the largest tumor to analysis. After the ROIs were defined, radiomics features which could be divided into four categories, including first-order statistics features, two-dimensional (2D) shape-based features, texture features, and wavelet features, were extracted using the “PyRadiomics” package in Python software (19). Then, a two-step feature selection method which comprised by Sperman correlation coefficients and Ward linkage method, and least absolute shrinkage and selection operator (LASSO) Cox method were performed (20, 21). Finally, a radiomics signature was constructed, and a radiomics score (Rad-score) was calculated at the same time. In the supplementary materials, there are more details.

The intra-observer agreement of feature extraction was evaluated by inter-class correlation coefficient (ICC). We randomly selected 95 patients and redrew ROIs by radiologist 1 one month later after the first ROI segmentation. An ICC >0.75 indicated a good reproducibility.



Validation of Radiomics Signature

In order to assess the association of the radiomics signature with DFS, patients were divided into a high risk and a low risk groups using the cutoff of the Rad-score identified by X-tile (22). We performed Kaplan–Meier survival analysis to analyze DFS between these two groups and the differences of survival curves were determined by Log-rank tests. We also assessed the association of the single selected feature with DFS by the same way. Then, distribution of Rad-score and DFS along with the selected features’ expression were assessed. Stratified analyses were performed using subgroups within the molecular subtype and categorical clinicopathological variables.

The univariate Cox proportional hazards model was used to analyze the effects of the clinicopathological variables and radiomics signature on DFS. Then, the most useful predictors were selected using multivariate Cox proportional hazards model by including clinicopathological variables in a step-wise (forward and backward) manner based on the Bayesian information criterion (BIC). Finally, the radiomics signature was integrated into a multivariable Cox proportional hazards model to evaluate its performance in DFS prediction.

All the above analyses were first performed in the training cohort, and then validated in the validation cohort, except for the stratified analyses which were performed in the whole cohort.



The Additional Value of Radiomics Signature for DFS Prediction

In order to evaluate the additional value of the radiomics signature for DFS prediction, a radiomics nomogram containing the radiomics signature and clinicopathological predictors was constructed and compared with a clinicopathological nomogram containing only the clinicopathological predictors. The performance of the nomogram was assessed in the following four aspects: (1) discrimination, it was evaluated by Harrell’s concordance index (C-index) (23); (2) calibration curves, they were generated to compare the predicted vs. actual survival; (3) reclassification, the improvement of usefulness added by the radiomics signature was quantified by net reclassification improvement (NRI) (24); (4) clinical usefulness, it was determined by decision curve analysis (DCA) (25). In addition, the goodness-of-fit of all the models were assessed by the likelihood ratio test and BIC.



Subgroup Analyses Based on Ultrasound Machines

To investigate whether different sonographic platforms affect the performance of radiomics signature for DFS prediction, we repeated Kaplan–Meier survival analysis in patients examined at GE healthcare and Mindray US systems, which were the most frequently used machines in this study.



Statistical Analysis

Python software (Python Language Reference, version 3.6.9. Available at http://www.python.org) and R statistical software (version 4.0.0; R Foundation for Statistical Computing, Vienna, Austria) were used for all the statistical analyses. Chi-squared or Fisher’s exact test and Mann–Whitney U test were used to assess differences in distributions for categorical variables and continuous variables, respectively. The “lifelines” package was used for Kaplan–Meier survival analysis, log-rank test, and Cox regression. The “rms” package was used for the nomogram construction and calibration. NRI was calculated by “survIDINRI” package. The “rmda” package was used for DCA. A bilateral P value < 0.05 was considered significant.




Results


DFS and Clinicopathological Characteristics

The median period of follow-up was 48.99 (interquartile range [IQR], 44.42–62.98) months. Events occurred in 80 patients (80/620, 12.90%), including: 40 distant metastases; 17 locoregional recurrences; 12 locoregional recurrences and distant metastases; seven contralateral breast cancer (six invasive breast cancer and one DCIS); and four breast cancer-related death. The median DFS was 22.29 (IQR, 14.52–33.84) months. The comparison of the clinicopathological characteristics in the training and validation cohorts showed no significantly differences (Table 1).


Table 1 | Characteristics of patients in the training and validation cohorts.






The Radiomics Signature Construction and Validation

The mean ICC based on twice feature extraction was 0.824 (range, 0.798–0.999), which means the high intra-observer agreement for the radiomics feature extraction. Thence, all findings were based on the first feature extraction.

Totally, 14 features were selected from 1209 features to build radiomics signature in the training cohort (Table S2 and Figure S4) and only one of them could distinguish patients with different prognoses (Figures S5, S6). The radiomics signature showed moderate performance on DFS estimation both in the training (C-index, 0.714; 95% confidence interval [CI], 0.63–0.80) and validation (C-index, 0.632; 95% CI, 0.52–0.74) cohorts. Based on the cutoff (1.816) of Rad-score (Figure S7), patients with higher Rad-score (≥1.816) were divided into the high-risk group, whereas patients with lower Rad-score (<1.816) were divided into the low-risk group, and their characteristics are shown in Table 2.


Table 2 | Characteristics of patients according to the risk group based on radiomics signature in the training and validation cohorts.




The Rad-score prognostic accuracy determined by time-dependent receiver operator characteristics (ROC) curves and Kaplan–Meier survival curves are shown in Figure 1. The radiomics signature was significantly associated with DFS in the training (P < 0.0001) and validation (P = 0.003) cohorts. The 5-year DFS of the high- and low-risk groups were 61.27% and 90.10% in the training cohort and 76.60 and 87.07% in the validation cohort, respectively. The distribution of the Rad-score and DFS are shown in Figures S8–S9, patients with higher Rad-score were more likely to experience events.




Figure 1 | Radiomics score measured by time-dependent ROC curves and Kaplan–Meier survival curves in the training and validation cohorts. We used AUCs at 1, 3, and 5 years to assess prognostic accuracy in the training (A) and validation (B) cohorts. A significant association of the Rad-score with DFS was shown in the training (C) and validation (D) cohorts. We calculated P values using the log-rank test. Data are the AUC or P-value. ROC, receiver operator characteristics; AUC, area under the curve; DFS, disease-free survival.



Results of stratified analysis based on molecular subtype are shown in Figure 2. The Rad-score successfully discriminate prognoses in luminal B (P = 0.00006) and triple-negative (P = 0.00003), but failed in either luminal A (P = 0.563) or HER2-enriched (P = 0.109). The radiomics signature remained a statistically and clinically predictor in most subgroups based on clinicopathological variables (Figure S10).




Figure 2 | Kaplan–Meier survival curves of DFS according to the Rad-score classifier in subgroups within molecular subtypes of patients with invasive breast cancer in the whole cohort. (A) Luminal A (n = 122). (B) Luminal B (n = 334). (C) HER2-enriched (n = 94). (D) Triple-negative (n = 70). We calculated P values using the log-rank test. DFS, disease-free survival; Rad-score, radiomics score.



Both in the univariate (Table S3) and multivariable analyses (Table 3), the Rad-score was an independent predictor for DFS.


Table 3 | Multivariate analysis of DFS in the training cohort.





The Additional Value of Radiomics Signature for DFS Prediction

The estimation of the radiomics nomogram achieved a better agreement with actual observation than that of the clinicopathological nomogram (Figure 3). The radiomics nomogram yielded the highest C-index (0.801 and 0.796 in the training and validation cohorts, respectively), the highest log likelihood (−241.70), and the lowest BIC (502.75) (Table 4). Including the radiomics signature to the clinicopathological nomogram resulted improvement of classification accuracy for survival outcomes, with a total NRI of 0.147 in the validation cohort for 5-year DFS estimation (Table S4). Finally, the results of DCA demonstrated that the radiomics nomogram was superior than the clinicopathological nomogram in terms of clinical usefulness both in the training and validation cohorts (Figure 4).




Figure 3 | The developed radiomics nomogram (A) and clinicopathological nomogram (B) for DFS prediction in patients with invasive breast cancer, along with the calibration curves of these nomograms. The patient’s Rad-score is located on the Rad-score axis. To determine the number of points toward the probability of DFS the patient receives for her Rad-score, a line was drawn straight upward to the point axis, and this process was repeated for each variable. The points achieved for each of the risk factors was then summed. The final sum is located on the total point axis. To find the patient’s probability of DFS, a line was drawn straight down. Calibration curves of the radiomics nomogram in the training (C) and validation (E) cohorts, and those of the clinicopathological nomogram in the training (D) and validation (F) cohorts show the calibration of each model in terms of the agreement between the estimated and observed at 1-, 3-, and 5-year outcomes. Nomogram-estimated probability is plotted on the x-axis, and the actual survival probability is plotted on the y-axis. The diagonal gray line represents a perfect estimation by an ideal model, in which the estimated outcome perfectly corresponds to the actual outcome. The colored line represents the nomogram’s performance, a closer alignment of which with the diagonal dotted line represents a better estimation. DFS, disease-free survival; Rad-score, radiomics score.




Table 4 | Performance of models.






Figure 4 | Decision curve analysis for each model in the training (A) and validation (B) cohorts. The y-axis measures the net benefit. The net benefit was calculated by summing the benefits (true positive results) and subtracting the harms (false positive results), weighing the latter by a factor related to the relative harm of an undetected cancer compared with the harm of unnecessary treatment. The radiomics model had the highest net benefit and simple strategies such as follow-up of all patients (gray line) or no patients (horizontal black line) across the full range of threshold probabilities at which a patient would choose to undergo imaging follow-up.





Subgroup Analyses Based on Ultrasound Machines

As shown in Figure S11, higher Rad-scores were significantly associated with worse DFS in the GE subgroup (P = 0.0001), but not in the Mindray subgroup (P = 0.055). Patients with higher Rad-scores experienced worse DFS than patients with lower Rad-scores in both the subgroups. Based on the cutoff (1.816) of the Rad-score, these patient characteristics based on risk group are shown in Table S5.




Discussion

To our knowledge, this study has developed the first US radiomics features for DFS prediction of invasive breast cancer. We showed that the US radiomics signature was an independent factor in predicting DFS and confirmed its additional value added to the clinicopathological predictors.

The present radiomics signature comprised 14 features, including two 2D shape-based features, seven texture features, and five wavelet features. On the one hand, shape-based features reflect the shape and morphology of the tumor. Being consistent with a previous study which selected surface to volume ratio (SVR) to estimate breast cancer DFS (17), we selected PerimeterSurfaceRatio feature (the 2D form of SVR) as one of the 14 features. On the other hand, texture analysis is a suitable way to assess tumor heterogeneity (26), and different texture features are defined differently to depict specific aspects of tumor textural heterogeneity and thus may provide complementary information of tumor characteristics. Most texture and wavelet features selected in the present study could describe characteristics of breast cancer in previous study (12). Thus, the multiple-feature-based radiomics signature constructed in our study could likely be an important prognostic factor with the information of tumor heterogeneity.

In the following analyses, the radiomics signature showed moderate performance on DFS prediction and successfully stratified patients into different groups according to the results of risk stratification, though there was only one selected feature could stratify the risk of DFS. These findings were similar to a previous study of lung cancer which demonstrated that no individual feature could classify patients at different risk of recurrence, except for radiomics signature (27). Therefore, the radiomics signature, taking the interactions between different features into account, could better reflect the heterogeneity of tumor and is thus related to the outcome of patient, improving the accuracy of DFS assessment.

In the subsequently univariate, multivariate, and stratified analyses, the present US radiomics signature was an independent predictor, indicating the strong association between the radiomics signature and DFS. Patients at high-risk group experienced worse DFS than those at low-risk group, implying that patients at high risk of DFS might need more intensive treatment and follow-up to improve DFS, whereas treatment for low-risk patients could be attenuated appropriately. Consequently, our results would provide valuable information for clinicians to develop personalized treatment accurately based on the specific clinicopathological factors and radiomics signature for invasive breast cancer.

The Kaplan-Meier analyses performed by molecular subtype showed that only differences of DFS in luminal B and triple-negative subgroups were statistically significant. This suggested that the ability of radiomics signature to assess DFS for invasive breast cancer vary by molecular subtype, which was similar to an earlier MRI-based study (28). This also highlighted the fact that breast cancer is a heterogeneous tumor wherein every subtype has its unique characteristics and prognosis. Perhaps a specific radiomics signature for each molecular subtype would predict DFS better in invasive breast cancer and hence, further studies are needed to confirm this speculation.

Furthermore, we confirmed the additional value of radiomics signature to the clinicopathological predictors for DFS prediction. The single predictor is not enough to assess the probability of prognosis, whereas nomogram has the ability to integrate multiple factors. We constructed a radiomics nomogram in a step-wise manner based on BIC, achieving better performance compared to the clinicopathological nomogram, with a better calibration, positive NRI and higher C-index. Finally, the radiomics nomogram performed better than the clinicopathological nomogram in term of clinical usefulness, which confirmed the additional value of the radiomics signature for personalized DFS prediction in patients with invasive breast cancer simultaneously.

Finally, we analyzed whether different sonographic platforms affect the performance of radiomics signature and radiomics signature showed significant only in the GE subgroup. We think this may be related to small sample size of the Mindray subgroup (n = 121). Small sample size generally affects the performance of radiomics study (29). Taking small sample size into consideration, radiomics signature shows significant association with DFS in the Mindray subgroup when relax the significant P value to 0.1. Furthermore, the significant clinicopathological variables (tumor size, T stage, N stage, TNM stage and LVI) showed consistent in the GE and Mindray subgroups according to risk group based on radiomics signature. However, the probability of the dependency of radiomics signature on the type of US machine could not be entirely rule out and further studies with larger data are needed to reveal the truth of this problem.

Our study has some limitations. First, we could not control the operator dependency or scanning parameters in collecting US images, which is an inevitable issue. So, we used Z-score normalization to minimize the influence of contrast and brightness variation before feature extraction for each patient. Second, radiomics signature showed dependency on the type of US machine in present study. Third, this study had a relatively short follow-up period (median follow-up, 48.99 months) and no independent validation. Thus, further studies with a longer follow-up, independent data and larger sample size are needed to resolve these issues.

In summary, the US radiomics signature is a potential imaging predictor for risk stratification of DFS, the radiomics nomogram holds promise to serve as a noninvasive tool to assist clinicians in accurately developing personalized treatment for patients with invasive breast cancer.
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Objective

Axillary node status after neoadjuvant chemotherapy (NCT) in early breast cancer patients influences the axillary surgical staging procedure. This study was conducted for the identification of the likelihood of patients being node pathological complete response (pCR) post NCT. We aimed to recognize patients most likely to benefit from sentinel lymph node biopsy (SLNB) following NCT and to reduce the risk of missed detection of positive lymph nodes through the construction and validation of a clinical preoperative scoring prediction model.



Methods

The existing data (from March 2010 to December 2018) of the Chinese Society of Clinical Oncology Breast Cancer Database (CSCO-BC) was used to evaluate the independent related factors of node pCR after NCT by Binary Logistic Regression analysis. A predictive model was established according to the score of considerable factors to identify ypN0. Model performance was confirmed in a cohort of NCT patients treated between January 2019 and December 2019 in Henan Cancer Hospital, and model discrimination was evaluated via assessing the area under the receiver operating characteristic (ROC) curve (AUC).



Results

Multivariate regression analysis showed that the node stage before chemotherapy, the expression level of Ki-67, biologic subtype, and breast pCR were all independent related factors of ypN0 after chemotherapy. According to the transformation and summation of odds ratio (OR) values of each variable, the scoring system model was constructed with a total score of 1–5. The AUC for the ROC curves was 0.715 and 0.770 for the training and the validation set accordingly.



Conclusions

A model was established and verified for predicting ypN0 after chemotherapy in newly diagnosed cN+ patients and the model had good accuracy and efficacy. The underlined effective model can suggest axillary surgical planning, and reduce the risk of missing positive lymph nodes by SLNB after NCT. It has great value for identifying initial cN+ patients who are more appropriate for SLNB post-chemotherapy.





Keywords: breast neoplasm, lymph node, pathological complete response, predictive model, neoadjuvant chemotherapy (NCT)



Introduction

Sentinel lymph node biopsy (SLNB) is considered to be the standard method for the management of axillary nodes in patients with clinical lymph node-negative (cN0) early breast cancer (BC). Neoadjuvant chemotherapy (NCT) is widely used in locally advanced BC, triple-negative (TN), and human epidermal growth factor receptor-2 positive (HER2+) BC (1). NCT elevates the potency that a patient may experience breast-conserving therapy, could significantly downstage the axilla, and permits for an in-vivo evaluation of treatment effect. The probability of nodal negativity post NCT affects the choice of axillary staging operation. In patients with cN0 disease before treatment, the feasibility of SLNB after chemotherapy has been confirmed and agreed upon. But in patients who were downstaged from initial lymph node-positive (cN+) disease before treatment to clinically node-negative after chemotherapy, although the safety of SLNB has also been confirmed, while it is still one of the focus of controversy (2). The main reason for the controversy is the concern about patients with negative sentinel lymph nodes but missed metastatic nodes checking post NCT.

The risk of missed detection of metastatic nodes in the population was positively correlated with the false-negative rate (FNR) of SLNB and the load of axillary lymph node metastasis after NCT. Multiple considerable studies have been directed to a modification in the manner surgeons manage the axilla in NCT treated patients of BC. According to the reported trails studies of the American College of Surgeons Oncology Group (ACOSO) Z1071 trial, the SN FNAC trial, and the SENTINA trial, SLNB is considered to be a relatively safe and feasible procedure after NCT. Although the overall FNR was 12.6, 8.4, and 14.2%, respectively (3–5). In the retrospective study, the FNR of SLNB was found to be as high as 5–25% (6, 7). It can be seen that SLNB after NCT still has a higher FNR. On the one hand, FNR could be lowered via improving the surgical technique of SLNB, including double tracer with the use of dye combined with a radionuclide, placement of marker clip in positive lymph nodes pre-NCT and its removal during operation, detection of more than two sentinel lymph nodes, and examined the nodes with immunohistochemical method (8). On the other hand, we can use optimizing patient selection. SLNB should be performed in patients associated with a low load of axillary lymph node metastasis or even no node metastasis after chemotherapy. When allowing for SLNB surgery after NCT for a patient associated with cN+ complication at diagnosis, this approach is beneficial for those patients who mostly have a complete nodal response. Ideally, doctors can identify which patients will respond to chemotherapy. They select patients who can most likely achieve node pathological complete response (pCR, ypN0) and suitable to SLNB after NCT. In the same way, the risk of missing positive lymph nodes will be reduced.

Preoperative models that predict the likelihood of the patient achieving a pCR in the axilla after NCT are helpful to guide this decision making. Multiple models have been published predicting axillary pCR after NCT in various cohorts. However, these established models were limited because of single-institution experiences or multicenter small sample size of the studies (9–11). Only three models reported in two studies were based on the materials of the National Cancer Data Base (NCDB) (12, 13). This study plans to develop a clinical preoperative scoring prediction model for the identification of the likelihood of patients being axillary pCR after NCT based on CSCO-BC and to verify the model based on independent data in Henan Cancer Hospital. It is expected to establish and verify a model for predicting ypN0 in newly diagnosed cN+ patients after chemotherapy, to guide axillary surgical planning, and identify initial cN+ patients who are more appropriate for SLNB after chemotherapy, and to achieve the goal of reducing the risk of missing detection of metastatic nodes.



Materials and Methods


Study Population

After the approval of the Institutional Review Board, we recognized all those patients with primary BC and obtained preoperative chemotherapy in the CSCO BC database from March 2010 to December 2018 and Henan Cancer Hospital from January 2019 to December 2019. CSCO BC database is an authoritative cancer registry database that contains anonymized BC cases from nine large hospitals representing all regions of China. Variables include patient sex, age at the time of diagnosis, the status of menstruation, location of primary breast tumor, pathological type, estrogen receptor (ER), progesterone receptor (PR), HER2, Ki-67, mode of operation, cTNM stage, axillary pathology, and postoperative breast pathology, etc.



Inclusion and Exclusion Criteria

In the existing study, the following conditions were considered as inclusion criteria (1) cTNM stage based on the 7th edition of American Joint Cancer Commission (AJCC) cTNM staging before treatment available; (2) before chemotherapy, invasive BC validated via core needle biopsy; (3) axillary lymph nodes positive at diagnosis (cN+); (4) known ER, PR, HER2, Ki-67 status before chemotherapy; (5) received preoperative chemotherapy; (6) received axillary lymph node dissection after chemotherapy, the patient subjected to breast surgery following the local treatment standards; (7) Postoperative pathology of axillary lymph nodes and breast available. Patients with any of the following conditions were not selected for the study: male, bilateral BC, axillary lymph node-negative (cN0), metastasis of internal or supraclavicular mammary lymph node, distant metastasis (M1), inflammatory BC, BC during pregnancy, stage 0 or ductal carcinoma in situ (DCIS) at diagnosis, axillary or primary breast tumor resected before treatment, simultaneous deletion of ER, PR, and HER2 results, receiving preoperative endocrine or radiation therapy, absence of postoperative breast and lymph node pathology or no operation. After screening, 1,814 patients were deemed to be eligible and included in the final analysis. The resulted of 1,497 patients from the CSCO BC database being assigned to a ‘‘training set’’ (used in creating our initial model of post-NCT ypN0) and the resulted of 317 patients from Henan Cancer Hospital being assigned to a “validation set” for confirmation of model strength (Figure 1).




Figure 1 | Patient flow diagram. NCT, neoadjuvant chemotherapy; ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor-2.





Pathology

The immunohistochemistry (IHC) technique was used in order to assess the HER2, Ki-67, ER, and PR status at diagnosis. The ER/PR+: ≥1% of tumorous cells were evaluated with nuclear staining. ER or PR+ were collapsed into one HR+. The determination of HER2+ was carried out based on the ASCO/CAP suggested guidelines. A 3+ score for IHC was considered positive, as was a 2+ IHC score with the results of fluorescence in situ hybridization (FISH) overruled (14). The expression of Ki-67 was categorized as high (>30%) and low (<30%) based on the nuclear positive cells ratio to all tumor cells in 10 high-power visual fields. Based on HR and HER2 status, the patients were divided into four sub-types: HR+HER2−, HR+HER2+, HR−HER2−, and HR−HER2+. The pCR was defined as the absence of tumor cells in the axillary lymph nodes (axillary pCR) or the breast (breast pCR) after NCT (1).



Statistical Analyses

Statistical analyses were conducted with SPSS, version 23. Categorical variables were compared via univariate logistic regression in the training set. Factors that were statistically significant at the 0.1 level were included in the multivariate analysis. Binary logistic regression analysis was employed for multivariate analysis in the training set. ORs and 95% CIs were measured. Odds ratio (OR) >1 indicated an elevated likelihood of pN0. The odds ratios of significant independent predictors were employed for translating into points for the model. The receiver operating characteristic (ROC) curve was plotted, and the predictive accuracy was evaluated via measuring the area under the ROC curve (AUC). A 95% CI was measured for all AUC, and was compared with an AUC of 0.5 by Z test. The model is validated in the validation set.




Results


Patient Characteristics

Baseline clinical, as well as pathologic properties of the study participants in the training and validation sets, have been revealed in Table 1. A total of 1,814 female BC patients were registered in the current study, having 1,497 and 317 in the training and the verification set, respectively. In the training set, the patient’s age was ranged from 19 to 77 years, with an average of 48 years. The age of the patients in the verification set ranged from 22 to 75 years, with an average of 49 years. The clinical T categories were cT1/T2 and cT3/T4 in 1225 (68.2%) and 570 patients (31.7%). Most of the patients were cN1 at presentation [906 (50.3%) cN1 and 609 (33.8%) cN2], while 286 (15.9%) were cN3. In the majority of the patients i.e., 72.1%, expression of Ki-67 was elevated in tumors. Biologic subtype was ER+/HER2- in 42.7% of patients, ER+/HER2+ in 25.4%, ER−/HER2+ in 15.0%, and ER−/HER2− in 16.9%. At surgery, 472 (26%) patients got breast pCR after NCT, having 384 (25.7%) and 88 (27.8%) in the training set and verification set, accordingly. Post chemotherapeutic treatment, 724 (39.9%) patients had no axillary metastasis with 594 (39.7%) and 130 (41%) in training and verification set, accordingly.


Table 1 | The features of patients for the training as well as a validation set, n (%).





Univariate and Multivariate Analysis of the Correlation Between Clinicopathological Features and Axillary pCR in Patients With the Training Set

Univariate and Multivariate regression predicting nodal pCR via training set has been revealed in Tables 2 and 3. Univariate analysis revealed that clinical N stage before chemotherapy, the expression level of Ki-67 (OR 2.138, 95% CI 1.694–2.699, P <0.001), and breast pCR status(OR 5.592, 95% CI 4.447–7.031, P <0.001) post-chemotherapy were considerably associated with ypN0 post NCT. The axillary pCR was increased in patients with HR+HER2+ (OR 2.801, 95% CI 2.189–3.585, P < 0.001), HR−HER2+ (OR 4.286, 95% CI 3.2–5.742, P <0.001), HR−HER2− (OR 3.252, 95% CI 2.461–4.297, P <0.001) subtypes compared with HR+HER2− disease, respectively. There was no association between age, menstrual status, site of primary breast tumor, T stage at the time of diagnosis, and axillary pCR (Table 2). Multivariable analysis revealed that breast pCR had a strong independent correlation with ypN0 status, with an OR of 4.493 (95% CI 3.409–5.922, P <0.001) for breast pCR versus residual breast tumor disease. Relatively more aggressive tumors were also correlated with more chances of ypN0 status, with an OR of 2.409 (95% CI 1.769–3.282, P <0.001) for ER+/HER2+, 3.572 (95% CI 2.501–5.102, P <0.001) for ER−/HER2+, and 2.318 (95% CI 1.610–3.339, P <0.001) for ER−/HER2−, each versus ER+/HER2− disease. Lower cN category (OR 0.589 for cN2, OR 0.706 for cN3, each versus cN1), elevated expression of Ki-67 (OR = 1.532, 95% CI 1.139–2.061, P = 0.005) versus lower expression tumors were correlated with more chances of ypN0 status (Table 3).


Table 2 | Univariate regression predicting nodal pCR in the training set, n (%).




Table 3 | Multivariate regression predicting nodal pCR in the training set and Point Score.





Establish the Scoring System

According to the value of the OR of each independent predictor, the scoring system has been represented in Table 3. In the training set, the total score of all patients was calculated based on the above scoring system. As the score of the cumulative model was ranged from 2 to 10.5, the model adjustment was carried out at a 1–5 numeric scale, as represented in Table 4. The model score distribution and corresponding ypN0 ratio of the training set and verification sets are indicated in Table 4. Elevated point scores were associated with step by step elevation in the rate of pCR that has been graphically represented in Figure 2. The axillary pCR rate of patients with a score of 5 in the training set can reach 77%, while the overall trend of 92.9% in the verification set.


Table 4 | Basic five-point model score and association with pN0 response in training and validation set, n (%).






Figure 2 | The model score distribution and corresponding ypN0 ratio of the training set and verification set.





Effectiveness Evaluation of Scoring System Model

Based on the model score of all patients, the ROC curve of ypN0 ratio post-NCT was drawn (Figure 3). The training set AUC was 0.715 (95% CI 0.688–0.742, P <0.001), and the verification set AUC was 0.770 (95% CI 0.716–0.823, P <0.001) which indicates significant discrimination of the scoring system.




Figure 3 | Receiver operating characteristic (ROC) plots for predicting ypN0 status in the training set and verification set.






Discussion

SLNB is the standard method for the staging of the axillary lymph node in patients with early BC and cN0 disease. However, the safety of SLNB is still controversial in patients with initial cN+ stage and downstaging to cN0 after chemotherapy. Earlier studies have been revealed that 22–44% is the rate of axillary pCR post-NCT, which is higher in patients with triple-negative and HER2 positive BC i.e., 40–74% (15, 16). Ideally, doctors will be able to screen out patients who respond well to chemotherapy and have more chances to reach ypN0 post NCT, and suitable to do SLNB after NCT. In this way, the risk of missing positive lymph nodes can be lowered. In the current study, we established a clinically predicted model for patients with cN+ BC for prediction, with good discrimination, pathologically negative nodal status following NCT. The model was established based on the CSCO BC database and independently verified by the BC patient data of Henan Cancer Hospital. The model containing the clinical category of tumor in patients, the expression level of Ki-67, biologic subtype, and breast pCR. Consistent with previous studies, the rate of axillary pCR after NCT is 39.9%, while the training and the verification set is 39.7 and 41%, accordingly. Multivariate analysis revealed that N stage prior to chemotherapy, the expression level of Ki-67, molecular subtype, and breast pCR status after chemotherapy were all independent factors associated with axillary pCR post-chemotherapy. It showed consistency with the results obtained from earlier studies. A 1–5 model scoring system has been constructed on the basis of transformation and summation of the OR values of each variable. To determine the efficiency of the scoring system, the ROC curve of the ypN0 ratio has been plotted post-NCT. The training set AUC is 0.715 and the verification set AUC is 0.770 which indicates the significant discrimination of the scoring system.

In the model scoring system established in this study, breast pCR after chemotherapy accounted for a large weight (4.5 to 10.5). Many earlier studies have been reported that the axillary pCR rate in breast pCR patients has been considerably elevated than that in breast non-pCR patients (17–19). According to Netherlands Cancer Registry, it has been revealed that in newly diagnosed cN+ patients, the axillary pCR rate in breast pCR patients after NCT is 45%, while that in breast non-pCR patients is only 9.4% (20).

Of course, how to judge the state of breast pCR before the operation is one of the problems that need to be solved in the application of this model. Many studies have reported the strategies of predicting breast pCR post NCT, and even the requirement of breast surgery in patients with breast pCR post-NCT has been questioned (21). Image-Guided Minimally Invasive Biopsy(MIB) is expected to precisely predict breast pCR. A single-center prospective study from MD Anderson Cancer Center involved 40 patients with clinical T1-3N0-3M0 and TN or HER2-positive BC who were assessed as complete or partial remission by ultrasound or mammography after NCT and underwent fine-needle aspiration biopsy or coarse needle biopsy before the operation. The accuracy for prediction breast pCR can reach 98.0% with a lower FNR of 5.0% by a combination of the two invasive biopsy methods (22). Another prospective, a monocenter cohort study has also shown that a vacuum-assisted MIB can accurately diagnose a pCR provided that the pathological evaluation shows a representative sample (23). At present, although pathologic response in the breast is not available preoperatively during the time of surgical decision-making. However, these studies suggested that MIB has a good prospect in predicting the clinical application of breast pCR (22, 23).

Numerous studies have been established models for the prediction of ypN0 post-NCT, but almost all of them are single-center or multi-center small sample data, and only a few of the models are based on NCDB large database. The most recent model reported in 2018 was constructed with 19,115 (70% being assigned as “testing cohort” to created initial model and 30% being assigned as “validation cohort” to confirmation of model strength) clinically node-positive BC patients who underwent NCT and then received breast surgery and dissection of the axillary lymph node. The model was carried out to predict pathologically node-negative status. The study revealed that age, histological type, initial N stage, histological grade, molecular classification, and breast pCR status were independently predicted ypN0 post NCT. The AUC of the training set and verification set were 0.781 and 0.788, accordingly (12). Moreover, data of the training, as well as verification set, have been obtained from the NCDB database, which lacks external independent data verification. While Murphy et al. also validated the model independently by external data of Mayo Clinic, the sample size in the validation set seems to be not enough (n = 180) (13). The advantage of our model is that the model was established based on China’s authoritative CSCO BC database (training set), and independently verified by the BC patient data of Henan Cancer Hospital (validation set). Although tumor histology and grade are not included in our model, we get similar AUC values. The training set AUC is 0.715, the verification set AUC is 0.770 which reveals that the prediction model on the basis of the underlined scoring system is stable with good discrimination. This may also suggest that our model may be more convenient for the Asian population.

If we can use primary data, more parameters were able to be included in our model, such as tumor histology and grade, MRI or ultrasound or clinical tumor response, and chemotherapy details. Thus, our model may be greatly improved. The information is incomplete or not available in the CSCO BC database, and therefore, was not included in the model. However, our model was based on a larger sample of the Asian population database, also the largest sample size, for the first time. We, therefore, included a more representative and heterogenous cohort of patients from across China and hospitals of varying sizes and varying practice settings.

The model of the current study may provide a reliable screening method for patients who are suitable to do SLNB after NCT with initial cN+ disease. For patients that were at risk of node-negative, axillary staging with SLNB surgery would be recommended, while for patients that were at higher risk of nodal positive disease for a longer period, ALND may be considered. For example, the chances of ypN0 for patients with a score of 1 point is less than 20%, and it should be careful to do SLNB, or even direct dissection of the axillary lymph node is recommended. For patients with a score of 2–3 points, the probability of ypN0 is 20–50%. SLNB can be considered. The chances of ypN0 for patients with a score of 4–5 points is more than 70%, and direct SLNB is recommended. Hence, the underlined model permits surgeons for SLNB surgery in patients with more chances of nodal response to NCT, so reducing the chances of false-negative events.

The model established in this study is based on the authoritative BC registration database in China and verified by the independent data of Henan Cancer Hospital. As far as we know, this is the first clinically predicted model for ypN0 on the basis of the Asian population database. The shortcomings of this study included that it is a retrospective study that is based on the database. There is a large number of missing data, including chemotherapy regimens. So, data of many patients were excluded from the study. Notably, chemotherapy regimens are not included in both of our model and models based on NCDB (12, 13). A lower axillary pCR rate was reported in patients treated with a taxane without an anthracycline (23.7%) than an anthracycline without a taxane (19%) (15). Unfortunately, we cannot rule out the impact of chemotherapy regimens. But it also reflects that this study is more in line with the characteristics of real-world patients. We also suggested that a large heterogeneous cohort of patients used for generating models makes them universally appropriate for patients at all medical centers. A multicenter BC NCT database containing much more variables is being established, and we hope to improve the model in the future.

In brief, we established and confirmed a model to predict ypN0 post-chemotherapy in newly diagnosed cN+ patients which has good accuracy and efficacy. The models, which included patient clinical nodal category, Ki-67 expression, biologic subtype, and breast pCR, showed good discrimination. This clinically useful model is helpful to the reasonable choice of axillary surgery after NCT and reduces the risk of missing positive lymph nodes in SLNB after NCT.
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Purpose

To compare the efficacy and safety between pyrotinib (Pyr) and trastuzumab emtansine (T-DM1) in pre-treated human epidermal growth factor receptor 2-positive (HER2+) metastatic breast cancer (MBC) patients.



Methods

A comprehensive literature search of the PubMed, EMBASE, and Web of Science was performed in August 2020. Randomized clinical trials comparing the efficacy and safety between different anti-HER2 regimens in patients pre-treated with trastuzumab (Tra) and a taxane in metastatic settings (≤second-line treatment) were included. A fixed effects network meta-analysis based on the Bayesian inferential framework was conducted for progression-free survival (PFS), overall survival (OS), overall response rate (ORR), and grade ≥3 adverse events (AEs). Values of surface under cumulative ranking probability curve (SUCRA) were calculated to offer a ranking of all regimens.



Results

Twelve studies with 4,353 subjects were identified. Nine regimens were included into the network: T-DM1, lapatinib-capecitabine (Lap-Cap), Tra-Cap, Cap, neratinib (Ner), pertuzumab (Per)-Tra-Cap, Pyr-Cap, atezolizumab (Ate)-T-DM1, and Ner-Cap. For PFS, Pyr-Cap was more favorable than T-DM1 (hazard ratio, 95% confidence interval: 0.77, 0.70–0.86), Lap-Cap (0.64, 0.59–0.69), Tra-Cap (0.63, 0.56–0.70), Cap (0.50, 0.45–0.56), Ner (0.59, 0.51–0.69), Per-Tra-Cap (0.68, 0.59–0.79), and Ner-Cap (0.72, 0.64–0.81). For OS, Pyr-Cap showed further improvement than Lap-Cap (hazard ratio, 95% confidence interval: 0.71, 0.52–0.99), Cap (0.68, 0.49–0.96), and Ner (0.65, 0.45–0.94). For ORR, Pyr-Cap was significantly superior than Cap (odds ratio, 95% confidence interval: 7.87, 1.22–56.51). No significant difference was observed in grade ≥3 AEs among all the regimens. Pyr-Cap ranked in the highest in PFS, OS, ORR, and grade ≥3 AEs (SUCRA = 99.4, 89.7, 86.4, and 89.3%).



Conclusions

These results indicate that Pyr may be more effective than T-DM1 in HER2+ MBC patients pre-treated with Tra and a taxane. However, it may be associated with more grade ≥3 AEs.





Keywords: network meta-analysis, trastuzumab emtansine, pyrotinib, human epidermal growth factor, metastatic breast cancer



Introduction

Breast cancer (BC), a highly heterogeneous disease, currently represents the most common cancer in females with over million new cases confirmed per year worldwide (1, 2). According to the molecular landscape of the tumor, BC is divided into four subtypes including luminal A, luminal B, human epidermal growth factor receptor 2-positive (HER2+), and triple-negative BC (3). The HER2 is a receptor tyrosine-protein kinase and amplified in 15–30% of all human BC (4). Positive HER2 is a risk factor for BC patients, which is reflected in the aggressive clinical phenotype and poor prognosis for HER2+ BC patients (5). The first FDA-approved HER2-targeted agent, trastuzumab (Tra; Herceptin™, Roche), started the new era of targeted therapy of BC. The administration of Tra either in combination with chemotherapy or in monotherapy has significantly improved the disease-free and overall survival (OS) of patients in the neo/adjuvant treatment phase, as well as in the rescue treatment for advanced/metastatic BC (MBC) (6–8). In addition to Tra, numerous novel agents including trastuzumab emtansine (T-DM1; Kadcyla™, Roche), pertuzumab (Per; Perjeta™, Roche), lapatinib (Lap; Tyverb™, GlaxoSmithKline), neratinib (Ner; Nerlynx™, Puma Biotechnology), and pyrotinib (Pyr; HengRui) have been introduced in recent years (9–13). Despite all the advances in targeted therapy, the resistance to anti-HER2 treatment remains a major challenge (14). On the other hand, there are controversies in choosing which anti-HER2 regimen for HER2+ patients who progressed on prior treatment of Tra and a taxane (15). Therefore, it is of necessity and interest to identify the potential best anti-HER2 regimen in later treatment lines of HER2+ MBC.

T-DM1 is a first-in-class antibody-drug conjugate consisting of Tra linked to an anti-tubulin agent DM1, via a stable thioether linker (16). T-DM1 has shown its efficacy both in early-stage and advanced-stage HER2+ BC (9, 17). The results of EMILIA phase III study (Clinical-Trials.gov number: NCT00829166) indicated that T-DM1 significantly prolonged the progression-free survival (PFS) (9.6 vs. 6.4 months; hazard ratio (HR), 95% confidence interval (CI): 0.65, (0.55–0.77)) and OS (29.9 vs. 25.9 months; HR, 95%CI: 0.75, (0.64–0.88)) of HER2+ MBC patients pre-treated with Tra and a taxane, with less toxicity compared with Lap plus capecitabine (Cap; Xeloda™, Roche) (9, 18). Based on these findings, T-DM1 was approved for the second-line treatment of HER2+ MBC in 2013 (19). Pyr, a novel irreversible pan-ERBB receptor tyrosine kinase inhibitor, has shown promising anti-tumor activity and acceptable tolerability in a phase I study (Clinical-Trials.gov number: NCT01937689) in 2017 (20, 21). In a phase II, randomized, multi-center, open-label study (Clinical-Trials.gov number: NCT02422199), Ma et al. further evaluated the efficacy and tolerability of Pyr plus Cap compared with Lap plus Cap in HER2+ MBC patients pre-treated with taxanes, anthracyclines, and/or Tra. For patients with prior anti-HER2 treatment, Pyr plus Cap yielded significantly longer PFS (HR, 95%CI: 0.37, (0.19–0.74), log-rank P = 0.0031) than Lap plus Cap (13). According to the results of phase I/II studies, Pyr was recommended to replace Tra for the second-line anti-HER2 therapy of HER2+ MBC patients in the 2019 CSCO (Chinese Society of Clinical Oncology) BC guidelines (13, 21).

Both T-DM1 and Pyr showed favorable therapeutic effects and safety in randomized controlled trials (RCTs), nevertheless, there is currently no head-to-head comparison between the two agents. Network meta-analysis is a highly attractive, new type of systematic review and meta-analysis (22). In the last decade, network meta-analysis has become increasingly popular, as it synthesizes direct and indirect evidence to compare multiple interventions in a network of RCTs, overcoming the limitation of traditional pare-wise meta-analysis (23–25). Therefore, we conducted this updated network meta-analysis based on a Bayesian inferential framework to evaluate the efficacy and safety of Pyr versus T-DM1 in HER2+ MBC patients pre-treated with Tra and a taxane.



Methods

This network meta-analysis was conducted and reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement (26).


Search Strategy

Relevant articles were obtained by searching Medline/PubMed, EMBASE, and Web of Science databases through 15 August 2020. The detailed search strategy was as follows: (breast OR mammary) AND (cancer OR neoplasm OR oncology OR tumor OR malignancy OR carcinoma OR adenocarcinoma OR sarcoma) AND (metastasis OR metastatic OR advanced OR secondary OR recurrent OR inoperable OR unresectable OR disseminated OR incurable) AND (“human epidermal growth factor receptor 2” OR HER2 OR HER-2 OR Her-2 OR ERBB2 OR neu) AND (positive OR enriched OR overexpressing OR overexpressed) AND (trial OR study) AND (randomized OR randomized OR randomly OR randomization OR RCT) AND (trastuzumab OR Herceptin) AND (Anti-HER2 OR HER2-targeted OR lapatinib OR tykerb OR neratinib OR pyrotinib OR pertuzumab OR T-DM1 OR “trastuzumab emtansine” OR trastuzumab-DM1 OR trastuzumab-MCC-DM1 OR margetuximab OR tucatinib OR “trastuzumab deruxtecan” OR DS8201 OR poziotinib OR afatinib OR everolimus OR chemotherapy OR cyclophosphamide OR methotrexate OR fluorouracil OR 5FU OR 5-FU OR doxorubicin OR mitoxantrone OR epirubicin OR paclitaxel OR docetaxel OR liposomal doxorubicin OR nab-paclitaxel OR “nab paclitaxel” OR eribulin OR capecitabine OR vinorelbine OR carboplatin OR cisplatin OR platinum OR gemcitabine) (Appendix 1). Manual searches of conference abstracts from the American Society of Clinical Oncology (ASCO) and the European Society for Medical Oncology (ESMO) were conducted to find additional eligible studies.



Selection of Studies

This network meta-analysis included studies that met the following criteria: 1) RCT of adults (≥18 years old); 2) HER2+ MBC patients confirmed by centralized testing (3+ [immunohistochemistry] or copy number amplification [fluorescence in situ hybridization]); 3) patients pre-treated with Tra and a taxane in metastatic settings (≤second-line treatment); 4) patients were treated with anti-HER2 regimens or combination of anti-HER2 regimens and chemotherapy in the intervention group, while the control group received other anti-HER2 regimens or chemotherapy alone; 5) measurements of PFS, OS, overall response rate (ORR), and grade ≥3 adverse events (AEs); 6) written in English. The main exclusion criteria were as follows: 1) repeated reports; 2) non-RCT studies; 3) non-English studies; 4) major defects in research design; 5) statistical methods were wrong and could not be corrected; 6) patients received first-line treatment; 7) patients were pre-treated with ≥ third-line anti-HER2 treatment. All searched articles were screened according to the titles and abstracts for exclusion. Candidate full-text studies were then assessed before final inclusion.



Data Extraction and Risk of Bias Assessment

Two reviewers independently extracted the data from included studies by a pre-specified protocol. In this process, the following study characteristics were collected: first author, publication year, study design, sample size, current treatment strategy, previous anti-HER2 treatment, and main outcomes (PFS, OS, ORR, and grade ≥3 AEs).

The Cochrane Risk of Bias tool was used to assess the risk of bias of the included primary studies by the two reviewers independently (27). All included studies were evaluated as high, low, or unclear risk according to the documented methodological quality. Any disagreements between the two reviewers were resolved by discussion and team consensus.



Statistical Methodology

Firstly, the evidence of network was generated in Stata 15.0 (StataCorp, College Station, TX, USA) using Network package. The width of edge corresponded to the number of studies comparing each pair of regimens and the size of node was proportional to the number of randomized participants. To compare the therapeutic effects and safety of different anti-HER2 regimens, log HR for time-to-event data (PFS and OS) and log odds ratio (OR) for binary variables (ORR and grade ≥3 AEs) of two regimens were calculated. For PFS, OS, and grade ≥3 AEs, the therapeutic effects of one regimen were better than the other one when the corresponding HR/OR value was less than 1. For ORR, in the case that the corresponding OR value was over 1, the therapeutic effects of one regimen surpassed the other one.

This network meta-analysis was conducted based on a Bayesian, fixed effects, consistency model via Markov Chain Monte Carlo modeling (28). We chose the Bayesian inferential framework because it allows external information to be included and can capture and propagate uncertainty. In addition, it will not be biased by small sample size, while the frequentist inference often becomes biased when the sample size decreases (29, 30). The OpenBUGS 3.2.3 (members of OpenBUGS Project Management Group, see www.openbugs.net) and GeMTC 0.14.3 (Generate Mixed Treatment Comparisons, see http://drugis.org/software/addis1/gemtc) were used for the analysis of time-to-event data (PFS and OS) and the analysis of binary variables (ORR and grade ≥3 AEs), respectively. The parameters in OpenBUGS and GeMTC were set as follows: initial value, 2.5; number of simulation iterations, 50,000; number of adaptations, 5,000; thinning factor, 10; and number of chains, 3. In order to accurately rank the treatment effects and safety of all regimens, values of surface under cumulative ranking probability curve (SUCRA) were calculated and cumulative probability curves were plotted in Stata 15.0 (25). The value of SUCRA would be 1 when a treatment is certain to be the best one or 0 when a treatment is certain to be the worst one (31).

The Deviance Information Criterion (DIC) was used to assess the model inconsistency for PFS and OS in OpenBUGS. The lower the DIC value, the lower the inconsistency of the model (32). For ORR and grade ≥3 AEs, the inconsistency was evaluated in GeMTC based on the value of inconsistency factor. If the data were consistent, the inconsistency factor would be expected to be close to 0 and its 95%CI would contain the neutral value (0). In addition, the random effects standard deviation in the consistency model would be expected to be roughly equal with that in the inconsistency model when the data were inconsistent (33). 




Results


Study Inclusion and Characteristics

The search was conducted and completed on August 15, 2020. The PRISMA 2009 Flow Diagram of study selection process was shown in Figure 1. A total of 2,764 records were initially retrieved through database search. Three records were obtained from the conference abstracts of ASCO and ESMO. Among them, 1,131 records were duplicates. Then, we excluded 1,569 irrelevant records after screening the titles and abstracts. After a further evaluation, 55 records were excluded: 21 non-RCT studies; 15 non-English studies; 16 studies of patients who only received first-line treatment; three studies of patients who were pre-treated with ≥ third-line anti-HER2 treatment. Finally, twelve studies were included for this network meta-analysis (8–13, 34–39). No additional studies were obtained through checking the reference lists of these articles. The basic characteristics of included studies were presented in Table 1. All included studies are multi-center RCTs published after 2000. Seven studies are phase III trials (9–12, 34, 37, 38), while the other five studies are phase II trials (8, 13, 35, 36, 39). The sample size of individual study ranges from 86 to 991, with a total of 4,353 subjects enrolled in these studies. All studies focus on the efficacy and safety of anti-HER2 regimens in HER2+ MBC patients who progressed on Tra and a taxane.




Figure 1 | PRISMA 2009 Flow Diagram of study selection process. PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analysis; RCT, randomized controlled trial; HER2, human epidermal growth factor receptor 2-positive.




Table 1 | Basic characteristics of included studies.





Risk of Bias Assessment

The risk of bias graph and the risk of bias summary were presented in Figure 2. Only one study was judged to be at low risk of bias (37), one study was judged to be at unclear risk of bias (39), and ten studies were judged to be at high risk of bias (8–13, 34–36, 38). All studies used random sequence generation to generate allocation sequences. Nine studies used appropriate allocation and concealment methods (8–10, 12, 13, 34, 37–39), but the other three studies did not state details (11, 35, 36). The major concern is that the ten studies with high risk of bias are open-label trials and no blinding of participants and personnel was performed (8–13, 34–36, 38). In addition, one study was judged to be at high risk in the domain of other bias because of early study termination (11).




Figure 2 | (A) Risk of bias graph and (B) summary. In the risk of bias graph, the length of each rectangle was proportional to the number of studies being assessed as corresponding risk of bias. In the risk of bias summary, the risk of bias of each domain in each included study was listed.





Network Meta-Analysis

The network map among nine treatment strategies (T-DM1, Lap-Cap, Tra-Cap, Cap, Ner, Per-Tra-Cap, Pyr-Cap, atezolizumab (Ate; Tecentriq™, Roche)-T-DM1, and Ner-Cap) was plotted in Stata 15.0 (Figure 3) using Network package. Lap-Cap and Tra-Cap ranked in the top two among all regimens in the number of trials and the number of randomized participants. The original data (PFS, OS, ORR, and grade ≥3 AEs) were presented in Appendix 2.




Figure 3 | Network structure diagram. T-DM1, trastuzumab emtansine; Lap, lapatinib; Tra, trastuzumab; Cap, capecitabine; Ner, neratinib; Per, pertuzumab; Pyr, pyrotinib; Ate, atezolizumab.





Progression-Free Survival

All of the twelve studies reported PFS data (8–13, 34–39). As shown in Figure 4A, Pyr-Cap was significantly superior in PFS than T-DM1 (HR, 95%CI: 0.77, 0.70–0.86), Lap-Cap (0.64, 0.59–0.69), Tra-Cap (0.63, 0.56–0.70), Cap (0.50, 0.45–0.56), Ner (0.59, 0.51–0.69), Per-Tra-Cap (0.68, 0.59–0.79), and Ner-Cap (0.72, 0.64–0.81). T-DM1 was significantly superior than Lap-Cap (HR, 95%CI: 0.83, 0.77–0.89), Tra-Cap (0.81, 0.72–0.91), Cap (0.65, 0.58–0.73), and Ner (0.77, 0.66–0.89). Ate-T-DM1 was significantly superior than Lap-Cap (HR, 95%CI: 0.76, 0.63–0.92), Tra-Cap (0.74, 0.60–0.92), Cap (0.60, 0.48–0.73), and Ner (0.71, 0.56–0.88). Ner-Cap was significantly superior than Lap-Cap (HR, 95%CI: 0.89, 0.82–0.97), Tra-Cap (0.87, 0.77–0.98), Cap (0.70, 0.62–0.79), and Ner (0.82, 0.71–0.96). All regimens were significantly superior in PFS than Cap (T-DM1 (HR, 95%CI: 0.65, 0.58–0.73), Lap-Cap (0.78, 0.72–0.86), Tra-Cap (0.80, 0.72–0.89), Ner (0.85, 0.72–0.99), Per-Tra-Cap (0.74, 0.64–0.85), Pyr-Cap (0.50, 0.45–0.56), Ate-T-DM1 (0.60, 0.48–0.73), and Ner-Cap (0.70, 0.62–0.79)). The rank probability plot of PFS was presented in Figure 5A. Pyr-Cap had the highest probability to rank as the best regimen, while Cap had the highest probability to be the worst one. In addition, we calculated the values of SUCRA to obtain a more accurate ranking (Figure 6A). According to the outcomes of SUCRA (99.4%) and MeanRank (1.1), Pyr-Cap indeed had the highest probability to be the best treatment, followed by Ate-T-DM1 (84.6%, 2.2), T-DM1 (75.0%, 3.0), Ner-Cap (61.5%, 4.1), Per-Tra-Cap (50.7%, 4.9), Lap-Cap (34.3%, 6.3), Tra-Cap (26.5%, 6.9), Ner (17.9%, 7.6), and Cap (0.2%, 9.0) (Appendix 3.1).




Figure 4 | League table of network meta-analysis of the nine anti-HER2 regimens. (A) PFS and (B) OS. PFS, progression-free survival; OS, overall survival; T-DM1, trastuzumab emtansine; Lap, lapatinib; Tra, trastuzumab; Cap, capecitabine; Ner, neratinib; Per, pertuzumab; Pyr, pyrotinib; Ate, atezolizumab.






Figure 5 | Rank probability plot of (A) PFS and (B) OS. PFS, progression-free survival; OS, overall survival; T-DM1, trastuzumab emtansine; Lap, lapatinib; Tra, trastuzumab; Cap, capecitabine; Ner, neratinib; Per, pertuzumab; Pyr, pyrotinib; Ate, atezolizumab.






Figure 6 | Surface under the cumulative ranking curves (SUCRA) for anti-HER2 regimens of all outcomes. (A) PFS (B) OS (C) ORR (D) grade ≥3 AEs. PFS, progression-free survival; OS, overall survival; ORR, overall response rate; AEs, adverse events; T-DM1, trastuzumab emtansine; Lap, lapatinib; Tra, trastuzumab; Cap, capecitabine; Ner, neratinib; Per, pertuzumab; Pyr, pyrotinib; Ate, atezolizumab.





Overall Survival

For OS, ten studies reported relevant data (8–12, 34–36, 38, 39). As shown in Figure 4B, Pyr-Cap was significantly superior in OS than Lap-Cap (HR, 95%CI: 0.71, 0.52–0.99), Cap (0.68, 0.49–0.96), and Ner (0.65, 0.45–0.94). T-DM1 was significantly superior than Lap-Cap (HR, 95%CI: 0.88, 0.82–0.95), Cap (0.84, 0.76–0.94), and Ner (0.80, 0.66–0.97). Per-Tra-Cap was significantly superior than Lap-Cap (HR, 95%CI: 0.82, 0.71–0.95), Tra-Cap (0.85, 0.75–0.96), Cap (0.78, 0.67–0.92), and Ner (0.74, 0.59–0.94). Ate-T-DM1 was significantly superior than Cap (HR, 95%CI: 0.74, 0.57–0.97) and Ner (0.70, 0.52–0.96). According to the rank probability plot of OS (Figure 5B), Pyr-Cap had the highest probability to rank as the best regimen, while Ner had the highest probability to rank as the worst one. The cumulative probabilities of all regimens were shown in Figure 6B and the ranking results of SUCRA are as follows: Pyr-Cap (89.7%, 1.8), Ate-T-DM1 (83.4%, 2.3), Per-Tra-Cap (79.3%, 2.7), T-DM1 (65.9%, 3.7), Ner-Cap (46.3%, 5.6), Tra-Cap (39.1%, 5.9), Lap-Cap (26.0%, 6.9), Cap (12.5%, 8.0), and Ner (8.0%, 8.4) (Appendix 3.2).

The DIC values of fixed effects model were lower than that of random effects model in PFS (−24.69 vs. −23.11), as well as in OS (−13.88 vs. −13.47). In order to minimize the magnitude of inconsistency and ensure the stability of the results, we chose the fixed effects model to analyze PFS and OS data in this network meta-analysis. The results of PFS and OS by random effects model were shown in Appendix 4. 



Overall Response Rate

Ten studies evaluated ORR (8–10, 12, 34–39). Pyr was significantly superior than Cap (OR, 95%CI: 7.87, 1.22–56.51) in ORR (Appendix 5A). The rank probability plot of ORR indicated that Pyr-Cap had the highest probability to be the best regimen and Cap was most likely the worst one (Appendix 6A). The cumulative probabilities of all regimens were shown in Figure 6C and the ranking results of SUCRA are as follows: Pyr-Cap (86.4%, 2.1), T-DM1 (72.5%, 3.3), Per-Tra-Cap (60.6%, 4.2), Ner-Cap (60.6%, 4.2), Lap-Cap (48.8%, 5.1), Tra-Cap (47.7%, 5.2), Ner (30.6%, 6.5), Ate-T-DM1 (29.0%, 6.7), and Cap (14.0%, 7.9) (Appendix 3.3). 



Grade ≥3 Adverse Events

Only six studies evaluated grade ≥3 AEs (8–10, 34, 38, 39). No significant difference was found in any comparison in grade ≥3 AEs (Appendix 5B). Pyr-Cap had the highest probability to be the regimen with most frequent grade ≥3 AEs, while T-DM1 most likely had the lowest incidence of grade ≥3 AEs according to the rank probability plot (Appendix 6B). The cumulative probabilities of seven regimens were shown in Figure 6D and the ranking results of SUCRA are as follows: Pyr-Cap (89.3%, 1.6), Cap (56.3%, 3.5), Lap-Cap (55.2%, 3.7), Tra-Cap (51.7%, 3.9), Ate-T-DM1 (39.7%, 4.6), Per-Tra-Cap (34.0%, 4.9), and T-DM1 (21.2%, 5.7) (Appendix 3.4).

Both the inconsistency factors in the results of ORR and grade ≥3 AEs were close to 0. In addition, the random effects standard deviations were roughly equal between the consistency model and inconsistency model (median 0.67, 95%CI [0.08–2.18] vs. 0.64, [0.01–2.23] for ORR; 0.47, [0.03–0.93] vs.. 0.49, [0.04–0.93] for grade ≥3 AEs). Therefore, we could confirm that the data are consistent. 




Discussion

MBC accounts for 6% of all BC, and approximately 30% early BC eventually develop metastatic disease (40). For patients with MBC, which is incurable with currently available therapies, the main therapeutic goals are to prolong PFS and reduce the incidence of AEs (41). Combining Tra with first-line chemotherapy (taxane in most cases) has been shown to improve PFS and OS among patients with HER2+ MBC (42, 43). For patients who progressed on Tra and a taxane, T-DM1 was recommended in the USA based on the results of EMILIA, while Pyr had better applicability in China (9, 13). Due to the lack of head-to-head comparisons of efficacy and safety between T-DM1 and Pyr, network meta-analysis combining direct and indirect evidence seems necessary and may be instructive for further studies.

A previous network meta-analysis by Paracha et al. compared the efficacy and safety of various anti-HER2 regimens in HER2+ MBC patients who progressed on prior taxane/Tra (44). Seven RCTs with 2857 subjects were included. Six regimens including T-DM1, Lap-Cap, Tra-Cap, Cap, Ner, and Per-Tra-Cap were included in the model. The results indicated that T-DM1 were generally favorable compared with other regimens both in efficacy and tolerability profiles (44). In present network meta-analysis, we added additional data from five updated studies (12, 13, 37–39) and compared the efficacy and safety of nine anti-HER2 regimens (T-DM1, Lap-Cap, Tra-Cap, Cap, Ner, Per-Tra-Cap, Pyr-Cap, Ate-T-DM1, and Ner-Cap), focusing on the comparison between T-DM1 and Pyr-Cap. A total of twelve RCTs containing 4353 HER2+ MBC patients pre-treated with Tra and a taxane were included. The results indicated that Pyr-Cap was more favorable in PFS than T-DM1, Lap-Cap, Tra-Cap, Cap, Ner, Per-Tra-Cap, and Ner-Cap. For OS, Pyr-Cap showed further improvement than Lap-Cap, Cap, and Ner. For ORR, Pyr-Cap was significantly superior than Cap. No significant difference was observed in grade ≥3 AEs. The SUCRA is a numerical representation of the ranking probability of each intervention in efficacy or safety, providing researchers with preliminary judgments on the ranking of interventions. With SUCRA, researchers could simplify the process of evaluating the efficacy of interventions by converting large amounts of data into simple ranking probabilities (25). In this study, Pyr-Cap ranked in the highest in PFS, OS, ORR, and grade ≥3 AEs according to the values of SUCRA.

As a novel irreversible tyrosine kinase inhibitor, Pyr has shown clinically significant benefits and acceptable tolerance in phase I/II studies (13, 21). Pyr exerts its anti-HER2 effects via a completely different mechanism from Tra. It directly acts on the intracellular tyrosine kinase region and blocks the downstream pathways of HER family homo/heterodimers (20). Therefore, Pyr may be still effective for HER2+ MBC patients who progressed on Tra (45). The PHENIX study by Jiang et al. is a randomized, double-blinded, controlled trial (37). 185 and 94 HER2+ MBC patients pre-treated with Tra and a taxane were randomly assigned to receive Pyr-Cap and Cap, respectively. Compared with Cap, Pyr-Cap significantly prolonged the PFS (11.1 vs. 4.1 months; HR, 95%CI: 0.18, 0.13–0.26). The PHOEBE study by Xu et al. reported in ASCO 2020 is an open-label randomized phase III trial (38, 46). 134 and 132 HER2+ MBC patients pre-treated with Tra and a taxane were randomly assigned to receive Pyr-Cap and Lap-Cap, respectively. Patients treated with Pyr-Cap showed significantly improved PFS compared with those treated with Lap-Cap (12.5 vs. 6.8 months; HR, 95%CI: 0.39, 0.27–0.56). However, the PFS of patients who received T-DM1 in the EMILIA study was only 9.6 months (9). These results confirmed the therapeutic effects of Pyr in later treatment lines of HER2+ MBC patients, underlining the importance of using anti-HER2 agents with different mechanisms after progressing on Tra. In addition to the different anti-tumor mechanisms, a major difference between Pyr and T-DM1 is the common grade ≥3 AEs. In EMILIA study, thrombocytopenia (12.9%), elevated serum concentrations of aspartate aminotransferase (4.3%), and alanine aminotransferase (2.9%) were the most commonly reported grade ≥3 AEs of T-DM1 (9). Nevertheless, the most frequent grade ≥3 AEs of Pyr-Cap were diarrhea (30.8%) and hand-foot syndrome (15.7%) in the PHENIX study, and diarrhea (30.6%) and hand-foot syndrome (16.4%) in the PHOEBE study (37, 38, 46). Frequent occurrence of diarrhea could be the reason why Pyr-Cap ranked in the highest of grade ≥3 AEs in this network meta-analysis. Despite the high incidence, the grade ≥3 diarrhea caused by Pyr-Cap is reversible and occurs in the early stage of treatment with a short duration, barely leading to the discontinuation of treatment (37, 38, 46). Therefore, the safety of Pyr could be considered acceptable. From a cost-effective point of view, Pyr is currently more cost-effective than T-DM1. In China, one therapy cycle of Pyr costs about CNY 9,030/USD 1,398, which is much less than T-DM1 (CNY 36,000/USD 5,572). Also, as the ease of use of Pyr, patients who go to other places for medical treatment do not need to travel frequently between hospital and home, further reducing the economic and time costs.

To our knowledge, this is the first network meta-analysis containing the comparisons of the efficacy and safety between Pyr and T-DM1 in HER2+ MBC patients pre-treated with Tra and a taxane. Rigorous methodology was used and a large number of studies and patients were included, increasing the reliability of this current study. However, there are a few limitations that should be mentioned. First, nine of twelve studies were judged to be at high risk, which may affect the validity of the results. Second, despite the advantage of enabling indirect comparisons, the evidence level of network meta-analysis is inferior to traditional pare-wise meta-analysis. At last, no study has directly compared the efficacy and safety between Pyr and T-DM1. Therefore, the results of this network meta-analysis need to be verified in further high-quality RCTs. 



Conclusions

In conclusion, Pyr may be more effective than T-DM1 in HER2+ MBC patients pre-treated with Tra and a taxane. However, it may be associated with more grade≥3 AEs.
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Appendix 5 | League table of network meta-analysis of the nine anti-HER2 regimens. (A) ORR and (B) grade ≥3 adverse events. ORR, overall response rate; TDM1, trastuzumab emtansine; Lap, lapatinib; Tra, trastuzumab; Cap, capecitabine; Ner, neratinib; Per, pertuzumab; Pyr, pyrotinib; Ate, atezolizumab. 

Appendix 6 | Rank probability plot of (A) ORR and (B) grade ≥3 adverse events. A, T-DM1; B, Lap- Cap; C, Tra-Cap; D, Cap; E, Ner; F, Per-Tra-Cap; G, Pyr-Cap; H, Ate-T-DM1; I, Ner-Cap; ORR, overall response rate; T-DM1, trastuzumab emtansine; Lap, lapatinib; Tra, trastuzumab; Cap, capecitabine; Ner, neratinib; Per, pertuzumab; Pyr, pyrotinib; Ate, atezolizumab. 
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Several prognosis prediction models have been developed for breast cancer (BC) patients with curative surgery, but there is still an unmet need to precisely determine BC prognosis for individual BC patients in real time. This is a retrospectively collected data analysis from adjuvant BC registry at Samsung Medical Center between January 2000 and December 2016. The initial data set contained 325 clinical data elements: baseline characteristics with demographics, clinical and pathologic information, and follow-up clinical information including laboratory and imaging data during surveillance. Weibull Time To Event Recurrent Neural Network (WTTE-RNN) by Martinsson was implemented for machine learning. We searched for the optimal window size as time-stamped inputs. To develop the prediction model, data from 13,117 patients were split into training (60%), validation (20%), and test (20%) sets. The median follow-up duration was 4.7 years and the median number of visits was 8.4. We identified 32 features related to BC recurrence and considered them in further analyses. Performance at a point of statistics was calculated using Harrell's C-index and area under the curve (AUC) at each 2-, 5-, and 7-year points. After 200 training epochs with a batch size of 100, the C-index reached 0.92 for the training data set and 0.89 for the validation and test data sets. The AUC values were 0.90 at 2-year point, 0.91 at 5-year point, and 0.91 at 7-year point. The deep learning-based final model outperformed three other machine learning-based models. In terms of pathologic characteristics, the median absolute error (MAE) and weighted mean absolute error (wMAE) showed great results of as little as 3.5%. This BC prognosis model to determine the probability of BC recurrence in real time was developed using information from the time of BC diagnosis and the follow-up period in RNN machine learning model.

Keywords: breast cancer, surveillance, machine learning, recurrence model, real time prediction, adjuvant cohort


INTRODUCTION

Breast cancer (BC) is the most common cancer affecting women worldwide and the most frequent cause of cancer death in women (1, 2). Recent advances in treatment strategies have improved BC-related mortality and morbidity; however, almost 30% of BC patients show recurrence in the follow-up. Therefore, to improve BC outcomes, it is necessary to focus on research such as improving screening methods for early detection of recurrence according to risk stratification, identifying new biomarkers, and developing new innovative treatment strategies.

There is an urgent unmet need to identify innovative methods to determine the prognosis of individual patients. Traditionally, clinicopathologic characteristics such as tumor size, axillary nodal status, histologic and nuclear grade, hormone receptors [estrogen receptor (ER) and progesterone receptor (PR)], and human epidermal growth factor receptor 2(HER2) status have been used to identify risk groups and to predict patient prognoses (3, 4). In addition to clinicopathologic characteristics, multigene signature panels offer an additional benefit in predicting patient prognoses (5, 6).

Several models for predicting the survival of individual BC patients have been proposed. Adjuvant! Online and PREDICT® are the online tools that predict durations of overall survival (OS) and disease-free survival (DFS) based on clinicopathologic factors (7–9), and CancerMath® shows the cancer-related mortality and life expectancy of BC patients (10). Survival rates predicted by those tools are used to determine the benefit of adjuvant chemotherapy after surgery or as reference data for shared decisions with patients about multiple treatments and surveillance (11). Most prediction models predict OS or DFS after BC diagnosis or curative surgery. However, they did not reflect newly developed comorbidities and test results, which may affect BC-specific recurrence or death with time during surveillance (12, 13).

Using recent advances in various machine learning algorithms (14, 15), some researchers have worked to develop models that can consider a large amount of complex data, and many efforts are being made to more accurately predict the survival of individual BC patients. The attention-based multi-NMF DNN (AMND) model based on a deep neural network was proposed to predict the survival of BC with the gene expression profile and clinical data of 1,489 patients (16). The area under the curve (AUC) value of the AMND model was 87.04%. The rule-based trees random forest model (TRF) was developed for the prediction of BC survival with 900 patients (17). The classification performance of this method showed an AUC of 93%. In addition, there was breast cancer recurrence prediction based on SVM (BCRSVM) for BC recurrence prediction within 5 years after BC surgery with 679 patients. This model suggested an AUC of 85% for the proposed model with seven time-independent variables as the most informative way of predicting recurrence (18). Despite these successes, there is still no predictive tool for individual survival available to determine appropriate follow-up periods and test methods for individual patients who have completed curative surgery and adjuvant treatment (16, 17).

Therefore, this study developed a recurrence prediction model of individual BC patients using the machine learning method. This model was developed using BC-related clinicopathologic factors at the time of curative surgery and consecutive clinical factors that have been identified during the BC surveillance period.



METHODS


Study Population

This is a retrospective data analysis from the BC registry composed of BC patients who received curative surgery followed by adjuvant treatment including chemotherapy, radiotherapy, endocrine therapy, and targeted therapy at Samsung Medical Center between January 2000 and December 2016. Patients who received neoadjuvant chemotherapy before surgery were diagnosed with ductal carcinoma in situ, were male or foreigners, and have a history of BC surgery at another hospital were excluded. Among the remaining 13,370 patients in this registry, we also excluded 253 patients with any of the following conditions: (1) restricted access to electronic medical record (EMR) (n = 1), (2) double primary cancer (n = 127), (3) no follow-up after surgery (n = 98), or (4) presence of distant metastases (n = 27) (Figure 1). Therefore, we analyzed the data of 13,117 patients. This study was reviewed and approved by the Institutional Review Board (IRB) of Samsung Medical Center, Seoul, Korea (IRB No. 2018-06-137), with an informed consent waiver, due to the use of retrospective clinical data.


[image: Figure 1]
FIGURE 1. Study cohort.




Measurements

Detailed information on surgery, adjuvant chemotherapy, radiotherapy, endocrine therapy, and targeted therapy were obtained from EMR. The pathologic stage was based on the criteria of the American Joint Committee on Cancer, 7th Edition (4). Two experienced pathologists reviewed and determined the primary tumor characteristics based on size, axillary nodal status, and receptor status (ER, PR, and HER2) by immunohistochemical (IHC) staining. ER positivity and PR positivity were defined as an Allred score of 3–8 based on IHC staining with antibodies against ER (Immunotech, France) and PR (Novocastra, UK), respectively. HER2 status was evaluated using the appropriate antibody (Dako, CA) and/or silver in situ hybridization (SISH). HER2 grades 0 and 1 indicated a negative result, while grade 3 indicated a positive result. Amplification of HER2 was confirmed by SISH for results of 2+. Triple negative BC was defined as BC with negative ER and PR expression, and lack of HER2 overexpression. In terms of radiologic tests, the categories of mammography and breast sonography were reported according to BI-RADS® (Breast Imaging, Reporting & Data System) (19), which is a risk assessment and quality assurance tool developed by the American College of Radiology. In this study, recurrence was defined as the first detected event of local and/or distant BC recurrence.



Data Pre-processing

The initial data set contained 325 clinical data elements including baseline characteristics with patient demographics, clinical information, and laboratory test results at the time of BC diagnosis, pathologic information including tumor size, nodal status, histologic characteristics, and IHC information for ER, PR, HER2, Ki-67, cytokeratin 5/6 (CK5/6), epidermal growth factor receptor(EGFR), and follow-up clinical information including laboratory and imaging data during surveillance (Supplementary Table 1).

Characteristic values including the subtype and stage were transformed into nominal or ordinal numeric values. For continuous variables, log transformation was used to deal with skewed data as needed, and Z-score normalization was applied. To reduce the number of discrete intervals for a continuous attribute, data binning divided continuous features (Ki-67) into a pre-specified number of categories (25% or 10% units), thereby making the data discrete. Categorical variables were one-hot encoded for the data analysis. For missing data, we used the average method for the data at the first time point and the last observation carried forward (LOCF) method for the data at a later time point.



Feature Selection

Potential independent variables selected by univariate analyses were considered in a time-dependent Cox regression model. A backward selection procedure applying the Akaike information criterion (AIC) (20) was used to select the final multivariable model. The backward stepwise selection procedure began with a model that included potential independent variables, then, the least significant variable was removed, and the model was run again based on AIC, in a stepwise manner until there were no variables left to remove. All analyses were performed using the R v3.6 software, and the significance level was set at 0.05. A few variables not significant at the 0.05 level were manually selected from the clinical point of view for the final multivariable model.



Deep Learning-Based Survival Algorithm

Before constructing the deep learning models, we randomly created 60/20/20 mutually exclusive sets for training, validation, and testing while preserving the same proportion of recurrence events in all three sets.

Weibull Time To Event Recurrent Neural Network (WTTE-RNN) by Martinsson was implemented as an open-source Python module (https://github.com/ragulpr/wtte-rnn) (21). The deep survival model took data about each patient's time-independent features (age at operation, molecular tests results, hormone receptor stage, pathologic stage, etc.) and time-dependent features (i.e., lab test results, mammography, etc.) as input. The system represented those inputs as matrix A of size m × n × k, where m is the total number of follow-ups in patient records, n is the window size of the follow-ups, and k is the total number of features. We did a grid search to find the optimal window size as time-stamped inputs. The network contained 32 cells at the first hidden layer and 20 cells at the second layer. We used hyperbolic tangent activation layers after the recurrent layers with gated recurrent units that take the time domain into account. Adam was used as the optimizer with an initial learning rate of 0.001, which was reduced by a factor of 10 when the model stopped improving after iterations. The model was trained with the batch size set to 100. The dropout rate was set to 0.25. The network structure was implemented in Python, using Keras with a Tensorflow backend (Python 3.5, Keras 2.1.2, Tensorflow 1.4.0).

To compare our model with existing models, we also developed logistic regression, random forest, and gradient boosting machine learning models because they are the methods most typically used in medical applications. The optimal configuration for the hyperparameters of each machine learning model was set by testing a wide range of parameters in a grid search.



Performance Evaluation

We used Harrell's concordance-index (C-index) in the lifeline package in Python to measure the concordance between the predicted recurrence time and the actual recurrence time (22, 23).

The AUC was used to assess the 2-, 5-, and 7-year recurrence predictions. To evaluate the model performance based on the main BC features, we stratified patients by their pathologic T stage, pathologic N stage, hormone receptor, and HER2 (ER/PR/HER2) status, and EGFR and CK5/6 status. The predicted recurrence values calculated by our model were compared with the actual recurrence in each group over 2, 5, and 7 years. Model ‘specificity and accuracy were assessed using the Median Absolute Error (MAE), mean absolute error, weighted Mean Absolute Error (wMAE), and maximum error.

Data sets for which the follow-up period was shorter than the prediction period and no recurrence occurred were excluded from the performance evaluation.




RESULTS


Clinical Characteristics

The baseline characteristics of the patients are summarized in Table 1. The median follow-up was 4.7 years (interquartile range: 3.0–7.7 years). Of the 13,117 patients in the study population, BC recurrence occurred in 1,214 (9.2%) patients during the follow-up period. The median age at BC curative surgery was 48 years (interquartile range, 43–55), and patients who did not experience BC recurrence were slightly older than those who did (median age: 48 vs. 46, p < 0.001). The proportion of BC subtypes differed between patients with and without BC recurrence. Hormone receptor (HR)+, defined as ER and/or PR+, HER2– BCs were more frequently observed in patients without recurrence (64.7 vs. 50.8%, p < 0.001), whereas ER-HER2– BCs were less frequent in patients without recurrence (12.5 vs. 22.2%, p < 0.001). Pathologic stage also affected BC recurrence: higher T (T3 and T4) and N (N2 and N3) stages were more frequently observed in patients with BC recurrence (p < 0.001 for all).


Table 1. Characteristics of the study population.

[image: Table 1]

The number of follow-up visits was measured from the date of surgery to the last follow-up, including all-cause mortality. Overall, the mean number of follow-up visits within 1 year after surgery was 8.4 for all patients (10.4 for recurrent patients and 8.2 for nonrecurrent patients), and the mean number of follow-up visits more than 1 year after surgery was <3 (Figure 2).


[image: Figure 2]
FIGURE 2. Mean numbers of follow-up visits per year after surgery. Error bar indicates standard deviation.




Prognosis Feature Selection

Univariate/multivariate analyses and backward stepwise selection identified 27 prognostic features that affected BC recurrence. In addition, five features (synchronous contralateral cancer, adjuvant chemotherapy, serum alkaline phosphatase, serum alanine aminotransferase, and serum calcium) were included in the further analyses based on expert opinions. Therefore, we used 32 features to develop the BC recurrence model. The prognosis features used in the BC recurrence model were as follows: 13 features related to baseline clinicopathologic characteristics, four features about adjuvant treatments, and 15 follow-up (time-dependent) features, which were serial measurements taken during follow-up (Supplementary Table 1).



Model Training and Performance

To learn the various measurement period data, we needed to find a fixed value for the window size (k) during the training stage. Longer periods are better, but a look-back period of 12 months was the optimal window size for our training data set, according to the results of grid-search algorithms.

The AUC and C-index were used to evaluate the performance. The C-index eventually reached 0.92 for the training data set and 0.89 for the validation and test data sets. The AUC value was 0.90 at the 2-year point, 0.91 at the 5-year point, and 0.91 at the 7-year point (Figure 3A). We also compared our model with the performances of three other machine learning prediction models (Figures 3B–D). The logistic regression model produced AUC in the range of 0.69–0.72, and the random forest and gradient boosting methods, which are the most popular ensemble models, showed similar AUC values in the range of 0.80–0.83. The deep learning-based final model only exceeded an AUC of 0.90, outperforming the existing machine learning-based models.
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FIGURE 3. Performance of the final model in terms of the receiver operating characteristic (ROC) curves. (A) The ROC and area under the ROC curve (AUC) were evaluated using the separated test group at each 2-, 5-, and 7-year point. The comparison of ROC and AUC of logistic regression (LR), random forest (RF), gradient boosting (GB), and our deep-learning (DL) models at (B) 2 year, (C) 5 year, and (D) 7 year point.


We also evaluated the model from a clinical point of view with pathologic T stage, pathologic N stage, subtypes according to ER/PR and HER2 status, EGFR status, and CK5/6 status by comparing the predicted recurrence proportion with the actual recurrence proportion (Figure 4). The MAE and wMAE of each group showed great results of as little as 3.5%. The model errors for pathologic T stage and N stage features were similar to each other but differed from those for the other pathologic features. The subtypes had similar error values of around 2.5%. The discrimination of the wMAE at each prediction time (2, 5, and 7 years) showed only small differences (Supplementary Tables 2–6).


[image: Figure 4]
FIGURE 4. Performance of the final model in terms of model error (predicted–observed) over each of the 2/5/7 years. Patients were grouped by breast cancer features. (A) Pathologic T stage. (B) Pathologic N stage. (C) ER/PR/HER2 status. (D) EGFR status. (E) CK56 status. For model specificity and accuracy, Median Absolute Error (MAE) and weighted Mean Absolute Error (wMAE) were calculated at each group or bin. Solid lines indicate observed recurrence proportion, and dashed lines indicate predicted recurrence proportion.





DISCUSSION

In this study, we developed an individually conditional BC recurrence prediction model using machine learning and an adjuvant BC cohort in a tertiary cancer hospital. We used baseline patient clinical characteristics, pathologic characteristics after curative surgery, and the results of follow-up tests, including laboratory tests, mammography, and breast sonography.

Machine learning is currently used for a wide range of applications in cancer research (24). Imaging diagnosis and pathologic diagnosis of BCs have been broadly supported by machine learning algorithms. A large scale retrospective analysis has indicated that artificial intelligence (AI) algorithms can improve BC detection ability on mammography better than radiologists can (25). In addition, AI has improved breast MRI interpretation (26) and predictions of the response to neoadjuvant chemotherapy (27). In terms of pathologic diagnosis, AI has helped pathologists to precisely diagnose BC using digital image analysis (28). Moreover, AI can interpret comprehensive genetic information to predict tumor site of origin (29).

Previous machine learning models of BC prognosis prediction were developed using baseline clinical and pathologic information (30–32). Most of those studies used pathologic information and additional molecular information, such as the intrinsic subtype at BC diagnosis. However, molecular information is not given in routine clinical practice.

Current surveillance studies suggested that BC recurrence was influenced by clinical information during the follow-up period as well as at the time of diagnosis. For example, alcohol consumption (33) and obesity at postmenopausal status (34) were well-known risk factors for BC recurrence. In terms of laboratory tests, changes in CA-15-3 during follow-up were traditionally used to detect BC recurrence (35, 36), and C-reactive protein was also considered as a predictive biomarker for BC recurrence (37). Moreover, surveillance guideline recommends annual mammography in BC patients after curative BC surgery (38). However, previous machine learning studies of the prediction model of BC prognosis have not considered follow-up exam data such as imaging and laboratory tests.

We used the same BC surveillance guideline since early 2010 (39, 40). Those guidelines recommend taking a careful history and performing a physical examination every 6–12 months, including regular mammography 6 months after the completion of definitive radiation therapy. In addition, the use of complete blood counts, chemistry panels, and tumor markers (CEA, CA-15-3) is not recommended for routine follow-up in an otherwise asymptomatic patient with no specific findings on clinical examination according to those guidelines. Understanding of the nature and biology of BC has improved, and it is now known that the timing and pattern of BC recurrence differ for patients with different BC subtypes (41). Moreover, the current concept of oligometastasis in BC, defined as low-volume metastatic disease with a few, small metastatic lesions, considered BC patients with oligometastasis to be a distinct subgroup with a more favorable long-term prognosis than patients with metastatic BC (42). This suggested that an early diagnosis of BC recurrence, rather than waiting for patients to show symptoms, might thus confer a survival benefit. Therefore, improved screening programs that incorporate the biology of individual BC patients and a method to precisely predict the risk of recurrence for individual patients are urgently needed.

For this study, we utilized an RNN model that weight features at BC diagnosis, treatment, and follow-up. In RNNs, the output of a hidden unit at the current time step is fed back into the hidden unit so that it forms part of the input for the previous time steps. This allows RNNs to fit and make predictions from sequences of events ordered chronologically. In addition, we applied the Weibull distribution instead of the well-known Cox regression model to our deep learning framework. The Weibull distribution allows more flexibility than other survival models because the associated hazard rate is not constant with respect to time, which helps to estimate the length of the hazard during the cancer recurrence period when using follow-up data.

In this model, the T and N stages and lymphovascular invasion at the time of curative surgery affected BC prognosis as stationary variables. In terms of IHC, neither ER, PR, nor HER2 affected BC prognosis. These three IHC components are used to categorize BC when choosing endocrine therapy, chemotherapy, and targeted therapy (38). Although these factors have been understood as important prognostic and predictive biomarkers for BC recurrence, proper treatment according to the BC subtype would neutralize their prognostic effects (43).

Our machine learning prognostic model uses baseline, treatment, and follow-up variables. In this analysis, we focused on laboratory tests during the follow-up period. An increase in the white blood cell count, hemoglobin, and total protein had a protective effect against BC recurrence, whereas elevated levels of serum glucose, absolute neutrophil count, and CA-15-3 increased the risk of BC recurrence (Supplementary Table 1). A previous study to find the relationship between BC prognosis and laboratory tests indicated that hemoglobin, alkaline phosphatase, and prothrombin time were associated with BC prognosis (44). In other cancer types, the association between the lymphocyte–monocyte ratio and cancer recurrence was studied (45, 46). However, those previous studies used the results from perioperative blood tests, not serial follow-up data.

In terms of follow-up imaging tests, the results of mammography and ultrasonography were naturally affected BC recurrence. Current studies with supplementary ultrasonography adding to mammography would help to detect BC recurrence but increase false-positive findings, and therefore, guidelines for BC surveillance did not recommend (47, 48).

The tests we used in our model were routinely performed at every follow-up visit. Thus, our machine learning model for BC prognosis was made with maximal use of the laboratory test results from current surveillance practices without requiring other laboratory work, such as intrinsic subtyping. Therefore, our BC prognosis model could fit into routine clinical practice better than previous machine learning models. Moreover, we can adapt this prognosis model into our EMRs using a website and thereby acquire information about BC recurrence in real time. This model could thus present the recurrence risk at each follow-up point using all available laboratory and imaging test results.

The results of this study should be interpreted in light of some limitations. Because our study was limited to a single institution, our results might not be generalizable to other cancer patients in other settings. Therefore, the findings from our study should be validated using samples from other institutions to confirm generalizability. Nonetheless, our model is the first machine learning-based BC prognosis model developed using clinical information at both BC diagnosis and follow-up. Moreover, our model produced high AUC scores that remained consistent for several years after the completion of BC treatment.

In conclusion, we used an RNN machine learning model and data from an adjuvant BC cohort in a tertiary cancer institute to develop a BC prognosis model that considers information from the time of BC diagnosis and during the follow-up period. This model can rapidly and precisely predict the probability of BC recurrence. A retrospective validation study using another adjuvant BC cohort and a prospective validation study are warranted.
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Background

Breast cancer is a malignancy and lethal tumor in women. Metastasis of breast cancer is one of the causes of poor prognosis. Increasing evidences have suggested that the competing endogenous RNAs (ceRNAs) were associated with the metastasis of breast cancer. Nonetheless, potential roles of ceRNAs in regulating the metastasis of breast cancer remain unclear.



Methods

The RNA expression (3 levels) and follow-up data of breast cancer and noncancerous tissue samples were downloaded from the Cancer Genome Atlas (TCGA). Differentially expressed and metastasis associated RNAs were identified for functional analysis and constructing the metastasis associated ceRNA network by comprehensively bioinformatic analysis. The Kaplan-Meier (K-M) survival curve was utilized to screen the prognostic RNAs in metastasis associated ceRNA network. Moreover, we further identified the metastasis associated biomarkers with operating characteristic (ROC) curve. Ultimately, the data of Cancer Cell Line Encyclopedia (CCLE, https://portals.broadinstitute.org/ccle) website were selected to obtained the reliable metastasis associated biomarkers.



Results

1005 mRNAs, 22 miRNAs and 164 lncRNAs were screened as differentially expressed and metastasis associated RNAs. The results of GO function and KEGG pathway enrichment analysis showed that these RNAs are mainly associated with the metabolic processes and stress responses. Next, a metastasis associated ceRNA (including 104 mRNAs, 19 miRNAs, and 16 lncRNAs) network was established, and 12 RNAs were found to be related to the overall survival (OS) of patients. In addition, 3 RNAs (hsa-miR-105-5p, BCAR1, and PANX2) were identified to serve as reliable metastasis associated biomarkers. Eventually, the results of mechanism analysis suggested that BCAR1 might promote the metastasis of breast cancer by facilitating Rap 1 signaling pathway.



Conclusion

In the present research, we identified 3 RNAs (hsa-miR-105-5p, BCAR1 and PANX2) might associated with prognosis and metastasis of breast cancer, which might be provide a new perspective for metastasis of breast cancer and contributed to the treatment of breast cancer.





Keywords: breast cancer, metastasis, ceRNA network, biomarkers, prognostic



Introduction

Breast cancer, one of the most common malignant tumors in females, is highly invasive and metastatic (1). Breast is not an important organ to maintain human life activities and breast cancer in situ is not fatal. However, as breast cancer cells lose the characteristics of normal breast cells, the connection between them become loose and easy to fall off (2). Once the cancer cells fall off, the free cancer cells can spread throughout the body with blood or lymph, forming lung, brain, bone and liver metastasis. The median survival of breast cancer patients with metastasis is only 18 to 24 months (3–6). Although mammographic screening may lower the metastasis-related mortality, the method is inappropriate for detection at early stages (7). Therefore, it is urgent to screen novel biomarkers to predict the prognosis and monitor metastasis of breast cancer and further explore the potential mechanisms.

Competing endogenous RNAs (ceRNAs) reveal a new mechanism of RNAs interaction (8). MicroRNAs (miRNAs) can cause gene silencing by binding to mRNAs, while lncRNAs can regulate the expression of the target genes by competitively binding to miRNAs (9, 10). Moreover, lncRNAs also have been reported to play a significant role in embryonic and cancer development (11–14). In addition, studies have suggested that the abnormal expression of ceRNAs is closely related to the occurrence, development and prognosis of tumors, including breast cancer (15). For example, Fan et al. identified 4 lncRNAs as independent prognostic biomarkers of breast cancer patients by constructing a ceRNA network (16). On the other hand, Yao et al. also provided novel insights into the drugs treatment and prognosis of breast cancer patients from ceRNA network (17). However, the research of ceRNA network on metastasis of breast cancer is not comprehensive.

The present study aims to construct a metastatic ceRNA network of breast cancer based on a series of bioinformatic analysis. Moreover, prognostic and metastatic biomarkers were identified by Kaplan-Meier (K-M) survival analysis and receiver operating characteristic (ROC) curves, respectively. The constructed ceRNA and identified biomarkers can not only contribute to further understand the molecular mechanism of metastatic breast cancer, but also improve clinical diagnosis the metastasis of breast cancer, which may contribute to the treatment of metastatic breast cancer.



Materials and Methods


Data Collection

The RNAs expression profiles (mRNAs, miRNAs, and lncRNAs) including fragments per kilobase of exon per million reads mapped (FPKM) and follow-up data of 899 primary breast cancer patients (including 878 M0 patients and 21 M1 patients, and all of the tissue samples from the primary site) and 90 noncancerous tissue samples (including 86 paired paracancerous M0 tissue samples, 1 paired paracancerous M1 tissue samples and 3 unpaired normal tissue samples) were downloaded from the Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov/) database. The breast cancer patients without the information of M0 stage or M1 stage and were excluded.



Identification of Differentially Expressed and Metastasis-Associated RNAs

When the expression of RNAs (including lncRNAs, miRNAs, and mRNAs) were detected in both cancer patients and noncancerous tissue samples, the RNAs were preserved for further analysis. The Limma package in R was utilized to screen the differentially expressed RNAs (DERs, including DElncRNAs, DEmiRNAs, and DEmRNAs) between 899 primary breast cancer patients and 90 noncancerous tissue samples (18). The p<0.05 was considered the screening standard. Then, the ggplot2 v.3.3.2 package in R was selected and visualized the volcano plots of DERs. Similarly, metastasis associated RNAs (MAR, including MAlncRNAs, MAmiRNAs, and MAmRNAs) which were differentially expressed between 878 M0 patients and 21 M1 patients were identified with the Limma package in R. Finally, overlapping RNAs between DERs and MARs which were defined as differentially expressed and metastasis associated RNAs (DEMARs, including DEMAlncRNAs, DEMAmiRNAs, DEMAmRNAs) were extracted for subsequent analysis and visualized by a venn diagram.



Enrichment Analysis

WEBGASTALT (http://www.webgestalt.org/webgestalt_2013/) website was used to investigate the biological function of overlapping DEMAR (19). The Gene Ontology (GO) annotation and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were selected to explore the biological function of DEMAmRNA. Moreover, the biological function of the DEMAlncRNA and DEMAmiRNAs were investigated by the DIANA miRPath v.3 web-based computational tool (http://snf515788.vm.okeanos.grnet.gr/) (20). When the terms of GO (including biological processes, molecular function and cellular component) and KEGG showed p<0.05, theses terms were considered significantly enriched.



Construction of the Metastasis Associated ceRNA Network

DEMAlncRNAs, DEMAmiRNAs, DEMAmRNAs were used to construct the metastasis associated ceRNA network. Firstly, we predicted the target genes of DEMAmiRNAs by miranda 3.3a software (21). Second, common genes between the predictive target genes and the DEMAmRNAs were retained for analysis. Thirdly, Pearson’s correlation analysis was performed to identified the mRNAs which were negatively regulated by DEMAmiRNAs by psych v.2.0.12 package in R. Moreover, we also obtained the negatively correlated interactions between DEMAlncRNAs and DEMAmiRNAs by miranda 3.3a software and Pearson’s correlation analysis. Finally, Cytoscape v.3.7.2 was used to constructed a metastasis associated ceRNA network based on the negatively correlated interactions between DEMAmiRNAs and DEMAmRNAs and between DEMAmiRNAs and DEMAlncRNAs (22).



Survival Analysis

The Kaplan-Meier (K-M) survival curve was drawn to explore the relationship between the expression levels of RNAs in metastasis associated ceRNA network and the overall survival (OS) of breast cancer patients by survminer v.0.4.6 package in R (23). All breast cancer patients were split into high expression and low expression based on the median expression of each RNA in metastasis associated ceRNA network. Then, Kaplan-Meier survival curves were used to assess the prognostic value of each RNA. RNAs which were associated with the overall survival (P<0.05) were retained for further analysis.



Identification and Validation of the Metastatic Biomarkers

The receiver operating characteristic (ROC) curve was plotted to identify the metastatic biomarkers and area under the ROC curve (AUC) was calculated using pROC v.1.16.2 package in R to show the performance of distinguishing M0 and M1 samples (24). Next, we screened the easily metastatic cell lines and not easily metastatic cell lines form the Cancer Cell Line Encyclopedia (CCLE, https://portals.broadinstitute.org/ccle) website to detect the expression level of metastatic biomarkers. Moreover, we further validate the expression levels of each metastatic biomarkers between 878 M0 and 21 M1 samples from the TCGA database employing Wilcoxon rank sum test. P< 0.05 was set as a statistically significant difference. Furthermore, we also compared the expression levels of each metastatic biomarkers between 87 cancer samples and paired 87 paired paracancerous tissue samples.



Mechanism Analysis of Metastatic Biomarkers

To better elucidate the regulatory mechanism of metastatic biomarkers, we extracted the regulatory network that was associated to the metastatic biomarkers and plotted Sankey diagram to show the regulatory mechanism of each metastatic biomarkers using ggalluvial v.0.12.3 package in R. Moreover, we also extracted the cancer associated KEGG pathways and drawn a graph to show the regulatory mechanism of metastatic biomarkers with Adobe Illustrator (Adobe Systems, Mountain View, CA, USA).



Statistical Analysis

All statistical analyses were accomplished by R Studio (R Version 4.0.2) software. The log-rank test was used in the Kaplan-Meier survival curve analysis. P-value <.05 was set as the standard of statistical analysis.




Result


Identification of Differentially Expressed and Metastasis-Associated RNAs

In the present study, we used Limma package in R to screen the DERs and MARs. Under the cut-off of P-value < 0.05, a total of 13,878 DEmRNAs (including 7,198 upregulated and 6,680 downregulated), 943 DEmiRNAs (including 483 upregulated and 460 downregulated) and 4,334 DElncRNAs (including 1,706 upregulated and 2,628 downregulated) were identified between breast cancer patients and noncancerous tissue samples (Supplementary Tables S1–S3 and Supplementary Figure S1A). Moreover, a total of 1332 MAmRNAs (including 798 upregulated and 534 downregulated), 59 MAmiRNAs (including 45 upregulated and 14 downregulated) and 344 MAlncRNAs (including 98 upregulated and 246 downregulated) were identified between M0 and M1 samples (Supplementary Tables S4–S6 and Supplementary Figure S1B). Volcano plots were plotted to present the DERs and MARs, as shown in Figures 1A–F. Furthermore, after obtaining the intersection of DERs and MARs, 1005 mRNAs, 22 miRNAs and 164 lncRNAs were obtained as DEMARs (Figure 1G).




Figure 1 | Identification of differentially expressed and metastasis associated RNAs. DEmRNAs (A), DEmiRNAs (B), and DElncRNAs (C) between breast cancer patients and noncancerous tissue samples and MAmRNAs (D), MAmiRNAs (E), and MAlncRNAs (F) between M0 and M1 samples were presented using volcano plots. Venn diagram showing the overlapped the DERs and MARs (G). Blue, downregulated; red, upregulated; black, not differential expressed. DEmRNAs, differentially expressed mRNAs; DEmiRNAs, differentially expressed miRNAs; DElncRNAs, differentially expressed lncRNAs; MAmRNAs, metastasis associated mRNAs; MAmiRNAs, metastasis associated miRNAs; MAlncRNAs, metastasis associated lncRNAs.





Enrichment Analysis

To further investigate the biological function of DEMARs in the breast cancer metastasis, GO function and KEGG pathway enrichment analysis were performed using WEBGASTALT website for differentially expressed and metastasis associated mRNAs. The results of KEGG pathway analysis showed DEMAmRNAs mainly regulate the biosynthesis of amino acids, homologous recombination, B cell receptor signaling pathway, salmonella infection, spliceosome, TNF signaling pathway, Carbon metabolism, and so on (Supplementary Table S7 and Figure 2A). Besides, as shown in Figure 2B, the result of GO analysis suggested that DEMAmRNAs mainly involved in metabolic processes and stress responses (biological process), nucleus and membrane (Cellular component), and protein binding and ion binding (molecular function, Supplementary Table S8). Furthermore, we also analyzed the biological function of DEMAlncRNAs and DEMAmiRNAs by miRPath v.3 web-based computational tool, and the results also suggested that DEMAmiRNAs primarily related to biosynthetic process, cellular nitrogen compound metabolic process, ion binding, TGF-beta signaling pathway, Hippo signaling pathway, Wnt signaling pathway, PI3K-Akt signaling pathway, RAP1 signaling pathway and RAS signaling pathway (Supplementary Tables S9, S10 and Figures 2C, D). However, DEMAlncRNAs mainly associated with the detection of chemical stimulus involved in sensory perception of smell and detection of chemical stimulus involved in sensory perception (Supplementary Figure S2). In short, the results of enrichment analysis implied that the DEMARs may play an important role for breast cancer metastasis by regulating above pathways or biological processes.




Figure 2 | The biological function of (KEGG pathways (P < 0.05) of DEMAmRNAs (A) and DEMAmiRNAs (D). GO terms (P < 0.05) of DEMAmRNAs (B) and DEMAmiRNAs (C), KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, Gene Ontology; DEMARs, differentially expressed and metastasis associated RNAs; DEMAmRNAs, differentially expressed and metastasis associated mRNA; DEMAmiRNAs, differentially expressed and metastasis associated miRNAs.





Construction of the Metastasis Associated ceRNA Network

In order to construct a metastasis associated ceRNA network, we firstly predicted the target genes of 22 DEMAmiRNAs and obtained the intersection of target genes and DEMAmRNAs. Next, Pearson’s correlation analysis was performed to identified the mRNAs which were negatively regulated by DEMAmiRNAs. Finally, negatively regulated miRNAs and mRNAs were preserved to build ceRNA network. Similarly, negatively regulated miRNAs and lncRNAs were preserved to build ceRNA network.

Based on the negatively regulated interaction pairs between DEMAmiRNAs and DEMAmRNAs and between DEMAmiRNAs and DEMAlncRNAs, a metastasis associated ceRNA network with 139 differentially expressed and metastasis associated RNAs (including 104 mRNAs, 19 miRNAs, and 16 lncRNAs) was established (Tables 1–3 and Figure 3). In addition, to directly display the expression level of DEMAmiRNAs, two ceRNA sub-networks including upregulated miRNAs in M1 samples and downregulated miRNAs in M1 samples were plotted by Cytoscape v.3.7.2 (Figures 3A, B).


Table 1 | Differentially expressed and metastasis associated mRNAs in ceRNA network.




Table 2 | Differentially expressed and metastasis associated miRNAs in ceRNA network.




Table 3 | Differentially expressed and metastasis associated lncRNAs in ceRNA network.






Figure 3 | Construction of the metastasis associated ceRNA networks. Upregulated miRNAs ceRNA network (A) and downregulated miRNAs ceRNA network (B). In network A, orange diamond: upregulated miRNAs, green rectangle: downregulated lncRNAs, Blue Oval: downregulated mRNAs. In network B, orange oval: upregulated mRNAs, pink rectangle: upregulated lncRNAs, blue diamond: downregulated miRNAs.





Identification of the Prognostic Biomarkers

To further explore the prognostic significance of RNAs in metastasis associated ceRNA, K-M survival curves were plotted to observe the correlation between the expression levels of RNAs and the OS of breast cancer patients. The results of K-M survival curves and log rank test suggested that the expression dysregulation of 7 mRNAs (AHRR, TTC34, CNTRL, ANKRD52, BCAR1, TMEM151B and PANX2), 4 miRNAs (hsa-miR-105-5p, hsa-miR-4435, hsa-miR-5691 and hsa-miR-92a-1-5p) and lncRNA LINC01742 in metastasis associated ceRNA were significantly related to the OS of breast cancer patients (Supplementary Tables S11–S13). As shown in Figure 4, breast cancer patients with higher expression level of TTC34 (Figure 4A), CNTRL (Figure 4B), TMEM151B (Figure 4C), hsa-miR-5691 (Figure 4D), and hsa-miR-92a-1-5p (Figure 4E) showed the higher OS. Inversely, breast cancer patients with higher expression level of AHRR (Figure 5A), ANKRD52 (Figure 5B), BCAR1 (Figure 5C), PANX2 (Figure 5D), hsa-miR-105-5p (Figure 5E), hsa-miR-4435 (Figure 5F), and LINC01742 (Figure 5G) showed the lower OS. The results suggested that metastasis associated RNAs, including AHRR, TTC34, CNTRL, ANKRD52, BCAR1, TMEM151B, PANX2, hsa-miR-105-5p, hsa-miR-4435, hsa-miR-5691, hsa-miR-92a-1-5p, and LINC01742 could serve as the prognostic biomarkers of breast cancer patients.




Figure 4 | Kaplan–Meier survival curves of whose higher expression showed the higher OS. TTC34 (A), CNTRL (B), TMEM151B (C), hsa-miR-5691 (D), hsa-miR-92a-1-5p (E).






Figure 5 | Kaplan–Meier survival curves prognostic. RNAs whose higher expression showed the lower OS. AHRR (A), ANKRD52 (B), BCAR1 (C), PANX2 (D), hsa-miR-105-5p (E), hsa-miR-4435 (F), LINC01742 (G).





Identification and Validation of the Reliably Metastatic Biomarkers

To identify metastatic biomarkers from the 12 prognostic and metastasis associated RNAs, the ROC analysis was carried out to investigate the accuracy of the RNAs for distinguishing the M1 samples from M0 samples. The results of ROC analysis suggested that hsa-miR-4435 (Figure 6A), hsa-miR-105-5p (Figure 6B), PANX2 (Figure 6C), BCAR1 (Figure 6D), TTC34 (Figure 6E), and AHRR (Figure 6F) were selected as the metastatic biomarkers because the AUC values of the 6 RNAs were greater than 0.65. In addition, for further verify the accuracy of 6 metastatic biomarkers, we compared the expression level of the 5 RNAs (hsa-miR-4435 was be excluded because of lacking of data) between high metastatic cell lines (MDA-MB-231 MDA-MB-453) and low metastatic cell lines (MCF-7).Obviously, only hsa-miR-105-5p, BCAR1 and PANX2 showed higher expression in highly metastatic cell lines (Figures 7A, C, D). Therefore, AHRR and TTC34 were removed from the biomarkers (Figures 7B,E). Furthermore, we also compared the expression levels of the 4 RNAs between M0 and M1 samples to elucidate the role of these 4 RNAs in metastasis of breast cancer. Surprisingly, all of them were upregulated in M1 samples compared to M0 sample (Figure 8). On the other hand, we also compared the expression levels of these 4 RNAs between 87 cancer tissues and 87 paired paracancerous tissues. Notably, hsa-miR-4435 did not show the difference between 87 cancer tissues and 87 paired paracancerous tissues (Figure 9A) and only other three RNAs showed the difference (Figures 9B–D). Thus, three reliably metastatic biomarkers (hsa-miR-105-5p, BCAR1 and PANX2) were reserved to differentiate M0 and M1 samples.




Figure 6 | ROC analysis of 6 prognostic RNAs (only showing the AUC > 0.65). hsa-miR-4435 (A), hsa-miR-105-5p (6), PANX2 (C), BCAR1 (D), TTC34 (E), AHRR (F). ROC, receiver operating characteristic curves.






Figure 7 | Expression level of the 5 RNAs between highly metastatic cell lines (MDAMB231, MDAMB453) and lowly metastatic cell lines (MCF7). hsa-miR-105-5p (A), AHRR (B), BCAR1 (C), PANX2 (D), TTC34 (E).






Figure 8 | Expression levels of the 4 reliably metastatic biomarkers between M0 and M1 samples. hsa-miR-4435 (A), hsa-miR-105-5p (B), BCAR1 (C), PANX2 (D).






Figure 9 | Expression levels of the 4 reliably metastatic biomarkers between 87 cancer tissues and 87 paired paracancerous tissues. hsa-miR-4435 (A), hsa-miR-105-5p (B), BCAR1 (C), PANX2 (D). **P < 0.01 and ****P < 0.0001, NS, not significant.





Molecular Mechanism of Reliably Metastatic Biomarkers

As the DEMARs were markedly enriched in cancer related biological processes and pathways, it is most likely that 3 reliably metastatic biomarkers could influence the metastasis of breast cancer. Therefore, we further analyzed the regulatory mechanism of hsa-miR-105-5p, BCAR1 and PANX2. As shown in Figure 10A, lncRNA ACVR2B-ASQ, FAM66E, and ZNF197-AS1 could affect the expression of BCAR1 by a competitive combination with hsa-miR-92a-1-5p. CATIIP-AS2, FAMM66E, and LINC00028 could regulate the expression of BCAR1 by a competitive combination with hsa-miR-503-5p (Figure 10A). Moreover, LINC00028, N4BP2L2-IT2, and TPM1-AS could regulate the expression of BCAR1 by a competitive combination with hsa-miR-503-5p and hsa-miR-92a-1-5p (Figure 10A). On the other hand, reliably metastatic biomarker hsa-miR-105-5p could regulate the expression of genes PKHD1L1 and USP34 (Figure 10B). In addition, hsa-miR-105-5p could be regulated by lncRNA CYP4A22-AS1 and MIR583HG.Furthermore, we also extracted the cancer associated KEGG pathways and the corresponding RNAs to show the regulatory mechanism of breast cancer. As shown in Figure 10C, the reliably metastatic biomarkers BCAR1 could regulate the Rap 1 signaling pathway (Figure 10C). However, hsa-miR-105-5p and PANX2 were not detected (Figure 10C).




Figure 10 | Regulatory mechanism of hsa-miR-105-5p, BCAR1 and PANX2. Sankey diagram shows the regulatory mechanism of BCAR1 and PANX2 (A). Sankey diagram shows the regulatory mechanism of hsa-miR-105-5p (B). Cancer associated KEGG pathways shows the regulatory mechanism of BCAR1 (C).






Discussion

Breast cancer, a common and malignant cancer in women, is one of the main causes for the cancer-related deaths (25). Metastasis of breast cancer is one of the causes of poor prognosis (26). Due to lacking specific diagnostic and prognostic biomarkers of metastatic breast cancer, patients have low survival rate. Therefore, it is urgent to explore potential mechanisms of metastasis and screen candidate biomarkers for monitoring the metastasis of breast cancer. Although researchers have revealed that the abnormal expression of ceRNAs plays a significant role in the occurrence, development and prognosis of tumors (15), few studies conducted on this aspect in metastatic breast cancer.

In the present research, the RNAs expression profiles of 899 primary breast cancer patients (including 878 M0 patients and 21 M1 patients) and 90 noncancerous tissue samples from TCGA were analyzed. Then two metastasis associated lncRNA-(up/down) miRNA-mRNA sub-networks were constructed and four metastatic biomarkers (BCAR1, PANX2, hsa-miR-105-5p) were identified from 12 prognostic biomarkers by bioinformatic analysis. Finally, combined with the KEGG signaling pathways, it could be speculated that the BCAR1 could affect the occurrence and metastasis of breast cancer by regulating the Rap 1 signaling pathway. In a word, the present study provided supporting data and theoretical basis for the study of ceRNAs in the metastasis of breast cancer.

BCAR1, whose full name is breast cancer antiestrogen resistance protein 1, encoding an adaptor/scaffold protein, has been reported to be involved in the regulation of signal transduction, actin cytoskeleton remodeling, and the stability of cell structure, especially as a mechanically sensitive regulator of filamentous pseudopod stability (27–30). In addition, BCAR1 has been shown to enhance tumor proliferation, invasion, and metastasis in several cancers (31–33). Furthermore, some oncogenes, such as ErbB2(erb-b2 receptor tyrosine kinase 2), PTEN (phosphatase and tensin homolog), and PI3KCA (phosphatidylinositol-4, 5-bisphosphate 3-kinase catalytic subunit alpha) promote tumor progression via the phosphorylation of BCAR1 (27). Notably, up-regulation of BCAR1 can alter the morphology of breast epithelial cell resulting in that the occurrence and development of breast cancer, which is exactly consistent with our result that the expression of BCAR1 was clearly upregulated in M1 patients compared with M0 samples (Figure 8C). Hence, BCAR1 might play a key role in the occurrence and development of tumor and could be used as a reliably metastatic biomarker (34, 35).

PANX2, whose full name is pannexin 2, encoding the protein pannexin 2, belonging to the innexin family, is the structural components of gap junctions (36). It has been demonstrated by previous studies that PANX2 is abundantly expressed in the central neuronal system, and its main function is participating in neuronal development and adult neurogenesis (37, 38). Moreover, the abnormal expression of PANX2 was associated with the occurrence the development and progression of certain diseases, like neoplasms, multiple sclerosis, migraines, hypertension and so on (39). In recent research, Fish et al. demonstrated that oncRNA (orphan noncoding RNAs), which they had named T3p, can promote tumor metastasis by acting as an inhibitor of RISC complex and increasing the expression of NUPR1 and PANX2 (40). Furthermore, Kim et al. also found that PANX2 might be used as a novel prognostic indicator for CCRCC patients. Nevertheless, few studies concentrated on the regulating mechanism of PANX2 (41). Thus, more studies were urgent to elucidate the regulating mechanism of PANX2.

Currently, as for the other metastatic biomarkers hsa-miR-105-5p, it remains unknown that it is associated with the development of breast cancer. Besides, a few researches investigated that they participated in the occurrence and progression of other tumors. Fang et al. suggested that the expression level of hsa-miR-105-5p was related to the survival of HCC patients (42).

In conclusion, the present study identified 12 biomarkers that might be involved in the prognosis of breast cancer by constructing a ceRNAs network. What’s more, the four of them were selected as the reliably metastatic biomarkers by ROC and expression analysis. In a word, these results suggested that BCAR1, PANX2, hsa-miR-105-5p might play a vital role in the progression of breast cancer and might be served as novel prognostic indicators for breast cancer, which might provide a new perspective for metastasis of breast cancer and contributed to the treatment of breast cancer. However, the regulating mechanisms of them were unclear and needed to further study to understand their roles in the metastasis of breast cancer.
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Supplementary Figure 1 | Under the cutoff of P-value < 0.05, differentially expressed RNAs between breast cancer patients and noncancerous tissue samples (A), and between M0 and M1 samples (B).

Supplementary Figure 2 | Biological function of differentially expressed and metastasis associated lncRNAs.

Supplementary Table 1 | Differentially expressed mRNAs between breast cancer patients and noncancerous tissue samples.


Supplementary Table 2 | Differentially expressed miRNAs between breast cancer patients and noncancerous tissue samples.


Supplementary Table 3 | Differentially expressed lncRNAs between breast cancer patients and noncancerous tissue samples.


Supplementary Table 4 | Differentially expressed mRNAs between M0 and M1 samples.


Supplementary Table 5 | Differentially expressed miRNAs between M0 and M1 samples.


Supplementary Table 6 | Differentially expressed lncRNAs between M0 and M1 samples.
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To investigate the relationship between non-coding RNAs [especially circular RNAs (circRNAs)] and docetaxel resistance in breast cancer, and to find potential predictive biomarkers for taxane-containing therapies, we have performed transcriptome and microRNA (miRNA) sequencing for two established docetaxel-resistant breast cancer (DRBC) cell lines and their docetaxel-sensitive parental cell lines. Our analyses revealed differences between circRNA signatures in the docetaxel-resistant and -sensitive breast cancer cells, and discovered circRNAs generated by multidrug-resistance genes in taxane-resistant cancer cells. In DRBC cells, circABCB1 was identified and validated as a circRNA that is strongly up-regulated, whereas circEPHA3.1 and circEPHA3.2 are strongly down-regulated. Furthermore, we investigated the potential functions of these circRNAs by bioinformatics analysis, and miRNA analysis was performed to uncover potential interactions between circRNAs and miRNAs. Our data showed that circABCB1, circEPHA3.1 and circEPHA3.2 may sponge up eight significantly differentially expressed miRNAs that are associated with chemotherapy and contribute to docetaxel resistance via the PI3K-Akt and AGE-RAGE signaling pathways. We also integrated differential expression data of mRNA, long non-coding RNA, circRNA, and miRNA to gain a global profile of multi-level RNA changes in DRBC cells, and compared them with changes in DNA copy numbers in the same cell lines. We found that Chromosome 7 q21.12-q21.2 was a common region dominated by multi-level RNA overexpression and DNA amplification, indicating that overexpression of the RNA molecules transcribed from this region may result from DNA amplification during stepwise exposure to docetaxel. These findings may help to further our understanding of the mechanisms underlying docetaxel resistance in breast cancer.
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Introduction

Breast cancer is the most prevalent and mortal cancer among women worldwide (1). Chemotherapy is a very important treatment for breast cancer, especially for hormone-insensitive, advanced or metastatic breast cancer.

The taxane class of chemotherapy agents, including docetaxel and paclitaxel, were introduced into the treatment of advanced breast cancer about two decades ago and recognized as a significant improvement for breast cancer treatment (2). Paclitaxel is a derivative of the crude extract of the pacific yew tree (Taxus brevifolia) (3). Docetaxel is a semisynthetic derivative of paclitaxel, and regarded as a second-generation taxane (4).

The anti-cancer mechanism for taxanes involves binding and stabilizing GDP-bound tubulin (5, 6), and thus causing cell cycle arrest and apoptosis of cancer cells (7). Taxane-containing treatment regimens have been shown to improve overall survival in both early-stage and advanced breast cancer when compared with non-taxane regimens (8, 9). Taxanes, either alone or in combination, are commonly applied as first-line treatments for advanced breast cancer (10). However, many patients receiving taxanes develop drug resistance, which might be a result of mutations or dysregulation of transcription in drug-resistance genes, or post-transcriptional mechanisms (11–14). However, no biomarkers have been successfully identified for response to taxanes in clinical treatments of breast cancer.

Circular RNAs (circRNAs) are covalently closed RNA molecules, usually generated from canonical splice sites and comprised of exonic sequences (15). Their unique structure allows them to escape from exonuclease-mediated degradation and they therefore become more stable than linear RNAs (16). Due to the lack of free ends, circRNAs are not capped and thus are not predicted to be translated by cap-dependent mechanisms. Thus, they are classified as non-coding RNAs (17). Although the functions of circRNAs remain largely unknown, recent studies have revealed that circRNAs may participate in biological processes that include affecting mRNA expression by competing with linear splicing (18), binding and sequestering certain proteins (19), and functioning as microRNA sponges (20). So far, the most well-documented function of circRNAs is their ability to act as molecular sponges to bind microRNAs (miRNAs) and thus reduce inhibition of their target genes. For example, ciRS-7 (circular RNA sponge for miR-7) was found to contain over 70 miRNA binding sites and to strongly reduce miR-7 activity (20). Among 9 miRNAs bound by circHIPK3, inhibition of miR-124 activity has been shown to promote human cell growth (21). Also, evidence is accumulating that circRNAs are involved in the development of cancer and other diseases. For example, circTCF25 has been shown to sponge up miR-107 and miR-103a-3p, thereby increasing expression of CDK6, and to promote migration and proliferation of bladder cancer cells (22). Differential expression of circRNAs is also involved in radioresistance of esophageal cancer (23) and chemotherapy resistance of acute myeloid leukemia and breast cancer (24, 25). These findings point to circRNAs as potential biomarkers for diagnosis and resistance to treatment of cancer.

To investigate possible relationships between circRNAs and docetaxel resistance in breast cancer, we performed RNA sequencing and circRNA analysis of two cell lines, MDA-MB-231 and MCF-7, and their docetaxel-resistant cell sublines MDA-RES and MCF7-RES. We also performed miRNA sequencing to explore potential interactions between circRNAs and miRNAs. Our data show that circRNAs may sponge up chemotherapy-associated miRNAs and regulate signaling pathways that contribute to docetaxel resistance in breast cancer cells.



Materials and Methods


Cell Culture and Treatments

Two docetaxel-resistant human breast cancer cell lines, MDA-RES and MCF7-RES, and their parental cells, MDA-MB-231 and MCF-7, were obtained from Hansen et al. (12). Cells were cultured in DMEM (Gibco, ThermoFisher Scientific, Massachusetts, USA) containing L-glutamine, supplemented with 10% fetal calf serum (FCS) (Gibco, ThermoFisher Scientific, Massachusetts, USA) for MDA-MB-231, or 5% FCS and 1% non-essential amino acids (Gibco, ThermoFisher Scientific, Massachusetts, USA) for MCF-7. Cells were kept in a humidified atmosphere containing 5% carbon dioxide at 37°C. MCF-RES and MDA-RES cells were maintained in growth medium with 65 and 150 nM docetaxel, respectively.



Total RNA Purification and rRNA-Depleted Transcriptome Sequencing

Total RNA from 3 passages (3 biological replicates) each of MCF-7, MCF7-RES, MDA-MB-231 and MDA-RES cells was purified using the RNAiso™ Plus Kit (TaKaRa, Japan). After RNA purification and DNase I digestion, ribosomal RNAs (rRNAs) were removed from total RNA with the RiboMinus Eukaryote Kit (Qiagen, Valencia, CA). The remaining RNAs were fragmented and used to synthesize cDNAs, followed by end repairing and adenine connection. Then the sequencing adaptors were ligated to the fragments and those with suitable sizes were selected for PCR amplification. An ABI StepOnePlus System (ThermoFisher Scientific, Massachusetts, USA) and an Agilent 2100 Bioanaylzer (Agilent Technologies, California, USA) were used to quantify and qualify the sample libraries in the quality control steps. Finally, all the libraries were sequenced by an Illumina HiSeqTM 2000 sequencer.



Detection and Quantification of circRNAs

The raw sequencing reads were cleaned by cutting adaptor sequences and filtering low quality reads that contained more than 50% low quality bases (base quality < 10) and 5% undefined nucleotides [NT]. To avoid introducing error into the next analysis by reads mapped to the remaining rRNAs, we aligned reads to vertebrate rRNA sequences and filtered the perfect mapping reads. After this two-step filtering, the remaining reads were considered clean and used in the subsequent expression profile. Since circRNA is produced by the junction of the downstream spliced donor and upstream spliced acceptor sites, called “back-spliced sites”, we used Tophat2 software (26) to distinguish the back-spliced reads from the clean reads. CIRCexplorer software (27) uses back-spliced reads and NCBI RefSeq gene annotations as input to identify circRNA. We kept only exonic circRNAs for the next analysis. To quantify the relative expression of circRNAs, the total number of reads mapped to hg19 were calculated for each sample, and then the number of back-spliced reads for each circRNA was normalized by the total number of mapped reads and the read length. The relative expression level for each circRNA was denoted as spliced reads per billion mappings (SRPBM) (21).



Validation of circRNAs

Outward-facing primers were designed for circRNAs by using Primer 5.0. The PCR products across the junction points ranged from 200 bp to 500 bp. GAPDH served as an endogenous control. Total RNA from each cell line was extracted using RNAiso Plus (TAKARA, Japan). qPCR was performed in triplicate (n=3) on a StepOnePlus instrument (Applied Biosystems, Thermo Fisher Scientific, USA) using the SYBR Premix Ex Taq II reagent (TAKARA, Japan). The relative expression of circRNAs were calculated with the 2−ΔΔCt approach. Finally, the sequences of the PCR products were detected by a 3730xl DNA Analyzer (ThermoFisher Scientific, Massachusetts, USA) and then mapped to reference genome hg19 to validate the exact junction points and the cyclization events.



miRNA Binding-Site Prediction

Using circRNA annotation information provided by CIRCexplorer software, we extracted the sequences of circABCB1, circEPHA3.1, and circEPHA3.2 from the human reference genome hg19 using bedtools software (28). Then, we used 4 software tools, TargetScan v7.1 (29), Miranda (30), Pita (31), and RNAhybrid (32) to predict potential microRNA target sites on the 3 circRNAs. The sequences of the miRNAs were downloaded from miRBase database v20 (http://www.mirbase.org/ftp.shtml), which contains all mature human microRNA sequences (2794 entries in total).



miRNA Extraction and Sequencing

The total RNA samples from 3 passages (3 biological replicates) of the MCF-7, MCF7-RES, MDA-MB-231 and MDA-RES cell lines were purified using the RNAiso™ Plus Kit (TaKaRa, Japan). 1μg total RNA from each sample was subjected to PAGE gel separation, and the stripes of 18-30 NT were selected and recycled. The small RNA libraries were constructed using the MGIEasyTM Small RNA Library Prep Kit V1 (MGI, Cat No. 85-05535-00). Briefly, the 3’ and 5’ adaptors were ligated to the recycled RNA. Then, the cDNAs were prepared and PCR amplification was performed for 16 cycles. PCR products were purified on 6% acrylamide gels followed by elution and ethanol precipitation, and then quantified using a Qubit fluorometer (ThermoFisher Scientific, Massachusetts, USA) and pooled together to produce single-strand DNA (ssDNA) circles. Then the ssDNA circles were used to produce DNA nanoballs (DNBs) via rolling circle replication to amplify the fluorescent signals during the sequencing process. Then the DNBs were loaded into sequencing chips, and 50 bp single-end reads were generated on a BGISEQ-500 platform (BGI, Shenzhen, China) for subsequent analysis.



miRNA Sequencing Data Analysis

Clean reads were aligned to the mature miRNA sequences downloaded from the miRBase database v20 (http://www.mirbase.org/) and BLAST (basic local alignment search tool) was used to identify known miRNAs. To quantify miRNA expression levels, we counted read numbers mapped to each miRNA. Thus, we obtained an miRNA expression matrix. To find miRNAs differentially expressed between groups, we used the DESeq2 (33) software package to analyze the expression matrix in the R environment. The P value was calculated based on a negative binomial distribution model and adjusted by the Benjamini-Hochberg method (33).



Chemotherapy-Associated miRNA Searching and Information Formatting

The search terms “chemotherapy” and “miRNA” were used for a literature search in the PubMed databases. The abstracts of the literature identified in the search were download and formatted with a custom Perl script to form a reference list for chemotherapy-related miRNA. We used the Pharmaco-miR database (http://www.pharmaco-mir.org/), which links miRNAs with drug effects, to download a list of miRNAs related to the drugs docetaxel and paclitaxel. Finally, we combined the PubMed references and Pharmaco-miR miRNA list to form an annotation data source (named Reported.miR, Supplementary Table 6) for further investigation of the relationships between miRNAs and chemotherapy.



miRNA Target Gene Prediction and KEGG Pathway Enrichment

The target genes for eligible miRNAs were predicted using the miRWalk database (34), and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis for the predicted genes was performed using the KOBAS (KEGG Orthology-Based Annotation System) server (35). P values were calculated using the hypergeometric test. The Q value is the P value corrected using the Benjamini-Hochberg method. Pathways with a Q value smaller than 0.01 were considered to be significantly enriched.



Integrated Analyses of mRNA, lncRNA, circRNA, miRNA, and CNV

mRNA and long non-coding RNA (lncRNA) expression profiles were derived from a previous study (36). And circos plots of CNV (copy number variation) (13) and RNA expression were drawn using the perl package Circos. Up- and down-regulation of different kinds of RNA were determined using the DESeq2 software package as described above.




Results


Identification of Circular RNAs in MDA-MB-231 and MCF-7 Breast Cancer Cells and Their Docetaxel-Resistant Sublines

Ribosomal RNA-depleted RNA-sequencing was performed to profile circRNAs in the docetaxel-resistant MDA-RES and MCF7-RES cell lines and their docetaxel-sensitive parental cell lines, MDA-MB-231 and MCF-7, respectively. 3 biological replicates were sequenced for each cell line.

A total of 1,825,984,984 raw reads were generated by the Illumina HiSeqTM 2000 sequencer for the 12 RNA samples (4 cell lines × 3 biological replicates each), and 1,750,124,272 clean reads (157.5 Gb) were obtained after data filtering, resulting in 146 million clean reads per sample. By mapping the reads to a human reference genome (hg19) with Tophat2 software, and using CIRCexplorer software to identify and annotate circRNAs, we detected 8,246 high-reliability exonic circRNAs from the 12 samples, with at least two unique back-spliced reads in more than one sample (Figure 1A and Supplementary Table 1). In the MCF7 and MDA cells, 7,588 and 5,515 circRNAs were detected, respectively, and 58.9% of these circRNAs were shared by the two cell lines (Figure 1B). In MCF7 cells, the number of circRNAs ranged from 3,770 to 5,472, and the number of genes generating these circRNAs ranged from 1,964 to 2,508, while in MDA cells the number of circRNAs and the genes generating the circRNAs were both lower than in MCF cells. There were no significant differences in the number of circRNAs and circRNA genes between the docetaxel-sensitive and -resistant groups in either of the two cell types (Figure 1C). By analyzing the length distribution of the detected circRNAs, we found that 90% were less than 1,200 NT in length and the most abundant circRNAs ranged between 300 to 400 NT (Figure 1D). This result is consistent with previous research by Zheng et al. on circRNAs in cancer tissues (21).




Figure 1 | Overview of circular RNAs detected in 12 breast cancer cell samples (three biological replicates for each of the MCF-7, MCF7-RES, MDA-MB-231 and MDA-RES cell lines). (A) The back-spliced reads and the number of circRNAs identified in 12 breast cancer cells. (B) The intersection of circRNAs detected in 6 MDA cells and 6 MCF cells. (C) The number of circRNAs and the number of circRNA genes in each sample. (D) The histogram shows the distribution of all detected circRNA lengths. (E) The expression level of circRNAs (SRPBM) in different groups throughout the genome. The docetaxel-resistant group is shown in red and docetaxel-sensitive group in blue. (F) Expression of circRNAs (SRPBM) in different groups across Chromosome 7. The resistant group is shown in red and the sensitive group in blue.



To evaluate the expression of circRNAs, we normalized the number of back-spliced reads with the total number of mapped reads and read lengths as described above (21). To get an overview of the distribution and expression level of circRNAs in both the DRBC cell lines and their parental cell lines, we calculated the mean SRPBM for each circRNA in docetaxel-sensitive and -resistant groups across the genome (Supplementary Table 1). We found that circRNA expression exhibited significant differences between the docetaxel-sensitive and -resistant groups in some regions of the genome, especially in Chromosome 7 q21.12 to Chromosome 7 q21.2, where the circRNAs were expressed mainly in DRBC cells (Figures 1E, F). This result indicates that some circRNAs may be specifically expressed in docetaxel-sensitive or -resistant breast cancer cells.



Identification of circRNA Signatures and Potential Functional circRNAs in Parental and Docetaxel-Resistant Cell Lines

To identify circRNAs related to docetaxel sensitivity or resistance, we comparatively analyzed the expression of circRNAs in docetaxel-sensitive and -resistant cell lines. We found that 380 circRNAs were specifically expressed in docetaxel-resistant cell lines and 274 circRNAs were specifically expressed in docetaxel-sensitive cell lines (Figure 2A and Supplementary Table 2). We further estimated the abundance of specifically-expressed circRNAs by calculating their SRPBM values and the expression frequencies in docetaxel-resistant or -sensitive cell lines (Figure 2B and Supplementary Table 2). The top 10 circRNAs with the highest SRPBM values in docetaxel-resistant and -sensitive cell lines are shown in Figure 2C.




Figure 2 | Expression level of circRNA specifically detected in docetaxel-resistant or -sensitive cells. (A) The intersection of circRNAs detected in docetaxel-resistant and -sensitive cells after filtering. (B) CircRNAs specifically detected in the docetaxel-resistant and docetaxel-sensitive groups. The central heatmap indicates the expression level (SRPBM) of 654 specifically expressed circRNAs in each sample. The bar plot next to the central heatmap indicates the sum of SRPBM in all samples of a circRNA. The bar plots on the left or right indicate the frequency of a circRNA detected in the samples. The red rectangle marks the top 10 circRNAs specifically detected in the docetaxel-resistant or -sensitive groups. (C) Detailed information for the top 10 circRNAs specifically detected in the docetaxel-resistant or -sensitive groups. (D) Correlation of the three highly abundant circRNAs and their linear isoforms from the same genes.



Notably, we found that three of the most highly expressed circRNAs were generated by genes closely associated with multi-drug resistance in cancer cells. Circ.26318 is generated by the well-known multi-drug resistance gene ABCB1 (12, 37). We designated this newly identified circRNA “circABCB1”. The specific detection of circABCB1 in DRBC cells suggests that the expression of this circRNA may be related to the resistant phenotype. Two of the highly abundant circRNAs, circ.22881 and circ.5255, were specifically detected in docetaxel-sensitive parental cells and annotated to the multi-drug resistance gene EPHA3 (38, 39). We designated these two newly identified circRNAs “circEPHA3.1” and “circEPHA3.2”.

To investigate the relationship between these three circRNAs and their linear isoforms, we performed correlation analysis on the expression data of these three circRNAs and their linear isoforms. We found that the level of circABCB1 was positively correlated with the level of linear ABCB1 transcripts (Pearson correlation test, R=0.684, P=0.0142, Figure 2D). Similarly, expression of circEPHA3.1 and circEPHA3.2 were both positively correlated with the expression of the linear EPHA3 transcripts (Pearson correlation test, R=0.829, P=8.5×10-4 and R=0.893, P=9.11×10-5, Figure 2D). These results suggested that there may be a regulatory relationship between these circRNAs and their linear isoforms.



Genomic Structure Analysis and Validation of circRNAs Generated by ABCB1 and EPHA3

We first analyzed the genomic structure of these three circRNAs. Our analyses showed that circABCB1 was formed by exon7, exon8, exon9 and exon10 of the ABCB1 gene. The 5’ boundary of exon7 joins with the 3’ boundary of exon10 to yield a 661 bp-length lariat structure (Figure 3A). The circEPHA3.1 was formed by the junction of the 5’ and the 3’ boundaries of exon3 of the EPHA3 gene and the length of the circular product was 661 bp. The circEPHA3.2 was formed by the junction of the 5’ boundary of exon4 and the 3’ boundary of exon5 of the EPHA3 gene and the length of circEPHA3.2 was 492 bp (Figure 3C).




Figure 3 | Structure analysis and qPCR validation of circRNAs. (A) The upper panel shows the cyclized exons and the structure of circABCB1 in the ABCB1 gene locus. The bottom panel shows Sanger sequencing of the PCR product of the junction sequence. (B) qPCR validation of circABCB1 expression in MCF-7 and MDA cells, with GAPDH used as an endogenous control. The heights of the red columns represent the logarithmically transformed mean fold-changes between the resistant and parental cells detected by qPCR. Data from triplicate measurements are presented as mean ± standard error. (C) The upper panel shows the cyclized exons and structures of circEPHA3.1 and circEPHA3.2 in the EPHA3 gene locus. The bottom panel shows Sanger sequencing of the PCR product of the junction sequence. (D) qPCR validation of circEPHA3.1 and circEPHA3.2 expression in MCF-7 and MDA cells, with GAPDH used as an endogenous control. The heights of the blue columns represent the logarithmically transformed mean fold-changes between the resistant and parental cells detected by qPCR. Data from triplicate measurements are presented as mean ± standard error.



To validate the circRNAs generated by the ABCB1 and EPHA3 genes, outward-facing primers were designed based on the sequences flanking both sides of the junction points of each circRNA. The three putative circRNAs — circABCB1, circEPHA3.1 and circEPHA3.2 — were validated and quantified with cDNA from the DRBC cells and their parental cells. Furthermore, the amplicons were validated by Sanger-sequencing. The qPCR data confirmed a strong up-regulation of circABCB1 in docetaxel-resistant cells (Figure 3B). Since the sequences obtained from Sanger sequencing perfectly mapped onto the flanking sequences on both sides of the junction points of circABCB1 (Figure 3A), this demonstrated the existence of this circRNA. Moreover, by performing qPCR, we also found that the expression levels of both circEPHA3.1 and circEPHA3.2 were strongly down-regulated in DRBC cells compared to the docetaxel-sensitive cells (Figure 3D). Sanger sequencing on these amplicons also demonstrated the existence of these two circRNAs (Figure 3C).



Prediction of the Interactions of circABCB1, circEPHA3.1 and circEPHA3.2 with miRNA

Since circRNAs bind miRNAs through their miRNA response elements (MREs), we screened the MREs on the sequences of circABCB1, circEPHA3.1 and circEPHA3.2. To improve the accuracy of these predictions, we employed 4 software tools (TargetScan v7.1, Miranda, Pita, and RNAhybrid) to predict potential miRNA target sites on the three circRNAs, and the miRNAs that were predicted to bind to the same circRNA by at least two software tools were chosen as candidate target miRNAs for that circRNA. All the predicted candidate miRNAs are listed in Supplementary Table 3. The interaction networks of the three circRNAs and the predicted candidate miRNAs were constructed with Cytoscape. A total of 903 miRNAs were predicted to bind to the three circRNAs, within which 139 miRNAs were predicted by 3 software tools, and 31 miRNAs were predicted by all four of the software tools (Figure 4 and Supplementary Table 3).




Figure 4 | Interaction network of three circRNAs and miRNA. Nodes in the plot represent a circRNA or a miRNA in the interaction network, edges in the plot represent the binding of miRNAs to circRNA. Attributes of the nodes are represented by shape and color. Red hexagons represent circRNAs. Purple triangle nodes indicate microRNAs that target circRNAs as predicted by 4 software tools. Cyan diamond nodes indicate microRNAs that target circRNAs as predicted by 3 software tools. Yellow dots indicate microRNAs that target circRNAs as predicted by 2 software tools. The color of the edges also indicates the number of tools used. Purple indicates that 4 software tools predicted the relationship, while cyan indicates 3 tools and light grey indicates 2 tools.





miRNA Sequencing Reveals the Potential Regulation of miRNA Expression by circRNAs in DRBC Cells

To further investigate the interaction of circRNAs and miRNAs, we performed miRNA sequencing using total RNA purified from the MCF-7, MCF7-RES, MDA-MB-231 and MDA-RES cells (three biological replicates were sequenced for each cell line).

By performing bioinformatic analysis, we identified a total of 2104 miRNAs from the 12 samples (Supplementary Table 4). miRNAs that were differentially expressed between the docetaxel-sensitive and -resistant cell groups were identified using DESeq2 (33). The criteria of |log2(fold-change)|>1, P<0.05 was used to select significantly differentially expressed (SDE) miRNAs. We identified 82 SDE miRNAs (44 down-regulated and 38 up-regulated) in DRBC cells by comparing them to docetaxel-sensitive breast cancer cells (Figure 5A and Supplementary Table 5).




Figure 5 | Analysis of miRNA targeting of circRNAs. (A) Volcano plot of all miRNAs. The X-axis represents the log2(fold-change) of miRNA between docetaxel-resistant cells and -sensitive cells. The Y-axis represents the -log10(P value) of the differential expression between the two groups. Blue dots represent miRNAs that were SDE by the two groups. Red dots represent the 8 eligible miRNAs. (B) A three-way Venn diagram representing the intersection of 3 miRNA groups: the red cycle represents miRNAs that may relate to chemotherapy reported in PubMed, the green cycle represents SDE miRNAs in our data, and the blue cycle represents miRNAs predicted to target the 3 potentially chemotherapy-resistant circular RNAs, miRNAs predicted by at least three software tools are indicated by red letters. (C, D) Log2(fold-change) of 8 eligible miRNAs. (E) KEGG pathway enrichment for the target genes of the 8 eligible miRNAs.



To select the potentially functional SDE miRNAs, we conducted a literature survey of PubMed databases. The miRNAs reported to be associated with chemotherapy resistance were selected and formatted as a reference list and combined with the Pharmaco-miR docetaxel- and paclitaxel-related miRNA list to establish a data source linking miRNAs to chemotherapy resistance and the response to docetaxel and paclitaxel (named Reported.miR, Supplementary Table 6).

To investigate the potential relationships of the circRNAs and miRNAs and their contribution to chemotherapy resistance, a three-way Venn diagram was drawn using the SDE miRNAs (SDE.miR), the miRNAs from literature survey (Reported.miR) and the miRNAs predicted to bind to the three circRNAs (Predicted.miR) (Figure 5B).

The result showed that there are 24/82 (29%) SDE miRNAs that overlap with the miRNAs in Reported.miR list, indicating that nearly one third of the SDE miRNAs identified in our DRBC cells were associated with response to chemotherapy and may contribute to docetaxel resistance in breast cancer cells (Supplementary Table 7). Moreover, there are 36/82 (43.9%) SDE miRNAs that overlap with the miRNAs in the Predicted.miR list, suggested that quite a large portion of SDE miRNAs are predicted by at least two software tools to bind the three circRNAs. More intriguingly, we found that within the 24 SDE miRNAs associated with response to chemotherapy, 8 were also predicted to bind to the three circRNAs by at least two software tools (Figures 5B–D and Table 1). These results strongly suggest that the three potentially functional circRNAs — circABCB1, circEPHA3.1 and circEPHA3.2 — may contribute to chemotherapy resistance or sensitivity via regulation of these miRNAs. We then used the miRWalk database to predict the target genes for the 8 eligible miRNAs, and performed KEGG pathway analysis for the target genes (Supplementary Table 8). We found that the target genes for the 8 eligible miRNAs were significantly enriched in 13 signaling pathways (Figure 5E). Notably, the PI3K-Akt signaling pathway and AGE-RAGE signaling pathway in diabetic complications, are consistent with pathway enrichment for SDE mRNAs between the docetaxel-sensitive and -resistant cells groups in our previous study (36) (Supplementary Figures 2A, B). 


Table 1 | Differential expression of the 8 miRNAs that were associated with response to chemotherapy and predicted to bind to the three circRNAs by at least two software tools.





Integrated Analyses of mRNA, lncRNA, circRNA and miRNA in Docetaxel Resistant Breast Cancer Cells

mRNA and lncRNA expression data were derived from our previous study that used the same samples (36). We integrated the differential expression data of mRNA, lncRNA, circRNA and miRNA in docetaxel-resistant breast cancer cells and located the RNAs on the whole genome (Figure 6A). We also adopted the whole exome sequencing data of (13) and calculated the copy number changes between the docetaxel-resistant and -sensitive cell lines (Figure 6B).




Figure 6 | Integrated profile of RNAs and copy number variation. (A) Expression profiles of miRNA, lncRNA, circRNA and mRNA in DRBC cell lines. The first (outermost) circle represents the genome location. And the second to the fifth circles show SDE circRNA, mRNA, lncRNA and miRNA. All significantly expressed RNAs were obtained by comparing resistant samples against the corresponding sensitive samples, with red and blue bars for increased and reduced expression, respectively. (B) DNA copy number variations in MCF7 and MDA cell lines are depicted by the outer and inner circles, with the blue and red bars representing deletion and amplification, respectively.



By comparing the regions of changes in RNA and DNA copy number, we found that Chromosome 7 q21.12-q21.2 was a common region dominated by DNA amplification and RNA overexpression (Supplementary Table 9). Some SDE miRNA and lncRNA loci, and specifically expressed circRNAs, overlap with the CNV regions identified by (13). Intriguingly, we observed DNA copy number gain and overexpression of ABCB1 mRNA and lncRNAs as well as circRNAs specifically expressed in DRBC cells in the ABCB1 gene locus. It seems reasonable to suggest that overexpression of different RNA molecules in the ABCB1 gene locus may be caused by amplification of the ABCB1 gene during exposure to docetaxel (13). Overexpression of ABCB1 mRNA may directly contribute to docetaxel resistance, and overexpression of lncRNAs in the ABCB1 gene locus was also linked to upregulation of ABCB1 mRNA in our previous study (36).

In this study, we identified specifically expressed circABCB1 in docetaxel-resistant breast cancer cells, and the qPCR experiment confirmed the overexpression of circABCB1 in docetaxel-resistant breast cancer cells in comparison to the sensitive parental cells, which indicated that the expression of circABCB1 in docetaxel-resistant breast cancer cells may also has been caused by the amplification of ABCB1 gene.

Although we did not find any SDE miRNAs locating within the region of Chromosome 7 q21.12-q21.2. According to the hypothesis of ceRNETs (competing endogenous RNAs networks), some miRNAs may bind to multiple RNA molecules to form competing endogenous RNAs networks and regulate the expression of target genes (56). For example, in our study mir-877-3p was found to bind to both of the circABCB1 and ABCB1 mRNA (Figure 4; Supplementary Table 8), which indicated that circABCB1 may act as a competing endogenous RNA (ceRNA) to sponge miR-877-3p and led to upregulation of ABCB1 expression and finally contribute to docetaxel resistance in breast cancer cell. Thus, combining observations of changes in DNA and RNA may help to deepen understanding of the mechanisms underlying docetaxel resistance in breast cancer.




Discussion

Taxanes (including docetaxel and paclitaxel) have been first-line treatments for breast cancer (57). However, inherited or acquired resistance hampers the usefulness of these drugs, and no biomarkers have been identified with sufficient clinical evidence to predict taxane resistance (12).

Although the functions of circRNAs remain largely unknown, recent studies have shown that they can act as microRNA sponges (20) and affect mRNA expression by competing with linear splicing (18). Accumulating evidence also has shown that the circRNA-miRNA-mRNA axis plays important regulatory roles in the development of different types of cancer (22, 58). However, there is still very little data available regarding any roles circRNAs might play in responses to medical treatments. Recently, a study indicated that dysregulation of circRNAs was involved in the development of radiation resistance in esophageal cancer (23) and more recently, three independent studies have linked circRNAs to chemotherapy sensitivity/resistance in acute myeloid leukemia (24), colorectal cancer (59) and breast cancer (25). These findings raise the possibility that circRNAs may also affect the response to docetaxel in breast cancer.

To investigate the potential roles of circRNAs in DRBC cells, we carried out RNA sequencing and analysis of circRNAs in two DRBC cell lines and their parental cell lines. CircRNAs were detected by CIRCexplorer, which is one of the most reliable software tools available for analysis of circRNAs (especially for detection of exonic circRNAs), and these results were used in conjunction with those of four other algorithms (60). In total, we detected 8,246 highly reliable exonic circRNAs from the 12 samples. By comparing the expression of circRNAs in docetaxel-sensitive and -resistant cell lines, 380 circRNAs were found to be specifically expressed in docetaxel-resistant cell lines, and 274 circRNAs were found specifically expressed in docetaxel-sensitive cell lines (Figures 2A, B), indicating these circRNAs may be associated with the development of resistance to docetaxel.

Low levels of circRNAs may not be sufficient to affect their target miRNAs (24), and we therefore used SRPBM values to select potentially functional circRNAs by ranking all the specifically expressed circRNAs in both docetaxel-resistant and -sensitive cell lines by their abundance. Notably, among the top 10 most abundant circRNAs in the docetaxel-resistant and -sensitive cell lines, we identified the three most highly expressed circRNAs, which were generated by genes closely associated with docetaxel resistance. Circ.26318 was detected in 5/6 of the DRBC cells and ranked second in the specifically-expressed circRNAs list. Intriguingly, gene annotation revealed that this circRNA was generated by the most studied multi-drug resistance gene, ABCB1, which has been reported to be dramatically up-regulated in DRBC cells and recognized as a key mediator of docetaxel resistance (12). We designated the name circABCB1 for this newly identified circular RNA. We found that circABCB1 was formed by the back-spliced junction of exon7 and exon10 of the ABCB1 gene, which results in a 661 bp lariat structure consisting of exon7, exon8, exon9 and exon10. This back-spliced junction was validated by qPCR Sanger sequencing.

It is well documented that circRNAs are not simply the byproducts of mis-splicing (21), and many circRNAs have been shown to play a role in different types of cancer (22, 61). Although the relationships between circular and linear RNA isoforms are largely unknown, it has been shown that circRNAs can regulate genes by competing with linear splicing (18). Interestingly, a recent study has also shown that cir-ITCH increases the expression of ITCH, probably by competing for binding to its associated miRNAs (61). This finding suggests that the functions of circRNAs may be closely associated with those of their linear isoforms. In our study, circABCB1 was specifically detected in DRBC cells by RNA-sequencing, and its levels positively correlated with the linear transcripts of the ABCB1 gene. These results strongly suggest that circABCB1 may affect the expression of ABCB1 linear transcripts and thus contribute to docetaxel resistance. Therefore, circABCB1 was selected for further investigation as a potential functional circRNA.

Moreover, in the top-10 most abundant circRNAs list for docetaxel-sensitive cell lines, we found that two highly abundant circRNAs, circEPHA3.1 and circEPHA3.2, were specifically expressed in docetaxel-sensitive MCF-7 breast cancer cells, and the expression of these two circRNAs was positively correlated with the linear transcripts of EPHA3 gene (Figure 2D). These two circRNAs were also validated by qPCR Sanger sequencing. EPHA3 encodes a transmembrane protein that belongs to the ephrin receptor family. This gene has been implicated in various biological processes, including cancer development and progression (62, 63). Recent studies have shown that EPHA3 is down-regulated in chemotherapy-resistant ovarian cancer cells (38) and implicated in regulation of multidrug resistance in small cell lung cancer via the PI3K signaling pathway, which has been frequently linked to taxane resistance (39, 64). High expression of circEPHA3.1 and circEPHA3.2 in docetaxel-sensitive breast cancer cells, and their depletion in DRBC cells, indicates that these two circRNAs may be involved in maintaining docetaxel sensitivity in breast cancer cells.

Besides ABCB1 and EPHA3, we found that the annotation genes for the top 10 circRNAs in docetaxel-resistant breast cancer cells are involved in neuronal development, synaptic vesicle trafficking, histone-binding, and maintaining epithelial function via the PI3K/AKT signaling pathways. In contrast, those in docetaxel-sensitive breast cancer cells are involved in assembly of the 26S proteasome, G-protein ligand binding, nuclear receptor coactivation, intracellular trafficking, chromatin remodeling, and negative regulation of the TGF-beta signaling pathway (Supplementary Table 10). We speculate that some of these genes may be implicated in mediating signal transduction and maintaining the docetaxel-resistant or -sensitive phenotypes in a synergistic way. Although we found none of these genes were directly implicated in docetaxel resistance, some of the genes have been reported to be associated with sensitivity or resistance to chemotherapy or targeted-therapy drugs, such as PCLO, BPTF and CHD4. Thus, the circRNAs generated by these genes may contribute to docetaxel resistance or sensitivity in breast cancer cells. Future functional studies of circRNAs potentially associated with docetaxel resistance in breast cancer cells should take these circRNAs into consideration.

Since acting as an miRNA sponge is currently the most commonly reported function for circRNA (65), and several circRNAs have been shown to bind to miRNAs and thus repress their function (20, 34), we hypothesized that the three candidate circRNAs may act as inhibitors of miRNA and thereby regulate expression of miRNA target genes. Therefore, we performed a bioinformatics analysis to identify miRNA targets for these three circRNAs. As with the database miRWalk (34), this is an effective way to obtain accurate predictions via integrating different algorithms. Four prominent target prediction programs, including TargetScan v7.1, Miranda, Pita and RNAhybrid, were employed to predict potential miRNA target sites on the three circRNAs, and finally, 903 overlapping miRNAs predicted by at least two software tools were chosen as candidate targets for the three circRNAs (Figure 4).

To further investigate the relationships between the circRNAs and miRNAs, we performed miRNA sequencing in the DRBC cell lines as well as in their parental cell lines, and identified 82 SDE miRNAs. By conducting a literature survey in the PubMed and Pharmaco-miR databases, we found that 29% (24/82) of the SDE miRNAs identified in our DRBC cells were associated with a response to chemotherapy, suggesting that these SDE miRNAs may contribute to docetaxel resistance in breast cancer cells. More intriguingly, eight of these chemotherapy-associated SDE miRNAs were also predicted to bind to the three circRNAs by at least two software tools. These results strongly suggest that the three potential functional circRNAs (circABCB1, circEPHA3.1 and circEPHA3.2) may together regulate the chemotherapy-associated SDE miRNAs and thus affect sensitivity for docetaxel in breast cancer cells.

Among the 8 eligible miRNAs, we found that miR-346 was the only miRNA predicted by all four of the software tools to bind to circEPHA3.1, indicating the robustness of this result. MiR-346 has been shown to act as an oncogenic miRNA in cutaneous squamous cell carcinoma (66) and promote a malignant phenotype in cervical cancer cells (67). More importantly, a recent study showed that the level of miR-346 in breast cancer tissues was higher than in non-cancerous tissues, and overexpression of miR-346 in a breast cancer cell line promoted resistance to docetaxel (42). These reports are consistent with ours in showing that miR-346 is significantly up-regulated in DRBC cells compared with their docetaxel-sensitive parental cell lines (Figure 5C), and suggest that the dramatic down-regulation of circEPHA3.1 in DRBC cells may reduce binding and inhibition of miR-346, thus contributing to development of docetaxel resistance.

MiR-1248 was predicted to bind to circEPHA3.2 by three different software tools and was found to be significantly up-regulated in DRBC cells. Although the function of miR-1248 remains largely unknown, it has been implicated in regulating the response to platinum-based chemotherapy (48). It would be interesting to further investigate the relationship between circEPHA3.2 and miR-1248, and to uncover the exact function of miR-1248 in DRBC.

MiR-877-3p, miR-29c-3p, and miR-34b-3p are three miRNAs significantly down-regulated in DRBC cells and predicted to bind to circABCB1 by at least two software tools. By performing a literature survey, we found that miR-877-3p functions as a tumor suppressor and inhibits bladder cancer proliferation (55), consistent with our data showing that over-expression of miR-877 in hepatocellular carcinoma cells increases paclitaxel sensitivity (54). Similarly, low expression of miR-29c was reported to be positively associated with chemotherapy resistance in nasopharyngeal carcinoma patients (52). More interestingly, miR-34b was reported to directly target ABCB1 mRNAs and increase the sensitivity of human osteosarcoma cells to multiple chemotherapeutic agents (50). These findings suggest that circABCB1 probably binds to and down-regulates miRNAs associated with chemotherapy sensitivity in cancer and thus facilitates cancer cell proliferation while contributing to docetaxel resistance in breast cancer. Therefore, the functions of circABCB1 should be explored further.

Finally, to shed some light on the function of the eight eligible miRNAs, we predicted their target genes and performed pathway enrichment analyses for the predicted genes. We identified 13 significantly enriched pathways, and found the PI3K-Akt signaling pathway and AGE-RAGE signaling pathway in diabetic complications to be consistent with the pathway enrichment results for the SDE mRNAs identified in the same cell lines (36) (Supplementary Figures 2A, B). In recent years, disruptions of the PI3K-Akt signaling pathway have been frequently identified in cancers, and dysregulation of this pathway has been linked to docetaxel resistance in prostate cancer (68, 69). Although the role of the AGE-RAGE signaling pathway in chemotherapy resistance is largely unknown, it has been reported to activate the PI3K-Akt signaling pathway (70). Taken together, our results indicate that dysregulation of the PI3K-Akt signaling pathway may contribute to the development of docetaxel resistance in breast cancer, and certain circRNA-miRNA-mRNA axes may regulate this pathway.

The current in vitro and in silico study is the first to identify circRNAs associated with taxane resistance in breast cancer cells, and we have identified circRNAs generated by well-known multiple drug-resistance genes in DRBC cells and uncovered potential functions of these circRNAs. Also, we obtained a global profile of multi-level RNA alterations in DRBC cells that may lead to a more complete and comprehensive understanding of the mechanisms underlying docetaxel resistance in breast cancer.

These results should be followed up by (1) analyses of some of the identified circRNAs that were not analyzed, (2) experimental investigations of the functions of the circRNAs related to taxane-resistant phenotypes, and (3) analyses of clinical material from breast cancer patients who have relapsed while undergoing taxane treatment.

To sum up, we have performed RNA and miRNA sequencing in two DRBC cell lines and their docetaxel-sensitive parental cell lines. Our analyses revealed different circRNA signatures in the docetaxel-resistant and -sensitive breast cancer cells, and for the first time, uncovered circRNAs generated by multidrug-resistance genes in taxane-resistant cancer cells. CircABCB1 was identified and validated as strongly up-regulated in DRBC cells, whereas circEPHA3.1 and circEPHA3.2 were strongly down-regulated. Furthermore, we investigated potential functions of these circRNAs by bioinformatics analysis, and miRNA analyses were also performed to uncover potential interactions between circRNAs and miRNAs. Our data show that circABCB1, circEPHA3.1 and circEPHA3.2 probably sponge up the eight chemotherapy-associated SDE miRNAs and contribute to docetaxel resistance via the PI3K-Akt and AGE-RAGE signaling pathways. Our results should help to deepen understanding of the mechanism of docetaxel resistance in breast cancer and identify novel therapeutic targets or predictive biomarkers for overcoming docetaxel resistance in breast cancer.
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Background

ITGA3 is a member of the integrin family, a cell surface adhesion molecule that can interact with extracellular matrix (ECM) proteins. The purpose of this study was to explore the significance of ITGA3 expression in the prognosis and clinical diagnosis of breast cancer patients.



Methods

Oncomine, the Human Protein Atlas (HPA) and UALCAN were used to analyze the expression of ITGA3 in various cancers. PrognoScan, GEPIA, Kaplan–Meier plotter and Easysurv were utilized to analyze the prognosis of ITGA3 in certain cancers. Based on TCGA data, a receiver operating characteristic (ROC) curve was used to evaluate the diagnostic performance of ITGA3 expression. cBio-Portal and MethSurv were used to evaluate the genomic mechanism. LinkedOmics, NetworkAnalyst and Metascape were used to build the signaling network. TIMER is a web server for comprehensive analysis of tumor infiltrating immune cells and tumor infiltrating lymphocytes (TILs).



Results

The expression of ITGA3 in normal breast tissues was greater than that in breast cancer tissues at both the mRNA and protein levels. High expression of ITGA3 was associated with better prognosis of breast cancer patients. ROC analysis indicated that ITGA3 had significant diagnostic value. Genomic analysis revealed that promoter methylation of ITGA3 leads to transcriptional silencing, which may be one of the mechanisms underlying ITGA3 downregulation in BRCA. Immune infiltration analysis showed that ITGA3 may be involved in the recruitment of immune cells.



Conclusions

This study identified ITGA3 as a novel biomarker to estimate the diagnosis and prognosis of breast cancer. In addition, ITGA3 is involved in ECM regulation and immune cell infiltration.





Keywords: ITGA3, breast cancer, methylation, extracellular matrix, tumor infiltrating lymphocyte, prognosis, diagnosis



Introduction

Breast cancer is the primary killer of women. Despite long-term investigation and research, the incidence of breast cancer is still rising. Worldwide, breast cancer remains the leading cancer-related cause of disease for women (1, 2). Metastasis is considered to be the main cause of the high mortality of breast cancer (3). Breast cancer is highly heterogeneous (4), mainly in terms of treatment with surgery and chemotherapy. Recently, the combination of targeted therapy and immunotherapy has achieved certain results, and early data have revealed the clinical activity of programmed cell death-1/programmed death ligand-1 (PD-1/PD-L1) antagonists in small numbers of patients with metastatic breast cancer (5). However, not all patients benefit. Therefore, creating an effective immunotherapy for all patients and looking for immunotherapy target markers is the primary task of clinical development.

ITGA3 (integrin subunit α3), also known as integrin α3, is a member of the integrin family. Integrin is a transmembrane heterodimer composed of α and β subunits that are noncovalently bound. ITGA3 encodes the α3 subunit, which undergoes posttranslational cleavage in the extracellular domain to produce light and heavy chains to combine with the β1 subunit, forming the integrin α3β1 that interacts with many ECM proteins, mediating cell-cell adhesion and cell-matrix adhesion, and connecting the external and internal structures of cells (6). ITGA3 is widely expressed in normal organisms, but under the effects of oncogene induction, chromatin structure changes, high expression of growth factor and its receptor, ECM changes and other factors such as the enhanced transcription of integrins cause disordered expression that induces cancer. Studies have shown that ITGA3 can be used as a poor prognostic factor for pancreatic cancer (7), head and neck cancer (8) and tongue squamous cell carcinoma (9). However, the expression and prognosis of ITGA3 in breast cancer have not been reported.

In this study, we used a variety of databases to explore the expression of ITGA3 in BRCA and its impact on prognosis, analyzed its diagnostic value and genomic and interacting mechanisms, and finally analyzed its impact on TILs. Our research provides new directions and insights into the mechanism of ITGA3 in breast cancer and determined that ITGA3 may be a potential prognostic-related biomarker in BRCA, offering new ideas for clinical diagnosis and application.



Methods


Oncomine

Oncomine (www.oncomine.org) is a cancer microarray database and web-based data-mining platform aimed at facilitating discovery from genome-wide expression analyses. Differential expression analyses comparing most major types of cancer with respective normal tissues as well as a variety of cancer subtypes and clinical-based and pathology-based analyses are available for exploration (10). In this study, we set the P value to 0.001, the fold change to 1.5, and all gene rankings as significance thresholds to evaluate the expression of ITGA3 mRNA in pan-cancer.



TIMER

TIMER (cistrome.shinyapps.io/timer) can be used to comprehensively investigate the molecular characterization of tumor-immune interactions. Levels of six tumor-infiltrating immune subsets were precalculated for 10,897 tumors from 32 cancer types. TIMER provides six major analytic modules that allow users to interactively explore the associations between immune infiltrates and a wide spectrum of factors, including gene expression, clinical outcomes, somatic mutations, and somatic copy number alterations (11). In this study, “Gene Module” was used to visualize the correlation of ITGA3 mRNA levels with the immune cell infiltration levels in BRCA. The “Survival Module” was used to evaluate the correlation between the infiltration of immune cells and BRCA. The “SCNA Module” provides the comparison of tumor infiltration levels among tumors with different somatic copy number alterations for ITGA3. The “DiffExp module” was used to study the differential expression of ITGA3 between tumor and adjacent normal tissues across all TCGA tumors.



The Human Protein Atlas

The Human Protein Atlas (HPA) (www.proteinatlas.org) aims to map all human proteins in cells, tissues and organs. It presents a map of the human tissue proteome based on an integrated omics approach that involves quantitative transcriptomics at the tissue and organ level, combined with tissue microarray-based immunohistochemistry, to achieve spatial localization of proteins down to the single-cell level (12). In this study, we used the “Tissue Atlas”, which shows the distribution of ITGA3 across breast tissues in the human body. The “Pathology Atlas” shows the impact of ITGA3 protein levels on the survival of patients with breast cancer. In addition, we generated an immunohistochemical map of ITGA3 in breast tissue and breast cancer tissue.



UALCAN

Ualcan (ualcan.path.uab.edu/index.html) is a comprehensive web portal to perform in-depth analyses of TCGA gene expression data. UALCAN uses TCGA level 3 RNA-seq and clinical data from 31 cancer types to estimate the effects of gene expression levels and clinicopathologic features on patient survival (13). In this study, ITGA3 expression data were obtained using the “TCGA Analysis” module of UALCAN and the “BRCA” dataset. Student’s t test was used to generate a P value. The P value cutoff was 0.05.



PrognoScan

PrognoScan (dna00.bio.kyutech.ac.jp/PrognoScan/index.html) provides a powerful platform for evaluating potential tumor markers and therapeutic targets. It is a large collection of publicly available cancer microarray datasets with clinical annotation, as well as a tool for assessing the biological relationship between gene expression and prognosis (14). In this study, which showed the prognostic level of ITGA3 in a variety of cancers, the Cox P-value cutoff was 0.05.



GEPIA 2

GEPIA 2 (gepia2.cancer-pku.cn/#index), Gene Expression Profiling Interactive Analysis, is a web-based tool to deliver fast and customizable functionalities based on TCGA and GTEx data. GEPIA provides key interactive and customizable functions, including differential expression analysis, profiling plotting, correlation analysis, patient survival analysis, similar gene detection and dimensionality reduction analysis (15). In this study, we generated a survival map of ITGA3 in the “survival analysis” module, and the significance level was 0.05.



Kaplan–Meier Plotter

Kaplan–Meier plotter (kmplot.com/analysis/index.php?p=background) is a meta-analysis-based platform for the discovery and validation of survival biomarkers, including 54k genes (mRNA, miRNA, protein) related to on survival in breast, ovarian, lung, and gastric cancer (16). To analyze the prognostic value of a particular gene, the cohorts were divided into two groups according to the median (or upper/lower quartile) expression of the gene. The two groups can be compared in terms of relapse-free survival, overall survival, and distant metastasis-free survival. In this study, we analyzed the prognosis of ITGA3 in these four cancers. The hazard ratios (HRs) with 95% confidence intervals and log-rank P-values were also computed.



Easysurv

Easysurv (easysurv.net) is a web-based tool that can perform advanced survival analyses using user-derived data or data from The Cancer Genome Atlas (TCGA), which can conduct univariate analyses and grouped variable selections using multiomics data from TCGA and advanced statistical techniques suitable for high-dimensional data, including genetic data and integrated survival analysis. Through univariate analyses, ESurv can identify the prognostic significance for single genes using the survival curve (median or optimal cutoff), area under the curve (AUC) with C statistics, and receiver operating characteristics (ROC) (17). In this study, we used the univariate analysis and selected the median cutoff to generate a Kaplan–Meier plot of ITGA3. The P value cutoff was 0.05.



ROC Curve

The diagnostic role of ITGA3 in BRCA was assessed by receptor operating characteristic (ROC) curve analysis based on TCGA data, which were downloaded from the UCSC Xena database (xena.ucsc.edu/). In this study, we selected the GDC TCGA breast cancer cohort and extracted the gene expression RNAseq (HTSeq-Counts) data of ENSG00000005884.16 (n = 1217). A P-value <0.05 was considered statistically significant.



cBio-Portal

The cBio Cancer Genomics Portal (www.cbioportal.org/) is an open-access resource for interactive exploration of multidimensional cancer genomics data sets, currently providing access to data from more than 5,000 tumor samples from 20 cancer studies (18). Copy number variation (CNV) and methylation analysis of ITGA3 in BRCA were performed in this study.



MethSurv

MethSurv (biit.cs.ut.ee/methsurv/) is a web tool for survival analysis based on CpG methylation patterns. MethSurv enables survival analysis for a CpG located in or around the proximity of a query gene. For further mining, cluster analysis for a query gene to associate methylation patterns with clinical characteristics and browsing of top biomarkers for each cancer type are provided (19). In this study, we verified the ITGA3 methylation level and the methylation level under different clinical stages through a promoter probe.



NetworkAnalyst

NetworkAnalyst (www.networkanalyst.ca/) addresses the key need to interpret gene expression data within the context of protein–protein interaction (PPI) networks (20). It can create cell-type or tissue-specific PPI networks, gene regulatory networks, gene coexpression networks and networks for toxicogenomics and pharmacogenomics studies. In this study, we used methylated genes from the cBio-Portal database to build a signaling network.



LinkedOmics

LinkedOmics (www.linkedomics.org/login.php) contains multiomics data and clinical data for 32 cancer types and a total of 11,158 patients from The Cancer Genome Atlas (TCGA) project. It is also the first multiomics database that integrates mass spectrometry (MS)-based global proteomics data generated by the Clinical Proteomic Tumor Analysis Consortium (CPTAC) on selected TCGA tumor samples (21). In this study, we analyzed the coexpressed genes of ITGA3 in BRCA and produced volcano maps and related heat maps.



Metascape

Metascape (metascape.org/gp/index.html#/main/step1) is a web-based portal designed to provide a comprehensive gene list annotation and analysis resource for experimental biologists. Metascape combines functional enrichment, interactome analysis, gene annotation, and membership search to leverage over 40 independent knowledge bases within one integrated portal. Additionally, it facilitates comparative analyses of datasets across multiple independent and orthogonal experiments (22). In this study, we used the coexpressed genes of ITGA3 from the LinkedOmics database for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment.




Results


ITGA3 Expression Profiles in Pan-Carcinoma

We primarily analyzed the transcription levels of ITGA3 in multiple tumors and normal tissues based on the Oncomine database. We found that the mRNA expression of ITGA3 in bladder cancer, brain and CNS cancer, cervical cancer, esophageal cancer, gastric cancer, head and neck cancer, kidney cancer, leukemia, lymphoma, melanoma, myeloma, ovarian cancer, pancreatic cancer and other cancers was higher than that in adjacent normal tissues, while in breast cancer, colorectal cancer, lung cancer, prostate cancer and sarcoma, the expression was lower than that in normal controls (Figure 1A).




Figure 1 | ITGA3 transcription level in different types of tumor tissues and normal tissues. (A) The mRNA level of ITGA3 in different types of tumor tissues and normal tissues in the Oncomine database (P value is 0.001, fold change is 1.5, and gene ranking of all.). (B) The mRNA level of ITGA3 in different types of tumor tissues and normal tissues in TIMER database (P-value Significant Codes: 0 ≤ *** < 0.001 ≤ ** < 0.01 ≤ · < 0.1).



We further used the TIMER database to evaluate which cancers have differential expression at the mRNA level. The results showed that ITGA3 was markedly overexpressed in 13 types of cancer (BLCA, ESCA, CHOL, HNSC, KIRC, KIRP, LIHC, STAD, THCA) compared with the corresponding normal controls. In contrast, ITGA3 was expressed at lower levels in BRCA, COAD, KICH, LUSC and PRAD than in normal controls (Figure 1B).

Then, we used the HPA database to analyze the protein expression level of ITGA3. As shown in Figure 2A, the protein level of ITGA3 was highly expressed in most normal tissues. Except for lymphoma, glioma, testicular cancer and prostate cancer, which were usually weakly stained or negative, most tumor tissues showed moderate to strong membrane and/or cytoplasm positivity, and the final statistics are shown in Figure 2B. In addition, the immunohistochemical staining of ITGA3 in breast tissue and breast cancer tissue is shown in Figure 2C.




Figure 2 | ITGA3 translation level in different types of tumor tissues and normal tissues. (A) The protein level of ITGA3 in different types of normal tissues in HPA. (B) The protein level of ITGA3 in different types of tumor tissues in HPA. (C) Representative IHC images of ITGA3 in normal breast tissues and breast cancer tissues (The left scale bar, 200 μm; the right scale bar, 25 μm).



In conclusion, the expression of ITGA3 in breast tissues was higher than that in breast cancer tissues at both the mRNA and protein levels. The mRNA level of ITGA3 was further analyzed by TCGA-BRCA samples in the UALCAN database. The results showed that based on the analysis of age, tumor stage, breast cancer subtype, lymph node metastasis and TP53 mutation, the expression of ITGA3 in breast cancer patients was significantly lower than that in normal controls. As shown in Figure 3, the expression of ITGA3 in triple-negative breast cancer was significantly lower than that in the luminal and HER2-positive subtypes. In the lymph node metastasis classification, the expression of N1 was significantly higher than that of N3. In addition, the expression of the TP53 mutant was significantly lower than that of the nonmutant.




Figure 3 | ITGA3 transcription level in subgroups of patients with BRCA. (A) Boxplot of ITGA3 relative expression based on sample types. (B) Boxplot of ITGA3 relative expression based on patients’ age. (C) Boxplot of ITGA3 relative expression based on cancer stages. (D) Boxplot of ITGA3 relative expression based on breast cancer subclasses. (E) Boxplot of ITGA3 relative expression based on nodal metastasis. (F) Boxplot of ITGA3 relative expression based on TP53 mutation status (The central mark is the median; the edges of the box are the 25th and 75th percentiles. *p < 0.05; **p < 0.01; ***p < 0.001).





Prognostic Analysis of ITGA3 in Cancer Patients

We subsequently used the PrognoScan database and GEPIA database to assess the relationship between ITGA3 expression and cancer patient outcomes. From the PrognoScan database, high expression of ITGA3 showed favorable prognosis in breast cancer (Figure 4A) and eye cancer (Figure 4B), and poor prognosis in colorectal cancer (Figure 4C), lung adenocarcinoma (Figure 4D), non-small-cell lung cancer (Figure 4E) and ovarian cancer (Figure 4F). In the GEPIA database, as shown in Figure 4G, in terms of RFS among 33 types of cancer, ITGA3 was a high-risk factor in GBM, LUSC, PAAD and STAD, while a protective factor in BRCA (P <0.05). For OS, ITGA3 was a high-risk factor in GBM, HNSC, LGG, LUSC and PAAD, while a protective factor in ACC (P <0.05).




Figure 4 | ITGA3 is associated with survival outcome. (A–F) Correlation between ITGA3 and prognosis of various types of cancer in the PrognoScan. (G) Survival map of ITGA3 in pan-carcinoma. (H–J) Kaplan–Meier curves comparing the high and low expression of ITGA3 in breast cancer (RFS), gastric cancer (OS), lung cancer (FP). (K–M) The expression of ITGA3 was significant for the overall (K), stage III, IV (L) and female (M) of breast cancer patients’ OS. OS, overall survival; RFS, relapse free survival; DMFS, distant metastasis free survival; FP, first progression. Logrank P-value <0.05 was considered as statistically significant.



Next, the Kaplan–Meier plotter database was used to evaluate the prognosis of ITGA3 in patients with breast cancer, ovarian cancer, lung cancer and gastric cancer, as well as the prognosis under different pathological subtypes. Figure 4H shows that the high ITGA3 expression group had significantly better RFS in breast cancer (log-rank test, P <0.05) than the low expression group. Figures 4I, J show that higher expression of ITGA3 was associated with a poorer prognosis in gastric cancer (OS) and lung cancer (FP). There was no significant difference between the expression of ITGA3 and the prognosis of ovarian cancer. We used Easysurv to further verify the effect of ITGA3 on the survival of breast cancer patients’ OS. The results showed that the expression of ITGA3 was significant for the overall, stage III, IV and female survival functions (Figures 4K–M).

These results indicated that in multiple tumor types, the expression of ITGA3 was significantly associated with a poor prognosis, while in breast cancer, the expression of ITGA3 was associated with a better prognosis. We further analyzed the prognostic value of ITGA3 in various subtypes of BRCA (Table 1). The results showed that in stages 1, 2, and 3, the expression of ITGA3 was significantly related to the survival of BRCA, and ITGA3 served as a protective factor in the prognosis of BRCA. Due to the lack of sufficient samples, its impact in BRCA stage 4 was unclear. Recently, TMB has become an emerging predictive marker for the efficacy of immune checkpoint inhibitors. Tumors with high TMB had a better response to immune checkpoint inhibitors (23). Therefore, we detected ITGA3 expression in BRCA under different TMB states and found that ITGA3 could be used as a prognostic biomarker under low TMB conditions.


Table 1 | Correlation of ITGA3 mRNA expression and clinical prognosis in breast cancer with different subtypes by Kaplan–Meier plotter.





Diagnostic Value of ITGA3 in BRCA

Through the analysis of the expression and prognosis of ITGA3 in a variety of cancers, we found that ITGA3 is differentially expressed in several cancers and has a certain impact on prognosis, making it an adverse prognostic factor. Surprisingly, the expression of ITGA3 in BRCA was lower than that in normal controls and was favorable for prognosis. In view of its prognostic value in BRCA, we used TCGA normal and breast cancer data to generate ROC curves to further analyze the diagnostic value of ITGA3 in BRCA. Figure 5 shows that the area under the curve (AUC) area was 0.658, indicating that ITGA3 has the diagnostic ability to distinguish BRCA from normal controls; subsequently, the diagnostic threshold was further calculated by the Youden index to be 12.505 [transformed by log2(count + 1)]. These results indicated that ITGA3 was expected to become a diagnostic biomarker for BRCA.




Figure 5 | The diagnostic value of ITGA3 in BRCA based on the TCGA data. P-value <0.05 was considered as statistically significant.





Genomic Alterations and Methylation of ITGA3 in BRCA

To further explore the mechanism of differential expression of ITGA3 in breast cancer and normal breast tissue, we used the cBio-Portal tool to analyze the genome of ITGA3. We selected the TCGA (Firehose Legacy) of breast invasive carcinoma for analysis, and in Figure 6A, ITGA3 was altered in 113 of 960 (12%) BRCA patients, including mutation in 1 case (0.1%), amplification (AMP) in 62 cases (6.46%), deep deletion in one case (0.1%), mRNA high in 13 cases (1.35), mRNA low in 23 cases (2.4%), and multiple alterations in 13 cases (1.35%). Thus, AMP is the most common type of ITGA3 copy number variation (CNV) in BRCA. ITGA3 AMP led to high expression of ITGA3 (Figure 6B). However, ITGA3 AMP corresponds to a low methylation level (Figure 6C), which revealed the potential correlation between the ITGA3 mRNA expression level and ITGA3 promoter methylation. Subsequently, we corroborated the correlation, as shown in Figure 6D, that the promoter methylation level of ITGA3 was negatively correlated with the ITGA3 mRNA expression level. Therefore, we speculated that the low expression of ITGA3 in BRCA might be due to promoter methylation, which leads to the inhibition of transcription.




Figure 6 | ITGA3 genomic analysis in BRCA. (A) OncoPrint of ITGA3 alterations in BRCA cohort. The different types of genetic alterations are highlighted in different colors. (B) ITGA3 expression in different ITGA3 CNV groups. (C) ITGA3 methylation in different ITGA3 CNV groups. (D) The relationship between ITGA3 promoter methylation level and ITGA3 mRNA expression in BRCA. (E) TSS1500-N_Shore-cg11222053 probe methylation density map. (F) TSS1500-N_Shore-cg11222053 probe methylation profiles based on clinical stage. (G) Volcano plot of methylated genes between unaltered group and altered group. (H) Signaling network of methylated genes with significant differences.



Next, we explored the methylation sites of ITGA3 in BRCA through the Methsurv database. The level of methylation is expressed by β value. A β value ≥0.6 was considered completely methylated, a β value ≤0.2 was considered completely unmethylated, and 0.2–0.6 was considered partially methylated. Finally, it was found that the β value of the TSS1500-N_Shore-cg11222053 probe was more than 0.6 (mean) (Figure 6E), indicating complete methylation. The probe is located in the promoter region, showing that the promoter of ITGA3 is methylated. This was consistent with our above speculation: ITGA3 promoter methylation is one of the mechanisms of ITGA3 downregulation in BRCA. According to different clinical stages, the median β value of stages 1, 2, 3 and 4 was greater than 0.6 (Figure 6F).

DNA methylation belongs to the epigenetic category and is an important mechanism for regulating gene expression. As shown in Figure 6G, the top three genes with significant differences in methylation between altered group and unaltered group were as follows: NPM1 (qValue = 1.73E−10), ASNSD1 (qValue = 20.1E−09), and MAK (qValue = 2.72E−08). Next, the genes with significant differences (FDR ≤0.05) were used to construct the signaling network with NetworkAnalyst, as shown in Figure 6H. The top five genes with a high degree of difference were GNAS, CDKNA1, STAT1, STAT5A and MAP2K1. Enrichment with KEGG pathways revealed that the top five highest enrichment pathways were the following: pathway in cancer, hepatitis, MAPK signaling pathway, breast cancer and PI3K-Akt signaling pathway.



ITGA3 Coexpression Gene and Pathway Enrichment in BRCA

To gain insight into the function of ITGA3, we next enriched the coexpression gene pathways to visualize the connection between ITGA3 and coexpression genes. Initially, we used the LinkedOmics database to exhume the ITGA3 coexpression model in the BRCA cohort. The ITGA3 association volcano map is shown in Figure 7A. ITGA3 was positively correlated with XYLT2 (r = 0.564, P = 9.85E−93), SPATA20 (r = 0.526, P = 1.11E−78), and PDK2 (r = 0.497, P = 3.65E−69). The heat map of the top 50 genes with significant positive and negative correlations with ITGA3 is shown in Figure 7B.




Figure 7 | ITGA3 co-expression genes and pathways enrichment in BRCA. (A) Volcano plot of ITGA3 association result. (B) Heat maps showing top 50 genes positively and negatively correlated with ITGA3 in BRCA. Red indicates positively correlated genes and blue indicates negatively correlated genes. (C) KEGG, GO_BP, GO_MF, GO_CC pathway enrichment of positively correlated genes with ITGA3. (D) KEGG, GO_BP, GO_MF, GO_CC pathway enrichment of negatively correlated genes with ITGA3.



Then, Metascape was used to analyze the pathway enrichment of ITGA3 coexpression genes. The pathway enrichment of positively related genes of ITGA3 is shown in Figure 7C, and KEGG pathway analysis showed that positively related genes were involved: pathways in cancer, focal adhesion, MAPK signaling pathway, Rap1 signaling pathway, breast cancer, TGF-β signaling pathway, cell adhesion molecules, and leukocyte transendothelial migration. GO_BP (biological process) was mainly related to differentiation, response to growth factor stimulation, cytoskeleton, ECM adhesion and other biological processes. GO_MF (molecular function) was mainly associated with calcium, kinase, growth factor, transcription factor and cell adhesion molecule. GO_CC (cell component) was mainly expressed in dendrites, ECM, adherens junctions and axons. The pathway enrichment of negatively related genes is shown in Figure 7D. KEGG showed that the pathways were enriched in cell cycle, spliceosome, RNA transport, DNA replication, and RNA degradation. GO_BP was mainly related to cell division, DNA replication and repair, RNA processing, translation and other biological processes. GO_MF was mainly related to catalyzing the activity of DNA and RNA. GO_CC was mainly expressed in chromosomes and mitochondria.

In conclusion, ITGA3 coexpressed genes were mainly involved in tumor formation, regulating cell adhesion, migration, proliferation, apoptosis, and immune response.



Immune Infiltration Analysis of ITGA3 in BRCA

The transformation of breast tissue to breast cancer is usually accompanied by a high level of lymphocyte infiltration. Here, we investigated the relationship between ITGA3 and TILs in breast cancer. As shown in Figure 8A, the expression of ITGA3 was significantly negatively correlated with tumor purity and B cell infiltration and positively correlated with macrophage infiltration. Next, we further analyzed the effect of immune cell infiltration on the prognosis of BRCA. The results showed that the infiltration of B cells, CD8 T cells, CD4 T cells, neutrophils and dendritic cells was significantly correlated with the prognosis of BRCA (Figure 8B). Moreover, the copy number variation of ITGA3 was significantly correlated with the infiltration levels of six kinds of immune cells (Figure 8C), manifesting that the gain or AMP of ITGA3 was correlated with the infiltration of immune cells and that ITGA3 may be involved in the recruitment of immune cells.




Figure 8 | Correlations of ITGA3 with immune infiltration level in BRCA. (A) ITGA3 expression is significantly related to tumor purity and has significant positive correlations with infiltrating levels of macrophages, and significant negative correlations with infiltrating levels of B cells in LIHC. (B) Kaplan–Meier plots of immune infiltration and ITGA3 expression level in BRCA. (C) ITGA3 CNV affects the infiltrating levels of immune cells in BRCA. (P-value Significant Codes: 0 ≤ *** < 0.001 ≤ ** < 0.01 ≤ * < 0.05 ≤ . < 0.1).





Correlation Analysis Between ITGA3 and Immune Markers

To further explore the relationship between ITGA3 and immune infiltration, we used TIMER to analyze the correlation between ITGA3 and multiple immune markers. We selected 16 kinds of common immune cell markers (24, 25) and adjusted the results with tumor purity. As shown in Table 2, except for M1 macrophage markers, ITGA3 was related to most immune markers in BRCA, revealing a significant correlation between ITGA3 expression and CD8 T cell markers (CD8A, CD8B), T cell markers (CD3D, CD3E, CD2), Th1 markers (TBX21, IFNG, TNF), Th2 markers (GATA3, STAT6, STAT5A), Tfh markers (BCL6, IL21), and Th17 markers (STAT3, IL17A), indicating that ITGA3 may be involved in regulating T cell responses. In addition, ITGA3 was negatively correlated with Treg markers (FOXP3 and CCR8) and T cell exhaustion markers (PDCD1, CTLA4, LAG3 and GZMB), suggesting that ITGA3 might be involved in immune escape. ITGA3 was also negatively correlated with B cell markers (CD19 and CD79a), monocyte markers (CD86), TAM markers (CCL2 and IL10), and M2 macrophage markers (CD163 and MS4A4A), suggesting that it might be involved in immunosuppression and the regulation of macrophage polarization. In conclusion, these results indicated that ITGA3 could potentially regulate the recruitment and activation of immune cells in BRCA.


Table 2 | Correlation analysis between ITGA3 and gene markers of immune cells in BRCA by TIMER.






Discussion

ITGA3 is a member of the integrin family, which forms transmembrane integrin with the β1 subunit and is the receptor of fibronectin, laminin, collagen, and epithelial protein. A large number of studies have shown that ITGA3 can be used as a prognostic indicator for multiple cancers. However, its prognostic effect on breast cancer is still unclear. In this study, we used a variety of databases to explore the expression, survival, prognosis, genomic analysis, coexpression network and immune infiltration of ITGA3 in BRCA. This study showed that the mRNA and protein levels of ITGA3 in BRCA were lower than those in normal controls. Further survival analysis showed that low expression of ITGA3 was significantly associated with poor RFS in breast cancer patients. In addition, tumor pathological stage showed that lower expression of ITGA3 was associated with poorer OS and RFS in stage 3, indicating that ITGA3 was related to the prognosis of patients with advanced breast cancer. ROC curves showed that ITGA3 had significant diagnostic value for breast cancer, indicating that ITGA3 might be a potential diagnostic biomarker for BRCA. Then, we analyzed the mechanism of ITGA3 in the prognosis of breast cancer patients. Through pathway enrichment analysis of coexpressed genes, we found that ITGA3 is related to immune cell infiltration and ECM adhesion. On the one hand, immune infiltration analysis showed that in breast cancer, low expression of ITGA3 promotes B cell infiltration and M2 polarization. On the other hand, ITGA3 participates in ECM remodeling. All of these processes can lead to tumor growth and metastasis. Therefore, low expression of ITGA3 leads to a poor prognosis for breast cancer patients.

By analyzing the expression level of ITGA3 in breast cancer, we found that the expression of ITGA3 was lower in breast cancer than in normal controls. Next, we further explored the downregulationed mechanism of ITGA3 in breast cancer. We proved that there was a significant negative correlation between ITGA3 mRNA levels and promoter methylation levels through the cBioPortal database. DNA methylation is a kind of chemical modification that can change genetic performance without changing gene sequences and belongs to the epigenetic category (26). DNA methylation is an important mechanism for regulating gene expression, as well as for some genetic diseases and tumorigenesis (27). In mammals, DNA methylation occurs at CpG sites. CpG exists in two forms: one is dispersed in the DNA sequence; the other is found in a highly aggregated state, called a CpG island, which is mainly located in the promoter and 1st exon (28). In normal tissues, most of the scattered CpG is methylated. Except for locations on the inactivated X chromosome, in imprinted genes and in nonexpressing tissue-specific genes, the CpG islands of normal cells are prevented from being methylated (26, 28). The whole genome is divided into four regions: promoter, body, 3UTR and intergenic. The promoter can be subdivided into TSS200, TSS1500, 5UTR and 1st exon (29). Promoter methylation leads to gene silencing and plays a role in carcinogenesis (27, 30). Studies have shown that DNA methylation plays a key role in the development of early gastric cancer, and ITGA3 methylation is related to mixed gastric cancer (31). We verified the methylation sites of ITGA3 in BRCA through the MethSurv database, and the results showed that the cg11222053 probe located in TSS1500 had higher methylation. Furthermore, clinical stages 1, 2, 3 and 4 all showed complete methylation (β value ≥0.6). Here, we proved for the first time that ITGA3 exhibits promoter methylation in breast cancer. In summary, ITGA3 promoter methylation leads to transcriptional silencing, which may be one of the reasons for the downregulation of ITGA3 in BRCA.

Biological processes often require multiple gene interactions. To further understand the function of ITGA3, we constructed pathway enrichment of coexpressed genes, showing that coexpressed genes of ITGA3 were mainly involved in pathways in cancer, focal adhesion, cell proliferation, apoptosis, differentiation and migration, leukocyte transendothelial migration, and activation of inflammatory reactions and other processes. Previous studies have shown that ITGA3, which promotes cells to adhere to the surrounding ECM, initiates the intracellular signaling cascade, and maintains cell survival, proliferation, adhesion and migration (32). ITGA3 can promote the migration of endothelial cells (33). In addition, ITGA3 coexpression genes are involved in the pathway of leukocyte transmembrane migration. Studies have shown that α3β1 can mediate neutrophil chemotaxis through the basement membrane (34). Lerman et al. demonstrated that in addition to promoting migration, integrin α3β1 could also mediate the neutrophil inflammatory response in septicemia by cooperating with TLR2/1 and enhancing the secretion of cytokines downstream of leukocytes (35). High expression of ITGA3 is associated with lymphocyte invasiveness (36). O’Connell et al. proved that ITGA3 mediated lymphocyte adhesion and invasiveness (37). These results all indicated that ITGA3 could promote leukocyte migration and activate inflammation.

The number of TILs is a powerful prognostic factor for breast cancer patients (38, 39). However, the immune system cannot only inhibit the growth of cancer cells but also establish the conditions of the tumor microenvironment to promote tumor growth (40). Different types of immune cells inhibit or promote tumor development. On the one hand, cytotoxic T lymphocytes (CTLs) target tumor cells to exert antitumor immunity. On the other hand, other immune cells are involved in immunosuppression and immune escape. Circulating monocytes are recruited into breast tumors through chemotactic signals and then differentiate into TAMs to promote tumor growth and metastasis (41, 42). Qin et al. demonstrated that B cells suppressed T cell-dependent tumor immunity and the low immunogenicity of tumors was caused by B cells, whose presence in the priming phase results in disabled CD4 T cells that help CTL-mediated tumor immunity (43). We studied the correlation between ITGA3 and immune cell infiltration in breast cancer by immune infiltration analysis, and the results showed that ITGA3 was significantly related to B cell and macrophage infiltration. In addition, further correlation between ITGA3 and immune markers showed that ITGA3 could regulate the tumor infiltrating immune cell pattern in the tumor microenvironment of breast cancer. Our results showed that ITGA3 had a negative correlation with B cell markers (CD19 and CD79a), suggesting that the low expression of ITGA3 in BRCA might promote B cell infiltration and lead to immunosuppression. We further found that ITGA3 was negatively correlated with monocyte markers (CD86), TAM markers (CCL2 and IL10), and M2 macrophage markers (CD163 and MS4A4A), suggesting that ITGA3 could regulate the polarization of TAMs and promote tumor growth and metastasis. In addition, ITGA3 was negatively correlated with Treg markers (Foxp3 and CCR8) and T cell exhaustion markers (PDCD1, CTLA4, LAG3 and GZMB), suggesting that ITGA3 might be involved in immune escape. These results suggested that ITGA3 might regulate the infiltration of immune cells in BRCA, which would have a certain effect on the tumor microenvironment.

The tumor microenvironment (TME) includes ECM components, accessory fibroblasts, and proinflammatory cells (44). Extensive remodeling of the ECM during cancer progression causes alterations in density and composition (45). Collectively, the two important modifications within the ECM are stiffness (rigidity) and degradation, and the two processes are related to one another. The ECM is mainly produced by cancer-associated fibroblasts (CAFs). The interaction between CAFs and cancer cells determines ECM stiffness or degradation, which can produce TGF-β for ECM stiffness and matrix metalloproteinases (MMPs) for ECM degradation; both promote the proliferation, metastasis and angiogenesis of cancer cells. A stiff or rigid ECM is capable of stimulating epithelial cell transformation from normal cells to malignant cancer cells (46). Tumors, by applying physical forces through the stiffened ECM on host tissues, can displace them to enhance cell‐ECM adhesions and disrupt cell–cell junctions, leading to tumor growth and invasiveness (47, 48). In addition, ECM stiffness accelerates tumor progression by blocking the uptake and transportation of drugs into the tumor. ECM stiffness stimulates hypoxic conditions within the TME, which extend the number of leaky vasculatures within tumor microvessels. This leakage structure makes the blood sticky and increases the flow resistance, which makes it difficult for chemotherapy drugs to enter the tumor (49, 50). In addition, an increase in CSC stemness and expansion of the stem cell niche in the TME mediated by ECM stiffness hampers drug penetration into this niche (51). ECM stiffness has been used for initial screening in the diagnosis of breast cancer (45). The integrin content of the subcellular structures acts as a sensor for ECM stiffness, thereby influencing the rate of matrix rigidity (47). Highly stiffened ECM leads to subsequent degradation. Integrin signaling is significant for the formation of invadopodia. Invadopodia release MMPs to mediate ECM degradation, which allows cancer cells to obtain invasive characteristics. Integrin receptors promote ECM contents to adhere to invadopodia structures and further penetrate cancer cells from the basement membrane (52). KEGG analysis indicated that ITGA3 is involved in the MAPK signaling pathway, and ERK1/2 and JNK, which are members of the MAPK family, can induce cancer cells to generate MMPs to degrade the ECM and invade (47).

ITGA3 is as an integrin receptor that can promote the remodeling of the ECM, and changes in the ECM can stimulate integrin signaling to regulate the growth of tumor cells. In addition, ITGA3 can mediate M2 polarization and promote the stiffness of the ECM. Previous studies have shown that the α3β1 integrin-laminin-332 interaction of cancer-associated fibroblasts (CAFs) promotes and sustains the differentiation of CAFs and promotes tumor invasion (53). N Cohen et al. showed that CAF-derived Chi3 L1 mediated MAPK and PI3K signaling pathways, promoting macrophage recruitment and M2 polarization in breast tumors (54). Additionally, studies have shown that CAFs can recruit macrophages by activating the NF-κB signaling pathway (55) and then inducing TAM polarization to M2 macrophages through the PI3K/Akt (56), JAK/STAT (57), JNK (58), and Notch pathways (59). M2 macrophages secrete TGF-β, stimulating the TGF-β signaling pathway in the ECM (60) and inducing ECM deposition, which leads to stiffening of the ECM (61) (Figure 9)




Figure 9 | The role of ITGA3 in regulating ECM and TIL infiltration.



In summary, this study provided evidence for the downregulation of ITGA3 in BRCA, which differed from other types of cancers, due to promoter methylation. In addition, we found that ITGA3 had prognostic and diagnostic value for BRCA. Exploration of ITGA3-related pathways provided important clues for its regulatory mechanism in BRCA. Immunocyte infiltration analysis provides new ideas for ECM and TIL in breast cancer. These results need to be further verified by in vitro and in vivo experiments. The research in this article is expected to provide a new direction for clinical diagnosis and treatment.
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Introduction

Breast atypical ductal hyperplasia (ADH) and ductal carcinoma in situ (DCIS) are precursor stages of invasive ductal carcinoma (IDC). This study aimed to investigate the pathogenesis of breast cancer by dynamically analyzing expression changes of hub genes from normal mammary epithelium (NME) to simple ductal hyperplasia (SH), ADH, DCIS, and finally to IDC.



Methods

Laser-capture microdissection (LCM) data for NME, SH, ADH, DCIS, and IDC cells were obtained. Weighted gene co-expression network analysis (WGCNA) was performed to dynamically analyze the gene modules and hub genes associated with the pathogenesis of breast cancer. Tissue microarray, immunohistochemical, and western blot analyses were performed to determine the protein expression trends of hub genes.



Results

Two modules showed a trend of increasing expression during the development of breast disease from NME to DCIS, whereas a third module displayed a completely different trend. Interestingly, the three modules displayed inverse trends from DCIS to IDC compared with from NME to DCIS; that is, previously upregulated modules were subsequently downregulated and vice versa. We further analyzed the module that was most closely associated with DCIS (p=7e−07). Kyoto Gene and Genomic Gene Encyclopedia enrichment analysis revealed that the genes in this module were closely related to the cell cycle (p= 4.3e–12). WGCNA revealed eight hub genes in the module, namely, CDK1, NUSAP1, CEP55, TOP2A, MELK, PBK, RRM2, and MAD2L1. Subsequent analysis of these hub genes revealed that their expression levels were lower in IDC tissues than in DCIS tissues, consistent with the expression trend of the module. The protein expression levels of five of the hub genes gradually increased from NME to DCIS and then decreased in IDC. Survival analysis predicted poor survival among breast cancer patients if these hub genes were not downregulated from DCIS to IDC.



Conclusions

Five hub genes, RRM2, TOP2A, PBK, MELK, and NUSAP1, which are associated with breast cancer pathogenesis, are gradually upregulated from NME to DCIS and then downregulated in IDC. If these hub genes are not downregulated from DCIS to IDC, patient survival is compromised. However, the underlying mechanisms warrant further elucidation in future studies.
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Highlights

Hub genes, namely TOP2A, MELK, PBK, NUSAP1, and RRM2, are closely associated with the occurrence and pathogenesis of breast cancer.

The hub genes associated with the progression of breast cancer are gradually overexpressed from normal mammary epithelium to ductal carcinoma in situ.

The expression of hub genes tends to decline when breast ductal carcinoma in situ further develops to invasive ductal carcinoma.



Introduction

The main stages of breast disease consist of no atypical cell proliferation, atypical proliferation of ductal or lobular epithelial cells, carcinoma in situ, and invasive cancer. The pathogenesis of breast cancer proceeds from the development of normal mammary epithelium (NME) to simple ductal hyperplasia (SH) and atypical ductal hyperplasia (ADH), subsequently progressing to ductal carcinoma in situ (DCIS) and eventually to invasive ductal carcinoma (IDC) (1–4). The prevalence of breast cancer among ADH patients is four-fold that of the general population (5). Moreover, individuals diagnosed with DCIS are at increased risk of IDC (3). If DCIS is not treated, approximately 14–46% of patients develop invasive breast cancer within the next 10 years (1, 6). Although studies have focused on early molecular changes before the onset of aggressive cancer, limited information is available regarding the genetic characteristics of breast cancer precursors.

Breast cancers usually originate from epithelial tissue (7). However, previous tissue assessments have revealed numerous interstitial cells that lead to different outcomes, including fibroblasts, macrophages, and lymphocytes. Cellular heterogeneity is a common challenge in genomic and proteomic tissue analyses; hence, it is necessary to isolate individual cell populations and analyze them separately (8). Currently, the use of laser-assisted microdissection (LCM) of tumor cells facilitates direct microscopic assessment of heterogeneous tissues and yields a rich cell population in the sample. Therefore, LCM represents an extremely sensitive and accurate means of evaluating the pathogenesis of breast cancer in epithelial cells.

Traditional genetic analysis methods include the identification of differentially expressed genes (DEGs); however, this method only compares DEGs between two groups (9). Weighted gene co-expression network analysis (WGCNA) is commonly used to investigate the complex associations between genes and phenotypes (10). WGCNA converts gene expression data into co-expression modules, providing insights into the signaling networks that potentially result in phenotypic traits (11). Most importantly, WGCNA facilitates the analysis of dynamic expression of gene modules or genes associated with disease pathogenesis (12, 13).

In this study, we performed LCM to analyze gene expression in NME cells, SH epithelial cells, ADH epithelial cells, DCIS epithelial cells, and IDC epithelial cells, using WGCNA to further analyze dynamic changes in hub genes during breast cancer pathogenesis. Tissue microarrays (TMAs) consisting of 60 samples derived from different breast diseases were used to evaluate the protein expression levels associated with hub genes. This study aimed to identify dynamic changes in the expression of hub genes associated with breast cancer development, to improve the current understanding of breast cancer pathogenesis.



Materials and Methods


Microarray Data

Data from datasets GSE5847, GSE9574, GSE11965, GSE16873, GSE20437, and GSE24506 (n=146 samples) were obtained from the Gene Expression Omnibus (GEO) (www.ncbi.nlm.nih.gov/geo) database for microarray-based gene expression profiling (14). Data for normal terminal ductal lobular units adjacent to breast cancer tissue (n=14) were also included, denoted cancer normal (CN). Microarray data annotation (HG-U133A) was used to match 22283 microarray probes to their corresponding genes. After eliminating probes with more than one target gene and calculating the average expression level of genes corresponding to more than one probe, we finally selected the top 5000 genes with large variance for subsequent analysis.



Identification of Co-Expression Modules

Clusters with appropriate thresholds were generated using the flashClust tool in the R package (version 3.5) to detect outliers. To establish a predictive gene co-expression network, we set a soft threshold for scale independence of approximately 0.8 to analyze the scale-free topology with inherent module characteristics (15, 16). Modules, identified as sets of genes with high topological overlap, were constructed using the WGCNA algorithm. To ensure high reliability of the results, the minimum number of genes in a module was set to 30.



Determination of the Association Between Modules and Clinical Traits

By analyzing module–trait associations using the graph function of the R statistical package (version 3.5), modules with common expression patterns were analyzed and interactions of co-expression modules associated with particular traits were identified from correlations between module eigengenes (MEs) and clinical traits. We identified modules most closely associated with the clinical features of breast cancer, including those positively or negatively associated with the clinical characteristics.



Association Analysis and Hub Genes

WGCNA using the MEs was performed to assess the potential correlation between gene modules and clinical traits (15). MEs were defined as the initial principal components determined via principal component analysis, thus summarizing the expression patterns of the module genes into a single characteristic expression profile. Thereafter, the expression of gene modules associated with a type of sample was determined on the basis of gene significance (GS) and module significance (MS) (16). GS for a gene was defined as the −log10-transformed p-value of a paired-samples student’s t-test measuring differential gene expression among different types of samples, while MS was indexed as the average GS for all genes in this module.

The eigengene connectivity (KME) was defined as the Pearson correlation coefficient between individual genes and the ME, indicating the distance between the expression profile of a gene and that of the ME. Therefore, the KME quantifies the distance between the gene and the module, determining the module membership of a gene. A pivotal gene is one with high network connectivity in a particular population. In addition, the central genes of each module are highly correlated with the clinical characteristics of each module.



Method for Determining Hub Genes

Hub genes were determined using scatter plots to further clarify the GS within each module. The connectivity of each gene in each module was calculated, and the gene with the greatest interactions was considered to be the hub gene. Based on the GS and KME, hub genes were selected in accordance with the following criteria: a hub gene had GS>0.2 and KME>0.8.



Functional Annotation Modules

We carried out database annotations, visualization, and integration to identify sites for enrichment analysis (DAVID, version 6.8, https://david.ncifcrf.gov/home.jsp), including gene ontology (GO) terminology (17) and Kyoto Gene and Genomic Gene Encyclopedia (KEGG) (18) enrichment analysis with respect to molecular function (MF), biological process (BP), and cellular composition (CC).



Patient Samples

We collected tissues including normal breast, SH, ADH, DCIS, and IDC samples from patients undergoing resection in West China Hospital of Sichuan University. The TMA contained 60 samples from different breast diseases. Normal breast tissue specimens were paired with breast cancer samples. IDC tissue samples were obtained from patients who had been diagnosed for the first time and had not received neoadjuvant chemotherapy. All patients were independently diagnosed by two pathologists. This study was approved by the Ethics Committee of West China Hospital of Sichuan University, and informed consent was obtained from each patient.



Immunohistochemical (IHC) Staining

TMA sections of 4 μm thickness were placed on a charged slide, deparaffined, and then rehydrated at a reduced alcohol concentration. Antigens were recovered, sealed, and incubated with primary antibodies. After 6 h, glass slides were treated with secondary antibodies and stained using a DAB peroxidase substrate kit (Solarbio, China).

IHC assays were performed using the following antibodies: CDK1, NUSAP1, CEP55, TOP2A, MELK, PBK, RRM2, and MAD2L1 (Affinity Biosciences, dilution 1:200). Allred scores were used to analyze immunohistochemistry. The positive staining intensity (0: negative; 1: weak; 2: moderate; and 3: strong) was multiplied by the staining area (0: <5%; 1: 5–25%; 2: 26–50%; 3: 51–75%; and 4: >75%). The final score (on a scale of 0 to 12) was converted to a scale from 0 to 3 [a score of 0–1 was considered negative (0); 2–4 was considered weakly positive (1); 5–8 was considered medium (2); and 9–12 was considered highly positive (3)]. After immunohistochemical analysis, the sections were scanned to obtain high-resolution (40X) digital images using a 3DHISTECH scanner (Pannoramic, TaiBei) in the pathology laboratory of West China Hospital.



Western Blot Analysis

Breast tissue extracts were electrophoresed using 10% sodium dodecyl sulfate polyacrylamide gel electrophoresis and then electrotransferred to polyvinylidene fluoride (Solarbio) membranes. The membranes were sealed with 1X phosphate-buffered saline, 0.1% Tween-20, and 5% skim milk (Bio-Rad) and then incubated with primary antibodies at 4°C overnight. Membranes were then washed with 1X TBS-0.1% Tween-20 film and incubated with secondary antibodies at room temperature for 1 h. Autoradiography was performed with a Bio-Rad ChemiDoc XRS+ system.



Survival Analysis

We analyzed correlations between overall survival (OS) and disease-free survival (DFS) in breast cancer pathogenesis using Kaplan–Meier plots (http://kmplot.com/analysis/) based on upregulation and downregulation of hub genes. This tool provides data on breast cancer, lung cancer, ovarian cancer, stomach cancer, and liver cancer.



Statistical Analysis

Statistical analyses were performed using the R statistical software version 3.5 (https://www.r-project.org/) with related packages or our customized functions. One-way analysis of variance (ANOVA) was performed to acquire statistical significance (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001) with GraphPad Prism v8 (GraphPad Software; La Jolla, CA, USA).

Cox proportional hazards analysis was used to detect the relationship between breast cancer mortality and the expression of hub genes in the module; the results were expressed as hazard ratios (HRs) with 95% confidence intervals. The hypothesis of proportional risk was satisfied by the Kaplan–Meier curve test and shown to be statistically significant by log-rank test. SPSS 25.0 (IBM) was used for all statistical analyses.




Results


Construction of Gene Co-Expression Modules Associated With Clinical Traits

To improve the reliability of the analysis, microarray data for 146 specimens from healthy and diseased individuals, obtained from the GEO database, were pretreated. Co-expression modules were constructed with the most varied 5000 genes in 146 normal breast and pathological breast samples via WGCNA. The flashClust tool was used for cluster analysis, and no outlier samples were detected (Figure 1A). When the power value was equal to 8, the scale independence approached 0.8 (Figure 1C) and predicted a gene co-expression network with scale-free topology and an inherent modular feature. Ten modules were identified from the network of 146 samples via hierarchical clustering based on a topological overlap measure dissimilarity measure. A hierarchical clustering system was generated using a color-coded tree diagram for modules, in which DCIS and IDC showed a clear correlation with the black module (Figure 1B).




Figure 1 | (A) Cluster tree of breast cancer samples. (B) Analysis of network topology of various soft-thresholding powers. NME, normal mammary epithelium; SH, simple ductal hyperplasia; CN, cancer normal; ADH, atypical ductal hyperplasia; DCIS, ductal carcinoma in situ; IDC, invasive ductal carcinoma; GS, gene significance. (C) Hierarchical cluster analysis dendrogram. The gene clustering tree was obtained via hierarchical clustering of adjacency-based dissimilarity.



To determine the associations among the ten identified co-expression modules and clinical traits, we determined the Pearson’s correlation coefficient among MEs. Compared with normal tissue, positive correlations with breast cancer pathogenesis for the black (74 genes), blue (845 genes), and brown (181 genes) modules were gradually strengthened as the disease progressed from SH to CN, ADH, and DCIS, with the strongest correlations in DCIS. However, at the stage of invasive cancer, these positive correlations were weaker; for the green (94 genes), magenta (36 genes), and red (92 genes) modules, the positive correlations were gradually weakened in comparison with normal tissue (Figure 2). As shown in Figure 2, the black module markedly contributed to breast cancer pathogenesis; simultaneously, as shown in the scatter plot (Supplementary Figure 1), the genes in the black module were highly correlated with the module of the eigengene, which was highly correlated with the occurrence of DCIS. Thus, the black module was selected for subsequent analysis.




Figure 2 | Pearson’s correlation coefficients between MEs and clinicopathological variables. Relationships of the GS measure for weight with breast disease-related genetic and network-based variables of the ten colored modules. NME, normal mammary epithelium; SH, simple ductal hyperplasia; CN, cancer normal; ADH, atypical ductal hyperplasia; DCIS, ductal carcinoma in situ; IDC, invasive ductal carcinoma; ME, module eigengene.





Functional Enrichment Analysis of Co-Expression Modules

The BPs in the black module exhibited the highest significant associations with breast cancer pathogenesis and were primarily enriched in the following KEGG pathways: hsa:04110 (cell cycle, p=4.3e–12), hsa:04114 (oocyte meiosis, p=6.25e−04), and hsa:03030 (DNA replication, p=2.92e−04). Regarding MF, genes in the black module were primarily enriched in the following terms: GO:0030554 (adenyl nucleotide binding, p=9.87e–06), GO:0005524 (ATP binding, p=3.75e–06), and GO:0032559 (adenyl ribonucleotide, p=4.58e–06). Regarding CC, the genes in the black module were primarily enriched in the following terms: GO:0015630 (microtubule cytoskeleton, p=2.61e–15), GO:0043228 (non-membrane-bound organelles, p=1.47e−13), and GO:0043232 (intracellular non-membrane-bound organelles, p=1.47e−13). Regarding BP, the genes in the black module were primarily enriched in the following terms: GO:0007049 (cell cycle, p=2.09e–29), GO:0007018 (cell cycle phase, p=4.08e−27), and GO:0022402 (cell cycle process, p=6.77e−26) (Figure 3).




Figure 3 | Molecular function (MF), biological processes (BP), cellular composition (CC), and Kyoto Gene and Genomic Gene Encyclopedia (KEGG) pathway enrichment analyses of co-expression modules. The x-axis shows the ratio of genes and the y-axis shows the KEGG pathway terms. The -log10 (p-value) of each term is colored in accordance with the legend.





Hub Gene Analysis of Black Module

Hub genes are closely related to MEs and are highly associated with breast cancer (here, breast cancer refers to DCIS) (19). Among the 146 samples analyzed herein, CDK1, NUSAP1, CEP55, TOP2A, MELK, PBK, RRM2, and MAD2L1 were significantly correlated with the eigengene in the black module and were upregulated in DCIS compared with normal tissues; thus, they were defined as hub genes for breast cancer pathogenesis. Four hub genes, namely TOP2A (p=0.036), MELK (p=0.021), PBK (p=0.043), and RRM2 (p=0.012), were upregulated during breast cancer progression from normal tissue to DCIS and downregulated during disease progression from DCIS to IDC. CDK1, NUSAP1, CEP55, and MAD2L1 displayed similar, albeit non-significant, trends (p>0.05) to those of the other four hub genes (Figure 4).




Figure 4 | Hub genes expressed in breast cancer and normal tissues, using the Curtis breast dataset (n=146). p-values were calculated via log-rank test and p<0.05 was considered significant. NME, normal mammary epithelium; SH, simple ductal hyperplasia; CN, cancer normal; ADH, atypical ductal hyperplasia; DCIS, ductal carcinoma in situ; IDC, invasive ductal carcinoma.





Hub Gene Validation by TMA Analysis

Protein expression levels of hub genes were evaluated by IHC staining of eight hub genes on TMAs containing 60 samples derived from different breast disease patients. The clinical characteristics of the patients are summarized in Table 1. In the TMA analysis, black module hub genes showed a gradual transition from negative or weakly positive expression to moderate or strong positive staining from NME, SH, and ADH to DCIS; however, in IDC tissues they were negative or weakly positive. The final score was converted to a scale from 0 to 3 (Figure 5A). The average IHC scores of the eight hub genes gradually increased from NME to DCIS and then decreased in IDC (Figure 5B).


Table 1 | Clinical characteristics of the patients who provided tissues for the TMA analysis.






Figure 5 | (A) Average IHC score scale. (B) Average IHC score of eight hub genes using GraphPad Prism v8. One-way ANOVA was performed to determine statistical significance (*p < 0.05, **p < 0.01,***p < 0.001,****p < 0.0001). NME, normal mammary epithelium; SH, simple ductal hyperplasia; ADH, atypical ductal hyperplasia; DCIS, ductal carcinoma in  situ; IDC, invasive ductal carcinoma.





Hub Gene Validation by Western Blot Analysis

The protein expression of black module hub genes was also validated using western blot analysis. The protein expression levels of hub genes, namely, MELK, TOP2A, PBK, NUSAP1, and RRM2, also gradually increased from NME to DCIS and then decreased in IDC (Figure 6). By contrast, the gene expression of CDK1, CEP55, and MAD2L1 showed the opposite trend compared with that of their protein expression. The specific reasons for this have not yet been clarified.




Figure 6 | Protein expression levels of hub genes. (A) Protein expression levels of CDK1, MELK, CEP55, TOP2A, NUSAP1, PBK, RRM2, and MAD2L1 were determined by western blotting. (B) Western blot analysis of CDK1, MELK, CEP55, TOP2A, NUSAP1, PBK, RRM2, and MAD2L1 in tissue from different stages of breast disease, and quantification of the intensity relative to GAPDH. One-way ANOVA was performed to acquire statistical significance (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). NME, normal mammary epithelium; SH, simple ductal hyperplasia; ADH, atypical ductal hyperplasia; DCIS, ductal carcinoma in situ; IDC, invasive ductal carcinoma.





Survival Analysis

Survival analysis of upregulated or downregulated hub genes during breast cancer pathogenesis was performed using data from the Kaplan–Meier Plotter website. The HRs for patient OS of hub genes fluctuated between 1.5 and 2.04 (p<0.05). Even TOP2A, with the lowest HR (HR=1.5, p=2e−04), could influence OS (Figure 7A). Moreover, we simultaneously analyzed DFS and observed the same trend as in the OS analysis. The HRs for DFS of the hub genes fluctuated between 1.57 and 2.13 (p<0.05), indicating that these eight hub genes significantly influenced DFS (Figure 7B).




Figure 7 | (A) overall survival (OS) of patients wherein these genes are expressed. (B) disease-free survival (DFS) of patients wherein these genes are expressed.






Discussion

Breast disease pathogenesis is generally a gradual process. In most cases, ADH develops into DCIS, which is a precursor of IDC (3). Particular genes have critical roles in these phenomena. In this study, we identified the key gene module (black module) and confirmed that the expression of hub genes in this module was strongly associated with breast cancer pathogenesis. From normal tissue to DCIS, hub genes in the module were gradually upregulated. However, when the disease progressed from DCIS to IDC, the expression of hub genes displayed a completely opposite trend compared with that observed in the previous stage. This phenomenon has not been reported previously. Many experiments have confirmed that these hub genes are significantly overexpressed in breast cancer tissue compared with normal tissue; however, these studies did not include further dynamic comparisons of hub gene expression in different diseases. Hence, the mechanism underlying the reversal of the trend of expression of these genes remains unclear.

During the progression of breast cancer from SH to DCIS, the black module was closely associated with breast cancer pathogenesis. Functional enrichment analysis revealed that genes in the black module were primarily enriched in cell-cycle-related KEGG pathways, indicating that hub genes in this module are associated with cell proliferation. Healthy cell progression and proliferation proceed through checkpoints during the cell cycle to achieve strict cell cycle regulation; one of the hallmarks of cancer is aberrant cell cycle regulation (20). Furthermore, all cancer cells depend on abnormal metabolism to yield the enormous amounts of energy required to continuously promote cell cycle progression (21, 22). Targeting cell cycle progression to alter metabolism is a crucial therapeutic approach (23), concurrent with our present conclusions. Cell division normally proceeds through the cell cycle, and the ability to sustain aberrant proliferation and dysregulation of the cell cycle is a hallmark of cancer.

Moreover, we assessed breast cancer progression from DCIS to IDC; compared with disease progression in normal breast tissue in DCIS, the black module showed a diametrically opposite trend of a progressive upregulation of gene expression. However, the mechanism underlying this reversal of gene expression during disease progression from DCIS to IDC is unknown. The breast cancer microenvironment includes tumor cells, stromal cells including fibroblasts and vascular and immune cells, and extracellular matrix molecules. When breast cancer progresses to the IDC stage, the microenvironment usually changes (19, 24–26). The interactions between mammary epithelial cells and stromal cells and the changes in their gene expression and enzymatic activity profiles are drivers of disease progression (27–29). Immune cells, including innate immune cells and adaptive immune cells, form an important part of tumor stroma (30). When cancer cells invade the basement membrane, the immune system in the tumor microenvironment (TME) can inhibit tumor growth by destroying or inhibiting the growth of cancer cells (31). When the immune system in the TME cannot eliminate or control the growth of neoplastic cells, cancer progression occurs (32).

The change in trends of hub gene expression may indicate the release of certain substances to the intercellular space, followed by interactions of the TME with tumor cells, leading to changes in expression of hub genes.

We screened hub genes in the black module to elucidate the regulatory mechanism and further assess the evolution of breast cancer. The selected hub genes displayed the same trend as the black module, and if this trend did not decline, it would affect survival. One of the most important genes in breast cancer pathology (C-erbB-2) also displays the same trend (33). The probability of Her-2 overexpression in IDC is approximately 20–30% (34), compared with approximately 50% in DCIS (35). Some studies have reported that this phenomenon results from COX-2 overexpression having a significant association with HER-2 overexpression (14). The COX-2 expression rate is significantly higher in DCIS than in IDC (34); thus, Her-2 overexpression levels are higher in DCIS than in IDC (36). Therefore, it is unclear whether this difference in hub gene expression is regulated by COX-2 or other regulatory mechanisms involving Her-2. This may also be the reason for the change in hub gene expression during disease progression from DCIS to IDC.

Five of the eight hub genes showed the same variation trends with respect to gene and protein expression levels. This suggests that these five genes may have important roles in the initiation of breast cancer. The five genes have also been linked to the development of other cancers. NUSAP1 is overexpressed in hepatocellular carcinoma and glioblastoma (37, 38). Furthermore, NUSAP1 overexpression is associated with deterioration in melanoma and breast and prostate cancers (39, 40). MELK overexpression is associated with tumor aggressiveness and poor outcomes in numerous other cancer types, including glioblastoma (41), astrocytoma (26), and prostate cancer (42). TOP2A upregulation is closely associated with various tumor types, including breast, ovarian, and prostate cancers, because TOP2A catalyzes the cleavage of double-stranded DNA and promotes transcription during mitosis (43). PBK is overexpressed in malignant tumors including Ewing sarcoma, lymphoma, leukemia, melanin tumors, and breast and lung cancers (44–47). RRM2 is overexpressed in cancer and promotes tumor progression (48). Our results show that if these hub genes are still upregulated in the invasive stage of cancer, patient survival is significantly decreased.

In addition, high expression of these five genes was associated with lower survival rates, suggesting that their high expression levels reflect poor prognosis. Hence, it will be of great clinical significance to elucidate the mechanisms underlying the decreased expression of those genes during the transformation from preinvasive to invasive carcinoma, and to further explore the roles of these genes in the initiation and progression of breast cancer. The present results provide a theoretical basis for the prevention and treatment of breast cancer. In further studies, we intend to focus on the mechanisms underlying the downregulation of these genes from DCIS to IDC and identify pathways that could be used to inhibit the high expression of these genes to prevent and treat breast cancer.



Conclusions

This study shows that hub genes associated with breast cancer pathogenesis, namely RRM2, TOP2A, PBK, MELK, and NUSAP1, are gradually upregulated from NME to DCIS and then downregulated in IDC. If these hub genes are not downregulated from DCIS to IDC, patient survival is compromised. However, the underlying mechanisms warrant further elucidation in future studies.
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The increasing incidence and mortality rate of Breast cancer (BC) make it a major public health problem around the world. CXC chemokines can mediate the migration of immune cells and regulate apoptosis in tumor. However, the expression and prognostic value of them in BC and their targeted drugs have not been clarified. Therefore, in this study, ONCOMINE, GEPIA2.0, UALCAN, Venny2.1.0, cBioPortal, STRING, Gene MANIA, Pathway Commons, DAVID6.8, Omicshare, Cytoscape3.6.1, TIMER2.0, Drug Bank, TCMSP, RSCBPDB, PubChem, pkCSM, Chem Draw, AutoDockTools-1.5.6 and PyMOL were utilized for analysis. The expression of CXCL1-3, CXCL9-13 between BC and normal tissues was significantly different in all the three databases. And the expression of CXCL1-2, CXCL12-13 was correlated with the stages of BC. But only CXCL1-3 were prone to mutation, and negatively correlated with survival and prognosis of BC patients. Taken together, CXCL1-2 might be therapeutic targets and biomarkers for BC patients. In addition, both of them were associated with immune infiltration. The results of molecular docking showed that Quercetin was most likely to be developed as drugs that interacted directly with CXCL1-2. And GLU29 of CXCL1, ASP-1, PRO-96, TRP-47 and LEU-45 of CXCL2 were the most potential sites, which provided valuable reference for further study of pharmacodynamics and mechanism. In addition, the inhibitory effect of Quercetin on proliferation and promoting apoptosis of BC related cell lines were confirmed in vitro. Western blot and Real-Time PCR confirmed that it increased the expression of CXCL1-2 in MDA-MB-231 and MCF-7 cells.
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Introduction

Breast cancer (BC) is a kind of malignant tumor caused by genes’ mutation of mammary gland epithelial cells with a variety of carcinogenic factors, resulting in cell proliferation out of control, and its mortality rate is in the forefront of all kinds of tumors (1). The incidence number of BC is about 2 million 880 thousand per year and the incidence rate of BC in China ranks 120 around the world (2, 3). BC has the characteristics of high degree of malignancy, rapid proliferation, easy metastasis and recurrence. At present, chemotherapy, surgery and medication are the most commonly used treatments for BC. However, due to the rapid progress of it, many patients lost the opportunity of early surgery (4). At the same time, some patients are prone to tolerance to conventional chemotherapy drugs, resulting in poor treatment effect (5, 6). In recent years, many studies have shown that the occurrence and development of BC are accompanied by the disorder of many genes, but the mechanism is still unclear (7, 8). Therefore, it is of great significance to explore therapeutic targets and prognostic markers for BC patients, and to elaborate the related molecular mechanisms for improving the effect of diagnosis and treatment.

Chemokines are named for their small molecular weight, four conserved cysteine residues and directional chemotaxis (9). Up to now, 48 chemokines and 18 signal transduction receptors have been identified in human. CXC chemokines are important members of this family (10). Tumor cells, immune cells and stromal cells in tumor microenvironment can secrete CXC chemokines and regulate their expression patterns, thus affecting the angiogenesis, occurrence, progression and metastasis of tumor (11). However, the expression and prognostic value of them in BC and their targeted drugs have not been clarified.

Therefore, we conducted a comprehensive bioinformatics analysis of CXC chemokines’ expression, mutation and their relationship with prognosis of BC patients through several large public databases. The biomarkers were selected according to the relationship between their expression and the survival of BC patients. Then, a network of biomarkers and their adjacent genes was constructed to analyze their biological functions and pathways. The relationship between biomarkers and immune cells was analyzed, at the same time. Finally, molecular docking and ADEMT were used to screen the targeted drugs of CXCL1-2. And experiments in vitro were used to confirm the above results. This study provided two new biomarkers and corresponding drugs for BC. The flow chart of this study is shown in Figure 1.




Figure 1 | The flow chart of this study.





Materials and Methods


ONCOMINE Database Analysis

ONCOMINE (http://www.oncomine.org ) is a database built by the University of Michigan for drugs’ development and clinical practice. It has 12764 normal and 86733 tumor samples, which used to analyze the expression of target genes in different cancers (12). Through “differential analysis” module, students’ t-test was used to analyze the differential expression of CXC chemokines in BC and normal tissues by setting the significance threshold of P < 0.05, multiple change of 2 and gene ranking in the top 10%. The samples involved 10 studies (13–22).



GEPIA2 Database Analysis

GEPIA2 (http://gepia.cancer-pku.cn/index.html) is developed by Peking University. It contains sequence expression data of 9736 tumors and 8587 normal tissues from TCGA and GTEX projects (23). In this study, “Single gene analysis” module was used to analyze the differential expression of CXC chemokines in BC and normal tissues based on TCGA normal and GTEx data. And their expression of different stages in BC was analyzed by setting |log2fc| cutoff to 1 and Q-value cutoff to 0.05 with ANOVA method. The overall survival (OS) rates of CXC chemokines were analyzed by “survival analysis” in GEPIA2, and the hazards ratio based on Cox pH model was calculated. The 95% CI were added as dotted line.



UALCAN Database Analysis

UALCAN (http://ualcan.path.uab.edu/analysis.html) is a comprehensive database that provides analysis of comics data (including TCGA and MET500 queue data) which based on high-quality graphics using JavaScript and CSS (24). So, the “TCGA gene analysis” module of UALCAN was used to analyze the data onto the expression of CXC chemokines in BC and normal tissues. The different tumor stages and the survival rate of patients were analyzed at the same time. Students’ t-test was used to set the significance threshold of P < 0.05.



cBioPortal Database Analysis

cBioPortal (http://www.cbiobortal.org) is a comprehensive database which developed by MSK to analyze multidimensional cancer genome data (25). Based on TCGA, 9536 samples of 18 BC studies are analyzed. Mutation data of CXC chemokines were obtained from “Mutation” through cBioPortal. The overall survival rates of differentially expressed genes and the data of adjacent genes co-expressed with them were obtained by “Comparison/Survival”. The Z-score of mRNA expression (RNA SEQ v2rsem) and protein expression Z-score (RPPA) were obtained with ± 2.0 as Z-score threshold.



Neighbor Genes’ Networks, Pathways and Interactions of Differentially Expressed Genes

STRING (https://string-db.org/) is a database developed by European Molecular Biology Laboratory on functional association for genes (26). It includes 5090 species, more than 20 million proteins and 3 billion interactions. Gene MANIA (https://genemania.org/) is a real-time multi association Network Ensemble Algorithm for predicting functional association data related to input genes (27). Pathway Commons (http://www.pathwaycommons.org/) contains data from 9 databases, with more than 1400 pathways and 687000 interactions (28). The data onto neighbor genes and pathways related to differentially expressed genes were collected and integrated via them.



Timer Database Analysis

TIMER (https://cistrome.shinyapps.io/timer/) is a tool for systematic analysis of immune infiltration in more than 30 cancer types (23). “Immune Association” was used to assess the correlation between biomarkers and immune cells in this study.



Gene Ontology and KEGG Pathway Enrichment Analysis

Gene Ontology (GO) is a standardized classification system of genes’ function which used to comprehensively describe the properties of genes and their products in organisms. Kyoto Encyclopedia of Genes and Genomes (KEGG) is a system used to comprehensively analyze the information, function and relationship with targets of pathways. DAVID6.8 (https://david.ncifcrf.gov/summary.jsp) provides a comprehensive set of functional annotation tools for investigators to analyze the GO enrichment and KEGG pathway annotation involved in the targets (29).

The genes related to biomarkers obtained from cBioPortal were inputted into DAVID6.8, and species were selected as “Homo species” for GO enrichment and KEGG pathway analysis. Significant data were screened according to P < 0.05.



Screening Drugs for Biomarkers

Both of the TCMSP (https://tcmspw.com/tcmsp.php) and Drug Bank (https://go.drugbank.com/) are databases containing information on a variety of natural compounds and corresponding genes (30, 31). RSCBPDB (https://www.rcsb.org/) is a database contains thousands of genes (32). pkCSM (http://biosig.unimelb.edu.au/pkcsm/prediction) is a database used to analyze the ADMET parameters of compounds, so as to discovery new drugs (33). Autodocktools-1.5.6 is a semi flexible molecular docking software and PyMOL is a software used to process the structure of small molecules and proteins before and after docking. It is generally believed that the binding strength of a compound to protein is inversely proportional to the binding energy, and its threshold is -4 kcal/mol. Meanwhile, according to ADMET principle, the possibility of the above drugs was analyzed.



Cell Culture

MDA-MB-231 and MCF-7 cells were obtained from Hubei University of Chinese Medicine (Wuhan, China). The cells were cultured in DMEM (Gibco, MD, USA) supplemented with 15% fetal bovine serum (FBS) (Gibco, MD, USA) and 100 U of penicillin G with 100 µg of streptomycin per ml. Cells were incubated at 37°C under 5% CO2 in a humidified atmosphere.



Cell Proliferation Assay

MDA-MB-231 and MCF-7 cells were incubated in 96-well plates for 24 h at a density of 5.0 × 103 cells per well with five holes. And cells were treated with different concentrations (0, 10, 20, 40, 80 and 160 µM) of Quercetin for 24 h. Then, 20 µl MTT (Sigma, MO, USA) was added to each well for another 4 h. After the supernatant was removed, the formazan product obtained was dissolved in 150 µl dimethyl sulfoxide (DMSO) (Sigma) on a QB-9001 Microporous Quick Shaker (Kylin-Bell Lab Instruments Co. Ltd., Jiangsu, China) for 15 min. The absorbance was read at 490 nm with a Spark 10M microplate reader (Tecan, Männedorf, Switzerland).



Plate Cloning Experiment

MDA-MB-231 and MCF-7 cells in logarithmic growth phase were inoculated into 6-well plates at 500 cells/well. They were divided into three groups and added 0, 20 and 80 µM Quercetin, respectively. 24 h after administration, fresh culture medium was added, and the culture medium was changed regularly within 14 days. On day 15, they were fixed with 4% polyoxymethylene for 10 min, washed 3 times with PBS, stained with Giemsa stain solution for 15 min. Then, the microscopes were cleaned with flowing water for observation and photographing.



Hoechst 33342 Staining

MDA-MB-231 and MCF-7 cells were incubated with Quercetin (0, 20 and 80µM) for 24 h. Then, the cells were fixed with 4% polyoxymethylene for 15 min, washed 3 times with PBS, incubated with 1mL/well Hoechst 33342 (Beyotime, 8 µg/ml) for 15 min and then washed 3 times with PBS. Cells were observed with a fluorescence microscope.



Western Blot Analysis

MDA-MB-231 and MCF-7 cells were seeded in 6-well plates at 5.0 × 105 cells/well and treated with Quercetin (0, 20 and 80µM) for 24h. Then, cells in each well were photographed under 10x microscope. And the cell lysis was performed using RIPA lysis kit (AS1004, ASPEN, Wuhan, CHINA) and mixed with phenylmethanesulfonyl fluoride. Total protein quantification of the whole cell lysate was performed using BCA protein assay kit (AS1086, ASPEN, Wuhan, CHINA). The same total proteins were separated on 15% SDS-PAGE gel electrophoresis (AS1012, ASPEN, CHINA) and subsequently electrophoretically transferred onto a nitrocellulose membrane by electrophoresis (DTT-6C, DYCZ-400D, DYCZ-24DN, Beijing, CHINA). Membranes were blocked with 5% BSA for 2 h at room temperature, then incubated overnight at 4°C with primary antibodies, including CXCL1 (1:100 dilution, AB206411, ABCAM, UK) and CXCL2 (1:500 dilution, BS-1162R, BIOSS, Wuhan, CHINA). Membranes were washed 3 times, then incubated with HRP-Goat anti Rabbit (AS1107, ASPEN, Wuhan, CHINA). 1 h later, membranes were washed 3 times with tris buffered saline + Tween (TBST) for 10 minutes. Proteins were visualized by the addition of ECL (AS1059, ASPEN, Wuhan, CHINA), and membranes were scanned and imaged by the Fluor Chem FC3 system (Protein Simple, USA).



Real-Time PCR Analysis

According to the manufacturer’s guidelines, total RNA was extracted from each group of cells by TRI pure reagent (EP013, ELK Biotechnology, Wuhan, CHINA). The primers of genes were designed and synthesized by PINUOFEI Biotechnology Co., Ltd (Wuhan, CHINA). Then, EnTurbo™ SYBR Green PCR Super Mix (ELK Biotechnology, Wuhan, CHINA) and Step One™ Real-Time PCR (Life Technologies, USA) were used to determine the mRNA expression of genes. The following thermal circulator conditions were used: pre-denaturation at 95°C for 3 min, denaturation at 5°C for 10 s, and denaturation at 58°C for 30 s, and denaturation at 72°C for 30 s (denaturation for 40 cycles). The melting curve condition was the default setting of the instrument. GAPDH was used as internal reference to normalize the expression of gene. Relative quantification was determined by 2-ΔΔCT method.



Statistical Analysis

In this study, ANOVA was used to analyze the expression of CXC chemokines in GEPIA2.0 database and their relationship with the stages of BC. |Log2fc | cutoff < 1 and Q-value < 0.05 were considered to be significant. Overall survival (OS) was analyzed based on the Mantel–Cox test and Log rank P < 0.05 were considered to be significant. The data in ONCOMINE and UALCAN were analyzed by students’ t-test, and P < 0.05 was the significance threshold. Date in cBioPortal database were obtained with ± 2.0 as Z-score threshold. The partial Spearman’s correlation was used in TIMER database analysis. When |Rho| > 0.1, it indicated that there was a correlation between the genes and immune cells. Significant data in GO and KEGG pathway enrichment were screened according to P < 0.05 with students’ t-test. Relevant data of in vitro experiment were performed using SPSS 22.0 software (IBM, USA). Data were expressed as the mean ± SD. All experiments were repeated in triplicate and P < 0.05 was considered significant.




Result


Expression of CXC Chemokines in BC and Normal Tissues

In order to screen CXC chemokines with significant difference between BC and normal tissues, 16 genes (excluding CXCL15) were analyzed based on ONCOMINE (54 BC and 38 normal samples), GEPIA2.0 (1085 BC and 291 normal samples) and UALCAN (1097 BC and 114 normal samples) databases, respectively. The results of these three databases were slightly different from each other. In ONCOMINE, there were 5 up-regulated genes and 9 down-regulated genes in BC (Figure 2B). In GEPIA2.0, there were 4 up-regulated genes and 5 down-regulated genes in BC (Figure 2C). In UALCAN, there were 4 up-regulated genes and 6 down-regulated genes in BC (Figure 2D). The intersecting genes of the three databases were obtained by Venny2.1.0 database, CXCL1-3 and CXCL12 were down-regulated in BC, and CXCL9-11, CXCL13 were up-regulated in BC (Figure 2A).




Figure 2 | Differentially expressed CXC chemokines. (A) Wayne diagram of three databases’ results. (B) Differentially expressed CXC chemokines from ONCOMINE database. (C) Differentially expressed CXC chemokines from GEPIA2.0 database. (D) Differentially expressed CXC chemokines from UALCAN database. Samples were shown in (B–D) ANOVA was used to analyze the expression of CXC chemokines in GEPIA2.0 database and their relationship with the stages of BC. |Log2fccutoff < 1 and Q-value < 0.05 were considered to be significant. The data in ONCOMINE and UALCAN were analyzed by students’ t-test, and P < 0.05 was the significance threshold.





Relationship Between Differentially Expressed Genes and Their Pathways

The interaction between differentially expressed CXC chemokines and their co-expressed genes was explored. A Protein-Protein Interaction (PPI) network (Figure 3C) and circular graph (Figure 3D) were obtained via STRING and Gene MANIA, respectively. As expected, 8 nodes and 138 edges were obtained in PPI network. Through plug-in analysis, CXCL1-2 and CXCL10-11 were found to have higher degree than others. In the circular graph, 28 nodes were obtained, 20 of which were closely related to differentially expressed genes. The functions of these genes were mainly related to receptors response, cellular response lipopolysaccharide, regulation T cell chemotaxis migration positive lymphocyte leucocyte neutral granulocyte, etc. (Figure 3E). And this result was consistent with our understanding.




Figure 3 | Mutation and interaction of differentially expressed CXC chemokines. (A) The mutation of genes in BC and invasive BC from cBioPortal. (B) Mutation of differentially expressed genes from cBioPortal. (C) A PPI network from STRING. (D) Circular diagram of differentially expressed genes from Gene MANIA. (E) Pathways involved in differentially expressed genes from Pathway Commons.





Mutation of Differentially Expressed Genes and Their Relationship With Stages In BC

The cBioPortal database was used to investigate the mutation of differentially expressed genes in 9115 BC patients from 18 studies. As a result, CXCL1-3, CXCL9-13 were altered in 2.2, 2.2, 2.1, 1.7, 1.7, 1.8, 1.0 and 1.3% of the queried BC cases. At the same time, through the cancer types summary, the minimum total cases as 1000 and the minimum altered cases as 2% were set to analyze the mutation of genes in BC and Invasive BC. Summary for BC, genes altered in 3.67% of 5204 BC cases, including mutation 0.08% (4 cases), amplification 3.44% (179 cases) and deep deletion 0.15% (8 cases). Summary for Invasive BC, genes altered in 3.96% of 1920 cases, including mutation 0.57% (11 cases), amplification 3.18% (61 cases) and deep deletion 0.21% (4 cases). It showed that the high mutation of invasive BC might be the main cause of the increased mortality. See Figures 3A, B for details.

Then, GEPIA2.0 and UALCAN were used to evaluate the relationship between differentially expressed genes and the stages in BC. As shown in Figure 4, there were no significant correlation between CXCL3 (PR (> F) = 0.0679), CXCL9 (PR (> F) = 0.436), CXCL10 (PR (> F) = 0.188), CXCL11 (PR (> F) = 0.396) and pathological stages of BC. However, CXCL1 (PR (> F) = 0.00622), CXCL2 (PR (> F) = 0.00232), CXCL12 (PR (> F) = 0.00892), CXCL13 (PR (> F) = 0.0131) were significantly correlated with the pathological stages of BC. These data indicated that CXCL1-2, CXCL12-13 were easily mutated in BC and they were closely related to the occurrence and development of BC.




Figure 4 | Relationship between differentially expressed genes and the stages in BC from GEPIA2.0. ANOVA was used to analyze multiple datasets, and Pr (>F) = 0.05 was the significance threshold. (A) CXCL1. (B) CXCL2. (C) CXCL3. (D) CXCL9. (E) CXCL10. (F) CXCL11. (G) CXCL12. (H) CXCL13.





Relationship Between Differentially Expressed Genes and Survival of BC Patients

In order to understand the relationship between differentially expressed genes and prognosis of BC patients, GEPIA2.0 (1070 BC patients), UALCAN (1081 BC patients) and cBioPortal (9115 BC patients) were used for comprehensive analysis. As shown in Figure 5A, the overall increase in differentially expressed genes was significantly associated with poor overall survival (P = 7.7729e-3). In addition, the down-regulation of CXCL1 (logrank P = 0.0094), CXCL2 (logrank P = 0.0039) and CXCL3 (logrank P = 0.033), and the up-regulation of CXCL9 (logrank P = 0.0049) were significantly associated with poor overall survival in BC patients (Figures 5B–I).




Figure 5 | The relationship between differentially expressed genes and prognosis of BC. (A) The relationship between all differentially expressed genes and the prognosis of BC from cBioPortal. (B–I) The relationship between each differentially expressed gene and the prognosis of BC from UALCAN. Samples were shown in figures, and all of them used students’ t-test, P < 0.05 was the significance threshold.



Based on the previous results, CXCL1-2 played an important role in all kinds of analysis. Therefore, they could be used as new biomarkers of BC.



Immune Cell Infiltration of CXCL1-2 in BC

The occurrence and development of tumors were closely related to immunity. Furthermore, the correlation between the expression of CXCL1-2 with immune infiltration in BC from TIMER2.0 was investigated.

The results suggested that both of them were negatively related to tumor purity. And they all had a negative correlation with macrophages and B cell. But they were positively correlated with T cell proliferator helper, T cell CD4+, Myeloid derived suppressor cells and Neutrophil. This indicated that they were closely related to cellular immunity. The difference between CXCL1-2 was that CXCL2 was positively correlated with cancer associated fibroblast and negatively correlated with Tregs, but CXCL1 had no significant relationship with them. What attracted our attention was that CXCL1-2 were associated with the increase of NK cell, but there was no significant relationship. This was consistent with the fact that NK cells in patients after chemotherapy were in a static state and participate in tumor immune function stably. The specific parameters information is shown in Figure 6.




Figure 6 | The relationship between the expression of two markers and the expression of immune invasion in BC from TIMER2.0. The partial Spearman’s correlation was used in TIMER database analysis, n=1100. When |Rho| > 0.1 and P < 0.05, it indicated that there was a correlation between the genes and immune cells. In general, the smaller the Rho value is, the smoother the curve is; the larger the Rho value, the fuller the curve is; when Rho < 0.5, the curve is ellipse; when Rho = 0.5, the curve is parabola; when Rho > 0.5, the curve is hyperbola. (A) The relationship between CXCL1 and the expression of immune invasion in BC. (B) The relationship between CXCL2 and the expression of immune invasion in BC.





Neighbor Genes’ Network, Functional Enrichment Analysis of CXCL1 and CXCL2 in BC

In order to find out how the two biomarkers played a role in BC, cBioPortal was used to isolate adjacent genes related to the differentially expressed CXC chemokines (Figure 7A). It should be noted that this and our previous analysis of differentially expressed genes related genes and pathways had a mutual verification role. After removing the repetitive relationship between genes, a “protein-protein-interaction” (PPI) network was visualized by Cytoscape3.6.1 (Figure 7B). The corresponding genes were imported into David 6.8 software to annotate their functions and related pathways. Figures 7C–E showed the top 10 most abundant GO (BP, CC, MF) entries, respectively. Among the 10 highly abundant functions of BP class, the chemokine mediated signaling pathway, positive regulation of leukocyte chemotaxis, inflammatory response, regulation of cell promotion, were directly related to the occurrence and development of BC. Cellular glucuronidation and the positive regulation of camp metallic process were also indirectly related to BC. Extractive region, extractive space, organelle membrane, intracellular membrane bound organelle, endophytic reticulum membrane, proteinaceous extracellular matrix, platelet alpha granule lumen, fiber, lysosomal lumen were the top 10 entries in CC class. As expected, CXCL1-2 and their adjacent genes were mainly rich in chemokine activity, CXCR chemokine receptor binding and CXCR3 chemokine receptor binding in the molecular functional MF class. We expanded the adjacent genes to 200 and analyzed the KEGG pathway to expand the scope of the designed pathway. The results showed that among the top 10 KEGG signaling pathways, chemical carcinogenesis and chemokine signaling pathway were closely related to the occurrence and development of BC (Figure 7F), which were the same as the results of the top 50 targets. Interestingly, most of the other pathways involved glucose and drug metabolism suggested that CXCL1-2 might be related to the occurrence and development of BC, thus provided new ways for the treatment of BC. It was worth noting that these results had a lot of similarities with the previous correlation analysis of differentially expressed genes, which further showed the credibility of these data.




Figure 7 | Markers and their adjacent genes regulatory networks. (A) Adjacent genes associated with markers from cBioPortal. (B) A PPI network from STRING. (C–E) The top ten GO BP, GO CC, GO MF from Gene Ontology. (F) The top ten KEGG pathways from KEGG. Isolate adjacent genes related to the differentially expressed CXC chemokines, GO and KEGG Pathway enrichment used students’ t-test, and P < 0.05 was the significance threshold.





Molecular Docking and Analysis

In order to find effective drugs of CXCL1-2, seven natural compounds which had been proved to have effect on BC in vivo and in vitro were screened via Drug Bank and TCMSP databases. Their structures are shown in Supplementary Picture Figure 1. Next, AutoDockTools-1.5.6 and PyMOL were used to dock compounds with CXCL1-2. Before that, “Auto-Grid algorithm” was used to build a cubic grid. Then, 20 different conformations of each gene and compound were obtained and analyzed. The effective compounds and conformations were screened by the dock binding free energy. The specific docking energy and bonds of compounds with them are shown in Tables 1 and 2. The 3D images and binding sites of CXCL1-2 are shown in Supplementary Picture Figures 2–5 respectively.


Table 1 | Dock binding free energies(△Gb) and bonds of the proteins.




Table 2 | Dock binding free energies(△Gb) and bonds of the proteins.



The results showed that the seven compounds had strong binding ability to both of them. It was not difficult to find that Quercetin and Strychnine had the lower docking energy with them than the others. In addition, GLU29 of CXCL1, ASP-1, PRO-96, TRP-47 and LEU-45 of CXCL2 could bind with several compounds. This provided 5 reliable amino acid sites for our later research. At the same time, a model with OB > 30% and DL > 0.18 was established to determine whether they had the potential to be developed as drugs, initially. As shown in Table 3, Quercetin was the most suitable compound for this model.


Table 3 | Information about compounds.





ADMET Information of Quercetin

However, in order to get the exact result, its ADMET parameters were analyzed systematically. The absorption results showed that the water solubility and skin permeability of Quercetin were poor, but its absorption and utilization in the intestinal tract were good. As a substrate of PGP rather than an inhibitor of P-glycoprotein I/II, it could be transported by Pgp, which was the advantage of it. Its distribution results showed that it could not pass through the central nervous system (log Ps < -3) and was poorly distributed in the brain (log BB < +1). The results of VDS showed that the concentration of Quercetin in tissues and plasma was evenly distributed, thus avoiding the effects of renal failure and dehydration (-0.15 < VDS < 0.45). Most of the drugs in plasma were in an unbound state or a balance state with serum proteins. The degree of binding was closely related to whether they can effectively pass cells or spread. Unfortunately, the metabolic results showed that Quercetin was not the two majorly isomorphic 2D6 and 3A4 substrates of P450. But it was not a P450 inhibitor either. Therefore, its metabolic mode and related products needed to be further elucidated in vivo experiments. Although it was not the substrate of organic cation transporter 2 (OCT2), but its drug clearance was 0.407 (log ml/min/kg) by the ratio constant (CLTOT), which proved that it could be excreted through the hepatic space (metabolism of liver and biliary space) and renal space (excretion through kidney). This result was consistent with the bioavailability of Quercetin in our previous analysis. Finally, the toxicity test showed that Quercetin was not carcinogenic and had no toxicity to liver and skin. At the same time, the maximum tolerated dose (MRTD) of it was 0.499 (log mg/kg/day), which provided a valuable reference for future clinical research on it.

Based on the above analysis, Quercetin conformed to the ADMET principle and had the possibility of being developed into a drug. All the information is shown in Table 4.


Table 4 | Information about Quercetin.





Quercetin Decreases Proliferation of MDA-MB-231 and MCF-7 Cells

Before verifying the relationship between Quercetin and CXCL1-2, it is necessary to verify its effect on BC. In order to avoid drug specificity, MDA-MB-231 and MCF-7 cells were included in the study.

MTT results showed that as the concentrations of Quercetin increased, cell viability was significantly decreased in MDA-MB-231 and MCF-7 cells compared with that in the control (p<0.05 and p<0.01). The half-maximal inhibitory concentration (IC50) of Quercetin for MCF-7 cells was about 160μM and for MDA-MB-231 cells was about 100μM (Figures 8A, B). At the same time, the cell morphology in the treatment group and the control group were photographed under 10x microscope. The results showed that different concentrations of Quercetin changed cell morphology and caused cell death (Figures 8C, D).




Figure 8 | Effect of Quercetin on the viability of MDA-MB-231 (A) and MCF-7 (B) cells, after treatment with Quercetin for 24 h, the viability of these cells was measured by MTT assay, **p < 0.01 vs. control. Under 10x microscope, the cell morphology of different groups in the MDA-MB-231 (C) and MCF-7 (D) cells was observed.





Quercetin Suppressed the Growth of MDA-MB-231 and MCF-7 Cells In Vitro

The results of plate cloning experiment showed that the number of MDA-MB-231 and MCF-7 cells clones gradually decreased with the increase of Quercetin concentration (Figures 9A, B). So, Quercetin suppressed the growth of MDA-MB-231 and MCF-7 cells in vitro.




Figure 9 | Quercetin suppressed the growth of MDA-MB-231 cells (A) and MCF-7 cells (B) in a dose-dependent manner. Quercetin increased MDA-MB-231 cells (C) and MCF-7 cells (D) apoptosis in a dose-dependent manner.





Quercetin Increased MDA-MB-231 and MCF-7 Cells Apoptosis In Vitro

Hoechst 33342 staining was used to identify whether Quercetin increased MDA-MB-231 and MCF-7 cells apoptosis. The results showed that compared with control group, apoptosis in MCF-7 and MDA-MB-231 cells treated with different concentrations of Quercetin were markedly increased (Figures 9C, D).



Quercetin Increased the Expression of CXCL1 and CXCL2 in BC

Western blot and Real-Time PCR were used to verify the effect of Quercetin on the expression of CXCL1-2. As shown in Figures 10A–C, a significantly increased expression of CXCL1-2 in MDA-MB-231 and MCF-7 cells was observed in Quercetin groups when compared with the control group (p<0.05 or p<0.01). And Real-Time PCR results showed that a significantly increased expression of CXCL1-2 in MDA-MB-231 and MCF-7 cells was observed in Quercetin groups when compared with the control group (p<0.05 or p<0.01), as shown in Figures 11A, B. The information of related primers is shown in Supplementary Table 1.




Figure 10 | The expression of CXCL1 and CXCL2 was determined by Western blot. (A) The expression of CXCL1 and CXCL2 was determined by Western blot. (B) Quercetin increased the expression of CXCL1-2 in MDA-MB-231 cells in a dose-dependent manner. (C) Quercetin increased the expression of CXCL1-2 in MCF-7cells in a dose-dependent manner. **p < 0.01 vs. the Control group.






Figure 11 | The expression of CXCL1 and CXCL2 was determined by Real-Time PCR. (A) Quercetin increased the expression of CXCL1-2 in MDA-MB-231 cells in a dose-dependent manner. (B) Quercetin increased the expression of CXCL1-2 in MCF-7cells in a dose-dependent manner. **p < 0.01 vs. the Control group.






Discussion

Breast cancer, as a kind of malignant tumor disease threatening the life and health of women all over the world, needs accurate biomarkers to judge it urgently. CXC chemokines, as very important inflammatory mediators, are closely related to the maturation, differentiation and transportation of leukocytes. More and more evidences show that the expression patterns of chemokines change from different cell types, which play an important role in the proliferation, apoptosis and metastasis of tumor cells (11). The expression levels of CXC chemokines in many kinds of tumors have been studied, but their prognostic value and biological function in BC have not been well described (34). At the same time, the correlation between CXC chemokines and tumor microenvironment also varies with the type of tumor. Therefore, it is of great significance to elucidate the relationship between CXC chemokines and immune cells in BC.

In this study, the expression of CXC chemokines in BC were first investigated. Results showed that eight genes were differentially expressed in it. Among them, CXCL1-3 and CXCL12 were down-regulated, while CXCL9-11 and CXCL13 were up-regulated. However, these results were different from the expression levels of CXC chemokines in many other tumors, which suggested that the expression and mechanisms of CXC chemokines in tumors were diverse. In addition, the relationship between differentially expressed genes and tumor staging were also studied. The results showed that the expression of CXCL1-2 and CXCL12 decreased with the development of tumor, while CXCL13 was opposite. The mutation of gene played a very important role in the occurrence and development of tumors. The mutation results of CXCL1-2 in the database confirmed it. The correlation between the differentially expressed genes and the survival rate of BC patients was also worthy of our study. We found that the overall survival rate of BC patients with low expression of CXCL1-2 and CXCL13 were lower, consistent with the results of gene mutation. These data suggested that CXCL1-2 could be used as new biomarkers of BC.

In order to understand the role of CXCL1-2 in BC, GO enrichment analysis and KEGG pathway enrichment analysis were used to study their functions. What’s more, we found that the functions of these genes were not only related to chemical carcinogenesis and chemokine signaling pathway, but also related to glucose and drug metabolism. The glycolysis pathway involved in glucose metabolism has long been confirmed to be involved in the development of tumor, and drug autogenous metabolism plays an important and decisive role in the treatment of diseases. The potential relationship between CXCL1-2 and these results provided a new direction for our later research.

Immune infiltration is closely related to the occurrence and development of tumor (35). Chemotherapy and drug therapy can change the immune capacity of patients, thus further affecting the survival and prognosis of patients. Therefore, immunotherapy has become the first choice for the treatment of a variety of cancers (36). This study analyzed the correlation between the expression of CXCL1-2 and tumor purity, T cell CD8+, T cell CD4+, Macrophage infiltration and other immune cells. The results showed that both of them were negatively correlated with tumor purity, and were significantly correlated with T cell promoter helper, T cell CD4+, Myoid derived suppressor cells, Neutrophil, Macrophages and B cell. To our surprise, both CXCL1-2 increased CD4+/CD8+, but negatively correlated with Macrophages and B cells. This suggested that they reflected the immune status mainly through the action of T cells and Neutrophil, and the relationship between them and T cell proliferator helper also illustrated this point. CXCL1-2 were produced by immune cells such as Neutrophils, which was consistent with our conclusion. Therefore, they must have an inseparable relationship with tumor immunity, which has been confirmed in a variety of tumors (37–39). At present, tumor associated neutrophils (TANs) are considered to have two sides of promoting tumor and anti-tumor, and most of the research results are biased towards the tumor promoting effect of TANs. However, we think that the anti-tumor effect of TANs should not be ignored. Recently, Fridlander found that compared with the mice without SM 16, after blocking the TGF-β signaling pathway with SM 16, the administration group increased the number of TANs in the tumor, slowed down the tumor growth, induced the activation of anti-tumor effect of CD8+ T cells, and induced the aggregation of Neutrophils (40). After being activated, these Neutrophils killed tumor cells in vitro, showing an anti-tumor “N1” type. And it promoted the proliferation of tumor cells when the anti-LY6G monoclonal antibody was used to eliminate these cytotoxic neutrophils (41).

At the same time, analysis of the above results showed that CXCL1-2 were significantly positively correlated with tumor associated fibroblasts, and we thought that they might have a greater correlation with BC. Therefore, we intended to screen compounds for direct interaction with them through molecular docking and ADMET. Results showed that Quercetin (42), Strychnine (43), Baicalein (44), Puerarin (45), Syringin (46), Saikosaponin D (47) and Curcumin (48) all had good binding ability with CXCL1-2. Based on the comprehensive analysis of the binding energies of the compounds with CXCL1-2 and their OB and DL values, we found that Quercetin most likely to be developed as drugs that interacted directly with CXCL1-2. And our study also provided the binding sites of each compound with CXCL1-2. It was obvious that GLU29 of CXCL1, ASP-1, PRO-96, TRP-47 and LEU-45 of CXCL2 were the most potential sites, which provided valuable reference for further study of pharmacodynamics and mechanism. In addition, we confirmed the inhibitory effect of Quercetin on proliferation and promoting apoptosis of BC related cell lines in vitro. Western blot and Real-Time PCR confirmed that it increased the expression of CXCL1-2 in protein and mRNA.

Many studies have found that N1 type TANs induce tumor cell apoptosis (49), which is also consistent with our conclusion. In addition, Neutrophils secrete hydrogen peroxide after direct contact with cancer cells, leading to tumor cell death through Ca2+ influx in TRPM2–CA2+ channel (50). Sun also found that Neutrophils isolated from healthy people promoted tumor cell apoptosis and inhibited tumor growth through Fas ligand/Fas pathway (51, 52). However, the role of CXCL1-2 has not been reported. Although the dual nature of Neutrophils makes them difficult to explain their role in tumor. However, we believe that in breast cancer, CXCL1-2 secreted and recruited by Neutrophils will initially come to the tumor cell area with them, so as to achieve the efficacy of killing tumor cells. However, with the change of tumor cycle, they are also killed or utilized by tumor cells, thus losing their original functions. As we discussed earlier, with the change of tumor cycle, their expression constantly decreased, so they couldn’t cooperate with the corresponding immune cells, and couldn’t recognize and kill tumor cells. But the specific conclusion should be based on the test results of more clinical samples, not based on this article. Therefore, we are now confirming the above conclusion based on more clinical samples. On the basis of confirmation, our research on Quercetin in breast cancer, especially the relationship between quercetin and CXCL1-2, will be carried out in detail.



Conclusion

Taken together, our results showed that two down-regulated genes CXCL1-2 were related with poor prognosis and immune infiltration in BC. Therefore, CXCL1-2 might be new biomarkers and potential therapeutic targets for patients with BC. In addition, Quercetin was likely to be a targeted drug for CXCL1-2. Experiments in vitro also confirmed the inhibitory effect of Quercetin on proliferation and promoting apoptosis of the two cell lines. Western blot and Real-Time PCR also confirmed that Quercetin increased the expression of CXCL1-2. However, our research has some limitations. More studies in vitro and in vivo are needed to verify our results.
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Aims

Dysregulated long noncoding RNAs (lncRNAs) contributing to ovarian cancer (OC) development may serve as prognostic biomarker. We aimed to explore a lncRNA signature to serve as prognostic biomarker of OC.



Methods

Univariate Cox regression was conducted on the lncRNA expression dataset from the TCGA cohort, and 246 genes significantly associated with survival were retained for building a model. A random forest survival model was carried out, and a model was developed using 6 genes with the highest frequency. The selected genes were applied in a Cox multivariate regression model for prognostic prediction by calculating the risk score. We also used CCK-8, EdU, and colony formation assays to validate the function of these lncRNAs in OC cells.



Results

This study confirmed that the 6-lncRNA combined signature was related to OC prognosis. Systematic analysis demonstrated that lncRNA-associated genes were enriched in oncogenic signalling pathways. Five out of the 6 lncRNAs participated in OC proliferation.



Conclusion

We established a 6-lncRNA combined signature for OC prognosis, which may serve as powerful prognostic biomarker for OC after further validation.





Keywords: long non-coding RNA, prognostic biomarker, ovarian cancer, bioinformatics analysis, TCGA



Introduction

Ovarian cancer (OC) is a major cause of gynaecologic cancer death in women worldwide (1). Each year, 238,700 patients are newly diagnosed with OC, and 151,190 patients die of OC worldwide (2). The overall mortality of OC remains high owing to the high recurrence rate and lack of early detection (3). Thus, it is crucial to explore more reliable prognostic factors for early detection.

Long noncoding RNAs (lncRNAs) are a class of noncoding RNAs with a length of more than 200 nucleotides. Several lncRNAs have been confirmed to be deregulated and act as critical regulators in OC (4). Overexpression of lncRNA HOTTIP promoted the growth and metastasis of OC via the miR-615-3p/SMARCE1 axis (5). LncRNA HOTAIR maintained higher OC stemness through the miR-206/TBX3 pathway (6). Recently, several lncRNAs were discovered as prognostic biomarkers for OC patients. LncRNA PTPRG-AS1 overexpression could predict a poor prognosis of OC patients (7). The enhanced level of lncRNA ROR was positively correlated with poor clinical outcome of OC patients (8). However, these single features appear to have poor generality in new datasets (9). In this work, we identified a multiple lncRNA combined signature based on a prognostic model for OC patients and investigated the role of the signature on OC proliferation.



Methods


Cell Lines and Reagents

The human OC cell lines Hey and SKOV3 and the lentiviral packaging cell line 293T were obtained from the American Type Culture Collection (ATCC). RPMI 1640 medium (Sigma-Aldrich) was used to incubate Hey and SKOV3 cell lines, and DMEM was used to culture 293T cells. Both media were supplemented with 10% foetal bovine serum (FBS) and 1% penicillin/streptomycin. All cells were incubated in a humidified atmosphere at 37°C with 5% CO2.



Plasmid Construction and Lentivirus Infection

According to the manufacturer’s protocol, two small hairpin RNAs (shRNAs) targeting each lncRNA were inserted into the lentiviral vector pLKO.1-puro to silence lncRNA expression. Supplementary Table 1 shows the shRNA sequences used in this study. We used pLKO.1-puro scrambled shRNA as a control. In the presence of polybrene, Hey and SKOV3 cell lines were infected with the virus. Then, the medium containing puromycin was used to select Hey and SKOV3 stable clones. RT-PCR was used to confirm the knockdown efficiency of these shRNAs in Hey and SKOV3 cell lines.



Reverse Transcription and Quantitative Real-Time PCR

TRIzol reagent (Invitrogen) was used to extract total RNA according to the manufacturer’s instructions. A NanoDrop 2000 (Thermo Fisher Scientific) was applied to measure the quantity and purity of the total RNA. The PrimeScript RT Master Mix kit (TAKARA) was used to synthesize cDNA. Real-time PCR was performed using FastStart Universal SYBR Green Master Mix (Rox) (Roche) in an ABI PRISM 7900 sequence detector (Applied Biosystems, Carlsbad, CA), and GAPDH was applied as an internal control. Relative mRNA levels were computed according to the Ct values relative to GAPDH. Supplementary Table 2 shows the primers used in this study.



Cellular Growth Assay

In total, 1000 SKOV3 cells or 1000 Hey cells were seeded in 96-well plates. Cell growth was examined by Cell Counting Kit-8 (CCK-8) (Beyotime, China). Briefly, the culture medium was removed at 24, 48, 96, and 120 h, and 10 μl of CCK-8 in 100 μl of medium was added to each well. Then, the cells were incubated at 37°C for 2 h, and the absorbance was measured at 450 nm. These experiments were repeated 3 times.



Colony Formation Assay

A total of 800 SKOV3 cells or 500 Hey cells were seeded in 6-well plates for plate colony formation. Each cell type was cultured at 37°C in a 5% CO2 atmosphere for 2 weeks. Then, 4% PFA (paraformaldehyde) was used to fix the colonies for 10 min, and the colonies were stained with crystal violet solution for 20 min. After washing three times with PBS, the number of colonies was counted. The assays were repeated 3 times.



Edu Cell Proliferation Assay

SKOV3 cells or Hey cells were seeded in 12-well plates. Then, the cells were cultured 24 h before EdU (C0078S, Beyotime, Shanghai, China) treatment. EdU was added in medium and incubated at 37°C for 2 h. PFA (4%) was used to fix the cells for 20 minutes, and 0.3% Triton X-100 was used to permeabilize the cells for 15 minutes. The cells were then incubated with Click reaction buffer for EdU staining for 30 min. Hoechst 33342 (5 μg/mL) was used to stain the cells at 37°C for 10 minutes, followed by PBS washes 3 times. Images were captured using a fluorescence microscope.



Dataset Acquisition and Preprocessing

The TCGA lncRNA dataset was downloaded from the TANRIC database (https://bioinformatics.mdanderson.org/public-software/tanric/). Clinical information and mRNA expression datasets of the corresponding patients were retrieved from UCSC Xena (http://xena.ucsc.edu/public-hubs/). The lncRNA and mRNA expression datasets were first log2 scaled and then z-score transformed for further analysis.



Gene Selection and Model Development

The lncRNA expression dataset of the TCGA cohort was analysed by univariate Cox regression. Model building used 246 genes significantly related to survival (P < 0.05). A random forest survival model was carried out with parameters of 100 iterations and 1000 trees per iteration to optimize the panel. The model development used six genes with the highest frequency. The selected genes were implemented in a Cox multivariate regression model. The risk score was calculated using the following formula:

	



Statistical Analysis

R (version 4.0.2) was used to analyse the data in this study. The R package “survival” was implemented in univariate Cox regression, survival analysis, and multivariate regression. The R package “randomForestSRC” was applied to the random forest survival model and risk score. The AUC and ROC were calculated with the R package “ROCR”. Correlation analysis was calculated by Pearson correlation coefficients, and gene enrichment was implemented using Metascape (http://metascape.org/gp/index.html). A two-sided P value < 0.05 was considered significant in the study.




Results


Feature Selection and Prognostic Value of lncRNAs in the TCGA Cohort

To identify lncRNAs related to OC prognosis, we first performed univariate Cox regression on the TCGA dataset (n = 411). Genes significantly related to overall survival were reserved for further analysis, and a random survival forest model was built on these genes for prognosis prediction (Methods). Finally, the six genes with the highest prediction accuracy were selected for the optimization of the model, and a multivariate Cox proportional hazard model was constructed to calculate the risk score for each sample (Method). The patients were separated into low-risk and high-risk groups by the median split of risk scores, and the high-risk group demonstrated significantly worse overall survival probability (Figure 1A) and progression-free survival probability (Figure 1B). Interestingly, we found that four lncRNAs were positively correlated with high-risk scores (AL121820.1, AC006262.3, LINC02115 and AL138831.2), whereas the other two lncRNAs were negatively correlated with the risk score (LINC01984-201 and AL713998.1) (Figure 1C). Compared with clinical factors, including age, tumour stage, lymphatic invasion, grade, and tumour size, the risk score showed much higher area under the curve (AUC) values in the prognostic prediction of OC patients (Figure 1D), indicating the possibility of the risk score as a new prognostic biomarker in clinical application.




Figure 1 | The performance of risk score in TCGA dataset. (A) The overall survival difference between low-risk and high-risk groups; (B) The progression-free survival difference between low-risk and high-risk groups; (C) Detailed survival information and gene expression patterns in TCGA dataset; (D) Three years survival ROC by using risk score, age, stage, lymphatic invasion, grade, and tumor size.





Targeted Genes of lncRNAs Constructed the Risk Score

To identify genes targeted by the six lncRNAs showing prognostic value in OC, we next conducted Pearson correlation coefficient analysis between the expression levels of coding genes and the six lncRNAs. The results showed that NEK9, PCNX, and ZFYVE26 were positively correlated with AL121820.1, whereas TIMM10, GPX1, and NDUFAF3 were negatively associated with the expression of AL121820.1, demonstrating the biphasic regulation of AL121820.1 to the targeted genes (Figure 2A). In contrast, genes showing high correlation coefficients (R > 0.4) with the other five lncRNAs were most positively correlated with their corresponding lncRNAs (Figures 2B–F). Specifically, CRLF3, which encodes a cytokine receptor-like factor that may negatively regulate cell cycle progression, was positively correlated with LINC01984-201 (10) (Figure 2B). Twenty-three genes demonstrated a positive correlation with AC006262.3 (Figure 2C), and MYO15B and ZNF169 were positively correlated with LINC02115 (Figure 2D). Except for GRB14, which was associated with the immune response IL-23 signalling pathway, and cell surface interactions in the vascular wall, the other 13 genes were positively correlated with AL713998.1 (Figure 2E). Zinc finger proteins ZNF135 and ZNF311 were both positively correlated with AL138831.2 (Figure 2F).




Figure 2 | Pearson correlation coefficient analysis between the expression levels of coding genes and the six lncRNAs. (A) Heatmap of the coding genes expression targeted by AL121820.1; (B) Heatmap of the coding genes expression targeted by linc01984-201; (C) Heatmap of the coding genes expression targeted by AC006262.3; (D) Heatmap of the coding genes expression targeted by linc02115; (E) Heatmap of the coding genes expression targeted by AL713998.1; (F) Heatmap of the coding genes expression targeted by AL138831.2.



To systematically explore the roles of the lncRNA-associated genes, we further performed functional enrichment analysis on their mRNAs to conduct the significant correlation (P < 0.05) with the corresponding lncRNAs by Metascape (11). The AL138831.2-correlated genes were significantly enriched in DNA repair, peptidyl-lysine modification, and negative regulation of I-κB kinase/NF-κB signalling pathways (Figures 3A, B). In addition, the MCODE ZNF complexes were also enriched (Figure 3C), suggesting that AL138831.2 may interact with ZNF proteins in OV. Considering that the high expression of AL138831.2 was associated with poor prognosis in OV, AL138831.2 might also contribute to OC development through these oncogenic signalling pathways. The AC006262.3-associated genes were significantly enriched in the regulation of cellular response to growth factor stimuli, the regulation of cell adhesion, and the responses to leukaemia inhibitory factor and MAPK signalling pathway (Figures 4A–C).




Figure 3 | Gene enrichment analysis of the AL138831.2-signature. (A) The histogram of the top 11 enriched pathways associated with risk score in AL138831.2 was arranged by -Log10P value. Each bar represented one enriched term and was coloured by -Log10P value; (B) Using Metascape to cluster the pathways related with AL138831.2. The top 11 enriched pathways were shown (right panel); (C) The pathways related with AL138831.2 were clustered by MCODE ZNF complexes.






Figure 4 | Gene enrichment analysis of the AC006262.3-signature. (A) The histogram of the top 19 enriched pathways associated with risk score in AC006262.3 was arranged by -Log10P value. Each bar represented one enriched term and was coloured by -Log10P value; (B) Using Metascape to cluster the pathways related with AC006262.3. The top 19 enriched pathways were shown (right panel); (C) The pathways related with AC006262.3 were clustered by MCODE ZNF complexes.





LncRNAs Reflected the Cell Motility Status

To validate the function of the six identified lncRNAs in OC development, we silenced the expression of each of these lncRNAs in the OC Hey and SKOV3 cell lines by shRNAs. The expression of lncRNAs detected by q-PCR was remarkably decreased in OC cells (Supplementary Figure 1). The EdU assay was used to study the effects of lncRNAs on cell proliferation. The results from EdU assays showed that silencing AC006262.3, LINC02115, and AL138831.2 indeed promoted the proliferation of Hey and SKOV3 cells in comparison with that of the control cells (Figures 5A, C and 6A, C). Consistent with the proliferation assay, silencing of AC006262.3, LINC02115, and AL138831.2 increased the colony number, and silencing of LINC01984-201 and AL713998 decreased the colony number in both Hey and SKOV3 cells compared with that of the control cells (Figures 5B, D and 6B, D). As shown in Figures 5E and 6E, the CCK-8 assay indicated that silencing AC006262.3, LINC02115, and AL138831.2 in Hey and SKOV3 cells promoted cell growth, but knockdown of LINC01984-201 and AL713998 restrained cell growth compared with that of the control cells. However, the role of AL12820.1 in cell proliferation was not obvious.




Figure 5 | LncRNAs regulated the proliferation ability of SKOV3 cancer cell line. After knocking down of the LncRNAs, the proliferation ability of SKOV3 cancer cells was detected by Edu staining, colony formation and CCK8 assay. (A) Representative images of EDU staining; (B) Representative images of colony formation; (C) The quantification result of EDU staining; (D) The quantification result of colony formation; (E) The cell viability inspected by CCK8 assay. P*<0.05 vs. NC. Data were from three independent experiments.






Figure 6 | LncRNAs regulated the proliferation ability of HEY cancer cell line. After knocking down of the LncRNAs, the proliferation ability of HEY cancer cells was detected by Edu staining, colony formation and CCK8 assay. (A) Representative images of EDU staining; (B) Representative images of colony formation; (C) The quantification result of EDU staining; (D) The quantification result of colony formation; (E) The cell viability inspected by CCK8 assay. P*<0.05 vs. NC. Data were from three independent experiments.






Discussion

This study carried out a multistep analysis of a lncRNA signature in OC. Based on the lncRNA expression dataset of the TCGA cohort, we used a univariate Cox regression and a random forest survival model to establish a prognostic 6-lncRNA signature in OC. Functional analysis showed that tumour-related processes were significantly enriched. In addition, CCK-8, EdU proliferation and colony formation assays were performed to validate the function of these lncRNAs. Thus, the 6-lncRNA combined signature is a robust model that could serve as a novel biomarker for OC prognosis.

As a common gynaecologic malignancy, OC is the leading cause of cancer death in women worldwide (12). OC is a histologically heterogeneous cancer caused by variations in genetic and environmental factors (13). An increasing body of evidence suggests that dysregulated lncRNAs play an important role in the progression of OC (14). As shown in Figure 2, lncRNAs could regulate the coding genes expression in OC. The mechanisms by which lncRNAs regulate the expression of the selected mRNAs may include RNA stability regulation (15), mRNA translation (16), chromatin modification (17), transcription activation (17, 18) and transcription interference (19). The abnormal expression of lncRNAs could promote the proliferation, migration, invasion, and metastasis of OC by regulating the mRNAs expression and contribute to poor prognosis of OC (20). It has been confirmed that the AC006262.3 related genes such as VASP (21), RUNX1 (22), TRIM29 (23) in Figure 2C contribute to the progression of OC. Thus, the aberrant expression of lncRNAs may serve as new prognostic biomarkers in OC.

With the rapid development of high-throughput technologies such as gene chip and RNA sequencing, gene analysis has become a powerful tool for screening molecular biomarkers of tumour prognosis prediction (24). Recently, several studies demonstrated that the robustness of several biomarker combinations is better than the robustness of a single biomarker (25). Our study analysed the available RNA‐seq data of OC from TCGA database and established a robust 6‐lncRNA signature that could serve as prognostic factor. As shown in Figure 3, the AL138831.2-related gene were indeed enriched in tumour-related networks, including “DNA repair”, “negative regulation of NF-κB signalling”, “glycogen metabolic process” and “ZNF proteins”, indicating that the activation of these pathways may promote higher mortality risk in patients with high-risk scores. ZNF proteins are immensely implicated in the development of several tumours including OC (26). Through the ZNF proteins, AL138831.2 might function in OC cell metastasis and serve as a prognosis-associated biomarker in patients with OC. Moreover, Metascape and MCODE ZNF complexes analyses in Figure 4 showed that the mRNAs which are positively co-expressed with AC006262.3 participate in “would healing”, “cell adhesion” and “WNT signalling pathway”, which are considered to be correlated with OC metastasis. Aberrant activation and upregulation of WNT signalling pathway could contribute to the progression of OC and lead to poor prognosis of OC (27). This indicated that AC006262.3 might function in the prognosis of patients with OC by regulating WNT signalling pathway. These results reconfirmed that lncRNAs could act as new biomarkers of OC and provide evidence for the clinical application of these 6 lncRNAs. Furthermore, a recent study analysed the role of lncRNAs in BRCA mutant ovarian cancer (28) and then we searched BRCA mutation information in 294 samples of our study. We found that (1) BRCA mutation rates was very low (Supplementary Figure 2A); (2) BRCA mutation did not affect the overall survival probability of ovarian cancer patients (P=0.506, Supplementary Figure 2B). BRCA mutation had no effect on integration results. Therefore, BRCA mutation has no relationship with LncRNAs screened by this study.

Since the risk score was calculated based on the expression of candidate genes, the effectiveness of the model relies on the function of these genes. However, there have been no studies to report the biological functions of these 6 lncRNAs at present. Thus, we preliminarily explored the biological functions of these 6 lncRNAs. As shown in Figures 5 and 6, we found that silencing AC006262.3, LINC02115, and AL138831.2 promoted cell growth and that knockdown of LINC01984-201 and AL713998 retained cell growth. However, the role of AL12820.1 in cell proliferation was not clear. Collectively, these results indicate that the genes selected in the model are functional active for proliferation, and thus predict survival in OC.

There are some limitations in our study. (1) Our data were not eligible to show the pathophysiological functions of these lncRNAs in our study. Thus, how these lncRNAs take part in cancer development may need to be validated in the future. (2) We are unclear why AL12820.1 did not affect the proliferation of OC cells. (3) The underlying mechanisms of these lncRNAs in OC need to be further investigated.



Conclusion

In conclusion, our study identified a 6-lncRNA combined signature associated with the prognosis of OC. Systematic analysis found that lncRNA-associated genes were enriched in oncogenic signalling pathways. Furthermore, five out of six lncRNAs were found to regulate the proliferation of OC cells.
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Supplementary Figure 1 | The knocking down efficiency of shRNAs for these 6 lncRNAs in SKOV3 and HEY cancer cell lines. (A)The knocking down efficiency of shRNAs for these 6 lncRNAs in SKOV3 cancer cell; (B) The knocking down efficiency of shRNAs for these 6 lncRNAs in HEY cancer cell.

Supplementary Figure 2 | Information about somatic BRCA mutant status of tumor cells. (A) BRCA mutant status in 294 samples of ovarian cancer; (B) The overall survival difference between low-risk and high-risk groups.
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Breast cancer is one of the most frequent cancer types worldwide and the first cause of cancer-related deaths in women. Although significant therapeutic advances have been achieved with drugs such as tamoxifen and trastuzumab, breast cancer still caused 627,000 deaths in 2018. Since cancer is a multifactorial disease, it has become necessary to develop new molecular therapies that can target several relevant cellular processes at once. Ion channels are versatile regulators of several physiological- and pathophysiological-related mechanisms, including cancer-relevant processes such as tumor progression, apoptosis inhibition, proliferation, migration, invasion, and chemoresistance. Ion channels are the main regulators of cellular functions, conducting ions selectively through a pore-forming structure located in the plasma membrane, protein–protein interactions one of their main regulatory mechanisms. Among the different ion channel families, the Transient Receptor Potential (TRP) family stands out in the context of breast cancer since several members have been proposed as prognostic markers in this pathology. However, only a few approaches exist to block their specific activity during tumoral progress. In this article, we describe several TRP channels that have been involved in breast cancer progress with a particular focus on their binding partners that have also been described as drivers of breast cancer progression. Here, we propose disrupting these interactions as attractive and potential new therapeutic targets for treating this neoplastic disease.
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Introduction


Breast Cancer Overview and Global Impact

Breast cancer is the second most frequent cancer type and the first cause of cancer-related deaths in women worldwide, with 627,000 deaths in 2018 (1). This neoplastic disease can be classified according to different parameters, providing further information about the tumor. In terms of diagnosis, breast tumors are histologically classified by their cellular origins in the mammary gland. If the tumor was originated by a ductal or lobular epithelial cell, it would be referred to as ductal or lobular carcinoma, respectively (2). For prognosis information, different molecular classifications have been developed. In this context, an important molecular classification is the "intrinsic subtype", which involves tumor classification according to the expression pattern of 50 genes related to cancer (PAM50). In PAM50, patients are sorted into six groups: Luminal A, Luminal B, HER2-enriched, Normal-like, Claudin-low, and Basal-like (3, 4). Another important molecular classification is the "surrogate intrinsic subtypes", which is the focus of this review. In this classification, tumors are grouped in five subtypes according to histologic features and expression of the Estrogen Receptor (ER), Progesterone Receptor (PR), and Human Epidermic Growth Factor Receptor 2 (HER2): Luminal A-like, Luminal B-like HER2−, Luminal B-like HER2+, HER2-enriched (non-luminal) and Triple-negative (TNBC). Luminal A-like, luminal B-like HER2- and luminal B-like HER2+ patients are the most common type, accounting for 75–80% of cases (4). Despite the above, these patients are usually treated with competitive inhibitors (also called hormonal therapy) that target the estrogen receptor, such as Tamoxifen or Fulvestrant. In cases where hormonal therapy fails, alternative treatments are employed, such as aromatase and mTOR inhibitors, which hinder and reduce estrogen synthesis. On the other hand, HER2-enriched tumors present increased levels of HER2, which is why the most efficient therapy consists of the use of Trastuzumab, a humanized monoclonal antibody against HER2. Even though Trastuzumab is the standard therapy for this group of patients, other HER2-related antibodies are available, such as Pertuzumab, an inhibitor of HER2 dimerization; Ado-trastuzumab (emtansine), an antibody–drug conjugate; and the tyrosine-kinase inhibitors lapatinib and neratinib, which inhibit both HER2 and the epithelial growth factor (EGFR) pathways (5). TNBC account for around 10–15% of breast cancer cases and are the hardest to treat (4). Since this group of patients is ER-, PR- and HER2-expression, there are no effective hormonal-based treatments or molecular therapies available. The treatment usually consists of surgery followed by chemotherapy and radiotherapy, whether individually or combined. However, its prognosis of TNBC remains poor (6).



Calcium Signaling in Breast Cancer

Calcium ions (Ca2+) regulate several cellular processes in different organisms (7–9). Spatio-temporal changes in the cytoplasmic Ca2+ concentration occur in response to different stimuli that will be interpreted by the cell, promoting specific cellular outputs (10). Different molecular entities regulate Ca2+ homeostasis (11) and allow the cell to establish large Ca2+ concentration gradients (15,000–20,000 times) maintaining extremely low intracellular Ca2+ levels (close to 100 nM) compared to the extracellular medium (1–1.5 mM) (9, 12).

Ca2+ signaling modulates various cellular processes such as gene expression, cell cycle progression, cell migration, autophagy apoptosis (13), fertilization (14), and synapsis (15). Accordingly, aberrant intracellular Ca2+ signaling has been implicated in the development of different pathologies, such as neurodegenerative (16), metabolic (17, 18), and autoimmune disorders (19). In the context of neoplastic diseases, intracellular Ca2+-dependent signaling is involved in various processes that promote tumorigenesis and cancer progression, such as proliferation, migration, angiogenesis, and evasion of apoptosis (reviewed by 20–23).

Recent studies have highlighted specific regulators of Ca2+ signaling due to their role in the progression of breast cancer (24). These Ca2+ signaling regulators have been involved in controlling of proliferation, metastasis, cell death, and drug resistance. Therefore, several molecular entities that participate in these events have been suggested as possible therapeutic targets for breast cancer treatment (25). Among these regulators, the Transient Receptor Potential (TRP) channels superfamily has emerged as a novel and interesting target for therapeutic intervention in the context of breast cancer.

The TRP channels superfamily is characterized by sharing a common structure of six transmembrane segments and acting as polymodal cellular sensors for a broad spectrum of physical and chemical stimuli (26). TRP channels have been divided into seven families according to their sequence similarity (27, 28): TRPA (ankyrin), TRPC (canonical), TRPM (melastatin), TRPML (mucolipin), TRPN (no mechanoreceptor potential C or nompC), TRPP (polycystin or polycystic kidney disease), and TRPV (vanilloid and a proposed sister family, TRPVL) and recently a new member has been identified, TRPS (soromelastatin) (29).

Recent reports suggest the important role of TRP channels in different diseases, including cardiovascular, neurological, metabolic and neoplastic disorders (30). In cancer, changes in the expression and function of TRP channels are directly related to cellular processes that contribute to the progression of cancer, such as cell proliferation, differentiation, angiogenesis, migration, invasion and chemoresistance of cancer cells to apoptotic-induced cell death, promoting resistance to chemotherapy treatments (31). Several studies have shown the effect of modulating the activity of TRP channels in various cancer models using agonists and antagonists with or without the use of chemotherapeutic drugs, proposing them as excellent therapeutic targets (31–33). However, most of these agonists or antagonists are not specific and affect several TRP channels, and can impact their activity in other tissues, causing adverse effects (34).

In this context, TRP channels can form homomeric complexes or co-assemble into heteromeric functional tetramers with subunits of the same family or between different families (35). Also, these channels interact with an extensive network of different regulatory and structural proteins (TRIP Database: (36, 37). Drug discovery has been characterized by searching for molecular targets to identify new and potentially beneficial agents to selectively target disease-specific mechanisms and pathways involved in these diseases (38). Protein–protein interactions (PPIs) mediate and regulate most cellular functions and processes. Also, several diseases are caused by aberrant interactions between proteins and their regulators or effectors. Thus, the searching and design of drugs to disrupt PPIs have become increasingly more relevant (39). In the context of cancer, one of the approaches to study the impact of certain genes or proteins on the tumor phenotype and differentiate between causal and driver genes is to analyze their network of interactions and their effect on specific functions and pathways (40). Recent studies demonstrate that ion channels can be crucial in the organization of large macromolecular complexes serving for the regulation of diverse cellular processes (41, 42), as well as transduction nodes on which several signaling pathways might converge (43). Indeed, ion channels’ expression is altered in several types of cancer. Also, their activity has been considered of great importance in the development and progression of the disease, including breast cancer (44, 45). Interestingly, not only ion channels are dysregulated in cancer, but also their regulators, effectors, and other interacting proteins. Here we discuss the role of TRP channel interactors involved in breast cancer and propose the modulation of these interactions as therapeutic targets (Figure 1 and Supplementary Table 1), opening a window for the design of more specific drugs against cancer.




Figure 1 | Association between the expression of TRP channels and clinical prognosis and PPIs proposed as therapeutic targets. (A) Summary of the expression of TRPC channels in tumoral vs non-tumoral tissue and the association between TRP channels and clinical prognosis. (B) Summary of the PPIs proposed as therapeutic targets and their associated-pro-tumoral processes.






TRP Channels and Their Interactors in Breast Cancer


TRPC1

TRPC1 is a non-selective cationic channel with a reported PCa/PNa ~1 in homotetrameric subunits (46–48). TRPC1 is expressed in diverse cell types such as smooth muscle, Central Nervous System (CNS) neurons, endothelial cells, platelets and salivary gland epithelial cells (46). Moreover, TRPC1 participates in endothelial permeability, vascular tone modulation (46), salivary fluid secretion (49), and synaptic plasticity (50). Mechanical stretch, receptor-dependent stimulation, diacylglycerol (DAG) (46, 51, 52) and ER-Ca2+ store depletion via STIM1 (53, 54) have been proposed as activation mechanisms.

The dysregulation in the activity of this channel has been reported in several type of cancer such as breast cancer, pancreatic cancer, lung cancer and others, where its overexpression has been related with poorly differentiated tumors and higher cell motility, proliferation and hypoxia-induced autophagy (55–58). Currently, it has been reported that TRPC1 promotes hypoxia-induced HIF1α-mediated EGFR signaling and expression of Epitelial–Mesenchymal Transition (EMT)-associated genes such as SNAIL in MDA-MB-468 cells (human TNBC cell line, Basal B). Consistently, TRPC1 expression is increased in Claudin-low human breast tumors and it has been associated with poor prognosis in patients with basal-like breast cancer (59). Importantly, TRPC1 is required for EGF-induced Ca2+ influx (48). Furthermore, TRPC1 interacts with FGFR1, and downregulation of TRPC1 inhibits proliferation in rat neural stem cells (60). Accordingly, TRPC1 silencing leads to decreased FGFR1 activation-induced Ca2+ signals. Both growth factor receptors, FGFR1 and EGFR, have crucial roles in cancer progression since their activation induces cell proliferation (61, 62). Moreover, FGFR1 expression is associated with resistance against endocrine therapy (63, 64), and EGFR is associated with poor prognosis in TNBC (61). These data suggest that TRPC1 might have important roles in FGFR1/EGFR-mediated breast cancer processes, which are still unaddressed. Since Ca2+ signaling is pivotal for these receptors’ downstream pathways, a novel therapeutic proposition might be to block TRPC1 activity or the functional interaction with either FGFR or EGFR.

TRPC1 interaction with Caveolin-1 is required for its proper plasma membrane targeting during Store-Operated Calcium Entry (SOCE) (65). Also, Caveolin-1 acts as a scaffold protein which mediates IP3R-TRPC1 interaction (66). Indeed, silencing Caveolin-1 decreases both SOCE and ER-Ca2+ depletion-induced association of TRPC1 to IP3Rs (67), indicating that Caveolin-1 plays an active role on Ca2+ homeostasis. The participation of Caveolin-1 in breast cancer has been extensively reviewed (68). Interestingly, Caveolin-1 participates in several breast cancer-progression events such as metastasis, cell cycle progression, and therapy resistance. Nevertheless, the current role of Caveolin-1 in breast cancer remains controversial due to different studies suggesting that this protein might act as a tumor suppressor. In contrast, others propose that it is instead an oncogene (68). Thus, the interplay between Caveolin-1 and TRPC1 in breast cancer is an open window for further research and future therapies. Similar to Caveolin-1, PLC-γ1 interacts with TRPC1 and IP3R during SOCE, suggesting a scaffolding role for this protein besides its IP3/DAG-production function (69).

PLC- γ1 overexpression has been proposed as a marker for metastasis development in early-stage luminal A and luminal B breast cancers (70). Interestingly, a synthetic peptide based on PLC-γ1 SH2 domains produces antitumoral effects in EGFR/HER-2 positive cells (71). Moreover, TRPC1 interacts with RhoA, a member of the Rho GTPases family. RhoA plays a crucial role in actin cytoskeleton dynamics, cell migration and contractility (72). Several authors have reported the opposite effects of RhoA in breast cancer models. Some studies state that RhoA prevents invasive processes (73, 74), while others propose that RhoA enhances cell invasiveness and proliferation of breast cancer cells (75, 76). This might be due to the fact that RhoA downstream effectors have opposing effects on pro-neoplastic processes (73). RhoA is suggested to promote TRPC1 association to IP3R during SOCE (77). Moreover, RhoA promotes the translocation of TRPC1 to the plasma membrane (77) and its activation (78), thus enhancing SOCE. Indeed, RhoA promotes cell migration of intestinal epithelial cells through the induction of SOCE via interaction with TRPC1 (78). Hence, TRPC1 might be an effector of RhoA activity, implying that this interaction’s specific disruption might impair TRPC1-dependent, breast cancer-associated pathways.

Interestingly, TRPC1 interaction with and activation by STIM1 confers a central role to this channel in the SOCE response contributing to the generation of the Store-Operated Currents (ISOC) (79). Moreover, TRPC1 interacts with several proteins that are implicated in the regulation of intracellular and ER Ca2+ concentrations, such as ORAI channels (80, 81), the SERCA pump (82, 83), PMCA (84), IP3R (82, 85), NCS-1 (86), and FKBP4 (87). Since Ca2+ signals are crucial for a myriad of cellular processes, it is not surprising that all these TRPC1-associated proteins have been proposed to play a role in breast cancer progression (88–93).

As the data suggests, the understanding of the dynamic cooperation between TRPC1-associated proteins mentioned above might shed light on the design and development of targeted therapeutics to selectively disrupt one or more of these interactions, depending on the differential features of the tumors.



TRPC5

TRPC5 is a nonselective cation channel permeable to Ca2+ with a reported PCa/PNa/PCs = 14.3/1.5/1, that can be activated following stimulation of receptors coupled to PLC in an intracellular Ca2+ dependent manner (94, 95). In cancer, this channel is mainly involved in angiogenesis and chemoresistance (96). Moreover, TRPC5 has been proposed as a predictive biomarker of chemoresistance in breast and colorectal cancer (97, 98). The expression of this ion channel is up-regulated together with P-glycoprotein, an efflux pump in Adriamycin-resistant breast cancer cells (MCF-7/ADM) (99, 100). In addition, the activation of this channel evokes Ca2+ currents, which induce P-glycoprotein over-expression, promoting chemoresistance (100). Moreover, TRPC5 was proposed as an exosome biomarker in breast cancer, which was demonstrated to have the capacity to transfer their chemoresistant phenotype to neighbor cells (101). Interestingly, this channel has been involved in Adriamycin resistance, mediating autophagy through the CaMKKβ/AMPKα/mTOR pathway (102).

TRPC5 interacts with several actin cytoskeleton regulators, such as Rac1 and several F-actin binding proteins such as Myosin X, α-actinin I, α -actinin IV and Neurabin II (103, 104). All these proteins have been involved in breast cancer progression. For instance, Myosin X is overexpressed in breast cancer tissue and breast cancer cell lines (MCF-7, BT-549 and MDA-MB-231) but not in non-cancerous breast cell lines (MCF-10A), promoting invadopodia formation, and metastasis in a Rac1-dependent manner (105). Rac1 is activated by TRPC5-mediated Ca2+ entry, promoting cell migration (103). Moreover, Rac1 is overexpressed and activated in the plasma membrane of tumor cells in aggressive breast cancer samples (106). These results suggest that TRPC5 interacts with Myosin X and Rac1, where the activation of Rac1 by TRPC5 or Myosin X might promote metastasis. Therefore, the disruption of these interactions could be beneficial for patients. On the other hand, α-actinin I and IV are actin binding proteins which localize in cell-cell adhesions, cell-matrix contact sites and in cellular protrusions, stabilizing these structures and linking membrane receptors with the cytoskeleton (107). The binding of α-actinin to Ca2+ reduces their affinity for actin (108). Moreover, the loss of α-actinin I in cell contact sites of TNBC cell lines (MDA-MB-231) promotes cell migration, whereas the same was reported for α-actinin IV in ER+/HER2- cell lines (MCF-7 cells) (109, 110). These results suggest that α-actinin I and IV act as tumor suppressor proteins, while their Ca2+-dependent delocalization promotes migration in breast cancer cells. Although we cannot attribute these proteins’ delocalization only to TRPC5-dependent Ca2+ entry, promoting the localization of α-actinin I and IV to cell contact structures or disrupt their binding to Ca2+ could be useful in breast cancer treatment.

TRPC5 interacts with other proteins that modulate Ca2+ signaling, such as TRPC1, TRPC6, IP3R3 and STIM1. Moreover, all of these TRPC channels interact with the IP3R3 and STIM1 (111, 112), which could be an intrinsic characteristic of Store Operated Channels (SOC). Interestingly, the interaction between TRPC1, STIM1 and IP3R3 is relevant in Ca2+ signaling for cancer progression (55). Although the role of TRPC5 in cellular signaling through Ca2+ is still unclear, it is accepted that TRPC5-mediated Ca2+ entry activates CaMKIIβ inducing its phosphorylation in T287 (113), modification that has been described as increased in breast cancer tissue and metastasis (114). In addition, in vitro studies in MDA-MB-231 cells reported that CaMKIIβ promotes cell invasion (114). Therefore, the activation of CaMKIIβ through TRPC5-mediated Ca2+ entry might promote breast cancer progression, making of this interaction an interesting therapeutic target. In summary, although the mechanism by which TRPC5-mediated Ca2+ entry could promote cancer progression requires further investigation, the data suggests that disrupting interactions between TRPC5 and others SOC components (including IP3R3) involved in Ca2+ signaling could become a therapeutic strategy in breast cancer.

Stathmin1 is a protein which active or non-phosphorylated form mediates depolymerization of microtubules in late mitosis (115). Interestingly, it has been reported that tumors with high levels of this protein show enhanced proliferation, angiogenesis and immune response evasion, mainly in basal like subtypes of breast cancer (116). Moreover, increased expression of Stathmin1 correlates with poor prognosis for patients with breast cancer (117). Moreover, Stahmin1 is inhibited through CaMKII-mediated phosphorylation in a Ca2+-dependent manner, which in turn is activated by TRPC5 (113, 118). These results suggest that TRPC5, CaMKII and Stathmin1 could be part of a complex and a novel pathway to study as a therapeutic target.



TRPC6

TRPC6 is a non-selective Ca2+ permeable channel with a PCa/PNa ~ 5, tightly receptor-operated and shows little basal activity (119). The main regulatory mechanism of TRPC6 is its activation by diacylglycerol (DAG) in response to the activation of G protein-coupled receptors. Additionally, other modulation mechanisms include regulation by Ca2+/Calmodulin (CaM) and binding of phosphoinositides (120). In humans, this channel is highly expressed in the lungs, placenta, ovary and spleen. It has important roles in regulating the heart and cardiopulmonary vasculature, podocyte functioning in the kidney, several neuronal processes, and several neoplastic diseases (121). In this context, TRPC6 was found upregulated in several types of cancer biopsies such as glioma, hepatocellular, gastric, esophageal and breast cancer, where it promotes migration invasion and proliferation (122–126). Specifically in breast cancer, studies in breast cancer cell lines showed high expression of TRPC6 in MCF-7 and MDA-MB-231 cells, whereas no expression was found in MCF-10A cells (122). Consistently, TRPC6 is the most overexpressed of all TRP channels in samples of human breast ductal adenocarcinomas compared to normal tissue. However, no correlation between TRPC6 expression and clinical parameters such as histological grade, tumor size, proliferation or invasiveness has been described (57). Although a precise role for TRPC6 in breast cancer has not been defined yet, there are studies relating to TRPC6 expression and activity with breast cancer progression in in vitro models. Moreover, TRPC6 promotes cell proliferation, migration and invasion in MCF-7 and MDA-MB-231 cell lines, an effect that is partially mediated by the modulation of surface expression of ORAI1 and ORAI3 Ca2+ channels (127). Recent studies showed that TRPC6 interacts and participates in conjunction with STIM2 to maintain cytosolic and endoplasmic reticulum Ca2+ concentrations in MCF-7 cells. Moreover, inhibition of TRPC6 activity leads to endoplasmic reticulum stress and caspase-3 activation (128). Conversely, TRPC6 associates with Large-Conductance Ca2+-Activated K+ (BKCa) channels, modulating their surface expression in podocytes (129). Interestingly, BKCa channels have been proposed as possible oncogenes in several types of cancer, including breast cancer, with augmented Ca2+ sensitivity, promoting shifts in the membrane potential that might promote tumor growth (130, 131). Thus, TRPC6-mediated BKCa modulation might contribute to tumor proliferation in breast cancer. TRPC6 also interacts with Fyn and Src tyrosine kinases, which positively regulate the activity of the channel through phosphorylation (132) and which have been reported as overexpressed in breast cancer cell lines and tissue (133, 134). Thus, Fyn and Src interaction with TRPC6 might be an important promoter of its activity and pro-tumoral effects in breast cancer. Moreover, TRPC6 activity is positively regulated by its interaction with the human myxovirus resistance protein 1 (MxA) (135), whose expression is higher in TNBC tumors than in other subtypes and is associated with a higher histologic grade (136). This data suggests that at least in TNBC, MxA-mediated TRPC6 increased activity might be a pro-tumoral mechanism promoting breast cancer progression. Another interesting interactor of TRPC6 is the actin-binding protein Drebrin, which, as we discuss previously, promotes the formation of cell protrusions in motile cells (104). Although a functional role for this interaction was not described, Drebrin interacts with and helps to localize and stabilize CaMKIIβ at actin filaments (137), which is a known positive regulator of TRPC6 activity (138), suggesting an interplay between Drebrin, CaMKIIβ and TRPC6, resulting in regulation of channel activity. Given the importance of both TRPC6 and Drebrin, this interaction and subsequent increase in TRPC6 activity might be one of the mechanisms by which Drebrin exerts its effects on breast cancer development, posing this interaction as an interesting and potential therapeutic target. Furthermore, TRPC6 interacts with several other TRPC family members of ion channels, such as TRPC1 and TRPC5 (139), downregulating the activity of the channel. As we mentioned above, these channels have also been reported as dysregulated in breast cancer. Thus, modulating the interplay between these TRPC channels might reduce Ca2+ influx and a subsequent reduction of tumor progression-associated processes.



TRPM4

TRPM4 channel, is a non-selective cation calcium-activated channel permeable to monovalent ions, mainly Na+ and K+, with a permeability ratio PNa/PCa = 11, which is activated by intracellular Ca2+ (140–142). TRPM4 is broadly expressed in several tissues (141) and modulates several cell functions, including insulin secretion (143), immune response (144), cell migration and contractility (145, 146). TRPM4 also plays an important role in disease and several evidences has emerged linking the expression of TRPM4 with the increase of migration, invasion and proliferation of certain cancers, such as lymphoma (147), cervical (148), colorectal channel, prostate cancer (149–151) and others (152). Moreover, upregulation of this channel is associated with poor prognosis in large B cell lymphoma, breast cancer and endometrial carcinoma, while its overexpression increases the recurrence risk in prostate cancer (153–156). Recently, independent groups showed that TRPM4 is overexpressed in breast cancer samples of ER+/PR+ and triple-negative subtypes compared with normal breast tissue (153, 157). Moreover, TRPM4 expression is increased in IIB, IIIA, and IV stages and higher lymph node spread (N1–N2), according to the TNM classification (153, 157). In addition, TRPM4 gene was significantly associated with the expression of estrogen response and epithelial–mesenchymal transition (EMT) gene sets (157). As such, the identification of TRPM4 interactions might allow us to understand the biological role of TRPM4 in breast cancer and to broaden the search for molecular targets for its treatment. KCTD5 (Potassium Channel Tetramerization Domain-containing protein 5) interacts with TRPM4, regulating cell migration and contractility, by acting as a positive regulator of TRPM4 activity. Interestingly, KCTD5 mRNA is significantly upregulated in breast cancer tumors versus normal breast tissue samples (153), consistent with transcriptomics data in public databases (158). These data suggest that the increased expression of KCTD5 could be a key determinant of the malignancy and aggressiveness of these types of tumors, by interacting with TRPM4, enhancing the activity of the channel and thus, promoting TRPM4-dependent cell migration. Along the same lines, another interactor that acts as a positive regulator of channel activity is CaM which modulates the NFAT and Akt pathway promoting survival, proliferation and migration in several breast cancer cell lines in a Ca2+ dependent manner (159, 160). TRPM4 contains five CaM-binding sites and that by eliminating any three sites at the C-terminal, it strongly alters the activation current by decreasing Ca2+ sensitivity and modifying its voltage-dependent activation (161). Therefore, in the context of breast cancer, increased activity, and channel sensitivity due to TRPM4–CaM interaction could promote cell migration and contractility of tumor cells.

Another interesting interactor is sulfonylurea receptor-1 (SUR1), which forms a functional channel with TRPM4, presenting biophysical properties of TRPM4 and pharmacological properties of SUR1. Woo et al. showed that this TRPM4-SUR1 co-assembly has double affinity and sensitivity for CaM and Ca2+, respectively (162). SUR1 is a subunit of the inward-rectifier potassium ion channels Kir6.X (Kir6.1 and Kir6.2), whose association forms the KATP channels (163). SUR1 has been reported as overexpressed in lung cancer (164) and breast cancer (165). Studies using glibenclamide, a drug that binds SUR1, have shown a cytostatic effect on MDA-MB-231 cells, inhibiting cell cycle progression (166). Interestingly, recent studies suggest that this drug acts as an antagonist of the TRPM4–SUR1 interaction (167). Therefore, the interruption of this interaction might decrease cell migration and cell cycle progression, possibly through phosphorylation of CaMKII and decreased nuclear translocation of NFAT (168), which have also been implicated in cancer progression (169).

In the context of trafficking mechanisms and binding partners, two interesting TRPM4 interactors have been involved in the progression of breast cancer. First, EB1 and EB2 proteins that regulate the trafficking, surface expression and activity of TRPM4 (170). Interestingly, EB1 promotes the proliferation of cancer cells and have implicated EB1 in the tumorigenesis of breast cancer (171–173). For instance, EB1 expression correlates with higher histological grade, and the incidence of lymph node metastasis (171). Since the TRPM4–EB1 interaction has been shown to decrease FA turnover, and cell migration and invasion in murine melanoma cell lines (B16-F10 cells) (170), the disruption of the TRPM4–EB1 interaction might reduce the aggressiveness and metastatic capacity of breast cancer cells. Conversely, 14-3-3γ increases the surface expression of TRPM4 in HEK293T cells (174). The 14-3-3 protein family binds to the phosphorylated Ser/Thr motifs of its target proteins, regulating them through different mechanisms (175). Recently, the role of this family in age related-diseases such as neurodegenerative diseases and cancer, has been demonstrated (176). In breast cancer 14-3-3γ localizes in pseudopodia of MDA-MB-231 cells, where 14-3-3γ knockdown diminishes pseudopodia formation and cell migration (177). In summary, the TRPM4-14-3-3γ interaction could promote the expression of the channel on the surface, increasing its activity, which, given the data, could have a synergistic effect on cell migration of breast cancer cells. Therefore, interrupting the TRPM4-EB and TRPM4-14-3-3γ interactions could be favorable for breast cancer patients, reducing cancer cells’ migration and potential metastasis.



TRPM7

TRPM7 is a member of the TRP family that permeates both Ca2+ and Mg2+. Moreover, free intracellular Mg2+ blocks this channel whereas ATP promotes its activation (178). In addition, TRPM7 possesses a unique C-terminal domain, which contains an active kinase domain (179). Interestingly, excision of the kinase domain enhances the TRPM7 ion channel activity (180). TRPM7 is broadly expressed in different tissues (181), and its ion channel function and kinase activity has been related to migration, cell proliferation and cell death in immune, hepatic, and different tumor cells (182). In the context of cancer, TRPM7 expression and activity has been associated with different types of cancer such as retinoblastoma (183), gastric cancer cells (184), head and neck carcinoma (185), and neuroblastoma (186, 187). In addition, TRPM7 expression is elevated in several histological subtypes, such as invasive ductal, invasive lobular (188) and in ER- adenocarcinoma (189). Moreover, TRPM7 expression correlates with breast cancer progression and diminished survival of patients (190). Interestingly, the TRPM7 kinase domain directly phosphorylates the myosin heavy chain (MHC) (191, 192), an effect that was corroborated in MDA-MB-231 cells (189). Moreover, overexpression of TRPM7 increases migration in MCF-7 and MDA-MB-213 cells, while a truncated version that lacks the kinase domain has no effect on cell migration (189). TRPM7 silencing in MDA-MB-231 cells induces a redistribution of the actin cytoskeleton, promoting cell contraction (190). These data suggest that TRPM7 might regulate cell migration in breast cancer through phosphorylation of the MHC, facilitating invasiveness and metastasis. Thus, disrupting the interaction of TRPM7 with MHC, preventing its phosphorylation, may be a novel target to reduce metastasis formation in breast cancer.

Another TRPM7 phosphorylation target is the lipid-binding in a Ca2+-dependent manner protein Annexin 1A (193). Phosphorylation of Annexin 1A by TRPM7 stabilizes its interaction with membrane lipids (194). Interestingly, Annexin 1A is related to the pathogenesis of several cancer types (195), including breast cancer, where it has been proposed as an indicator of poor prognosis (196, 197). Annexin 1A promotes migration and metastasis in the highly invasive cell lines MDA-MB-231 and 4T1 (murine TNBC cell line) cells (196, 198). Interestingly, Annexin 1A depletion in MCF-7 cells increases the formation of focal adhesions and stress fibers, promoting a contractile phenotype, which is related to the effects observed when TRPM7 was absent. All together, these results suggest that TRPM7 might modulate cell migration and invasion of breast cancer through the regulation of Annexin 1A activity, suggesting this interaction as a possible therapeutic target against breast cancer.

Smad2 is a transcriptional regulator related to TGF-ß -induced EMT in several cancer types (199). Interestingly, Smad2 phosphorylation was reduced upon TRPM7 silencing (200). High levels of Smad2 phosphorylation are proposed as a marker of poor prognosis in breast cancer (201). Thus, TRPM7 inhibitors could decrease the levels of Smad2 phosphorylation, ameliorating the prognosis of patients.

In summary, the TRPM7 kinase activity is a novel pharmacological target to modulate invasiveness and metastasis of breast cancer, through the indirect regulation of the activity of its phosphorylation targets such as MHC, Annexin 1A or even Smad2.



TRPM8

TRPM8 is a nonselective cationic ion channel with higher permeability for Ca2+ with a PCa/PNa ~1 (202). Notably, TRPM8 is a cold sensitive channel and is activated by cooling compounds such as menthol (203). Since TRPM8 is activated by cold temperatures, this channel is considered the molecular entity responsible for cold transduction in peripheral nerves (204). In the context of cancer, TRPM8 has been strongly involved in prostate cancer wherein it is related to tumor staging (205, 206). Moreover, this channel was found overexpressed in others types such as glioblastoma (207), pancreatic cancer (208), melanoma (209) and breast cancer (210). In breast cancer, TRPM8 expression is mainly upregulated in ER+ grade I adenocarcinomas (57, 211). Comparative analysis of TRPM8 mRNA levels shows higher expression in the highly invasive MDA-MB-231 cell line. Despite the precise analysis of TRPM8 expression in the different classifications of breast cancer, little is known about the participation of TRPM8 in the tumor pathology. For instance, TRPM8 silencing decreases migration and invasion in MDA-MB-231 cells, reducing the expression of EMT-related markers such as Akt, GSK-3ß phosphorylation and Snail expression. Conversely, TRPM8 overexpression in the low aggressive MCF-7 cell line increases invasion, migration and promotes EMT (212). The analysis of TRPM8 interacting proteins helps to hypothesize possible roles for this channel in the pathology of breast cancer. For instance, TRPM8 interacts with the Serotonin receptor 5-HT1B, enhancing the response of the channel to its agonists (213). In breast cancer, the 5-HT7 receptor is upregulated in triple negative cell lines such as the MDA-MB-231, HCC-1395, and Hs578T cells, increasing its invasion and proliferation through the PI3K/Akt pathway (214), an effect similar to that of TRPM8 (212), which suggests that 5-HT receptors might be a downstream effectors of TRPM8 activity.



TRPV1

TRPV1 is a ligand-gated non-selective channel whose activation allows the influx of Ca2 + and Na+ PCa/PNa = 9.6 (215, 216) and its selectivity depends on the nature and concentration of the agonist (217). TRPV1 can be activated by capsaicin and its analogues as well as by temperature, and pH changes (215) among others (216, 218–221). TRPV1 activity can be modulated by PKA (222), PKC (223) and CaMKII-dependent phosphorylation (224). Additionally, CaM and Inositol-4,5-biphosphate (PIP2) (225) binding have been reported to activate it. TRPV1 has been involved in processes such as thermoregulation and inflammatory nociception and is widely expressed in brain tissue, primary and secondary sensory neurons, arteriolar smooth muscle cells (226), skeletal muscle (227) and urothelium (228). TRPV1 has been associated with different diseases, including different types of cancer such as tongue squamous cell and prostate carcinoma (229, 230), hepatocellular carcinoma (231) and bladder carcinoma (232), skin cancer (233) and others (234–236). Although most studies report a tumor-suppressor role for TRPV1, its exact function in tumorigenesis is not clear. Increased expression of TRPV1 has been observed in all subtypes based on the molecular profile in breast cancer (237). In addition, TRPV1 expression pattern varies between cytoplasmic/membranous (165, 238) to a pattern in aggregates at the ER/Golgi, which was associated with a more aggressive tumoral stage (238).

Multiple studies have linked TRPV1 activity with an antitumoral role in breast cancer, promoting cell death (237, 239, 240) and decreased cell proliferation. Additionally, the activation of TRPV1 with agonists, modulators (MRS1477) and chemotherapeutic agents such as cisplatin induces cell death by apoptosis through depolarization of the mitochondrial membrane, ROS production and caspase activation (239, 240). Similarly, melatonin, in conjunction with the chemotherapeutic agent DOX, promotes apoptosis in MCF-7 cells through the activation of TRPV1 (241). Moreover, activation of TRPV1 using low doses of capsaicin may induce apoptosis in tumor cells, while higher doses of capsaicin activate necrosis (242). Wu et al. also determined that in MCF-7 cells, the expression levels of TRPV1 are decisive for capsaicin-induced cell death (243). Therefore, the use of TRPV1 agonists can be a complementary treatment to those currently used, promoting the sensitization of therapy-resistant tumors to cell death.

Fas-associated factor 1 (FAF1) is an adaptor protein for the Fas receptor and has been described to interact with TRPV1, reducing its response to capsaicin, heat and acid (244). A study performed in fibrosarcoma cells suggest that FAF1 acts as a negative regulator of cell death mediated by capsaicin-dependent activation of TRPV1. Moreover, FAF1 silencing increases fibrosarcoma cells susceptibility to apoptosis when cells were treated with capsaicin (245). However, in breast cancer, several studies have reported a tumor suppressor activity for FAF1, where this protein antagonizes Wnt signaling by stimulating β-catenin degradation (246). Additionally, FAF1 destabilizes TβRII on the cell surface limiting excessive TGF-β response, an effect that could supress metastasis formation (247). Furthermore, Xie et al. showed that there is a positive correlation between the survival of patients with metastasis-free breast cancer and the expression of FAF1. Therefore, the design of a drug to prevent the TRPV1/FAF1 interaction without affecting FAF1 tumor supressing activity could be a powerful tool in the treatment of breast cancer.

Another interesting interactor of TRPV1 is γ-aminobutyric acid type A (GABAA) receptor associated protein (GABARAP) where GABARAP increases TRPV1 expression, clustering at the cell surface and modulates TRPV1 gating and sensitivity (248). Moreover, GABARAP has been described as a tumor suppressor in breast cancer (249), where its mRNA and protein expression levels were significantly downregulated in invasive and ductal lobular carcinomas compared to normal breast tissue. Therefore, the design of a peptide that functionally emulates GABARAP that could promote its tumor suppressive role and increases the traffic of TRPV1 without altering its activity, could contribute to the treatment of breast cancer. Therefore, further studies into this interaction might represent an interesting new therapeutic approach.

TRPA1 is a nonselective cation channel permeable to Ca2+, Na+, and K+. TRPA1 detects a wide range of hazardous stimuli and is also involved in noxious cold and mechanical sensation (250). Different studies have demonstrated functional interaction between TRPA1 and TRPV1 (251, 252). Direct interaction of TRPV1 with TRPA1 exerts a Ca2+-dependent modulation on certain intrinsic properties of TRPA1 (253). Recently, it has been observed up-regulated expression of TRPA1 in breast cancer cells, promoting tolerance to oxidative stress in tumor cells. On the other hand, TRPA1 inhibition reduces tumor growth and improves sensitivity to chemotherapies (254). Interestingly, cell-permeable peptide that mimics the C-terminal of Tmem100-3Q, a modulator of the interaction between TRPA1 and TRPV1, selectively inhibit TRPA1-mediated activity in a TRPV1-dependent manner, generating a promising therapy for pain (255). Therefore, the design of peptides that promote the interaction of TRPV1–TRPA1 that might induce channel inhibition could be a potential treatment as has been observed.



TRPV2

TRPV2 is a non-selective cation channel showing Ca2+ permeability, with a PCa/PNa ~3, and can be activated by high temperatures (>52 °C) (256), hypoosmolality (257), cell stretching (258), cannabinoids (259), among others (260, 261). TRPV2 is mainly expressed in the central and peripheral nervous system (256, 262–264) and at the subcellular level it is present in intracellular membranes (265, 266) and plasma membrane (267). TRPV2 act as a mechanosensor, osmosensor (257) and contributes to nociception and thermoregulation. However, studies performed in TRPV2 knock out mice suggest that it might participate in other activities (262), such as neurogenesis and gliomagenesis (268). TRPV2 has been involved in pathological processes, such as the development of cardiomyopathies (269) and cancer (270). In the context of cancer, the overexpression of channel is associated with well differentiated tumours and an increase of the survival in hepatocellular carcinoma, glioma and glioblastoma, while the opposite effect was observed in oesophageal carcinoma, urothelial carcinoma and gastric cancer (271–276). Increased TRPV2 expression has been observed in breast cancer samples, especially in TNBC subtype patients, where TRPV2 activation improved DOX uptake by tumor cells and was associated with better prognosis (277). Different studies have shown the formation of heteromers between TRPV1 and TRPV2 (278–280). Even though there are no studies directly linking their co-expression in breast cancer as indicated in the previous section, TRPV1, as well as TRPV2 have been described as markers of good prognosis. Therefore, enhancing their interaction and activation might be an interesting therapeutic approach.

Another interactor of TRPV2 is Acyl-CoA binding domain containing 3 (ACBD3), which mediates the TRPV2–PKA interaction and subsequent PKA-mediated phosphorylation (281). ACBD3 is involved in the maintenance of Golgi structure and function through its interaction with the integral membrane protein. However, a recent study shows that ACBD3 overexpression correlates with poor prognosis in breast cancer, where this protein promotes tumorigenesis by activating the Wnt/β-catenin signaling pathway (282). Although more studies are required on how the TRPV2–ACBD3 interaction might contribute to the modulation of channel activity or downstream signaling pathways in breast cancer contexts, it represents a novel and interesting therapeutic target to prevent disease progression.



TRPV4

TRPV4 is a non-selective cationic channel with a reported relative permeability of PCa/PNa ~7 (283, 284). This channel is activated by multiple stimuli, such as osmotic changes, mechanical stretching, warm temperatures and arachidonic acid metabolites (285). It participates in several physiological processes such as vascular tone modulation, endothelial permeability, nociception and inflammatory responses in multiple organs (283, 285). Its expression has been reported in sensory and brain neurons, skeletal and smooth muscle as well as in epithelial tissue of several organs including the trachea, bladder, cornea, bile ducts and breast (283).

In the context of cancer, decreased TRPV4 expression has been reported in basal cell carcinoma, whereas an increase in its expression has been associated with poor survival in colorectal cancer (286, 287). Moreover, overexpression of this ion channel has been detected in breast cancer samples from human patients in comparison with normal tissue (288, 289). In this context, significantly higher expression was found in metastatic lesions compared with intraductal carcinomas (289) and in ER-negative compared with ER-positive samples (288). Moreover, TRPV4 expression has been associated with decreased survival of distant metastasis-free patients and enhanced EMT progression. This is consistent with its established role in non-metastatic murine breast cancer cell line (i.e. 4T07 cells), which involves the phosphorylation-dependent activation of Akt (289), pivotal kinase for EMT during breast carcinogenesis (290). Ca2+ signaling mediated by TRPV4 lead to phosphorylation-dependent Akt activation, causing a decrease of E-Cadherin expression (289). Interestingly, in keratinocytes it has been observed that TRPV4 forms a protein complex with β-catenin and E-cadherin in E-cadherin-dependent junctions, where TRPV4-mediated Ca2+ signals favours the maturation of these structures (291). This discrepancy might be explained by differences in the cellular model or due to alterations of regulatory mechanisms proper from neoplastic cells. Despite this, the presented data highly suggest that TRPV4 has an important role in breast cancer EMT progression via E-Cadherin regulation. Further studies are needed to unveil the possible functional association between these proteins in the context of breast cancer, which might grant valuable information for therapeutic approaches.

TRPV4 also interacts with Fyn and Src tyrosine kinase (292), protein associated with the progression and malignant features of diverse types of cancer (293). Similar to TRPV4, Fyn promotes EMT progression in breast cancer (294). Interestingly, Fyn-mediated phosphorylation of TRPV4 Tyr-253 residue is necessary for hypotonicity-induced Ca2+ entry, suggesting that Fyn is a positive regulator of TRPV4 (292). AQP5 associates with TRPV4 and is crucial for TRPV4-dependent Ca2+ influx promoted by hypotonic stimulus. AQP5 has been associated with breast cancer cells proliferation and migration (295) possibly by accelerating volume changes of the leading edge, contributing to actin cytoskeleton dynamics and cell shape changes during this process (296–298). Additionally, TRPV4 interaction with the Ca2+-activated Cl- channel TMEM16A is also involved in volume regulation. Different studies show that TRPV4-mediated Ca2+ influx promotes TMEM16A activation, leading to Cl− outward currents and subsequent water efflux (299, 300). It has been reported that TMEM16A is overexpressed in 78% of human breast cancer samples and that it modulates breast cancer progression through promotion of EGFR signaling in breast cancer cell lines (301). Thus, a possible interplay between Fyn, TRPV4, TMEM16A and AQP5 might occur during breast cancer progression and contribute to volume regulation during cell migration, leading to the development of a metastatic phenotype.

We previously mentioned the participation of IP3R3 and Caveolin-1 in breast cancer and their association with TRPC1. Interestingly, TRPV4 interaction with these proteins has been reported (302–304). Indeed, TRPV4 forms functional heterotetramers with TRPC1 (303) and is suggested to participate in SOCE (305). Moreover, the functional interaction between TRPC1 and TRPV4 participates in Ca2+ homeostasis of endothelial cells (305, 306). Thus, TRPV4 is crucial for the migration of breast cancer endothelial cells, an essential process for angiogenesis during tumor growth (307). In conclusion, the association of TRPV4 and TRPC1 could modulate tumor angiogenesis and involve Caveolin-1 and the IP3R3. Functional analysis of these interactions and their cellular outcomes remains to be explored to address this as a possible therapeutic target.



TRPV6

TRPV6 is a Ca2+ channel with a PCa/PNa ~130 (308), regulated by intracellular Ca2+ in a Ca2+ and Ca2+/CaM-dependent manner (309). TRPV6 channels are widely expressed in absorptions epitheliums, exocrine glands, placenta, epididymal epithelium and in vestibular and cochlear tissues, where it mediates transcellular transport and maintains physiological levels of Ca2+ (310–313). In neoplastic diseases, TRPV6 channel has been reported as overexpressed in breast, colon, ovary, prostate and thyroid carcinomas promoting proliferation (314). Moreover, increased levels of this channel have been associated with high survival rates and better prognosis in cervical and oesophageal carcinomas, whereas the opposite effect has been reported in pancreatic cancer (315–317). In breast cancer, TRPV6 mRNA increased levels have been reported in tumor tissue and its expression has been correlated with poor prognosis for patients (57, 318). In vitro analysis has shown that TRPV6 silencing reduces breast cancer cell proliferation and promotes apoptosis (318). Interestingly, TRPV6 expression is promoted by the activation of vitamin D3, estrogen and androgen receptors. This induced overexpression increases the basal intracellular levels of Ca2+ in breast cancer cells, positively regulating gene expression via the CaM/Calcineurin/NFAT pathway, which modulates proliferation and apoptosis (314). Interestingly, this channel interacts with several proteins with important roles in breast cancer.

CaM, is a Ca2+ -sensing protein that regulates intracellular Ca2+ levels and has the capability to activate or inactivate several target proteins in a Ca2+-dependent manner (319). CaM induced the slow inactivation of TRPV6 channel by direct interaction (320) and modulates positively the NFAT and Akt pathways, promoting survival, proliferation and migration in several breast cancer cell lines in a Ca2+-dependent manner (159, 160). These results suggest that CaM inactivates TRPV6, reducing Ca2+ entry. Interestingly, in breast cancer, rises in Ca2+ levels might activate the NFAT and Akt pathways. Thus, uncoupling the TRPV6–CaM interaction could promote Ca2+ influx and activate those pathways. Thus, promoting this interaction could be beneficial for patients.

TRPV6-dependent Ca2+ currents are regulated by phosphorylation of the channel in tyrosine residues. For example, Fyn and Src are tyrosine kinases, members of the Src family, which regulate several processes, such as cell proliferation, survival, differentiation, motility and angiogenesis (321). Although Fyn interaction with TRPV6 was reported, the specific residues phosphorylated by Fyn remain unknown, whereas Src phosphorylates TRPV6 specifically in residues Y161 and Y162, promoting Ca2+ entry (322). In breast cancer, Fyn has been described as a predictive biomarker of tamoxifen response, participating in tamoxifen resistance (323). Moreover, this protein is involved in maintaining a mesenchymal phenotype in MDA-MB-231 cells (294). Interestingly, Src promotes cell growth and survival in MDA-MB-468, while in the MCF-7 cells, this protein promotes spreading and motility. Moreover, a gain of function of this protein promotes bone metastasis in mice models (324). Thus, these results suggest that tyrosine phosphorylation in TRPV6 promotes its activity, which could enhance breast cancer malignancy. For this reason, disruption of the interaction between these kinases and TRPV6 channels could be a therapeutic alternative in breast cancer.

TRPV6 also forms a complex with tumor suppressor proteins with relevance in cancer development such as Numb1 and phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase (PTEN). Numb1 is a cell fate determinant protein, which stabilizes p53, preventing its ubiquitination. This protein interacts with TRPV6, decreasing cell Ca2+ influx, although its mechanism in unclear. Moreover, it has been described that in MCF-7 cells, Numb1 knockdown increases the expression of this channel, whereas TRPV6 knockdown increases Numb1 expression (325). On the other hand, PTEN is a protein phosphatase with tumor suppressor activity which mediates the PI (3–5) P3 to PI (4, 5) P2 conversion, promoting inhibition of the PI3K/Akt pathway (326). Interestingly, this phosphatase forms a complex with TRPV6 and Numb1 in the prostate cancer cell lines (DU145). Moreover, knockdown of PTEN causes a positive regulation between Numb1 and TRPV6 expression in DU145 cells (327). In breast cancer, the absence of Numb correlates with reduced disease-free survival in patients (328). A meta-analysis of generated data about PTEN suggests that the loss of this protein could predict more aggressive forms of breast cancer and worse prognosis for patients (329). Thus, these results suggest that loss of Numb and PTEN correlate with worse prognosis in breast cancer. For this reason, promoting the interaction between TRPV6, NUMB1 and PTEN could be useful as a therapeutic approach in breast cancer.

TRPV6 also interacts with accessory proteins with reported activity in breast cancer. For example, cyclophilin B is a peptidyl-prolyl cis-trans isomerase which promotes changes in protein conformation. This chaperone was identified as a TRPV6 accessory protein, promoting TRPV6-dependent Ca2+ influx (330). Moreover, the knockdown of cyclophilin B in ER+/HER2− cell lines (T47D cells) downregulates the expression of several elements involved in cell proliferation, such as the progesterone and estrogen receptors (331). Another interesting protein is regulator of G-protein signaling 2 (RGS2) which corresponds to a negative regulator of G-protein coupled receptors (GPCR), increasing GTPase activity of Gα subunits and regulating several signaling pathways (332). This protein interacts with TRPV6 reducing its Na+ and Ca2+ currents, in a GPCR-independent manner (333). Interestingly, RGS2 is downregulated in MCF-7 cells but not in MCF-10A. Moreover, overexpression of this protein in MCF-7 cells reduces its proliferation (332). These results indicate that knockdown of cyclophilin B reduces TRPV6 currents and breast cancer cell proliferation. Moreover, overexpression of RGS2 reduces TRPV6 currents and breast cancer cell growth. Thus, we hypothesize that promoting these interactions could serve as a therapeutic approach in breast cancer.

An important component of TRPV6 trafficking machinery is Rab11. This protein regulates the budding, movement, and delivery of transport vesicles along different trafficking routes (334). Interestingly, Rab11 interacts with TRPV5 and TRPV6 mediating the trafficking of these proteins to the plasma membrane. Moreover, silencing of Rab11a promotes a decrease in membrane expression of both channels (309). In breast cancer cell lines, it has been described that Rab11a knockdown reduces proliferation, migration and invasion in an Akt-dependent manner (335, 336). These results reveal that downregulation of Rab11a reduces TRPV6-dependent Ca2+ currents and breast cancer cell malignancy. Thus, inhibiting the interaction between Rab11a and TRPV6 might constitute an interesting new target for breast cancer treatment.



TRP Channels and STIM/ORAI Complex

As we described above, TRP channels exert multiple effects on breast cancer cells, at least in part, through the modulation of Ca2+ signaling. The SOCE response is crucial for Ca2+ homeostasis, and represents the main path for its influx in non-excitable cells. This response is triggered after endoplasmic reticulum Ca2+ depletion through the establishment of the STIM1/ORAI1 protein complex. The coupling between these proteins promotes the gating mechanism of the highly selective Ca2+ channel ORAI1, which leads to the establishment of Ca2+ Release-Activated Ca2+ Currents (ICRAC) (337). Although this current was the first associated to SOCE, other non-selective currents were identified as part of this homeostatic response as well, broadening the concept to ISOC (338). This current has been associated with ORAI1 activity and with specific TRP channels, in particular with TRPC1 (80). Interestingly, SOCE has been widely associated with several types of cancer such as cervical, esophageal, breast, lung cancer and others (339). Moreover, a gain of function of this response has been related with a poor prognosis, bigger tumour size and poor differentiation (339). In addition, SOCE has been widely associated to breast cancer progression (340, 341). The expression of essential components of SOCE, such as ORAI1 and STIM1 are essential in mammary gland physiology during lactation, and also in breast cancer progression and invasion (342, 343). In addition to ORAI1, other ORAI isoforms have been linked to breast cancer. For instance, ORAI3 is a tumor promoting agent during cancer progression in ER+ malignant cells (344). Interestingly, increased levels of STIM1, TRPC1, ORAI1 and ORAI3 are correlated with poor prognosis of patients with aggressive basal breast cancer types, such as triple negative molecular subtypes (59, 345, 346). Although the exact mechanisms by which they could promote tumor progression are still not understood in detail, they might represent potential novel prognosis biomarkers in breast cancer.

In addition to TRPC1, other TRP channels have been related to SOCE and its signaling pathways. Several studies have described the physical and functional interaction between TRP channels and ORAI and STIM proteins (347). TRPC subfamily members are the most represented TRP channels forming complexes with SOCE components. In this context, TRPC3 (348) and TRPC6 (349) are proposed to interact with STIM1/ORAI1 complexes and promote Ca2+ entry by ISOC and the subsequent activation of signaling pathways related to cancer progression (350). TRPC1/STIM1/ORAI1 complex activity might participate in metabolic regulation through Ca2+ dependent control of mitochondrial function and autophagy (351, 352). Other TRP subfamilies are also involved in Ca2+ entry through SOCE. TRPA1 interacts with the STIM1/ORAI1 complex, interfering with complex assembly, and decreasing the SOCE response (353). On the other hand, TRPV1, although it does not physically interact with ORAI1, exerts a functional modulation on this channel, particularly by promoting the Ca2+ dependent inactivation of ORAI1, leading to a decreased Ca2+ entry (354). Since these TRP channels and SOCE components have been previously proposed as prognosis biomarkers (56), its physical and functional interactions could be a potential target for the modulation of breast cancer progression. Other SOCE components are also related physically and functionally with TRP channels. STIM2 has been reported to interact with TRPC1 and TRPC6 in MCF-7 cells, modulating the resting Ca2+ content through SOCE activation (81, 128). TRPC1 and TRPC4 are activated by a longer isoform of STIM1, STIM1L. These interactions have different effect to that observed in the activation of SOCE related channels (355). While ORAI1 is preferentially activated by STIM1, TRPC1 is preferentially activated by STIM1L (356). Additionally, SOCE-Associated Regulatory Factor (SARAF), which is the main negative modulator of SOCE, interacts with either STIM1/ORAI1 complex and/or TRPC1 (357) decreasing in Ca2+ influx. Since several TRP channels interact with STIM1 and ORAI1, these could be considered a signaling hub in which TRP and ORAI channels’ activity might converge. Furthermore, since these physical and functional interactions between TRP channels and several SOCE components are reported to modulate Ca2+ entry and subsequent activation of pro-oncogenic processes in breast cancer cells, interrupting these interactions could be an exciting and novel strategy to attenuate cancer progression. TRPC channels and STIM/ORAI expression and interaction have been proposed as potential breast cancer prognosis biomarkers as proposed (56, 339). Further studies to explore the role of TRP channels and STIM1/ORAI1 complexes and how these are related to prognosis and their potential utility as biomarkers are necessary.




Future Prospects for Other Possible Interactions of Ion Channels as Therapeutic Targets

As we previously discussed, the TRP channels interactome could be used as a novel therapeutic target in breast cancer by promoting or interrupting the discussed interactions, thus modulating channel activity and associated signaling pathways. As with others proteins, TRP channels can also be regulated by a plethora of post-translational modifications (PTM), which provide spatial–temporal control of several processes such as ion channel inactivation, activation, trafficking, endocytosis, and degradation (358–360). Interestingly, in several pathological conditions, including cancer, have been reported a dysregulation in the PTM balance. This dysregulation in PTM balance leads to several pathologies due to a gain or loss of function in crucial proteins (361–363). For example, tumor suppressors such as Rb, P53, and PTEN are targets of several PTM that mediated their inactivation or degradation, which promotes carcinogenesis (362). Although the relevance of PTM in cancer and TRP channels, further investigation is still required to identify new residues targets, the role of the modification in the channel, and the enzyme that mediates the PTM (359). Interestingly, only a few modifying enzymes have been reported as molecular partners of TRP channels such as Fyn, Src, PTEN, and KCTD5. However, all these presented relevant contributions in breast cancer and therefore could be exciting targets in molecular therapies (153, 294, 323, 324, 329). Further investigations are needed to identify more modifying enzymes and new putative targets in breast cancer and several others pathologies.



Modulation of PPIS as a Therapeutic Strategy for Breast Cancer

Almost all breast cancer patients will receive at some point chemotherapy as either first-line treatment or as adjuvant/neoadjuvant, which will bring with it serious side effects for the patient (364). Given the systemic nature of the treatment and its low cell specificity and toxicity, chemotherapy can affect almost every organ in the body, including the heart, lungs, brain and kidneys (365, 366). These side effects, along with the fact that most times chemotherapy does not have a curative effect on breast cancer, but only prolongs the patient’s life and alleviates the disease-associated symptoms (365, 367) makes the discovery of new therapies that will only affect tumor cells an important field of research. As was described in the previous sections, there is a myriad of TRP channels that have been associated with several clinical parameters and diverse aspects of breast cancer progression, making them interesting therapeutic targets. Moreover, several interactors of these channels have also been described as important regulators in the development of breast cancer. The fact that the expression of both the TRP channels and their interactors are highly dysregulated in breast cancer suggests that the modulation of these interactions might provide new specific and selective targets for therapeutic interventions in the field of breast cancer research. Since peptides to modulate PPIs are highly specific in regards to their targets, affecting only the cellular pathways associated with a specific interaction and in cells where both the channel and the interactor are expressed, they are attractive candidates for in vivo treatment due to their minimal off-target effects (368). Nevertheless, compared to the targeting of enzymes or receptors, the therapeutic intervention of PPIs has been more challenging, partly due to the large and less structured interface of these interactions (369–372). Despite that, some of the current methods for PPIs modulation have been used as therapeutic strategy in breast cancer (Figure 2).




Figure 2 | Modulation of ion channel-associated PPIs as therapeutic tool. Graphical representation of the modulation options for Ion channel-associated PPI, either through stabilizers or inhibitors of the interactions. All these strategies could constitute a useful complementary therapeutic tool contributing to increasing existing or personalized therapies.



One of the main challenges that PPI modulators have faced is that most interactions encompassed relatively large contact areas. Nevertheless, subsequent research lead to the description of "hotspots," which are a small subset of amino acid residues contributing most of the binding free energy in PPIs (373). These hotspots are rich in Tyr, Trp, Leu, Ile, Phe, and Arg, where the amino acids Trp, Arg, and Tyr promote hydrogen bonds forming between the interacting proteins, contributing to π-interactions and binding free energy (373). This definition of hotspots has led to the design of small molecules or peptides that target this small number of amino acids to modulate PPIs. An early example of this was the design of Tirofiban, a mimetic of the Arg-Gly-Asp tripeptide epitope of fibrinogen that binds to the αIIbβ3 integrin approved by the FDA (374).

Another therapeutic challenge that these molecules might have is their poor cell/tissue specificity and membrane penetration capacity. In this context, the use of cell-penetrating peptides (CPPs) has provided an important tool to improve these aspects. CPPs are short peptides (less than 30 residues) with low cytotoxicity that have the ability to cross biological membranes, which can be coupled to bioactive molecules to transport them inside cells (375, 376). Interestingly, it has been demonstrated that several of these peptides have tumor homing capacities or might be modified to discriminate between tumoral and non-tumoral cells, thus, when coupled to PPIs-modulators, they would reduce undesired off-target effects and improve their cellular uptake (377–380). Several methods have been developed to provide CPPs with tumoral specificity, such as the use of peptides that naturally bind to tumor-specific cell surface molecules (380, 381), peptides that are inactive until modified by a cancer-associated protease or by properties of the tumoral microenvironment (382, 383) and those that take advantage of cellular mechanisms dysregulated in tumoral cells (384). As we can see, the use of CPPs is a major tool to provide PPI-modulators with tumoral specificity and low side effects.

Several small molecules have been designed and are being used for the targeting of pro-tumoral PPIs in breast cancer. Eribulin and Ixabepilone both interfere with the tubulin-α–tubulin-β interaction inhibiting microtubule growth, ultimately causing G2-M phase cell cycle arrest and cell death through apoptosis, have been used for years in the treatment of metastatic breast cancer patients (385–388). LCL161 and Birinapant are two among several SMAC mimetics being used in breast cancer treatment, which are modeled after the N-terminal AVPI tetrapeptide of Smac, which binds to the BIR domains of the inhibitor of apoptosis (IAP) proteins, thus interfering with this interaction (389, 390). These are just examples of PPIs and drugs used to target them in breast cancer treatment. Further discovery of small molecules is guaranteed by using current techniques, such as High Throughput/virtual Screening and Fragment-based methodologies (391). These approaches will be relevant to the discovery and development of new drugs targeting ion channel-associated PPIs. In this context, although modulators of TRPC channels-associated PPIs have not been approved for human treatment yet, several studies using in vivo models have shown the efficacy of using systemically-administered peptides to disrupt ion channels-associated PPIs to treat diseases with no observed side effects, and high specificity for their targets (392–395).

Despite their positive characteristics, small peptides do have several limitations, such as a lack of stability, relatively low affinity, poor cell-penetrability and short plasma half-life (396, 397). Given this, the use of antibodies has become an essential tool to interrupt PPIs and the fastest-growing and most successful class of therapeutic biologics, given their intrinsic ability to interact potently with proteins along a broader surface spectrum and various epitopes and their inherent stability (398). In this context, daclizumab is an FDA-approved antibody that blocks the interaction between IL-2 and its receptor, which has shown clinical success in patients with metastatic breast cancer when applied in combination with immune therapy (399). Atezolizumab is a monoclonal antibody against programmed death ligand-1 (PD-L1), which blocks its interaction with Programmed cell death protein 1 (PD-1) (400). In a recent study, the treatment with Atezolizumab plus nab-paclitaxel prolonged progression-free survival among patients with metastatic TNBC (401). Moreover, in a pilot study in women with early-stage breast cancer, the use of ipilimumab and FDA approved (for melanoma treatment) monoclonal antibody against CTLA-4, which blocks the interaction with its ligand CD86, showed potentially favorable intratumoral and systemic immunologic effects in combination with cryoablation (402). Although the use of antibodies to modulate PPIs has become a new and exciting tool to modulate PPIs, we acknowledge the relative difficulty of using them in the context of ion channels and their interactors due to the inability of antibodies to cross the plasma membrane, which is where most of the interactions in ion channels occur. The use and generation of recombinant antibodies might improve those difficulties. Additionally, the development of nanobodies, small single-domain antigen-binding antibody fragments, has helped to improve many of the problems that normal monoclonal antibodies have. The smaller size of nanobodies helps them to better penetrate deeper into the tumor and have a more precise targeting than normal IgGs (403–405). Moreover, nanobodies can be conjugated to CPPs to overcome their inability to penetrate the plasma membrane and thus be able to modulate pro-tumoral PPIs occurring inside the cell with great specificity without affecting the functionality of the involved proteins in other signaling pathways (404, 406, 407).

The more broadly used (and FDA approved) approaches to modulate PPIs are the small molecules and antibodies. However, other methods are being proved and improved to make them more suitable for clinical use, such as peptidomimetics, long peptides with a structure derived from existing peptides or protein domains. These molecules tend to mimic natural interaction and conserve a protein-like structure (391, 408). Although no peptidomimetics have been approved for breast cancer treatment, the major advances in the field of cell-penetrating peptides (CPPs), will encourage the development of therapeutic peptides and help to overcome some of the shortcomings that these molecules have as possible therapeutics (375, 409). Moreover, in the field of antibodies, nanobodies’ discovery and use should promote more stable and simpler molecules (410, 411). Also, aptamers can also be used to modulate PPIs (412, 413). Finally, the combination of several of these methods, such as the conjugation of peptides with small molecules, oligoribonucleotides, or antibodies as a possible alternative to overcome each type’s disadvantages, has gained interest in the last years, especially in oncology (396).



Concluding Remarks

Cancer is a multifactorial disease, which progression depends on the dysregulation of several pathways involved in processes such as cell metabolism, immune evasion, avoiding cell death, inflammation, migration, and invasion. Interestingly, Ca2+ signaling is involved in many, if not all, of these processes. In this context, ion channels, especially TRP channel family members, are interesting proteins given their regulatory role on intracellular Ca2+ levels. Indeed, TRP channels expression and activity of several of them have been found commonly dysregulated in several types of cancer, including breast cancer. Hence, several TRP channels have been proposed as potential biomarkers of tumor progression and response to breast cancer treatment.

Interestingly, several proteins that interact with TRP channels have been reported as dysregulated in breast cancer, and thus, proposed as biomarkers for cancer progression. In this article, we have extensively reviewed the main TRP channels that might have a role in breast cancer progression, focusing on how their interaction with other reported biomarkers might constitute novel and exciting targets for intervention as possible therapies in this disease. Furthermore, we have presented several mechanisms by which these interactions might be regulating several aspects of breast cancer progression. However, although there are strong evidence and literature to support the interactions presented here, we are aware that most of them are based on reports in non-cancer models. Thus, further studies are needed to confirm these interactions and their possible pathological role in breast cancer. In conclusion, the identification and confirmation of new TRP-interactions, their role in breast cancer, and the development of drugs to modulate those interactions might provide new alternatives to help in the treatment of breast cancer patients, especially in those cases where there are no current treatments available or where treatments are non-selective and carry dangerous secondary effects with them.
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Background

EphAs are a class of ephrin receptors that belong to the membrane-bound receptor tyrosine kinases group. Accumulating experimental evidence has shown that the EphA family is involved in tumor progression, namely in cell proliferation, invasiveness, and metastasis. EphAs are a promising target for anticancer therapy. However, their role in breast cancer (BC) is still not well understood.



Materials and Methods

We used a series of bioinformatic approaches to analyze the expression of the EphA family members and investigate their prognostic value in BC.



Results

Lower expression levels of EphA2, EphA3, EphA4, EphA5, and EphA7 and higher expression levels of EphA10 were found in BC tissues compared to those in normal tissues. The expression levels of the EphA family genes were correlated with molecular subtyping but not with tumor stage. High expression levels of most EphAs indicated a better prognosis in BC.



Conclusions

This study suggested that EphA2, EphA3, EphA4, and EphA5 can act as tumor-inhibiting factors as well as biomarkers for the prognosis of BC.





Keywords: breast cancer, EPHA family, bioinformatics, biomarkers, prognosis



Introduction

Each year, worldwide, there are an estimated 1.5 million new cases of breast cancer (BC), which is one of the most frequently diagnosed malignancies in women (1). At present, the strategies for the treatment of BC include surgery, radiation, traditional chemotherapy, endocrine therapy, and targeted therapy. These treatments have greatly improved the progression-free and overall survival of patients with BC. According to the status of ER, PR, and HER2, BCs are divided into four subtypes: luminal A, luminal B, HER2-positive, and basal-like. Once identified, the knowledge on these BC subtypes can be used for clinical decision making to improve the rate of survival for BC. However, the morbidity and mortality associated with BC remain high. The major reason for this is the high recurrence and metastasis rates in patients with BC. Currently, the 5-year survival rate for BC is still less than 20%. Thus, it is necessary to identify reliable biomarkers and new therapeutic targets for BC.

Eph receptors (Ephs) form the largest subfamily of receptor tyrosine kinases (RTKs), with 16 members cloned (2, 3). Based on the types of their binding ligands (ephrins), they can be divided into two subclasses: EphA and EphB. The EphA subfamily has nine members, including EphA1, EphA2, EphA3,EphA4, EphA5, EphA6, EphA7, EphA8, and EphA10. Deregulated activation of the EphA family members has been found in various human cancers, such as lung cancer (4), gastric cancer (5), hepatocellular carcinoma (6), esophageal squamous cell carcinoma (7), and prostate cancer (8). Evidence indicates that EphA receptors are involved in regulating tumor growth, invasiveness, angiogenesis, and metastasis by altering cell proliferation, motility, invasion, and migration (2, 9). For instance, the overexpression of EphA2 contributes to the amplification of ErbB2 signaling, as well as the promotion of BC tumorigenesis and metastasis (10). Overexpression of EphA4 is significantly associated with migration in triple-negative BC (11). MiR-10a interacts with EphA8 and regulates the EMT process (12). Despite these meaningful findings, bioinformatic methods have not been used to explore the expression of the EphA family members in BC.

The EphA family has been identified as a new target for cancer treatment (13, 14). However, it has not been effectively used in BC. Many inhibitor and activator molecules have been designed to target the EphA family members (15–17). Some of them work by inhibiting the kinases of the EphAs, while some others work by inhibiting the expression of the EphA family members (18–20). However, our limited understanding of EphA activity and the EphA expression pattern in cancers represents a challenge in the application of therapeutic strategies. Thus, a thorough understanding of their involvement in BC is needed.

Bioinformatics provides an effective and feasible method for the analysis of tumors and has become an essential component of biomedical studies. The advantage of using bioinformatics is its ability to explore and collect various data from numerous studies in an unbiased way, which can help us obtain useful information about cancer progression. In this study, we investigated the expression profiles, mutation status, and prognostic values of the EphA family members using bioinformatics and identified prognostic factors for BC.



Materials and Methods


Oncomine Database Analysis

The Oncomine database (https://www.oncomine.org/resource/login.html) was used in this study to analyze the expression levels of the EphA family genes in different types of cancers. The p-value was defined as 0.01, and the fold change was defined as 2.



GEPIA Data Set Analysis

GEPIA is an online database consisting of 9,736 tumor and 8,587 normal control samples (http://gepia.cancer-pku.cn/index.html). The GEPIA database was used in this study to analyze the transcription levels of the EphA family members in BC. Student’s t test was used to produce the p value. The p value cutoff was 0.05.



UALCAN Database Analysis

UALCAN is a database that can analyze cancer OMICS data (http://ualcan.path.uab.edu/). In this study, the UALCAN database was used to analyze the correlation between EphA family member expression and molecular subtyping in patients with BC. Student’s t test was used to produce the p value. The p value cutoff was 0.05.



Kaplan-Meier Plotter Analysis

The Kaplan-Meier plotter (http://kmplot.com/analysis/) consists of a variety of genes in different types of cancers, such as breast (n = 6,234), ovarian (n = 2,190), lung (n = 3,452), and gastric (n = 1,440) cancer cohorts. In this study, the Kaplan-Meier plotter was used to analyze the prognostic significance of EphA family gene expression in patients with BC.



cBioPortal Database Analysis

The cBioPortal (http://www.cbioportal.org/) is attached to the Memorial Sloan Kettering Cancer Center for Cancer Genomics, and it can provide a comprehensive analysis of complex tumor genomics and clinical profiles in The Cancer Genome Atlas (TCGA). Using the cBioPortal database, we investigated the frequency and form of EphA gene mutations.



COSMIC Database Analysis

The COSMIC database (http://cancer.sanger.ac.uk) is a high-resolution resource for studying the effects of somatic mutations in all types of human tumors. In this study, the COSMIC database was used to analyze mutations in the EphA family in BC. Pie graphs were used to depict the substitutions of the EphA genes.



STRING

STRING (https://string-db.org/) is a database that collected all publicly available sources of protein–protein interaction. In this study, we conducted a protein–protein interaction network analysis of EphAs to explore the interactions among them with STRING.



GeneMANIA Database Analysis

GeneMANIA (http://www.genemania.org) is a website that provides information on protein and genetic interactions, pathways, co-expression, co-localization, and protein domain similarity of the submitted genes.



WebGestalt

WebGestalt (http://www.webgestalt.org/) is a functional enrichment analysis web tool. In this study, we explored the potential function of EphAs with WebGestalt. FDR Method is BH.




Results


EphA2, EphA3, EphA4, EphA5, and EphA7 Expression Is Lower, and EphA10 Expression Is Higher in BC Tissues

Eight EphA factors have been identified in humans. The expression levels of EphAs were compared between the cancer samples and normal samples using the Oncomine database (Figure 1). The results showed that the expression levels of EphA2, EphA3, EphA4, EphA5, EphA7, and EphA8 were reduced, but the expression levels of EphA1 and EphA10 were significantly increased in BC tissues (P < 0.01). To further confirm these results, the expression levels of the EphA family members were compared between the BC and normal tissues using the GEPIA database Figure 2. The results indicated that the expression levels of EphA2, EphA3, EphA4, EphA5, EphA6, and EphA7 were significantly lower in BC tissues than in normal tissues, and the expression levels of EphA8 and EphA10 were significantly higher in BC tissues. Consequently, we concluded that EphA2, EphA3, EphA4, EphA5, and EphA7 were downregulated, while EphA10 was upregulated in BC tissues.




Figure 1 | The mRNA expression pattern of EphA family members in different tumor types. The graphs generated from the Oncomine database show the numbers of data sets with statistically significant expression of EphA family in different types of tumor tissues and normal tissues. High expressions were showed in red block charts, and low expressions were shown in blue block charts. The threshold was defined with the following parameters: P-value of 0.01, fold change of 2 and gene ranking of top 10%. Cell color is determined by the best gene rank percentile for the analyses within the cell.






Figure 2 | The expression of EphA family in breast cancer vs in normal. The graphs generated from GEPIA database showed the EphA family gene expression in breast cancer tissues (BRCA) (n = 1085) compared with normal breast tissues (n = 291), *P < 0.05. The tumor tissues were shown in red and the normal tissues were shown in gray. The EphA family genes include (A) EphA1; (B) EphA2; (C) EphA3; (D) EphA4; (E) EphA5; (F) EphA6; (G) EphA7; (H) EphA8; (I) EphA10.





The Expression of EphA Family Members Is Typically Correlated With Molecular Subtyping But Not Tumor Stage

We analyzed the correlation between the expression of the EphA family members and molecular subtyping in patients with BC Figure 3. We found that most EphA groups varied significantly. EphA1 was significantly high in HER2-positive BC; EphA2 and EphA7 were significantly high in triple-negative BC, and EphA3, EphA5, EphA6, EphA8, and EphA10 were significantly high in luminal BC. The EphA4 groups did not show any significant differences. We further analyzed the relationship between EphA family member expression and tumor stage in patients with BC using the GEPIA database. Figure 4 The results showed that none of the EphA members differed significantly.




Figure 3 | The correlation between EphA family expression and molecular subtyping in breast cancer patients. The graphs produced from the UALCAN database showed the expression of EphA family genes in different molecular subtyping of breast cancer. The normal tissues were shown in red, the liminal types were shown in orange, the Her2-positive type were shown in green and the triple negative type were showed in brown. The EphA family genes include (A) EphA1; (B) EphA2; (C) EphA3; (D) EphA4; (E) EphA5; (F) EphA6; (G) EphA7; (H) EphA8; (I) EphA10.






Figure 4 | The correlation between EphA family expression and tumor stage of breast cancer patients. The graphs generated from the GEPIA database showed the expression of EphA family genes in different tumor stages of breast cancer. The EphA family genes include (A) EphA1; (B) EphA2; (C) EphA3; (D) EphA4; (E) EphA5; (F) EphA6; (G) EphA7; (H) EphA8; (I) EphA10.





High Expression of Most EphAs Predicts Better Prognosis in BC

To explore the prognostic values of EphAs in patients with BC, the Kaplan-Meier Plotter was used to analyze the correlation between the expression of EphAs and survival of patients with BC Figure 5. The Kaplan-Meier curve and log rank test analyses revealed that the increased EphA1, EphA2, EphA3, EphA4, EphA5, EphA8, and EphA10 mRNA levels and decreased EphA7 mRNA levels were significantly associated with recurrence-free survival (RFS) (P < 0.05) in all patients with BC. Furthermore, the increase in EphA3 expression was significantly associated with overall survival (P < 0.05), and the decrease in EphA6 expression was significantly associated with distant metastasis-free survival (DMFS) (P < 0.05).




Figure 5 | The prognostic significances of EphA family genes expression in breast cancer patients. The curves generated from the KM plotter database showed the prognostic value of EphA family genes. The assessments include RFS, OS, DMFS, and PPS. The high expression was showed in red curves and the low expression was showed in black curves. The log rank test was displayed at the upper right corner of every graph.





EphA3, EphA5, and EphA7 Gene Mutations Are Frequent in BC

Gene mutations may be an important form of low EphA expression. We evaluated the frequency changes of EphA mutations in BC samples using the cBioPortal database. The mutation frequencies of EphA1, EphA2, EphA4, and EphA6 were quite low, only 0.1% (Figure 6A). The mutation frequencies of EphA8 and EphA10 were even lower (less than 0.1%) (Figure 6A). The mutation frequencies of EphA3, EphA5, and EphA7 were high (0.5%, 0.6%, and 0.4%, respectively) (Figure 6A). Furthermore, we analyzed the mutation types of the EphA family members using the COSMIC database. The pie graph showed that the common mutation types in the EphA family members included missense substitutions, synonymous substitutions, and nonsense substitutions. The most common mutation types in EphA1, EphA2, EphA3, EphA4, EphA5, EphA8, and EphA10 are missense substitutions (Figures 6B–D).




Figure 6 | The mutation frequency and mutation types of EphA family genes in breast cancer patients. (A) The schematic diagrams produced from the cBioportal database showed the mutation frequency of EphA family through. (B) The pie graph produced from the Catalogue of Somatic Mutations in Cancer database showed the percentages of mutation types of EphA family.





Co-expression, Interaction, and Functional Analyses of EphA Family Members

Next, we explored the potential co-expression and function of the EphA family. We conducted a protein-protein interaction network to analyze the EphAs using STRING to explore the potential interactions among them. As expected, every of EphAs co-expressed with each other tightly (Figure 7A). Next, we explored the potential interactions partners with the key genes (EphA2, EphA3, EphA4, and EphA5). GeneMANIA results revealed that EFNA5, EFNA4, EFNA1, EFNA3, EFNA2, ARHGEF15, EFNB2, ACP1, NGEF, CHN1, ADAM10, EFNB1, EFNB3, BLK, MAP3K1, CDK5, FGR, YES1, EPHB2, and HCK were primarily associated with the modulation and function of EphA2, EphA3, EphA4, and EphA5 (Figure 7B). GO analyses were performed using WebGestalt. Among the most highly enriched functions in the biological process category, biological regulation, cell communication, metabolic process, response to stimulus, cellular component organization, multicellular organismal process, developmental process, localization reproduction, multi-organism process, cell proliferation, and growth were associated with the expression of EphA2, EphA3, EphA4, EphA5, and their interactions partners. The membrane, protein-containing complex, extracellular space, cell projection, nucleus, cytosol, vesicle, endomembrane system, envelope, cytoskeleton, endosome, membrane-enclosed lumen, and endoplasmic reticulum were enriched in the cellular component category. In the molecular function categories, EphA2, EphA3, EphA4, EphA5, and their co-expression genes were mainly enriched in protein binding, transferase activity, molecular binding, ion binding, lipid binding, nucleic binding, and translation regulator activity (Figure 7C). KEGG pathway analyses were also performed with these interactions partners. The result showed that these genes were involved in several pathways, such as Axon guidance and MAPK signaling (Figure 7D).




Figure 7 | Co-expression and functional analyses for EphA family. (A) Protein-protein interaction network of EphA family. (B) Protein-protein interaction network analyses for EphA2, EphA3, EphA4, and EphA5. (C) Bar plot of GO enrichment in cellular component terms, biological process terms, and molecular function terms for genes in (B) .(D) Bar plot of KEGG enriched terms for genes in (B).






Discussion

The high expression of EphAs in almost all types of solid tumors indicates aggressive phenotypes and poor prognosis in BC. However, our results seem to show the opposite. Based on our results, we concluded that EphA2, EphA3, EphA4, and EphA5 were down-regulated in BCs, and high expression levels of these genes indicated better RFS, suggesting that EphA2, EphA3, EphA4, and EphA5 act as tumor suppressors in BC and could be new biomarkers for its prognosis.

EphA2 is the most widely studied gene in the EphA family. Aberrant expression of EphA2 has been associated with many human malignancies, such as lung cancer (4), breast cancer (21), ovary cancer (22), esophageal cancer (7), colorectal cancer (23), glioblastoma (24), and melanoma (25). However, its function remains unclear. Overexpression of EphA2 has been reported to inhibit cancer cell proliferation and motility, indicating that EphA2 can act as a tumor suppressor (26). The expression level of EphA2 is elevated in malignant mammary glands, indicating that EphA2 may be an oncogenic factor (27). In our study, we found that the expression level of EphA2 was reduced in BC, and up-regulation of EphA2 predicted better RFS, indicating that for this type of tumor, EphA2 can act as a tumor-inhibiting factor.

High expression levels of EphA3 are associated with poor prognosis in gastric cancer (28), colorectal cancer (29), and hepatocellular carcinoma (30). In our study, we found that EphA3 expression was low in BC, and a high expression level of EphA3 predicted a better prognosis.

EphA4 is an essential factor for TGFβ-induced migration associated with later tumor stages, worse prognosis, and chemotherapy resistance, and can be regulated by TGFβ (11). In our study, EphA4 expression was low in BC, and high expression of EphA4 predicted better RFS.

In previous studies, the methylation of EphA5 was associated with later tumor stages and progesterone receptor-negative status in BC (31). However, the results of this study showed the opposite. Our data showed that EphA5 was significantly overexpressed in patients with luminal BC, and there was no correlation between EphA5 expression levels and tumor stage in patients with BC.

The data for EphA1 and EphA10 showed something meaningful. The expression level of EphA1 and its association with clinical parameters are factors that have been analyzed for various tumors, including gastric cancer, colorectal cancer, non-melanoma skin cancer, and squamous cell carcinoma (32–35). EphA1 is a regulator of ERα transcriptional activity in BC cells (36). In this study, we found that EphA1 was highly expressed in HER2-positive BC. It has also been reported that EphA10 is a promising drug target that is potentially useful for BC treatment. EphA10 is down-regulated in triple-negative BCs, and an anti-EphA10 monoclonal antibody can suppress tumor growth (37). The expression of EphA10 in other subtypes is not yet clear. In this study, we found that EphA10 was overexpressed in BC, especially in luminal BC patients, indicating that EphA10 may be a useful therapeutic target for patients with luminal BC.

Mutations in some Eph receptors are predicted to impair kinase function. Evidence shows that targeted null mutation of EphA4 causes defects in the anterior commissure (38, 39), indicating that mutation inactivates the function of EphAs. In our study, we found that mutations in EphA3, EphA5, and EphA7 are frequent, and their expression is low in BC. Thus, we believe that mutations are an important cause of EphA3, EphA5, and EphA7 inactivation. However, the clinical value of EphA mutations requires further study.



Data Availability Statement

The datasets analyzed for this study can be found in the Oncomine database, GEPIA database, UALCAN database, Kaplan-Meier Plotter database, cBioPortal database, COSMIC database, String, GeneMANIA database and WebGestalt database.



Author Contributions

XZ designed the study, analyzed the data, edited the figure, wrote, and submitted the manuscript. All authors contributed to the article and approved the submitted version.



Funding

This study was supported by the Youth Program of National Natural Science Foundation of China (81802956).



References

1. Siegel, RL, Miller, KD, and Jemal, A. Cancer Statistics, 2019. CA: Cancer J Clin (2019) 69(1):7–34. doi: 10.3322/caac.21551

2. Pasquale, EB. Eph-Ephrin Bidirectional Signaling in Physiology and Disease. Cell (2008) 133(1):38–52. doi: 10.1016/j.cell.2008.03.011

3. Himanen, JP, Chumley, MJ, Lackmann, M, Li, C, Barton, WA, Jeffrey, PD, et al. Repelling Class Discrimination: Ephrin-A5 Binds to and Activates EphB2 Receptor Signaling. Nat Neurosci (2004) 7(5):501–9. doi: 10.1038/nn1237

4. Kinch, MS, Moore, MB, and Harpole, DH Jr. Predictive Value of the EphA2 Receptor Tyrosine Kinase in Lung Cancer Recurrence and Survival. Clin Cancer Res an Off J Am Assoc Cancer Res (2003) 9(2):613–8.

5. Nakamura, R, Kataoka, H, Sato, N, Kanamori, M, Ihara, M, Igarashi, H, et al. EPHA2/EFNA1 Expression in Human Gastric Cancer. Cancer science (2005) Jan96(1):42–7. doi: 10.1111/j.1349-7006.2005.00007.x

6. Bae, HJ, Song, JH, Noh, JH, Kim, JK, Jung, KH, Eun, JW, et al. Low Frequency Mutation of the Ephrin Receptor A3 Gene in Hepatocellular Carcinoma. Neoplasma (2009) 56(4):331–4. doi: 10.4149/neo_2009_04_331

7. Miyazaki, T, Kato, H, Fukuchi, M, Nakajima, M, and Kuwano, H. EphA2 Overexpression Correlates With Poor Prognosis in Esophageal Squamous Cell Carcinoma. Int J cancer (2003) 103(5):657–63. doi: 10.1002/ijc.10860

8. Walker-Daniels, J, Coffman, K, Azimi, M, Rhim, JS, Bostwick, DG, Snyder, P, et al. Overexpression of the EphA2 Tyrosine Kinase in Prostate Cancer. Prostate (1999) Dec 141(4):275–80. doi: 10.1002/(SICI)1097-0045(19991201)41:4<275::AID-PROS8>3.0.CO;2-T

9. Pasquale, EB. Eph Receptors and Ephrins in Cancer: Bidirectional Signalling and Beyond. Nat Rev Cancer (2010) 10(3):165–80. doi: 10.1038/nrc2806

10. Brantley-Sieders, DM, Zhuang, G, Hicks, D, Fang, WB, Hwang, Y, Cates, JM, et al. The Receptor Tyrosine Kinase EphA2 Promotes Mammary Adenocarcinoma Tumorigenesis and Metastatic Progression in Mice by Amplifying ErbB2 Signaling. J Clin Invest (2008) Jan118(1):64–78. doi: 10.1172/JCI33154

11. Hachim, IY, Villatoro, M, Canaff, L, Hachim, MY, Boudreault, J, Haiub, H, et al. Transforming Growth Factor-Beta Regulation of Ephrin Type-A Receptor 4 Signaling in Breast Cancer Cellular Migration. Sci Rep (2017) 7(1):14976. doi: 10.1038/s41598-017-14549-9

12. Yan, Y, Wang, Q, Yan, XL, Zhang, Y, Li, W, Tang, F, et al. miR-10a Controls Glioma Migration and Invasion Through Regulating Epithelial-Mesenchymal Transition Via Epha8. FEBS letters (2015) 589(6):756–65. doi: 10.1016/j.febslet.2015.02.005

13. Barquilla, A, and Pasquale, EB. Eph Receptors and Ephrins: Therapeutic Opportunities. Annu Rev Pharmacol Toxicol (2015) 55:465–87. doi: 10.1146/annurev-pharmtox-011112-140226

14. Xi, HQ, Wu, XS, Wei, B, and Chen, L. Eph Receptors and Ephrins as Targets for Cancer Therapy. J Cell Mol Med (2012) 16(12):2894–909. doi: 10.1111/j.1582-4934.2012.01612.x

15. Choi, Y, Syeda, F, Walker, JR, Finerty, PJ Jr., Cuerrier, D, Wojciechowski, A, et al. Discovery and Structural Analysis of Eph Receptor Tyrosine Kinase Inhibitors. Bioorganic medicinal Chem letters (2009) 19(15):4467–70. doi: 10.1016/j.bmcl.2009.05.029

16. Melnick, JS, Janes, J, Kim, S, Chang, JY, Sipes, DG, Gunderson, D, et al. An Efficient Rapid System for Profiling the Cellular Activities of Molecular Libraries. Proc Natl Acad Sci USA (2006) 103(9):3153–8. doi: 10.1073/pnas.0511292103

17. Chang, Q, Jorgensen, C, Pawson, T, and Hedley, DW. Effects of Dasatinib on EphA2 Receptor Tyrosine Kinase Activity and Downstream Signalling in Pancreatic Cancer. Br J cancer (2008) Oct 799(7):1074–82. doi: 10.1038/sj.bjc.6604676

18. Duxbury, MS, Ito, H, Zinner, MJ, Ashley, SW, and Whang, EE. EphA2: A Determinant of Malignant Cellular Behavior and a Potential Therapeutic Target in Pancreatic Adenocarcinoma. Oncogene. (2004) Feb 1923(7):1448–56. doi: 10.1038/sj.onc.1207247

19. Landen, CN Jr., Chavez-Reyes, A, Bucana, C, Schmandt, R, Deavers, MT, Lopez-Berestein, G, et al. Therapeutic EphA2 Gene Targeting In Vivo Using Neutral Liposomal Small Interfering RNA Delivery. Cancer Res (2005) 65(15):6910–8. doi: 10.1158/0008-5472.CAN-05-0530

20. Carles-Kinch, K, Kilpatrick, KE, Stewart, JC, and Kinch, MS. Antibody Targeting of the EphA2 Tyrosine Kinase Inhibits Malignant Cell Behavior. Cancer Res (2002) 62(10):2840–7.

21. Fox, BP, and Kandpal, RP. Invasiveness of Breast Carcinoma Cells and Transcript Profile: Eph Receptors and Ephrin Ligands as Molecular Markers of Potential Diagnostic and Prognostic Application. Biochem Biophys Res Commun (2004) 318(4):882–92. doi: 10.1016/j.bbrc.2004.04.102

22. Thaker, PH, Deavers, M, Celestino, J, Thornton, A, Fletcher, MS, Landen, CN, et al. EphA2 Expression is Associated With Aggressive Features in Ovarian Carcinoma. Clin Cancer Res an Off J Am Assoc Cancer Res (2004) 10(15):5145–50. doi: 10.1158/1078-0432.CCR-03-0589

23. Kataoka, H, Igarashi, H, Kanamori, M, Ihara, M, Wang, JD, Wang, YJ, et al. Correlation of EPHA2 Overexpression With High Microvessel Count in Human Primary Colorectal Cancer. Cancer Science (2004) 95(2):136–41. doi: 10.1111/j.1349-7006.2004.tb03194.x

24. Wykosky, J, Gibo, DM, Stanton, C, and Debinski, W. Interleukin-13 Receptor Alpha 2, EphA2, and Fos-related Antigen 1 as Molecular Denominators of High-Grade Astrocytomas and Specific Targets for Combinatorial Therapy. Clin Cancer Res an Off J Am Assoc Cancer Res (2008) 14(1):199–208. doi: 10.1158/1078-0432.CCR-07-1990

25. Hess, AR, Seftor, EA, Gardner, LM, Carles-Kinch, K, Schneider, GB, Seftor, RE, et al. Molecular Regulation of Tumor Cell Vasculogenic Mimicry by Tyrosine Phosphorylation: Role of Epithelial Cell Kinase (Eck/Epha2). Cancer Res (2001) 61(8):3250–5.

26. Wykosky, J, and Debinski, W. The EphA2 Receptor and ephrinA1 Ligand in Solid Tumors: Function and Therapeutic Targeting. Mol Cancer Res MCR (2008) 6(12):1795–806. doi: 10.1158/1541-7786.MCR-08-0244

27. Zelinski, DP, Zantek, ND, Stewart, JC, Irizarry, AR, and Kinch, MS. EphA2 Overexpression Causes Tumorigenesis of Mammary Epithelial Cells. Cancer Res (2001) 61(5):2301–6.

28. Nasri, B, Inokuchi, M, Ishikawa, T, Uetake, H, Takagi, Y, Otsuki, S, et al. High Expression of EphA3 (Erythropoietin-Producing Hepatocellular A3) in Gastric Cancer Is Associated With Metastasis and Poor Survival. BMC Clin Pathol (2017) 17:8. doi: 10.1186/s12907-017-0047-y

29. Andretta, E, Carton-Garcia, F, Martinez-Barriocanal, A, de Marcondes, PG, Jimenez-Flores, LM, Macaya, I, et al. Investigation of the Role of Tyrosine Kinase Receptor EPHA3 in Colorectal Cancer. Sci Rep (2017) 7:41576. doi: 10.1038/srep41576

30. Lu, CY, Yang, ZX, Zhou, L, Huang, ZZ, Zhang, HT, Li, J, et al. High Levels of EphA3 Expression are Associated With High Invasive Capacity and Poor Overall Survival in Hepatocellular Carcinoma. Oncol Rep (2013) 30(5):2179–86. doi: 10.3892/or.2013.2679

31. Fu, DY, Wang, ZM, Wang, BL, Chen, L, Yang, WT, Shen, ZZ, et al. Frequent Epigenetic Inactivation of the Receptor Tyrosine Kinase EphA5 by Promoter Methylation in Human Breast Cancer. Hum pathology (2010) Jan41(1):48–58. doi: 10.1016/j.humpath.2009.06.007

32. Inokuchi, M, Nakagawa, M, Baogok, N, Takagi, Y, Tanioka, T, Gokita, K, et al. Prognostic Significance of High Epha1-4 Expression Levels in Locally Advanced Gastric Cancer. Anticancer Res (2018) 38(3):1685–93. doi: 10.21873/anticanres.12402

33. Dong, Y, Wang, J, Sheng, Z, Li, G, Ma, H, Wang, X, et al. Downregulation of EphA1 in Colorectal Carcinomas Correlates With Invasion and Metastasis. Modern Pathol an Off J United States Can Acad Pathology Inc (2009) 22(1):151–60. doi: 10.1038/modpathol.2008.188

34. Theocharis, S, Klijanienko, J, Giaginis, C, Alexandrou, P, Patsouris, E, and Sastre-Garau, X. Ephrin Receptor (Eph) -A1, -A2, -A4 and -A7 Expression in Mobile Tongue Squamous Cell Carcinoma: Associations With Clinicopathological Parameters and Patients Survival. Pathol Oncol Res POR (2014) Apr20(2):277–84. doi: 10.1007/s12253-013-9692-3

35. Hafner, C, Becker, B, Landthaler, M, and Vogt, T. Expression Profile of Eph Receptors and Ephrin Ligands in Human Skin and Downregulation of EphA1 in Nonmelanoma Skin Cancer. Modern Pathol an Off J United States Can Acad Pathology Inc (2006) 19(10):1369–77. doi: 10.1038/modpathol.3800660

36. Gupta, N, Grebhardt, S, and Mayer, D. Janus Kinase 2–A Novel Negative Regulator of Estrogen Receptor Alpha Function. Cell signalling (2012) 24(1):151–61. doi: 10.1016/j.cellsig.2011.08.016

37. Nagano, K, Maeda, Y, Kanasaki, S, Watanabe, T, Yamashita, T, Inoue, M, et al. Ephrin Receptor A10 Is a Promising Drug Target Potentially Useful for Breast Cancers Including Triple Negative Breast Cancers. J Controlled release Off J Controlled Release Soc (2014) 189:72–9. doi: 10.1016/j.jconrel.2014.06.010

38. Dottori, M, Hartley, L, Galea, M, Paxinos, G, Polizzotto, M, Kilpatrick, T, et al. EphA4 (Sek1) Receptor Tyrosine Kinase Is Required for the Development of the Corticospinal Tract. Proc Natl Acad Sci USA (1998) 95(22):13248–53. doi: 10.1073/pnas.95.22.13248

39. Kullander, K, Butt, SJ, Lebret, JM, Lundfald, L, Restrepo, CE, Rydstrom, A, et al. Role of EphA4 and EphrinB3 in Local Neuronal Circuits That Control Walking. Science. (2003) 299(5614):1889–92. doi: 10.1126/science.1079641



Conflict of Interest: The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Zhang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.




ORIGINAL RESEARCH

published: 24 June 2021

doi: 10.3389/fonc.2021.628814

[image: image2]


Mutant p53 and Twist1 Co-Expression Predicts Poor Prognosis and Is an Independent Prognostic Factor in Breast Cancer


Yong-Qu Zhang 1,2,3,4†, Fan Zhang 5†, Yun-Zhu Zeng 6, Min Chen 1,2,3,4, Wen-He Huang 1, Jun-Dong Wu 7, Wei-Ling Chen 1, Wen-Liang Gao 1, Jing-Wen Bai 8, Rui-Qin Yang 1, Huan-Cheng Zeng 7, Xiao-Long Wei 6* and Guo-Jun Zhang 1,2,3,4*


1 Department of Breast-Thyroid-Surgery and Cancer Research Center, Xiang’an Hospital of Xiamen University, Xiamen, China, 2 Clinical Central Research Core, School of Medicine, Xiang’an Hospital of Xiamen University, Xiamen, China, 3 Key Laboratory for Endocrine-Related Cancer Precision Medicine of Xiamen, Xiang’an Hospital of Xiamen University, Xiamen, China, 4 Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China, 5 Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou, China, 6 Department of Pathology, Cancer Hospital of Shantou University Medical College, Shantou, China, 7 Department of Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, China, 8 Department of Medical Oncology, Xiang’an Hospital of Xiamen University, Xiamen, China




Edited by: 
Yi-Zhou Jiang, Fudan University, China

Reviewed by: 
Hailin Tang, Sun Yat-sen University Cancer Center (SYSUCC), China
 Jin-Ming Yang, University of Kentucky, United States
 Na Niu, University of Texas MD Anderson Cancer Center, United States
 Donghong Zhang, Georgia State University, United States

*Correspondence: 
Guo-Jun Zhang
 guoj_zhang@xah.xmu.edu.cn
 Xiao-Long Wei
 weixiaolonghh@126.com

†These authors have contributed equally to this work

Specialty section: 
 This article was submitted to Women’s Cancer, a section of the journal Frontiers in Oncology


Received: 13 November 2020

Accepted: 04 June 2021

Published: 24 June 2021

Citation:
Zhang Y-Q, Zhang F, Zeng Y-Z, Chen M, Huang W-H, Wu J-D, Chen W-L, Gao W-L, Bai J-W, Yang R-Q, Zeng H-C, Wei X-L and Zhang G-J (2021) Mutant p53 and Twist1 Co-Expression Predicts Poor Prognosis and Is an Independent Prognostic Factor in Breast Cancer. Front. Oncol. 11:628814. doi: 10.3389/fonc.2021.628814




Purpose

The basic helix-loop-helix transcription factor (bHLH) transcription factor Twist1 plays a key role in embryonic development and tumorigenesis. p53 is a frequently mutated tumor suppressor in cancer. Both proteins play a key and significant role in breast cancer tumorigenesis. However, the regulatory mechanism and clinical significance of their co-expression in this disease remain unclear. The purpose of this study was to analyze the expression patterns of p53 and Twist1 and determine their association with patient prognosis in breast cancer. We also investigated whether their co-expression could be a potential marker for predicting patient prognosis in this disease.



Methods

Twist1 and mutant p53 expression in 408 breast cancer patient samples were evaluated by immunohistochemistry. Kaplan-Meier Plotter was used to analyze the correlation between co-expression of Twist1 and wild-type or mutant p53 and prognosis for recurrence-free survival (RFS) and overall survival (OS). Univariate analysis, multivariate analysis, and nomograms were used to explore the independent prognostic factors in disease-free survival (DFS) and OS in this cohort.



Results

Of the 408 patients enrolled, 237 (58%) had high mutant p53 expression. Two-hundred twenty patients (53.9%) stained positive for Twist1, and 188 cases were Twist1-negative. Furthermore, patients that co-expressed Twist1 and mutant p53 (T+P+) had significantly advanced-stage breast cancer [stage III, 61/89 T+P+ (68.5%) vs. 28/89 T-P- (31.5%); stage II, 63/104 T+P+ (60.6%)vs. 41/104 T-P- (39.4%)]. Co-expression was negatively related to early clinical stage (i.e., stages 0 and I; P = 0.039). T+P+ breast cancer patients also had worse DFS (95% CI = 1.217–7.499, P = 0.017) and OS (95% CI = 1.009–9.272, P = 0.048). Elevated Twist1 and mutant p53 expression predicted shorter RFS in basal-like patients. Univariate and multivariate analysis identified three variables (i.e., lymph node involvement, larger tumor, and T+P+) as independent prognostic factors for DFS. Lymph node involvement and T+P+ were also independent factors for OS in this cohort. The total risk scores and nomograms were reliable for predicting DFS and OS in breast cancer patients.



Conclusions

Our results revealed that co-expression of mutant p53 and Twist1 was associated with advanced clinical stage, triple negative breast cancer (TNBC) subtype, distant metastasis, and shorter DFS and OS in breast cancer patients. Furthermore, lymph nodes status and co-expression of Twist1 and mutant p53 were classified as independent factors for DFS and OS in this cohort. Co-evaluation of mutant p53 and Twist1 might be an appropriate tool for predicting breast cancer patient outcome.





Keywords: mutant p53, Twist1, breast cancer, independent prognostic factor, poor prognosis



Introduction

Breast cancer (BC) is a heterogeneous disease that is classified into different subtypes depending on the expression of the estrogen and progesterone receptors and the amplification of human epidermal growth factor receptor 2 (HER2/ERBB2) (1). In particular, molecular profiling has divided BC into five subtypes: luminal A, luminal B, HER2+, and basal-like and triple-negative breast cancer (TNBC) (2). There are no effective targeted drugs for TNBC due to the lack of estrogen receptor (ERα) or HER2 overexpression. TNBC is one of the most heterogeneous breast cancer subtypes, accounting for 15–20% of all breast cancer. It has poor clinical and pathological features and is considered more aggressive than other BC subtypes, such as luminal A and luminal B (3). Therefore, it is important to identify the molecules and signaling pathways related to TNBC progression. Recent studies demonstrated that the epithelial-to-mesenchymal transition (EMT) process promotes tumor invasion and metastasis in different solid tumor types (4–6). Thus, it is important to identify the transcription factors involved in EMT of TNBC progression (7). EMT is a process characterized by the loss of cell-to-cell adhesion and tight cell junctions, and increased motility and invasion. Twist1 is a major regulator of EMT in breast cancer (8). We previously revealed that Twist1 was overexpressed in breast cancers with higher node status and clinical stage and positively associated with EMT in breast cancer (9).

Mutation of the tumor suppressor gene p53 is found in various cancers, including breast, melanoma, bladder, and colon, particularly in tumors resistant to endocrine therapy or radiotherapy (10–13). Altered p53 protein is prevalently associated with TNBC, and loss of p53 function has been linked to the induction of EMT. Recently, several studies demonstrated that p53-regulated EMT is a critical process in cancer metastasis and chemotherapy resistance. Chang et al. (14) showed that p53 regulates EMT by activating the microRNA miR-200c. Kim et al. (15) demonstrated that p53 loss-of-function or mutation promotes EMT by derepressing Snail. Most noteworthy, van Nes et al. (16) found that Twist1 overexpression is correlated with invasive lobular carcinoma, which is consistent with p53 changes in breast cancer and establishes a mechanistic link between Twist1, p53, and tumor progression. However, studies on the relationship between mutant p53 and Twist1 and their combined role in determining the prognosis and survival of breast cancer patients are scarce. In the present study, we investigated the clinical significance and the combined detection value of mutant p53 and Twist1 in breast cancer patients. We report that mutant p53 and Twist1 co-expression could represent a feasible and effective marker for predicting patient prognosis and survival in breast cancer.



Materials and Methods


Patients

A total of 408 breast cancer patients treated at the Cancer Hospital of Shantou University Medical College (SUMC) between 2011 and 2013 were enrolled in this study. None of the patients received any treatment before surgery. Clinicopathological data, including age, menopausal status, tumor size, nodal status, TNM stage, histology, and morphology, were collected. All samples were fixed in buffered formalin and embedded in paraffin for immunohistochemistry (IHC). The DFS and the OS of the patients were quantified. This study was approved by the Medical Ethics Committee of the Cancer Hospital of Shantou University Medical College.



Immunohistochemistry

All samples were fixed in 10% neutral buffered formalin for 8 to 48 h, followed by dehydration with alcohol and xylene. The dehydrated samples were embedded in paraffin. For immunohistochemical staining, 4-μm-thick paraffin-embedded sections were obtained. The sections were treated with 0.3% H2O2 for 10 min at room temperature. For antigen retrieval, the sections were heated in 0.01 mmol/L sodium citrate (pH 6.0) in a microwave oven. Sections were then incubated with primary antibodies at 4°C overnight in a humid environment. The stained slides were rinsed thrice in 0.1 mmol/L PBS for 2 min and then incubated for 30 min at room temperature with horseradish peroxidase-conjugated goat anti-rabbit or mouse secondary antibody. Visualization of the stained bands was performed with 3’ 3-diaminobenzidine. Finally, the sections were stained for 5 min with 3,3′-diaminobenzidine (DAB; Fuzhou Maixin Biotechnology Development Co., Ltd., China; DAB-0031) and counterstained with hematoxylin for 1 min. The IHC antibodies were as follows: mutant p53 (Cat. No. 0010-2, Fuzhou Maixin Biotech, Fuzhou, China) and Twist1 (Cat. No. ab50581, Abcam, Cambridge, UK). All immunostained sections were evaluated in a coded manner by the principal author, who was blinded to the patients’ clinicopathologic data. Twist1 expression was detected mainly in the cell membrane and cytoplasm. The expressions were semi-quantitatively determined according to the percentage of positive cancer cells. Staining intensity was classified as four grades: none (0), weak (1), moderate (2) and strong (3). The percentage of positive cancer cells was classified as 4 grades: 0 (0%), 1 (1%-10%), 2 (11%-49%) and 3 (50%-100%). The total score was a product of two scores and the final score of one sample was the mean of 10 microscopic fields. The median score was determined, according to which cancers were categorized into Negative- (score 0-3) and Positive-expression (score 4-6) cancers (9).Brown stained cells in the nucleus were defined as mutant p53 positive cells and the specimens were divided into the following categories: Mutant p53-negative (-), no brown stained; weakly positive (+), <30% cells were mutant p53-positive; moderately positive (++), 30-70% cells were mutant p53-positive; and strongly positive (+++), >70% cells were mutant p53-positive. “-” and “+” were defined as Mutant p53-negative, “++” and “+++” were defined as Mutant p53-positive (17). The following criteria are the definition of molecular typing of breast cancer:TNBC: ER-/PR-/HER2-;HER-2 enriched: ER-/PR-/HER2+;Luminal A: ER+ and/or PR+, HER2-, Ki-67 low expression(≤ 14%);Luminal B: ER+ and/or PR+, HER2-, Ki-67 high expression (>14%) (18, 19).



Kaplan-Meier Analysis

The free online clinical database, Kaplan-Meier Plotter (http://kmplot.com), was used to analyze the correlation between Twist1 co-expression with wild-type or mutant p53 and prognosis for recurrence-free survival in patients suffering from breast cancer.



Statistical Analysis

All data were analyzed using SPSS 13.0 statistical software (SPSS Inc., Chicago, IL). The counting data are expressed as the rate using Pearson’s χ2 test. Spearman was used for correlation analysis. Survival curves were assessed using the Kaplan-Meier method, and the data were compared using the log-rank test. Univariate and multivariate analyses were used to determine the impact of the variables on patient survival. Two-sided P-values < 0.05 were considered statistically significant.




Results


Intersection of Mutant p53 and Twist1 in Clinical and Pathological Features of Breast Cancer

We stained 408 breast cancer samples to determine the expression of mutant p53 and Twist1 (Figures 1A–D) and IgG was used as negative control (Figure 1E). Mutant p53 expression was positively associated with invasive ductal carcinoma (IDC) (213/355, 60%, P = 0.043). A significant positive relationship was observed between mutant p53 expression and HER2 overexpression (81/119, 68.1%, P = 0.009), the luminal B subtype (103/180, 57.2%) and followed by TNBC (36/63, 57.1%) (P = 0.004). There were no significant differences with age, menopausal status, lymph node status, TNM stage, histological grade, or ER or PR status. Of the samples analyzed, 220/408 (53.9%) were Twist1-positive. The Twist1-positive rate was significantly higher in ER- (113/147; 76.9%) than in ER+ (107/261; 41.0%) breast cancer (P < 0.001). Similarly, it was higher in PR- (127/180; 70.6%) than in PR+ (93/228; 40.8%) breast cancer (P < 0.001). Thus, Twist1 was negatively correlated with ER and PR expression. Twist1 expression was significantly higher in TNBC (55/63, 87.3%), follow by HER2-enriched (43/119, 63.9%) and the luminal B (79/180, 43.9%) and luminal A (10/46, 21.7%) subtypes (P < 0.001). In contrast, no significant differences were seen with lymph nodal status, TNM stage, histological type, grade, age, or menopausal status. However, Twist1 was positively correlated with mutant p53, E-cadherin, and Ki67 (P < 0.001). The relationships between Twist1, mutant p53, E-cadherin, and other biomarkers are shown in Tables 1 and 2.




Figure 1 | Representative images of mutant p53 and Twist1 immunohistochemical staining in invasive breast carcinomas. Representative immunohistochemistry images for (A) mutant p53-negative and; (B) mutant p53-positive; (C) Twist1-negative and; (D) Twist1-positive; (E) Negative control IgG staining. Original magnification, 200× The scale bar represents 200 μm.




Table 1 | Association between mutant p53 and Twist1 expression and clinicopathological characteristics in breast cancer patients (n = 408).




Table 2 | Association between Twist1 expression and other molecules in breast cancer patients.





Combined Analysis of the Clinical and Pathological Features of Breast Cancer With Mutant p53 and Twist1

Because mutant p53 expression was positively related to Twist1, we classified the study patients into four groups: Twist1- and mutant p53- (T-P-), Twist1+ and mutant p53- (T+P-), Twist1- and mutant p53+ (T-P+), and Twist1+ and mutant p53+ (T+P+). Of the 408 patients, 148 patients belonged to the T+P+ group, while 99 patients were assigned to the T-P- group. It is of note that 37.5% of stage 0 patients (3/8), 45.7% of stage I patients (21/46), 60.6% of stage II patients (63/104), and 68.5% of stage III patients (61/89) were classified as T+P+, indicating that the T+P+ frequency was significantly higher in advanced clinical stages (P = 0.039, Table 3).


Table 3 | Correlations between mutant p53 and Twist1 expression and clinicopathologic parameters.



A comparison between T+P+ and T-P- groups showed that more ER- patients (75/94, 79.8%) and PR- patients (80/110, 72.7%) were T+P+ (P < 0.001). Similarly, significantly higher mutant p53 and Twist1 expression levels were observed with the HER2+ (77.9% T+P+ vs. 22.1% T-P-, P < 0.001) and TNBC (83.3% T+P+ vs. 16.7% T-P-, P < 0.001) subtypes.

As shown in Table 4, patients with T+P+ had higher Ki67, E-cadherin, and VEGF-C expression than the T-P- group (P < 0.001). There were no statistically significant differences between the T+P- and T-P+ groups in terms of age, menopausal status, tumor size or clinical stage.


Table 4 | Correlations of mutant p53 and Twist1 expression with other molecules in breast cancer patients.





Univariate and Multivariate Survival Analysis for Predicting DFS and OS

We next assessed the prognostic value of Twist1 with or without p53 mutation in breast cancer using the Kaplan-Meier plotter. The results demonstrated that elevated Twist1 expression combined with mutant p53 predicted shorter RFS for basal-like breast cancer patients (P = 0.027) (Figure 2G); however, there was no difference for the OS (P = 0.18) (Figure 3G). There were no statistical differences in RFS and OS for the other groups of patients (Figures 2 and 3).




Figure 2 | Comparison of RFS for wild-type or mutant p53 breast cancer patients with different Twist1 levels. (A–C) Different Twist1 expression levels did not differ in RFS (P > 0.05) among all wild-type p53 breast cancer patients (A) and luminal A (B) and luminal B (C) subtypes. (D–H) Different Twist1 expression levels did not differ in RFS (P > 0.05) among all mutant p53 breast cancer patients (D) and luminal A (E), luminal B (F), and HER2 (H) subtypes. (G) High Twist1 expression had the worst RFS (P < 0.05) among the mutant p53, basal-like breast cancer patients.






Figure 3 | Comparison of OS for wild-type or mutant p53 breast cancer patients with different Twist1 levels. (A–C) Different Twist1 expression levels did not differ in OS (P > 0.05) among all wild-type p53 breast cancer patients (A) and luminal A (B) and luminal B (C) subtypes. (D–G) Different Twist1 expression levels did differ OS (P > 0.05) among all mutant p53 breast cancer patients (D) and luminal A (E), luminal B (F), and basal-like (G) subtypes (H) HER2 subtype.



To investigate which factors could predict the clinical outcome of breast cancer patients, we performed univariate and multivariate survival analysis. DFS was followed up for 2 to 74 months and OS for 3 to 74 months. In our cohort, 148 patients belonged to the T+P+ group, while 99 patients were T-P-. The variables included in the analysis were tumor size, node stage, molecular subtype, and the different combinations of Twist1 and mutant p53 (i.e., T-P-, T+P-, T-P+, and T+P+). Tables 5 and 6 show the main results of the survival analysis. By univariate analysis, we found the node status was positively related with DFS (N1 vs. N0, HR = 3.749, 95% CI = 1.476–9.524, P = 0.005; N2 vs. N0, HR = 7.608, 95% CI = 3.154–18.350, P < 0.001; N3 vs. N0, HR = 13.977 95% CI = 5.871–33.277, P < 0.001). The multivariate analysis demonstrated that node status was an independent factor that influenced DFS (N1 vs. N0, HR = 2.757, 95% CI = 1.069–7.112, P = 0.036; N2 vs. N0, HR = 5.386, 95%CI = 2.134–13.595, P < 0.001; N3 vs. N0, HR = 10.757, 95% CI = 4.286–27.000, P < 0.001). A larger tumor size was another independent risk factor for DFS in breast cancer (Table 5). Multivariate analysis demonstrated that node status was also an independent factor influencing OS (N1 vs. N0, HR = 8.522 95% CI = 1.789–40.606, P = 0.007; N2 vs. N0, HR = 13.717, 95% CI = 2.780–67.686, P = 0.001; N3 vs. N0, HR = 41.619, 95% CI = 8.943–193.679, P < 0.001). However, there were no significant differences between tumor size, molecular typing, and OS by multivariate analysis. Patients with co-expression of mutant p53 and Twist1 (T+P+) had worse DFS (P = 0.017) and OS (P = 0.018) compared to patients in the other groups (i.e., T-P-, T+P-, and T-P+) (Figures 4A, B).


Table 5 | Disease-free survival of patients diagnosed with breast cancer.




Table 6 | Overall survival of patients diagnosed with breast cancer.






Figure 4 | Association between mutant p53 and Twist1 co-expression with survival. (A) Patients with mutant p53 and Twist1 co-expression (T+P+) have worst DFS than patients in other groups, including Twist1- and mutant p53- (T-P-), Twist1+ and mutant p53- (T+P-), and Twist1- and mutant p53+ (T-P+) (P = 0.017). (B) Patients with co-expression of mutant p53 and Twist1 (T+P+) have worst OS compared to patients in other groups, including Twist1- and mutant p53- (T-P-), Twist1+ and mutant p53- (T+P-), and Twist1- and mutant p53+ (T-P+) (P = 0.018).



Importantly, the multivariate analysis demonstrated that the T+P+ group had a worse DFS (95% CI = 1.217–7.499, P = 0.017) and OS (95% CI = 1.009–9.272, P = 0.048) than the T-P-group, but the T+P- and T-P+ groups were not statistically different from the T-P- group. Univariate and multivariate analysis identified three variables (high node stage, larger tumor size, and Twist1 and mutant p53 co-expression) as independent risk factors for DFS and node involvement and T+P+ as independent risk factors for OS in breast cancer. Therefore, total risk scores and nomograms were considered suitable for predicting the DFS and OS of breast cancer patients (Figure 5).




Figure 5 | Nomogram for predicting DFS (A) and OS (B) in the cohort.






Discussion

Twist1 is a master transcription factor that induces migration and invasion and promotes EMT in various cancer cells (20–22). Wild-type p53 is a transcription factor that promotes cell cycle arrest, DNA repair, cellular senescence, and apoptosis (23). p53 inhibits cancer cell proliferation and metastasis; however, mutant TP53 has a transforming function. Previous studies have demonstrated that mutant p53 is overexpressed and accumulates to high levels in cancer cells, and is highly correlated with EMT (24). Moreover, Twist1 overexpression can inhibit oncogene-induced premature senescence by blocking key regulators of the p53 and Rb-dependent pathways (25). Numerous studies have shown that there is a regulatory relationship between Twist1 and p53. For instance, Shiota et al. (26) suggested that Twist1 suppresses the DNA-binding activity of p53. Moreover, Kogan-Sakin et al. (27) revealed that Twist1 might be upregulated following p53 mutation in cancer cells. However, there are no reports on the combined detection of Twist1 and mutant p53 at the protein level and its prognostic impact on breast cancer patients.

We analyzed the expression patterns of mutant p53 and Twist1 in breast cancer to explore the role of these molecular markers in breast carcinogenesis, their influence on prognosis, and clinical practicability in breast cancer. Our study showed that mutant p53 expression was positively associated with invasive ductal carcinoma (IDC). Mutant p53 was highest in the HER2+ breast cancer subtype, followed by the luminal B and TNBC subtypes. Twist1 positivity was significantly higher in TNBC patients. Consistent with previous studies (9, 28), we further confirmed that high Twist1expression was associated with larger tumor size, higher node involvement, and shorter DFS. Most importantly, we found, for the first time, that Twist1 was positively correlated with mutant p53, E-cadherin, and Ki67. The association of mutant p53 with Twist1 in clinical tissues was supported by the work of Yang-Hartwich et al. (29), who showed that wild-type p53 promoted Twist1 protein degradation and inhibited EMT, maintaining the epithelial phenotype. Interestingly, a preclinical study by Li et al. (30) found that Twist1 had noteworthy impacts on p53 and p21 induction, which were similar to our current results. Maestro et al. (31) found that Twist regulated p53 indirectly by modulating the ARF/MDM2/p53 pathway. Similarly, Piccinin et al. (32) found that Twist1 binds to the p53 C terminus through the Twist box to inactivate p53 in mesenchymal tumors. Conversely, Twist promotes the reprogramming of glucose metabolism in MCF10A-Twist cells and Twist-positive breast cancer cells by inhibiting the p53 pathway (33). Taken together, these findings suggest that a mutual regulation mechanism might exist between mutant p53 and Twist1. However, the clinical significance of co-expression of two proteins has not been clearly defined.

In this study, we also investigated the relationship and clinical significance of mutant p53 and Twist1. Our results suggested that co-overexpression of mutant p53 and Twist1 in breast cancer was significantly associated with larger tumor size, greater lymph node involvement, and more advanced TNM stage. Co-expression of mutant p53 and Twist1 (T+P+ group) was significantly higher in TNBC, followed by HER2-enriched, suggesting the aggressiveness of T+P+ tumors. Previously, Twist 1 overexpression was shown to be associated with poor prognosis in breast cancer (20, 34). Similarly, abnormal p53 expression has been widely accepted as a poor prognostic factor in breast cancer (35). Moreover, Sanambar et al. (36) found that p53 mutation detected by immunohistochemistry could effectively predict the prognosis of breast cancer patients. In our study, regression analysis was used to assess the role of mutant p53 by immunohistochemistry. As expected, the patients in the T+P+ group presented the worst DFS and OS by univariate analysis. Furthermore, our results demonstrated that co-expression of Twist1 and mutant p53 (T+P+) is an independent prognostic factor for both DFS and OS in breast cancer patients using multivariate analysis. Similarly, Kaplan-Meier analysis using the Kaplan-Meier plotter database demonstrated that co-expression of Twist1 and mutant p53 predicted shorter RFS in patients with basal-like breast cancer. However, due to the small sample size of the database, we did not find a statistical difference between Twist1 with mutant or wild-type p53 and RFS and OS in other subtypes.

A nomograph was established based on the survival analysis, and risk scores for DFS and OS time were calculated according to the Cox regression coefficient. Internal validation patients were randomly selected from the total population, and the verification confirmed that the risk score was related to DFS and OS time, showing the nomogram’s reliability. However, the weakness is the lack of validation queues in our research. Future research should enroll more cases to further verify the nomogram.

This study is the first report showing that co-expression of Twist1 and mutant p53 could be used to evaluate treatment efficacy and prognosis in breast cancer patients. The relationship between the two proteins needs further study, such as the relationship between the specific mutation site of the p53 gene and breast cancer and the interactive regulatory mechanism of mutant p53 and Twist1. Using small molecular inhibitors that inhibit the expression of Twist1 and mutant p53 may be one strategy for targeted treatment of TNBC (37).
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Objective

This study aims to identify the potential value of flap endonuclease 1 (FEN1) as a diagnostic and prognostic marker for breast cancer (BC).



Methods

ELISA was used to measure serum FEN1 levels and ECLIA for CA153 and CEA levels. Receiver operating characteristic (ROC) curve analysis was used to evaluate the diagnostic value. Oncomine and UALCAN databases were used to analyze the differences in FEN1 mRNA and protein expressions. Kaplan-Meier Plotter database was then used to assess the prognostic value.



Results

Bioinformatics analysis showed that the FEN1 mRNA and protein levels were significantly higher in BC tissues than in normal tissues. FEN1 was detected in culture medium of BC cell lines and serum FEN1 concentrations were significantly increased in BC patients than in cancer-free individuals. Besides, FEN1 exhibited higher diagnostic accuracy (AUC values>0.800) than CA153 and CEA for distinguishing BC patients, especially early BC, from the healthy and benign groups, or individually. Additionally, serum FEN1 levels were significantly associated with the stage (P=0.001) and lymph invasion (P=0.016), and serum FEN1 levels were increased with the development of BC. Furthermore, serum FEN1 levels were significantly decreased in post-operative patients than in pre-operative patients (P=0.016). Based on the Kaplan-Meier Plotter database, the survival analysis indicated that FEN1 overexpression was associated with poor prognoses for overall survival (OS), relapse-free survival (RFS), and distant metastasis-free survival (DMFS) in BC patients.



Conclusion

FEN1 might be a novel diagnostic and prognostic marker for BC.





Keywords: FEN1, biomarker, breast cancer, diagnosis, prognosis



Introduction

Breast cancer (BC) is the most widely diagnosed cancer among women and the leading cause of cancer-related deaths (1). Despite the major advances in BC treatment, the prognosis remains poor. The cancer stage during diagnosis determines BC prognosis (2). The survival rate of early BC is significantly higher than that of advanced BC. Therefore, early diagnosis is necessary to improve survival rates and reduce mortality. Current conventional BC diagnostic methods, including gold standard and mammography, do not identify 10-40% of early BC (3, 4). Tumor markers are easily measured, and their clinical values in BC have been investigated (2). Established tumor markers, such as cancer antigen 153 (CA153) and carcinoembryonic antigen (CEA), are the most widely used to diagnose, monitor, and prognosticate BC (2). However, their clinical value remains controversial because of their low specificity and sensitivity, especially in early BC diagnosis (1). Therefore, highly sensitive and specific markers should be discovered to improve early BC detection.

Flap endonuclease 1 (FEN1) is a multifunctional, structure-specific nuclease that contains flap endonuclease (FEN) activity, gap endonuclease (GEN) activity, and exonuclease (EXO) activity (5). These multiple nuclease activities allow FEN1 to participate in numerous DNA metabolic pathways including Okazaki fragment maturation, DNA repair, apoptosis-induced DNA fragmentation, and telomere stability maintenance (6–9). Because of its essential roles, deficiencies in FEN1 function or deletion of the FEN1 gene would result in predisposition to cancer (10) and rapid tumor development (11). Previously, adenomatous polyposis coli (APC) has been shown to interact with and block FEN1 activity in long-patch base excision repair (LP-BER), thus acting as a susceptibility factor for BC (12). Lin et al. reported that the FEN1 E359K germline mutation abolished FEN1 interaction with Werner Syndrome protein (WRN), an interaction essential for resolving stalled DNA replication forks, and disrupted FEN1 GEN activity, causing aneuploidy-associated cancers in a mouse model (13). Moreover, FEN1 L209P variant expression was prone to induce cellular transformation and tumor growth in a mouse xenograft model (14). Two FEN1 single nucleotide polymorphisms (69G>A and 4150G>T) were associated with high risk in various cancers (15, 16). However, FEN1 is also upregulated in numerous tumors, including BC, non-small-cell lung cancer (NSCLC), and ovarian cancer (17–21). Knockdown of FEN1 resulted in cell cycle arrest and suppressed cellular proliferation in NSCLC cells (19). Furthermore, SC13, a FEN1 inhibitor, showed cytotoxic and inhibitory activity in human breast cancer in a mouse model (22). Wang et al. reported that FEN1 overexpression in gastric cancer was linked to tumor size, lymphatic metastasis, and differentiation degree (23). Moreover, FEN1 overexpression in ovarian epithelial cancer was correlated with a high cancer grade and stage, and poorer survival (20).

Therefore, FEN1 can serve as both a novel therapeutic target and a promising biomarker. Substantial research has been undertaken regarding the role of FEN1 in the onset and progression of different cancers. However, a systematic analysis of its potential value as a diagnostic and prognostic marker, particularly the possibility of utilizing serum FEN1 as a biomarker, is still unavailable.

In this study, FEN1 was present in the culture medium of BC cells and the serum of BC patients. Besides, serum FEN1 levels were higher in BC patients than in the control groups. Herein, a comprehensive analysis of the diagnostic and prognostic potential of FEN1, including mRNA expression level, tissue protein level, and serum protein level was investigated. At serum level, the efficacy of serum FEN1 in the diagnosis and prognosis of BC and the correlation between serum FEN1 levels and clinicopathological features were investigated. Additionally, the results were compared with known tumor markers (CA153 and CEA) to determine the potential significance of FEN1.



Materials and Methods


Study Population

Participants were consecutively enrolled in this prospective observational study in the Northern Jiangsu People’s Hospital between March 2019 and December 2019. Inclusion criteria were: (a) patients pathologically diagnosed with BC (BC group), (b) patients pathologically diagnosed with benign breast diseases (breast hyperplasia, breast cysts, etc.) (benign group), (c) women with normal physical and mammography examinations results (healthy group), and (d) serum tumor markers detected within two weeks before surgery. Exclusion criteria were: (a) male patients; (b) incomplete medical record; (c) history of other primary or secondary tumors; (d) neoadjuvant radiotherapy, chemotherapy, or endocrinotherapy.

A total of 51, 30, and 28 participants were included in the BC, benign, and healthy groups, respectively. Paired post-operative blood samples were obtained from 20 BC patients. The median age in the BC, benign and healthy groups was 44 years (20‐65 years), 44 years (21‐72 years), and 45 years (23‐70 years), respectively.

The Ethics Committee of Northern Jiangsu People’s Hospital approved this study. Informed consent was obtained from all participants following the relevant regulations.



Protein Concentration in Cell Culture Medium

BC cell lines (MCF-7 and MDA-MB-231) and normal breast epithelial cell line (MCF-10A) were first cultured in Dulbecco’s Modified Eagle Medium (DMEM) for 24 hours, then transferred to FBS-free DMEM for 12 hours. The culture medium was then transferred into an EP tube and centrifuged at 2,000 ×g for 5 minutes. The supernatant was then transferred into an AmiconR Ultra centrifugal filter (Merck Millipore, St. Louis, MO)following a previous report (24), and then centrifuged at 14,000 ×g for 30 minutes. The filter was then placed upside down on a clean microcentrifuge tube and centrifuged at 1,000 ×g for 2 minutes to transfer the concentrated sample to the tube.



Western Blotting

Protein samples were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and then transferred onto polyvinylidene difluoride (PVDF) membranes. The 5% (w/v) skim milk in tris-buffered saline (TBS) and Polysorbate 20 (TBS-T) was used to block the membranes at room temperature for 1 hour. The sample was then incubated with the primary anti-FEN1 antibody (Abcam, Cambridge, UK) at 4°C for 12 hours, then with the corresponding secondary antibody at room temperature for 1 hour. The sample was washed thrice using TBS-T after each incubation. ECL™ Western Blotting Detection reagents were used to visualize the bands.



Detection of Serum Samples and Pathological Features

Serum was isolated from the samples and stored at -80°C for use after centrifugation at 3000 rpm for 10 minutes. FEN1 ELISA Kit (USCN Business Co., Ltd., Wuhan, China) was used following the manufacturer’s instructions to detect the FEN1 concentrations. ECLIA using the automatic chemiluminescence immunoassay system ROCHE E601 (Roche, Basel, Switzerland) was applied to detect CA153 and CEA levels in serum samples. In this study, the normal cut-off values for the markers used were < 35 U/mL for CA153, and < 4.9 ng/mL for CEA, as recommended by the manufacturer.

The immunohistochemistry (IHC) method was used to detect ER, PR, Her2, and Ki-67 expression status. The ER, PR, Her2, and Ki-67 status was considered as positivity or negativity in accordance with previous study (25). Briefly, ER-positive and PR-positive were defined as the presence of 1% nuclear-stained cells. Her2-positive was indicated by a 3+ score from the IHC evaluation. The Ki-67 staining was considered to be positive if the percentage was >14%. Breast cancer intrinsic subtypes were classified into luminal A, luminal B, Her2-enriched, and triple-negative (26).



Oncomine Database Analysis

The Oncomine database is an online microarray database with 715 gene expression datasets from 86,733 cancerous and normal samples (27). The Oncomine database was used to determine the differences in FEN1 mRNA expression between tumors and normal tissues in breast cancer type. The detailed steps were as follows: Gene→FEN1; Primary Filters→Differential Analysis→Cancer vs. Normal Analysis→Breast Cancer vs. Normal Analysis; Dataset Filters→Data Type→mRNA; Datasets→P VALUE= 0.01, FOLD CHANGE = 2, GENE RANK = 10%.



UALCAN Database Analysis

UALCAN is an interactive web resource for analyzing cancer data and provides protein expression analysis using data from the Clinical Proteomic Tumor Analysis Consortium (CPTAC) Confirmatory/Discovery dataset for BC (28). In this study, UALCAN was used to determine FEN1 proteomic expression profiles based on sample types and individual cancer stages. The detailed steps were as follows: CPTAC analysis→Gene→FEN1→CPTAC dataset→Breast cancer→Total-Protein→Sample types/Individual cancer stages.



Kaplan-Meier Plotter Database Analysis

The prognostic significance of FEN1 mRNA expression in BC was evaluated using the Kaplan-Meier plotter (www.kmplot.com), an online database capable of assessing the effects of 54,675 genes on survival using 10,461 cancer samples (29). To evaluate the prognostic value of FEN1, samples were divided into two cohorts according to the median expression of FEN1 (high vs. low expression). Kaplan-Meier survival plots were then used to analyze the overall survival (OS), relapse-free survival (RFS), and distant metastasis-free survival (DMFS) of BC patients. The detailed steps were as follows: mRNA→Start KM Plotter for breast cancer→Gene symbol→FEN1→Survival→OS/RFS/DMFS→Draw Kaplan-Meier plot.



Statistical Analysis

Median values with interquartile ranges were used to describe serum protein concentrations. The Mann-Whitney test or paired t-test was used to compare two groups and the Kruskal-Wallis test to compare more than two groups. Receiver operating characteristic (ROC) curve analysis was used to evaluate the diagnostic accuracy and Pearson’s correlation coefficient test to determine the correlation between CA153, CEA, and FEN1 levels in serum. P-value < 0.05 was considered statistically significant. Graph Pad Prism 8.0 (GraphPad, Inc., La Jolla, CA) and SPSS19.0 (IBM Corp., Armonk, NY) were used for all statistical analyses.




Results


Identification of FEN1 as a Potential Biomarker Through Bioinformatics Analysis

The Oncomine database was used to analyze differences in FEN1 mRNA expression between tumor and normal tissues. BC datasets revealed that FEN1 mRNA levels were significantly elevated in BC tissues than normal breast tissues (Figure 1). Consistent with the results, using the UALCAN database, FEN1 protein expression levels illustrated significant differences between normal and BC tissues (Figure 2A). Moreover, there were substantial differences between normal and BC tissues at different stages (Figure 2B).




Figure 1 | Oncomine database analysis revealing upregulated FEN1 mRNA expression in BC compared with the normal controls. (A–D) The FEN1 mRNA levels were significantly higher in BC than in controls according to the Curtis Breast Statistics, TCGA Breast Statistics, and Richardson Breast 2 Statistics datasets.






Figure 2 | Box plots showing FEN1 expression levels in BC via the UALCAN database analysis. (A) Box plots show FEN1 protein expression levels in normal tissues vs. BC tissues, and (B) in normal tissues vs. BC tissues in different stages.





The Diagnostic Potential of Serum FEN1 for BC

Based on the previous research in our lab, western blot performed revealed that FEN1 was detected in medium of BC cell lines (MCF-7 and MDA-MB-231), but not in normal breast epithelial cell lines (MCF-10A) (Figure S1). The result confirmed the presence of FEN1 in the medium and the correlation with its expression levels in the cells. ELISA was used to measure serum FEN1 concentrations with samples in each group. Serum FEN1 levels were significantly higher in BC patients than in patients with benign breast diseases and healthy individuals (Figure 3A). FEN1 performance was compared with common BC markers (CA153 and CEA) to assess its diagnostic and prognostic potential in BC. As shown in Figures 3B, C, the median levels of CA153 and CEA were significantly increased in the BC group compared with the healthy and benign groups. Furthermore, the three serum proteins showed no significant difference between benign and healthy groups.




Figure 3 | Comparisons of serum FEN1, CA153, and CEA levels in the healthy, benign, and BC groups. (A) FEN1. (B) CA153. (C) CEA. ****P < 0.0001, ***P < 0.001, **P < 0.01, *P < 0.05.



Receiver operating characteristic (ROC) analysis was performed to determine the diagnostic accuracy of serum FEN1. The area under curve (AUC) value was calculated to evaluate the diagnostic efficacy by constructing ROC curve: low (0.5 ≤ AUC ≤ 0.7), moderate (0.7 ≤ AUC ≤ 0.9) or high (0.9 ≤ AUC ≤ 1) accuracy (30). The curve analysis revealed that FEN1 had a high AUC value (0.860) to distinguish BC patients from non-cancerous individuals. When the cut-off value for serum FEN1 was 389.05 pg/mL, the sensitivity and the specificity were 72.50% and 94.80%, respectively. In contrast, CEA or CA153 all exhibited low sensitivity (66.70%), specificity (70.70%, 86.20%, respectively) and AUC values (0.684, 0.719, respectively). The above indicated that FEN1 was significantly superior to CA153 and CEA in distinguishing BC from the healthy and benign groups. When combined with each other, diagnostic performance had been obviously improved. Among these combinations, FEN1+CEA showed a high sensitivity of 80.40% and FEN1+CA153 had the highest specificity of 100%. Most impressively, the combination of serum FEN1 with CA153 and CEA resulted in a considerable increase in AUC (0.940) with high sensitivity and specificity of 82.40% and 96.60%, respectively (Figure 4A, Table 1). Similarly, FEN1 also had the best diagnostic potency in distinguishing BC from the healthy (Figure 4B, Table S1) or benign groups (Figure 4C, Table S2).




Figure 4 | ROC curves constructed to evaluate the diagnostic accuracy of FEN1 for BC. (A) For distinguishing BC patients from non-BC subjects. (B) For distinguishing BC patients from patients with benign breast diseases. (C) For distinguishing BC patients from healthy volunteers.




Table 1 | The diagnostic performances of FEN1, CA153, and CEA in distinguishing BC from the healthy and benign groups.



To estimate the potential of serum FEN1 in distinguishing early BC (stage I + II) patients from the non-cancerous individuals, separate ROC analysis was performed. FEN1 had the highest AUC value (0.825) with a sensitivity of 67.50% and specificity of 94.80%. CEA and CA153 exhibited lower sensitivity with 57.50% and the specificity of 75.90% and 86.20%, respectively, thus low AUC values of less than 70% (Figure 5A, Table S3). Analogously, FEN1 showed optimal diagnostic efficacy in differentiating early BC and healthy (Figure 5B, Table S4) or benign groups (Figure 5C, Table S5). Notably, when distinguishing stage I + II BC from benign group, CEA and C153 presented low AUC values (0.633, 0.599, respectively), the corresponding P value was greater than 0.05, suggesting no diagnostic value. There was no doubt that the combination of FEN1, CEA, and CA153 exhibited the best diagnostic potency in distinguishing stage I + II BC from non-BC or benign or healthy groups. In addition, their diagnostic parameters positive predictive value (PPV), negative predictive value (NPV) and accuracy for detecting BC were compared. As shown in Table 2, these parameters for single measurement in the diagnosis of BC, especially early stage BC, showed the highest values for serum FEN1. Also, the combined measurement in BC diagnosis gave the highest values for all parameters. Interestingly, the combined measurement in early BC diagnosis increased the NPV by 7.8%, but decreased the PPV by 14.66% and the accuracy by 1.04% compared to FEN1 detecting. The above indicated that there was significant value for FEN1 in the diagnosis of early stage of BC.




Figure 5 | ROC curves constructed to evaluate the diagnostic accuracy of FEN1 for early BC. (A) For distinguishing stage I + II BC patients from non-BC subjects. (B) For distinguishing stage I + II BC patients from patients with benign breast diseases. (C) For distinguishing stage I + II BC patients from healthy volunteers.




Table 2 | Positive predictive values, negative predictive values and accuracies for the detection of BC using markers (%).





The Relationship Between Serum FEN1 Level and the Clinicopathological Characteristics of BC Patients

The relationship between serum FEN1 levels and the clinicopathological features of BC patients was assessed, as shown in Table 3. FEN1 levels showed no significant difference in patients’ age distribution (P=0.213). The connection between FEN1 and tumor burden indicators, including tumor size, node status, and stage (31, 32) was estimated. Although serum FEN1 level was increased in patients with large tumor size (>2 cm), there was no relationship between FEN1 levels and tumor size (P=0.513). Remarkably, a positive correlation was noted in the levels of FEN1 among patients at different stages, and the highest FEN1 level was at stage III (P=0.001). Furthermore, the higher FEN1 level presented in patients who were positive for lymph invasion, this difference, compared to the negative group, was also statistically significant (P=0.016). The significantly upregulated FEN1 indicated its role in prognosis prediction in BC patients. Besides, serum FEN1 level was not significantly correlated with histological grades, and patients at grade II showed a higher FEN1 level (P=0.203). The correlation of FEN1 with estrogen receptor (ER) or progesterone receptor (PR) or human epidermal growth factor receptor (Her2) or Ki-67 status was also assessed. Despite the higher FEN1 level in the ER positive or Her2 positive or Ki-67 positive patient group than the negative group, the difference was not statistically significant (P=0.501, P=0.729, P=0.100, respectively). Also, despite the slightly higher FEN1 level in the PR negative group than the PR positive group, there was no significant correlation (P=0.707). Furthermore, FEN1 exhibited differences among various molecular subtypes, with the most elevations occurring in the triple-negative tumor (P=0.854). There was no significant difference between median levels regarding FEN1, CEA, CA153, and histological types (all P >0.05). Moreover, CA153 level was associated with the stage (P=0.041), tumor size (P=0.045), and different molecular subtypes (P=0.038), in BC patients. However, there were no significant associations between CA153 level and age, tumor grade, node status, and Her2/ER/PR/Ki-67 status (all P>0.05). Additionally, there was no statistically significant association between CEA level and pathological features in BC patients (all P>0.05).


Table 3 | The relationship between serum levels of FEN1, CA153, and CEA and BC clinicopathological features.





The Prognostic Potential of FEN1 in BC Patients

To further determine the prognostic potential of FEN1, serum FEN1 levels in pre-operative and post-operative BC patients were compared. The median FEN1 and CA153 levels were significantly higher in pre-operative patients than in post-operative patients (P=0.016, P=0.037, respectively) (Figures 6A, B). However, the median CEA level showed no significant difference between the two groups (P=0.281) (Figure 6C).




Figure 6 | Scatter diagram analysis of the serum levels of FEN1, CA153, and CEA in pre-and post-operative BC patients. (A) FEN1. (B) CA153. (C) CEA. n = 20. *P < 0.05; ns, not significant.



Kaplan-Meier Plotter database was then used to analyze whether there is an association between FEN1 levels and the prognosis of BC patients. The survival analysis indicated that high FEN1 levels were associated with poor prognosis in BC, including OS, RFS, and DMFS (Figure 7), revealing a promising prognostic value of FEN1 for BC.




Figure 7 | The prognostic information of FEN1 via Kaplan-Meier Plotter database. (A–C) High FEN1 expression was correlated with poor prognosis regarding OS, RFS, and DMFS in BC patients.





The Correlation Between CA153, CEA, and FEN1 Levels in Serum

The Pearson’s correlation coefficient was used to analyze the correlation between CA153, CEA, and FEN1 levels in serum. CA153 and CEA levels were not related to the FEN1 levels in the serum (Table 4), indicating that FEN1 is an independent marker.


Table 4 | Pearson association analysis of serum levels of FEN1, CA153, and CEA.






Discussion

The use of tumor markers to diagnose BC can effectively improve sensitivity and specificity while aiding early diagnosis (33). FEN1 participates in various DNA metabolism pathways and contributes to cancer progression and drug resistance. However, its specific mechanism in BC is unknown. Estrogen receptor α (ERα) is a key transcriptional regulator in most breast cancers. Flach’s group demonstrated that FEN1 impacted the transcriptional activity of ERα by facilitating coactivator recruitment to the ERα transcriptional complex. FEN1 blockade in BC induced proteasome-mediated degradation of activated ERα, resulting in loss of ERα-driven gene expression and eradicated tumor cell proliferation (21). Zeng et al. reported that FEN1 mediated miR-200a methylation and promoted breast cancer cell growth via MET and EGFR signaling (34). Xu et al. reported that FEN1 promoted the migration and invasion of triple−negative breast cancer (TNBC) cells by modulating the expression level of polo−like kinase 4 (PLK4) (35). These results indicate that FEN1 is an important regulator of BC progression and a potential target for BC treatment. Current studies suggest that FEN1, and not serum FEN1, is involved in BC development. In this study, bioinformatics analysis showed that FEN1 mRNA and protein levels were significantly increased in BC tissues than in normal breast tissues, thereby identifying FEN1 as a potential biomarker. Unexpectedly, UALCAN database showed that FEN1 levels were significantly lower in stage I BC than in normal and stage II BC. Zhao et al. reported that FEN1 expression was higher in stage I gastric cancer tissues (n=56) than in normal tissues (36). The ATCG database showed no significant difference in FEN1 expression between stage I and stage II BC tissues (22). The difference could arise due to: 1)small sample size in stage I BC (n= 4), 2) different databases. This study aimed to evaluate and compare the diagnostic and prognostic value of FEN1 with CA153 and CEA as familiar biomarkers in BC to provide further evidence for the serum-based applicability of the proposed markers (37).

This study demonstrated that FEN1 levels were significantly higher in the supernatant of BC cell lines than in normal breast epithelial cell lines. Importantly, the serum concentration of FEN1 was significantly elevated in BC patients compared with the non-cancerous individuals. Besides, the ROC curve analysis revealed that FEN1 had excellent diagnostic potential (AUC>0.800) in distinguishing BC as well as stage I + II BC patients from the healthy and benign groups or individually. Consistent with previous studies (31, 38, 39), CEA and CA153 levels were elevated in BC patients. However, the levels of FEN1, CA153, and CEA in healthy and benign group were similar with no stastical significance, suggesting that FEN1, CA153, and CEA might not be of potential value in the differential diagnoses of healthy and benign group. In comparison to FEN1, CEA and CA153 exhibited much lower diagnostic efficacy with low AUC values, sensitivity and specificity, but CA153 was still superior to CEA in BC diagnosis, similar to previous reports (40, 41). Particularly, CEA and C153 showed no diagnostic value when distinguishing stage I + II BC patients from the benign group (P>0.05), possible due to their limited sensitivity and specificity during the early stages of disease (42–45). Considered on the low sensitivity and specificity of single marker, combinations of tumor markers have been used to improve diagnostic accuracy in the clinical (33, 46). In this study, we demonstrated considerable improvements in BC diagnosis when FEN1 was combined with CA153 and CEA, resulting in the highest AUC value and sensitivity while maintaining a high level of specificity. Diagnostic parameters (PPV, NPV, accuracy) were also calculated for single or combined measurements using FEN1, CA153 and CEA. These parameters for single measurement in the diagnosis of BC, especially early stage BC, showed the highest values for serum FEN1. Notably, the diagnostic parameters for the combined measurement were not all higher than those for the single measurement of FEN1 in detecting early stage BC. The above indicated that FEN1 can function as a novel diagnostic biomarker for BC, especially in early BC.

FEN1 expression had a positive correlation with differentiation degree, lymphatic metastasis, tumor size, and gastric cancer stage (23). Moreover, FEN1 overexpression was correlated with a high grade and stage of ovarian epithelial cancer (20). This research demonstrated that serum FEN1 levels were significantly associated with stage and lymph node status. Moreover, serum FEN1 levels were increased with BC development, suggesting its prognostic value to monitor BC progression. Some clinicopathological factors such as ER and PR are tumor markers that can effectively predict hormonal responsiveness. Her2 is used to estimate prognosis (2), and Ki-67 as a proliferation index. Their expression assessment guides the first-line treatment with respect to targeted approaches (47). Tarek M.A. et al. reported that FEN1 mRNA overexpression was significantly associated with ER negative and PR negative (20). In this study, although there was no significant difference between serum FEN1 level and ER/PR/Her2/Ki-67 status, its level was elevated in patients with PR negative or ER/Her2/Ki-67 positive. Additionally, molecular subtypes based on the results of ER, PR, Her-2, and Ki-67 are of great importance for clinicians. Unfortunately, despite the most elevations occurring in the triple-negative tumor, this study did not find any statistical differences of serum FEN1 among the four subtypes. The serum FEN1 levels of patients before and after surgery were compared to further determine the prognostic potential of FEN1. Notably, FEN1 levels were significantly lower in post- than pre-operative BC patients. Furthermore, the survival analysis via the Kaplan-Meier Plotter database indicated that high FEN1 levels predicted a poor prognosis in BC. Taken together, the data suggest that FEN1 expression has prognostic and predictive significance in BC.

Previous studies have demonstrated that CA153 and CEA were also correlated with key pathological features such as tumor size, node status, and TNM stage [33, 34]. In this study, only CA153 levels were linked to stage, tumor size, and molecular subtypes. There was no association between CEA levels and the pathological features of BC patients. Lian et al. reported that CA153 and CEA did not correlate with ER/PR/Her2 status. However, they stated that CEA levels exhibited statistical differences between PR-negative and PR-positive groups (2). Different from our results, Geng et al. concluded that CEA levels in metastatic breast cancer were associated with breast cancer molecular subtypes (48). Also, Wu et al. reported that CEA levels were the lowest in patients with TNBC, and CA153 did not correlate with molecular subtypes (31). The following can explain this difference: first, only patients at stage I‐III BC were investigated, patients at higher stages were not included and second, although novel findings were obtained, further studies using larger sample sizes are needed. Additionally, Pearson’s coefficient showed that FEN1 was an independent marker and was not correlated with CA153 and CEA.

This paper presents new and systematic evidence for the diagnostic and prognostic significance of FEN1 in BC. However, it also raises some questions, including how FEN1 is secreted into the extracellular space or serum, if serum FEN1 levels are related to intracellular FEN1 levels and whether FEN1 is a tumor-specific marker. Nuclear protein secretion is a complex process that requires a tightly controlled relocation program. High mobility group box chromosomal protein 1 (HMGB1) is a ubiquitous nuclear protein that promotes inflammation when extracellularly released after cellular activation, stress, damage, or death (49). HMGB1 hyperacetylation caused its relocalization to the cytosol and secretion (50). Analogously, FEN1 acetylation via histone acetylase p300 significantly reduced FEN1’s DNA binding and nuclease activity (51), which may promote FEN1 translocation and secretion. Additional research are needed to elucidate the interrelated mechanism of FEN1 in the future comprehensively.

In summary, this study found that serum FEN1 levels were significantly elevated in BC patients than in non-cancerous individuals. FEN1 exhibited higher diagnostic accuracy (AUC value>0.800) than CA153 and CEA for distinguishing BC patients, especially in early BC. Additionally, serum FEN1 levels were increased with BC development. Decreased FEN1 level was also observed in post-operative patients, suggesting that it can be used to monitor tumor progression and predict the prognosis of BC patients. Database analysis showed that FEN1 exhibited satisfactory differential diagnosis ability and reliable prognosis prediction, thus a promising clinical application prospect.
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Purpose

There is an urgent need to identify oncogenes that may be beneficial to diagnose and develop target therapy for breast cancer.



Methods

Based on the GEO database, DECenter was used to screen the differentially overexpressed genes in breast cancer samples. Search Tool for the Retrieval of Interacting Genes and Cytoscape were performed to construct the PPI network to predict the hub gene. Functional and pathway enrichment were performed based on GO analysis. GEO2R, Oncomine, human tissue microarray staining, and western blot were applied to confirm the expression of NUP37. The association between NUP37 expression and prognosis in patients with breast cancer were assessed using the Kaplan–Meier plotter online tool and OncoLnc. siRNAs were used to knock down NUP37 and evaluate proliferation, migration, and stemness in breast cancer cells.



Results

We found that 138 genes were differentially upregulated in breast cancer samples, mainly comprising components of the nucleus and involved in the cell cycle process. NUP37 was identified as a hub gene that is upregulated in breast cancer patients related to a significantly worse survival rate. Furthermore, we confirmed that the downregulation of NUP37 in breast cancer cells results in the inhibition of cell growth, migration, and stemness.



Conclusions

High expression of NUP37 in breast cancer patients is associated with a poorer prognosis and promotion of cell growth, migration, and stemness. The multiple bioinformatics and experimental analysis help provide a comprehensive understanding of the roles of NUP37 as a potential marker for diagnosis and prognosis and as a novel therapeutic target in breast cancer.
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Introduction

Breast cancer (BRCA) is the most frequently diagnosed cancer in women and is one of the most common causes of cancer-related mortality worldwide (1). Although great advances have been made in past decades, there remains an urgent need to identify new oncogenes and explore their molecular mechanisms in the development and progression of BRCA. It is expected that these genes may be beneficial to diagnosis and the discovery of effective therapeutic targets in BRCA treatment (2).

Recently, the application of developed gene microarrays and bioinformatics analysis have been considered valid approaches for cancer research (3–6). Studies based on public data such as high-throughput data from the NCBI Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) have been combined with statistical analytical tools (7, 8). Broadly screening differentially expressed genes and evaluating prognostic values of target genes made it possible to predict the benefit biomarkers of cancers (9–11).

We aimed to apply the computational bioinformatics methods to explore the target genes and identify key genes with a prognostic value for the survival of BRCA patients. First, we used the statistical software DECenter based on microarray datasets obtained from GEO datasets GSE73613 and GSE41445 in the Gene Expression Omnibus (GEO) database to screen differentially expressed genes (DEGs) between BRCA and normal samples. Next, we predicted the hub genes of the DEGs based on the protein-protein interaction (PPI) network using Search Tool for the Retrieval of Interacting Genes (STRING) and Cytoscape and function and component enrichment analysis based on Gene Ontology (GO). GEO2R and Oncomine were applied to verify the overexpression level of the target gene NUP37 in BRCA compared with normal samples. Subsequently, the association between NUP37 and recurrence-free survival (RFS), distant metastasis-free survival (DMFS), and overall survival (OS) in BRCA patients were assessed using the Kaplan–Meier plotter online tool and Oncolnc (Figure 1A). Furthermore, we analyzed the proteins that directly interact with NUP37 and genes co-expressed with NUP37 by STRING and Multi Experiment Matrix (MEM), respectively. Function analysis of the co-expressed genes was performed using Metascape for annotation. Finally, we identified PSMG1, one of the genes co-expressed with NUP37, as having a highly positive relationship with NUP37 in The Cancer Genome Atlas- Breast Cancer (TCGA-BRCA) database using Xena.

Nuclear pore complexes (NPCs) are supramolecular structures that fuse the inner and outer nuclear membranes to form channels embedded in the nuclear envelope. NPCs are composed of multiple copies of about 30 different proteins termed nucleoporins (Nups) that serve as the primary transport gates for nucleocytoplasmic molecular exchange (12). Besides the main role of NPCs in regulating molecular trafficking between nuclear and cytoplasm, NPCs and their components also play important transport-independent roles, including gene expression regulation, chromatin organization, DNA repair, RNA processing and quality control, and cell cycle control (13). As the largest subunit of the NPC, the Nup107-160 subcomplex (Y-complex) is a core building block of the NPC and multifunctional. It mediates mRNA export in interphase, and has roles in kinetochore function, and is critical for spindle assembly and postmitotic nuclear pore assembly (14). NUP37 (Nucleoporin 37 kDa), the identified target gene in this research, coded protein Nup37, is one of the nine components of the Nup107-160 subcomplex; it is specific to higher eukaryotes and lacking in plant (15). Nup37 binds to the Nup120 protein, which is a subunit that forms one of the two short arms of the Y-complex, to potentially stabilize the relative orientation of its two domains (16). It has been reported that Nup37 with all constituents of Nup107-160 complex, targeted to kinetochores from prophase to anaphase of mitosis (17). The role of Nup37 has rarely been reported in cancer cells and has never been studied in BRCA previously. Luo et al. demonstrated NUP37 as a positive regulator of YAP/TEAD signaling in promoting the progression of hepatocellular carcinoma (18), and the Chen group also found liver cancer cell proliferation could be inhibited via destabilizing NUP37 (19). In non-small cell lung cancer cells, the silence of NUP37 results in inhibition of cell proliferation, G1 phase cell cycle arrest, and apoptosis (20). Interestingly, we found a high expression of NUP37 in BRCA associated with a poor prognosis. Additionally, we assessed the gene PSMG1(Proteasome assembly chaperone 1), alternatively named C21LRP, DSCR2, which encodes proteasome (prosome, macropain) assembly chaperone 1 and promotes assembly of the core catalytic 20S proteasome as part of a heterodimer with PSMG2 (21), was highly co-expressed with NUP37 in BRCA samples. This bioinformatics analysis provided evidence to show that NUP37 may act as a biomarker for the diagnosis and outcomes in BRCA, and PSMG1 might be involved in the oncogenic pathway of NUP37 in BRCA.

Breast cancer cells are known to have properties such as high proliferation rate, increased cell migration, and capacity of epithelial-mesenchymal transition (EMT) and tumor-initiating cell stemness (22). In order to confirm the bioinformatics analysis, here, cell culture studies have been used to investigate the effects of NUP37 on the properties of breast cancer cells by siNUP37. The capacity of EMT can be evaluated by the expression of EMT-related markers. Reverse EMT, which resulted in a decrease in the levels of mesenchymal markers such as Vimentin and N-cadherin and an increase in the levels of epithelial markers such as Occludin and E-cadherin in the cells (23). The cancer cell stemness can be assessed by mammosphere forming efficiency and the cancer stem cells surface marker CD44+CD24-/low subpopulation (24). Our study showed that siNUP37 inhibited cell proliferation and migration, downregulated EMT properties, and attenuated stemness of breast cancer cells. We need further experimental evaluation for the potential use of NUP37 and its underlying mechanism in the diagnosis and treatment of BRCA.



Materials and Methods


DEGs Screening

BRCA-associated gene expression profiles (GSE73613 and GSE41445) were downloaded from Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) database in the National Center for Biotechnology Information (NCBI). DECenter based on R language was applied to significance analysis of DEGs between BRCA samples and normal samples. P < 0.05 and logFC > 2 was considered statistically significant. GSE73613 included expression data from two normal breast tissues and two invasive primary breast carcinoma tissues. GSE41445 included expression data from 21 cell lines (18 cancer and 3 non-tumorigenic).



Protein–Protein Interaction (PPI) Network Analysis

PPI information was acquired from the Search Tool for the Retrieval of Interacting Genes (STRING) online database (http://www.stringdb.org/), which provides information for experimental and predicted interactions. Specifically, we firstly type a list of DEGs or a single protein name in the search box and choose the corresponding species, then the String website will query the database and return the matching network to construct a network for protein interactions and generate a string file in tsv format, which can help us identify the key genes and the important gene involved in BRCA development from interaction level. Next, we exported string interactions in tsv format in the exports interface and imported this tsv file to Cytoscape software to visualize the construction of the PPI network and perform an interaction score calculation. Genes with the top 10 degrees were displayed as bigger circles.



Gene Expression Analysis

GEO2R (https://www.ncbi.nlm.nih.gov/geo/geo2r/) is a web tool that is applied to screen genes by comparing two groups of samples. Firstly, enter a series accession number in the box. Then, click “Define groups” and enter names for the BRCA and normal groups of samples to compare. After samples have been assigned to groups, click “Profile graph” and enter the gene ID of NUP37 to get the expression value, then use Graphpad to generate the graph.

NUP37 gene expression in BRCA specimens and normal tissues is also available through Oncomine. (Compendia Biosciences, www.oncomine.org), the cut-off p-value and fold change were defined as 0.01 and 2, respectively.



Human Tissue Microarray Immunohistochemical Staining

Human tissue specimens (HBreD090CS01) were purchased from Shanghai Outdo Biotech CO. The primary antibody anti-Nup37 (Abcam, ab220675) was diluted at 1:20. The standard IHC procedure was performed according to the manufacturer’s instructions (Dako). The tissue samples were examined by two pathologists, and the Nup37 expression level of each tissue sample was scored according to its staining intensity (0, none; 1, weak; 2, moderate; 3, strong) and the percentage of stained cells (0, 0%; 1, 1-24%; 2, 25-49%; 3, 50-74%; 4, 75-100%). Then, the final value between 0 and 12 was calculated by multiplying the staining intensity and the percentage of stained cells.



Gene Annotation and Analysis

The biological significance of DEGs was explored by GO term enrichment analysis to illuminate the biological process, cellular component, and molecular function based on using STRING. Metascape also provides a web portal for gene annotation and analysis resources that help to make sense of multiple gene lists.



Survival Analysis

The Kaplan-Meier plotter (KM plotter) online web tool predicts the effect of genes on survival (http://kmplot.com/analysis/index.php?p=background). By entering NUP37 to the blanks on the website and checking the ER status option, patients were divided into two groups according to the expression level of the gene, and we statistically analyzed the RFS and DMFS. The hazard ratio (HR) with 95% confidence intervals and logrank P values were calculated and showed. Besides, using OncoLnc, another online web tool, submitting NUP37 and clicking BRCA to link the TCGA survival data, we compares the OS by choosing bottom third versus top third of patients sorted by NUP37 expression.



Identification of Co-Expressed Genes

As a system biology method, gene co-expression network analysis was performed by MEM (https://biit.cs.ut.ee/mem/), a web-based multi experiment gene expression query and visualization tool that gathers several hundreds of publicly available gene expression data sets from ArrayExpress database based on different tissues, diseases, and conditions. We entered the NUP37 gene ID into the text field and selected H.sapiens, chose the A-AFFY-44 collection, put the data list as query in 100 pop-ups, and then submitted; the co- expressed genes were sequenced by their P value. Finally, we applied Xena online tool (http://xena.ucsc.edu/) to further validate the co-expression relationship with NUP37 and PSMG1. Afterwards, we selected Breast Cancer (BRCA- 1,247 samples), added NUP37 and PSMG1, and selected the assay type based on gene expression. Column A represents the sample, Column B is sorted according to NUP37 expression, and Column C is sorted according to PSMG1. Finally, generate the NUP37- PSMG1 gene expression line with Pearson’s rho and Spearman’s rank rho value.



Cell Lines and Cell Culture

The breast cancer cell lines MCF10A, MDA-MB-231, MCF7, BT-549, ZR-75-30, and T47D were cultured at 37°C in a humidified atmosphere of 95% air and 5% CO2 in a complete 1640 RPMI medium (Gibco BRL, Grand Island, NY, USA) that was supplemented with 10% FBS (HyClone), 1% penicillin, and 1% streptomycin.



Western Blot Analysis

Cells were harvested and lysed in 1% SDS on ice and then were heated at 98°C for 20 min. We collected the supernatant after the lysates were clarified by centrifugation at 12000g for 15 min, and the protein concentration was determined by the Pierce BCA Protein Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA). Equal amounts of protein from each sample were separated on SDS-PAGE gels and transferred to PVDF membranes (Millipore, Billerica, MA, USA) and blocked for 1 h with 5% non-fat milk (Bio-Rad, Hercules, CA, USA) in Tris-buffered saline with 0.1% Tween 20 (TBST) at room temperature. Membranes were incubated with specific primary antibodies overnight at 4°C. The membranes were then washed with TBST three times (10 min every time) and incubated for 1 h with HRP-conjugated secondary antibodies at room temperature. After being washed with TBST, signals were visualized in the samples by chemiluminescent detection using an HRP substrate (Millipore). GAPDH was applied to ensure equal protein loading.



Cell Proliferation Detection

Cell proliferation was measured by counting the total number of viable cells observed by the trypan blue dye exclusion assay, and 1 × 103 BT549 and ZR-75-30 cells were plated on 96-well plates and transfected with siRNAs for the times indicated. Cells without trypan blue staining were then counted using a haemocytometer.



Cell Migration Assay

For the wound-healing assays, 2.5 ×105 cells were plated in a 12-well plate then a scratch was created by scraping the cells with a 200-μl pipette tip. The floating cells were gently rinsed away with PBS, and fresh medium was added. The width of the scratch was recorded at 0 h and 24h or 36 h. The migration rate was calculated by comparing the scratch area of the experimental group with the control group, and the migration rate of the control group has been set to 100%.

For the transwell migration assays, 5 × 104 cells were suspended in 500 μL of FBS-free DMEM and plated in the upper chamber of transwell inserts (353097, Falcon). Then, 600 μL of completed medium was added to 24-well plates. After 24h and 36 h of incubation, the cells were fixed and stained according to the manufacturer’s protocols. Three randomly selected fields were photographed.



FACS Analysis and Mammosphere Assay

For CD44high/CD24low cell detection, cells were washed with PBS and stained with antibodies against CD24 (5554728, BD, NY, USA) and CD44 (555478, BD) for 15 min. The stained cells were then assessed by flow cytometry.

For mammosphere assay, 3× 103 cells were suspended in culture medium mixed with EGF、FGF and B-27™ Supplement (12587010, Gbico) and plated in ultra-low attachment 6-well plates (3471, Coring). After 7 days of incubation, the mammospheres were photographed and counted.




Results


DEGs Screening, Enrichment Analysis, and PPI Network Identification in Breast Cancer

Firstly, by using statistical software DECenter, we identified a total of 138 up-regulated DEGs from both GSE73613 and GSE41445 datasets in the GEO database (Figure 1B). By using STRING and Cytoscape to construct the protein-protein interaction (PPI) network of DEGs, we focused on NUP37, one of the top 10 core genes located in the key nodes with a high degree (Figure 1C). According to the GO analysis which applied to reveal biological functions of genes, all up-regulated DEGs were classified into cellular components and biological processes. The results showed that the 138 up-regulated DEGs were primarily enriched in the cellular component of the nuclear part and in the biological process of the cell cycle (Tables 1 and 2). In consist of component and function enrichment, the hub gene NUP37 is a component of the nuclear pore complex, which may be involved in cell division (17). Thus, we suspect NUP37 may have a positive effect on tumorigenesis.




Figure 1 | Gene screening and identification of the hub gene. (A) Illustrates the screening process of key gene in a simplified sequence flow diagram. (B) Identification of up-regulated DEGs in BRCA compared with normal control samples from GEO datasets (GSE73613, GSE41445). (C) PPI networks map of upregulated DEGs. The top 10 node genes with higher degrees are labeled in yellow, and the degree of the top 10 node genes are listed.




Table 1 | Component annotation of 138 differentially expressed genes.




Table 2 | Process annotation of 138 differentially expressed genes.





The Expression of NUP37 Is Upregulated in Breast Cancer

To verify the expression of NUP37 in BRCA, we analyzed NUP37 between normal and BRCA samples from GSE73613, GSE41445, and GSE109169 datasets by using GEO2R and Graphpad. All these three datasets revealed the up-regulated expression level of NUP37 in patients with BRCA (Figure 2A). Further, we turned to the Oncomine database (Richardson Breast 2 Dataset and Curtis Breast Dataset) to mine the expression of NUP37 in BRCA. Consistently with the findings from the GEO database, the expression of NUP37 is upregulated in various subtypes of BRCA when compared with normal breast samples, in two independent studies (Figures 2B, C). These results confirmed the overexpression of NUP37 in BRCA. Furthermore, analyses of clinical human tissue specimens indicated that Nup37 protein is also highly expressed in breast cancer patients (Figure 2D).




Figure 2 | The expression level of NUP37 in BRCA versus normal samples. (A) Expression level of NUP37 in BRCA and normal samples from GEO datasets (GSE73613, GSE109169, GSE41445) (Unpaired t test, Cancer VS.. Normal, p*<0.05, p***<0.001). (B) Oncomine data mining analysis of NUP37 mRNA levels in Richardson Breast 2 Dataset and (C) Curtis Breast Dataset between normal breast versus breast cancer subtypes. (Unpaired t test, Cancer VS. Normal, p*<0.05, p***<0.001) (D) Nup37 protein level in breast cancer tissue versus adjacent normal tissue for human tissue microarray staining of 45 patients. The representative image of staining tissue (left) and statistic staining score (right) (Unpaired t test, p***<0.001). Scale bar, 400 μm,above; 100 μm, below.





High NUP37 Expression Might Be an Indicator of Poor Survival Rate in Patients With Breast Cancer

Subsequently, by use of the Kaplan–Meier plotter online tool, we explored the association between NUP37 expression and the relapse-free survival (RFS) and distant metastasis-free survival (DMFS) in patients with BRCA to evaluate the prognostic value of NUP37. The results showed that high expression of NUP37 was associated with unfavorable RFS (Figure 3A), as well as DMFS (Figure 3B). Moreover, we generated the corresponding Kaplan-Meier Plotter curves according to the different ER statuses (ER-negative and positive samples) and found that the high expression level of NUP37 was related to the poor prognosis in ER positive samples but not for ER-negative samples (Figures 3C, D). Additionally, we applied OncoLnc to assess overall survival (OS) and also observed a similar unfavorable OS trend (Figure 3E). Taken together, these data suggested that high expression of NUP37 was significantly associated with a worse survival rate for BRCA patients, which indicated NUP37 might be an indicator of poor prognosis in patients with BRCA.




Figure 3 | Clinical survival significance of NUP37 expression level in BRCA patients. (A) Correlation of NUP37 expression with RFS and (B) DMFS using Kaplan–Meier plotter. Statistical significance was estimated using a log-rank test. (C) Correlation of NUP37 expression with RFS and (D) DMFS curves calculated by Kaplan–Meier plotter for patients with breast cancer classified as ER+ (left) and ER− (right) respectively. Statistical significance was estimated using a log-rank test. (E) Kaplan-Meier curve for OS in BRCA patients grouped by the level of NUP37 expression using OncoLnc. Statistical significance was estimated using a log-rank test.





High NUP37 Expression Might Be Involved in Tumorigenesis by Promoting Cell Growth, Migration, and Stemness

Based on the bioinformatics analysis, we additionally confirmed the expression level of NUP37 in various BRCA cell lines. We found NUP37 to be highly expressed in BRCA cells when compared with MCF10A cells (Figure 4A). Next, in order to confirm the functional effects of NUP37 on breast cancer cells, two siRNAs were applied to knockdown of NUP37 in BT-549 and ZR-75-30 cells, which are the top two cell lines with high expression levels of NUP37 in western blot assays (Figure 4B). Significantly, cell growth was inhibited following NUP37 knockdown (Figure 4C). Also, after NUP37 was downregulated, we observed cell migration was slow down via wound-healing assays (Figure 5A) and transwell migration assays (Figure 5B). Epithelial cell marker occludin, a tight junction protein, is up-regulated, which leads to the gain of cell-cell adhesion, while mesenchymal marker vimentin is decreased (Figure 5C). Moreover, expression of the cancer stem cell surface marker CD44+CD24-/low subpopulation, which is measured by flow cytometry and mammosphere forming efficiency, was also reduced after NUP37 downregulated (Figures 5D, E). The siNUP37 exerts its inhibitory effects on the cell proliferation, migration, EMT, and cell stemness of breast cancer cells, which indicated the oncogenic role of NUP37 in the biological characteristic of breast cancer cells.




Figure 4 | NUP37 knockdown inhibits BRCA cell growth. (A) Western blot analysis confirmed a strong expression of NUP37 protein in the BRCA cells MDA-MB-231, MCF7, BT-549, ZR-75-30, and T47D compared with MCF10A. GAPDH was used as a loading control. (B) Western blot analysis of NUP37 protein levels in BT-549 and ZR-75-30 cells transfected with siNUP37 or siRNA control for 72 h. GAPDH was used as a loading control. (C) The proliferation of BT-549 and ZR-75-30 cells transfected with siNUP37 or siRNA control for the indicated time was assessed by counting the number of cells. The experiments were performed at least in triplicate, and the results are presented as the mean ± s.d. The data were analyzed by Student’s t-test (**p < 0.01; ***p < 0.001).






Figure 5 | NUP37 knockdown attenuates BRCA cell migration. (A) Scratch assays of BT-549 and ZR-75-30 cells transfected with siNUP37 or siRNA control for 36h and 24h, respectively. Images and Statistical data are shown. Scale bar, 300 μm. (B) Transwell assays of BT-549 and ZR-75-30 cells transfected with siNUP37 or siRNA control for 36h and 24h, respectively. Representative images are shown, and the migrated cells were counted. Scale bar, 200 μm. (C) Western blot analysis of EMT marker protein levels in BT-549 and ZR-75-30 cells transfected with siNUP37 or siRNA control for 72 h. GAPDH was used as a loading control. (D) After transfected with siNUP37 or siRNA control for 72 h, flow cytometry analysis of BT-549 and ZR-75-30 cells stained with antibodies against CD44 and CD24 was performed. (E) Mammosphere assay of BT-549 and ZR-75-30 cells transfected with siNUP37 or siRNA control for 7 days. Representative images are shown, and the spheroids were counted. Scale bar, 300 μm. The experiments were performed at least in triplicate, and the results are presented as the mean ± s.d. The data were analyzed by Student’s t-test (*p < 0.05; **p < 0.01; ***p < 0.001).





Analysis of NUP37 Associated Cellular Molecule and Pathway

To further explore the possible molecule mechanism and signal pathway that cooperates with NUP37 in the regulation of the BRCA process, we used STRING to construct the PPI network. The proteins directly interacted with NUP37, with a high degree in the PPI network including NUP98, NUP160, SEH1L, NUP85, TPR, SEC13, NUP43, NUP133, NUP153, and NUP107 (Figure 6A). By way of the Multi Experiment Matrix (MEM), a web tool for mining gene-gene interaction to exhibit co-expressed genes, we found the co-expression genes of NUP37 (Table 3). In addition, we performed Metascape analysis found the NUP37 related terms are mainly involved in chaperonin containing TCP1 complex, synthesis of DNA, mismatch repair, mitochondrial translation initiation, NEP/NS2 interacts with the cellular export machinery, exonucleolytic nuclear-transcribed mRNA catabolic process involved in deadenylation-dependent decay, urine ribonucleoside monophosphate metabolic process, DNA replication-independent nucleosome assembly, methylation, cell division, and responses to nutrients (Figure 6B). Importantly, we analyzed the top co-expressed genes from Table 3 by using Xena based on the TCGA-BRCA database, and then we found the expression of PSMG1 is also highly related with NUP37 in BRCA samples with Pearson’s rho 0.8805 and Spearman’s rank rho ρ = 0.4337 (Figures 6C, D), and a high expression level of PSMG1 was related to the poor prognosis in ER-positive samples (Figure 6E). Taken together, these results indicated PSMG1 might be a molecule that cooperates with NUP37 in the oncogenetic pathway of BRCA.




Figure 6 | Prediction of potential molecule mechanism of NUP37 in BRCA. (A) The proteins directly interacted with NUP37. (B) The enrichment and annotation of NUP37-related terms using Metascape analysis. (C) Heatmap of the co-expressed relationship between PSMG1 and NUP37 based on TCGA-BRCA database. (D) Co-expression analysis of PSMG1 and NUP37. (E) Correlation of PSMG1 expression with RFS (left) and DMFS (right) curves calculated by Kaplan–Meier plotter for patients with breast cancer classified as ER+. Statistical significance was estimated using a log-rank test.




Table 3 | Co-expression genes of NUP37(Top 10).






Discussion

Bioinformatics analysis of public data is a useful, effective, and credible approach in cancer research. It is likely to screen possible target molecules of mammary tumorigenesis and identify targets for cancer prevention and treatment.

Actually, by using STRING and Cytoscape to construct the PPI network of DEGs, we got the top 10 core genes located in the key nodes with the highest degrees. Meanwhile, the GO analysis showed that the 138 upregulated DEGs were primarily enriched in the cellular component of the nuclear part and in the biological process of the cell cycle. Then, we did some literature work on these top core genes one by one from highest to lowest degrees. We found that Cdc20 (Cell division cycle protein 20), Cdc42 (Cell division cycle protein 42), NUP37, ANAPC11 (Anaphase-promoting complex subunit 11), TUBA1A (alpha-tubulin), and CENPO (Centromere protein O) have been wildly reported as cell-cycle-related proteins. Among them, Cdc20 (25, 26), Cdc42 (27), and CENPO (28) have been identified as prognostic and predictive biomarkers and therapeutic targets in breast cancer. Thus, we focused on the relatively high degree gene NUP37 to perform further exploration, and we found interesting results in our manuscript. Of note, this does not exclude the possibility that other genes including UBB (Ubiquitin B), PSMC6 (Proteasome 26S subunit, ATPase 6), PEN1 (Penetration 1), HIST1H2BB (Histone Cluster 1 H2B Family Member B) would also play a role in the development of breast cancer. They need to be further explored.

Nuclear pore complexes (NPCs) are supermolecular structures that act as bidirectional nuclear transport channels embedded in the nuclear envelope in eukaryotic cells. NPCs have a diameter of ~0.13 μm and are constructed by the repetition of 32 different proteins termed nucleoporins (Nups) (29). Previously, researchers believed that the primary role of NPCs was to regulate molecular exchange and genetic information transport between the nucleus and cytoplasm (30). Over the last two decades, with increasing understanding of the main geometrical and structural features of NPCs (29, 31), some additional biological functions of certain NPCs have emerged, such as genome organization, the maintenance of genome integrity, and modulation of gene expression by transcriptional regulation related to cell division, cell motility, cell remodeling, and cell differentiation, and this is also linked to several human neoplastic and non-neoplastic diseases (32, 33).

The role of NUP37 has rarely been reported in cancer cells and has never been studied in BRCA previously. In this study, the PPI network showed the top 10 interactions between NUP37 and NUP98, NUP160, SEH1L, NUP85, TPR, SEC13, NUP43, NUP133, NUP153, and NUP107. In solid and hematological tumors, deregulated NUPs, including NUP210, NUP133, NUP107, SEC13, NUP188, NUP93, NUP62, NUP153, TPR, RANBP2, NUP214, NUP98, NUPL2, and RAE1, have been revealed (34, 35). Nup98 (98-kD Nup) is an NPC component that, in addition to its role in nuclear transport, was identified as a transcriptional regulator at gene promoters to control transcription of its target genes in human cells (36). NUP98 is fused to various partner genes in multiple hematopoietic malignancies (37, 38) and colocalizes with the Nup107-160 complex and promotes the cell division process (39). Another nucleoporin, Nup153, is required to recruit the Nup107-160 complex to the inner nuclear membrane for interphasic NPC assembly (40). Nup153 maintains nuclear envelope architecture and is required for cell migration in tumor cells (41). One study demonstrated that NUP160–SLC43A3 is a novel recurrent fusion oncogene in angiosarcoma (42). Nup88 (88-kD Nup) has been found to be overexpressed in numerous malignant neoplasms, indicating that Nup88 may be a potential molecular marker of many malignancies and premalignant dysplasia (43). These findings enhanced the prediction of the regulatory role of NUP37 in the progression of BRCA carcinogenesis. Since we only evaluated NUP37 as a biomarker in BRCA by publicly available database and confirmed the function of NUP37 in vitro experiments using breast cancer cell lines, an in vivo study and an outcome for breast cancer patients and NUP37 in a prospective data set are further required.

The 26S proteasome is a multisubunit complex composed of the 19S regulatory particles and the core catalytic 20S proteasome, which is responsible for protein degradation. As proteasome assembly chaperone, the PSMG1 binds to the PSMA proteasome subunits, promotes maturation and stability of the 20S proteasome alpha subunits (44). The role of PSMG1 in cancer has barely been reported. One study reported that the amino acid sequence of PSMG1 protein has a potential homology to proteins involved in the cell cycle, and the function of the PSMG1 protein could be related to cell proliferation (45). Moreover, Zhang et al. demonstrated that high expression of POMP (proteasome maturation protein), another proteasome assembly chaperone for 20S proteasome, is involved in the regulation of cell proliferation and significantly correlated with poor relapse-free survival for ER-positive breast cancer patients (46). Otherwise, it is well accepted that the proteasome pathway plays a significant role in oncogenesis by degradation of most tumor suppressors proteins required for cell-cycle progression and mitosis (47). This proteasome-mediated degradation depends on proteasome abundance through the coordinated expression of proteasome subunits and assembly chaperones (48). These evidence suggests that upregulation of PSMG1 may be able to promote tumor growth by activating 20S proteasome assembly and thereby degrading the tumor suppressors. In addition, increasing evidence indicates that mature proteasomes are targeted to the nuclear periphery or transported into the nucleus through the mature nuclear pore complexes (NPCs) (49, 50). Basing on the database, we found that PSMG1 is highly co-expressed with NUP37 in breast cancer and also associated with poor prognosis in ER-positive patients. Thus, we speculated that PSMG1 might be a molecule that cooperates with NUP37 in the oncogenetic pathway of BRCA. As this hypothesis is a novel finding in breast cancer, it is potentially expanding the cellular functions of NUP37 and PSMG1. However, the conclusions in our present study are based on analyses from public data of patient samples, which have limitations. Therefore, to make a stronger elucidation of the connected function of NUP37 and PSMG1 in breast cancer, future exploration would be needed.

Because at least 70% of breast cancers are ERα positive (ERα+) with enhanced ERα expression and ERα signaling, the ERα level is important for the diagnosis and endocrine therapy of BRCA. The NPC transport system plays a critical role in the regulation of the localization of ERα and ERα signaling pathways by the dynamic shuttling of ERα between the cytoplasm and nucleus through recognition of the specific amino acid sequences of NLSs and NESs (51). Our study evaluated the role of NUP37 in BRCA and investigated its potential application as a marker for the preliminary diagnosis and therapy in BRCA. In addition, we found that NUP37 may play a role in the prognosis of BRCA only in ER-positive patients, which indicates that ER signaling may be an underlying target of NUP37. More experimental evidence is needed to verify whether Nup37 mediates the ERα nuclear-cytoplasmic trafficking mechanism in tumorigenesis and the endocrine therapy of BRCA. ERα protein levels and locations, expression of ERα target genes, and estrogen response signal activity require evaluation after NUP37 depletion.
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Cancer-associated fibroblasts (CAFs) are key components in tumor microenvironment (TME). The secreted products of CAFs play important roles in regulating tumor cells and further impacting clinical prognosis. This study aims to reveal the relationship between CAF-secreted cytokines and breast cancer (BC) by constructing the risk signature. We performed three algorithms to reveal CAF-related cytokines in the TCGA BC dataset and identified five prognosis-related cytokines. Then we used single-cell RNA sequencing (ScRNA-Seq) datasets of BC to confirm the expression level of these five cytokines in CAFs. METABRIC and other independent datasets were utilized to validate the findings in further analyses. Based on the identified five-cytokine signature derived from CAFs, BC patients with high-risk score (RS) had shorter overall survival than low-RS cases. Further analysis suggested that the high-RS level correlated with cell proliferation and mast cell infiltration in BCs of the Basal-like subtype. The results also indicated that the level of RS could discriminate the high-risk BC cases harboring driver mutations (i.e., PI3KCA, CDH1, and TP53). Additionally, the status of five-cytokine signature was associated with the frequency and molecular timing of whole genome duplication (WGD) events. Intratumor heterogeneity (ITH) analysis among BC samples indicated that the high-RS level was associated with the increase of tumor subclones. This work demonstrated that the prognostic signature based on CAF-secreted cytokines was associated with clinical outcome, tumor progression, and genetic alteration. Our findings may provide insights to develop novel strategies for early intervention and prognostic prediction of BC.
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Introduction

Breast cancer (BC) is one of the most common cancers of women and remains a major cause of cancer-associated death worldwide (1). Despite the improvement of both early detection and therapies of BC, patients are still facing a severe challenge in terms of poor prognosis. Based on the high-throughput transcriptional data, analysis of molecular typing is often performed to indicate differential pathological features and clinical prognosis among BC patients, for which PAM50 subtyping was most widely used (2, 3). Although these molecular subtypes were derived from the mathematic clustering, the prognosis among BC cases within each subtype still vary widely. Therefore, it is of great clinical significance to explore novel prognostic signatures.

The tumor microenvironment (TME) has been recognized to play an important role in the initiation and progression of BC over the past decades (4). Cancer-associated fibroblasts (CAFs) are one of the most dominant components in the tumor stroma and have a tremendous influence on remodeling the extracellular matrix (ECM) structure (5). Previous studies have demonstrated the pro-tumorigenic role of CAFs in accelerating tumor proliferation, angiogenesis, and metastasis of many types of tumor, especially for BC (6, 7). However, the exact origin and biology of CAFs and the association between CAFs and clinical outcomes are not fully understood. CAF-mediated molecular mechanisms mainly rely on multilayered communications of CAFs with the surrounding cancer cells and other components within the TME (8). Therefore, utilizing CAF-secreted cytokines to predict therapeutic effect and clinical prognosis is worth further investigation.

Risk signatures were widely used to predict prognostic outcomes in cancer research. Van De Vijver et al. firstly conducted a 70-gene signature that is closely associated with survival of patients with BC (9). Furthermore, kinds of risk signatures were constructed among types of cancer (10, 11), which were proved to be more precise in predicting clinical prognosis than traditional methods, including pathological and imaging estimations (12). In addition to the gene expression data of tumor tissues, chemokines or cytokines were indicated to be a novel strategy for developing risk signatures, which got a weak dependence on gene numbers and showed great potential of non-invasive detection (13, 14). In the area of breast cancer research, the role of TME-related molecular regulation has not been fully revealed. We therefore considered CAF-related cytokines into the construction of risk signature to estimate a novel strategy for predicting the prognosis of patients with BC.

In this study, we identified five prognosis-related cytokines that were highly expressed in CAFs of BC. Through the Cox hazard model, we constructed a novel risk signature based on the expression level of the five cytokines in the TCGA BC dataset. Following analyses suggested that the five-cytokine signature was associated with clinical outcome, tumor cell proliferation program, immune cell activation, and genomic alteration, which were further validated in METABRIC and other independent datasets.



Materials and Methods


Study Design

This study included gene expression, somatic alteration, and clinical outcomes data from TCGA (n = 1,091) and METABRIC (n = 1,904) datasets, which were used for the training and validation of the five-cytokine signature, respectively. To reveal the expression level of cytokines in types of tumor microenvironment (TME)-infiltrating cells, we performed analysis on two single-cell RNA sequencing (ScRNA-Seq) datasets of BC, which contain 565 and 24,271 cells derived from 11 and 5 BC tissue samples, respectively (15, 16). To further validate the prognostic relevance of five-cytokine signature, we included bulk RNA sequencing (RNA-Seq) and clinical prognosis data of two independent BC datasets (GSE20685 and GSE86166) for further analysis (17, 18). We also obtained the gene expression, TP53 mutation, and prognosis data of another BC dataset (GSE40954) to identify the variance between TCGA and METABRIC datasets (19). Additionally, detailed characteristics of included public access BC datasets are shown in Table S1.



Inference of CAFs and Other Infiltrating Cells in TME

To quantify the proportion of CAFs in BC samples, we used EPIC (20), xCell (21), and MCP-counter (22) algorithms on the gene expression data. The EPIC analysis was conducted with default parameters, which indicated the calculated proportion of CAFs among BC samples. The results of xCell analysis performed on TCGA datasets were achieved from the previous study (21), and the results suggested the enrichment score of CAF-related gene signature. We conducted MCP-counter analysis using six CAF markers, including CD29, FAP, SMA, FSP1, PDGFRβ, and CAV1, according to the previous report (23). To quantify the proportions of other infiltrating immune cells in TME, we employed the CIBERSORT algorithm using the LM22 gene signature (24), which allows for the discrimination of 22 human immune cell phenotypes.



Analysis of Single-Cell RNA Sequencing Data and the Construction of Risk Signature

To validate the specificity of the indicated cytokines in CAFs, we performed analyses on two single-cell RNA sequencing (ScRNA-Seq) datasets of BC to detect the expression level of cytokines in TME. Batch effects within the ScRNA-Seq data of GSE75688 were firstly removed using ComBat command from the R package sva (25). The expression profiles of 565 isolated cells were further reduced to two-dimensional representations by t-distributed stochastic neighbor embedding (tSNE) method (Rtsne R package). The cell type annotation was conducted according to the previous report (16). The ScRNA-Seq data of the other dataset were acquired from supplementary files as the Seurat object in R (Table S1) (15). We conducted a similar procedure for annotating cell types, and the results were shown using two-dimensional representations by tSNE method (Seurat R package).

The Cox proportional hazards model was utilized to construct the risk signature model. The BC cases of TCGA were grouped into high- or low-expression subgroup according to the median value of gene expression, and hazard ratios (HRs) and coefficients were then estimated of each candidate cytokines. Significant prognostic factors were further subjected to the construction of risk signature (Figure 1A).




Figure 1 | Study flow chart and the selection of candidate cytokines. (A) Where Enm is a matrix (n × m) of the n gene expression profiles from the m cell types; Vn is the vector of all n genes expressed from the bulk sample to deconvolve; and p is a vector of the proportions from the m cell types in the given sample. ES  is the weighted enrichment score (ES) of a given signature G, and ESN-G is the ES of the remaining genes from the data set of N genes. EM is the gene expression of canonical CAF markers in BC datasets. (B) Inferred CAF proportion scores of TCGA BC cases by three algorithms (see Methods). EPIC, xCell, and MCP-Counter indicated the assumed CAF proportion, the enrichment score of CAF-related gene signature, and the relative expression level of CAF marker genes, respectively. And the red dotted line indicated median values. (C) The results of correlation analyses between all 695 cytokines and CAF proportion scores derived from algorithms. (D) The 106 CAF-related cytokines indicated medium and high correlation with CAF proportion scores (R > 0.3), and a total of five cytokines showed prognostic relevance.





Construction of Cytokine-Immune Cell Network

The annotation of known cytokine and the cytokine-receptor network analyses were conducted using the CellTalker R package (26). The data of annotated 695 cytokines and corresponding 2,502 ligand-receptor pairs were retrieved from the TCGA dataset, and receptors of the five cytokines were included for the following analysis (Table S2). To calculate the association between the five-cytokine signature and TME, we analyzed the relationship between CIBERSORT-annotated immune cells and CellTalker-annotated receptors using Spearman rank correlation analysis, and the immune cell–related receptors were then considered into the construction of cytokine-immune cell network. Finally, the correlation between the cytokine and the certain type of immune cell was calculated using the following formula:  , where n represents the number of cytokine-paired receptors and R represents the Spearman correlation coefficient between the receptor and the certain type of immune cell.



Gene Set Variation Analysis on Gene Expression Data

Gene set variation analysis (GSVA) was utilized to obtain pathway scores based on RNA-seq data using the R package GSVA (27). A Wilcoxon rank sum test was performed subsequently to identify pathways differentially expressed among subgroups. P values were adjusted via the Benjamini-Hochberg procedure.



Estimation of Genomic Features in the TCGA Cohort

We estimated the intratumor heterogeneity (ITH) using the mutant-allele tumor heterogeneity (MATH) method (28). The MATH score was calculated using the formula  , where AFi is a vector of the allele frequency (AF) of all mutations from sample i, and median absolute deviation (MAD) was denoted. Microsatellite instability (MSI) and DNA methylation data were achieved from the supplementary files of previous studies (29, 30). The whole genome duplication (WGD) events of BC genome in TCGA cohort were also achieved from the previous report (31).



Statistical Methods

Statistical analyses were performed using R (v3.6.1). For comparisons of continuous variables between groups, Mann-Whitney U tests and Kruskal-Wallis H tests were used. For comparisons of categorical variables between groups, chi-squared or Fisher’s exact tests were utilized. P values were further adjusted for multiple hypothesis testing using the Benjamini-Hochberg method. To compare survival time and outcomes between groups, we used the log-rank test for Kaplan-Meier curves. All reported P values were two-sided. The differences were considered significant when the P value was <0.05 or the Benjamini-Hochberg false discovery rate (FDR) was <0.1.




Results


Five CAF-Related Cytokines Correlate With Clinical Prognosis

We applied three different algorithms to infer the CAF proportion scores in TCGA BC cases (Figure 1B), and the correlation analysis indicated consistent results among algorithms (Figure S1A). Candidate cytokines were filtered by correlation analyses using CAF proportion scores (Figure S1B and Table S3), and a total of 106 cytokines were indicated by all three algorithms (Figure 1C and Figure S1C). Among these CAF-related cytokines, we found five of them were associated with clinical outcomes (Figure 1D, Figure S2A and Table S4).

To evaluate the specificity of expression levels of CAF-related cytokines, we analyzed the ScRNA-Seq data from GSE75688 and the other independent BC datasets (See Methods). Based on these two datasets, two-dimensional projection by tSNE grouped the cells distinctly into tumor cells, T cells, B cells, Myeloid cells, and CAFs (Figures 2A, D). We also explored the expression level of marker genes among cellular types, and fibroblast markers DCN, COL1A1, COL3A1, and FAP were highly expressed in CAFs as expected (Figures 2B, E). Further analyses suggested that EDIL3, GRP, PTN, and TAC1 were specifically expressed in CAFs, and IL16 displayed a salt-and-pepper expression pattern in both immune cells and CAFs (Figures 2C, F).




Figure 2 | Identification of the specificity for the five cytokines in ScRNA-Seq data of BC. (A) Cellular populations identified in the GSE75688 dataset, and the tSNE projection of 565 cells showed the clusters with label names. Each dot corresponds to a single cell, colored according to cell type. (B) Heatmap of marker gene sets among tumor cells, T cells, B cells, Myeloid cells, and fibroblasts of GSE75688 dataset. (C) Comparisons on average expression of the five CAF-related cytokines. Bar, median; box, 25th to 75th percentiles (interquartile range, IQR); vertical line, data within 1.5 times the IQR. ***FDR < 0.001 and *FDR < 0.1. n.s., non-significant. (D, E) Clustering of 24,271 cells from the other ScRNA-Seq data of BC (see Methods) using tSNE method (D), and the heatmap showed marker gene sets among different cell types (E). (F) The five CAF-related cytokines were labeled in clusters by cell identity as represented in the tSNE plot.





Relevance Between Five-Cytokine Signature Status and Patient Outcomes

We constructed a five-cytokine signature to indicate risk score (RS) using gene expression data of TCGA as the training dataset (Figure 3A; See Methods), and the analysis also indicated the robustness of the risk signature (Figure S2B). We observed the increasing trend of EDIL3 and decreasing trend of GRP, IL16, PTN, and TAC1 in this training dataset (Figure 3B), and the BC cases were further categorized into “High RS” (with high five-cytokine signature; higher median) or “Low RS” (with low five-cytokine signature; lower median) within the TCGA cohort. The analysis showed that high-RS cases had shorter overall survival and higher cumulative hazard than low-RS cases (Figures 3C, D). To validate these findings, we analyzed the gene expression and prognosis data of the METABRIC cohort, which were consistent with the training results in the TCGA cohort (Figures 3E, F). Furthermore, another two independent datasets, GSE20685 and GSE86166, were included to further validate the constructed five-cytokine signature, and the results suggested that high-RS cases had worse prognosis than low-RS ones (Figures 3G, H).




Figure 3 | The association of five-cytokine signature status with clinical outcomes. (A) The features of the five-cytokine signature in the training data (TCGA). Coef, coefficient; HR, hazard ratio. (B) The heatmap plot for the expression level of each cytokine across TCGA samples. (C, D) The training results in the TCGA dataset. Kaplan‐Meier survival analysis and cumulative hazard curves using median cutoff RS. P value indicated by log-rank test. (E, F) The validation results in the METABRIC dataset. The heatmap plot for the expression level of included five cytokines across METABRIC samples, and Kaplan‐Meier survival analysis using median cutoff RS of five-cytokine signature. (G, H) Further validation in GSE20685 and GSE86166 datasets using median cutoff RS both suggested that the high-RS level was associated with the poor prognosis. (I) Grouping BC patients into five PAM50 subtypes (Lum A, Lum B, HER2-enriched, Basal-like, and Normal-like) based on five-cytokine signature status. ***P < 0.001.



To address the relationship between the status of five-cytokine signature and commonly used PAM50 molecular subtypes, we calculated the proportions of PAM50 subtypes in high- and low-RS subgroups in both TCGA and METABRIC cohorts. The trend of more Basal-like, HER2-enriched, and Luminal B (LumB) breast tumors was found in high-RS cases, and more Luminal A (LumA) and Normal-like breast tumors were suggested in low-RS cases (Figure 3I).



High RS Correlates With Cell Proliferation and Mast Cell Infiltration in Basal-Like Subtype

To identify the underlying biological characteristics of the five-cytokine signature, we analyzed the association between the RS level and the activation of signaling pathways. The results of GSVA indicated that high RS correlated with the activation of epithelial–mesenchymal transition pathways (Cluster1), inflammation or stress response pathways (Cluster2), and cell proliferation pathways (Cluster3) in both TCGA and METABRIC cohorts, which are shown in Figures 4A, B, respectively. The RS level of the five-cytokine signature indicated a positive relationship with Cluster1 and negative associations with Cluster2 and Cluster3 in both TCGA and METABRIC datasets (Figures 4C, D). For BC cases among different PAM50 subtypes, the identified clusters demonstrated distinct enrichment patterns, in which Cluster3 was found to be significantly enriched in Basal-like subtype (Figures 4E, F).




Figure 4 | Five-cytokine signature contributes to molecular features of the Basal-like subtype. (A, B) GSVA analysis with hallmark gene sets indicated three pathway clusters in both TCGA (A) and METABRIC (B) cohorts (see Methods), which were epithelial–mesenchymal transition pathways (Cluster1), inflammation or stress response pathways (Cluster2), and cell proliferation pathways (Cluster3). (C, D) The RS level positively correlated Cluster1 and negatively associated Cluster2 and Cluster3 in both TCGA (C) and METABRIC (D) datasets. (E, F) Average enrichment score of the three distinct clusters among PAM50 subtypes in TCGA (E) and METABRIC (F) datasets. (G, H) Differential immune cell proportions of high- and low-RS groups within each PAM50 subtype in TCGA (G) and METABRIC (H) cohorts, respectively. P value indicated by Wilcoxon rank sum test and adjusted by Benjamini-Hochberg method. ***FDR < 0.001; **FDR < 0.01; *FDR < 0.1. n.s., non-significant.



Utilizing the network analysis between ligands and receptors (see Methods), we demonstrated the strong correlation between the five-cytokine signature and other cell types in TME (Figures S3A, B). In terms of different types of tumor-infiltrating immune cells, we found that resting mast cells were decreased in high-RS BC samples of Basal-like subtype, which was also validated in METABRIC cohort (Figures 4G, H and Figure S3C).



Five-Cytokine Signature Discriminates High-Risk Patients Harboring PIK3CA, CDH1, and TP53 Mutations

Concurrent driver gene mutations had an important impact on BC prognosis (32). Our results suggested that certain driver mutations correlated with the status of five-cytokine signature. We found that PIK3CA and CDH1 mutations enriched in the low-RS group, but TP53 mutations were associated with a high proportion of high-RS cases in both cohorts (Figures 5A, B). Additionally, these driver mutations demonstrated distinct relationships with pathway clusters (Figures S3D, E). The analyses indicated that TP53 mutations correlated with the enrichment of Cluster2 and Cluster3, and PI3KCA mutations contributed to the activation of Cluster1.




Figure 5 | Prognostic risk of high-RS patients harboring driver mutations. (A, B) Non-synonymous mutations of driver genes (Cancer Gene Census, v84) within high- or low-RS groups in TCGA and METABRIC cohorts. The consistent trends were observed among TP53, PIK3CA, and CDH1 mutations. P value indicated by Fisher’s exact test. ***P < 0.001; **P < 0.01; *P < 0.05. (C) High-RS patients harboring PIK3CA mutations had significant poor prognosis in both TCGA and METABRIC cohort. (D, E) High-RS level contributed more prognostic risk to CDH1 or TP53 mutated cases in the METABRIC dataset, and GSE40954 validated the higher risk of high-RS cases harboring TP53 mutations. P value suggested by log-rank test.



Although PIK3CA and CDH1 mutations are the therapy target and the risk factor in BC separately (33, 34), survival analysis suggested weak relevance between PIK3CA or CDH1 mutations and the clinical outcomes in both TCGA and METABRIC datasets (Figures S4A, B). However, after considering the status of five-cytokine signature, high-RS cases harboring PIK3CA mutations showed significant worse prognosis (Figure 5C), and CDH1 mutated cases with high-RS level indicated poor clinical outcomes (Figure 5D). Notably, although TP53 mutations were also found to be enriched in the high-RS cases (Figures 5A, B), the heterogenous prognostic relevance of TP53 mutations among different datasets was observed (Figure S4C). Further survival analyses suggested that the use of five-cytokine signature status improved the prediction of clinical outcomes in TP53-mutated BC patients (Figure 5E). All these results indicated the potential molecular crosstalk between tumor somatic mutations and CAFs, which could further impact the clinical prognosis.



The Impact of the Five-Cytokine Signature on Tumor Evolution in BC

To investigate the impact of high-RS level on tumor evolution, we estimated whole genome duplication (WGD) and intratumor heterogeneity (ITH) within high- or low-RS tumor samples. Whole genome duplication (WGD) is the result of estimating the ratio of duplicated to non-duplicated mutations when the genome gain happened during clonal evolution (31), which indicated the molecular timing before the appearance of the most recent common ancestor (MRCA). Our results suggested that high-RS level was associated with high frequency and earlier timing of WGD events (Figures 6A–C), and we also found that WGD events correlated with poor prognosis, which was consistent with the previous study (Figure S5A) (35). To validate these findings, we performed analyses on ovary adenocarcinoma (OV) data in TCGA, which indicated the relevance between the high-RS level and earlier timing of WGD events (Figures S5B, C).




Figure 6 | The relationship between five-cytokine signature and tumor evolution history. (A, B) In TCGA data, more WGD events (see Methods) were found to be enriched in high-RS BC samples, and the shorter WGD timing (see Methods) was further observed in the high-RS group, which were suggested by Fisher’s exact test and Wilcoxon rank sum test, respectively. (C) Schematic diagram indicated that high-RS correlated with more proportions of WGD events and earlier WGD timing before the appearance of the MRCA among all BC cells. (D, E) The higher ITH scores and more mutational clusters were revealed in the high-RS group using MATH algorithm (see Methods). P values were indicated by Wilcoxon rank sum test and Fisher’s exact test separately. (F) Schematic diagram indicated that high-RS tumors harbored more subclones during the tumor progression of BC.



Previous reports for early-stage BC demonstrated the high homogeneity in clonal expansion (36), low ITH (37), and punctuated evolution (38). Accordingly, we analyzed the clonal expansion of BC under the impact of high-RS level. The ITH analysis suggested the association between five-cytokine signature status and ITH scores in BC (Figure 6D), and the high-RS level was found to be related with the increase of tumor subclones (Figures 6E, F). Microsatellite instability (MSI) and DNA methylation analyses further validated that the high-RS level was related with more genomic and epigenomic alterations (Figures S5D, E).




Discussion

In this study, we examined the effects of five-cytokine signature derived from CAFs on clinical prognosis of BC patients, and we tested the hypothesis that five-cytokine signature correlated with molecular phenotype, TME, somatic mutation, and tumor evolution. This risk signature model was constructed using TCGA datasets and validated in METABRIC and other independent datasets, which suggested the robustness of this five-cytokine signature. All these results demonstrated that CAF-released cytokines play an important role in tumor progression of BC. Better understanding of this intracrine environment contributes to reveal the contradictions surrounding the effects among CAFs, immune cells, and tumor cells in BC.

CAFs were found to secrete numerous chemokines or cytokines, including TGF-β, IL-6, IL-8, IL-13, CXCL12, CXCL14, and VEGF (8). In addition to these known cytokines, our results demonstrated that EDIL3, GRP, IL16, PTN, and TAC1 were specifically or highly expressed within CAFs and could act as prognostic factors of BC. For these indicated CAF-related cytokines, the high expression level of EDIL3 correlated with poor prognosis in multiple tumors (39, 40); GRP was revealed to participate in CAF subtype transition in pancreatic ductal adenocarcinoma (PDAC) (41); IL16 polymorphisms were suggested to be associated with the high risk in types of cancer (42, 43), which were found to be regulated by the expression quantitative trait loci (eQTL) according to a genome-wide association study (GWAS) (44); PTN was also indicated to act as the downstream target of CDKN1A for a critical role in BC chemoresistance. In addition, our results demonstrated the relevance between the five-cytokines signature and TME. Previous studies indicated that CAF-secreted cytokines suppress the recruitment of immune cells, including abolishing CTLA-4 (45), reducing PD-L1 (46), and inducing Tregs in the tumor stroma to create a tumor-promoting microenvironment (47). Therefore, the immune features of high-RS cases were warranted for further research. In summary, few studies demonstrated the molecular mechanism and the immune correlation of the five cytokines within our risk signature. Although the underlying mechanisms were not able to be revealed in this study, our present results suggested that these CAF-secreted cytokines might be worth exploring further.

Notably, the heterogeneities of CAFs existed in BC, which might impact the sensitivity of the CAF-related prognostic signature. Pietras et al. classified breast CAFs into three different subtypes, which were named vCAFs, mCAFs, and dCAFs, based on ScRNA-Seq of CAFs isolated from the mice model (48). All these CAF subtypes correlated to distinctive functional programs and acted as independent prognostic factors of BC (48). Furthermore, Costa et al. identified four subsets of CAFs in BC, which were referred to as CAF-S1, CAF-S2, CAF-S3, and CAF-S4 (23). CAF-S1 might promote an immunosuppressive environment in the triple negative BC (TNBC) and was characterized with a poor prognosis (23). A recent study indicated two main CAF subpopulations in breast tumors, where their ratio is associated with disease outcome and is particularly correlated with genomic variations in TNBC (49). In addition to driver mutations, the expression level of TP53 was also found to be correlated with the activation of specific CAF subtypes (50). In summary, these findings suggested complex interactions among CAF subtypes, tumor cell mutation, and the expression of driver genes. The use of the computational methods in bulking sequencing data might not work effectively in the discrimination of heterogenous CAFs, but the widely used single-cell sequencing would improve the specificity and robustness of the cytokines-based signature in future studies.

In conclusion, our results demonstrated that the five-cytokine signature was associated with clinical outcomes, tumor cell proliferation program, immune cell activation, and genomic alterations in BC. Our data suggested that the RS level derived from the five-cytokine signature could serve as a predictive indicator for BC prognosis, and these findings might provide insights to develop novel treatment strategies for BC.
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Supplementary Figure 1 | Inferring CAF proportion scores in TCGA BC data using three algorithms and screening CAF-related cytokines. (A) The consistency among the CAF proportion scores of three algorithms, which were indicated by Spearman rank correlation analysis. (B, C) The CAF-related cytokines were estimated according to the three algorithms.

Supplementary Figure 2 | Prognostic features of five cytokines in the risk signature. (A) Kaplan‐Meier survival analysis of the five cytokines that were included in the risk signature using median cutoff expression level in the TCGA BC dataset. (B) A drop-out model was used to test the robustness of the prognostic relevance. The exclusion of EDIL3, IL16, PTN, and TAC1 could weaken the ability of predicting the prognosis, but the exclusion of GRP might lead to overfitting. P values indicated by log-rank test.

Supplementary Figure 3 | The association of five-cytokine signature status with immune cells in TME. (A, B) Constructed risk signature–immune cell network in TCGA (A) and METABRIC (B) cohorts, respectively. (C) The differential expression level of resting mast cells in high- and low-RS groups within two datasets. (D, E) The relevance between GSVA pathway clusters and driver mutations in TCGA and METABRIC datasets. P value, Wilcoxon rank sum test. ***P < 0.001 and **P < 0.01. n.s., non-significant.

Supplementary Figure 4 | Prognostic relevance of PIK3CA, CDH1, and TP53 mutations in BC. (A, B) Kaplan‐Meier survival analyses on PI3KCA and CDH1 mutated patients in TCGA and METABRIC datasets. (C) Survival analyses on BC cases harboring TP53 mutations in three datasets. P value suggested by log-rank test.

Supplementary Figure 5 | The relationships between five-cytokine signature status and genomic and epigenomic alterations. (A) The prognostic relevance of WGD events in the TCGA BC dataset. (B) The shorter WGD timing (see Methods) was revealed among high-RS cases in the TCGA OV dataset. (C) Survival analysis indicated poor clinical outcomes of OV cases with WGD events. (D) The comparison of microsatellite instability (MSI) and microsatellite stable (MSS) based on five-cytokine signature status in TCGA cohort. (E) The comparison of DNA methylation status based on the five-cytokine signature in METABRIC cohort. ***P < 0.001.


Supplementary Table 1 | Characteristics and detailed information of included datasets.


Supplementary Table 2 | The ligand–receptor pairs of the five cytokines according to the annotation of CellTalker R package.


Supplementary Table 3 | The results of correlation analysis between cytokines and inferred  CAF proportions among three algorithms (P < 0.05).


Supplementary Table 4 | The results of Cox proportional hazards model among 106 candidate cytokines.
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Background

Suppression of tumorigenicity 5 (ST5) has been considered as a tumor suppressor gene in HeLa tumor cells. However, its role in the progression of breast cancer remains vague.



Methods

Online database analysis was determined by Oncomine and Breast Cancer Gene-Expression Miner v4.4 (bc-GenExMiner v4.4). Tumor biology behaviors were measured by MTT assay, wound healing model, Transwell and Flow cytometry assays. Methylation-specific PCR (MSP) was employed to detect promoter methylation.



Results

Low level of ST5 was observed in breast cancer specimens, particularly in recurrent, invasive breast cancer cases compared to para-carcinoma tissue or non-invasive breast cancer. The downregulation of ST5 was also proved in MDA-MB-231 and SKBR3 cell lines with a high invasive capability as compared to MCF-7 cell with a low invasive capability. ST5 was negatively associated with pathological stages of breast cancer. ST5-downregulation promoted, while ST5-upregulation inhibited the progression of cell proliferation, cell cycle and migration of MDA-MB-231 cells. Additionally, ST5 knockdown inhibited, whereas ST5 overexpression promoted apoptosis of MDA-MB-231 cells. However, ST5 modification, either upregulation or downregulation, had no significant impact on tumor behaviors of MCF-7 cells. Mechanistically, ST5 protein ablation activated, while ST5-upregulation repressed the activities of phosphorylated ERK1/2 and JNK, and subsequently the expression of c-Myc. PD98059-mediated ERK1/2 inhibition abolished the stimulatory effects of ST5-depletion on ERK1/2/JNK/c-Myc signaling axis, and ST5 depletion-mediated cell over-proliferation and migration. Of note, ST5 reduction in invasive breast cancer cells should implicate in the hypermethylation of ST5 promoter region.



Conclusion

Our findings suggest that ST5 potentially acts as a tumor suppressor gene in invasive breast cancer through regulating ERK/JNK signaling pathway and provide a novel insight for breast cancer treatment.
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Introduction

Breast cancer is the leading cause of cancer deaths among women worldwide (1). According to the statistics, more than one million women are diagnosed with breast cancer every year in the world (2). Based on the status of estrogen receptor (ER), progesterone receptor (PR) and receptor tyrosine-protein kinase erbB-2 (HER2), breast cancer is classified as Luminal A, Luminal B, HER2-positive (HER2-E) and triple-negative breast cancer (TNBC) subtypes (3). Although the endocrine therapy is the preferred treatment and has a better therapeutic effect for hormone receptor-positive breast cancer, quite a few hormone receptor-positive patients will develop either primary or secondary drug resistance (4). Additionally, most metastatic breast tumor patients, such as patients with TNBC subtype, has poor prognosis and high recurrence rate (5). Currently, there remains plenty of challenges for treating highly malignant and invasive breast cancer due to lacking of well-defined molecular targets.

Suppression of tumorigenicity 5 (ST5), also known as DENND2B, is a member of DENN protein family which is localized to chromosome 11p15.2 (6). DENN protein family presents significantly differential expression between normal and tumor cells (6–8). Actually, accumulating evidence indicate that ST5 is a tumor suppressor (9, 10). ST5 gene can encode cleavage ST5 protein P70 (70kD) and P82 (82kD), and the full length of ST5 protein (126kD, P126) (11). In comparison to normal ovarian epithelial cells, ST5 is down-regulated in ovarian carcinoma cells, which upregulation notably inhibited tumor cells growth (12). Exogenous ST5 suppresses tumor formation and growth of Hela cells-bearing mice in vivo (9), and this inhibition effect is correlated with the elevation of cleavage ST5 (P70), but not P126 (13). Moreover, combined with microarray gene chip study, the significant elevation of ST5 (P126kD) in uterine leiomyoma is observed compared to that in normal myometrium (14). Therefore, abnormal expression of ST5 exists in a variety of tumor types. DNA promoter methylation profiles are the most common epigenetic modification of tumor suppressors in breast cancer (15). Actually, hypermethylation of DENN family was observed in several tumor types, which facilitates the tumor progression (16, 17). However, the methylation state of ST5 promoter region and expression pattern of ST5 in breast cancer remains vague.

The full length ST5 protein (P126) stimulates mitogen-activated protein (MAP) kinase activation in response to epidermal growth factor (EGF) (18). ST5 can activate Ras/ERK signaling in the presence of EGF, contributing to β-cell proliferation (19). A multi-domain adaptor protein intersectin-s can integrate DENND2B (ST5) to promote the recycling of ligand-free epidermal growth factor receptor (EGFR) to the cell surface that is a reoccurring theme in cancer cell growth (20). It is also confirmed that ST5 could interact with Rab13, leading to the promotion on migration, invasion and tumorigenicity phenotype of normal breast epithelial cells MCF-10A (21). The results suggest that ST5 may be involved in the regulation of tumor behavior processes such as proliferation and metastasis in gynecological oncology, but the specific function and the underlying mechanism of ST5 in breast cancer still need more deeply investigations.

Herein, we analyzed the expression pattern of ST5 in breast cancer specimens and explored its biological function in breast cancer cells with a low-invasive or high-invasive capability. ST5-mediated the downstream signaling transduction was also determined. Additionally, we investigated the association between ST5 expression and promoter methylation in breast cancer cells with high-invasive capability. Collectively, our data illustrate that ST5 potentially acts as a potent tumor suppressor in the metastatic progression of breast cancer, but had a slight impact on tumor behaviors in breast cancer cells with a low-invasive capability.



Materials and Methods


Online Database Analysis

This work was approved by internal review board for ethical issues of the First Affiliated Hospital of Xiamen University. The differential expression of ST5 in different subtypes of breast cancer tissues, and the association between ST5 status and tumor stage (SBR standard classification), were determined using the Breast Cancer Gene-Expression Miner v4.4 (bc-GenExMiner v4.4). The expression of ST5 in patients with no recurrence and recurrence, patients with ductal breast cancer and invasive breast cancer, was assessed by using Oncomine database.



Cell Culture and Treatment

The normal mammary epithelial cell line (MCF-10A), ER-positive breast cancer cell (MCF-7), adriamycin resistant MCF-7 cells (MCF-7/ADR), ER-negative cell line (MDA-MB-231), and ER/PR-positive and Her2-negative breast cancer cell lines (SKBR3) were purchased from American Type Culture Collection (ATCC). MCF-10A cells were cultured in Dulbecco’s modified eagle medium (DMEM)/F12 (1:1) medium supplemented with 5% horse serum (16050-122; Invitrogen, USA), 10 μg/ml insulin (I-1882; Sigma, USA), 20 ng/ml epidermal growth factor (EGF; SRP3027; Sigma, USA), 100 ng/ml cholera toxin (C-8052; Sigma, USA), 0.5 μg/ml hydrocortisone (H-0888; Sigma, USA). MDA-MB-231 and SKBR3 cells were incubated with RPMI 1640 (SH30809.01; Hy Clone, USA) and MCF-7 were cultured in Dulbecco’s modified eagle medium (DMEM) (SH30022.01; HyClone, USA) and supplemented with 10% fetal bovine serum (FBS; SH30070.03; HyClone, USA). MCF-7/ADR cells were maintained in RPMI-1640 medium supplemented with 10% FBS and 1 μM doxorubicin. All cells were incubated in a humidified incubator containing 5% CO2 at 37°C. For the treatment of methylation inhibitor, MDA-MB-231 cells were exposed to 10 μM and 20 μM of 5-aza-2’-deoxycytidine (5-Aza) (Sigma-Aldrich, USA) in DMSO or DMSO alone for 72 h. For the treatment of MEK inhibitor, siST5-transfected MDA-MB-231 cells were exposed to 10 μM ERK inhibitors (PD98059, HY-12028, MCE, US) for 24 h. After the initial 5-aza-dC treatment or PD98059, cells were subjected to the subsequent experiments.



Cell Transfection

Briefly, the CDS fragment of ST5 (126kD, P126) was inserted into pEGFP-C1 plasmid. Control pEGFP-C1 vector and recombinant pEGFP-C1-ST5 plasmids were transfected into MDA-MB-231 and MCF-7 cells using the TurboFect transfection reagent (R0531; Thermo Fisher Scientific, USA). At 24 h post-transfection, cells were harvested for further investigation. For RNA interfere (RNAi)-mediated depletion of ST5, cells were transfected with negative control siRNA (siNC) or siST5 (sequence) using the TurboFect transfection reagent. At 72 h post-transfection, cells were used for subsequent experiments.



Human Specimens and Immunohistochemical Staining

Human breast cancer tissues were collected from the First Affiliated Hospital of Xiamen University. Clinicopathological characteristics of Breast Cancer patients were presented in Table 1. Human breast cancer tissue chips or purchased from OUTDO BIOTECH (Shanghai, China). A signed informed consent form was obtained from all subjects, and this study was approved by the ethics committee of the First Affiliated Hospital of Xiamen University (2016XMU-BIO-77). Tissue chips and tissue sections were dewaxed in xylene solution, and hydrated in graded ethanol solutions. After antigen retrieval using high pressure method, the sections were incubated with 0.3% H2O2 for 20 min. Then, sections were incubated overnight with a primary antibody against ST5 (ab187759, Abcam, UK). The next day, the sections were hybridized with the secondary antibody and subjected to chromogenic reaction using DAB reagent (1:50). The staining intensity and the number of positive cells in the tissue chip, which were analyzed using the Image Pro Plus software v6.0 (Media Cybernetics, Inc., Maryland, USA) (negative: –; weakly positive: +, <20%; middling positive: ++, 20%–50%; strongly positive: +++, >50%). Tumors were categorized as “Low” or “High” grade based on relative ST5 expression according to the staining intensity (++ and +++ were defined as High, - and + were defined as Low). Relative staining intensity was evaluated by three independent pathologists.


Table 1 | Chi-squared analysis of contingency tables between ST5 status and clinicopathological characteristics of Breast Cancer patients.





MTT Assay

MDA-MB-231 and MCF-7 cells transfected with pEGFP-C1 vector, recombinant pEGFP-C1-ST5 and small interfering RNAs were seeded into 96-well plates at a density of 2 x 103 cells/well, and cultured for additional 24 h, 48 h and 72 h. After incubation, 10 μL MTT (Sigma-Aldrich, USA) was added to the medium and incubated for another 4 h. Then, OD values were measured at the wavelength of 492 nm using a Multiscan plate reader (MK3, Thermo, USA).



Flow Cytometry

All group cells were seeded in 6-well plates at a density of 5 × 105 cells/well. For cell cycle detection, cells were digested with trypsin without Ethylene Diamine Tetraacetic Acid (EDTA). After fixing with 1ml 70% ethanol overnight, cells were centrifugated and the cell pellets were stained with 2 μl 50ug/ml PI and 1 μl 100μg/mL RNase A for 30 min at 4°C in darkness. Subsequently, cells were analyzed by Flow cytometry. For cell apoptosis assay, the digested cells were stained with Annexin V-APC Apoptosis Detection Kit according to the manufacturer’s protocols (KeyGEN, Nanjing, Jiangsu, China). Then the apoptosis rates were detected using a flow cytometer.



Migration Assay

Wound healing and Transwell experiments were employed to determine the migration ability of MDA-MB-231 cells. For wound healing assay, a linear wound was sketched with the pipette tip after cells reached a confluency of 90%-95%. Then cells were incubated in serum-free medium for 24 h and 48 h. Cells were then photographed at different time points and the migration rate was calculated by measuring the wound area. The wound areas at 0 h and 48 h were calculated by Image Pro Plus software. The healing rate was calculated using the formula: [wound area (0 h) - wound area (48 h)]/wound area (0 h). The transwell assay was also used to assess migration ability. Cells were plated into Transwell upper chamber at a density of 1x105 cells/chamber (Millipore, Germany), and cultured with fresh medium without FBS. The lower chamber was surrounded with 600 μl of 10% FBS. After incubation for 12 h, cells on the upper chamber were wiped off and fixed for 30 minutes with ethanol. Then cells were stained with 0.1% crystal violet for 20 minutes after washing with PBS buffer for twice. Then, the migrated cells was calculated using a microscope (OLYMP®S, IX51, Japan).



Quantitative Real-Time PCR

Total RNA was isolated utilizing TRIzol reagent (Roche, Indianapolis, IN, USA) according to manufacturer’s protocol. 1 μg total RNA was reversely transcribed into cDNA with All-in-One First-Strand cDNA Synthesis Kit (Transgene, China). Then, quantitative real-time PCR was performed using the SYBR Green kit (Roche, Indianapolis, IN, USA). GAPDH was served as the internal control. Relative gene levels were calculated using the 2–ΔΔCt method.



Western Blotting

Total protein was extracted from MDA-MB-231 and MCF-7 cells using RIPA buffer. Primary antibodies against extracellular signal-regulated kinase (ERK)1/2 and c-Myc were obtained from Santa Cruz Biotechnology (California, USA). Phosphorylated ERK1/2 and c-Jun N-terminal kinase (JNK)/p-JNK antibodies were purchased from Cell Signaling Technology (Boston, USA). ST5 antibody was purchased from Abcam BioTech. GAPDH (Sangon Biotech, Shanghai, Chian) and Tublin were served as the internal control. Grey scale intensity of the immunoblots was analyzed using Quantity One analysis software (Bio-Rad, California, US).



DNA Methylation Determination

Bisulphite conversion of DNA samples from MDA-MB-231 cells was performed using the EZ DNA Methylation™ Gold Kit (ZYMO RESEARCH, USA) according to the manufacturer’ s instructions. After that, 2 μL of the eluted DNA was subjected to PCR under the following conditions: 98°C for 10 min, 53°C for 30 min, 53°C for 6 min, followed by 8 cycles at 37°C for 30 min, and 4°C storage. The primer sequences for methylation-specific PCR (MSP) were presented in Table S1. Then, the reaction products were detected by agarose gel electrophoresis.



Statistical Analyses

All experiments were independently performed at least three times using independent samples. The number of ST5-positive cells and migrated cells were measured on the basis of at least five horizons by three independent researchers. Quantitative analysis of western blotting data, wound healing rate and apoptotic rate were performed using the GraphPad Prism 6.0 software with a two-tailed Student’s t-test. MTT assay data was analyzed by GraphPad Prism using two-way analysis of variance (ANOVA). Statistical analysis of clinical correlation was performed by the Cochran-Mantel-Haenszel and Chi-squared tests. Values have been presented as mean ± standard error of mean (SEM). Statistically significant differences were received at P < 0.05.




Results


ST5 Is Reduced in Breast Cancer Specimens

To investigate the role of ST5 in breast cancer, ST5 gene expression was firstly analyzed in different subtypes of human breast cancer tissue and normal breast tissue using the bc-GenExMiner. Results demonstrated a lower level of ST5 expression in multiple molecular subtypes of breast cancer tissue, including Luminal B subtype (n=667), Luminal A subtype (n=1,595), HER2-E subtype (n=641) and Basal-like subtype (n=625), than in normal breast tissue (n=839) (P < 0.01) (Figure 1A). Based on the immunohistochemical staining (IHC) results, a higher expression of ST5 in para-carcinoma tissues (P) than in paired tumor tissues (T) was observed (Figure 1B). After assessing the difference in protein level of ST5 between human breast cancer tissues and their corresponding normal breast tissues, results showed that ST5 level was observably declined in tumor samples (T) compared to that in paired normal breast tissue samples (P) (Figure 1C). Among these clinical tissue samples (n=12), mRNA expression approximately 58% of the tumor tissues (7/12) presented extremely low level of ST5 mRNA as compared with their matching normal tissues (Figure 1D). Taken together, these findings demonstrate that ST5 status is decreased in human breast cancer specimens.




Figure 1 | Evaluation of ST5 expression in human breast cancer specimens. (A) ST5 gene expression as analyzed by using the bc-GenExMiner in different subtypes of human breast cancer tissues and normal breast tissues (n=839). The subtypes of human breast cancer included Luminal B subtype (n=667), Luminal A subtype (n=1,595), receptor tyrosine-protein kinase erbB-2 (HER2)-E subtype (n=641) and Basal-like subtype (n=625). ** indicated different subtypes of breast cancer vs. normal. (B) Immunohistochemical staining of ST5 in human breast cancer samples and its corresponding adjacent tissues. Scale bar: 50μm. Protein expression (n=5) (C) and mRNA level (n=12) (D) of ST5 in human breast cancer tissues and its paired para-carcinoma tissues were measured by Western blotting and qRT-PCR, respectively. P, para-carcinoma tissues; T, tumor tissues. **P < 0.01.





ST5 Is Lowly Expressed in Invasive Breast Cancer

Next, the correlation between the expression of ST5 and tumor stage (SBR standard classification) was analyzed. Combined with the results from the bc-GenExMiner v4.4 database, a significant negative correlation between ST5 status and tumor stage was verified, where patients with a higher tumor stage (SBR3) had lower ST5 expression (Figure 2A). Uniformly, in the results of IHC assay, patients with advanced grade (grade II and grade III) always presented low ST5 expression compared to patients with early grade tumors (grade I) (Figure 2B). Based on the staining intensity of ST5 using microarray, 33 out of 58 breast cancer patients presented low protein level of ST5 (- and +) and 26 out of 58 presented high level of ST5 (++ and +++). Correlation analysis indicated that ST5 status had no correlation with the clinicopathological characteristics of patients, including sex, age and tumor diameter. However, patients with advanced grade (grade 2: G2 and grade 3: G3) always showed low ST5 expression compared to patients with early grade tumors (G1) (P = 0.0397) (Table 1). Additionally, in comparison to patients with no recurrence (n=89), lower ST5 was also authenticated in recurrent breast cancer patients (Figure 2C). In addition to that, based on the Oncomine database, there showed a notable decline in ST5 status in invasive ductal/lobular breast carcinoma (n=3 and 105) as compared to non-invasive ductal/lobular breast cancer patients (n=105 and 9) (Figures S1A, B). In the database of Nikolsky Breast, the decrease of ST5 copy number was also observed in invasive ductal breast carcinoma (n=5) by contrast to non-invasive ductal breast cancer specimens (n=133) (Figure S1C). These phenotypes also were confirmed in in vitro assays. As shown in Figure 2D, ST5 level was very low in breast cancer cells, such as MCF-7/ADR, MDA-MB-231 and SKBR3 cells compared to that in normal breast cells (MCF-10A), and ST5 status showed more lower in cell lines with a high invasive capability (SKBR3 and MDA-MB-231) (Figure 2D). Moreover, the mRNA expression of ST5 was notably decreased in breast cancer cells compared to that in normal MCF-10A cells, indicating lower ST5 levels in invasive cell lines (MDA-MB-231: a 50% fall; SKBR3: a 85% fall, P = 0.0001) than those in MCF-7 cells with a lower invasive capability (a 25% fall) (Figure 2E). The data indicate low level of ST5 may most likely be observed in invasive breast cancer specimens.




Figure 2 | Expression analysis of ST5 in different breast cancer specimens and cells. (A) Analysis of ST5 expression status in different tumor grades according to Scarff Bloom and Richardson (SBR) classification as determined by using bc-GenExMiner v4.4. ** indicated SBR1 or SBR3 vs. SBR2 and SBR3 vs. SBR1. (B) Immunohistochemical staining using ST5 primary antibody in different pathological grades (Grade I, II and III) of human breast cancer tissue (tissue microarray). Scale bar, 50 μm. The brown areas indicated ST5-positive cells. (C) Differential expression of ST5 in non-recurrent or recurrent breast cancer patients in Esserman Breast using Oncomine database. * indicated Recurrence vs. No recurrence. (D) Protein level of ST5 in MCF-7, MCF-7/ADR, MDA-MB-231, SKBR3 cells and normal breast cells (MCF-10A) were determined by Western Blotting. MCF-10A, normal mammary epithelial cell line; MCF-7, ER-positive breast cancer cell; MCF-7/ADR, adriamycin resistant MCF-7 cells; MDA-MB-231, ER-negative cell line; SKBR3, ER/PR-positive and Her2-negative breast cancer cell lines. (E) Transcriptional level of ST5 in MCF-7, MDA-MB-231, SKBR3 cells and MCF-10A were determined by qRT-PCR. * indicated MCF-7 vs. MCF-10A and MDA-MB-231 or SKBR3 vs. MCF-7. *P < 0.05; **P < 0.01.





ST5 Affects Cell Viability and Migration of Invasive Breast Cancer Cells

To assess the cellular functions of ST5, cell proliferation and migration assays were performed in MDA-MB-231 (invasive cell line) and MCF-7 cells (cells with a lower invasive capability) transfected with exogenetic ST5 and siRNAs targeting ST5. Results showed a robust suppression of cell viability in the ST5 overexpressing group compared with that in the control vector group from days 3 to 4 (Figure 3A), while RNAi-mediated knockdown of ST5 resulted in the upregulation of cell viability on day 3 (P < 0.05), and day 4 (P < 0.01) in the ST5-knockdown group compared to that in the cells transfected with negative control siRNA group (Figure 3A). The expression of ST5 in ST5 overexpressing or ST5-knockdown cells were verified by WB (Figure 3B). In the Wound Healing experiment, according to the changes of wound area, the healing rate notably reduced by 21% at 48 h (P < 0.01) post-wounding in the ST5 group compared to that in the vector group (Figures 3C, E). Moreover, ST5 depletion increased by 20% at 48 h (P < 0.01) in wound healing rate as compared to that in the control cells (Figures 3D, E). Additionally, in the Transwell assay, a 50% reduction (P < 0.01) in the number of migratory cells following overexpression of ST5, in contrast to a 30% increase (P < 0.05) in the number of migratory cells observed in ST5-depleted cells, as compared with the corresponding control cells (Figures 3F, G). However, forced expression of ST5 or ablation of ST5 had no effect on cell viability and migration in MCF-7 cells compared to the corresponding control cells (Figures S2A, D). Thus, these results indicate a potential anti-neoplastic effects of ST5 on invasive breast cancer cells.




Figure 3 | Effect of ST5 on cell proliferation and migration of MDA-MB-231 cells. MTT assay was performed to measure the growth ability of MDA-MB-231 cells transfected with control plasmid (Vector) and ST5-overexpressing plasmid (ST5) and MDA-MB-231 cells transfected with negative control siRNA (siNC) and siRNA targeting ST5 (siST5) (A). (B) The verification of transfection efficiency of ST5 overexpressing plasmid or knockdown siRNA as detected by Western Blotting. Images of wound healing in Vector and ST5 group (C), siNC and siST5 group (D) before and after wound healing for 48 h Scale bar, 200μm. (E) Healing rates in MDA-MB-231 cells transfected with Vector, ST5, siNC or siST5 as analysed by using Image Pro Plus software (version 6.0). (F) Cell migration was determined using Transwell assay and the migrated cells were stained by 0.1% crystal violet for 20 minutes. Scale bar, 50μm. (G) The number of cells migrated to the lower chamber as calculated by using Image Pro Plus software. * indicated cells transfected with ST5-overexpressing plasmid or siST5 vs. Vector or siNC, respectively. *P < 0.05; **P < 0.01.





ST5 Induces Cell Cycle Arrest and Apoptosis in Invasive Breast Cancer Cells

Next, flow cytometry analysis was employed to determine the impact of ST5 on cell cycle and programmed cell death. As shown in Figure 4A, forced expression of ST5 in MDA-MB-231 cells decreased the number of S phase cells by 10% (P < 0.01) (Figures 4A, B), while ST5 ablation increased the proportion of S phase cells by 7% (P < 0.01) compared to that in siNC group (Figures 4C, D). Based on the apoptosis assay, approximately a 5.6% increase in the proportion of apoptotic cells was observed in (P < 0.01) in ST5-overexpressing cells (Figures 4E, G). Conversely, knockdown of ST5 markedly reduced the proportion of apoptotic cells by 11.5% (P < 0.01) (Figures 4F, H). In MCF-7 cells, either ST5 upregulation or downregulation did not affect cell cycle progression (Figures S3A, B) and programmed cell death (Figures S3C–F). Accordingly, our data demonstrate that ST5 moderately abrogates the DNA synthesis, resulting in cell cycle arrest and a subsequent increase in apoptosis.




Figure 4 | Effect of ST5 on cell cycle and apoptosis of MDA-MB-231 cells. (A) Cell cycle progression was analysed in MDA-MB-231 cells transfected with Vector and ST5 plasmids. (B) Quantitative analysis of the proportion of phase S cells in panels (A, C) Cell cycle progression was analysed in MDA-MB-231 cells transfected with negative control siRNA and ST5-siRNA (siST5). (D) Quantitative analysis of the proportion of phase S cells in panel (C) The effect of ST5-upregulation on cell apoptosis (E) or effect of ST5-downregulation on cell apoptosis (F) were analysed by flow cytometry. Quantitative analysis of the proportion of apoptotic cells in the vector and ST5 groups (G) and in the siNC and siWDR41 groups (H) was presented. * indicated cells transfected with ST5-overexpressing plasmid or siST5 vs. Vector or siNC, respectively. *P < 0.05, **P < 0.01.





ST5 Inactivates the Activation of ERK/JNK Signaling Pathway

Consequently, the signaling cascade affected by ST5 in invasive breast cancer cells was verified. As shown in Figure 5, overexpression of ST5 restrained the phosphorylation of ERK1/2 and JNK, and decreased the expression c-Myc (Figures 5A, B). However, ablation of ST5 significantly promoted the activation of ERK1/2 and JNK, and the expression of c-Myc (Figures 5A, B). Of note, ST5 downregulation-mediated the activation of MAP kinases ERK and JNK, and the elevation of c-Myc protein, were notably depressed in the presence of PD98059, an inhibitor of MEK (ERK1/2) (Figures 5C, D). The exposure of PD98059 did not affect the level of ST5 (Figure 5C). To make sure that the ERK pathway mediated the effect of ST5 on cancer progression, MTT and Transwell experiments were also conducted in ST5-depleted cells under the condition of PD98059. As shown in Figure 5E, RNAi-mediated knockdown of ST5 significantly reduced cell viability on day 3 (P < 0.01), and day 4 (P < 0.01) in the ST5-knockdown group compared to that in the cells transfected with negative control siRNA group (Figure 5E), while PD98059 addition in ST5-knockdown group notably abrogated ST5 knockdown-mediated cell over-proliferation on day 3 (P < 0.05), and day 4 (P < 0.01) (Figure 5E). Additionally, a 50% increase (P < 0.01) in the number of migratory cells ST5-depleted cells, whereas a 32% reduction (P < 0.01) in the number of migratory cells following the challenge of PD98059 in ST5-depleted cells, in contrast to that observed in ST5-depleted cells (Figures 5F, G). Overall, ERK/JNK signaling pathway was negatively regulated by ST5 in invasive breast cancer cells. Possibly, the potential anti-tumor effects of ST5 on invasive breast cancer cells depends on ERK/JNK signaling pathway.




Figure 5 | Regulatory mechanism of ST5-mediated tumour inhibition. (A) The activation of extracellular signal-regulated kinase (ERK)1/2 and c-Jun N-terminal kinase (JNK), and the expression of c-Myc and ST5 were detected by western blotting in ST5-depleted and ST5-overexpressed MDA-MB-231 cells. (B) Relative quantification of phosphorylated ERK1/2 and JNK, and c-Myc expression in panel (A) * indicated cells transfected with ST5-overexpressing plasmid or siST5 vs. Vector or siNC, respectively. (C) MDA-MB-231 cells were transfected with siRNA of ST5 alone or the combination of siRNA of ST5 and 10 μM PD98059. The activation of ERK1/2 and JNK, and the expression of c-Myc were detected by western blotting after upregulation of ST5 in MDA-MB-231 cells. (D) Relative quantification of phosphorylated ERK1/2 and JNK and c-Myc in panel (C, E) MDA-MB-231 cells were transfected with siRNA of ST5 alone or the combination of ST5-siRNA and 10 μM PD98059. Subsequently, MTT assay was performed to measure the cell viability. (F) MDA-MB-231 cells were transfected with ST5-siRNA or the combination of ST5-siRNA and 10 μM PD98059. Cell migration was determined using Transwell assay and the migrated cells were stained by 0.1% crystal violet for 20 minutes. Scale bar, 25μm. (G) The number of cells migrated to the lower chamber as analysed by using Image Pro Plus software. *, siST5 or siST5+PD98059 vs. siNC or siST5+DMSO, respectively. *P < 0.05, **P < 0.01.





Hypermethylation of ST5 Promoter Region Affects Cell Viability and Migration of Invasive Breast Cancer Cells

Gene expression is always regulated by epigenetic changes. Then, the methylation level of the ST5 promoter region in MDA-MB-231 cells was determined by methylation-specific PCR with five pairs of primers that were designed using the MethPrimer method (Table S1). MSP data indicated that hypermethylation of ST5 promoter was found in the MDA-MB-231 cells (Figure 6A). To investigate whether promoter methylation of ST5 affected its protein expression, the protein level of ST5 in breast cancer cells was detected using 5-aza-dC, an inhibitor of DNA methylation. An increase in 5-aza-dC dosage (10 μM and 20 μM) affected the expression of ST5 in MDA-MB-231 cells (Figure 6B). As shown in Figure 6C, 5-aza-dC-challenged cells appeared an increase of ST5 expression, while ST5 siRNA transfection notably reduced the expression of ST5 in 5-aza-dC-exposed cells (Figure 6C). Interestingly, the cell viability of MDA-MB-231 cells were inhibited by the exposure of 20 μM methylation inhibitor from day 2 to day 4. By contrast, once ST5 was knocked down, 5-aza-dC-mediated proliferation inhibition was notably reversed on days 3 and 4 (Figure 6D). In the Transwell assay, a 60% reduction (P < 0.001) in migration cell number following 5-aza-dC treatment was observed, as compared with the corresponding control cells. However, under the treatment of 5-aza-dC, the number of migration cells in ST5-depleted group was notably higher than that in negative control-transfected cells (Figures 6E, F). Actually, 5-aza-DC treatment appeared to demethylate many genes including ST5, resulting in the elevation of ST5 and other protein levels. But, 5-aza-dC-mediated the increase of ST5 protein, following by the proliferation inhibition, was significantly abolished by siRNA-mediated the downregulation of ST5 protein. Possibly, promoter methylation-mediated the decline of ST5 was involved in the progression of tumor metastasis in breast cancer cells.




Figure 6 | Methylation level of the ST5 promoter region in MDA-MB-231 cells. (A) Methylation-specific PCR (MSP) was performed to measure the methylation level of ST5 in MDA-MB-231 cells. The number (one to five) indicated different primers used in methylation detection. (B) Protein expression of ST5 was evaluated by WB in MDA-MB-231 cells after treatment with different doses of 5-aza-dC or DMSO for 72 (h) Relative quantification of ST5 in 5-aza-dC-challenged cells as presented in the right. (C) MDA-MB-231 cells were exposed to 0 μM or 20 μM 5-aza-dC for 48 (h) Subsequently, 0 μM or 20 μM 5-aza-dC-challenged cells were transfected with negative control siRNA (siNC) or ST5-siRNA. Protein expression of ST5 as determined by WB. Relative quantification of ST5 as presented in the right. (D) MDA-MB-231 cells were transfected with negative control siRNA and siRNA targeting ST5. Subsequently, both cells were treated with 20 μM 5-aza-dC or DMSO for 72 h MTT assay was performed to measure the cell viability of MDA-MB-231 cells. (E) Transwell assay was performed to measure the cell migration of MDA-MB-231 cells treated with/without 20 μM 5-aza-dC in cells transfected with negative control siRNA and ST5-siRNA. (F) The number of migration cells as calculated by using Image Pro Plus software. M, methylation primer; UM, unmethylated primer. * indicated 20 μM 5-aza-dC-treated control cells vs. DMSO-treated control cells; # indicated 20 μM 5-aza-dC-treated siST5 group vs. 20 μM 5-aza-dC-treated control group; @ indicated 20 μM 5-aza-dC-treated siST5 group vs. DMSO-treated siST5 group. **, ##, @@, P < 0.01.






Discussion

Currently, a combination of surgery and chemotherapy or radiation therapy is the most common therapeutic method in clinic for breast cancer; however, poor prognosis and relapse still occur frequently in patients with distant metastases (22). Although advanced targeted cancer therapy and neoadjuvant therapy are constantly emerging, the therapeutic strategies and effects for metastatic breast cancer are limited clinically (23–26). Therefore, it is of great significance to search for more specific molecular targets for treating metastatic breast cancer. ST5 shows differentially expression in tumorigenic and nontumorigenic somatic cell hybrids of Hela cells, implying ST5 may affect tumorigenesis (9). In the present study, ST5 was lowly expressed in invasive breast cancer. ST5 upregulation abolished tumor migration of breast cancer cells and hypermethylation-caused the decline of ST5 may implicate in the metastatic progress of breast cancer. Probably, ST5 acts as a potential therapeutic target for metastatic breast cancer.

ST5 is differential expression in several gynecological oncology (12, 14). The full length of ST5 (P126kD) robustly elevated in uterine leiomyoma as compared to normal myometrium (14). Here, the decline of full length ST5 (P126kD) was observed in human breast cancer, particularly in invasive breast cancer cells. However, the data does not detect the alterations of the other two variants of ST5 (P70 and P82) among these breast cell types. However, the finding firstly demonstrated that ST5 (P126kD) showed differential expression among normal mammary epithelial cells, non-invasive and invasive breast cancer cells. Interestingly, the high invasive capability cell line SKBR3, which is ER- and progesterone receptor (PR)-negative but HER2-positive, presented lower ST5 level than MDA-MB-231 cells. We suspected that the reason was as follows. On the basis of analysis results from bc-GenExMiner v4.4, ST5 status also appeared a significant decline in HER2-positive breast cancer patients (n=661) compared to that in HER2-negative patients (n=3582) (Figure S4). The data imply a potential negative association between HER2 and ST5 in breast carcinogenesis which still needs to study further. Additionally, in this study, ST5 expression status was not associated with clinical characteristics of breast cancer subjects including gender, age and tumor diameter, but was negatively associated with the tumor grade. The data demonstrated that ST5 was gradually declined with tumor progression of breast cancer. However, ST5 expression trend in different tumor grade of metastatic breast cancer requires further confirmation.

The cleavage ST5 (P70kD) decreases tumorigenicity in HeLa cells, implying it may serve as a cancer suppressor gene (13, 27). Additionally, ST5 (P70kD) is correlated with decreased tumorigenic phenotype in mammalian cells, with a restoration in their transformed phenotype and contact-dependent growth (9, 28). The C-terminal region of ST5 (P126kD) binds and catalyzes the exchange of GDP to GTP of the Rab13 protein, contributing to promote metastatic behavior (21). Based on our present data, full length of ST5 (P126kD) also possessed the inhibition effect on biological behavior of invasive breast tumor cells. Thus, full length ST5 plays the opposite effect between invasive breast cancer cells and normal breast epithelial cell. However, ST5 did not affect the tumor behaviors of MCF-7 cells. We speculated that the reason might be due to the presence of ER that was expressed in MCF-7 cells, but not in MDA-MB-231 cells. Whether overexpression of ST5-mediated antitumor effect is prevented by the presence of ER in MCF-7 cells remains unclear.

ST5 is important for cellular signal cascades and the regulation of the transformed phenotype (29). Structurally, ST5 contains a group of GDP/GTP exchange region for Rab protein family and the mitogen-activated protein (MAP) kinase-activating death region which is verified as a interactant of TNF-alpha receptor (30, 31). The shortest form ST5 (P70) is related with low tumorigenicity and the longest ST5 (P126) can activate the MAP kinase ERK1/2 in response to epidermal growth factor (EGF) in cos-7 African green monkey fibroblast cells (32). The proline-rich region of ST5 isoform can recognize Src homology 3 (SH3) binding domains and MAP kinase phosphorylation sites (33–35), and participate in RAS/MEK2/ERK2 signaling cascade (28). Additionally, DENN/MADD, a multifunctional domain protein, interacts with JNK, activating MAPK/JNK pathway in Alzheimer’s disease (AD) pathogenesis (36, 37). Therefore, ST5-mediated intracellular signaling transduction has the involvement of ERK1/2/JNK pathway. In the present study, we observed that ERK1/2/JNK activation was obviously inhibited, followed by the decrease of c-Myc in MDA-MB-231 cells transfected with exogenous ST5, vice versa. Of note, ERK1/2 inhibition not only abolished the increase of c-Myc and the activation of JNK in ST5-depleted cells, but also rescued the stimulation of cell proliferation and migration caused by ST5 knockdown. Possibly, ERK1/2/JNK signal axis was the downstream of ST5 during the migration process of breast tumor cells. However, whether ST5-mediated the inactivation of ERK1/2/JNK signals involved in the exchange of GDP to GTP of the Rab protein family which is the main feature during metastatic behavior of cancer cells, remains to be explored in the future study.

Tumor suppressors are always repressed by diverse of factors, such as microRNAs, transcription factors, and DNA methylation, followed by the decline of tumor suppressors, resulting in tumor progression (38, 39). Similar to other cancer types, human breast cancer also exhibits a high number of epigenetic alterations in the genome, particularly in tumor suppressors (40). Methylation profiles can be used as clinical biomarkers to predict drug response and prognosis of breast cancer (41, 42). Of note, DNA methylation of tumor suppressors have become the effective biomarker for early diagnosis and disease progression monitoring in the invasive breast tumors (43–45). Among the DENN protein family, promoter hypermethylation-mediated the downregulation of DENND2D is associated with early recurrence of hepatocellular carcinoma and gastric cancer (16, 17). The previous research from our research group has revealed hypermethylated ST5 promoter region in gastric poorly differentiated adenocarcinoma, appearing low expression of ST5 in advanced gastric cancer (46). Herein, promoter region of ST5 was proved highly methylated in invasive breast cancer cells. And methylation inhibitor not only promoted ST5 expression, but also rescued tumor characteristics of MDA-MB-231 cells. However, methylation inhibitor-induced the increase of ST5 protein and the proliferation inhibition were partially reversed by siRNA-mediated the decline of ST5. Interestingly, knockdown of ST5 didn’t play a particularly significant acceleration role on cell viability in 5-aza-DC-challenged cells. It’s probably because 5-aza-DC appeared to demethylate many tumor suppressor genes, leading to decline sharply in cell viability. And the depletion of ST5 did not cover the anti-proliferative effects induced by the activation of other tumor suppressor genes. Possibly, epigenetic modification activating the expression of ST5 may be used as a potential therapeutic target for metastatic breast cancer.

The complexity of epigenetic modifications should not make us neglect the fact that other epigenetic regulatory mechanisms can also implicate in the reduction of ST5 in invasive breast cancer. Additionally, in comparison to other tumor suppressor, ST5 only mediates anti-tumor and anti-migration effects in TNBC cells with a high-invasive capability, but not in MCF-7 cells with a low-invasive capability. Possibly, the presence of ER, PR or HER2 prevents ST5-mediated the exchange of GDP to GTP in Rab protein family, resulting in the negative feedback of ST5 on tumor behaviors in MCF-7 cells.



Conclusions

In summary, we elaborated the anti-tumor role of ST5 in invasive breast cancer cells through regulating ERK1/2/JNK signaling pathway. Abnormal epigenetic modification causes the decline of ST5 expression, subsequently promoting breast tumor cell metastasis. Possibly, targeting epigenetic mechanisms and/or exogenous ST5 contribute to blocking the proliferation and the metastasis of breast cancer and may be used as a promising advanced therapeutic method for metastatic breast cancer.
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Background

Recent years, the global prevalence of breast cancer (BC) was still high and the underlying molecular mechanisms remained largely unknown. The investigation of prognosis-related biomarkers had become an urgent demand.



Results

In this study, gene expression profiles and clinical information of breast cancer patients were downloaded from the TCGA database. The differentially expressed genes (DEGs) were estimated by Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. A risk score formula involving five novel prognostic associated biomarkers (EDN2, CLEC3B, SV2C, WT1, and MUC2) were then constructed by LASSO. The prognostic value of the risk model was further confirmed in the TCGA entire cohort and an independent external validation cohort. To explore the biological functions of the selected genes, in vitro assays were performed, indicating that these novel biomarkers could markedly influence breast cancer progression.



Conclusions

We established a predictive five-gene signature, which could be helpful for a personalized management in breast cancer patients.
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Introduction

Breast cancer is the most common diagnosed cancer and the leading cause of cancer-related death in women across the world (1). According to the Cancer Statistics 2020, around 276,480 cases of female breast cancer were diagnosed in the US with the expectation of 42,170 deaths (2). Due to the early detection and the progression in diagnosis and treatments, the mortality rate of breast cancer had declined over the past decades (3). However, for the patients who progressed to metastasis or chemoresistance, the prognosis were still poor (4, 5). Thus, there was an urgent need for the construction of a reliable risk model to evaluate the prognosis of breast cancer patients and identify novel therapeutic targets for individual treatment.

Dysregulation of genes played crucial roles in various biological processes (6). For the limitation on the statistical property of single biomarkers, it was indicated by various studies that multigene signatures provided by systematic analysis could act as more accurate predictive biomarkers than the conventional clinicopathologic characteristics for the risk stratification (7, 8). The 21-gene Oncotype DX Breast Cancer Recurrence Score was developed to evaluate the risk of distant and local recurrence, and estimate the benefit of chemotherapy for the ER-positive breast cancer (9). The MammaPrint 70-gene signature has been proved to improve the prediction of clinical prognosis for early-stage breast cancer patients (10). The EndoPredict testing was composed of a 12-gene molecular score (MS) with the number of positive lymph nodes and tumor size to calculate a single score (EPclin) which was associated with distant recurrence (11). The Prosigna breast cancer assay based on PAM50 (Prediction Analysis of Microarray 50) provided a more valuable prognostic information than the commonly available pathological staging and histological grade (12). Therefore, the identification of novel multigene signatures played a critical role to ameliorate the prognosis of breast cancer patients and provide better treatment strategies for the high-risk population.

Over the past decades, in-depth gene sequencing and bioinformatics provided us the chance to identify novel diagnostic parameters and guide the individual treatment optimization for various illnesses (13–16). Gene expression microarray was an effective method to show large-scale data at genomic levels, and rapid progression of bioinformatics make it possible to mine more reliable biomarkers (17). The Cancer Genome Atlas (TCGA) was an open, public, large-scale database, which contains abundant raw data for cancer researches (18). In our present study, based on the mRNA expression profiles acquired from the TCGA databases, a prognosis‐associated gene signature was constructed by the LASSO Cox regression model (19, 20). Also, the selected biomarkers were proved to play central roles in breast cancer progression by in vitro assays.



Materials and Methods


Data Source

The mRNA expression profile of breast cancer patients used to identify the differentially expressed genes (DEGs) were derived from the TCGA databases (http://tcga-data.nci.nih.gov/tcga/) on October 1, 2018, which contained 113 normal breast tissues and 1,076 breast tumor tissues. A total of 1,076 patients with clinical information were enrolled in this study. TCGA databases were open-access and publicly available. The present study followed the data access policy and publishing guidelines. In total, 98 patients with pathologically confirmed breast cancer from July 2008 to December 2020 at Qilu Hospital, Shandong University (Jinan, China) were enrolled in the independent external validation cohort. All patients provided a written informed consent before their study entry.



The Selection of Differentially Expressed Genes

To identify the genes that are differentially expressed in breast cancer tissues and normal tissues, the raw data of mRNA expression were normalized. Gene counts were converted into TPM (transcripts per million mapped reads) values and log2-transformed. R package “limma” was then used to screen the differentially expressed genes (DEGs). The screening conditions for the differentially expressed genes used the following criteria: |fold change (FC)| > 3 and adjusted false-discovery rate (FDR) < 0.01 was applied to find the upregulated and downregulated mRNAs. R package “pheatmap” was used to draw the heatmap.



Functional Analysis

The Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were widely used methods for the systematic assessment of biological functional studies on high-throughput genomics data (21–23). In this study, functional enrichment analyses of the GO analysis and KEGG analysis were performed by FunRich, an open access, standalone tool for functional enrichment and network analysis (24). The molecular function, cellular component, biological process, and KEGG pathway of DEGs were estimated. The “ggplot2” package for R software was used to analyze the data.



Construction of Gene-Related Risk Model for Breast Cancer

The least absolute shrinkage and selection operator (LASSO) method was a commonly used method for regression with high-dimensional predictors (25). In this study, Lasso was used to obtain the most strongly survival-associated genes in the TCGA training cohort. The R packages “survival” and “glmnet” were applied to perform a lasso regression analysis. The mRNA-related gene signature was expressed as follows:


  (26).



Survival Analysis

We analyzed the overall survival of patients by the Kaplan-Meier method. The R package “survival” and “survminer” were applied to construct the Kaplan–Meier survival plots (the difference in survival rates among different groups was measured and p < 0.05 was considered significant in the survival analysis).



Cell Culture

The human breast cancer cell lines MDA-MB-231 and MDA-MB-468 used in this study were purchased from American Type Culture Collection (ATCC, Manassas, VA, USA), and routinely maintained in the DMEM/high glucose medium (Gibco-BRL, Rockville, IN, USA) with 10% fetal bovine serum (Haoyang Biological Manufacture, Tianjin, China), and 1% penicillin-streptomycin at a 37°C cell culture incubator with 5% CO2.



Transfection and Quantitative Real-Time PCR

Transfection was conducted with Lipofectamine 2000 (Invitrogen) following the protocol of the manufacturer. Generally, 5 × 105 cells were seeded into 6-well plates one day before transfection. When cells reached the 80% confluence, the plasmid DNA and Lipofectamine 2000 were diluted with the Opti-MEM I Reduced Serum Medium, respectively, and then mixed together. After incubating for 20 minutes at room temperature, the mixture was added into the plate drop by drop. After 24–48 h, the cells were used for further experiments.

TRIzol reagent (Invitrogen, Carlsbad, CA, USA) was used to extract RNA from 5 × 105 cells following the protocol of the manufacturer. Total RNA was finally suspended in 20 µL of RNase-free water. The purity and quality of the isolated RNA was evaluated by NanoDrop with A260/A280 ratio of 1.9–2.0. A total of 500 ng RNA was used to synthesize cDNAs using the PrimeScript reverse transcriptase reagent kit (TaKaRa, Shiga, Japan), according to the protocol of the manufacturer. qRT-PCR was performed with the Roche Light Cycler 480 II using the SYBR Premix Ex Taq I (TaKaRa, Japan). Each reaction contained 2 μL of cDNA in a total volume of 20 μL. Relative RNA abundances were calculated by the standard 2-ΔΔCt method after normalization to GAPDH. The specific primers used in the article are provided in Supplementary Table 1.



3-(4,5-Dimethyl-2-Thiazolyl)-2,5–Diphenyl-2H-Tetrazolium Bromide Assay

Cell proliferation assay was determined using MTT (Sigma, St. Louis, MO, USA) according to the instructions. MDA-MB-231 and MDA-MB-468 cells were plated into 96-well cell culture plates with at least three replicate wells for each group. Afterwards, 20 μL of MTT (5 mg/mL in PBS) was added to each well and incubated for another 6 h at 37°C. The supernatants were then aspirated carefully and 100 μL of dimethyl sulfoxide (DMSO) was added to each well. Absorbance values were measured using a Microplate Reader (Bio-Rad, Hercules, CA, USA) at 490 nm.



Colony-Formation Assay

EDN2, CLEC3B, SV2C, and WT1 overexpression cells and control cells were digested by trypsin and seeded in a 6-cm dish at a density of 1,000 cells/dish. MDA-MB-231 cells were cultured for 15 days, MDA-MB-468 cells were cultured for 30 days. Then, the clones were washed by PBS, fixed with methanol for 5 min, and stained with 0.1% crystal violet. Three independent experiments were performed for the same conditions.



Scratch Assay

After transfected with selected genes, MDA-MB-231 and MDA-MB-468 cells were seeded on a 24-well plate at the density of 1 × 105/well and 1.5 × 105/well, respectively. A straight-line cell-free ‘‘scratch’’ was created by pipette tips and a horizontal line at the back of the plate was drawn as reference point to guarantee the same area of image acquisition. After washing with PBS to remove the debris, the plate was incubated in 5% CO2 at 37°C. The migration speed was measured by calculating the difference in the distances between the two edges of the scratch.



Transwell Assay

Cell migration ability was evaluated by transwell assay using Transwell chamber with a pore size of 8.0 μm (Millipore) according to the instructions of the manufacturer. 1 × 105 MDA-MB-231 cells and 1.5 × 105 MDA-MB-468 cells were suspended in a serum-free medium and plated on upper wells. The medium containing 20% FBS was added to the lower chamber as a chemoattractant. MDA-MB-231 cells were cultured for 12 h, and MDA-MB-468 were cultured for 30 h. After being fixed with methanol for 5 min, the chambers were stained with 1% crystal violet solution for 5 min. Then, the cells in the lower chamber were observed under an inverted microscope. Three independent experiments were performed for the same conditions.



Western Blotting

The MDA-MB-231 and MDA-MB-468 cells were transfected with EDN2, CLEC3B, SV2C, WT1, and the control cells were transfected with pENTER plasmid. Subsequently, after washing with ice-cold PBS, the proteins of the distinctively treated cells were collected and lysed in a lysis buffer in the presence of protease inhibitors. After centrifugation at 12,000 rpm for 20 min at 4°C, the supernatant was collected. Next, 30 μg of protein were separated by 10% SDS-PAGE and transferred (100 V, 2 h) onto polyvinylidene fluoride (PVDF) membranes (Millipore, Bedford, MA, USA). After blocking with 5% nonfat milk for 1 h, the membranes were incubated overnight at 4°C with the primary antibodies. After washing with TBS-T, the membrane was labeled with the secondary antibody, and protein spots were visualized by ECL. β-actin was used as the endogenous control.



Statistical Analysis

All the experiments were conducted for the same conditions in triplicate. Statistical analyses in the study were performed with SPSS (version 23.0) and GraphPad Prism 8.0. Kaplan-Meier plots was used to conduct survival analysis. Significant differences were evaluated by student’s t-test and one-way analysis of variance (ANOVA). P-value < 0.05 were considered statistically significant.




Results


Clinicopathological Features of Breast Cancer Patients

A total of 1,076 breast cancer patients with clinical information were collected from the TCGA database. By using a random number table, 514 samples were distributed into the TCGA training cohort. Besides, 98 patients diagnosed with breast cancer in Qilu hospital from 2008 to 2020 were enrolled in the Qilu external validation cohort. The detailed demographic and clinicopathological characteristics of the patients involved in the three datasets are shown in Table 1.


Table 1 | Clinical characteristics of patients with breast cancer involved in this study.



In the TCGA training cohort, the median age was 58 years (range, 27–90 years). The percentages of patients at clinical stages I, II, III, and IV were 16.7%, 55.3%, 23.3%, and 1.6%, respectively. 71.2% of the patients received mastectomy, 47.3% underwent chemotherapy, 49.0% received radiotherapy, and 26.3% were treated with hormonal therapy. The follow-up periods encompassed the different pathological stages of breast cancer. The median follow-up periods were 592 days (range, 2–6,434 days). A total of 354 patients had prognosis information. During the follow-up, 48/354 (13.6%) of the patients died.

In the TCGA entire cohort, the median age was 58 years (range, 26–90 years). The percentages of patients at clinical stages I, II, III, and IV in the TCGA entire cohort were 16.5%, 56.8%, 22.9%, and 1.9%, respectively. 69.8% of the patients received mastectomy, 48.4% underwent chemotherapy, 50.4% received radiotherapy, and 27% were treated with hormonal therapy. A total of 743 patients had prognosis information. The median follow-up periods were 608 days (range, 1–7,125 days). During the follow-up, 93/743 (12.5%) of the patients died.

As for the Qilu external validation cohort, the median age was 48.5 years (range, 26–81 years). The percentages of clinical stages I, II, III, and IV were 17.3%, 50.0%, 32.7%, and 0%, respectively. In addition, the percentages of histological grades I, II, and III were 2%, 63.3%, and 34.7%, respectively. 96.9% of the patients in the cohort received mastectomy, 92.9% underwent chemotherapy, 37.8% received radiotherapy, and 56.1% were treated with hormonal therapy. The median follow-up periods were 2,841 days (range, 123–4,139 days). A total of 27 out of 98 (27.6%) of the patients died during the follow-up.



Identification of Differentially Expressed Genes

The exploration process of this study is shown in Figure 1. Firstly, the differentially expressed genes were initially screened between normal and tumor tissues. Thresholds were set as fold change > 3 and FDR < 0.01 (Figure 2A). Volcano plots were used to show the differentially expressed genes (Figure 2B). A total of 4,805 genes had differential expressions between normal and tumor tissues, which consisted of 1,269 upregulated genes and 3,536 downregulated genes. In total, 2,294 DEGs were with protein coding functions.




Figure 1 | The flow chart showing the scheme of the study on five-gene prognostic signatures for breast cancer.






Figure 2 | Heatmap and volcano plot were used to show the DEGs in breast cancer. (A) Heatmap represented mRNAs differentially expressed between breast cancer and normal breast tissues based on microarray analysis. (B) Volcano plot represented all differential expressed genes, green indicated downregulated genes, and red indicated all upregulated genes.





Enrichment Analyses of Differentially Expressed Genes

To further understand the function of the DEGs, the differentially expressed mRNAs were incorporated into functional annotation analyses. The molecular processes during the progression of breast cancer were investigated through GO enrichment analyses and KEGG pathway analyses.

The upregulated mRNAs associated with molecular function were enriched in the modulation of the structural constituent of chromatin, chemokine activity, and metallopeptidase activity (Figure 3A). In terms of the cellular component, the upregulated genes were tightly corresponding to the chromosome passenger complex, Ndc80 complex, and condensed chromosome kinetochore (Figure 3B). Additionally, in the analysis on the biological process, spindle assembly, chromosome segregation, and negative regulation of enzyme activity were the most enriched terms mediated by the upregulated genes (Figure 3C). From the prospective of the KEGG pathways, the high expression genes were closely related to aurora B signaling, mitotic prometaphase, and PLK1 signaling events (Figure 3D)




Figure 3 | Functional enrichment analysis of the upregulated genes. (A) Enrichment of molecular function. (B) Enrichment of cellular component. (C) Enrichment of biological process. (D) Enrichment of Kyoto Encyclopedia of Genes and Genomes.



Meanwhile, the downregulated genes related to molecular function were enriched in the lipase activity, serotonin degradation, and chemokine activity (Figure 4A). Through the investigation on the cellular component, the most enriched terms were voltage-gated sodium channel complex, lipid particle, and keratin filament (Figure 4B). In the exploration of the biological process, the downregulated genes in breast cancer were enriched in the regulation of membrane potential, lipid storage, and regulation of transport (Figure 4C). Besides, analysis on the KEGG pathways proved that the downregulated genes were associated with noradrenaline and adrenaline degradation, serotonin degradation, and HSL-mediated triacylglycerol hydrolysis (Figure 4D).




Figure 4 | Functional enrichment analysis of the downregulated genes. (A) Enrichment of molecular function. (B) Enrichment of cellular component. (C) Enrichment of biological process. (D) Enrichment of Kyoto Encyclopedia of Genes and Genomes.





Construction and Validation of the Risk Prognostic Scoring System in the The Cancer Genome Atlas Training Set

A total of 2,294 protein coding genes were further selected using LASSO regression analysis, and cross validation was used to select the penalty parameters (Figure 5A). Five genes were identified as the risk factors with LASSO Cox regression analysis and “lambda.min” parameters (Figure 5B). The genes obtained in the steps above were inserted into a formula. The expression statuses of the five independent prognostic factors and their correlation coefficients in the LASSO regression model were then used to construct prognostic signatures. Detailed information and the significance of survival prediction by the five genes are presented in Table 2.




Figure 5 | Construction of the five-gene prognostic model and validation of expression of the five genes in breast cancer. (A) the coefficients of variables identified based on the LASSO Cox regression model. (B) 10-fold Cross validation of LASSO regression. Left and right vertical dotted lines represented the “lambda.min” and “lambda.1se” criteria, respectively. The red dots indicated partial likelihood deviance values, and the gray lines indicated the corresponding standard error. (C–G) The mRNA expression levels of selected genes in the TCGA training cohort. (H, I) The representative protein expression of the five genes in breast cancer tumor tissue and normal tissue. Data were obtained from the human protein atlas.




Table 2 | Five genes in the signature identified by the LASSO Cox regression analysis.





Of the five biomarkers, three genes (EDN2, WT1, and MUC2) were upregulated in the breast cancer samples while CLEC3B and SV2C were decreased (Figures 5C–G). Moreover, the protein expression of the five genes were further explored in the Human Protein Atlas (HPA) and their representative pictures are shown in Figures 5H, I.

In the TCGA training cohort, the distributions of the risk score of breast cancer patients and the relationships between risk score and survival time are visualized in Figures 6A, B. The mRNA expression levels of the selected genes of the patients are shown in Figure 6C. Patients in the TCGA training cohort were then assigned to a high- or low-risk score group using the cut-off value (0.09) obtained with the “survival” and “survminer” packages. A total of 198 (56%) patients in the TCGA training cohort were categorized to the high-risk group (RS > 0.09) and 156 (44%) to the low-risk group (RS ≤ 0.09). High-risk patients also had a markedly shorter OS (HR 1.88, 95% CI 1.07–3.31, p < 0.05) vs. low-risk patients in the TCGA training cohort (Figure 6D).




Figure 6 | Evaluating the predictive power of five-gene signature in the training group. (A) Distribution of risk score. (B) Survival status of breast cancer patients in the training group. (C) Heatmap of the prognosis-associated gene expression profiles in the TCGA training cohort. (D) Kaplan‐Meier plot of the high‐ and low‐risk groups in the training group.





Validation of the Five Genes-Model in the TCGA Entire Set

To assess the stability and reliability of the five genes signature, the result was also tested in the TCGA entire cohort. According to the same risk score that was acquired from the training group, 389 breast cancer patients with follow-up information were divided into high- and low-risk groups. Figures 7A, B show the distributions of the risk score of breast cancer patients and the relationships between risk score and survival time. Expressions of the five genes in the risk score formula in the entire group are provided in Figure 7C. The relationship between the distribution of risk score and clinical information indicated that the higher patients ranking predicted a poorer overall survival (HR 1.72, 95% CI 1.15–2.59, p < 0.01) (Figure 7D).




Figure 7 | Evaluating the predictive power of five-gene signature in the entire group. (A) Distribution of risk score. (B) Survival status of breast cancer patients in the entire group. (C) Heatmap of the prognosis-associated gene expression profiles in the TCGA entire cohort. (D) Kaplan‐Meier plot of the high‐ and low‐risk groups in the entire group.





Validation of the Five Genes-Model in the Qilu External Validation Set

In Figures 8A, B, patients in the Qilu external validation cohort (n = 98) were divided into the high‐risk group and the low‐risk group according to the same cut-off value of 0.09. The risk score distributions and the survival status were exhibited. The expressions of the five selected genes in 98 patients are also shown in Figure 8C. Thus, patients in the Qilu external validation cohort were then categorized to the high-risk group (n = 52) and low-risk group (n = 46). The results of survival analysis were showed in the Kaplan-Meier plot (Figure 8D). With the extension of the survival time, the survival rate of the high-risk group became lower, and had a poor prognosis effect (HR 2.524, 95% CI 1.19–5.37, p < 0.05).




Figure 8 | Evaluating the predictive power of five-gene signature in the external validation group. (A) Distribution of risk score. (B) Survival status of breast cancer patients in the external validation group. (C) Heatmap of the prognosis-associated gene expression profiles in the Qilu external validation cohort. (D) Kaplan‐Meier plot of the high‐ and low‐risk groups in the external validation group.





Gain-of-Function Assay of Selected Genes

As shown in Supplementary Figure 1, we have examined the predictive values of EDN2, CLEC3B, SV2C, WT1, and MUC2 on the overall survival in TCGA and METABRIC. According to the results, EDN2, CLEC3B, SV2C, and WT1 could significantly influence the prognosis of breast cancer patients. However, MUC2 was not associated with prognosis. Therefore, we transfected cells with EDN2, CLEC3B, SV2C, and WT1 to investigate the biological functions of these prognosis associated genes. The overexpression efficiency of the selected genes was verified by qRT-PCR (Figures 9A, B). We tested the cell proliferative viability using the MTT assay in MDA-MB-231 and MDA-MB-468 cells. As shown in Figures 9C, D, overexpression of CLEC3B and WT1 could significantly promote the growth in both cell lines, while EDN2 and SV2C had no obvious influence on cell proliferation. The results were then further validated by the clone formation assay (Figures 9E, F). Overexpression of CLEC3B and WT1 could dramatically promote the formation of colonies in breast cancer cells.




Figure 9 | Gain-of-function assay of selected genes regulating cell proliferation and metastasis. (A, B) The overexpression efficiency of the selected genes in MDA-MB-231 and MDA-MB-468 cells. (C, D) Effect of the selected genes on cell proliferation was tested by MTT in MDA-MB-231 and MDA-MB-468 cells. (E, F) Effect of the selected genes on cell proliferation was tested by colony formation assay in MDA-MB-231 and MDA-MB-468 cells. (G, H) Effect of the selected genes on cell migration was tested by scratch assay in MDA-MB-231 and MDA-MB-468 cells. (I, J) Effect of the selected genes on cell migration was tested by transwell assay in MDA-MB-231 and MDA-MB-468 cells.



Furthermore, cell migration assays were used to evaluate the regulative effects of the selected genes on cell migration. As evidenced by the scratch assay and transwell assay, the mobility of MDA-MB-231 and MDA-MB-468 cells overexpressed CLEC3B and WT1 were considerably increased compared with the control group (Figures 9G–J). On the contrary, transfected with SV2C could significantly inhibit cell migration in both breast cancer cell lines, while the function of EDN2 was slight.



Influence of Selected Genes on the Epithelial-Mesenchymal Transition Signaling Pathway in Breast Cancer

The EMT represented a biological process during which polarized epithelial cells lost their cell identity and experienced various biochemical alterations that allowed it to assume mesenchymal phenotypes (27). Normally observed during embryonic development, EMT could also be involved in various pathological conditions. Once hijacked by cancer cells, EMT often led to an enhanced migration capability, acquisition of resistance to apoptosis, and increased cell proliferation (27–30). Thus, we examined the role of the selected genes in the EMT signaling pathway in breast cancer cells. As shown in Figure 9, the gain-of-function of EDN2, CLEC3B, and WT1 markedly increased the ZEB1 and β-catenin in MDA-MB-231. Besides, CLEC3B and WT1 could also enhance the expression of snail (Figure 10A). By contrast, SV2C seemed to play a key role as a tumor suppressor in the EMT signaling pathway. MDA-MB-231 cells transfected with SV2C showed a low expression of EMT markers, such as ZEB1, vimentin, β-catenin, and snail. In MDA-MB-468, EDN2, CLEC3B, and WT1 were proved to be able to upregulate the protein level of β-catenin (Figure 10B). CLEC3B and WT1 transfection led to a higher expression level of N-Cadherin. Moreover, a markedly increase of snail was also observed in the WT1 overexpressed MDA-MB-468 cells.




Figure 10 | Influence of the selected genes on the EMT signaling pathway in breast cancer. (A) Effect of the selected genes on the protein level of the EMT signaling pathway was measured by Western blot assay in MDA-MB-231. (B) Effect of the selected genes on the protein level of the EMT signaling pathway was measured by Western blot assay in MDA-MB-468.






Discussion

As one of the most malignant tumors in women, breast cancer was a heterogeneous disease with diverse subtypes. Each subtype had distant biological and clinical characteristics (31). It was of great importance to investigate the underlying molecular pathogenesis of breast cancer and find reliable prognostic biomarkers for the identification of patients with high risk (32). Microarray data had been proved as an effective tool in the identification of gene biomarkers, which was a crucial step for tumor assessment (33). In the present study, gene expression profiles of breast cancer samples and corresponding normal tissue were download from TCGA together with the clinical information. An independent validation cohort was also employed to ensure the stability of the prognostic model. Candidate genes were prescreened by the analysis of the differentially expressed genes between breast cancer and control samples.

In total, 4,805 DEGs were identified. To further investigate the molecular mechanisms involved in breast cancer, GO and KEGG analysis were performed (21, 34). As shown in our data, the upregulated DEGs were mainly enriched in the DNA repair machinery, enhancing cell mobility and limitless replicative potential. PLK1 was a serine/threonine protein kinase, which played a critical role in the regulation of cell cycle and chemoresistance (35, 36). Our data demonstrated that the upregulated DEGs were highly associated with the PLK1 signaling pathway. This indicated that the dysregulation of the PLK1 signaling pathway contributed to the prognosis of breast cancer patients. As for the downregulated DEGs, the enriched terms included correspond to immune response, chemokine activity, and regulation of metabolism. These findings were also consistent with previous breast cancer studies (37–39).

Penalized methods had aroused much attention as a novel predicting tool for high accuracy and good feasibility (40). L1-penalty, also known as LASSO, was the most widely used penalty in a high-dimensional cancer classification (25). Recent studies had showed that LASSO could be used as an effective tool in the exploration of potential biomarkers in breast cancer. A 6-KIFs-based risk score (KIF10, KIF15, KIF18A, KIF18B, KIF20A, KIF4A) reported by Li et al. (41) was proved to be associated with the prognosis in patients with breast cancer. Immune-related index in breast cancer were also found through LASSO by Xie et al. (42) and Zheng et al. (43). These researchers indicate that gene signatures could serve as risk factors for cancer management and play a vital role in predicting cancer prognosis.

In our study, to further explore the prognosis-related biomarkers in breast cancer, LASSO Cox regression model was performed. We screened out five protein coding genes (EDN2, CLEC3B, SV2C, WT1, and MUC2) significantly corresponding to the overall survival time of patients with breast cancer in the training group. Compared to a single biomarker alone, the risk score consisted of the coefficient, and expression status of multiple genes markedly increased the reliability and accuracy of diagnosis result. Thus, a 5-genes signature was established as potential biological indicators for breast cancer diagnosis and prognosis. The gene signature was also tested in the TCGA entire cohort and the Qilu external validation cohort. The Kaplan-Meier plot showed the significant difference of the overall survival between the high- and low-risk groups. The 5-gene prognostic model was expected to work as an auxiliary predicting tool in the individual management of breast cancer.

Through the literature search, it was found that several biomarkers related to the gene signature were reported to be involved in the process of cancer development and progression. EDN2 had been reported to be an oncogene overexpressed in various malignancies, which corelated to cell differentiation, proliferation, migration, and resistance to chemotherapy (44–48). However, functions of EDN2 in breast cancer had not been reported. Besides, CLEC3B seemed to play distinct roles in different human cancers. While functioning as tumor suppresser in lung cancer (49), expression of CLEC3B was proved to be related to a poor prognosis in colorectal cancer and gastric cancer (50, 51). WT1 was firstly identified as a tumor suppressor gene in nephroblastoma (52). However, it was demonstrated by subsequent studies that WT1 was related to the disruption of the EMT signaling pathway and docetaxel resistance in breast cancer, high expression of WT1 also corresponded to a lower overall survival (52, 53). Functioned as an oncogene, MUC2 was highly expressed in mucin secreting breast cancers and played a pivotal role in regulating cell proliferation, metastasis, and apoptosis (54).

To further validate the functions of the biomarkers, in vitro assays were then performed to evaluate the influence of the selected genes on proliferation and metastasis. We proved that EDN2 could be associated with the protein level in the EMT signaling pathway. It was found that CLEC3B and WT1 could markedly enhance the capability of growth and migration in breast cancer cell lines. Meanwhile, overexpressing SV2C could decrease the cell mobility in vitro. Detection of the protein levels further proved that the change in migration ability was probably caused by the alteration of the EMT signaling pathway. In the present study, we established a novel five-gene signature which was a promising tool in predicting breast cancer prognosis. Three of the genes in the five-gene signature were reported to be related to breast cancer for the first time. These potential biomarkers could be helpful for future investigation.

However, there were some limitations which need to be mentioned in this study. First, only the overall survival was taken into consideration, and the quality of life of breast cancer patients were not covered. Besides, for the present research was retrospective, the predicting model should also be testified in the large-scale prospective studies. Thus, the results demanded to be further verified before its application into clinical practice.



Conclusion

In summary, a five-gene (EDN2, CLEC3B, SV2C, WT1, and MUC2) based prognostic model was constructed and validated in the study, which was proved to be an accurate classifier for risk stratification and clinical decision-making. This study provided us a new angle to better understand the molecular network in malignancies. These selected genes tightly corresponded to the prognosis of breast cancer and might serve as potential biomarkers for future individual treatment.
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Background

There is a significant survival difference and lack of effective treatment among breast cancer patients with liver metastasis. This present study aimed to construct a novel prognostic score for predicting the prognosis and locoregional treatment benefit of de novo metastatic breast cancer with liver metastasis (BCLM).



Methods

In total, 2,398 eligible patients between 2010 and 2016 were selected from the Surveillance, Epidemiology, and End Results (SEER) database. They were assigned to the training set including 1,662 patients (2010–2014) and validation set comprising 736 patients (2015–2016) depending on the time of diagnosis. The prognostic score was based on regression coefficients in the multivariate Cox regression analysis. And then, patients were stratified into low-, intermediate-, and high-risk groups by the prognostic score. The discrimination and calibration of prognostic score were evaluated using time-dependent receiver operating characteristic (ROC) curves analysis and calibration curves, respectively. Subgroup analysis was performed to evaluate locoregional surgery and chemotherapy benefit in different risk groups.



Results

Age, race, insurance and marital status, T stage, pathological grade, molecular subtypes, and extrahepatic metastasis were identified as independent prognostic variables in the prognostic score. The prognostic score showed high discrimination power with an area under the curve (AUC) of 0.77 and 0.72 and excellent agreement suggested by calibration plots in the training and validation sets, respectively. Intermediate-risk [hazard ratio (HR) 2.39, 95% confidence interval (CI) 2.09–2.73, P<0.001] and high-risk groups (HR 4.88; 95% CI 4.13–5.76; P<0.001) had significantly worse prognosis in comparison with the low-risk group. The median overall survival (OS) in three prognostic groups were 44, 18, and 7 months, with a 3-year survival rate of 56, 23, and 7%, respectively. Apart from the high-risk group (HR 0.79; 95% CI 0.56–1.10; P=0.157), the low-risk (HR 0.64; 95% CI 0.49–0.84; P=0.001) and intermediate-risk groups (HR 0.68; 95% CI 0.55–0.85; P=0.001) could benefit from the surgery of primary site, while chemotherapy improved prognosis in all risk groups.



Conclusions

A prognostic score was developed to accurately predict the prognosis of de novo BCLM patients. Moreover, it may be useful for further subdividing them into different risk groups and helping guide clinicians in treatment decisions.





Keywords: breast cancer, liver metastasis, prognostic factors, prognostic model, risk stratification, predictive value



Introduction

Together with bone, lung, and brain, the liver is a common target organ of distant metastasis among breast cancer patients, with liver metastasis as the first distant metastasis site occurring in nearly 30% of breast cancer patients (1–3). Despite advances in diagnosis and treatment of metastatic breast cancer, liver metastasis remains a major cause of cancer-related death in breast cancer patients. The overall survival of breast cancer with liver metastasis (BCLM) is generally short and only 3–6 months in untreated patients (4). However, BCLM is a heterogeneous disease with diverse clinical outcomes influenced by demographic or clinicopathological factors, including age, race, insurance and marital status, pathological grade, hormone receptor (HR) status, human epidermal growth factor receptor 2 (HER2) status, serum albumin level, extrahepatic metastasis, performance status, and treatment options (1–3). Previous studies reported a dramatically different prognosis with median overall survival ranging from 4 to 82 months in BCLM patients, indicating that BCLM is a heterogeneous disease state (1–3, 5). Several prognostic models based on clinical features or genetic biomarkers have been constructed to predict the outcome of metastatic breast cancer (MBC) or breast cancer with brain metastasis (BCBM), because the clinical behavior of MBC, including BCBM and BCLM, is characterized by heterogeneity (6–8). Unfortunately, there was no sensitive and specific predictive tool for BCLM at first presentation.

Presently, the National Comprehensive Cancer Network (NCCN) panel recommended systemic therapy as the primary treatment strategy for recurrent or stage IV breast cancer (9). However, it should be noted that BCLM seemed to be insensitive to traditional endocrine therapy and current immunotherapy because treatment response could vary extensively depending on metastatic sites (10, 11). As a result, there was a lack of effective treatment approach for BCLM patients unresponsive to systemic therapy. In recent years, a growing number of studies have suggested that local treatment of breast cancer liver metastases, such as hepatic metastasectomy, radiofrequency ablation (RFA), and transarterial chemoembolization (TACE), could confer encouraging survival benefit (5, 12). Meanwhile, some retrospective studies also indicated that complete excision of the primary tumor in selected patients with de novo metastatic breast cancer showed a potential survival benefit (13). Despite substantial selection biases and confounding results in these studies, locoregional treatment of primary tumor or liver metastases may offer an additional option for selected BCLM patients. Therefore, the objective of our study was to build a novel prognostic score for better prognosis prediction of de novo metastatic breast cancer with liver metastasis and help identify patients who can benefit from locoregional treatment of the primary tumor.



Materials and Methods

The present study used a retrospective cohort study design. De novo BCLM patients were defined as metastatic (stage IV) breast cancer patients with liver metastasis at initial diagnosis. Data of 6,244 de novo BCLM patients diagnosed between 2010 and 2016 were extracted from the Surveillance, Epidemiology, and End Results (SEER) database. Other inclusion and exclusion criteria for the study were given below. Inclusion criteria: (1) age >20 years old; (2) histologically confirmed invasive breast cancer; (3) complete demographic and clinicopathological data including race, insurance and marital status, pathological grade, T and N stage, molecular subtype, and treatment information. Exclusion criteria: (1) unknown extrahepatic metastasis; (2) multiple primary cancer; (3) unknown follow-up status. Ultimately, 2,398 de novo BCLM patients were included in this study for final analysis. The flowchart for selecting eligible patients is presented in the Figure 1.




Figure 1 | Selection of patients.



Then, all the samples were split into a training set (n=1,662, 2010–2014) and a validation set (n=736, 2015–2016) based on the time of diagnosis. In the training set, multivariate Cox regression models were performed to identify independent prognostic factors without considering treatment options and estimate the hazard ratios (HRs) for these factors by backward stepwise procedure. In the Cox proportional hazards model, regression coefficients of these prognostic factors indicated the contribution of each factor to the overall survival (OS). Therefore, they could be converted to a prognostic score of each independent prognostic factor after being multiplied by 10 and rounded. Overall prognostic score, the sum of points of these factors, was used to evaluate death risk and predict outcome of de novo BCLM patients. Subsequently, the discrimination and calibration of the prognostic score were evaluated using time-dependent receiver operating characteristic (ROC) curves analysis and calibration curves, respectively. The area under the ROC curves (AUC) was calculated, and calibration curves were plotted in both the training set and validation set for internal or external validation. Furthermore, X-tile software was used to determine the optimal cut-off value of risk stratification according to overall prognostic score, making it possible to divide all patients into low-, intermediate-, and high-risk groups.

Correlation between baseline characteristics and different risk groups was also evaluated using a chi-squared test or Fisher’s exact test. The survival difference among different risk groups was compared by Kaplan-Meier method using log-rank test. Subgroup analysis was performed to explore locoregional surgery and chemotherapy benefit in different risk groups using separate Cox models containing all covariates in each individual subgroup. Forest plots were drawn to visualize these results. Two-sided P values < 0.05 represented statistical significance. Statistical analyses were executed with SPSS 26.0 (Chicago, IL, USA) and R software version 4.0.0.



Results


Baseline Characteristics and Its Relationship With Risk Stratification

In total, 2,398 de novo BCLM patients were included, of which 1,662 patients were in the training set and 306 patients were in the validation set. In the training set, de novo BCLM patients tended to be younger than 60 years old (59.3%), insured (96.0%) and unmarried (51.5%) white (74.1%) patients. In addition, most patients had relatively higher T staging (T3 or T4, 54.4%) but lower N staging (N0 or N1, 70.7%). The majority of these patients were identified as high-grade (III/IV, 60.5%) ductal carcinoma (83.9%). Of the 1,662 patients, 1,109 (66.7%) had hormonal receptors (HR) positive disease and 979 (58.9%) had human epidermal growth factor receptor2 (HER2) negative disease. De novo BCLM patients often had other combined metastases, including bone (57.4%), lung (33.5%), and brain metastasis (7.1%). The majority of patients received first-line chemotherapy (73.6%), while only few patients underwent surgery of primary site (33.4%) or radiotherapy (15.2%). Many demographic characteristics and clinicopathological features showed differences among different risk groups, indicating the potential prognostic value of these factors. Detailed baseline characteristics and its relationship with risk stratification are shown in Table 1 and Supplementary Table 1.


Table 1 | Characteristics of BCLM and risk stratification in the training set.





Prognostic Score and Validation

Multivariable analysis showed that age, race, insurance and marital status, T stage, pathological grade, molecular subtypes (HR and HER2 status), and extrahepatic metastasis (brain, lung, and bone metastases) were independent prognostic factors (Table 2 and Figure 2). Specifically, older age at diagnosis (age ≥60: HR 1.589, 95% CI 1.411–1.788; <60 as a reference) and black (HR 1.272, 95% CI 1.272–1.475; white as a reference) increased the risk of death dramatically. The risk of mortality was also higher in uninsured (HR 1.407, 95% CI 1.047–1.891) or unmarried (HR 1.224, 95% CI 1.088–1.377) patients. There was also a correlation between higher T stage (T4: HR 1.230, 95% CI 1.005–1.505; T1 as a reference) or pathological grade (II: HR 1.537, 95% CI 1.119–2.112; III/IV: HR 1.885, 95% CI 1.372–2.589; I as a reference) and poorer overall survival. Additionally, negative status of HR (HR 1.609, 95% CI 1.412–1.834) and HER2 (HR 2.186, 95% CI 1.921–2.488) and the involvement of extrahepatic metastatic sites, including brain (HR 1.777, 95% CI 1.442–2.189), lung (HR 1.368, 95% CI 1.210–1.546), and bone (HR 1.362, 95% CI 1.203–1.543), were negative prognostic factors for long-term outcome of de novo BCLM patients.


Table 2 | Multivariate Cox regression model of training set.






Figure 2 | Forest plot showing the results in the multivariate Cox regression analysis.



Furthermore, scores for each variable were determined based on their regression coefficients in the multivariable Cox model, and therefore overall prognostic score integrating these 11 parameters was constructed (Table 3). The discrimination ability of overall prognostic score was assessed by constructing time-dependent ROC curves and calculating the AUC (Figure 3). The AUC was 0.77 and 0.72 at 1 year for the training and validation sets, respectively, demonstrating high discrimination power of the prognostic score. Moreover, the calibration plots of the two datasets suggested that the prognostic score prediction had excellent agreement with the actual observation (Figure 4).


Table 3 | Calculation of the score and cut-off points of the risk stratification.






Figure 3 | Time-dependent ROC curves of prognostic score in the training set (A) and the validation set (B). Overall survival curves plotted by Kaplan-Meier method in the training set (C) and the validation set (D).






Figure 4 | The calibration curve for predicting patient survival at 1 year (A) and 3 years (B) in the training set and at 1 year (C) in the validation set.





Risk Stratification and Subgroup Analysis

According to the optimal cut-off value determined by X-tile software, patients were divided into three different risk groups: low-risk (score <18), intermediate-risk (score 18–25), and high-risk (score >25) group (Supplementary Figure 1 and Table 3). The median OS of the three prognostic groups were 44, 18, and 7 months, with a 3-year survival rate of 56, 23, and 7%, respectively (Table 3). As was shown in Figure 3, intermediate-risk and high-risk groups demonstrated higher risk of death than low-risk group in both the training (intermediate-risk: HR 2.392, 95% CI 2.094–2.733; high-risk: HR 4.887, 95% CI 4.133–5.757; low-risk as a reference) and validation sets (intermediate-risk: HR 2.743, 95% CI 1.962–3.835; high-risk: HR 4.535, 95% CI 3.103–6.627; low-risk as a reference).

To further assess whether the prognostic score was also effective for treatment guidance, subgroup analysis was performed to explore surgery of primary site and chemotherapy benefit in different risk groups (Figures 5 and 6). The results found that patients in low-risk (HR 0.64; 95% CI 0.49–0.84; P=0.001) and intermediate-risk groups (HR 0.68; 95% CI 0.55–0.85; P=0.001) could benefit from locoregional surgical treatment, but it seemed not to prolong the survival time of patients of high-risk group (HR 0.79; 95% CI 0.56–1.10; P=0.157) significantly (Figure 5). However, chemotherapy could produce a significant survival benefit in these three different risk groups (Figure 6).




Figure 5 | Subgroup analysis of overall survival for patients who received locoregional treatment or not.






Figure 6 | Subgroup analysis of overall survival for patients who received chemotherapy or not.






Discussion

The present study focused on developing a prognostic score for de novo BCLM patients to improve prognosis prediction and guide clinical treatment. Our findings indicate that age, race, insurance and marital status, T stage, pathological grade, molecular subtypes, and extrahepatic metastasis were independent predictors of mortality in de novo BCLM patients. Therefore, the overall prognostic score including these factors was constructed, which had excellent predictive performance validated by time-dependent ROC curves and calibration plots. Moreover, the risk stratification on the basis of the overall prognostic score could have greater practical value in determining prognosis and making clinical decision.

In our study, advanced age was an independent negative predictor for OS partially due to undertreatment of chemotherapy or radiotherapy in these populations (14). Socioeconomic factors may explain why uninsured or unmarried patients had a higher odds of death (15). Notably, sociodemographic factors, treatment factors, and differentially expressed genes may lead to the survival disparity between black and white patients (16, 17). Higher T stage, higher pathological grade, and multiple extrahepatic metastases represented more aggressive biological behavior and larger tumor burden, resulting in relatively unfavorable prognosis. In terms of molecular subtypes, significantly better overall survival for patients with HR-positive breast cancer may be attributed to safe and effective endocrine therapy, while the advent of several HER2-targeted therapies also has significantly reversed inferior survival outcomes of HER2-positive breast cancer, making the median survival of advanced HER2-positive breast cancer now approach 5 years (18). Although numerous studies have demonstrated the role of tumor characteristics and treatment options in the survival regarding de novo BCLM patients, few prognostic models for these patients have been constructed. The present study developed the prognostic score integrating readily obtained variables and the risk stratification to subdivide patients into different risk groups for clinicians to indicate prognosis of de novo BCLM patients.

The latest guidelines recommend that systemic therapy remains a cornerstone of treatment for MBC, including BCLM (9, 19). Our study also found that chemotherapy could confer long-term survival benefit for nearly all subgroups. Nevertheless, surgical resection of the primary tumor was also expected to be an effective therapeutic intervention because multiple retrospective analyses reported a survival gain from locoregional treatment in de novo MBC patients (20–22). However, prospective clinical trials evaluating its value reached distinctly conflicting conclusions. A Turkish trial (MF07-01, NCT00557986) compared initial locoregional treatment (LRT) plus subsequent systemic therapy with primary systemic therapy alone for de novo MBC, reporting a 34% lower risk of death and a 17.2% higher 5-year OS (41.6 vs 24.4%) for patients in LRT group, especially in those with younger age, HR-positive and HER2-negative subtypes, or solitary bone-only metastases (23). On the contrary, the Indian study (NCT00193778) suggested that locoregional treatment could not confer overall survival advantage in patients responsive to first-line systemic therapy compared to systemic therapy only (19.2 vs 20.5 months), even causing a heavy detriment in distant progression-free survival (11.3 vs 19·8 months; HR 1·42, 95% CI 1·08–1·85; P=0·012) (24). Another phase III trial (E2108) has drawn a similar conclusion that locoregional treatment following optimal systemic therapy does not improve survival in patients with de novo stage IV breast cancer (3-year OS rate, 68.4 vs. 67.9%, P=0.63) (25). Several significant baseline characteristics including molecular subtypes and post-study treatments such as HER2-targeted therapy were not equally distributed, raising concerns regarding the reliability of trial results (23, 24). In addition, a definitive conclusion on the value of locoregional surgical treatment could not be drawn from current data since different trial designs, study population, and choices of systematic treatments inevitably lead to inconsistency. Therefore, these data suggested that not all de novo MBC patients were suitable for locoregional treatment. Similarly, our study revealed that de novo BCLM patients in high-risk group or with brain metastasis were not potential candidates for locoregional surgical treatment, indicating that more aggressive tumor biology was closely related with less benefit from primary surgery. Our findings indicated that systemic therapy rather than surgical resection of the primary lesions may be the first choice for de novo BCLM patients in high-risk group or with brain metastasis. In addition, clinicians should screen out de novo BCLM patients who may benefit from locoregional treatment according to clinical and pathological features with great caution.

There are several limitations in the present study. Firstly, only limited information was available from the SEER database, so other variables could not be included in our research, such as ECOG performance status, Ki-67 expression, liver function parameters, number and size of liver metastasis. Secondly, SEER database could not provide more detailed treatment information, especially timing of surgery, regimens and cycles of chemotherapy, endocrine therapy, and anti-HER2 therapy, to optimize individualized treatment for de novo BCLM patients. Additionally, the retrospective research made it difficult to control the potential confounding factors completely to generate more convincing results. As a result of these limitations, further research based on real-world data or prospective clinical trials would be required to determine the best timing to perform local treatment and the specific subgroup benefitting most from it.



Conclusion

The prognostic score, taking easily obtained clinical variables into account, may facilitate accurate predication of prognosis and individualized treatment guidance. Given the improvement of local disease control resulted from locoregional treatment and long-term survival following new therapeutic strategies including CDK4/6-inhibitors plus endocrine therapy or docetaxel, trastuzumab, and pertuzumab (18, 24–26), surgery of primary site may result in the prolongation of survival for selected patients. Due to the fact that the currently available evidence for de novo BCLM patients is limited, treatment strategies should be optimized by a multidisciplinary team on the basis of the general condition and willingness of patients, treatment response, and tumor characteristics. Our subgroup analyses may also have implications for evaluating the value of locoregional surgery, but additional randomized trials are warranted.
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Purpose

Pathologic complete response (pCR) after neoadjuvant therapy is an important indicator of long-term prognosis and the primary endpoint of many neoadjuvant studies. For breast cancer patients who do not achieve pCR, prognostic indicators related to prognosis are particularly important. This study is constructing a prediction model with more accurate and reliable prediction results by combining multiple clinicopathological factors, so as to provide a more accurate decision-making basis for subsequent clinical treatment.



Patients and Methods

In this study, 1,009 cases of invasive breast cancer and surgically resected after neoadjuvant therapy from 2010 to 2017. All indicators in this trial were interpreted in a double-blind manner by two pathologists with at least 10 years of experience, including histological grading, Tils, ER, PR, HER2, and Ki67. The prediction model used R language to calculate the calibration degree and ROC curve of the prediction model in the training set and validation set.



Results

Through univariate survival analysis, the results showed histological grade (P=0.037), clinical stage (P<0.001), HER2 (P=0.044), RCB class (P<0.001), Tils (P<0.001), lymph node status (P =0.049), MP grade (P=0.013) are related to OS in non-PCR patients after neoadjuvant. Data were analyzed by substituting in a multivariate analysis, and the results were that clinical stage, HER2, RCB grading, and Tils grading were correlated with OS in non-PCR patients after neoadjuvant therapy for breast cancer. Among all cases in the training set, the prediction model predicted that the 3-year survival AUC value was 0.95 and 5-year survival AUC value was 0.79, and the RCB classification of 3-year survival and 5-year survival were 0.70 and 0.67, respectively, which proved that the prediction model could predict the OS of non-PCR patients after neoadjuvant therapy for breast cancer more accurately than the RCB classification, and showed the same results in HR, HER2+, and TN classifications. It also showed the same results in validation set.



Conclusion

These data indicate that the predicted values of the prediction model developed in this study match the actual survival rates without underestimating the mortality risk and have a relatively accurate prediction effect.





Keywords: neoadjuvant therapy, R software, pathologic complete response, tumor-infiltrating lymphocytes, residual tumor burden



Introduction

Neoadjuvant therapy (NAC) allows inoperable patients with advanced breast cancer to achieve downstaging, which in turn makes the patient operable and facilitates breast-conserving surgery (1). As breast cancer treatments continue to be explored, neoadjuvant therapy is also widely used in early-stage breast cancer, which makes treatment outcome of neoadjuvant therapy an important indicator of patient prognosis (2).

Pathologic complete response (pCR) after neoadjuvant therapy is an important indicator of long-term prognosis and the primary endpoint of many neoadjuvant studies, and patients who achieve pCR have a good long-term prognosis (3, 4). For breast cancer patients who do not achieve pCR, prognostic indicators related to prognosis are particularly important. With increasing research on the immune microenvironment and evidence of clinical relevance of tumor-infiltrating lymphocytes (Tils) in breast cancer, Tils have shown potential predictive value for prognosis, especially in triple-negative and HER2-overexpressing breast cancer, with results showing a positive correlation between the degree of Tils infiltration and prognosis (5, 6). The residual cancer burden (RCB) scoring system can be used as an independent prognostic factor for patient survival, with worse prognosis as the RCB grade increases (7). However, the RCB scoring system only combines some pathological factors after neoadjuvant therapy. In the ongoing study on prognostic factors correlated with breast cancer after neoadjuvant therapy, it has been shown that individual pathological factors have more or less limitations, and the combination of multiple prognostic indicators can provide a better prognosis and guide the decision-making for subsequent clinical treatment (8). The predictive model in this study is an algorithmic model that integrates prognostic-related factors and is widely used in the prognostic analysis of various cancer types to provide clinical decision-making (9–13). In order to better predict the prognosis of non-pCR patients after neoadjuvant therapy for breast cancer, this study counted the prognostic-related factors after neoadjuvant therapy for breast cancer and constructed a prediction model using R software, with the aim of constructing a prediction model with more accurate and reliable prediction results by combining multiple clinicopathological factors, so as to provide a more accurate decision-making basis for subsequent clinical treatment.



Materials and Methods


General Information

In this study, 1,009 cases of invasive breast cancer diagnosed by core needle biopsy and surgically resected after neoadjuvant therapy from 2010 to 2017 were selected from the Fourth Hospital of Hebei Medical University, and all patients were female. Clinicopathological data of patients were collected: age, gender, clinical stage, histological grading, lymphatic vascular tumor thrombosis, lymph node involvement, tumor-infiltrating lymphocytes (Tils), estrogen receptor (ER), progesterone receptor (PR), and HER2 (Table 1). Inclusion criteria are as follows: ① invasive breast cancer diagnosed by core needle biopsy before neoadjuvant therapy; ② complete immunohistochemical indexes; ③ standardized neoadjuvant therapy (four to six cycles); ④ complete follow-up information. Exclusion criteria are the following: ① non-invasive breast cancer diagnosed by core needle biopsy before neoadjuvant therapy; ② incomplete immunohistochemistry results; ③ no neoadjuvant therapy for physical tolerance or other reasons; ④ no definite follow-up information. All indicators in this trial were interpreted in a double-blind manner by two pathologists with at least 10 years of experience, including histological grading, Tils, ER, PR, HER2, and Ki67. According to the expression status of hormone receptors, we have further classified breast cancer: hormone receptor positive (HR): ER positive, HER2 negative; human epidermal growth factor 2 positive (HER2+): HER2 positive; triple-negative breast cancer (TN): ER negative, PR negative, HER2 negative.


Table 1 |  Baseline characteristics of patients.





Preparation of Tissue Specimens

All specimens in this study were surgically resected specimens after neoadjuvant therapy. All sections were greater than 100 cancer cells. All breast cancer specimens were fixed with 4% neutral (phosphate buffered) formaldehyde fixative within a specified time period (within 30 min) after isolation. All immunohistochemically stained (IHC) sections in this study had a section thickness of 4 µm, and HE-stained sections were available as a comparison for all assays.



Interpretation of Hormone Receptor Expression

According to the detection standards of ER and PR in “Estrogen and Progesterone Receptor Testing in Breast Cancer: ASCO/CAP Guideline Update”, the definition of positive for ER and PR detection means that 1 to 100% of the nucleus of the sample is positively stained. If <1 or 0% of tumor cell nuclei are immunoreactive, the sample is considered ER or PR negative (14).

HER2 was interpreted according to “Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Focused Update”. HER2 interpretation results are 0, 1+, 2+, 3+; for IHC results for 2+ cases, FISH should be used for further testing, or different tissue blocks can be selected for retesting or sent to a laboratory with better conditions for testing. In the HER2 results, the 0, 1+, and 2+ FISH test results were determined as negative expression, and the IHC results of 3+ and 2+ FISH results were determined as positive expression (15).

According to the “Assessment of Ki67 in Breast Cancer: Recommendations from the International Ki67 in Breast Cancer Working Group”, the Ki67 interpretation method is to select at least three high-power fields (×40 objective lens, at least 1,000 tumor cells) for each slice for counting. Any numerical value of nuclear positive staining is considered positive. In this study, <20% of cases were judged as low expression of KI67, and ≥20% of cases were judged as high expression of KI67 (16).



Interpretation of Tumor-Infiltrating Lymphocytes

Tils require at least one HE slice (4–5 μm) for each case. The interpretation criterion is the percentage of the area of tumor-infiltrating lymphocytes in the interstitial area of the invasive tumor border to the total interstitial area of the invasive tumor border. The range of interpretation was within the boundary of invasive tumor [take the tumor border as the midline, and within 1 mm (a 20× high-power field of view) as the tumor border], exclude necrosis, degeneration, ductal carcinoma in situ of the breast, and tumor-infiltrating lymphocytes around normal lobules. The final evaluation result should be the average value of all regions instead of the hot spot value. The evaluation result is rounded to the nearest 5–10%. This study divides the interpretation results of Tils into three levels: low invasion is <10%, intermediate invasion 10–40%, and high invasion is ≥40% (6).



Interpretation of Residual Tumor Burden

The interpretation of RCB requires statistics on the long and wide diameters of the largest cross-section of the tumor bed, the percentage of invasive cancer in the tumor bed area, the number of metastatic lymph nodes, and the maximum diameter of lymph node metastasis.

	



Statistical Methods

In this study, data analysis was performed by SPSS and R software. All data were randomly divided into the training sets (505 cases) and validation sets (504 cases). Chi-square test was used to calculate whether there were statistically significant differences between the two groups. The pathological indicators correlated with prognosis were selected by Kaplan-Meier and COX multivariate survival analysis. Significant indicators from the multivariate COX regression analysis were included in the prediction model development options, programmed using R software, and finally produced into a prediction model to assess the prognostic outcome of non-PCR patients after neoadjuvant therapy for breast cancer. Each factor corresponded to one point, the scores of the four factors were summed to give a total score, and finally the corresponding 3-year and 5-year survival rates were calculated by using the R language formula. In this study, the prediction model used R language to calculate the calibration degree and ROC curve of the prediction model in all cases, as well as HR, HER2, and TN in the training set and validation set, and the accuracy of the prediction model was tested by the prediction model calibration degree and prediction model ROC curve.




Results

A total of 1,009 cases suffering from breast cancer and undergoing surgical resection after neoadjuvant therapy from 2010 to 2017 at the Fourth Hospital of Hebei Medical University were selected for this study, with a maximum follow-up time of 115 months, and all patients were female, with a mean patient age of 50 years (24–72 years) and a median survival time of 47 months (12–115 months). All data were randomly divided into the training set (505) and validation set (504), and no statistically significant difference between the two groups was demonstrated by chi-square test (all P values > 0.05).

Through univariate survival analysis, the results showed histological grade (P=0.037), clinical stage (P<0.001), HER2 (P=0.044), RCB class (P<0.001), Tils (P<0.001), lymph node metastasis (P =0.049), MP grade (P=0.013) were related to OS in non-PCR patients after neoadjuvant. Univariate survival analysis showed that histological grading, clinical stage, HER2, RCB, Tils, lymph node metastasis, and MP grading were correlated with OS in non-PCR patients after neoadjuvant therapy. High histologic grade, high clinical stage, negative HER2 expression, high RCB grade and low Tils, lymph node metastasis, and low MP grade were correlated with poor prognosis (Table 2 and Figure 1).


Table 2 | Univariate and multivariate survival analysis for OS.






Figure 1 | Univariate survival analysis forest plot. ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor 2; Tils, tumor-infiltrating lymphocytes. Univariate survival analysis showed histological grade (P = 0.037), clinical stage (P < 0.001), HER2 (P = 0.044), RCB class (P < 0.001), Tils (P < 0.001), lymph node metastasis (P = 0.049), MP grade (P = 0.013) are related to OS in non-PCR patients after neoadjuvant.



The data were analyzed by substituting in a multivariate analysis, and the results were that clinical stage, HER2, RCB grading, and Tils grading were correlated with OS in non-PCR patients after neoadjuvant therapy for breast cancer. The 3-year survival of clinical stages I–IV were 100, 99.0, 98.5, and 81.3%; the 5-year survival of clinical stages I–IV were 100, 98.5, 93.3, and 69.5%; the HER2 negative or positive 3-year survival was 95.4, 99.1% and the 5-year survival was 90.7, 94.5%; the 3-year survival of RCB grades I, II, and III were 100, 99.4, and 92.6%; the 5-year survival of RCB grades were 100, 97.8, and 85.1%; and the 3-year survival and 5-year survival of Tils grades low, intermediate, and high were 77, 97, 99% and 69, 95, 99% (Figure 2 and Table 2).




Figure 2 | Kaplan-Meier curve of different independent prognostic factors. Multivariate analysis showed that (A) clinical stage, (B) HER2, (C) RCB grading, and (D) Tils were correlated with OS in non-PCR patients after neoadjuvant therapy for breast cancer.



Significant indicators from the multivariate COX regression analysis were included in the prediction model development options, programmed using R software, and finally made into a prediction model based on clinical stage, HER2, RCB grading, and Tils grading system to assess the prognostic outcome of non-PCR patients after neoadjuvant therapy for breast cancer. Each factor corresponded to one Point, the scores of the four factors were summed to give a total score, and finally the corresponding 3-year and 5-year survival rates were calculated by using the R language formula (Figure 3).




Figure 3 | Schematic diagram of prediction model. Each factor corresponded to one point, the scores of the four factors were summed to give a total score, and finally the corresponding 3-year and 5-year survival rates were calculated by using the R software.



In this study, by using R language to calculate the prediction model calibration and ROC curve, among all cases in the training set, the prediction model predicted that the 3-year survival AUC value was 0.95 and 5-year survival AUC value was 0.79, and the RCB classification of 3-year survival and 5-year survival were 0.70 and 0.67, respectively, which proved that the prediction model could predict the OS of non-PCR patients after neoadjuvant therapy for breast cancer more accurately than the RCB classification, and showed the same results in HR, HER2+,and TN classifications. (In HR, the AUC values of 3-year and 5-year survival rate calculated by predictive model were 0.97 and 0.83; in HER2+ were 0.99 and 0.86; in TN were 0.95 and 0.82. In HR, the RCB classifications of 3-year survival and 5-year survival were 0.79 and 0.75; in HER2+ were 0.77 and 0.64; in TN were 0.87 and 0.76.) This study shows that the predictive model has a more accurate result than RCB classification in predicting OS of non-PCR patients after neoadjuvant chemotherapy for breast cancer in general and in each group (Figure 4).




Figure 4 | Training set ROC curve. (A) Among all cases in the training set, the prediction model predicted that the 3-year survival AUC value was 0.95 and the 5-year survival AUC value was 0.79, and the RCB classification of 3-year survival and 5-year survival were 0.70 and 0.67. (B) In HR, the AUC values of 3-year and 5-year survival rate calculated by predictive model were 0.97 and 0.83, the RCB classification of 3-year survival and 5-year survival were 0.79 and 0.75; (C) in HER2+, the AUC values of 3-year and 5-year survival rate calculated by predictive model were 0.99 and 0.86, the RCB classification were 0.77 and 0.64; (D) in TN, the AUC values of 3-year and 5-year survival rate calculated by predictive model were 0.95 and 0.82. The RCB classification were 0.87 and 0.76.



The validated prediction model had a 3-year survival AUC value of 0.87 and a 5-year survival AUC value of 0.79 in all cases in the validation set, and showed the same results in HR, HER2+, and TN classifications. (In HR, the AUC values of 3-year and 5-year survival rate calculated by validated predictive model were 0.97 and 0.83; in HER2+ were 0.94 and 0.78; in TN were 0.95 and 0.85. In HR, the RCB classifications of 3-year survival and 5-year survival were 0.58 and 0.68; in HER2+ were 0.50 and 0.33; in TN were 0.66 and 0.61.) This study showed that the validated prediction model had accurate prediction results over RCB classification in predicting OS in non-PCR patients after neoadjuvant therapy for breast cancer in all cases in the validation set and in each classification (Figure 5).




Figure 5 | Validation set ROC curve. (A) Among all cases in the validation set, the prediction model of 3-year survival AUC value was 0.87 and the 5-year survival AUC value was 0.79, and the RCB classification of 3-year survival and 5-year survival were 0.56 and 0.67. (B) In HR, the AUC values of 3-year and 5-year survival rate calculated by the predictive model were 0.97 and 0.83, the RCB classification of 3-year survival and 5-year survival were 0.58 and 0.68; (C) in HER2+, the AUC values of 3-year and 5-year survival rate calculated by predictive model were 0.94 and 0.78, the RCB classification were 0.50 and 0.33; (D) in TN, the AUC values of 3-year and 5-year survival rate calculated by the predictive model were 0.95 and 0.85, and the RCB classification were 0.66 and 0.61.



The calibration curve shows that in the training and validation datasets, the prediction model can predict the OS of non-PCR patients after neoadjuvant treatment of breast cancer (Figures 6 and 7).




Figure 6 | Training set calibration curve. (A) Among all cases in the training set; (B) in HR group; (C) in HER2+ group; (D) in TN group.






Figure 7 | Validation set calibration curve. (A)among all cases in the validation set; (B) in HR group; (C) in HER2+ group; (D) in TN group.



In this study, the 5-year survival rates were calculated from the training set and validation set data according to the R language formula, respectively, and divided into the >97, 90–97, 80–90, 70–80, 60–70, 50–60, and <50% groups, after which the number of people in each group was calculated against the actual number of deaths, and the actual survival rates were finally derived and compared to the predicted values. Through calculation, the results show that in all groups in the training set, the actual survival rate was consistent with the predicted 5-year survival rate interval, and the predicted 5-year survival rate is 98.6, 95.6, 86.5, 75.6, 66.7, 60.0, 21.4%, and the actual 5-year survival rate in the validation set was 98.7, 97.2, 88.8, 83.7, 61.5, 50.0, 35.7%. The results of the calculations showed that in all subgroups of the training and validation sets, the actual survival rates matched the predicted 5-year survival rate intervals, except for the 70–80% group, where the actual survival rates were higher than the predicted survival rates, and the actual 5-year survival rates in all other groups matched the predicted intervals. These data indicate that the predicted values of the prediction model developed in this study match the actual survival rates without underestimating the mortality risk and have a relatively accurate prediction effect (Table 3).


Table 3 | Comparison of 5-year predicted survival rate and actual survival rate.



To predict the prognostic outcome of non-pCR patients after neoadjuvant therapy for breast cancer and to provide treatment protocols for patients undergoing surgery after neoadjuvant therapy, this study compared data with 5-year survival rate predicted by the prediction model >97% actual survival rate. In the training set, the prediction model predicted that the number of people with 5-year survival rate >97% was 143, the actual number of deaths was 2, and the actual survival rate was 98.6%. In the HR, HER2+, and TN groups, the actual survival rate of patients with predicted survival rate >97% was 99, 97, and 100%, respectively. In the validation set, the prediction model predicted that the number of 5-year survival >97% was 176, the actual number of deaths was 2, and the actual survival rate was 99%. In the HR, HER2+, and TN groups, the actual survival rate of patients with a predicted survival rate of >97% was 99, 98, and 100%, respectively. Comparison of the predicted results with the actual results showed that stratifying the predicted survival and predicting survival >97% both showed predictions that matched the actual results. This indicates that the prediction results of the prediction model match the actual results with high agreement, and can be used to predict the prognostic outcome of non-PCR patients after neoadjuvant therapy for breast cancer and provide an assistance to subsequent clinical treatment (Table 4).


Table 4 | Compared data with 5-year survival rate predicted by the prediction model >97% actual survival rate.





Discussion

In recent years, the incidence of female breast cancer has increased rapidly worldwide and breast cancer has become the most prevalent malignancy in women (17). It affects women of all ages and races, so research into the treatment and prognostic factors of breast cancer is crucial. Firstly, neoadjuvant therapy for certain patients whose masses are too large or who are otherwise inoperable, so as to downstage their cancer to meet the criteria for surgery or to control disease progression and thus prolong survival, is now widely applied in the treatment of breast cancer due to its remarkable results (18–20). pCR is a recognized endpoint in clinical trials of neoadjuvant therapy, and many studies have shown that pCR is independently correlated with improved survival outcomes compared to non-pCR patients, and thus can serve as a useful prognostic indicator (21). In order to investigate the factors correlated with prognosis in non-pCR patients, predict the prognosis of patients after neoadjuvant therapy, and provide a basis for clinical decisions on further treatment, cases that did not achieve pCR after neoadjuvant therapy for invasive breast cancer were selected for study and prognostic modeling in this study to provide prognostic prediction results as well as a basis for further treatment.

In this study, RCB, Tils, HER2, and clinical stage were selected as prognostic factors correlated with overall survival by univariate and multivariate survival analyses. Univariate analysis showed that clinical stage was negatively correlated with prognostic outcome, and the higher the clinical stage, the worse the prognosis and the shorter the overall survival, which is consistent with other studies. Tils have been extensively validated as an independent prognostic factor in breast cancer patients in recent years, especially for patients with HER2-positive breast cancer and triple-negative breast cancer. Studies have shown that Tils, as a continuous variable, are significantly correlated with prognosis. By setting a cutoff value for Tils and analyzing the prognostic outcomes of patients above and below the cutoff value, the results showed that higher expression of Tils was correlated with better prognostic outcomes. This is consistent with the results of our study. (22, 23) However, some studies have shown that the prognostic prediction effect of Tils was not satisfactory for HER2-negative patients (24). Therefore, more prognostic factors need to be combined in order to achieve better prediction effect.

HER2 expression is present in approximately 1/4 of breast cancer cases, and HER2-positive expression has been shown to be correlated with a worse prognosis. In order to prolong the survival of HER2-positive breast cancer patients, HER2 has been shown to be an effective therapeutic target for the treatment of breast cancer (25). The present study showed that patients with HER2-positive expression before neoadjuvant therapy had a better prognosis, which was correlated with the better outcomes brought by the HER2-targeted therapy, and this is consistent with the results of some studies in HER2-positive breast cancer (26).

The interpretation of the residual tumor burden scoring system after neoadjuvant therapy uses four indicators: tumor bed size, proportion of invasive cancer, number of lymph node metastases, and maximum diameter of lymph node metastases after neoadjuvant therapy. The inclusion of more factors and a more comprehensive residual tumor burden scoring system were better validated, with an increased residual tumor burden score correlated with a worse prognosis and shorter survival time. This result was validated in this and other studies (7, 27).

Because pathological factors alone have limitations in predicting the outcomes after neoadjuvant therapy for breast cancer, and because the impact of pathological factors on prognosis is changing as technology continues to advance and treatments continue to improve, there is a need for better models to predict patient prognosis for better prognostic outcomes with further treatment. Some studies have shown that the combination of RCB and KI67 or the combination of RCB and Tils could obtain better predictions than the RCB system (8, 28). These studies illustrate that selection of broader and more meaningful clinicopathological information can lead to the development of more accurate prediction models. Other studies had different limitations. Most only combined two indicators, and someone screened cases with triple-negative or HER2-positive molecular subtypes after neoadjuvant therapy. Therefore, these researches showed inevitable limitations on the application.

We produced a new prediction model to assess the prognosis of non-PCR patients after neoadjuvant therapy by analyzing four prognostic factors selected and combining the four prognostic factors by R software. We validated the model by calibration plots, ROC curves, and comparison of predicted results with actual results. The prediction effect of the model was validated by ROC curves, and the prediction model AUC values were 0.75–0.97 for all data in the training and validation sets and for data of each subgroup, showing a more accurate predictive ability than RCB alone. For the calibration plots, the calibration curves fit the ideal state, indicating that the prediction model can well predict OS in non-PCR patients after neoadjuvant therapy for breast cancer in both the training and validation datasets. Our prediction model analyzed all molecular types of cases after neoadjuvant therapy, selected more comprehensive influencing factors, and had a good verification effect on all molecular subtypes after neoadjuvant therapy, which made the model more effective and extensive on the application. We found that the predicted survival rate was coincident with actual survival rate among groups after comparing, except for the validation set 70–80% group, which the actual survival rate was slightly higher than the predicted survival rate. Therefore, we think, this study developed a new predictive model for the prognosis of non-pCR patients after neoadjuvant treatment of breast cancer, which applied to all patients and will not underestimate the survival risk of patients.

On the basis of the predicted results of the model, clinicians can individualize the patient’s further treatment. For patients with lower risk, routine treatment or intensity-reduction treatment could be used to reduce the side effects. For patients with high risk, high-intensive treatment can be appropriately increased in further process to prolong the survival time and reduce the survival risk as much as possible.

Targeted therapy has been the main research direction in tumor therapy; meanwhile, researches on molecular markers has become hotspot. But in this study, because of the limitations of samples, we only included HER2 into the analysis. Subsequently, we will bring molecular biomarkers such as PD-L1, BRCA, and NGS into our research to optimize model performance.

In conclusion, we developed a more accurate predictive model than RCB by combining four breast cancer prognostic factors using R software to assess the prognosis of non-pCR patients after neoadjuvant therapy for breast cancer and to provide a basis for clinical decision-making for further treatment.
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Objectives

To assess breast cancer receptor status and molecular subtypes by using the CAIPIRINHA-Dixon-TWIST-VIBE and readout-segmented echo-planar diffusion weighted imaging techniques.



Methods

A total of 165 breast cancer patients were retrospectively recruited. Patient age, estrogen receptor, progesterone receptor, human epidermal growth factorreceptor-2 (HER-2) status, and the Ki-67 proliferation index were collected for analysis. Quantitative parameters (Ktrans, Ve, Kep), semiquantitative parameters (W-in, W-out, TTP), and apparent diffusion coefficient (ADC) values were compared in relation to breast cancer receptor status and molecular subtypes. Statistical analysis were performed to compare the parameters in the receptor status and molecular subtype groups.Multivariate analysis was performed to explore confounder-adjusted associations, and receiver operating characteristic curve analysis was used to assess the classification performance and calculate thresholds.



Results

Younger age (<49.5 years, odds ratio (OR) =0.95, P=0.004), lower Kep (<0.704,OR=0.14, P=0.044),and higher TTP (>0.629 min, OR=24.65, P=0.011) were independently associated with progesterone receptor positivity. A higher TTP (>0.585 min, OR=28.19, P=0.01) was independently associated with estrogen receptor positivity. Higher Kep (>0.892, OR=11.6, P=0.047), lower TTP (<0.582 min, OR<0.001, P=0.004), and lower ADC (<0.719 ×10-3 mm2/s, OR<0.001, P=0.048) had stronger independent associations with triple-negative breast cancer (TNBC) compared to luminal A, and those parameters could differentiate TNBC from luminal A with the highest AUC of 0.811.



Conclusions

Kep and TTP were independently associated with hormone receptor status. In addition, the Kep, TTP, and ADC values had stronger independent associations with TNBC than with luminal A and could be used as imaging biomarkers for differentiate TNBC from Luminal A.





Keywords: molecular subtypes, receptor status, breast neoplasms, pharmacokinetics, diffusion weighted imaging, magnetic resonance imaging, dynamic contrast enhanced magnetic resonance imaging (DCE-MRI)



Introduction

Breast cancer (BC) is the most common cancer diagnosed in women and has a high mortality (1). Molecular subtypes of BC, based on genotype variations, are critical in determining treatments and predicting prognosis (2–4). Due to the high cost of full genetic analysis, the immunohistochemical (IHC) surrogate biomarkers, including estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor-2 (HER-2), and the Ki-67proliferation index, are routinely used to define these subtypes, which are major prognostic factors in guiding targeted therapy and predicting tumor response to neoadjuvant chemotherapy (NAC) (5, 6). The current diagnosis of receptor status together with the Ki-67 proliferation index based on IHC requires tissue specimens obtained by invasive biopsy. Moreover, the biopsy and surgical specimens may have different receptor statuses and Ki-67 proliferation and these indicators may change during treatment (5). Therefore, more defined imaging parameters are needed to delineate these prognostic factors (7).

Recent studies have shown that multiparametric MRI features can distinguish benign breast tumors from malignant tumors (8, 9). Moreover, some reports have suggested that apparent diffusion coefficient (ADC) values are independently associated with triple-negative breast cancer (TNBC) and could be used to differentiate TNBC from luminal tumors (10). Wu et al. found that the imaging features of dynamic contrast-enhanced MRI (DCE-MRI) were associated with distinct molecular pathways (11). However, due to the limitations of low temporal resolution for conventional DCE-MRI and a low signal-to-noise ratio for conventional diffusion-weighted imaging (DWI), quantitative DCE-MRI and DWI analysis have not been routinely adopted in clinical practice.

Recently, CAIPIRINHA-Dixon-TWIST-VIBE (CDT-VIBE) has been shown to improve the temporal resolution of DCE-MRI with preserved spatial resolution by filling the k-space with aspiral orbi (9, 12) and is considered a potential candidate for conventional DCE-MRI. Readout-segmented echo-planar diffusion-weighted imaging (RS-EPI) can improve the signal-to-noise ratio and is considered a potential candidate for conventional DWI, demonstrating promising results in the abdomen (13, 14). However, the high-temporal resolution quantitative parameters from CDT-VIBE DCE-MRI and the diffusion parameters from RS-EPI DWI have not been studied for their ability to predict BC receptor status and molecular subtypes. Therefore, the aim of this study was to evaluate whether high-temporal resolution quantitative parameters and diffusion parameters can be used to predict BC receptor status and molecular subtypes by using CDT-VIBE and RS-EPI techniques.



Materials and Methods


Patients

This study obtained institutional review board approval, and the need for informed patient consent was waived for this retrospective study. A prospectively enrolled patients in our institution that consisted of 577 consecutive patients who underwent CDT-VIBE DCE-MRI and RS-EPI DWI of the breast between January 2016 and August 2018 was queried for patients who fulfilled the following inclusion criteria: postoperative histopathology confirmed BC with receptor status, no recurrence, no previous treatment, not pregnant, and not breastfeeding. A total of 262 consecutive patients matched our search criteria. The exclusion criteria were as follows: (1) nonmass enhancement or multiple masses; (2) lesions< 1.0 cm; and (3) poor image quality or no lesion visible on MRI. The patient selection is outlined in Figure 1.




Figure 1 | Patient selection flow chart.





Immunohistochemical and Molecular Subtypes

IHC techniques were introduced to classify the different receptor statuses and molecular subtypes of BC. ER- and PR-positive tumors were defined as ≥1% positively stained tumor cells (15). HER2-positive tumors were defined as tumors with IHC staining of 3+ or gene amplification using fluorescence in situ hybridization demonstrated gene amplification >2.0 of tumors when IHC staining of 2+. Tumors with Ki-67≥20% were considered high Ki-67 expression tumors (16). According to the expression status of ER, PR, HER-2 and Ki-67, BC can be divided into four subtypes: luminal A, luminal B, HER-2 enriched, and TNBC. Luminal A was positive for ER and/or PR, Ki-67< 20% and HER-2-negative. Luminal B was ER- and/or PR-positive, HER-2-positive, or HER-2-negative when Ki-67 was ≥20%. HER-2 enrichment was ER- and PR-negative with HER-2 positivity. TNBC was all negative for ER, PR, and HER-2 (16).



MRI Scanning

All examinations were performed on a 3.0 T MRI scanner (Magnetom Skyra, Siemens, Germany) using a 16-channel bilateral breast coil with the patient positioned in the center of the magnet in the prone position. The MRI protocols included CDT-VIBE DCE-MRI, RS-EPI DWI, and conventional T1-and T2-weighted imaging. The RS-EPI sequence was performed prior to DCE-MRI. The parameters of the CDT-VIBE sequence (80-85 slices) were as follows: TR/TE = 6.4/3.3 ms, FA = 9°, FOV = 288 mm × 384 mm, matrix =448×314, bandwidth = 870 Hz,4 factor CAIPIRINHA acceleration, 2 mm slice thickness without slice gap. A total of 34 phases with a temporal resolution of 8.7 s were obtained within 5 min 5 s, starting 17.7 s after intravenous injection of 0.2 ml/kg of gadopentetate dimeglumine (Bayer Pharma AG) at an injection flow rate of 3.0 ml/s. An RS-EPI sequence (50-55 slices) with 2 b-values (50, 800 s/mm2) (TR/TE = 4800/56 ms, FA = 180°, FOV = 170 mm × 340 mm, matrix=96×192, bandwidth = 868 Hz, 4 mm slice thickness with 0.8 slice gap, and a total acquisition time of 4 min 58 s) was performed. T1-weighted acquisition (TR = 5.5 ms, TE = 2.5 ms, FOV = 341 mm×341 mm, slice thickness = 1.5 mm, slice gap = 0.3 mm, bandwidth = 430 Hz, total acquisition time = 1 min 40 s) and T2-weighted acquisition (TR = 3570 ms, TE = 74 ms, FOV = 341 mm×341 mm, slice thickness = 1.5 mm, slice gap = 0.3 mm, bandwidth = 248 Hz, total acquisition time =2 min 23 s) was also performed.



Image Evaluation

MRI images were independently evaluated by two senior radiologists with more than ten years of breast MRI experience. They were both blinded to the patients’ clinical history and histopathological results. DCE-MRI, DWI and ADC maps from each patient were transferred to the Siemens Syngo workstation. DCE-derived parametric maps of quantitative and semiquantitative parameters were automatically generated after motion correction, and registration was performed by using Tissue 4D software tool (Syngo via VB10, Siemens Healthcare).The pharmacokinetic parameters (17), including the volume transfer constant (Ktrans, min-1), extravascular-extracellular space volume ratio (Ve, min-1), rate constant (Kep=Ktrans/Ve), rate of contrast enhancement for contrast agent inflow (W-in, min-1), rate of contrast decay for contrast agent outflow (W-out, min-1) and time-to-peak enhancement after contrast agent injection (TTP, min),were assessed with parametric maps by using the conventional Tofts model (9) and were then generated for each voxel defined by the region of interest (ROI). The RS-EPI DWI image (b= 800 s/mm2) and ADC maps were opened as read-only files, and the ADC value (×10 -3mm 2/s) for the RS-EPI DWI was measured in the same region of the lesion as the DCE-derived parametric maps. The breast tumors were identified on DCE-MRI images with the prominent area of enhancement corresponding to the hyperintense regions on DWI (b=800 s/mm2) and the hypointense regions on ADC maps. One 2D-ROI with a minimum area of 10 mm2 was placed on the greatest representative slice of the tumor, avoiding obvious bleeding, visible necrosis, vessels, calcifications, and cystic appearing areas. The mean values were recorded after 3 repeated measurements.

To validate the stability of the measured parameters, Reader 1 performed tumor measurements in all 165 patients, and Reader 2 performed tumor measurements in 111 patients who were randomly selected from the whole cohort to assess interreader agreement. Only those parameters with an interclass correlation coefficient (ICC) value greater than 0.75 were selected for further experiments (18).



Statistical Analysis

The statistical analysis was performed with R (version 3.5.1). The Mann–Whitney U test and t-test were used to compare the quantitative MRI parameters between the different receptor expression statuses. The Kruskal–Wallis H test and one-way ANOVA test were performed for different molecular subtypes.Multivariate analysis was performed to explore confounder adjusted associations among quantitative parameters, receptor status and molecular subtypes. We included all factors that were significant (P<0.05) upon univariate analysis. In addition, receiver operating characteristic (ROC) curve analysis was also carried out, and the optimal cutoff values of the quantitative parameters to predict receptor status and molecular subtype were determined according to the largest Youden index. The area under the curve (AUC), accuracy, sensitivity and specificity were also calculated.A P value <0.05 was considered to be statistically significant.




Results


Basic Clinicopathological Characteristics

A total of 165 patients were included in this study, and the mean patient age was 50 years (range:25~81 years). Most had invasive ductal carcinoma (150 lesions), and there were five ductal carcinomas in situ, two medullary carcinomas, one adenosquamous carcinoma and seven invasive lobular carcinomas. The table of patient’s characteristics are presented in Table 1. PR-positive patients were younger than PR-negative patients (P<0.01).


Table 1 |  MRI parameters of different receptor statuses in breast cancer.





Interobserver Agreement of Quantitative MRI Parameters

The ICC values of Ktrans, Kep, Ve, TTP, W-in, W-out, and ADC were 0.962 (95% CI: 0.946-0.974), 0.874 (95% CI: 0.822-0.912), 0.919 (95% CI: 0.884-0.944), 0.924 (95% CI: 0.891-0.947),0.878 (95% CI: 0.826-0.914), 0.901 (95% CI: 0.855-0.933), and 0.797 (95% CI: 0.718-0.856), respectively. All the ICC values were greater than the threshold value of 0.75.



Receptor Status

The quantitative parameters of DCE-MRI and ADC for tumors stratified by receptor status are summarized in Table 1. The Kep values were lower when ER and PR were positive (all P<0.05). In contrast, the TTP value was higher when ER and PR were positive (all P<0.01). The Kep and ADC values were higher when HER-2 was positive (all P<0.05).The W-out value was higher when PR was positive (P<0.05). Box plot graphs revealing statistically significant differences in values for different receptor statuses are shown in Figure 2. The parameters Ktrans, W-in, and TTP were not significantly different in the expression statuses of ER, PR, HER-2 or Ki-67 (all P>0.05).




Figure 2 | Box plot graphs revealing statistically significant differences in values for different receptor statuses. The Kep and TTP values were significantly difference in ER status (A1, A2). The Kep and ADC values were significantly difference in HER-2 status (B1, B2); The age, Kep W-out, and TTP values were significantly difference in PR status (C1–C4).



According to the univariate analysis (Table 2), a lower Kep value (<0.704, OR=0.19, P=0.019) and a higher TTP value (> 0.585 min, OR=47.73, P=0.002) were significantly associated with ER-positive status. Younger age (<49.5 years, OR=0.96, P=0.008), a lower Kep value (<0.704,OR=0.08, P=0.001), a higher W-out value (<-0.005 min-1,OR=13.5, P=0.031) and a higher TTP value (> 0.629 min, OR=41.9, P<0.001) were significantly associated with PR-positive status. A higher ADC value (> 0.757×10−3mm2/s, OR=215.9, P<0.001) was significantly associated with HER-2-positive status. In the multivariate analysis, a higher TTP value (adjusted OR=28.19, P=0.01) remained independently associated with ER-positive status, while younger age (adjusted OR=0.95, P=0.004), a lower Kep value (adjusted OR=0.14, P =0.044), and a higher TTP value (adjusted OR=24.62, P =0.011) remained independently associated with PR-positive status.


Table 2 | Univariate and multivariate analysis of the parameters for different receptor statuses in breast cancer.





Molecular Subtypes

Table 3 shows the values of the quantitative parameters for different molecular subtypes. We found that Kep was the highest in HER-2-enriched cells and the lowest in luminal A cells (P<0.05). TTP was the highest in luminal A and the lowest in TNBC (P<0.01). ADC was the highest in HER-2-enriched cells and the lowest in TNBC (P<0.001).


Table 3 | MRI parameters for different molecular subtypes in breast cancer.



Table 4 shows the pairwise comparison analysis of the parameters of different subtypes. Further paired comparisons revealed that the Kep values were significantly different between luminal A and HER-2 enrichment and between luminal A and TNBC (all P<0.05), but only the difference between luminal A and TNBC was confirmed in the univariate analysis (P<0.05). The TTP value was significantly different between luminal A and TNBC, between luminal B and TNBC, and between HER-2-enriched BC and TNBC (all P< 0.05), and those differences were confirmed in the univariate analysis (all P<0.05).The ADC value was significantly different between luminal A and TNBC, between luminal B and HER-2-enriched BC, and between HER-2-enriched BC and TNBC (all P<0.05), and those differences were confirmed in the univariate analysis (all P<0.05). In the multivariate analysis lower TTP (<0.582 min, adjusted OR<0.001,P =0.004) and lower ADC values (<0.719×10-3 mm2/s, adjusted OR<0.001,P =0.048) were significantly associated with TNBC compared to luminal A; a lower ADC value (<0.759 ×10-3 mm2/s, adjusted OR<0.001, P =0.002) was significantly associated with TNBC compared to HER-2 enrichment. Representative Kep, TTP and ADC images in luminal A and TNBC are shown in Figure 3.


Table 4 | Ppairwise comparison analysis of the parameters in different subtypes.






Figure 3 | Representative Kep, TTP and ADC images in luminal A and TNBC. (A–C) are the images of Kep, TTP and ADC from a luminal A patient, with mean values of 0.48 min-1, 0.70 min, and 0.89×10-3 mm2/s, respectively. (D–F) are the images of Kep, TTP and ADC from a TNBC patient, with mean values of 0.94 min-1, 0.58 min, and 0.70×10-3 mm2/s, respectively.



The cutoff value, AUC, accuracy, sensitivity and specificity of these MR parameters with significant differences were further calculated using ROC curves (Table 5 and Figure 4). In identifying TNBC and luminal A, the combination model of Kep, TTP and ADC achieved the highest performance in the differential diagnosis, with an AUC of 0.811 (95% CI: 0.708–0.915). In identifying HER-2-enriched BC and TNBC, the combination model of ADC and TTP achieved the highest performance in the differential diagnosis, with an AUC of 0.793 (95% CI: 0.681–0.904).


Table 5 | ROC curves of Kep, TTP and ADC in differential diagnosis.






Figure 4 | ROC curves of different parameters in the differential diagnosis between luminal A and TNBC, between luminal B and HER-2-enriched BC, between luminal B and TNBC, and between HER-2-enriched BC and TNBC.






Discussion

This study explored the high-temporal resolution quantitative MRI parameters derived from CDT-VIBE and RS-EPI for the diagnosis of receptor status and molecular subtypes of BC. Our study showed that a lower Kep value was independently associated with PR-positive status, and a higher TTP value was independently associated with ER- and PR-positive status. In addition, a lower TTP value and lower ADC value had stronger independent associations with TNBC than with Luminal A BC, while a lower ADC value had a stronger independent association with TNBC than with HER-2 enrichment. Furthermore, Kep, TTP and ADC permit the differential diagnosis between luminal A and TNBC, with the highest AUC of 0.811 (95% CI: 0.708–0.915), and compared with the results of Chang et al (19), our model has an higher AUC (0.811 vs. 0.636), with a higher accuracy (0.750 vs. 0.696) and specificity (0. 767 vs. 0.511). ADC and TTP permit the differential diagnosis between HER-2-enriched BC and TNBC, with the highest AUC of 0.793 (95% CI: 0.681–0.904).

In our study, the Kep values were lower in hormone receptor-positive patients than in hormone receptor-negative patients, and further analysis revealed that a lower Kep value was independently associated with PR-positive status. This finding is different from previous findings (20) that showed that Kep derived from conventional DCE-MRI by using three-dimensional T1-weighted sequence axial scanning (a total of 6 phases,a total acquisition time beyond 6 min) was not associated with hormone receptor status. A potential explanation for CDT-VIBE improving the results may be as follows: The scan duration (<6 min) after injection of contrast medium has a significant impact on pharmacokinetic parameters (12), and CDT-VIBE could have improved the temporal resolution of each phase (a total of 34 phases) within the total acquisition time of 5 min 5 s. Therefore, our study may indicate that the Kep derived from CDT-VIBE may be a more sensitive biomarker for predicting BC receptor status compared with the parameters of conventional DCE-MRI. In addition,Kep was the highest in HER-2-enriched BC and the lowest in luminal A. This finding was consistent with the results of previous studies that indicated that more aggressive tumors have a higher Kep value (21).

TTP is also closely related with angiogenesis. In this study, a higher TTP value was independently associated with hormone receptor-positive status. This finding is partly in line with previous findings that showed that a higher TTP value, derived from DCE-MRI by using a 3D fast spoiled gradient-echo sequence with parallel imaging acceleration, was correlated with hormone receptor-positive status (22); however, the trend remained significant in our study after applying the univariate and multivariate analysis. In addition, TTP was found to be significantly different between luminal A and TNBC, and a lower TTP (<0.582 min) had a stronger independent association with TNBC than with luminal A. In identifying luminal A and TNBC, TTP had a sensitivity of 0.766 and a specificity of 0.765. Because there is a lack of a single highly reliable parameter to identify luminal A and TNBC, the prediction model combining multiple parameters becomes a viable alternative. By incorporating Kep and ADC into the prediction model, the overall predictive ability in the cohort was strong with an AUC of 0.811 (95% CI: 0.708–0.915). This finding was in excellent agreement with previous findings regarding the differentiation between luminal A and TNBC by using multiparametric MRI radiomics (23).

Diffusion imaging is a powerful technique to noninvasively measure microstructures and the ADC obtained is a quantitative measurement of water molecule diffusion (24). Bickel et al. proved ADC to be a valuable noninvasive quantitative biomarker for assessing BC invasiveness (25). Agreeing with previous studies (26–29), our results showed that a lower ADC was associated with higher tumor malignancy, especially in TNBC patients. This phenomenon may be attributed to the high cellular density and the restriction of water molecules in malignant tumors (30). A recent study further revealed that the features of DWI could reflect the intrinsic heterogeneous characteristics of molecular subtypes in BC (31). Our study further quantified the ADC derived from RS-EPI DWI and demonstrated that the ADC value was statistically significant in identifying HER-2-enriched BC and TNBC with an AUC of 0.763 (95% CI: 0.681–0.904). When TTP was incorporated into the prediction model, the AUCs achieved an approximate 30% increase.

There are some limitations of this study. First, although it is a relatively large cohort study with 165 patients, the inclusion of more cases in each subtype would make the results more reliable. Second, further comparisons of multiple modality imaging, such as ultrasound and mammography, would reveal a more comprehensive picture of breast cancer. Finally, previous studies have found that the combination of diffusion and enhanced imaging might improve the diagnostic performance in monitoring NAC (32). Therefore, it would be beneficial to apply our improved quantitative imaging methods to NAC in future clinical practice.

In conclusion, this study demonstrates that Kep and TTP derived from DCE-MRI by using CDT-VIBE (i.e., high-temporal resolution quantitative MRI parameters) are independently associated with the hormone receptor status of BC. In addition, the Kep, TTP, and ADC values had stronger independent associations with TNBC than with luminal A and could differentiate TNBC from luminal A, with the highest AUC of 0.811 (95% CI: 0.708–0.915). Therefore, the high-temporal resolution quantitative parameters of Kep, TTP, and ADC appear to be useful noninvasive imaging biomarkers for predicting the receptor status and molecular subtypes of BC.
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Objectives

To evaluate the association of breast cancer with both the background parenchymal enhancement intensity and volume (BPEI and BPEV, respectively) and the amount of fibroglandular tissue (FGT) using an automatic quantitative assessment method in breast magnetic resonance imaging (MRI).



Materials and Methods

Among 17,274 women who underwent breast MRI, 132 normal women (control group), 132 women with benign breast lesions (benign group), and 132 women with breast cancer (cancer group) were randomly selected and matched by age and menopausal status. The area under the receiver operating characteristic curve (AUC) was compared in Cancer vs Control and Cancer vs Benign groups to assess the discriminative ability of BPEI, BPEV and FGT.



Results

Compared with the control groups, the cancer group showed a significant difference in BPEV with a maximum AUC of 0.715 and 0.684 for patients in premenopausal and postmenopausal subgroup, respectively. And the cancer group showed a significant difference in BPEV with a maximum AUC of 0.622 and 0.633 for patients in premenopausal and postmenopausal subgroup, respectively, when compared with the benign group. FGT showed no significant difference when breast cancer group was compared with normal control and benign lesion group, respectively. Compared with the control groups, BPEI showed a slight difference in the cancer group. Compared with the benign group, no significant difference was seen in cancer group.



Conclusion

Increased BPEV is correlated with a high risk of breast cancer While FGT is not.





Keywords: BPE, breast, quantitative assessment, breast parenchymal enhancement rate, MRI



Introduction

The mammographic density of the breast has been found to provide valuable information regarding the risk of breast cancer (1–6). Among 12 single-nucleotide polymorphisms associated with a high risk of breast cancer, at least 3 are associated with changes in the breast density (7–9)., Mammography is usually used to obtain two-dimensional images of the breast, but this technique is inaccurate for evaluation of the breast density, which mainly comprises fibrous and glandular tissue (10). Magnetic resonance imaging (MRI) can be used to accurately evaluate the fibroglandular tissue (FGT) in three dimensions with a dynamic contrast-enhanced technique. The level of background parenchymal enhancement (BPE) reflects the features of enhanced FGT. Some studies have demonstrated that the breast tissue showing enhancement upon imaging is correlated with the risk of breast cancer. In one study, an increased level of BPE was associated with a higher risk of breast cancer (11).

King et al. (12) explored the relationships between breast cancer and both FGT and BPE on MRI. The odds radio for moderate or marked BPE versus minimal or mild BPE was 10.1; when patients with breast cancer were compared with normal controls, this odds ratio was significantly better than that for the breast X-ray density (5, 6). These results indicate that BPE has a stronger association with the risk of breast cancer than FGT, especially when evaluating the epithelial mammary gland blood supply. However, the authors’ assessment of FGT and BPE was subjective and lacked inter-observer consistency (12). Quantitative BPE is objective and accurate, which can provide reproducible data.

Previous published studies have shown that both FGT and BPE are associated with the concentrations of hormones such as estrogen and progesterone. Such associations were shown to be influenced by the patient’s age, menstrual cycle, menopausal status, therapy with aromatase inhibitors or tamoxifen, and hormone replacement therapy (13–18). Therefore, in the present study, patients taking endocrine therapy or hormone replacement therapy were excluded to avoid the influence of these treatments. The patients were then matched for age, menopausal status, and menstrual cycle. BPE is described in terms of both its intensity and volume (BPEI and BPEV, respectively). The purpose of this study was to examine the relationship between quantitative FGT/BPE and the risk of breast cancer.



Materials and Methods


Patients and Study Design

The institutional review board granted a waiver of authorization and patient consent for our retrospective study, which was in compliance with the Health Insurance Portability and Accountability Act (HIPAA). From January 2009 to December 2013, we conducted a retrospective review of 17,274 consecutive women who underwent breast MRI examinations in our hospital. Of these 17,274 women, 472 had bilaterally normal breasts on MRI (Breast Imaging-Reporting and Data System category 1). They had no lesions on MRI, ultrasound, or mammography examinations in the subsequent 2 years. Among these 472 women, only 132 met the following criteria for enrollment in the control group: Undergoing no hormonal therapy and having a 4-week menstrual cycle. Patients in the control group were matched 1:1 to patients in the breast cancer group by: 1) similar age (within a range of 5 years) 2) consistent menopause status 3) consistent menstrual cycle. Patients in the cancer group had untreated unilateral breast cancer diagnosed by operation or biopsy. Similarly, 132 patients who had unilateral breast benign lesions confirmed by biopsy or operation were enrolled in the benign group. These patients all had unilateral benign breast lesions. Patients in three groups were classified into premenopausal and postmenopausal subgroups according to the menopause status. Based on a 4-week menstrual cycle, we subclassified the premenopausal women into four categories: those in the first, second, third, and fourth week after menstruation.



MRI Protocol

MRI examinations were performed using a 1.5T breast MRI scanner (Aurora Imaging Technology, Inc., North Andover, MA, USA) with breast coil. We examined the patients’ bilateral breast and axillary areas in the prone position with natural ptosis. We injected gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) at 0.2 mmol/kg for dynamic contrast-enhanced MRI examination at a flow rate 2.0 mL/s with a high-pressure syringe. Next, 15 mL of 0.9% sodium chloride solution was injected to flush the remaining Gd-DTPA. The MRI series included one positional reference image, one T1-weighted non-fat-suppressed image, one T2-weighted fat-suppressed image, one pre-contrast T1-weighted fat-suppressed image, and three post-contrast T1-weighted fat-suppressed images. The time phases examined were the early phase (2 min), middle phase (4 min), and late phase (6 min) after contrast injection. The scanning parameters are shown in Supplementary Table 1.



MRI Evaluation

We developed a fully automated scheme for quantitative analysis of FGT and BPE from dynamic contrast-enhanced MRI (19). One pre-contrast T1-weighted fat-suppressed image was used to evaluate FGT and one pre-contrast T1-weighted fat-suppressed image and three post-contrast T1-weighted fat-suppressed images was used to evaluate BPEV and BPEI. After contrast agent administration we evaluated BPEI and BPEV at 60, 180, and 300 s (k-space center time).This fully automated method consists of three steps: segmentation of the whole breast, segmentation of FGT, and segmentation of enhanced FGT. Based on the automatically extracted volume of interest, a dynamic programming method was applied in each two-dimensional slice of a three-dimensional MRI scan to delineate the chest wall and breast skin line for segmenting the whole breast. This step took advantage of the continuity of the chest wall and breast skin line across adjacent slices. We then used the fuzzy c-means clustering method with automatic selection of the cluster number for segmenting of the FGT within the segmented whole breast area. Finally, a statistical method was used to establish a threshold based on the estimated noise level for segmenting the enhanced FGT in the subtraction image of the pre- and post-contrast MRI scans.

FGT and BPE were quantitatively assessed based on the segmented whole breast, FGT, and enhanced FGT (segmented tissues are shown in Figure 1). FGT was calculated using the volume ratio of the segmented FGT and breast tissues, BPEV was calculated using the volume ratio of the segmented enhanced and unenhanced FGT, and BPEI was calculated using the enhanced intensity ratio of the segmented enhanced FGT. The following mathematical formulas were used:

	




Figure 1 | MRI evaluation. (A) Pre-contrast breast MRI (T1-weighted fat-suppressed sequence). (B) This post-contrast (early) image corresponds to the T1-weighted image shown in (A). (C) Subtraction image from (A, B). (D) Whole breast segmentation (yellow). (E) Fibroglandular tissue segmentation (blue). (F) Enhanced fibroglandular tissue segmentation (purple). (G) Whole breast segmentation (3D). (H) Fibroglandular tissue segmentation (3D). (I) Enhanced fibroglandular tissue segmentation (3D). MRI = magnetic resonance imaging, 3D = three-dimensional.



In these formulas, Isubtraction image equals to the intensity of enhanced FGT in the subtraction image and Ioriginal image equals to the intensity of enhanced FGT in the original image.

To avoid effects induced by the lesion, we chose the mean value between the bilateral breasts as the measurement target in the control group. We also chose the contralateral breast in the benign and cancer groups.



Statistical Analysis

Patients in this study were divided into three groups: the cancer, benign, and control groups. Mann-Whitney U test was used to compare the differences between the cancer group and the normal control group, and between the cancer group and the benign lesion group. Due to the significant difference between FGT and BPE before and after menopause (13, 15), so we’ve also divided patients into premenopausal and postmenopausal subgroups.

Based on the relative consistency of the background parenchyma in the bilateral breasts, we drew receiver operating characteristic curves of FGT, BPEI, and BPEV for both the premenopausal and postmenopausal patients using a nonparametric method. We evaluated the discriminative performance of this association calculating modeling using the area under the receiver operating characteristic curve (AUC). All reported P values are two-sided. All analyses were performed using SPSS 16.0 (SPSS Inc., Chicago, IL).




Results


Characteristics of the Study Groups

Among all 396 menstrual cycle-matched patients enrolled in the three groups (Table 1). All the included women had not received hormone therapy or radiation therapy. In the cancer group, 111 (84%) patients had infiltrating ductal carcinoma, 16 (12%) had ductal carcinoma in situ, 3 (2%) had infiltrating lobular carcinoma, 1 (1%) had sarcomatoid carcinoma, and 1 (1%) had adenoid cystic carcinoma. In the benign group, 89 (68%) patients had mastopathy, 32 (24%) had fibroadenoma, 8 (6%) had intraductal papilloma, and 3 (2%) had mastadenitis. According to the expression of hormone receptors, breast cancer can be divided into four subtypes: Luminal A breast cancer is hormone-receptor positive (estrogen-receptor and/or progesterone-receptor positive), HER2 negative, and has low levels of the protein Ki-67. Luminal B breast cancer is hormone-receptor positive (estrogen-receptor and/or progesterone-receptor positive), and either HER2 positive or HER2 negative with high levels of Ki-67. HER2-enriched breast cancer is hormone-receptor negative (estrogen-receptor and progesterone-receptor negative) and HER2 positive. Triple-negative/basal-like breast cancer is hormone-receptor negative (estrogen-receptor and progesterone-receptor negative) and HER2 negative.


Table 1 | Clinicopathological characteristics of the patients in our study.





Comparison of Breast Cancer Group With Normal Control and Benign Group

There was no significant difference in FGT in breast cancer group compared with normal control group and benign lesion group (Table 2).


Table 2 | Comparison of FGT and its AUC among cancer vs control and cancer vs benign.



BPEI was significantly different in breast cancer group compared with the normal control group. The most significant difference occurred in the late enhancement phase in premenopausal women (AUC=0.648) and in the middle enhancement phase in postmenopausal women (AUC=0.618). There was no significant difference in BPEI compared with benign lesions (Table 3).


Table 3 | Comparison of BPE I and its AUC among cancer vs control and cancer vs benign.



BPEV was higher in the cancer group than in the control and benign groups (P < 0.05). The most significant difference occurred in the middle enhancement phase in premenopausal women (Cancer vs Control AUC=0.715 and Cancer vs Benign AUC= 0.622) and in the early enhancement phase in postmenopausal women (Cancer vs Control AUC=0.684 and Cancer vs Benign AUC= 0.633). (Table 4).


Table 4 | Comparison of BPEV and its AUC among cancer vs control and cancer vs benign.






Discussion

In the present study, we found that BPEV in the cancer group had increased significantly. Higher BPEV was correlated with an increased risk of breast cancer. The results of previous studies on the association between BPE, FGT and breast cancer were confused by hormone concentrations (12, 20–23), leading to deviations and even opposite conclusions. King et al. (15) reported that as hormone levels decreased after menopause, the mammary glands atrophied and the metabolism declined. In the present study, the patients in the three groups were matched not only for age but also for menopausal status and menstrual cycle. This eliminated the impact of physiological changes on FGT and BPE. Additionally, we only enrolled untreated patients to eliminate the influence of tamoxifen, aromatase inhibitors and hormone replacement therapy.

King (12) compared FGT and BPE of breast cancer before and after menopause with that of the normal control group, and found that BPE of the two groups had significant difference before and after menopause, while FGT showed no significant difference. Our results on FGT are consistent with those of King (12). Studies on BPE demonstrated that BPEV had significant differences in breast cancer compared with normal women and women with benign lesions, with a higher AUC value than BPEI. BPEI of breast cancer group is different from that of the normal control group, but not significantly different from the benign lesion group. This may be because benign breast lesions are mostly affected by estrogen and progesterone, and the increased blood supply of breasts. However, the difference of BPEV between breast cancer and benign lesions indicates that the area of breast tissue enhancement in breast cancer patients is more extensive than benign lesions” in the methods. Therefore, it indicated that BPEV has a stronger association with the risk of breast cancer than BPEI.

Recently, Wu et al. (23) reported that the wash-in slope variance (WISV), signal enhancement ratio volume (SERV), and BPE% were associated with breast cancer. When the WISV, SERV, and BPE% values were quantitatively assessed in the cancer and benign groups, the AUCs of WISV, SERV, and BPE% were 0.65, 0.63, and 0.64, respectively. These findings regarding BPEI and BPEV in the cancer and benign groups are similar to our results. Their study focused on the differences between benign lesions and breast cancer. However, patients were not matched for menopausal status and menstrual cycle in their study. In addition, BPEV had the maximum AUC between the cancer and benign groups or between the cancer and control groups.

In the studies by King et al. (12) and Wu et al. (23), BPE was only evaluated at one time point: 90 s (k-space center time) after contrast agent administration. Similarly, Dontchos et al. (20) performed their evaluation at 110 s. In the present study, we evaluated BPEI and BPEV at 60, 180, and 300 s after contrast agent administration (k-space center time). And we found that the best phase for assessing the risk of breast cancer was the middle enhancement phase in the premenopausal women and the early enhancement phase in the postmenopausal women.

Quantitative assessment of BPEV is necessary to optimize the treatment strategy in time and improve the therapeutic effect. Gail’s model has been widely used to predict the risk of breast cancer. With addition of the mammary gland density to this model, the prediction accuracy increased with an AUC of 0.602 to 0.670 to and AUC of 0.620 to 0.680 (24–28). In 2013, a meta-analysis of women with high-risk breast cancer who underwent preventive therapy using selective estrogen receptor modulators showed that at the 65-month follow-up, the incidence of breast cancer had decreased to 38% (hazard ratio, 0.62; 95% confidence interval, 0.56–0.69) (29). A major advantage of our study is that BPEV demonstrated a high association of the high risk of breast cancer with an AUC of 0.684 to 0.715. Moreover, BPEV can be used to evaluate the efficacy of preventive therapy after 6 months (30). Therefore, the application of BPEV could further reduce the incidence of breast cancer. Our study compensated for the lack of quantitative measurements in previous research.

This is a retrospective study of 17274 women who underground breast MRI collected for 5 years. However, in these cases, only 132 women with bilateral normal breast met the inclusion criteria, which led to a small sample size of the study. The first limitation of our study is the low time resolution of the MRI dynamic enhanced scans and the relatively low number of scanning phases. The second limitation is that our quantitative software could not distinguish between diseased tissue and normal glands. To avoid lesion-associated effects, we only evaluated the contralateral breast in the benign and cancer groups. Future studies will continue to add the phases of enhanced scanning, improve the time resolution, and shorten the scanning interval. More data regarding the correlation of BPEI and BPEV with the risk of breast cancer are needed. Thirdly, our study only evaluated data regarding breast lesions; further research should be performed with a focus on the glands before lesions develop.

In conclusion, we developed quantitative software which can help assess FGT and BPE. Our study showed that increased BPEV is correlated with a higher risk of breast cancer in both premenopausal and postmenopausal women. BPEV is an important factor which has a high association with the risk of breast cancer by breast MRI.
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Background

LncRNAs have been shown to play critical roles in regulating tumorigenesis and tumor progression. Using LncRNAs to predict prognosis and therapeutic response to cancer treatment has been caused for concern, but the predictive value of lncRNAs remains to be explored and underlying mechanisms have not been completely understood.



Methods

The Linc01315 expression level was detected in 282 breast cancer tissues by using quantitative RT-PCR. The association between Linc01315 expression level and clinicopathological features of these breast cancer patients was further analyzed. Multiple regression analysis was used to evaluate Linc01315 predictive value of patients’ prognosis.



Results

Our study revealed that Linc01315 expression level was significantly correlated with vessel invasion (P = 0.028) and tumor subtype (P = 0.039). The Kaplan–Meier survival curves demonstrated that patients with lower Linc01315 expression level had significantly longer disease free survival (DFS) (P = 0.002) and overall survival (OS) (P=0.019). Multiple regression analysis showed that Linc01315 level could be an independent predictive factor for DFS (hazards ratio = 0.613, 95% confidence interval = 0.375-1.003; P = 0.049) and OS (hazards ratio = 0.439, 95% confidence interval = 0.228-0.845; P = 0.014). Further analysis showed that low Linc01315 level patients with endocrine therapy could benefit patients DFS (P=0.037) and OS (P=0.025).



Conclusion

Our results demonstrate that Linc01315 expression level is significantly correlated with breast cancer patients’ prognosis. Linc01315 may represent an independent prognostic marker and therapeutic target in breast cancer.





Keywords: Linc01315, breast cancer, prognosis, long non-coding RNA, predict



Introduction

Breast cancer is the most common malignancy in women. The overall survival and prognosis of some patients with breast cancer remains poor despite therapeutic improvements in cancer systemic treatment over the last several decades. Thus, there is still a great challenge in exploring the underlying mechanisms of breast carcinogenesis and progression, so as to identify promising prognostic molecular markers that can benefit the effect of appropriate therapeutic regimen.

Emerging evidence has indicated that long non-coding RNA (lncRNA) could be involved in the occurrence and progression of cancer. Long non-coding RNAs (lncRNAs), a subgroup of non-protein-coding RNAs, are longer than 200 nucleotide (1, 2) and generally show developmental stage-, tissue-, or disease-specific expression patterns (3–7). Ectopic lncRNA expression levels have been implicated in various types of cancer development and metastasis through the downstream effector molecules dysregulation. lncRNA expression profiling may act as prognostic markers and promising therapeutic targets for human cancers intervention (8–12). Although thousands of lncRNAs have been annotated, only a small number of lncRNAs, such as homeobox transcript antisense RNA (HOTAIR) and metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), are widely studied in various tumors (13–16); however, the functions of most lncRNAs remain unknown.

Previous studies have shown that TCGA lncRNome information could be used to screen and find several lncRNA candidates that associated with cancer genomic alterations, and might be correlated with patient prognosis in breast cancer (17, 18). Linc01315 located on chromosome 12 which has been reported to be upregulated in triple-negative breast cancer (19). Moreover, down-regulated expression of Linc01315 could suppress colorectal carcinoma progression by sponging miR-205-3p (20). In this study, we investigated Linc01315 expression level in the cohort of 282 breast cancer patients from Fudan University Shanghai Cancer Center and found that high Linc01315 expression level had a significantly worse clinical outcome, and Linc01315 might be an independent prognostic predictor in breast cancer.



Material and Methods


Cell Culture

The MCF-10A, MCF-7,SK-BR-3,T47D and BT474 cell lines were obtained from American Type Culture Collection (ATCC) (Manassas, VA). MDA-MB-231/LM2 was a subline of MDA-MB-231 with high lung metastasis tendency. MCF-7,SK-BR-3, T47D and BT474 cells were cultured in RMPI1640 medium. MDA-MB-231/LM2 cell was cultured in DMEM medium. MCF-10A was cultured in F12/DMEM 1:1 medium. All cells were cultured with 10% fetal bovine serum(FBS), 100 units/ml penicillin, and 100 ug/ml streptomycin at 37°C and 5% CO2.



Patients’ Samples

A series of 282 primary breast cancer tissues of stage I to III invasive carcinoma were collected at Fudan University Shanghai Cancer Center. The exclusion criteria were: (i) advanced breast cancer, (ii) neo-adjuvant chemotherapy received prior to surgery, (iii) recurrent breast cancer diagnosed upon surgery, and (iv) noninvasive ductal carcinoma. Patients’ clinical data and tumor pathology are summarized (Table 1). Pathology, including histological type and grade; ER, PR, and HER2 status; and Ki-67 expression were assessed by two academic pathologists according to the World Health Organization (WHO) classification and American Society for Clinical Oncology (ASCO) guidelines. The study was approved by the Ethical Committee of Fudan University Shanghai Cancer Center for Clinical Research (NO. 050432-4-1911D). All patients gave written informed consents.


Table 1 |  Clinical information and demographics of the 282 patients included in the study.





RNA Isolation and Quantitative RT−PCR

Total RNA was extracted with Trizol reagent (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instructions. DNase I was used to digest genome DNA before cDNA Synthesis. qRT-PCR was performed to quantitate the mRNA expression levels. To analyze Linc01315 expression, we used the SYBRGreen method with primers listed below: Linc01315 forward 5′ CTGCTGAGCGATGAAGTGGA 3′ and Linc01315 reverse 5′ CTACAGCTGGAGGGAAACCG 3′. Their relative expression were quantified to GAPDH by 2−△Ct values.



Statistical Analysis

All statistical analyses were performed using SPSS 22.0 software (SPSS Inc, Chicago, IL, USA). Comparisons among groups were done by the independent sample t-test. The Wilcoxon matched pairs test was used to examine Linc01315 expression in breast cancer tissues versus adjuvant normal tissues. Pearson’s χ2 test was performed to evaluate the correlation between Linc01315 expression and breast cancer clinicopathological characteristics. In survival analysis, Kaplan–Meier analysis and the Cox proportional hazards model were used to examine whether Linc01315 expression level impacted prognosis. Two-tailed P-values were adopted, P-value 0.05 was considered as statistically significant. We used SPSS 22.0 software (SPSS Inc, Chicago, IL, USA) to draw survival curve.




Results


Linc01315 Expression in Breast Cancer Cell Lines

Linc01315 expression levels were examined in seven breast cancer cell lines and one normal breast cell MCF10A. As shown in Figure 1, compared with MCF-10A. Linc01315 expression was up-regulated in MDA-MB-231/LM2, MCF-7 and SK-BR-3, however, down-regulated in MDA-MB-231, MDA-MB-468, T47D and BT474.




Figure 1 | Linc01315 expression levels in 6 breast cell lines. Compared with normal breast cell line MCF-10A. Linc01315 expression was up-regulated in MDA-MB-231/LM2, MCF-7 and SK-BR-3, down-regulated in T47D and BT474.





Relationship Between Linc01315 Expression Level and Clinicopathological Characteristics

Expression of Linc01315 in 44 paired of breast cancer tissues and their adjacent normal tissues were then detected. The data showed that a little bit higher of Linc01315 was in normal tissues than in breast cancer tissues, but the difference was not significant (P=0.1038) (Supplementary Figure 1). To identify the clinical relevance of Linc01315 in breast cancer, association between Linc01315 expression level and clinicopathological features such as age, ER/PR, Her-2, Ki67, vessel invasion, tumor size, lymph node status, tumor grade and TNM stage were examined (Table 1). According to the ROC curve assessment which was constructed using patient Linc01315 levels to establish a sensitivity-specificity relationship of the measured prognostic marker, the expression of Linc01315 in tumor tissues was divided into 167 low expression and 115 high expression. Chi square test was used to determine the cutoff value of Linc01315 in this study. Linc01315 expression level in breast cancer was significantly correlated with TNM stage (p=0.003), vessel invasion (p = 0.028) and tumor subtype (p = 0.039). TNM stage I-II patients seemed to have lower Linc01315 expression. Vessel invasion negative patients show significant correlation with low Linc01315 expression level. Moreover, Her-2 positive subtype patients tended to have high Linc01315 expression level, while luminal A and B subtype patients seemed to have low Linc01315 expression (Table 1). The expression levels of Linc01315 were higher in Luminal A and Her-2 subtype than in Luminal B and basal like subtype (Supplementary Figure 2).



Association Between Linc01315 Expression and Patient Prognosis

Furthermore, analyzing the disease free survival (DFS) and overall survival (OS) of these 282 breast cancer patients revealed that patients with lower Linc01315 expression level had significantly longer DFS (P = 0.002) and OS (P=0.019) (Figures 2A, B). Interestingly, the tumor stage, lymph node stage, TNM stage and vessel invasion also showed significant correlation with patients DFS and OS, as patients with lower tumor stage (P = 0.036, P=0.046), lower lymph node stage (P<0.001, P=0.041), lower TNM stage (P<0.001, P=0.003) or negative vessel invasion (P<0.001, P=0.002) tended to achieve longer DFS and OS. Furthermore, Her-2 positive patients displayed worse OS (P=0.042). Multiple regression analysis showed that the Linc01315 level could serve as an independent predictive factor for DFS (hazards ratio = 0.613, 95% confidence interval = 0.375-1.003; P = 0.049) and OS (hazards ratio = 0.439, 95% confidence interval = 0.228-0.845; P = 0.014) (Table 2). Statistical analysis also showed that lymph node stage and TNM stage could predict patients DFS (hazards ratio = 1.644, 95% confidence interval = 1.344-2.010; P<0.001) (hazards ratio = 2.413, 95% confidence interval = 1.648-3.531; P<0.001) and vessel invasion status could predict patients OS (hazards ratio = 2.590, 95% confidence interval = 1.303-5.149; P = 0.007) (Table 2).




Figure 2 | Low expression level of Linc01315 correlates with higher disease free survival (DFS) and overall survival (OS). (A) Kaplan-Merier curves of 282 breast cancer patients after stratification by the level of Linc01315 were used for depicting Disease-free survival (DFS). (B) Kaplan-Merier curves of 282 breast cancer patients after stratification by the level of Linc01315 were used for depicting Overall survival (OS).




Table 2 | Univariate and multivariate Cox regression analyses of DFS and OS in BC patients.



Further analysis showed that the ER/PR positive patients with lower Linc01315 expression displayed longer DFS (P=0.013; P=0.019) and OS (P=0.004; P=0.006) (Figures 3A, B; Figures 4A, B), while OS and DFS analysis in HER2+ breast cancer and triple negative breast cancer showed no significant difference (Supplementary Figure 3). ER positive breast cancer patients receive endocrine therapy to block estrogen action in the tumor, consequently stop or slow the development of hormone-sensitive tumors. Additionally, we investigated the prognosis of patients treated with endocrine therapy (n = 131). The 131 ER positive patients received Tamoxifen or Aromatase inhibitor for 5 years based on menopausal status at diagnosis. We found low Linc01315 level patients with endocrine therapy could benefit patients DFS (P=0.037) and OS (P=0.025) (Figures 5A, B).




Figure 3 | Disease-free survival curves according to breast cancer patients’ clinic pathological features and Linc01315 expression level. (A) DFS curve of ER positive patients based on the level of Linc01315. (B) DFS curve of PR positive patients based on the level of Linc01315. (C) DFS curve of Her-2 negative patients based on the level of Linc01315. (D) DFS curve of Ki67 positive patients based on the level of Linc01315.






Figure 4 | Overall survival curves according to breast cancer patients’ clinic pathological features and Linc01315 expression level. (A) OS curve of ER positive patients based on the level of Linc01315. (B) OS curve of PR positive patients based on the level of Linc01315. (C) OS curve of Her-2 negative patients based on the level of Linc01315. (D) OS curve of Ki67 positive patients based on the level of Linc01315.






Figure 5 | Low Linc01315 level patients with endocrine therapy could benefit patients DFS and OS. (A) DFS curve of patients treated with endocrine therapy based on the level of Linc01315. (B) OS curve of patients treated with endocrine therapy based on the level of Linc01315.



Nevertheless, Her-2 negative patients with high Linc01315 expression showed poor DFS (P=0.005) and OS (P=0.002) (Figures 3C, 4C). Ki67 gene encodes a nuclear protein that is associated with and may be necessary for cellular proliferation. Ki67 positive patients with lower Linc01315 expression seemed to benefit DFS (P=0.019) and OS (P=0.009) (Figures 3D, 4D).




Discussion

Increasing efforts to achieve effective personalized treatment have emphasized the importance of applicable molecular markers to predict patient prognosis and therapeutic effect.

Multiple studies have indicated that LncRNAs can function as tumor suppressors or oncogenes through regulating coding genes expression and epigenetic modification (21). Molecular mechanisms of lncRNAs in various cancers may represent the key points for therapeutic intervention. Linc01315 is located in chromosome 22q. LINC01315 has three variants, NR_120595, NR_120596, and NR_120597, and the primers we designed could recognize these three isoforms. A previous study speculated that Linc01315 could promote the proliferation, migration and invasion of nasopharyngeal carcinoma (NPC) cells, and reduced the apoptosis of NPC cells, resulting in facilitating the tumorigenesis of NPC (22). The study demonstrated that Linc01315 might be used for the early diagnosis and treatment of NPC. In our study, we identified that Linc01315 expression level might be associated with breast cancer patients’ prognosis. High Linc01315 expression in breast cancer significantly correlated with worse DFS and OS (Figures 2A, B). Multiple regression analysis displayed that the Linc01315 level could be an independent predictive factor for DFS and OS in breast cancer (Table 2).

To our knowledge, about 70% of breast cancer patients presenting ER/PR positive (23). ER mediates the effects of estrogen on the development and progression of breast cancer, and it acts as an important therapeutic target for treatment. Endocrine therapy resistance in breast cancer is a major challenge in the treatment of hormone receptor positive breast cancer. Several lncRNAs have been reported to play crucial roles in the modulation of endocrine therapy responses in breast cancer cells. Previous study showed that lncRNA UCA1 could confer tamoxifen resistance by activating the mTOR signaling pathway (24) and Wnt/β-Catenin signaling pathway (25). LncRNA HOTAIR was found to interact with ER, and then enhance its transcriptional activity and promote tamoxifen-resistant breast cancer progression (26). Our study showed that Linc01315 expression level in breast cancer was significantly correlated with tumor subtype, the expression level of Linc01315 was higher in Luminal A and Her-2 subtype than in Luminal B and basal like subtype (Table 1 and Supplementary Figure 2). However, previous study showed that the expression level of Linc01315 was higher in triple negative breast cancer(TNBC) tissues compared with non-TNBC tissues, and high Linc01315 expression associated with better DFS in TNBC patients (19). Considering samples selection bias, we may need to expand the sample size, and design a prospective trial in the further study. Further analysis also revealed that ER/PR positive patients with lower Linc01315 expression displayed longer DFS and OS (Figures 3A, B; Figures 4A, B), and low Linc01315 level patients treated with endocrine therapy could benefit patients DFS and OS (Figures 5A, B). The results indicate that Linc01315 may be associated with endocrine therapy resistance in breast cancer, and represent a promising therapeutic target for cancer treatment.

In the past decade, lncRNA research is booming. Therapeutics based on targeting lncRNAs has evolving rapidly. It has been well demonstrated that multiple RNA-based therapies, such as small interfering RNAs (siRNAs), short hairpin RNAs (shRNAs), antisense oligonucleotides (ASOs), as well as CRISPR-Cas13a based RNA editing, showed promising results in preclinical research. In the ASOs scenario, different chemical modifications have been developed to enhance the stability of this kind of drug, also the delivery efficiency to tumor cells. ASOs are single stranded chemically modified DNA/RNA synthetic molecules complementary to target mRNA, causing mRNA degradation through RNase H cleavage or stabilizing the targets. We have demonstrated the efficiency of ASOs in the treatment of triple-negative breast cancer cells targeting LINC02273 in vivo (12). Therefore, our study could also utilize this tool for future translational study although it may need more mechanism and animal studies.

In conclusion, our data demonstrate that Linc01315 expression level is significantly correlated with breast cancer patients’ prognosis. Lower Linc01315 expression level may benefit patients DFS and OS, especially in ER/PR positive patients treated with endocrine therapy. Linc01315 also has prognostic effect in Her-2 negative or Ki67 positive breast cancer patients. It is plausible that Linc01315 may represent an independent prognostic marker and therapeutic target in breast cancer.
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Background

Breast cancer patients who achieve pathological complete response (pCR) after neoadjuvant chemotherapy (NAC) have favorable outcomes. Reliable predictors for pCR help to identify patients who will benefit most from NAC. The pretreatment serum albumin-to-alkaline phosphatase ratio (AAPR) has been shown to be a prognostic predictor in several malignancies, but its predictive value for pCR in breast cancer is still unknown. This study aims to investigate the predictive role of AAPR in breast cancer patients and develop an AAPR-based nomogram for pCR rate prediction.



Methods

A total of 780 patients who received anthracycline and taxane-based NAC from January 2012 to March 2018 were retrospectively analyzed. Univariate and multivariate analyses were performed to assess the predictive value of AAPR and other clinicopathological factors. A nomogram was developed and calibrated based on multivariate logistic regression. A validation cohort of 234 patients was utilized to further validate the predictive performance of the model. The C-index, calibration plots and decision curve analysis (DCA) were used to evaluate the discrimination, calibration and clinical value of the model.



Results

Patients with a lower AAPR (<0.583) had a significantly reduced pCR rate (OR 2.228, 95% CI 1.246-3.986, p=0.007). Tumor size, clinical nodal status, histological grade, PR, Ki67 and AAPR were identified as independent predictors and included in the final model. The nomogram was used as a graphical representation of the model. The nomogram had satisfactory calibration and discrimination in both the training cohort and validation cohort (the C-index was 0.792 in the training cohort and 0.790 in the validation cohort). Furthermore, DCA indicated a clinical net benefit from the nomogram.



Conclusions

Pretreatment serum AAPR is a potentially valuable predictor for pCR in breast cancer patients who receive NAC. The AAPR-based nomogram is a noninvasive tool with favorable predictive accuracy for pCR, which helps to make individualized treatment strategy decisions.
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Introduction

Breast cancer is the most common female malignancy and is one of the leading causes of female cancer morbidity and mortality (1). Neoadjuvant chemotherapy (NAC) is a standard treatment option for most breast cancer patients, especially those with locally advanced or inoperable breast cancer. It aims to reduce disease burden and make breast cancer operable in locally advanced patients (2). For operable breast cancer, NAC makes it possible to receive breast-conserving surgery. Furthermore, NAC provides an opportunity for the assessment of chemosensitivity in vivo to guide individualized further systematic therapy based on tumor response (3). A recent meta-analysis of 52 clinical trials, including 27,895 patients, demonstrated that pathological complete response (pCR) after NAC was associated with better event-free survival and overall survival in all breast cancer molecular subtypes (4). However, the response to NAC varies among different molecular subtypes and histopathological characteristics (5). NAC might increase the risk of disease progression in chemoresistant tumors by delaying surgery. A portion of patients do not benefit from NAC and are exposed to the toxicity of the chemotherapy drugs unnecessarily. Thus, there is an urgent need to seek an effective method that can predict pCR for the identification of patients who will benefit most from NAC.

Previous studies demonstrated that various methods could be applied to predict pCR with NAC in breast cancer patients, including analysis of gene signatures, histomorphological factors and imaging features (6–8). Compared with these methods, serum samples are easy to obtain and reflect the comprehensive state of cancer patients. Various serum tumor markers have been identified as prognostic predictive factors in breast cancer patients, such as CEA, CA15-3, CA19-9 and CA125 (9, 10). It is known that systemic inflammation accelerates tumor progression (11). Inflammation-based prognostic scores, including the neutrophil to lymphocyte ratio, lymphocyte to monocyte ratio, platelet to lymphocyte ratio and C-reactive protein/albumin ratio, have been analyzed to evaluate their prognostic predictive value in breast cancer, but the results are controversial (12, 13). Albumin (ALB) is the most abundant serum protein and is synthesized by the liver. It can be regarded as a surrogate parameter for systemic inflammation because of its important function as an immunomodulatory molecule (14). Several studies have found that ALB is a reliable factor for predicting prognosis in different types of cancer, including gynecological cancers, gastrointestinal cancers, hepatocellular carcinoma and esophageal squamous cell carcinoma (15–18). Serum alkaline phosphatase (ALP) is derived from the liver, skeletal tissue, intestine, kidney, placenta and a variety of tumors and is conventionally regarded as a serum marker of hepatobiliary pathology and fracture (19). Previous studies have suggested that ALP is associated with systemic inflammation and tumor development (20, 21). The albumin-to-alkaline phosphatase ratio (AAPR) is a combined index associated with systemic inflammation, which is calculated by dividing the ALB level by the ALP level. It was first reported as a novel prognostic indicator in hepatocellular carcinoma (22). AAPR is based on low-cost routine blood test indexes and has a better prognostic predictive effect than ALB or ALP alone (23). Patients with higher AAPR have better survival outcomes than those with lower AAPR in various cancers, including breast cancer (24). However, whether AAPR can be used as a predictor for pCR in breast cancer patients receiving NAC is still unclear.

Nomograms, graphic illustrations based on regression models, are considered comprehensive predictive tools of patient outcomes. They have been widely used in cancer prognosis prediction models. Although several AAPR-based nomograms have been developed to predict survival in various cancer patients, nomograms based on AAPR predicting the probability of pCR in breast cancer patients are still scant. In our current study, a nomogram based on AAPR and clinicopathological variables was developed and validated to predict the individual probability of pCR in breast cancer patients who received NAC.



Methods


Study Population

We retrospectively reviewed the medical records of primary breast cancer patients at the First Affiliated Hospital of Chongqing Medical University from January 2012 to March 2018. The inclusion criteria were as follows: 1) pathological diagnosis of invasive breast cancer; 2) female; 3) received NAC and surgery; 4) received at least 3 courses of treatment with TEC (docetaxel 75 mg/m2, epirubicin 75 mg/m2 and cyclophosphamide 500 mg/m2 each 21 days before surgery; and 5) serum ALB and ALP levels were measured before treatment. Patients with prior history of malignancies or without complete information were excluded. Ultimately, a total of 780 patients were included for analysis. They were randomly divided into the training cohort and the validation cohort at a ratio of 7:3 (training group: n=546, validation group: n=234). This study was reviewed and approved by the ethics committee of the First Affiliated Hospital of Chongqing Medical University.



Data Collection

Clinical characteristics collected for further analysis included age, menopausal status, courses of NAC, histological type of cancer, tumor size, clinical nodal status, histological grade, estrogen receptor (ER) status, progesterone receptor (PR) status, human epidermal growth factor receptor-2 (HER2) receptor status, Ki67 status, and serum ALB and ALP levels. The tumor size was assessed using ultrasonography by the specific ultrasound operators working in our Breast Cancer Center. ER and PR expression were defined as positive when greater than 1% of the tumor cells exhibited nuclear staining on immunohistochemistry. HER2 positivity was defined as 3+ by immunohistochemical staining or an over 2.0-fold increase by fluorescence in situ hybridization (25). The Ki67 value was defined as the percentage of Ki67-positive cells (500-1,000) among the total number of cancer cells in the invasive front of the tumor (26). ER, PR, HER2 and Ki67 were assessed by two pathologists independently. Tumors were classified into four categories based on the expression of ER, PR, and HER2: luminal subtype (ER+ and/or PR+, HER2-), luminal/HER2 subtype (ER+ and/or PR+, HER2+), HER2 enriched subtype (ER-, PR-, HER2+), and TNBC subtype (ER-, PR-, HER2-). ALB and ALP were tested along with routine plasma examinations at diagnosis. Blood samples were collected into coagulant-coated tubes after patients had fasted for at least 6 hours. ALB and ALP were analyzed by a fully automatic biochemical analyzer (Roche c701, Basel, Switzerland). Pathological complete response (pCR) was recognized as the absence of any residual tumor lesions in any excised breast tissue or lymph node according to the Miller-Payne grading system (27).



Statistical Analysis

The cutoff values of ALB and ALP were 40 g/L and 100 U/L, respectively, which were established based on the normal reference value. The optimal cutoff value of AAPR was determined by the maximum Youden index through receiver operating characteristic (ROC) curve analysis. The chi-square test and Fisher’s exact test were used to evaluate the differences in clinicopathological variables between the training cohort and the validation cohort. In addition, the associations between AAPR and clinicopathological characteristics in breast cancer patients were assessed by the chi-square test or Fisher’s exact test. Similarly, the relationships between pCR and clinicopathological characteristics were analyzed. The primary goal of this study was to estimate the likelihood of breast cancer patients reaching pCR after NAC. Multivariate logistic regression analysis was performed to assess the associations between clinicopathological factors and the likelihood of pCR. Odds ratios were reported with corresponding 95% confidence intervals (CIs). An individualized nomogram was constructed based on the logistic regression model with the rms package in R software. The performance of the model was evaluated by discrimination and calibration in both the training cohort and the validation cohort. By testing the concordance between the prediction probability and the actual state, the concordance index (C-index) was calculated to assess the prediction and discrimination ability of the model. Calibration of the nomogram assessed by internal validation through 1000 bootstrap resamples was shown by a calibration curve. The fitness of the model was analyzed by the Hosmer-Lemeshow test. Furthermore, decision curve analysis was applied to assess the net benefit of the nomogram.

All statistical analyses were performed by using the Statistical Package for the Social Sciences version 25.0 software (IBM Corp., Armonk, USA) and R software (version 4.0.3; https://www.R-project.org/). A two-sided p-value < 0.05 was considered statistically significant.




Results


Patient Characteristics

A total of 780 eligible patients were enrolled in this study according to the inclusion criteria. They were randomly divided into the training cohort and the validation cohort at a ratio of 7:3 to develop and validate the predictive model. The mean age of all patients at baseline was 49.0 ± 9.1 years (range 20.0-72.0 years), and 60.0% (n=468) of them were premenopausal. Most of the patients (n=749, 96.0%) were diagnosed with invasive lobular carcinoma. The mean tumor size was 4.0 ± 2.1 cm at baseline, while it was reduced to 2.1 ± 1.7 cm after NAC. Moreover, 461 (59.1%) patients had node-positive disease at baseline. The proportions of ER-positive, PR-positive, HER2-positive patients were 62.8% (n=490), 48.8% (n=381) and 41.8% (n=326), respectively, among 780 patients. More than half of the patients (n=539, 69.1%) had Ki67 expression ≥ 14%. In addition, 90.6% (n=707) of patients had normal serum ALP levels, while 60.1% (n=469) of patients had normal serum ALB levels. According to the Miller-Payne grading system, 103 (13.2%) patients were evaluated as having pCR after NAC. As shown in Table 1, no significant difference was observed in clinicopathological factors between the training cohort and the validation cohort.


Table 1 | Clinicopathological characteristics in the training, validation and overall cohorts.





Associations Between AAPR and Clinicopathological Characteristics

The relationships between AAPR and clinicopathological characteristics in the training cohort were assessed (Table 2). The optimal cutoff value of AAPR was 0.583, according to the ROC curve. Following the cutoff value, 233 (42.7%) patients were included in the high-AAPR group (AAPR<0.583), while the other 313 (57.3%) patients were included in the low-AAPR group (AAPR≥0.583). The results revealed that AAPR level was significantly associated with age (p<0.001), menopausal status (p<0.001), histological type (p=0.007), molecular subtypes (p=0.045) and pCR (p=0.030). No differences were observed in chemotherapy cycles, tumor size, clinical nodal status, histological grade, ER, PR, HER2 or Ki67 between the two groups.


Table 2  | Correlations between AAPR and clinicopathological characteristics in the training cohort.





Predictors of pCR

In univariate analysis of the training cohort (Table 3), pCR was significantly correlated with tumor size, clinical nodal status, histological grade, ER, PR, Ki67, molecular subtypes and AAPR. Multivariate logistic regression models were applied to adjust for potential confounders. Variables with p < 0.05 in univariate analysis were included in multivariable models. To avoid the influence of multicollinearity between ER and molecular subtypes, only one of them was applied to the final model. Tumor size, clinical nodal status, histological grade, PR, Ki67 and AAPR were indicated as independent predictors for pCR in breast cancer patients who received NAC. Compared with patients with lower AAPR (AAPR<0.583), the probability of pCR in those with higher AAPR was 2.228-fold higher (95% CI 1.246-3.986, p=0.007). Patients with larger and higher historical grade tumors were less likely to achieve pCR (adjusted OR 0.355, 95% CI 0.168-0.752, p=0.007 for T2; adjusted OR 0.237, 95% CI 0.091-0.620, p=0.003 for T3; adjusted OR 0.256, 95% CI 0.105-0.624, p=0.003 for Grade II; adjusted OR 0.247, 95% CI 0.087-0.702, p=0.009 for Grade III) (Table 4). Patients with node-positive and PR-positive diseases had more difficulty achieving pCR than those with node-negative and PR-negative diseases (adjusted OR 0.288, 95% CI 0.162-0.513, p<0.001 for node-negative status; adjusted OR 0.462, 95% CI 0.220-0.971, p=0.041 for PR-negative status). Moreover, the probability of pCR in patients with higher Ki67 levels was 3.334-fold (95% CI 1.534-7.229, p=0.002) higher than that in patients with lower Ki67 levels.


Table 3 | Univariate analysis for factors associated with pCR in the training cohort.




Table 4 | Multivariate analysis for factors associated with pCR in the training cohort.



Considering the high heterogeneity of breast cancer, univariate and multivariate analyses were performed in different subtypes. As shown in Supplementary Tables 1, 2, tumor size, histological grade, Ki67 and AAPR were indicated as independent predictors for pCR in the luminal subtype. In the luminal/HER2 subtype, the independent predictors were clinical nodal status, histological grade and Ki67 (Supplementary Tables 3, 4). In the HER2 enriched subtype, only clinical nodal status and histological grade were statistically significant in multivariate analysis (Supplementary Tables 4, 5). In the TNBC subtype, tumor size, clinical nodal status and AAPR were identified as independent predictors for pCR (Supplementary Tables 7, 8). The results demonstrated that the probability of pCR in patients with higher AAPR was 3.245-fold higher (95% CI 1.055-9.980, p=0.040) in the luminal subtype and 2.868-fold higher (95% CI 1.048-7.849, p=0.040) in the TNBC subtype when compared with those with lower AAPR (AAPR<0.583). It is consistent with the results obtained in the overall analysis. However, AAPR was not correlated with the pCR rate in the luminal/HER2 (p=0.215) and the HER2 enriched (p=0.853) subtype.



Development and Validation of the Nomogram

A nomogram was constructed based on the multivariate regression analysis of the training cohort. In Figure 1, tumor size, clinical nodal status, histological grade, PR, Ki67 and AAPR were used to calculate points based on the points scale axis. The sum of all these points provides a total point to estimate the probability of pCR.




Figure 1 | The AAPR-based nomogram for predicting the probability of pCR after NAC in breast cancer patients. PR, progesterone receptor; AAPR, albumin-to-alkaline phosphatase ratio; pCR, pathologic complete response.



The predictive accuracy of the nomogram for the pCR rate of breast cancer patients who received NAC measured by the C-index was 0.792 (95% CI 0.737-0.848) in the training cohort and 0.790 (95% CI 0.701-0.880) in the validation cohort (Figures 2A, B). In addition, the calibration curves for pCR demonstrated a satisfactory fit between the prediction and the actual values (Figures 2C, D). As shown in Figures 2E, F, decision curves were illustrated for the constructed nomogram. It suggested that, for predicted probability thresholds between 0 and 60% the model-based decision was superior to either the treat-none or the treat-all-patients scheme.




Figure 2 | Validation the predictive value of the AAPR-based nomogram. The ROC curves for the nomogram model in (A) the training cohort and (B) validation cohort. The calibration plots for the nomogram model in (C) the training cohort and (D) validation cohort. The decision curves show the net-benefit of using the nomogram in (E) the training cohort and (F) validation cohort.






Discussion

NAC was first introduced in the 1970s (28). It is now widely used among breast cancer patients. Patients attaining pCR after NAC have better survival outcomes regardless of molecular subtype (4); however, the tumor response to NAC varies. Therefore, an accurate prediction assessment for pCR after NAC in breast cancer patients has great clinical significance. In the present study, the predictive value of AAPR for the probability of pCR was analyzed in breast cancer patients who received NAC. The results demonstrate that AAPR is an independent predictive factor. Pretreatment AAPR under 0.583 is associated with a lower pCR rate. More importantly, a novel AAPR-based nomogram was constructed to quantify the probability of pCR, which has promising prospects for clinical use.

In recent years, an accumulating body of research has found that serum parameters can be utilized as predictive factors in breast cancer, such as serum fibrinogen, D-dimer, lipid profiles, lymphocyte to monocyte ratio and platelet to lymphocyte ratio (12, 29). ALB and ALP are two accessible routine laboratory indexes. ALB is a globular, water-soluble protein that is exclusively produced and secreted by hepatocytes. Since ALB accounts for approximately half of the total serum protein, it is the most abundant protein in serum (14). Previous studies have confirmed that hypoalbuminemia is associated with inflammation and malnutrition during cancer development and progression (30). This may be explained by reduced synthesis, increased consumption and loss of serum ALB (31). ALB also contributes to balancing cell proliferation and metabolism (32). Hypoalbuminemia may reflect impairment of immunity and affect the response to anticancer treatment (33). Several studies have demonstrated that pretreatment ALB is a prognostic factor in various cancers, including lung, pancreatic, gastric, and colorectal cancers (34). ALP is a hydrolytic enzyme that dephosphorylates different types of molecules, including nucleotides, proteins, and alkaloids (35). It plays an anti-inflammatory and tissue-protective role by enhancing the conversion of ATP into adenosine and increasing the level of adenosine (36). A previous study demonstrated that the activity of ALP is associated with cancer cell death, migration and mesenchymal-to-epithelial transition (21). It was reported that a heavy tumor burden and tumor metastasis might result in the elevation of ALP. Higher serum ALP levels were demonstrated to be related to a worse prognosis in nasopharyngeal carcinoma, prostate cancer and colorectal cancer (37–39). Chen et al. (40) reported that the pretreatment serum ALP level was an independent unfavorable prognostic factor for disease-free survival and overall survival in TNBC patients. AAPR is a novel, accessible, low-cost and noninvasive index that is calculated based on ALB and ALP and potentially reflects systematic inflammation and nutrition status. It was first reported as a prognostic factor in hepatocellular carcinoma and has already been identified as a prognostic predictor in various cancers (22). Kim et al. (33) reported that a high AAPR was related to better overall survival, progression-free survival, and locoregional relapse-free survival in nasopharyngeal carcinoma. Li et al. (23) also reported that AAPR was an independent predictive factor for PFS in small-cell lung cancer. A retrospective study enrolled 746 nonmetastatic breast cancer patients and suggested that a lower AAPR was related to shorter OS (41).

The results of these previous studies suggested that a high AAPR was associated with better survival outcomes. However, the predictive value of AAPR for pCR possibility in breast cancer patients who received NAC remains unknown. In the present study, the optimal cutoff value of AAPR was 0.583 with the maximum Youden index. Initially, we evaluated the relationship between AAPR and breast cancer characteristics, and our results suggested that AAPR was significantly associated with age (p<0.001), menopausal status (p<0.001), histological type (p=0.007), molecular subtypes (p=0.045) and pCR (p=0.030). Our further analysis focused on assessing the predictive value of clinicopathological factors. We found that the pretreatment ALB and ALP levels of most patients were within the normal range. Moreover, the univariate analysis indicated that neither pretreatment ALB nor ALP could be used as a predictor for pCR in breast cancer patients. Nevertheless, AAPR is an independent predictive factor, and patients with low AAPR had a significantly lower probability of achieving pCR.

Multivariate analysis also suggested that tumor size, clinical nodal status, histological grade, PR and Ki67 expression were independent predictive factors. A retrospective study by Briete et al. (n= 2366) demonstrated that lower T-stages had significantly higher pCR rates than higher T-stages (42), and a study by Bonadonna et al. (n = 165) showed that the tumor response was inversely proportional to initial tumor size for tumors larger than 3 cm (43). These results emphasized the importance to consider tumor size when estimating the chance of pCR in breast cancer patients. The CTNeoBC pooled analysis included 11955 patients suggested that the frequency of pCR in patients with clinical-nodal-positive and hormone-receptor-positive tumors was low (44). Ki67 expression was related to tumor cell proliferation, several studies revealed that patients with higher Ki67 expression were more likely to achieve pCR (45–47).Most of the above indicators are consistent with the existing literature. However, there was no significant correlation between HER2 status and pCR, which is inconsistent with previous studies (4). Moreover, the overall pCR rate in the current study was 13.2%, which is lower than that in some previous large-scale studies (20.4-21.1%) (4, 48). The NOAH trial and the NeoSphere trial demonstrated the addition of neoadjuvant trastuzumab and pertuzumab to neoadjuvant chemotherapy significantly improved the pCR rate in the HER2-positive disease (49, 50). However, 97% of HER2-positive patients refused anti-HER2 therapy in our study owing to the high costs. The absence of neoadjuvant anti-HER2 therapy has a great impact on the pCR rate of HER2-positive patients, which may result in the relatively lower pCR rate and the insignificant predictive value of AAPR in the luminal/HER2 and the HER2 enriched subtypes. This phenomenon also confirmed the importance of HER2-targeted therapy during NAC in HER2-positive patients. To the best of our knowledge, this is the first retrospective study conducted to analyze the predictive value of AAPR for pCR in breast cancer patients who received NAC. Based on the above results, a serum AAPR-based nomogram was developed and validated to quantitatively estimate the pCR probability in patients who received NAC.

However, there are several limitations. First, this study was a retrospective study conducted at a single center. The training cohort and validation cohort minimize the possible selection bias, but the optimal cutoff value of AAPR and nomogram require further external validation. In addition, only 3% of HER2-positive patients received trastuzumab therapy during NAC due to financial issues, which may have affected the pCR rate and the predictive role of AAPR in the HER2-positive patients. Third, although this study included clinicopathological information as comprehensively as possible from medical records, some valuable factors may still exist that were not available in our analysis. It is necessary to further analyze the predictive role of AAPR in the HER2-positive subgroup with adequately treated patients in the future. Larger multicenter prospective clinical studies are needed to improve and validate the AAPR-based nomogram in breast cancer patients with different molecular subtypes and treated with more innovative therapeutic modalities. Laboratory experiments are required to explore the mechanism of the predictive capability of AAPR for pCR in breast cancer patients.



Conclusion

In conclusion, the present study demonstrated that pretreatment serum AAPR, tumor size, clinical nodal status, histological grade, PR and Ki67 expression were independent predictive factors for pCR in breast cancer patients treated with NAC. The AAPR-based nomogram can accurately estimate pCR probability and helps to determine individual treatment strategies.
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Neuroligin 2 (NLGN2) is a well-recognized transmembrane scaffolding protein that functions in synapse development and neuronal signal transduction. It has recently been implicated in multiple diseases of peripheral ectodermal origin. However, the potential roles of NLGN2 in tumors remain ill-defined. The aim of this study was to determine the clinical relevance and prognostic value of NLGN2 in breast cancer. To this end, breast cancer datasets were extracted from TCGA and other public databases, and subjected to Kaplan-Meier potter for survival analysis, GEPIA2 for assessing the immunological relevance of NLGN2 and THPA for identifying its subcellular localization. The in-silico results were further validated by immunohistochemistry analysis of in-house tumor tissue specimens. NLGN2 was identified as a prognostic factor in breast cancer subtypes, and its high expression correlated to a favorable survival outcome. Moreover, NLGN2 overexpression in breast cancer was significantly associated with large tumor size, lymph node metastasis, late TNM stage, and high histological grade. Interestingly, there was a significant correlation between the expression level of NLGN2 and the immunomodulatory molecules, along with increased interstitial infiltration of lymphocytes. Furthermore, NLGN2 was predominantly localized in the mitochondria of breast cancer cells. In conclusion, NLGN2 has a prognostic role and immunoregulatory potential in breast cancer, and its functions likely have a mitochondrial basis. It is a promising therapeutic target in breast cancer and should be explored further.
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Introduction

The incidence of breast cancer has increased steadily from 2005 to 2016 due to a combination of lifestyle-related factors and genetic predisposition (1, 2). It currently accounts for 30% of all newly diagnosed cancers, and is the leading cause of cancer-related mortality among females (3). Notwithstanding, the death rate of breast cancer continues to decline, and dropped to 40% in the period between 1989 and 2017, and averted an estimated 375900 breast cancer-related deaths in the United States (4). This trend is largely attributed to the early diagnosis and novel therapeutic strategies that consider the inherent molecular heterogeneity between individual patients (5). In fact, ~70-80% breast cancer patients present with early-stage disease that is either confined to the breast or spread to the axillary lymph nodes, and is considered curable. The prognoses of the remaining metastatic patients have also improved considerably due to locoregional and systemic therapies targeted against the specific subtypes that are classified on the basis of both histological and molecular characteristics, including triple-negative, HER2-enriched non-luminal, luminal B-like HER2+, luminal B-like HER2-, and luminal A-like subjects (5, 6). Nevertheless, the existing treatment strategies cannot completely cure the metastatic subtype even after improving patient survival. Studies increasingly show that the immune system greatly influences therapeutic efficacy and patient prognoses (5). The immune microenvironment consisting of activated CD8+ and CD4+ T cells exert an anti-cancer role during tumor initiation but turn pro-tumorigenic during invasive growth. Therefore, in addition to the established prognostic markers (e.g., p-STAT3, HER2 and LDH) have of breast cancer (7–9), immunologically favorable biomarkers are also needed to guide the choice and administration of therapeutic strategy for breast cancer patients.

Neuroligin 2 (NLGN2) is an important post-synaptic neural cell adhesion protein and the only member of the neuroligin family that functions exclusively at GABAergic inhibitory synapses (10). The neurological functions of NLGN2 are well documented, and mainly depend on its interactions with the members of the neurexin (NRXN) family (11–15). The trans-synaptic interactions of NLGN2 with NRXNs, as well as the postsynaptic interactions with Cb and gephyrin, recruit GABAARs and gephyrin to the synapses, which regulates the formation and strength of inhibitory synapse and balances the inhibitory and excitatory neuronal networks (10, 12). Mutations and genetic variations in NLGN2 are related to several neurocognitive diseases, such as motor incoordination, social impairment, aggression, schizophrenia, anxiety, depression and intellectual disability (11, 16–18). For instance, the local removal of NLGN2 from adult medial prefrontal cortex neurons decreased inhibitory synaptic transmission, resulting in considerable behavioral impairment. Moreover, functional knockdown of NLGN2 in dopamine D1-positive cells facilitated subordination and stress susceptibility, while that in dopamine D2-positive cells regulated active defensive behavior. Interestingly, there is emerging evidence of non-neurological functions of NLGN2 in the peripheral tissues. For instance, Zhang et al. reported that the NLGN2 expressed on pancreatic beta-cells promotes normal insulin secretion through transcellular interactions (19). Pergolizzi et al. found that NLGN2 expressed in vascular endothelial cells regulates angiogenesis by inducing release of vascular factors (20). In addition, Yang et al. showed that down-regulation of NLGN2 in the ganglion colon segment is associated with excessive intestinal contraction and increased risk of Hirschsprung disease (21). However, the potential involvement of NLGN2 in peripheral tumors remains poorly identified so far.

In this study, we analyzed the potential role of NLGN2 in breast cancer, which is under partial neuroendocrine neoplastic growth. We assessed the expression levels and prognostic values of NLGN2 in the open-access genome and proteome datasets of breast cancer, and validated the in-silico bioinformatics results with in-house patient tissue samples. We also investigated the role of NLGN2 in the overall survival of patients with different breast cancer subtypes, its correlation with local immunomodulatory molecules and cells, as well as its intracellular localization.



Materials and Methods


Patient Tissue Sample Collection

One hundred paraffin-embedded breast tumor specimens were collected from patients that underwent surgery at the First Affiliated Hospital of Anhui Medical University (Hefei, Anhui, China) between 2017 and 2021. The acquisition of patient tissue samples and all procedures used in this study were approved by the Ethics Committee of Anhui Medical University. Informed consent was obtained from each patient, and the specimen usage was in line with the Declaration of Helsinki.



Kaplan-Meier Survival Analysis

The prognostic value of NLGN2 in breast cancer was assessed with the Kaplan-Meier Plotter (KM Plotter, http://kmplot.com/analysis) (22), an online database with gene expression profiles and overall survival (OS) data of cancer patients. The respective patient cohorts, including 1764 cases of breast cancer available on KM Plotter, were divided into the NLGN2high and NLGN2low groups based on the median mRNA expression levels, and their survival rates and duration were analyzed using the Kaplan-Meier survival plots. Hazard ratio (HR), 95% confidence interval (95% CI) and log-rank p value were calculated, and p < 0.05 was considered statistically significant.



Gene Expression Profiling Interactive Analysis

The correlations between NLGN2 expression and multiple immune signatures were assessed by Gene Expression Profiling Interactive Analysis (GEPIA, http://gepia2.cancer-pku.cn, version 2) (23). The raw RNA-Seq data downloaded from TCGA and GTEx databases were processed with the UCSC Xena project following a standard analysis pipeline to avoid data imbalance and ineffective differential analyses. The pair-wise correlations were calculated by Spearman analysis, and p < 0.05 was considered statistically significant.



Immunohistochemistry Analysis

The in-situ expressions of NLGN2, CD3 and CD8 proteins in paraffin-embedded breast tumor tissue sections were examined by immunohistochemistry as previously described (24) with rabbit anti-NLGN2 (1:200, bs-11098R, Bioss), anti-CD3 (1:1000, 60181-1-Ig, Proteintech) and anti-CD8 (1:1000, 66868-1-Ig, Proteintech) polyclonal antibodies. Five random fields were viewed per slide under high power. The NLGN2 staining intensity in the tumor cells (graded 0–3) and the percentage of stained cells (0 - no tumor cells positive; 1 - 10%–25% positive cells, 2 - 25%–50%, and 3 > 50%) were recorded, and multiplied to obtain the staining index ranging from 0 to 9 (25). Samples with staining indices 0-3 and >3 were designated as NLGN2low and NLGN2high, respectively. The number of infiltrating CD3 and CD8 positive cells in the tumor stroma were scored (1 - 0 ~ 25, 2 - 26 ~ 50, 3 - 51 ~ 75, and 4 > 75) at 400× final magnification (26), and the samples were classified as low expressing and high expressing based on positive cell count of 1 and 2 ~ 4 respectively.



Subcellular Location Analysis by THPA

The NLGN2 immunofluorescence images of multiple cell lines were acquired from The Human Protein Atlas (THPA, http://www.proteinatlas.org) (27), after authorization by the HPA team for the use for specific and scientific publication.



Statistical Analysis

SPSS22.0 was used for data analysis. Chi-square test was used to compare variables, and the correlation between factors was assessed by the Spearman method. P < 0.05 was considered statistically significant.



Availability of Data and Materials

The results shown in this study are based on TCGA Research Network (https://www.cancer.gov/tcga), THPA (v18.1.proteinatlas.org), and IHC staining. All datasets analyzed during the current study are available in TCGA (http://cancergenome.nih.gov) and THPA (http://www.proteinatlas.org). All other data generated during the current study are included in this published article. Further information is available from the corresponding authors upon reasonable request.




Results


NLGN2 Overexpression Is Favorable for the Survival of Breast Cancer Patients

To determine the prognostic relevance of NLGN2 in breast cancer, patients from multiple breast cancer datasets (totally 1764 subjects) were classified into the NLGN2high and NLGN2low groups, and their survival was analyzed using KM Plotter (28). As shown in Figure 1A, the NLGN2high patients had significantly longer overall survival compared to the NLGN2low group (HR, 0.59; 95%CI, 0.5 to 0.69; p < 0.05), including those post-treated (HR, 0.51; 95%CI, 0.41 to 0.64; p < 0.05) (Figure 1B). The favorable prognostic function of NLGN2 was also confirmed for the basal (HR, 0.72; 95%CI, 0.52 to 1; p < 0.05) (Figure 1C), luminal A (HR, 0.65; 95%CI, 0.5 to 0.83; p < 0.05) (Figure 1D), and luminal B (HR, 0.54; 95%CI, 0.39 to 0.73; p < 0.05) (Figure 1E) subtypes. In contrast, higher expression of NLGN2 was not conductive to the survival of the HER2+ breast cancer patients (HR, 0.59; 95%CI, 0.5 to 0.69; p > 0.05) (Figure 1F). Taken together, unlike the currently established breast cancer biomarkers, elevated NLGN2 indicates favorable prognosis for breast cancer patients with the basal, luminal A, and luminal B phenotypes.




Figure 1 | NLGN2 is a prognostic factor of breast cancer. (A) Prognostic analysis of NLGN2 in breast cancer. (B) Prognostic analysis of NLGN2 in post-treated breast cancer. (C) Prognostic analysis of NLGN2 in basal breast cancer. (D) Prognostic analysis of NLGN2 in luminal A breast cancer. (E) Prognostic analysis of NLGN2 in luminal B breast cancer. (F) Prognostic analysis of NLGN2 in HER2+ breast cancer. The HR and log rank p values are indicated in each panel, and p < 0.05 is statistically significant.





The Prognostic Value of NLGN2 for Specific Molecular Subtypes of Breast Cancer

To further determine the clinical pertinence of NLGN2 in breast cancer, we assessed its prognostic performance in different intrinsic subtypes with or without the estrogen receptor (ER), progesterone receptor (PR) and Erb-B2 receptor tyrosine kinase 2 (HER2) expression. NLGN2 overexpression was not associated with prognosis in the ER negative (-) patients (HR, 0.97; 95%CI, 0.7 to 1.36; p > 0.05) (Figure 2A) and PR- patients (HR, 1.07; 95%CI, 0.75 to 1.53; p > 0.05) (Figure 2B). In contrast, elevated NLGN2 expression was related to prolonged survival in HER2- patients (HR, 0.7; 95%CI, 0.52 to 0.95; p < 0.05) (Figure 2C), which was not observed in the ER-/PR-/HER2- patients (HR, 1.18; 95%CI, 0.68 to 2.04; p > 0.05) (Figure 2D). In addition, there was no significant correlation between NLGN2 and OS in patients with wild type tumor protein p53 (TP53) (HR, 1.46; 95%CI, 0.63 to 3.42; p > 0.05) (Figure 2E) or mutated TP53 (HR, 0.87; 95%CI, 0.48 to 1.58; p > 0.05) (Figure 2F). Thus, the upregulation of NLGN2 is associated with better prognosis in HER2- breast cancer as opposed to other molecular subtypes.




Figure 2 | NLGN2 is favorable for HER2- breast cancer patients. (A) Prognostic analysis of NLGN2 in ER- breast cancer. (B) Prognostic analysis of NLGN2 in PR- breast cancer. (C) Prognostic analysis of NLGN2 in HER2- breast cancer. (D) Prognostic analysis of NLGN2 in ER-/PR-/HER2- breast cancer. (E) Prognostic analysis of NLGN2 in TP53 wild type breast cancer. (F) Prognostic analysis of NLGN2 in TP53 mutated breast cancer. The HR and log rank p values are indicated in each panel, and p < 0.05 is statistically significant.





NLGN2 Is a Favorable Biomarker in Breast Cancer Patients Without Tumor Lymph Node Metastasis

Given the relevance of tumor metastasis and pathological grading in the survival of breast cancer patients, we next analyzed the relationship between NLGN2 expression and the status of tumor lymph node metastasis or tumor grades. NLGN2 was identified as a favorable prognostic factor in the tumor lymph node non-metastatic (-) patients (HR, 0.65; 95%CI, 0.44 to 0.97; p < 0.05) (Figure 3A), but not in the tumor lymph node metastatic (+) patients (HR, 0.92; 95%CI, 0.72 to 1.19; p > 0.05) (Figure 3B). Surprisingly, the expression of NLGN2 was not correlated with the survival of patients diagnosed as Grade 1 (HR, 0.73; 95%CI, 0.25 to 2.1; p > 0.05) (Figure 3C), Grade 2 (HR, 1.18; 95%CI, 0.71 to 1.97; p > 0.05) (Figure 3D) and Grade 3 (HR, 0.81; 95%CI, 0.6 to 1.11; p > 0.05) (Figure 3E). Taken together, NLGN2 expression correlates to the metastasis of breast cancer as opposed to pathological grading.




Figure 3 | NLGN2 is favorable in lymph node non-metastatic breast cancer patients. (A) Prognostic analysis of NLGN2 in lymph node- breast cancer. (B) Prognostic analysis of NLGN2 in lymph node+ breast cancer. (C) Prognostic analysis of NLGN2 in Grade 1 breast cancer. (D) Prognostic analysis of NLGN2 in Grade 2 breast cancer. (E) Prognostic analysis of NLGN2 in Grade 3 breast cancer. The HR and log rank p values are indicated in each panel, and p < 0.05 is statistically significant.





NLGN2 Positively Correlates With the Immunomodulatory Signature in Breast Cancer

Since immune regulation is a key factor in cancer progression, we also analyzed the potential influence of NLGN2 on breast cancer immunity to better understand its prognostic role. Intriguingly, NLGN2 expression was closely related to levels of critical immune effector molecules, including IFNG (Figure 4A) and GZMB (Figure 4B). At the cellular landscape, NLGN2 correlated significantly with signatures of crucial subpopulations of tumor-infiltrating lymphocytes (29), including but not limited to cytotoxic T cells (CD3/CD8) (Figure 4C), helper T cells (CD3/CD4) (Figure 4D), B cells (CD19/CD20) (Figure 4E), macrophages (CD14/CD11b/HLA-DR) (Figure 4F), NK cells (CD16/CD56/NKG2D) (Figure 4G), and dendritic cells (CD135/Flt3/CD117/CD26/CD103) (Figure 4H). Taken together, these findings indicated that NLGN2 might have an immune system-dependent role in breast cancer, and the prognostic significance of NLGN2 is likely due to its correlation with a favorable immune signature.




Figure 4 | NLGN2 correlates with immune signatures in breast tumor. (A) Correlation analysis of NLGN2 and IFNG in breast cancer (BRCA). (B) Correlation analysis of NLGN2 and GZMB in BRCA. (C) Correlation analysis of NLGN2 and Cytotoxic T cell signatures in BRCA. (D) Correlation analysis of NLGN2 and Helper T cell signatures in BRCA. (E) Correlation analysis of NLGN2 and B cell signatures in BRCA. (F) Correlation analysis of NLGN2 and Macrophage cell signatures in BRCA. (G) Correlation analysis of NLGN2 and NK cell signatures in BRCA. (H) Correlation analysis of NLGN2 and Dendritic cell signatures in BRCA. The p values and R coefficient are indicated in each panel, and p < 0.05 is statistically significant.





Expression of NLGN2 Is Associated With Clinicopathological Features and Tumor Infiltrating CD3+ and CD8+ T Lymphocytes in Breast Cancer

To validate the in-silico prognostic data of NLGN2 in breast cancer, we next analyzed its in-situ expression levels in patient tissue samples by IHC staining. NLGN2 was highly expressed in 75% (75/100) of the tumor samples, and its expression level was significantly associated with tumor size, lymph node metastasis, TNM stage and histological grade (all p < 0.05), but not with patient age or the expression levels of ER, PR and HER2 (all p > 0.05) (Figure 5 and Table 1). To determine the correlation between NLGN2 and lymphocytes infiltration, the tumor tissues with differential NLGN2 expression were immuno-stained with anti-CD3 and anti-CD8 polyclonal antibodies. As shown in Figure 5 and Table 2, 82.7% (62/75) and 74.7% (56/75) of the NLGN2high samples had an abundance of CD3+ and CD8+ cells infiltration, while 44% (11/25) and 72% (18/25) of the NLGN2low samples showed significantly decreased CD3+ and CD8+ T cell infiltration, respectively. Thus, NLGN2 expression was significantly correlated with the interstitial infiltration of both CD3+ and CD8+ T lymphocytes (both p < 0.01). These findings further underscore the close association between NLGN2 expression in breast cancer and the clinicopathological features as well as lymphocytes infiltration.




Figure 5 | Association of the expression levels of NLGN2, CD3 and CD8 in breast cancer. Representative images of immunohistochemical staining showing in situ expression of NLGN2, CD3 and CD8 in breast cancer tissue specimens. Left panels, low expression of NLGN2 in breast tumor tissue, and CD3+ and CD8+ T cells in the same tissue. Right panels, high expression of NLGN2 in breast tumor tissue, and CD3+ and CD8+ T cells in the same tissue. The arrows point to CD3+ or CD8+ lymphocytes. All photos are at 400× original magnification.




Table 1 | The relationship between NLGN2 expression and the clinicopathological features of breast cancer patients.




Table 2 | The relationship between NLGN2 expression and CD3+ and CD8+ tumor infiltrating lymphocytes.





NLGN2 Is Located in the Mitochondria of Peripheral Breast Cancer Cells

As shown in Figure 5, the CD3+ and CD8+ lymphocytes were mainly distributed in the interstitial tissue, whereas NLGN2 was primarily localized in the cytoplasm rather than the plasma membrane of normal and malignant breast epithelial cells. Since the spatial distribution of a protein is a determinant of its function and mechanism, we further assessed the distribution of NLGN2 in breast cancer cells using the THPA database based on integrated multiple analyses (27). Interestingly, NLGN2 expression was predominantly localized in the mitochondria of the MCF7 breast cancer cell line (Figure 6A). Moreover, the unusual positioning of NLGN2 in mitochondria was also observed in several other tumor and normal cell lines, including U2OS (Figure 6B), U251MG (Figure 6C) and NIH3T3 (Figure 6D). Mitochondrion is a major determinant of cancer cell growth and patient survival due to its pivotal roles in metabolite transport, energy production, apoptosis induction, and the immune stimulation (30). We therefore hypothesize that the mitochondrial localization of NLGN2 is instrumental to its prognostic role in breast cancer, and should be explored further, especially from the perspectives of immunoregulation and immunotherapy.




Figure 6 | NLGN2 is localized in the mitochondria of multiple cancer and normal cells. (A–D) Representative immunofluorescence images showing NLGN2 localization in (A) MCF7 breast adenocarcinoma cells, (B) U2OS osteosarcoma cells, (C) U251MG glioblastoma cells, and (D) NIH3T3 mouse embryonic fibroblast cells. Green: NLGN2; Blue: Nucleus.






Discussion

Studies increasingly show neurological involvement in cancer onset and progression, and the nascent field of cancer neurobiology is a promising avenue for the development of innovative cancer therapeutic strategies (31). Peripheral neurotransmitter signals have been reported to regulate the development of pancreatic, colon, gastric, breast, prostate, oral, head and neck, glioma, ovary as well as skin tumors in preclinical models through direct or indirect interactions with the tumor or its microenvironment (31, 32). For example, the microenvironmental synapse protein NLGN3 stimulates glioma growth by activating multiple oncogenic pathways (e.g., focal adhesion kinase activated upstream of PI3K-mTOR) and inducing transcriptional changes (e.g., upregulation of synapse-related genes in glioma cells) (33, 34). In addition, the L1 cell adhesion molecule (L1CAM), an axonal glycoprotein involved in neuronal migration and differentiation, was recently identified as an oncogene that is overexpressed in colon and ovarian cancers, and associated with increased invasion and poor prognosis (35–37). Through in-silico assessment and further validation, we found here that the neuronal protein NLGN2 has significant clinical relevance and prognostic value in breast cancer. NLGN2 is upregulated in breast tumor tissues and correlates with higher survival rates. More importantly, to the best of our knowledge, this is the first study to demonstrate the mitochondrial location of NLGN2 and its association with immune signatures.

Mitochondria are the bioenergetic and metabolic centers of eukaryotic cells (38, 39), and regulate their proliferation, differentiation and death (40, 41). In addition, metabolic alterations in the mitochondria affect catabolic processes like apoptosis, autophagy and necrosis in cancer cells (42). Recent studies show that the mitochondria influence both innate and adaptive immune responses during tumor onset or progression by regulating T cell activation, memory CD8+ cell formation, CD4+ T cell differentiation, B cell function, macrophage polarization, dendritic cells and inflammasome activation (40, 41, 43). However, metabolic reprograming of tumor cells leads to hypoxia and nutrient deficiency in the tumors, thereby triggering mitochondrial dysfunction in the immune cells and impairing their functions (40). Restoring glycolysis in the context of glucose deprivation boosts anticancer response of the tumor infiltrating lymphocytes. Prolyl hydroxy lase2deficient T cells with increased glycolytic activity due to HIF1α stabilization showed stronger tumoricidal effects compared to their wildtype counterparts. In addition, the deficiency of peroxisome proliferator-activated receptor γ coactivator-1 (PGC1α) in multiple cancers (e.g., colon and breast cancer) impairs mitochondrial biogenesis in the infiltrating T cells, leading to mitochondrial dysfunction and reduced T cell-mediated cytotoxicity (40, 44). The anti-tumor effects of these T cells can be restored by rescuing mitochondria via ectopic PGC1α expression. In another study, adoptively transferred melanoma-specific CD8+ T cells induced a stronger anti-cancer response following selective removal of cells with low mitochondrial membrane potential. These findings suggest that mitochondrial dysfunction of immune cells can be reversed by restoring cancer cell metabolism, resulting in improved function and infiltration. Accordingly, it is rational to surmise that the mitochondrial location of NLGN2 is critical for its prognostic role in breast cancer, and the close association between NLGN2, mitochondria and immune signatures in breast cancer indicates that NLGN2 may play an immunoregulatory role by reversing mitochondrial dysfunction. Of note, we concluded the immunological relevance of NLGN2 in breast cancer solely through immunohistochemical staining of CD3+ and CD8+ T cells in the tumor tissues. Therefore, the comprehensive relationship between NLGN2 and immunological changes in the tumor microenvironment, as well as the mechanisms underlying mitochondrial involvement, remain to be elucidated by further gain or loss-of-function assays.



Conclusions

NLGN2 expression level in breast tumors is associated with molecular subtypes, metastatic statues, immunomodulatory signatures and lymphocyte infiltration. The prognostic role of NLGN2 may be attributed to its mitochondrial location, and the mechanism warrants further investigation to consider NLGN2-targeted therapeutic strategy against breast cancer.
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Breast cancer (BC) remains a significant healthcare challenge. Routinely, the treatment strategy is determined by immunohistochemistry (IHC)-based assessment of the key proteins such as estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), and Ki-67. However, it is estimated that over 75% of deaths result from metastatic tumors, indicating a need to develop more accurate protocols for intertumoral heterogeneity assessment and their consequences on prognosis. Therefore, the aim of this preliminary study was the identification of the expression profiles of routinely used biomarkers (ER, PR, HER2, Ki-67) and additional relevant proteins [Bcl-2, cyclin D1, E-cadherin, Snail+Slug, gross cystic disease fluid protein 15 (GCDFP-15), programmed death receptor 1 (PD-L1), and phosphatase of regenerating liver 3 (PRL-3)] in breast primary tumors (PTs) and paired synchronous axillary lymph node (ALN) metastases. A total of 67 tissue samples met the inclusion criteria for the study. The expression status of biomarkers was assessed in PTs and ALN metastases using tissue microarrays followed by IHC. In 11 cases, the shift of intrinsic molecular BC subtype was noticed between PTs and paired ALN metastases. Moreover, a significant disproportion in E-cadherin presence (p = 0.0002) was noted in both foci, and the expression status of all proteins except for HER2 demonstrated considerable variance (k = 1, p < 0.0001). Importantly, in around 30% of cases, the ALN metastases demonstrated discordance, i.e., loss/gain of expression, compared to the PTs. Intertumoral synchronous heterogeneity in both foci (primary tumor and node metastasis) is an essential phenomenon affecting the clinical subtype and characteristics of BC. Furthermore, a greater understanding of this event could potentially improve therapeutic efficacy.




Keywords: breast carcinoma, metastases, axillary lymph node, IHC, prognosis, intertumoral heterogeneity



Introduction

Breast carcinoma (BC) remains a healthcare challenge of high importance. Each year, over 1,350,000 new cases are reported, with a mortality rate exceeding 500,000 (1, 2). Although the mortality of BC remains stable, despite its increasing incidence, over 75% of deaths are caused by metastatic tumors that may express a different profile of clinically relevant biomarkers, such as estrogen receptor (ER), progesterone receptor (PR), and HER2, than the primary mass (3). Thus, the major challenges originate from BC complexity of percolating genomic landscapes and compositional intratumoral and intertumoral heterogeneity reflected by the clinical behavior of breast tumors, as has been emphasized by Ellsworth et al. (4). This compositional diversity within a tumor arises from the clonal selection driven by an acquired set of somatic mutations, and this plays a critical role in the initial diagnosis and the choice of a treatment strategy. However, intertumoral heterogeneity, particularly that observed between primary and metastatic tumors, has recently acquired growing significance in the management of BC.

The identification of five intrinsic molecular subtypes of BC involving genetic patterns of expression by Perou et al. (5) was a milestone in precision medicine and revealed the various roads of carcinogenesis. However, high costs, lack of public access to advanced technologies such as microarrays or sequencing, and difficulties in interpretation of the results still remain as the insurmountable obstacles to apply such a classification system as a clinical standard. Instead, the routine prognostication and treatment decisions are made upon simplified surrogate protocols described in the European Society for Medical Oncology (ESMO) guidelines, which are a gold standard in the clinical management of BC (6). The simplification of the molecular classification (i.e., BC intrinsic subtypes) of Perou et al. (5) that makes it suitable for clinical use involves grouping of the tumors into surrogate intrinsic subtypes [hereinafter called luminal A-like, luminal B-like, HER2-positive (non-luminal), and triple-negative—extensively described in the ESMO guidelines], which are defined only by routine immunohistochemistry (IHC)-based assessment of the key proteins such as ER, PR, HER2, and Ki-67, as well as fluorescence in situ hybridization (FISH) assessment of HER2 in vague cases (2+ by IHC). These molecular features, together with clinical factors, have a significant influence on the benefits achievable from specific therapies (7–9). However, IHC still raises controversy due to the subjective assessment of the pathologist, which makes it ambiguous, and intratumoral heterogeneity leading to unprecise recommendations for BC classification (i.e., no recommended cutoff for Ki-67 in ESMO guidelines). Moreover, the assessment is restricted to the primary tumor (PT) only of the 2–3-mm diameter preoperative oligobiopsy (biospecimen), commonly ignoring the protein profile of the postoperative tissue or synchronous axillary lymph node (ALN) metastases. It is also unclear whether these profiles overlap or are different one from the other and how these profile changes may affect prognosis. All these concerns constitute thus the weaknesses of the current practices and raise the unreliability of clinically used techniques beyond the phenomenon of tumor heterogeneity per se.

This study is therefore a prelude to reveal the poor efficiency of current protocols and to emphasize the strong need to develop more accurate guidelines for prognostication and treatment decision-making process in BC. Thus, we present the preliminary study that was designed to replicate the conditions of routine assessment of BC biospecimens collected before surgery. For this purpose, we identified the profiles of expression of routinely used biomarkers (ER, PR, HER2, and Ki-67) and other proteins that play potential roles in BC carcinogenesis (Bcl-2, cyclin D1, E-cadherin, Snail and Slug, GCDFP-15, PD-L1, and PRL-3) in the PTs and paired ALN metastases to demonstrate that such assessment may be insufficient to the potential detriment of the patients.

Bcl-2 is an antiapoptotic protein, whose expression unexpectedly correlates with improved overall survival and disease-free survival in BC mainly among luminal A-like breast tumors that have retained ERα signaling (10). Therefore, the assessment of Bcl-2 expression could be advantageous in the substratification of luminal A-like tumors retaining ER activity from those with positive ER status but with inactive ER signaling.

Cyclin D1, a major participant in the cell cycle, is considered a marker of the mitotic phase (11). Its overexpression has been revealed in approximately 50% of BCs, although the unfavorable consequences were noted only among luminal tumors (12), especially with simultaneous amplification of the CCND1 gene (13, 14).

E-cadherin is an adhesive molecule participating in epithelial-to-mesenchymal transition (EMT). The loss of E-cadherin results in the acquisition of the ability to migrate by the tumor cells and thus progressing disease (15). In the microscopic assessment, the loss of E-cadherin is associated with lobular histologic subtype (different types of stromal infiltration), which in turn is associated with more frequent recurrence, worse prognosis, and increased resistance to chemo- or radiotherapy (16). However, these findings do not entail the use of modified treatment standards.

Snail and Slug, encoded by SNAI1 and SNAI2, belong to the family of transcription factors triggering EMT (17). The transition of the cellular phenotype into mesenchymal expressing Snail or Slug has been associated with unfavorable prognosis in BC, which is commonly accompanied by the downregulation of claudin-1, a major constituent of the tight junction complexes; it was hence concluded that the claudin-low BC subtype is in fact a tumor manifesting mesenchymal features with Snail and Slug overexpression (18).

GCDFP-15 is primarily found in normal breast tissue. In clinical practice, an IHC confirmation of GCDFP-15 combined with BC morphology indicates tumor origin from the primary site (19, 20).

PD-L1 is a member of the immunoglobulin family deactivating the immune response targeted toward tumor cells. Its significance has been confirmed among advanced triple-negative BCs, with higher PD-L1 expression and more numerous tumor-infiltrating lymphocytes (TILs). These findings are reflected in the pembrolizumab-based anti-PD-L1 immunotherapy; this approach has recently been approved by the US Food and Drug Administration (FDA) in combination with chemotherapy to treat unresectable locally advanced or metastatic triple-negative, PD-L1-positive BC (21). However, the clinical relevance in other BC subtypes remains unclear.

PRL-3 is a tyrosine phosphatase regulating the cell cycle, growth, differentiation, and tumorigenesis and is found in 62%–75% BC cases. PRL-3 usually correlates with a worse prognosis and increased risk of metastasis (22); it is believed to take part in the metastasis process of BCs, thought to be the major cause of BC-related deaths (3, 23).



Methods


Patients

A total of 67 female patients with histologically confirmed Union for International Cancer Control (UICC) TNM (ver. 7) stage T1-T4N1-2M0 BC qualified for surgery were eligible for the present study. The exclusion criteria for all participants included the presence of microcarcinomas (pT1mi, diameter <1 mm), micrometastasis in lymph nodes (pN1mi, diameter <2 mm), extensive necrosis, the coexistence of other carcinomas, or intensive inflammatory infiltration. The cohort characteristics are shown in Table 1.


Table 1 | Detailed characteristics of the study cohort.





Construction of Tissue Microarrays and Immunohistochemistry

All collected BC resections were matched with their corresponding ALN dissections, followed by the preparation of tissue microarrays (TMAs) using the Sakura Tissue-Tek Quick-Ray system and immunostaining. In the present study, one core measuring 3 mm was taken from the PTs and ALN metastases; this provided sufficient core area to determine the marker expression and replicate the conditions of routine assessment of presurgical biopsy specimens. Moreover, due to the intratumoral heterogeneity, especially regarding Ki-67 and PR, the hematoxylin–eosin (HE)-stained specimens were assessed prior to the core sampling to localize hotspot compartments of non-necrotic high cellular concentration.

The expression profiles of ER, PR, Ki-67, HER2, E-cadherin, cyclin D1, Bcl-2, GCDFP-15, Snail+Slug, PD-L1, and PRL-3 (PTP4A3) in the primary BC tumors and matched synchronous ALN metastases were determined using IHC. The procedure was performed using standard manufacturer protocols regarding the appropriate antigens. Briefly, each TMA section was dewaxed using xylene and rehydrated with concentrated ethyl alcohol. Antigens were retrieved by heat-induced epitope retrieval (HIER) (EnVision FLEX Target Retrieval Solution and EnVision FLEX Wash Buffer). Sections were also blocked for endogenous peroxidase using Dako Peroxidase Blocking Reagent followed by immunostaining (Dako Autostainer, Dako EnVision FLEX) according to the manufacturer’s protocol. Finally, the slides were counterstained in hematoxylin for 3 min. A more detailed description of the IHC procedure, including used antibody clones, manufacturer, dilutions, and incubation times, is given in Supplementary Table S1. All of the results followed the ESMO guidelines and comprised the following measures: percentage of ER-, PR-, and Ki-67-positive cell nuclei (index) and the expression intensity of ER, PR, and HER2. Allred score (25) for ER and PR was counted. Cyclin D1, Bcl-2, GCDFP-15, Snail+Slug, and PRL-3 were scored on a 0/1+/2+/3+ scale, and the presence or absence of E-cadherin and PD-L1 (binary outcome) was assessed. The BC subtype and the shift in subtypes between PT and matched ALN metastasis was determined according to the surrogate intrinsic subtypes, as is recommended by the ESMO guidelines (6), hereinafter called luminal A-like, luminal B-like, and “other” gathering the non-luminal subtypes (HER2-enriched, triple-negative).



Manual Evaluation of Specimens and Statistical Analysis

The prepared slides were coded and assessed by two independent pathologists. Divergent results were additionally consulted. All assessments were performed blind, with no possibility of linking the primary tumor to the matching ALN metastasis sample.

The cutoff thresholds for positive expression based on the index of positive cell nuclei were set as follows: ≥1% for ER, ≥20% for PR, and ≥16% for Ki-67 (Ki-67 cutoff was defined based on the laboratory median of expression). The HER2-positive cases were defined using the expression intensity, with a 3+ score as positive and 0/1+ as negatives; a 2+ score was excluded from considerations, as it requires confirmation via FISH. For the remaining biomarkers (cyclin D1, Bcl-2, GCDFP-15, Snail+Slug, and PRL-3), any level of intensity (1+/2+/3+) was regarded as positive. Figure 1 presents spots of digital scans of the representative IHC stainings of chosen biomarkers (whole-slide imaging technology), whereas all scans showing staining scores are enclosed as the Supplementary Figures.




Figure 1 | Digital scans presenting (A) strong positive (3+) immunohistochemistry staining for estrogen receptor (ER) in 100% cells in primary tumor tissue, (B) strong positive (3+) immunohistochemistry staining for progesterone receptor (PR) in 100% cells in primary tumor tissue, (C) Ki-67 immunohistochemistry staining: 80% positive tumor cells in node metastasis, (D) positive immunohistochemistry staining for E-cadherin in primary tumor tissue, (E) strong positive (3+) immunohistochemistry staining for cyclin D1 in 90% cells in primary tumor tissue, and (F) strong positive (3+) immunohistochemistry staining for Snail+Slug (mix) in 100% cells in primary tumor tissue.



The expression status of the ER, PR, HER2, E-cadherin, cyclin D1, Bcl-2, GCDFP-15, Snail+Slug, PD-L1, and PRL-3 was compared between the PT and synchronous matched ALN metastases using the χ2  or Fisher’s exact test, according to the expected values. The inter-raters Cohen’s kappa reliability analysis (26, 27) was used to determine the magnitude of the agreement for all proteins between PTs and matched ALN lesions. Any non-normally distributed indices associated with ER- and PR-positive cells, as well as ER/PR Allred scoring between the two groups, were compared using the non-parametric Wilcoxon signed-rank test for paired samples. Differences of p < 0.05 were considered statistically significant.

The multiple correspondence analysis (MCA) is a type of dimensional multivariate exploratory data analysis [method related to the principal component analysis (PCA)] that allows analyzing the set of categorical type variables that describe the individuals. PTs and matched ALN metastases were subjected to dimensional partitioning involving the resultant expression of all markers based on MCA for 37 primary and 15 ALN tumors with the complete set of observations to confirm their divergent overall character. Finally, the associations between Ki-67, ER, and PR indices of positive cell nuclei, the intensity of ER, PR, HER2, Bcl-2, cyclin D1, GCDFP-15, Snail+Slug, and PRL-3 expression, and ER and PR Allred scoring in PTs and ALN metastases were evaluated with Spearman’s rho correlation coefficients; complete sets of paired observations were used from 15 samples. All statistical analyses were carried out in the R 4.0.3 (28) with the dplyr (29), ggpubr (30), FactoMineR (31), factoextra (32), Hmisc (33), and vcd (34) packages.



Ethical Approval

All procedures performed in this study involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. All participants provided written informed consent prior to enrollment in the study. This study was approved by the Research Ethics Committee of the Medical University of Lodz (approval no. RNN/12/16/KE of January 19, 2016).




Results

Out of a total of 67 collected specimens, the following numbers of samples were subjected to a complete IHC assessment of paired breast PTs and ALN metastatic tumors: 47 samples for ER, 44 samples for PR, 49 samples for HER2, 43 samples for Ki-67, 23 samples for E-cadherin, 44 samples for cyclin D1, 42 samples for Bcl-2, 50 samples for GCDFP-15, 21 samples for Snail+Slug, 22 samples for PD-L1, and 21 samples for PRL-3 [other reports on the heterogeneity of GCDFP-15 and PRL-3 expression in BC have been previously published elsewhere (35, 36)]. In total, 36 samples overlapped in ER, PR, and Ki-67 complete expression of PTs and ALN metastases, allowing both the primary BC surrogate intrinsic subtype and the shift in the matched metastasis to be determined. Among the PTs, 18 luminal-like subtypes were identified (luminal A-like: 12 cases, luminal B-like: six cases) and 18 other subtypes (in accordance with ESMO guidelines; explained in the Materials and Methods section). Among the matched ALN metastases, 17 luminal-like cases were identified (luminal A-like: 12 cases, luminal B-like: five cases) and 19 of another non-luminal subtype (HER2-positive, basal-like). Interestingly, the findings identified 11 cases with a switch in the surrogate intrinsic subtype between breast PT and its matched ALN metastasis; among these, five shifted from other to luminal-like subtype and six shifted from luminal-like to another subtype (Table 2).


Table 2 | Distribution of the BC surrogate intrinsic subtypes, revealing a shift in subtype between PTs and synchronous ALN metastases.



The positive and negative expression rates between the PTs and their synchronous ALN metastases are shown in Table 3. Only the expression of E-cadherin differed significantly between PTs and matching ALN metastases (p = 0.0002). Moreover, significant differences were found in the ER index of positive cell nuclei (p = 0.05) and ER Allred score (p = 0.05) between PTs and matched ALN metastases (Table 4). Poor to substantial concordance was observed in expression between PTs and matching ALN lesions, as indicated by Cohen’s kappa coefficient (ER κ = 0.46*, PR κ = 0.54*, E-cadherin κ = 0, cyclin D1 κ = 0.28, Bcl-2 κ = 0.38*, GCDFP-15 κ = 0.28*, Snail+Slug κ = 0.64, PD-L1 κ = -0.12*, PRL-3 κ = -0.08; *p < 0.05; Table 5); however, HER2 demonstrated almost perfect concordance (κ = 1, p < 0.0001).


Table 3 | The comparison of biomarker expression profiles in the breast PTs and ALN metastases presenting a total of positive and negative cases among PTs as well as positive and negative cases among ALN metastases.




Table 4 | The numerical summary of numerical variables such as Ki-67 index of positive cell nuclei, ER, as well as PR index of positive cell nuclei and Allred score compared with paired Wilcoxon signed rank test.




Table 5 | The Cohen’s kappa coefficient concordance analysis of expression status in breast PTs and synchronous ALN metastases.



To support the above findings, the index of PT was found to moderately correlate with that in the matching ALN for Ki-67 (ρ = 0.55, p = 0.0004) and was strongly associated with PR expression (ρ = 0.79, p = 0.0004). The Ki-67 index negatively correlated also with the PR index among PTs (ρ = -0.76, p = 0.001), and the Ki-67 index in the ALN tumors negatively correlated with PR expression in PTs (ρ = -0.6, p = 0.02). In addition, a strong correlation in PR Allred scores was observed between PTs and the matching ALN lesions (ρ = 0.8, p = 0.0003). The analysis of intensity correlations among all biomarkers revealed a strong association of HER2 and Bcl-2 in primary and synchronous metastatic sites (ρ = 0.82, p = 0.0002; ρ = 0.75, p = 0.001, respectively), which is compliant with established concordance rates.

Among the PTs, positive correlations were observed between ER and Bcl-2 (ρ = 0.72, p = 0.002), ER and PRL-3 (ρ = 0.55, p = 0.03), Bcl-2 and PRL-3 (ρ = 0.57, p = 0.03), and Snail+Slug and PRL-3 (ρ = 0.61, p = 0.02). Among the ALN metastases, correlations were found between ER and PR (0.54, p = 0.04) and ER and cyclin D1 (ρ = 0.59, p = 0.02). Finally, correlations were also observed between PT Bcl-2 intensity and ALN metastatic HER2 (ρ = -0.53, p = 0.04), PT ER and ALN metastatic Bcl-2 (ρ = 0.78, p = 0.0006), PT PRL-3 and ALN metastatic Bcl-2 (ρ = 0.63, p = 0.01), and finally between PT cyclin D1 and ALN metastatic PRL-3 (ρ = -0.72, p = 0.002). Detailed results of Spearman’s correlation analysis are presented in Supplementary Table S2.

The following discordance rates in protein expression were observed between PTs and matched ALN metastases: Ki-67, 23.2%; ER, 17%; PR, 18.2%; HER2, none; E-cadherin, 52.2%; cyclin D1, 20.5%; Bcl-2, 26.2%; GCDFP-15, 30%; PD-L1, 22.7%; Snail+Slug, 4.8%, and PRL-3, 38.1% (Table 6). However, for the goal of the study, the most essential was complete loss or gain of immunoexpression in the metastatic foci. In total, in the ALN metastasis, Ki-67 expression demonstrated five losses and five gains, ER expression demonstrated three losses and five gains, while PR expression demonstrated two losses and six gains. Additionally, no changes in expression were observed for HER2; noteworthy, 18 samples scored 2+ were excluded from the study as equivocal, hence maintaining elusive relevance. E-cadherin expression was lost in 12 out of 23 ALN metastases with no gains. Finally, the ALN metastases demonstrated lower expression of cyclin D1 in three cases, Bcl-2 in four cases, GCDFP-15 in eight cases (35), PD-L1 in three cases, Snail+Slug in zero cases, and PRL-3 expression in five cases (36). On the other hand, the expression of the aforementioned biomarkers was gained in 6, 7, 7, 2, 1, and 3 cases, respectively.


Table 6 | Discordance of the expression status of the biomarkers between breast PTs and synchronous ALN metastases.



The spatial partitioning of breast PTs and synchronous ALN metastases with regard to the resultant expression profile of all analyzed markers was determined using MCA. A total of 37 PT and 15 ALN metastatic samples, which demonstrated a complete set of markers, were tested. The PTs were found to have a distinct general expression profile to their matching ALN metastatic tumors. More specifically, total variance of 37.3% was found for the spatial differentiation of breast PTs from ALN metastases along with dimension 2. Interestingly, a few PT samples showed greater similarity to the ALN metastases, suggesting individual and disparate clinical characteristics (Figure 2).




Figure 2 | The multiple correspondence analysis (MCA) revealed divergent levels of estrogen receptor (ER), progesterone receptor (PR), HER2, Ki-67, Bcl-2, cyclin D1, E-cadherin, GCDFP-15, Snail+Slug, PD-L1, and PRL-3 expression between primary tumors (PTs) (n = 37) and synchronous axillary lymph node (ALN) metastases (n = 15).





Discussion

One of the goals of modern oncology is the development of personalized medicine based on the molecular profile of BC. In BC, targeted therapies have been based on polyADP-ribose polymerase (PARP) inhibitors (BRCA1/2 receptor) (37) or anti-HER2-targeted drugs (38, 39). As increasing numbers of therapies restrict the subpopulations of BC clones, clonal homogeneity seems to be a key determinant of treatment efficacy. However, despite decades of study, the phenomenon of intertumoral heterogeneity in BC remains unclear, and such heterogeneity translates into therapeutic resistance and may cause improper disease management in some patients, as extensively described by Kalinowski et al. (40).

BC is frequently associated with metastases to the ALN, thus offering an opportunity to capture cellular subpopulations with more aggressive properties than those of the PTs. Synchronous assessment of the breast PTs and matched ALN metastases could therefore provide further insight into the required therapy type and modify clinical outcomes; however, this area is still poorly researched (41, 42). There is therefore a pressing need to reduce the likelihood of relapse in early BC due to residual survivor cells remaining after first-line treatment and to optimize subsequent therapies according to the cellular composition of metastatic tumors arising from the intertumoral heterogeneity.

To address this need, the present preliminary study compared the expression status of routinely used biomarkers (ER, PR, HER2, Ki-67) between PTs and matched ALN metastases. It also examined proteins known to be involved in the mechanisms of breast carcinogenesis and metastasis, as well as the related immunological response.

Previous studies on the differences in expression between breast PTs and synchronous metastases to ALNs have examined the degree of heterogeneity for well-known predictive biomarkers such as ER, PR, HER2, and Ki-67. Nedergaard et al. (43) report a 21% discrepancy in ER expression status between foci analyzed in 101 BC cases. Similarly, discordance values of 28.9%, 23.7%, and 8.9% for ER, PR, and HER2, respectively, were observed in a group of 190 BC cases (44), 8.8% and 11.3% discordance was observed for ER and HER2 expression in 80 cases of invasive ductal BC (45), and 28.8%, 31.7%, 13.5%, and 43.3% discordance in ER, PR, HER2, and Ki-67 expression was found between PTs and matching ALN metastases (46). In the previous studies, data about E-cadherin expression in both foci were divergent; it was identified in 95.45% of PTs and 72.73% of synchronous ALN metastases among 88 cases of BCs (47), concluding that part of the metastases lost the expression.

Moreover, in 49 non-lobular BCs, E-cadherin expression demonstrated poor consistency between the two foci (Cohen’s kappa κ = -0.040), but opposite to the previous study, ALN tumor displayed 18 cases of gain of expression and one case of loss of expression in comparison with the PT. Interesting results were obtained in 48 breast samples for master EMT regulators (TWIST1, SNAIL, SLUG) and classical BC receptors (ER, PR, HER2) at the mRNA and protein levels, as well as with disease-free survival (DFS) and overall survival (OS). Little agreement was observed between breast PT and ALN lesions for Snail and Slug (Snail: 76% positive cases in PTs and 45% in ALN tumors, κ = 0.06; Slug: 26% positive cases in PTs and 18% positive cases in ALN, κ = 0.18). In contrast, SNAIL expression demonstrated moderate agreement (55% and 48% positive cases in PTs and ALN tumors, accordingly, κ = 0.45). In addition, a negative-to-positive switch in Snail expression was correlated with worsened OS (HR = 4.6, p = 0.03) and DFS (HR = 3.8, p = 0.05) (48).

Many studies have demonstrated higher expression of PD-L1 in ALN lesions than in PT in cases of triple-negative BC correlating with high grade and decreased DFS (e.g., 49, 50); these observations played a role in the approval of a pembrolizumab-based anti-PD-L1 treatment for PD-L1-positive advanced BCs (21). However, due to biased PD-L1 assessment in early or low-rate TILs BC, there remains a need for routine PD-L1 status determination in both the PT and synchronous metastatic ALN.

Yuan et al. report significant differences in PD-L1 expression between PTs and ALN tumors, as well as associated PD-L1-positive metastatic lymph nodes with poor prognostic features, including higher Ki-67 index (p = 0.048), higher TNM stage (p = 0.012), and higher grade (p = 0.029). Nevertheless, they noted almost perfect concordance in PD-L1 expression status between the BC foci (85%) and did not find differences in the prevalence of PD-L1 between luminal A, luminal B, HER2-enriched, and triple-negative BC subtypes in either site (51).

Several reports indicate that various molecular biomarkers also demonstrate similar expression status in PT and metastatic lesions. For instance, the concordance rates of expression status in both foci have been found to reach 72.2% for ER, 88.9% for PR, and 90.7% for HER2 (52); rates of 77.6% for ER (κ = 0.534, p < 0.01), 82.2% for PR (κ = 0.640, p < 0.01), 84.1% for HER2 (κ = 0.647, p < 0.01) have also been reported in Chinese women (53), and rates of 96.7% for ER/PR (κ = 0.773, κ = 0.654, accordingly) and 90% for HER2 (κ = 0.785) have been recently reported (54).

A study of 10 biomarkers in the breast PTs and corresponding ALN metastases in 90 invasive ductal BCs found consistent expression of ER (r = 0.989, p < 0.000), PR (r = 0.989, p < 0.000), HER2 (r = 0.946, p < 0.000), Ki-67 (r = 0.918, p < 0.000), and Bcl-2 (r = 0.982, p < 0.000) in the PT and ALN foci accompanied by discordance rates of 3.4%, 3.9%, 4.4%, and 2.6% for ER/PR, HER2, Ki-67, and Bcl-2, respectively, as confirmed by the bivariate Pearson correlation (55). Markiewicz et al. (48) report substantial agreement for ER (57% and 70% positives in PTs and ALN tumors, κ = 0.63) and fair agreement for PR (63% and 78% positives in PTs and ALN tumors, κ = 0.31), as well as a very high agreement for HER2 (15% and 18% positives in PTs and ALN tumors, κ = 0.89) and E-cadherin expression (87% positives for both PTs and ALN tumors, κ = 1).

Our present findings are two-pronged. Moderate agreement between PTs and ALN metastases was observed for ER, PR, and Ki-67 expression (κ-values of 0.46, 0.54, and 0.51, respectively) with a switch in expression status, observed in approximately 20% of cases; however, HER2 demonstrated the same expression in both sites (Table 5). The BC surrogate intrinsic subtype was found to switch in 11 cases: six from luminal-like to another subtype and five from another type to a luminal-like BC surrogate intrinsic subtype among the ALN lesions (Table 2). The latter cases could benefit from the implementation of hormonal therapies, such as second-line treatment of BC.

In contrast, less agreement was found for E-cadherin, PD-L1, and PRL-3 between the foci, with κ-values of 0, -0.12, and 0.08, respectively. A loss of E-cadherin expression was observed in over 50% of ALN metastases with no gains. In addition, three losses and two gains (22.7%) were observed in the ALN tumor for PD-L1 and five losses and three gains (38.1%) for PRL-3 (Tables 5 and 6).

Substantial concordance between BC foci was observed for Snail and Slug, with only one gain of expression by the ALN tumor. This suggests the presence of ongoing EMT among the PTs and/or the maintenance of mesenchymal features to gain mobility; it also indicates the reverse process, i.e., mesenchymal-to-epithelial transition (MET), enabling the colonization of the new niche of the ALNs. These findings seem to indicate that clonal selection takes place within the PTs, enabling the acquisition of more aggressive and therapy-resistant features by the tumor cells.

Very little is known about the agreement between cyclin D1 and GCDFP-15 expression in the primary and synchronous ALN sites of BC, which emphasizes the need for further research beyond the standard area of well-known clinical biomarkers, as performed herein. The protein profiles characterizing the PTs and synchronous ALN metastases resulting from the MCA allowed the samples to be partitioned into two clusters with distinct features; this division justifies the expansion of standard diagnostic and prognostic procedures to include additional biomarkers, which may modify the decisions made upon treatment.

It may seem that the above-discussed results are evidence of intertumoral heterogeneity between PTs and matched ALN metastases; in fact, this is the affirmation of a much more disquieting problem of uncertain tumor assessment techniques used in clinical routine, on which we aimed to shed light. This preliminary study examines the clinical potential assessment of 11 IHC stains in treating BC. A substantial level of heterogeneity was observed, and this raises the question regarding the most accordant source of sampling tissue specimens for diagnostic use and prognosis as well as protocol for BC assessment and classification. The surrogate intrinsic subtypes being an adaptation of the primary intrinsic subtypes to clinical use are based on IHC staining (as recommended by ESMO), which would constitute an agreement between the low-cost technique and fairly high reliability of the assessment. Moreover, the presence of heterogeneity in ALN could influence clinical decisions. Elicitation of the expression of ER, PR, Ki-67, HER2, and PD-L1 would affect the possibility of using additional therapy, which may result in a more beneficial therapeutic outcome.

There are still many ambiguities that have not been adequately defined to this day such as area of the spot that should be examined, no defined cutoff values for Ki-67 in recommendations, the validity of the secondary assessment of the biopsy specimen collected after surgery, or simultaneous assessment of PT and ALN foci. It may be assumed that assessment of particular markers in the ALN metastases could offer greater therapeutic efficacy than approaches based solely on PT sampling from the preoperative biopsies. Additionally, there raises a question if preoperative biopsy, which has a diameter of a few millimeters, can be representative of the whole tumor for target therapy administration. Furthermore, reducing the rate of BC metastasis and relapse with proper personal therapy and better understanding of the relevance of the EMT-related proteins could increase the survival of BC patients.

Apart from the pilot character, this study highlights several novelties over currently available reports, which may be undoubtedly used as the seed for further research. It involves a wide spectrum of proteins, beyond the clinically, routinely used however reflects the standard assessment conditions of prognostic and predictive factors on preoperative biopsies. The majority of studies rather focus on heterogeneity in molecular markers, at the same time, omitting relevance of prognostic markers originally used in clinical examination. In turn, we combined the prognostic and molecular markers associated with EMT and its reversal, MET. On the other hand, like any other, our study has several limitations. Firstly, being only a pilot study, it is based on pathological examination alone, without follow-up data (further analyses are ongoing). In addition, it only uses one 3-mm core obtained from PT and the number of available samples was limited by technical issues during IHC staining. Furthermore, the HER2 status was not validated by FISH, and due to the short time from the beginning of the research on this patient group (2017), little follow-up data were collected. Lastly, the enrichment of the study with expression data would allow determining the actual molecular subtype of BC and hence casting a doubt on clinically used techniques of assessing the prognostic/predictive factors. Future studies should be performed on a larger cohort to confirm the trends as well as optimize the techniques employed by the clinicians to prognosticate and in the process of treatment decision-making. Nevertheless, the findings that we herein reported should be considered a prelude prompting to revise the current standards of BC assessment and classification. The assessment of the changes in molecular subtype in ALN and more precise evaluation of it may only imply the improvement of the patient therapeutic benefits; however, it requires further research.
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Objective

This study aimed to examine the prevalence and prognostic role of tumor microenvironment (TME) in triple-negative breast cancer (TNBC) after neoadjuvant chemotherapy (NACT) through immunohistochemical characterization.



Methods

The internal database of the Brazilian National Cancer Institute for women diagnosed with TNBC who underwent NACT and thereafter curative surgery between January 2010 and December 2014 was queried out. Core biopsy specimens and tissue microarrays containing surgical samples of TNBC from 171 and 134 women, respectively, were assessed by immunohistochemistry for CD3, CD4, CD8, CD14, CD56, CD68, CD117, FOXP3, PD-1, PD-L1, and PD-L2. Immune cell profiles were analyzed and correlated with response and survival.



Results

Mean age was 50.5 years, and most cases were clinical stage III [143 cases (83.6%)]. According to the multivariate analysis, only Ki67 and clinical stage significantly influenced the pattern of response to systemic treatment (p = 0.019 and p = 0.033, respectively). None of the pre-NACT IHC markers showed a significant association with event-free survival (EFS) or overall survival (OS). As for post-NACT markers, patients with high CD14 had significantly shorter EFS (p = 0.015), while patients with high CD3 (p = 0.025), CD4 (p = 0.025), CD8 (p = 0.030), CD14 (p = 0.015), FOXP3 (p = 0.005), high CD4/FOXP3 (p = 0.034), and CD8/FOXP3 (p = 0.008) showed longer EFS. Only high post-NACT CD4 showed significantly influenced OS (p = 0.038).



Conclusion

The present study demonstrated that the post-NACT TIL subtype can be a determining factor in the prognosis of patients with TNBC.
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Introduction

Triple-negative breast cancer (TNBC) is defined by the lack of expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) overexpression (1, 2). Accounting for about 10%–15% of breast cancer cases worldwide, this subtype amounts to over 300,000 new cases in women each year (3, 4). TNBC stands out for its aggressiveness, invasiveness, and high recurrence rate in the first 3 years after treatment, when compared to other types of breast cancer (5).

Recently, a growing trend has emerged toward treating patients with early-stage disease with neoadjuvant chemotherapy (NACT), supported by some plausible advantages: a significant increase in survival in patients with pathological complete response (pCR), the possibility of conversion to breast-conserving surgery, elimination of micrometastatic disease, as well as in vivo sensitivity test to chemotherapy (6, 7). Tumor microenvironment (TME) heterogeneity, represented by tumor-infiltrating lymphocytes (TILs) and other types of immune cells in different proportions, has been widely cited as one of the main reasons for different clinical outcomes, including patterns of response to NACT and survival (8).

Several studies have been published suggesting a crucial role of the TME in carcinogenesis. In this context, some results suggest that TILs are mostly found in highly proliferative tumors, such as TNBC and HER2-positive breast cancers, influencing outcomes such as pathologic response to NACT as well as recurrence and survival (9–12).

More specifically, some interleukins (IL) secreted by specific infiltrated cell subtypes, such as IL-6 and IL-8, may exert a sustained stimulatory mechanism as loop feedback between the TME and cancer cells, impairing tumor growth by an immune attack. However, depending on the subtype of TILs, this effect can be inhibitory or stimulatory for breast cancer progression. T helper (CD4+) and cytotoxic (CD8+) lymphocytes, primary effector TIL subtypes, have been positively associated with a higher response rate to chemotherapy and with better overall survival (OS).

Conversely, infiltration by FOXP3+ regulatory T (Treg) cells is critical in maintaining immune tolerance and is likely to predict a worse prognosis by the so-called immune evasion. Likewise, strengthening this evasion of immune destruction, immune checkpoint proteins such as PD-1, PD-L1, and PD-L2 are likely to play an important role, not only in immunotherapy effectiveness but also in the anti-tumor effects of conventional anti-tumor drugs (13, 14). The CD56 highly expressed, commonly related to tumor-infiltrating natural killer (NK) cells (CD56+ NK-TILs), has shown discrepant findings among different types of tumors. It is known that NK cells are effector lymphocytes, a component of the innate immune system, and play an immunoregulatory part by inhibiting tumor growth and spread (15).

The predictive and prognostic function of immune biomarkers in TNBC remains unclear. This study aimed to investigate the influence of TILs, as well as PD-1, PD-L1, and PD-L2 expression, in the response pattern to NACT and survival outcomes in the subset of patients with locally advanced TNBC.



Materials and Methods


Study Design and Ethical Considerations

This is a cohort study with retrospective data. The study was approved by the Ethics in Human Research Committee and conducted following the Good Clinical Practice guidelines.



Patient Selection

Patients with newly diagnosed breast cancer enrolled at the Brazilian National Cancer Institute (INCA) between January 2010 and December 2014 were included if all the following criteria were met: (a) women over 18 years old; (b) confirmation of the histopathological diagnosis of TNBC by the INCA Division of Pathology (DIPAT-INCA) following the criteria of the American Society of Clinical Oncology/College of American Pathologists (ASCO/CAP) guidelines (1, 2): tumors with ER and PR score <1%, as well as HER2 score 0/1+ or 2+ with negative FISH; (c) stage IIb–IIIc by the 7th American Joint Committee on Cancer—AJCC (T3-4NanyM0; TanyN1-3M0); (d) submitted to NACT with anthracycline-taxane-based regimen (Supplementary Box 1) followed by curative surgery at INCA; and (e) the NACT was supplemented by complementary treatment with further chemotherapy and/or radiotherapy before surgery in some cases. On the other hand, the exclusion criteria comprised patients previously exposed to antineoplastic agents, with second primary or unresectable tumors after neoadjuvant treatment.



Immunohistochemistry

Due to the scarcity of material, the core biopsy samples were analyzed in their whole tissue sections for all biomarkers of IHC. As for the surgical specimen samples, the tissue microarray (TMA) analysis was performed using standard procedures on 4-μm sections in the three most representative areas of greatest tumor cellularity of formalin-fixed paraffin-embedded tissue specimens, and then stained for each biomarker, taking the highest value for the purpose of final scoring. For both specimens, the tumor cell staining was compared with that of negative and positive controls.

Samples were immunostained for ER (clone EP1, Dako, prediluted), PR (clone PgR636, Dako, prediluted), HER2 (clone SP3, Cell Marque, diluted 1:500), CD3 (clone MRQ-39, Cell Marque, diluted 1:1,000), CD4 (clone SP35, Cell Marque, diluted 1:400), CD8 (clone SP 16, Cell Marque, diluted 1:1,000), CD14 (clone EPR3653, Cell Marque, diluted 1:200), CD56 (clone 123C3.D5, Cell Marque, diluted 1:800), CD68 (clone Kp-1, Cell Marque, diluted 1:1,500), FOXP3 (clone 236A/E7, Abcam, diluted 1:50), PD-1 (clone NAT105, Cell Marque, diluted 1:100), PD-L1 (clone SP142, Ventana, prediluted), and PD-L2 (clone ab200377, Abcam, diluted 1:200).

The immunostaining scores for ER, PR, and HER2 were confirmed as negative according to ASCO/CAP guidelines (16). Ki67 was assessed by nuclear staining using a mouse monoclonal antibody (SP6 clone, Cell Marque) at 1:500 dilution. Intratumoral stromal immune markers were manually counted and scored by two experienced pathologists using a double-blind method as described hereafter. The tumor cell staining was compared with that of negative controls made from counterstaining with hematoxylin and of positive controls. In core biopsy and TMA specimens of surgical samples with residual tumor, for TIL subpopulations (CD3+, CD4+, CD8+, and FOXP3+), intratumoral stromal lymphocytes were counted semi-automatically and quantified as the average absolute number of immunolabeled lymphocytes at each of three selected field at 200× magnification.

In core biopsy specimens, for PD-1 and PD-L2, the slides were scored according to the percentage of positive cells divided by the number of fields to calculate the mean value for each case, determined at 200× magnification. The PD-L1 tumor proportion score (TPS) was defined as the percentage of viable tumor cells showing partial or complete membrane staining at any intensity. PD-L1 expression on immune cell (IC) was assessed as the proportion of tumor area occupied by PD-L1-positive IC of any intensity. The PD-L1 combined positive score (CPS) refers to the ratio between PD-L1-positive cells (tumor or immune cells) and the total number of tumor cells × 100, and was grouped here in negative (<1) or positive (≥ 1) status.

For statistical analysis, the cutoff points for most biomarkers were calculated using the surv_cutpoint function of the survminer R package to divide the scores into low- and high-level groups. In this context, considering the core biopsy markers and surgical specimen, the cutoff points are stated in Supplementary Tables 1, 2, respectively.



Other Pathological and Clinical Variables

The data were collected from electronic hospital records and medical charts. The following clinical and pathological variables were retrieved: age at diagnosis, ethnicity (Caucasian or others according to Brazilian Institute of Geography and Statistics, IBGE) (17), body mass index (BMI), clinical stage (II–III), clinical T stage (cT), clinical nodal stage (cN), residual cancer burden (RCB), histological type, Elston histological grade (1: low grade; 2: moderate grade; 3: high grade), type of NACT (FAC-T or AC-T), complementary treatment, and type of surgery (radical or conservative, axillary approach).



Statistical Analysis

The RCB score followed the standard four-level categorical variable (RCB “classes” 0, 1, 2, and 3) (18). The pCR, similarly to RCB-0, was narrowly defined as no viable residual tumor in the breast or axilla (ypT0N0). Event-free survival (EFS) was calculated from the date of diagnosis to the earliest date of disease progression, death from any cause, or discontinuation of treatment for initiation of complementary treatment due to poor response to standard NACT. OS was calculated from the date of diagnosis to death from any cause or censored if the patient was known to be alive on the last day of data collection. All continuous variables were evaluated by the Shapiro–Wilk test of normality. For the RCB outcome, logistic regression was used for each variable assessed. The Kaplan–Meier method was used to estimate EFS and OS for each variable and was compared by the log-rank test. The Cox proportional hazards model was used to calculate the crude hazard ratio (HR) for each factor. Regarding multivariate analysis, all variables with an association with response and survival outcomes at p-value <0.20 were included, and the Akaike Information Criterion was used to pick the most suitable model for multiple Cox analysis. A p-value <0.05 was considered statistically significant. The missing data were excluded from the analysis. The statistical analyses were conducted using R environment version 3.5.3.




Results

As shown in the study profile description in Supplementary Figure 1, 171 women with TNBC treated with anthracycline-taxane-based NACT were included for evaluation. Detailed information regarding clinicopathological features and treatment data is highlighted in Supplementary Table 3. Mean age was 50.5 years (standard deviation, SD 10.7), most cases were clinical stage III [143 cases (83.6%)], and the mean BMI was 28.5 kg/m² (SD 5.8). Invasive ductal carcinoma not otherwise specified (NOS) was the most prevalent histology [160 cases (93.6%)] and more than half of the cases were histological grade 3 [115 cases (67.3%)]. Neoadjuvant treatment predominantly consisted of AC-T [117 cases (68.4%)], and the pCR rate was 21% (36 cases). The vast majority of patients underwent mastectomy [165 cases (96.5%)] and axillary dissection [145 cases (93.5%)].

Median pre-NACT scores and cutoff points for IHC biomarkers for the general population are shown in Supplementary Table 1. CD3 [median (IQR), cutoff point; 10 (29), 5.00] was the most predominant lymphomononuclear subpopulation, with lower values for CD14 [1 (4)] and CD117 [0 (1)], while no CD56 subpopulation was found, which made it unviable to perform the analyses of this marker for previously determined outcomes. The numbers for the ratios were as follows: CD4/FOXP3 [0.67 (2.90), 5.00], CD8/FOXP3 [0.50 (0.91), 3.27], and CD4/CD8 [1.00 (1.48), 5.50]. As for the PD1/PD-L1/PD-L2 axis immune checkpoint signaling, most of the patients presented PD-1 low [144 cases (93.5%)], PD-L1 IC <1% [138 cases (85.7%)], PD-L1 TPS low [119 cases (70.4%)], PD-L1 CPS positive [100 cases (58.8%)], and PD-L2 low [105 cases (65.2%)].

According to the data shown in Supplementary Table 2, a total of 134 patients had surgical samples with residual tumor and were evaluated for the IHC markers of selected TILs. CD14 was the most predominant marker [4.33 (12.67), 0.33], followed by CD4 [2.67 (8.34), 4.00] and FOXP3 [2.67 (5.37), 0.67]. The results for ratios were observed as described: CD4/FOXP3 [1.31 (2.19), 0.72], CD8/FOXP3 [0.51 (0.71), 0.52], and CD4/CD8 [2.00 (4.28), 0.47].

The association of the clinical and pathological features with response to NACT was individually assessed and summarized in Table 1. By multivariate analysis, only Ki67 showed a significant positive correlation with the pattern of response to systemic treatment (p = 0.019). On the other hand, stage III showed a significantly poorer lower rate of RCB 0/I as compared to stage II (p = 0.033).


Table 1 | Correlation of clinical–pathological characteristics and expression profile of biomarkers with residual burden cancer by logistic regression through univariate analysis (n = 171).



The median follow-up time was 62.5 months (95% confidence interval, 95% CI 60.2–67.9). As highlighted in Supplementary Tables 4, 5, amid the IHC markers assessed in the core biopsy, none of them showed a significant association with the outcomes of EFS and OS. Figure 1 shows representative images of cases with high expression of IHC markers in core biopsies.




Figure 1 | Representative pictures of lymphocyte infiltration in triple-negative breast cancer core biopsy showing immunohistochemical staining of high CD3+, CD4+, CD8+, CD14+, CD68+, CD117+, FOXP3+, PD-1+, PD-L1+, and PD-L2+. The specimens are imaged at ×20 magnification with a 100-µm scale on each one.



The analysis of post-NACT clinical and pathological features in patients with residual tumors is described in Tables 2, 3. By univariate analysis, patients with high CD14 had significantly shorter EFS (p = 0.042) than those with low expression of CD14. Conversely, high expression of CD3 (p = 0.007) and CD8 (p = 0.013), as well as high CD4/FOXP3 (p = 0.034) and CD8/FOXP3 (p = 0.008) ratios, had significantly longer EFS. The Cox model chosen for multivariate analysis was composed of six variables, five of which showed significant association for EFS: CD3 (p = 0.025), CD4 (p = 0.025), CD8 (p = 0.030), CD14 (p = 0.015), and FOXP3 (p = 0.005) (Table 2).


Table 2 | Post-NACT clinicopathological features and crude and adjusted hazards ratios for event-free survival (EFS) estimated by univariate analysis and multivariate analysis.




Table 3 | Post-NACT clinicopathological features and crude and adjusted hazards ratios for overall survival (OS) estimated by univariate analysis and multivariate analysis.



Regarding the univariate analysis of post-NACT clinical and pathological features for OS, patients with high CD3 (p = 0.025) and CD8 (p = 0.011), as well as high CD4/FOXP3 (p = 0.025) and CD8/FOXP3 (p = 0.026) ratios had significantly greater survival than those with low expression. Herein, of the six variables that constituted the Cox model chosen for multivariate analysis of OS, only high CD4 (p = 0.038) was significantly associated with lower risk of death (Table 3). Figures 2, 3 show the Kaplan–Meier curves for EFS and OS, respectively, according to the evaluated post-NACT variables.




Figure 2 | Event-free survival (EFS) by (A) CD3; (B) CD8; (C) CD14; (D) CD4/FOXP3 ratio; and (E) CD8/FOXP3 ratio. Regarding the immunohistochemistry markers and the ratios, Kaplan–Meier curves for EFS were stratified according to the cutoff for prognostic evaluation and divided into low versus high subgroup for each variable subsets. The red solid line indicates patients with low values and the blue solid line indicates patients with high values. Tick marks indicate censored data.






Figure 3 | Overall survival (OS) by (A) CD3; (B) CD8; (C) CD14; (D) CD4/FOXP3 ratio; and (E) CD8/FOXP3 ratio. Regarding the immunohistochemistry markers and the ratios, Kaplan–Meier curves for EFS were stratified according to the cutoff for prognostic evaluation and divided into low versus high subgroup for each variable subsets. The red solid line indicates patients with low values and the blue solid line indicates patients with high values. Tick marks indicate censored data.





Discussion

In the TNBC subset, the influence of the TME in cancer cell proliferation, as well as in response to anti-cancer drugs, has been increasingly recognized over time. Furthermore, a growing body of evidence has pointed out that lymphomononuclear cell subtypes present in the TME are crucial driving factors of tumor progression and invasion. This is one of the few series to perform a thorough evaluation of TIL subtype in post-NACT residual tumors of women with TNBC. The main results suggested that the high expression of some markers in this subset might influence recurrence and death events.

The pCR (RCB-0) rate of 21.1% is similar to previous results from other published TBNC series using anthracycline and taxane-based NACT but can be considered a modest number when compared to data from treatment regimens that included new strategies such as dense-dose regimens, PARP inhibitors, immunotherapy, and antiangiogenic or platinum agents (19, 20). Amidst the IHC markers and clinicopathological features evaluated, only the clinical stage and Ki67 had a significant correlation with the pattern of response to NACT (p = 0.033 and 0.019, respectively) in the multivariate analysis. A phase II study conducted by Wang et al. (21) that enrolled 280 patients with stage II–III TNBC treated with neoadjuvant weekly paclitaxel and carboplatin showed that categorical and linear Ki-67 were independently correlated with pCR (p < 0.001). Likewise, a meta-analysis performed by Tao et al. (22) included 36 studies involving 6,793 breast cancer patients, suggesting that pretherapeutic Ki-67 LI is associated with pCR in breast cancer patients undergoing NACT (p < 0.001). The modified Neo-Bioscore score, validated by Mittendorf et al. (23) in a cohort that evaluated 2,377 patients with breast cancer treated with NACT, suggests that IHC markers and response to NACT be incorporated into the AJCC staging system. In the study conducted by Jamiyan et al. (24) with patients with TNBC, high intratumoral TILs were found to be more expressed in patients with stage III over stage I/II (p = 0.006). The association of high CD4 expression with a higher rate of pCR in TNBC cases (p = 0.003) was observed in the cohort performed by García-Martínez et al. (25).

The immune IHC markers assessed in core biopsy in the current study did not show a significant association with survival outcomes. Conversely, a meta-analysis performed by Gao et al. (26) with 37 studies involving patients with TNBC showed that the upregulation of TILs predicted better disease-free survival (DFS) and OS, with pooled HRs of 0.66 (95% CI, 0.57–0.76) and 0.58 (95% CI, 0.48–0.71), respectively, for TIL level (high versus low). Specifically, the CD4+ TIL subgroup (high versus low) showed a better OS (HR 0.49, 95% CI 0.32–0.76) and DFS (HR 0.54, 95% CI 0.36–0.80), and the CD8 + TIL subgroup (high versus low) showed a better DFS only (HR 0.55, 95% CI 0.38–0.81). The FOXP3 + TIL subgroup (high versus low) also showed only better DFS (HR 0.50, 95% CI 0.33–0.75), with no statistical association with OS (HR 1.28, 95% CI 0.24–6.88). In a cohort of 150 breast cancer patients performed by Rathore et al. (27), the intratumoral high CD4+ count (OR = 3.85, 95% CI = 3.28–16.71, p < 0.001), CD3+ (OR = 2.70, 95% CI = 1.76–8.30, p = 0.001), and CD8+ (OR = 2.58, 95% CI = 1.55–5.86, p = 0.001) showed better survival when compared to their respective low counterparts.

In another cohort with 175 infiltrating ductal carcinomas of breast, although CD56+ NK-TILs are highly expressed in 48.6% of cases, Rathore et al. (28) suggested that this marker alone may not be sufficient for predicting the survival outcomes. To explore the tumor-associated macrophages (TAMs), Wang et al. (29)evaluated the expression of CD68+ TILs in 48 samples of TNBC, showing upregulation in 71.4% of cases. Patients with high infiltration of CD68 had higher expression of inflammatory cytokines interleukin 6 (IL-6) and chemokine (C-C motif) ligand 5 (CCL-5) and lower survival rates compared to the low-infiltration group. As a marker related to TAMs, the infiltration of CD68+ cells is supposed to be positively related to tumor severity. A retrospective systematic review study conducted by Ni et al. (30) reviewed the macrophage distribution in 1,579 non-metastatic breast cancer specimens with anti-CD68 immunohistochemical staining. The data revealed that high density of CD68-TAMs was significantly related to ominous clinicopathological characteristics such as lymph node metastasis, high Ki67, poor histological grade, and hormonal receptor negativity (p < 0.001 for all comparisons).

Missense-specific mutations of TP53 with loss of P53 protein function have been linked to increased expression of CD117 in some solid tumors, inhibiting cellular differentiation, proliferation, adhesion, and apoptosis (31). However, data regarding the prognostic impact of CD117 on TNBC are conflicting. Kashiwagi et al. (32) and Luo et al. (33) have suggested that CD117 protein is associated with recurrence and poor prognosis; on the other hand, other authors failed to find a significant association between CD117 and prognosis in breast cancer or TNBC (34, 35).

The immune checkpoint receptor PD-1 has a crucial role in the tumor immune evasion process. The two ligands, PD-L1 and PD-L2, have distinct expression profiles depending on the tumor types (36). Some previous studies have addressed an assessment of the influence of the PD-1/PD-L1/PD-L2 axis markers on the survival of patients with invasive breast cancer, more specifically TNBC, showing discrepant results. Mori et al. (37) demonstrated that the interaction between TILs and PD-L1 correlates with better survival outcome. In the study of Beckers et al. (38), although PD-L1 is associated with a better outcome, the results failed to show an independent prognostic role in this subset of tumors. These conflicting results could be explained by different clinical outcomes along with various chemotherapy schedules, methods of evaluation of PD-L1 expression, and definition of cutoffs. Asano et al. (14) suggested that patients with low PD-1 and PD-L1 expressions in TNBC were associated with a higher pCR rate and significantly longer DFS, and low PD-L1 expression was an independent prognostic factor.

Some studies have used immune checkpoint inhibitors as a complement to the neoadjuvant treatment strategy in patients with locally advanced TNBC. Notably, initial studies like I-SPY 2 (39) and the KEYNOTE-173 (40) trials showed that the combination of pembrolizumab, an anti-PD-1 monoclonal antibody, with NACT significantly increased the pCR rate in early-stage TNBC. An interim analysis of the phase III KEYNOTE-522 trial reported a significantly higher pCR rate (64.8% vs. 51.2%; p < 0.001) and better EFS (HR 0.63; 95% CI: 0.43–0.93) in the combination group than in the NACT alone group, regardless of PD-L1 status though. EFS was significantly higher in the pembrolizumab group after a median follow-up of 15.5 months (41). Some initial phase I/II trials suggest that the addition of durvalumab to NACT may increase the pCR to over 50% (42–44).

Some data have suggested that, in addition to the cytotoxic effect, the effectiveness of chemotherapy can also occur through the restoration of immunosurveillance inducing immunogenic cell death (45). As shown in the results of the current cohort, some subtypes of TILs present in the residual tumor such as CD3, CD8, and CD4, as well as CD4/FOXP3 and CD8/FOXP3 ratios, influenced survival outcomes. A small series with 25 consecutive patients with breast cancer reported lymphocyte activation and attraction to tumor bed in seven cases after NACT with a better prognosis in these cases (46). Ladoire et al. (47) evaluated surgical specimens from 111 patients with HER2-negative breast cancer, in which high CD8 and low FOXP3 cell infiltration after chemotherapy were significantly associated with improved RFS (p = 0.02) and OS (p = 0.002). The study conducted by Dieci et al. (48), which evaluated TILs in patients with non-pCR TNBC after NACT, suggested that the treatment could convert a low TIL into a high TIL tumor and that this conversion could be associated with a longer 5-year OS rate. García-Martínez et al. (25) identified a specific pattern of TILs in the post-NACT residual TNBC, marked by the high infiltration of CD3 and CD68, which presented poorer DFS. This discrepant result might partially be explained by the predominant infiltration of CD68, a TAM marker previously associated with poorer outcomes.

The finding that the upregulation of some subtypes of post-chemotherapy TILs could identify subgroups of patients with different prognosis paves the way for drug development and patient stratification, which could result in changes in the practical approach of patients in adjuvant treatment. Further data to unveil the mechanisms underlying the pattern of lymphomononuclear cells, as well as the changes after NACT, may determine the development of new immune-targeted therapies for breast cancer in this setting, mainly in TNBC.

The strengths of this study rely mainly on the in-depth analysis of TME data after NACT by presenting the characteristics of the lymphomononuclear infiltrate and the consequent impact on survival. The study population is homogeneous in that only patients with locally advanced TNBC who underwent NACT followed by primary surgery were included. Moreover, all core biopsy and surgical samples were double-checked by blinded experienced pathologists. Lastly, a thorough descriptive presentation of clinicopathological variables was performed and multivariate analyses reinforce the internal validity of the results.

The major limitation of the current study is its retrospective nature. So, some missing confounding factors may exist in the analysis. As a single-center study, some regional traits in the selected population may exist, and the results can be influenced by marked geographic differences. Intratumoral heterogeneity may have compromised some results from the TMA analysis. There were also many losses due to scarce material in the core biopsy. Also, it was not possible to perform any gene expression profile analysis with the available samples.



Conclusion

The present study demonstrated that the post-NACT TIL subtype could be a determining factor in the prognosis of patients with TNBC. Undoubtedly, considering that NACT may be insufficient to achieve pCR and ensure long survival in some cases, the composition of TME in post-NACT residual tumors of TNBC could be explored in the future to guide the extension of adjuvant treatment as a longer maintenance approach.
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Owing to metastases and drug resistance, the prognosis of breast cancer is still dismal. Therefore, it is necessary to find new prognostic markers to improve the efficacy of breast cancer treatment. Literature shows a controversy between moesin (MSN) expression and prognosis in breast cancer. Here, we aimed to conduct a systematic review and meta-analysis to evaluate the prognostic relationship between MSN and breast cancer. Literature retrieval was conducted in the following databases: PubMed, Web of Science, Embase, and Cochrane. Two reviewers independently performed the screening of studies and data extraction. The Gene Expression Omnibus (GEO) database including both breast cancer gene expression and follow-up datasets was selected to verify literature results. The R software was employed for the meta-analysis. A total of 9 articles with 3,039 patients and 16 datasets with 2,916 patients were ultimately included. Results indicated that there was a significant relationship between MSN and lymph node metastases (P < 0.05), and high MSN expression was associated with poor outcome of breast cancer patients (HR = 1.99; 95% CI 1.73–2.24). In summary, there is available evidence to support that high MSN expression has valuable importance for the poor prognosis in breast cancer patients.


Systematic Review Registration

https://inplasy.com/inplasy-2020-8-0039/.
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1 Introduction

Breast cancer is one of the most common malignant cancers among women and it is a huge threat for them (1, 2). In 2020, it was estimated that there would be 281,550 new breast cancer cases and 43,600 deaths in the USA (https://seer.cancer.gov/statfacts/html/breast.html). Even though there are many therapies for breast cancer, most treatment plans include a combination of surgery, radiation, hormone therapy, chemotherapy, and targeted therapies (protein inhibitors, antibodies, and immunotherapy); however, the prognosis of breast cancer is poor (3, 4). Therefore, discovering a valuable prognostic biomarker to guide clinical therapy to improve the prognosis and quality of life of the patient is desperately needed.

Moesin (MSN), one of the ezrin–radixin–moesin (ERM) family of proteins, was isolated from bovine uterus. MSN is abundant in smooth muscle cells and exists in actin-rich cell surface structures such as microvilli, microspikes, membrane ruffles, and adhesion junctions (5, 6). MSN has three important domains: an ~300 residue N-terminal FERM domain, an ~200 residue α-helix linker domain, and an ~100 residue positively charged C-terminal tail domain that contains an F-actin binding site and a conserved threonine residue (7). MSN can switch between closed (inactive) and open (active) conformation. This homeostasis is modulated via a reversible intramolecular interaction between the N-terminal (FERM/NERMAD) domain and the C-terminal (C-ERMAD) domain in order to form a folded conformation that masks their functional sites (8, 9). When MSN acts as a cross-linker, the FERM domain separates itself from the tail, and the C-terminal domain can be phosphorylated by Rho-kinase or protein kinase C, allowing its interaction with F-actin (10, 11). Some studies showed that the activation state of MSN contributed to cell metastasis (12–14).

The mechanisms of tumor metastasis are complex. After undergoing a series of steps, tumor cells colonize and adapt to distal tissues (15). Epithelial–mesenchymal transition (EMT) is a key process for tumor cells to gain invasive capabilities. Tumor cells lose their polarity and change the way they interact with each other. Most importantly, these changes are accompanied by actin cytoskeleton rearrangements and lead to the formation of membrane protrusions (16–18). During EMT, changes of cell adhesion molecules have an effect on tumor metastasis; for example, the expression of N-cadherin is increased and the expression of E-cadherin is reduced. A previous study has demonstrated that the interruption of E-cadherin expression could lead to early invasion and metastasis (18, 19). Invadopodia are membrane protrusions formed by tumor cells, which could modify the extracellular matrix (ECM) cross-linked networks and promote tumor metastasis (20). Activated MSN participates in these metastatic steps. A study showed that elevated MSN expression reduces the level of E-cadherin/p120-catenin adhesion interaction complex, which could break up cell–cell adhesion (21). Moreover, activated MSN can interact with extracellular matrix protein 1 (ECM1) facilitating the formation of invadopodia (22). In addition, a study reported that activated MSN recruits sodium/hydrogen/exchanger 1 (NHE1) protein, leading to actin polymerization through the interaction between cortactin and cofilin (23). In this step, membrane type 1-matrix metalloproteinase (MT1-MMP) is recruited to degrade the ECM (24, 25). Lymph node metastasis is considered a hallmark of tumor progression (26). Kobayashi et al. (27) elucidated that lymph node metastasis was related with expression patterns of MSN in oral squamous cell carcinoma (OSCC), and most metastatic tumors showed a cytoplasmic distribution pattern. All the above studies suggest that MSN expression is closely related to tumor invasion and metastasis.

There is accumulating evidence suggesting that MSN expression could be an unfavorable prognostic molecular biomarker in several types of tumors. Barros et al. (10) showed that strong MSN expression had a negative effect on overall survival (OS) (P = 0.024) of OSCC patients in stages II and III. Also, they showed that MSN expression could enhance the risk of death (P = 0.022). Liang et al. (28) also reported that MSN expression was closely related with poor prognosis in pancreatic cancer. A recent study showed that MSN expression was correlated with a more aggressive phenotype and worse prognosis of OSCC (21). Moreover, it has been reported that MSN plays a significant role in cell metastasis in glioblastoma and hepatocellular carcinoma (13, 29). High MSN expression promoted migration not only in different types of tumors but also in breast cancer cells (30, 31). Furthermore, MSN interacted with other molecules promoting tumor invasion and metastasis (9). However, the survival outcome of breast cancer patients with MSN expression remains inconsistent (32, 33). This paper aims to systematically review the association of MSN expression with breast cancer and, using quantitative synthesis, to assess if high (positive) MSN expression was related with worse outcome of patients with breast cancer.



2 Materials and Methods


2.1 Protocol Registration and Search Strategy

This present study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines (34). The protocol of this present study is available at INPLASY.COM (registration number INPLASY202080039, DOI number 10.37766/inplasy2020.8.0039). We conducted an integrated search in Web of Science, Embase, Cochrane Library, and PubMed. In the present study, we searched the literature based on the following terms: (“moesin” OR “membrane-organizing extension spike protein” OR “Msn protein” OR “moesin protein” OR “MSN protein”) AND (“breast cancer*” OR “Breast Neoplasm*” OR “Breast Tumor*” OR “Breast Cancer*” OR “Mammary Cancer*” OR “Malignant Neoplasm of Breast” OR “Breast Malignant Neoplasm*” OR “Malignant Tumor of Breast” OR “Breast Malignant Tumor*” OR “Cancer of Breast” OR “Cancer of the Breast” OR “Mammary Carcinoma*” OR “Human Mammary Carcinoma*” OR “Human Mammary Neoplasm*” OR “Breast Carcinoma*”) (the detailed search strategy is shown in Table S1). Moreover, in order to ensure the integrity of the data, we carried out a reduplicative search on June 23, 2020.



2.2 Eligibility Criteria and Study Selection


2.2.1 Inclusion Criteria and Exclusion Criteria

The included literature met the following criteria: a) publications investigated the association of MSN expression with clinical prognosis of breast cancer patients; b) patients were divided into high (positive) and low (negative) MSN expression groups in original articles; c) research studies were published in English or Chinese; and d) survival outcomes provided in the original articles included OS, progression-free survival (PFS), relapse-free survival/recurrence-free survival (RFS), cancer-specific survival (SS), metastasis-free survival (MFS), or disease-free survival (DFS).

All studies for exclusion met these criteria: a) publications described other ERM family of proteins (ezrin or radixin), b) studies investigated the correlation between MSN and biological mechanisms but not exploring the relationship between MSN and the clinical prognosis, and c) duplicate publications.



2.2.2 Study Selection

All of the records were imported in EndNote X9 and two researchers independently selected the literature by screening titles and abstracts. Further screening was done by reading the full text. Disagreements were resolved after discussion with all of the authors.




2.3 Assessment of Reporting Quality

Three independent researchers conducted a quality assessment according to the Reporting Recommendations for Tumor Marker Prognostic Studies (REMARK) guidelines (35). Based on the REMARK guidelines and a previous study (36), we adapted six checklist items in our present study: a) patient samples, b) clinical data of the cohort, c) assay methods, d) prognostics, e) statistical analysis, and f) classical prognostic factors (Table S2). Disagreements were resolved after a consensus-based discussion with all of the authors.



2.4 Data Extraction

Two researchers independently extracted significant data, and ultimate results were obtained after reaching a consensus with a senior researcher. The main information is as follows: name of researchers, country of origin, publication date, age, the number of patients, detection methods of MSN and follow-up time, breast cancer types, tumor size, histological grade, TNM stage, RFS, OS, SS, MFS, DFS, and PFS. Because the values of hazard ratio (HR) and the corresponding 95% confidence interval (CI) were not reported in the included articles, to explore the relationship between high (positive) MSN and breast cancer, we used Tierney’s method (37) to calculate the HRs for the included studies.



2.5 Statistical Analysis

Based on Tierney’s method (37), the HRs and 95% CIs were calculated and further heterogeneity test was conducted. If P <0.05 and/or I2 >50%, there was significant heterogeneity, and the random-effect model was used to calculate the pooled HR; on the contrary, if there was no significant heterogeneity, the fixed-effect model was used. The value of HR >1 and of the diamond does not overlap with the invalid line, suggesting that high MSN expression was statistically significant for poor prognosis in breast cancer patients.



2.6 Meta-Analysis of the Validation Datasets

To further verify the literature results, the GEO database was applied for validation. In this study, we used the KM plotter web tool to collect gene expression and clinical information data of breast cancer (38). A total of 16 datasets were obtained after screening the datasets with more than 90 samples. The prognosis of MSN was analyzed in 2,916 breast cancer patients from the GEO datasets.



2.7 Kruskal–Wallis Test

The Kruskal–Wallis test was used to investigate the relationship between clinicopathological parameters and MSN expression. P <0.05 was considered statistically significant. The clinicopathological data were downloaded from the TCGA-BRCA database (https://portal.gdc.cancer.gov/). The clinicopathological parameters (n = 622) included age at diagnosis, estrogen receptor (ER) status, progesterone receptor (PR) status, HER2 status, histological type, count of lymph node examined, and AJCC stage.




3 Results


3.1 Literature Selection and Characteristics of Studies

In total, the database search yielded 413 citations. Then, 161 duplicate literatures were removed, and 235 irrelevant records were excluded by screening titles and abstracts. Eight articles showed the correlation between MSN and biological mechanisms but did not describe the relationship between MSN expression and clinical prognosis (Table S3). Finally, nine eligible records were included (33, 39–46) (Table S4). The literature selection process is shown in Figure 1.




Figure 1 | Flowchart representing the systematic literature search on MSN and breast cancer.



The publication years of the included studies were from 2004 to 2020. The characteristics of the citations are shown in Table 1, and the patient cohorts were from France (n = 3), Poland (n = 1), Australia (n = 1), and China (n = 4). Three out of the nine articles described the average age of the patients, which ranged from 20 to 94 years old. The studies enrolled 3,039 cases (ranging from 104 to 1200 per study). As for the detection methods of MSN, eight records used immunohistochemistry (IHC). Besides, four studies described tumor size, and two out of nine described the TNM stage. The cutoff value of MSN expression is shown in Table 1.


Table 1 | Characteristics of the included articles.





3.2 Quality Assessment

Two records fulfilled all the REMARK criteria (33, 45). Three studies lacked one item (39, 42, 44). The study of Donizy et al. (41) lacked two items. One literature met three items (40), and two records only met two items (43, 46), which are shown in Table 2.


Table 2 | Evaluation criteria used to assess the quality of the records.





3.3 The Cutoff Values

The included studies applied different ways to detect the MSN expression, namely, a) a real-time one-step reverse transcription-PCR assay to quantify MSN expression and b) IHC. Immunoreactive scoring (IRS) and the method of stain area × stain intensity were used to determine the cutoff value of MSN expression. Chotteau-Lelièvre et al. (33) took 0.05 as the threshold value; the score <0.05 was regarded as “low expression,” and the opposite was high expression (besides, the article of Chotteau-Lelièvre et al. reported that 0.04 also could classify the expression of MSN). Charafe-Jauffret et al. (39) regarded that the value of quick score (QS) (47) superior to 0 was positive. Charpin et al. (40) defined 16.4 as the optimal threshold of MSN expression. Donizy et al. (41) used the IRS developed by Remmele to define the expression of MSN, and IRS ≥3 was an overexpression of MSN. Wang et al. (42) regarded that cases with cytoplasmic and/or membranous staining against MSN in 10% or more of tumor cells were positive. The cutoff value of MSN expression in the research of Li et al. (43) was unclear. Pei et al. (44) used the total points (stain area × stain intensity) ≥5 to represent the high expression and the total points ≤4 to represent the low expression. Yu et al. (45) selected 15.0 (IHC score) as the cutoff score, where IHC score >15.0 was the “high expression,” and IHC score ≤15.0 was the low expression. In the study of Qin et al. (46), there was also no description of MSN cutoff. These values are shown in Table 1.



3.4 MSN Expression and Clinicopathological Parameters

According to Pei et al. (44), the age of patients has no significant correlation with MSN expression (P > 0.05). However, Yu et al. (45) found that high MSN expression was related with the age at diagnosis of patients. For tumor size, it had no significant correlation with MSN expression (44, 45). As for the histological grade, one article clearly indicated that high histological grade was strongly correlated with MSN expression (P < 0.05) (42). Charafe-Jauffret et al. (39) showed that SBR grade was significantly correlated with MSN expression (P = 1.14E-08). One study showed that histological grade has no significant correlation with MSN expression (P > 0.05) (45). Another article showed that there was no significant correlation between grade I and grade II (P > 0.05), but grade III MSN expression was higher than grade I (P < 0.05) (44). Another six records did not show the correlation between MSN and histological grade (33, 39–41, 43, 46). Tumor cells often invade lymph nodes. The high expression of MSN IRS was strongly associated with lymph node metastases (P = 1.00e-05) (41). MSN expression had a significant correlation with positive node metastasis (P < 0.0001) (45).

One research from France showed that MSN expression was negatively correlated with ER (P = 0.019, r = −0.124), human epidermal growth factor receptor 3 (HER3) (c-erbB-3; P = 0.01, r = −0.135), and HER4 (c-erbB-4; P = 0.003, r = −0.154), but it was positively correlated with epidermal growth factor receptor (EGFR) (P < 0.001, r = 0.296) (33). In addition, Yu et al. (45) showed that MSN expression was significantly higher in ER-negative or PR-negative tumors than in ER-positive or PR-positive tumors (PER = 0.008, PPR = 0.026). Wang et al. (42) showed that compared with non-triple negative breast cancer, there was a significantly higher MSN expression of patients with the triple−negative phenotype (P < 0.001). Since the original articles did not show the HRs and 95% CI of MSN and clinicopathological parameters, we did not merge relevant data.



3.5 MSN Expression and Patient Outcomes

In Table 3, there were five articles that described OS (33, 42, 44–46), three records that elucidated RFS (33, 43, 45), two articles that exhibited SS (39, 41), two that showed MFS (39, 43), and one that showed DFS (41). When multivariate analyses included some parameters such as prognostic grade, tumor size, and ER/PR status, MSN expression could be considered as a prognostic biomarker (P = 0.004; risk ratio = 3.779) (33). Charafe-Jauffret and colleagues showed that when the model contains tumor size, SBR grade, and hormonal receptors, MSN was nearly an independent prognostic marker for patients without axillary lymph node involvement (HR = 2.38, 95% CI 0.99–5.56, P = 0.052) (39). Donizy et al. (41) found that enhanced MSN immunoreactivity was an independent prognostic factor (P = 0.028). In the study of Yu et al., MSN expression has no significant correlation with OS (P = 0.452) (45).


Table 3 | The association of high MSN expression and survival analysis.





3.6 Meta-Analysis Results

Five studies comprising 1,726 patients investigated the prognostic role of MSN expression in breast cancer (33, 42, 44–46). Because there was no heterogeneity (I2 = 46.0%, P = 0.12), the fixed-effect analysis was applied. Meta-analysis results showed high MSN expression was associated with poor outcomes of breast cancer (HR = 1.99, 95% CI 1.73–2.24) (Figure 2). The result in one literature showed that high MSN expression caused poor SS (HR = 1.87, 95% CI 1.45–2.29). Furthermore, a high expression of MSN is strongly associated with a low RFS (HR = 1.86, 95% CI 1.38–2.34). These results suggest that MSN may have a prognostic value in breast cancer patients.




Figure 2 | The relationship of MSN expression and endpoints in the GEO datasets, and the results were expressed in terms of hazard ratio (HR) and 95% confidence interval (CI).





3.7 Validation of Meta-Analysis Results

By filtering sample size of breast cancer patients, 16 datasets were included to analyze MSN expression in prognosis. The results (Figure 3) showed that HR of MSN expression has no heterogeneity (I2 = 0%, P = 0.78). The results of GEO datasets suggested that high levels of MSN are associated with high risk of death. The datasets validated the literature review.




Figure 3 | The relationship of MSN expression and endpoints in the GEO datasets, and the results were expressed in terms of hazard ratio (HR) and 95% confidence interval (CI).





3.8 Publication Bias

The funnel plots associated with MSN expression and outcome of breast cancer patients are shown in Figure 4. Possibly because of the limitation of literature quantity, the chart was asymmetric on visual examination. The result of Begg’s test showed that P-value was greater than 0.05, which meant that there was no publication bias.




Figure 4 | Begg’s funnel plots for the publication bias test of OS.





3.9 Results of the Kruskal–Wallis Test

The Kruskal–Wallis test was conducted to evaluate the association of MSN expression with the age at diagnosis, ER status, PR status, HER2 status, histological type, count of lymph node examined, and AJCC stage. MSN expression was not associated with HER2 status and AJCC stage. Compared with patients aged >57 years, the high expression of MSN was significantly associated with patients aged <57 years at diagnosis (P < 0.01). Furthermore, patients with ER/PR-negative status had a significantly higher expression of MSN than patients with ER/PR-positive status (PER < 0.001, PPR < 0.001). The expression of MSN was significantly correlated with histological type of breast cancer (P < 0.001), and we found that when the threshold was 12, MSN expression was closely related with lymph node metastasis (P = 0.038) (Figure 5).




Figure 5 | The association of MSN expression and clinicopathological features.






4 Discussion

Here, we noted that high MSN expression correlated with histological grade, ER/PR status, and lymph node metastasis. Our results demonstrated that high MSN expression was negatively correlated with the prognosis of breast cancer, and this was consistent with the result in oral cancer (10, 27), pancreatic cancer (28), and glioma (29, 48). These data indicated that MSN may play an important role in tumorigenesis. Additionally, in the study on ER/PR status, it was shown that ER-positive breast cancer was less aggressive and had better survival than ER-negative breast cancer (49). Compared with ER/PR-positive breast cancer, higher MSN expression was shown in ER/PR-negative breast cancer, which indicated that the ER and PR signaling pathways might be involved in high MSN expression in breast cancer (45, 49). There were prominent relationships between the levels of MSN expression and the therapeutic response of breast cancer. Patients with low MSN expression treated with anthracycline alone or combined with paclitaxel chemotherapy demonstrated a significantly increased RFS than patients with high MSN expression (P = 0.027), and patients with low MSN expression treated with tamoxifen obtained better RFS than patients with high MSN expression (P = 0.005) (45). Furthermore, it was reported that MSN silencing restored the sensitivity of the p53-mutant cells 1001 to doxorubicin (31). However, there were some studies indicating that the expression of MSN is not associated with the prognosis of breast cancer (32, 50). As for the result that MSN was not related with worse outcome, it may be that the patient cohort was limited with stage II and patients in all stages of breast cancer were not targeted. Besides, the low level of MSN transcripts may not represent the expression of protein levels (45). What is more, there was no specific description of the exact location of the sample on tumor in the original studies, so MSN expression in the center or edge of the lesion may be associated with different results.

MSN expression was associated with metastasis and invasion in various tumors. Our study also found that high MSN expression was negatively correlated with PFS and positively correlated with lymph node metastasis. Related basic research also revealed that MSN promoted the metastasis and invasion of breast cancer. Podoplanin recruits MSN to activate RhoA to promote EMT and facilitate tumor cell invasion and migration (51). Besides, when MSN was silenced in 1001, the 1001 cells reverted from mesenchymal-to-epithelial phenotype and reduced cell migration and invasion (31). These data suggested a close relationship between MSN and EMT. One study showed that talin regulated moesin–NHE-1 recruitment to invadopodia and promoted mammary tumor metastasis (12). Moreover, the loss of MSN expression could promote the invasion and metastasis of breast cancer cells by increasing the transcription level of NM-23 and the secretion of MMP9 and decreasing the expression of metadherin (52). Moreover, one study showed that PR agonists could activate MSN and promote breast cancer cell motility by rapid remodeling of the actin skeleton following MSN activation (53). CD44 is a cell surface adhesion receptor that is widely expressed in most cell types, which belongs to the hyaluronan (HA) receptor family of cell surface glycoproteins (54). One recent study showed that via upregulation of p-moesin, CD44 cross-linking increases the malignancy of breast cancer. Moesin knockdown attenuated the promoting effect of CD44 cross-linking on tumor cell invasion and metastasis (55). Recently, Luo et al. (56) proposed a novel mechanism of MSN contributing to tumor invasion and metastasis. ROCK1 increased TMEM16A (a Ca2+-activated chloride channel) channel activity through MSN phosphorylation, to promote cell migration and invasion. Studies reported that lymph node metastasis was an important marker for the spread of breast cancer, and it could be a poor marker of prognosis (57, 58). Charafe-Jauffret et al. (39) showed that MSN was related to the rate of metastasis, which suggested that MSN participated in tumor metastasis. Ni et al. (30) also showed that moesin expression was also significantly higher in breast cancer with lymph node metastasis than in breast cancer without lymph node metastasis. Moreover, Yu et al. (45) indicated that the high expression of MSN had significant correlations with positive node metastasis, compared with low expression of MSN (P < 0.0001). Together, these results highlight the participation of MSN in the metastasis of breast cancer.

This meta-analysis was performed according to the guidelines of PRISMA (34) and REMARK (35), and the results showed that high MSN expression was strongly associated with poor outcome of breast cancer. According to the Kruskal–Wallis test, the association between MSN expression and histological grade, ER/PR status, HER2 status, lymph node metastasis, AJCC stage, and age at diagnosis was also analyzed. These positive factors contributed to the strengths of this meta-analysis.

The evidence included in the present meta-analysis indicated high MSN expression as a poor prognostic marker in breast cancer. However, there are still some limitations in the present study. First, with the few available studies and the small sample size of patients included in this review, the results might be less powerful. Besides, many articles only described the relationship between MSN and metastasis without data on MSN and survival; therefore, more eligible articles could not be included for quantitative analysis. In addition, because some HRs were calculated indirectly by the data extracted from the literature, these data were less reliable than direct data from the original literature.



5 Conclusions

By analyzing the literature and meta-analysis results, we found that high MSN expression correlated with more aggressive clinicopathological features and poorer prognosis in patients compared with lower MSN expression. In addition, we need to expand the patient cohort with additional studies to confirm our results.
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Background

The preoperative systemic immune-inflammation index (SII) is correlated with prognosis in several malignancies. The aim of this study was to investigate the prognosis value of SII in patients with resected breast cancer.



Materials and Methods

A total of 784 breast cancer patients who underwent surgical resection were consecutively investigated. The optimal cutoff value of SII was evaluated using the receiver operating characteristic (ROC) curve. The collection of SII with clinicopathological characteristic and prognosis was further evaluated.



Results

The optimal cutoff value for SII in the prediction of survival was 514 according to ROC curve analysis. A high SII was significantly correlated with younger age (P = 0.037), PR status (P < 0.001), and HER2 status (P = 0.035). Univariate analysis revealed that SII (P < 0.001), T-stage (P < 0.001), lymph node involvement post-surgery (P = 0.024), and histological grade (P < 0.001) were significantly related to DFS, and SII (P < 0.001), T-stage (P = 0.003), lymph node involvement post-surgery (P = 0.006), and histological grade (P < 0.001) were significantly associated with OS. In multivariate analysis, a high SII was an independent worse prognostic factor for DFS (HR, 4.530; 95% CI, 3.279-6.258; P < 0.001) and OS (HR, 3.825; 95% CI, 2.594-5.640; P < 0.001) in all the enrolled patients. Furthermore, subgroup analysis of molecular subtype revealed that SII was significantly associated with prognosis in all subtypes.



Conclusion

Preoperative SII is a simple and useful prognostic factor for predicting long-term outcomes for breast cancer patients undergoing surgery.
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Introduction

Breast cancer is one of the most commonly diagnosed malignancies and the leading cause of cancer death in women worldwide (1). Despite developments in radiotherapy, chemotherapy, and targeted therapy, surgery is still the main treatment method for localized breast cancer patients. However, its clinical outcome remains unsatisfactory because an appreciable patient ultimately develops local recurrences or distant metastases after resection (2). Therefore, identifying reliable potential biomarkers for stratifying patients who are likely to have a high risk of recurrence or mortality is crucial to the selection of appropriate treatment strategies (3).

Tumor-promoting inflammation and immune system role in cancer surveillance and elimination are enabling hallmarks for malignant cells (4, 5). Systemic inflammatory responses can influence cancer formation and progression at the molecular level, such as DNA damage and cell proliferation (6). Except for tumor cells, immune and inflammatory cells, including neutrophils, platelets, and lymphocytes, contribute to malignant cell invasion in the peripheral blood; hence, tumor cells can survive and reseed in distant organs (7). Several inflammation and immunity-based indicators, including lymphocyte count, neutrophil-lymphocyte ratio (NLR), and platelet-lymphocyte ratio (PLR), have been used in predicting survival outcomes (8–11). Systemic immune-inflammation index (SII), calculated by lymphocyte, neutrophil, and platelet counts, reflects the balance of host inflammatory and immune status and is an established prognostic factor in several malignies (12–14). However, the prognostic value of SII in breast cancer patients remains unclear. In the present study, we aimed to evaluate the prognostic value of SII in patients after curative resection for breast cancer.



Patients and Methods


Patients and Follow-Up

We retrospectively identified consecutive breast cancer patients who underwent surgery at West China Hospital of Sichuan University from June 2012 to July 2015. Inclusion criteria were as follows: (1) patients received surgery; (2) histologically confirmed breast cancer; and (3) patients with sufficient clinicopathological date and clinical information. Exclusion criteria were (1) ductal carcinoma in situ; (2) patients with metastatic disease before surgery; (3) patients with infections, inflammatory, hematologic, or autoimmune diseases; (4) patients received neoadjuvant chemotherapy before surgery; and (5) male breast cancer patients. Histopathological data and clinical information were obtained.

All the patients were followed up every three months in the first three years after operation, every six months in the next five years, and once a year thereafter. Disease free survival (DFS) was defined as the time from the date of diagnosis to the date of disease relapse/the last follow-up date. Overall survival (OS) was defined as the interval period from the first diagnosis to the death/final follow-up. The present study was approved by the Research Ethics Committee of West China Hospital of Sichuan University, and a written informed consent was obtained from each participant in accordance with the policies of the committee.



Pathology Methods and Molecular Subtypes

Estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) statuses and Ki67 expression were determined by immunohistochemical staining. The cutoff value for positive ER or PR was ≥1% of stained cell, and the cutoff value of high Ki-67 was ≥14% of immunoreactive tumor cell nuclei. Additionally, a value of 0 or 1+ was reported as HER2 negative, and 3+ was considered HER2 positive. Fluorescence in situ hybridization was performed when the level of staining was 2+.

For the molecular subtypes, all the patients were classified as luminal A (ER+ and/or PR+, HER2-, Ki-67 <14), luminal B (ER+ and/or PR+, Ki-67 ≥14% or HER2+/any Ki-67), HER2-enriched (ER-, PR-, HER2+, any Ki-67), or triple-negative (ER-, PR-, HER2-, any Ki-67) breast cancer (TNBC), according to the St. Gallen Expert Consensus in 2013 (15).



Data Collection and Definitions

A complete preoperative blood cell count was obtained within seven days before surgery. According to previous studies, SII was calculated using the formula SII = P × N/L, where P, N, and L represent the absolutely platelet count (109/L), neutrophil count (109/L), and lymphocyte count (109/L), respectively (16).



Determination of the SII Cutoff Value

We used the receiver operating characteristic (ROC) curve to determine the sensitivity and specificity of SII for 5-year survival, and the Youden index was used in calculating and selecting the optimal cutoff value of SII.



Statistical Analysis

The associations between SII and clinicopathologic characteristics were analyzed using X2-test. The survival curves of DFS and OS were depicted using the Kaplan–Meier method and analyzed using the log-rank test. Univariate and multivariate analyses were performed using the Cox proportional hazards model, and the hazard ratios (HRs) and corresponding 95% confidence intervals (CIs) of each factor were reported. Statistical analyses were performed using the SPSS (version 23.0) software package (SPSS Inc., Chicago, IL, USA). A two-tailed P value of <0.05 was considered statistically significant.




Results


Characteristics of Patients

There were 1501 breast cancer patients who were diagnosed with breast cancer in West China Hospital of Sichuan University from June 2012 to July 2015. Among all the 1501 breast patients, 717 were excluded as they not meet the inclusion criteria of the study, and then a total of 784 female breast cancer patients who underwent surgery were included in this study (Figure 1). The median age was 49 years (20-89 years), and the median follow-up period was 65.5 months (3-91.5months). Tumor relapse occurred in 157 patients, 108 of which died. A total of 170 (21.7%) patients were younger than 40 years old, and 450 (57.4%) patients exhibited positive PR expression. The majority of the patients had positive ER expression (62.6%), high Ki67 proliferation (63.1%), and negative HER2 expression (75.0%). The clinical and pathologic characteristics of all the included patients are shown in Table 1.




Figure 1 | Flow chart of patient selection.




Table 1 | Association of the systemic immune-inflammation index (SII) with the patient and tumor characteristics.





ROC Analysis for the Prediction of Survival

The results of ROC analysis showed that the area under the ROC curve (AUC) of SII for predicting DFS and OS were 0.724 (P < 0.001; 95% CI, 0.679-0.770) and 0.703 (P < 0.001; 95% CI, 0.645-0.761), respectively (Figures 2A, B). According to the Youden index, an SII value of 514 was the optimal cutoff value, and sensitivity and specificity were 63.4% and 75.0% for OS, respectively. The patients were then stratified into two groups, and 562 (71.7%) patients showed low SII, whereas 222 (28.3%) patients had high SII.




Figure 2 | ROC curves of SII for predicting DFS (A) and OS (B).





Relationships Between SII and Clinicopathological Characteristics

As shown in Table 1, SII was significantly related to younger age (P = 0.037), positive PR expression (P < 0.001), and positive HER2 expression (P < 0.001) but not to Ki67 expression level, ER status, T-stage, N-stage, high histological grade, surgery type, chemotherapy, hormonal therapy, target therapy and radiotherapy.



Correlations of the SII With Survival

The Kaplan-Meier survival curves analysis showed that high SII is a poor prognostic factor for DFS and OS. The 5-year survival rates for DFS and OS in the entire cohort were 79.9% and 86.2%, respectively. The 5-year DFS rate in the high SII group was significantly shorter than in the low SII group (57.0% and 84.1%, respectively, P < 0.001; HR, 4.296; 95% CI, 2.906-6.350; Figure 3A). Moreover, the corresponding 5-year OS rate for patients in the high SII group (72.4%) was significantly shorter than those in the low SII group (91.2%; P < 0.001; HR, 4.304; 95% CI, 3.125-5.929; Figure 3B).




Figure 3 | Kaplan-Meier survival analyses of the correlation between SII and survival among breast cancer patients: DFS (A) and OS (B).



Univariate Cox regression analysis revealed that SII (P < 0.001), T-stage (P < 0.001), lymph node involvement post-surgery (P = 0.024), and histological grade (P < 0.001) were significantly related to DFS, and SII (P < 0.001), T-stage (P = 0.003), lymph node involvement post-surgery (P = 0.006), and histological grade (P < 0.001) were significantly associated with OS (Tables 2, 3).


Table 2 | Results of the analysis of the prognostic factors for disease free survival.




Table 3 | Results of the analysis of the prognostic factors for overall survival.



Multivariate analysis showed that SII, T-stage, lymph node involvement post-surgery, and histological grade had significant associations with DFS and OS (Tables 2, 3).

Subgroup analysis by subtype of breast cancer was performed. Among the 784 enrolled breast cancer patients, 235 (30.0%) were classified as luminal A subtype, 368 (46.9%) were luminal B subtype, 108 (13.8%) were HER2 subtype, and 73 (9.3%) were TNBC subtype. The results showed that a high SII was significantly associated with poor prognosis in all the four subtypes (Figure 4).




Figure 4 | Kaplan-MeierKaplan-Meier survival analyses of DFS and OS according to SII among patients in Luminal A (A, B), Luminal B (C, D), TNBC (E, F), and HER2-enriched (G, H) subgroups.






Discussion

In recent years, inflammation has been demonstrated to be a vital factor in tumor growth, invasion, and metastasis, and the association of inflammation with several malignancies has been revealed (17–20). Many studies have investigated SII in various cancers, including esophageal squamous cell carcinoma, non-small cell lung cancer, hepatocellular carcinoma, and germ-cell tumors (7, 21–23). However, reports on the prognostic significance of SII in breast cancer are rare. In the present study, we assessed the prognostic value of SII in breast cancer patients, and the results showed that SII score obtained before surgery is an independent prognosis factor for breast cancer patients, and a high SII is associated with poor DFS and OS.

Platelets play vital roles not only in classical hemostatic function but also in creating a hypercoagulable environment that can mediate tumor progression. Specifically, platelets induce tumor growth and promote tumor-associated vasculature development and tumor invasion and metastasis (24). Cancer cells can interact with platelets through cell receptors and signaling molecules, such as the ADP, glycoproteins, P-selectin, and thrombin, and platelets can bind to tumor cells and directly induce tumor growth and metastasis by releasing pro-tumor angiogenic and growth factors once the platelets are activated (25). In the metastatic process of tumor cells, platelets can protect tumor cells from high-velocity forces and immunosurveillance, allowing the establishment of a premetastatic niche. Moreover, platelets can also protect circulating tumor cells from shear stress during cell circulation (6, 26). Tumor cells can activate platelets, which in turn secrete transforming growth factor β and platelet-derived growth factor and induce tumor cell epithelial–mesenchymal transition (EMT) (27, 28). Platelets also increase tumor cell metastatic potential by activating the TGFb-1 and NF-kB pathways, which are responsible for the EMT (29). A high platelet count is associated with increased metastasis and poor outcomes in multiple cancers (30, 31).

The immune response of a host to a malignancy is lymphocyte dependent and plays a vital role in tumor defense by inhibiting tumor cell proliferation, invasion, and migration (32). Meanwhile, lymphocytes can release cytokines (such as IFN-β and TNF-α) that are associated with improved prognosis in several cancers (33). By contrast, neutrophils facilitate tumor cell adhesion and the seeding of distant organs by secreting growth factors, including VEGF and proteases (34–38). Some in vitro trials revealed that the cytolytic activities of lymphocytes decrease when co-cultured with neutrophils (39). Calculated from these two parameters, NLR can result in better prediction results than individual factors, and numerous studies demonstrated the prognostic value of NLR in cancer patients (40–42). Robinson et al. in their multicenter cohort study revealed that NLR is associated with the volume of melanoma at presentation and may predict occult sentinel lymph metastases (43). In addition, a meta-analysis showed that a raised baseline NLR is related to nearly twice the risk of recurrence in melanoma (44).

Given the significance of platelets, neutrophils, and lymphocytes in prognosis prediction in cancer patients, an elevated preoperative SII usually indicates elevated inflammatory status and weak immune response. Li et al. found that preoperative SII is a prognostic indicator for intrahepatic cholangiocarcinoma and patients with increased SII level are associated with poor OS and early tumor recurrence (45). Wang et al. found the role of SII in non-small cell lung cancer patients in a meta-analysis (46). Preoperative elevated SII can be an independent prognostic factor for bladder cancer patients who underwent radical cystectomy (47). Besides, a relevant study also indicated that the DFS and OS time in patients with low SII would have survival longer than those patients with high SII in patients with breast cancer undergoing neoadjuvant chemotherapy, which is consistent with our results (48). Moreover, a meta-analysis involving 2642 patients suggest that an elevated SII predicts poor survival outcomes and is associated with clinicopathological features that indicate tumor progression of breast cancer (49).

SII is calculated based on standard laboratory tests on total platelet, neutrophil, and lymphocyte counts, and all these parameters are routinely measured in the clinical setting. Thus, SII might be a potential marker for tumor recurrence surveillance in breast cancer patients undergoing potentially curative resection; moreover, we hope that the SII may be used in combination with other biomarkers and serve a useful index for evaluating the risk of breast cancer to identify subgroups of patients with poor prognosis and offer therapeutic strategies for breast cancer patients.

This study has several limitations. Firstly, our study is a retrospective study and all the samples were enrolled at a single center. Secondly, with the subgroup analysis, the numbers of patients are less and may influence the outcomes. Thirdly, although SII is an independent predictor, the SII is a nonspecific tumor marker, indicating that further prospective randomized controlled trials are needed to validate our findings.



Conclusion

Our study suggests that SII is a simple and useful prognostic factor for predicting long-term outcomes for resected breast cancer patients, and a high SII suggests poor prognosis.
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Purpose

Deletion of Glutathione S-Transferase Theta 1 (GSTT1) encoding gene is implicated in breast cancer susceptibility, clinical outcomes, and survival. Contradictory results have been reported in different studies. The present investigation based on a representative Pakistani population evaluated the GSTT1-absent genotype in breast cancer risk and prognosis.



Methods

A prospective study comprising case-control analysis and case series analysis components was designed. Peripheral blood samples were collected from enrolled participants. After DNA extraction, GSTT1 genotyping was carried out by a multiplex PCR with β-globin as an amplification control. Association evaluation of GSTT1 genotypes with breast cancer risk, specific tumor characteristics, and survival were the primary endpoints.



Results

A total of 264 participants were enrolled in the molecular investigation (3 institutions). The study included 121 primary breast cancer patients as cases and 143 age-matched female subjects, with no history of any cancer, as controls. A significant genetic association between GSTT1-absent genotype and breast cancer susceptibility (p-value: 0.03; OR: 2.13; 95% CI: 1.08-4.29) was reported. The case-series analysis showed lack of association of GSTT1 genotypes with menopause (p-value: 0.86), tumor stage (p-value: 0.12), grade (p-value: 0.32), and size (p-value: 0.07). The survival analysis revealed that GSTT1-absent genotype cases had a statistically significant shorter overall survival (OS) than those with the GSTT1-present genotype cases (mean OS: 23 months vs 33 months). The HR (95% CI) for OS in patients carrying GSTT1-absent genotype was 8.13 (2.91-22.96) when compared with the GSTT1-present genotype.



Conclusions

The present study is the first report of an independent significant genetic association between GSTT1-absent genotype and breast cancer susceptibility in a Pakistani population. It is also the foremost report of the association of this genotype with OS in breast cancer cases. Upon further validation, GSTT1 variation may serve as a marker for devising better population-specific strategies. The information may have translational implications in the screening and treatment of breast cancers.
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Introduction

Glutathione is present in all living cells. Physiologically, it performs three important functions: protection of thiol groups in proteins from oxidation, intracellular redox buffering, storage for sulphur-containing cysteine. These functions are dependent upon the catalysis by Glutathione S-Transferases (GSTs), E.C. 2.5.1.18. Consequently, GSTs play a major role in the detoxification of potent endogenous and exogenous carcinogens (1). These enzymes constitute a superfamily of isoenzymes including GST- theta 1. GSTT1 gene is located on chromosome 22q11.2. It encodes the enzyme, which is involved in the conjugation of reduced glutathione to certain electrophiles and hydrophobic compounds (2). Ultimately, such toxic substrates may be removed from the body.

The absence of the GSTT1 gene, also known as homozygous deletion or null genotype and herein referred to as GSTT1-absent, has been reported with varying frequencies in different populations (3). The carriers of the GSTT1-absent genotype are unable to metabolize some mutagenic carcinogens (4). The deletion has been correlated with ovarian, bladder, colon, oral, lung, and pediatric cancers among different populations (5–10). It is a candidate genetic marker for cancer risk, prognosis, and treatment response. In the case of breast cancers, the independent contribution of GSTT1 null genotype to susceptibility, tumor characteristics, and response to prescribed regimens remains inconclusive in different populations across the world (11–13).

In Pakistan, the age-standardized rate (ASR) of the female breast cancer incidence is among the highest in Asia (34.4 per 100,000), whereas the mortality rate is one of the highest in the world (18.8 per 100,000) (14, 15). Therefore, it is essential to identify the underlying factors in breast cancer etiology and prognosis.

Two previous studies from Pakistan (16, 17) report no independent association between the absence of the GSTT1 gene and breast cancer susceptibility. Both the studies were published from the Punjab area. However, Pakistan shows ethnicity-specific genetic variation across its region (18). Furthermore, the small sample size, and conflicting frequencies in controls: 18.7% (16) vs 31.4% (erroneously reported as 16% in one of the studies) (17), limit the applicability of these conclusions.

This prospective observational molecular study was designed based on the biological plausibility of GSTT1 deletion in carcinogenesis. It addresses the paucity and contradiction in the available data from a region that has frequent and aggressive breast tumors. The first component of the study, the case-control analysis, evaluated the contribution of the GSTT1 gene in breast cancer risk. Simultaneously, the second part, comprising case series analysis, investigated the contribution of GSTT1 genotypes to specific tumor characteristics and breast cancer survival after standard treatment.



Materials and Methods


Study Design and Participant Enrollment

The overall study schema is shown in Figure 1.




Figure 1 | The study schema. The prospective recruitment of cases with age-matched female controls is shown along with the collection of specified molecular, clinical, and survival data. The objective was to investigate the contribution of GSTT1 variation in breast cancer risk, tumor characteristics, and survival after standard treatment.



The patients were recruited from the Atomic Energy Medical Centre (AEMC), Jinnah Postgraduate Medical Centre (JPMC), Karachi, Pakistan. The cases were clinically diagnosed primary breast cancer patients. The treatment included radiotherapy at the aforementioned participating institution following chemotherapy and surgery. The latter two components of treatment were carried out at hospitals other than AEMC. The details of control enrolment have been published elsewhere (19), with the modification that only age-matched (≥ 18 years), female participants’ data were included in the present study. All the subjects were recruited in Karachi, Pakistan and therefore, the distribution of ethnicities was the same in cases and controls. Sindhi, a self-defined Urdu-speaking ethnicity, Pathan, and Punjabi were the main ethnic groups. The research involved human participants and followed the provisions of the Declaration of Helsinki and its amendments. Research protocols were approved by the independent Ethics Review Committees of all the relevant institutions. The present study follows the reporting recommendations for tumor marker prognostic studies (REMARK) (20, 21) (Supplementary Table 1).



Data Collection

Information regarding age was recorded for all the participants. Patients’ family history, age at menarche, menopause (if applicable), and obstetrics and gynecology history were recorded in a questionnaire. In cases, tumor node metastasis (TNM) staging and histological grading were carried out according to the Union Internationale Contre le Cancer (UICC) recommendations (22). Data on tumor characteristics (tumor stage, grade, and size) and histology were obtained from the patients’ hospital medical files. Information relating to the parameters that were analyzed was documented in the majority of the hospital records. Three-year survival data were collected through telephonic follow-up. The missing information was due to: (i) the return of patients to their towns/villages after treatment at Karachi; (ii) erroneous contact information; and (iii) no response.



Sample Collection and DNA Extraction

All the participants volunteered 8-10ml of venous blood sample, which was collected in ACD-coated vacutainers (BD Vacutainer® BD Franklin Lakes NJ USA). Samples from the cases were collected at the time of radiotherapy, post-mastectomy, and chemotherapy treatment. The blood samples were either processed immediately or stored at 4°C until DNA extraction.

DNA was extracted from the white blood cells according to the standard phenol-chloroform method (23). It was quantified spectrophotometrically (Beckman Coulter™ DU® 530). The quality control cut-off for the 260/280 ratio was between 1.7-1.99. DNA quality was also analyzed by 0.7% agarose gel electrophoresis followed by UV visualization using a gel imaging system (Azure c300® biosystems). No fragmentation or smearing was observed in any of the samples (Figure 2).




Figure 2 | A representative 0.7% agarose gel used for quality control of extracted DNA samples. Lane 1: 100bp DNA ladder; lanes 2-12: DNA samples.



The working dilutions for experiments were prepared at room temperature and stored at 4°C. The stock DNA samples were stored at -20°C.



Genotyping


Cases

GSTT1 genotyping was carried out by a multiplex polymerase chain reaction (PCR) with β-globin as an amplification control. The primer sequences have been published earlier (17).

PCR was carried out with a Taq DNA polymerase kit (Thermofisher Scientific Inc.). Total PCR reaction mix (10µl) consisted of 1X PCR buffer, 0.9mM MgCl2, 0.5mM dNTPs, 1.5U/µl Taq polymerase, 1.8µM primers each for GSTT1 and β-globin genes, and 70ng DNA. The PCR conditions were: initial denaturation at 94°C for 5 minutes, followed by 40 cycles of 94°C for 45 seconds, annealing at 60°C for 45 seconds, and extension at 72°C for 45 seconds. The final extension was carried at 72°C for 5 minutes. Amplicons were analyzed under UV on 2% agarose gel, which was stained with ethidium bromide. A fragment of 473bp indicated the GSTT1-present genotype. The GSTT1-absent genotype did not show this amplification. The amplification of the β-globin gene served as the control for successful PCR. A negative control was included in all the genotyping experiments (Figure 3).




Figure 3 | GSTT1 genotyping. Agarose gel electrophoresis (2%) of multiplex PCR amplified products: GSTT1-absent (–ve/-ve) genotype did not show amplification of a 473bp fragment. β-globin gene was included as an amplification control.



The results of genotyping were confirmed by double-blind evaluation, the inclusion of replicates, and negative controls.



Controls

The genotyping in controls has been described elsewhere (19). It identifies homozygous GSTT1-present, heterozygous GSTT1-present/absent, and homozygous GSTT1-absent genotypes. In the final observation, the GSTT1-present allele was determined by an amplicon of 466bp, while the GSTT1-absent allele was identified by an amplicon of 1,460bp.




Treatment of Breast Cancer Patients

All the participating cases underwent a mastectomy, adjuvant chemotherapy, and/or radiotherapy. Before the start of chemotherapy, echocardiography was done to assess cardiac function (ejection fraction cut-off for the start of doxorubicin based chemo was >55%). A test dose of docitaxel was given to rule out hypersensitivity before the first cycle. Neurological assessment was undertaken during taxane (paclitaxel) cycles. Chemotherapy-related toxicities were assessed after every cycle according to Common Toxicity Criteria of the National Cancer Institute (NCI-CTC, version 2.0) (24). “Severe toxicity” was defined as hematological or gastrointestinal toxicity of grades 3–4.

The chemotherapy regimen included: Adriamycin-Cyclophosphamide x4 followed by taxane x4 (docitaxel or paclitaxel): Doxorubicin 60mg/m2 on day 1, cyclophosphamide 600mg on day 1, paclitaxel 175mg/m2 on day 1 OR docitaxel 100mg/m2 on day 1, repeated every 3 weeks.

Complete blood count, liver function test, and renal function test were carried out to assess the treatment response.



Statistical Analysis

The allele distribution for GSTT1 polymorphism in the controls was assessed for Hardy-Weinberg equilibrium (25). The statistical tests for association analysis were carried out by using Statistical Package for Social Science (SPSS) for Windows v.19.0 (SPSS, Inc., Chicago, Illinois, USA) and online OpenEpi software (26).

In the case-control investigations, data for the GSTT1 genotype was obtained for all the participants, except two cases, where no amplification was recorded. The age-matching between cases and controls was analyzed by Student’s t-test for independent samples with the assumption of unequal variances. To achieve 80% power at a two-sided level of significance, various odds ratios (OR) of genetic risk due to GSTT1 polymorphism for breast cancers were calculated. The accrual of 260 participants (matched cases and controls) allows for the identification of OR≥2 for GSTT1 variation with the GSTT1-absent frequency of 0.24 [the median value of the reported prevalence in controls from Pakistan (16–18, 27–38) was used for the calculations (39)]:

	

Where,

	

n = number of subjects in each group

zα = Corresponding to α [level of significance (95%)] = 1.96

zβ= Corresponding to β (Probability of type II error. Power of study is 80%, 1- β = 0.2)

p0 = proportion of exposure among control groups (*prevalence of the polymorphism in general population without breast cancer).

p1 = proportion of exposure among cases based on the formula including odds ratios associated with exposure.

The missing information for case series analysis is itemized in the relevant tables in the results section.

The primary objective was the investigation of GSTT1 polymorphism association/s with breast cancer susceptibility, the selected clinical parameters, and survival. The data were assessed by Pearson χ2 test. The ORs were tabulated with a 95% confidence interval (95% CI) to evaluate the strength of the associations. Post hoc power analysis was carried out to assess the strength of the study (40, 41).

The overall survival (OS) and hazard ratios (HR) with 95% CI were assessed by the Kaplan-Meier method using MedCalc software v.19.2.6 (42, 43). In all the statistical tests, p-values <0.05 were considered to be significant.




Results


Participants’ Information and Clinical Data of Patients

The total number of patients diagnosed with primary breast cancer disease was 121, whereas the total number of age- and gender-matched controls was 143. Characteristics of the 264 participants included in the study are presented in Table 1.


Table 1 | Participant information and clinico-pathological data of breast cancer patients.



The mean age of the patients was 44.48 ± 0.95 years, whereas, for the controls, the mean age was 45.62 ± 0.58 years. All patients presented with invasive ductal carcinoma (IDC) of the breast. Majority of the patients had advanced tumor stage (stages III and IV; p-value: 0.024**), tumor size of >2cm (p-value: <0.01**), and high tumor grade (grades 3 and 4; p-value: >0.05).



Association Between GSTT1 Polymorphism and Breast Cancer Risk

The allelic and genotypic frequencies of GSTT1 polymorphism in controls are shown in Table 2. The proportions were in Hardy-Weinberg equilibrium.


Table 2 | Distribution of GSTT1 genotypes and allele frequencies (with standard errors) in age- and gender-matched controls. Assessment of HWE test in controls.



Associations between the GSTT1 genotypes and breast cancer susceptibility are presented in Table 3.


Table 3 | Distribution of GSTT1 genotypes in controls, breast cancer patients, and the association analysis with breast cancer risk*.



The comparison of GSTT1-present genotype with GSTT1-absent genotype in cases and controls revealed that GSTT1-absent genotype was significantly associated with risk for breast cancers (p-value: 0.03). The OR were 2.13 (95% CI: 1.08 - 4.29).



Lack of Association Between GSTT1 Polymorphism and Specific Parameters

In the case series analysis, the present study did not report any statistically significant association between the absence of the GSTT1 gene and the studied tumor characteristics, i.e., stage, grade, and size. The p-values were 0.12, 0.32, and 0.07, respectively. Similarly, the study did not find any correlation between the GSTT1 genotype and age at menopause (p-value: 0.86).



Association of the GSTT1 Polymorphism and OS in Breast Cancer Patients

As shown in Figure 4, GSTT1-present carriers had 10 months’ longer survival (mean OS: 33 months; 95% CI: 30.96-34.65) than those with GSTT1-absent genotype (mean OS: 23 months; 95% CI 17.90-28.59); p-value: 0.0001. The HR with 95% CI for OS in patients carrying GSTT1-absent genotype was 8.13 (2.91-22.96) with GSTT1-present genotype as the reference variable (Table 4).




Figure 4 | Kaplan-Meier curve demonstrating the overall survival (OS) based on genotypes of GSTT1. The mean OS was 33 months (95% CI: 30.96-34.65) in GSTT1-present genotype carriers and 23 months (95% CI: 17.90-28.59) in GSTT1-absent genotype carriers; p-value: 0.0001.




Table 4 | Associations between GSTT1 genotypes and overall survival (OS).






Discussion

In the present study, the association/s of GSTT1 genotypes with breast cancer-related parameters were evaluated. In this study, we report a significant association of GSTT1-absent genotype with increased breast cancer risk in a representative sample from a Pakistani population. The OR were 2.13 (95% CI: 1.08 – 4.29). We also report a significant difference in the survival duration between GSTT1-present and GSTT1-absent carriers: mean OSGSTT1-present: 33 months (95% CI: 30.96-34.65) vs mean OSGSTT1-absent: 23 months (95% CI: 17.90-28.59). The present analysis is the first report of population-specific associations between GSTT1 genotypes and the specific factors associated with breast cancers.

The incidence of breast cancers varies across the globe. The highest estimated age-standardized incidence rates have been reported in Belgium (113.2 per 100,000), while the lowest was reported in Bhutan (5.0 per 100.000). Furthermore, the highest estimated age-standardized mortality rates are reported from Barbados (42.2 per 100,000), while the lowest is reported from Bhutan (2.6 per 100,000) (15). The known risk factors such as age, family history, different reproductive parameters, and obesity account for only one-third of the risk for breast cancers (11, 44). In addition, the reason(s) for high mortality rates across specific populations need to be determined (45–47).

A number of genes are likely involved in breast cancer characteristics, with the possibility of gene-environment interactions (48). The quantitative contributions of such genes remain to be delineated across different populations and regions.

A proposed mechanism of carcinogenesis due to the loss of function of GSTT1 isoenzyme is shown in Figure 5. Some of the exogenous and endogenous carcinogens are not metabolized to non-toxic components. Consequently, tumorigenesis and/or tumor progression are likely to occur (4). In addition, chemotherapeutic agents may also be metabolized by the pathways involving GSTT1, rendering the patients with GSTT1-present genotype irresponsive to either therapy or specific doses of therapy.




Figure 5 | Xeno- and endo-biotic carcinogen metabolism through two pathway systems (phase I and phase II) is shown. Deletion of GSTT1 leads to toxicity and carcinogenesis (TCDD, 2,3,7,8-Tetrachlorodibenzodioxin; BaP, Benzo[a]pyrene; BPDE, Benzo(a)pyrene diolepoxide; ROS, Reactive Oxygen Species).



Among different populations, the loss-of-function polymorphism in the GSTT1 encoding gene occurs at varying frequencies (49). Null genotype is correlated with vulnerability to cancers, tumor characteristics, and differences in treatment response (1, 50).

The examples of low and high frequencies of GSTT1-absent genotype across specified global regions according to WHO are listed in Table 5.


Table 5 | Distribution of GSTT1-absent genotype in different regions across the globe.



In Pakistan, the frequency of GSTT1 null genotype in healthy individuals has been reported in the range of 0.06 – 0.24 (16–18, 28–38). This wide range may be attributed to limited sample sizes, population admixture, and differences in methodologies. Similarly, variations in the frequency of this genotype in breast cancer patients from Pakistan have been reported as 8% (16) and 27% (erroneously reported as 49% in the text) (17). The present study reports a frequency of 21%. In contrast to the studies conducted in Punjab/Central Pakistan (16, 17), the present study was carried out in Southern-Pakistan, where the majority of the patients belong to Sindhi and other self-defined Urdu-Speaking ethnicities (25% each). Interestingly, Her2 +ve invasive ductal carcinomas were more frequent in GSTT1-absent genotype patients (although data is preliminary, which is available for only 59 samples). Our case-control analysis is in agreement with a number of other studies reported from different parts of the world (11, 62). However, it is the first report of significant association of GSTT1-absent genotype with decreased OS in primary breast cancer patients. An earlier study from China reported such an association with untreated metastatic breast cancers (63).

The strength of our study is the underlying unique population, for whom molecular data for breast cancer risk and clinical parameters are scarce. The limitations of the study are sample size and the paucity of information for known risk factors and clinical parameters, primarily due to the restriction of resources in healthcare. In terms of the limitation of the sample size, it should be emphasized that the results reported in the present study do not corroborate previously published reports from this region with the same limitation. The present study also notes that Chi-squared goodness-of-fit test was inappropriate for the association analysis as reported in earlier studies. The methodology results in a lack of data for heterozygous controls. This information is necessary to estimate HWE and subsequent association evaluation.

During the analysis, the present study takes into account missing information for risk factors and clinical parameters as illustrated in Table 1 and the results section. The post-hoc power analysis showed a value of 60.1%. However, it is pertinent to mention here that the calculated estimate does not capture the true power of the study (41). A three-year follow-up provides useful information for assessing the OS in breast cancers in Pakistan. The mortality rate (ASR: 18.8 per 100 000) attributed to breast cancer in the country is among the highest in Asia (15). As emphasized earlier, the reasons behind such a high mortality rate need to be investigated. The significant association of the investigated polymorphism with OS in breast cancers may aid in taking precautionary measures in treatment regimens early in the administration of therapy administration. This study highlights the importance of conducting rigorous molecular epidemiology studies to devise evidence-based better strategies in breast cancer management, particularly in resource-limited settings.



Conclusions

The present study reports significant contribution of the GSTT1-absent genotype to breast cancer risk in a Pakistani population for the first time. A unique finding of this study was the association of this genotype with significantly shorter OS in breast cancer patients post standard treatment, which has not been reported previously. These observations are biologically plausible. If validated further through multiple center studies and larger sample sizes, the absence of the GSTT1 gene could serve as a risk and survival marker in breast cancers, at least for a specific population.
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Recent studies reveal that tumor microenvironment contributes to breast cancer (BRCA) development, progression, and therapeutic response. However, the contribution of the tumor microenvironment-related genes in routine diagnostic testing or therapeutic decision making for BRCA remains elusive. Immune/stromal/ESTIMATE scores calculated by the ESTIMATE algorithm quantify immune and stromal components in a tumor, and thus can reflect tumor microenvironment. To investigate the association of the tumor microenvironment-related genes with invasive BRCA prognosis, here we analyzed the immune/stromal/ESTIMATE scores in combination with The Cancer Genome Atlas (TCGA) database in invasive BRCA. We found that immune/stromal/ESTIMATE scores were significantly correlated with the invasive BRCA clinicopathological factors. Based on the immune/stromal/ESTIMATE scores, we extracted a series of differential expression genes (DEGs) related to the tumor microenvironment. Survival analysis was further performed to identify a list of high-frequency DEGs (HF-DEGs), which exhibited prognostic value in invasive BRCA. Importantly, consistent with the results of bioinformatics analysis, immunohistochemistry results showed that high SASH3 expression was associated with a good prognosis in invasive BRCA patients. Our findings suggest that the tumor microenvironment-related HF-DEGs identified in this study have prognostic values and may serve as potential biomarkers and therapeutic targets for invasive BRCA.
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Introduction

Breast cancer (BRCA) is one of the most common cancers worldwide and is the second leading cause of cancer-related mortality in women. The mortality rate of BRCA is expected to increase in the next few years, especially in the developing countries (1). Although considerable progress has been made in the clinical treatment of BRCA, there are still many patients with poor prognosis. Therefore, identification of more accurate and reliable biomarkers is important for early diagnosis and individualized treatment of BRCA.

In recent years, the clinical diagnosis for cancer, especially the accurate molecular diagnosis, has been more and more based on its gene expression. The Cancer Genome Atlas (TCGA) database offers a comprehensive, multidimensional map of genomic data with 33 cancer types including BRCA. It has been widely applied for identifying tumor biomarkers and cancer-specific signatures (2).

The tumor microenvironment plays an important role in the occurrence and development of cancer. It has been reported that the tumor microenvironment affects BRCA development, growth, migration, metastasis, and treatment resistance (3). The tumor microenvironment consists of not only proliferating tumor cells but also surrounding stromal cells and infiltrating immune cells as well as many secreted factors (4). Immune cells and stromal cells, the two main types of nontumor components in the tumor microenvironment, are valuable in the diagnosis and prognosis of tumors (4). Yoshihara et al. developed the Estimation of Stromal and Immune cells in Malignant Tumor tissues using Expression data (ESTIMATE) algorithm, which calculated immune/stromal/ESTIMATE scores using gene expression data from the TCGA database (5). The ESTIMATE algorithm can predict the infiltration of nontumor cells in malignant tumor tissues and assess the tumor purity. This algorithm has been initially applied to many cancers, such as prostate cancer, BRCA, colon cancer, glioblastoma, and so on (6). However, the effectiveness and applicability of immune/stromal/ESTIMATE scores in BRCA, especially identification of invasive BRCA prognostic genes using stromal/immune/ESTIMATE scores, has not been investigated in detail.

In this study, we extracted a list of tumor microenvironment-related high-frequency differential expression genes (HF-DEGs) in the genome-wide level by comprehensively analyzing the invasive BRCA gene-expression profile and clinical information in TCGA database as well as invasive BRCA immune/stromal/ESTIMATE scores calculated by ESTIMATE algorithm. Notably, the HF-DEGs identified here exhibited important prognostic values and may be promising biomarkers for invasive BRCA.



Materials and Methods


Data Sources

The gene expression profile (AgilentG4502A expression data) for invasive BRCA patients was obtained from the TCGA data portal (https://tcga-data.nci.nih.gov/tcga/). The relevant clinical information was downloaded and analyzed, including age, gender, hormone receptor expression status, pathological stage, histological grade, lymph node status, molecular subtypes, treatment method, relapse, and survival. The data collection and application were performed in accordance with the TCGA publication guidelines and data access policies.

The ESTIMATE algorithm developed by Yoshihara et al. can calculate immune/stromal/ESTIMATE scores to output the estimated levels of infiltrating immune and stromal cells as well as estimated tumor purity by using gene expression data from the TCGA database (5). Briefly, the immune/stromal/ESTIMATE score analysis is mainly based on two gene signatures: a “stromal signature” that was designed to capture the presence of stromal in tumor tissue, and an “immune signature” that aimed to represent the infiltration of immune cells in tumor tissue (5). By calculating the expression levels of stromal signature and immune signature in breast cancer patients, the stromal score and immune score of the corresponding patient can be obtained. The ESTIMATE score can be obtained by the combination of stromal score and immune score (5). The ESTIMATE algorithm is publicly available through the SourceForge software repository (https://sourceforge.net/projects/estimateproject), and all the immune/stromal/ESTIMATE scores of invasive breast cancer patients calculated by the ESTIMATE algorithm (based on AgilentG4502A expression data) were downloaded from https://bioinformatics.mdanderson.org. Invasive BRCA cases were classified into the high- and low-score groups based on the median value of the immune/stromal/ESTIMATE scores.

A total of 481 patients with immune/stromal/ESTIMATE scores and clear clinicopathological factors were used to analyze whether the invasive BRCA clinicopathological factors were related to immune/stromal/ESTIMATE scores. Unpaired t-test was used to compare immune/stromal/ESTIMATE scores for different kinds of clinicopathological factors, while ordinary one-way ANOVA test were used to carry out the relationship between molecular subtypes and immune/stromal/ESTIMATE scores. In total, 488 patients containing immune/stromal/ESTIMATE scores as well as gene expression profile were used to identify the differentially expressed genes which related to the tumor microenvironment. Furthermore, 334 patients with clear prognosis and invasive BRCA gene expression profile were used for survival analysis. Lastly, 467 patients with invasive BRCA gene expression profile as well as detailed clinical information were used for COX analysis.



Data Processing

Package limma was used to screen DEGs with fold change >1.5 and adjusted. p-values <0.05. The obtained DEGs were used to draw the volcano graph with log2 (fold change) as the abscissa and the negative logarithm of the p-value of the t-test [−log10 (p-value)] as the ordinate, by using the ggplot2 package in R. The Venn diagrams of DEGs were plotted online (https://bioinfogp.cnb.csic.es). Functional enrichment analysis of DEGs was performed by The Database for Annotation, Visualization and Integrated Discovery (DAVID) to identify GO categories by their biological processes (BP), molecular functions (MF), or cellular components (CC). False discovery rate (FDR) <0.05 was used as the cutoff value.

A protein-protein interaction (PPI) network was constructed using the STRING and reconstructed by Cytoscape software. In addition, the PPI network of overlapping DEGs was obtained from STRING with medium confidence >0.4 as a cutoff criterion. The Molecular Complex Detection (MCODE) plugin in Cytoscape was then used to find the significant modules based on the topology to locate densely connected regions. The settings of selection were as follows: degree cutoff = 2, node score cutoff = 0.2, k-core = 2, and maximum depth = 100. The significant modules with 20 or more nodes were selected for further analysis.

The GlueGo (V2.5.4) plug-in in Cytoscope was used to perform GO biological process analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment on the DEGs contained in each module and the HF-DEGs. The ClueGo settings of module 1 to module 4 selections were as follows: Ontologies/Pathways = GO-Biological Process/KEGG, Evidence = All, Advanced Term/Pathway selection options: GO Tree Interval: Min = 1, Max = 3, GO Tree/Pathway Network Connectivity = 0.5, others are the default values. The ClueGo settings of the HF-DEGs selections were as follows: Ontologies/Pathways = GO-Biological Process/KEGG, Evidence = All, Advanced Term/Pathway selection options: GO Tree Interval: Min = 3 Max = 8, GO Tree/Pathway Network Connectivity = 0.4, others are the default values.

Kaplan-Meier survival analysis was performed to identify DEGs associated with BRCA prognosis using log-rank tests in R. p-values of <0.05 were considered statistically significant. The ggsurvplot function in the R was used to draw the RFS curve of patients in the TCGA database. The mapping function was used to draw the RFS curve of BRCA patients on the Kaplan-Meier Plotter (kmplot.com).



Patient Tissue Samples

Formalin-fixed, paraffin-embedded invasive breast tumors (n = 172), and the corresponding clinicopathological data were obtained from the Department of Breast Surgery at the First Affiliated Hospital of China Medical University. Patient’s data included lymph node status, age, tumor size, hormone receptor expression status, and time to relapse. This study was approved by the Medical Ethics Committee of China Medical University, and the need of written informed consent by the patients was waived due to the retrospective nature of the study. The study was carried out according to the Declaration of Helsinki, which was approved by the Scientific Ethical Committee of China Medical University (No. 2017066).



Immunohistochemistry

Human invasive BRCA tissue sections (4 μm thick) with human invasive BRCA tissue were used for immunohistochemistry. Briefly, sections were cut, paraffin removed, rehydrated, and washed in phosphate-buffered saline (PBS). After antigen recovery, the sections were incubated with primary antibodies against SASH3 (1:100 dilution; Abcam Biotechnology, Cambridge, UK) overnight at 4°C. The sections were then incubated with biotinylated secondary antibodies (1:3,000 dilution; UltraSensitiveTM-SP kit, Fuzhou Maixin, Fuzhou, China) and horseradish peroxidase-coupled streptavidin for 20 min. The sections were then incubated with 3,3-diaminobenzidine for 2 min.

Two researchers evaluated the results of immunohistochemical staining under light microscope. Scoring of the expression was performed semiquantitatively as consensus report of the task force for basic research of the EORTC-GCCG (European Organization for Research and Treatment of Cancer-Gynaecological Cancer Cooperative Group) (7). Weak/moderate staining with positive cell percentage <1% or no staining were defined as 0, weak/moderate staining with positive cell percentage ≤5% were defined as 1, weak/moderate staining with positive cell percentage ≤30% were defined as 2, and weak/moderate staining with a positive cell percentage >30% or strong staining with any positive cell percentage were defined as 3. The results were subsequently dichotomized for statistical analysis, and the defined cutoff point of high expression for the statistical analysis was set to 2.



Statistical Analyses

Statistical analyses were performed by using SPSS (IBM SPSS Statistics 22.0, Inc., Chicago, IL, USA). The log-rank test was used to identify the association between SASH3 expression and BRCA prognosis. p-values <0.05 were considered statistically significant.




Results


The Correlation Between Immune/Stromal/ESTIMATE Scores and Clinicopathological Factors in Invasive Breast Cancer

Liu et al. have reported that the BRCA patients with higher immune/stromal scores were associated with longer overall survival time (OS) (6), suggesting that immune/stromal scores may be used as a prognostic biomarker for BRCA. We then investigated whether not only the immune/stromal scores but also the ESTIMATE scores were correlated with the clinicopathological factors in invasive BRCA. The results showed that the clinicopathological factors of molecular subtypes, The American Joint Committee on Cancer (AJCC) stage, tumor size, ER status, PR status, and HER2 status were significantly correlated with all the immune/stromal/ESTIMATE scores in invasive BRCA (p < 0.05, Table 1). In addition, the clinicopathological factors of age, metastasis, and number of lymph nodes were significantly correlated with ESTIMATE scores in invasive BRCA (age: p < 0.0001, metastasis: p = 1.26E−07, lymph node: p < 0.0001, Table 1).


Table 1 | Distribution of invasive breast cancer patients’ characteristics and their correlation with stromal/immune/ESTIMATE scores.





The Correlation Between Invasive Breast Cancer Gene Expression and Immune/Stromal/ESTIMATE Scores

To reveal the correlation between gene expression and immune/stromal/ESTIMATE scores, we analyzed the gene expression profile of 488 invasive BRCA patients in the TCGA database. Volcano map showed that a total of 1,149 differential expression genes (DEGs) were identified, including 132 upregulated genes and 1,017 downregulated genes in the high immune-score group when compared with the low immune-score group (fold change >1.5, p < 0.05, Figure 1A). Likewise, a total of 1,215 DEGs were identified with 28 upregulated genes and 1,187 downregulated genes in the high stromal score group when compared with the low stromal score group (fold change >1.5, p < 0.05, Figure 1B). In addition, a total of 1,196 DEGs were identified with 34 upregulated genes and 1,162 downregulated genes in the high ESTIMATE score group when compared with the low ESTIMATE score group (fold change >1.5, p < 0.05, Figure 1C). Moreover, as shown in the Venn diagrams (Figures 1D, E), 459 genes were downregulated in all the groups of the immune score group, the stromal score group, and the ESTIMATE score group (Figure 1E), but no gene was upregulated in all of the three groups (Figure 1D). We further performed gene ontology (GO) analysis of the 459 overlapping DEGs, and the top 10 GO terms in biological process, molecular function, and cellular component categories were shown in Figures 1F–H. The results showed that the biological processes of these genes were mainly involved in immunity, such as immune response (Figure 1F), suggesting that the 459 overlapping DEGs may play an important role in the tumor microenvironment of invasive BRCA. Thus, these 459 overlapping genes were further investigated as follows.




Figure 1 | The correlation of gene expression with immune/stromal/ESTIMATE scores. (A) Volcano map of DEGs of immune scores. (B) Volcano map of DEGs of stromal scores. (C) Volcano map of DEGs of ESTIMATE scores. Genes with higher expression are shown in red; lower expression are shown in green; genes with same expression level are shown in black (p < 0.05, log2 (FC) >2). (D, E) Venn diagrams showed the number of upregulated (D) or downregulated (E) DEGs in stromal/immune/ESTIMATE scores groups. (F–H) The top 10 GO terms of overlapping DEGs. False discovery rate (FDR) of GO analysis was acquired from DAVID functional annotation tool (p < 0.05).





Protein-Protein Interactions Among DEGs

To investigate the potential links between the DEGs, we constructed the PPI network of the 459 overlapping genes by the STRING tool. We then used the MCODE plugin in Cytoscape to identify the significant modules. The network consisted of 8 modules, including 173 nodes and 1,107 edges. The top 4 modules with node number >20 were selected for further analysis (Figure 2 and Supplementary Table S1). For convenience, we named these modules as module 1 to module 4, respectively. As shown in Figure 2 and Supplementary Table S1, the remarkable nodes of each model were obtained. In module 1 (Figure 2A), PTPRC had the most connections with other members of the module. Similarly, the remarkable nodes of the other three modules were CXCL12, CD48, and ITGB2, respectively (Figures 2B–D).




Figure 2 | The top 4 significant modules from PPI network. The top 4 modules, named as module 1 to module 4, are shown in (A–D), respectively. The color of a node in the PPI network reflected the log (FC) value of the Z-score of gene expression, and the size of node indicated the number of interacting proteins with the designated protein. The darker color or the larger volume of a node, the more important the node was in each model.



To explore the biological functions of the genes in each module, we further used the Glue Go plug-in in Cytoscope to perform GO biological process analysis and KEGG pathway enrichment analysis on the DEGs in each module. The GO biological process analysis showed that the DEGs in module 1, module 3, and module 4 were involved in various biological processes, where they were significantly correlated with immune responses, such as immunoglobulin production in module 1 (Supplementary Figures S1A, B), thymic T-cell selection in module 3 (Supplementary Figures S1E, F), and positive regulation of T-cell migration in module 4 (Supplementary Figures S1G, H). On the other hand, the DEGs in module 2 were also enriched in several biological processes including immune responses, such as lymphocyte migration (Supplementary Figures S1C, D). Consistent with the results of GO analysis, many pathways yielded from the KEGG analysis on the DEGs of each module showed a close correlation with immune response. The genes in module 1, for example, were associated with intestinal immune network for IgA production (Supplementary Figures S2A, B), the genes in module 2 were associated with NF-kappa B signaling pathway (Supplementary Figures S2C, D), and the genes in module 3 were associated with T-cell receptor signaling pathway and Th1 and Th2 cell differentiation (Supplementary Figures S2E, F).



Relationship Between DEGs and Prognosis of Invasive Breast Cancer

To determine whether the 459 overlapping DEGs were correlated with the prognosis of invasive BRCA, we analyzed the relapse-free survival time (RFS) of each DEG. Among the 459 overlapping DEGs, a total of 61 DEGs were significantly correlated with the prognosis of invasive BRCA (p < 0.05). The RFS results of all DEGs are shown in the Supplementary Material (Supplementary Figure S3).

To investigate whether the DEGs identified here from the TCGA database have potential prognostic values in other BRCA cases, we further analyzed the RFS of the 459 overlapping genes using another online survival analysis tool, Kaplan-Meier Plotter kmplot.com (8). Among these genes, 392 genes were shown to significantly associate with prognosis prediction (Supplementary Table S2, p < 0.05). Importantly, 55 DEGs were identified from both the TCGA database and Kaplan-Meier Plotter kmplot.com website (Table 2; Supplementary Table S3). Thus, these 55 DEGs were named as HF-DEGs, and their biological functions are summarized in Table 2.


Table 2 | The biological functions of HF-DEGs.



To further understand the functions of the HF-DEGs, we constructed the PPI network of these 55 HF-DEGs. As shown in Figure 3A, eight genes, namely, BTK, IDO1, VAV1, TLR10, STAT4, SASH3, C3AR1, and RGS18, were considered the important nodes based on their log (FC) >1.5. In addition, GO biological process analysis and KEGG pathway analysis were performed based on these 55 HF-DEGs. The results showed that most of the biological processes were related to immunity, such as positive regulation of lymphocyte-mediated immunity (Figures 3B, C), and the main KEEG pathway of these HF-DEGs was the NF-kappa B signaling pathway (Figures 3D, E).




Figure 3 | The PPI network GO analysis and KEGG analysis of the HF-DEGs. (A) The PPI network of the HF-DEGs. The color of a node in the PPI network reflected the log (FC) value of the Z-score of gene expression, and the size of node indicated the number of interacting proteins with the designated protein. In this PPI network, the log (FC) of the nodes >1.5 was considered the more important nodes. Functional grouped network diagram with GO terms and the KEGG pathways as nodes linked based on the HF-DEGs is shown in (B, D), respectively. The pie charts of (C, E) summarized the GO terms and KEGG terms corresponding to the network diagram in (B, D), respectively. The size of node indicated the p-value of the biological processes or the KEGG pathway. The color of node indicated the term of the biological processes or the KEGG pathway.





The Correlation Between SASH3 Expression and Prognosis of Invasive Breast Cancer

To validate the results of the above bioinformatics analysis, we selected a gene named SASH3, one of the important nodes in the PPI network of HF-DEGs described above for further analysis. Consistent with our present data, SASH3 has been reported to be associated with prognosis of breast cancer by other bioinformatics analysis recently (9), but it has not been verified by further experiments. In this study, we first analyzed the correlation between SASH3 expression and prognosis of invasive breast cancer by using COX analysis. The clinical data of SASH3 were obtained from the TCGA database, and nine clinical pathological factors (ER status, PR status, HER2 status, AJCC stage, tumor size, number of lymph nodes, age (divided by 60), BRCA molecular subtypes, and SASH3 expression) were selected for COX analysis. Univariate analysis showed that three factors, including SASH3 expression, number of lymph nodes, and tumor size, were significantly associated with RFS in 467 invasive BRCA patients (p < 0.05, Table 3). Multivariate analysis including SASH3 expression, number of lymph nodes, tumor size, and AJCC stage (all p < 0.2) showed that SASH3 expression and number of lymph nodes were significantly associated with prognosis of invasive BRCA patients (p < 0.05, Table 3). Consistent with the RFS results obtained from the survival analysis of SASH3 expression described above (Supplementary Table S3), the results of both univariate analysis and multivariate analysis indicated that SASH3 expression was a favorable factor for prognosis of invasive BRCA (Table 3).


Table 3 | The COX analysis of SASH3 in clinical data from the TCGA database.



Moreover, to verify the association of SASH3 protein expression with the prognosis of invasive BRCA, immunohistochemistry was performed. The results showed that high expression of SASH3 was observed in 57 (33.1%) patients, and low expression of SASH3 was observed in 115 (66.9%) patients. Survival analysis showed that high SASH3 expression was significantly associated with a longer RFS in invasive BRCA patients (p = 0.026, Figure 4). In addition, COX analysis of SASH3 based on the clinical information of these 172 invasive BRCA patients was performed. As shown in Table 4, univariate analysis showed that three factors, including SASH3 expression, number of lymph nodes, and AJCC stage, were significantly associated with RFS (p < 0.05, Table 4). Multivariate analysis showed that the number of lymph nodes was associated with poor RFS (p < 0.05, Table 4).




Figure 4 | The expression of SASH3 in invasive breast cancer patients. (A, B) The representative immunohistochemical images for the low (A) and high (B) expression of SASH3 in human invasive breast cancer samples. Arrows indicated the magnified regions in the insert. Magnification: ×40. Scale Bars: 100 µm. (C) Survival curves showed the association of SASH3 (n = 172, p = 0.026) expression with the RFS in 172 human invasive breast cancer tissues.




Table 4 | The COX analysis of SASH3 in clinical data from the first affiliated hospital of china medical university.






Discussion

Tumor microenvironment contributes to the development, relapse, and therapy resistance of many cancers and is associated with prognosis of cancer patients (3). In the present study, we extracted a list of HF-DEGs related to the BRCA tumor microenvironment by functional enrichment analysis of the TCGA database and immune/stromal/ESTIMATE scores. The HF-DEGs identified here were significantly associated with the prognosis of invasive BRCA patients. Our findings suggest that the HF-DEGs may be potential key regulators for the tumor microenvironment of invasive BRCA and may represent novel biomarkers for the prognosis of invasive BRCA.

In this study, 55 tumor microenvironment-related HF-DEGs were identified in invasive BRCA. Of the 55 HF-DEGs, three genes, namely, DARC (10), CD40 (11), and DOK2 (12) have been previously reported to be associated with the better prognosis of BRCA patients when they were highly expressed. These reports further validated the accuracy of our approach. In addition, in vitro studies have shown that ten genes including CXCL10 (13), STAT4 (14), CD69 (15), C3 (16), ACSL5 (17), GZMH (18), TRIM22 (19), EMILIN2 (20), HTRA4 (21), and TSPAN2 (22) inhibited the proliferation, migration, and invasion or promoted apoptosis of BRCA cells, suggesting that the high expression of these genes may be correlated with a good prognosis, which were consistent with our present results. On the other hand, IL-1B, a HF-DEG identified in this study, has been previously identified as biomarker that could be used to predict which primary BRCA patients were likely to experience relapse in bone (23). It seems contrary to our results, probably due to the different types of BRCA, studied by other group and ours, respectively. Another eight genes including GBP1 (24), BTK (25), CXCL2 (26), IDO1 (27), FASLG (28), FIGF (29), PLAUR (30), and TNFRSF17 (31) were found to promote the migration, invasion, or proliferation of BRCA cells. Another two genes, namely, VAV1and RARRES1, were previously reported that they had pleiotropic results in BRCA. It was shown that knockdown of VAV1 inhibited the proliferation of the BRCA T47D cells (32), while overexpression of VAV1 inhibited the proliferation of the BRCA MDA-MB-231, MCF-7, and MDA-MB-453 cells (33). High RARRES1 expression was correlated with poor median survival of patients with inflammatory BRCA (34), while cell proliferation and tumor growth assays showed that RARRES1 was a tumor suppressor in triple-negative BRCA cell lines (35). These results seem contradictory, likely due to the use of different cell lines or different subtypes of BRCA. Moreover, bioinformatics analysis by other groups showed that six genes, including IRAK3, NCF4, HSD11B1, C3AR1, TLR10, and SASH3 were related to BRCA. Single nucleotide polymorphism (SNP) and gene-based analyses showed that the SNPs of IRAK3 (rs1732877) and NCF4 (rs1883113) may be associated with BRCA risk (36). Heather et al. discovered two SNPs in HSD11B1 (rs11807619, rs932335), which may increase risk for BRCA (37). Oncomine database analysis showed that C3AR1 was highly expressed in both primary and invasive ductal breast carcinoma (38). TCGA database analysis showed that TLR10 exhibited lower expression levels in advanced stages than that in earlier stages of BRCA (39). Whether these gene expressions are associated with prognosis of BRCA remains unknown. Further investigation is required to explore how these genes influence the development of BRCA and whether they can serve as biomarkers for prognostic prediction of BRCA. Strikingly, the remaining 25 genes, including ENPP2, HAVCR2, DPT, FAM30A, GIMAP8, GIMAP2, CXorf21, ATP8B4, MDFIC, GPR171, RUBCNL, WDFY4, SAMD3, FPRL2, RGS18, SUCNR1, FGL2, TMEM100, SLC7A7, IL18RAP, CST7, ADD3, RASGRP2, P2RY12, and DOCK2 have not been identified to be associated with the occurring, development, and prognosis of BRCA. Our findings suggest that they may be perceived as novel biomarkers for BRCA prognosis.

Recently, SASH3, one of the HF-DEGs identified here was also reported to be a tumor microenvironment-related gene with prognostic value in BRCA by other bioinformatics analysis (9). To further validate our results of HF-DEGs with prognostic value in invasive BRCA, we determined the correlation of SASH3 with the prognosis in invasive BRCA patients by using COX analysis and immunohistochemical analysis. The results showed that high SASH3 expression was positively correlated with longer RFS in invasive BRCA patients, suggesting that SASH3 expression may be used as an independent prognostic indicator for invasive BRCA patients. SASH3 contains Src homology 3 (SH3) and sterile alpha motif (SAM) domains, which are involved in many cell signaling transduction pathways. It has been reported that SASH3 functions as an adaptor protein in lymphocytes (40–42). Recent study showed that SASH3 is important for T-cell proliferation, activation and cell survival, and lack or mutation of SASH3 could lead to a new type disease of human X-linked combined immunodeficiency, which was manifested as CD4+ T-cell lymphopenia, decreased T-cell proliferation, cell cycle progression, and increased T-cell apoptosis in response to mitogens (43). However, the precise function of SASH3 remains unknown. The role of SASH3 in tumorigenesis and development has not been reported yet, which warrants future investigation. SASH1, containing highly similar protein structure with SASH3, functions as a tumor suppressor to inhibit the development of many cancers, such as colon cancer, gastric cancer, BRCA, and cervical cancer (44–47). Therefore, we speculate that SASH3 may serve as a tumor suppressor to inhibit the occurrence and development of invasive BRCA. Further exploration of the function of the HF-DEGs identified in this study may provide new strategies for diagnosis, treatment, and prognosis of invasive BRCA.

In recent years, great progress has been made in predicting the correlation between invasive BRCA prognosis and gene expression. Many of these studies were conducted by the construction of animal models, cell experiments in vitro, and small-scale studies of clinical tumor samples. However, a large-scale comprehensive analysis is still required for exploring the complex interactions between invasive BRCA and its tumor microenvironment. In this study, by deeply mining TCGA database, we provided a comprehensive analysis of the prognostic impact of the tumor microenvironment-related genes in invasive BRCA. Moreover, functional enrichment analysis suggested that the tumor microenvironment-related HF-DEGs identified here were mainly involved in immune responses, which provided novel insights into understanding the underlying mechanisms of the HF-DEGs in invasive BRCA.

In conclusion, we identified a list of HF-DEGs which were positively correlated with good prognosis in invasive BRCA patients. In-depth study of these HF-DEGs may lead to a deeper understanding of the tumor microenvironment of invasive BRCA and provide more guidance for the clinical diagnosis, treatment, and prognosis of invasive BRCA. Moreover, our gene mining strategy related to the tumor microenvironment can be widely applied in big data analysis and to find more accurate and reliable biomarkers with prognostic values for other malignant tumors.
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Background

Accurate survival prediction of triple-negative breast cancer (TNBC) is essential in the decision-making of adjuvant treatment. The aim of this prospective study was to develop a nomogram that predicts overall survival and assists adjuvant treatment formulation.



Methods

A total of 16,977 patients with pT1-2N0M0 TNBC between 2010 and 2015 from the SEER database were enrolled. Independent prognostic factors associated with overall survival (OS) were identified using univariate and multivariate Cox regression hazards method and utilized to compose the nomogram. The survival benefit of adjuvant treatment on OS were analyzed after stratification by nomogram sum-score.



Results

Patients were randomized 7:3 into the training and validation cohorts. Multivariate analysis revealed that age at diagnosis, grade, tumor size, laterality, and mastectomy type were independent prognostic factors of OS and were integrated to develop a nomogram for predicting prognosis. Patients were stratified into 3 prognostic subgroups according to the sum-score of our nomogram. There were no significant differences found in OS between surgery alone and other adjuvant treatment strategies in low risk group. In moderate risk group, patients receiving chemotherapy or the combination of chemotherapy and radiotherapy showed better OS than those receiving surgery alone or radiotherapy alone. For patients in high risk group, the combination of chemotherapy and radiotherapy could maximally improve the overall survival rate of patients.



Conclusion

A novel nomogram for OS prediction and risk stratification in patients with pT1-2N0M0 TNBC was developed. This cohort study reveals the prognostic roles of different adjuvant treatment strategies in subgroups, which may provide a reference for the decision-making of postoperative treatment, eventually improving prognosis for individual patients.
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Introduction

Breast cancer (BC) is the most commonly diagnosed malignant tumor in women, with an estimated incidence of 2,76,000 new cases and 42,000 deaths annually in the United States alone (1). Over the past two decades, the incidence rate of stage I breast cancers has increased dramatically, largely due to the early detection of non-palpable BC associated with mammography screening (2, 3). Patients with small node-negative breast cancer generally have excellent survival outcomes, with ten-year probability of breast cancer-specific mortality exceeding 95% (4). Nevertheless, despite the benign prognosis in patients with small node-negative breast cancer, outcomes may vary by biologic type (5). Triple-negative breast cancer (TNBC), accounting for approximately 15% of all breast cancers cases, shows high malignancy, strong invasiveness, early metastasis, and poorer prognosis, reflecting the vital role of accurate survival prediction and individualized management after surgery for these patients (6, 7).

Whether patients with small node-negative TNBC should receive postoperative adjuvant therapy remains unclear. Previous studies have demonstrated that for T1-2N0M0 TNBC patients, receipt of adjuvant therapy was significantly associated with better overall survival, and delayed initiation of chemotherapy might induce worse outcomes (8, 9). The National Comprehensive Cancer Network (NCCN) guidelines recommend chemotherapy rather than radiotherapy for patients with tumor size larger than 5 mm (10). Nevertheless, a number of studies demonstrated that postoperative radiotherapy could minimize the risk of regional recurrence of triple-negative breast cancer (11). Therefore, the survival benefit of different adjuvant treatments in patients with T1-2N0M0 TNBC needs further investigation.

Accurate prognosis prediction serves as an vital reference factor in the decision-making of individualized treatment. Nomogram, a tool incorporating prognostic risk factors, could visually estimate the survival probability of patients based on a statistical predictive model (12). Therefore, this study aimed to construct a nomogram for predicting the probability of overall survival (OS) of patients with pT1-2N0M0 triple-negative breast cancer to assist the decision-making of postoperative adjuvant treatments.



Methods


Data Collection

Using SEER*Stat version 8.3.6.1, the data of eligible TNBC patients registered between 2010 and 2015 were collected from Surveillance, Epidemiology, and End Results (SEER) program, which was the largest publicly available cancer database and provided deidentified information regarding cancer statistics of approximately 28% of the US population. TNBC was defined as ERBB2 negative, progesterone receptor (PR) negative, and estrogen receptor (ER) negative. The following inclusion criteria were utilized to identify analysis cohort: female sex; older than 18 years old; diagnosed with pT1-2N0M0 TNBC; receiving mastectomy with or without adjuvant therapy. Patients diagnosed by autopsy or a death certificate, and those with more than 1 primary malignant neoplasm were excluded. Multiple imputation by chained equations was used to replace missing data as detailed in the flowchart (Figure 1).




Figure 1 | The flowchart.



Before the initiation of this study, a data-use agreement was submitted to the SEER program and an access to the SEER database were officially granted. Demographic and clinicopathological characteristics of eligible patients were extracted for analysis, including age at diagnosis, histological grade, race, year of diagnosis, AJCC Seventh T stage, surgery, chemotherapy, and radiotherapy. The primary endpoint of our study was all-cause mortality.



Nomogram Construction and Validation

After patient selection, 16,977 eligible patients were finally included for analysis. These patients were randomized 7:3 to the training cohort for nomogram construction and the validation cohort for nomogram verification, respectively. The optimal cut-off values for age at diagnosis and tumor size with minimum P values for the log-rank test and the highest specificity and sensitivity were determined as 60 and 75 years and 0.5, 1.0, 2.0 and 3.0cm using the X-tile program (Yale University School of Medicine, New Haven, CT, USA). The survival differences were significant stratified by the two variables both in training and validation cohorts (Figure 2). All extracted variables were analyzed by univariate analysis, and the variables, which were statistically meaningful (P < 0.05), were taken into multivariable Cox analysis to identify the independent prognostic factors of pT1-2N0M0 TNBC patients. Hazard ratios (HRs) and 95% confidence intervals (CIs) were also calculated. A nomogram based on these statistically significant predictors were then established to estimate a patient of prognosis. The performance of the nomogram was evaluated by calculating concordance index (c-index) (13). Calibration curves were also generated to measure the consistency between the predicted and actual OS at 1, 3, and 5 years in the training and validation cohorts, respectively (14).




Figure 2 | Kaplan–Meier curves comparing OS for pT1-2N0M0 TNBC patients stratified by the cutoff values of age (A, B) or tumor size (C, D) in the training cohort (A, C) and the validation cohort (B, D), respectively.



Based on the nomogram, sum-scores for individual patients were calculated using the “nomogramFormula” package. The X-tile software was applied to determine the optimal cutoff values for sum-score to classify patients into three risk subgroups.



Statistical Analysis

The baseline characteristics of patients were described using proportions and frequencies, and compared between different subgroups using the chi-square test. Kaplan–Meier survival curves and log-rank tests were applied to compare overall survival between subgroups. A two-tailed p <0.05 was considered statistically significant. All statistical analyses were carried out with SPSS statistics software (version 21; IBM Corp, Armonk, NY, USA) and R software (version 3.6.1; http://www.r-project.org).




Results


Patient Characteristics

A total of 16,977 patients diagnosed with pT1-2N0M0 triple-negative breast cancer from the SEER database met the inclusion and exclusion criteria. Those patients were more apt to be younger (n = 9352), white (n = 12522), with invasive ductal carcinoma (n = 14731), and poorly differentiated (n = 13238). The detailed baseline demographics and clinical characteristics were summarized in Table 1.


Table 1 | Demographics and clinicopathological characteristics of patients with pT1-pT2N0M0 triple-negative breast cancer.



Overall, the median follow-up time was 42 months (range, 0 to 83 months). Patients were randomized 7:3 to the training cohort (n = 11898) and the validation cohort (n = 5099). 1197 deaths occurred in the training cohort and 518 in the validation cohort. The 1-, 3-, 5-year, and 10-year overall survival rates were 98.0%, 95.0%, 91.6%, 85.7% in the training set and 98.4%, 95.1%, 91.7%, 85.8% in the validation set, respectively. There were no significant differences between the two cohorts in all factors included (p > 0.05, Table 1), reflecting that the two sets were statistically comparable.



Risk Analysis of Death in Patients With pT1-2N0M0 TNBC

Univariate and multivariate analysis were performed to further investigate the prognostic factors of death in pT1-2N0M0 TNBC patients. Table 2 showed that in the training cohort, the independent risk variables for overall survival were age at diagnosis (> 75 years: HR 5.267; 95% CI 4.692-5.911; p < 0.001), tumor size (> 3.0cm: HR 4.500; 95% CI 3.289-6.158; p < 0.001), differentiated grade (poorly differentiated: HR 1.627; 95% CI 1.150-2.303; p < 0.001), laterality (left: HR 1.140; 95% CI 1.109-1.278; p < 0.001), and surgery (total mastectomy: HR 1.117; 95% CI 1.003-1.244; p < 0.043).


Table 2 | Univariate and multivariate analysis for the prognostic characteristics of OS.





Development and Validation of Nomogram for OS

Based on the results of multivariate analysis, a nomogram was formulated to estimate the 1-, 3-, and 5-year OS for patients with pT1-2N0M0. The C-indexes of the model were 0.705 (95% CI: 0.688-0.721) and 0.703 (95% CI: 0.677-0.726) in the training and validation sets (Figure 3). We utilized beta-coefficients to assign scores to variables. By calculating the sum-scores, the probability of all-cause death could be predicted for individual patients. In our OS-predicting model, age at diagnosis and tumor size were the largest contributors to OS estimation. Calibration curves of the nomogram indicated that the predicted survival rates were almost consistent with the actual observations (Figure 4).




Figure 3 | Nomogram for predicting OS in patients with pT1-2N0M0 TNBC.






Figure 4 | Calibration curves predict the nomogram-estimated and actual 1-, 3-, and 5-year OS rates in the training (A-C) and validation (D-F) cohorts.





Risk Stratification Based on Nomogram Sum-Score

The X-tile analysis was utilized to establish a risk stratification system according to the nomogram sum-score. Patients with pT1-2N0M0 TNBC were classified into 3 subgroups based on their sum-scores. As shown in Figure 5, stratification into different prognostic groups allowed significant discrepancy between Kaplan-Meier plots for overall survival outcomes in both training and validation cohorts. In the training set, as the sum-scores increased, the 5-year overall survival rate declined significantly: 92.7% in low risk group, 88.5% in moderate risk group, and 74.9% in high risk group (p < 0.01).




Figure 5 | Overall survival of pT1-2N0M0 TNBC patients stratified by nomogram sum-score in the training (A) and validation (B) cohort.





Subgroup Analysis Stratified by Sum-Score

To evaluate the survival benefit of post-surgery adjuvant treatments (i.e. surgery alone, radiotherapy, chemotherapy, and the combination of radiotherapy and chemotherapy) in three risk groups respectively, we generated the Kaplan-Meier curves (Figure 6) and calculated hazard ratios for each adjuvant therapy (Table 3). For patients in low risk group, no significant differences were found in OS between surgery alone and other adjuvant treatments (Figure 6A). Nevertheless, inconsistent with the result of low-risk group, in moderate risk group, patients who received chemotherapy (HR 0.598; 95% CI 0.469-0.761; p < 0.001) or the combination of radiotherapy and chemotherapy (HR 0.538; 95% CI 0.423-0.683; p < 0.001) showed significantly better OS compared those receiving surgery alone or radiotherapy alone (Figure 6B). For patients in high risk group (Figure 6C), the combination of radiotherapy and chemotherapy (HR 0.266; 95% CI 0.217-0.325; p < 0.001) was associated with the most improved OS compared with surgery alone, followed by chemotherapy (HR 0.319; 95% CI 0.271-0.374; p < 0.001), and radiotherapy (HR 0.572; 95% CI 0.476-0.687; p < 0.001).




Figure 6 | Kaplan–Meier curves compare the survival effects of different adjuvant treatment strategies for pT1-2N0M0 TNBC patients in low-risk (A), moderate-risk (B), and high-risk subgroups (C).




Table 3 | Univariate analysis evaluating the effect of adjuvant treatment strategies stratified by subgroups.






Discussion

In the present study, we analyzed a cohort of 16977 patients with pT1-2N0M0 triple-negative breast cancer to construct and internally validate practical nomograms for 1-, 3-, and 5-year OS prediction. The availability of tool for predicting the prognosis of diseases accurately may have significant reference role in clinical management. In general, the traditional AJCC stage system plays an important role in predicting survival outcomes and influencing the therapeutic decision-making. However, considering the variability in tumor biology and clinicopathological features, the prognoses of patients within the same AJCC stage remain heterogeneous (15). Our nomograms integrate various clinical risk factors to further explore the prognosis of patients with pT1-2N0M0 TNBC, which may have potential implications for cancer management.

In the univariate and multivariate analyses, age at diagnosis was identified as an significantly independent risk factor for pT1-2N0M0 TNBC patients, as was tumor diameter, grade, laterality, and surgery type. This finding is highly consistent with the results of previous studies on the prognostic factors for TNBC (16–18). Notably, breast cancer in female is more likely to occur in the left breast than in the right (19). This finding has gained the attention of many researchers and numerous hypotheses have been proposed to account for the left-side dominance of breast cancer, but none have been uniformly accepted or confirmed (20, 21). In this study, we found that left-side dominance was also a risk factor for pT1-2N0M0 TNBC, which has not been reported previously. This finding may be worthy of verification through large-scale breast cancer studies on different regions. These variables could be accessed easily and contribute to the individualized prognosis prediction. Nevertheless, the AJCC stage system is based solely on tumor diameter to further stratify patients with pT1-2N0M0 and fails to take into account of other risk factors. Thus, in this study, we incorporated these factors to construct nomogram for OS prediction. Calibration curves showed excellent consistency between the predicted survival rate and actual observation. Notably, the C-indexes of nomograms were acceptable both in the training and validation cohorts, but could be further improved if more important risk factors were incorporated, such as potential serum biomarkers and vascular infiltration.

Results from researches exploring the survival benefit of adjuvant treatment in small node-negative triple-negative breast cancer have been far from conclusive (22). Although current NCCN guideline recommend chemotherapy for patients with tumors larger than 5mm (10), to our knowledge, the clinical evidence supporting this recommend remains limited. Some studies have reported better prognosis for pT1-2N0M0 TNBC patients who received adjuvant chemotherapy, while other studies failed to prove the survival benefit of adjuvant chemotherapy (8, 23, 24). In terms of adjuvant radiotherapy, a prospective randomized controlled multi-center study demonstrated that compared to chemotherapy alone, the combination of standard adjuvant chemotherapy and radiotherapy was associated with significant improvements in overall survival and recurrence-free survival in patients with early-stage TNBC after surgery (25). While, other studies failed to find this association (22). Hence, the survival benefit of postoperative adjuvant treatment in small node-negative TNBC should be further explored.

Accurate identification of patients at a high risk of mortality may help the decision-making of postoperative adjuvant therapy. In the present study, patients with pT1-2N0M0 TNBC after surgery were classified into 3 subgroups base on their accumulated sum-scores using our nomograms. The role of different adjuvant treatments in OS was investigated in subgroups, respectively. For patients in low risk group, the survival outcomes stratified by adjuvant treatments were comparable, indicating that the benefit to risk ratio should be assessed comprehensively when adjuvant therapies were considered. Notably, receiving chemotherapy was associated with improved overall survival in moderate risk group, indicating that clinicians should consider routine postoperative chemotherapy for patients with moderate risk of all-cause mortality. In addition, the combination of chemotherapy and radiotherapy could maximally improve the overall survival rate of patients in high risk group. Thus, we strongly recommended the combination of chemotherapy and radiotherapy for patients with high risk of all-cause mortality, which should be further confirmed by prospective studies.

There were several limitations of the current study that should be acknowledge. First, the SEER database lacks information on serum biomarkers, vascular infiltration, and surgical margin. Failing to incorporate these important prognostic parameters may influence the effectiveness of our nomograms to some extent. For the same reason, we were unable to evaluate the influence of different adjuvant treatment strategies on the prognosis of TNBC patients, which may have led to unconvincing results. Second, the data of the training and validation sets originated from the same database and restricted to the United States, so external verifications of our findings were needed in other counties to enhance reliability. Third, our study was also limited by its retrospective nature and selection biases. However, this population-based design with a considerable sample size has ensure the robustness of our results to some degree. In the future, further studies were expected to collect prospective data, increase sample size, and incorporate more prognostic parameters to improve the accuracy and versatility of the nomogram.



Conclusion

In summary, a novel nomogram for OS prediction and risk stratification in patients with pT1-2N0M0 TNBC was developed. Evaluating the survival benefit of different adjuvant therapies remains a major concern in the postoperative treatment of TNBC. This cohort study reveals the prognostic roles of different adjuvant treatment strategies in subgroups, which may provide a reference for the decision-making of postoperative treatment, eventually improving prognosis for individual patients.
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Objectives

Triple-negative breast cancer (TNBC) is defined as a highly aggressive type of breast cancer which lacks specific biomarkers and drug targets. Damage-associated molecular pattern (DAMP)-induced immunogenic cell death (ICD) may influence the outcome of immunotherapy for TNBC patients. This study aims to develop a DAMPs gene signature to classify TNBC patients and to further predict their prognosis and immunotherapy outcome.



Methods

We identified the DAMPs-associated subtypes of 330 TNBCs using K-means analysis. Differences in immune status, genomic alterations, and predicted immunotherapy outcome were compared among each subtype.



Results

A total of 330 TNBCs were divided into three subtypes according to DAMPs gene expression: the nuclear DAMPs subtype, featuring the upregulation of nuclear DAMPs; the inflammatory DAMPs subtype, characterized by the gene set enrichment of the adaptive immune system and cytokine signaling in the immune system; and the DAMPs-suppressed subtype, having the lowest level of ICD-associated DAMPs. Among them, the inflammatory subtype patients had the most favorable survival, while the DAMPs-suppressed subtype was associated with the worst prognosis. The DAMPs subtyping system was successfully validated in the TCGA cohort. Furthermore, we systemically revealed the genomic alterations among the three DAMPs subtypes. The inflammatory DAMPs subtype was predicted to have the highest response rate to immunotherapy, suggesting that the constructed DAMPs clustering had potential for immunotherapy efficacy prediction.



Conclusion

We established a novel ICD-associated DAMPs subtyping system in TNBC, and DAMPs expression might be a valuable biomarker for immunotherapy strategies. Our work could be helpful to the development of new immunomodulators and may contribute to the development of precision immunotherapy for TNBC.
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Introduction

Female breast cancer is the most commonly diagnosed cancer and the second leading cause of cancer death worldwide in 2020 (1). Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer that lacks estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER-2) expression (2). Due to its high invasiveness, strong metastatic ability and early recurrence, TNBC causes a larger number of breast cancer-related deaths than other types (3). Nevertheless, recent approvals for immunotherapy have offered potential long-term survival outcomes for metastatic TNBC (mTNBC) patients, regardless of different histological subtypes (4).

Immune checkpoint inhibitors (ICIs), the most successful immunotherapeutic agents for TNBC, can significantly improve patients’ progression-free survival (PFS) and overall survival (OS) if they respond (5). The response rates to ICIs in TNBC are associated with tumor infiltrating lymphocytes (TILs), programmed death ligand-1 (PD-L1) expression and nonsynonymous mutations (6). In addition, preclinical models (7) and clinical trials (8) confirm that the induction of immunogenic cell death (ICD) sensitizes TNBC to ICIs treatments, which suggests that ICD biomarkers may be candidate prognostic factors for immunotherapy.

The major immunogenic characteristic of ICD is defined by the emission of a series of immunostimulatory damage-associated molecular patterns (DAMPs), such as cell surface-exposed calreticulin (CALR), extracellular adenosine triphosphate (ATP) and high mobility group box 1 (HMGB1) (9). Previous studies have demonstrated that TNBC cell-derived HMGB1 elicited by chemo/radiotherapy augmented the antitumor immunity induced by activated CD8+ T cells (10, 11), which revealed the importance of DAMPs in treating TNBC with immunotherapy.

Various innate immune receptors are involved in DAMPs-mediated ICD, such as pattern-recognition receptors (PRRs), G protein-coupled receptors (GPCRs), and triggering receptors expressed on myeloid cells (TREMs) (12), and their interaction with DAMPs is necessary for ICD and anticancer immunity. Moreover, the expression patterns of toll-like receptors (TLRs), the most widely studied PRRs, are diverse between TNBC and other types of breast cancer and are associated with different cancer incidence and progression (13). Targeting DAMPs-sensing receptors may provide new insights for the treatment of TNBC, since they have the potential to ignite positive immune responses in the tumor-immune-microenvironment (TIME) (14).

Sensitization to ICIs by ICD-associated DAMPs strongly relies on the immunoreactive TIME, in which TILs and tumor-associated macrophages (TAMs) play an important role in the prognostic prediction of TNBC (15). In this regard, assessing the distinct TIME helps to understand the immune signature of different TNBC subtypes, optimize immunotherapy and improve the outcome of TNBC patients (16). Although a large number of immune-related biomarkers and prognostic models have been developed to describe and quantify the TIME of TNBC (17, 18), few have considered ICD-associated DAMPs and sensing receptors as actionable targets.

In the present study, we comprehensively analyzed the DAMPs gene signature to explore the effect of ICD-associated DAMPs and sensing receptors on the TIME and survival of TNBC patients. Moreover, we constructed a DAMPs-based risk score model to evaluate the prognostic value of DAMPs and correlated sensing receptors in TNBC (the whole process of data analysis is depicted in Figure 1). Our work may provide a novel clue for exploring the underlying molecular mechanisms of different responses to immunotherapy in TNBC patients, which sheds a novel light on the immunotherapy strategy of TNBC.




Figure 1 | Flow chart of the data analysis process. The DAMPs-associated subtypes were established based on 330 TNBCs from the FUSCC cohort and validated in the TCGA cohort. DAMPs, damage-associated molecular patterns; FUSCC, Fudan University Cancer Center; TCGA, The Cancer Genome Atlas.





Materials and Methods


Data Collection

Our study included cohorts of breast cancer patients from Fudan University Shanghai Cancer Center (FUSCC, a total of 465 TNBC patients, 100% female, average age = 53 ± 11 years; 360 patients with RNA-seq data, 401 patients with CNA data and 279 patients with WES data) (19) and TCGA (a total of 1,096 patients, including 161 TNBC patients, 100% female, average age = 55 ± 12 years) (20–22). To exclude the influence of pathological heterogeneity, we included 330 TNBC samples of invasive ductal carcinoma (IDC) in the FUSCC cohort. The microarray data and sequence data of the FUSCC cohort have been deposited in the NCBI Gene Expression Omnibus (GEO: GSE118527) and Sequence Read Archive (SRA: SRP157974). Expression and clinical data of TCGA cohorts were downloaded from the website (http://www.cbioportal.org/). TNBC sample selection of FUSCC and TCGA was based on the immunohistochemistry (IHC) results, which lack expression of ER, PR, and HER2 in IDC. The demographic data and clinical features are listed in Table 1.


Table 1 | Correlation between clinicopathologic variables and DAMPs associated subtypes.





Identification of DAMPs Subgroups by K-means Analysis

First, 32 DAMPs-related genes were collected according to previous research, and their information is shown in Table 2 (9, 12, 23, 34). 28  DAMPs-related genes were found to be expressed in the FUSCC cohort. Consensus clustering was analyzed by the R package “ConsensusClusterPlus” based on the DAMPs-related gene expression matrix. Consist with previous FUSCC TNBC research, k-means clustering (the “kmeans” function in R) was utilized to determine stable DAMPs-associated TNBC subtypes (19, 24).


Table 2 | DAMPs-related genes (9, 12, 23, 34).





PAM50 Subtype and Lehmann TNBC Subtype

The PAM50 subtype of FUSCC TNBC was analyzed by the PAM50 predictor (the “genefu” package in R). To identify Lehmann TNBC molecular subtypes, only TNBC samples that were determined by mixed Gaussian distribution were subtyped as individual datasets using the TNBC type online subtyping tool (http://cbc.mc.vanderbilt.edu/tnbc/) (25).



Functional Analyses

Differentially expressed genes (DEGs) among the three subtypes were identified by the threshold value of |log2FC|≥1 and false discovery rate (FDR) ≤0.05. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed and visualized in Metascape (26). Furthermore, gene set enrichment analysis (GSEA) was utilized among DAMPs-associated TNBC subtypes to compare the differences (27).



Genomic Analysis

Copy number alterations (CNA) were analyzed using GISTIC2.0 from the FUSCC TNBC cohort (28). We compared the differences in amplification or deletion events at the arm level among DAMPs-associated TNBC subtypes. The waterfall plot of CNV data was visualized by the “ComplexHeatmap” package in R. The tumor mutation burden (TMB) was calculated by the number of mutations per patient (29).



Immune Analyses

CIBERSORT immune infiltrating analysis was performed to calculate the abundance of 22 immune infiltrating cells (30). We calculated the stromal score and immune score through the Estimation of Stromal and Immune cells in Malignant Tumor tissues using Expression data (ESTIMATE) algorithm (31).



Calculation of the Immunophenscore

The immunophenoscore (IPS) was calculated by the algorithm as previously reported (32). Briefly, IPS was calculated on a 0-10 scale based on the expression of the representative genes or gene sets of the immunophenogram. Samplewise z scores are positively weighted according to stimulatory factors (cell types) and negatively weighted according to inhibitory factors (cell types) and averaged. Z scores ≥3 were designated IPS10, and z scores ≤0 were designated IPS0.



Statistical Analyses

Statistical analyses were conducted by R (version 3.5.2) and GraphPad Prism (version 8.0). Survival analysis was performed through the Kaplan–Meier algorithm by the R package “survival”. Two-sided Student’s t test or two-sided Wilcoxon-rank sum test were used for comparison of two groups. For comparison of more than three groups, one-way analysis of variance (ANOVA) or Kruskal-Wallis test were performed. A P < 0.05 was considered statistically significant.




Results


Identification of Three DAMPs-Associated Subtypes

To exclude the influence of pathological heterogeneity, we included TNBC samples of IDC (n=330) from the FUSCC cohort. We classified them into three DAMPs-associated subtypes based on the expression of DAMPs-related genes by a consensus clustering approach, identifying the optimal clustering stability at K=3 (Figures 2A-D). Of the 330 TNBC patients included in the study, 47 patients were clustered in the nuclear DAMPs subtype, 121 in the inflammatory DAMPs subtype and 162 in the DAMPs-suppressed subtype. The heatmap shows the normalized enrichment scores of DAMPs-related genes in the three subtypes (Figure 2E), with significant differences in expression between the three distinct clusters. Nuclear-associated DAMPs, such as HMGB1 and high-mobility group nucleosome binding protein 1 (HMGN1), were highly expressed in the nuclear DAMPs subtype. The inflammatory DAMPs subtype was characterized by high expression of CALR. In the DAMPs-suppressed subtype, DAMPs genes were expressed at low levels, but DAMPs receptors were highly expressed (Figure 2E). Stacked bar plots show the distribution of FUSCC TNBC subtypes and Lehmann TNBC subtypes among the DAMPs-associated subtypes (Figure 2F), demonstrating that the immunomodulatory (IM) subtypes of four FUSCC TNBC subtypes (luminal androgen receptor/IM/basal-like immune-suppressed/mesenchymal-like) account for the highest proportion of the inflammatory DAMPs subtype. These results suggest that DAMPs-related genes classify TNBC patients into three distinguishable subtypes with significantly different gene expression patterns, as well as different predominant clinical subtypes.




Figure 2 | Identification of DAMPs-associated subtypes by K-means analysis. (A-C) K = 3 was identified as the optimal value for consensus clustering. (D) K = 3 was identified as the optimal value for cluster sums of squares. (E) DAMPs-associated subtyping of TNBC samples (n = 330) in the FUSCC cohort. Heatmap shows normalized enrichment scores of the three DAMPs-associated subtypes. (F) Bar plots showing the distribution of FUSCC TNBC subtypes and Lehmann TNBC subtypes among the DAMPs-associated subtypes.





Differentially Expressed Gene Analysis and Functional Analyses

We next identified DEGs among the three subtypes and performed functional analysis to explore their potential signaling mechanisms. A total of 1,406 DEGs were detected, of which 166 were in the nuclear DAMPs subtype, 893 were in the inflammatory DAMPs subtype and 347 were in the DAMPs-suppressed subtype. For the nuclear DAMPs subtype, KEGG enrichment analysis revealed that the DEGs were mainly enriched in heat shock protein (HSP)-related signaling pathways, including protein folding, the HSP90 chaperone cycle for steroid hormone receptors (SHRs), the presence of ligands and neutrophil degranulation (Figure 3A). Likewise, GO enrichment analysis also showed that the DEGs were enriched in HSP-related signaling pathways (Figure 3D), indicating that HSPs play an important role in the presentation of tumor antigens. Consistently, GSEA showed that the nuclear DAMPs subtype proliferates vigorously. (Figure 3G). For the inflammatory DAMPs subtype, KEGG enrichment analysis revealed that the DEGs were significantly enriched in immune-related signaling pathways, including the adaptive immune system, cytokine signaling in the immune system, neutrophil degranulation, the immune response-regulating signaling pathway, signaling by the B cell receptor (BCR), and the T cell receptor (TCR) signaling pathway (Figure 3B). Similarly, GO enrichment analysis also identified that the DEGs were enriched in immune-related signaling pathways (Figure 3E). GSEA revealed that the interferon gamma (INF-γ) response, inflammatory response, and interferon alpha (INF-ɑ) response differentiation were highly expressed in the inflammatory DAMPs subtype (Figure 3H). For the DAMPs-suppressed subtype, KEGG enrichment analysis revealed that the DEGs were notably upregulated in cell stress-related pathways, including cellular responses to stress and negative regulation of phosphorylation (Figure 3C). GO analysis also presented a similar result (Figure 3F). GSEA showed a significant upregulation in oxidative phosphorylation, fatty acid metabolism and adipogenesis (Figure 3I).




Figure 3 | Differentially expressed gene (DEG) analysis and functional analyses. (A-C) Bar diagram showing the signaling pathways enriched by Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. (D-F) Circle plot and network visualizing the biological processes enriched by gene ontology (GO) analysis. (G-I) Gene set enrichment analysis (GSEA) results showing the activated signaling pathways in the DAMPs-associated subtypes.





Comparison of Genomic Alterations of DAMPs-Associated Subtypes in the FUSCC-TNBC Cohort

We used oncoplot to identify genomic alterations among the three DAMPs-associated subtypes in the FUSCC-TNBC cohort, and the results showed that PI3K/AKT pathway mutations were least frequently observed in nuclear DAMPs subtypes and most commonly observed in DAMPs-suppressed subtypes (P=0.0037; Figures 4A, B), which may be related to the fact that DAMPs-suppressed subtypes contain more luminal/androgen receptor (LAR) subtypes. Interestingly, split ends (SPEN) mutations were only observed in the inflammatory DAMPs subtype. The TMB of the nuclear DAMPs subtype was higher than that of the remaining two subtypes (Figure 4C). Although the frequency of CNV in the nuclear DAMPs subtype was also higher than that in the other two subtypes, it failed to achieve statistical significance (Figures 4D–F).




Figure 4 | Comparison of genomic alterations of DAMPs-associated subtypes in the FUSCC-TNBC cohort. (A) Differential somatic mutation analysis among the three subgroups. (B) Somatic mutation percentage of mostly mutated genes. (C) Tumor mutant burden difference among the three subtypes in the FUSCC cohort. (D) Arm-level copy number amplification in DAMPs-associated subtypes. (E) Arm-level copy number deletion in DAMPs-associated subtypes. (F) Distinct CNA profile among the three subgroups. ns, not significant.





Patients in the Three Molecular Subtypes Exhibited Different Immune Statuses

Immune analyses were conducted to explore the immune differences between the three subtypes. The CIBERSORT algorithm revealed that CD8+ T cells in the inflammatory DAMPs subtype increased significantly, while M2-like macrophages increased significantly in the DAMPs-suppressed subtype (Figure 5A). Kaplan–Meier survival analysis revealed that patients in the inflammatory DAMPs subtype had the best disease-free survival (DFS) and distant metastasis-free survival (DMFS), while patients in the DAMPs-suppressed subtype tended to have the worst outcome. (DFS: P=0.047, DMFS: P=0.057; Figure 5B). Furthermore, the ESTIMATE algorithm revealed that patients in the inflammatory DAMPs subtype had significantly higher stromal scores, immune scores and ESTIMATE scores than the others, with no significant difference found in sTILs (Figures 5C–F). Interestingly, however, the prognosis of the nuclear DAMPs subtype is better than that of the DAMPs-suppressed subtype, despite having the lowest immune score. In addition, the expression of CD8A (P=0.0035) and PD-1 (P=0.0022) in the inflammatory DAMPs subtype was significantly higher than that in the other two subtypes, while no statistical significance was detected regarding the expression of PD-L1 (P= 0.0622) and CTLA4 (P=0.0685; Figure 5G), which suggested that PD-L1 and CTLA4 may not be the best markers of PD-1 efficacy in TNBC.




Figure 5 | Identification of DAMPs-associated subtypes among the FUSCC-TNBC cohort and comparison of their differences in tumor-infiltrating lymphocyte immune biomarker expression levels. (A) The differential estimated proportion of 22 CIBERSORT immune cell types in DAMPs-associated subtypes. The central line represents the median value. The bottom and top of the boxes are the 25th and 75th percentiles (interquartile range). The whiskers encompass 1.5 times the interquartile range. (B) Kaplan-Meier curves of disease-free survival (DFS) and distant metastasis-free survival (DMFS) among the three subtypes in the FUSCC cohort. (C) Stromal score in DAMPs-associated subtypes. (D) Immune score in DAMPs-associated subtypes. (E) ESTIMATE score difference among the three subtypes in the FUSCC cohort. (F) The sTIL difference among DAMPs-associated subtypes. (G) Expression differences in CD8A, PD-1, PD-L1 and CTLA4 among the three subtypes. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001; ns, not significant.





Successful Validation of the Immunophenotypes in the TCGA Cohort

To further validate whether the immune differences we found among the different subtypes of the FUSCC cohort could be generalized, we selected TNBC patients from the TCGA public database and divided them into 3 DAMPs-associated subtypes. According to the CIBERSORT algorithm as above, we found that CD8+ T cells in the inflammatory DAMPs subtype increased significantly and M2-like macrophages in the DAMPs-suppressed subtype increased significantly, which is similar to the results of the FUSCC cohort (Figure 6A). Survival analysis also revealed that patients in the inflammatory DAMPs subtype enjoyed the best OS and DFS, while patients in the DAMPs-suppressed subtype had the worst (DFS: P=0.010, OS: P=0.09; Figure 6B). Additionally, patients in the inflammatory DAMPs subtype had higher immune scores than others (Figure 6D), while no significant difference was found in stromal scores and ESTIMATE scores (Figures 6C, E). In addition, the expression of CD8A (P=0.0312) and PD-1 (P=0.0023; Figure 6F) in the inflammatory DAMPs subtype from the TCGA cohort was notably higher than that in the other two subtypes. The expression of PD-L1 and CTLA4 was similar to the trend in the FUSCC cohort, which again indicated that PD-L1 and CTLA4 may not be the best markers of PD-1 efficacy in TNBC.




Figure 6 | Successful validation of DAMPs-associated subtypes in the TCGA cohort. (A) The differential estimated proportion of 22 CIBERSORT immune cell types in DAMPs-associated subtypes. The central line represents the median value. The bottom and top of the boxes are the 25th and 75th percentiles (interquartile range). The whiskers encompass 1.5 times the interquartile range. (B) Kaplan-Meier curves of overall survival (OS) and disease-free survival (DFS) among the three subtypes in the TCGA-TNBC cohort. Arm-level copy number amplification in DAMPs-associated subtypes. (C) Stromal score in DAMPs-associated subtypes. (D) Immune score in DAMPs-associated subtypes. (E) ESTIMATE score difference among the three subtypes in the TCGA cohort. (F) Expression differences in CD8A, PD-1, PD-L1 and CTLA4 among the three subtypes. *P < 0.05; **P < 0.01; ns, not significant.





DAMPs-Associated Subtypes Can Predict Immunotherapy Outcome

We next explored the predictive ability of immunotherapy outcome across different DAMPs-associated subtypes. First, the expression of major histocompatibility complex (MHC) and immunomodulatory molecules for DAMPs-associated subtypes is shown via the heatmap (Figure 7A), which revealed that MHC molecules and immunostimulatory and immunoinhibitory molecules are differentially expressed in different subtypes, with the highest expression in the inflammatory DAMPs subtype, both in FUSCC and in TCGA. In addition, the IPS algorithm was performed to evaluate the IPS and the response rate of the three subtypes from FUSCC. The results revealed that the inflammatory DAMPs subtype had the highest response rate (57%; Figures 7B, C). Similarly, we used TNBC patients from TCGA as the validation cohort to test the stability of the above findings, and the results showed that the inflammatory DAMPs subtype also had the highest response rate (55%; Figures 7D, E). These results suggested that the constructed DAMPs-associated clusters had potential for the prediction of PD-1 treatment efficacy in TNBC.




Figure 7 | DAMPs-associated clusters can predict immunotherapy outcome. (A) Expression of MHC and immunomodulatory molecules for DAMPs-associated subtypes. Expression values are represented by z scores calculated across all tumors and color coded according to the legend. (B) Waterfall plot illustrating the Immunophenoscores (IPS) according to the DAMPs-associated subtypes in the FUSCC cohort. (C) Proportion of patients: Responder and Nonresponder: 40%/60% in the nuclear DAMPs subtype, 57%/43% in the inflammatory DAMPs subtype and 44%/56% in the DAMPs-suppressed subtype. (D) Waterfall plot illustrating the IPS according to DAMPs-associated subtypes in the TCGA-TNBC cohort. (E) Proportion of patients: Responder and Non−responder: 42%/58% in the nuclear DAMPs subtype, 55%/45% in the inflammatory DAMPs subtype and 28%/72% in the DAMPs-suppressed subtype.






Discussion

TNBC is a highly invasive subtype of breast cancer and is an extremely difficult challenge for treatment due to its relatively low response to conventional therapeutics. Despite the booming development of immunotherapy and promising results of ICIs to treat TNBC, it still leads to high mortality in women worldwide (33). Therefore, the current major challenges are how to improve the response of TNBC patients to ICIs treatment and recognize ICIs nonresponders and responders before treatment. Since the emission of ICD-associated DAMPs and their interactions with innate immune receptors play an important role in the activation of anticancer immunity (34), DAMPs and sensing receptors are potential predictors of the response to ICIs treatments in TNBC. In the present study, we identified three molecular subtypes (nuclear/inflammatory/suppressed) based on the gene expression of DAMPs and sensing receptors, which exhibited significantly different DAMPs landscapes. Functional analyses of DEGs revealed that upregulation of immune (INF-γ) and HSP (HSP90) relative genes was implicated with a better prognosis. Further immune analyses indicated that patients with a better prognosis were in a relatively high immune status (CD8Ahigh, PD-1high) and possessed a higher immune score and ESTIMATE score. Moreover, we established a novel prognostic risk model based on DAMPs and sensing receptors, which predicted the immunotherapy outcome of TNBC patients in FUSCC and TCGA. Our results may meet the need of precision immunotherapy designing for TNBC.

It is becoming increasingly clear that DAMPs show robust adjuvanticity during ICD procedures (35), thus enhancing the antitumor immune effect of ICIs therapy (36). Therefore, we propose here to identify ICD-activating or ICD-suppressive DAMPs subtypes or hallmarks to explore the potential role of a combined DAMPs and immune status classifier for TNBC. In our study, 330 TNBC patients were divided into three DAMPs subtypes. Among them, nuclear-associated HMGB1 and HMGN1 were highly expressed in the nuclear DAMPs subtype, while CALR was highly expressed in the inflammatory DAMPs subtype. HMGB1 and HMGN1 are important nuclear DAMPs, and their translocation to the cytoplasm can activate proinflammatory signaling by binding to PRRs, resulting in TIL influx in breast cancer (37). As an endoplasmic reticulum (ER) marker, when exposed on the tumor cell surface during ICD, CALR promotes the uptake of tumor-specific antigen (TSA), and its mutation compromises immunosurveillance (38). In animal models, the decreased expression of CALR and increased expression of PD-L1 on TNBC cells are associated with fewer CD8+ cytotoxic T cells and more regulatory T cells (39).

Recently, another study of FUSCC TNBC subtypes showed that the basal-like immune-suppressed (BLIS) subtype exhibits high genomic instability, and PI3K signaling pathway mutations are observed in the LAR subtype, while immune cell signaling and TILs are elevated in the IM subtype (19). In our classification, the IM subtype is the major inflammatory DAMPs subtype, while the BLIS subtype has the highest frequency of nuclear DAMPs, and the DAMPs-suppressed subtype contains more LAR subtypes. Interestingly, mutations of SPEN, an estrogen receptor (ERα) corepressor, were found in the inflammatory DAMPs subtype. A previous study showed that high SPEN expression is associated with early metastasis in patients with ERα-negative breast cancer (40), while its relationship with DAMPs is still unclear. In addition, a high level of TMB is a characteristic of nuclear DAMPs, which are potential biomarkers of genomic instability and ICIs response (41). Similarly, we found that PI3K/AKT pathway mutations were mostly observed in the DAMPs-suppressed subtype, and it has been reported that dysfunction of the PI3K/AKT pathway is associated with suppressed DAMPs release (42).

The tumor microenvironment (TME), TILs and TAMs play a crucial role in tumor progression, ICIs response and patient outcomes in TNBC (43). In our study, the CIBERSORT and ESTIMATE algorithms revealed that TNBC patients in the three molecular subtypes exhibited different immune statuses. The CIBERSORT algorithm indicated that the inflammatory DAMPs subtype had the largest proportion of CD8+ T cells compared with the other two subtypes and was associated with the best predicted outcome. However, we found that M2-like macrophages in the DAMPs-suppressed subtype increased significantly. M2-like macrophages have been recently reported to lead to resistance to ICIs therapy (44) and are associated with unfavorable prognosis in TNBC patients (45). The ESTIMATE algorithm showed that patients with this subtype had significantly higher stromal scores, immune scores and ESTIMATE scores than the remaining two subtypes. Moreover, the significantly higher expression of CD8A and PD-1 in the inflammatory DAMPs subtype may be related to its better DFS and DMFS. These observations are in line with previous reports that TNBC patients with elevated CD8A (46) and PD-1 (47) expression can potentially benefit from ICIs. Additionally, these results were successfully validated with the TCGA public database.

Furthermore, functional analyses were conducted to explore the underlying biological mechanisms. Based on the identified DEGs, GO analysis and KEGG analysis synergistically suggested that DEGs in the inflammatory DAMPs subtype were significantly enriched in the adaptive immune system and cytokine signaling in the immune system. GSEA further elucidated that INF-γ response expression in the inflammatory DAMPs subtype was higher than that in the other two subtypes. INF-γ is exclusively involved in both innate and adaptive immune responses against tumor cells (48). For the nuclear DAMPs subtype, KEGG and GO enrichment analyses both revealed that the DEGs were mainly enriched in HSP-related signaling pathways, such as the HSP90 chaperone cycle. Several studies have demonstrated that the cell surface exposure of HSP90 followed by chemotherapy is correlated with dendritic cell (DC) maturation, resulting in the enhancement of the anticancer immune response (49, 50). For the DAMPs-suppressed subtype, KEGG and GO enrichment analyses indicated that the DEGs were largely upregulated in cell stress-related pathways, and GSEA further showed a significant upregulation in adipogenesis. Since TNBC patients with high adipogenesis have low CD8+ T cell and high M2 macrophage infiltration (51), this finding explains why the DAMPs-suppressed subtype has a worse outcome.

As mentioned above, although high TIL, PD-1 or PD-L1 expression indicates that patients are more likely to respond to immunotherapy, these biomarkers fit only a minority of the responders. Therefore, the development of prognostic models that enable the stratification of patients into responders and nonresponders to immunotherapy is urgently needed. In our work, the expression of MHC molecules (class I, class II, and nonclassical), immunostimulators and immunoinhibitors were analyzed, and an immunophenoscores algorithm was performed to predict the immunotherapy outcome. The results revealed that the inflammatory DAMPs subtype had the highest expression of MHC and immunomodulators, along with the highest response rate, which was further validated in the TCGA cohort. MHC molecules, especially human leukocyte antigen class I (HLA-I) alleles, play a critical role in anticancer immunity by recognizing tumor-specific antigens, and their heterozygosity influences patient survival after ICIs treatments (52). Several immunomodulators are involved in immune destruction and tumor escape. Evidence shows that higher expression of immunostimulators is associated with a higher vulnerability to ICIs in breast cancer (53). These results suggested that there is a possible relationship between DAMPs-associated hallmarks and MHC molecules and immunomodulators, which shows good potential for predicting ICIs treatment efficacy.

Consistent with our results, as mediators of tumor immunogenicity, ICD-associated DAMPs and the sensing receptor landscape were correlated with the TIME. This landscape deserves serious attention in determining the immunotherapy approach for TNBC patients. It is also worth noting that ICD-associated DAMPs and sensing receptors have been mentioned more frequently in recent studies regarding the TIME, which contributes to a better understanding of TNBC subtype classification (54). However, limitations and drawbacks exist in our researches. Since ATP is not a gene like CALR or HMGB1, we cannot analyze ATP directly through the transcriptome. We also included ATP receptor molecules in the DAMPs-related gene list. However, these molecules had no significant effect on clustering of DAMPs-associated subtypes. Further studies are warranted to validate the clinical significance of DAMPs-associated molecules and the mechanisms involved in TNBC immunomodulation.



Conclusion

In conclusion, in the present study, three molecular subtypes were identified based on K-means analysis in TNBC. Immune analysis and functional analyses revealed that the expression of ICD-associated DAMPs and sensing receptors may determine tumor immunogenicity, thereby resulting in good prognosis. Our work could shed a novel light on the development of new immunomodulators that target ICD-associated DAMPs and sensing receptors and may facilitate the development of precision immunotherapy for TNBC.
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Background

Patients with concentric shrinkage mode after neoadjuvant chemotherapy (NAC) is considered to be ideal candidates for breast conserving treatment (BCT). While, what proportion of patients would represent CSM have not been well defined. This study was conducted to pool the rates of concentric shrinkage mode (CSM) in patients undergoing NAC, determine the impact of hormonal receptor on the shrinkage mode after NAC and estimate the rates of the CSM in various subgroups.



Methods

We conducted a systematic review following the guidelines for Meta-Analyses and Systematic reviews for the PRISMA guidelines. We systematically searched the literature about shrinkage mode after NAC from PubMed, Web of Science, Embase, The Cochrane Library, CNKI, Wanfang database published from January 2002 to June 2020 on breast cancer shrinkage mode after NAC and carefully screened the literature by using eligibility criteria: (1) patients with primary breast cancer treated with NAC; (2) publications with available data of shrinkage mode measured by magnetic resonance imaging (MRI), or data of pathology and hormonal receptor. The association between shrinkage mode and hormonal receptor was estimated using Stata 15.1 software.



Results

This analysis included a total of 2434 tumors from 23 papers. The included studies were heterogeneous (I2 = 89.4%, P<0.01). Random effects model was used to estimate the overall rates of CSM: 56.6% [95%CI (50.5%, 62.7%)]. According to the analysis of hormonal receptor, 10 of the paper was included for HR+ (hormone receptor positive) type analysis and the rate of CSM for HR+ type was 45.7% [95%CI (36.4%, 55.0%)]; 9 of the paper was used for HR- type (hormone receptor negative) analysis and the incidence of HR-CSM is 63.1% [95%CI (50.0%, 76.1%)]; with HR+ type as the control, the OR of the HR- CSM rate is 2.32 (1.32, 4.08) folds of HR+ type. From subgroup analyses, the CSM% of luminal A, luminal B, Her2+, and triple negative were 29.7% (16.5%, 42.8%); 47.2% (19.1%, 75.3%); 59.0% (39.7%, 78.3%); 66.2% (52.8%, 79.6%), respectively.



Conclusions

Breast cancer patients undergoing NAC did not get an ideal odds ratio of CSM. The incidence of CSM in breast cancer after NAC is associated with hormonal receptor. Patients with triple-negative breast cancers have the highest rates of CSM after NAC. More care should be taken to select patients with the luminal subtypes for BCT throughout NAC.





Keywords: breast cancer, neoadjuvant chemotherapy, shrinkage mode, meta-analysis, receptor status



Introduction

Neo-adjuvant chemotherapy (NAC) is being increasingly used in advanced breast cancers, which could improve the success rate of breast conserving treatment (BCT) by reducing the extent of surgery (1). Previous study reported that the overall proportion of BCT significantly increased from 15.7% to 26.0% from 2010 to 2015 (2). However, tumors downsized by NAC were reported to have higher local recurrence after BCT than those who have not (3). Strategies to decrease the local recurrence after BCT associated with NAC should be made; for example, the shrinkage mode should be assessed accurately beforehand, especially the non-concentric shrinkage mode (NCSM), which can lead to false negative reporting of margins. Therefore, at the St. Gallen international expert consensus conference on the primary therapy of early breast cancer 2017, the experts voted that different surgical strategies should be adopted for breast cancer based on shrinkage mode (4).

Previous studies have shown an association between the shrinkage mode and molecular subtypes (5). However, there are some limitations in these studies, such as a relatively small study population and diverse classification standard. Furthermore, the incidence of concentric shrinkage mode (CSM) in breast cancer with diverse hormonal receptor have not been pooled analysis.

Therefore, we conducted a meta-analysis to estimate the overall proportion of subjects showing CSM after NAC and to determine whether hormonal receptor was associated with shrinkage mode. Therefore, we can understand the clinical benefit from NAC and lead to further individualization of breast cancer surgical management.



Methods

We conducted a systematic review following the guidelines for Meta-Analyses and Systematic reviews for the PRISMA guidelines (6). Shrinkage mode was divided into CSM and NCSM. We performed a meta-analysis of studies to calculate the proportion of patients with CSM after NAC grouped by hormonal receptor. Studies were considered eligible if they reported the shrinkage mode after NAChormonal receptor. hormonal receptorThe shrinkage mode was evaluated on the basis of MRI or pathology. The hormonal receptor was characterized with traditional markers [hormone receptor (ER/PR, and HER2 status)].


Eligibility Criteria

Studies conducted with human subjects were included if they met all of the following criteria: All cases were definitely diagnosed as breast cancer and distant metastasis was excluded; cases were received neoadjuvant treatment; detailed statistics had to be reported (i.e. patient numbers and percentage of CSM based on MRI or pathological assessment); the language is Chinese or English. Any investigations that did not meet all inclusion criteria or is less than 12 points in the quality of the research publication were excluded. If data were duplicated in more than one paper, the most recent paper was included in the analysis.



Systematic Search

We systematically searched the literature, published from January 2002 to June 2020 on shrinkage mode after NAC, from PubMed, Web of Science, Embase, The Cochrane Library, CNKI, Wanfang Database. Search terms included controlled terms (MeSH in PubMed), as well as free text terms. Search terms (“breast cancer OR breast neoplasm”) were used in combination with (“neoadjuvant OR NAC”) AND (“shrinkage OR regression”). According to the inclusion and exclusion criteria, all the literatures we obtained were non-randomized controlled studies.



Data Extraction

Data were independently extracted by two authors (Chun-hui Zheng and Kai Xu) using the same standardized table; any disagreements were resolved by discussion and arbitrated by a third author (Yong Sheng Wang). The content of the extracted data includes the first author, the year of publication, the median age, the total number of samples, the number of CSM, the number of HR+, the number of HR+ CSM, the number of HR-patients, the number of HR-CSM, and the number of CSM in each subgroup.



Article Quality Evaluation

MINORS entry (methodological index for non-randomized studies, MINORS) bias risk evaluation criteria was used to evaluate the included articles. The quality of the article was evaluated from eight aspects: research purpose, patient continuity, data collection, rationality of endpoint indicators, objectivity of endpoint evaluation, follow-up time, loss to follow-up rate, and sample size. The items are scored 0 (not reported), 1 (reported but inadequate) or 2 (reported and adequate). The total score is 0-16 points. When the score is ≥12 points, the risk of bias is considered to be low (7).



Sensitivity and Publication Bias

The publication bias of the study was evaluated by funnel chart and Egger’s test. Meanwhile, funnel plots were used to visualize the potential publication bias (8). Sensitivity analysis was evaluated by being excluded one by one.



Statistical Analysis

Stata 15.1 software was used for Meta-analysis. Homogeneity test (Q test) and I2 value was used to test the heterogeneity of the included research. When the heterogeneity test result is P>0.1 and I2<50%, the heterogeneity of the research is considered to be acceptable, and then the fixed effects model is adopted; otherwise the random effects model is adopted (9). (1) A random effects model was used to combine the included studies on the rate of CSM after NAC, calculate the rate of CSM and 95% CI, perform the sensitivity analysis with one-by-one elimination, and determine the publication bias of the study by using the funnel plot and Egger’s test (8). (2) The random effects model was used to calculate the CSM rate and 95% CI of HR+ and HR- type respectively, and the random effects model was also used to calculate the OR value of the CSM rate of HR- and HR+ type with HR+ type as the control. (3) The subtype classification was divided into four types: luminal A, luminal B, HER2 positive, and triple-negative, and the combined CSM rate was calculated separately; in spss25.0, chi-square test was used to test whether there was a discrepancy in the CSM rates of the four subtypes; Chi-square segmentation was used to compare rates of the four subtypes.




Results


Preliminary Screening of Articles

Through the preliminary computer search, a total of 5770 documents were retrieved. The authors screened documents by deleting duplicate documents, reading questions, abstracts and full texts. Twenty-three documents that met standards were initially included. The specific process is shown in Figure 1.




Figure 1 | Flow chart of literature screening. CSM, concentric shrinkage mode.





Results of the Quality Evaluation of the Articles

The MINORS quality evaluation standard was used to evaluate the quality of the initially included 24 articles. Among them, 23 articles (10–32) had quality score ≥12 points, and relatively low risk of bias, so they were included in the analysis. Only 11 of the included articles studied breast cancer hormonal receptor, A total of 2434 tumors were included, in which 1355 tumors showing CSM after NAC. Among the paper that analyzed breast cancer hormonal receptor:759 luminal tumors were included in 10 related studies; 153 HER2+ tumors were included in 8 related studies; 255 triple negative tumors were included in 9 related studies; 48 triple positive tumors were included in 2 related studies. The basic characteristics and quality evaluation results of the included studies are shown in Table 1.


Table 1 | Univariable analysis and multivariable analysis of the model and clinical features.





Meta-Analysis Results


Estimates Rates of CSM

The 23 included articles showed that the incidence of CSM after NAC was 39.2%-81.3%, Table 2. The results of Meta-analysis proved that there was a large heterogeneity between the included studies (I2 = 89.4%, P<0.001). Therefore, this study was based on the combination of the random effects model (8). The combined conversion rate based on the random effects model was 56.6% [95%CI (50.5%, 62.7%)], Figure 2. The publication bias of the study was evaluated by funnel chart and Egger’s test (33). publication bias, P=0.773, indicated that this article was not considered to have publication bias, Figure 3. Sensitivity analysis: the included 23 articles were subjected to a sensitivity analysis by being excluded one by one, indicating that each article had little influence on the combined effect size, and the results of the Meta-analysis were relatively stable, Figure 4.


Table 2 | Basic characteristics and quality evaluation results of the included studies.






Figure 2 | Forest plot of the incidence of CSM after NAC. Pooled estimate incidence of CSM based on 23 papers providing data from 2434 tumors; CSM, concentric shrinkage mode; CI, confidence interval; ES, effect size.






Figure 3 | The publication bias of the study was evaluated by funnel chart and Egger’s test. CI, confidence interval; SND, standard normal deviation.






Figure 4 | Meta-analysis estimates, given named study is omitted. The results shows that only little variation in the estimates of CSM% is induced by omission of the one selected study. CI, confidence interval.





Association of HR Hormonal Receptor and CSM%

Among the 23 articles, 10 articles analyzed HR+ type cancer, with 807 tumors included. The studies were heterogeneous (I2 = 84.7%, P<0.001), so random effects model was used for data combination. The results showed that the incidence of HR+ CSM was 45.7% [95%CI (36.4%, 55.0%)]. Nine articles analyzed data of HR+ cancers, with 408 tumors included. The heterogeneity of the included studies was large (I2 = 88.3%, P<0.001). Therefore, the random effects model was used to merge the data. The results showed that the incidence of HR- CSM was 63.1% [95%CI (50.0%, 76.1%)]. A random effects model was used to compare the CSM rates of the HR+ and HR- groups. The results of the Meta-analysis showed that the HR- patients had higher CSM rates after NAC than HR+ patients did and the OR value was 2.32 [95%CI (1.32, 4.08)], Figure 5.




Figure 5 | Association of HR hormonal receptor and CSM%. HR+ CSM% (A), HR- CSM% (B) and the OR value between HR- CSM% and HR- CSM% (C). CSM, concentric shrinkage mode; HR+, hormone receptor positive; HR-,hormone receptor negative; OR, odds ratio; ES, effect size.





Calculation of the Subtypes Specific CSM%

Four articles analyzed data of luminal A breast cancer. Among 42 tumors, 14 of them showed CSM. The fixed effect model showed that luminal A CSM% was 29.7% (16.5%, 42.8%). Luminal B type was included in 4 articles. Among the 95 tumors, 48 of them showed CSM. Random effects model showed that luminal B CSM% was 47.2% (19.1%, 75.3%), Figure 6. Eight articles analyzed153 HER-2 positive type cases in total. The random effect model showed that the HER-2 positive type CSM rate was 59.0% (39.7%, 78.3%). Nine articles analyzed 255 triple-negative tumors in total, and the triple-negative CSM rate was 66.2% (52.8%, 79.6%). In spss25.0, chi-square test showed that the four subtypes of CSM rate had chi-square=20.932, P<0.001. The difference in CSM rate was statistically significant. It can be considered that the CSM rates of the four subtypes are unequal or not all equal. The chi-square segmentation was used to compare between the four subgroups. The results showed that the triple-negative type has the highest CSM rates, but there was no significant difference among the other three subtypes (chi-square=4.017, P=0.134).




Figure 6 | Calculation of the subtypes-specific CSM%. (A) 14 of 42 luminal tumors showed CSM (Luminal A); (B) 48 of 95 luminal B tumors showed CSM. (Luminal B); (C) 76 of 153 HER-2 positive tumors showed CSM (HER2+); (D) 166 of 255 triple-negative tumors showed CSM. (triple-negative); CSM, concentric shrinkage mode; ES, effect size.







Discussion

Even though NAC can increase the rates of BCT in advanced breast cancer patients, the procedure remains challenging because it often results in NCSM (33). Our report analyzed a total of 23 articles, including 2434 tumors treated with NAC and evaluated for shrinkage mode. To our knowledge, this is the first study about CSM rates after NAC for breast cancers. Our data showed that 56.6% tumors treated with NAC displayed CSM. The CSM rates varies by hormonal receptor and the CSM rate of HR- patients was 2.32 times of that of HR+ patients. In subgroup analysis, we found that the triple-negative type has the highest CSM rates.

In our meta-analysis, 43.4% of breast cancer patient did not achieve CSM, potentially increasing their risk for recurrence post-BCT. It is not surprising that many scholars are cautious about increasing BCS rates considering to NAC (33, 34). With pCR rates of nearly 40% in TNBC and over 50% in HER2+ breast cancer reported, the use of NAC was continuing to increase (34). In recent years, but the proportion of NCSM might argue that NAC should be recommended for patients with suitable subsets. More measurements may be required before initial treatment to stratify the candidates who ask for BCT.

Patients with CSM can be considered to be ideal breast conserving candidates after NAC. By observing 56.6% breast cancer patients with CSM in our study, we concluded that 56.6% patients undergoing NAC can be conveyed to ideal candidates for BCT. However, the majority of NAC trials considered PCR as end points. As a result, data about rates of BCS from these studies may overestimate or underestimate the benefit of NAC for down-staging. In comparison, result from Oriana Petruolo (35), 75% (n=450) of 600 BCT-ineligible cancer patients became BCT-eligible after NAC. One hand, The discordance may be caused by the narrowly definition of CSM in our study. In fact, some patients with “limited multifocal regression” were also ideal candidates for BCT (30). In other words, we might detect a much lower rate of BCT-eligible based on CSM rates. On the other hand, the discrepancy may be influenced by the precise selection of NAC based on molecular typing in recent years. In recent clinical practice, the greatest increase in proportions of NAC was seen in TNBC and HER2 positive diseases (36), which could attribute to high CSM rates,which will be discussed in the following section. However, despite of increasing eligibility for BCS after NAC, great number of patients opted for bilateral mastectomy after NAC, even though they were fit for BCT. Indeed, in a retrospective cohort (36) study of the National Cancer Database (NCDB), only 39.7% of NAC patients underwent BCS after NAC, given that more than half of the population were BCT eligible. These findings underscored the low rates of acceptance of BCT among patients after NAC.

Hormonal receptor has important implications in clinical decision. Our results demonstrated some variability in CSM rates across different hormonal receptor. Lining up with the previous reports (35), patients with subtypes that we considered to be aggressive were ideal candidates for downs-staging with NAC. As our results show, the incidence of HR+ CSM was 45.7%; while, the incidence of HR- CSM was 63.1%. In an adjusted analysis, patients with HR negative was 2.32-folds more likely to show CSM compared to those with HR positive (odds ratio, 2.32; 95%CI, 1.32-4.08; P <.001). These findings reinforced the proposition that down-staging for BCS is a better choice for patients with HR negative cancers. However, The 45.7% CSM rates of the luminal group told us more care should be taken when patients with hormone receptor positive subtypes are selected to down-staging for BCT. This finding may explain why the reoperation rate in patients with hormone-receptor-positive are higher than patients with triple-negative or HER2-positive disease (3.5% and 6.8%, respectively; P = 0.039) (37).

We completed the analysis of subtype specific CSM rates: hormone receptor positive 45.7%, triple negative 66.2% and HER2 positive 59.0%, respectively. The result was consistent with the findings from ACOSOG Z1071: tumor biology correlates with rates of BCT. In comparison, the ACOSOG Z1071 (37) reported a real-world incidence of BCT. In their research, the rates of BCT were also higher in patients with triple-negative (46.8%) and HER2-positive tumors (43.0%) than in those with hormone-receptor-positive, HER2-negative tumors (34.5%). However, inconsistent with the highest CSM rates in triple negative tumors, it is worth noting that the HER2-positive tumors did not show the same advantage in CSM rates compared with the remaining subtypes (chi-square=4.017, P=0.134). In addition, the lower BCT rates after NAC were also reported by Surgical results from CALGB and BrighTNess trial, in which 42% to 53.2% patients with triple negative and HER2 positive completed conversion from BCT-ineligible to BCS-eligible with NAC (38–40). The discrepancy between CSM rates and BCT rates may be caused by surgeon and patient preference.

MRI was considered to be the most accurate measurement tool to estimate the residual tumor distribution after NAC, outperforming on mammography, and ultrasound (41). While, great discrepancy was reported between shrinkage mode on MRI and pathologic examination, when the shrinkage mode after NAC were accurately classified into five categories (15, 42). In fact, the accuracy of MRI was influenced by tumor morphology, histology, shrinkage pattern, and molecular subtype (43, 44). The diameter of residual tumors obtained from MRI showed a stronger agreement with residual tumor sizes, as measured using MRI and surgical specimens, in cases of concentric shrinkage mode (10, 20, 22, 32). This suggest that the CSM rates obtained based MRI appear to be reliable.

We recognized that our study had several limitations. For example, because only English and Chinese articles were included, data published in other languages were missed. Furthermore, there may also be other clinical variables, such as age, race, NAC regime, anti-HER2 which were not contained. Also, due to limited available information, we could not investigate the effects of anti-HER2 treatment on shrinkage mode in NAC. Moreover, due to limited articles with usable data, we subjectively evaluated shrinkage mode by MRI or/and pathology, given that the CSM measured by MRI was reported consistent with pathology. In addition, there was a large heterogeneity between the included articles, and the cause of heterogeneity was unknown. To combine data, random effect model was adopted, leading to a large confidence interval. Finally, since pathological assay methods were different in enrolled studies, results of our meta-analysis should be used cautiously.



Conclusion

Although there are limitations, to our knowledge, this paper is the first to estimate the proportion of CSM after NAC. In conclusion, our meta-analysis reports that patients under NAC have an approximately 56.6% likelihood of achieve CSM. The odds of CSM for the hormone receptor negative subtypes had 2.32 times to that of the hormone receptor positive subtype. The odds of CSM were estimated to be highest for the triple negative subtypes, indicating that NAC is a desirable option for patients with these subtypes.
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Purpose

It is well-known that the pathological complete response (pCR) rate in patients with luminal A cancer (LAC) is lower than those of other subtypes of breast cancer. The phenotype of cancer often alters after neoadjuvant chemotherapy (NAC) which may be related to hypoxia, and the latter might induce the drift of the estrogen receptor (ER). The phenotype drift in local advanced LAC after NAC might influence the long-term prognosis.



Methods

The oxygen concentration of cancer tissues during NAC was recorded and analyzed (n = 43). The expression of ER and claudin-6 was detected in pre- and post-NAC specimens.



Results

NAC might induce the cycling intracanceral hypoxia, and the pattern was related to NAC response. The median follow-up time was 61 months. Most of the patients (67%) with stable or increased ER and claudin-6 expression exhibited perfect prognosis (DFS = 100%, 61 months). About 20% of patients with decreased claudin-6 would undergo the poor prognosis (DFS = 22.2%, 61 months). The contrasting prognosis (100% vs. 22.2%) had nothing to do with the response of NAC in the above patients. Only 13% patients had stable claudin-6 and decreased ER, whose prognosis might relate to the response of NAC.



Conclusion

NAC might induce cycling intracanceral hypoxia to promote the phenotype drift in local advanced LAC, and the changes in ER and claudin-6 after NAC would determine the long-term prognosis.





Keywords: luminal A breast cancer, cycling hypoxia, estrogen receptor, claudin-6, neoadjuvant chemotherapy



Introduction

Neoadjuvant chemotherapy (NAC) is the standard treatment for patients with locally advanced breast cancer (LABC) or big cancers seeking breast-conserving surgery (BCS) (1). The St. Gallen subtype classification, introduced in 2011, categorizes breast cancer into luminal A, luminal B HER2-neu negative, luminal B HER2-neu positive, HER2-neu non-luminal, and triple negative breast cancer (TNBC) based on immunohistochemical staining (2). For patients with TNBC or HER2 overexpression (OE), achieving a pathological complete response (pCR) to NAC may predict favorable outcomes (3). However, in breast cancer patients with a luminal type, the response to NAC cannot predict the outcomes (4). Furthermore, compared with patients with TNBC or HER2 OE, patients with luminal A cancer (LAC) have the lowest pCR rate, but the prognosis is generally better (5, 6). This suggests a complicated expression in the NAC process for LAC patients, and there may be a considerable proportion of patients who both exhibit chemoresistance and maintain a good prognosis. Therefore, there is an urgent need for sensitive clinical indicators to predict the prognosis of patients with LAC who would undergo NAC.

It is reported that there is a relationship between intracanceral hypoxia and chemoresistance (7). A recent study using tomographic near-infrared diffuse optical spectroscopy demonstrated decreased oxygenation in cancer tissue in patients with effective NAC, while the oxygenation in patients with drug resistance remained unchanged (8). Hypoxia induces a poor therapeutic response and outcome in breast cancer, especially in estrogen receptor (ER)-positive patients (9). Meanwhile, under hypoxia, the increased expression of HIF-1α might cause the loss of the ER protein (10). ER-positive breast cancer cells may evade treatment by entering dormancy, which leads to a poor response (11). On the other hand, changes in ER, progesterone receptor (PR), HER2, and Ki67 status after NAC are common in breast cancer (11–13). These findings suggested that breast cancer tissue of the same patient has temporal heterogeneity during NAC (14). The change in the ER status after NAC may be associated with chemoresistance and prognosis.

Claudin-6 (CLDN6), a member of the claudin transmembrane protein family, plays an important role in regulating paracellular permeability and maintaining cell polarity in epithelial and endothelial cell sheets (15). HIF-1α accumulation under hypoxia might promote CLDN6 transcription, and increased CLDN6 would weaken HIF-1α protein stability and slow down hypoxia-induced breast cancer metastasis (16). Osanai et al. found that a decreased expression of CLDN6 may promote the formation of breast cancer, suggesting that CLDN6 may act as a cancer suppressor, and its downregulation may contribute to the malignant progression of luminal breast cancers (17). CLDN6 downregulation contributes to enhance the cancerigenic and invasive properties of LAC cells (15). A recent study found that the expression of CLDN6 may be induced by ERα (18).

In our present study, the oxygen concentrations of cancer tissues with LABC were monitored during NAC; the expressions of ER and CLDN6 before and after NAC were detected; and the relationship between the NAC response and the expressions of ER and CLDN6 was analyzed. The survival analysis was also conducted on the long-term follow-up data, and NAC reactivity and changes in the expressions of ER and CLDN6 were used to predict the long-term prognosis.



Materials and Methods


Oxygenation of Cancer Tissue Associated With NAC

Between June 1, 2014, and May 31, 2015, a total of 43 patients with LAC and positive nodes who were treated with biopsy, NAC, surgery, and systemic treatment were recruited in the Department of Breast Surgery at the Shengjing Hospital of China Medical University, Shenyang, China. The inclusion criteria were (1) no prior history of breast cancer or other malignancies; (2) not pregnant and lactating during diagnosis; (3) invasive ductal carcinoma diagnosed by biopsy; and (4) ER expressions ≥20% and Ki67 <20% by IHC before NAC. Exclusion criteria were (1) the skin or chest wall invaded by the cancer; (2) connective tissue disease and dermatosis; and (3) metastatic breast cancer. According to RECIST 1.1 (19), patients were categorized into four subgroups based on their responses to NAC: CR, PR, SD, PD.

For each participant, cancer tissue oxygenation was measured using the Near-infrared Oxygenation Detector (Foresight, P/N 01-06-2030C, CasMed) before biopsy, 24 h before and after each cycle of NAC, during each cycle of NAC, and before surgery  
(Figure 1). All the participants agreed to undergo magnetic resonance image (MRI) and contrast-enhanced computed tomography (CT) to evaluate the chemotherapy response. Anthropometric data (age at diagnosis, menstrual history, family history, surgery, chemotherapy, and endocrine therapy) as well as cancer-related variables (size, location, histological grade, cancer thrombosis, nodes, ER expressions by IHC before and after NAC) were collected.




Figure 1 | The variation curve of SpO2 of the patients who were sensitive or resistant for the neoadjuvant chemotherapy. (A) A patient with partial response (PR) cancer after neoadjuvant chemotherapy (NAC) for 6 cycles. The O2% of both affected breast and the contralateral breast are shown; the red line shows the contralateral breast, and the blue line shows the affected breast. (B) The hemoglobin (Hb) and hematocrit (HCT) were recorded at the same time for the patient in photo (A, C) The standardized result of the patient in photo A corrected by Hb and HCT are shown; the red line shows the contralateral breast, and the blue line shows the affected breast. (D) The cancer imaging of the patient in photo A by contrast enhancement computed tomography (CECT) before NAC and after NAC. (E) After NAC, 28 patients’ cancer was sensitive, and the oxygen concentration of cancer tissue before and after NAC. (F) A patient with stable disease (SD) cancer after NAC for 3 cycles; the O2% of both affected breast and contralateral breast are shown; the red line shows the contralateral breast, and the blue line shows the affected breast. (G) The Hb and HCT were recorded at the same time for the patient in photo (F, H) The standardized result of the patient in photo F corrected by the Hb and HCT; the red line shows the contralateral breast, and the blue line shows the affected breast. (I) The cancer imaging of the patient in photo F by CECT before NAC and after NAC. (J) After NAC, 15 patients’ cancer was resistant; the oxygen concentration of cancer tissue before and after the NAC is also shown. (K) The blue line shows the mean oxygen concentration of every checkpoint for patients with resistant cancer, the red line shows the sensitive group, and the black lines show the trends of the mean oxygen concentration. (L) The mean of amplitude in oxygen concentration is presented. Blue shows the affected breast, and green shows the contralateral breast.





Immunohistochemistry

IHC detecting ER, PR, HER2, Ki67, and CLDN6 was performed on formalin-fixed, paraffin-embedded cancer samples obtained from the Department of Histology and Pathology of the hospital. The details of the operation process were consistent with the previous study (20). Ki67 status was expressed as a percentage of positive cells with a threshold of 20% of positive cells (21). Based on the St. Gallen Consensus 2013, luminal A breast cancer should be matched with ER ≥20% and/or PR ≥20%, HER2 negative, and Ki67 <20% (22). The pathological process and the antibodies used in the samples of both biopsy before NAC and surgery after NAC remained the same. The ER phenotype drift was determined by the expression change of ER after NAC which was more than 10% compared with that before NAC. According to the ER changes, patients were allocated into three subgroups: ER increased (range of ER rise >10% after NAC), ER stable (range of ER change ≤10% after NAC), and ER decreased (range of ER descend >10% after NAC).

All specimens were stained with 1:500 diluted anti-CLDN6 antibody (ab107059, Abcam, Cambridge, UK). Pathological results were evaluated by two pathologists who were blind to the protocol. For CLDN6, each tissue sample was scored according to its staining intensity (0, none; 1, weak; 2, moderate; 3, strong) multiplied by the point of the percentage of stained cells (0: positive cells = 0; 1: positive cells ≤25%; 2: 26%–50%; 3: 51%–75%; 4: ≥75%) (23). The range of this calculation was 0–12. The CLDN6 drift criterion was that the absolute change of the CLDN6 percentage  was >10%. According to the change in CLDN6, patients were allocated into three subgroups: CLDN6 increased (the range of CLDN6 rise >10% after NAC), CLDN6 stable (the range of CLDN6 change ≤10% after NAC), and CLDN6 decreased (the range of CLDN6 descend >10%).



Clinical Retrospective Study

Participants were followed up with 3-month intervals in the first 2 years postsurgery, and with 6-month intervals thereafter until December 31, 2019. The diagnosis of local recurrence or contralateral breast cancer was supported by biopsy, and distant metastasis was diagnosed by biopsy or positron emission tomographic-computer tomography (PET-CT). Disease-free survival (DFS) was defined as the period between the first day after surgery and the date when first local recurrence or distant metastasis was confirmed. Overall survival (OS) was calculated from the first day after surgery to death or December 31, 2019. Anthropometric data and cancer-related variables were collected. The histological grades of the cancers were classified into grades I–III based on the Nottingham combined histological grade (24).

Because of the small sample sizes of CR and PD, based on their response we regrouped the patients as sensitive to NAC (patients with CR or PR cancers) and resistant to NAC (patients with SD or PD cancers). Because of the small sample size in the group of ER increased, based on the ER changes patients were regrouped as ER increased and stable group (patients with ER increased and ER stable) and ER decreased group (patients with ER decreased).



Statistical Analysis

All statistical analyses were performed by SPSS software (version 17.0 for Windows). The differences in biological factors between groups were examined by Student t test, chi-square test, or rank-sum test. For the survival analysis, Kaplan–Meier curves were built for OS and DFS analyses. The log-rank test was used to compare survival differences among the groups. Cox proportional hazard models were established to calculate relative risk accounting for covariates.



Ethical approval

According to the Declaration of Helsinki, all the participants signed informed consent. The study was approved by the Ethics Committee of Shengjing Hospital of China Medical University.




Result


Oxygenation of Cancer Tissue Associated With NAC

Among the 43 patients, the numbers of patients with complete remission (CR), partial remission (PR), stable disease (SD), and progressive disease (PD) cancers were 2, 26, 12, and 3, respectively (Table 1). Correction was made to eliminate the effect of NAC on hemoglobin and hematocrit (Figure 1). For CR and PR cancers, there was a decreasing trend in intracanceral oxygen concentrations with the cycle of NAC (Figure 1E). Conversely, oxygen concentrations remained relatively stable in patients with SD and PD cancers (Figure 1J). The level of the oxygen concentrations appeared to be reduced during and after each cycle of NAC but restored to the pre-NAC level before the next cycle of NAC, suggesting that cycling hypoxia might be induced by NAC (Figures 1E, J). The mean intracanceral oxygen concentration in the NAC sensitive group showed a downward trend, whereas the concentration remained stable in the resistant group (p < 0.001) (Figure 1K). The amplitude of the mean oxygen concentration in the resistant group was higher than that in the sensitive group (p < 0.001) (Figure 1L).


Table 1 | Patient characteristics and survival analysis.





Immunohistochemistry

The expressions of ER by immunohistochemistry (IHC) before and after NAC were stable (Figures 2A, B) and decreased (Figure 2C). The expressions of CLDN6 by IHC before and after NAC in patients were increased, stable, and decreased (Figures 2A–C). The expression of ER and CLDN6 with NAC response is shown in Figure 2D.




Figure 2 | Expression of ER and Claudin-6 before and after the neoadjuvant chemotherapy. Each patient has twice immunohistochemical (IHC) results of estrogen receptor (ER) and claudin-6 (CLDN6). The expression of ER before NAC is shown on photo 1 in (A–C). The expression of CLDN6 before NAC is shown on photo 2 in (A–C). The expression of ER after NAC is shown on photo 3 in (A–C). The expression of CLDN6 after NAC is shown on photo 4 in (A–C). (D) The table shows the details of the three patients in (A–C). For CLDN6 before and after NAC, each tissue sample was scored according to its staining intensity (0, none; 1, weak; 2, moderate; 3, strong) multiplied by the point of the percentage of stained cells (0: positive cells = 0; 1: positive cells ≤25%; 2: 26%–50%; 3: 51%–75%; 4: ≥75%). The range of this calculation was 0–12.





Retrospective Survival Analysis and Cox Hazard Assessment

There were 28 patients in the sensitive group (CR+PR) and 15 patients in the resistant group (SD+PD). Significant differences were found in cancer diameter, cancer thrombosis, number of positive nodes and total lymph nodes, and endocrine therapy after NAC between two groups (p < 0.05). With a median follow-up time of 61 months, OS was 95.4% in the sensitive group and 93.3% in the resistant group (p = 0.655). There was no significant difference in median OS time (67 months in the sensitive and resistant groups, p = 0.423). DFS was 85.7% in the sensitive group and 66.7% in the resistant group (p = 0.184). There was no significant difference in median DFS time (67 months in the sensitive group and 66 months in the resistant group, p = 0.258) (Table 1). Meanwhile, no difference was observed in the curves for OS (p = 0.664) or DSF (p = 0.157) between the two groups (Figures 3A, B).




Figure 3 | (A–F) The Kaplan–Meier survival analysis. (G, H) The percentage of patients with different ER change groups in the sensitive and resistant group is shown. (I, J) It showed the percentage of patients with different CLDN6 change group in sensitive and resistant group. (K, L) The percentage of patients with different CLDN6 change groups in different ER change groups is shown.



Among the 43 patients, 25 patients were classified into the ER increased and stable group and 18 patients into the ER decreased group. There were significant differences in the number of positive nodes and the ER expression after NAC between two groups (p < 0.05). With a median follow-up time of 61 months, the 5-year OS rate were 100% in the ER increased and stable group and 88.9% in the ER decreased group (p = 0.092). The median OS time was 67 months in both the ER increased and stable group and ER decreased group (p = 0.049). The 5-year DFS rates were 92.0% in the ER increased and stable group and 61.1% in the ER decreased group (p = 0.015). The median DFS times were 67 months in the ER increased and stable group and 66 months in the ER decreased group (p = 0.006) (Table 1). No difference was observed in the OS curves (p = 0.091) between two groups (Figure 3C), while the difference in the DFS curves was significant (p = 0.013) (Figure 3D).

The numbers of patients in the CLDN6 increased, stable, and decreased groups were 13, 21, and 9, respectively (Table 1). There were significant differences in number of positive nodes, ER expression, and change among the three groups (p < 0.05). With a median follow-up time of 61 months, the 5-year OS rates were 100% in the CLDN6 increased group and CLDN6 stable group and 77.8% in the CLDN6 decreased group (p = 0.017). The median OS times were 67 months in the CLDN6 increased group and CLDN6 stable group and 63 months in the CLDN6 decreased group (p = 0.007). The 5-year DFS rates in the CLDN6 increased, stable, and decreased groups were 100%, 90.5%, and 22.2%, respectively (p < 0.001). The median DFS times were 67 months in the CLDN6 increased group and CLDN6 stable group and 26.75 months in the CLDN6 decreased group (p < 0.001). Significant differences were observed in OS and DSF surviving curves among the groups (p = 0.018, p < 0.001) (Figures 3E, F).

There was no significant difference in the proportion of patients with neither the change of ER (Figures 3G, H) nor the change of CLDN6 (Figures 3I, J) after NAC between the sensitive and resistant groups. There was a significant difference in the proportion of patients with the different ER change among the CLDN6 increased, stable, and decreased groups (p = 0.012) (Figures 3K, L).

There were significant differences in age, histological grade, number of positive nodes, and changes of ER and CLDN6 in cancer progression (all p < 0.05) (Table 2).


Table 2 | The Cox multifactor analysis-related DFS and OS.






Discussion

It has been reported that multiple endogenous factors contribute to affect intracanceral oxygenation, including hemoglobin, carbon dioxide, distribution of microvessels, and respiratory ventilation function; as an ectogenous factor, NAC has periodic and dynamic effects on intracanceral oxygenation (24). The mean intracanceral oxygenation in the present study demonstrated that cycling hypoxia was induced by NAC, regardless of the cancer responses to NAC (Figure 1). Indeed, hypoxia stress has been shown to be a selective pressure for the cancer tissue to induce extracellular matrix remodeling, epithelial–mesenchymal transition, and so on (26). Morphological observations have proved the frequent occurrence of central necrosis due to the lack of effective blood supply (27). Hypoxic selection occurred under conditions of severe cycling hypoxia, leading to treatment resistance (28, 29). We observed a decreasing trend in the mean intracanceral oxygen concentration in the chemotherapy-sensitive group, suggesting that with the shrinking of cancer, the hypoxic area inside the cancer was gradually increasing (Figure 1K). This phenomenon was not evident in the resistant group.

Consistent with a previous study, the response to NAC did not predict the prognosis of the patients with LAC (4). We observed that ER expressions increased (few), stabilized, or decreased after NAC in LAC. Survival analysis showed that patients whose ER expression was decreased after NAC had poorer prognosis compared with patients of increased and stable ER expressions (Figures 3C, D). It has been reported that ER expression is positively correlated with the benefit of long-term endocrine therapy (30). Therefore, we speculated that the poor prognosis of patients with decreased ER expression in this study may be related to the reduced benefit from endocrine therapy. Interestingly, CLDN6 expression was also changed in NAC. Survival analysis suggested that those with a decreased expression of CLDN6 had a poor prognosis with the majority of cases being in the ER decreased group (Figures 3E, F, I). As indicated by Quan, the expression of CLDN6 might be induced by ERα (18). More importantly, NAC induces cancer cycling hypoxia which might be related to the phenotypic drift of cancer; the decrease in ER and CLDN6 could clearly indicate bad prognosis. The COX proportional hazard model of cancer progression suggested that, in addition to age, histological grade, and lymph node status, the change in ER and CLDN6 expression had a significant effect on cancer progression (Table 1). Similar to previous studies, age, histological grade, and lymph were important prognostic factors in LABC (31–33).

We established a hypothesis based on the change in ER and CLDN6 expression in LAC after NAC to illustrate the relationship between the responses to NAC of LAC and the long-term prognosis. The hypoxia area could be shrinking or stable in both sensitive and resistant groups after NAC. As shown in Figure 4, LAC could be sensitive or resistant to NAC. Two trends in the change in ER expression (increased and stable vs. decreased) and three trends in the CLDN6 expression change (increased, stable, and decreased) were observed after NAC. In the theory, we speculated that there were 24 possibilities for LAC after NAC. All the cases with shrinking hypoxic area occurred in the sensitive group; all the cases with stable hypoxic area occurred in the resistant group. Meanwhile, no single case was found in the sensitive or resistant group which demonstrated a decreased ER expression with increased CLDN6 expression. In fact, we only obtained the following 10 possibilities (Figure 4). Furthermore, the proportion of increased or stable ER and CLDN6 expression after NAC was similar and about 67% in the sensitive and resistant groups. Patients in this situation would have good prognosis, and with a median follow-up time of 61 months, the DFS rate was 100% (Figure 4, SA, SB, RA, RB). It was similar with previous studies that the high expression level of ER after NAC might predict a good long-term prognosis from the benefit of endocrine therapy (30, 34). According to our study, the good prognosis in these patients seemed not related to the efficacy of NAC but related to the increased or stable expression of ER and CLDN6 after NAC. Moreover, the decreasing level of ER expression after NAC might influence the benefit level of endocrine therapy (35). Furthermore, the decreasing level of CLDN6 expression after NAC was an important predictor for poor prognosis, regardless of the change in ER expression after NAC (Figure 4, SD, SE, RD, RE). At the same time, the poor prognosis of these patients with decreased CLDN6 expression after NAC was not related to the efficacy of NAC. In addition, the patients with decreased ER and stable CLDN6 expressions had good prognosis in the NAC-sensitive group and poor prognosis in the NAC-resistant group (75% vs. 0%). With the situation of patients with Her2 overexpression or TNBC, the good effect of NAC could transform to good prognosis (3). However, there were only five patients with decreased ER and stable CLDN6 expressions (four in the sensitive group and one in the resistant group), and further research is required to verify the hypothesis. In addition, the change in the level of intracanceral cycling hypoxia represented the proportional relationship between the cancer tissue size and the hypoxia area, and the change of intracanceral cycling hypoxia was related to the efficacy of NAC, but not to the prognosis. In fact, cycling hypoxia is one of the evolutionary dynamics to induce intracanceral heterogeneity (36). It was for the heterogeneous subclone cells to survive from cycling hypoxia which could be distinguished by the expression levels of ER and CLDN6. However, the final expression levels of ER and CLDN6 after NAC were not related to the cycling hypoxia, and the expression changes in ER and CLDN6 after NAC determined the long-term prognosis.




Figure 4 | The model hypothesis based on the change of estrogen receptor (ER) and claudin-6 (CLDN6) expression in luminal A cancer (LAC) after neoadjuvant chemotherapy (NAC) is shown to illustrate the relationship between the responses to NAC of LAC (including hypoxia) and long-term prognosis. The different sizes of the circle show its responses to NAC. The percentage in the circle shows the proportion of patients with this possibility in the sensitive or resistant group. The percentage in the blue block shows the DFS rate of the patients with this possibility.



In general, intracanceral cycling hypoxia could be induced by NAC in LAC, and the pattern of cycling hypoxia might relate to the response of NAC, but not to prognosis. For most of the patients with local advanced LAC, the long-term prognosis had no connection with the response to NAC: about 67% patients would maintain increased or stable ER and CLDN6 expression, benefit from endocrine therapy, and have good prognosis, and about 20% patients with decreasing expression of CLDN6 would undergo the poor prognosis. Besides, only 13% patients’ prognosis was related to the response of NAC, and the patients maintained a stable CLDN6 expression and decreased ER expression. Anyway, the expression changes of ER and CLDN6 after NAC would be an important marker to predict long-term prognosis for the patients with local advanced LAC. Further studies are required to research the relationship among cycling hypoxia, CLDN6, and resistance of endocrine therapy, and prospective trials with a large sample should be carried out to verify the clinical significance of markers. The main limitation of the study was the sample size. A larger sample would have better represented the population we studied. However, we believe that our findings may provide valuable guidance for clinicians in their decision-making in managing patients with luminal-type LABC and lay a foundation in future research in LABC patients undergoing NAC. In the future study, we will increase the sample size and perform puncture again 2 weeks after the first cycle of NAC to determine the effect of NAC on ER and CLDN6 expressions and predict the long-term prognosis of patients undergoing NAC.



Conclusion

The changes in CLDN6 and ER after NAC might be important prognostic factors in local advanced LAC, and the phenotypic drift is closely related to the cycling intracanceral hypoxia induced by NAC.
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