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Editorial on the Research Topic

COVID-19 in CNS and PNS: Basic and Clinical Focus on theMechanisms of Infection and New

Tools for the Therapeutic Approach

The COVID-19 pandemic has had significant implications not only for health but also for
lifestyles and for organizations both in the healthcare sector and in other spheres. Before
December 2019, other coronaviruses had been described that had presented endemically and
in some cases caused epidemics, but none spread to such an extent globally; the COVID-
19 pandemic is reminiscent of other historic epidemics such as the influenza epidemic of the
last century, whose sequelae, including neurological symptoms, were felt for decades (1). Of
the other coronaviruses (CoV) affecting humans, 2 are classified as αCoV (HCoV-229E and
HKU-NL63) and 4 as βCoV (HCoV-OC43, HCoV-HKU1, SARS-CoV, and MERS-CoV). SARS-
CoV and MERS-CoV caused severe infections both in healthy individuals and in people with
immune deficiencies, and were associated with high mortality rates, whereas the others are
associated with seasonal outbreaks of flu-like symptoms with relatively limited capacity for
transmission. However, all of these viruses have either been associated with neurological symptoms
or been detected in biological samples taken from the central nervous system (CNS) (2, 3).
On 31 December 2019, the World Health Organization reported a novel CoV (SARS-CoV-2)
in patients with pneumonia in the city of Wuhan, in the Chinese province of Hubei, which
spread rapidly through the rest of the world. The novel virus is a βCoV and bears considerable
similarity to SARS-CoV. The main structural differences between SARS-CoV and SARS-CoV-
2 are observed in the fusion protein and in accessory proteins, particularly ORF3b and ORF8.
As is the case with SARS-CoV, subunit 1 of the novel coronavirus fusion protein also binds
to the ACE2 receptor, hence the name SARS-CoV-2 (4). It has been suggested since early in
the pandemic that the virus may have direct and indirect effects on the CNS (5), with many
researchers and authors beginning to analyze a pandemic with worldwide effects; an enormous
amount of information has been generated, largely due to the scientific community’s desire for
progress. However, much of this information is from case reports, anecdotal series, and many
speculative articles based more on opinion than experimentation (6). Despite the great efforts
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to generate evidence to enable advances in our understanding of
the virus and associated disease, much speculation remains today
with regard to the evidence. Such aspects as its epidemiology,
transmission factors, and the impact of mass vaccination are
conditioned by data from studies that present considerable bias
(7) and are not evidence-based.

Since the beginning of the pandemic, there has been debate
as to whether SARS-CoV-2 is able to enter the CNS and
cause neurological symptoms, trigger or promote pre-existing
neurological disease, or remain latent in the brain, making the
organ a viral reservoir (5). The study of the potential routes by
which the virus enters the CNS (i.e., the hematogenous route or
the neuronal route), facilitating this penetration, also constitute
an interesting area of research (8, 9) analyzing whether the virus
accesses the CNS by infecting endothelial or epithelial cells of
the blood-brain barrier; by dissemination from nearby areas; or
by axonal transport after infecting neurons in the peripheral
nervous system. Another subject of debate is the frequency
of neurological symptoms associated with the acute infection
(10, 11) and their association with the CNS (12), and associated
neurological disorders such as stroke (13, 14) and neuromuscular
involvement (15). Furthermore, there is an interesting debate as
to whether the virus can trigger neurological disease, for example
neurodegenerative disease, in the long term (it has been suggested
that the infection may increase the risk of Parkinson’s disease
or Alzheimer’s disease), and by which mechanisms (16, 17), and
whether it may facilitate age-related transcriptome or molecular
changes (18). Finally, there is controversy regarding the so-called
persistent COVID-19 or post–COVID-19 syndrome, referring to
symptoms persisting for 3 months after the acute infection, with
particular emphasis on cognitive symptoms (19). A recent Delphi
consensus study conducted by the World Health Organization
establishes 3 major criteria for diagnosing post–COVID-19
condition, 2 of which are based on the presence of neurological
symptoms: fatigue and cognitive alterations (20).

The special issue “COVID-19 in CNS and PNS: Basic
and Clinical Focus on the Mechanism of Infection and New
Tools for the Therapeutic Approach” includes valuable articles
addressing these debates, contributing evidence to expand our
understanding of the disease and its impact on the CNS.

CONTRIBUTIONS ON NEUROLOGICAL
SYMPTOMS DURING THE ACUTE PHASE

Several articles have contributed new information on
neurological manifestations of COVID-19. For instance,
Yan et al. analyze neurological symptoms in a retrospective
series of 1,682 patients from Wuhan, with 30.3% presenting
neurological symptoms (12.8% with headache). Tsai et al.
reviewed 79 studies, selecting 63 for inclusion in a meta-
analysis. These researchers report olfactory alterations in 35%
of patients, headache in 10.7%, and stroke in 8.1%. Kushwaha
et al. conducted a cross-sectional study analyzing data from 358
patients with neurological symptoms, 69 of whom had suspected
SARS-CoV-2 infection, and evaluate the impact of the infection
at a center primarily attending neurological patients. Pinzon et al.

reviewed 280 studies, selecting 33 for meta-analysis, and report
neurological alterations such as myalgia in 19.2% of patients,
headache in 10.9%, and stroke in 4.4%; they also review the
frequency and characteristics of neurological symptoms during
the pandemic. Fiani et al. present an extensive review addressing
the impact of neurological manifestations and the underlying
mechanisms. The article by Gori et al. specifically studies the
frequency and pathogenesis of anosmia, taking a very broad
approach, analyzing the possible pathogenic mechanisms and
addressing the current controversies; Mathew also contributes
an interesting article on anosmia. Hwang et al. analyzed the
presence of seizures during SARS-Cov-2 infection in 4 of their
own patients and review the literature on the subject, whereas
Waters et al. describe the incidence of electroencephalographic
seizures. Zito et al. analyzed Guillain-Barré syndrome in patients
with COVID-19 in a case report and meta-analysis of 29
articles. Jungbauer et al. analyze vocal cord palsy associated
with SARS-CoV-2 infection. The study by Varela Rodríguez
et al. addresses neuropsychiatric symptoms in patients with
COVID-19 and history of alcohol abuse. Román et al. present a
comprehensive clinical review of transverse myelitis associated
with COVID-19 and vaccination against the disease, a highly
informative contribution. Severa et al. discuss treatment with
interferon beta in the context of COVID-19. Together, these
articles offer a panoramic view of the neurological symptoms
associated with COVID-19.

CONTRIBUTIONS ON THE MECHANISM
OF CENTRAL NERVOUS SYSTEM
INVASION

This special issue includes several key articles. Huang et al.
review the association between biological and molecular factors
associated with the viral infection and their potential effects
on the CNS. They propose the murine hepatitis virus as a
model for studying the role of coronaviruses in the CNS;
Sanclemente-Alaman et al. also highlight this model in their
review of experimental models of SARS-CoV-2. Wang et al.
review the action mechanisms of viruses affecting the CNS
in an article on neurological symptoms of COVID-19 and
offering an overview of the clinical manifestation and infection
mechanisms. Reza-Zaldívar et al. analyze specific mechanisms
associated with SARS-CoV-2. Gomes de Assis et al. address the
underlying mechanisms of neurological symptoms associated
with COVID-19 after reviewing 484 articles according to a
pre-established methodology addressing different fields, such
as host factors, immune mechanisms, and virology. This
comprehensive study presents both experimental and clinical
data. Guadarrama-Ortiz et al. conducted an exhaustive review
of neurological manifestations, viral entry routes, and potential
immune and virological mechanisms, discussing a broad range
of potential neurological alterations affecting both the central
and the peripheral nervous systems. This interesting review
presents an overview of the relationship between SARS-CoV-
2 and neurological symptoms. The virus is very difficult to
detect or undetectable in the cerebrospinal fluid of patients
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with SARS-CoV-2 infection, even in those with encephalitis,
according to the transcriptome analysis of cerebrospinal fluid
samples by Placantonakis et al.; Pacheco-Herrero et al. studied
neuropathological aspects of the infection.

CONTRIBUTIONS ON HOST FACTORS
AND THE RISK OF NEUROLOGICAL
DISEASE

Bhaskar et al. comprehensively review the immune response
associated with SARS-CoV-2 infection, placing special emphasis
on the cytokine storm, as well as immunosenescence, and the
role of these mechanisms in complications. Severa et al. analyzed
the possible relationship between the use of interferon beta and
the risk of infection, as well as the drug’s role in the clinical
course of the disease, considering its potential therapeutic role
in COVID-19, as occurred in previous coronavirus epidemics.

CONTRIBUTIONS ON NEUROLOGICAL
SEQUELAE AFTER ACUTE SARS-COV-2
INFECTION AND PERSISTENT COVID
SYNDROME

D’Arcy et al. discuss the long-term consequences of the infection.
Fiani et al. analyzed persistent neurological symptoms after the
infection, calling attention to the need for guidelines addressing
sequelae of stroke, intracranial infections, and muscle damage, as
well as nutrition-related issues.

MOVING TOWARD A BETTER
UNDERSTANDING OF THE EFFECTS OF
SARS-COV-2 ON THE CNS AND THEIR
LONG-TERM IMPLICATIONS

It remains to be determined whether the virus or its RNA can
remain within structures of the CNS or whether it may remain
latent or cause disease in the long term; therefore, there is a
clear need for necropsy studies (21, 22). It also seems important
to identify any areas of the CNS that may present greater
vulnerability to infection (though the hippocampus and basal
ganglia have been suggested), whether some CNS cells present
greater susceptibility to viral structures, and whether the virus or
its RNA may be transported by such cell substructures as vesicles
or exosomes. It is also unclear whether existing lesions, such as
demyelinating plaques in multiple sclerosis, may facilitate the
entry of the virus and serve as viral reservoirs. The impact of
different types of vaccine on viral invasion of the CNS is another
area where further study is needed. The effects of SARS-CoV-2 on
the brain constitute a new challenge for neuroscientific research
(23), in which we may only advance with the greatest possible
quantity of information, like that included in this special issue.
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Objective: Review and integrate the neurologic manifestations of the Coronavirus

Disease 2019 (COVID-19) pandemic, to aid medical practitioners who are combating

the newly derived infectious disease.

Methods: We reviewed the clinical research, consisting of mainly case series, on

reported neurologic manifestations of COVID-19. We also reviewed basic studies to

understand the mechanism of these neurologic symptoms and signs.

Results: We included 79 studies for qualitative synthesis and 63 studies for

meta-analysis. The reported neurologic manifestations were olfactory/taste disorders

(35.6%), myalgia (18.5%), headache (10.7%), acute cerebral vascular disease (8.1%),

dizziness (7.9%), altered mental status (7.8%), seizure (1.5%), encephalitis, neuralgia,

ataxia, Guillain-Barre syndrome, Miller Fisher syndrome, intracerebral hemorrhage,

polyneuritis cranialis, and dystonic posture.

Conclusions: Neurologic manifestations in COVID-19 may alert physicians and medical

practitioners to rule in high-risk patients. The increasing incidence of olfactory/taste

disorders, myalgia, headache, and acute cerebral vascular disease renders a possibility

that COVID-19 could attack the nervous system. The cytokine secretion and bloodstream

circulation (viremia) are among the most possible routes into the nervous system.

Keywords: COVID-19, pandemic, neurologic, headache, taste, olfactory, ACE2, cytokine

INTRODUCTION

COVID-19 first occurred in late 2019 in Wuhan, China (1). As of May 01, 2020, the COVID-19
pandemic had infected 3,291,008 worldwide and caused 232,478 deaths (data from the World
Health Organization). The most common clinical symptoms are cough, sputum production,
fatigue, shortness of breath, and mainly respiratory tract symptoms. However, an increasing
number of cases have presented with neurologic manifestations, such as olfactory and taste
disorders (2), and the phenomenon requires further attention.

COVID-19 is a new RNA virus strain from the family Coronaviridae (including the Middle
East respiratory syndrome CoV [MERS-CoV] and severe acute respiratory syndrome CoV
[SARS-CoV]). Phylogenetic analysis of the complete viral genome revealed that the virus was most
closely related (89.1% nucleotide similarity) to a group of SARS-like coronaviruses (3). As such, it
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was previously termed SARS-CoV-2. In the review article
published in 2018 (4), researchers found that the human
coronavirus can enter the central nervous system through
the olfactory bulb, causing demyelination and inflammation
(cultured glial cells have been described to secrete cytokines
including IL-6, IL-12p40, IL-15, TNF-a, CXCL9, and CXCL10
upon viral infection). The authors of a recent article (5)
investigated the mechanism of COVID-19 nervous system
involvement, and they stated that similar to SARS-CoV, the
COVID-19 virus exploits the angiotensin-converting enzyme 2
(ACE2) receptor to gain entry inside the cells. The brain has
been reported to express ACE2 receptors that have been detected
over glial cells and neurons, which makes them a potential target
of COVID-19. Recently, the research team in Harvard Medical
School identified three main cells co-expressing ACE2 and
TMPRSS2 (Type II transmembrane serine protease): lung type
II pneumocytes, ileal absorptive enterocytes, and nasal goblet
secretory cells (6). And the other research team used single-cell
RNA-Seq datasets to suggest possible mechanisms through which
CoV-2 infection could lead to anosmia or other forms of olfactory
dysfunction (7).

METHODS

We searched theMEDLINE, CENTRAL, and EMBASE databases
for eligible publications from December 2019 to April 30, 2020
written in English, using the following keywords: COVID-
19, SARS-CoV-2, neuro, clinical, characteristics, manifestations.
We also checked the reference lists of relevant studies to
identify any missing publications. We reviewed the clinical
researches, including case series and case reports, for neurologic
manifestations of COVID-19 and organized them into tables. A
confirmed case of COVID-19 (SARS-CoV-2) was defined and
mostly diagnosed using the triple algorithm (epidemiological
history, clinical symptoms, and laboratory or radiological
findings) as a standard procedure proposed by the World Health
Organization. We also reported data from the Taiwan Centers
for Disease Control until May 01, 2020. Then we did the meta-
analysis of all the case series to pool the data together and make
it easier to understand. We used the software of Comprehensive
Meta-Analysis Software (CMA), version 3, and chose the model
of one group event rate, random effect, to draw the Forest Plot
(Supplementary Figures 2–8).

RESULTS

We used Preferred Reporting Items for Systematic reviews
and Meta-Analyzes (PRISMA) guidelines for searching and
listed our flowchart (Supplementary Figure 1). Then we
made a list of the neurologic manifestations in the current
COVID-19 pandemic (Table 1). We included 9 case series and
4 case reports of olfactory or taste disorders. We pooled the
case series together and found around 35.6% of patients got
these symptoms (Supplementary Figure 2). We included 43
studies of myalgia, about 18.5% of patients had this symptom
(Supplementary Table 1 and Supplementary Figure 3).

And 45 studies of headache, the percentage was 10.7%
(Supplementary Table 2 and Supplementary Figure 4); 2
studies of acute cerebral vascular disease, the percentage was
8.1% (Supplementary Figure 5); 7 studies of dizziness, the
percentage was 7.9% (Supplementary Figure 6); 4 case series
and 2 case reports of altered mental status, the percentage was
7.8% (Supplementary Figure 7); and 2 studies of seizure, the
percentage was 1.5% (Supplementary Figure 8). And still other
case reports of encephalitis, neuralgia, ataxia, Guillain-Barre
syndrome, Miller Fisher syndrome, intracerebral hemorrhage,
polyneuritis cranialis, and dystonic posture.

In addition, we reviewed some basic studies (4, 5, 44, 45) to
determine the mechanism of these neurologic symptoms and
signs. The cartoon figure summarized the possible mechanism
(Figure 1).

DISCUSSION

The COVID-19 pandemic is currently progressing, and
neurologists and medical practitioners worldwide will face
additional challenges from the neurologic complications of the
disease (46). An updated review focusing on the neurologic
features may help clinicians early identify potential patients.

Interestingly, previous coronavirus infections, including
MERS and SARS, did not have a large proportion of patients
with olfactory and taste disorders (47). However, patients with
COVID-19 frequently complain of abnormalities in smell and
taste. In our analysis of data from Taiwan (9), we found
that between January 21 and March 24, 2020, a total of 216
patients were confirmed to have COVID-19 infection, and
5 of them (2.3%) had olfactory or taste disorders. Between
March 25 and May 01, 48 cases in 213 patients (22.5%) had
olfactory or taste disorders. In the beginning, most COVID-19
patients had a contact history related to Wuhan. But after the
government of China locked down many big cities, Taiwan’s
COVID-19 cases mostly originated from travelers from Europe,
the Middle East, or the United States. Besides, according
to 88 cases series (see Supplementary Tables 1, 2) in China
(from December 2019 to April 25, 2020), only one study (2)
conducted by neurologists in Wuhan reported olfactory or
taste disorder.

On the other hand, an Italian researcher reported that 33.9% of
COVID-19 patients in Italy experienced this problem (8). In the
Middle East, researchers in Iran found a surge in the outbreak of
olfactory dysfunction during the COVID-19 epidemic (based on
an online checklist of 10,069 voluntary cases between March 12
and 17, 2020) (48). The different incidence of the olfactory and/or
taste dysfunction by the timing and geographic distribution
might reveal important information that the virus may carry
the potential to alter its affinity to the central nervous system
(49–51). However, the possibilities of a higher detection rate
of olfactory dysfunction in patients diagnosed by certain sub-
specialists, such as neurologists (2) or otolaryngologists, cannot
be completely excluded. For example, the study conducted by
otolaryngologists (17) found olfactory/taste disorders in more
than 80% of the patients.
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TABLE 1 | List of the neurologic manifestations in the current COVID-19 pandemic.

Neurologic manifestation Patient numbers

(% in total participants)

Total

participants

Age:

mean [SD] or median [IQR]

Published journal reference

With olfactory or/and taste disorders 20 (33.9%) 59 60 [50–74] Clin Infect Dis (8)

53 (12.4%) 429 32 [4–88] Taiwan CDC (9)

128 (75.7) 169 43 [34–54] Int Forum Allergy Rhinol (10)

25 (20%) 126 43.5 [3–87] Trav Med Infect Dis (11)

62 (19.4%) 320 No data Laryngoscope (12)

31 (39.2%) 79 61.6 [17.4] Eur J Neurol (13)

130 (64.4%) 202 56 [45–67] JAMA (14)

1 Case report 80 Eur J Case Rep Intern Med (15)

1 Case report 50 Neurology (16)

Olfactory disorder only 3 (5.1%) 59 60 [50–74] Clin Infect Dis (8)

11 (5.1%) 214 52.7 [15.5] JAMA Neurol (2)

357 (85.6%) 417 36.9 [11.4] EUR ARCH OTO-RHINO-L (17)

1 Case report 85 Eur J Case Rep Intern Med (15)

Taste disorder only 5 (8.5%) 59 60 [50–74] Clin Infect Dis (8)

12 (5.6%) 214 52.7 [15.5] JAMA Neurol (2)

342 (82%) 417 36.9 [11.4] EUR ARCH OTO-RHINO-L (17)

1 Case report 39 Neurology (16)

Dizziness 1 (12.5%) 8 48.1 [13–76] Clin Infect Dis (18)

13 (9.4%) 138 56 [42–68] JAMA (19)

37 (8.1%) 452 58 [47–67] Clin Infect Dis (20)

21 (8%) 274 62 [44–70] BMJ (21)

5 (7%) 69 42 [35–62] Clin Infect Dis (22)

1 (4.17%) 24 32.5 [5–95] Sci China Life Sci (23)

2 (2%) 81 49.5 [11] Lancet (24)

Altered mental status 9 (52.9%) 17 86.5 [68.6–97.] J Infect (25)

9 (9%) 99 55.5 [21–88] Lancet (26)

1 (5.9%) 17 75 [48–89] J Med Virol (27)

3 (0.7%) 452 58 [47–67] Clin Infect Dis (20)

1 Case report No data Radiology (28)

1 Case report 74 J Med Virol (29)

Seizure 1 (4.8%) 21 70 [43–92] JAMA (30)

1 (0.5%) 214 52.7 [15.5] JAMA Neurol (2)

Acute cerebrovascular disease 3 (23%) 13 63 N Engl J Med (31)

6 (2.8) 214 52.7 [15.5] JAMA Neurol (2)

5 No data 40.4 [5.6] N Engl J Med (32)

Neuralgia 5 (2.3%) 214 52.7 [15.5] JAMA Neurol (2)

Ataxia 1 (0.5%) 214 52.7 [15.5] JAMA Neurol (2)

Guillain-Barre syndrome 5 (0.4%) 1,000–1,200 No data N Engl J Med (33)

1 Case report 61 Lancet Neurol (34)

1 Case report 65 J Clin Neurosci (35)

1 Case report 71 Neurol Neuroimmunol

Neuroinflamm (36)

Encephalitis 1 Case report 24 Int J Infect Dis (37)

1 Case report 56 Travel Med Infect Dis (38)

1 Case report 74 Cureus (39)

1 Case report No data Brain Behav Immun (40)

1 Case report 41 Brain Behav Immun (41)

Intracerebral hemorrhage 1 Case report 79 New Microbes New Infect (42)

Miller Fisher Syndrome 1 Case report 50 Neurology (16)

Polyneuritis cranialis 1 Case report 39 Neurology (16)

Sustained upward gaze, dystonic bilateral

leg extension and altered responsiveness

1 Case report 6 week Neurology (43)
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FIGURE 1 | Neurological Manifestations of COVID-19 and the proposed mechanism. The COVID-19 virus may cause neurologic manifestations by cytokines

secretion, general circulation (viremia), or direct invasion via the numerous ACE2 receptors in the olfactory epithelium. The olfactory disorder may cause by the

olfactory epithelium damage. Fever was believed to be caused by the effect of cytokines or hypothalamus functional pertubation. The seizure may cause by cytokines

storm, severely illed condition, or the brain parenchyma involvement, especially the mesial temporal lobe. Altered mental status may be a consequence of multiple

organ failure, severe infection, or brainstem involvement. Headache is caused by meningeal irritation.

Fever is generally known as an elevation in body temperature
caused by a cytokine-induced upward displacement of the
set point of the hypothalamic thermoregulatory center. Small
elevations in body temperature appear to enhance immune
function and inhibit pathogen growth (52). In 2005, pathologists
in Beijing performed autopsies of SARS patients and found
signals of the SARS viral genome detected in numerous neurons
in the hypothalamus (53). As a result, it is conceivable that fever
may be caused mainly by the effect of cytokines or possible direct
viral invasion to the hypothalamus.

Concerning seizure in viral infection, generally the
paroxysmal spell may be a consequence of multiple
complications of systemic disease, such as metabolic
disturbances, hypoxia, etc. Considering the viral encephalitis, it
frequently manifests with seizures in its acute phase (54). The
most widely reported virus was HSV-1 (herpes simplex virus),
which involves the highly epileptogenic mesial temporal lobe
structures, including the hippocampus (54). In the two case
reports (37, 39), both had mesial temporal lobe involvement
(one by acute inflammation, one by previous ischemic stroke).
Since the case number is limited, we can only speculate that

seizures may be caused by the generalized poor condition,
cytokine storm (55), or mesial temporal lobe involvement in
severe COVID-19 patients.

Several countries are currently encountering a crisis of
ventilator shortage. The respiratory failure of COVID-19 infected
patients may be partly related to brainstem failure. The COVID-
19 virus passes into the cell via the ACE2 receptor (5). ACE2
is expressed in the brain and is mainly found in the brainstem,
specifically in the nuclei associated with cardio-respiratory
control (56, 57). In the previous research on SARS-CoV-1 and
MERS-COV, the brainstem was severely infected, which possibly
contributes to the degradation and failure of respiratory centers
(45). Besides, the ascending reticular activating system (ARAS),
which is responsible for human consciousness, also originates
from the brainstem (and then advances into the thalamus
and cortex) (58). This may partly explain the altered mental
status of COVID-19 patients. However, the maintenance of
consciousness is complex. Consideringmany COVID-19 patients
were severely ill with multi-organ failure, both the cytokine effect
and systemic impact of organ dysfunction can also lead to the
consciousness disturbance.
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Both dizziness and headache are considered to be general non-
specific symptoms. Etiologies attributed to infectious causes are
important secondary causes of headache (59). It is known that
cytokines induced by viral infection increase the permeability of
vessels. This causes cerebral swelling and meningeal irritation.
The meningeal irritation stimulates the trigeminal nerve
terminals and triggers pain sensation (60).

Ischemic stroke also occurs in COVID-19 patients because the
infection may cause D-dimer elevation, thrombocytopenia, and
hypercoagulable state (61–66). Besides, the exaggerated systemic
inflammation or a “cytokine storm” (55), cardioembolism from
virus-related cardiac injury (67) could further increase the risk of
stroke (68).

Most cases of Guillain-Barre syndrome appeared
with a lag time from the primary infection of COVID-
19 (33, 34); the pathogenesis is therefore likely to be
postinfectious immune-mediated.

This review is obviously constrained by the current
information and limited reports. And there was considerable
heterogeneity in the data. In addition, the researches of the
novel pandemic emerge fastly. We could only review the results
up to April 30, 2020 in this regard. The cause of neurologic
manifestation may be a cytokine storm, multiple organ failure,
or direct viral infection. However, the detailed pathophysiology
of causing COVID-19 nervous system involvement remains to
be elucidated. We sincerely hope the review can help the first line
clinicians identify the emerging neurologic manifestations when
combating the viral pandemic.
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Importance: Coronavirus disease 2019 (COVID-19) is a newly emerging infectious

disease that has caused a global pandemic. The presenting symptoms are mainly

respiratory symptom, yet studies have reported nervous system involvement in the

disease. A systematic review and meta-analysis of these studies are required to

understanding the neurologic characteristic of the disease and help physicians with early

diagnosis and management.

Objective: To conduct a systematic review and meta-analysis on the neurologic

characteristics in patients with COVID-19.

Evidence Review: Authors conducted a literature search through PubMed from

January 1st, 2020 to April 8th, 2020. Furthermore, the authors added additional

sources by reviewing related references. Studies presenting the neurologic features of

COVID-19 patients in their data were included. Case reports and case series were also

included in this review. The quality of the studies was assessed based on the Oxford

Center for Evidence-Based Medicine guidelines. Selected studies were included in the

meta-analysis of proportion and the heterogeneity test.

Finding: From 280 identified studies, 33 were eligible, with 7,559 participants included.

Most of the included studies were fromChina (29 [88%]). Muscle injury or myalgia was the

most common (19.2%, 95%CI 15.4–23.2%) neurologic symptom of COVID-19, followed

by headache (10.9%, 95%CI 8.62–13.51%); dizziness (8.7%, 95%CI 5.02–13.43%);

nausea with or without vomiting (4.6%, 95%CI 3.17–6.27%); concurrent cerebrovascular

disease (4.4%, 95%CI 1.92–7.91%); and impaired consciousness (3.8%, 95%CI

0.16–12.04%). Underlying cerebrovascular disease was found in 8.5% (95%CI

4.5–13.5%) of the studies.

Conclusion: Neurologic findings vary from non-specific to specific symptoms in

COVID-19 patients. Some severe symptoms or diseases can present in the later stage

of the disease. Physicians should be aware of the presence of neurologic signs and

symptoms as a chief complaint of COVID-19, in order to improve management and

prevent a worsening outcome of the patients.

Keywords: COVID-19, symptoms, characteristics, neurologic, review, meta-analysis
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INTRODUCTION

In December 2019, three patients with pneumonia were observed
and linked to the outbreak of respiratory infection cases detected
from Wuhan, China. Later on, the cause of pneumonia was
found to be a viral infection known as novel coronavirus disease
(COVID-19). In March 2020, the World Health Organization
(WHO) declared COVID-19 as an emerging infectious disease
caused by the virus SARS-CoV-2 (severe acute respiratory
syndrome coronavirus 2) and declared a global pandemic. As of
April 7, 2020, globally reported cases are 1.279.722 confirmed
cases with more than 70.000 deaths (1, 2).

The disease’s main presentations are usually similar to
symptoms of upper respiratory tract infection such as fever, dry
cough, and myalgia or malaise. In severe cases, manifestations
of pneumonia such as shortness of breath (dyspnea), abnormal
lung imaging findings, and acute respiratory distress syndrome
(ARDS) can be found (3). Multiple studies have also reported
the nervous system involvement in the disease. A retrospective
study in China found that over 36.4% of hospitalized patients had
neurologic symptoms and that these commonly present in severe
patients (4, 5).

Studies also suggested that physicians should be aware of
the other system involvement, including neurological events, to
reduce mortality and morbidity rate in affected individuals. This
review aims to provide a systematic report of the neurologic
characteristics in patients with COVID-19 based on the latest
reported studies.

METHODS

Literature Searching
We performed a systematic literature review, followed by
meta-analysis, of the available studies from one scientific
database (PubMed), published from January 1st, 2020, to April
8th, 2020, using Preferred Reporting Items for Systematic
Reviews and Meta-analyses (PRISMA) reporting guideline. The
following inclusion criteria were: (1) original studies (e.g.,
randomized controlled trial studies, cohort studies, case-control
studies, cross-sectional studies, case reports, and case-series) on
patients with COVID-19; (2) Studies with a focus on clinical
manifestations or symptoms in patients with COVID-19; and (3)
The literature was restricted to English language articles only.
We excluded the following studies: non-original articles, such
as review articles including meta-analyses, letters, comments, or
consensus documents (6).

We included clinical characteristics studies as long as they
contained neurologic data of COVID-19. As the disease is an
urgent topic and a newly emerging disease, we also included case
reports or case series in the review.

Two co-authors (V.O.W andA.A) independently screened the
titles in each study from the search results for eligibility. Each of
the abstracts were examined when eligibility was not clear from
the title. The search was performed by using terms “COVID-
19” AND “characteristics,” as well as their derivations from the
selected articles. We minimized our search keywords to expand
our findings and to obtain more studies. We prioritized our

aim to collect the neurological characteristics data of the disease.
Finally, additional articles were added based on the bibliography
of the articles retrieved through the outlined search strategy and
were manually screened to refine this review.

Data Extraction
Two independent reviewers (P.N.N and R.B.B) then assessed
the text articles that passed the first screening process to ensure
their eligibility and compliance with inclusion and exclusion
criteria. Then, the reviewers identified every article bibliography,
within each document that discussed the clinical characteristics
in COVID-19, and specifically searched for the neurologic
characteristics in the text, to be added into the additional records.
When the reviewers could not reach consensus, the main author
would assess the review relevance for a final decision.

The following data were recorded and tabulated from all
reviewed articles: author names, study design, country location,
study group, age, neurologic symptoms, key findings, and
study limitations.

Study Quality Assessment
We assessed the quality of each study using The Oxford Center
for Evidence-Based Medicine Quality ratings. The ratings ranged
from 1 to 5, with 1 representing properly powered and adequate
randomized controlled trial (RCT) and 5 representing opinions
and case reports (7).

Analysis
We conducted the meta-analysis with prevalence estimates, that
had been transformed using the Freeman-Tukey transformation
(arcsine method), to calculate the weight proportion under the
random-effects model. A pooled prevalence figure was calculated
with 95%CI. The pooled prevalence of neurologic manifestations
was estimated from the reported prevalence of eligible studies.
Forest plots were generated, displaying prevalence for each study.
The overall random-effects pooled estimate with its CI was
reported. We limited the articles included in the meta-analysis
to those manifestations that were present in more than one study
and excluded the case reports (8).

The meta-analysis was performed using a random-effects
model to account for heterogeneity. Heterogeneity between
estimates was assessed using the I2 statistic, which describes the
percentage of variation not because of sampling error across
studies. An I2 value above 75% indicates high heterogeneity.
Statistical significance was declared at I2 > 50% and p<0.05. The
analysis was done using MedCalc V.19.2.0 software (8).

RESULTS

Methodological Quality of Included Studies
Most of the studies included were observational studies. Of the
33 included studies, 19 (58%) were cohort studies, 10 (30%) were
retrospective case series or cross sectional studies, and four (12%)
were case reports. Individual study quality ratings are presented
in Supplementary Table 1.

Frontiers in Neurology | www.frontiersin.org 2 May 2020 | Volume 11 | Article 56518

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Pinzon et al. Neurologic Characteristics in COVID-19

Study Results and Patient Characteristics
Initially, we identified 280 studies acquired from the database
and additional records, of which 169 were excluded because of
duplication and a review of the titles and abstract. Additional
articles were identified in the reference lists of included studies.
We screened the full text of 111 studies for relevance and
excluded 78. Finally, 33 papers were selected for final review.
Figure 1 shows the PRISMA flow diagram for studies included
in the review. A total of 7,559 patients were included. The total
number of patients in each study ranged from 5 to 1,590, except
for the case reports. The mean age of eight studies ranged from
34.9 to 55.5 years, median age of 20 studies ranged from 32.5 to
73.5 years, and 4 case reports studies ranged from 24 to 74 years.
Most of the included studies were from China, with 29 studies
(7,528 cases), followed by the United States (US) with 2 (2 cases),
Japan with 1 (1 case), and South Korea with 1 (28 cases).

Thirty-one studies (3, 4, 9–37) used reverse transcription-
polymerase chain reaction (RT-PCR) as a laboratory-confirmed
diagnosis for COVID-19, and one study (38) used RT-PCR and
clinical-confirmed diagnosis. Of the remaining study, one study
(5) did not mention the diagnosis method. Twenty-five studies
(3–5, 9, 11–25, 27–31, 38) reported the specimens for laboratory

testing were obtained from a throat swab. Others were from
sputum, with four (15–17, 37) from a nasopharyngeal swab
and two (4, 37) from a cerebrospinal fluid (CSF) sample (26).
Six studies (10, 32–36) did not report the specimen used. Five
studies (4, 14–16, 37) used more than one type of specimen
collected. Supplementary Table 1 summarizes the characteristics
of included studies.

Neurologic Manifestations in COVID-19
Studies have identified the presence of neurological symptoms
in COVID-19 patients. These manifestations were then grouped
into several categories based on their symptoms, including
nonspecific symptoms, specific symptoms, consciousness
disturbance, and skeletal muscle problems. One study (5)
particularly examined the neurologic manifestations in COVID-
19, with the prevalence of nervous system disease at 36.4% from
214 patients. As for onset, most neurologic symptoms occurred
in the early stages of disease (median time, 1–2 days), apart from
stroke and impaired consciousness (median time, 8–9 days).
The prevalence of neurologic manifestations as reported in these
studies are shown in Supplementary Table 1. The overall results

FIGURE 1 | Search algorithm for reviewed articles.
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TABLE 1 | Results of meta-analysis of prevalence based on each neurological manifestation.

Variables Number of studies Prevalence (%) 95% CI (a) Pooled sample size I2 (b) p-value

Headache 21 10.9 8.62–13.51 6,486 87.8% <0.0001

Dizziness 6 8.77 5.02–13.43 1,088 81.7% <0.0001

Nausea with/without Vomiting 13 4.6 3.17–6.27 5,410 82.8% <0.0001

Cerebrovascular disease 2 4.4 1.92–7.91 435 58.8% 0.1195

Consciousness Disturbance 2 3.8 0.16–12.04 3,848 94.8% <0.0001

Muscle Problem 25 19.2 15.4–23.2 6,498 92.6% <0.0001

Cerebrovascular disease comorbidity 13 8.5 4.5–13.5 4148 95.5% <0.0001

95% CI: 95% Confidence Interval.

I2 Index for the degree of heterogeneity.

of the meta-analysis of neurologic characteristics proportions are
shown in Table 1.

Non-specific Neurologic Manifestations
The primary manifestations of COVID-19 are typically
respiratory symptoms. However, physicians have found
neurological symptoms at the time of diagnosis as an initial
symptom(s). Non-specific symptoms may lead to difficulty of
diagnosis when it is the only symptom presented, therefore
a differential diagnosis should always be considered to avoid
delayed or misdiagnosis.

Headache was one of the most common neurologic symptoms
in COVID-19 after myalgia, which will be discussed in a later
section. Twenty-one studies (3–5, 9, 10, 12–16, 19–21, 23, 27, 28,
30, 33, 35, 37, 38) reported the prevalence of headache ranging
from 3.5 to 34% among COVID-19 patients in their baseline
characteristics. The overall pooled prevalence of headache was
10.9% (95%CIs: 8.62–13.51) with a high level of heterogeneity (I2

= 87.8%) from 21 studies with a total number of 6,486 total cases
(Table 1). A forest plot of prevalence (%) of headache is included
in Figure 2. These findings may be indicative that headache can
be found in the early stages of the disease. A retrospective study
(37) described that headache was more common among patients
with aggravation of illness during follow up (19 vs. 14.6%).

Dizziness was reported in 6 studies (5, 11, 13, 16, 19, 27).
The overall pooled prevalence of dizziness was 8.77% (95% CIs:
5.02–13.43) with a high level of heterogeneity (I2 = 81.7%)
from six studies, with a total number of 1088 total cases
(Table 1). Forest plot of prevalence (%) of dizziness is included in
Figure 3. In one study, dizziness (16.8%) was the most common
central nervous system manifestation of COVID-19 followed by
headache (13.1%). Dizziness and headache were often observed
in earlier disease as typical symptoms of COVID-19 (5).

Nausea with or without vomiting was reported in 13 studies
(4, 12, 13, 16, 17, 19–21, 27, 30, 34, 37, 38) with the prevalence
ranging from 1.25 to 8.7%, although vomiting without nausea
was reported in one study among non-critically ill patients. The
overall pooled prevalence of nausea with or without vomiting was
4.6% (95% CIs: 3.17–6.27), with a high level of heterogeneity (I2

= 82.8%) from 13 studies with a total number of 5410 total cases
(Table 1). The prevalence forest plot (%) of nausea is included
in Figure 4.

FIGURE 2 | Proportion estimates of headache in COVID-19 patients.

FIGURE 3 | Proportion estimates of dizziness in COVID-19 patients.

Most of the studies were conducted during the outbreak
period of COVID-19. Therefore, advanced imaging and
diagnostic procedures such as magnetic resonance imaging
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(MRI) and electroencephalography (EEG) were avoided or
limited unless the symptoms were specific for a disease (e.g.,
hemiparesis or seizure). Hence, it is difficult to distinguish
the origin of these neurologic symptoms, whether it is caused
directly by the virus or indirectly from other organ injury, such
as gastrointestinal manifestation (5).

Specific Neurologic Manifestations
More specific manifestations related to COVID-19 were
also observed, such as impairment of smell or taste
(hypogeusia) or vision, limb weakness, acute cerebrovascular
disease, and seizure. Some specific symptoms were only
reported in one study (5) that included impairment of taste
(5.6%), smell (5.1%), and vision (1.4%), ataxia (0.5%), and
neuralgia (2.3%).

Seizure was less common in COVID-19 and only reported
in two case reports (5, 26). However, the diagnosis for
seizure was based on clinical founding, without further
diagnostic tests. Only one study reported seizure characteristics
with a sudden onset of limb twitching, foaming at mouth,
and altered consciousness, which lasted for 3 minutes (5).
Convulsion in COVID-19 is also associated with an incidence of
encephalopathy (26).

In a case report (31) of a 61-year-old female, the patient
presented with acute weakness in both legs and severe fatigue
progressing within 1 day. Neurological examination showed
symmetrical weakness grade 4/5 and areflexia in both legs
and feet. The nerve conduction studies showed delayed distal
latencies and absent F waves in early course, supporting
demyelinating neuropathy, and the patient was diagnosed with
Guillain-Barre syndrome (GBS). Interestingly, the onset of
weakness precedes the typical COVID-19 symptoms (fever and
respiratory symptoms). This report might be an indication that
neurologic symptoms could occur in an early stage of the disease.

The incidence of acute cerebrovascular disease (CVD) was
reported in two studies (5, 18). The overall pooled prevalence
of acute cerebrovascular disease was 4.4% (95% CIs: 1.92–7.91)
with a moderate level of heterogeneity (I2 = 58.8%) from two
studies with a total number of 435 total cases (Table 1). A forest
plot of prevalence (%) of cerebrovascular disease is included in
Figure 5. In a retrospective study (18) among 221 patients with
COVID-19, 5.9% of patients had a new onset of CVD during
hospitalization stay. Median duration from the first symptoms
of infection to a sudden onset of hemiplegia was 9 to 10 days
(5, 18). The most common type was ischemic stroke (84.6%),
followed by cerebral venous thrombosis (7.7%) and hemorrhage
stroke (7.7%). The onset of CVD was more likely to present with
those of an older age, severe disease, and history of underlying
diseases such as hypertension and diabetes mellitus. This study
also showed various inflammatory biomarkers including elevated
levels of white blood cells, C-reactive protein, and D-dimers in
COVID-19 patients with stroke. In a study by Mao et al. (5), six
patients (2.8%) were reported to have CVD and severe patients
were more likely to present with CVD than non-severe cases.
However, association between COVID-19 and the incidence of
cerebrovascular events is lacking and unclear.

FIGURE 4 | Proportion estimates of nausea with/without vomiting in

COVID-19 patients.

FIGURE 5 | Proportion estimates of cerebrovascular disease in COVID-19

patients.

Consciousness Disturbances
Impaired consciousness was detected in five studies (5, 20, 25, 26,
32). The overall pooled prevalence of consciousness disturbance
was 3.8% (95% CIs: 0.16–12.04) with a high level of heterogeneity
(I2 = 94.8%) from two studies, with a total number of 2848 total
cases (Table 1). A forest plot of prevalence (%) of consciousness
disturbance is included in Figure 6. Three studies were excluded
from analysis because those studies were case reports. One
study (20) stated that patients with comorbidity on admission
were more likely to present with unconsciousness (2.5 vs. 1%).
Findings from this limited study have been confirmed in other
reports, showing that underlying diseases were associated with
the incidence of consciousness disturbance.

A study reported the onset of impaired consciousness
(median time, 8 days) to hospital admission was longer
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FIGURE 6 | Proportion estimates of consciousness disturbance in COVID-19

patients.

compared to other neurologic symptoms (5). In contrast,
three case reports (25, 26, 32) described that consciousness
disturbance occurs as a presenting symptom of COVID-
19. These case reports described altered consciousness on
admission was linked to the presence of SARS-CoV-2 infection
in the central nervous system, associated with encephalopathy
and meningitis/encephalitis. These findings could be helpful
to distinguish whether consciousness disturbance has a pure
neurologic origin or is caused by an indirect process from
organ failure based on the symptom onset, yet the association
between consciousness disturbance with SARS-CoV-2 infection
remains uncertain.

A case report (32) from the United States reported a 74-
year-old man presented to the emergency department with an
altered mental status, with prior symptoms of fever, headache,
and cough. Electroencephalography shows diffuse slowing and
focal slowing sharply contoured waves in the left temporal region,
which indicates encephalopathy, and the patient was tested
positive for COVID-19. The patient was transferred to ICU with
poor outcomes.

An interesting case report (26) from Japan found impaired
consciousness followed by convulsion was associated with
meningitis/encephalitis, with duration from first symptoms (e.g.,
headache, fever) to unconsciousness at 9 days. Interestingly, the
presence of SARS-CoV-2 infection in this case was detected only
through CSF specimen and negative from throat swab. Loss
of consciousness associated with seizure was also reported in
another retrospective study (5, 26).

Altered mental status was also related to a rare complication
of viral infection. This report by Poyiadji et al. (25) described a
50-year-old female who was brought in with 3 days history of
fever, cough, and alteredmental status. The laboratory-confirmed
positive for COVID-19. CSF findings were normal. Non-contrast
head CT found hypoattenuation within the bilateral medial
thalamic, whereas an MRI showed rim enhancing lesions with

FIGURE 7 | Proportion estimates of muscle problem in COVID-19 patients.

hemorrhage within the bilateral thalami, medial temporal lobes,
and sub-insular regions. This is the first reported case of COVID-
19–associated acute necrotizing encephalopathy (ANE).

Skeletal Muscle Problems and Indicator of
Muscle Injury in COVID-19
SARS-CoV-2 infection appears to affect the muscles and cause
skeletal muscle problems. Muscle injury and myalgia as a
manifestation of COVID-19 were reported in 25 from the total
of 33 studies and commonly appears alongside several other
symptoms with the prevalent, ranging from 2 to 52% (3–5, 9,
10, 12–17, 19–22, 24, 27, 29, 30, 33–38). The overall pooled
prevalence of skeletal muscle problems was 19.2% (95% CIs:
15.4–23.2) with a high level of heterogeneity (I2 =92.6%) from 25
studies with a total number of 6,498 total cases (Table 1). A forest
plot of prevalence (%) of skeletal muscle problems of studies is
included in Figure 7.

Some COVID-19 patients showed malaise, muscle soreness,
and elevated muscle enzyme levels, which may be related to
the inflammation and muscle injury caused by the virus. The
higher levels of creatine kinase (CK) levels in blood have been
generally considered to be an indicator of muscle damage and
inflammatory response (39). From the total, 25 studies that
reportedmuscle injury as amanifestation of COVID-19. Of these,
16 studies had patients with COVID-19 who also had higher
levels of CK serum. However, some of these studies used different
standards in determining elevated levels of CK serum. Several
studies were using range >185 units per liter (U/L) for elevated
CK levels (3, 13, 14, 17, 22), four studies set the value at >200
U/L (4, 9, 24, 30), and one study set the value at >310U/L (12).
Of these, six studies (5, 16, 19, 21, 27, 29) mentioned an elevation
in CK levels but did not report the normal value to assess elevated
CK levels. Seven studies (3–5, 9, 16, 19, 27) comparing CK levels
between severe and non-severe cases found that CK levels tend
to be higher in severe cases, including ICU patients, or among
deceased patients.
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Of the included studies, the authors did not perform
electromyography (EMG) or other diagnostic tests to
indicate myopathic changes. Therefore, it remains difficult
to differentiate between inflammation-related muscle injury and
other neuromuscular disorders or myopathy.

Neurological Features in Severe COVID-19
It has been investigated whether, for those in the severe stage
of the disease, clinical deterioration may be associated with
neurologic events. A total of six6 studies (4, 5, 9, 23, 28) reported
neurologic symptoms were more common in severe cases. Mao
et al. (5) reported that patients with more severe disease were
more likely to present with nervous system symptoms (45.5 vs.
30.2%, p < 0.05); including impaired consciousness (14.8 vs.
2.4%), acute cerebrovascular events (5.7 vs. 0.8%), and muscle
injury (19.3 vs. 4.8%). One population-based survey (4) of
laboratory-confirmed COVID-19 patients reported nationwide
clinical characteristics of COVID-19 in 1,099 patients. In severe
cases, patients were more likely to present with headache (15
vs. 13.4%), nausea or vomiting (6.9 vs. 4.6%), myalgia or
arthralgia (17.3 vs. 14.5%), and CVD comorbidity (2.3 vs. 1.2%).
Following SARS-CoV-2 infection, patients with neurological
involvement weremore likely to require intensive care unit (ICU)
interventions (5, 16).

A study categorized neurologic findings based on their system,
including central and peripheral nervous systems. In the severe
group, the central nervous system symptoms (e.g., dizziness,
headache, cerebrovascular events) weremore common compared
to peripheral nervous system manifestations (30.7 vs. 8%).

Patients with severe disease were also more likely to
experience myalgia compared to the non-severe group (17.3% vs.
14.5%) (4). Similarly, six studies (3, 5, 9, 27, 29, 37) also reported
that muscle problem was more common among severe cases or
non-survivors. In a retrospective study (20), COVID-19 patients
with comorbidity were more likely to have muscle pain. In terms
of comorbidity, cerebrovascular disease (CVD) was commonly
reported as a neurologic comorbidity in COVID-19 patients.
We found 13 studies (4, 11–14, 16, 19, 20, 27, 29, 30, 34, 38)
that reported the presence of CVD as an underlying disease in
COVID-19 patients. The rate of CVD comorbidity ranged from
1.4 to 40 %. The overall pooled prevalence of CVD comorbidity
was 8.5% (95% CIs: 4.5–13.5) with a high level of heterogeneity
(I2 = 95.5%) from 13 studies with a total number of 4,148 cases
(Table 1). A forest plot of prevalence (%) of CVD comorbidity of
studies is included in Figure 8.

CVD comorbidity was also a predictive factor of poor
outcomes. In a retrospective study (27) on 339 hospitalized
COVID-19 patients, the patients’ prognostic factors were
evaluated based on a 4-week follow-up; 21 (6.2%) patients had
CVD comorbidity and this was more prevalent in patients
who died (10/65 or 15.6%). Similarly, two studies (19, 29)
reported that patients with CVD comorbidity on admission had
a higher mortality rate (4 vs. 0%) and was more prevalent among
non-survivors (17.6vs. 3.5%), respectively. A complication of
hypoxic encephalopathy occurrence following COVID-19 was
also observed in 20% of patients and was likely to occur in
patients who died (20% vs. 1%) than patients who survived (19).

FIGURE 8 | Proportion estimates of cerebrovascular disease comorbidity in

COVID-19 patients.

DISCUSSION

As a newly emerging disease, COVID-19 has become a pandemic
disease since its outbreak in December 2019. The infection
caused by SARS-CoV-2 mainly targets the respiratory tract.
However, studies also reported the involvement of the nervous
system as presenting symptoms, especially in different stages of
disease (40). During the early phase of the disease, symptoms
were commonly mild or asymptomatic. Therefore, the diagnosis
of the disease was often difficult at the time of presentation
(4). Patients may be referred to the neurologic clinic without
respiratory symptoms, with infection that may be hard to detect
or that could be misdiagnosed.

Pathophysiology of Neurologic
Manifestations in COVID-19
SARS-CoV-2 used the angiotensin-converting enzyme 2 (ACE2)
receptor to enter the host cells, the same as SARS-CoV infection
in 2003. The pathologic mechanism COVID-19 has on the
nervous system can happen through several pathways, including
the hematogenous pathway, retrograde neural pathway, hypoxia,
immune injury, and ACE-2 enzyme (41). The virus entering
blood circulation can cause the immune system to produce
cytokine as a physiological response; the increasing cytokine
production may cause an increase in blood-brain barrier
permeability, thereby facilitating the virus to enter the CNS (41).
This may explain why patients with more severe COVID-19
might have cytokine storm syndrome.

A case report of a rare complication of viral infections has been
related to intracranial cytokine storms, which result in blood-
brain barrier disruption without direct viral invasion. This theory
has been linked to the first reported case of COVID-19-associated
acute necrotizing encephalopathy (ANE) (42).

A recent study on COVID-19 patients with a neurologic
manifestation found that some patients had smell impairment
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(5). This finding presents the fact that COVID-19 can invade
the central nervous system through the olfactory nerve and
gain access to the central nervous system (41). Hypoxia injury
happens when a virus begins to proliferate in the lung cells,
causing alveolar gas exchange disorder and thus leading to
hypoxia of the CNS and increasing the rate of anaerobic
metabolism, which leads to the accumulation of acid and can
cause cerebral vasodilation, interstitial edema, swelling of brain
cells, or obstruction of cerebral blood flow that leads to headache
as a result of congestion and ischemia (5).

The past study suggested the neurotropic potential of
COVID-19 (43). The neurotropic virus had the ability to incite
the activation of glial cells and invoke a proinflammatory
state. Furthermore, an elevated level of proinflammatory
cytokine in serum may cause chronic inflammation and
lead to damage in skeletal muscle and brain (5, 40). ACE-2
is a protecting factor that plays a major role in anti-
atherosclerosis and blood pressure regulation. COVID-19’s
capability to bind ACE-2 receptors may result in elevated
blood pressure and increase the feasibility of cerebral
hemorrhage (40).

Laboratory Abnormality and Neurologic
Manifestations in COVID-19
Severe SARS-CoV-2 infection has been associated with increased
immune-inflammatory response, including higher white blood
cell counts, neutrophil counts, lower lymphocyte counts, and
increased C-reactive protein levels compared with non-severe
infection. Some laboratory findings were also associated with the
neurologic manifestations of the disease. Patients with central
nervous symptoms involvement had lower lymphocyte levels,
platelet counts, and higher blood urea nitrogen levels compared
with those without CNS symptoms. However, there were no
significant differences in laboratory findings of patients with PNS
manifestations and those without PNS (5). This finding may
be a link to the immunosuppression among patients with CNS
symptoms, especially in severe patients.

Skeletal muscle injury was described as skeletal muscle
pain or myalgia with an elevated level of serum creatine
kinase (CK) more than 200 U/L as a manifestation of
an increased inflammatory response (5). The cellular
disturbances caused by the infection or direct muscle
injury by the virus can induce creatinine kinase to leak
from intra cells into the blood. Assessment of serum CK
levels are a valuable indicator of the occurrence of muscle
and tissue damage due to disease or trauma. This finding
may be associated with the ACE-2 receptor in skeletal
muscle (5, 40).

Additionally, the coagulation system was also affected by
the SARS-CoV-2 infection, causing the elevated level of D-
dimer more than ≥0.5 mg/L and platelet abnormalities, which
increases the risk of cerebrovascular events among patients.
Elderly populations are at high risk of account for the majority
of strokes, especially in more severe patients. Moreover, some
studies reported the increased level of D-dimer was more

prevalent in more severe COVID-19, which could be the source
of embolic cerebrovascular diseases (4, 18, 40).

Neurologic Symptoms Characteristics in
COVID-19
One population-based survey of laboratory-confirmed COVID-
19 patients reported nationwide clinical characteristics of the
disease in 1,099 patients. The study found some of the common
symptoms in COVID-19 patients, including fever, cough, nausea,
fatigue, myalgia, and headache (4). Patients with fever or
headache may present to the neurology clinic after initially being
ruled out of COVID-19 by routine examination. However, several
days later, patients presented typical COVID-19 symptoms
such as cough, throat pain, lower lymphocyte count, and
pneumonia appearance on lung imaging. These findings showed
that COVID-19 often presents with non-specific symptoms and
leads to delayed and inappropriate management (40).

Mao et al. (5) reported that neurologic symptoms in
COVID-19 can range from specific symptoms (e.g., hypogeusia,
hyposmia, or stroke) to more nonspecific symptoms (e.g.,
headache, impaired consciousness, dizziness, or myalgia).
Nonspecific symptoms were more commonly present in mild or
early stages of the disease. However, future studies are required
to identify which manifestations are truly neurologic in origin
or just a response of systemic inflammation of the disease in
patients (44).

As known from previous studies, COVID-19 puts the elderly
population and patients with pre-existing comorbidity and prior
neurological conditions (e.g., history of cerebrovascular disease)
at a higher risk of developing more severe symptoms, such as
encephalopathy, altered mental status, and new onset of stroke
on admission. A recent study reported four COVID-19 patients
with acute stroke as a presenting symptom. The patients admitted
to the hospital with a positive PCR test and imaging confirmed
acute stroke. The patients presented neurological symptoms such
as altered mental status, facial drop, slurred speech, hemiparesis,
hemiplegic, and aphasia. The pathophysiology behind this may
be related to the infection or hypoxia that leads to brain ischemia
(45). Severe COVID-19 patients were also more likely to develop
more specific neurologic manifestations. Moreover, underlying
cerebrovascular disease is related to poor prognosis (5, 18).

COVID-19 may also invade and disrupt the intracranial
component. Researchers have detected the incidence of
encephalopathy and meningitis in COVID-19 with symptoms
of impaired consciousness and seizures (22, 25, 26). This may
happen because of COVID-19 binding to ACE-2 receptors in
the brain and causing damage in the brain tissue, thus leading
to impaired consciousness and seizures (26). COVID-19 also
induces the intracranial cytokine storms, which result in the
breakdown of the blood-brain barrier and leads to damage in
brain tissue (25). Importantly, the virus can be found in the
cerebrospinal fluid through nucleic acid examination using
PCR. Some studies even reported the central nervous system
manifestations preceded respiratory symptoms (25). Therefore,
physicians should stay aware and look at the potential signs of
intracranial or other organ involvement.
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Neurologic Symptoms Characteristics in
SARS-CoV and MERS-CoV
Similar to SARS-CoV-2 that caused COVID-19, Severe Acute
Respiratory Syndrome Coronavirus (SARS-CoV) patients also
present several neurological symptoms. According to previous
studies, myalgia (45–61%), headache (20–56%), dizziness
(4.2–43%), nausea, and vomiting (20–35%) are among the
neurological symptoms found in SARS-CoV patients, which are
similar to neurological symptoms frequently found in COVID-
19 patients (46). Several studies also reported neurological
manifestations such as stroke, myopathy, polyneuropathy, and
rhabdomyolysis in SARS-CoV patients (47–49). Middle East
Respiratory Syndrome Corona Virus (MERS-CoV) patients
present several neurological symptoms similar to SARS-CoV
and COVID-19, such as myalgia, headache, nausea, and
vomiting (50). The neurological complication of MERS-CoV
reported in previous studies consists of stroke, Bickerstaff ’s
encephalitis (BBE), Guillain-Barré syndrome (GBS), and
polyneuropathy (51–53).

Limitations
Our study has several limitations. First, the search keyword
used in this systematic review was limited to the terms of
“characteristics,” so there is a possibility that relevant studies
were missed by the search. Second, our study was also limited
to the English language. Third, there were variations among
laboratory value findings in the studies included. Some studies
used a different standard of laboratory normal value range, which
may lead to misinterpretation. Fourth, several studies included
in this research are lacking in severity degree of neurological
symptoms. Another important limitation was the variation in
the methodologic quality of the included studies. Most of the
included studies were observational studies and the data used
was obtained from medical records. Therefore, comparability
among literature was also limited. Furthermore, the majority of
the studies retrieved were from China, which led to a lack of
data from other countries. Therefore, further studies are needed
to provide a different perspective from neurologic findings of
patients with COVID-19 from other countries.

CONCLUSION

As a pandemic, COVID-19 has become common globally.
Physicians are expected to be prepared for and confronted
with these patients in the upcoming period. The disease can
range from mild disease with asymptomatic or non-specific
symptoms to severe disease with respiratory distress. The
neurologic symptoms are more commonly found in the later
or severe stage of the disease and may not be found at the
early stage or mild disease, yet physicians should stay vigilant
and aware of those symptoms as signs of nervous systems
complicity (40).

It is hoped that this brief review may provide a spectrum
of neurologic manifestations in COVID-19. Therefore,
early diagnosis and management can prevent further
deterioration from neurologic complications in the later
stage of disease. Our review could be a reference for physicians
in management and detection of neurological symptoms in
COVID-19 patients.
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INTRODUCTION

While waiting for a vaccine, therapeutic alternatives to slow or stop the ongoing COVID-19
pandemic caused by the newly emerged severe acute respiratory syndrome coronavirus
2 (SARS-CoV2) are urgently needed. Given their wide and unspecific antiviral and
immunoregulatory properties, Interferon (IFN)-α and β are among the many drugs under
evaluation all over the world for their repurposing potential in this context (1). They are presently
tested in clinical trials at different dosages and routes of administration in combination with other
compounds such as Remdesivir, Lopinavir, and Ritonavir; chloroquine and hydroxychloroquine
(2, 3) were also tested before trials halted due to safety concerns (4, 5). Many in vitro and in vivo
studies in the CoV field indicate that IFN-β1a and IFN-β1b are more potent than an IFN-α subtype
in the inhibition of SARS-CoV and MERS-CoV replication (2). Very recently, type I IFN’s ability
to suppress SARS-COV2 infection in Vero cells was also reported (6).

IFNs have been classified into three types based on their receptor usage: in humans, type I
IFN contains 13 IFN-α, -β, -ω, -ε, and -κ; type II IFN includes a single IFN-γ; and type III IFN
consists of IFN-λ1, -λ2, and -λ3. The effects of IFN are mediated through the induction of around
2,000 IFN-stimulated gene (ISG) products, the expression of which is mainly regulated by the
JAK/STAT pathway(s). At the cellular and systems levels, in addition to their definitive antiviral
and antibacterial effects, IFNs regulate, through the induction of several ISG, cell proliferation, cell
cycle, survival/apoptosis, cell differentiation, and migration. While type II IFN, i.e., IFN-γ, whose
expression is dramatically increased inMS, is linked to activation andmaintaining of inflammation,
type I IFNs (mainly IFN-αs and IFN-β) are abundantly secreted in response to viral infection, acting
early during the immune response to potentiate antiviral responses and to prime and maintain
adaptive immunity (7). Multiple recombinant IFN-α and IFN-β formulations have been clinically
approved all over the world.

Here, we briefly review the knowledge acquired in the last 27 years of IFN-β usage for the
treatment of relapsing-remitting forms of multiple sclerosis (RRMS) to hypothesize the impact of
this treatment on COVID-19.
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ALTERATION OF TYPE I IFN SYSTEM IN MS

Normally, low amounts of constitutive type I IFN accumulate
in the tissue in absence of infection to support cell priming and
responses to other cytokines, antiviral, and antitumor immunity,
and immune homeostasis. The perturbation of this so-called
“tonic,” the constitutive production of IFN (8), has been linked to
the development of a number of different autoimmune diseases,
including systemic lupus erythematosus, Sjögren’s syndrome,
or type I diabetes mellitus, often correlating with increased
disease severity. Additionally, in MS, evidence on low serum
levels of IFN in most patients (9) poses the basis for IFN use

in MS treatment and paves the way for the investigation of

endogenous defect of IFN signaling in MS. In line with this
observation, the presence of SNPs and rare variants in genes
involved in type I IFN signaling and antiviral pathways, namely
IRF-8, STAT3, SOCS1, TYK2, ZC3HAV1, and OAS1, which may
display transcriptional dysregulation in blood cells at distinct
MS stages (10), were found to be altered by several published
GWA studies in MS, confirming the hypothesis that an alteration
of IFN-regulated antiviral responses could be linked to MS
pathogenesis (11–13).

The efficacy of IFN-β, the first approved therapy for RRMS
whose mechanisms of action, only partially understood, appears
to be mainly related to its multifaceted pleiotropic effects
resulting in sustained broad anti-inflammatory action (7), may
also rely on the capacity to rescue these fine endogenous
molecular defects.

In spite of the identification of MS-associated genetic
alteration linked to the IFN system, only a few genomics studies
have addressed in detail whether these pieces of evidence could
be also highlighted at the transcriptional level in therapy-free MS
patients compared to healthy donors (14). Most information on
IFN gene signatures in MS has, indeed, identified themmainly as
IFN-β treatment-related biomarkers in human peripheral blood
mononuclear cells (PBMC) of MS patients analyzed before and
after IFN-β therapy, e.g., in Malhotra et al. (15) and other
references. Only recently it was shown that some ISG found
expressed in PBMC or CSF of MS subjects specifically cluster
with other indicators of inflammation with clinical and sex
parameters of analyzed patients (16). Thus, to better understand
whether dysregulation of IFN-regulated genes and pathways may
be related to MS development and maintenance, we performed
a systematic analysis of datasets from transcriptomes obtained
from more than 400 human PBMC at distinct MS stages as
well as CNS tissues and encephalitogenic CD4T cells derived
from the murine model of MS. These data indicate impaired
ISG transcription profiles especially in the RR form of disease
and myelin-reactive T cells and identifies a core of 21 transcripts
concordantly dysregulated in all MS stages (17). In addition,
recent evidence highlights dysregulations in endogenous IFN
system in specific immune cell subsets, critically impacting
on immune functions (18). In particular, paired analysis of
B cells and monocytes from sex and age-matched control
and treatment-naïve MS subjects underlined several altered
previously uncharacterized ISG and pathways in MS. Notably,
this study describes for the first time that expression of several

ISG strictly involved in antiviral responses is strongly reduced
in MS B cells and involves a profound multi-level defect in
type I IFN pathway due to the low level of IFN receptors,
weak STAT1 and 2 expression, and activation of and selective
impairment in responses to type I but not type II IFN (18). B
cells, particularly the memory subset, are human reservoirs of
Epstein-Barr virus (EBV) infection. The contribution of EBV
to MS pathogenesis is still being fervently debated; however, its
epidemiological association with MS is clear. In line with this
view and with our results pointing to an anti-viral failure, in vitro
infection ofMS B cells with EBV highlights that these cells display
an altered EBV expression program and propagation, resulting in
reduced containment of its infection in MS. Importantly, in vitro
and in vivo exposure to IFN-β potentiates type I IFN signaling
machinery in MS in turn, activating the antiviral responses and
reducing the frequency of EBV-infected and proliferating B cells
in MS but not healthy cultures (18).

In MS, different therapeutic strategies targeting memory B
cells, including B-cell-depleting therapy, significantly reduce
disease activity. The basis for this effect appears to be related
to decreased production of pro-inflammatory cytokines or
reduced antigen presentation by these cells. Importantly, we
have reported that IFN-β therapy mediates a marked and
specific reduction of memory B cells in peripheral blood of
treated MS patients via a mechanism requiring a FAS-R-
mediated caspase-3-dependent apoptosis, and this memory B-
cell decrease is associated with reduced expression of the latent
EBV gene LMP2A in PBMC of MS patients under IFN-β
treatment (19). Altogether, this evidence points to a double-
face scenario for IFN-β efficacy in MS treatment, combining
anti-inflammatory and immunomodulatory actions with marked
antiviral properties (20). Another important aspect in these
pandemic times is that the decrease in the CD27+ memory
B-cell compartment correlates with the concomitant increase
in the CD27− naïve cells, likely as a result of a renewal of
circulating B cells in the peripheral blood of MS patients,
offering opportunity for expansion of new virus-specific clones
of antibody secreting plasma cells (19). Accordingly, in vitro
stimulation with a TLR7 ligand (simulating viral RNA) promotes
IgM and IgG production in PBMC cultures derived from IFN-β-
treated MS patients as compared to the same individuals before
therapy (21).

WHAT IFN-β USAGE IN MS WOULD TEACH
US IN THE COVID-19 ERA

International recommendations on immunization of MS patients
do not indicate a specific risk for vaccination of these
individuals or an increased risk for future MS development
for those who vaccinate [reviewed in (22)]. Furthermore, while
the recommendation does outline that patients treated with
some MS therapeutics, such as fingolimod, glatiramer acetate,
mitoxantrone, and rituximab, have lower responsiveness to
influenza vaccination, many trials indicate that IFN-β-treatedMS
patients achieve significant responses and comparable protection
to non-treated patients and healthy controls (22). Hence, despite
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the lower vaccination response rate under some treatments,
MS patients contribute to the overall herd immunity toward
common vaccine-preventable diseases, including (hopefully
soon) a COVID-19 vaccine.

In this context, the combined properties of IFN-β as antiviral
and immunoregulatory molecule could be exploited in the
pandemic Phase 2 when a protective humoral immunity is
desired to limit SARS-CoV2 re-infections and also from the
perspective of later phases of COVID-19 management when
a vaccine will be available. This key consideration implies
better preservation of a functionally active and protective B-cell-
mediated humoral immunity. Thus, by replenishing MS immune
system with IFN-regulated functions, IFN-β therapy, alone or
in continuous or cyclic combination regimen with other drugs
(2, 23), may represent a treatment that combines safety and
efficacy in the COVID-19 era.

DISCUSSION

Efforts are ongoing to understand the effects of disease modifying
therapies, including IFN-β, on the risk and severity of COVID-
19 in persons with MS (24, 25). Although these preliminary
data are still insufficient to draw firm conclusions, they have
not, so far, exhibited signals of overt danger (24, 26). This
case series will soon reach the sample size that is needed to
provide reliable answers to persons with MS. At the same time,
it could be also verified whether IFN-β or other treatments
may exert some protection against SARS-CoV2. Interestingly,
an impaired IFN-α2 production in about 20% of critically-ill
COVID patients has been recently described, indicating that
a defective innate immune response may be associated with
a poor outcome and, thus, suggesting that the timing of IFN
exposure may be critical to control the virus replication and
limit immune-pathogenesis (27). Further studies are required to
overcome the limitation of this study, given the small number
of included patients and the technical difficulties for IFN-β
and IFN-λ detection, as well as to define individual genetic
susceptibility that could be predictive of a molecular target

for novel therapeutic strategies and treatments (27). However,
in line with this view, a recent paper by Blanco-Melo et al.
highlighted an unbalanced inflammatory response characterized
by a reduced IFN-I and -III response to SARS-CoV-2 coupled
to elevated chemokines and high expression of IL-6 in cell and
animal models of SARS-CoV-2 infection and in transcriptional
and serum profiling of COVID-19 patients (28). Collectively,
these data provide a new and dynamic view of COVID-19-
related immunopathogenic features that should be taken into
consideration to pinpoint and adjust new immunomodulating
therapeutic strategies.

At present, we can conclude that IFN-β remains an option in
the treatment of MS, particularly during this difficult pandemic
period. Ongoing clinical trials in COVID-19 and the growth
of clinical data collections in MS will tell us, hopefully soon,
whether this evergreen molecule may have a new role in COVID-
19 treatment.
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SARS-CoV-2 is a novel coronavirus leading to serious respiratory disease and is

spreading around the world at a raging speed. Recently there is emerging speculations

that the central nervous system (CNS) may be involved during SARS-CoV-2 infection,

contributing to the respiratory failure. However, the existence of viral replication in

CNS has not been confirmed due to the lack of evidence from autopsy specimens.

Considering the tropism of SARS-CoV-2, ACE2, is prevailing in CNS, and the

neuro-invasive property of human coronavirus was widely reported, there is a need

to identified the possible complications during COVID-19 for CNS. In this review, we

conduct a detailed summary for the potential of SARS-CoV-2 to infect central nervous

system from latest biological fundamental of SARS-CoV-2 to the clinical experience of

other human coronaviruses. To confirm the neuro-invasive property of SARS-CoV-2 and

the subsequent influence on patients will require further exploration by both virologist

and neurologist.

Keywords: COVID-19, human coronavirus, SARS-CoV-2, central nervous system, viral infection

INTRODUCTION

Since the appearance of the first pneumonia patient in early December 2019 in China, the
COVID-19 has resulted in a global pandemic. By the end of April 30, over 3,000,000 cases were
reported all around the world and leading to over 200,000 deaths (1). Compared with previous
coronavirus outbreak, SARS and MERS, COVID-19 has certainly induced a much larger global
pandemic. After the application of oxygen therapy, mechanical ventilation, and antiviral therapies,
over 90% of the cases have been cured and discharged from hospitals after twice verified absence of
virus in respiratory tract by nucleic acid amplification tests (2). Although human coronaviruses
mainly lead to respiratory tract infection, previous researches have indeed demonstrated the
potential of the coronavirus to spread to extra-pulmonary organs, involving nervous system,
gastrointestinal tract, and kidney, as widely observed in SARS and MERS cases. According to
the latest reports, some patients with COVID-19 presented neuro-infection symptoms such as
olfactory and taste disorders (3), which may be attributed to the olfactory nerve damage. However,
the mechanism and route for SARS-CoV-2 to lead to neuro-infection, especially central nervous
system (CNS), still remain to be explored. In this review, we summarize the proves for possible
SARS-CoV-2 related CNS damage basing on the previous experience of coronavirus infection and
the latest outcomes of SARS-CoV-2 biology.
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THE MOLECULAR BASIS FOR COVID-19
NEURO-TROPISM

Coronavirinae is a group of enveloped, spherical virus in
the Coronaviridae family, Nidovirales order, which is further
divided into the genus of alphacoronavirus, betacoronavirus,
gammacoronavirus, and deltacoronavirus, and were called by a
joint name, coronavirus (4). Coronavirus is the largest RNA virus
extending to a diameter of 120 nm, with a huge monopartite,
linear, single chain, positive RNA genome ranging from 27
to 32 kb inside. The first two strains of coronavirus, namely
HCoV-229E and HCoV-OC43, was acquired in 1960’s from the
organ culture of patients diagnosed with upper respiratory tract
disease, and was regarded as a novel kind of pathogen for
common cold (5–7). So far, over 3,000 strains of coronavirus
are discovered, but most of them prevail in vertebrates such as
bats and porcine, and, before the outbreak of COVID-19, only
six species of them cause infective disease to human, including
HCoV-229E and HCoV-NL63 in alphacoronavirus genus, and
HCoV-HKU1, HCoV-OC43, SARS-CoV, and MERS-CoV in
betacoronavirus genus (8–12). In most of time, coronavirus
infects the epithelium cells of upper respiratory tract, and were
regarded as opportunistic pathogens leading to mild infections
in immunocompetent individuals, and accounting for about 15%
of the common colds all around the world (13). However, the
coronavirus can also result in devastating clinical outcomes.
Animal coronavirus may sometimes manage to efficient cross-
species infection after host-adaptation by novel virus strains and
cause zoonotic infections, usually accompanied by lethal cytokine
storm. A case in point is the outbreak of pandemic respiratory
syndrome caused by SARS-CoV in 2003 and MERS-CoV in
2012. These two strains of coronavirus are no longer restricted
in the upper respiratory tract, but also spread to the trachea,
bronchi, lung in immunocompetent individuals, and leading
to lethal acute respiratory failure. For infants, the aged and
patients with disordered immunity, coronavirus sometimes may
spread to extra-pulmonary organs, including central nervous
system, in which the patients may present high fever and
headache with a mortality over 60% (14). In 2019 December,
the breakout of zoonotic viral pneumonia revealed a novel kind
of human- targeting coronavirus, which was named COVID-19
(15). COVID-19 shares a lot of similarity to the SARS in 2002,
both in viral tropism and clinical symptoms, indicating that the
COVID-19 may have similar complication with SARS, such as
CNS infection. Computer modeling showed the COVID-19 has
the same viral receptor as SARS-CoV, which is the angiotensin-
converting enzyme 2 (ACE2) (16). The strong binding affinity of
spike of SARS-CoV-2 to ACE2was further proved by biochemical
interaction studies and crystal structure analysis (17). As a result,
the distribution of ACE2 in tissues plays an important role in
SARS-CoV-2 tissue tropism.

Spike Protein and Viral Tropism
The shape of coronavirus under electron microscopy is quite
distinctive, in which the virus was found to be surrounded by
a number of projections connected to viral envelope, and make
the virus look like a royal crown (18). These projections are

called “Spike(S),” which are proteins determining the tropism
of coronavirus. The S protein is a glycosylated transmembrane
protein, consisting of two subunits, S1 and S2, which are
separately responsible for the viral attachment and membrane
fusion during the virus enter its host cell (19). During the
process of viral entry, the virus makes use of the receptor binding
domain locating in the distal S1 subunit to attach to the viral
receptor on the membrane of host cell. Then the S2 subunit is
cleaved by the transmembrane protease, leading to an irreversible
conformational change and the subsequent membrane fusion of
virus and the host cell (20). As a result, the entry of coronavirus
into host cell turns out to be a multistep process, and each
of the mutation in the functional domain of S1 or S2 subunit
may result in different viral tropism or even infectivity. In
the latest research conducted by Vincent Munster et al., the
author created various COVID-19 pseudotypes with spikes from
different lineage B coronaviruses, some of which infect animals,
and revealed that the absence of 431–437 and 456–473 residues
in the RNA coding sequence of receptor binding domain, which
is widely observed in betacoronaviruses that infect non-human
animals, deprived the infectivity of modified COVID-19 to
infect cells overexpressed human angiotensin-converting enzyme
2 (hACE2), the receptor for COVID-19 (21). The infectivity
recovered after trypsin digestion, indicating these regions are
related to the intact function of human transmembrane protease,
and act as a major barrier for mutual infections between
different species, at least in some of the animal betacoronaviruses.
Considering the huge coronavirus reservoir in wild animals may
acquire the necessary RNA fragment from human coronavirus
by recombination, it is no doubt that zoonotic coronavirus
infections will appear at a much higher frequency in the near
future without manual intervention (22). Although the viral
replication cycle is driven by a series of proteins or organelles in
host cell and the absence of each of them can lead to disrupted
viral propagation, the entry of the virus to the host cell is the
primary step for all of the subsequent process. As a result, using
neutralizing antibody or recombinant protein to keep the virus
from entry into the host cell is the most common strategy to treat
and prevent viral infection. The indispensable function of the S
protein during viral entry makes it an ideal target for antibody
or vaccine development (23). As shown in the case that Weiner
et al. produced a plasmid-based MERS-CoV S protein vaccine
using 293T cells. Vaccine-immunized mice showed increased T
cell number, elevated T cell response, protective antibody, and
resistance to MERS-CoV infection (24).

The Function and Distribution of ACE2
Discovered in 2000 as the first homolog of human angiotensin-
converting enzyme, angiotensin-converting enzyme (ACE2)
is a transmembrane carboxypeptidase, which removes
carboxyterminal amino acid from peptide substrates by peptide
hydrolyzation reaction (25). ACE2 shares about 42% similar
coding sequence with ACE, and was proposed to be the product
of a fusion gene consist of partial ACE and collectrin. As a result,
ACE2 turn out to be a multi-functional protein with two separate
functional domains. On one hand, physically, as a member of
the renin angiotensin system, ACE2 converts angiotensin I to
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Ang 1-9, a peptide whose function remains to be explored, and
angiotensin II to angiotensin 1-7, which is a vasodilator as the
ligand for the G-protein coupled receptor MAS1 (26, 27). On
the other hand, its collectrin domain collaborates with amino
acid transporter B0AT1 to transfer neutral amino acids on the
brush border of intestinal epithelial cells, and was found to be
essential for the absorbance of several amino acids, especially
tryptophan (28, 29). According to the immunohistochemistry,
the ACE2 mainly distributes in the vascular endothelial cells
of the heart, kidney, testes, alveoli, gastrointestinal, and, at a
lower expression level, brain (30–34). The ACE2 in brain was
also found in the neurons of subfornical organ, an area lacking
the blood-brain barrier and sensitive to blood-borne circulating
peptides (35).

The recognition of the existence of ACE2 in brain is much
earlier than the identification of ACE2 molecule. In 1988,
Santos et al. observed a continued transformation of ANG-I
to Ang-(1–7) even after using ACE inhibitor in the brainstem
of dog, which indicated the Ang-(1–7) was synthesized via
a different route bypass ACE, which was later confirmed to
be ACE2 pathway (36). Soon the same group verified that
Ang-(1–7) produced by this ACE homolog in hypothalamo-
neurohypophysial system (HNS) induced the release of arginine
vasopressin (AVP) when Ang-(1–7) or angiotensin II (Ang
II) was added to the explants from rats (37). One year later,
Campagnole-Santos et al. provided the first in vivo proof for the
biological functions of central Ang-(1–7) (38). After the injection
of Ang-(1–7) into the nucleus tractus solitarii (NTS), the rats
present a significant reduction in blood pressure. The function
of Ang-(1–7), the products of ACE2, in central nervous system
was further confirmed to be of great importance in baroreflex
modulation and the central control of the blood pressure
by the Ang-(1–7) antagonist, its analog D-Ala7-ANG-(1–7)
(39–41). In spontaneously hypertensive rat models, selectively
overexpressing ACE2 in the rostral ventrolateral medulla or
paraventricular nucleus induced a significant relief on blood
pressure (42, 43). Besides, the ACE2 and the renin-angiotensin
system (RAS) also play an important role in neuro-inflammation.
Zheng et al. used triple transgenic mice selectively overexpressing
ACE2 in neurons, SARA, to study the role of ACE2 in ischemic
stroke (44). After in vitro deprivation of oxygen and glucose
for the brain slices from transgenic mice and control mice, they
found less swelling, cell death, and ROS production in cerebral
cortex and hippocampal CA1 region areas. The latest research
also revealed that the ACE2 in brain not only responsible for
the body blood pressure regulation, but also present a protective
profile for the brain itself in a series of neurologic pathologies,
including aging-related neuroinflammation (45), focal cerebral
ischemia (46), demyelinating disease (47), Alzheimer’s disease
(48), and neuropsychiatric disorders (49). In general, the receptor
of SARS-CoV-2, ACE2, is widely distributed in the central
nervous system, and has been proved to take part in multiple
normal physiological processes. As a result, once SARS-CoV-
2 successfully invades central nervous system, it can infect
neurons by recognition of ACE2, and then leads to central
nervous system damage via direct viral replication or disordered
immune response.

THE POSSIBLE ROUTES FOR COVID-19
INFECTION FROM RESPIRATORY TRACT
TO BRAIN

The cases of respiratory virus induced CNS infection have been
widely reported, such as adenovirus, influenza virus and measle
virus. As another respiratory virus, SARS-CoV-2 also has the
potential to enter the CNS via retrograde transport or circulatory
system. In this section, we introduce the common pathway,
retrograde transport and circulatory route, for respiratory virus-
induced CNS infection, in which there may be clues for clinical
researchers to find viral replication (Figure 1).

Retrograde Transport Through Olfactory
Nerve
Neurologic viral infection is very common, but most of the neural
infections remain in peripheral nervous system and do not lead
to serious damage to healthy individuals. It is estimated that
about 70–80% of healthy adults are infected by human simplex
virus (HSV) including HSV-1 and HSV-2, both of which lead
latent but lifelong infection in the cell bodies of neurons, such
as trigeminal ganglion. However, when virus enter the central
nervous system through neuronal dissemination, which is named
retrograde transport, it may induce life-threatening diseases, such
as herpes simplex encephalitis, which has a rate of fatality as
high as 70% in untreated patients (50). Other than HSV, many
viruses can take use of the retrograde transport to enter the
central nervous system, such as influenza virus (51), measle
virus (52), vesicular stomatitis virus (53), and rabies (54). These
viruses may first infect the local tissue, and then spread to the
peripheral nerves by binding to the specific viral receptor on
the axons or dendrites of the neurons. Once the viruses enter
the neurons, they reside in the endosomal vesicles, which is
formed by the cytomembrane during viral entry, and engage a
motor protein, dynein, to transport the endosomal vesicles along
the microtubule to the centrosome locating beside the nucleus
(55). The capsid of virus gradually disassembles according to the
change of the gradually decreasing PH value in the endosomal
vesicle, and then the nucleic acids of the virus are released
from endosomal vesicle to the cytoplasm (56). After that, most
of the DNA virus will dock into the nucleus, where there are
transcriptase and substrates for mRNA and DNA synthesis, while
most of the RNA virus stay in the cytoplasm and start to form the
inclusion body, where RNA virus replicates. Finally, viral nucleic
acids and viral protein are transported to synaptic membrane
for further assembly and trans-synapse transmission to the next
neuron and ultimately to the central nervous system.

Given the nerve endings distribute in all types of tissues, and
the constitutions of different nerve pathways are not the same,
the retrograde transport in specific disease can undergo different
transport process and lead to varied clinical features according to
the location of the primary lesion. Since SARS-CoV-2 distributes
in the respiratory tracts, the olfactory nerve may servesas a major
retrograde route for the spread of virus to central nervous system,
which has been widely reported in vesicular stomatitis virus
and influenza virus (57–59). During the transduction of odor
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FIGURE 1 | The possible routes for SARS-CoV-2 to enter central nervous

system. (A) SARS-CoV-2 may spread to the central nervous system via

retrograde transport through the olfactory nerve as seen in the case of other

respiratory viruses. (B) The nerve endings of olfactory receptor neurons

distribute in the nasal mucosa. These neurons are exposed to SARS-CoV-2

and are connected to the olfactory bulb. (C) The blood-brain-barrier consists

of tightly connected endothelial cells, basement membrane, and the end feet

of astrocytes. All of them prevent large molecules to enter the central nervous

system directly. (D) When viral infection occurs in the endothelial cells,

pericytes, or astrocytes, the blood-brain-barrier will lose its protective function.

These figures are modified and reproduced under the permission of Creative

Commons Attribution 3.0 License.

signal, the stimulation starts from the dendrites of the OSN,
which scatter under the olfactory mucosa on the roof of the
nasal cavity (60), then transmits along the axon of the neuron,
which combined together into bundles, to the central olfactory
apparatus, including olfactory bulb and rhinencephalon (61).
To confirm the SARS-CoV-2 related CNS infection, the viral
replication in historical specimens of these location should be
paid most attention.

Viral Spread Through Circulatory System
Another possible pathway for COVID-19 is to enter the CNS
through the circulatory system, in which the involvement of
CNS acts as part of the systematic infection derived from the
primary lesion. This pathway starts from the release of the
virus from the basolateral side of the infected epithelial cells.
Different from the systematic spread of viral infection commonly
seen in severe infection cases to marrow or kidney, due to
the protection of blood-brain barrier, neurons are not in direct
contact with circulatory system. Instead, virus take use of two
types of intermediate host cell before spreading into CNS from
circulatory system, namely the endothelium and leukocytes (62).

The blood-brain barrier (BBB) is a highly selective structure
separating CNS from the circulating blood to avoid most of
the large molecules entering CNS, including virus. This barrier
consists of three layers (63). The first layer is formed by
endothelial cells lining around the brain capillaries, which has
a distinct tight junction connection different from endothelium
in other tissue. The second layer is a thick, intact basement
membrane, and finally the astrocyte end-feet projections
surrounding the capillaries forms the third layer (64, 65). During
viremia, some viruses can directly infect the epithelial cells
of blood-brain barrier, which is of the most exposure to the
circulating virions among the three layers. The viral replication
and the subsequent inflammation cytokines eventually deprive
BBB of the normal function by increasing its permeability, and
lead to the CNS infection. This pathway is confirmed in the
cases of Encephalitic Alphaviruses (66), Hepatitis E Virus (67),
and HSV (68). Considering the viral receptor, ACE2, is highly
expressed in the epithelial cells, it is possible for COVID-19 to
cause direct damage to the BBB, and thus enter the CNS.

Instead of penetrating the BBB, another group of viruses,
including human immunodeficiency virus (69) and Zika virus
(70), take use of the circulating leukocytes to carry them
across the BBB, which is called “Trojan horse” mechanism
(71). This pathway is best explored in the case of AIDS-related
dementia (72). During HIV infection, the virus accumulates
in the monocytes, which usually do not undergo a rapid
replication-induced cytolysis and are able to traverse the BBB
physically (73). After entering the CNS, HIV infects and
activates the microglia to secret chemokines, which in turn
induce a larger size of monocytes infiltration, and increase the
permeability of BBB as widely seen in the normal process of
inflammation (74, 75). The ability to infect leukocytes is also
reported in coronavirus infection. For example, HCoV-229E can
lead to restricted infection in monocytes/macrophages (76, 77),
peritoneal macrophages and dendritic cells (78–80), and induce
chemokine secretion (81), whichmeans coronavirus has the same
potential as HIV to constitute a reservoir in leukocytes and use
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them as vectors to spread into the other tissues outside the
respiratory tracts.

THE NEURO-INVASIVE PROPERTY OF
CORONAVIRUS

Although traditionally coronaviruses were regarded as
respiratory viruses for a long time, there are indeed accumulating
proves about the neuro-invasive property of coronavirus these
years. Among the six strains of coronaviruses before the breakout
of COVID-19, three of them, HCoV-229E, HCoV-OC43, and
SARS-CoV, have ever been reported to cause CNS infection
so far. Given the prevalent existence of the coronavirus in
healthy individuals and the lethal outcomes of the central
nervous system infection, increasing efforts are devoted into the
research of coronavirus neurological pathologies. In this section,
we summarize the previous researches on coronavirus CNS
infection, including clinical cases, histopathology, and animal
models, and mainly focus on the SARS-CoV. Since SARS-CoV
shares the same viral receptor as SARS-CoV-2 and also induced
a serious pandemic lethal pneumonia, we suppose SARS-CoV-2
can also lead to CNS infection with similar mechanism observed
in SARS cases.

The Neuro-Invasive Property of Murine
Hepatitis Virus (MHV)
Actually, some animal-oriented coronaviruses have long been
regarded as neuro-invasive viruses and were used in the research
of virus-related neurological disease. A case in point is murine
hepatitis virus (MHV) is a highly infectious coronavirus, which
was discovered and isolated in 1949 and prevailing in many
mouse colonies throughout the world (82). These zoonotic
pathogens are mainly transmitted via respiratory route, and
lead to hepatitis and encephalitis. After intracerebral injection
of the MHV, the rats presented acute panencephalitis and
demyelinating foci, and the virus RNA was detected in both
neurons and oligodendroglial cells (83). This discovery in animal
models reminded people that this respiratory virus may also have
the potential to induce central nervous system, but the routes
were still remained unclear until 1988 when the olfactory neural
pathway was confirmed to be the routes for CNS infection caused
by respiratory virus instead of trigeminal nerve pathway (84, 85).
Later it was found that MHV has a strong correlation with
the autoimmune neurogenic inflammation and the subsequent
multiple sclerosis, indicated that the coronavirus may result
neurologic disorder via distorted immune attack other than
direct viral replication (86). Nowadays, MHV has been widely
used in the construction of animal models of multiple sclerosis
or neurological infections to study the functional change and
mechanism of neurological diseases (87–89).

Neuro-Invasive Property of HCoV-229E and
HCoV-OC43
HCoV-229E and HCoV-OC43 are the first two strains of
coronaviruses been isolated. In most of the time these two
coronaviruses induce mild infection confined in upper

respiratory tracts. Since the discovery of the neuro-invasive
property of the MHV in mice, some researchers supposed
human coronaviruses may also lead to human neurological
disease, especially multiple sclerosis. In 1981, two strains of
coronaviruses which serologically related to HCoV-OC43 and
murine coronavirus A59 were isolated from the fresh autopsy
brain tissue of patients diagnosed with multiple sclerosis (90).
These two strains of coronaviruses shared cross-reactivity to
the OC43 antiserum, but due to the lack of polymerase chain
reaction (PCR) technology, these two viruses could not be
clearly identified. Until 1992, Stewart JN et al. confirmed the
existence of HCoV-OC43 and HCoV-229E in the brain tissue
of multiple sclerosis patients by total RNA extracting and
reverse transcription-polymerase chain reaction, in which the
HCoV-OC43 but not HCoV-229E was found in specimens
of all the patients (91). Actually, HCoV-229E and HCoV-
OC43 present a different infectivity to the cells of the central
nervous system. Both of the two coronaviruses can lead to
acute infections to the cell lines of neuroblastoma, glioblastoma,
glioblastoma, astrocytoma, and oligodendrocytes (92), but only
HCoV-OC43 can result in a persistent infection (92). Nowadays,
HCoV-OC43 is considered to be related to a series of chronic
neurological disorders such as medullary atrophy, Parkinson’s
disease, polyneuropathy, senile dementia, and headache (93).
According to the results from susceptible mice model, this
coronavirus mainly uses the olfactory route and neuron-to-
neuron transmission to enter the CNS, and concentrates in
the piriform cortex, the brain stem, and spinal cord (94). In
immunocompetent adults, the pathogenicity of HCoV-OC43
are mainly attributed to the subsequent autoimmunity instead
of viral replication, which undergoes a chronic and latent
procedure for years, but in infants or immunocompromise
individuals, this virus may lead to lethal acute
encephalitis (14, 95, 96).

Neuro-Invasive Property of SARS-CoV
In 2003, a previously uncharacterized coronavirus, SARS-CoV,
was isolated from a cook in Guangdong, China. Different from
the previously discovered HCoV-229E and HCoV-OC43, this
type of coronavirus was not confined in the upper respiratory
tracts, but lead to progressed pneumonia, which resulted in
reduced alveolar diffuse function and the subsequent acute
respiratory distress syndrome (ARDS). This coronavirus soon
induced a global pandemic, and involved in 8,096 patients and
774 deaths (97, 98). Given the distinct syndromes compared
with common viral pneumonia, this pandemic was finally
named Severe Acute Respiratory Syndrome (SARS), and thus
the pathogen was named SARS-CoV. SARS-CoV is a zoonotic
virus originating from bats, and infected the palm civet as the
second carrier, then finally managed to get across the species
barrier to human via nosocomial transition and resulted in lethal
pneumonia (99). The outbreak of SARS-CoV for the first time
demonstrated the lethal pathogenicity of coronavirus, and the
prevalence of coronavirus reservoirs in bats.

During SARS infection, an important complication is the
multiple organ failure, usually observed in severe infection
cases (100). This systemic damage of SARS used to be simply
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regarded as a result of immune dysregulation such as systemic
inflammatory response syndrome (SIRS), until viral replication
was detected in gastrointestinal, kidney, immune cells, and even
brain, demonstrating that the SARS-CoV also produced direct
toxicity to the organs by local viral replication (101). According
to the reported autopsy results, SARS in brain tissue mainly
confined to hypothalamus and cortex, leading to edema and
degeneration of neurons. Indeed, the SARS central nervous
infection presented a strong correlation with mortality risk,
as the SARS was detected in all of the brain tissue autopsies.
Another research found necrosis of neurons and hyperplasia of
gliocytes in brain tissue specimen collected from SARS patient
with the symptoms of significant central nervous infection, and
anti-viral immune response was verified by increased immune
cells and elevated cytokines level (102). Experimental data from
hACE2 transgenic mice revealed that intranasal inoculation
of SARS induced a delayed central nervous system infection,
conforming to the process of secondary infection. Different from
the regional distribution of SARS-CoV in brain specimens from
clinical cases, once getting across the brain-blood barrier, the
virus spread throughout the brain tissue of transgenic mice via
the connection of neurons at a high effiency, especially in the
regions of cortex, basal ganglia, and midbrain. Olfactory nerve
retrograde and hematogenous routes were both suspected to
account for the spread from respiratory tract to central nervous
system, as virions were detected in blood and olfactory nerve
(103, 104). Considering the brain infection presented a high
correlation to death, it may exert neurogenic contribution to
the respiratory failure, clinically the most common cause of
death for SARS victims. Besides, the neuro-invasion and neuro-
toxicity of SARS-CoV can also lead to chronic diseases and
disorders even years after recovery from pneumonia. A series of
somatic and psychologic symptoms relating to central nervous
system prevailed among the survivor of SARS, including fatigue,
sleep physiological changes, sleep disordered breathing and
musculoskeletal pain (105). Sometimes the lesion can be latent
and uncommon, such as a case of SARS-CoV induced olfactory
dysfunction, which is rarely reported in typical peripheral
neuropathy and leads to permanent anosmia (106). It needs to
be pointed out that SARS-CoV shared the same receptor, ACE2,
with SARS-CoV-2, and are genetically identical to the SARS-
CoV-2, which means that these two viruses may undergo similar
pathogenicity progress.

Neuro-Invasive Property of SARS-CoV-2
SARS-CoV-2 shares a number of similarities to SARS-CoV,
according to the clinical symptoms, viral sequence, infectivity,
viral receptor, and possibly the neuro-invasive property. So far,
SARS-CoV-2 has been found to cause extra-pulmonary infection,
such as kidney, gastrointestinal and possibly heart (107–109). For
neuro-invasive property of SARS-CoV-2, there are some cases

about the neurological damage in COVID-19 patients, such as
olfactory disorder and ocular abnormalities, both of which are
related to peripheral nervous system disfunction, with no direct
proves manifesting the viral replication in these tissue by RT-PCR
(110). As for central nervous system, in the reports conducted by
Chen et al., encephalopathy was seen in 23 of the 113 deceased
patients, in which the patients presented anorexia, myalgia, and
disorders of consciousness (111). However, there is still a lack of
evidence from autopsy confirming the viral replication in brain
tissue or cerebrospinal fluid, so it remains unclear whether these
neurologic symptoms are led by viral infection or simply as a
result of pulmonary encephalopathy. To confirm the existence of
SARS-CoV-2 in central nervous system, more convincing proves
from autopsy histologic examination is needed, especially the
lesions in the olfactory bulb, rhinencephalon, paraventricular
nucleus, and brain stem.

CONCLUSION

In this review, we have summarized the possible mechanism for
SARS-CoV-2 induced CNS infection, and conduct analysis on the
potential of SARS-CoV-2 to cause CNS infection. At present the
neuro-invasive property of SARS-CoV-2 are still unclear, but it
seems that its infectivity in CNS is not as common as the previous
SARS-CoV. It is no doubt that the central nervous system serves
as an ideal target for SARS-CoV-2, with necessary receptor for
viral tropism and feasible pathway for viral spread. At present,
whether the SARS-CoV-2 can induce acute or chronic damage
to CNS system, whether the SARS-CoV-2 can remain long-term
latent infection in CNS system, and whether the latent SARS-
CoV-2 will revive under given situation are all remaining to be
explored in the follow-up visit. Considering the large number of
patients involved, which is far more than the victims of SARS
and MERS, clinicians should pay attention to the neurologic
symptoms in COVID-19 patient, and act on an early stage. It
should be pointed out for clinicians that the clinical manifestation
of SARS-CoV-2 CNS infection could be staged, with possible
existence of encephalitis in the acute phase (112), postinfectious
symptoms in the subacute phase (113), and even involvement in
patients vulnerable to neurodegenerative diseases in the chronic
phase (114).
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Coronavirus 2019 (COVID-19) is currently the center of what has become a public health

crisis. While the virus is well-known for its trademark effects on respiratory function,

neurological damage has been reported to affect a considerable proportion of severe

cases. To characterize the neuro-invasive potential of this disease, a contemporary review

of COVID-19 and its neurological sequelae was conducted using the limited, but growing,

literature that is available. These neurological squeal are based on the manifestations that

the virus has on normal central and peripheral nervous system function. The authors

present the virology of the SARS-CoV-2 agent by analyzing its classification as an

enveloped, positive-stranded RNA virus. A comprehensive timeline is then presented,

indicating the progression of the disease as a public health threat. Furthermore,

underlying chronic neurological conditions potentially lead to more adverse cases of

COVID-19. SARS-CoV-2 may reach ACE2 receptors on neuronal tissue through mode

of the general circulation. The CNS may also be susceptible to an immune response

where a “cytokine storm” canmanifest into neural injury. Histological evidence is provided,

while symptoms such as headache and vertigo are highlighted as CNS manifestations

of COVID-19. Treatment of these symptoms is addressed with paracetamol being

recommended as a possible, but not conclusive, treatment to some CNS symptoms.

The authors then discuss the peripheral nervous system sequelae and COVID’s impact

on causing chemosensory dysfunction starting with viral attack on olfactory sensory

neurons and cells types within the lining of the nose. Histological evidence is also provided

while symptoms such as anosmia and ageusia are characterized as PNS manifestations.

Possible treatment options for these symptoms are then addressed as a major limitation,

as anecdotal, and not conclusive evidence can be made. Finally, preventive measures of

the neurological sequelae are addressed using a multidirectional approach. Postmortem

examinations of the brains of COVID-19 patients are suggested as being a possible key

to formulating new understandings of its neuropathology. Lastly, the authors suggest

a more comprehensive neurological follow-up of recovered patients, in order to better

characterize the neurological sequelae of this illness.
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INTRODUCTION

Epidemiology
The emergence of the coronavirus and its viral agent, severe
respiratory syndrome coronavirus 2 (SARS-CoV-2), has derived
into one of the most unprecedented and considerable pandemics
of the modern era. The third zoonotic coronavirus this century,
its pathogenic nature and large scale adverse medical effects
has cemented its status as one of history’s greatest public
health threats. This virus was first isolated in December 2019
after many patients in Wuhan, China, were diagnosed with
pneumonia of unknown etiology (1–3). Following its global
dispersion, the World Health Organization (WHO) declared
the coronavirus as a pandemic due to its rapidly transmissible
nature, increasing mortality rate, and limited treatment options.
Currently, there is an ongoing outbreak as the number of
COVID-19 cases exponentially increases with a reported low
to moderate mortality rate internationally. As of late May
2020, there are over 5.7 million cases confirmed worldwide
dispersed throughout 212 countries and territories, including
almost 353,000 deaths (1, 2).

Until recently, COVID-19 was investigated as primarily a
respiratory illness. However, as the number of cases continue to
grow, more reports are starting to show that the virus is capable
of not only lung damage, but also neurological damage. In a
case series from Wuhan, neurological symptoms were noticed
in 36.4% of patients with severe infections (4). This notable
proportion of cases presents a question on what neurological
symptoms are manifested along with how the virus manages
to present them. As of May 1st, 2020, remdesivir has been
approved for some emergency treatment usage. However, no
other clinically approved vaccine or specific antiviral treatments
has provided conclusive relief to COVID-19 and its physiological
manifestations. Therefore, understanding the clinical impact
of SARS-CoV-2, along with its underlying mechanisms is of
great importance to promote the development of effective,
preventative, and therapeutic counteragents. Herein, we will
characterize the virus, along with its neurological impact,
through a thorough a review of the literature to date.

Virology
Coronaviruses (CoVs; family Coronaviridae, subfamily
Coronavirinae) circulate in a diverse array of mammalian
and avian reservoirs. CoVs are classified into four genera and are
enveloped, positive-stranded, RNA viruses known to have large
genomes susceptible to recombination and mutations that lead
to the emergence of novel viruses. They can cause respiratory,
enteric, hepatic, and neurological diseases (5–7). There are
still some inconsistencies related to the origin of SARS-CoV-2,
with research evidence suggesting that it could be from similar
origins of its viral relatives. Both betacoronaviruses, severe
acute respiratory syndrome coronavirus (SARS-CoV) and the
Middle East respiratory syndrome coronavirus (MERS-CoV),

Abbreviations: WHO, World Health Organization; COVID-19, Coronavirus

Disease-2019; ICTV, International Committee on Taxonomy of Viruses; SARS-

CoV, severe acute respiratory syndrome coronavirus; MERS-CoV, Middle East

respiratory syndrome coronavirus.

had originated in bats, and it is likely that SARS-CoV-2 did as
well from an unknown intermediate host (3, 5, 6).

The estimated reproduction number (R0) for SARS-CoV-
2 ranges from 2.2 to 5.5 (3, 8, 9), meaning one person can
potentially transmit the disease to 5–6 people, making it highly
transmissible. Additionally, SARS-CoV-2 research has revealed
specific physiochemical and thermal sensitivities. Properties of
SARS-CoV-2 can be inactivated by UV light or at a temperature
of 56◦C for 30min. Disinfectants such as diethyl ether, 75%
ethanol, chlorine, peracetic acid, and chloroform destabilize its
functional integrity (8). The virus has the longest viability on
stainless steel and plastic surfaces and can be detected up to 72 h
after initial contact to these surfaces (8). Genomic studies of the
virus have revealed that it mutated to produce two variants, L
and S. The L-type was more prevalent during early stages of the
outbreak and can replicate faster while being more transmissible.
The S-type is considered an older and milder variant (8).

Timeline: From History to Today
The first human coronavirus was detected by Tyrrell and Bynoe
in the 1960s in human embryonic tracheal organ cultures
obtained from the respiratory tract of an adult with a common
cold. After performing electron microscopy on the samples of
this new group of viruses, the morphology denoted a crown-
like appearance of the surface projections and thus was named
coronavirus (3, 10). Since then, SARS-CoV-2 is the seventh
coronavirus that is known to infect humans. The first pandemic
of the 21st century was caused by SARS-CoV followed by MERS-
CoV. In 2002, the SARS-CoV emerged in Guangdong Province,
China, spreading to 37 countries, and its subsequent global
epidemic was associated with 8,096 cases and 774 deaths. A
decade later, the MERS-CoV spread to 27 countries, causing
2,494 infected cases and 858 deaths worldwide (Figure 1) (2, 6).

SUSCEPTIBILITY

According to the Centers for Disease Control and Prevention,
risk of susceptibility to COVID-19 can be stratified into risk
of exposure and risk of severe illness (11). Increased risk of
exposure to SARS-CoV-2 has been shown to occur in places
with ongoing community spread, such as between healthcare
workers, close contacts of persons with COVID-19, and travelers
from affected international locations. Of those infected, increased
severity of illness can be seen more commonly in people aged
65 years and older, those living in a nursing home or long-term
care facility, and in people with underlying medical conditions
such as hypertension, chronic lung disease, moderate to severe
asthma, cardiac disease, immunocompromised states (i.e., cancer,
smoking, HIV or AIDS, steroids), BMI > 40, diabetes, chronic
kidney disease, and liver disease (11–16). Moreover, The
Chinese Center for Disease Control and Prevention similarly
reported from one of their largest studies of 72,314 cases
that high case-fatality rates came from those with similar
comorbidities: cardiovascular disease (10.5%), diabetes (7.3%),
chronic respiratory disease (6.3%), hypertension (6%), and
cancer (5.6%) (17). In addition, those with cerebrovascular
disease alongside coronary artery disease had a higher relative
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FIGURE 1 | Timeline of the SARS-CoV-2 outbreak. Significant epidemiological events and scientific advances during this time period are highlighted and adapted

from the WHO and recently published data (1–3, 10). The superscript number adjacent to the text indicate the calendar date of each event described.

risk of acquiring the pathogen more severely than those without
this comorbidity (18). Finally, and most applicable to the area
of interest, those with chronic neurological pathologies present
an added risk of developing a more severe case of COVID-
19 (19). Neurological or neurodevelopment conditions (such
as cerebral palsy, epilepsy, stroke, intellectual disabilities, spinal
cord injury, or muscular dystrophy), present additional risk
factors that increase susceptibility to a severe course of COVID-
19 through mechanisms that add physiological stress (19). The
current epidemiology demonstrates the impact SARS-CoV-2 can
have on the health and well-being of people with underlying
health conditions, highlighting its potential effects on multiple
organ systems in the body. However, due to this virus being
relatively new, not all risk factors have been identified adding
limitation to this understanding.

NEUROLOGICAL IMPACT

Central Nervous System
With much being said about SARS CoV-2’s hallmark impact on
respiratory function, gradual advances in research have found
properties of neuroinvasive potential, particularly in the invasion
of the central nervous system (CNS). It is widely understood that
the mode of transmission of COVID-19 is through direct contact
or respiratory droplets from an infected individual. However,
indirect contact through fomites can also act as a vehicle of
transmission. Fomites are inanimate surfaces that contain the
virus (through direct contact), and based on the viability of the
virus on to an inanimate surface, it can lead to the rampant

spread onto another host. As soon as the virus enters the body,
its effects are highly dependent on its viral structure. The viral
structure of COVID-19 is contained within the nucleocapsid
which is surrounded by a nuclear envelope. The nuclear envelope
is derived from the host cell’s membrane and embedded within
that membrane are glycoprotein spikes, known as S-proteins
(20). It is these S-protein spikes that allow the cell to attach to
a new cell and infect it (20). To carry through its function, S-
proteins contain an S1/S2 activation cleavage site that is activated
by the serine endoprotease, furin (21). Furin is a key protein that
can cause normal and abnormal physiological conditions. It is
important neurologically because it is responsible for activating
neural growth factors that are key to homeostasis (22). However,
in the case of SARS-CoV-2, furin plays the role of a viral activator.
This activation occurs through furin’s enzymatic activity, which
allows for the irreversible cleavage of precursor proteins to enter
their biologically active state (21). With regards to SARS-CoV-2,
furin autocleavage helps the S-protein’s subunits to separate, and
allow for the virus to break open and enter host cells (21). This
is done after the S-proteins have interacted with the cell surface
receptor, angiotensin-converting enzyme 2, or ACE2 (21). The
ACE2 receptor is present along multiple cell organs such as the
heart, kidney, lunges, while also being found in both the central
and peripheral nervous system. This makes it a valuable target in
understanding the neural-potential of the SARS-CoV-2 antigen.

The pathophysiology of neural infections in the CNS from
COVID-19 is a phenomenon that is still being characterized.
Previous studies have shown that SARS-CoV-2 may reach ACE2
receptors on neuronal tissue through mode of the general
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circulation. Viremia causes the virus to pass into the cerebral
circulation and reach the brain to induce neurotropic effects.
The virus may also reach the brain through routes of the nasal
cavity, specifically as the virus passes through the cribriform
plate. Upon entry into the neural cavity, the virus will encounter
ACE2 receptors located on the endothelial lining between the
blood capillaries and the brain (23). The virus may also encounter
the expression of ACE2 receptors over glial cells and neurons,
allowing for multiple sites of invasion. The interaction of
the glycoproteins of SARS-CoV-2 to the ACE2 receptor can
cause subsequent cycles of viral budding, allowing for neuronal
damage to manifest in neural tissues and the blood-brain-
barrier (BBB) (23). The breaking of the BBB may allow for
cerebral edema, subsequently compressing the brainstem and
compromising involuntary respiratory activity (24). This cerebral
edema may also be caused by apoptosis of brain cells following
elevated intracranial pressure and therefore remains a theoretical
concern of the virus. Evidently, patients exhibiting acute SARS-
CoV illnesses have presented the virus in cerebrospinal fluid
analyses (23). The cerebrospinal fluid (CSF) is a bodily fluid that
surrounds the brain and serves an array of functions ranging
from acting as a shock absorber from neurological trauma to
circulating nutrients around the CNS. Its role in homeostasis
and neurological metabolism has made it a great reporter of
the neurological environment; therefore, it can be clinically
used to detect infectious agents and diseases (25). Furthermore,
viral implications on the immune system could induce indirect
effects on the CNS. The breakage in the blood-brain barrier
could leave an immune response of cytokines (particularly IL-
6) becoming overly abundant along infected tissue of the brain
(26). This leads to a hypercoagulable state in what is known
as a “cytokine storm.” Depending on the severity of the case,
this could leave COVID-19 patients at risk of developing acute
necrotizing encephalopathy (ANE) and hemorrhages (27). Most
recently, a third theory discusses how neural injury is manifested
from COVID-19 as a result of a cascade effect following
respiratory stress. A loss of oxygen due to lung damage can
subsequently result in multisystem organ failure leading to a
cascade effect that results in neural injury (28). Ultimately, what
these three theories provide are multiple mechanisms through
which neural manifestations of COVID-19 can result. These
theories also highlight the limitations in addressing neurological
manifestations in COVID-19, as research remains ongoing.

A recent case of a female patient in Detroit, Michigan showed
the possible long-term impact of neurological manifestations
of COVID-19 (27) while also presenting some histological
significance. This patient was jointly diagnosed with COVID-19
and ANE due to possible subsequent neural injury. CT scans of
her brain revealed symmetrical tissue damage of the thalamus
while her MRI also showed damage to the thalamus along
with the cerebral cortex and the brain tissue beneath its gyri
(folds within the cerebral cortex) (27). Histological significance
is evident in her CT image as hypodense areas are present,
indicating tissue damage had occurred. This decrease in density
is a result of cerebral edema, when excess fluid floods brain
tissue after neural injury, a possible consequence of severe CNS
manifestations of COVID-19 (27). As previously stated, the cause

TABLE 1 | Overview of COVID-19’s impact on the central and peripheral nervous

system, as known to date.
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& direct contact with an
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Directly: respiratory droplets

& direct contact with an
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Indirectly: Fomites/Surfaces

Pathophysiology
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1. Viral Entry into the Brain

2. Adverse-Immune
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3. Respiratory Stress

1.Chemosensory

Dysfunction

Histological
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Hypodense areas in CT

scans, following positive

testing for COVID-19

Falling out of hair-like

receptors on olfactory tissue

Main symptoms: Headache and Vertigo Anosmia and Ageusia

Major symptoms: Stroke, Meningitis, ANE,

Hemorrhages

Guillain-Barre Syndrome

(GBS) and Miller Fisher

Syndrome

Treatment/

Management/

Recovery:

No conclusive treatment:

Paracetamol has been seen

to provide headache and

vertigo relief without

worsening

COVID-19 symptoms

No conclusive treatment:

Nasal Spray being

developed for

medication delivery

Limitations are prevalent as a neurological understanding is yet to be fully confirmed.

of this cerebral edema is possibly through a “cytokine storm,”
apoptosis of brain cells, or even from breakage in the BBB. In
addition, other severe cases aside from ANE and hemorrhage
are prevalent, as the first case of meningitis has been associated
with COVID-19 (29). A male patient was found to have this
condition after his MRI showed hypersensitivity along the right
lateral ventricle, as well as hyperintesnse signal changes in the
right mesial temporal lobe and hippocampus (29). He was
confirmed to have COVID-19 after SARS-CoV-2 was found in
his CSF, however, there was no evidence of cerebral edema
like the previous case mentioned (29). Thus, the variability
in histological evidence could link theories of pathophysiology
regarding COVID-19’s impact on the CNS.

While the more severe symptomatic manifestations of
the CNS may include ANE, meningitis, and hemorrhage,
the more commonly reported CNS symptoms are vertigo,
cephalgia, impaired consciousness, seizures, ataxia, and acute
cerebrovascular disease (30) (Table 1). In a study published
to JAMA Neurology, patients with CNS manifestations most
commonly exhibited headache and dizziness (30) as the
major symptoms. These manifestations have been reviewed
and confirmed by trained neurologists, with most neurological
symptoms occurring during the early stages of the illness (30).
Laboratory findings of these patients reported lower lymphocyte
and platelet counts and higher blood urea nitrogen levels.
However, in more mild cases, no significance was found between
patients with or without CNS manifestations of COVID-19
(4). Therefore, it was concluded that patients with severe cases
were more susceptible to neurological symptoms. Moreover,
the more severe cases had higher fibrin degradation product
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levels (D-dimer), linking these cases to a higher likelihood of
cerebrovascular disease (4). Furthermore, recent findings have
reported that a portion of patients are developing symptoms
of stroke. Specifically, reports coming out of New York health
systems have reported that large vessel strokes can be manifested,
even in individuals under the age of 50 (31). A large vessel stroke
is an interruption of blood flow in one of the larger arteries in
the brain. The suspected cause of these strokes are investigated
as an immunohematological issue in allowing for blood clotting
throughout a patient’s body (31).

Treatment of COVID-19 and its CNS manifestations are still
ongoing. However, if the coronavirus is breaching the blood-
brain barrier, this could complicate the recovery process (32).
The role of the BBB is to serve as the gatekeeper in cerebral
passage, therefore medication delivery to the BBB would be
difficult because medications are considered as antigens to it,
thereby preventing their therapeutic effects (32). Since differences
in genetic makeup can increase susceptibility to viral invasion
of the BBB, technologies such as CRISPER/CAS9 presents a
possible way to target these adverse genetic differences. By
targeting specific sequences to engineer candidate risk genes in
the BBB, one can assess if BBB permeability is strengthened
(33). With regards to the symptomatic prevalence of the
disease, hydroxychloroquine has been notably investigated as a
possible therapeutic avenue. However, in certain patients, this
antimalarial drug may induce adverse neuropsychiatric effects,
such as worsening of CNS symptoms like headaches, vertigo,
and increased anxiety (30). This makes hydroxychloroquine a
less viable treatment for symptoms pertaining to the CNS, and
alternative therapies should be considered for patients suffering
from these symptoms or from chronic mental instability (22).
Furthermore, the NHS recommends paracetamol for CNS-like
symptoms such as fevers and headaches due to its reported
symptom relief and low likelihood of complications. However,
ibuprofen and other NSAIDs are still being evaluated after being
ruled out as a therapeutic option (34). They were initially ruled
out due to reports that anti-inflammatory drugs may exacerbate
COVID-19 symptoms, due to possibly causing a dampened
immune response to viral attack (35). These reports have since
been rejected by the World Health Organization due to a lack
of evidence suggesting that anti-inflammatory treatments are a
direct threat to a patient’s immunity (34). However, this does
not present NSAIDs as a potential therapy, especially when
symptoms become more complicated. With regards to blocking
viral activity and ultimately CNS manifestations, furin inhibitors
have also been investigated as a possible treatment by preventing
the activation of the S-proteins on the viral surface (30). However,
with furin’s important role in normal physiology, researchers are
evaluating whether a molecule could be secreted to separate its
activity from the virus. Unfortunately, there are still considerable
limitations in finding a viable treatment for COVID-19’s CNS
manifestations, as clinical trials will continue until a vaccine
becomes readily available.

Peripheral Nervous System Involvement
COVID-19, like its pathogenic relatives, could also specifically
compromise the activity of the peripheral nervous system. Just

like the CNS, PNS manifestations arise following direct contact
through respiratory droplets or indirect contact through fomites.
However, as an individual starts to touch mucosal membranes,
such as their eyes, nose, or mouth, it presents a portal of entry
for the virus to disrupt neurological sensations that pertain to
these sites. Moreover, just like the CNS manifestations, furin’s
endoproteolytic activity is maintained in order to activate the
virus following its interactions with ACE2 receptors. These
consistencies are not just present within the nervous system but
along all physiological systems that get affected through COVID-
19. However, COVID-19, has a peripheral neural involvement
that occurs when ACE2 receptors are interacting with the
viral agent. These ACE2 receptors have been found along the
tongue, mouth, and nasal passage showing the possibility of the
virus targeting multiple neurons and influencing those senses
tremendously (36).

It was recently discovered that two cell types in the nose are
the most likely initial infection points for viral entry into the
PNS. These two cell types are called goblet cells and ciliated cells
(37). Goblet cells are epithelial cells that can produce mucus
on the surface of the mucosal membrane, thereby lubricating
the epithelium and protecting it against foreign invaders (38).
They are found in several physiological systems, including the
respiratory system, consequently leading to their involvement
in the pathophysiologies of several respiratory diseases such as
COVID-19 (38). On the other hand, ciliated cells are another cell
type that is known for having tiny hair-like projections anchored
along the lining of the epithelial respiratory tract. Ciliated cells
aid in mucus transport and stopping foreign bacteria from
reaching the lunges (39). These two cell types are related in the
sense that they both contain high concentrations of the ACE2
receptor that allows SARS-CoV-2 to enter host cells (38). In
addition, they contain high concentrations of another protease
called TMPRSS2 (38). TMPRSS2 is a cell surface protease that
can have cumulative effects with furin to promote SARS-CoV-
2 activation and entry (40). To understand what types of
cells are infected following initial viral entry, it is important
to understand that the sense of smell and taste are closely
associated with one another. Both rely on the same type of
sensory cells, called chemoreceptors, which are activated when
they meet certain types of chemical stimuli. SARS-CoV-2 could
disrupt these chemoreceptors by reaching the olfactory mucosa
(which contains epithelium cells, blood vessels, and axons from
olfactory neurons) and initiate an inflammatory response (24).
This area is joined with the olfactory bulb by the cribriform
plate, which allows for the transmission of olfaction senses at
the base of the frontal lobe (41). Here, neurons can be infected
while endangering deeper cerebral tissue (24). This highlights
the linkage between the CNS and PNS during the viral invasion
through the nasal cavity (Figure 2). Moreover, should defects in
respiration be considerable, then PNS chemoreceptic dysfunction
may be presented due to the proximity of sensory neurons in the
olfactory bulb to deeper brain tissue (42).

Histological significance pertaining to the PNS involvement
was found following analysis of infected olfactory tissue.
Professor Carl Philpott, director of medical affairs and research
at Fifth Sense, states that while looking at the olfactory tissue
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FIGURE 2 | The pathway of the virus in the central and peripheral nervous system which are connected when the virus reaches the olfactory bulb.

microscopically, one will notice the fine hair-like endings of the
receptor cells had fallen, thus disabling the cells from receiving
olfactory senses from the nose (43). This is a byproduct of
the virus interacting with the chemoreceptors in the mucosal
membrane and compromising neural sensations. Further
histological evidence on peripheral tissue and other mucosal
membranes have not been actively reported, thus highlighting
limitations to understanding peripheral involvement following
viral activity.

According to the American Academy of Otolaryngology—
Head and Neck Surgery, otolaryngologists in the U.K have
reported that more than two-thirds of confirmed COVID-19
cases in Germany had anosmia (loss of smell) (44). While
in South Korea, 30% of patients testing positive have had
anosmia as their primary symptom in otherwise mild cases
(44). Similar reports have been found globally, as anosmia and
ageusia are highly reported as primary symptoms of COVID-
19. In another study, patients with confirmed cases of COVID-
19 were recruited from 12 European hospitals to investigate
olfactory and gaustory dysfunctions (45). Out of the 417 patients
studied, between 85.6 and 88% of patients reported these
dysfunctions, with significantly more cases in females (45). 44%

of the participants also reported their symptoms early in their
pathology (45). Physicians state that it’s not surprising that the
olfactory system might be heavily influenced, given that loss of
smell and changes in taste are a rather common complaint of
people who get influenza as well (46). Other symptoms may
include hyposmia, neuralgia, and skeletal muscular symptoms,
however, these symptoms are not considered primary peripheral
manifestations due to a lack of supporting evidence. Additionally,
a single case suggests a possible association between Guillain-
Barré Syndrome (GBS) and SARS-CoV-2 infection (47, 48). A
female patient who returned from Wuhan, China, underwent
neurologic examination and was diagnosed with GBS while also
testing positive for SARS-CoV-2 (48). This was followed with five
more cases also displaying COVID-19 with GBS complications
(49). GBS is a rare autoimmune disorder that attacks nerves
in the PNS and can lead to paresthesia, areflexia, ataxia, and
muscle and facial weakness, or paralysis (49). Despite being
a unique condition, viral infections can be triggers of GBS,
especially when these infections reach a severe state. Primary
symptoms of GBS, such as tingling, leg weakness, and facial
weakness, were noticed in COVID-19 patients around 5–10
days after the initial common COVID symptoms (49). After a
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few days, more adverse symptoms such as quadraparesis and
paralysis were recognized (49). Moreover, a variant of GBS,
known as Miller Fisher Syndrome, has also been reported in
two cases of COVID-19 from Madrid, Spain (50). Miller-Fisher
Syndrome is characterized by areflexia and paralysis of the eyes
and may also be proceeded by a viral agent’s neurological activity
(51). While still being a rare condition, the association between
COVID-19, GBS, and Miller-Fisher Syndrome warrants further
epidemiological data to support a causal relationship between
them (47).

As far as treatment, research is ongoing with clinical trials
still being administered to determine the most viable form of
care. Once the virus has started impacting neuronal activity,
it becomes very difficult to treat, meaning the best mode of
treatment is by preventing or reducing the viral entry. However,
The Center of Disease Control recently stated: "There are no
drugs or other therapeutics approved by the US Food and Drug
Administration to prevent or treat COVID-19” (52). This adds
further limitations to addressing PNS neural manifestations of
COVID-19. The British Rhinological Society has advised against
the use of oral steroids in the treatment of anosmia in COVID-
19 patients (53). This precaution comes with the concern
that corticosteroid use may increase severity of the pathogen.
However, due to the concentrated presence of the coronavirus
in the nasal tissues, a nasal spray has been suspected as the best
mode in medication delivery (54). Recent reports from Utah
have started addressing the efficacy of chlorpheniramine maleate
(CPM) combined into a nasal spray to study cultures with SARS-
CoV-2 (54). CPM is an antihistamine with previous studies
suggesting that it acts well in the antiviral treatment against
strains of influenza (54). The initial trials have showed relative
success with reduced amounts of the virus being reported in
vivo following CPM administration (54). However, this requires
further testing in order to accurately and effectively treat COVID
patients. With more severe patients who may have acquired GBS
with COVID-19, intravenous immunoglobulin therapy (IVIG)
have been known as the most common treatment for these
patients (49). IVIG treatment allows for the administration of
healthy antibodies and has been suggested to be taken with
antivirals to further combat the COVID like symptoms (49).
Plasmapheresis with antiviral treatment has also been suggested
as another treatment option to enhance the autoimmune system
while reducing viral activity (49). With regards to the two cases
with Miller-Fisher Syndrome, the first was treated with IVIG
while the second with acetaminophen. After two weeks, it was
seen that both patients made a complete neurological recovery,
except for primary symptoms of anosmia and ageusia from their
COVID-19 diagnosis (50). However, these reports have yet to be
confirmed as a definite viable treatment andmay not directly lead
to every patient’s recovery.

To better combat PNS manifestations today, ENT UK
released an info-sheet encouraging those who experience sudden
loss of smell or taste during the COVID-19 pandemic to
assume they have the virus until tests prove negative. The
management plan included: self-isolation, avoiding visits to
medical professionals or hospitals unless symptoms require
proper treatment, and try smell training to improve senses.

Furthermore, The AAO-HNS created a web-based reporting
tool for any health-care professionals to file reports of patients
experiencing anosmia and ageusia related to COVID-19. Until
a viable treatment is released to the public, these guidelines will
help those with chemosensory dysfunction to be informed and
aware of what conditions to follow.

AVOIDANCE OF DETRIMENTAL
NEUROLOGICAL SEQUELAE AND
MULTIDISCIPLINARY APPROACH

Following the emergence of more literature findings about the
neurological manifestations of COVID-19, an increasing number
of studies are now urging clinicians to screen for neurological
presentations of this disease (1, 4, 23, 55, 56). As previously
mentioned, the symptoms present a neurological pathology,
while those with more severe cases have been susceptible
to neurological complications. Thus, these studies are urging
clinicians to comprehensively assess the neurological symptoms
in patients coming into acute healthcare settings, to effectively
triage patients, delay diagnosis and misdiagnosis, and prevent
transmission of the virus. Although preliminary, studies suggest
that surveillance of the neurological manifestations of COVID-19
may have guiding significance for the prevention and treatment
of COVID-19 induced respiratory failure and death (4, 55).

Knowledge and clinical guidelines surrounding treatment of
COVID-19 is rapidly evolving as more information becomes
available. At this time, knowledge surrounding the prevention
and treatment of neurological complications of COVID-19 is
limited. One study published several clinical guidelines for
neurologists treating patients with suspected or confirmed
cases of COVID-19(57). These guidelines were pertaining to
the management of acute cerebrovascular disease, intracranial
infection, and muscle damage as a result of SARS-CoV-2.

In the context of SARS-CoV-2, neurologists may encounter
two phenotypes of patients with acute cerebrovascular diseases—
acute ischemic stroke patients, and hypertensive patients
with increased risk of intracranial hemorrhage. The authors
recommend that emergency treatment be jointly offered by
neurologists and infectious disease specialists when admitting
an acute ischemic stroke patient with suspected or confirmed
SARS-CoV-2 diagnosis, and preventive anticoagulation is
recommended for ischemic stroke patients with high D-dimer
levels (57). Hypertensive patients with SARS-CoV-2 may be
particularly challenging to treat, as they may encounter blood
pressure fluctuations (since SARS-CoV-2 specifically binds to
ACE2 receptors), which may increase their risk of intracranial
hemorrhage. Additionally, patients with severe infection may
have severe thrombocytopenia, which is another risk factor
for cerebral hemorrhage. Per the guidelines, clinicians treating
hypertensive patients with SARS-CoV-2 should consider calcium
channel blockers, diuretics and other classes of antihypertensive
drugs instead of ACE inhibitors or angiotensin II receptor
blockers (ARBs) (57).

Further surveillance of intracranial infection for COVID-
19 patients would provide further insight in a neurological
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prognosis. MRI scans (with and without contrast) of the cranium
along with lumbar puncture procedures to collect cerebrospinal
fluid would highlight such a neuroinvasive association to the
pathogen (57). For patients with definitive intracranial infection,
suggested treatment strategies are controlling for cerebral
edema, treating and preventing seizures, and treating psychotic
symptoms (57). Lastly, for patients experiencing symptoms
associated with muscle damage, strengthening nutritional
support is recommended on top of active treatment for the
virus (57).

CONCLUSION

In summary, the SARS-CoV-2 pandemic remains one of the
greatest threats to public health to date. Although the virus is
known to directly invade the lungs, emerging research shows
central and peripheral nervous system involvement in the
pathology of the disease and clinical worsening in patients.
Patients with nervous system involvement as the presenting
symptoms in the early stages of infection may be misdiagnosed,
and may inadvertently spread the virus. Furthermore, studies
suggest that the time it takes for SARS-CoV-2 to advance from
initial symptoms, such as coughing, tiredness, and fever, to
difficulty breathing, is roughly five days, which is long enough
for the virus to enter and damage medullary neurons involved

in respiratory control (4, 55). Thus, healthcare providers and
neurologists should work closely to monitor the neurological
manifestations of the disease and carry a high index of
suspicion when evaluating patients in an endemic area. In
some cases, tele-neurology as a substitute for face to face
interactions with patients to monitor their clinical status may
be useful.

Going forward, to elucidate the involvement of the nervous
system in the progression of this disease, postmortem
examinations of the brain may be a valuable facet in
understanding the neurological mechanisms the virus manifests.
Currently, few, if any, autopsies are being performed due
to the fear of contracting the disease. Furthermore, a more
comprehensive neurological follow-up of patients who recovered
from the disease may be warranted to screen for long-lasting
neurological impacts of the illness and save lives.
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Cytokine storm is an acute hyperinflammatory response that may be responsible for

critical illness in many conditions including viral infections, cancer, sepsis, andmulti-organ

failure. The phenomenon has been implicated in critically ill patients infected with

SARS-CoV-2, the novel coronavirus implicated in COVID-19. Critically ill COVID-19

patients experiencing cytokine storm are believed to have a worse prognosis and

increased fatality rate. In SARS-CoV-2 infected patients, cytokine storm appears

important to the pathogenesis of several severe manifestations of COVID-19: acute

respiratory distress syndrome, thromboembolic diseases such as acute ischemic strokes

caused by large vessel occlusion and myocardial infarction, encephalitis, acute kidney

injury, and vasculitis (Kawasaki-like syndrome in children and renal vasculitis in adult).

Understanding the pathogenesis of cytokine storm will help unravel not only risk factors

for the condition but also therapeutic strategies to modulate the immune response

and deliver improved outcomes in COVID-19 patients at high risk for severe disease.

In this article, we present an overview of the cytokine storm and its implications in

COVID-19 settings and identify potential pathways or biomarkers that could be targeted

for therapy. Leveraging expert opinion, emerging evidence, and a case-based approach,

this position paper provides critical insights on cytokine storm from both a prognostic and

therapeutic standpoint.

Keywords: COVID-19, cytokine storm, immunological mechanisms, autoimmunity, neuroimmunology,

immunotherapies, guidelines, critical care
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INTRODUCTION

The coronavirus disease 2019 (COVID-19) pandemic has caused
a public health crisis with profound long-term socioeconomic
fallout. COVID-19 results from infection with the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) virus (1).
Although the vast majority of patients experience mild to
moderate symptoms, the disease remains fatal in a significant
proportion of those infected (2–4). Much of the critical
illness associated with SARS-CoV-2 infection is believed to
be the result of a hyperinflammatory process referred to as
hypercytokinemia or a “cytokine storm” (5). A full understanding
of the immunopathogenesis, of cytokine storm in COVID-19
patients has the potential to guide future strategies to improve
early diagnosis and implement therapeutic strategies to mitigate
cytokine storm-associated morbidity and mortality risks (5, 6).
This article discusses the implications of hypercytokinemia for
COVID-19 patients, including the risk factors for cytokine storm,
potential therapeutic strategies (6), and clinical considerations,
with special emphasis on patients with cancer, autoimmune
diseases, and those undergoing immunosuppressive therapies.

COVID-19 AND CYTOKINE STORM

Pathophysiology
Observations from the first cohort of 41 COVID-19 patients
in Wuhan, which led to the discovery of the novel SARS-
CoV-2 virus, revealed a cytokine profile similar to that
of secondary hemophagocytic lymphohistiocytosis (sHLH), a
hyperinflammatory condition triggered by viral infection (2).
Patients who were admitted to intensive care unit (ICU)
had higher levels of granulocyte-macrophage colony-stimulating
factor (GM-CSF), interferon gamma-induced protein 10 (IP10),
monocyte chemoattractant protein-1 (MCP-1), macrophage
inflammatory protein 1 alpha (MIP1A), and tumor necrosis
factor alpha (TNFα) compared to those who were not admitted
to ICU (2). Observations from another 150 patients in Wuhan
revealed that those who died of COVID-19 complications had
higher serum levels of C-reactive protein (CRP), interleukin
(IL)-6 and ferritin, suggesting an underlying hyperinflammatory
process (3). A combination of these markers may therefore be
used as prognostic markers to determine COVID-19 severity.
Another study showed that patients experiencing COVID-19-
related cardiac injury with the elevated levels of troponin T (TnT)
also demonstrated significantly higher CRP and procalcitonin
levels (up to 3–4 times more) and experienced increased
morbidity and mortality (4).

Patients who die from severe COVID-19 disease experience
endothelial cell infection and an endotheliitis affecting many
organs (7, 8). The SARS-CoV-2 S protein binds to angiotensin
converting enzyme 2 (ACE2) to enter host cells. Most
COVID-19 patients present with respiratory symptoms because
ACE2 receptors are expressed in vascular endothelial cells of
the lower respiratory tract (9). In severe COVID-19 cases,
hypercytokinemia in the lungs leads to diffuse alveolar damage,
hyaline membrane formation, thrombus formation [confirmed
in small vessels at autopsy (10)], fibrin exudates, and fibrotic

healing. These pathologic changes result in acute lung injury
and manifest clinically as acute respiratory distress syndrome
(ARDS) (11). Forty percent of COVID-19 patients experience
proteinuria and haematuria, suggesting kidneys infection and
injury (12). COVID-19-related kidney injury occurs because
ACE2 receptors are found in the kidney in the brush border of
proximal tubular cells (12). Although the kidneys of COVID-19
patients examined post-mortem reveal SARS-CoV 2 antigens in
the proximal tubules, the role of cytokine storm in causing kidney
injury is not yet clear (13).

ACE2 receptors are also present in cardiac tissue and
in the gastrointestinal tract, arguably explaining the cardiac
and gastrointestinal clinical manifestations in some COVID-
19 patients. Available data suggests that those with underlying
cardiovascular disease, hypertension, severe dyslipidaemia,
obesity, and diabetes are at high risk for severe COVID-19
disease (14), whilst other data indicates that SARS-CoV-2 infects
the heart, resulting in myocarditis and myocardial infarctions
(6, 7, 15–17). Patients with underlying cardiovascular disease
are at increased risk of cytokine storm (4, 18) and poor
outcomes. COVID-19 patients with underlying cardiovascular
disease are also at higher risk of myocardial injury [with cardiac
troponin (TnT) increase], as well as both atherosclerosis-related
and thromboembolic events such as stroke, plaque instability,
vasculitis, and myocardial infarction (7, 15, 19). COVID-19
has also been presumably linked to central nervous system
(CNS) symptoms and conditions including acute necrotizing
encephalitis, myalgia, and headache among others although the
pathogenesis is uncertain (20–25). Owing to the lower ACE2
expression levels in the CNS tissues, it has been hypothesized
that the SARS-CoV-2 per se can generate little inflammation (26).
Recent autopsy studies found scarce evidence of inflammation
(26–30). Whether the transfer of SARS-CoV-2 to CNS tissues
potentiate or exacerbate cytokine storm is a subject of ongoing
debate (28, 29).

Immunosenescence and Cytokine Storm
Elderly patients, especially older males, with comorbidities,
demonstrate increased susceptibility to poor prognosis or
increased risk of severe condition or even fatality from COVID-
19 (31). Aging is associated with a decline in immune function
or “immunosenescence” (32–36). With age, the immune
system can present with a series of changes, characterized
by immunosenescence markers (34–36), a decrease in the
generation of CD3+ T cells, an inversion of the CD4 to CD8
(CD4/CD8) T cells ratio due to the loss of CD8+ T cells
(35) (increased CD4/CD8 ratio), an increase in regulatory
T cells (Treg) and a decrease in B lymphocytes (34). It is
postulated that COVID-19 induced cytokine storm may be
contributing to the poor outcomes in elderly patients due to
immunosenescence. T lymphocytes can be potentially infected
by the virus (37), reducing their number due to their apoptosis. It
is currently not known whether the infection of the lymphocytes
themselves potentiate cytokine storm or otherwise. In a recent
study employing immunomodulatory therapeutic strategy,
intravenous transplantation of mesenchymal stem cells (MSCs)
was effective, especially in critically severe cases, in a series of 7
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patients with COVID-19 pneumonia (38). Immunomodulatory
therapies targeting cytokine storm show potential for such
approaches in improving outcomes and reducing mortality
due to COVID-19 in elderly patients (5, 39). Future studies are
required to further evaluate the efficacy of immunomodulatory
therapies in preventing cytokine storm induced severe illness
in COVID-19 patients in general, and elderly patients in
particular (38).

Significance of Cytokine Storm
Hypercytokinemia is an unregulated hyperinflammatory
response that results from the systemic spread of a localized
inflammatory response to viral or bacterial infection. Elevated
cytokine levels result in endothelial dysfunction, vascular
damage, and paracrine/metabolic dysregulation, thereby
damaging multiple organ systems. Levels of acute-response
cytokines (TNF and IL-1β) and chemotactic cytokines (IL-8 and
MCP-1) rise early in hypercytokinemia, facilitating a sustained
increase in IL-6. IL-6 binds to either membrane bound IL-6
receptor (mIL-6R) or soluble IL-6 receptor (sIL-6R), forming
a complex that acts on gp130, regulates levels of IL-6, MCP-
1 and GM-CSF via the Janus kinase-signal transducer and
activator of transcription (JAK-STAT) pathway, and thereby
perpetuates the inflammatory processes (39). IL-6, along with
other pleiotropic cytokines, drives an acute phase response that
elevates serum ferritin, complement, CRP, and pro-coagulant
factors, many of them measurable through commercially
available blood tests. The acute phase response of cytokine
storm is relatively over-exaggerated. Since high serum levels of
cytokines are inversely related to the total lymphocyte count,
low levels of cytotoxic T cells may contribute to reduced
viral clearance (40). Blocking upstream events related to or
at the level of cytokine response, such as JAK-STAT signaling
of macrophages to reduce IL-1 and IL-6 production, offers
a potential therapeutic target for the cytokine storm. Cell-
based target strategies may also be considered, but the time
to therapeutic effect of anti-B lymphocytes directed therapies
such as rituximab may be too long to be clinically relevant.
Therefore, targeting the upstream events may be relatively
more effective.

In reaction to SARS-CoV-2 infection, macrophages (41) and
dendritic cells trigger an initial immune response, including
lymphocytosis and cytokine release. However, the inflammatory
response results in the destruction of lymphocytes attempting
to stop SARS-CoV-2 infection. Lymphopenia ensues, especially
in patients severely affected enough to require ICU admission
(42). Cytokine production becomes rapidly dysregulated,
damaging healthy cells typically first in the lungs but potentially
spreading to other organs including the kidneys, heart,
blood vessels, and brain. The cascade of cytokine storm-
associated damage begins with disruption of the epithelial
barrier in the lungs. Activation of NOD, LRR-, and pyrin
domain-containing protein 3 (NLRP-3) inflammasome and the
relative blunted response of histone deacetylase 2 on nuclear
factor kappa betta (NFκB) complex has been suggested to
be associated with cytokine storms. The epithelial barrier
disruption exposes the lungs or other tissues to bacterial

infection. Pathophysiological mechanisms associated with
COVID-19 induced cytokine storms are shown in Figure 1

(11, 43–50).
We propose that the immune system cytokine network

may also communicate with the central nervous system
(CNS) cytokine network, especially when the blood-brain-
barrier (BBB) is compromised. Microglia and IL-1 activation
can cause increased reactive oxygen species (ROS) production,
phagocytosis, apoptosis, and increased cytokine expression
(see Figure 2) within the CNS (43), leading to neural tissue
damage through neuroinflammation, increased oxidative stress
and excitotoxicity, and dysfunction in synaptic pruning. The
systemic immune system cytokine network and the CNS cytokine
network influence each other through the neuropeptidergic
pathway involving neurokinin C and B, neuroendocrine peptides
(NPY)/gastrin-releasing peptide (GRP), SPA-GRP {SPA: [(D-
Arg, D-Trp, Leu)Substance P], a derivative of substance P},
and vasoactive intestinal polypeptide (VIP). Activation of
macrophages and phagocytosis, chemotaxis with neutrophils and
degranulation of mast cells, and activation and proliferation of
T-cells activate this pathway. Inflammatory cytokines are also
be transported through the blood, which could further amplify
the cytokine storm (11). We postulate that the overlapping
immune and CNS cytokine networks may drive “immune
hijack.” In light of these mechanisms and potentially devastating
impact of COVID-19 on “high-risk” patients, specific clinical
considerations for medical conditions have been discussed in the
following section.

CYTOKINE STORM AND HIGH-RISK
PATIENTS—CLINICAL CONSIDERATIONS
FOR SPECIFIC MEDICAL CONDITIONS

Some of the severe complications associated with COVID-19
are acute respiratory distress syndrome (ARDS) (prevalence of
17–29%), acute cardiac injury including myocarditis, myocardial
infarction and cardiac arrest, sepsis, multi-organ failure, ischemic
stroke, Kawasaki-like syndrome in children, acute pulmonary
embolism, sHLH, and secondary infections such as bacterial
pneumonia (Supplementary Table 1) (3). Therefore, special
considerations must guide management of patients at high risk
of severe COVID-19 disease and cytokine storm, including
patients with underlying coronary artery disease, obesity, cancer,
primary immunoglobulin deficiencies, autoimmune conditions,
as well as those receiving immunosuppressive therapies. A risk-
based strategy to identify high risk patients is presented in
Table 1. Measuring the viral load at different time points as
well as the immune response may help optimize treatment
strategies. Next, we will discuss the radiological findings
consistent with hyperinflammation or cytokine storm in
COVID-19 cases.

Cytokine Storm and Radiological Findings
Although the association between cytokine storm and the
radiological manifestations of COVID-19 pneumonia infection
require further investigation, computer assisted tomography
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FIGURE 1 | Mechanisms of SARS-CoV-2 associated cytokine storm and associated damages. Infection with SARS-CoV 2 can stimulate a hyperinflammatory

immune response wherein epithelial-cell-mediated production of reactive oxygen species (ROS) can cause cell death. ROS can also stimulate the synthesis of NLRP3

and NF-κB which contribute to increased cytokine levels, and thus, the cytokine storm. This essentially causes immune invasion which can lead to clinically relevant

conditions such as ARDS, sepsis, MODS and potentially even death. The organs affected as a result of MODS, and their associated symptoms, have been shown.

Lower gastrointestinal (GI) is rich in ACE2 receptors and hence at higher risk of infection due to COVID-19. Twenty percent of COVID-19 patients have diarrhea as

symptoms. SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; COVID-19, coronavirus disease 2019; ROS, reactive oxygen species; NLRP3, (NOD)-like

receptor protein 3 inflammasome; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; IL, interleukin; TNF, tumor necrosis factor; IFN, interferon;

PAMPs, pathogen-associated molecular patterns; DAMPs, damage-associated molecular patterns; PRR, pattern recognition receptors; AST, aspartate

aminotransferase; MODS, multiple organ dysfunction syndrome.

(CT), the lungs of patient with COVID-19 pneumonia typically
demonstrate findings typical of underlying hyperinflammatory
pathway (53, 54). On CT chest, the lungs typically demonstrate
ground-glass opacities (subpleural, peripheral and bilateral)
(53), bronchovascular thickening within lesions, smooth
or irregular interlobular or septal thickening, air space
consolidation, traction bronchiectasis, ill-defined margins,
air bronchograms, and thickening of the adjacent pleura
(54). IL-1β induces the production of bronchoalveolar lavage

fluid, creating the ground-glass appearance (40). CT findings
evolve over time (54–60). Normal CT scans may be seen
in the first 3–4 days. During the intermediate stage, septal
thickening and increased ground glass opacities appear (57).
During the advanced stage, which is usually at 9–13 days
of the disease, the features seen in the intermediate stage
consolidate. After 14 days of the disease, during the resolution
stage, fibrous stripes appear and typically resolve after 1
month (58–60).
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FIGURE 2 | Crosstalk between immune system and CNS system cytokine networks. There is a supposed link between the immune system cytokine network and the

CNS system cytokine network. Peripheral cytokines can cross the blood brain barrier to enter the CNS. Alternatively, microglia and astrocytes can also produce

cytokines. Potential involvement of neurons in regulation of cytokines for example brain-derived neurotrophic factor (BDNF) and interleukin-6 levels is also plausible

(51). SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; COVID-19, coronavirus disease 2019; CNS, central nervous system; IL, interleukin; TNF, tumor

necrosis factor; IFN, interferon.

COVID-19 Associated Coagulopathy and
Its Complications
Patients with COVID-19, especially younger patients, are at
a higher risk of hypercoagulability and thereby experience
higher rates of arterial and venous thromboses (61–64). A
case series reported large vessel ischemic stroke in young
asymptomatic or mildly symptomatic COVID-19 patients (62).
Critically ill patients appear to experience high rates of acute
venous thromboembolism (VTE) (63, 64). In 54 consecutively
admitted ICU patients treated with prophylactic low molecular
weight heparin since admission, 22.2% experienced VTE
[predominantly deep vein thrombosis (DVT)] (63). In a
retrospective study of severe COVID-19 patients admitted to
ICU (n = 81), 25% of the patients not receiving pharmacologic
VTE prophylaxis developed lower extremity DVT, and 40% of

those patients died. A D-dimer level of >1.5µg/mL predicted
VTE with high sensitivity and specificity (64). Another study
of 191 patients reported significantly higher mortality in
patients with D-dimer >1.0µg/mL compared to those whose
level was <1.0µg/mL (65). A 31% cumulative incidence of
thrombosis (from ischemic stroke, DVT, acute pulmonary
embolism, myocardial infarction, systemic arterial embolism)
has been reported, with pulmonary embolism being the most

common thrombotic complication (81%) (66). A prothrombin

time >3.0 s and a prolonged aPTT >5 s have also been reported

to independently predict thrombotic complications (66).
An autopsy series microscopically confirmed the presence

of platelets and thrombi in small vessels, thrombi in small

vessels in the peripheral aspect of lungs, and scattered areas of

diffuse alveolar damage (67). Gross pathological examination
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TABLE 1 | Patient at “risk” of severe outcomes after COVID-19 associated cytokine storm.

High-risk patients Risk category in

COVID-19 settings

Therapeutic strategy

Hemodynamic instability or cardiogenic shock Very high risk Invasive STEMI* pathway

Cardiac arrest/life-threatening arrhythmia Very high risk Invasive STEMI pathway

Acute heart failure Very high risk Invasive STEMI pathway

Recurrent intermittent ST elevation Very high risk Invasive STEMI pathway

Mechanical complications of myocardial infarction Very high risk Invasive STEMI pathway

Established diagnosis of NSTEMI based on cardiac troponins

AND at least one of the following (52):

1. recurrent symptoms

2. dynamic ST/T changes (silent or symptomatic)

Very high risk Testing followed by invasive STEMI strategy

Acute stroke Very high risk Acute stroke pathway

Acute meningitis/encephalitis Very high risk Respiratory care and ongoing monitoring; increased

intracranial pressure pathway; epileptic seizure

monitoring

Age ≥ 75 High risk Respiratory care and ongoing monitoring

Solid organ or stem cell transplant patients High risk Respiratory care and ongoing monitoring

HIV patients High risk Respiratory care and ongoing monitoring

Inherited immune conditions High risk Respiratory care and ongoing monitoring

On immunomodulatory therapy High risk Respiratory care and ongoing monitoring

Undergoing cancer treatment High risk Respiratory care and ongoing monitoring

Obesity High risk Respiratory care and ongoing monitoring

Diabetes High risk Respiratory care and ongoing monitoring

Established diagnosis of NSTEMI based on cardiac troponins

AND at least one of the following (52);

1. Diabetes mellitus or renal insufficiency (estimated

glomerular filtration rate < 60 mL/min/1.73 m2 );

2. Left ventricular ejection fraction (LVEF) < 40% or

congestive heart failure;

3. Early post infarction angina or prior PCI/CABG

High risk Non-invasive testing using CCTA, respiratory care

and ongoing monitoring

Epileptic seizures, status epilepticus High risk Respiratory care and ongoing monitoring;

seizure/status epilepticus treatment

Coronary artery disease (CAD) Intermediate risk Respiratory care and ongoing monitoring

Cerebrovascular disease Intermediate risk Respiratory care and ongoing monitoring

Cardiovascular disease (CVD)** Intermediate risk Respiratory care and ongoing monitoring

Pre-existing Hypertension Intermediate risk Respiratory care and ongoing monitoring

Smoking Intermediate risk Respiratory care and ongoing monitoring

Pneumonia Intermediate risk Respiratory care and ongoing monitoring

*NSTEMI, non-ST segment elevated MI; MI, myocardial infarction; CVD, cardiovascular disease; CAD, coronary artery disease; PCI, percutaneous coronary intervention; CABG, coronary

artery bypass grafting; CCTA, cardiac computed tomography angiography.

**CVD is linked to inflammation and oxidative stress, and patients who are not adherent to the anti-inflammatory therapy (Angiotensin-converting-enzyme inhibitors (ACEIs) or angiotensin-

II-receptor-antagonists (ARBs) and statins), viruses such as SARS-CoV2 might immediately cause degranulation of macrophages and monocytes in the damaged endothelium, causing

atheroma plaque instability, and increased coagulopathy.

revealed small firm clots in sections of peripheral parenchyma
of the lungs. Other autopsy series have revealed microthrombi
in small pulmonary arterioles and diffuse alveolar damage in
the majority of cases. In light of the findings of high-frequency
pulmonary micro thrombosis on histology, the hypothesis of
COVID-19 induced coagulopathy or hypercoagulation merits
further discussion. In a large retrospective analysis of consecutive
severe cases (n = 449), elevated D-dimer and prothrombin time
were correlated with a higher mortality rate (68). However,
neither aPTT nor platelet count was significantly different
between mildly and severely affected patients. Elevated levels of
D-dimer level may indicate secondary fibrinolysis, contributing

to clinically severe manifestations of COVID-19 infections. It is
noteworthy that anticoagulation significantly reduced mortality
in patients with the International Society for Thrombosis (ISTH)
sepsis-induced coagulopathy score of ≥4 (40.0 vs. 64.2%) (68).
However, there are variations in the incidence of VTE in ICU
patients across several centers. A meta-analysis of 9 studies
demonstrated that D-dimer level were elevated and coagulopathy
more prevalent in patient with severe disease as compared to
those with mild disease (69).

The American Society of Haematology recommends VTE
prophylaxis with LMWH or fondaparinux (alternative to
unfractionated heparin to reduce exposure) in all hospitalized
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COVID-19 patients unless the risk of bleeding outweighs
thrombosis risk (70). Fondaparinux can also be used in
patients with a history of heparin-induced thrombocytopenia
(HIT), as those patients are at 5-fold increased risk of severe
COVID-19. Mechanical thromboprophylaxis should be used
when anticoagulation is either contraindicated or unavailable.
According to the recent guidelines of the ISTH, all patients
with an elevated D-dimer (typically a 3 to 4-fold increase)
should be admitted to the hospital. Fibrinogen levels should
be monitored at the later stages of the disease (day 10–
14) with >2.0 g/L in both bleeding and non-bleeding
patients indicating disseminated intravascular coagulation. The
guidelines recommend consideration of LMWH in all patients
requiring hospital admission for COVID-19 except those in
whom anticoagulation is contraindicated (71). Contraindications
for anticoagulation with LMWH are platelet count <25
× 109/L, active bleeding, or severe renal impairment (71).
Notably, either an abnormal PT nor aPTT was not listed as
a contraindication for anticoagulation with LMWH. Further
studies of the association of elevated D-dimer and other
coagulopathy markers with cytokine storm and severity of
COVID-19 clinical manifestations are warranted. Optimal
anticoagulation strategies aimed at correcting or preventing
coagulopathy should also be expeditiously studied (14, 18, 19).

Immunosuppressed/Cancer Patients
Certain cancer patients, especially those with hematopoietic or
lymphoid malignancies, are at higher risk of severe COVID-
19 disease because they are immunocompromised (72, 73).
Global Radiation Oncology has made specific recommendations
about treating several types of cancers during the COVID-19
pandemic (72). Although patients undergoing chemotherapy
or radiotherapy are temporarily immunocompromised, colony
stimulating factors can be administered to strengthen their
immune system (73). Generally, oncologists are accustomed to
managing infections. However, for cancer patients infected with
COVID-19, benefit to risk ratio-based chemotherapy is followed
in the absence of guidelines and prospective Phase 2 evidence
(74). It is recommended that cancer-related treatment be delayed
if treatment provides only modest benefit and the biology of
the cancer allows for delay. If radiation is being administered
for palliative purposes, all alternatives including maximizing
analgesics and bisphosphonates should be explored. In situations
like painful bone metastases, radiation cannot be avoided (73). In
such scenarios, a single 8Gy fraction should be used because it is
as effective as multiple fraction courses (74).

Hematopoietic stem cell transplantation recipients should
practice self-isolation prior to transplantation. If such a patient
becomes infected with SARS-CoV-2, the procedure should be
delayed (75). Complete immunological recovery following stem
cell transplantation may take 3 to 6 months, so self-isolation
after the procedure is necessary as well. Everyone who comes
in direct contact with either a stem cell or an organ transplant
recipient should be vaccinated for common respiratory viruses
(76). A cancer patient presenting with symptoms suggestive of
COVID-19 should also be evaluated for mimics. Pneumonitis
from radiation therapy for example, can be treated with

corticosteroids, but this same treatment may cause pulmonary
injury in COVID-19 patients (75).

HIV-infected patients should be provided sufficient supply
of medications to avoid treatment gaps and to allow them to
maintain a viral load below the level of detectability. HIV-
infected patients who display symptoms of COVID-19 should
be prioritized for diagnostic testing because they are at risk for
severe complications (77).

Autoimmune Conditions
Patients with systemic autoimmune conditions, including
systemic lupus erythematosus (SLE), vasculitis, multiple sclerosis,
progressive systemic sclerosis, or rheumatic disease affecting the
lungs are at a greater risk of developing complications secondary
to respiratory viruses (78). This increased susceptibility to lung
disease may be the result of either the underlying disease
or immunosuppressive treatments (79). Patients with active
autoimmune conditions should continue immunosuppressive
treatment because the risk of relapse is more detrimental
than the risk of SARS-CoV-2 infection. Stable patients should
be maintained on their current therapeutic regimen. Therapy
should be changed in stable patients only if they are at a higher
risk for exposure to COVID-19 or if they become infected
with the disease. In this situation treatment should gradually
be reduced and halted consistent with the guidelines from the
American College of Rheumatology (80) and the German Society
of Rheumatology (81). Corticosteroid injections into joints or
soft tissues should only be reserved for severe cases (78, 82).
Because psychological stress can induce flare-ups in patients with
rheumatic diseases, patients experiencing anxiety, depression, or
suicidal thoughts should be referred for mental health support.
This can be done through telemedicine to reduce risk of COVID-
19 transmission. Patients should be encouraged to maintain their
daily routine, such as sleeping a consistent amount of time
and maintaining a healthy diet, within the isolation of their
homes (78).

THERAPEUTIC STRATEGIES TO TARGET
CYTOKINE STORM

Various stages of the cytokine storm pathway can be targeted
for therapeutic effects (Table 2 and Figure 3) (110). Cytokine
storm has an inciting trigger (viral infection), as well as
factors potentiating pathogenic effects and perpetuating the
cycle of hyperinflammation. Immunomodulation may improve
outcomes even without antiviral drugs (11). A list of ongoing
clinical trials targeting cytokine storm and hyperinflammation
is presented (Supplementary Table 2). The patient’s immune
and comorbidity profile may modulate response to therapy.
Drug interactions with medications used for SARS-CoV2
therapy as well as strategies targeting cytokine storm with
antivirals, antiretrovirals, antimalarials (e.g., chloroquine and
hydroxychloroquine), or immunomodulators (e.g., tocilizumab)
may be considered on a case-by- case basis.
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TABLE 2 | Various immunomodulatory strategies targeting cytokine storm in COVID-19 patients.

Strategies or agents Studies and indications Safety/drug to drug interactions* References

Cyclooxygenase (COX) inhibitors The use of COX inhibitors in COVID-19

has not been evaluated. It should be used

on a case-by-case basis.

Should not be used in patients with previous history of stroke, or prior

heart bypass surgery (coronary artery bypass graft, or CABG). Cox-2

inhibitors (Celecoxib) have less gastrointestinal side effects than

non-steroidal anti-inflammatory drugs (NSAIDS). Similar cardiovascular

event risk profiles of Cox-2 and non-selective NSAIDS (ibrufen,

diclofenac and naproxen). Cox inhibitors increases risk of

cardio-thrombotic events, congestive heart failure.

(83)

Corticosteroids The use of high-dose corticosteroids is not

recommended in cases of COVID-19.

Mild to intermediate dose may be considered to reduce inflammation in

initial treatment of cytokine storm and in specific cases of

COVID-19-induced pneumonia.

(83)

Anti-tumor necrosis factor (TNFa)

therapy

Anti-TNFa is widely used for several

autoimmune diseases. Its use in

COVID-19 should be explored.

May be protective against SARS-CoV-2 pneumonia. (84)

Intravenous immunoglobulin

(IVIg) therapy

Due to its lack of side effects, IVIg may be

beneficial in COVID-19 patients especially

in settings of cytokine storm or

hyperinflammatory state and septic shock.

Could be explored as an alternative to corticosteroids. Low dose IVIg

may require complement activation; whereas, high doses of IVIg may

act directly on immune cells (85).

(86)

Angiotensin-converting-enzyme

inhibitors (ACEIs) or angiotensin-

II-receptor-antagonists

(ARBs)

The use of ACEI/ARB is associated with

lower mortality in COVID-19 in-patients.

ARBs preferable in preventing kidney failure in patients with established

(diabetic) nephropathy (87). ACEIs advantageous in prevention of new

onset albuminuria ACEIs have relatively higher mortality benefit than

ARBs in the setting of prior MI, coronary artery disease or heart failure.

ACEIs (as a monotherapy or with a diuretic) have greater benefit in

recurrent stroke prevention. ARBs can be considered in patients who

do not tolerate ACEIs owing to cough and angioedema.

(88)

Peroxisome proliferator-activated

receptor (PPAR) agonists

PPAR agonists increase the production of

anti-inflammatory cytokines and thus, may

be beneficial in COVID-19 patients.

PPAR-γ agonists are often used in

treatment of type 2 diabetes.

PPAR-γ agonist thiazolidinediones (TZDs), like pioglitazone and

rosiglitazone, have anti-inflammatory properties with potential for

corrective effects on severe viral pneumonia. Nutritional ligands of

PPAR-γ, such as lemongrass, pomegranate, and curcuma may be

used in conjunction with PPAR pharmacological agents (89).

(90)

5′ adenosine

monophosphate-activated

protein kinase (AMPK) activators

AMPK activators such as metformin have

direct anti-inflammatory effects. Could

have benefit in reducing cytokine storm in

COVID-19 infected patients.

AMPK activators has shown to increase survival rates in influenza

infected animal models. Combination with pioglitazone could have

added survival benefits (91).

(92)

Macrolide The antiviral effects of macrolide may

benefit COVID-19 patients.

Macrolide may reduce inflammation in infected patients. (93)

Arbidol Arbidol is an antiviral that has been shown

to prevent COVID-19 infection.

Studies on animal model of influenza has shown benefits in reducing

mortality, inflammation and lung lesion formation (94). Arbidol could be

explored in targeting cytokine storm.

(95)

OX40 (CD134) There are several limitations in the

therapeutic use of OX40.

OX40–immunoglobulin fusion protein treatment has previously

demonstrated clinical benefit in influenza animal models by eliminating

weight loss and cachexia without preventing virus clearance (96).

(97)

Antioxidants Antioxidants, such as vitamin C, have

anti-inflammatory effects when

administered intravenously.

Could be used in combination with other anti-inflammatory agents to

target cytokine storm.

(98)

Suppressor of cytokine signaling

(SOCS)

SOCS is involved in regulating antiviral

immunity.

Could be protective against severe cytokine storm during severe

COVID-19 infection.

(99)

Extracorporeal therapy Extracorporeal therapy is a proposed

mechanism to remove cytokines in septic

patients

Extracorporeal cytokine removal may have protective effects on

vascular integrity and could reverse cytokine storm (100).

(101)

Pyrrolidinedithiocarbamate

(PDTC) ammonium

Inhibits IκB phosphorylation and thus

blocks NF-κB translocation to the nucleus

and reduces the expression of

downstream cytokines.

PDTC ammonium may have a role in limiting cytokine storm by

inhibiting reactive oxygen species (ROS) production (102).

(103)

Diacerein An inhibitor of IL-1B—an acute response

cytokine which appears in

hypercytokinemia.

Diacerein attenuates inflammation in severe sepsis, and hence

improves survival (104). Could be beneficial in reducing sepsis induced

insulin resistance as an alternative to insulin therapy in severe sepsis

cases where intensive insulin therapy is associated with adverse

outcomes. Diacerein could be beneficial in managing diabetes patients

infected with SARS-CoV-2.

(105)

(Continued)

Frontiers in Immunology | www.frontiersin.org 8 July 2020 | Volume 11 | Article 164857

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Bhaskar et al. Cytokine Storm in COVID-19

TABLE 2 | Continued

Strategies or agents Studies and indications Safety/drug to drug interactions* References

Tranilast An anti-allergic drug which inhibits NOD-,

LRR- and pyrin domain-containing protein

3 (NLRP3) which plays an important role in

the pathogenesis of COVID-19.

Tranilast has been shown to attenuate ischemia reperfusion injury by

inhibiting inflammatory cytokine production and PPAR expression (106).

(107)

Statin In-silico evidence on efficacy of statins as

SARS-CoV-2 Mpro inhibitors

As drugs of choice—Rosuvastatin (with preference for starting a low

dose and titrating up) and Fluvastatin should be administered.

(16, 108)

Chloroquine/Hydroxychloroquine Strong anti-inflammatory activity may be of

use in targeting cytokine storm.

Not recommended currently by Food and Drug Administration (FDA)

and Europeans Medicine Agency (EMA) outside of the hospital setting

or a clinical trial due to risk of heart rhythm problems and fatal

conditions including congestive heart failure.

(109)

*With standard therapy used for SARS-CoV-2 infection: antiviral drugs (remdesivir), antiretroviral drugs (lopinavir/ritonavir), macrolides (mainly azithromycin), anti-malaria (chloroquine

and hydroxychloroquine) and anti-rheumatoid (tocilizumab).

FIGURE 3 | Various therapeutic strategies for targeting cytokine storm. Different stages of the hyperinflammatory immune response can be targeted for therapeutic

purposes, with the final aim of modulating and inhibiting cytokine influx in order to restore immune homeostasis. HMGB, high-mobility group protein 1; DAMP,

damage-associated molecular pattern; COX, cyclooxygenase.

Corticosteroids and NSAIDs
Corticosteroids and NSAIDs can effectively suppress

hyperinflammatory responses; however, delayed viral clearance

could lead to further complications and also increase the
risk of transmission. Although corticosteroids could be used

acutely to target cytokine storm, their use in respiratory viral
infection is associated with increased mortality, increased risk
of secondary bacterial or fungal infections, and prolonged
ICU admission. Furthermore, corticosteroids may mask

COVID-19 related fever. As such, corticosteroids and NSAIDs
are not recommended for routine management of COVID-19
patients (40), despite a theoretical benefit in reducing cytokine
storm risk.

Targeting Interleukins
Interleukin-6 (IL-6) plays a key role in cytokine storm (102).
Blocking IL-6 is another potential therapeutic strategy (Figure 4)
(44). Tocilizumab is a monoclonal antibody against IL-6 receptor
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FIGURE 4 | Targeting cytokine storm via the JAK-STAT pathway. During a cytokine storm, there are increased levels of IL-6 which can form a complex with mIL-6R to

act on gp130. Gp130 regulates levels of IL-6, MCP-1, and GM-CSF via the JAK-STAT pathway. This could facilitate the cytokine storm. Inhibition of the JAK-STAT

pathway, potentially using IL-6 inhibitors or direct inhibition of signaling, can be a therapeutic strategy (depending on the timing—indicated preferably at later stages of

illness, not in early phase, or at clinical signs of cytokine storm). SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; COVID-19, coronavirus disease 2019;

IL, interleukin; mIL-6R, membrane bound interleukin-6 receptor; gp 130, glycoprotein 130; MCP-1, monocytes chemoattractant protein-1; GM-CSF,

granulocyte-macrophage colony-stimulating factor; JAK-STAT, janus kinase/signal transducer and activator of transcription.

(IL-6-R) that binds to membrane-bound and soluble IL-6-
Rs (mIL-6R and sIL-6R), thus preventing the downstream
signal transduction of IL-6 on binding to membrane protein
gp130 (102). A study of 21 tocilizumab-treated COVID-19
patients revealed that clinical manifestations improved following
administration (111). Tocilizumab is undergoing phase IV
clinical trials (ChiCTR2000029765) and has been approved for
use in treating COVID-19 pneumonia and raised IL-6 levels
in China. The Italian Regulatory Drug Agency is undertaking
phase II trials of tocilizumab in COVID-19 patients (TOCIVID-
19) (44). The pro-inflammatory effects of IL-6 occur via the
trans-signaling pathway using sIL-6R. On the other hand, the
anti-inflammatory and regenerative effects of IL-6 involve the
cis-signaling pathway via the mIL-6R, present on macrophages,
neutrophils, some T lymphocytes and hepatocytes. Tocilizumab
is not selective for the sIL-6R and may inhibit mIL-6R, thereby
causing negative side effects such as upper respiratory tract
infections. Recombinant soluble gp130 protein (sgp130) may be
an alternative to tocilizumab because it binds to sIL-6R, thereby
reducing its pro-inflammatory effects when it binds to IL-6
(112). IL-1 inhibitors may be an alternative for treating COVID-
19 hypercytokinemia. A phase III clinical trial of anakinra
showed survival benefit without increased adverse effects (40).

IL-37 and IL-38 could be evaluated as therapeutic options for
COVID-19 because they inhibit the pro-inflammatory effects of
IL-1 (113).

Janus Kinase Inhibitors
SARS-CoV-2 enters host cells via receptor-mediated endocytosis,
which is regulated by numb-associated kinases (NKA) such
as adaptor complex protein 2 (AP2)-associated protein kinase
(AAK1) and G-associated kinase (GAK). The high affinity
AAK1 blocker ruxolitinib is under investigation for treating
COVID-19 (ChiCTR2000029580). To achieve NAK inhibition,
toxic doses of AAK1 blockers are required. Baricitinib can
inhibit both AAK1 and GAK (approved dosage of 2–4mg daily)
and can selectively inhibit JAK 1 and 2, thus reducing the
inflammatory effects of Il-6 via the JAK-STAT signaling pathway.
Furthermore, baricitinib can be considered in combination
antiviral and anti-inflammatory therapies due to its minimal
interaction with cytochrome P450 (CYP) enzymes and low
plasma protein binding (40, 114). Early reports show promise
of baricitinib combined with antiviral therapy in COVID-19
patients (115).
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FIGURE 5 | REPROGRAM consortium pathway for targeting cytokine storm in severe or critically ill COVID-19 patients. Diagnostic panel for risk factor assessment of

cytokine storm associated prognosis of COVID-19 patients could include (Panel A: on top right) (99): older age, dyspnoea, higher SOFA score, IL-6, lymphocyte

(Continued)
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FIGURE 5 | count; cardiac troponin; BNP/NT-proBNP (if clinical suspicion of heart failure); one marker of inflammation (Ferritin > 1,000 mg/mL, CRP > 25 mg/L, and

Il-6 elevation); presence of severe respiratory failure, bilateral infiltration on imaging and progressive non-invasive ventilation requirement, D-dimer > 1,000 mg/mL;

LDH > 300 U/L; absolute lymphocyte count < 0.8 billion/L; PCT level (>0.5 ng/mL), and AST > 40 U/liter (61, 116–119). In low-resourced settings, cytokine release

syndrome clinical symptoms could be used in the absence or limited availability of diagnostic panels. Fondaparinux is a synthetic pentasaccharide factor Xa inhibitor.

Fondaparinux binds antithrombin and accelerates its inhibition of factor Xa. It is chemically related to low molecular weight heparins. Patients with CNS involvement

should have cerebral CT or MRI scan and in the if a stroke is suspected also a CT angiography or MRI angiography, in case of epileptic seizures or status epilepticus

an EEG and in case of suspected encephalitis a lumbar puncture for cerebro-spinal fluid assessment. Also, bedside neuropsychological assessments are of value. In

addition, assessment of CK and myoglobin are of value (neurophysiology as well, but this is not so important acutely). Treatments should include: antiepileptics (for

example, levetiracetam 2x1000mg) and depending on disease condition. SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; COVID-19, coronavirus

disease 2019; IV, intravenous; PT, prothrombin time; PTT, partial thromboplastic time; LDH, lactate dehydrogenase; CK, creatine kinase; CBC, complete blood count;

BNP, brain natriuretic peptide; NT-proBNP, N-terminal pro hormone brain natriuretic peptide; CRP, c-reactive protein; IL, interleukin; AST, aspartate aminotransferase;

SOFA, sequential organ failure assessment score; LMW, low molecular weight; VTE, venous thromboembolism; PE, pulmonary embolism; DVT, deep vein thrombosis;

DIC, disseminated intravascular coagulation; CT, computed tomography; NMR, nuclear magnetic resonance; EEG, electroencephalogram; CSF, cerebrospinal fluid;

IVIg, intravenous immunoglobulin; DCR, direct current cardioversion; CNS, central nervous system; Mg, magnesium; K, potassium; C, complement component; PCT,

procalcitonin.

DECISION MAKING BASED ON CYTOKINE
STORM

Because of the association between cytokine storm and severe
COVID-19 complications, we propose a cytokine storm-
based diagnosis and management workflow for patients
with or suspected of COVID-19 (Figure 5 and Table 1)
(120). Our proposal expands on the multidisciplinary
evidence-based guidelines currently used in the diagnosis
and treatment of cytokine storm linked macrophage
activation syndrome and sHLH (121). The Surviving
Sepsis Campaign COVID-19 panel recommends the
use of moderate-dose steroids for intubated patients
with ARDS (10mg dexamethasone daily, or 60 mg/day
methylprednisolone) (122).

CONCLUSION AND DISCUSSIONS

The diagnosis and management of cytokine storm are
clinically challenging and controversial due to lack of
proven treatment. Our proposed algorithm may be used as
a possible approach (Figure 5) (120–122); however clinical
decision should be based on individual patient profile and
disease severity. Immunosuppressive agents such as steroids
or immunomodulating drugs such as anti-IL6 monoclonal
antibodies like tocilizumab, are relatively high priced, unavailable
in low resource setting, and may be in short supply during
the COVID-19 pandemic even in developed countries.
The neuroinvasive potential of COVID-19 (24, 25) and the
association between neuroinvasion and cytokine storm need
further consideration (123). We recommend longitudinal follow-
up of COVID-19 patients with and without the cytokine storm
to understand the specific immunopathological mechanisms and
biomarkers for severe disease. After cytokine storm resolves,
an immunologic memory of the SARS-CoV-2 infection will
likely persist (124), raising the possibility of either relapse or
reinfection in previously COVID-19 positive patients who
subsequently cleared the infection. Limiting damage from a
hyperimmune response during both the acute phase and the
cytokine storm is a target for further research. There could be
a decoupling mechanism of cytokines that may attenuate the

cytokine storm and preserve memory (110). Understanding the
various pathophysiological mechanisms linked to cytokine storm
could be used to develop targeted diagnostic and therapeutic
strategies for critically ill COVID-19 patients.
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During the recent coronavirus disease 2019 (COVID-19) outbreak in Northern Italy,

we observed a 57-year-old man developing acute motor-sensory axonal neuropathy,

a variant of Guillain–Barré syndrome (GBS), 12 days after severe acute respiratory

syndrome-coronavirus-2 (SARS-CoV-2) infection. Similarly to other bacterial and viral

infections, dysregulation of the immune system due to post-infectious mechanisms, such

as the molecular mimicry, could lead to an indirect damage of the peripheral nervous

system related to SARS-CoV-2. GBS causes motor dysfunctions that are not easily

recognizable in non-neurological settings or in patients requiring ventilatory assistance.

Several reports also suggested that GBS and Miller Fisher syndrome (MFS) could be

neurological complications of COVID-19. Therefore, we performed a review of the 29

articles so far published, describing 33 GBS cases and five MFS cases associated with

SARS-CoV-2 infection.We recommend awareness of this rare, but treatable, neurological

syndrome, which may also determine a sudden and otherwise unexplained respiratory

deterioration in COVID-19 patients.

Keywords: guillain–barré syndrome, miller fisher syndrome, COVID-19, SARS-CoV-2, AMSAN, post-infectious

INTRODUCTION

The coronavirus disease 2019 (COVID-19) outbreak started at the end of 2019 in Wuhan, the
capital of Hubei province, in China. The novel coronavirus was designated as severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2). To date, millions of cases have been confirmed
worldwide, and Italy has been one of the most affected countries.

Neurological manifestations have been described in one third of patients with COVID-19.
Some of these neurological symptoms have proved to be quite specific, e.g., loss of smell or
taste, but other ones are non-specific, e.g., headache, dizziness, or reduced level of consciousness
(1). However, whether the neurological symptoms associated with SARS-CoV-2 are attributable
to secondary mechanisms (i.e., multiorgan dysfunction or systemic inflammation), an abnormal
immune response or the direct injury of the virus is still unknown.

Recently, several case reports have suggested a relationship between the occurrence of
Guillain–Barré syndrome (GBS) and a previous SARS-CoV-2 infection, which preceded
the GBS onset by up to 4 weeks. Therefore, a post-infectious dysregulation of the
immune system, triggered by SARS-CoV2, appears to be the most probable cause.
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Conversely, a recent pathological study on postmortem
human brain tissues found that anosmia and dysgeusia, described
in up to 20% of patients, are more likely due to the direct viral
invasion of the olfactory nerve and bulb (2). In addition and in
line with this observation, a COVID-19 patient with anosmia
showed magnetic resonance imaging (MRI) abnormalities in the
olfactory bulb and in the inferior frontal lobe, as a conceivable
result of the direct invasion of SARS-CoV-2 through the olfactory
pathway via trans-synaptic retrograde spreading (3).

Here we describe a patient with an axonal variant of GBS
following COVID-19, and we review the available reports in the
literature on other GBS cases related to SARS-CoV-2 infection.

CASE REPORT

A 57-year-old man developed dysgeusia, cough, and fever of up
to 39◦C lasting for 5 days. At 12 days after the resolution of the
symptoms, he complained of numbness and tingling in the feet
and, a few days later, also in the hands. Over 10 days, the patient
developed distal limb weakness and severe gait impairment, so
he was referred to the emergency department. A neurological
examination showed weakness in the dorsiflexion of the foot
and the extension of the toes [Medical Research Council (MRC)
score: 3/5 on the right side and 4/5 on the left side], weakness in
the extension of hand and fingers (MRC score: 4/5 bilaterally),
gait ataxia, loss of touch and vibration sensation in the feet and
ankles, weak tendon reflexes in the upper and the lower limbs, but
absent ankle jerk reflex. The cranial nerves were spared. The chest
radiography was negative for pneumonia, and a nasopharyngeal
swab testing for SARS-CoV-2 with real-time polymerase chain
reaction assay (RT-PCR) was negative, too.

At this stage, the patient was admitted to our unit for further
diagnostic workup. The nerve conduction studies, performed
4 weeks after the neurologic onset, showed reduced or absent
compound muscle action potentials and sensory nerve action
potentials in the lower limbs, absent F wave response in the
lower limbs, and prolonged F wave response in the upper
limbs. The electromyography showed very rich spontaneous
activity (fibrillation potentials and positive sharp waves) in
the lower limb muscles (Table 1). The cerebrospinal fluid

TABLE 1 | Neurophysiological findings.

Antidromic

sensory NCS

Latency (ms) Amplitude (µV) Velocity (m/s) Motor NCS Latency

proximal/distal

(ms)

Amplitude

proximal/distal

(mV)

Velocity (m/s)

Sural:

posterior ankle

R = NE; L = NE R = NE; L = NE R = NE; L = N Tibial: medial

malleolus-abductor

hallucis brevis; popliteal

fossa-medial malleolus

R = NE; L = NE R = NE; L = NE R = NE; L = NE

Radial: thumb R = 4.2; L = NE R = 0.13; L = NE R = 31; L = NE

Ulnar: digit 5 R = 2.3; L = 2.6 R = 6.2; L = 1.5 R = 52.2; L = 46.2 Common peroneal:

ankle-extensor

digitorum brevis; below

fibula-ankle

R = 11.9/4; L = NE R = 0.1/0.1; L = NE R = 36.7; L = NE

Electromyography showed fibrillation potentials and positive sharp waves in the tibialis anterior and gastrocnemius medialis muscles, bilaterally.

L, left; NCS, nerve conduction study; NE, not evocable; R, right.

(CSF) examination disclosed normal cell count and normal
proteins, normal CSF/serum albumin ratio, and absence of
oligoclonal banding. Serum SARS-CoV-2 IgG was detected
(Maglumi, Snibe). Anti-GM1, anti-GD1b, and anti-GQ1b IgG
and IgM were negative (ELISA, Bühlmann). The laboratory
investigations demonstrated high C-reactive protein (18.9
mg/dl). The serological tests for HIV, syphilis, cytomegalovirus
(CMV), Epstein–Barr virus (EBV), andMycoplasma pneumoniae
(MP) were negative, except for anti-EBV, anti-CMV, and anti-
MP IgG. An intravenous immunoglobulin (IVIG) cycle at 0.4
g/kg/day over 5 days was started, leading to a significant
improvement of the weakness in the upper limbs and the
left foot but a poor benefit on the right foot and gait
ataxic. The patient was then transferred to the rehabilitation
unit. He slowly improved through physiotherapy and, after 1
month, he was able to walk without aid and was discharged.
Figure 1 shows a timeline of the clinical milestones of
the patient.

DISCUSSION

We reported a patient showing a stepwise progression of
numbness, tingling, and weakness 12 days after the resolution
of fever, cough, and dysgeusia. The clinical features and the
electrophysiological findings along with the epidemiological
context and the presence of IgG to SARS-CoV-2 supported
the diagnosis of post-COVID-19 GBS. In particular, the
neurophysiological examination was consistent with an acute
motor-sensory axonal GBS (AMSAN) variant, with level
2 diagnostic certainty for GBS according to the Brighton
Criteria (consistent clinical features and supporting nerve
conduction study, but not CSF) (4, 5). Active SARS-
CoV-2 infection was excluded by a complete recovery
of the typical antecedent symptoms, absence of the viral
genome in the nasopharyngeal swab, and negative chest
radiography. The detection of serum IgG to SARS-CoV-
2 is in line with the chronological profile of the antibody
appearance. Indeed IgG seroconversion in COVID-19 patients
is reached within a median of 13 days from the clinical
onset (6).

Frontiers in Neurology | www.frontiersin.org 2 August 2020 | Volume 11 | Article 90967

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Zito et al. COVID-19 and Axonal Guillain-Barré Syndrome

FIGURE 1 | Timeline of clinical events, diagnostic-therapeutic approach, and clinical outcome.

More than half of GBS cases appear 1 to 2 weeks after an
underlying infection. Campylobacter jejuni is the most frequent
precipitant of GBS, but viral infections, including EBV,CMV, and
Zika virus, are also frequently reported (7). The association of
GBS with other coronaviruses was described only in two cases
(8, 9). Recently, SARS-CoV-2 has also been related to GBS and
Miller Fisher syndrome (MFS), wherein an autoimmune post-
infectious mechanism, such as molecular mimicry or bystander
activation, targeting self-ganglioside epitopes in spinal roots and
peripheral nerves, might be involved, in analogy with all the other
post-infectious cases.

We carried out a literature search in MEDLINE via PubMed
for all articles published using the keywords or MeSH terms
“COVID-19” or “SARS-CoV-2,” together with “Guillain–Barre
syndrome,” “GBS,” “AIDP,” “AMAN,” “AMSAN,” “Miller Fisher
syndrome,” or “MFS.” At the time of writing this manuscript, we
found in literature 29 articles reporting 33 patients with GBS and
five cases of MFS associated with SARS-CoV-2 infection, which
are summarized in Table 2 (10–38).

The age of the patients ranged between 23 and 77 years
(mean ± standard deviation: 59 ± 12), with a male prevalence
(63.2%). The severity of COVID-19 manifestations, defined as
mild, severe, and critical, according to a previously described
classification (39) was as follows: mild in 30/38 (78.9%), severe
in 5/38 (13.2%), and critical in 3/38 (7.9%). The time elapsed
from onset of the COVID-19 symptoms to the clinical GBS
manifestations ranged between 3 and 28 days (mean 12 ± 6).
Notably, the timing of the majority of cases was consistent
with the parainfectious profile rather than a post-infectious
paradigm. In two patients, the onset of GBS actually preceded by
a few days the first manifestations of COVID-19, but an earlier
presentation of COVID-19 characterized by very mild or even
absent symptoms could be taken into account in both cases.

The main clinical, electrophysiological, and CSF features of
the patients so far reported are summarized in Table 3. With
regard to GBS subtypes, the main clinical variant was the classical
sensory-motor GBS (30/38), the second phenotype was MFS
(5/38), the third was featured by facial diplegia with sensory
deficits (2/38), and in only one case the pharyngeal–cervical–
brachial variant was observed.

Following the first reported cases of GBS related to SARS-
CoV-2 (10), a more common axonal rather than demyelinating

variant has been suggested. However, unlike the initial reports,
the electrophysiological features in other cases did not show
a higher prevalence of axonal variants in these patients. By
contrast, the demyelinating and the mixed forms were more
often observed.

The examination of CSF samples obtained from 32 patients
showed an albumin-cytological dissociation in 68.4% of cases. All
RT-PCRs for SARS-CoV-2 on CSF were negative, suggesting the
lack of a direct causative role of the virus.

Anti-ganglioside antibodies were detected only in two cases
of MFS, showing a borderline positivity for IgM anti-GM1 and a
positivity for IgG anti-GD1b, respectively.

Brain and/or spinal cord MRI was performed in 20 patients
and showed contrast enhancement of nerve roots at the level of
the cauda equina, of brachial and lumbosacral plexus, and also
of single or multiple cranial nerves. In addition, a brainstem
and cervical leptomeningeal enhancement, which is an atypical
feature in GBS, was seen in one case.

Almost all patients were treated with IVIG and/or plasma
exchange, whereas one mild case received only symptomatic
treatment. The recovery timing and the outcomes varied widely,
but in 14/38 cases, a rapid improvement was reported. In
12/38 cases, the improvement was instead slower and required
admission to rehabilitation facilities, whereas 6/38 patients had
a poor outcome (prolonged stay in the intensive care unit and
long-lasting severe disabilities). Two cases were fatal, and in 4/38
cases, the outcome was not available. Of relevance is the fact that
it does not seem that COVID-19 severity at onset is correlated
with GBS outcomes.

Moreover, the clinical features of post-COVID-19 GBS did
not differ from those of cases related to other viruses, with
the notable exception of a remarkable respiratory involvement
(Table 3). It is indeed crucial to highlight that respiratory
failure was present in 15 /38 cases (39.5%) of GBS related
to SARS-CoV-2, a percentage higher than that observed
in previous GBS cohorts (ranging from 20 to 30%) (5).
This suggests that COVID-19 pneumonia may overlap with
GBS-associated respiratory muscle weakness and increase the
number of cases needing a respiratory support. The reported
observations indicate that physicians should always consider
GBS in the differential diagnosis of a respiratory insufficiency
in COVID-19 patients, especially in cases of normocapnic
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TABLE 2 | Guillain–Barré syndrome (GBS) cases related to SARS-CoV-2.

Patient Time

between

events

Clinical features EMG CSF MRI Treatment/outcome References

GBS cases

77 years

old, w

7 days Tetraplegia, areflexia, paresthesia in upper

limbs, facial diplegia, dysphagia, tongue

weakness, and respiratory failure

AMSAN ACD Spine: enhancement of

caudal nerve roots

Two cycles of IVIG;

poor outcomes

(10)

23 years

old, m

10 days Facial diplegia, areflexia, lower limbs

paresthesia, and ataxia

AMSAN ACD Brain: enhancement of

facial nerve bilaterally

IVIG, slow improvement (10)

55 years

old, m

10 days Tetraparesis, areflexia, paresthesia in all

limbs, facial diplegia, and respiratory failure

AMAN ACD Spine: enhancement of

caudal nerve roots

Two cycles of IVIG,

poor outcomes

(10)

76 years

old, m

5 days Tetraparesis, areflexia, and ataxia AIDP N Brain and spine: N IVIG, slow improvement (10)

61 years

old, m

7 days Tetraplegia, areflexia, lower limb

paresthesia, facial diplegia, dysphagia,

and respiratory failure

AIDP ACD Spine: N IVG, PE, poor

outcomes

(10)

61 years

old, w

8 daysa Tetraparesis, areflexia, and sensory loss in

all limbs

AIDP ACD n.a. IVIG, rapid

improvement

(11)

60 years

old, m

20 days Tetraparesis, areflexia, and ipopallesthesia

in lower limbs, paresthesia in all limbs,

facial diplegia, hypophonia, and dysarthria

AIDP N Cervical spine: N IVIG, slow improvement (12)

43 years

old, m

14 days Paraparesis, areflexia, apallesthesia, and

sensory deficit in all limbs; ataxia and right

peripheral facial

AIDP ACD Brain: multiple cranial

neuritis Spine:

radiculitis, and brachial

and lumbar plexitis

IVIG, rapid

improvement

(13)

70 years

old, w

7 days Tetraparesis, areflexia, paresthesia in all

limbs, and perioral, left peripheral facial

palsy, respiratory failure.

AIDP ACD n.a. IVIG, rapid

improvement

(13)

72 years

old, m

7 days Tetraparesis, neck flexor weakness,

paresthesia, sensory loss in all limbs,

respiratory failure, dysautonomia, and

SIADH

AIDP ACD n.a. IVIG, poor outcomes (14)

55 years

old, m

20 days Facial diplegia, hyporeflexia, dysphagia,

bilateral masseter weakness, and

dysphonia

AIDP Nb Brain: N IVIG, rapid

improvement

(15)

60 years

old, m

20 days Tetraparesis, areflexia and massive

dysautomia (gastroplegia, paralytic ileus,

and hypotension)

AMSAN Nb n.a. IVIG, rapid

improvement

(15)

65 years

old, m

14 days Tetraparesis, facial diplegia, areflexia,

hypopallestesia and sensory deficit in

lower limbs

AMSAN n.a. Brain and Cervical

spine: N

IVIG, n.a (16)

70 years

old, w

24 days Tetraparesis, areflexia, distal paresthesia in

all limbs and respiratory failure

AIDP ACD n.a. IVIG; poor outcomes (17)

53 years

old, w

n.aa Paraparesis, areflexia, paresthesia in lower

limbs, dysarthria and jaw weakness

AIDP ACD Spine: radiculitis of

cervical and lumbar

spine

PE, slow improvement (18)

76 years

old, w

8 days Tetraparesis, areflexia, distal paresthesia

sensory loss in lower limbs, dysphonia,

dysphagia and respiratory failure

n.a n.a n.a IVIG, death (19)

52 years

old, w

15 days Tetraparesis, areflexia, distal paresthesia

and sensory loss, ataxia, dysautonomia

and respiratory failure

AIDP ACD Spine: N IVIG, poor outcomes (20)

63 y years

old, w

7 days Tetraparesis, areflexia, and distal

paresthesia

AIDP N n.a. IVIG, slow improvement (20)

61 y years

old, w

22 days Tetraparesis, areflexia, hypopallestesia and

allodynia, facial diplegia, dysphagia, and

dysautonomia

AIDP ACD Spine: lumbosacral

nerve root

enhancement

IVIG, slow improvement (20)

50 years

old, m

28 days Paraparesis, areflexia, distal paresthesia,

hypopallestesia in lower limbs, ataxic gait

and facial diplegia

AIDP N Brain: N IVIG, rapid

improvement

(21)

(Continued)
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TABLE 2 | Continued

Patient Time

between

events

Clinical features EMG CSF MRI Treatment/outcome References

54 years

old, m

10 days Tetraparesis, areflexia, paresthesia and

respiratory failure

n.a. n.a. Spine: N IVIG, slow improvement (22)

58 years

old, m

20 days Facial diplegia, areflexia and paresthesia in

lower limbs, dysarthria with labial sounds

AIDP/Blink

reflex

absent

ACD Brain: bilateral facial

enhancement

IVIG, slow improvement (23)

68 years

old, m

10 days Tetraparesis, areflexia, sensory loss in

lower limbs and respiratory failure

AIDP ACD Spine: N IVIG, PE, slow

improvement

(24)

57 years

old, m

7 days Tetraparesis, areflexia, paresthesia,

hypopallestesia and sensory loss in lower

limbs, dysphagia and respiratory failure

AIDP ACD n.a. IVIG, slow improvement (25)

64 years

old, m

11 days Tetraparesis, areflexia, paresthesia in all

limbs, hypo/apallesthesia in all limbs,

dysphagia and respiratory failure.

AIDP ACD n.a IVIG, n.a (26)

70 years

old, w

3 days Tetraplegia, areflexia, paresthesia in all

limbs, bilateral positive Lasègue sign.

AMSAN ACD n.a IVIG, n.a (27)

43 years

old, man

10days Tetraparesis, areflexia, sensory loss in all

limbs, facial diplegia and dysphagia

AIDP n.a. n.a. IVIG, rapid

improvement

(28)

70 years

old, m

10 days Paraparesis, areflexia, urinary retention

and constipation

AIDP ACD Spine: N IVIG, rapid

improvement

(29)

71 years

old, m

7 days Tetraparesis, areflexia, paresthesia and

hypesthesia in all limbs, respiratory failure

AIDP ACD n.a. IVIG, death (30)

64 years

old, m

23 days Paraparesis, areflexia, ipopallesthesia and

sensory loss in all limbs

AIDP ACD n.a. IVIG, rapid

improvement

(31)

54 years

old, w

21 days Paraparesis, areflexia, paresthesia in all

limbs and dysphagia

AIDP ACD n.a. IVIG, rapid

improvement

(32)

66 years

old, w

10 days Tetraparesis and areflexia AIDP ACD n.a. IVIG, rapid

improvement

(33)

55 years

old, w

15 days Tetraparesis, areflexia, paresthesia in all

limbs and perioral, facial diplegia,

dysphonia, dysphagia and respiratory

failure

AIDP ACD Brain: lepto-meningeal

enhancement in

medulla

IVIG, slow improvement (34)

Miller Fisher syndrome cases

50 years

old, m

5 days Ophthalmoparesis, areflexia, perioral

paresthesia and ataxia

n.a ACD n.a. IVIG, rapid

improvement

(35)

39 years

old, m

3 days Ophthalmoparesis, areflexia n.a ACD n.a. Acetaminophen, n.a. (35)

36 years

old, m

4 days Ophthalmoparesis (CN III and CN VI),

ataxia, and hyporeflexia and sensory loss

in lower limbs

n.a. n.a. Brain: enlargement,

prominent

enhancement CN III

IVIG, rapid

improvement

(36)

54 years

old, m

14 days Ophthalmoparesis, tetraparesis, areflexia,

distal paresthesia, facial diplegia,

dysautonomia and respiratory failure

AIDP n.a. Spine: N IVIG, slow improvement (37)

74 years

old, w

15 days Ataxia and areflexia. Increase

F-wave

latencies

ACD n.a. IVIG, rapid

improvement

(38)

ACD, albumin-cytological dissociation; AIDP, acute inflammatory demyelinating polyneuropathy; AMAN, acute motor axonal neuropathy; AMSAN, acute motor-sensory axonal

neuropathy; CSF, cerebrospinal fluid; EMG, electromyography; GBS, Guillain–Barré syndrome; IVIG, intravenous immunoglobulin; m, man; MFS, Miller Fisher syndrome; MRI, magnetic

resonance imaging; N, normal investigation; n.a., not available; PE, plasma exchange; w, woman.
aGBS manifestation precedes COVID-19.
bThose cases have low serum albumin, 2.9 and 2.6 mg/dl, respectively. Furthermore, a mirror-pattern oligoclonal banding was observed in both cases.

or hypercapnic respiratory failure (pointing to a restrictive
respiratory pattern in contrast with the interstitial pattern
of COVID-19 pneumonia) or when a discrepancy between
chest imaging and respiratory parameters occurs. An additional
explanation for this latter scenario is that the respiratory

failure in GBS associated with COVID-19 may also be
driven by a dysfunction of the cardiorespiratory centers in
medulla oblongata directly induced by the virus (40) since the
SARS-CoV-2 genome has also been detected in the human
brainstem (2).
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TABLE 3 | Clinical, neurophysiological, and CSF features of Guillain–Barré

syndrome/Miller Fisher syndrome cases.

Clinical features N %

Tetraparesis 24/38 63.2

Paraparesis 7/38 18.4

Ophthalmoparesis 4/38 10.5

Hypo/areflexia 38/38 100

Facial weakness 15/38 39.5

Paresthesia and/or sensory loss 30/38 78.9

Ataxia 9/38 21.1

Bulbar 11/38 28.9

Dysautonomia 6/38 15.8

Respiratory failure 15/38 39.5

SIADH 1/38 2.6

NCS

AIDP 26/38 68.4

AMSAN 5/38 13.2

AMAN 1/38 2.6

n.a. 5/38 13.2

Only F wave delay 1/38 2.6

CSF

ACD 25/38 65.8

Mirror OB 2/38 5.3

Normal 5/38 13.2

n.a. 6/38 15.8

ACD, albumin-cytological dissociation; AIDP, acute inflammatory demyelinating

polyneuropathy; AMAN, acute motor axonal neuropathy; AMSAN, acute motor-sensory

axonal neuropathy; NCS, nerve conduction studies, CSF, cerebrospinal fluid; OB,

oligoclonal band; n.a., not available; SIADH, syndrome of inappropriate antidiuretic

hormone secretion.

The early recognition of GBS symptoms is critical, given the
associated high mortality as well as severe motor disabilities
that may seriously limit the quality of life of these patients
(41). Deficits induced by this neurological condition could be
reasonably included among the post-COVID-19 sequelae, which
requires an accurate evaluation by the neurologists, similarly to
what has been suggested in the past outbreaks, for instance, in
cases of post-polio syndrome (42).

CONCLUSION

Our case report and review of literature contribute to raise
awareness of the possible association between GBS and SARS-
CoV-2 infection. The underlying mechanism of injury could be

an autoimmune reaction against peripheral nerve antigens, in
light of the lack of a viral genome in the CSF.

The main clinical, electrophysiological, and CFS features of
the patients so far reported proved to be similar to GBS cases
related to other infectious diseases. Nevertheless, respiratory
involvement is more frequent in GBS related to SARS-CoV2,
and a reasonable explanation for this finding could be the
coexistence of COVID-19 interstitial pneumonia and GBS
respiratory muscle weakness since the majority of cases had a
parainfectious profile.

However, the relationship between SARS-CoV-2 and GBS,
actually described only in single case reports and small
case series, should be confirmed in larger observational
studies in order to evaluate the temporal correlation between
GBS clusters and the COVID-19 epidemic curve in each
affected country.
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Within the context of the worst pandemic of the century—Covid-19—which emerged

in China and has spread across the entire globe over the last 6 months, increased

knowledge about viral behavior that be prognostic is crucial. Following the patterns of

other coronaviruses (CoVs), particularly those infecting the respiratory tract, neurological

manifestations have been reported in patients with Covid-19. Such manifestations

highlight the neurovirulence of this severe acute respiratory syndrome (SARS)-CoV2. In

order to collect all available information on the implications and mechanisms of infections

by respiratory CoVs, a systematic review was designed following the PRISMA protocol.

The following PICO strategy (patient, problem, or population; intervention; comparison,

control, or comparator; outcomes) was adopted: P included healthy individuals, patients,

and animal models susceptible to human-specific viruses; I included molecular, cell

culture, and comparative experimental studies; C included healthy, diseased, and

immunized conditions; and O represented the virulence and pathogenicity of respiratory

CoVs and their effects on the central nervous system (CNS). Searches were conducted

in PubMed databases fromMarch 30 to April 1, 2020. Results indicate the involvement of

the CNS in infections with various CoVs. Infection typically begins in the airway epithelia

with subsequent alveolar involvement, and the virus then spreads to the CNS via neuronal

contacts with the recruitment of axonal transport. Neuronal infection and regulated cell

death are the main factors causing a generalized encephalitis.

Keywords: Covid-19, SARS-CoV2, coronavirus, neurovirulence, pathogenicity

INTRODUCTION

Viral neurotropism with the potential for acute and/or chronic consequences to the central nervous
system (CNS) has been identified since the late 1950s with findings of the involvement of a
murine hepatitis virus (MHV) in encephalomyelitides in humans (1, 2). The name coronavirus
(CoV) emerged in a small note published in 1968 by a group of virologists who published their
papers in the Nature journal. They showed that the viral particles are more or less rounded,
although they noted a certain degree of polymorphism, with a fringe of projections, which are
rounded or petal-shaped, rather than sharp or pointed. This appearance, resembling the solar

73

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2020.00864
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2020.00864&domain=pdf&date_stamp=2020-08-21
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:gilmara.gomesdeassis@awf.gda.pl
https://doi.org/10.3389/fneur.2020.00864
https://www.frontiersin.org/articles/10.3389/fneur.2020.00864/full
http://loop.frontiersin.org/people/401338/overview


de Assis et al. The Post-pandemic Neurological Prospections

corona, inspired the name that was adopted for MHV
and several viruses recovered from humans at the
time (3).

Coronaviruses (in this study referred only to those human-
specific infectious) enclose a group of eukaryotic spherical
RNA viruses, which infect animals and humans by fecal-oral
and respiratory routes, as well as mechanical transmission.
Several species of CoVs have been transmitted among humans,
causing epidemics of various proportions. In just 6 months, the
current Covid-19 (Coronavirus disease-2019) pandemic, caused
by infection with the respiratory CoV named “SARS-CoV2”
(severe acute respiratory syndrome coronavirus), has become
the greatest global public health and economic crisis seen in
generations. Most recently, reports of medical doctors operating
on the front line of the ongoing pandemic suggest the incidence
of neuropathological manifestations associated with SARS-CoV2
infections (4, 5).

Similarities between SARS-CoV2 and other respiratory
CoVs have also been reported. For instance, SARS-CoV2,
like other respiratory CoVs that infect humans, binds to the
angiotensin-converting enzyme 2 (ACE2) receptor, which is
widely distributed throughout the respiratory tract epithelium,
lung parenchyma, and gastrointestinal tract (6). Respiratory
distress in patients with Covid-19 may be the result of both
pulmonary inflammatory structural damage, as well as damage
caused in the respiratory centers of the brain (7). However,
reports of such distress require further investigation on the
possible mechanisms of neurovirulence associated with CoV
infections of the respiratory system.

Furthermore, beyond the pulmonary, renal, cardiac, and
circulatory damage that can prove to be fatal in patients with
Covid-19, a dominant cerebral involvement with the potential
to cause cerebral edema can be a leading cause of death, long
before systemic homeostatic dysregulation (8). Thus, a critical
view of the scientific evidence of human infections with a
wider spectrum of respiratory CoVs is necessary to elucidate
the possible mechanisms of SARS-CoV2 interactions with the
nervous system.

In order to substantiate possible implications of the Covid-
19 pandemic for neurology and gain a better understanding of
the virulence and pathogenicity of SARS-CoV2, we performed
a systematic review. We collected all available data at present in
the PubMed databases on viruses of the CoV family, which cause
respiratory infections in humans and have implications for the
nervous system.

METHODS

In order to retrieve all available data on respiratory infections
with CoVs that have an effect on the nervous system, a search
strategy was conducted in theMedical Subject Headings PubMed
platform from March 30 to April 1, 2020, using the following
combinations of terms: neurons vs. coronavirus; neural stem
cells vs. coronavirus; nervous system vs. coronavirus; SARS
virus vs. neurons; SARS virus vs. neural stem cells; and SARS
virus vs. nervous system. A total of 484 papers were retrieved

and downloaded in the Mendeley software and duplicates were
removed. Studies were subjected to double-blinded screening
by their titles and abstracts for inclusion criteria regarding the
following PICO strategy:

P (patient, problem, or population): healthy individuals and
patients with neurological disorders;
I (intervention): immunology and molecular tests, cell
cultures, and comparative experimental studies of respiratory
CoV in humans;
C (comparison, control, or comparator): healthy vs. diseased
conditions, health vs. immunized conditions;
O (outcomes): virulence and pathogenicity of the virus in
the CNS.

Reviews, letters, commentaries, non-interventional studies,
articles not written in English, and animal studies without a focus
on human retroviruses were all excluded (Figure 1).

All reports of human CoV infections found at this stage were
displayed on a timeline (Figure 2). A total of 30 articles were
included for synthesis without meta-analysis (10). This review
followed the PRISMA (preferred reporting items for systematic
reviews and meta-analyses) protocol. The studies’ findings are
summarized in Table 1.

RESULTS

Six strains of infectious bronchitis virus (IBV) were detected
in embryonic tracheal organ cultures from patients with colds.
McIntosh et al. (11) demonstrated that two of these “IBV-like”
strains were able to grow in newborn inoculated mice, and
caused an encephalitic syndrome. Complement-fixation tests of
human convalescent sera and the specific mouse immune sera
were homologous to the brain suspensions from affected mice.
The strains were shown to be identical with each other and
distinct from IBV and strain CoV-229E (another respiratory
CoV, morphologically similar to IBV). Kaye and Dowdle (12)
discovered two strains of IBV-like CoVs and named them
“OC38” and “OC43.”

Pearson andMims (13) investigated selective cell vulnerability
to CoV-OC43 infection. Using cell-type-specific markers and
neural cultures derived from various areas of the CNS, they
showed that neurons from the dorsal root ganglia produced both
viral antigen and infectious virus, while astrocytes and fibroblasts
produced only viral antigen, and oligodendrocytes produced
neither the infectious virus nor viral antigen. Human embryo
brain cells, including astrocytes, are susceptible toOC43 infection
but production of infectious virus has not been reported.

Collins (14) showed that cortical neuronal cells support
the replication of both CoV-229E and CoV-OC43 serotypes.
Using a human cerebral neuron cell line, the results of that
study showed that neurons, which express the aminopeptidase-N
receptor (CD13) for CoV-229E at nerve synapses, are muchmore
susceptible to direct infection by CoV-229E than by CoV-OC43.
Both viruses induced the synthesis of viral antigens.

Using antibodies to CoV-229E and CoV-OC43 viruses,
and cell markers in human neural primary cultures cells,

Frontiers in Neurology | www.frontiersin.org 2 August 2020 | Volume 11 | Article 86474

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


de Assis et al. The Post-pandemic Neurological Prospections

FIGURE 1 | PubMed data extraction flow chart. From Moher et al. (9). For more information, visit www.prisma-statement.org.

Bonavia et al. (15) was able to demonstrate viral neuroinvasion
in fetal astrocytes, and in adult microglia and astrocytes, by the
strain OC43. Furthermore, RNA amplification also confirmed
infection of fetal astrocytes, adult microglia, and a mixed culture
of adult oligodendrocytes and astrocytes with the strain 229E. In
this study, infectious virus was released only from fetal astrocytes,
with higher titers for CoV-OC43.

Lachance et al. (16) tested whether CD13 is utilized as a
receptor for CoV-229E infection inhuman neural cell lines. They
proved that CD13 expression on the surfaces of various neuronal
and glial cell lines, which are susceptible to CoV-229E infection,
correlate with the level of viral attachments. They also showed
that CD13 is expressed and serves as a receptor for CoV-229E
infection in neuronal and glial cells.

Arbour et al. (17) provided evidence of CoV-229E
neurotropism, and possible viral persistence in the CNS by
showing that astrocytoma, neuroblastoma, neuroglioma, and
oligodendrocytic cell lines are all susceptible to infection by CoV-
229E. The oligodendrocytic and neuroglioma lines sustained a
persistent viral infection, which was monitored by detection of
the viral antigen and infectious viral progeny.

Arbour et al. (40) characterized CoV RNA in a large panel
of human brain autopsy samples. Amplified CoV-229E and
CoV-OC43 strains from the samples of donors with various
neurological diseases 39 with multiple sclerosis (MS), 26 with
other neurological diseases, and 25 controls) reported that 44%
(40 of 90) of donors were positive for CoV-229E and 23% (21
of 90) were positive for CoV-OC43. A higher prevalence of
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FIGURE 2 | Human coronaviral infections. First reports on the different types of Coronaviruses infecting humans throughout history, and the number of

published studies.

CoV-OC43 was noted in patients with MS (35.9%; 14 of 39) than
in the controls (13.7%; 7 of 51). Viral RNA was found in brain
parenchyma, but outside of the blood vessels.

Evidence of a CoV-induced MS-like in rodents, which plays a
role in the inflammatory system, led Edwards et al. (18) to analyze
the expression of cytokines and chemokines in CoV-OC43-
infected human astrocytes and immortalized microglial cell lines.
An up-regulation of IL-6, TNF-a, and MCP-1 mRNA expression
was observed in the astrocytes infected with CoV-OC43. The
virus also modulated the activity of matrix metalloproteinases-2
and -9 and augmented nitric oxide production in microglial cells.

Brain tissue samples from 25 patients withMS and 36 controls
were tested for the prevalence of CoV (19). Four PCR assays
with primers specific for the N-protein gene of CoV-229E and
three PCR assays specific for the nucleocapsid protein gene
of CoV-OC43 were performed. Some sporadic positive PCR
assays were observed in both patients and controls. Results were
not reproducible and no significant difference was reported in
the proportion of positive signals from the patients with MS
compared with the controls.

Jacomy and Talbot (20) developed an experimental model of
CoV-OC43-inoculated mice and characterized the neurotropic
properties of the virus. The virus led to a generalized infection
of the entire CNS. The acute infection targeted neuronal cells,
which underwent vacuolation and degeneration, during strong
microglial reactivity and inflammatory reactions. Damage to
the CNS was not immunologically mediated and the microglial
reactivity was instead, a consequence of direct virus-mediated
neuronal injury.

Lau et al. (21) reported a case of a 32-years-old healthy woman
in week 26 of pregnancy, who was admitted to the hospital
with myalgia, fever, chills, and rigor for 2 days. She had tested
positive for the “new” severe acute respiratory syndrome CoV
(SARS-CoV) in cerebrospinal fluid collected from day 22, after
generalized tonic-clonic convulsions with a loss of consciousness.

St-Jean et al. (22) uncovered six mutations scattered
throughout the CoV-OC43 genome giving rise to two amino acid
substitutions. The two CoV-CO43 variants were able to reach
the CNS after intranasal inoculation in mice. The stability of the
virus in the environment was highlighted, when the two variants
were isolated from cells, 40 years apart. Genomes of the two CoV-
OC43 variants displayed 71, 53.1, and 51.2% identity with MHV
A59, the SARS-CoV Tor2 strain, and CoV-229E, respectively.
Furthermore, CoV-OC43 has well-conserved motifs, like the
genome sequence of the Tor2 strain of SARS-CoV, suggesting
that CoV-OC43 and SARS-CoV may share several important
functional properties.

Glass et al. (23) produced a model of SARS-CoV infection
in mice. Intranasally introduced virus replicated transiently
to high levels in the lungs, with a peak on day 3 post-
infection and clearance by day 9. Viral RNA was localized
to the bronchial and bronchiolar epithelium and mRNA
expression for the ACE2 receptor was detected in the lung,
following infection. The expression of the proinflammatory
chemokine genes, CCL2, CCL3, CCL5, CXCL9, and CXCL10,
and receptor genes (especially CXCR3) was up-regulated
in the lungs with differential kinetics. However, T-cell
cytokine mRNAs (Th1 and Th2) were not detectable.
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TABLE 1 | Studies and main findings.

Authors and Title Virus Model Main findings

(11) “From Patients with Upper Respiratory Tract

Disease”

IBV-like virus strains Suckling mouse and tracheal cell culture Two of the six “IBV-like” strains caused

an encephalitic syndrome in inoculated

mice

(12) “Some Characteristics of Hemagglutination of

Certain Strains of ‘IBV-like’ Virus”

IBV-like Mouse brain harvests, human, chicken,

mouse, rat rhesus and guinea pig cells,

erythrocytes

Human cells were agglutinated without

spontaneous elution at an optimal

hemagglutination temperature

(13) “Differential Susceptibility of Cultured Neural Cells to

the Human Coronavirus OC43”

CoV-OC43 Neural cell cultures Human embryo brain cells, including

astrocytes, were susceptible to OC43

infection but did not produce

infectious virus

(14) “Interferon γ Potentiates Human Coronavirus OC43

Infection of Neuronal Cells by Modulation of HLA Class I

Expression”

CoV-229E CoV-OC43 Human cortical neuron, neuroblastoma,

and diploid lung cell lines

CoVs were able to replicate in neurons

(15) “Infection of Primary Cultures of Human Neural Cells

by Human Coronaviruses 229E and OC43”

CoV-229E CoV-OC43 Human neural cell lines Microglial cells did not produce

infectious progeny viruses after

CoV-OC43 infection

(16) “Involvement of Aminopeptidase N (CD13) in

Infection of Human Neural Cells by Human Coronavirus

229”

CoV-229E Human embryonic lung and neural cell

lines

Expression of aminopeptidase-N

receptor in neurons, astrocytes, and

oligodendrocytes might explain their

susceptibility to CoV-229E infection

(17) “Persistent Infection of Human Oligodendrocytic and

Neuroglial Cell Lines by Human Coronavirus 229E”

CoV-229E Human neural cell lines Oligodendrocytic and neuroglioma cell

lines also sustained a persistent viral

infection

(17) “Neuroinvasion by Human Respiratory

Coronaviruses”

CoV-229E CoV-OC43 Human brain autopsy samples–various

neurological diseases

Higher prevalence of CoV-OC43 in

patients with MS compared with the

controls

(18) “Activation of Glial Cells by Human Coronavirus

OC43 Infection”

CoV-OC43 Immortalized human microglial cells and

human astrocyte cell line

CoV infection of glial cells may be

indirectly associated with CNS

pathologies

(19) “Coronaviruses in Brain Tissue from Patients with

Multiple Sclerosis”

CoV-229E CoV-OC43 Brain tissue from patients with MS Evidence for chronic infection with

CoV-229E or OC43 in the brain tissue

of patients with MS or controls has not

been found

(20) “Vacuolating Encephalitis in Mice Infected by Human

Coronavirus OC43”

CoV-OC43 Mice Damage to the CNS was not

immunologically mediated and the

microglial reactivity was a

consequence of neural infection

(21) “Possible Central Nervous System Infection by

SARS Coronavirus”

SARS-CoV 32-years-old woman, week 26 of

pregnancy, previously in good health

Generalized tonic-clonic convulsions

and positive SARS-CoV in cerebral

spinal fluid suggested infection of the

CNS with SARS-CoV

(22) “Human Respiratory Coronavirus OC43: Genetic

Stability and Neuroinvasion”

CoV-OC43 Cell culture Described the complete genome

sequence of CoV-OC43 strains

(23) “Mechanisms of Host Defense Following Severe

Acute Respiratory Syndrome coronavirus (SARS-CoV)

Pulmonary Infection of Mice”

SARS-CoV Mice SARS-CoV generated a transient

non-fatal systemic infection in the

lungs which was disseminated to the

brain

(24) “Multiple organ infection and the pathogenesis of

SARS”

SARS-CoV Brain tissue, full autopsy of 39-years-old

patient with SARS

Neuroinvasion by SARS-CoV,

evidenced by viral morphology, genetic

identification, and the viral antigen (N

protein) found in the brain

(25) “Susceptibility of Human and Rat Neural Cell Lines

to Infection by SARS Coronavirus”

SARS-CoV Human oligodendroglioma, Rat glioma,

Human intestine, Canine kidney, and

Rabbit kidney cell lines

Human and rat neural cells were

susceptible to SARS-CoV infection,

with no apparent cytopathic effects

(26) “Murine Encephalitis Caused by HCoV-OC43, a

Human Coronavirus with Broad Species Specificity, Is

Partly Immune-Mediated”

CoV-OC43 Mice Rapidly increase in virulence after

passage in the brain is likely to occur

via selection of mutations in the

S-glycoprotein

(Continued)
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TABLE 1 | Continued

Authors and Title Virus Model Main findings

(27) “Human Coronavirus OC43 Infection Induces

Chronic Encephalitis Leading to Disabilities in BALB/C

Mice”

CoV-OC43 Mice neural cell lines Results support the theory that

CoV-OC43 has a preferential tropism

for neurons

(28) “Lethal Infection of K18-HACE2 Mice Infected with

Severe Acute Respiratory Syndrome Coronavirus”

SARS-CoV Mice transgenic for ACE2 receptor Transgenic mice developed a rapidly

lethal infection that spread to the brain,

after intranasal inoculation with

SARS-CoV

(29) “Severe Acute Respiratory Syndrome Coronavirus

Infection of Mice Transgenic for the Human

Angiotensin-Converting Enzyme 2 Virus Receptor”

SARS-CoV Mice transgenic for ACE2 receptor Lungs and brain were the major sites

of viral replication, particularly in

transgenic mice

(30) “Long-Term Human Coronavirus-Myelin

Cross-Reactive T-Cell Clones Derived from Multiple

Sclerosis Patients”

CoV-229E CoV-OC43 T-cell clones (TCC) of patients with MS TCC from the blood of patents with

MS could be activated by either viral or

myelin antigen and sometimes by both

(31) “Pathological Changes in Masked Palm Civets

Experimentally Infected by Severe Acute Respiratory

Syndrome (SARS) Coronavirus”

SARS-CoV Masked palm civets SARS-CoV caused a multi-organ

pathology in civets similar to that

observed in human patients with SARS

(32) “Severe Acute Respiratory Syndrome Coronavirus

Infection Causes Neuronal Death in the Absence of

Encephalitis in Mice Transgenic for Human ACE2”

SARS-CoV Mice transgenic for ACE2 receptor Neurons are highly susceptible targets

for SARS-CoV infection and the

absence of cell receptors prevents

severe murine brain disease

(33) “Neuroprotective Effect of Apolipoprotein D against

Human Coronavirus OC43-Induced Encephalitis in Mice”

CoV-OC43 Human apolipoprotein D(apoD)

transgenic mice

Overexpression of apoD in neurons

resulted in an increased number of

survivors to CoV-OC43 infection

(34) “Glutamate Excitotoxicity is Involved in the Induction

of Paralysis in Mice after Infection by a Human

Coronavirus with a Single Point Mutation in Its Spike

Protein”

CoV-OC43 Mice The AMPA receptor antagonist led to

reduced microglial activation, which

was believed to improve the regulation

of CNS glutamate homeostasis

(35) “Human Coronavirus-Induced Neuronal

Programmed Cell Death Is Cyclophilin D Dependent and

Potentially Caspase Dispensable”

CoV-OC43 Human neuronal cell lines Mitochondrial apoptosis-inducing

factor and cyclophilin D appears to be

pivotal in CoV-OC43-induced

programmed cell death, while

caspases do not appear to be

essential

(36) “Novel Treatment with Neuroprotective and Antiviral

Properties against a Neuroinvasive Human Respiratory

Virus”

CoV-OC43 Mice Memantine improved clinical scores

related to the motor disabilities and

attenuated mortality rates in

virus-infected mice

(37) “Pivotal Role of Receptor-Interacting Protein Kinase

1 and Mixed Lineage Kinase Domain-Like in Neuronal

Cell Death Induced by the Human Neuroinvasive

Coronavirus OC43”

CoV-OC43 Human neuroblastoma cell lines and

mice

A CoV-OC43 variant, harboring

two-point mutations in the

S-glycoprotein (S2) was more

neurovirulent than the CoV-OC43 in

mice and induced more cell death in

murine and human neuronal cells

(38) “The OC43 Human Coronavirus Envelope Protein Is

Critical for Infectious Virus Production and Propagation in

Neuronal Cells and Is a Determinant of Neurovirulence

and CNS Pathology”

CoV-OC43 Human neuronal cell lines and mouse

neuronal cell lines

CoV-OC43 envelope protein is critical

for the production of infectious virions

(39) “Axonal Transport Enables Neuron-to-Neuron

Propagation of Human Coronavirus OC43”

CoV-OC43 Human neuronal cell lines and mice Both passive diffusion of released viral

particles and axonal transport are valid

propagation strategies used by the

virus

CoV, coronavirus; CNS, central nervous system; MS, multiple sclerosis; ACE2, angiotensin-converting enzyme 2; AMPA, 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl) propanoic acid.

Minimal local accumulation of leukocytes was observed
without obvious clinical signs of pulmonary dysfunction.
Infection also spread from the lungs to the brain without
leukocyte accumulation. Mice showed normal clearance of
the virus.

Gu et al. (24) isolated a SARS-CoV strain from brain autopsies.
Fifteen cytokines and chemokines were detected in the blood of a
patient. Amplifications of SARS-CoV specific fragments from the
brain tissue of eight patients confirmed the presence of the virus.
Pathologic examination showed necrosis of neuronal cells and
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extensive hyperplasia of gliocytes. TheCXCL9 gene was expressed
in gliocytes and the infiltration of monocytes/macrophages and T
lymphocytes was observed in the brain mesenchyme.
Both CXCL10 and CXCL9 expression levels were highly elevated
in the blood, although the levels of other cytokines and
chemokines were close to normal. Chest radiographs indicated
that the pathologic change in the brain was independent of
pulmonary superinfection. Neuroinvasion by SARS-CoV was
confirmed by viral morphology observed under the microscope,
as well as genetic identification, and the presence of viral antigen
(N protein) in the brain.

Yamashita et al. (25) showed that SARS-CoV infection
in human neural cells can yield viral infectivity of 102−5

per mL, with no apparent cytopathic effects. Infection of
the intestinal cell line “CaCo-2” also induced no apparent
cytopathic effects, with the production of lower levels of
the virus. The SARS-CoV receptor, ACE2, was expressed at
higher levels on CaCo-2 cells, but at undetectable levels in
neural cells.

Butler et al. (26) showed that CoV-OC43 is highly virulent
in the suckling mouse brain and can cause a uniformly fatal
encephalitis in adult mice. A spike glycoprotein (S-glycoprotein)
on the surface of the CoV-OC43 membrane was revealed as a
major virulence factor in CoV infections. The ability to rapidly
gain virulence after passage in the murine brain is likely to
occur via the selection of mutations in the S-glycoprotein,
which optimize both binding and entry to target cells. Three
changes in the CoV-OC43 S-glycoprotein, in the domain of the
protein responsible for binding to host cells, correlated with
enhanced neurovirulence in the model. Such adaptability has
facilitated the isolation of CoV-OC43 variants with markedly
differing abilities to infect animals and tissue culture cells. This
adaptability also appears to be a mechanism by which CoV-OC43
and SARS-CoV can readily adapt to growth in cells from
heterologous species.

Jacomy et al. (27) used primary cell cultures to determine the
susceptibility of each type of neural cell toCoV-OC43 infection.
They showed that neurons are the target cells undergoing
degeneration during infection, in part due to apoptosis.
Intracerebral inoculation with CoV-OC43 in susceptible mice led
to an acute encephalitis, with neuronal cell death by necrosis
and apoptosis. Infectious viral particles were apparently cleared
from surviving animals, whereas viral RNA persisted for several
months. After the acute encephalitis, some of the surviving
animals presented an abnormal limb-clasping reflex and reduced
motor activity starting several months post-infection.

McCray et al. (28) produced transgenic mice that expressed
the human ACE2 receptor in the airway and other epithelia. Mice
developed a rapidly lethal infection after intranasal inoculation
with SARS-CoV. Infection began in the airway epithelia, with
subsequent alveolar involvement, and extrapulmonary virus
spread to the brain. Furthermore, infection resulted in the
infiltration of macrophages and lymphocytes into the lungs and
an upregulation of proinflammatory cytokines and chemokines
in both the lungs and brain.

In the study Tseng et al. (29), the best model of transgenic
mice expressing the human ACE2 receptor showed clinical

manifestations within 8 days post-intranasal SARS-CoV
infection. High viral titers were detected in the lungs and
brains on days 1 and 3. Inflammatory mediators in these tissues
coincided with the high levels of viral replication. Lower viral
titers were detected in the blood. Infected non-transgenic mice
survived, without showing signs of clinical illness. Extensive
CNS involvement likely determines whether the animal dies,
rather than the presence of viral pneumonia. Mouse lineages,
in which the transgene expression is considerably less abundant
than it was in this model, showed that viral replication is largely
restricted to the lungs but not the brain.

Boucher et al. (30), after reporting the isolation of CoV-
229E/myelin basic protein (MBP) cross-reactive T cell lines
(TCL) in patients withMS, checked for antigenic cross-reactivity.
A total of 155 long-term T-cell clones (TCC) were derived from
32 patients withMS by in vitro selection against MBP, proteolipid
protein, or CoV (strains 229E and OC43). Overall results showed
that 114 TCC were virus-specific, 31 were specific for the myelin
antigen, and 10 were CoV/myelin cross-reactive. Additionally, 28
virus-specific TCC and seven myelin-specific TCC were obtained
from six healthy donors. The TCC derived from the blood of
patients with MS could have been activated by either viral or
myelin antigen, and sometimes by both.

Xiao et al. (31) elucidated the histopathological changes
induced by SARS-CoV in an infected civet (Paguma larvata)
model. In-situ hybridization detected viral RNA in the animal’s
lung, small intestine, and brain alone. Apoptosis detection within
the brain showed evidence of neuronal degeneration and mild
neuronophagia from days 3 to 13 after infection. In two cases,
mild edema was also observed around the small veins and nerve
cells. Nomicroscopic changes were observed in these tissues after
13 days. Furthermore, no evidence of apoptosis was observed
within the myocardium. Those results indicated that SARS-CoV
can cause a multi-organ pathology in civets, similar to that
observed in human patients with SARS.

Netland et al. (32) experimented with transgenic mice and
the ACE2 receptor. They showed that the virus enters the
animal’s brain primarily via the olfactory bulb and the infection
results in a rapid trans-neuronal spread to other connected
areas of the brain. Extensive neuronal infection was the main
cause of death, considering that intracranial inoculation with
low doses of the virus results in a uniformly lethal disease,
even when little infection is detected in the lungs. Death likely
results from dysfunction and/or death of infected neurons,
especially those located in cardiorespiratory centers in the
medulla. The SARS-CoV induced minimal cellular infiltration
in the brain. The results of that study confirmed that neurons
are highly susceptible targets for SARS-CoV infection, in which
only the absence of the cell receptor prevented severe murine
brain disease.

Do Carmo et al. (33) showed that apolipoprotein D (apoD)
expression is regulated during acute encephalitis induced
by CoV-OC43 infection. The upregulation of human apoD
expression in transgenic mice coincided with glial activation.
Both apoD expression and glial activity returned to normal
levels when the virus was cleared. Overexpression of apoD
in the neurons of mice resulted in a 3-fold increase in
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the number of mice surviving the CoV-OC43 infection. The
overexpression of apoD also correlated with up-regulated
glial activation, a limited innate immune response (associated
with cytokines and chemokines), and T-cell infiltration into
infected brains.

Brison et al. (34) showed that a single point mutation
in the S-glycoprotein of CoV-OC43, acquired during viral
persistence in human neural cells, led to a hindlimb paralytic
disease in mice. In the S-glycoprotein mutant mice, the
inhibition of glutamate excitotoxicity, using a 2-amino-3-
(5-methyl-3-oxo-1,2-oxazol-4-yl) propanoic acid (AMPA)
receptor antagonist, improved clinical scores associated with
paralysis and motor disabilities. Glutamatergic inhibition also
protected the CNS from neuronal dysfunction, as illustrated
by the restoration of phosphorylation of neurofilaments.
Expression of the glial glutamate transporter (GLT-1),
responsible for glutamate homeostasis, was down-regulated
following infection, while the AMPA receptor antagonist
restored GLT-1 steady-state expression levels. Treatment with
the AMPA receptor antagonist led to reduced microglial
activation, which was believed to improve the regulation of CNS
glutamate homeostasis.

After observing that CoV-OC43 infection of neurons activates
the unfolded-protein response and caspase-3, and induces cell
death with involvement of the S-glycoprotein, Favreau et al.
(35) elucidated possible mechanisms of cell death following
CoV-OC43 infection. They reported a more neurovirulent and
cytotoxic CoV-OC43 variant, harboring two-point mutations
in the S-glycoprotein (S2) in human neuronal cells. Caspase-
3 and -9 were both activated after infection, but caspase
inhibitors neither reduced nor delayed virus-induced cell death.
The proapoptotic proteins, BAX and cytochrome c (CytC),
and the apoptosis-inducing factor were re-localized toward the
mitochondria, cytosol, and nucleus, respectively, after infection
with the variants of both viruses. Neuronal cells treated with
cyclosporine (an inhibitor of the mitochondrial permeabilization
transition pore), or knocked down for cyclophilin D (a protein
known for regulating mitochondrial function) were completely
protected from CoV-OC43-induced neuronal death. However,
knockdown of S2 in infected cells had a moderate effect on
programmed cell death The results supported the theory that
mitochondrial apoptosis-inducing factor and cyclophilin D are
central to CoV-OC43-induced cell death, while caspases do not
appear to be essential.

Brison et al. (36) demonstrated that glutamate recycling, via
GLT-1 and glutamine synthetase, is central to the dysregulation of
glutamate homeostasis and development of motor dysfunctions
and paralytic disease in CoV-OC43-infected mice. Furthermore,
memantine (an N-methyl-D-aspartate receptor antagonist,
widely used in the treatment of neurological diseases)
improved clinical scores related to motor disabilities, by
partially restoring physiological neurofilament phosphorylation
in virus-infected mice and attenuating mortality rates.
Reduced CoV-OC43 replication was observed in the CNS
in a dose-dependent manner.

Meessen-Pinard et al. (37) verified whether knockdown of
BAX (BCL2-associated X protein) or RIP1 (a key regulator

of necroptosis) altered the percentage of neuronal cell death
following CoV-OC43 infection. They reported that BAX-
dependent apoptosis did not play a role in regulated cell death
following infection, once the inhibition of BAX expression,
mediated by RNA interference, did not confer cellular protection
against the cell death process. Both RIP1 and mixed lineage
kinase domain-like (MLKL) were involved in neuronal cell
death, as RIP1 knockdown and chemical inhibition of MLKL
increased cell survival after infection. The results indicated
that RIP1 and MLKL contribute to necroptotic cell death,
following CoV-OC43 infection, to limit viral replication.
This regulated cell death can lead to neuronal loss and
accentuate the neuroinflammatory process, reflecting the severity
of neuropathogenesis.

Stodola et al. (38) used recombinant viruses, either devoid
of the structural envelope (E) protein or harboring mutations
in the putative transmembrane domain or PDZ-binding motif.
They demonstrated that with CoV-OC43 infection of cell lines
from the human CNS and mouse CNS, the E protein is critical
for efficient and optimal viral replication and propagation, and
therefore, neurovirulence.

Dubé et al. (39) showed a route of neuropropagation from
the nasal cavity to the olfactory bulb and piriform cortex,
and then to the brain stem in mice. A neuron-to-neuron
propagation was identified as one underlying mode of viral
spread in cell culture. Both passive diffusion of released viral
particles and axonal transport were propagation strategies
used by the virus. The presence of viral platforms with
static dynamism was consistent with the viral assembly sites
revealed along the axons. The CoV-OC43 modes of propagation
might be modulated by selected CoV-OC43 proteins and
axonal transport.

DISCUSSION

Cumulative data indicate that respiratory infection with different
species of CoV can evolve to CNS disturbances, sequelae,
and possibly chronic disease (Figure 3). Respiratory CoVs have
been identified for more than eight decades, with the most
devastating scenario created by the current Covid-19 pandemic
following the SARS-CoV2 outbreak. Search results showed that
the last 6 months of the pandemic has already produced more
speculation than the entire body of scientific literature on
any other CoV. Historically, IBV-like, CoV-OC43, CoV-229E,
and SARS-CoV have been shown to interact with the CNS
(Figure 2).

Reports of respiratory infections with CoVs among several
studies show similar levels of neuropathogenicity. The binding
of these viruses to the ACE2 receptor is putative for viral
neuroinvasion, even though neuronal viral infection may be
mediated by the CD13 receptor. IN addition, CoV-229E, CoV-
OC43, and SARS-CoV have been shown to have the capacity
to infect neurons, astrocytes, glial cells, and fibroblasts with a
common response of encephalitis, and highest viral production
in neurons.
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FIGURE 3 | Respiratory-Neurovirulent Coronaviruses detected in human—PubMed source.

The consensus that human infection with respiratory CoVs
can cause encephalitis is supported by animal models, which
have facilitated descriptions of this route of transmission. The
infection begins in the airway epithelia, with binding of the
virus to ACE2 receptors and subsequent alveolar involvement.
Extrapulmonary viral particles are then spread to the CNS,
possibly through nuclei that regulate the respiratory rhythm in
the brain stem, or through the olfactory bulbs. The mechanism
of neuroinvasion in respiratory CoVs may occur via neuronal
contacts and the recruitment of axonal transport.

Although other neural cells expressing ACE2 and CD13
receptors are also susceptible, as neurons are the main
targets of CoV neuroinvasion, the neuronal losses induced
by regulated cell death are probably the main neurovirulence
factor causing generalized encephalitis (14, 16). Such losses
likely occur via mitochondria-associated caspase-independent
apoptosis. However, glutamate homeostasis dysregulation and
toxicity could be additional factors associated with brain damage,
cardiorespiratory center inhibition, and microglial inflammatory
reactions (32, 34–36).

The inflammatory processes involved in the CNS response to
CoV infection remains unclear. While immune cell infiltration is
weakly supported (24), the participation of astrocytes and other
glial cells in these processes have been extensively reported. The
expression of inflammatory cytokines and chemokines, together
with an upregulation of their receptors, have revealed the role of
microglial activation in the inflammatory reactions of the CNS
(18, 23, 24, 28, 29).

The neurovirulence of respiratory CoVs appears to be
associated with the duration of viral exposure, which is crucial
for the severity of pathogenicity. The persistence of CoV may
lead to a spectrum of conditions from acute encephalitis without
noticeable sequelae, to paralysis or chronic disease, as illustrated

by Lau et al. (21), Arbour et al. (17), Brison et al. (34), and
Tseng et al. (29). The findings of those reports show that viral
reactivation does not lead to increased inflammation, increased
response of virus-specific T cells, or re-expression of cytolytic
effector function. Virus-specific Tcells within the brain retain the
ability to secrete viral antigen but are unable to prevent CNS
viral reactivation.

While interferon-γ is crucial for viral clearance during
acute infection, it is insufficient to control viral reactivation.
Such inability to enhance T-cell effector function is attributed
to the decreased ability of peripheral Tcells to access the
CNS, and an inability of antigens to leave the CNS and
reactivate peripheral Tcells (41, 42). These effects all lead to an
absence of T cell-mediated cytokines in the brain (23) and an
insufficiency of the Tcell-mediated immune response to CoVs in
the CNS.

Several viruses can infect neural tissue cells and possibly
participate in the induction of neurological diseases, even though
their primary site of infection in humans may not be the CNS
(43). For instance, neurodegenerative diseases, such as dementia-
related disorders and/or sequelae might also be linked to viral
infection. The association of CoVs with MS has been reported
in some studies (18, 40) and immune cell virus cross-reactivity
could be one of the pathological mechanisms by which it
arises (30).

One notable point is the mutagenicity of CoVs. Even a
couple mutations designed in the laboratory were able to
increase the specificity of the virus to human CNS cells (22,
26, 34, 35, 38). This finding strongly supports an analogous
process in SARS-CoV2 during the pandemic of Covid-19,
through which we may be confronted with new neural-specific
viral infections. Nevertheless, retrospective analysis of the data
on CoV infections of the neural system could facilitate the
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prediction of viral behavior, indicate the weak points, and
inform the prognosis of cases, within the context of future
medical challenges.

Limitations
Although previous findings on respiratory CoVs are useful for
this Pandemic moment, more novel, in-depth studies on SARS-
CoV2 are required to gain a better understanding of the events
following the recent epidemics of Covid-19. All available studies
this submission date referred to strains of CoV viruses that cause
respiratory infections other than SARS-CoV2.
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Background: Coronavirus disease 2019 (COVID-19) is a new viral respiratory disease

and has become a pandemic. Fever, weakness, and dry cough are the main clinical

manifestations. However, little is known about neurological symptoms of non-critically ill

COVID-19 patients.

Objective: To investigate the neurological symptoms and implications of patients with

non-critically ill COVID-19 patients.

Materials and Methods: This retrospective cohort study investigated all COVID-19

patients admitted to Wuhan East-West Lake Fangcang shelter hospital. Demographic

data, clinical manifestations, comorbidities, radiological data, the result of nucleic acid

test, and treatments were collected and analyzed.

Results: Among 1,682 patients with confirmed non-critically ill COVID-19, 509 patients

(30.3%) had neurological symptoms, including myalgia (311, 18.5%), headache (216,

12.8%), fatigue (83, 4.9%), and dizziness (15, 0.9%). One hundred and fourteen patients

(6.8%) were the expansion of pulmonary infection according to their chest CT images and

medical history. Compared with patients without neurological symptoms, patients with

neurological symptoms had a significantly longer length of hospital stay, time of nucleic

acid turning negative, and the mean time from onset of symptom to hospital admission (p

< 0.05). Patients with neurological symptoms were more likely to occur the expansion of

pulmonary infection compared with the patients without neurological symptoms (46/509

[9.0%] vs. 68/1,173 [5.8%]).

Conclusions: Non-critically ill COVID-19 patients commonly have neurological

symptoms. Neurological symptoms are significantly associated with the processes of

COVID-19. Early identification and aggressive treatment are particularly important for

COVID-19 patients with neurological symptoms.

Keywords: neurologic symptoms, COVID-19, SARS-CoV-2, CNS, neurological implications
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INTRODUCTION

COVID-19 is a potentially severe acute respiratory infection
caused by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), which has spread rapidly around the world (1–4).
On March 11, the World Health Organization (WHO) declared
that the COVID-19 outbreak can be characterized as a pandemic
(5). As of 27 June 2020, the data from WHO indicate that there
have been 9,653,048 confirmed cases, including 491,128 deaths
in just 4 months, which has affected more than 200 countries
and regions.

The human respiratory system is recognized as the SARS-
CoV-2 primary target. Fever, cough, and dyspnea are the
most common clinical symptoms at the onset of illness (6,
7). Moreover, several studies have confirmed that SARS-CoV-
2 is highly similar to SARS-CoV; the latter can invade human
multiple systems including lung, trachea/bronchus, stomach,
small intestine, brain, and liver, not just the respiratory system
(8–11). Recent researches have shown that digestive symptoms
are common in patients with COVID-19, including nausea,
vomiting, and diarrhea, and the fecal–oral route may be a
potential route for SARS-CoV-2 infection (12–16). Some experts
hold the view that SARS-CoV-2 may invade the brain and central
nervous system by the ACE2 receptor (17, 18), which is present
in the nervous system and skeletal muscles.

A recent study showed that 81% of SARS-CoV-2 nucleic
acid-positive patients were classified as mild (non-critically
ill patients), which displays non-pneumonia or only mild
pneumonia (19). In order to address the drawbacks of home
isolation and ease pressures on the designated traditional
hospitals, 15 Fangcang shelter hospitals special for non-
critically ill COVID-19 patients were rapidly established by
the urgent renovation of stadiums and exhibition centers. The
diagnostic and classification criteria of COVID-19 are based
on the diagnosis and treatment program for novel coronavirus
pneumonia issued by the National Health Commission (NHC)
of the People’s Republic of China (Trial Version 6). All patients
who are nucleic acid positive, have mild to moderate symptoms
(respiratory rate <30 breaths/min and blood oxygen saturation
>93% at resting state), and are quarantined at home are
unified transferred to nearby Fangcang shelter hospitals by the
government (20–23).

At present, most of the studies focused on the clinical
characteristics of severe or critically ill patients. However, specific
information characterizing neurological symptoms of non-
critically ill COVID-19 patients remains obscure. The present
study aims to investigate the neurological implications of non-
critically ill COVID-19 patients and provide references for the
prevention and treatment of the disease.

MATERIALS AND METHODS

This single-center retrospective cohort study was performed
at Wuhan East-West Lake Fangcang shelter hospital, which is
the first largest shelter hospital designated by the government
to admitting non-critically ill COVID-19 patients in the city,
constructed and led by Zhongnan Hospital of Wuhan University

from February 4, 2020, to March 10, 2020. We retrospectively
analyzed all COVID-19 patients admitted to Wuhan East-West
Lake Fangcang shelter hospital. Moreover, we only excluded a
few patients with incomplete data. All patients were confirmed
COVID-19 by real-time reverse transcriptase-polymerase chain
reaction (RT-PCR) in designated hospitals before admission.
Throat-swab specimens were obtained for the nucleic acid test.

The diagnostic and classification criteria issued by the
National Health Commission (NHC) of the People’s Republic of
China (Trial Version 6) classified the disease severity of patients
to 4 levels: mild, moderate, severe, and critical. The mild grade
represents patients with mild clinical symptoms and no sign of
pneumonia on imaging. The moderate grade represents patients
who have a fever and respiratory symptoms with radiologic
findings of pneumonia. The severe grade represents patients
meet any of the following criteria: (1) respiratory distress (≥30
breaths/min); (2) oxygen saturation ≤93% at rest; and (3)
PaO2FiO2 ≤300mmHg or chest imaging showing obvious lesion
progression >50% within 24–48 h. The critical grade represents
patients meeting any of the following criteria: (1) respiratory
failure and requiring mechanical ventilation; (2) shock; (3)
having other organ failures that require ICU care (24).

Data Collection
A trained team of physicians reviewed electronic medical
records, nursing records, laboratory findings, and radiologic
examinations for all patients during the epidemic period. Patient
data including demographic, medical history, chest CT imaging,
treatments, the result of nucleic acid test, and comorbidities
were collected and analyzed. Clinical symptoms from onset to
hospital admission were provided by COVID-19 patients who
were conscious, cognitively, and mentally normal.

Statistical Analysis
Continuous variables were described as mean ± standard
deviation (SD) or median (interquartile range, IQR) and
compared with independent group t-test or the Mann–Whitney
U test if appropriate. Categorical variables were described as
a percentage and compared by χ2 test or Fisher’s exact test if
appropriate. All statistical analyses were performed using SPSS
22.0 software (SPSS Inc. Chicago, IL). A value of P < 0.05 at
two-sided was considered statistically significant.

RESULTS

Clinical Characteristics of Patients With
Non-critically Ill COVID-19
A total of 1,682 patients with COVID-19 were included in
the analysis, and 17 patients were excluded due to incomplete
data. The demographic and clinical characteristics are shown
in Table 1. The median [IQR] age was 50 [39–58] years
(range, 5–89), and 859 patients (51.1%) were female. Of these
patients, the median [IQR] day of hospital stay was 19 (14–
23) days (range 1–29). The median [IQR] day of nucleic acid
turning negative for all patients was 9 (5–13) days (range 0–
25). The majority of these non-critically ill COVID-19 patients
have no comorbidities. The most common comorbidities were
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TABLE 1 | Clinical characteristics of patients with non-critically ill COVID-19.

Characteristics No. (%)

No. of patients 1,682

Age, median [IQR], (range), years 50 [39–58],

(5–89)

<30 125 (7.4)

30–45 508 (30.2)

46–65 892 (53.0)

≥65 157 (9.3)

Gender

Female 859 (51.1)

Male 823 (48.9)

From onset of symptom to hospital admission, median

[IQR] (range), days

10 (7–15),

(1–60)

Hospital stay, median [IQR] (range), days 19 (14–23),

(1–29)

Comorbidities

Hypertension 118 (7.0)

Diabetes 53 (3.2)

Lung disease

Chronic bronchitis 30 (1.8)

Bronchiectasis 3 (0.2)

Tuberculosis 3 (0.2)

Coronary heart disease 15 (0.9)

Cerebral infarction 5 (0.3)

Turning to nucleic acid negative, median [IQR] (range),

days

9 (5–13),

(0–25)

Treatments

Traditional Chinese Medicine (Qingfei Paidutang, QPD) 1,617 (96.1)

Lianhua Qingwen capsule 1,372 (81.4)

Antibiotics 899 (53.4)

Moxifloxacin hydrochloride 863 (51.3)

Cephalosporin 103 (6.1)

Azithromycin 12 (7.1)

Antivirals 1,355 (80.6)

Umifenovir 1,316 (78.2)

Lopinave/Litonawe (62, 3.7%) 164 (9.8)

Oseltamivir 62 (3.7)

Tenofovir 2 (0.1)

Glucocorticoid (budesonide) 2 (0.1)

Expansion of pulmonary infection 114 (6.8)

IQR, interquartile range; COVID-19, Coronavirus disease 2019. The results were

presented as median [IQR] (range) for continuous variables and number (%) for

categorical variables.

hypertension (118, 7.0%), followed by diabetes (53, 3.2%);
lung disease (36, 2.2%), such as chronic bronchitis (30, 1.8%),
bronchiectasis (3, 0.2%), and tuberculosis (3, 0.2%); coronary
heart disease (15, 0.9%); and cerebral infarction (5, 0.3%).
After admission, antiviral and antibiotic basic medical care is
provided. There were 1,617 patients (96.1%) receiving traditional
Chinese medicine (Qingfei Paidutang, QPD) treatment, which is
recommended by the National Health Commission (NHC) of the
People’s Republic of China; 1,372 (81.4%) on Lianhua Qingwen

TABLE 2 | Clinical symptoms of patients with non-critically ill COVID-19 on

admission.

Symptoms No. (%)

No. of patients 1,682

Respiratory system symptoms 1,559 (92.7)

Fever 1,177 (70.1)

Cough 951 (56.6)

Chest tightness or dyspnea 425 (25.3)

Expectoration 363 (21.4)

Chills 285 (16.9)

Sore throat 254 (15.1)

Nasal obstruction 113 (6.7)

Runny nose 107 (6.4)

Nervous system symptoms 509 (30.3)

Myalgia 311 (18.5)

Headache 216 (12.8)

Fatigue 83 (4.9)

Dizziness 15 (0.9)

Gastrointestinal symptoms 305 (18.1)

Diarrhea 233 (13.6)

Abdominal pain 73 (4.3)

Nausea or vomiting 73 (4.3)

Poor appetite 23 (1.4)

IQR, interquartile range; COVID-19, Coronavirus disease 2019. The results were

presented as number (%) for categorical variables.

capsule; 1,355 (80.6%) on antivirals including umifenovir (1316,
78.2%), Lopinave/Litonawe (164, 9.8%), oseltamivir (62, 3.7%),
and tenofovir (2,0.1%), and 899 (53.4%) on antibiotics including
moxifloxacin hydrochloride (863,51.3%), cephalosporin (103,
6.1%), and azithromycin (12,7.1%), 2 (0.1%) on glucocorticoids
(budesonide). Based on the results of chest CT images and
medical history, 114 patients (6.8%) made up the expansion of
pulmonary infection during hospitalization.

Clinical Symptoms of Patients With
Non-critically Ill COVID-19 on Admission
The median [IQR] day of the onset of symptoms to hospital
admission for all patients was 10 (7–15) days (range 1–60).
Clinical symptoms of all patients on admission are summarized
in Table 2. Respiratory system symptoms are the most common
clinical symptoms (1,559, 92.7%), including fever (1,177, 70.1%),
cough (952, 56.6%), chest tightness or dyspnea (425, 25.3%),
expectoration (363, 21.4%), chills (285, 16.9%), sore throat
(254, 15.1%), nasal obstruction (113, 6.7%), and runny nose
(107, 6.4%). The second prevalence of clinical symptoms were
neurological symptoms (509, 30.3%), including myalgia (311,
18.5%), headache (216, 12.8%), fatigue (83, 4.9%), and dizziness
(15, 0.9%). Of these 1,682 patients, 305 patients (18.1%) admitted
to the hospital were found to present with one or more digestive
symptoms, including diarrhea (233, 13.9%), abdominal pain (73,
4.3%), nausea or vomiting (73, 4.3%), or poor appetite (23, 1.4%).
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Characteristics of Patients With
Non-critically Ill COVID-19 With/Without
Neurological Symptoms
Table 3 shows the characteristics of patients with/without
neurological symptoms. Among these 509 COVID-19 patients
with neurological symptoms, 258 patients (55.1%) were female.
The median [IQR] age of patients with COVID-19 with
neurological symptoms was 50 [40–58], ranging from 15 to 79
years of age. There was no significant difference in age and
gender between the two groups. Compared with patients without
neurological symptoms, patients with neurological symptoms
had a significantly longer length of hospital stay (median [IQR],
20 (16–23) vs. 18 (14–22) days; P = 0.002), time of nucleic
acid turning negative (median [IQR], 10 (5–14) vs. 8 (5–13)
days; P = 0.036). Although the median [IQR] time from onset
of symptom to hospital admission of the two groups is basic
consistent (10 (7–15) vs. 10 (7–14) days), the mean time of
patients with neurological symptoms is longer (mean ± SD
[12.01 ± 6.099] vs. [10.68 ± 6.245] days; P = 0.001). Patients
with neurological symptoms had significantly higher rates of
comorbidities including hypertension (46 [9.1%] vs. 72 [6.1%])
and diabetes (29 [5.6%] vs. 24 [2.0%]). The non-critically ill
COVID-19 patients with hypertension and diabetes were more
likely to appear neurological symptoms.

Compared with patients without neurological symptoms,
those with neurological symptoms presented with significantly
higher rates of respiratory system symptoms, including fever
(374 [73.5%] vs. 803 [68.2%]), cough (313 [61.5%] vs. 638
[54.4%]), chest tightness or dyspnea (195 [38.3%] vs. 231
[19.7%]), expectoration (161 [31.6%] vs. 202 [17.2%]), chills
(178 [35.0%] vs. 107 [9.1%]), sore throat (129 [25.3%] vs. 125
[10.7%]), nasal obstruction (71 [14.0%] vs. 42 [3.6%]), and
runny nose (63 [12.4%] vs. 44 [3.8%]). Patients with neurological
symptoms also had significantly higher rates of gastrointestinal
system symptoms including abdominal pain (57 [11.2%] vs. 16
[1.4%]), vomiting (40 [7.8%] vs. 21 [1.8%]), and poor appetite
(17 [3.3%] vs. 6 [0.5%]). Additionally, we found that patients
with neurological symptoms were more likely to occur expansion
of pulmonary infection compared with the patients without
neurological symptoms (46 [9.0%] vs. 68 [5.8%]).

DISCUSSION

Recent studies revealed that fever, cough, and dyspnea are
the most common and typical clinical symptoms in COVID-
19 patients (25, 26). However, atypical clinical manifestations
including the digestive and nervous system were significant
differences in different study populations (27). In this study,
we found that neurological symptoms are common in patients
with non-critically ill COVID-19. Among 1,682 non-critically
ill COVID-19 patients, 509 patients (30.3%) had at least
one neurological symptom. Compared with patients without
neurological symptoms, patients with neurological symptoms
had a significantly longer length of hospital stay and time
of nucleic acid turning negative. Patients with neurological
symptoms were more likely to occur the expansion of pulmonary

infection compared with the patients without neurological
symptoms (46/509 [9.0%] vs. 68/1,173 [5.8%]). These results
suggest that neurological symptoms are significantly associated
with the disease processes of COVID-19. Moreover, compared
with patients without neurological symptoms, although the
median [IQR] time of the two groups is basic consistent, the
mean time from onset of symptom to hospital admission is longer
in patients with neurological symptoms, it suggests that nervous
system-related symptoms have not garnered much attention.
Based on this finding, early identification and aggressive
treatment are particularly important for COVID-19 patients with
neurological symptoms.

The current study demonstrates that patients with
hypertension and diabetes comorbidities are more prone to
experience neurological symptoms during COVID-19. The
exact pathophysiological mechanism underlying nervous system
injury caused by COVID-19 is not fully understood. Genomic
analysis reveals that SARS-CoV-2 belongs to betacoronavirus
(βCoV) family that includes severe acute respiratory syndrome
coronavirus (SARS-CoV) and Middle East respiratory syndrome
coronavirus (MERS-CoV). Research has confirmed that the
infection of other CoVs, such as in SARS-CoV and MERS-CoV
can cause neurologic injury by invading the brain. SARS-CoV
had been detected in brain tissue and cerebrospinal fluid, and
some SARS patients experienced central nervous symptoms
and neurological sequelae (28–30). SARS-CoV-2 shares a
highly homological sequence with human SARS-CoV (with
82% identity) and infects host cells by the same angiotensin-
converting enzyme 2 (ACE2) receptor (31–34). The expression of
ACE2 protein was observed in multiple human organs including
lung, small intestine, colon, liver, kidney, and brain; thus, these
organs have been confirmed to be infected (35, 36). A recent
study shows that SARS-CoV-2 leads to neuronal damage by
the expression of ACE2 in central nervous system tissue (18).
In addition, another study also explained that SARS-CoV-2
invades gastrointestinal tissues, and large quantities of harmful
metabolites were absorbed, which causes neurological symptoms
through the gut–brain axis (15). These findings indicate the
expression and distribution of ACE2 in the nervous system may
play a key role in the interaction between SARS-CoV-2 and
nervous system injury. Hypertension or diabetes patients are
always treated with ACE inhibitors and ARBs, which results in
an upregulation of ACE2 expression (37, 38). We speculate that
diabetes and hypertension treatment with ACE2-stimulating
drugs may increase the risk of developing more neurological
symptoms during COVID-19 infection.

The present study detailed investigates the neurological
symptoms and implications of non-critically ill COVID-19
patients, which reminds clinicians not to overlook these
neurological symptoms during treatment for COVID-
19. We found 21 patients (4.1%) presented with only
neurological symptoms in the absence of respiratory
symptoms and digestive symptoms. In addition, recent
reports suggest that anosmia or hypogeusia and dysgeusia
are also one of the clinical manifestations. The current
study demonstrates that neurological symptoms are
significantly associated with the processes of COVID-19.
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TABLE 3 | Characteristics of patients with non-critically ill COVID-19 with/without neurological symptoms.

Characteristics With neurological symptoms

No. (%) (n = 509)

Without neurological symptoms

No. (%) (n = 1,173)

P-value

Age, median [IQR], (range), years 50 [40–58], (15–79) 50 (38–58), (5–89) 0.413

Gender 0.836

Female 258 (55.1) 601 (60.0)

Male 251 (44.9) 572 (40.0)

From onset of symptom to hospital admission <0.001

Mean ± SD 12.01 ± 6.099 10.68 ± 6.245

Median [IQR] (range), days 10 (7–15), (1–30) 10 (7–14), (1–60)

Hospital stay, median [IQR] (range), days 20 (16–23), (1–29) 18 (14–22), (1–29) 0.002

Turning to nucleic acid negative median [IQR] (range), days 10 (5–14), (0–25) 8 (5–13), (0–25) 0.036

Comorbidities

Hypertension 46 (9) 72 (6.1) 0.033

Diabetes 29 (5.6) 24 (2.0) <0.001

Lung disease

Chronic bronchitis 4 (0.7) 26 (2.2) 0.042

Bronchiectasis 0 3 (0.2) 0.254

Tuberculosis 2 (0.4) 1 (0.1) 0.169

Coronary heart disease 10 (2.0) 5 (0.4) 0.794

Cerebral infarction 2 (0.4) 3 (0.2) 0.635

Clinical symptoms

Respiratory system symptoms

Fever 374 (73.5) 803 (68.2) 0.039

Cough 313 (61.5) 638 (54.4) 0.007

Chest tightness or dyspnea 195 (38.3) 231 (19.7) <0.001

Expectoration 161 (31.6) 202 (17.2) <0.001

Chills 178 (35.0) 107 (9.1) <0.001

Sore throat 129 (25.3) 125 (10.7) <0.001

Nasal obstruction 71 (14) 42 (3.6) <0.001

Runny nose 63 (12.4) 44 (3.8) <0.001

Gastrointestinal symptoms

Abdominal pain 57 (11.2) 16 (1.4) <0.001

Nausea 6 (1.2) 6 (0.5) 0.135

Vomiting 40 (7.8) 21 (1.8) <0.001

Poor appetite 17 (3.3) 6 (0.5) <0.001

Clinical outcomes

Expansion of pulmonary infection 46 (9.0) 68 (5.8) 0.015

IQR, interquartile range; COVID-19, Coronavirus disease 2019. P-values indicate differences between patients with and without neurological symptoms, and P < 0.05 was considered

statistically significant. The results were presented as median [IQR] (range) for continuous variables and number (%) for categorical variables. The different characteristics between the

two groups were tested by the Mann-Whitney U test (continuous variables) or χ2 test or Fisher’s exact test (categorical variables).

Therefore, early identification and aggressive treatment
are particularly important for COVID-19 patients with
neurological symptoms.

This study has several limitations. First, we only collected
and analyzed non-critically ill patients with COVID-19.
It would be better to include more patients with severe
infection. Second, we only analysis the neurological
symptoms. Considering that Fangcang shelter hospitals
are not regular hospitals but temporary hospitals in
the special circumstances, magnetic resonance imaging,
cerebrospinal fluid (CSF) test, electroencephalogram (EEG),

and electromyogram (EMG) cannot be implemented.
Third, this study only presents a preliminary assessment
of neurological symptoms and the implications of
non-critically ill COVID-19 patients. Nevertheless, the
study findings should supply important information
regarding the neurological implications of non-critically ill
COVID-2019 patients.

In conclusion, non-critically ill COVID-19 patients
commonly have neurological symptoms. Neurological symptoms
reflecting nervous system injury are significantly associated with
the processes of COVID-19. Early identification and aggressive
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treatment are particularly important for COVID-19 patients
with neurological symptoms.
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Introduction: The response to the SARS-CoV-2 coronavirus epidemic requires
increased research efforts to expand our knowledge of the disease. Questions related to
infection rates and mechanisms, the possibility of reinfection, and potential therapeutic
approaches require us not only to use the experimental models previously employed
for the SARS-CoV and MERS-CoV coronaviruses but also to generate new models to
respond to urgent questions.

Development: We reviewed the different experimental models used in the study of
central nervous system (CNS) involvement in COVID-19 both in different cell lines that
have enabled identification of the virus’ action mechanisms and in animal models (mice,
rats, hamsters, ferrets, and primates) inoculated with the virus. Specifically, we reviewed
models used to assess the presence and effects of SARS-CoV-2 on the CNS, including
neural cell lines, animal models such as mouse hepatitis virus CoV (especially the 59
strain), and the use of brain organoids.

Conclusion: Given the clear need to increase our understanding of SARS-CoV-2, as
well as its potential effects on the CNS, we must endeavor to obtain new information
with cellular or animal models, with an appropriate resemblance between models
and human patients.

Keywords: SARS-CoV-2, experimental models, COVID-19, central nervous system, neurodegenerative disease,
multiple sclerosis

INTRODUCTION

On 31 December 2019, the Word Health Organization reported for the first time on an epidemic of
lower respiratory tract infection in Wuhan, in the Chinese province of Hubei. The causal agent was
soon identified as Severe acute respiratory syndrome coronavirus (SARS-CoV-2), a coronavirus
(CoV), and the associated disease was named coronavirus disease 19 (COVID-19) (1). CoVs are
positive-sense single-stranded RNA viruses resembling a crown under microscopy due to the
presence of spike (S) glycoproteins on the viral envelope. There are four types of CoVs: αCoVs,
βCoVs, δCoVs, and γCoVs. SARS-CoV, MERS-CoV, and SARS-CoV-2 are zoonotic (2), first
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infecting animals and then spreading to humans. βCoVs, which
include SARS-CoV-2, are thought to originate in bats (3, 4),
among other species. These viruses can cause respiratory and
enteric diseases in different animal species. In humans, HCoV-
OC43 and HCoV-HKU1 (αCoVs), and HCoV-229E and HCoV-
NL63 (βCoVs) can cause the common cold and self-limiting
infection of the lower respiratory tract in immunocompetent
individuals in seasonal periods (5). Two previous epidemics have,
however, been caused by CoVs; these were similar to the current
pandemic, though with higher mortality rates, and were caused
by the severe acute respiratory syndrome coronavirus (SARS-
CoV) and middle east respiratory syndrome coronavirus (MERS-
CoV) and affected many countries (6). Although they led to many
research studies, expanding our knowledge of the viruses, the
COVID-19 epidemic has had a far greater global impact. One as-
yet unknown aspect of SARS-CoV-2 is its potential short- and
long-term impact on the central nervous system. In this respect,
although the rate of neurological symptoms associated with
infection is not high (7), the possibility of subsequent effects of
central nerve system (CNS) infection has been suggested by many
authors (8–17). To address these questions, we need experimental
models based on advances in biomedical research both in vitro
and in vivo. We review these models in the present article.

OBJECTIVES OF THE EXPERIMENTAL
MODELS IN THE STUDY OF THE IMPACT
OF SARS-COV-2 INFECTION

Previous studies on SARS-CoV already demonstrated that the
spike protein facilitates viral invasion of the target cell by
interacting with the angiotensin converting enzyme 2 (ACE2)
(18). This protein is expressed on the surface of epithelial cells
of the lower respiratory tract, endothelial cells of arteries and
veins, intestinal mucosa cells, kidney cells, immune cells, glial
cells, and neurons (19–21). In vitro studies have demonstrated
that SARS-CoV-2 also uses this receptor to penetrate cells (22,
23). In fact, sequencing of the SARS-CoV-2 spike protein has
shown that it contains residues that may increase its binding
affinity to the ACE2 receptor 10- to 20-fold in comparison with
SARS-CoV (18). When spike protein interacts with the receptor,
cleavage and activation by cell proteases is necessary to enable
the viral membrane to fuse with the host cell and the virus to
penetrate. In vitro studies have shown that SARS-CoV-2 spike
proteins are mainly processed by transmembrane protease serine
2 (TMPRSS2), by endosomal cathepsins B and L in the absence
of TMPRSS2 (23, 24), and by furin (25, 26). Once the virus
is internalized, viral RNA is released into the cytoplasm, and
a series of translations and replications create new RNAs and
viral proteins that assemble to form new virions (20). These
are released from the host cell and can infect new target cells
expressing the appropriate receptor on their surfaces (20, 23).

More complex biological systems are, however, needed to
study the possible interactions between SARS-CoV-2 and the
host. Due to these complex interactions, selecting an appropriate
model should be a thoughtful and clearly defined process, in
order to provide relevant and translatable scientific data enabling

us to address the questions of interest and to ensure the rational
use of animals. Although many animals may respond similarly
to humans from physiological, pathological, and therapeutic
perspectives, we must bear in mind that differences between
species may lead to erroneous conclusions (27); it is therefore
necessary to understand the relationship between the model and
the human disease (28). In the light of the current pandemic,
it is essential to have a cellular or animal model mimicking
the symptoms and pathological processes identified in patients
infected with SARS-CoV-2 (29).

IN VITRO MODELS (TABLE 1)

Vero E6 Cell Line
This cell line was isolated from kidney epithelial cells extracted
from an African green monkey (Chlorocebus aethiops) in 1979;
the Vero E6 cell line has been shown to be very useful for
viral propagation and production in vitro (30). These cells are
permissive to SARS-CoV replication, as they efficiently express
the ACE2 receptor (31, 32). Furthermore, they enable persistent
infection in vitro (33). Vero E6 cells have therefore already been
used in studies with SARS-CoV and MERS-CoV (30, 33–36)
and also in the development of live-attenuated and inactivated
vaccines for human use (37, 38). More recently, they have been
used in research into the viral infection mechanism in COVID-
19 (23, 39, 40), the effects of the virus on cells, confirmation of
viral infection (41–43) and pharmacological research (44–48).

HEK 293T Cell Line
This cell line is a variant of the HEK 293 lineage, which
was isolated from kidney epithelial cells extracted from human
embryos (49). Both lines are widely used in research due to their
high transfectability, gene expression, and production of proteins
or recombinant retrovirus (23, 49, 50). The HEK 293T variant
expresses the T SV-40 antigen, which enables the amplification
of transfected plasmids containing the SV40 origin of replication
and thus considerably increases the expression levels of desired
gene products (50). These cells have also previously been used
in studies of other such viruses as herpes simplex virus, SARS-
CoV, and even CoV pseudovirions (34, 51–53). Due to its high
efficiency of transfection, research with this cell line is producing
significant findings, such as the confirmation of ACE2 as the cell
entry receptor for SARS-CoV-2 and the potential role of CD147
as an alternative receptor (23, 24, 39, 40).

BHK-21 Cell Line
This line is a subclone of the fibroblast cell line extracted from
1-day-old Syrian hamster (Mesocricetus auratus) kidney cells
(54) and is useful for studying virus propagation and plasmid
transfection (55). It has been used in the study of HCoV-OC43
and SARS-CoV-2 infection mechanisms (23, 36, 56, 57).

Huh7 Cell Line
This lineage was established in 1982 from a human hepatocellular
carcinoma; it is therefore able to produce a great variety of
substances secreted by the human liver (58) and has been used in
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TABLE 1 | In vitro models for the study of SARS-CoV-2.

References Cell Line Origin Virus Dose Use

(23, 42, 43, 44, 47, 48) Vero E6 African green monkey
(Chlorocebus aethiops) kidney
epithelial cells

• Multiplicity of infection
(MOI) of 0.01 to 0.5

• In vitro amplification of viral
particles

• Diagnosis of SARS-CoV-2
infection and viral isolation

• Study of infection mechanism
• Search for new therapeutic targets
• Pharmacological screening

(23, 24, 39, 40) HEK 293T Human embryonic kidney
epithelial cells

• No determined • Study of infection mechanism
• Search for new therapeutic targets
• Pharmacological screening

(23, 39) BHK-21 Baby hamster (Mesocricetus
auratus) kidney fibroblasts

• 8 × 107 genome
equivalents (GE) per
24-well of SARS-CoV-2

• Study of infection mechanism

(23, 26, 46, 48) Huh7 Human hepatocellular
carcinoma

• MOI of 0.05 to 1 • Diagnosis of SARS-CoV-2
infection and viral isolation

• Study of infection mechanism
• Pharmacological screening

(39, 41, 43) LLC-MK2 Rhesus macaque (Macaca
mulatta) kidney epithelial cells

• No determined • Diagnosis of SARS-CoV-2
infection and viral isolation

• Study of infection mechanism

(23) Caco-2 Human colorectal
adenocarcinoma

• No determined • Study of infection mechanism

(23, 39, 72) Calu-3 Human lung adenocarcinoma • MOI of 0.001 to 0.08 • Study of infection mechanism
• Pharmacological screening

(116, 117, 139, 141) Human brain
organoids

Human induced pluripotent
stem cells (hIPSCs)

• MOI of 0.1 to 2.5 • Nervous tissue infection
mechanisms

• Neurodegenerative mechanisms
• Pharmacological screening

The table includes the main cell lines used in the study of SARS-CoV-2 infection, the origin of the cells, viral dose used in some studies for the infection of cells and their
uses. The culture media used for each cell line is specified in Supplementary Material.

the study of hepatitis C virus, SARS-CoV, and MERS-CoV (27, 34,
58, 59). In the context of SARS-CoV-2, this cell line has been used
in the study of infection mechanisms (23, 39), the cytotoxicity
of viruses from human hosts (22, 60), and in pharmacological
research (26, 46, 48).

LLC-MK2 Cell Line
The LLC-MK2 cell line was established in 1955 from rhesus
macaque (Macacamulatta) kidney epithelial cells (61). It has been
mainly used in the study of poliovirus, but also to study SARS-
CoV, HCoV-NL63 (34, 62, 63), and SARS-CoV-2 to assess the
cytopathic effects in patients infected with the virus (41, 43) and
to characterize its viral infectious pathway (39).

Caco-2 Cell Line
This line was extracted in 1977 from human epithelial colorectal
adenocarcinoma cells; under specific culture conditions, the cells
are able to differentiate into small intestine enterocytes (64). This
cell line is frequently used to study transfection, invasion, and
absorption (65). It has been used in studies of MERS-CoV, SARS-
CoV, and HCoV-NL63 (27, 66, 67), and in the analysis of the S

protein activation in studies with SARS-CoV-2, due to the fact
that these cells express the TMPRSS2 protease (23).

Calu-3 Cell Line
This line was extracted in 1975 from a human lung
adenocarcinoma and is used in the study of respiratory
viruses (68, 69). It has been used in the study of SARS-CoV and
MERS-CoV (27, 70, 71) and infection mechanisms studies and
pharmacological research into COVID-19 (23, 39, 72).

Other Cell Lines
Several of the available cell lines susceptible to transfection
may also be used in in vitro research. For example, the study
by Zhou et al. (22) uses the HeLa cell line, which does not
endogenously express ACE2, and expression plasmids for human
ACE2 (hACE2) in the study of SARS-CoV-2.

IN VIVO MODELS (TABLE 2)

Mouse and hamster strains are the main animal models used
in research into SARS-CoV and MERS-CoV (73); however, in
the case of SARS-CoV-2, research efforts have been focused
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TABLE 2 | In vivo models for the study of SARS-CoV-2 infection in the CNS.

References Model Virus, inoculation route, and dose Findings

(76) C57BL/6 ACE2
knockout mouse

SARS-CoV; intranasal; 7.6 × 106 pfu/ml in DMEM Mechanisms of primary infection and viral propagation

(73) C57BL/6 TMPRSS2–/–
knockout mouse

SARS-CoV; intranasal; 105 TCID50 in F-musX
MERS-CoV; intranasal; 106 TCID50 in HCoV-EMC
2012

Mechanisms of primary infection and viral propagation
in the respiratory tracts

(83, 85) C57BL/6 STAT1
knockout mouse

SARS-CoV, SARS-CoV 2; intranasal 7 × 104 pfu Cytokine-induced biological responses

(79) hACE2 ICR mouse SARS-CoV-2; intranasal; 105 TCID50 Viral antigen in the lower respiratory tract, alveolar
infiltrates, and weight loss

(80) C57BL/6J-hACE2-AAV
mouse

SARS-CoV-2; intranasal; 3 × 107 pfu/ml Pulmonary infiltrate, neutralizing antibodies,
interferon-stimulated genes

(81) C57BL/6 young and
aged hACE2 mouse

SARS-CoV-2; intranasal; 4 × 105 pfu. Intragastric;
4 × 106 pfu

Viral antigen in trachea, lungs, and brain. Pulmonary
infiltrate. Pathological changes in lungs are more
evident in aged mice.

(88) Young and aged
BALB/c mouse

Adapted viruses: SARS-CoV-2 MA; intranasal;
105 pfu

Viral replication in lower and upper respiratory tract.
Clinical symptoms worsen with age. Prophylactic and
therapeutic role of interferon lambda-1a

(87) Young and aged
BALB/cC57 mouse
Young C57BL/6 mouse

Adapted viruses: SARS-CoV-2 MASCp6;
intranasal; 7.2 × 105 pfu Adapted viruses:
SARS-CoV-2 MASCp6; intranasal; 7.2 × 105 pfu

Evaluation of the efficacy of the subunit vaccine
consisting of SARS-CoV-2 S protein RBD fused with a
human IgG Fc subunit

(92) Syrian hamster
(Mesocricetus auratus)

SARS-CoV-2; intranasal; 8 × 104 TCID50 Viral antigen in the upper and lower respiratory tracts
and intestinal mucosa. Pulmonary infiltrates.
Neutralizing antibodies. Transmission by direct contact
or aerosols

(146, 148) C57BL/6 mouse MHV coronavirus; intranasal, intracerebral, enteral
(1–2.5 × 103 pfu)

Mechanisms of primary infection and viral propagation,
demyelinating lesion model

(93) Syrian hamster
(Mesocricetus auratus)

SARS-CoV-2; intranasal; 105 pfu in DMEM Viral antigen in the upper and lower respiratory tracts
and intestinal mucosa. Mononuclear infiltrates.
Neutralizing antibodies. Transmission by direct contact

(97) Mustela putorius furo SARS-CoV-2 F13-E and SARS-CoV-2 CTan-H;
intranasal; 105 pfu

Viral replication in the upper respiratory tract without
causing severe disease

(98) Mustela putorius furo SARS-CoV-2 GISAID ID EPI_ISL 406862;
intranasal; 6 × 105 TCID50 of SARS-CoV2 virus
diluted in 500 µl of PBS

Direct and indirect transmission

(96) Mustela putorius furo SARS-CoV strain Toronto-2; intranasal;
103TCID50/mL diluted in medium

Transmission before peak viral load, without symptom
onset

(105) Macaca fascicularis SARS-CoV-2 # 026V-03883, MERS-CoV #
011V-02838; intratracheal, intranasal; 10e6 TCID50

in PBS

Clinical symptoms similar to COVID-19

(100) Macaca mulatta SARS-CoV-2 HB-01; intratracheal; 106 TCID50/mL More severe clinical symptoms in older monkeys

(106) Macaca mulatta SARS-CoV-2 MN985325.1; intratracheal,
intranasal, conjunctival, oral; 4 × 105 TCID50/ml of
DMEM

Significant increase in pro-inflammatory interleukins

(109) Macaca mulatta SARS-CoV-2 WH-09/human/2020/CHN;
conjunctival; 1 × 106 TCID50/ml

Viral load in the ocular system and respiratory and
digestive tracts

(107) Macaca
mulatta/Macaca
fascicularis/Callithrix
jacchus

SARS-CoV-2; intratracheal, intranasal, conjunctival;
106 pfu/ml

Rhesus monkey is more susceptible to infection.

(110) Macaca mulatta MERS-CoV strain HCoV-EMC/2012; intratracheal;
7 × 106 TCID50

Viral RNA in the throat soon after infection

(111) Macaca mulatta SARS-CoV-2/WH-09/human/2020/CHN;
intratracheal; 1 × 106 TCID50/ml

Rhesus monkeys present no reinfection

(112) Macaca mulatta SARS-CoV-2 NR-52281; intratracheal, intranasal;
1.1 × 106 pfu or 1.1 × 105 pfu or 1.1 × 104 pfu

No reinfection

(113) Macaca mulatta SARS-CoV-2 MN985325.1; intratracheal,
intranasal, conjunctival, oral; 2.6 × 106 TCID50

Treatment study

(115) Macaca mulatta SARS-CoV-2; intratracheal; 106 TCID50/ml Vaccine development

The table includes the characteristics of the animals (species) used, as well as the route of administration, viral dose used in some studies for the infection and the
relevance of the model in SARS-CoV-2 research. TCID50, 50% tissue culture infectious dose; pfu, plaque forming units.
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on the study of aged mouse strains, the design of humanized
mouse models that express the hACE2 receptor, and the creation
of knockout mice, with the aim of replicating the mechanisms
involved in human infection.

Aged Mouse Strains
Roberts et al. (74) reported that aged BALB/c mouse strains
were able to maintain high rates of viral replication, which
was associated with clinical illness and pneumonia; the study
demonstrated an age-related susceptibility to SARS disease in
animals that parallels the human experience. Advanced age has
been identified as an independent factor of poor prognosis in
COVID-19 and is considered a predictor of mortality in patients
with SARS-CoV-2 infection. Other strains like C57BL/6 have also
been used (75).

Knockout Mouse Models
K18-hACE2 transgenic mice express hACE2, with regulation by
the human cytokeratin 18 (K18) promoter. Specifically, these
mice contain 2.5 kb of the K18 genomic sequence, including the
promoter, the first intron, and a translation-promoting sequence.
Expression of hACE2 is mainly observed in the epithelium
of the respiratory tract, which shows a higher incidence of
SARS-CoV-2 infection, and in the epithelium of other organs,
including the liver, kidneys, and gastrointestinal tract (76).
K18-hACE2 mice infected with SARS-CoV-2 show weight loss
and viral replication in the lungs, as in humans. Furthermore,
they show the typical histopathological findings of interstitial
pneumonia with lymphocytic and monocytic infiltration into
the alveolar interstitium and an accumulation of macrophages
in the alveolar cavities. Alveolar and bronchial epithelial cells
show presence of viral antigens; this is not observed in wild-type
(WT) mice with SARS-CoV-2 infection. Furthermore, these mice
show other pathological changes, such as vasculitis, degeneration,
and necrosis of extrapulmonary organs and presence of the
viral antigen in the brain (77, 78). Bao et al. (79) recently
studied the pathogenicity of SARS-CoV-2 virus in hACE2-
expressing ICR transgenic mice and WT mice. This model may be
useful in research into drug treatments for COVID-19. Israelow
et al. (80) developed an hACE2-adeno-associated virus 9 (AAV)
murine model, which was subsequently intranasally infected
with SARS-CoV-2. They studied the presence of coronavirus
infection, the inflammatory response in the lungs, the presence
of neutralizing antibodies, and the type I interferon signaling
pathway. The authors reported that this model would be
very useful for understanding questions related to infection,
replication, and pathogenesis of SARS-CoV-2 and for testing
therapeutic strategies.

Sun et al. (81) used CRISPR/Cas9 technology to create
a murine hACE2 model in young and aged animals. After
intranasal infection of the animals with SARS-CoV-2, the
researchers observed viral replication in the lungs, trachea, and
brain of both animals. However, alveolar inflammatory infiltrate
and vascular lesions were more evident in aged animals; this is
analogous to the pathological changes observed in older patients
with COVID-19. This model also showed evidence of respiratory
tract infection following intragastric inoculation.

TMPRSS2–/– Knockout Mice
This model was designed using a directional vector to replace
exons 10–13, which codify the serine protease domain of
the TMPRSS2 gene. It was constructed by electroporation
of embryonic stem cells and their subsequent injection into
C57BL/6 blastocysts for at least five generations (82). After
experimental infection with SARS-CoV-2, TMPRSS2-deficient
mouse strains showed reduced body weight loss and viral kinetics
in the lungs. Absence of TMPRSS2 affected the infection sites and
virus spread within the respiratory tract; therefore, this is a useful
model for COVID-19 research (73).

The STAT1 Knockout Mouse Model
(129S6/SvEv-STAT1tmRDS) contains a homozygous STAT1
mutation and completely lacks functional STAT1 proteins
(Pgm1c and Gpi1b alleles of 129S6). The model was created by
targeting the STAT1 gene in GS-1 ES cells and injecting target
cells into blastocysts. Heterozygous models of the mutation were
produced from the chimeras and were crossed over to generate
homozygous models (83, 84). The JAK-STAT signaling pathway
is involved in the mediation of cytokine-induced biological
responses. This is therefore a useful model for determining the
role of a variety of cytokines in immune responses, the role
of STAT1 protein in mediating interferon-dependent responses,
and its relationship with viral and bacterial pathogens (84–86);
the model is also interesting in the analysis of SARS-CoV-2
inflammation mechanisms.

Adapted Mouse Models
Studies have been recently conducted with BALB/c and C57BL/6
mice (87, 88) together with modified SARS-CoV-2 strains.
Modification of the virus has led to mouse-adapted SARS-CoV-
2 strains, the SARS-CoV-2 MA (88) and SARS-CoV-2 MASCp6
(87) strains, which are able to infect mice with no need for
modification of the animals, as these strains efficiently bind to the
murine ACE2 receptor in both young and aged mice, causing a
disease resembling human COVID-19. In addition to their use in
the study of pathogenesis, these models have enabled researchers
to trial vaccines and treatments for the disease (87, 88).

Mouse Models for the Induction of
Neutralizing Antibodies
BALB/c mice have been used in studies for the development
of vaccines, and Wistar rats have been used in studies into
immunization with attenuated strains of the virus (89).

Syrian Hamster Models
This animal model (M. auratus) has previously been used
in the study of SARS-CoV (90, 91), as the hamster presents
an ACE2 receptor homologous to the human receptor. Sia
et al. (92) intranasally inoculated animals with the β–
CoV/Hong Kong/VM20001061/2020 strain and corroborated
the presence of viral antigen in the epithelial cells of the
nasal and bronchial mucosa with progression to pneumocytes
and clearance of infectious particles by day 7 after infection.
Presence of mononuclear cell infiltrates was moderate in the
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nasal turbinates but was greater in the lungs. The viral
antigen was observed in epithelial cells of the duodenum,
without signs of inflammation. No infectious particles were
detected in the kidney, and no histopathological changes were
observed in other organs. Neutralizing antibodies were observed
on day 14 after infection. Infected animals presented clear
weight loss and researchers corroborated that the main route
of viral transmission was through direct contact or aerosols.
The authors conclude that SARS-CoV-2 infection in Syrian
hamsters presents similar characteristics to those observed in
humans with mild infections and that this model represents an
opportunity for understanding the transmission dynamics of this
novel coronavirus.

Chan et al. (93) confirmed transmission by contact, the
progressive decrease in viral load between days 2 and 7
after infection in both lower and upper respiratory tracts,
and the expression of viral antigens (protein N) by epithelial
cells together with presence of mononuclear infiltrates. On
day 7 after infection, regenerative hyperplasia occurring in
bronchioles led to the appearance of multiple irregularly
arranged epithelial layers. Furthermore, they detected the viral
antigen in the intestinal mucosa and observed histopathological
changes in the spleen and heart. The pro-inflammatory cytokine
cascade in this model normalizes at approximately day 7,
and antibodies are observed at 7–14 days. This animal model
reproduces the respiratory and enteric symptoms observed in
patients with COVID-19.

Ferret Models
Ferrets (Mustela putorius furo) are frequently used as animal
models to study respiratory diseases caused by such viruses as
influenza virus or SARS-CoV (94–96). All studies with SARS-
CoV-2 in ferrets have used the intranasal route to inoculate
the virus (97–99). Shi et al. (97) studied the susceptibility of
ferrets to infection with 2 SARS-CoV-2 strains. In a first stage
of the study, the authors detected viral RNA in samples from
the nasal turbinates, palate, and tonsils, but no viral load was
detected in the other organs analyzed, including the lungs
and brain. This suggests that the virus can replicate in the
upper respiratory tract of ferrets. In a second stage of the
study, analyzing the viral replication dynamics, animals showed
viral RNA in nasal washes, whereas rectal swabs showed much
lower viral load. Furthermore, ferrets presented anti-SARS-
CoV-2 antibodies at days 13 and 20. Histopathological studies
showed altered pneumocytes, macrophages, and neutrophils.
Finally, when studying replication in the lungs, the authors
observed that the virus is able to replicate in the upper
respiratory tract up to day 8 after infection without causing
severe symptoms. Richard et al. (98) focused on the study
of the direct and indirect transmission of the SARS-CoV-
2. Ferrets inoculated with SARS-CoV-2 were placed in direct
contact with a group of healthy ferrets 6 h after infection.
Inoculated animals showed productive infection, and the peak
of viral infection was reached on the third day. All animals
in direct or indirect contact presented viral RNA at day 1–
3 after exposure. Animals exposed to inoculated ferrets were
expected to present a lower viral load than the inoculated

animals; however, viral load was similar in all cases. Lastly,
the authors observed that all animals presented antibodies at
day 21 after exposure to the virus, and that their levels were
similar, regardless of the form of infection. A similar design
was employed by Kim et al. (99), who observed viral load
up to 8 days after infection, both in samples from inoculated
animals and in samples from animals that were in direct contact
with the inoculated ferrets. Animals in indirect contact with
infected ferrets showed positive results for infection at day 2
after exposure, which suggests rapid transmission, even before
peak viral load was reached and in the absence of clinical
symptoms; this correlates with the reported transmission by
asymptomatic human patients.

Non-human Primate Models
Severe acute respiratory syndrome coronavirus and middle
east respiratory syndrome coronavirus have previously been
studied in non-human primates (75, 100–104); the use of these
models has been proposed for the study of SARS-CoV-2 (105)
especially with a view to the development of vaccines or antiviral
treatments (106, 107). Rockx et al. (105) used a combined
intratracheal and intranasal route to inoculate the SARS-CoV-
2 virus to both young and old adult cynomolgus macaques
(Macaca fascicularis). The results of this study showed that
these animals tolerated viral infection, presenting symptoms
similar to those of COVID-19 in humans. The virus efficiently
replicates in epithelial cells throughout the upper respiratory
tract, which correlates with the ease of transmission of the
virus, whereas replication in the lower respiratory tract correlates
with the development of the disease (105–108). Yu et al.
(100) obtained similar results with intratracheal inoculation of
young and old rhesus monkeys (Macaca mulatta). The authors
report that, although viral replication was more active in older
adult monkeys, both groups developed interstitial pneumonia
together with edema, which was more severe and diffuse in
older adult monkeys. Munster et al. (105) developed a COVID-
19 model using rhesus monkeys, inoculating them with the
virus through four different but combined routes (intranasal,
intratracheal, conjunctival, and oral). The animals presented
clinical signs compatible with COVID-19 from day 1 after the
inoculation to symptom resolution, between days 9 and 17. All
animals presented weight loss, low-grade fever, and pulmonary
infiltrates, in addition to a significant increase in IL-6 and IL-10,
among other findings; IgG antibodies were present at detectable
levels from day 7 after the infection. Nasal, pharyngeal, and
rectal samples showed high levels of viral RNA. Furthermore,
histopathological analyses showed similar alterations to those
caused by SARS-CoV and MERS-CoV (97, 98). Deng et al.
(109) inoculated rhesus monkeys with SARS-CoV-2 through the
conjunctival route. They did not observe significant changes
in the animals’ weight or body temperature. Antibody analyses
detected presence of IgG at days 14 and 21. Furthermore,
radiographs of these animals showed bilateral alterations in
the upper lobes and right lower lobe, which correlates with
the moderate interstitial pneumonia observed microscopically.
Histopathological studies showed viral load in the ocular and
nasolacrimal system, as well as in the respiratory and digestive
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tracts. Results of a comparative study of three non-human
primate species [rhesus monkey, crab-eating macaque, and
common marmoset (Callithrix jacchus)], which were inoculated
with the virus through three different pathways (intratracheal,
intranasal, and conjunctival), showed that almost all animals
presented clinical signs compatible with COVID-19, although
there were differences between species in the histopathological
findings (107). The rhesus monkey is the most susceptible
species to viral infection, and therefore a good model for the
study of COVID-19, as well as for the development of vaccines
and pharmacological studies (107, 108). De Wit et al. (110)
studied rhesus monkeys intratracheally inoculated with the virus,
finding that viral RNA was detectable in the throat during
the first days, but with levels subsequently decreasing until
becoming undetectable. Bao et al. (111) and Chandrashekar
et al. (112) intratracheally and intranasally inoculated rhesus
monkeys with the SARS-CoV-2 virus to study the possibility of
reinfection. Williamson et al. (113) used rhesus monkeys that had
previously been inoculated through the intranasal, oral, ocular,
and intratracheal routes for pharmacological research. These
animals have also been used for the development of vaccines (106,
107, 114, 115).

MODELS FOR CNS RESEARCH

Coronaviruses have been found in autopsy studies in the CNS
of patients with multiple sclerosis, Parkinson’s disease, and
Alzheimer disease. Experimental studies have shown that human
CoVs can infect neurons, astrocytes, and microglia in primary
cultures as well as immortalized human microglial cells (6). The
suggestion that SARS-CoV-2 may use the brain as a reservoir
(10), potentially favoring the development of neurodegenerative
diseases (11), underscores the need to specifically analyze the
effect of the virus on the CNS.

CNS CELL LINES

The information currently available is from research on SARS-
CoV, which has 78% nucleotide homology with SARS-CoV-
2 (18). Although CNS tropism has been described (20), no
specific models of neural cell lines have been developed for
the study of SARS-CoV-2; however, neural progenitor cells
(NPCs), neurons and microglia derived from human induced
pluripotent stem cells (hIPSCs) have already been used in
in vitro studies of SARS-CoV-2 viral infection, demonstrating the
virus potential to infect CNS cells (116–118). Previous studies
with other neurotropic human coronaviruses showed possible
neural cell lines susceptible to infection by SARS-CoV-2 that
may be useful in studying the possible mechanisms by which
the virus infects the CNS. Studies into neural susceptibility to
SARS-CoV infection have used cell lines including HOG, a
line derived from a human oligodendroglioma that expresses
proteins characteristic of oligodendrocytes and is very widely
used in the study of neurons (119, 120) and the C6 cell
line, derived from a glioma induced in Wistar Furth rats

exposed to N-nitroso-N-methylurea, which is morphologically
similar to glioblastoma multiforme when injected into the
brains of neonate rats (121, 122). Although both cell lines
have been shown to be susceptible to SARS-CoV infection, low
levels of viral replication have been observed in comparison
with such other susceptible cell lines as Vero E6 or Caco-
2 (123). Other cell lines used to study the virulence of
HCoV-229E and HCoV-OC43 in the CNS include human H4
brain neuroglioma cells, the LA-N-5 human neuroblastoma
cell line, the CHME-5 human fetal microglia cell line, and
the U-373 MG and U-87 MG astrocytic lines derived from a
human glioblastoma and an astrocytoma, respectively, among
many others (124–129). Cultures of human primary neurons,
astrocytes, oligodendrocytes, and microglia have been used to
study these viruses (130, 131). All these neural cell lines may be
useful in the near future to study SARS-CoV-2.

BRAIN ORGANOIDS AS A MODEL OF
CNS INFECTION BY SARS-COV-2

Organoids are miniaturized, simplified, three-dimensional
versions of an organ produced in vitro, partially recreating the
cellular structure and the functioning of that organ (132, 133).
Classic cell culture systems present certain limitations, such as
the inability to study complex and dynamic responses or cell-cell
interactions. The use of organoids enables us to study complex
physiological or pathological processes in structures bearing
much greater resemblance to in vivo conditions, including
SARS-CoV-2 infection, tropisms and potential treatments
(133–135). To date, SARS-CoV-2 infection has been studied
in human organoids of lung, liver, intestine, blood vessels, and
kidney (42, 118, 136–138). Human brain organoids have also
been used; these present strong cellular and structural similarities
to some mammalian brain regions, such as a neural epithelium
containing NPCs, that align to form a ventricular zone-like
layer, cortical neurons, that contribute to the formation of a
cortical plate-like layer and glial cells, such as astrocytes or
oligodendrocytes (139–141). These organoids are useful for
the study of early stages of human neurodevelopment and
network formation, key cellular processes such as proliferation,
differentiation, apoptosis, synaptogenesis or myelination, CNS
function such as electrophysiological activity, neurodegenerative
diseases, potential treatments, and have been already used for the
study of other virus such as ZIKA virus or HIV (139, 141–144).

Ramani et al. (116) observed that in these brain organoids,
the virus mainly infects mature cortical neurons and presents
a perinuclear distribution within these cells. Furthermore,
neurodegenerative effects have been observed in cells infected by
SARS-CoV-2, including cell death and hyperphosphorylation, as
well as mislocation of Tau protein; these alterations are observed
in such conditions as tauopathies or Alzheimer disease (116).
However, no productive replication of the virus was observed
in these cells, at least in the first 4 days after infection (116),
which would support the hypothesis that the CNS may act as a
long-term reservoir of the virus (10). In contrast, Bullen et al.
(139) observed an incremented accumulation of viral particles in
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neural cells of brain organoids between 6 and 72 h after SARS-
CoV-2 infection, suggesting an active replication and productive
infection of the virus in neural cells during the first days. Viral
particles were detected mainly in the neuronal soma and, in
some cells, also into the neurites (139). Similar to Ramani et al.,
Mesci et al. (141) used these brain organoids and observed
that the virus was able to infect neurons, including NPCs and
mature cortical neurons, and cause cell death accompanied by the
impairment of excitatory synapses. Furthermore, this work tested
the efficiency of Sofosbuvir, an FDA-approved brain-penetrant
antiviral drug for positive-sense single-stranded RNA viruses
(145), as a treatment for the SARS-CoV-2 infection and observed
that this drug was able to rescue the altered synaptogenesis
and decrease neuronal death and viral accumulation in these
brain organoids (141). Song et al. (117) also demonstrated
that SARS-CoV-2 has neuroinvasive capacity in human brain
organoids, particularly of NPCs and mature cortical neurons.
Infected cells showed a hypermetabolic state and viral particles
were accumulated within endoplasmic reticulum-like structures,
indicating the virus ability to use the neural cell machinery to
replicate (117). In addition, a hypoxic environment and extensive
neuronal cell death were observed in high density SARS-CoV-
2 infected areas, suggesting that virus infection could promote
death of nearby cells (117). Finally, this study detected IgG
antibodies against SARS-CoV-2 in the cerebrospinal fluid of a
COVID-19 patient that were able to block SARS-CoV-2 infection
in brain organoids (117). All these studies show that SARS-
CoV-2 can directly infect neural cells and trigger damaging
consequences that could cause neurologic symptoms. Also, these
studies expose the great potential of the human brain organoids
for the study of the SARS-CoV-2 effects in the CNS.

MHV-COV INFECTION IN MICE

Mouse hepatitis virus (MHV) is a βCoV that poses no risk to
humans but presents a great similarity with other viruses from
the same family, such as SARS-CoV, MERS-CoV, and SARS-
CoV-2. It penetrates the CNS, causing white matter lesions; it
has therefore been proposed as a viral model of demyelinating
disease (146, 147). The virus has been shown to remain in the
white matter and to be able to replicate in the CNS (148);
therefore, it is a good model for the study of CNS infection
by coronaviruses. Neurotropic strains of MHV-CoV have been
used extensively to induce acute and chronic demyelinating
disease mediated by neuroinflammation (149). Depending on
the inoculation route and the MHV-CoV strain, different CNS
regions are affected. Inoculation with experimental neurotropic
strains, especially MHV-A59, induces a biphasic disease of acute
meningoencephalitis at 10–14 days after inoculation, followed by
a disease causing subacute, chronic inflammatory demyelination
in the brain; spinal cord involvement is more pronounced
(150). Virus translocation from the initial site of inoculation in
the brain to the spinal cord is caused by the transit of virus
particles in neural and glial cells, as well as mechanisms that
involve the fusion of lipid membranes, probably during the virus
internalization step (151). Intranasal and intracranial inoculation

of JHM-CoV induces similar symptoms in BALB/c mice to
those caused by MHV-A59. After intranasal inoculation of mice,
MHV-CoV accesses the CNS through the olfactory nerve and
propagates from the olfactory system to limbic system structures
and their connections with the brainstem (152).

In order to study the immune system role in demyelination
induction caused by MHV infection, Wang et al. (153)
treated infected animals with gamma radiation to cause
immunosuppression and, subsequently, reconstituted immunity
by transferring cells from other immunocompetent animals.
The results showed that demyelination was prevented by
radiation and was present again when the immunity was
restored, indicating that immunity is directly involved in the
demyelination process (153). Moreover, CD4 and CD8 T cells
have been observed to play a critical role in the development
of the demyelinating process, with γδ T cells being the most
important for this process (154, 155). In contrast, B cells,
the most abundant cell type in the spleen, and NK cells are
not involved in demyelination as nude animals without spleen
do not present demyelination (154), MHV offers a unique
model for studying host defense-mediated demyelination during
chronic infection in a phase acute viral infection and immune
response (156).

CONCLUSION

Research on SARS-CoV-2 has become a necessity due to the
magnitude of its spread worldwide. Such aspects as infection
rate and mechanisms, the possibility of reinfection, and possible
therapeutic approaches make it necessary not only to use
the experimental models previously employed to study the
SARS-CoV and MERS-CoV coronaviruses, but also to generate
new models to respond to urgent questions. The potential
involvement of the CNS due to SARS-CoV-2 infection should be
studied specifically, and research efforts must focus on obtaining
information with cellular or animal models to expand our
understanding of the virus.

AUTHOR CONTRIBUTIONS

JM-G and UG-P: lead researchers. All authors: research project
group, manuscript drafting, and critical review of the manuscript.

ACKNOWLEDGMENTS

The authors would like to thank the Spanish Society of
Neurology’s Research Operations Office for assisting with the
English-language version of the manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fimmu.
2020.02163/full#supplementary-material

Frontiers in Immunology | www.frontiersin.org 8 August 2020 | Volume 11 | Article 216398

https://www.frontiersin.org/articles/10.3389/fimmu.2020.02163/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2020.02163/full#supplementary-material
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


fimmu-11-02163 August 27, 2020 Time: 18:41 # 9

Sanclemente-Alaman et al. SARS-CoV-2: Experimental Models

REFERENCES
1. Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of

coronavirus disease (COVID-19) outbreak. J Autoimmun. (2020)
109:102433. doi: 10.1016/j.jaut.2020.102433

2. Mackenzie JS, Smith DW. COVID-19: a novel zoonotic disease caused by
a coronavirus from China: what we know and what we don’t [published
online ahead of print, 2020 Mar 17]. Microbiol Aust. (2020) 41:MA20013.
doi: 10.1071/MA20013

3. Tang X, Wu C, Li X, Song Y, Yao X, Wu X, et al. On the origin and
continuing evolution of SARS-CoV-2. Natl Sci Rev. (2020) 2020:1012–23.
doi: 10.1093/nsr/nwaa036

4. Forster P, Forster L, Renfrew C, Forster M. Phylogenetic network analysis
of SARS-CoV-2 genomes. Proc Natl Acad Sci USA. (2020) 117:9241–3. doi:
10.1073/pnas.2004999117

5. Carneiro LJ, Paula de Lima Gusmão T, Machado ZA, Leao FJ, Barkokebas
Santos de Faria A, Morais SIH, et al. Coronaviridae - old friends, new enemy!
Oral Dis. (2020). doi: 10.1111/odi.13447 [Epub ahead of print].

6. Rabaan AA, Al-Ahmed SH, Haque S, Sah R, Tiwari R, Malik YS, et al. SARS-
CoV-2, SARS-CoV, and MERS-COV: a comparative overview. Infez Med.
(2020) 28:174–84.

7. Matías-Guiu J, Gomez-Pinedo U, Montero-Escribano P, Gomez-Iglesias
P, Porta-Etessam J, Matias-Guiu JA. ¿Es esperable que haya cuadros
neurológicos por la pandemia por SARS-CoV-2? Neurologia. (2020) 35:170–
75. doi: 10.1016/j.nrl.2020.03.001

8. Paniz-Mondolfi A, Bryce C, Grimes Z, Gordon RE, Reidy J, Lednicky J, et al.
Central nervous system involvement by severe acute respiratory syndrome
coronavirus -2 (SARS-CoV-2). J Med Virol. (2020). doi: 10.1002/jmv.25915
[Epub ahead of print].

9. Bulfamante G, Chiumello D, Canevini MP, Priori A, Mazzanti M, Centanni
S, et al. First ultrastructural autoptic findings of SARS-Cov-2 in olfactory
pathways and brainstem. Minerva Anestesiol. (2020):doi: 10.23736/S0375-
9393.20.14772-2 [Epub ahead of print].

10. Gomez-Pinedo U, Matias-Guiu J, Sanclemente-Alaman I, Moreno-Jimenez
L, Montero-Escribano P, Matias-Guiu JA. Is the brain a reservoir organ for
SARS-CoV2? J Med Virol. (2020). doi: 10.1002/jmv.26046 [Epub ahead of
print].

11. Gomez-Pinedo U, Matias-Guiu J, Sanclemente-Alaman I, Moreno-Jimenez
L, Montero-Escribano P, Matias-Guiu JA. SARS-CoV2 as a potential trigger
of neurodegenerative diseases. Mov Disord. (2020). doi: 10.1002/mds.28179
[Epub ahead of print].

12. Cheng Q, Yang Y, Gao J. Infectivity of human coronavirus in the brain
[published online ahead of print, 2020 May 28]. EBioMedicine. (2020)
56:102799. doi: 10.1016/j.ebiom.2020.102799

13. Pinzon RT, Wijaya VO, Buana RB, Al Jody A, Nunsio PN. Neurologic
Characteristics in coronavirus disease 2019 (COVID-19): a systematic review
and meta-analysis. Front Neurol. (2020) 11:565. doi: 10.3389/fneur.2020.
00565

14. Fiani B, Covarrubias C, Desai A, Sekhon M, Jarrah RA. Contemporary
Review of Neurological Sequelae of COVID-19. Front Neurol. (2020) 11:640.
doi: 10.3389/fneur.2020.00640

15. Huang J, Zheng M, Tang X, Chen Y, Tong A, Zhou L. Potential of SARS-CoV-
2 to cause CNS infection: biologic fundamental and clinical experience. Front
Neurol. (2020) 11:659. doi: 10.3389/fneur.2020.00659

16. Torre-Fuentes L, Matías-Guiu J, Hernández-Lorenzo L, Montero-Escribano
P, Pytel V, Porta-Etessam J, et al. ACE2, TMPRSS2, and Furin variants and
SARS-CoV-2 infection in Madrid, Spain. J Med Virol. (2020). doi: 10.1002/
jmv.26319 [Epub ahead of print].

17. Gómez-Iglesias P, Porta-Etessam J, Montalvo T, Valls-Carbó A, Gajate V,
Matías-Guiu JA, et al. An online observational study of patients with olfactory
and gustory alterations secondary to SARS-CoV-2 infection. Front Public
Health. (2020) 8:243. doi: 10.3389/fpubh.2020.00243

18. Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by the novel
coronavirus from wuhan: an analysis based on decade-long structural studies
of SARS coronavirus. J Virol. (2020) 94:e00127-20. doi: 10.1128/JVI.00127-20

19. Lukassen S, Chua RL, Trefzer T, Kahn NC, Schneider MA, Muley T, et al.
SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in

bronchial transient secretory cells. EMBO J. (2020) 39:e105114. doi: 10.
15252/embj.20105114

20. Song Z, Xu Y, Bao L, Zhang L, Yu P, Qu Y, et al. From SARS to MERS,
thrusting coronaviruses into the spotlight. Viruses. (2019) 11:59. doi: 10.3390/
v11010059

21. Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 Virus
Targeting the CNS: tissue distribution, host-virus interaction, and proposed
neurotropic mechanisms. ACS Chem Neurosci. (2020) 11:995–98. doi: 10.
1021/acschemneuro.0c00122

22. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia
outbreak associated with a new coronavirus of probable bat origin. Nature.
(2020) 579:270–73. doi: 10.1038/s41586-020-2012-7

23. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen
S, et al. SARS-CoV-2 Cell entry depends on ACE2 and TMPRSS2 and is
blocked by a clinically proven protease inhibitor. Cell. (2020) 181:271–80.e8.
doi: 10.1016/j.cell.2020.02.052

24. Zhu Y, Yu D, Yan H, Chong H, He Y. Design of potent membrane fusion
inhibitors against SARS-CoV-2, an emerging coronavirus with high fusogenic
activity. J Virol. (2020) 94:e00635-20. doi: 10.1128/JVI.00635-20

25. Coutard B, Valle C, de Lamballerie X, Canard B, Seidah NG, Decroly E.
The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-
like cleavage site absent in CoV of the same clade. Antiviral Res. (2020)
176:104742. doi: 10.1016/j.antiviral.2020.104742

26. Xia S, Liu M, Wang C, Xu W, Lan Q, Feng S, et al. Inhibition of SARS-
CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus
fusion inhibitor targeting its spike protein that harbors a high capacity to
mediate membrane fusion. Cell Res. (2020) 30:343–55. doi: 10.1038/s41422-
020-0305-x

27. Chan JF, Chan KH, Choi GK, To KW, Tse H, Cai JP, et al. Differential cell line
susceptibility to the emerging novel human betacoronavirus 2c EMC/2012:
Implications for disease pathogenesis and clinical manifestation. Infest Dis.
(2013) 207:1743–52. doi: 10.1093/infdis/jit123

28. Swearengen JR. Choosing the right animal model for infectious disease
research. Animal Model Exp Med. (2018) 1:100–08. doi: 10.1002/ame2.12020

29. Lai CC, Shih TP, Ko WC, Tang HJ, Hsueh PR. Severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019
(COVID-19): The epidemic and the challenges. Int J Antimicrob Agents.
(2020) 55:105924. doi: 10.1016/j.ijantimicag.2020.105924

30. Guo D, Zhu Q, Zhang H, Sun D. Proteomic analysis of membrane proteins of
vero cells: exploration of potential proteins responsible for virus entry. DNA
Cell Biol. (2014) 33:20–8. doi: 10.1089/dna.2013.2193

31. Li W, Moore M, Vasilieva N, Sui J, Wong SK, Berneet MA, et al. Angiotensin-
converting enzyme 2 is a functional receptor for the SARS coronavirus.
Nature. (2003) 426:450–4. doi: 10.1038/nature02145

32. Ng ML, Tan SH, See EE, Ooi EE, Ling AE. Early events of SARS coronavirus
infection in vero cells. J Med Virol. (2003) 71:323–31. doi: 10.1002/jmv.10499

33. Yamate M, Yamashita M, Goto T, Tsuji S, Li YG, Warachit J, et al.
Establishment of vero E6 cell clones persistently infected with severe acute
respiratory syndrome coronavirus. Microbes Infect. (2005) 7:1530–40. doi:
10.1016/j.micinf.2005.05.013

34. Kaye M. SARS-associated coronavirus replication in cell lines. Emerg Infect
Dis. (2006) 12:128–33. doi: 10.3201/eid1201.050496

35. Lin SC, Ho CT, Chuo WH, Li S, Wang TT, Lin CC. Effective inhibition
of MERS-CoV infection by resveratrol. BMC Infect Dis. (2017) 17:144. doi:
10.1186/s12879-017-2253-8

36. Sudeep AB, Vyas PB, Parashar D, Shil P. Differential susceptibility &
replication potential of Vero E6, BHK-21, RD, A-549, C6/36 cells & Aedes
aegypti mosquitoes to three strains of chikungunya virus. Indian J Med Res.
(2019) 149:771–7. doi: 10.4103/ijmr.IJMR_453_17

37. Barrett PN, Mundt W, Kistner O, Howard MK. Vero cell platform in vaccine
production: moving towards cell culture-based viral vaccines. Expert Rev
Vaccines. (2009) 8:607–18. doi: 10.1586/erv.09.19

38. Chen HL, Chang JK, Tang RB. Current recommendations for the Japanese
encephalitis vaccine. J ChinMed Assoc. (2015) 78:271–75. doi: 10.1016/j.jcma.
2014.12.009

39. Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, et al. Characterization of spike
glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity

Frontiers in Immunology | www.frontiersin.org 9 August 2020 | Volume 11 | Article 216399

https://doi.org/10.1016/j.jaut.2020.102433
https://doi.org/10.1071/MA20013
https://doi.org/10.1093/nsr/nwaa036
https://doi.org/10.1073/pnas.2004999117
https://doi.org/10.1073/pnas.2004999117
https://doi.org/10.1111/odi.13447
https://doi.org/10.1016/j.nrl.2020.03.001
https://doi.org/10.1002/jmv.25915
https://doi.org/10.23736/S0375-9393.20.14772-2
https://doi.org/10.23736/S0375-9393.20.14772-2
https://doi.org/10.1002/jmv.26046
https://doi.org/10.1002/mds.28179
https://doi.org/10.1016/j.ebiom.2020.102799
https://doi.org/10.3389/fneur.2020.00565
https://doi.org/10.3389/fneur.2020.00565
https://doi.org/10.3389/fneur.2020.00640
https://doi.org/10.3389/fneur.2020.00659
https://doi.org/10.1002/jmv.26319
https://doi.org/10.1002/jmv.26319
https://doi.org/10.3389/fpubh.2020.00243
https://doi.org/10.1128/JVI.00127-20
https://doi.org/10.15252/embj.20105114
https://doi.org/10.15252/embj.20105114
https://doi.org/10.3390/v11010059
https://doi.org/10.3390/v11010059
https://doi.org/10.1021/acschemneuro.0c00122
https://doi.org/10.1021/acschemneuro.0c00122
https://doi.org/10.1038/s41586-020-2012-7
https://doi.org/10.1016/j.cell.2020.02.052
https://doi.org/10.1128/JVI.00635-20
https://doi.org/10.1016/j.antiviral.2020.104742
https://doi.org/10.1038/s41422-020-0305-x
https://doi.org/10.1038/s41422-020-0305-x
https://doi.org/10.1093/infdis/jit123
https://doi.org/10.1002/ame2.12020
https://doi.org/10.1016/j.ijantimicag.2020.105924
https://doi.org/10.1089/dna.2013.2193
https://doi.org/10.1038/nature02145
https://doi.org/10.1002/jmv.10499
https://doi.org/10.1016/j.micinf.2005.05.013
https://doi.org/10.1016/j.micinf.2005.05.013
https://doi.org/10.3201/eid1201.050496
https://doi.org/10.1186/s12879-017-2253-8
https://doi.org/10.1186/s12879-017-2253-8
https://doi.org/10.4103/ijmr.IJMR_453_17
https://doi.org/10.1586/erv.09.19
https://doi.org/10.1016/j.jcma.2014.12.009
https://doi.org/10.1016/j.jcma.2014.12.009
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


fimmu-11-02163 August 27, 2020 Time: 18:41 # 10

Sanclemente-Alaman et al. SARS-CoV-2: Experimental Models

with SARS-CoV. Nat Commun. (2020) 11:1620. doi: 10.1038/s41467-020-
15562-9

40. Wang K, Chen W, Zhou Y, Lian J, Zhang Z, Du P, et al. SARS-CoV-2 invades
host cells via a novel route: CD147-spike protein. bioRxiv. (2020). [Preprint].
doi: 10.1101/2020.03.14.988345

41. Liu WD, Chang SY, Wang JT, Tsai MJ, Hung CC, Hsuet CL, et al. Prolonged
virus shedding even after seroconversion in a patient with COVID-19. J
Infect. (2020). doi: 10.1016/j.jinf.2020.03.063 [Epub ahead of print].

42. Zhou J, Li C, Liu X, Chiu MC, Zhao X, Wang D, et al. Infection of bat and
human intestinal organoids by SARS-CoV-2. Nat Med. (2020) 26:1077–83.
doi: 10.1038/s41591-020-0912-6

43. Colson P, Lagier JC, Baudoin JP, Bou Khalil J, La Scola B, Raoult D. Ultrarapid
diagnosis, microscope imaging, genome sequencing, and culture isolation of
SARS-CoV-2. Eur J Clin Microbiol Infect Dis. (2020). doi: 10.1007/s10096-
020-03869-w [Epub ahead of print].

44. Caly L, Druce JD, Catton MG, Jans DA, Wagstaff KM. The FDA-approved
drug ivermectin inhibits the replication of SARS-CoV-2 in vitro [published
online ahead of print, 2020 Apr 3]. Antiviral Res. (2020) 178:104787. doi:
10.1016/j.antiviral.2020.104787

45. Liu J, Cao R, Xu M, Wang X, Zhang H, Hu H, et al. Hydroxychloroquine,
a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-
2 infection in vitro. Cell Discov. (2020) 6:16. doi: 10.1038/s41421-020-
0156-0

46. Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and
chloroquine effectively inhibit the recently emerged novel coronavirus (2019-
nCoV) in vitro. Cell Res. (2020) 30:269–71. doi: 10.1038/s41422-020-0282-
0

47. Yao X, Ye F, Zhang M, Cui C, Huang B, Niu P, et al. In vitro antiviral activity
and projection of optimized dosing design of hydroxychloroquine for the
treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2) [published online ahead of print, 2020 Mar 9]. Clin Infect Dis. (2020)
71:ciaa237. doi: 10.1093/cid/ciaa237

48. Runfeng L, Yunlong H, Jicheng H, Weiqi P, Qinhai M, Yongxiaet S, et al.
Lianhuaqingwen exerts anti-viral and anti-inflammatory activity against
novel coronavirus (SARS-CoV-2). Pharmacol Res. (2020) 156:104761. doi:
10.1016/j.phrs.2020.104761

49. Stepanenko AA, Dmitrenko VV. HEK293 in cell biology and cancer
research: phenotype, karyotype, tumorigenicity, and stress-induced genome-
phenotype evolution. Gene. (2015) 569:182–90. doi: 10.1016/j.gene.2015.05.
065

50. He N, Sun Y, Yang M, Lu Q, Wang J, Xiao C, et al. Analysis of circular RNA
expression profile in HEK 293T cells exposed to ionizing radiation. Dose
Response. (2019) 17:1559325819837795. doi: 10.1177/1559325819837795

51. Millet JK, Tang T, Nathan L, Jaimes J, Hsu H, Dan S, et al. Production of
pseudotyped particles to study highly pathogenic coronaviruses in a biosafety
level 2 setting. J Vis Exp. (2019) 1:145. doi: 10.3791/59010

52. Wan W, Wang L, Chen X, Zhu S, Shang W, Xiao G, et al. A subcellular
quantitative proteomic analysis of herpes simplex virus type 1-infected HEK
293T Cells. Molecules. (2019) 24:4215. doi: 10.3390/molecules24234215

53. Yuan Y, Wang Z, Tian B, Zhou M, Fu ZF, Zhao L. Cholesterol 25-hydroxylase
suppresses rabies virus infection by inhibiting viral entry. Arch Virol. (2019)
164:2963–74. doi: 10.1007/s00705-019-04415-6

54. Capstick PB, Telling RC, Chapman WG, Stewart DL. Growth of a cloned
strain of hamster kidney cells in suspended cultures and their susceptibility
to the virus of foot-and-mouth disease. Nature. (1962) 195:1163–64. doi:
10.1038/1951163a0

55. Hernandez R, Brown DT. Growth and maintenance of baby hamster kidney
(BHK) cells. Curr Protoc Microbiol. (2010) 17:A.4H.1–7. doi: 10.1002/
9780471729259.mca04hs17

56. Amadori M, Volpe G, Defilippi P, Berneri C. Phenotypic features of BHK-
21 cells used for production of foot-and-mouth disease vaccine. Biologicals.
(1997) 25:65–73. doi: 10.1006/biol.1996.0061

57. Shen L, Yang Y, Ye F, Liu G, Desforges M, Talbot PJ, et al. Safe and sensitive
antiviral screening platform based on recombinant human coronavirus OC43
expressing the luciferase reporter gene. Antimicrob Agents Chemother. (2016)
60:5492–503. doi: 10.1128/AAC.00814-16

58. Kasai F, Hirayama N, Ozawa M, Satoh M, Kohara A. HuH-7 reference
genome profile: complex karyotype composed of massive loss of

heterozygosity. Hum Cell. (2018) 31:261–67. doi: 10.1007/s13577-018-
0212-3

59. Behnam MA, Nitsche C, Boldescu V, Klein CD. The Medicinal chemistry of
dengue virus. J Med Chem. (2016) 59:5622–49. doi: 10.1021/acs.jmedchem.
5b01653

60. Ciotti M, Angeletti S, Minieri M, Giovannetti M, Benvenuto D, Pascarella
S, et al. COVID-19 outbreak: an overview [published online ahead of print,
2020 Apr 7]. Chemotherapy. (2020) 64:215–23. doi: 10.1159/000507423

61. Evans VJ, Kerr HA, McQuilkin WT, Earle WR, Hull RN. Growth in vitro of
a long-term strain of monkey-kidney cells in medium NCTC 109 free of any
added protein. Am JHyg. (1959) 70:297–302. doi: 10.1093/oxfordjournals.aje.
a120078

62. Hull RN, Cherry WR, Tritch OJ. Growth characteristics of monkey kidney
cell strains LLC-MK1, LLC-MK2, and LLC-MK2(NCTC-3196) and their
utility in virus research. J Exp Med. (1962) 115:903–18. doi: 10.1084/jem.115.
5.903

63. Milewska A, Nowak P, Owczarek K, Szczepanski A, Zarebski M, Hoang
A, et al. Entry of human coronavirus NL63 into the cell. J Virol. (2018)
92:e01933-17. doi: 10.1128/JVI.01933-17

64. Hidalgo IJ, Raub TJ, Borchardt RT. Characterization of the human
colon carcinoma cell line (Caco-2) as a model system for intestinal
epithelial permeability. Gastroenterology. (1989) 96:736–49. doi: 10.1016/
s0016-5085(89)80072-1

65. Van Breemen RB, Li Y. Caco-2 cell permeability assays to measure drug
absorption. Expert Opin Drug Metab Toxicol. (2005) 1:175–85. doi: 10.1517/
17425255.1.2.175

66. Carbajo-Lozoya J, Müller MA, Kallies S, Thiel V, Drosten C, von Brunn A.
Replication of human coronaviruses SARS-CoV, HCoV-NL63 and HCoV-
229E is inhibited by the drug FK506. Virus Res. (2012) 165:112–7. doi: 10.
1016/j.virusres.2012.02.002

67. Carbajo-Lozoya J, Ma-Lauer Y, Malešević M, Theuerkorn M, Kahlert V, Prell
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The human infection of the novel severe acute respiratory syndrome coronavirus

2 (SARS-CoV-2) is a public health emergency of international concern that has caused

more than 16.8 million new cases and 662,000 deaths as of July 30, 2020. Although

coronavirus disease 2019 (COVID-19), which is associated with this virus, mainly affects

the lungs, recent evidence from clinical and pathological studies indicates that this

pathogen has a broad infective ability to spread to extrapulmonary tissues, causing

multiorgan failure in severely ill patients. In this regard, there is increasing preoccupation

with the neuroinvasive potential of SARS-CoV-2 due to the observation of neurological

manifestations in COVID-19 patients. This concern is also supported by the neurotropism

previously documented in other human coronaviruses, including the 2002–2003

SARS-CoV-1 outbreak. Hence, in the current review article, we aimed to summarize

the spectrum of neurological findings associated with COVID-19, which include

signs of peripheral neuropathy, myopathy, olfactory dysfunction, meningoencephalitis,

Guillain-Barré syndrome, and neuropsychiatric disorders. Furthermore, we analyze the

mechanisms underlying such neurological sequela and discuss possible therapeutics for

patients with neurological findings associated with COVID-19. Finally, we describe the

host- and pathogen-specific factors that determine the tissue tropism of SARS-CoV-2

and possible routes employed by the virus to invade the nervous system from a

pathophysiological and molecular perspective. In this manner, the current manuscript

contributes to increasing the current understanding of the neurological aspects of

COVID-19 and the impact of the current pandemic on the neurology field.

Keywords: coronavirus, COVID-19, SARS-CoV-2, severe acute respiratory syndrome, pneumonia

INTRODUCTION

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) originated in Wuhan,
China (1), in December 2019, and it has engulfed the world in an unprecedented global
pandemic. The coronavirus disease 2019 (COVID-19) associated with this virus has caused
more than 16.8 million new cases and 662,000 deaths as of July 30, 2020 (2), generating a
high burden of disease that has exceeded the assistance capacities of several healthcare systems
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around the world. The clinical characteristics of patients with
COVID-19 are similar to those observed during the outbreak of
SARS-CoV-1, which emerged in 2002–2003, causing more than
8,000 confirmed cases and ∼800 deaths (3). As such, the human
infection with SARS-CoV-2 mainly affects the lower respiratory
tract, causing mild to moderate respiratory symptoms in about
85% of patients with COVID-19 (4–6), including fever, headache,
fatigue, myalgia, dry cough, and diarrhea. Most symptomatic
individuals are men in their fifth and sixth decades of life that
attend medical centers after an incubation period of about 4
to 5 days (4–7). Another 15% of patients present moderately
severe forms of the disease manifested as pneumonia of atypical
features in radiological studies of the lung, such as bilateral
multi-lobe consolidations and ground-glass opacities (8). Finally,
in 5 to 30% of COVID-19 patients, the virus causes severe
acute respiratory syndrome (SARS), which is characterized by
profound respiratory distress that obligates the establishment
of intensive life support interventions, such as intubation and
mechanical ventilation (4–6). Initial reports estimated mortality
rates of about 2 to 4%. However, new analyses indicate a
higher lethality of COVID-19 (9), especially among individuals
older than 65 years, and patients with comorbidities (4–6).
Unfortunately, the risk of a fatal outcome is disproportionally
higher among patients requiring mechanical ventilation, with a
mortality rate close to 80% (7).

The rapid transmission of SARS-CoV-2 and the increasing
number of positive cases reported around the world have
overcome the resources of the healthcare systems in different
regions. This has significantly impacted all areas of medicine,
especially those directly related to the management of severe
respiratory infections, such as pneumology and critical care
medicine. Nonetheless, SARS-CoV-2 has the potential to spread
to different extrapulmonary tissues, and, in some of the most
severe cases, the infection can progress to multiorgan failure (5).
Therefore, all healthcare providers from any area of medicine
must acquire adequate knowledge of the principal characteristics
of COVID-19. Currently, there is increasing preoccupation about
the potential capacity of SARS-CoV-2 to invade the central
nervous system (CNS) and the peripheral nervous system (PNS).
These concerns are based on recent observations in individuals
infected with SARS-CoV-2 that present neurological findings
(10). A better understanding of the mechanisms underlying
the neurologic sequela of patients with COVID-19 is urgent
to discover novel targets for therapeutics development. In the
current review article, we therefore provide an overview of
the spectrum of neurological manifestations of COVID-19.
Additionally, we analyze host- and pathogen-specific factors that
determine the tissue tropism of SARS-CoV-2 and discuss the
possible routes employed by the virus to invade the nervous
system. Furthermore, we propose possible therapeutics for the
neurologic complications of COVID-19.

SARS-COV-2 BIOLOGY

Virology
SARS-CoV-2 is a novel member of the group of human
coronaviruses (HCoVs), which is constituted of HCoV-229E,

HCoV-NL63, HCoV-HKU1, HCoV-OC43, SARS-CoV, and
MERS-CoV (11). These are RNA single-stranded viruses
belonging to the Coronaviridae family. Some of these pathogens
have caused a variety of respiratory diseases in the past. For
instance, SARS-CoV-1 infected more than 8,000 individuals
around the world (3). Also, the human coronavirus related to
the respiratory syndrome of theMiddle East (MERS-CoV), which
emerged in Saudi Arabia in 2012 and caused high mortality rates
among infected people (12, 13).

Based on sequence comparisons of viral genomes, HCoVs
are grouped into four genera: alpha, beta, gamma, and delta
coronaviruses. SARS-CoV-2 is a beta coronavirus genetically
related to another bat coronavirus named BatCoV RaTG13
as well as SARS-CoV-1 (14, 15). Furthermore, SARS-CoV-2
also shares its genetic identity with coronaviruses isolated from
pangolins (16, 17). Hence, it is believed that COVID-19 is a
zoonotic disease that originated from bats or pangolins. The
genome of SARS-CoV-2 consists of a single RNA strand of 29.903
bp that codifies for the replicase-transcriptase, as well as for the
structural proteins spike (S), envelope (E), membrane (M), and
nucleocapsid (N) (15).

Mechanism of Infection and Determinants
of SARS-CoV-2 Tropism
The initial step of SARS-CoV-2 infection is the recognition of its
receptors on the surface of host cells. This step is mediated by
the viral spike (S) protein, which recognizes the human receptor
angiotensin I-converting enzyme 2 (ACE2), the same receptor
for the S protein of SARS-CoV-1 (18–20). This protein owns
two functional domains: the S1 domain contains the receptor-
binding domain (RBD), which attaches to ACE2, whereas the S2
domain mediates the fusion of the viral and host cell membranes
(20). Therefore, the organ distribution of the ACE2 receptor is
a crucial determinant of the virus infectivity and tropism. A
second step determinant in the infection process of SARS-CoV-2
is the activation of the S protein. This process is mediated
by different host proteases, which execute the cleavage of the
molecule at the S1/S2 and S’2 sites. This protein processing
allows the complete activity of the S2 domain and the fusion of
the viral and cellular membranes. For this purpose, and as in
the case of SARS-CoV-1, SARS-CoV-2 uses the transmembrane
serine protease 2 (TMPRSS2) (19, 21, 22). Interestingly, the
proteases TMPRSS4 and cathepsin L also promote SARS-
CoV-2 infection of human small intestinal enterocytes and
293/hACE2 cells (23, 24). Hence, the tissue patterns of expression
of TMPRSS2, TMPRSS4, and cathepsin L is another decisive
factor that determines the tropism of the virus, and, indeed,
some drugs that inhibit the activity of these proteases are now
proposed as potential therapeutic agents to prevent and treat
COVID-19 (19, 23).

Other factors implicated in the process of SARS-CoV-2
infection include the phosphatidylinositol 3-phosphate 5-
kinase (PIKfyve) (23). This enzyme mediates the production
of phosphatidylinositol-3,5-bisphosphate [PI(3,5)P2], a
phosphoinositide that participates in the maturation process
of endosomes. Treatment with apilimod, a potent inhibitor for
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FIGURE 1 | Mechanisms of infection of SARS-CoV-2. This figure was created with BioRender.

PIKfyve, reduced the infectivity of SARS-CoV-2 and could be
a novel candidate for therapeutic applications. After the entry
into host cells, viral replication begins with the translation
of the replicase-polymerase gene and the assembly of the
replication-transcription complex. This complex subsequently
transcribes the genomic regions that codify for structural
proteins. New virions are assembled in the endoplasmic
reticulum and Golgi apparatus to finally egress from the cell
(11). A particular feature of SARS-CoV-2 is that it possesses
a polybasic furin cleavage sequence (PRRA) in the S1/S2 site,
which is absent in other close related coronaviruses (14, 20).
This inserted furin cleavage sequence is processed at the Golgi
apparatus during the biosynthesis of the S protein of novel
virions inside the host infected cells (20). The novel virions of
SARS-CoV-2 may thus contain an S protein primed and ready
to infect any other cells expressing the ACE2 receptor, with
no further requirement of TMPRSS2 activity. As virtually all
cells express furin under normal conditions, the inserted furin
cleavage sequence may expand the transmissibility and tissue
tropism of SARS-CoV-2. Figure 1 illustrates the process of
SARS-CoV-2 infection.

The Immune Response Against
SARS-CoV-2
SARS-CoV-2 elicits an exuberant immune response
characterized by a dysregulated production of soluble immune
mediators. This phenomenon has been called a “cytokine storm”
and is responsible for mediating tissue damage in patients
with COVID-19 that progress to severe illness (25–28). The
immune receptors that recognize the viral infection and initiate
the immune responses against SARS-CoV-2 are unknown. As
this virus is genetically related to SARS-CoV-1, it is presumed
that both viruses share mechanisms of infection. In this sense,
SARS-CoV-1 is recognized by the toll-like receptors (TLR) TLR3
and TLR4, which induce an immune reaction via MyD88 and
TRIF pathways (29, 30). Furthermore, SARS-CoV-1 triggers the
production of IL-1β through the activation of the inflammasome
(31). In this regard, the activation of the inflammasome is also
possible to occur during SARS-CoV-2 infection, as high levels
of IL-1β have been observed in COVID-19 patients (32). Other
immune mediators that are exaggeratedly produced in response
to SARS-CoV-2 include IL2, IL-6, IL7, IL10, G-SCF, CXCL10,
MCP-1, MIP-1A, and TNFα (5, 28, 33). From these, IL-1β, IL-6,
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CXCL10, and TNFα are the cytokines with a higher capacity to
generate tissue damage in several organs, including the CNS,
due to their pro-inflammatory properties. For instance, IL-1β
and IL-6 have been implicated in neurotoxicity associated with
chimeric antigen receptor (CAR) T cell therapy in patients with
hematological malignancies (34, 35). These cytokines possess
detrimental effects on endothelial function at several vascular
niches, which may be implicated in the pathophysiology of the
neurological complications of COVID-19, as discussed later.

Notably, despite the dysregulated production of immune
mediators, an ample range of immune cell subtypes are depleted
from the circulation of patients with severe SARS-CoV-2
infection. These cells include monocytes, dendritic cells, CD4+
and CD8+ T cells, and NK cells (36). Furthermore, the few
adaptive lymphocytes that remain in the blood express markers
of functional exhaustion (37). These data suggest that severe
COVID-19 is a state of immunosuppression similar to the known
sepsis-induced immunosuppression (38). However, it is also
possible that the robust recruitment of functional immune cells
to the sites of SARS-CoV-2 infection may explain the leukopenia
observed during COVID-19.

MECHANISM OF SARS-COV-2 ENTRY
INTO THE CNS

Expression of SARS-CoV-2 Viral Entry
Factors in the CNS
Several HCoVs, including SARS-CoV-1, have the potential to
infect different human tissues and organs (39, 40). Similarly,
SARS-CoV-2 may also spread to several extrapulmonary tissues,
including the CNS. Although recent analyses of autopsy
specimens from patients with COVID-19 have not explored
the presence of this virus in the brain (41), the neurological
manifestations observed among individuals with COVID-19
(10) and the isolation of other human coronaviruses from
neurological specimens support the notion of a possible
neurotropism of SARS-CoV-2 (42–47). The neurotropism of
other HCoVs has been extensively revised elsewhere (48).

As mentioned before, the patterns of expression of ACE2,
TMPRSS2, TMPRSS4, furin, cathepsin L, and other entry factors
used by SARS-CoV-2 for infection determine the tropism of
the virus. The ACE2 receptor is highly expressed in cells of the
alveolar epithelium (49, 50), which explains the vulnerability of
the lungs to infection. The expression of ACE2 has also been
found in other tissues, including the oral mucosa, endothelium,
heart, kidney, lymphoid organs, testis, gut, and urinary tract (49–
52). Nonetheless, distribution of TMPRSS2 has been assessed in
a limited variety of human tissues, showing high expression in
prostate cells, respiratory epithelial cells, salivary gland, kidney,
liver, stomach, small intestine, and colon (53–55). TMPRSS2
is regulated by androgens (53), which may explain the higher
susceptibility of men to suffer from severe forms of COVID-
19. Few studies have analyzed the expression of TMPRSS4
and cathepsin L in healthy human organs. According to the
Human Protein Atlas (https://www.proteinatlas.org/) dataset,
TMPRSS4 is present in the cerebral cortex, hippocampus,

caudate, thyroid gland, adrenal gland, nasopharynx, bronchi,
lung, stomach, duodenum, colon, rectum, gallbladder, pancreas,
and genitourinary tract. Meanwhile, cathepsin L shows medium
expression in lung and liver, and low expression at bronchi,
salivary gland, liver, kidney, pancreas, and genitourinary tract.

The expression in the human body of the known genes
mediating the entry of SARS-CoV-2 into human cells coincides
with the multiorgan pattern of COVID-19 manifestations.
Nonetheless, the presence of such factors is low in the CNS under
normal conditions. This may be in part because previous studies
have only analyzed the bulk organ gene expression patterns of
ACE2 and TMPRSS2. More recently, a comprehensive analysis
of several single-cell RNA-seq databases showed that there are
dual-positive ACE2+TMPRSS2+ cells in tissues beyond the
respiratory system, including oligodendrocytes in the brain, and
inhibitory enteric neurons (56). Furthermore, ACE2+CTSL+
cells were enriched in the olfactory epithelium. These data
support some of the possible routes of SARS-CoV-2 entry into
the CNS discussed below.

Routes of SARS-CoV-2 Entry Into the CNS
Themechanisms employed by SARS-CoV-2 to infect the nervous
system are unknown. Currently, the hypotheses about the routes
of viral entry into the CNS rely on previous observations made in
experimental studies of SARS-CoV-1 infection. One hypothesis
proposes that SARS-CoV-2 invades the brain by breaching the
blood-brain barrier (BBB). Evidence in favor of this infection
mechanism includes the high expression of the ACE2 receptor in
endothelial cells of blood vessels (49, 50). The virus may therefore
infect endothelial cells of the brain vasculature in the first term,
and it may then spread to the surrounding ACE2+TMPRSS2+
oligodendrocytes and, finally, to the neurons. This would explain
why SARS-CoV-1 has been observed inside neurons even when
they have a mild expression of ACE2 under normal conditions
(39, 40, 57). Despite this, SARS-CoV-1 has not been isolated from
or observed inside endothelial cells (58). Conversely, the high
concentrations of pro-inflammatory cytokines in the systemic
circulation of patients with severe forms of COVID-19 might
induce structural and functional alterations of the BBB (5, 28,
59). In this sense, it is well-known that different inflammatory
mediators have detrimental effects on BBB integrity, increasing
its permeability to neurotoxic molecules and immune cells (60).
SARS-CoV-2 could thus gain access to the CNS directly through
a paracellular route or within the immune cells, a mechanism
that has been called a “trojan horse”(61). It might be feasible
for this mechanism to occur during SARS-CoV-2 infection since
the previous SARS-CoV-1 has also been observed inside different
leukocyte subsets (40).

Secondly, the virus could enter the CNS through the olfactory
epithelium, crossing the cribriform plate of the ethmoid bone
and reaching the olfactory bulb from which it could spread to
different areas of the brain (62). This route was demonstrated
in mice intranasally inoculated with SARS-CoV-1, among which
a rapid viral spread from the olfactory bulb to the brain
stem was observed. This exposure to the virus caused high
lethality among infected animals due to the occurrence of
neuronal death in the respiratory centers of the brain stem (63).
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Similar results were observed in another animal model of CNS
infection with the HCoV-OC43 coronavirus (64). In humans,
some studies demonstrated olfactory neuropathy in patients
with SARS-CoV-1 infection (65). Likewise, recent investigations
have shown that the olfactory epithelium is enriched with
ACE2+CTSL+ cells (56). Moreover, hyposmia and anosmia are
frequent manifestations of COVID-19 (10, 66), suggesting that
SARS-CoV-2 might also infect the olfactory bulb in COVID-19
patients. In light of these findings, some researchers have
proposed that the neuroinvasive potential of SARS-CoV-2 could
contribute to the respiratory failure observed in patients with
severe COVID-19 (67).

Finally, as in the case of other respiratory viruses with
neurotropic potential, including the influenza A virus (68),
SARS-CoV-2 could gain access to the CNS through the vagus
nerve. The terminals of this nerve are located along the
respiratory and gastrointestinal tracts, sites with high expression
of ACE2 (49, 50) and enriched with ACE2+TMPRSS2+ enteric
neurons (56). From these organs, the virus could gain access
to the brain stem, taking advantage of the polarization of
neurons and the machinery responsible for retrograde neuronal
communication, or through endocytosis and clathrin-mediated
exocytosis, as observed in the case of the transsynaptic
transmission of the porcine coronavirus HEV 67N (69). The
possible CNS invasion routes used by SARS-CoV-2 are illustrated
in Figure 2.

NEUROLOGICAL MANIFESTATIONS OF
COVID-19 DUE TO CNS INVOLVEMENT

Non-specific Neurological Symptoms
Some of the initial descriptions of the clinical phenotype
of patients infected with SARS-CoV-2 showed that up to
10% of individuals with COVID-19 manifested non-specific
neurological symptoms such as headache and dizziness (5,
6, 70). In a more recent report by Mao et al., a third of
patients with COVID-19 presented non-specific neurological
manifestations, including dizziness (16.8%), headache (13.1%),
loss of consciousness (7.5%), and seizures (0.5%) (10). Two recent
systematic reviews and meta-analyses showed that headache and
dizziness are among the most frequent neurological symptoms
affecting COVID-19 patients (71, 72). Interestingly, headache can
occur even in the absence of fever and can be manifested as a
migraine, tension-type, or cluster headache (73).

These non-specific neurological symptoms may reflect the
neurotoxic effect of hypoxemia and the cytokine storm observed
in patients with severe COVID-19. However, some of these
manifestations must be differentiated from delirium, and other
secondary causes, such as metabolic, gastrointestinal, renal, and
hematological complications, must be ruled out, particularly
in aged patients with underlying comorbidities. Interestingly,
non-specific neurological manifestations are more frequent in
patients who progress to respiratory failure, which supports
the hypothesis about a possible contribution of the CNS
infection to the respiratory failure caused by SARS-CoV-2 (67).
Furthermore, patients with unspecific neurological symptoms

have shown higher degrees of leukopenia, thrombocytopenia,
and elevated blood urea nitrogen levels (BUN) (10). These
data suggest that some of these findings might have certain
prognostic value to predict the occurrence of more severe
neurological complications. However, the predictive potential
of non-specific neurological symptoms needs to be further
evaluated in prospective studies. This would be of great help for
the timely detection of patients at risk of neurologic sequela.

COVID-19 Associated Meningitis,
Encephalitis, and Acute Necrotizing
Encephalopathy
Acute meningitis and encephalitis are dramatic complications of
various viral infections that often result in high morbidity and
mortality rates due to their severity. Coronaviruses have also been
associated with these neurological complications in humans. For
instance, the HCoV-OC43 coronavirus was isolated from the
brain of a patient who died of viral encephalitis (74). Likewise,
both SARS-CoV-1 (46) and MERS-CoV have been reported to
cause encephalitis (75).

In this context, SARS-CoV-2 can also cause viral meningitis
and encephalitis, as demonstrated by a recent report of a 64-year-
old patient with laboratory-confirmed COVID-19 who presented
neurologic manifestations during the infection, including
lethargy, clonus, and pyramidal signs in the lower limbs as well
as stiff neck and Brudzinski sign (76). The cerebrospinal fluid
(CSF) study revealed high protein levels and hypoglycorrhachia,
although the virus could not be isolated from CSF in this case.
The patient received antiviral drugs and symptomatic measures,
progressing favorably without neurological complications.
Similarly, in another report, a 24-year-old man with a 3-day
history of headache developed fever, loss of consciousness,
and seizures (77). Upon hospital admission, he presented
signs of meningeal irritation and a low Glasgow Coma Scale
(GCS) score, requiring mechanical ventilation. During his
medical follow-up, he continued presenting seizures resistant to
pharmacological treatment. His laboratory studies revealed high
protein levels and pleocytosis in the CSF, and the MRI showed
hyperintensities in the mesial temporal lobe. The patient tested
negative for COVID-19 when his nasopharyngeal swab specimen
was analyzed. Nonetheless, the result of the test was positive
in the CSF sample. This finding was the first demonstration
of the presence of SARS-CoV-2 in the CNS. The occurrence
of encephalitis as the initial and even only manifestation of
COVID-19 has latter been reported in three additional cases
from China and the United States (78–80). Finally, another
case report showed that SARS-CoV-2 infection could cause
acute necrotizing encephalopathy (81). This entity is a severe
neurological complication resulting from the disruption of the
BBB associated with the cytokine storm observed in individuals
with a critical illness.

Together, these cases illustrate the development of severe
acute neurological complications in patients with COVID-19,
confirming the neurotropism of SARS-CoV-2. These findings
justify the intentional search for SARS-CoV-2 infection in
patients attending with acute neurological manifestations and
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FIGURE 2 | Mechanisms of SARS-CoV-2 invasion to the central nervous system. (A) SARS-CoV-2 can enter the CNS through the olfactory bulb. Indeed, recent

investigations have shown that the olfactory epithelium is enriched with cells that express the receptor ACE2 and the protease cathepsin L. (B) The virus can also

infect the CNS via the hematogenous route, attaching to the ACE2 receptor expressed in endothelial cells of the cerebral blood vessels, or inside an immune cell.

(C) Finally, SARS-CoV-2 can infect the nerve terminals of the vagus nerve located in the respiratory system and the gastrointestinal tract. From these sites, the virus

can reach the CNS using the mechanisms of retrograde neuronal protein transport and transsynaptic transmission. This figure was created with BioRender.

febrile illness even in the absence of respiratory symptoms.
The frequency and factors related to the severity of these
complications need to be extensively investigated in future
studies. This would require the conduction of comprehensive
characterizations of genetic and immunological characteristics
associated with the risk of severe neurological complications in
COVID-19 patients. In addition, future studies evaluating the
relationship between the temporal dynamics of neurological
findings, the kinetics of viral loads in the circulation and CNS,
and distinctive patterns of circulating immune mediators
are warranted. This might inform about the potential of

contagiousness of COVID-19 patients according to their
neurological symptoms and reveal possible candidate
biomarkers to distinguish individuals at high risk of severe
neurologic sequela.

Cerebrovascular Disease
The antecedent of a recent respiratory infection, such as
influenza, or influenza-like illness, has been related to acute
cardiovascular complications, including acute myocardial
infarction and stroke (82). Among infectious causes of vascular
events, the infection with the varicella-zoster virus (VSV) is
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the most frequent viral cause of stroke (83). The study by Mao
et al. revealed that 3% of patients with COVID-19 also present
stroke as their only neurological manifestation of the infection.
From these, the majority were affected by ischemic strokes
(six ischemic vs. one hemorrhagic from a total of 214 patients
included in the study) (10). Stroke in individuals with COVID-19
occurs late during the disease and is more frequently observed
among patients with severe respiratory failure. Interestingly,
some COVID-19 patients were admitted to medical centers with
hemiplegia and no history of respiratory symptoms (10). Other
studies have also reported stroke in patients with severe COVID-
19, even among young individuals (84, 85). This might indicate
that stroke could be a result of vascular alterations directly
driven by the virus, although the presence of cardiovascular
risk factors can increase the incidence of this complication.
A recent meta-analysis found that stroke, apart from being
a frequent complication of COVID-19, has a considerable
prognostic value to predict the risk of mortality. As such, patients
with stroke have a 3-fold increase in the risk of death due to
COVID-19 (86).

The association between stroke and COVID-19 might result
from the critical condition and the pro-inflammatory state that
prevails in most severely ill patients. The increased levels of
pro-inflammatory cytokines in these individuals could alter the
normal function of the cerebral vessels. These factors, along with
the high prevalence of cardiovascular risk factors among patients
with COVID-19, can trigger cerebrovascular complications.
The endothelial infection of the cerebral vasculature due
to its high expression of the ACE2 receptor might further
contribute to these complications (49). In fact, the incidence
of stroke in patients with VSV infection is a consequence of
the invasion of the cerebral arteries by the virus (83). Other
mechanisms by which SARS-CoV-2 could cause stroke include
coagulation disorders. The abnormalities in the coagulation
of severe COVID-19 patients have unique characteristics that
partially resemble disseminated intravascular coagulation (DIC)
or thrombotic microangiopathy. These alterations increase the
risk of thrombotic complications and death due to COVID-
19 (87). Acute myocarditis has been reported in patients with
SARS-CoV-2 infection (88, 89). This cardiac complication could
trigger events of brain embolization and stroke, which might
explain the incidence of cerebral infarctions in young patients
with COVID-19 in the absence of cardiovascular risk factors.

NEUROLOGICAL MANIFESTATIONS OF
COVID-19 DUE TO PNS INVOLVEMENT

Peripheral Neuropathy and Myopathy
Associated With SARS-CoV-2 Infection
During the outbreak caused by SARS-CoV-1, some studies
described the occurrence of peripheral motor neuropathy and
myopathy among infected individuals, mostly as part of the
spectrum of manifestations of the critical illness polyneuropathy
and myopathy disorders (90). Similarly, 2.3% of patients with
COVID-19 have presented neuropathic pain, probably associated
with peripheral neuropathy, whereas 10.7% of the cases showed

data of skeletal muscle injury with elevated serum levels of
creatine phosphokinase (CPK) (10). As in the case of other
neurological manifestations, neuropathic pain and myopathy
have been more frequently observed in patients with severe
forms of COVID-19. Notably, these symptoms occur earlier
during the disease in individuals with SARS-CoV-2 infection
as compared to patients affected by SARS-CoV-1 (10). This
suggests that the neuropathy and myopathy of COVID-19 are
directly associated with the injury of peripheral nerves and
striated muscles driven by the virus. COVID-19 patients with
neuropathy and myopathy, however, exhibit higher levels of
neutrophils and acute phase reactants than individuals without
neurological manifestations (10). The nerve andmuscle disorders
observed during SARS-CoV-2 infection might thus be associated
with a critical illness polyneuropathy of rapid development due
to the more deteriorated clinical condition of patients with
COVID-19 as compared to cases of SARS-CoV-1 infection.
Vascular, thrombotic, ischemic, and direct nerve and muscle
alterations driven by SARS-CoV-2 can contribute to neuropathy
and myopathy of COVID-19 patients.

Cranial Neuropathies in Patients With
COVID-19
A wide range of infectious diseases can cause complicate within
cranial neuropathies like facial palsy and ophthalmoplegia.
Among the pathogens that cause these manifestations with
more frequency are HIV and VSV (91). Cranial nerves might
also be susceptible to a direct or indirect injury caused by
SARS-CoV-2. In fact, according to a recent study, about 85%
and 88% of patients with COVID-19 develop olfactory and
gustatory dysfunction (66). Similarly, in another investigation
conducted in Italy, about 33% of patients with COVID-19
reported taste and/or olfactory disorders (92). These findings
might be specific for SARS-CoV-2 infection and could predict
the causative pathogen in patients with acute respiratory illness.
Indeed, smell and/or taste disorders were more frequently
observed among COVID-19 patients as compared to individuals
with laboratory-confirmed influenza infection in a case-control
study conducted in Spain (93). These observations might be
of particular relevance for the upcoming flu season, which is
predicted to be historically unique due to the convergence of
influenza and COVID-19. During such an envisioned scenario,
the differentiation of these diseases by clinical manifestations
could be complicated. Nonetheless, the correct identification of
the causative pathogen have therapeutic implications, such as
the selection of adequate antiviral treatment. The presence of
smell and taste dysfunction could thus be useful to distinguish
COVID-19 from influenza. Furthermore, these symptoms can
precede the onset of respiratory symptoms (94, 95), and their
presence may predict a milder clinical course of the disease (96).
Notably, COVID-19-related olfactory dysfunction has not been
associated with rhinorrhea or nasal congestion, and more than
half of the affected patients did not recover the function of the
olfactory nerve (66). This suggests direct damage to the olfactory
epithelium, which further reaffirms the possibility of an entry
route of SARS-CoV-2 through the cribriform plate, reaching
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the olfactory bulb from where it spreads to other parts of the
CNS (62).

AUTOIMMUNE NEUROLOGICAL
SYNDROMES ASSOCIATED WITH
COVID-19

Guillain-Barré Syndrome
The association between viral infections and Guillain-Barré
syndrome has been largely described in the past (97). Infection
with Campylobacter jejuni, cytomegalovirus, or Mycoplasma
pneumoniae precedes Guillain-Barré syndrome in up to two-
thirds of affected individuals (98). More recently, several viral
emerging diseases have shown this syndrome as one of its
more common and severe complications, as is the case of the
infection with the Zika virus (99). Although this association
was not described in patients infected with SARS-CoV-1, cases
of Guillain-Barré syndrome were observed during the outbreak
of MERS-CoV (100). In this context, the infection with SARS-
CoV-2 could also complicate with or manifests as Guillain-Barré
syndrome. In a recent report, Zhao et al. described the case
of a woman that developed asymmetric and progressive muscle
weakness in the lower limbs, associated with leukopenia and high
protein levels in the CSF without pleocytosis, accompanied by
data of demyelinating neuropathy in studies of nerve conduction
(101). The patient had a history of a recent trip to the city
of Wuhan, and she showed no evidence of respiratory system
involvement at the time of symptom onset. A total of 8-
days later, the appearance of fever, respiratory symptoms, and
radiological data compatible with pneumonia was documented,
confirming the SARS-CoV-2 infection by laboratory testing in a
nasopharyngeal swab sample. The patient received intravenous
immunoglobulin treatment recovering the neurological function
without sequel. Similarly, in another case from Italy, a 71-year-
old male also developed Guillain-Barré syndrome before the
onset of any respiratory symptom (102).

These reports suggest that Guillain-Barré syndrome may be
the first manifestation of COVID-19, presenting as a para-
infectious phenomenon. This is due to the parallel occurrence
of neurological and respiratory symptoms, instead of the
postinfectious pattern observed in other infections, including
the MERS-CoV (100). Nonetheless, two new case reports of six
COVID-19 patients demonstrated that Guillain-Barré syndrome
could occur a few days after the onset of respiratory symptoms
(103, 104). Collectively, these findings obligate physicians to
continuously monitor the neurological condition of patients with
suspected or confirmed SARS-CoV-2 infection to identify any
sign of demyelinating neuropathy. Furthermore, the occurrence
of Guillain-Barré syndrome associated with COVID-19 must
be carefully distinguished from the myopathy and neuropathy
disorders of the critically ill patient.

Miller Fisher Syndrome
Miller Fisher syndrome is a rare neurological disease that
is considered a variant of the Guillain-Barré syndrome. This
disorder is characterized by the triad of abnormal muscle

coordination, paralysis of the eye muscles, and the absence
of tendon reflexes. Miller Fisher syndrome can be associated
with a history of recent viral illness; however, no evidence
exists of its association with human coronavirus infections.
Interestingly, a recent paper has reported the occurrence of
the triad of ataxia, areflexia, and ophthalmoplegia in a 50-year-
old man that presented cough, fever, anosmia, and hypogeusia
some days before the onset of the neurological symptoms.
The infection with the SARS-CoV-2 infection was confirmed
in an oropharyngeal swab sample, and blood tests showed
lymphopenia, elevated C-reactive protein levels, and anti-
GD1b-IgG antibodies. He received treatment with intravenous
immunoglobulin, which caused significant improvement in his
neurological functions. Collectively, the literature summarized
here indicates that neurological syndromes caused by aberrant
immune responses, such as Guillain-Barré and Miller Fisher
syndromes, can occur as part of the clinical spectrum of
SARS-CoV-2 infection. Despite this, the immune mechanisms
implicated in these phenomena, and the possibility of a direct
neuropathic effect driven by the virus are unknown.

Molecular mimicry has been proposed as the primary
immune alteration underlying the development of Guillain-Barré
syndrome during infections (105). This phenomenon is related
to the presence of carbohydrates in infectious agents of similar
structural characteristics as compared to carbohydrates expressed
on neuronal membrane ganglioside and galactocerebrosides. For
instance, the lipopolysaccharides of Campylobacter jejuni share
ganglioside-like epitopes with peripheral nerves (106), whereas
galactocerebroside-like structures are present in glycolipids of
Mycoplasma pneumoniae (107). These molecular similarities
trigger the production of anti-glycolipid antibodies, which
mediate autoimmune damage to peripheral nerves. Ganglioside-
or galactocerebroside-like epitopes have not been described in
SARS-CoV-2. However, the S protein of this virus possesses 22 N-
linked glycan sequons per promoter (20), that could potentially
share certain similitude with carbohydrates localized on the
surface of the host nerve cells. Future studies are required
to evaluate the serologic features of anti-glycolipid antibodies
in patients with COVID-19 to elucidate possible mechanisms
underlying the association between SARS-CoV-2 infection and
Guillain-Barré syndrome.

NEUROPSYCHIATRIC MANIFESTATIONS
OF COVID-19

Several viruses affecting humans have been implicated in the
development of psychiatric symptoms due to their neurotropism.
The immediate antecedent for the global transmission of a
respiratory pathogen was the 2009 pandemic associated with
the emergence of a novel influenza A (H1N1) virus. Several
neuropsychiatric manifestations during the outbreak of influenza
were observed among infected patients, including fear and
behavioral changes (108). Similarly, during the SARS-CoV-1, a
range of psychiatric disorders was identified, including anxiety,
depression, suicidal ideation, and hallucinations (109, 110). A
recent systematic review found a high incidence of confusion,
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depression, anxiety, memory impairment, insomnia, and steroid-
induced psychosis among patients with SARS-CoV-1 or MERS-
CoV infection (111). The mechanisms underlying psychiatric
disorders in patients with viral infections are not precise, but
they might be related to the structural and functional disruption
of the BBB mediated by circulating inflammatory cytokines
produced in response to viruses. These mediators might also
alter neuronal networks implicated in cognitive functions.
Indeed, several psychiatric illnesses, including schizophrenia,
have been proposed to result from immune-mediated pathogenic
mechanisms (112).

In this sense, it is clear that the current pandemic can
cause indirect effects on the mental health of infected and
non-infected people due to quarantine and social distancing
measures, which constitute sources of distress additional to
the daily life problems (113). At this moment, however, there
is little literature about neuropsychiatric disorders directly
associated with the infection with SARS-CoV-2. In a case
series of three patients with laboratory-confirmed COVID-
19 and no evidence of respiratory symptoms, it was found
that such individuals presented anxiety, agitation, paranoid
behavior, disorganized thinking, and auditory hallucinations
(114). Other authors have also reported that delirium can be
present in a high percentage of COVID-19 patients (111). Thus,
as mentioned before, delirium must also be considered in the
differential diagnosis of individuals with acute neuropsychiatric
manifestations associated with SARS-CoV-2 infection. Finally,
the virus could lead to long-term neuropsychiatric and cognitive
sequels. In fact, survivors of SARS-CoV-1 and MERS-CoV
have been found to present depression, anxiety, and post-
traumatic distress syndrome several months after the diagnosis
(111). Therefore, it is essential to conduct long prospective
observational studies to estimate the incidence of psychiatric
disorders in the post-illness stage of COVID-19. Future studies
must address possible links between the antecedent of SARS-
CoV-2 infection and the incidence of chronic neurodegenerative
disorders. The studies about the spectrum of neurological and
psychiatric manifestations of COVID-19 are summarized in
Table 1.

POTENTIAL THERAPEUTICS FOR THE
NEUROLOGICAL COMPLICATIONS OF
SARS-COV-2 INFECTION

Supportive measures, along with strict control and prevention of
fever, high blood pressure, elevated glucose, and seizures, may
ameliorate the neurotoxic potential of SARS-CoV-2 infection.
Currently, there are no mechanism-based therapeutics specific
for neurological complications of COVID-19. The evidence
curated in this review suggests possible pathologic processes
underlying the involvement of the CNS/PNS during SARS-
CoV-2 infection. A better understanding of these mechanisms
may reveal targets for therapeutic interventions. Direct effects
driven by the virus, such as the infection of brain blood vessels
and nerve cells, are proposed to play a role in neurologic
manifestations of COVID-19. Although studies addressing the

TABLE 1 | The spectrum of neurological manifestations of SARS-CoV-2 infection.

Clinical finding No. of

patients

Author Country References

Headache 3/39 Huang et al. China (5)

9/138 Wang et al. China (6)

8/99 Chen et al. China (70)

28/214 Mao et al. China (10)

29/112 Porta-Etessam

et al.

Spain (73)

Dizziness 13/138 Wang et al. China (6)

36/214 Mao et al. China (10)

Loss of

consciousness/

altered mental status

9/99 Chen et al. China (70)

16/214 Mao et al. China (10)

Seizures 1/214 Mao et al. China (10)

Cerebrovascular

disease

6/214 Mao et al. China (10)

3/58 Helms et al. France (84)

5 cases Oxley et al. United States (85)

Meningitis/

encephalitis

1 case report Moriguchi et al. Japan (77)

1 case report Yin et al. China (76)

1 case report Duong et al. United States (78)

1 case report Filatov et al. United States (79)

1 case report Ye et al. China (80)

Olfactory and/or taste

dysfunction

20/59 Giacomelli et al. Italy (92)

31/79 Beltrán-

Corbellini

et al.

Spain (93)

128/169 Yan et al. United States (96)

130/374 Spinato et al. Italy (95)

357/417 Lechien et al. Belgium (66)

23/214 Mao et al. China (10)

2 cases Lorenzo Villalba

et al.

Spain (94)

Peripheral

neuropathy/nerve

pain

5/214 Mao et al. China (10)

Myopathy 23/214 Mao et al. China (10)

Guillain-Barre

syndrome

1 case report Zhao et al. China (101)

1 case report Alberti et al. Italy (102)

1 case report Sedaghat et al. Iran (103)

5 cases Toscano et al. Italy (104)

Miller-Fisher syndrome1 case report Gutierrez-Ortiz

et al.

Spain (115)

Neuropsychiatric

manifestations

3 cases Ferrando et al. United States (114)

Other neurological manifestations reported in COVID-19 patients include ataxia, acute

hemorrhagic necrotizing encephalopathy, polyneuritis cranialis, and neuralgia (10, 81).

relationship between viral loads in the CNS and the severity
of such manifestations are required, reducing the number of
copies of SARS-CoV-2 in the circulation and tissues might be
a useful strategy. Remdesivir is the only antiviral drug with
demonstrated capacity to blocking SARS-CoV-2 replication in
pre-clinical trials approved for usage in humans. This antiviral
drug reduces the time of clinical recovery in patients with
COVID-19 (116). The benefits of remdesivir for patients with
neurological complications have not been evaluated. Other
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candidate agents that antagonize the activity of the host proteases
implicated in the infection process of SARS-CoV-2 may be useful
to limit the infective capacity of this virus. These include the
camostat mesylate and nafamostat mesylate, two compounds
that block the activity of TMPRSS2 (19, 117). The effects of
these drugs on the severity and recovery of neurologic sequela
associated with COVID-19 must be evaluated in future clinical
trials. Passive immunization by transfer of convalescent human
plasma may also contribute to reduce the viral loads and prevent
or reverse the development of neurological symptoms. This
assumption is supported by recent systematic reviews that found
that convalescent plasma therapy improves symptoms, reduce
viral loads, and diminishes mortality in COVID-19 patients
(118). The time at which these proposed interventions would
be more useful to counteract neurologic sequela of COVID-19
is unknown.

Immune-mediated neurotoxicity is an obvious therapeutic
target for individuals with SARS-CoV-2 infection (59). The
immune profile of patients with severe COVID-19 resembles
the cytokine release syndrome (CRS) observed after CAR-T-
cell therapy (34, 35). As aforementioned, individuals receiving
CAR-T cells who develop CRS are at risk of injury to the
nervous system. Therefore, lessons from the treatment of
patients with CAR-T-cell-therapy-associated neurotoxicity might
be applicable to COVID-19 patients. Tocilizumab, an anti-
IL-6 monoclonal antibody, is the primary treatment for CRS
(119), and is currently being used to ameliorate inflammatory
manifestations caused by SARS-CoV-2 infection (120). In
patients with severe COVID-19, tocilizumab declined cytokine
production and reduced the risk of intubation requirement (120).
However, the utility of tocilizumab for management of CRS-
associated neurotoxicity is controversial (121). Interestingly,
mouse models have revealed that the antagonist of the
receptor of IL-1β anakinra might be a better option than
tocilizumab for the treatment of CRS and neurotoxicity after
CAR-T-cell therapy (122). As a strong induction of IL-1β
has been observed in severely ill COVID-19 patients (32),
the potential use of anakinra deserves further investigation.
Monocytes and macrophages also contribute to the development
of CRS and neurotoxicity after CAR-T-cell therapy. As such,
inhibition of GM-CSF with monoclonal antibodies has shown
to reduce neuroinflammation in Phase I studies of patients
receiving CAR-T-cell therapy (123). Interestingly, in a recent
study conducted in patients with COVID-19, the GM-CSF
blockade with mavrilimumab improved clinical symptoms,
survival, and reduced intubation requirement (124). Inhibition
of GM-CSF is thus a potential therapeutic for patients with
COVID-19 that develop neurological complications. Short
courses of steroids are safe and provide some benefits for
the treatment of immune-mediated neurotoxicity. Specifically,
dexamethasone may constitute a good candidate due to
its excellent CNS penetration and beneficial effect on the
integrity of the BBB. Dexamethasone has been safely used
in patients with acute respiratory distress syndrome, reducing
the requirement of mechanical ventilation and mortality (125).
These data may support the use of dexamethasone for the
management of neurological manifestations of SARS-CoV-2

infection, although possible consequences of the dexamethasone-
induced immunosuppression need to be evaluated.

The breaching of the BBB is an important event for
the development of neurotoxicity in COVID-19 patients and
individuals under CAR-T-cell therapy. Pharmacological agents
targeting the BBB may thus be useful to treat severe neurological
manifestations of COVID-19. The sonic hedgehog (SHH)
signaling pathway is essential for the maintenance of integrity
and immune homeostasis of the BBB (126). Agonists of SHH,
such as purmorphamine, a compound that activates the SHH
by promoting smoothened protein (127), reduce BBB damage
in animal models of infection and ischemic stroke (128–130).
Although little evidence exists of the safety of purmorphamine
in humans, this agent warrants further exploration for the
management of neurotoxicity associated with severe infections,
including COVID-19.

IMPLICATIONS OF COVID-19 PANDEMIC
FOR THE NEUROLOGY FIELD

The magnitude of the current pandemic has generated concerns
among professionals from various areas of medicine. The
evidence summarized in this review shows that neurology is
an active area of medicine at the frontline of the current
pandemic. Actually, due to the increasing number of confirmed
cases around the world and the neurotropic potential of SARS-
CoV-2, it is highly likely that neurologists would have to
provide medical care to patients with COVID-19, some of
which might present neurological manifestations. The first and
most important precautionary measure that must be taken
by neurological centers around the world is to improve the
knowledge of the disease among health care professionals.
Obviously, measures of personal protection and social distancing
should be extreme in neurology and neurosurgery clinics since
it is possible that some COVID-19 patients attending with
neurological symptoms with a not yet confirmed SARS-CoV-2
infection may constitute potential foci of inadvertent contagion
for doctors, especially if they do not manifest respiratory
symptoms initially. To prevent contagions, it is important
to investigate previous contact with people with laboratory-
confirmed COVID-19 in patients attending to neurological
centers. Similarly, it is crucial to maintain a high degree of clinical
suspicion about possible SARS-CoV-2 infection in patients
presenting an acute neurological condition. Furthermore, the
continuous surveillance and intentional search for neurological
complications in patients with confirmed SARS-CoV-2 infection
are necessary and even mandatory because these measures
could allow the timely establishment of therapeutic strategies for
limiting neurologic sequelae.

Finally, the current pandemic may obligate some changes
in normal care to patients with neurologic disorders at
medical centers receiving many COVID-19 cases. Of particular
importance is the possible impact of this pandemic in the
triage and management of patients with stroke and other acute
neurological emergencies due to resource re-allocation. Also, the
interruption of activities at many neurology outpatient clinics
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may affect the management of chronic neurological conditions,
requiring increased usage of tools such as telemedicine
and e-care.

CONCLUSIONS

The clinical phenotype of COVID-19 encompasses a spectrum
of neurological manifestations of varying severity that,
besides respiratory symptoms, can cause high morbidity
and mortality rates in individuals with SARS-CoV-2 infection.
The current review constitutes a useful reference to improve
our understanding of the pathophysiological mechanisms of
SARS-CoV-2 infection and should motivate further studies about
novel strategies to mitigate the impact of the current pandemic
on the field of neurology.
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Anosmia is a well-described symptom of Corona Virus Disease 2019 (COVID-19). Several

respiratory viruses are able to cause post-viral olfactory dysfunction, suggesting a

sensorineural damage. Since the olfactory bulb is considered an immunological organ

contributing to prevent the invasion of viruses, it could have a role in host defense.

The inflammatory products locally released in COVID-19, leading to a local damage

and causing olfactory loss, simultaneously may interfere with the viral spread into the

central nervous system. In this context, olfactory receptors could play a role as an

alternative way of SARS-CoV-2 entry into cells locally, in the central nervous system, and

systemically. Differences in olfactory bulb due to sex and age may contribute to clarify

the different susceptibility to infection and understand the role of age in transmission

and disease severity. Finally, evaluation of the degree of functional impairment (grading),

central/peripheral anosmia (localization), and the temporal course (evolution) may be

useful tools to counteract COVID-19.

Keywords: COVID-19, anosmia, SARS-CoV-2, olfactory receptors, olfactory bulb

INTRODUCTION

A wide spectrum of symptoms characterizes SARS-CoV-2 infection, ranging from serious
conditions, including acute respiratory distress syndrome (ARDS), to mild/moderate and also
asymptomatic forms of the disease, contributing to the spread of the viral infection.

The Corona Virus Disease 2019 (COVID-19) rapid worldwide spread has led to characterization
of “minor” symptoms, such as anosmia (1).

Anosmia was underestimated in the early stages of pandemic emergency, and most of the
patients who needed hospitalization were not consistently investigated for this symptom that
gradually emerged as a spy feature of infection.

Several respiratory viruses may cause post-viral olfactory dysfunction (PVOD), in most cases,
reversible. Seldom, this dysfunction may persist, suggesting a sensorineural central damage (2).
One of the COVID-19 clinical problems is the concomitant lack of prognostic indexes that may
predict the need for early intervention and preventative therapies in patients with mild symptoms.

Since the olfactory bulb (OB) is considered an immunological organ (3), its involvement could
provide information on host’s immunological competence in the fight against the virus entrance
and the virus spread into the central nervous system.
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As members of Coronaviridiae family are known to cause
CNS dysfunction, it appears mandatory to understand the
role of SARS-CoV-2 neurotropism in the development of
clinical manifestations.

EPIDEMIOLOGY

The first symptomatic characterization of COVID-19 evolved
over the past months adding to major symptoms (fever,
coughing, fatigue, and shortness of breath) a broad spectrum of
minor symptoms. Among those, increasing olfaction disturbance
(OD) observations have made that anosmia was identified as an
emerging symptom and subsequently as a marker of SARS-CoV-
2 infection (1, 4, 5).

Anosmia had attracted the most public interest between
physicians and the general population both because of media
coverage in an atmosphere of increasing and constant alarm and
concern and for its potential capability of early identification
of infection. For instance, in our country, after journalistic and
media announcement of anosmia as a symptom of COVID-
19 in March 2020, this term had a peak in search volumes on
Google (6).

In scientific literature, after the first reports of olfactory and
taste disorders (OTDs) in COVID-19, an increasing and rapidly
evolving detailed analysis of this symptom was progressively
collected to evaluate the prevalence and patterns of anosmia and
its significance in the context of COVID-19.

In February 2020, a retrospective study of 214 COVID-19
patients in Wuhan (7) reported that 11 patients (5.1%) presented
hyposmia and 12 patients (5.6%) presented hypogeusia. This
study was an early report derived from the analysis of medical
records without information on the timing of chemosensory
dysfunction onset and patient conditions. When Italy became
the new pandemic epicenter, these disorders appeared to be
more common, particularly in the early stages of the disease,
in paucisymptomatic patients and mild to moderate COVID
19 patients.

Giacomelli et al. from Sacco Hospital in Milan, in March
2020, highlight the prevalence of chemosensory dysfunction in
59 patients with laboratory-confirmed SARS-CoV-2 infection
through a verbal interview. Of these, 20 (33.9%) reported at
least one taste or olfactory disorder and 11 (18.6%) reported
both; 20.3% presented the symptoms before hospital admission,
whereas 13.5% presented during the hospital stay. Females
reported OTDs more frequently than males (8).

More in-depth, a following Italian multicenter study on
olfactory and gustatory function impairment in COVID-19
shows more objective data. The study cohort was composed of
161 patients in home quarantine and 184 hospitalized patients
in all disease stages from asymptomatic to severe disease.
Chemosensory dysfunctions have been self-reported by 74.2% of
COVID-19 patients; 79.3% of these patients reported combined
chemosensitive disturbances, 8.6% reported isolated olfactory
disorders, and 12.1% reported isolated taste disorders. At the test
time, the condition was self-reported as completely regressed in
31.3% of the patients concerning the sense of smell and in 50.4%

for the taste. More interestingly, functional evaluation of patients
who reported only gustatory disorders or without chemosensory
dysfunction highlights mild hyposmia in an additional 10.7% of
patients. Furthermore, 70% of patients who reported complete
resolution proved hyposmic to an objective test. Also, the
study population subgroup analysis showed a high frequency of
olfactory disorders throughout the observation period, ranging
between 77.4% (days 1–4) and 69.2% (days 25–35). Anosmia
or severe hyposmia affected 70.9% of patients in the early
stages; they improved after the first 10 days, reaching moderate
hyposmia values. Despite a more effective recovery of taste with
back to normal range after 15 days, the olfactory score improved
significantly in the first 2 weeks without returning to average
values but always remaining in the range of hyposmia, even in
the group of patients evaluated in the 3rd and 4th week from
the clinical onset. Interestingly, chemosensitive symptoms were
the first symptom of COVID-19 in 29.2% of patients and the
only one in 9.5% of the cases. In this study, according to other
previous studies, no correlation was found between olfactory and
gustatory disorders and nasal obstruction or rhinitis symptoms.
No significant correlation was found between the gustatory
and olfactory scores and the patients’ gender and age (9). In
April 2020, a multicenter European study reported olfactory
dysfunction (OD) in 85.6% of patients; 11.8% of these cases
presented with OD onset before other symptoms. In contrast
with the previous data, this study showed that males were
significantly less affected by OD than females (p = 0.001). In
addition, among the 18.2% of patients without nasal obstruction
or rhinorrhea, 79.7% were hyposmic or anosmic (10).

Another cross-sectional survey on OTDs that showed a
prevalence of 91% in the context of SARS-CoV-2 infection
reported that females presented OTDs more frequently than
males (52.6 vs. 25%, P = 0.036). Moreover, patients who did
present at least one OTD were younger than those without OTDs
(11). More recently, Chung et al. performed an observational
cohort study using questionnaires and smell tests, sinus imaging,
nasendoscopy, and nasal biopsies in selected patients. This
study showed olfactory symptoms in 12 of 18 (67%) COVID-19
patients and OD was confirmed in six patients by BTT smell test.
Computed tomography sinus, performed for the six patients with
OD, found radiological evidence of sinusitis, and nasendoscopy
did not find any olfactory cleft obstruction, nasal polyps, or
active sinusitis. Interestingly, nasal biopsies, performed in three
patients, showed minimal inflammatory changes represented
by mild infiltrations of lymphocytes, plasma cells, and rare
neutrophils in the stroma.

Immunofluorescence staining for CD68 established the
presence of macrophages within the epithelium and the stroma.
Follow-up evaluation by Butanol Threshold Test Assessment for
the six patients with OD shows that OD can persist even after
viral clearance in a subset of patients (12).

In conclusion, the systematic reviews show a wide variability
of olfactory impairment prevalence according to the relief
method of anosmia, subjective reports or objective testing or
combination, and geographic location. The prevalence varies
from 5.1% (7) to 98.0% (4). Interestingly, other recent reviews
and studies highlighted ethnic differences in the frequency and
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prevalence of this chemosensory dysfunction, lower in Chinese
COVID-19 patients than in Western cohorts of comparable size,
attributing them to the variants of virus entry protein across
populations (11, 12).

All these epidemiological data, even if conflicting due to
the different assessment methods and geographic areas, could
improve our knowledge of anosmia prevalence and patterns. It
would be even better if methods of anosmia relief and follow-
up were standardized. As noted above and in a recent case series
of 86 COVID-19 patients (13), questionnaires and studies on
clinical records could lead to an erroneous assessment of the
prevalence of anosmia and recovery time and its subclinical
persistence (9, 13).

PHYSIOPATHOLOGY

Understanding the underlying mechanism of anosmia linked
to the olfactory pathway’s anatomy and physiology could help
distinguish olfactory disorders into a conductive/peripheral or
sensorineural/central. Conductive olfactory dysfunctions occur
when mechanical barriers prevent proximity between odorants
and receptors on the olfactory epithelium. On the contrary,
sensorineural disorders occur due to deficient processing of
odorant stimulus by the olfactory receptors (ORs), olfactory
neurons, and olfactory pathways, up to the CNS (OB and
olfactory brain areas). Common conductive disorders arise from
obstructive nasal diseases, such as chronic rhinosinusitis, nasal
polyposis, allergic rhinitis, and nasal masses, characterized by a
combination of obstruction to nasal airflow transporting odorant
and mucosal edema that is inflammation related (13). On the
contrary, viral infections are considered the most common cause
of sensorineural olfactory dysfunction. Indeed, from 20–30 to
42.5% of adult patients with acquired sensorineural olfactory
dysfunction reported a recent history of upper respiratory
infection (13, 14), while the cumulative frequency of olfactory
loss associated with sinonasal disorders or acute infections of the
upper airways was 6% in the pediatric population (15). A recent
study showed that olfactory dysfunction’s etiologies changed with
age: the frequency of congenital causes of anosmia decreased
while upper respiratory tract infection-related anosmia frequency
and idiopathic causes increased (15).

It was estimated that children suffer from 6 to 10 colds per
year, whereas adults from 2 to 4 per year. More than 200 different
viruses can cause cold symptoms, but the great majority are
not associated with anosmia, hyposmia, and CNS involvement.
Besides, most previous reviews, similar to what is observed in the
context of the COVID-19 pandemic, have found that POVD is
more common in women. Still, olfactory dysfunction could occur
only after infection by a specific virus with peculiar neurotrophic
proprieties, and when the host had some predisposing factors,
virus may invade the CNS (16, 17). However, the pathogenesis
of sensory loss and associated predisposing factors after viral
infections are not well-characterized, and unfortunately, most
patients were investigated when the virus was no longer
detectable (17). The SARS-CoV-2 pandemic has turned our
attention on POVD again.

Now, we know the straight association between anosmia
and SARS-CoV-2. Thus, we should take advantage to better
understand the pathogenesis of POVD and the neuroinvasive
potential of the virus through the olfactory neuroepithelium
(ONE) and olfactory pathway.

After the intranasal inoculation of several viruses, previous
animal studies have shown central olfactory damage and damage
to deeper areas of CNS (18, 19).

Therefore, the question is whether the olfactory dysfunction
in COVID-19 and other viral infection arise from peripheral
OR damage as a result of local inflammation or involvement of
central olfactory pathways, or a combination of both (17).

Previous studies on POVD highlight direct evidence of a
broad spectrum of epithelial damage, from the reduced number
of ORs to abnormal dendrites that did not reach the epithelial
surface or that were lacking sensory cilia to decreased nerve
bundles or substitution of ONE with metaplastic squamous
epithelium (20–23).

In contrast with these studies, Chung et al., analyzing the
nasal mucosae of patients affected by SARS-CoV-2, showed
minimal inflammatory changes represented by mild infiltrations
of lymphocytes, plasma cells, and occasional neutrophils
localized in the stroma but without detailed characterization of
neuroepithelium alterations (12).

In a recent study, local TNF-α and IL-1β levels were assessed
in COVID-19 patients. TNF-α was significantly increased in
the olfactory epithelium of the COVID-19 group compared to
the control group. However, no differences in IL-1β were seen
between groups. In the authors’ opinion, this evidence implies
that inflammation can lead to OR impairment, and according to a
previous study, this impairment arises from inflammation, which
can damage olfactory neurons (24).

On the contrary, Kim and Hong demonstrated that persistent
PVOD is associated with decreased metabolism in specific brain
regions where the olfactory stimuli are processed and integrated,
suggesting that anosmia is, in some cases, caused by a central
injury mechanism (25). Virally induced damage of OB and other
brain areas was highlighted throughmagnetic resonance imaging
correlating olfactory function with OB volume (26).

Retrograde transport from the nasal mucosa to the brain
has been recently hypothesized for SARS-CoV-2 (27–30) and
previously described for SARS-CoV1 and HCoV-OC43 found
in specific brain areas of infected patients (31–33) probably
climbing via the olfactory nerves, as already shown in mice (34).
Furthermore, once in the brain, HCoV-OC43 can disseminate
from the OB to other regions of the brain, including the cortex
and the hippocampus, from which it appears to spread by a
trans-neuronal route before it eventually reaches the brainstem
and spinal cord. These results suggest that coronaviruses may
also invade the human CNS from the external environment
through the neuroepithelium of the olfactory nerve and OB,
before infecting the resident cells of the brain, and potentially
the spinal cord. Mori et al. also reviewed these same observations
for some neuroinvasive human viruses such as influenza
virus and Herpes simplex virus (HSV) (35). Presumably,
SARS-CoV-2 can involve the olfaction through a central
mechanism also.
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However, a recent study highlighted that olfactory epithelial
cells, but not OR neurons (e.g., horizontal basal cells and
supporting cells), express ACE2, the primary SARS-CoV-2
receptors (36). Therefore, virus could use alternative receptors to
directly enter into OR neurons or an alternative pathway for OB
involvement. The OBmay be the first site of CNS involvement by
neurotropic viruses.

IMMUNOLOGICAL ROLE OF THE OB

Olfaction, although not indispensable to the survival, is a crucial
sense that induces several feedback processes, also unconscious
in response to the molecular sampling of the environment.
These processes are very complex, as well as the anatomical
substrates that allow them. From odor receptors, the stimuli
converge in the OB and then, through a multitude of projections,
reach the higher brain regions, including the amygdala, septal
nuclei, pre-pyriform cortex, the entorhinal cortex, hippocampus
and the subiculum, thalamus, and the frontal cortex. These
bidirectional connections provide a unique dynamic system
(37). Considering the intricate interactions between the immune
system and the CNS and the complexity of the relationship
between CNS and the olfactory system, it does not surprise the
relevance of smell for immunological investigation. Since OB,
regularly exposed to the external environment, is considered an
immune organ that prevents the invasion of viruses into the CNS
(3), its dysfunction may be a concomitant factor that predisposes
to a worse outcome in respiratory virus infections when his
immunological function is impaired or disrupted as a result of
aging or some pathological processes. In many animal studies
concerning depression, olfactory bulbectomy is commonly
used. Unexpectedly, a variety of immune abnormalities
may be observed in the olfactory bulbectomized mice:
reduced neutrophil phagocytosis, lymphocyte mitogenesis,
lymphocyte number, and negative acute-phase proteins and
increased leukocyte adhesiveness/aggregation, monocyte
phagocytosis, neutrophil number, and positive acute-phase
proteins. In addition, after bulbectomy, increases in serum IL-1β
concentration and PGE2, while basal anti-inflammatory cytokine
IL-10 concentration is suppressed, may be observed (38, 39).

These observations suggest that the olfactory system is
intricately related to immunological function, and perturbations
in the immunological system and in the olfactory system may be
significant to each other (37).

Viral infection of the CNS is a rare condition and efficient
mechanisms must be in place in the OB to protect the CNS from
viral spread: Kalinke et al. showed that after intranasal instillation
of VSV in mice with selective type I interferon receptor depletion
only in neuroectodermal cells, the virus moved via the olfactory
nerves to the OB and further spread over the whole CNS. On
the contrary, control mice infected with the same virus showed
infection of olfactory nerves, but within the OB, the virus was
arrested in the glomerular layer (40).

This experiment highlighted in the OB a type I IFN-dependent
mechanism that efficiently inhibited virus spread. After exposure
to viruses, expression of MHC I and II, pattern recognition

receptors (PRRs), and type 1 interferon (IFN-I) is increased
in astrocytes, microglia, and ONE. The increase in INF-I
and the rapid infiltration of both CD4+ and CD8+ T cells
decrease viral load in the OB (3). Therefore, inflammatory cell
infiltration in OB, while possibly involved in the development of
anosmia, contributes to the viral spread arrest. Unfortunately, it
is unknown whether type I IFN stimulation of olfactory neurons
affects axonal virus spread and infection of the CNS.

In an interesting recent work, according to a previous study
that demonstrated selective expression of interferon-gamma in
sustentacular cells inducing anosmia without damage to the
neuroepithelia, the authors hypothesized that IFNs, or other
cytokines, can activate an antiviral response within the OR
neurons that suppress OR expression. They also demonstrated
that interferon signaling correlates with OR neuron dysfunction
(41). If this IFN-I antiviral response model is confirmed in
patients with COVID-19 infection, ORs may have an essential
role in the virus mechanisms of cell infection.

The OR neuron cell body is located in the olfactory
epithelium, whereas their axons project into the OB, and the
virus can readily spread within the OB in an anterogrademanner.
To further move to other brain areas, the virus can spread
trans-synaptically using retrograde and anterograde transport.
Considering the capability of some coronaviruses to spread
from the lower respiratory tract by a synapse connection to
the medullary cardiorespiratory center (partially responsible
for the acute respiratory failure of COVID-19 patients) (34),
it is possible to hypothesize an inverse path: SARS-CoV-
2 could spread from OB to the CNS to periphery through
nerve endings of the lower respiratory tract. Obviously, the
virus can enter the CNS also via non-olfactory paths. It was
shown that, after intranasal VSV instillation, the olfactory route
is preferentially used for CNS entry. Only if OR neurons
are destroyed, are alternative entry paths, such as via the
cerebrospinal fluid or the trigeminal nerve or blood, used (27).
The local microenvironment of distinct brain regions may be
critical to determine virus permissiveness. The neurological
involvement can occur independently of the respiratory system
and coronaviruses could infect brainstem neurons responsible
for the cardiorespiratory regulation, resulting in hypoxia (42).
It would be interesting to know if OR neurons are infected,
microscopic alteration of OB, and grading of corresponding
olfaction alteration, under conditions of subclinical infections
vs. severe disease. Unfortunately, to date, only a few studies
documented OB involvement. Politi et al. show a first report
of in vivo human brain involved in a patient with COVID-19
showing an MRI signal alteration compatible with viral brain
invasion in the OB and cortical region (i.e., posterior gyrus
rectus) associated with anosmia 3 days later his onset. No
brain abnormalities were seen in other patients with COVID-
19 presenting anosmia who underwent brain MRI in this and
other studies (43). Nevertheless, COVID-19 patients in need of
admission in an intensive care unit, not investigated adequately
for anosmia, could have direct involvement of higher CNS center
detectable by MRI. Li et al. reported a 21-years-old male with
a 5-days loss of smell, initially without other symptoms and
respiratory tract involvement. On the day of discharge, after
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23 days of hospitalization with partial recovery of the sense of
smell, brain magnetic resonance imaging (MRI) showed smaller
right olfactory blub and linear hyperintensities inside bilateral
olfactory nerves, suggestive of bilateral olfactory neuropathy (44).
A recent case series highlighted the abnormal intensity of the OBs
in five COVID-19 adult patients, three of whom had anosmia,
maybe due to abnormal enhancement or microbleeding because
they only underwent the sequence after injection of gadolinium
in fat-suppressed T1WI (45).

SARS-COV-2–HOST INTERACTION AND
ORS

Virus entry into specific cells and virus spread in different organs
depend on virus–receptor interaction and the involvement of
coreceptors. Using multiple receptors might be advantageous for
virus spread to various organs. Some viruses can use more than
one receptor or mutate their envelope proteins by acquiring the
ability to bind different receptors or coreceptors. Thus, in the
beginning, infection usually has a minor impact on the host,
while the subsequent replication of the virus may significantly
damage secondary organs (46, 47). Admittedly, SARS-CoV-2
causes a broad spectrum of clinical manifestations characterized
in most cases in significant pulmonary damage. Still, other
organs may be involved, including the heart, kidney, liver,
gastrointestinal tract, gonadal function in males, and, as recently
emphasized, the CNS (7).

The angiotensin-converting enzyme 2 (ACE2) is considered
the primary receptor for cellular entry for SARS-CoV-2 (29). This
knowledge has driven researchers to investigate the expression of
ACE2 in different tissues to relate it to the clinical phenotypes
of the disease. More specifically, regarding the neurological
involvement, glial cells and neurons have been reported to
express ACE2 receptors, and previous studies have shown that
SARS-CoV may cause neuronal death in mice by invading the
brain via the olfactory epithelium (48). Autopsy findings in
humans have also demonstrated the presence of SARS-CoV
by electron microscopy, immunohistochemistry, and real-time
reverse transcription-PCR into the CNS (48). The confirmed
entry mechanism of coronaviruses (SARS-CoV, MERS-CoV, and
hCoVs) is mediated by the Spike protein of the virus that
directly binds cell receptors (ACE2) and, after being cleaved
by a protease (TMPRSS2), allows membrane fusion (49–52).
Thus, the coronavirus entry into cells seems to be conditioned
not only by the expression of the receptor but also by the
protease expression. Therefore, several studies have performed
ACE2 and TMPRSS2 co-expression profiles into healthy human
tissues to identify possible target organs. However, a recent
literature review has underlined several limitations of most
studies, highlighting that these two proteins alone cannot
explain all the clinical observations. Indeed, it was noted that
several cell lines, which do not express ACE2 RNA, can be
infected by SARS-CoV-2 and that ACE2 expression could not be
detected in healthy individual organs, including lung, bronchus,
nasopharynx, esophagus, liver, and stomach, contrasting to
clinical data of SARS-CoV-2 infection. It was also observed,

for instance, that cardiomyocytes express ACE2 but do not
appear to express TMPRSS2/4, and some studies reported ACE2
expression in various brain cells, but ACE2 and TMPRSS2/4
were rarely co-expressed within the same cells. Besides, a recent
study failed to detect ACE2 expression in mature OR neurons
at either the transcript or protein levels and in neurons in
the OB. A detailed survey of nasal epithelium did not detect
TMPRSS2 in the neuronal component (53, 54). Together, these
observations suggest that our understanding of SARS-CoV-2
cellular tropism is still insufficient, and maybe SARS-CoV-2
could bind alternative receptors to enter into several cells. We
have hypothesized that these alternative receptors need to have
specific properties, including being highly conserved between
species, presenting polymorphism, ubiquitous expression in
human organs, and altered expression depending on age, sex,
and comorbidity.

Our attention was focused on a family of receptors,
“sensory G-protein coupled receptors (GPCRs)” (55), still poorly
understood, suffering from the bias due to their discovery as
specialized receptors expressed on sensory neurons only in the
nose: ORs.

ORs represent the largest gene family in the human genome
(418 genes classified into 18 families). ORs are divided into
two classes, class I receptors and class II receptors, based on
the species they were initially identified: aquatic and terrestrial
animals, respectively. In humans, all class I genes are located
on chromosome 1, while class II genes are located on all
chromosomes except chromosomes 20 and Y (40, 56).

ORs are expressed throughout the body, and their expression
in non-olfactory tissues has been documented for more than
20 years, but the most significant part is still “orphans” of
ligands. Their functional roles were unknown, but many studies
have demonstrated that these G-protein-coupled receptors are
involved in various cellular processes (40, 57).

Highly Conserved Receptors
Olfaction is one of the most developed senses in animals
[including bats, the natural reservoir of SARS-CoV-2 (58)], and
evolutionary conservation was also demonstrated for ectopic OR
between mouse, rat, and humans (40, 59–61).

OR proteins are composed of highly conserved (each
family having >40% sequence identity) amino acid motifs that
distinguish them from other GPCRs and some highly conserved
motifs with other non-OR GPCRs. These OR residue sequences
seem to have specific functional activities. In analogy to other
Class A GPCRs, each OR has seven transmembrane domains
(TM1–TM7) connected by extracellular and intracellular loops.
Additionally, there is an extracellular N-terminal chain and an
intracellular C-terminal chain that, together with TM4, TM5, and
the central region of TM3, are highly variable, participating in
ligand binding. The fact that some amino acid sequences have
been evolutionarily conserved across species implies that they
may have critical roles (61).

Polymorphism
There is a wide variability of functional OR genes among
different people. Recent studies, genotyping 51 odor receptor
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loci in 189 individuals of several ethnic origins, found 178
functionally different genomes. Additional variation in the
population may come from differences in gene expression.
Indeed, other experiments have found that the expressed OR
repertoire of any pair of individuals differs by at least 14%,
suggesting that polymorphisms also exist in the promoter and
other regulatory regions. Furthermore, variation in the copy
number of OR genes contributes significantly to individual
olfactory abilities (55, 61, 62).

Ubiquitous Expression in Human Organs
ORs are detected in migrating neural crest, smooth muscle,
endothelial precursors and vascular endothelium, endocardial
cells, neuroepithelium, and ocular tissues. ORs were found
in various additional non-olfactory tissues, including the
prostate, tongue, erythroid cells, heart, skeletal muscle, skin,
lung, testis, placenta, embryo, kidney, liver, brain, and gut
(40). Moreover, ORs are detected in cancerous tissues of
the liver, prostate, and intestine (63, 64). In non-olfactory
tissues, several ORs are co-expressed in the same cell, as
demonstrated for the B- and T-lymphocytes, polymorphonuclear
leukocytes, and human sperm cells, while in the olfactory system,
only one allele of OR gene is expressed in each olfactory
neuron (40).

Physiological functions of non-olfactory ORs are not entirely
understood and seem to be unrelated to the olfactory system
in diverse cell types. For instance, renal and cardiovascular
ORs regulate blood pressure, ORs on airway smooth muscle
decrease remodeling and proliferation, while exposure of
the airways to γ/LPS resulted in markedly increased OR
expression (65). ORs on pulmonary macrophages, induced
by IFN-γ and LPS, may contribute to innate immune
response (66).

Altered Expression Depends on Age, Sex,
and Comorbidity
A large number of OR genes appear to be detectable only after
birth. In mice, experiments demonstrated that the expression
level of ORs could be classified into different patterns that
reach a peak at different ages. For example, some ORs reach
a height of expression between the 10 and 20th day of life
and then reduce to a low level while other ORs reach a
peak at the 10th day of life and continue to be expressed
at a high level until 18 months. In the authors’ opinion,
these expression patterns may correlate with their functions
in each life stage, such as nursing or reproductive cycle (61).
Additionally, there is a high incidence of age-related olfactory
dysfunction supported by histological evidence in the olfactory
epithelium (67).

Interestingly, sex differences in olfaction are highlighted in a
meta-analysis: the female OB presents more dense microcircuits
and slower aging than males (68). Another study reveals that
mRNA levels of sex steroid, GnRH receptor, and aromatase in the
OB vary with sex, social status inmales, and females’ reproductive
condition. In the authors’ opinion, these observation highlights
that during the reproductive cycle, OR expression level may

change to fine-tune the olfactory system, suggesting the
hypothesis that the changes in receptor levels could be an
essential mechanism for regulating reproductive, social, and
seasonal plasticity in olfactory perception (69). In another work,
a sex difference in the absolute number of total, neuronal, and
non-neuronal cells was demonstrated, favoring women by 40–
50%, also after correction formass. Thus, it was hypothesized that
quantitative cellular differences may have functional impact (70).
ORs in non-olfactory tissue are correlated with the development
of several diseases such as glucose homeostasis in diabetes,
tumor cell proliferation, apoptosis, metastasis, and invasiveness.
Some ORs seem to accelerate obesity development, angiogenesis,
and tissue regeneration and to initiate hypoxic ventilatory
responses (71).

Concerning the CNS, in the adult human brain, several
ORs are expressed in neurons of the neocortex, hippocampus,
dentate gyrus, striatum, thalamus, nuclei of the basal forebrain,
hypothalamus, nuclei of the brainstem, cerebellar cortex, dentate
nucleus, and neurons of the spinal cord. ORs have also
been reported in the autonomic nervous system and murine
sensory ganglia. Their functions and kinetic expressions are
still unknown (65). Interestingly, OR gene expression into the
CNS is altered in several neurodegenerative diseases, including
Parkinson’s disease (PD) and Alzheimer’s disease (AD). For
example, it was demonstrated that the mRNA encoding for some
ORs increases with age in the cortex and hippocampus of wild-
type and transgenic Alzheimer’s disease-like mice; nonetheless,
transcript expression of the same ORs is impaired in the
brain of Alzheimer’s disease-like mice. Besides, in transgenic
Alzheimer’s disease-like mice, ORs are observed near amyloid
plaques (65, 72).

All these features make ORs ideal viral receptors and
could also contribute to explain the broad spectrum and
wide interindividual variability of clinical manifestations
in COVID-19.

We have no data to support our hypothesis. Our knowledge
of the ORs is insufficient in terms of physiological and
pathological functions, intra-individual diversity during life,
epigenetic processes acting on ORs expression, and above all
ORs ligands within the different cell types. Identifying these
cell-surface receptors as required for viral infection, given their
peculiar characteristics, may be necessary for developing antiviral
therapies and effective vaccines. To our knowledge, the only
literature data supporting the possible involvement of ORs in
virus entry into a cell is on OR14I1 as a receptor for HCMV
infection. This OR is required for HCMV attachment, entry, and
infection of epithelial cells, revealing previously neglected targets
for vaccines and antiviral therapies (73, 74). Unfortunately, like
many others, OR14I1 is an “orphan receptor” without known
ligand. As noted concerning HCMV, these findings do not
exclude roles for other receptors and coreceptors during infection
but answer questions regarding epithelial tropism of HCMV and
offer alternative opportunity to develop antiviral strategies for the
management and transmission of the disease. The same could
happen in COVID-19 and other infectious diseases if only ORs
were considered.
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HYPOTHESIS STATEMENTS AND DATA
DISCUSSION

Understanding the mechanisms behind COVID-19-related
olfactory dysfunction will require further investigation
to delineate his prognostic value concerning coronavirus
neuroinvasion, immune reaction, and virus spread from the
nasal cavity to other distant organs. However, considering all the
data above described, it is possible to propose several hypotheses.

Since anosmia has been observed generally in the absence
of cold and rhinosinusitis and considering the reported
persistent hyposmia also detected after clinical recovery, we may
hypothesize the prevalence of sensorineural dysfunction.

Defining the role of local inflammatory mediators in host
defense and tissue damage of ONE may explain the mechanism
of COVID-19-related anosmia. Indeed, in non-infected cells,
the interaction between virus and receptor may induce defense
mechanisms resulting in cytokine secretion (i.e., interferons),
apoptosis, and innate immune response, which can have a
significant impact on the development of disease both locally and
at the systemic level.

Adults with severe disease have a depletion of the B-cell
compartment (75), and levels of serum IL-2R, IL-6, IL-10, and
TNF-α are higher than in moderate cases. The absolute number
of CD4+ T and CD8+ T cells decreased in nearly all the patients
and weremarkedly lower in severe cases thanmoderate ones. The
expression of IFN-γ by CD4+ T cells tended to be lower in severe
cases (14.1%) than in moderate ones (22.8%) (76).

On the contrary, in the pediatric population, recent studies
showed that an early polyclonal B-cell response (75) augmented
percentage of CD3+, CD4+, and CD8+ lymphocytes related
to increased levels of IL-6, IL-10, and IFN-γ (76). These data
observed at the systemic level may reflect what locally happens
when, in the elderly, IFN-dependent OB defense mechanism is
not efficient, causing OB barrier to overcome, subsequently, virus
spread and worse outcome.

It may be suggested, considering the above-discussed
interaction between olfactory and immunological systems, that
the nasal epithelium and OB may be one of the first battlefields
between SARS-CoV-2 and host; the outcome of this battle
may be critical for the pathological development of COVID-
19. Considering the OB as an immune organ, if the local fight
against SARS-CoV-2 is successful, the damage remains localized,
leading to anosmia, as in the case of women and younger patients;
conversely, the virus can spread and replicate in the upper
olfactory sites causing central anosmia or directly invading the
CNS. The prevalence of chronic olfactory impairment increases
with age. Olfactory deficit affects up to 50% of people ages ≥65
years and >80% of people ages ≥80 (77). It is clear that COVID-
19 causes more severe complications in patients with advanced
chronological age. The age-related dysregulation of ONE and
OB homeostasis might contribute to more severe manifestations
of COVID-19 in the elderly, likely due to immunosenescence.
The spread of the virus and the neuroinvasive potential have
been proposed according to the known routes of SARS-CoV
and a growing body of findings specific for SARS-CoV-2. Since

the basal expression level of receptors determines, at least in
part, the tropism of the virus, identifying the kind of receptor
involved is crucial to predict which tissues are probably involved
in infection and to guide research toward new prevention and
therapeutic strategies. In this context, considering the contrasting
data concerning ACE2 expression in human tissue that cannot
entirely explain the wide spectrum of clinical manifestation, we
hypothesize that SARS-CoV-2 could use ORs as ideal alternative
entrance receptors as already demonstrated for HCMV.

This hypothesis may have the power to attract the attention of
the broader community of scientists and neuroscientists on the
olfactory system to investigate the biological significance of these
neglected receptors in sickness and health.

Besides the acute neurological involvement of SARS CoV-
2 infection, there are many overlaps between SARS-CoV-2-
related manifestations and OR-related disease. For instance, it
has been shown in animal and human studies that coronaviruses
could be implicated in the pathogenesis of Parkinson’s disease,
acute disseminated encephalomyelitis, multiple sclerosis, and
other neurodegenerative diseases, as well as for ORs. Further
monitoring for long-term sequelae may reveal viral contribution
in pathophysiology or increased risk for neuroinflammatory
and neurodegenerative diseases and the possible link with OR
dysregulation or damage.

In light of these observations, the role of ORs and OB in
COVID-19 infection could be significant, explaining at least in
part the age- and sex-related differences in the clinical course.

In conclusion, from anosmia onset in SARS-CoV-2-positive
patients, a precise timing for the olfactory route climbing by
the virus can be speculated. In this window period, a potential
early intervention could change the disease’s course, supporting
natural defenses when they lack, as a result of age, sex, or
other genetic backgrounds. Since PAMPs (pathogen-associated
molecular patterns) can improve the up-regulation of IFN, it
could be hypnotized to use immune-stimulatory molecules to
increase the ability to fight the infection. Simultaneously, the use
of other topical pharmacological agents (i.e., antiviral drugs and
“molecular competitor binding ORs”) could be helpful.

CONCLUSION

The evidence of OB involvement in COVID-19 remains scarce,
but the knowledge of this different way of spreading could lead to
significant developments in the management of SARS-CoV-2.

Magnetic resonance imaging cannot be an early detector tool
in all COVID-19 patients with anosmia. However, the latest
evidence on the CNS involvement, beyond the anosmia, could
justify it as a valid indication in high-risk patients. Autopsies of
the COVID-19 patients, detailed neurological investigation, and
attempts to isolate SARS-CoV-2 from OB and neuronal tissue
can clarify the role of this novel coronavirus in the mortality
linked to neurological involvement. Existing studies to assess the
incidence of anosmia and related immunological patterns are
limited; therefore, investigating the local cytokine composition at
the onset of symptoms could be useful.
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In conclusion, we invite to focus on anosmia in each
patient suspected of infection or with a positive swab for
SARS-CoV-2. Future studies should evaluate the degree
of functional impairment (grading), central/peripheral
anosmia (localization), and the temporal course
(evolution) through MRI and olfactory tests, perhaps
through standardized workup protocol to explore this
issue better.
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Acute Seizures Occurring in
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Claudia Kirsch, Ruben Kuzniecky and Souhel Najjar

Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, North Shore University Hospital, Manhasset, NY,
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Seizures are an infrequent and serious neurological complication of SARS-CoV-2

infection, with limited data describing the etiology and the clinical context in which these

occur or the associated electrographic and imaging findings. This series details four

cases of seizures occurring in patients with COVID-19with distinct time points, underlying

pathology, and proposed physiological mechanisms. An enhanced understanding of

seizure manifestations in COVID-19 and their clinical course may allow for earlier

detection and improved patient management.

Keywords: seizures, SARS-CoV-2, COVID-19, status epilepticus, neurological complication

INTRODUCTION

Coronavirus disease 2019 (COVID-19) associated with severe respiratory syndrome coronavirus
2 (SARS-CoV-2) presents with cough, fever, fatigue, and gastrointestinal symptoms. However,
neurologic manifestations are reported in a third of patients and include dizziness, headaches,
impaired consciousness, neuromuscular injury, changes in taste or smell, stroke, ataxia, or
seizures (1).

Two early multicenter studies from China reported seizures in 0.47–0.66% of patients with
COVID-19 (1, 2). Subsequent individual cases of seizures associated with COVID-19 were
described, both as a presenting feature of COVID-19 and as a complication emerging later in the
course of critically ill patients (3–12). Although seizures are uncommon, their occurrence is not
unexpected given their association with other human coronavirus infections such as SARS-CoV
and MERS reported in the literature (13, 14). There is increasing appreciation of the SARS-CoV-2
pathogenic mechanisms causing neurological injury and seizures.

This paper presents the clinical course and electroencephalographic (EEG) and
neuroradiographic features of four cases of acute symptomatic seizure in the setting of SARS-
COV-2 infection, highlighting distinct pathological mechanisms by which seizures may occur in
the context of the unique and formidable illness of COVID-19.

CASE PRESENTATIONS

Case 1
A 48-year-old woman presented to urgent care complaining of fever, cough, vomiting, and
malaise. Pneumonia was confirmed on chest X-ray, and she was prescribed with doxycycline
and azithromycin. Three days later, she was brought in emergently for progressive confusion.
She was febrile and tachypneic, with a blood pressure of 179/87 mmHg. She was alert, though
aphasic, with impaired verbal output, naming, comprehension, and repetition. Babinski reflex was
positive bilaterally.
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The patient then experienced three consecutive generalized
tonic–clonic seizures (GTCS) associated with full body stiffening,
dilated pupils, foaming at the mouth, and tongue bite up to
6min apart, concerning for status epilepticus for which she
was administered intravenous (IV) lorazepam and levetiracetam
with resolution.

Initial laboratories were notable for mild transaminitis (AST
34 µ/L, ALT 53 µ/L) and elevated inflammatory markers (D-
dimer 279 ng/ml, ferritin 357 ng/ml, and C-reactive protein 32
mg/ml). The toxicology result was negative. The chest X-ray
result revealed bilateral interstitial infiltrates, and non-contrast
computed tomography (CT) of the head was unrevealing.
The patient was empirically treated for encephalitis with
acyclovir and ceftriaxone. Lumbar puncture was traumatic,
with the white blood cell count corrected to five per cubic
millimeter and elevated protein of 125 mg/dl. The results of
cerebrospinal fluid (CSF) gram stain, culture, and polymerase
chain reaction (PCR) for herpes were subsequently negative.
The nasopharyngeal COVID-19 PCR test result was positive.
CSF COVID-19 PCR was unavailable. Continuous EEG was
performed postictally, showing severe generalized slowing but no
epileptiform activity.

The patient remained febrile, tachycardic, and tachypneic,
requiring intubation for hypoxemic respiratory failure. A 5-
day course of high-dose IV methylprednisolone was given for
suspected COVID-19-associated central nervous system (CNS)
involvement, as well hydroxychloroquine and a single 400-mg
dose of tocilizumab. On day 13, the patient was extubated,
with significant neurological improvement and resolution of
her aphasia. MRI of the brain on day 19 demonstrated T2-
weighted (T2) and fluid-attenuated inversion recovery (FLAIR)
hyperintensity in the medial temporal lobes bilaterally without
restricted diffusion (Figure 1). The patient gradually improved
and was discharged on day 25.

FIGURE 1 | (A) Case 1: 48-year-old, COVID-19-positive female with altered mental status; 3-T MRI axial FLAIR image (red arrows) of hyperintense FLAIR in the medial

temporal lobe because of altered mental status and seizures, unable to hold still for scan, with resultant motion artifact. (B–D) Case 2: 29-year-old, COVID-19-positive

female who presented with seizures. (B) 1.5-T MRI axial FLAIR (red arrow) of the left temporal lobe with hemorrhagic venous infarction, with the FLAIR hyperintensity

consistent with edema and mass effect effacing the left ambient cistern. (C) 1.5-T MRI—time-of-flight MRI—with red arrows noting the absent flow void with venous

thrombosis of the left transverse and sigmoid sinus and the left internal jugular vein. (D) CT venogram with the purple arrow demonstrating absent contrast

enhancement and thrombosis of the left transverse and sigmoid sinus.

Case 2
A 29-year-old woman with iron deficiency anemia and
menorrhagia presented after two GTCS with postictal confusion
in the context of preceding fever, cough, and headache for 2
weeks. The initial vital signs were normal, except for tachycardia.
While under observation, she suffered another GTCS with right
gaze deviation, forced eye opening, tonic limb movements, and
loss of awareness. This was aborted with IV lorazepam and
levetiracetam. Postictal right-sided paralysis was noted.

The nasopharyngeal COVID-19 PCR test result was positive.
Prolactin and D-dimer were notably elevated. Non-contrast
CT of the head revealed edema, mass effect, and subcortical
hemorrhages in the left temporal and parietal lobes as well as
a hyperdense left transverse sigmoid sinus (Figure 1). A CT
venogram confirmed left sigmoid and transverse cortical venous
thrombosis (CVT), for which IV heparin was commenced.
Pulmonary ground-glass opacities were noted on imaging.

EEG demonstrated asynchronous slowing and attenuation
over the left hemisphere. CT of the head on day 2 showed
evolving left temporal–parietal hemorrhagic infarction with
midline shift and partial effacement of the right lateral and
third ventricles. The patient developed bilateral abducens palsies
and papilledema and was given acetazolamide for increased
intracranial pressure. Mentation improved significantly by day
9 as she was able to respond to questions and moved all limbs
antigravity, with a mild right facial droop. Hypercoagulable
workup revealed anticardiolipin IgM antibodies. The patient was
discharged on enoxaparin and levetiracetam.

Case 3
A 64-year-old woman with a history of hypertension, stage
4 chronic kidney disease, and non-insulin-dependent type 2
diabetes presented after two GTCS, lasting 2min each, with
postictal unresponsiveness. There had been 3 days of preceding
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FIGURE 2 | (A–F) Case 3: 64-year-old COVID-positive female, axial 3-T MRI. (A–C) Axial FLAIR. (D,E) Axial DWI. (F) Axial apparent diffusion coefficient (ADC). FLAIR

hyperintensity in the left was greater than that in the right cerebral hemispheres, with punctate DWI hyperintensity (red arrowheads) with ADC restricted diffusion. (F)

Left precentral sulcus and right superior medial right parietal lobe, foci of FLAIR, DWI hyperintensity without restricted diffusion, and ADC T2-shine through,

concerning posterior reversible encephalopathy in a patient with elevated blood pressure.

headache, vomiting, cough, and malaise. The patient was
febrile, tachycardic, and tachypneic, with a blood pressure of
213/100 mmHG. She appeared obtunded with dilated and poorly
responsive pupils, right gaze preference, andminimal withdrawal
in all limbs to painful stimuli. Under observation, she suffered
two additional GTCS and was treated with IV lorazepam,
levetiracetam, and fosphenytoin with clinical cessation. Labetalol
was given for hypertension.

The laboratory results were significant for thrombocytopenia
(77 K/µl), hyponatremia (126 mmol/L), elevated creatinine (2.7
mg/dl), blood urea nitrogen (40 mg/dl), and elevated ferritin.
The non-contrast CT of the head and the chest radiograph
were unrevealing. The CSF showed four nucleated cells with
lymphocytic predominance, while gram stain, culture, and herpes

testing were negative. The nasopharyngeal COVID-19 PCR
was positive.

EEG was notable for generalized periodic discharges and
slowing. Brain MRI without gadolinium, due to kidney
dysfunction, showed punctate diffusion positive lesions in the left
precentral sulcus and superior right medial parietal subcortical
regions as well as patchy T2 prolongation in the left frontal,
occipital, and bilateral parietal and cerebellar regions, most
consistent with posterior reversible encephalopathy syndrome
(PRES) (Figure 2).

The patient remained obtunded without seizures on
continuous EEG, with steady improvement of her hyponatremia
and blood pressure. Though PRES was of primary concern, a
5-day course of high-dose IV methylprednisolone was given due
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FIGURE 3 | (A–H) Case 4: 68-year-old, COVID-positive female. (A,B) Hyperfine 0.064-T portable MRI obtained 26 days after admission at the patient’s bedside

showing focal T2 and FLAIR hyperintensities (red arrows). (C–H) 3-T MRI obtained 39 days after admission. (C) Axial T2 and (D) axial FLAIR hyperintensities (red

arrows): left subinsular cortex, lentiform nuclei, thalami, and left temporal lobe. (E,F) Axial FLAIR, (G) axial ADC, (H) axial DWI, T2, FLAIR, and DWI hyperintensities

(red arrows): bilateral olfactory tracts, medial temporal lobes including hippocampal tails, caudate heads, fornices and posterior commissural fibers, right posterior

lateral temporal lobe without restricted diffusion.

to consideration of inflammation-mediated seizures associated
with COVID-19. The respiratory function was stabilized, and
mentation improved by day 10. On day 21, she was discharged
home at clinical baseline.

Case 4
A 68-year-old woman presented for diarrhea, fever, malaise,
cough, and shortness of breath and found to be positive
for COVID-19 3 days prior. She was febrile, tachycardic,
tachypneic, and hypoxemic upon arrival. The chest X-ray
showed bilateral lung infiltrates for which she was treated with
azithromycin, ceftriaxone, and hydroxychloroquine. The patient
decompensated, requiring intubation due to acute respiratory
distress syndrome, and was given methylprednisolone
and anakinra.

At 2 weeks into her course, the patient remained
obtunded off of sedation. The head CT obtained on
days 16 and 25 after admission demonstrated decreased
attenuation in the left subinsular cortex and the thalamic
region. EEG on day 17 showed severe generalized
slowing. On day 26, portable 0.06-T MRI (Hyperfine)
of the brain without contrast was performed, showing

areas of T2 and FLAIR hyperintensity in the left
thalamus and lentiform nuclei, though technically limited
(Figure 3).

By day 27, she was extubated but remained confused, with
the psychomotor slowed, and unable to follow commands.
EEG on day 33 revealed unremitting high-amplitude
centrotemporal sharp rhythmic 3–5-Hz activity concerning
non-convulsive status epilepticus (NCSE) (Figure 4). Clinical
improvement was noted on the following day after the
administration of IV lorazepam, levetiracetam, and lacosamide,
with EEG transitioning to moderate background, slowing
with intermittent left temporal sharp waves. The CSF
results on day 36 were normal, including for COVID-
19 PCR. A follow-up 3-T contrast-enhanced brain MRI
on day 39 showed T2, FLAIR, and diffusion-weighted
imaging (DWI) hyperintensity without restricted diffusion
along the bilateral olfactory tracts, caudate heads, posterior
commissural fibers of the fornices, hippocampal tails, and
right temporal lobe (Figure 3). By day 49, the patient was
discharged to rehabilitation, alert and capable of conversation,
though with moderate persistent cognitive and bilateral
proximal weakness.
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FIGURE 4 | (A,B) Case 4. Video EEG results. (A) Day 1 showing the high-amplitude rhythmic sharply contoured; intermixed 3- and 6-Hz activity concerning

non-convulsive status epilepticus. (B) Day 2 with resolution of rhythmic slowing after the administration of lorazepam and levetiracetam, corresponding with improved

mentation. Low-frequency filter, 1Hz; high-frequency filter, 70Hz; sensitivity, 7 µV/mm; timebase, 30 mm/s.

Summaries of the pertinent clinical details of each case are
presented in Table 1.

DISCUSSION

The cases above describe four scenarios of seizures occurring
in association with COVID-19, illustrating the remarkable
variety of neurological complications accompanying this disease.
Seizures in this report may occur by differing mechanisms,
including in the context of inflammatory changes in the brain
as demonstrated by neuroimaging or vascular abnormalities
related to the effects of SARS-CoV-2 on hypercoagulability and
endothelial cell dysfunction.

In summary, the first case presented with seizures during

the early acute phase of infection, with elevated inflammatory

markers, and FLAIR changes in the temporal region on
MRI indicative of focal inflammation (Figure 1A). Lumbar
puncture did not reveal an evidence for encephalitis. In addition
to antiseizure medications, the patient responded well to
immunotherapy, with good neurological outcome, supporting
a hypothesis of excessive innate immune activation. In case 2,
the seizures resulted from acute CVT in the left transverse and
sigmoid sinus, resulting in a left temporal lobe venous infarct
(Figures 1B,D), highlighting a coagulopathic state associated
with COVID-19. The seizures observed in case 3 manifested in
the setting of a patient with elevated blood pressure and end-
stage kidney disease with PRES, raising concern for COVID-19
effects on endothelial cell function and vascular permeability.
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This patient demonstrated classic findings of increased T2,
DWI, and FLAIR hyperintensity without restricted diffusion
in the setting of elevated blood pressure (Figures 2A–F) and
with a few punctate foci of restricted diffusion and ischemic
change. The association of PRES as a neurologic complication
of COVID-19 has been recently documented in the literature
(15–18). The final patient was determined to have seizures
later in her course, along with persistent altered mentation
and radiographic findings suggestive of inflammatory changes
and concern for immune-mediated necrotizing encephalopathy.
Early portable magnetic resonance imaging using a Hyperfine
MRI at the bedside, as the patient was too unstable to come
down to the scanner (Figures 3A,B), demonstrated thalamic
T2 and FLAIR hyperintensity, with follow-up conventional
magnetic resonance imaging 2 weeks later showing bilateral
hippocampal, forniceal, sub-insular, and orbitofrontal T2 and
FLAIR abnormalities. Initiating antiseizure medications led to
significant electrographic improvements and eventual delayed
clinical improvement.

A few recent case reports are published in the literature
describing acute symptomatic repetitive seizures in the setting
of COVID-19. In an early report, the patient had positive CSF
COVID-19 PCR and mesial temporal and lateral ventricular
signal hyperintensities on MRI indicative of encephalitis
(3). Additional rare cases may present with lymphocytic
pleocytosis (19).

De novo focal seizures including status epilepticus in the
absence of other medical comorbidities, neuroimaging, or
lumbar puncture abnormalities are also described (7, 9–12, 20).
New-onset seizures are reported in medically complex elderly
patients with COVID-19; however, these were in the setting
of multiorgan failure, metabolic derangements, and, in certain
patients, superimposed sepsis or hypotension as complicating
factors, and unfortunately, MRI or lumbar puncture results
were often unavailable (4, 7, 8). Seizure exacerbation and status
epilepticus may also be exacerbated in patients with preexisting
epilepsy and focal lesions, where COVID-19 infection may have
lowered the seizure threshold (5, 21).

In a series of 214 consecutive patients with COVID-19 from
China, only one individual experienced a convulsion, although
16 additional patients were reported with unspecified impaired
consciousness (1). An additional retrospective multicenter study
of 304 consecutive patients with COVID-19 reported only two
cases of seizure-like events (2). One patient presented with
facial deviation and acute anxiety, while the other experienced
myoclonus with electrolyte imbalance. Eight additional patients
were described as encephalopathic or comatose. Notably, in both
publications, EEG was not performed due to concerns regarding
infection control.

Although clinical seizures are infrequently encountered with
COVID-19, NCSE may still need to be excluded by EEG
in patients with unexplained altered mentation. Investigators
recognize encephalopathy as a common occurrence among
severely ill patients with COVID-19; however, concurrent EEG
data are often unavailable, and further research is required
to understand the true incidence of electrographic seizures in
patients with SARS-CoV-2 infection. Relatively small cohorts

of patients with COVID-19 and EEG are published to date,
with the patients in these studies only undergoing routine
duration or reduced montage EEG recording, for the reasons
discussed above, and less frequently continuous EEGmonitoring.
Several authors observed sporadic epileptiform abnormalities
and periodic patterns of concern, including generalized periodic
discharges, along with more expected patterns of generalized
slowing (22–26). Due to centers taking precautions to avoid
transmission risk by reducing staffing and utilization of EEG,
as well as obtaining imaging, cases of electrographic seizures
and NCSE may be less likely to be diagnosed and adequately
imaged. While the safety and risks of infection must be weighed
carefully, patients may potentially benefit from the use of EEG
and neuroimaging to recognize potentially treatable seizures.

The speculative mechanisms responsible for the neurological
manifestations of SARS-CoV-2 are grouped broadly into direct
viral invasion and indirect effects via systemic inflammation,
coagulopathic states, endotheliopathy, and homeostatic
disruptions, including metabolic derangements due to hypoxia
and organ failure.

Given the genetic semblance between SARS-CoV and SARS-
CoV-2 and the shared manner of cellular entry via receptors
for angiotensin-converting enzyme II (ACE2), neurotropism
may be similar (27). Previous studies have demonstrated SARS-
CoV antigens and RNA within human neurons, supporting a
hypothesis of neuroinvasion in SARS-CoV-2 (28). One proposed
route of direct cell invasion involves receptors for ACE2, found
on the surface of glia and endothelial cells, allowing for distinct
ports of CNS entry (29, 30). CNS penetration may involve trans-
axonal transport along adjacent glia or hematogenous spread.
Invasion via cells expressing ACE2 in the olfactory tract may lead
to encephalitis associated with seizures and MRI signal changes
indicative of edema and inflammation (3).

The upregulation of proinflammatory cytokines may also
play a role in para-infectious immune-mediated neurological
complications, such as demyelinating disease, acute necrotizing
encephalopathy, or Guillain–Barre syndrome in COVID-
19 (31–36). Endothelial dysfunction and disruption of the
integrity of the blood–brain barrier may result in cerebral
antigen exposure and increased susceptibility to abnormal
adaptive immunity. Similar neuroimmunological manifestations
are reported with other coronaviruses, and seizures have
been reported in this context (HCoV-OC43, SARS CoV, and
MERS) (14, 30). These neurological presentations highlight
the need for brain imaging in encephalopathic patients with
COVID-19, particularly those with focal neurological deficits or
seizures, which may reflect aberrant and excessive autoimmune
phenomena. The neuroimaging findings in COVID-19 are
extremely heterogenous and may vary based on the severity
of infection (37). Immunotherapy, such as corticosteroids,
targeted molecular therapies such as monoclonal antibodies,
IV immunoglobulins, or convalescent plasma for patients with
these manifestations may be potentially beneficial, though
more systematic research is required (36, 38–40). During their
course of treatment early on in the New York area pandemic,
three patients in our series received methylprednisolone,
two received hydroxychloroquine, one received tocilizumab,
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TABLE 1 | Case summaries.

Clinical

presentation

Pertinent

neurological

findings

Seizure

semiology

Intubated Serum inflammatory

markers

CSF results EEG findings Radiological findings Possible

mechanism of

neuronal injury

CASE # 1 Fever, cough,

vomiting, malaise,

fever, tachycardia

Global aphasia,

bilateral babinski

signs

GTCS Yes ESR = 9;

CRP = 32.6;

D-dimer = 279;

Fibrinogen = 352;

Ferritin= 357.4;

Procalcitonin = 1.23

WBCs = 5/uL;

Protein = 125 mg/dL;

Glucose = 117 mg/dL;

Gram Stain, culture,

and HSV PCR

negative;

COVID-19 PCR

unavailable

Severe generalized

slowing

MRI brain: T2

hyperintensities in the

medial temporal lobes

Viral invasion vs.

secondary

inflammation

CASE # 2 Fever, cough,

dyspnea,

headache,

tachycardia

Encephalopathy,

right hemiparesis

FBTCS No ESR = 30;

CRP = 111.7;

D-dimer = 2,876;

Fibrinogen = N/A

Ferritin= 10.4;

Procalcitonin = 0.06

N/A Asynchronous

slowing and left

sided attenuation

CT head: edema, mass

effect and subcortical

hemorrhages in the left

temporal and parietal lobes.

CTV: left sigmoid and

transverse cortical venous

thrombosis

CVT

CASE # 3 Headache,

vomiting, cough,

malaise,

hypertension

Encephalopathy FBTCS No ESR = 22;

CRP = < 0.1;

D-dimer = < 150;

Fibrinogen = 588;

Ferritin= 3,647;

Procalcitonin = 0.45

WBCs = 4/uL;

Protein = 43 mg/dL;

Gram Stain, culture,

and HSV PCR

negative;

COVID-19 PCR

unavailable

GPDs MRI brain: multiple diffusion

positive lesions in the left

precentral sulcus and right

medial parietal regions;

patchy T2 prolongation in

the left frontal, occipital, and

bilateral parietal and

cerebellar regions

PRES

CASE # 4 Fever, diarrhea,

malaise, cough,

dyspnea

Coma, subsequent

prolonged

encephalopathy

NCSE Yes ESR = 77;

CRP = 22.8;

D-dimer = 1,137;

Fibrinogen = 747;

Ferritin= 22.8;

Procalcitonin = 0.29

WBCs = 1/uL;

Protein = 30 mg/dL;

Glucose = 73 mg/dL;

Gram Stain, culture,

and HSV PCR

negative;

COVID-19 PCR

unavailable

High amplitude

rhythmic

frontotemporal

theta, intermixed

left temporal sharp

waves

MRI Brain = T2, FLAIR and

DWI hyperintensity without

restricted diffusion along the

bilateral olfactory tracts,

caudate heads, fornices,

hippocampi and right

temporal lobe

Secondary

inflammation

Key: GTCS, Generalized tonic-clonic seizures; GPDs, Generalized periodic discharges; FBTCS, Focal to bilateral tonic-clonic seizures; NCSE, Non-convulsive status epilepticus; PRES, Posterior reversible encephalopathy syndrome;

MRI, Magnetic resonance imaging; ESR, Erythrocyte sedimentation rate; CRP, C-Reactive protein; WBCs, White blood cells; HSV, Herpes simplex virus; PCR, Polymerase chain reaction; COVID-19, SARS-CoV-2; CVT, Cortical venous

thrombosis; CT, Computed tomography; N/A, Not available. Normal laboratory values: ESR= 4–25 mm/h; CRP< 5 mg/L; D-dimer< 230 ng/mL; Fibrinogen= 300–500 mg/dL; Ferritin= 15–150 ng/mL; Procalcitonin= 0.02–0.1 ng/mL;

CSF Protein = 15–40 mg/dL; CSF Glucose = 40–70 mg/dL; CSF WBCs = 0–5 cell/uL.
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and one was administered anakinra. The treatments for
COVID-19 remain highly variable at this time, and therapies
specifically for neurological complications lack consensus. While
potentially helpful for cytokine storming, data have subsequently
called into question the early recommendations to utilize
hydroxychloroquine in hospitalized COVID-19 patients due to
safety concerns (36). While corticosteroids have significant anti-
inflammatory effects, caution is likewise advised to avoid the
potential delay of viral clearance or other systemic complications,
and timing and dosing of steroids may need to be considered
carefully on a case-by-case basis for more severe cases of
neuroinflammation (41). Research continues in support of drugs
targeting cytokines via the IL-6 receptor, such as tocilizumab, and
IL-1 receptor, such as anakinra (36).

Endothelial dysfunction may contribute to vascular
events such as stroke (35). Viral cellular invasion via
ACE2 expressed on the surface of glia, endothelial cells,
myocardium, and arterial smooth muscle may predispose
patients to thromboinflammation (42). Increases in systemic
proinflammatory cytokines observed in COVID-19 such as IL-6,
IL-10, and TNF-α are associated with hypercoagulability and
microthrombi (43, 44). Elevated D-dimer levels are associated
with thrombus formation and more severe infection and
mortality (42). In one study, 6% of patients with COVID-19 were
found to have acute strokes, theoretically predisposing them to
a higher incidence of seizures (1). Nearly 3% of non-COVID-19
adults with ischemic stroke suffer early seizures, while the rates
of seizures in CVT are as high as 34% (45, 46). CVT, as described
in case 2, in COVID-19 has been reported, and given seizures
as a common presenting feature, one should remain vigilant for
this entity in the appropriate clinical context (47).

PRES in the setting of COVID-19 may similarly involve
elevated cytokines due to systemic hyperinflammation,
leading to endothelial activation and increased cerebrovascular
permeability and edema. In the patient presented, underlying
hypertension and renal disease may have been predisposing
factors exacerbated by COVID-19, with additional cases of PRES
in COVID-19 also reported (15, 16, 18, 48).

Acute seizures may also occur as a result of other
systemic complications of COVID-19 resulting from hypoxia
and inflammation, including multiorgan failure and associated
metabolic disorders such as uremia, electrolyte abnormalities,
and potential drug toxicity (14).

Seizures are a serious neurological manifestation of COVID-
19. Their occurrence may be a concerning indicator of direct

viral CNS involvement, autoimmune-mediated inflammation of
the brain, neurovascular compromise, or cerebral autoregulatory
abnormalities for which clinicians may need greater awareness of

as potentially grave complications of SARS-CoV-2. Appropriate
early diagnosis and treatment, with interventions such as
antiseizure medications, immunotherapy, or modulation of
blood pressure, may improve the outcome in these cases.
Continued research is required to understand the true prevalence
of electrographic seizures in a COVID-19-related neurological
illness in a larger case series and to correlate those findings with
radiographic abnormalities and effects on clinical outcome.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author.

ETHICS STATEMENT

Written informed consent was obtained from the individual(s)
for the publication of any potentially identifiable images or data
included in this article.

AUTHOR CONTRIBUTIONS

SH, AB, UM, AS, and AH were responsible for the initial
conception and draft of this manuscript. CK was responsible
for neuroimaging descriptions and image preparation. CK, RK,
and SN were responsible for guidance and editing of the
manuscript. All authors contributed to the article and approved
the submitted version.

ACKNOWLEDGMENTS

The Northwell Health Institutional Review Board approved
this case series as minimal-risk research using data collected
for routine clinical practice and waived the requirement
for informed consent. We would like to acknowledge the
contributions of the Northwell Health COVID-19 Research
Consortium. The initial characteristics of 5,700 patients from
Northwell are presented elsewhere (49). This case series provides
in-depth laboratory, electroencephalographic, and radiographic
results not presented in that article (Northwell COVID-19
Research Consortium record #596).

REFERENCES

1. Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, et al. Neurologic manifestations

of hospitalized patients with coronavirus disease 2019 in Wuhan, China.

JAMA Neurol. (2020) 77:683–90. doi: 10.1001/jamaneurol.2020.1127

2. Lu L, Xiong W, Liu D, Liu J, Yang D, Li N, et al. New onset acute symptomatic

seizure and risk factors in coronavirus disease 2019: a retrospective

multicenter study. Epilepsia. (2020) 61:e49–53. doi: 10.1111/epi.16524

3. Moriguchi T, Harii N, Goto J, Harada D, Sugawara H, Takamino J, et al. A

first case of meningitis/encephalitis associated with SARS-Coronavirus-2. Int

J Infect Dis. (2020) 94:55–8. doi: 10.1016/j.ijid.2020.03.062

4. Sohal S, Mossammat M. COVID-19 presenting with seizures. IDCases. (2020)

20:e00782. doi: 10.1016/j.idcr.2020.e00782

5. Vollono C, Rollo E, Romozzi M, Frisullo G, Servidei S, Borghetti A,

et al. Focal status epilepticus as unique clinical feature of COVID-

19: a case report. Seizure. (2020) 78:109–12. doi: 10.1016/j.seizure.2020.

04.009

6. Asadi-Pooya AA. Zika virus-associated seizures. Seizure. (2016)

43:13. doi: 10.1016/j.seizure.2016.10.011

7. Chen W, Toprani S, Werbaneth K, Falco-Walter J. Status epilepticus and

other EEG findings in patients with COVID-19: a case series. Seizure. (2020)

48:198–200. doi: 10.1016/j.seizure.2020.08.022

Frontiers in Neurology | www.frontiersin.org 8 November 2020 | Volume 11 | Article 576329134

https://doi.org/10.1001/jamaneurol.2020.1127
https://doi.org/10.1111/epi.16524
https://doi.org/10.1016/j.ijid.2020.03.062
https://doi.org/10.1016/j.idcr.2020.e00782
https://doi.org/10.1016/j.seizure.2020.04.009
https://doi.org/10.1016/j.seizure.2016.10.011
https://doi.org/10.1016/j.seizure.2020.08.022
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Hwang et al. Seizures in Association With SARS-CoV-2

8. Hepburn M, Mullaguri N, George P, Hantus S, Punia V, Bhimraj A, et al.

acute symptomatic seizures in critically Ill Patients with COVID-19: is there

an association? Neurocrit Care. (2020). doi: 10.1007/s12028-020-01006-1

9. Elgamasy S, Kamel MG, Ghozy S, Khalil A, Morra ME, Islam SMS. First case

of focal epilepsy associated with SARS-coronavirus-2. J Med Virol. (2020) 92:

2238–42. doi: 10.1002/jmv.26113

10. Karimi N, Razavi AS, Rouhani N. Frequent convulsive seizures in an adult

patient with COVID-19: a case report. Iran Red Crescent Med J. (2020)

22:e102828. doi: 10.5812/ircmj.102828

11. Balloy G, Leclair-Visonneau L, Péréon Y, Magot A, Peyre A, Mahé P-J, et al.

Non-lesional status epilepticus in a patient with coronavirus disease 2019.Clin

Neurophysiol. (2020) 131:2059–61. doi: 10.1016/j.clinph.2020.05.005

12. Somani S, Pati S, Gaston T, Chitlangia A, Agnihotri S. De novo status

epilepticus in patients with COVID-19. Ann Clin Transl Neurol. (2020)

7:1240–4. doi: 10.1002/acn3.51071

13. Lau K-K, Yu W-C, Chu C-M, Lau S-T, Sheng B, Yuen K-Y. Possible central

nervous system infection by SARS coronavirus. Emerging Infectious Diseases.

(2004) 10:342–4. doi: 10.3201/eid1002.030638

14. Asadi-Pooya AA. Seizures associated with coronavirus infections. Seizure.

(2020) 79:49–52. doi: 10.1016/j.seizure.2020.05.005

15. D’Amore F, Vinacci G, Agosti E, Cariddi LP, Terrana AV, Vizzari FA, et al.

Pressing issues in COVID-19: probable cause to seize SARS-CoV-2 for

its preferential involvement of posterior circulation manifesting as severe

posterior reversible encephalopathy syndrome and posterior strokes. Am J

Neuroradiol. (2020) 41:1800–1803. doi: 10.3174/ajnr.A6679

16. Parauda SC, Gao V, Gewirtz AN, Parikh NS, Merkler AE, Lantos J, et al.

Posterior reversible encephalopathy syndrome in patients with COVID-19. J

Neurol Sci. (2020) 416:117019. doi: 10.1016/j.jns.2020.117019

17. Kishfy L, Casasola M, Banankhah P, Parvez A, Jan YJ, Shenoy AM,

et al. Posterior reversible encephalopathy syndrome (PRES) as a

neurological association in severe Covid-19. J Neurol Sci. (2020)

414:116943. doi: 10.1016/j.jns.2020.116943

18. Franceschi AM, Ahmed O, Giliberto L, Castillo M. Hemorrhagic posterior

reversible encephalopathy syndrome as a manifestation of COVID-19

infection. AJNR Am J Neuroradiol. (2020) 41:1173–6. doi: 10.3174/ajnr.A6595

19. Lyons S, O’Kelly B, Woods S, Rowan C, Brady D, Sheehan G,

et al. Seizure with CSF lymphocytosis as a presenting feature of

COVID-19 in an otherwise healthy young man. Seizure. (2020)

80:113–4. doi: 10.1016/j.seizure.2020.06.010

20. Fasano A, Cavallieri F, Canali E, Valzania F. First motor seizure as

presenting symptom of SARS-CoV-2 infection. Neurol Sci. (2020) 41:1651–

3. doi: 10.1007/s10072-020-04460-z

21. Kadono Y, Nakamura Y, Ogawa Y, Yamamoto S, Kajikawa R, Nakajima Y, et al.

A case of COVID-19 infection presenting with a seizure following severe brain

edema. Seizure. (2020) 80:53–5. doi: 10.1016/j.seizure.2020.06.015

22. Vespignani H, Colas D, Lavin BS, Soufflet C, Maillard L, Pourcher V, et al.

Report on electroencephalographic findings in critically Ill patients with

COVID-19. Ann Neurol. (2020) 88:626–30. doi: 10.1002/ana.25814

23. Petrescu A-M, Taussig D, Bouilleret V. Electroencephalogram (EEG) in

COVID-19: a systematic retrospective study. Neurophysiol Clin. (2020)

50:155–65. doi: 10.1016/j.neucli.2020.06.001

24. Galanopoulou AS, Ferastraoaru V, Correa DJ, Cherian K, Duberstein S,

Gursky J, et al. EEG findings in acutely ill patients investigated for SARS-CoV-

2/COVID-19: a small case series preliminary report. Epilepsia Open. (2020)

5:314–24. doi: 10.1002/epi4.12399

25. Pasini E, Bisulli F, Volpi L, Minardi I, Tappatà M, Muccioli L, et al. EEG

findings in COVID-19 related encephalopathy. Clin Neurophysiol. (2020)

131:2265–7. doi: 10.1016/j.clinph.2020.07.003

26. Vellieux G, Rouvel-Tallec A, Jaquet P, Grinea A, Sonneville R, d’Ortho M-P.

COVID-19 associated encephalopathy: is there a specific EEG pattern? Clin

Neurophysiol. (2020) 131:1928–30. doi: 10.1016/j.clinph.2020.06.005

27. Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W, et al. A pneumonia

outbreak associated with a new coronavirus of probable bat origin. Nature.

(2020) 579:270–3. 10.1038/s41586-020-2012-7

28. Ding Y, He L, Zhang Q, Huang Z, Che X, Hou J, et al. Organ distribution

of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-

CoV) in SARS patients: implications for pathogenesis and virus transmission

pathways. J Pathol. (2004) 203:622–30. doi: 10.1002/path.1560

29. Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19

virus targeting the CNS: Tissue distribution, host-virus interaction, and

proposed neurotropic mechanisms. ACS Chem Neurosci. (2020) 11:995–

8. doi: 10.1021/acschemneuro.0c00122

30. Montalvan V, Lee J, Bueso T, De Toledo J, Rivas K.

Neurological manifestations of COVID-19 and other coronavirus

infections: a systematic review. Clin Neurol Neurosurg. (2020)

194:105921. doi: 10.1016/j.clineuro.2020.105921

31. Poyiadji N, Shahin G, Noujaim D, Stone M, Patel S, Griffith B. COVID-

19-associated acute hemorrhagic necrotizing encephalopathy: CT and MRI

features. Radiology. (2020) 296:E119–E120. doi: 10.1148/radiol.2020201187

32. Zanin L, Saraceno G, Panciani PP, Renisi G, Signorini L, Migliorati K,

et al. SARS-CoV-2 can induce brain and spine demyelinating lesions. Acta

Neurochir. (2020) 4:1–4. doi: 10.1007/s00701-020-04374-x

33. Alberti P, Beretta S, Piatti M, Karantzoulis A, Piatti ML,

Santoro P, et al. Guillain-Barré syndrome related to COVID-

19 infection. Neurol Neuroimmunol Neuroinflamm. (2020)

7:e741. doi: 10.1212/NXI.0000000000000741

34. Toscano G, Palmerini F, Ravaglia S, Ruiz L, Invernizzi P, Cuzzoni MG, et al.

Guillain-Barré syndrome associated with SARS-CoV-2. N Engl J Med. (2020)

382:2574–2576. doi: 10.1056/NEJMc2009191

35. Najjar S, Najjar A, Chong DJ, Pramanik BK, Kirsch C, Kuzniecky RI,

et al. Central nervous system complications associated with SARS-CoV-

2 infection: integrative concepts of pathophysiology and case reports. J

Neuroinflammation. (2020) 17:231. doi: 10.1186/s12974-020-01896-0

36. Bhaskar S, Sinha A, Banach M, Mittoo S, Weissert R, Kass

JS, et al. Cytokine storm in COVID-19-immunopathological

mechanisms, clinical considerations, and therapeutic approaches:

the reprogram consortium position paper. Front Immunol. (2020)

11:1648. doi: 10.3389/fimmu.2020.01648

37. Pan S, Chen WC, Baal JD, Sugrue LP. Neuroradiological

findings in mild and severe COVID-19 infection. Acad Radiol.

(2020). doi: 10.1016/j.acra.2020.08.026. [Epub ahead of print].

38. Joyner MJ, Bruno KA, Klassen SA, Kunze KL, Johnson PW, Lesser ER, et al.

Safety update: COVID-19 convalescent plasma in 20,000 hospitalized patients.

Mayo Clin Proc. (2020) 95:1888–97. doi: 10.1016/j.mayocp.2020.06.028

39. Xie Y, Cao S, Dong H, Li Q, Chen E, Zhang W, et al. Effect of

regular intravenous immunoglobulin therapy on prognosis of severe

pneumonia in patients with COVID-19. , J Infect. (2020) 81:318–

56. doi: 10.1016/j.jinf.2020.03.044

40. Mansourabadi AH, Sadeghalvad M, Mohammadi-Motlagh H-R, Rezaei N.

The immune system as a target for therapy of SARS-CoV-2: a systematic

review of the current immunotherapies for COVID-19. Life Sci. (2020)

258:118185. doi: 10.1016/j.lfs.2020.118185

41. Waterer GW, Rello J. Steroids and COVID-19: we need a precision approach,

not one size fits all. Infect Dis Ther. (2020). doi: 10.1007/s40121-020-00338-x.

[Epub ahead of print].

42. Connors JM, Levy JH. COVID-19 and its implications for thrombosis and

anticoagulation. Blood. (2020) 135:2033–40. doi: 10.1182/blood.2020006000

43. Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, et al. Clinical and

immunological features of severe and moderate coronavirus disease (2019).

J Clin Invest. (2020) 130:2620–9. doi: 10.1172/JCI137244

44. Jose RJ, Manuel A. COVID-19 cytokine storm: the interplay

between inflammation and coagulation. Lancet Respir Med. (2020)

8:e46–7. doi: 10.1016/S2213-2600(20)30216-2

45. Ferro JM, Correia M, Rosas MJ, Pinto AN, Neves G, Cerebral

Venous Thrombosis Portuguese Collaborative Study Group. Seizures

in cerebral vein and dural sinus thrombosis. Cerebrovasc Dis. (2003).

15:78–83. doi: 10.1159/000067133

46. Wang JZ, Vyas MV, Saposnik G, Burneo JG. Incidence and management of

seizures after ischemic stroke: systematic review andmeta-analysis.Neurology.

(2017) 89:1220–8. doi: 10.1212/WNL.0000000000004407

47. Hemasian H, Ansari B. First case of Covid-19 presented with cerebral

venous thrombosis: a rare and dreaded case. Revue Neurol. (2020) 176:521–

3. doi: 10.1016/j.neurol.2020.04.013

48. Kaya Y, Kara S, Akinci C, Kocaman AS. Transient cortical blindness in

COVID-19 pneumonia; a PRES-like syndrome: case report. J Neurol Sci.

(2020) 413:116858. doi: 10.1016/j.jns.2020.116858

Frontiers in Neurology | www.frontiersin.org 9 November 2020 | Volume 11 | Article 576329135

https://doi.org/10.1007/s12028-020-01006-1
https://doi.org/10.1002/jmv.26113
https://doi.org/10.5812/ircmj.102828
https://doi.org/10.1016/j.clinph.2020.05.005
https://doi.org/10.1002/acn3.51071
https://doi.org/10.3201/eid1002.030638
https://doi.org/10.1016/j.seizure.2020.05.005
https://doi.org/10.3174/ajnr.A6679
https://doi.org/10.1016/j.jns.2020.117019
https://doi.org/10.1016/j.jns.2020.116943
https://doi.org/10.3174/ajnr.A6595
https://doi.org/10.1016/j.seizure.2020.06.010
https://doi.org/10.1007/s10072-020-04460-z
https://doi.org/10.1016/j.seizure.2020.06.015
https://doi.org/10.1002/ana.25814
https://doi.org/10.1016/j.neucli.2020.06.001
https://doi.org/10.1002/epi4.12399
https://doi.org/10.1016/j.clinph.2020.07.003
https://doi.org/10.1016/j.clinph.2020.06.005
https://doi.org/10.1002/path.1560
https://doi.org/10.1021/acschemneuro.0c00122
https://doi.org/10.1016/j.clineuro.2020.105921
https://doi.org/10.1148/radiol.2020201187
https://doi.org/10.1007/s00701-020-04374-x
https://doi.org/10.1212/NXI.0000000000000741
https://doi.org/10.1056/NEJMc2009191
https://doi.org/10.1186/s12974-020-01896-0
https://doi.org/10.3389/fimmu.2020.01648
https://doi.org/10.1016/j.acra.2020.08.026
https://doi.org/10.1016/j.mayocp.2020.06.028
https://doi.org/10.1016/j.jinf.2020.03.044
https://doi.org/10.1016/j.lfs.2020.118185
https://doi.org/10.1007/s40121-020-00338-x
https://doi.org/10.1182/blood.2020006000
https://doi.org/10.1172/JCI137244
https://doi.org/10.1016/S2213-2600(20)30216-2
https://doi.org/10.1159/000067133
https://doi.org/10.1212/WNL.0000000000004407
https://doi.org/10.1016/j.neurol.2020.04.013
https://doi.org/10.1016/j.jns.2020.116858
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Hwang et al. Seizures in Association With SARS-CoV-2

49. Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson

KW, et al. Presenting characteristics, comorbidities, and outcomes among

5700 patients hospitalized with COVID-19 in the New York City area. JAMA.

(2020) 323:2052–9. doi: 10.1001/jama.2020.6775

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Hwang, Ballout, Mirza, Sonti, Husain, Kirsch, Kuzniecky

and Najjar. This is an open-access article distributed under the terms of

the Creative Commons Attribution License (CC BY). The use, distribution

or reproduction in other forums is permitted, provided the original author(s)

and the copyright owner(s) are credited and that the original publication in

this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neurology | www.frontiersin.org 10 November 2020 | Volume 11 | Article 576329136

https://doi.org/10.1001/jama.2020.6775
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


BRIEF RESEARCH REPORT
published: 24 November 2020

doi: 10.3389/fneur.2020.588879

Frontiers in Neurology | www.frontiersin.org 1 November 2020 | Volume 11 | Article 588879

Edited by:

Giovanni Assenza,

Campus Bio-Medico University, Italy

Reviewed by:

Jacopo Lanzone,

Policlinico Universitario Campus

Bio-Medico, Italy

Jiawei Wang,

Capital Medical University, China

*Correspondence:

Suman Kushwaha

sumankushwaha@gmail.com

Specialty section:

This article was submitted to

Neuroinfectious Diseases,

a section of the journal

Frontiers in Neurology

Received: 29 July 2020

Accepted: 30 September 2020

Published: 24 November 2020

Citation:

Kushwaha S, Seth V, Bapat P, R K,

Chaturvedi M, Gupta R, Bhattar S,

Maheshwari S and Anthony A (2020)

Neurological Associations of

COVID-19—Do We Know Enough: A

Tertiary Care Hospital Based Study.

Front. Neurol. 11:588879.

doi: 10.3389/fneur.2020.588879

Neurological Associations of
COVID-19—Do We Know Enough: A
Tertiary Care Hospital Based Study
Suman Kushwaha 1*, Vaibhav Seth 1, Prateek Bapat 1, KiranGowda R 1, Monali Chaturvedi 2,

Renu Gupta 3, Sonali Bhattar 4, Siddharth Maheshwari 1 and Aldrin Anthony 1

1Department of Neurology, Institute of Human Behaviour and Allied Sciences, New Delhi, India, 2Department of

Neuroradiology, Institute of Human Behaviour and Allied Sciences, New Delhi, India, 3Department of Microbiology, Institute of

Human Behaviour and Allied Sciences, New Delhi, India, 4Department of Microbiology, Rajiv Gandhi Super Speciality

Hospital, New Delhi, India

The neurotrophic potential of SARS-CoV-2 virus is manifesting as various neurological

disorders in the present pandemic. Nervous system involvement can be due to

the direct action of the virus on the brain tissue or due to an indirect action

through the activation of immune-mediated mechanisms. This study will discuss

the detailed systematically evaluated clinical profile and relevant investigations and

outcome of 14 laboratory confirmed SARS-CoV-2 positive patients presenting with

neurological signs and symptoms. The patients were further categorized into confirmed,

probable, and possible neurological associations. The probable association was found

in meningoencephalitis (n = 4), stroke (n = 2), Guillain-Barré syndrome (n = 1), and

anosmia (n = 1). The other six patients had coexisting neurological diseases with

SARS-CoV-2. One patient with a large artery stroke succumbed to the illness due to

respiratory complication. Memory impairment as a sequela is present during follow up

of one encephalitis patient. Presently the early recognition and diagnosis of neurological

manifestations remains a challenge for clinicians as the SARS-CoV-2 related neurological

manifestations are in evolution. A long-term correlation study of clinical profile, radiological

and laboratory investigations, along with neuropathological studies is needed to further

understand the pathophysiology behind the SARS-CoV-2 neurological manifestations.

Further understanding will facilitate timely recognition, therapeutic intervention, and

possible prevention of long-term sequalae.

Keywords: SARS-CoV-2, neurological manifestation, stroke, meningoencephalitis, GBS, neurotrophic potential

INTRODUCTION

The pandemic due to COVID-19 is growing exponentially worldwide after first being notified
from Wuhan, China, in December 2019. The virus that causes COVID-19 is designated as
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Primarily this virus affects the
respiratory system and thereby initiates the cascade of sequences that involves multiple organs.
There are evidences of involvement of other systems like nervous system, cardiovascular system,
and gastrointestinal system, which are a matter of scientific study and research. Six months into this
pandemic, the understanding and recognition of neurological manifestations and complications
has increased as evident from the cases series and reports in literature (1). There are reports of
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COVID-19 patients presenting with various neurological
manifestations, and in others there is exacerbation of
underlying neurological illness. The neurological presentations
include dizziness, headache, anosmia, ageusia, seizure,
meningitis, encephalitis, stroke, and acute inflammatory
demyelinating polyneuropathy.

The neurotrophic potential of SARS-CoV-2 is being
recognized and well-established in some studies by detection
of SARS-CoV-2 in CSF by RT-PCR and its culture from brain
tissue biopsy (2–4). The limited available data on neurological
manifestations raises important concerns regarding the extent
of nervous system involvement and the pathogenesis causing
these manifestations. There is need for an early recognition and
diagnosis as shown in a few studies (5).

In our clinical practice during the pandemic we have
systematically evaluated and investigated patients for evidence
of this new emergent virus and its associated neurological
manifestations. This clinical study will facilitate in understanding
the connection between SARS-CoV-2 and different clinical
presentation. Early identification of the various probable
neurological manifestations of COVID-19 will be instrumental
in deciding the available therapeutic options and reducing the
possible long-term complications.

MATERIALS AND METHODS

A cross-sectional study came from April 2020 to July 2020 at
Institute of Human Behavior and Allied Sciences, a tertiary care
neuropsychiatry center in North India.

This Institute caters to acute and chronic neurology and
psychiatry patients in emergency and outpatient departments.
The study was conducted in Department of Neurology.

All the admitted neurological patients during the study
period had been evaluated for neurological symptoms
and signs and carefully assessed and investigated for any
atypical neurological finding. Patients were also monitored
for the presence of influenza like illness (ILI) considering the
current pandemic.

Routine hematological (Complete Blood Count, ESR),
biochemical parameters (blood sugar, LFT, KFT, electrolytes,
thyroid functions, CRP, serum ferritin) were done. X ray chest,
ultrasound abdomen, and neuroimaging–brain MRI and CT
head was done in all patients.

Autoimmune Profile (NMDA, LGi1, AMPA, CASPR-2) was
done in selected patients.

CSF examination was selectively done for cytology
and biochemistry.

Neuroviral panel (herpes simplex virus1 & 2, mumps
virus, varicella-zoster virus, enterovirus, parechovirus) was
done in all CSF samples of patients suspected of having
meningoencephalitis. CSF PCR for SARS-CoV-2 was done in all
patients of meningoencephalitis.

The neurological diagnosis was made after evaluating the
clinical history, examination, and relevant investigations. The
patients were critically evaluated and investigated for atypical
neurological presentation.

Patients with atypical neurological presentation and with
influenza like illness (ILI) in the recent past or during
hospitalization were categorized into suspected COVID-19.

The real-time reverse-transcription polymerase chain reaction
assay using a SARS-CoV-2 nucleic acid was done from oral
and nasopharyngeal sample in all patients, from CSF in selected
patients by the below mentioned method.

Nucleic acid extraction was done using chemagic Viral
DNA/RNA 300 Kit H96 in Chemagic 360 instrument from
Perkin Elmer as per the manufacturer’s instruction. The
sample processing was carried out in BSL-2 following standard
precautions. An amount of 315 µl of lysis buffer was added to
300 µl of sample volume for extraction. Internal reference of 5
µl as provided by the FOSUN COVID-19 PCR kit was added
to each sample to monitor the efficiency of sample preparation
and to differentiate between true negative and false negative. A
qualitative PCR test was done subsequently with the FOSUN
COVID-19 PCR detection kit using primer-probe mixture for
detection of N gene, E gene, and ORF1ab gene. The results were
interpreted as per the kit insert.

The laboratory confirmed cases of COVID-19 with
neurological manifestations are included in study. The
demographic, clinical, laboratory investigations, follow up,
and outcome of the patients is presented.

We obtained written consent from patients or their relatives
for publication of the data including images and any identifiable
data that might reveal a patient’s identity.

RESULTS

A total of 358 patients with neurological diagnosis were admitted
in the hospital during the study period. Out of these, 69 cases
were suspected of having COVID-19 disease and there were 14
laboratory confirmed cases.

The detailed demographic, clinical profile, investigations, and
outcome has been summarized in Table 1.

Among 14 positive SARS-CoV-2 infection patients, there were
seven male and female patients, respectively. Median age at
onset of symptoms was 41.5 years (range 15–70). The presenting
neurological symptoms were altered sensorium (n= 6), headache
(n = 4), seizures (n = 5), limb weakness (n = 3), anosmia (n =

2), while ophthalmoplegia and memory impairment occurred in
one patient, respectively.

Influenza like illness (ILI) was present in 10 patients. Nine
had fever; sore throat and shortness of breath were present in
two patients, diarrhea and myalgia were seen in one patient,
respectively. The ILI symptoms were present in seven patients on
an average of 1 week prior to admission. One patient developed
ILI on admissionwhile other two developed these symptoms after
7–14 days of hospitalization. Four patients were asymptomatic.

Abnormal laboratory parameters included leucocytosis (n
= 6), hyperglycemia (n = 1), deranged INR (n = 1), and
hyponatremia (n=3). Complete blood counts were normal in
eight patients. CRP was raised in two patients. D dimer was
raised in one patient. Serum ferritin was found to be normal in
all patients.

Frontiers in Neurology | www.frontiersin.org 2 November 2020 | Volume 11 | Article 588879138

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


K
u
sh

w
a
h
a
e
t
a
l.

N
e
u
ro
lo
g
ic
a
lA

sso
c
ia
tio

n
s
o
f
C
O
V
ID
-1
9

TABLE 1 | Clinical features, investigations, treatment, and outcome of 14 positive SARS-CoV-2 cases.

S. No. Patient

demographic

Neurological

presentation

Associated

COVID-19 symptoms

Positive SARS-CoV-2

test type

Relevant blood investigations

and radiologic findings

Neurological investigations (CSF

findings, neuroimaging)

Treatment and outcome

Cerebrovascular

accidents

1 55 yr F Patient presented with left

hemiparesis with global

aphasia.

Two weeks after the

stroke developed fever

with dyspnoea.

Upper Respiratory

swab PCR

Increased total cell count with

neutrophilic leucocytosis. Mildly

deranged transaminases with

deranged INR (2.54).

CRP was raised. D-dimer was

raised.

Chest X ray showed an opaque

left hemi thorax suggestive of a

collapse/consolidation.

CT brain showed right malignant MCA

infarct. MRA showed MCA main stem

occlusion

Treated conservatively for stroke.

After development of COVID-19

symptoms required intubation

and mechanical ventilator. Died

within 2 days of diagnosis of

COVID-19.

2 70 yr F Patient presented with

sudden onset left

hemiparesis (lower limb

more than upper limb),

NIHSS 6 at the time of

admission with a window

period of 3.5 h.

Cough and sore throat

at the time of

admission.

Upper Respiratory

swab PCR

Normal blood counts and other

parameters. CRP was raised.

Ferritin Normal.

Infarct in right centrum semiovale. Left

CCA showing 30% stenosis.

Was thrombolysed with

alteplase. Post-thrombolysis her

NIHSS improved from 6 to 4.

She was treated with

azithromycin,

hydroxychloroquine, and was

discharged on day 15

post-admission.

Meningoencephalitis

3 15 yr M Patient presented with fever

and headache from 5 days

prior to admission.

Sore throat, diarrhea,

and fever 5 days prior

to admission.

Upper Respiratory

swab PCR positivity,

negative

CSF PCR

Routine investigations were

normal.

CSF study revealed an opening

pressure of 30 cm of water, 12 cells

(60% lymphocytes, and 40%

neutrophils) with normal sugar, protein

levels. Negative culture and Virology

results with a negative TB PCR. MRI

brain was normal.

Empirically started on acyclovir

but had disabling headache. Put

on dexamethasone, topiramate,

acetazolamide. Required a

repeat lumbar puncture for

therapeutic purpose. Discharged

on tapering dose of

dexamethasone, acetazolamide,

and topiramate. One month into

follow up patient is symptom free

and not on any medication.

4 35 yr F Presented with new onset

focal seizures with impaired

awareness, acute onset

memory impairment.

Fever 7 days prior to

presentation.

Upper Respiratory

swab PCR positivity,

negative

CSF PCR

Routine investigations normal. CSF study 100 cells with 90%

lymphocytes and mildly raised protein

(56mg/dl). Negative cultures and

virology panel. MRI showed T2/Flair

hyperintensity in left temporo-occipital

lobe, hippocampus with diffusion

restriction, and right frontal

periventricular white matter T2 flair

hyperintensity (Figure 1). EEG showed

generalized slowing.

Empirically started on acyclovir

and levetiracetam. Then put on

dexamethasone. Discharged

after 14 days of inpatient stay

with a diagnosis of probable

COVID-19 encephalitis.

5 38 yr M Presented with fever,

headache, altered behavior.

Fever 5 days prior to

admission.

Upper Respiratory

swab PCR positivity,

negative

CSF PCR

Routine investigations normal. Lumbar puncture showed 200 cells

with 90% lymphocytes with increased

protein. Negative cultures and virology

pattern. Negative TB PCR. MRI brain

with contrast normal.

Treated empirically with acyclovir

but gradual improvement in

symptoms, no other treatment

given.

(Continued)
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TABLE 1 | Continued

S. No. Patient

demographic

Neurological

presentation

Associated

COVID-19 symptoms

Positive SARS-CoV-2

test type

Relevant blood investigations

and radiologic findings

Neurological investigations (CSF

findings, neuroimaging)

Treatment and outcome

6 23 yr M Presented with headache,

fever, altered sensorium.

Fever, myalgia,

vomiting, abdominal

pain five days prior to

admission.

Upper Respiratory

swab PCR positivity,

negative

CSF PCR

Normal counts. Deranged liver

function Tests, hyponatremia.

CXR showed opacities

(Figure 2).

CSF showed 94 cells 80% neutrophils

and normal sugar and protein.

MRI brain normal/CT Normal.

Negative culture and viral serology.

TB PCR negative.

Treated with anti tubercular

drugs, acyclovir and

dexamethasone.

Other neurological

diseases with COVID-19

7 70 yr F Patient diagnosed case of

tubercular meningitis

presented with altered

sensorium.

Fever

Shortness of breath

Upper Respiratory

swab PCR. Initial test

was Negative

Normal counts with

hyponatremia. Rest

investigations within normal limit.

CT chest showed consolidation

in bilateral upper zone and right

lower zone.

CSF study showed 140 cells with 90%

lymphocytes with normal sugar and

increased protein (112 mg/dl).

Neuroimaging consistent with TBM with

hydrocephalus.

Treated with dexamethasone,

anti-tubercular drugs, mannitol,

and acetazolamide. She was

referred for neurosurgical

intervention.

8 25 yr F Diagnosed case of

Tubercular Meningitis with

CNS Tuberculoma on

treatment presented with

status epilepticus.

Fever, Myalgia,

Dyspnea 4 days prior

to admission.

Upper Respiratory

swab PCR

Neutrophilic leucocytosis with

hypokalemia, CXR showing right

lower zone opacities.

MRI brain with contrast suggestive of

Tuberculoma.

EEG suggestive of generalized

epileptiform discharges.

CSF normal study.

Treated for status epilepticus,

Anti tubercular drugs, recovered

and discharged.

9 15 yr F Seizures and myoclonus Asymptomatic Upper Respiratory

swab PCR

Normal investigations. CSF showed 2 cells with normal sugar

and protein. EEG showed slow periodic

2-3Hz discharges.

CSF IgG positive for measles antibody

Diagnosed as SSPE - Treated

with valproate, levetiracetam.

She was asymptomatic.

Discharged after monitoring.

10 53 yr M Presented with status

epilepticus and altered

mental status.

Asymptomatic Upper Respiratory

swab PCR

Increased counts.

Deranged Liver function test.

CXR showed Bilateral middle

zone opacities.

Gliosis in left fronto parietal lobes.

CSF normal study.

Treated for status epilepticus

with IV antibiotics and

hydroxychloroquine, recovered

well and discharged.

11 45 yr M Diabetic patient presented

with right eye ptosis,

complete ophthalmoplegia,

anosmia, ageusia with

headache.

Fever and running nose

10 days prior to

admission.

Upper Respiratory

swab PCR positivity,

negative

CSF PCR

Leucocytosis with other normal

blood parameters.

Neuroimaging revealed right side

cavernous sinus thrombosis with

pansinusitis. CSF study showed 35

cells with 90% lymphocytes and normal

sugar and protein. Negative for culture

and virology. TB-PCR negative.

Treated with IV antibiotics and IV

amphoterecin B on suspicion of

fungal cavernous sinus

thrombosis.

12 48 yr F Diabetic patient presented

with altered sensorium and

non-convulsive status.

Asymptomatic Upper Respiratory

swab PCR

Leucocytosis with raised blood

sugar and serum osmolality.

CXR was normal.

Neuroimaging showed bilateral caudate

hyperdensities with hypodensity in left

basal ganglia.

EEG showing generalized epileptiform

discharges. CSF study was normal.

On treatment with IV anti

epileptics, insulin infusion.

13 65 yr M Peripheral nervous system

manifestation

Presented with paraparesis

with progressing weakness

to upper limb and

dysphagia.

Fever, ageusia five days

prior to presentation.

Cough present at the

time of admission.

Upper Respiratory

swab PCR

Neutrophilic Leucocytosis with

Thrombocytosis. Hyponatremia.

CXR Normal.

Demyelination with secondary axonal

changes in nerve conduction studies.

On Intravenous immunoglobulin.

14 30 yr M Loss of smell and taste. Asymptomatic Upper Respiratory

swab PCR

Normal Normal Isolation and hydroxychloroquine

for 5 days.
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CSF was abnormal in four patients. Pleocytosis was a
significant finding. High opening pressure was seen in one
patient. Neuroviral panel for other virus was negative in
all patients. Chest X ray was abnormal in four patients.
Neuroimaging was normal in six patients. EEG abnormality were
seen in four patients.

Patients were categorized into probable SARS-CoV-2
meningoencephalitis in four, stroke associated SARS-CoV-2
in two, GBS in one, and anosmia with ageusia in one. The
other six patients had coexisting neurological disease with
SARS-CoV-2 infection.

There was mortality in one patient with large artery stroke
due to respiratory involvement on day 21 after admission. Eleven
patients were discharged who are doing well on follow up with no
complications, except one patient who has memory impairment,
while two are still admitted.

DISCUSSION

The neurological manifestations are now being increasingly
recognized and reported in different case series from the
centers exclusively managing COVID-19 patients. This
clinical cross-sectional study presents the different probable
neurological manifestations of SARS CoV-2 from a tertiary care
neuropsychiatry center. The patients are primarily presenting
to us with neurological signs and symptoms attributing to the
known neurological disorders. Amid the ongoing pandemic,
we have carefully assessed all the patients for the typical
COVID-19 symptoms.

The great heterogeneity of neurological presentation for
individual patients with viral illnesses has been witnessed in
past pandemics. The experience with other earlier pandemics of
respiratory pathogens SARS, MERS, and H1N1 influenza and the
neurological complications associated with them has given an
insight into the present pandemic (6, 7).

The spectrum of neurological presentations has a wide array
as reported in recent literature. Anosmia, ageusia, encephalitis,
post-infectious acute disseminated encephalomyelitis,
cerebrovascular accidents, and Guillain-Barré syndrome
are common among the reported manifestations (8). It is
important to understand the timing and relation of neurological
manifestations and complications associated with SARS-CoV-2,
a new emergent virus.

Different mechanisms have been proposed for the entry of the
virus into the brain in research studies. Hyposmia and anosmia,
the common symptoms, have been explained by the entry of
SARS-CoV-2 into brain tissues via dissemination and spread
from the cribriform plate, which is in close proximity to the
olfactory bulb (9). This neurotrophic virus causes damage by a
surge of inflammatory cytokines, mainly Interleukin-6.

Initially, in the largest retrospective study of 1,099 patients
with laboratory-confirmed COVID-19 in China, Guan et al.
reported respiratory and generalized symptoms as the presenting
complaints. The definite neurological symptoms were not
reported in this study (10). Later in the recent study from
Wuhan, it has been described that 74% of COVID-19 patients

can develop neurological symptoms in addition to common
respiratory symptoms. Impaired consciousness and stroke were
two common symptoms reported in critically ill patients (11).

Recently, a cross-specialty surveillance study from UK
reported 62% of patients presented with stroke. Altered mental
status was the second most common presentation, comprising
encephalopathy or encephalitis and primary psychiatric
diagnoses, often occurring in younger patients (12). The
neuropsychiatry presentation has also been reported.

In our single center study, 14 patients have fulfilled the
WHO confirmed case definition of COVID-19 (13). The detailed
clinical characteristics of the 14 patients has been described in
Table 1. Accordingly the patients were primarily categorized
into probable and possible neurological manifestations
due to SARS-CoV-2.

In probable SARS-CoV-2 meningoencephalitis patients,
altered sensorium, irritability, and headache were present in all
patients. These patients were relatively young (age range 14–
50 years). Contrary to our study, eight adults patients aged
24–78 years (median 62 IQR 40–70), four women and men
each, have been described with encephalitis associated with
COVID-19 (14). Patient 3 has presented with acute onset
disabling headache. Mao et al. have reported headache and
encephalopathy in 40% of patients in their cohort (15). The
brain imaging was unremarkable. His CSF examination had high
opening CSF pressure of 30 cm of water. The CSF cytology and
biochemical parameters were normal. Subsequently he required
repeat therapeutic lumbar puncture as his headache was resistant
to other therapeutic options. He was given steroids for 2
weeks and was symptom free on follow up. There is a report
of steroid responsive encephalitis in coronavirus disease (16).
Raised opening pressure has been described in a patient of
COVID-19 related encephalitis by Moriguchi et al. (14).

CSF pleocytosis was a predominant finding indicating
brain inflammation in patients with meningoencephalitis. The
neuroviral panel was negative for all patients. CSF PCR for SARS-
CoV-2 done in four patients was found to be negative. Recently
the presence of SARS-CoV-2 RNA in the cerebrospinal fluid has
been detected by genome sequencing in a patient with clinically
proved meningoencephalitis in Japan (14).

In one study of 183 hospitalized children with clinically
suspected acute encephalitis, 22 (12%) had coronavirus
infection, the type was not specified by detection of anti-
CoVIgM (17). Neuroimaging plays an important role in
diagnosing meningoencephalitis.

Figure 1 of patient 4 who presented with seizures and altered
sensorium is consistent with meningoencephalitis. On follow up
after 3 weeks, she has memory impairment as a sequela.

Poyiadji et al. described a report where haemorrhagic ring
enhancing lesions consistent with acute necrotizing encephalitis
were seen in the bilateral thalami, medial temporal lobes, and
sub-insular regions on brain MRI (18). They have proposed
that the virus does not directly invade the blood-brain-barrier
and acute necrotizing encephalitis is caused by SARS-CoV-2 via
cytokine storm (18). In the French series of 58 intensive care
patients with COVID-19, the neurological complications were
present in 49 (84%) and 40 (69%) had encephalopathy while 39
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FIGURE 1 | Axial T1 weighted (A) MR image shows hypointensity in left parieto-occipital region in subcortical and deep white matter with overlying sulcal effacement

and corresponding hyperintensity on T2 weighted image (B) and FLAIR (C) images. No associated contrast enhancement seen on contrast-enhanced T1-weighted

MR image (D) with no restricted diffusion on diffusion-weighted MR image (E), and apparent diffusion coefficient (ADC) map (F).

(67%) had cortico-spinal tract signs. MRI findings in 13 patients
showed leptomeningeal enhancement and eight patients had
acute ischaemic change (5).

According to the provisional case definition for the association
of COVID-19 with neurological disease, the probable case is
defined as SARS-CoV-2 detected in respiratory or other non-CNS
sample, or evidence of SARS-CoV-2 specific antibody in serum
indicating acute infection and no other explanatory pathogen or
cause found (1, 13). Accordingly our four cases are categorized
into probable meningoencephalitis due to SARS CoV-2 infection.

The possibility of stroke associated with COVID-19 has
increased as reported from publications from around the world.
In the pooled analysis of four studies on cerebrovascular disease
(CVD) with COVID-19, it is concluded that there is 2.5-fold
increase in odds of severe COVID-19 illness with a history
of stroke and trend toward increased mortality rate (19). The
incidence of ∼2% is being reported for CVD among patients
infected with SARS-CoV-2 admitted to the hospital (11).

SARS-CoV-2 infection is associated with hypercoagulable
state and the depletion of angiotensin-converting enzyme 2
(ACE2) that results in tissue damage, including stroke. The
binding of SARS-CoV-2 with ACE2 (a cardio-cerebro vascular
factor) damages ACE2 and can lead to strokes. The cytokinin
related injury also plays a role in causing stroke (20, 21).

There is a predilection for large vessel involvement and male
preponderance. Avula et al. reported four patients who initially
presented with computed tomography (CT) proven stroke and
later tested positive for COVID-19 (22). Patient 1, admitted with
right middle cerebral artery infarct, was managed conservatively.
She developed fever and breathlessness and was found to be
positive for SARS-CoV-2 on day 14 and succumbed to her illness
due to respiratory insufficiency. Her X-ray showed an atypical
finding of unilateral consolidation and collapse. Both of our
stroke patients do not have the conventional risk factors for
stroke. Li et al. has described that the median durations from
first symptoms of COVID-19 to cerebrovascular disease was 10
days (23).

In the case series from Turkey, four patients with COVID-
19 were reported to be simultaneously accompanied by acute
ischemic stroke. The average time from COVID-19 symptom
onset to the diagnosis of stroke was 2 days in this series (24).

Patient 2 presented in a late window period with NIHSS
score of 6. CT head scan was normal. She was thrombolyzed
with alteplase. She had a developed fever the next day. Her
nasopharyngeal swab PCR was positive for SARS-CoV-2. Her
NIHSS improved to 4 in 2 days. Her post-thrombolysis CT
scan showed hypodensity in right centrum semiovale. She was
managed with antiplatelets and neurorehabilitation.
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Intravenous thrombolysis in acute stroke during this
pandemic is a bigger challenge. The patients are reaching
emergency care late due to several reasons. At large patients
with minor strokes are also avoiding attending hospitals
for the fear of infection. There is possibility of neurological
symptoms being masked by the infection itself, or a delay in
access to neuroimaging or revascularization techniques could be
responsible as reported by Oxley et al. (25).

The single center retrospective study describes 13 of 221
patients diagnosed with SARS-CoV-2 virus to have ischemic
stroke (23). Thrombocytopenia with elevated D-dimer and C-
reactive protein in severe COVID-19 and stroke are consistent
with a virus-associated microangiopathic process. Inflammatory
response along with coagulopathies play an important role in the
COVID-19 related stroke. The inflammatory marker, CRP levels
were raised in both the patients while D-Dimer was raised in one
patient with large artery thrombosis. The treatment comprises of
anticoagulation with low-molecular-weight heparin for patients
with COVID-19, to reduce the risk of thrombotic disease (26).

Hyposmia, anosmia, and dysgeusia are commonly
reported symptoms seen in COVID-19 pausisymptomatic or
asymptomatic patients. In a retrospective study by Klopfenstein
et al. on analysis of patients with anosmia, he concluded that
47% (54 out of 114) of COVID-19 patients reported anosmia
(27). Anosmia began 4.4 [±1.9 (1–8)] days after the onset of
infection and the mean duration of anosmia was 8.9 [±6.3
(1–21)] days (27).

Patient 14 had only subacute onset of anosmia and ageusia for
around 2 weeks. He was followed up in isolation for development
of any other symptoms. No further symptoms developed and
he was SARS-CoV-2 negative after 15 days. This is contrary to
a patient reported by Eliezer et al. who reported a woman in
her 40s presented with hyposmia with a history of dry cough
along with headache and generalized fatigue a few days before
presentation (28).

The pathophysiologic mechanism underlying the smell and
taste impairment needs to be understood; the neurotrophic
potential of the SARS-CoV-2 virus is known and it is
hypothesized that the virus spread through olfactory bulbs into
the central nervous system (29). Screening for SARS-CoV-2
should be done in patients presenting with isolated anosmia.

Neuromuscular disorder has been reported with SARS-
CoV-2 by Tsai et al. (30). Guillain-Barré syndrome is an
acute polyradiculopathy characterized by rapidly progressive,
symmetrical limb weakness, areflexia on examination, sensory
symptoms, and facial weakness in some patients. Patient 13 had
anosmia and ageusia 5 days prior to the onset of classic symptom
of GBS. He developed fever and sore throat on the day of
admission. Electrodiagnostic findings confirmed demyelinating
neuropathy. Besides the typical GBS, Miller Fisher variant
of Guillain-Barré syndrome with ophthalmoplegia, ataxia, and
areflexia is also being reported (31, 32).

The common antecedent infections related with GBS are
Campylobacter jejuni, Zika virus, and influenza virus (33–
35).The SARS-CoV-2 infection stimulates inflammatory cells and
produces various inflammatory cytokines and, as a result, it
creates immune-mediated damage (36). To our understanding,

FIGURE 2 | Chest radiograph reveals multifocal patchy peripheral areas of air

space opacification scattered in right lung field with right upper zone

predominance. Similar confluent opacities with ground glass shadows are

evident in the left middle and lower zone with relative sparing of left upper zone.

GBS being an autoimmune disorder, the hypothesis for it as a
manifestation of COVID-19 remains unclear.

In our clinical practice we have seen the concomitant
infection of tubercular meningitis and SARS-CoV-2 in Patients
7 and 8. The tubercular meningitis is diagnosed at the
presentation and simultaneously she was positive for SARS-
Co-V-2. Another 6 months follow up stable case of tubercular
meningitis with tuberculoma presented in status epilepticus.
She was asymptomatic and found to be SARS-CoV-2 positive
on day 2 of hospitalization. There are reports wherein the
new onset of seizure or status epilepticus can be a presenting
symptom of COVID-19 (37). To explore the association of
tuberculosis/tubercular meningitis and COVID-19 the global
tuberculosis network cohort study is underway. The preliminary
analysis suggests that 38.8% of patients had COVID-19 while
on antitubercular treatment. There is limited or no protection
against COVID-19 in patients of tuberculosis (38).

Patient 6 presented with acute onset encephalopathy. The
CSF showed mild pleocytosis with normal sugar and protein,
TB PCR and neuroviral panel were negative. Contrast brain
MRI was normal. His chest radiograph showed opacities
(Figure 2). Tubercular meningitis as a cause of encephalopathy
was ruled out. The diagnosis of pulmonary tuberculosis was
particularly challenging in this patient in presence of overlapping
SARS-CoV-2 symptoms and positive PCR. CT chest was
not possible as our hospital does not have a dedicated CT
facility for COVID-19 patients. He was started on anti-
tubercular drug along with other supportive treatments. In
the tuberculosis endemic country of India, during the current
COVID-19 pandemic it is challenging to differentiate the
acute meningoencephalitis presentation of SARS-CoV-2 from
tubercular meningoencephalitis.
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An observational study has explored the relationship between
MTB infection and COVID-19 pneumonia, suggesting that
individuals with latent or active TB may be more susceptible to
SARS-CoV-2 infection, and that COVID-19 disease progression
may be more rapid and severe (39). A chronic respiratory
disease like pulmonary tuberculosis is susceptible to this
virus. The treatment for both coexistent diseases should be
tailored accordingly, as use of an immunosuppressant will
exacerbate tuberculosis.

There is evidence that SARS-CoV-2 virus may penetrate the
brainstem, aggravating respiratory impairment (40). Seizures in
severe/end-stage disease are likely to be due to COVID-19 related
hypoxia, encephalopathy, or encephalitis rather than lowered
seizure threshold in susceptible individuals with pre-existent
neurologic disease.

There is limited information in literature that suggests that
individuals with epilepsy are more likely to be infected by the
virus. Giovanni et al. reported worsening of seizures in 18%
of people with epilepsy (PwE) during the COVID-19 period,
mostly seen in patients who were having poor sleep quality
and on multiple antiepileptics. PwE were not found to be at
increased risk of acquiring SARS-CoV-2 infection (41). New
onset seizures and status epilepticus has been described as a
presentation of COVID-19 (42). Musolino et al. investigated
preliminary COVID-19 findings and found one out of 10 infected
children with seizures, while others presented predominantly
with fever, cough, and diarrhea (43).

In our study, five patients presented with seizures and were
concomitantly diagnosed with SARS-CoV-2. Patient 9 with
history of 1 week duration of myoclonic jerks and generalized
seizures was diagnosed with subacute sclerosing panencephalitis
(SSPE). Her CSF examination showed 2 cells with normal sugar
and protein. CSF IgG measles for antibody was positive. EEG
showed slow periodic 2–3Hz discharges. Patient 10 with post-
traumatic seizure disorder, who was well-controlled for 2 years,
presented in status epilepticus.

Diabetic patients are considered to be at risk for SARS-CoV-
2 infection. Patient 12, a middle aged female with uncontrolled
diabetes mellitus, presented in non-convulsive status epilepticus.
She was asymptomatic for COVID-19 symptoms and was
in non-ketotic hyperosmolar state. Patient 11 presented with
right eye ptosis, complete ophthalmoplegia, anosmia, and
ageusia with headache. His neuroimaging revealed cavernous
sinus thrombosis. In diabetes, due to hyperglycaemic state
there is high risk of acquiring infection and progression to
severe-stage of COVID-19 leading to immune dysfunction
(44). The patients with diabetes are vulnerable to nosocomial
infection, which can deteriorate their general condition and
aggravate COVID-19 symptoms (45). In this patient we have
suspected fungal infection causing cavernous sinus thrombosis
due to complicated pan sinusitis with bony destruction on
brain imaging.

The presentation of patients with seizures raises the question
of whether epilepsy patients are more prone to SARS-CoV-2

infection. COVID-19 may exacerbate epileptic seizures from
associated systemic effects not directly related to SARS-CoV-2
CNS infection. The reasonable current understanding remains
that in some patients with COVID-19, seizures develop as a
consequence of hypoxia, metabolic derangements, organ failure,
or even cerebral damage. The association of COVID-19 with
the patients of epilepsy needs to be explored further in well-
planned studies.

This study gives an insight into the neurological associations
of SARS-CoV-2, the new emergent virus in the current
pandemic. The infection itself might be a source of neurological
manifestations, and patients with neurological disorders
might be at risk of the most severe complications of this
infection. The effect of SARS-CoV-2 on pulmonary tuberculosis
and tubercular meningitis in endemic areas needs to be
closely monitored for increased risk of occurrence and its
appropriate management.

Our limitations include the spectrum of neurological
manifestations from a single center study may not be complete.
The long term follow up for possible sequalae is essential to
elucidate the pathophysiological mechanism.

Absent of the dedicated CT facility for COVID-19 patients, the
respiratory involvement at the early stage may have been missed.

As we are still evolving with our knowledge in the pandemic,
identification and reporting of neurological manifestations of
SARS-CoV-2 will help in formulating the guidelines and protocol
for early diagnosis and management.
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INTRODUCTION

When Rebecca Medrano, a Washington D.C. resident who tested positive for SARS-CoV-2
infection, first started feeling unwell with viral symptoms, she noticed an additional symptom—she
had lost her sense of smell (NPR.org, 2020). Worldwide, doctors have reported similar cases of
smell and taste loss in up to 60% of COVID-19 patients, now confirmed in a peer-reviewed study
(Yan et al., 2020). A second unexpected observation was that infected patients with diabetes had
higher rates of serious complications and death (ADA, 2020; Barron et al., 2020).

Underlyingmechanisms for these observations remain unclear. In addition, they raise important
questions: Does SARS-CoV-2 infect olfactory tissue and if so, which olfactory cell types do
they infect and how do viral mechanisms in these cells modulate smell function? Does diabetes
exacerbate viral infection or does virus-mediated dysregulation of diabetic mechanisms further
aggravate symptoms in diabetics? These are critical questions to focus on amidst the tremendous
increase in research efforts related to this pandemic.

Within just few months, the number of SARS-CoV-2 cases has crossed 40 million with over one
million deaths reported around the world (Johns Hopkins Coronavirus Resource Center, 2020).
A major focus of current pandemic-related research efforts seems to be on virus entry and host
immunity mechanisms, and on developing vaccines. While these are important research goals,
unless we develop effective drugs that are disease specific, this virus is likely to persist and mutate
causing more harm to human life and economies around the world. There is thus an urgent need
for basic research into viral mechanisms and to generate innovative strategies to slow down disease
progression, especially in diabetics.

The cases of Rebecca Medrano and many like her losing their sense of smell highlight unique
opportunities to study SARS-CoV-2 mechanisms. Such an opportunity to better understand
SARS-CoV-2 mechanisms and its relationship to diabetes might be found in our nose. Here, we
argue that our communal fight against this dreaded disease would benefit greatly from an additional
focus on studying viral mechanisms in olfactory tissue. Olfactory tissue offers a convenient venue
to explore interactions between viral and diabetic mechanisms and evaluate them at the level of
function (loss of smell).

How Does SARS-CoV-2 Infection Lead to Smell Loss?
While many COVID-19 patients have reported a loss in their ability to smell, it is unclear how this
virus mediates smell loss. Is there SARS-CoV-2 activity in olfactory tissue or could loss in smell
simply be a byproduct of an overactive host immune response to the virus? Ample recent evidence
supports the idea that viral mechanisms play a role in olfactory tissue.

SARS-CoV-2 uses the receptor, Angiotensin-converting enzyme 2 (ACE2) to attach to a host cell.
ACE2, a metalloprotease is found in cells of several tissues including olfactory tissue (Hamming
et al., 2004; Sungnak et al., 2020). Within olfactory tissue, ACE2 and TMPRSS2 (a priming protease
that facilitates viral uptake) express in several cell types (Hamming et al., 2004; Baig et al., 2020;
Bilinska et al., 2020; Brann et al., 2020; Sungnak et al., 2020). Expression of these genes in olfactory
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cell types suggests that olfactory tissue may be sensitive to SARS-
CoV-2 infections. It may also explain why FDA approved ACE
inhibitors such as Captopril are associated with loss in smell and
taste (Doty and Bromley, 2004).

However, early studies are unresolved as to whether infection
of olfactory sensory neurons (OSNs) or of neighboring cells
is responsible for smell loss. One possibility is that smell loss
may be due to death of OSNs (Netland et al., 2008; Baig et al.,
2020). Immunostainings of SARS-Co-V N protein revealed high
abundance of this antigen in olfactory bulb of infected mice.
This study suggested SARS-virus entry via olfactory nerve with
subsequent transneural spread into brain regions. The olfactory
nerve, which consists mainly of OSNs and directly connects nasal
cavity with the central brain, is considered a shortcut for several
viruses including the influenza virus to gain entry into the brain
(van Riel et al., 2015). Viral infections of olfactory nerve are
usually accompanied by concomitant (non-apoptotic) neuronal
death (Netland et al., 2008).

Another possibility is that infection of non-neural olfactory
cells and not OSNs may be responsible (Bilinska et al., 2020;
Brann et al., 2020). Bilinska et al. report high expression of ACE2
and TMPRSS2 in sustentacular cells of the olfactory epithelium
and less expression in OSNs (Bilinska et al., 2020). Since
sustentacular cells play key roles in supporting OSN metabolism
and odor sensing, any virus-mediated damage to these cells
could lead to olfactory deficits (Heydel et al., 2013). Brann et al.
also report that ACE2 and TMPRSS genes are expressed in
sustentacular cells, HBCs, microvillar cells, and Bowman’s gland
cells of the olfactory epithelium but not in OSNs. They argue that
viral infection of sustentacular cells may be enough to cause a
pathophysiological cascade that culminates in damage to OSNs
and thereby cause smell loss. They also found ACE2 expression in
vascular pericytes, which are involved in inflammatory response
(Brown et al., 2019; Brann et al., 2020).

Overall, these studies offer several hypotheses as to how viral
mechanisms could lead to smell loss in COVID-19 patients:
one ACE2 mechanisms in olfactory neurons lead to a direct
modulation of olfactory sensitivities or even cell death; two
ACE2 mechanisms in non-neural olfactory cells lead to indirect
modulation of OSN function and; three ACE2 mechanisms in
neighboring glial cells lead to increased inflammatory response,
whose downstream effects could alter OSN function and reduce
olfactory sensitivities. While this is not an exhaustive list of
possible hypotheses, it’s a start. Each hypothesis needs to be
rigorously assessed so that we may better understand why many
COVID-19 patients lose their sense of smell.

Why Do Diabetics Have Worse Outcomes
After SARS-CoV-2 Infections?
SARS-CoV-2-infected patients with diabetes face higher rates
of serious complications and even death (ADA, 2020). Type 1
and type 2 diabetics have up to 3.5 times the odds of dying
with COVID-19 (Barron et al., 2020). A recent meta-analysis
study of data collected from 1,527 patients in China revealed
that diabetes was among the most prevalent comorbidities
associated with COVID-19 (Li et al., 2020). These observations

raise important questions: Could diabetes-associated symptoms
aggravate viral infection? Conversely, could viral infection
aggravate diabetes symptoms?

A relationship between various infections and diabetes has
long been debated. Population-based studies have revealed
that infections such as influenza and pneumonia are common
and more serious among older people with type 2 diabetes
(McDonald et al., 2014; Pearson-Stuttard et al., 2016; Li et al.,
2019). While diabetes may predispose individuals to certain
infections, it is less clear how (Knapp, 2013). There are several
theories as to how diabetes and SARS-CoV-2 associate to
influence symptom severity and mortality. A simple explanation
is that high levels of inflammation, coagulation, immune
response impairment, etc. in diabetics could aggravate viral
infection and symptoms (Hussain et al., 2020).

However, there is also evidence to support a case for complex
interactions between viral and diabetic mechanisms within cells.
For instance, upon being fed a high calorie diet, ACE2 knockout
mice had impaired glucose tolerance compared to their wild
type littermates (Takeda et al., 2013). This result suggests that
ACE2 expressed in insulin-sensitive tissues plays a critical role in
maintaining glucose homeostasis and insulin sensitivity. Thus, a
SARS-CoV-2/ACE2-mediated dysregulation of insulin signaling
could further aggravate symptoms in diabetics.

Searching for Insights in the Nose
The olfactory tissue offers a convenient venue to research
interactions between viral and diabetic mechanisms and gain
fundamental insights about SARS-CoV-2 mechanisms. As
described above, several olfactory cell types express ACE2 and
TMPRSS, likely rendering them sensitive to viral infections. It
turns out that olfactory tissue is also sensitive to insulin. In
fact, highest density of central insulin receptors and highest
concentration of insulin in mammalian brain are found in
the olfactory bulb (Havrankova et al., 1981). Insulin signaling
plays a significant role in satiety-dependent modulation of
smell sensitivities (Bargmann, 2012; Taghert and Nitabach, 2012;
Ko et al., 2015; Slankster et al., 2020). Like ACE2, insulin
receptors are expressed on surface of both OSNs and glia (Nassel
et al., 2013; Musashe et al., 2016). Using the olfactory system,
we could ask whether ACE2 and insulin mechanisms interact
and, if they do, identify downstream molecules that link these
mechanisms. Identifying downstream molecules that link ACE2
and insulin mechanisms will expand our understanding of how
viral and diabetic mechanisms interact to impact cell function.
Additionally, these results may inform studies in other tissues
and generate drug targets with relevance for disease progression
in diabetics.

Olfactory systems, especially in genetically tractable model
organisms like mice and Drosophila may aid in our fight
against this virus. These systems have been commonly used
as convenient in vivo model systems for disease research
(Steuer et al., 2014; Franks et al., 2015). Previous studies have
characterized Drosophila-orthologs of human ACE (AnCE and
ACER) (Cornell et al., 1995). Notably, the same drugs that inhibit
human ACE also inhibit ACE orthologs in Drosophila (Kim
et al., 2003). Genetic tools to manipulate ACE receptor and
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insulin signaling in mice andDrosophila olfactory cells have been
described and are available in public collections. Considering
olfactory tissue offers a convenient venue to explore interactions
between viral and diabetic mechanisms as well as to evaluate
them at the level of function, we cannot ignore the possibility
that olfactory research will lead to insights that may aid our
fight against this virus. Few other tissues harbor both ACE2
and insulin mechanisms and even when they do, such as in
lungs and liver, studying functional interactions in these tissues
can be challenging. We therefore urge research agencies to
consider funding basic research focused on viral mechanisms in
olfactory tissue.

DISCUSSION

SARS-CoV-2 has negatively impacted lives around the world.
Amidst growing concerns of its impact, federal and private
agencies are rushing to develop effective cures and vaccines.
While there is a need for such solutions, there is also a
need for basic research into underlying viral mechanisms and
thereby generate more innovative solutions. One area that
needs more basic research is the relationship between viral
and diabetic mechanisms. Could abnormal insulin signaling in
olfactory neurons of diabetics exacerbate SARS-CoV-2-mediated
mechanisms and lead to loss in smell in Covid-19 patients?
This relationship can no longer be ignored, especially since

diabetics infected with SARS-CoV-2 have up to 3.5 times the
odds of serious complications and death. Fortunately, stories of
Rebecca Medrano and others offer us an opportunity to tackle
this enemy from a different perspective and eventually defeat
it. Studying interactions between viral and diabetic mechanisms
in olfactory tissue of genetically tractable model organisms such
as mice and Drosophila offers a different approach. Such an
approach will not only lead to new insights about SARS-CoV-
2 mechanisms but may also help identify potential drug targets
primarily relevant to disease progression in diabetics. Identifying
viable drug candidates will greatly impact our collective capability
of fighting this disease over the next 5–10 years. If scientists
and funding agencies consider novel but thoughtful actions right
now, they will help change course of events and thus make a
significant impact in the long term.
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SARS-CoV-2 Is Not Detected in the
Cerebrospinal Fluid of
Encephalopathic COVID-19 Patients
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Kenneth Inglima, David Zagzag, Matija Snuderl, Eddie Louie, Jennifer Ann Frontera and

Ariane Lewis

NYU Grossman School of Medicine and NYU Langone Health, New York, NY, United States

Neurologic manifestations of the novel coronavirus SARS-CoV-2 infection have received

wide attention, but the mechanisms remain uncertain. Here, we describe computational

data from public domain RNA-seq datasets and cerebrospinal fluid data from adult

patients with severe COVID-19 pneumonia that suggest that SARS-CoV-2 infection of

the central nervous system is unlikely. We found that the mRNAs encoding the ACE2

receptor and the TMPRSS2 transmembrane serine protease, both of which are required

for viral entry into host cells, are minimally expressed in the major cell types of the brain.

In addition, CSF samples from 13 adult encephalopathic COVID-19 patients diagnosed

with the viral infection via nasopharyngeal swab RT-PCR did not show evidence for the

virus. This particular finding is robust for two reasons. First, the RT-PCR diagnostic was

validated for CSF studies using stringent criteria; and second, 61% of these patients had

CSF testing within 1 week of a positive nasopharyngeal diagnostic test. We propose that

neurologic sequelae of COVID-19 are not due to SARS-CoV-2 meningoencephalitis and

that other etiologies are more likely mechanisms.

Keywords: SARS-CoV-2, COVID-19, CSF, encephalopathy, cerebrospinal fluid

INTRODUCTION

The novel coronavirus SARS-CoV-2, responsible for the COVID-19 pandemic, principally
affects the respiratory system and, in severe cases, leads to pneumonia complicated by acute
respiratory distress syndrome (ARDS). The viral infection impacts other organ systems as
well and can cause gastrointestinal symptoms, renal insufficiency, and thrombosis among
other complications. However, little is known about the neurologic manifestations and related
mechanisms of COVID-19.

A common observation is that patients that develop severe COVID-19 pneumonia and
ARDS manifest encephalopathy during the course of the disease and their recovery (1, 2).
Possible etiologies for such central nervous system (CNS) impairment include direct infection
of neural tissue, hypoxic ischemic injury, ischemic infarcts due to hypercoagulability, metabolic
encephalopathy (including renal and hepatic etiologies), or effects of massive systemic cytokine
release. A recent autopsy study of COVID-19 patients based on detection of viral genome by in situ
hybridization suggested the brain abundance of the virus is approximately 106-fold less than in the
lung and 103-fold less than in the kidneys, liver and heart (3). However, this low-level presence
of viral genome in CNS tissue does not really address the question of whether the neurologic
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FIGURE 1 | ACE2 and TMPRSS2 mRNAs are only minimally expressed in the brain. (A) Bulk RNA sequencing of normal human tissues in the GTEx portal shows that

ACE2 and TMPRSS2 mRNAs are minimally expressed in the human brain (red box and arrows). (B) The Brain RNA-seq database, which is based on RNA-seq of

(Continued)
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FIGURE 1 | sorted cellular populations, shows minimal expression of ACE2 and TMPRSS2 in brain cells, including neurons, glia, microglia and endothelial cells. The

expression pattern of GRIN2A, which encodes the NMDA receptor 2A subunit in neurons, and GFAP, which encodes an intracellular filament found in astrocytes, are

shown for comparison. (C) Similar information is found in the Allen Brain Atlas, which is based on single-cell RNA-seq of normal brain specimens. ACE2 and

TMPRSS2 (red arrow) are minimally expressed. GRIN2A and GFAP are again shown for comparison. TPM, Transcripts Per Million mapped reads; FPKM, Fragments

Per Kilobase of transcript per Million mapped reads; CPM, Counts Per Million mapped reads; OPC, Oligodendrocyte Precursor Cells; oligo, oligodendrocytes; endo,

endothelial cells; VLMC/peri, Vascular and LeptoMeningeal Cells/pericytes; micro, microglia.

sequelae of COVID-19 are related to SARS-CoV-2
encephalitis/meningitis. Furthermore, it is not clear whether the
patients in this autopsy study had any neurologic manifestations.

To help answer the question of whether SARS-CoV-2 causes
meningoencephalitis in encephalopathic COVID-19 patients, we
utilized a two-pronged approach. First, we asked whether brain
tissue expresses the cell surface proteins required for viral entry
into host cells, ACE2 and TMPRSS2 (4). And second, we tested
whether SARS-CoV-2 RNA is detected in the cerebrospinal fluid
(CSF) of encephalopathic COVID-19 patients.

METHODS

Computational Analysis of RNA-seq Data
We analyzed public-domain RNA-seq data (both bulk and
single-cell) from normal brain tissue in the GTEx, Brain
RNA-seq and Allen Brain Atlas databases [www.brainrnaseq.
org; celltypes.brain-map.org/rnaseq/human/cortex; (5)] for
expression of ACE2 and TMPRSS2 mRNA. We used GRIN2A,
which encodes the 2A subunit of the N-methyl-D-aspartate
(NMDA) receptor and GFAP (glial fibrillary acidic protein)
mRNAs as positive controls for expression in neurons and
astrocytes, respectively.

Validation of CSF Testing by SARS-CoV-2
RT-PCR
Current diagnostic modalities for COVID-19 rely predominantly
on the detection of SARS-CoV-2 RNA using RT-PCR. Most
clinical laboratories have implemented commercial platforms
that have received Emergency Use Authorization (EUA) by the
FDA. The advantage of commercial platforms is their reliability,
well-standardized reagents, automation and high throughput.
The extent of the pandemic and particularly its impact in New
York City made these platforms a highly desirable option. Our
institution used the Cepheid (Sunnyvale, CA) Xpert R© Xpress,
as well as the Roche (Basel, Switzerland) Cobas R©, platforms
for SARS-Cov-2 RT-PCR by nasopharyngeal swab. Both systems
have comparable performance with similar limits of detection
(LOD), 250 and 100–200 RNA copies/mL, respectively, which is
important for consistency of results.

As clinical demands for CSF testing for SARS-CoV-2 RT-
PCR testing in our institution increased, we planned the
validation of this sample type according to the New York
State Wadsworth Center procedure for SARS-CoV-2 Laboratory
Developed Test (LDT). The Food and Drug Administration
(FDA) has given the NYS Wadsworth Center the authority to
approve SARS-CoV-2 LDT tests to qualified laboratories during
the COVID-19 pandemic.

We chose the Cepheid Xpert R© Xpress platform, which
targets the N2 (nucleocapsid) and E (envelope) sequences of the
SARS-CoV-2 genome, to validate SARS-CoV-2 RT-PCR in CSF
specimens. Detection of the SARS-CoV-2-specific N2 sequence
results in a positive diagnostic test. Refrigerated CSF samples,
obtained from patients without COVID-19 and previously
analyzed for other tests in the laboratory, were pooled and
used as the sample matrix for validation studies. The pooled
CSF tested negative by SARS-CoV-2 RT-PCR. To determine
the limit of detection (LOD), we added to the pooled CSF
serial 2-fold dilutions of SeraCare AccuPlexTM ReferenceMaterial
(Cat # 0505-0126), which contains 5,803 copies/mL of SARS-
CoV-2 RNA, including the target N2 sequence detected by the
Cepheid Xpert Xpress platform. The lowest dilution of reference
material that we tested was 90 copies/mL. All dilutions were
tested in triplicates. We determined the LOD in CSF to be 181
copies/mL, comparable to the platform’s LOD in nasopharyngeal
swab specimens. This LOD was 100% reproducible in 20
replicate experiments.

To determine the specificity of the assay, we spiked our pooled
CSF with control material containing viral genomic sequences
of cytomegalovirus (CMV), herpes simplex virus 1 (HSV1),
herpes simplex virus 2 (HSV2), parechovirus type 3, enteric
cytopathic human orphan (ECHO) virus, and human herpesvirus
6 (HHV6). We also included CSF proficiency panel samples
containing HSV1 and CMV, as well as one clinical CSF sample
known to contain HSV1. All these samples tested negative for
SARS-CoV-2 by RT-PCR.

To further evaluate the assay for clinical use, we used
contrived individual CSF samples spiked with Seracare
AccuPlexTM Reference Material at six different increments
of the LOD (2X, 4X, 6X, 8X, 10X, and 25X). We included five
CSF samples per condition. Ten unspiked CSF samples were
used as negative controls. All 30 contrived samples spiked
with different LOD increments tested positive by SARS-CoV-2
RT-PCR, while all 10 controls tested negative.

Retrospective Analysis
To test if SARS-CoV-2 can be detected in the CSF of COVID-19
patients with neurologic complications, we retrospectively mined
data from our COVID-19 adult patient cohort in the NYU
Langone Health System in New York City (NYC) and searched
for SARS-CoV-2 RT-PCR tests in CSF.

RESULTS

SARS-CoV-2 requires the cellular receptor ACE2 and the
transmembrane serine protease TMPRSS2 to enter cells (4).
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TABLE 1 | Patient demographics and clinical information.

Patient

number

Sex Age

(years)

CSF

test date

Outcome Method Swab

test date

Outcome Interval

(days)

Indication for

CSF test

CSF

glucose

CSF

protein

CSF RBC CSF

WBC

CSF

differential

Brain imaging Admission

date

Discharge

date

Clinical

outcome

Repeat

swab test

date

Outcome

1 F 68 12/04/2020 Neg LP 05/04/2020 Pos 7 Encephalopathy 65 37 0 3 80% lymphs CT 4/5/20:

normal

05/04/2020 30/04/2020 Skilled

nursing

facility

28/04/2020 Neg

2 F 66 27/03/2020 Neg LP 20/03/2020 Pos 7 Encephalopathy 93 80 1 9 57% lymphs No 20/03/2020 09/04/2020 Death

3 M 88 20/04/2020 Neg LP 14/04/2020 Pos 6 Seizure 64 62 0 14 99% lymphs CT 4/14/20:

abnormal

hypodensities

14/04/2020 28/04/2020 Recovered

4 M 69 25/03/2020 Neg LP 24/03/2020 Pos 1 Seizure 81 86 14,000 24 75% PMNs CT, CTA

3/24/20,

3/26/20: lacunar

infarct

24/03/2020 01/04/2020 Death

5 M 38 26/04/2020 Neg LP 24/03/2020 Pos 33 Encephalopathy 125 16 1 0 MRI 4/21/20,

4/29/20: hypoxic

injury/infarcts

23/03/2020 10/06/2020 Rehabilitation

6 F 22 20/04/2020 Neg Shunt

tap

01/04/2020 Pos 19 Encephalopathy 146 128 0 2 No 01/04/2020 12/05/2020 Death

7 M 38 29/04/2020 Neg LP 29/04/2020 Pos 0 Seizure 75 60 0 5 60% lymphs CT 4/29/20:

normal; MRI

5/1/20: normal

29/04/2020 08/05/2020 Recovered

8 F 60 31/03/2020 Neg LP 30/03/2020 Pos 1 Encephalopathy 34 85 13,000 31 78% lymphs MRI brain

3/17/20,

3/27/20, 4/6/20:

FLAIR

hyperintensities

15/03/2020 10/04/2020 Recovered 06/04/2020 Pos

9 F 63 30/04/2020 Neg LP 30/03/2020 Pos 31 Encephalopathy 62 25 1 0 MRI 4/29/20:

FLAIR

hyperintensities

30/03/2020 03/06/2020 Recovered

10 M 64 05/05/2020 Neg LP 26/03/2020 Pos 40 Encephalopathy 70 49 900 2 CT 4/23/20:

normal; MRI

5/1/20: diffusion

restriction and

FLAIR

hyperinsities

26/03/2020 22/05/2020 Recovered

11 F 34 14/05/2020 Neg LP 09/05/2020 Pos 5 Seizure 114 21 40 1 100% lymphs CT 4/12: pons

hypodensities

09/05/2020 30/06/2020 Recovered

12 F 36 15/05/2020 Neg EVD 07/05/2020 Pos 8 Hemorrhage/

encephalopathy

62 219 46,000 50 69% PMNs CT 5/13:

hemicraniectomy

for ICH, IVH

07/05/2020 08/07/2020 Hospice

care

13 F 67 12/05/2020 Neg LP 25/04/2020 Pos 17 (3) Hemorrhage/

encephalopathy

53 153 2,000 402 78% PMNs CT 5/12: ICH,

SAH

25/04/2020 24/05/2020 Death 09/05/2020 Pos

F, female; M, male; neg, negative; pos, positive; LP, lumbar puncture; EVD, external ventricular drain; RBC, red blood cells; WBC, white blood cells; lymphs, lymphocytes; PMNs, polymorphonuclear cells; ICH, intracranial hemorrhage;

IVH, intraventricular hemorrhage; SAH, subarachnoid hemorrhage.
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Our analysis of public-domain RNA-seq data indicates that only
minimal amounts of ACE2 and TMPRSS2 mRNAs are expressed
in human brain cells, including neurons, glia, microglia and
endothelial cells (Figure 1). This suggested that the brain may
be less susceptible to infection than other tissues with higher
expression of ACE2 and TMPRSS2.

We retrospectively identified 13 adult patients with severe
COVID-19 pneumonia (Table 1) who had CSF tested for SARS-
CoV-2 by RT-PCR, due to concern for meningoencephalitis. CSF
sampling was obtained via lumbar puncture (n= 11), by tapping
the reservoir of a ventriculoperitoneal shunt valve (n=1), and
by aspirating CSF through an external ventricular drain (EVD)
(n = 1). Indications included encephalopathy (n = 7), seizures
(n = 4), and encephalopathy associated with known intracranial
hemorrhage (n = 2). Encephalopathic symptoms preceded CSF
sampling in all cases. All patients had SARS-CoV-2 infection
confirmed by nasopharyngeal swab testing, but, importantly,
none showed evidence of the virus in the CSF by RT-PCR.
There was no pleocytosis in the CSF, with the exception of
1 patient with known subarachnoid hemorrhage (Table 1).
Figure 2A shows the time interval between the nasopharyngeal
and CSF tests in these patients. Of particular interest are
three patients (23.1%) whose CSF was tested the same day
(n = 1) and the day after (n = 2) the nasopharyngeal swab
that indicated SARS-CoV-2 infection (Figure 2B). In one of
these cases, a second nasopharyngeal swab 8 days after the
CSF test remained positive for the virus. Overall, 53.8% of
patients in this cohort had their CSF tested within 1 week after
initial diagnosis; and 61.5% had the CSF test within 1 week
of a positive nasopharyngeal swab test (Figure 2B). Eleven of
the patients (84.6%) had brain imaging (MRI or CT) at the
time of the CNS workup, with nine of those (81.8%) showing
abnormal findings. These imaging abnormalities included, in at
least three cases, evidence for subcortical hypoxic ischemic injury
and infarcts.

DISCUSSION

Although this is a small cohort of patients and the data
were analyzed retrospectively, our negative CSF findings are
consistent with the observation that ACE2 and TMPRSS2
mRNAs are minimally expressed in the brain. We postulate
that SARS-CoV-2 is not likely to establish persistent or severe
meningoencephalitis that can account for the neurologic sequelae
of COVID-19, a hypothesis that will have to be tested in
larger studies in the future. In theory, possible routes of
spread of the novel coronavirus to the brain could include:
viremic spread and infection of cerebrovascular endothelium
or diapedesis through the vasculature or blood-brain barrier;
the choroid plexus, the tissue responsible for CSF production;
transsynaptic spread to the brain via the olfactory epithelium
in the nasal cavity; or introduction of the virus by infected
peripheral leukocytes, in a “trojan horse” scenario. However,
we believe that, even if SARS-CoV-2 were to reach the brain
via one of these mechanisms, it would nonetheless be unable
to establish a clinically significant, persistent infection due to

FIGURE 2 | Time interval between COVID-19 diagnosis by nasopharyngeal

swab and CSF testing. (A) The interval between CSF testing and the

nasopharyngeal swab test is displayed for all 13 patients in the cohort. (B) Pie

chart showing the distribution of interval between CSF and

nasopharyngeal testing.
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minimal expression of ACE2 cellular receptor and TMPRSS2
transmembrane protease, both necessary for viral entry into
cells (4). Ultimately, autopsy studies of such encephalopathic
COVID-19 patients will be required to determine whether
SARS-CoV-2 infects brain tissue, using techniques such as
electron microscopy, which identifies viral particles; in situ
hybridization for the viral genome; or immunohistochemistry for
viral proteins (3).

These observations need to be considered in the context
of an isolated report of SARS-CoV-2 meningitis/cerebritis
(albeit with a negative nasopharyngeal test result) (6), which
suggests that CNS infection may be possible. However,
recent studies corroborate our findings that SARS-CoV-2 is
not detected in the CSF of COVID-19 patients (2, 7). Our
case series, one of the largest so far on the status of CSF
in COVID-19 patients, builds on the prior reports to more
definitively argue against SARS-CoV-2 meningoencephalitis,
because it utilizes a CSF-validated RT-PCR diagnostic assay,
and, equally importantly, because it reports negative CSF
testing within 0–1 days from COVID-19 diagnosis in 23.1%
of patients, and within 1 week of positive nasopharyngeal
testing in 61.5% of the subjects. The results of early CSF
testing in these patients essentially fulfill the criterion for
near-simultaneous nasopharyngeal swab and CSF assays
during the critical window of active infection, in order to
safeguard against the concern that a long delay in CSF
testing after initial diagnosis may be negative anyway due to
viral clearance.

Limitations of our study include the small sample size,
as well as the possibility that low-grade CSF infection with
SARS-CoV-2 may fall below the limit of detection of our
diagnostic test. Additional patients tested after this manuscript
was written also tested negative for SARS-CoV-2 in the CSF.
Larger studies will be required to ascertain our findings in this
small cohort.

Overall, our study suggests that SARS-CoV-2 infection of
the CNS is unlikely to account for neurologic symptoms of the
COVID-19 syndrome. In our opinion, the CNS manifestations
of COVID-19 are more likely the result of a coagulation
disorder leading to multiple ischemic infarcts; hypoxic ischemic
injury; toxic metabolic effects of prolonged critical illness,

residual sedation and uremic encephalopathy; or CNS effects of

the cytokine storm that characterizes severe COVID-19 cases
(1, 2, 8).
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COVID-19 has spread rapidly worldwide since its outbreak and has now become a

major public health problem. More and more evidence indicates that SARS-CoV-2

may not only affect the respiratory system but also cause great harm to the central

nervous system. Therefore, it is extremely important to explore in-depth the impact of

SARS-CoV-2 infection on the nervous system. In this paper, the possible mechanisms of

SARS-CoV-2 invading the central nervous system during COVID-19, and the neurological

complications caused by SARS-CoV-2 infection were reviewed.

Keywords: neurological complications, olfactorial nerve, ACE2, central nervous system, SARS-CoV-2, COVID-19

INTRODUCTION

The novel coronavirus is a previously unknown β-coronavirus, which is a single-stranded
positive-strand RNA virus. The World Health Organization named it 2019-nCoV and the
International Committee on Virus Taxonomy named it SARS-CoV-2. The virus belongs to a branch
of the sarcoma virus subfamily of the coronavirus subfamily. SARS-CoV-2 is the seventh member
of the coronavirus family that infects humans (1, 2).

SARS-CoV-2 is the virus that caused COVID-19 in 2019. SARS-CoV-2 infection can
cause severe acute respiratory syndrome. SARS-CoV-2 has a high potential to spread and
infect humans all over the world (3). Since the first case of COVID-19 was diagnosed in
Wuhan, the number of SARS-CoV-2 infections worldwide has increased exponentially in the
past few months. COVID-19 was originally described as a respiratory infection, but now it
is increasingly regarded as a multi-organ disease, including nervous system manifestations.
An updated version of the new guidelines for the diagnosis and treatment of coronary
pneumonia issued by the National Health Council of China (China NHCotPsRo, 2020) points
out that histopathological samples from some COVID-19 patients showed that SARS-CoV-2
invasion involved multiple organs, including lung, spleen and hilar lymph nodes, heart and
blood vessels, liver and gallbladder, kidney, brain, adrenal gland, esophagus, stomach, and
intestine. In particular, edema, and partial neuronal degeneration were observed in brain
tissue (China NHCotPsRo, 2020) Neurodegenerative changes observed in cells infected with
SARS-CoV-2, including cell death and hyperphosphorylation, as well as dislocation of Tau
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protein, these changes can be observed in conditions such as
hyperthyroidism or Alzheimer’s disease (4) However, the specific
mechanism of neurodegenerative changes induced by SARS-
CoV-2 remains to be further studied in the future. The central
nervous system may serve as a reservoir for SARS-CoV-2,
some groups observed that viral particles gradually accumulated
within the neuronal cells of the brain organs from 6 to 72 h
after SARS-CoV-2 infection, indicating that the virus replicated
actively and effectively in the neuronal cells within the first
few days of infection. However, some groups observed that
viral infection did not replicate effectively in the first few days
and suggested that the central nervous system might serve
as a long-term reservoir of the virus (4). More and more
evidence shows that SARS-CoV-2 has a potential neuroinvasive
effect (5). It is estimated that more than 1/3 of COVID-19
patients will have nervous system symptoms, including central
nervous system symptoms (dizziness, headache, disturbance of
consciousness, acute cerebrovascular disease, ataxia, epilepsy).
Peripheral nervous system symptoms (taste disorder, olfactory
disorder, visual impairment, neuralgia) (6).

So far, although the epidemic in China has been effectively
controlled, the COVID-19 epidemic is still very serious
worldwide. According to statistics, there aremore than 54million
confirmed cases worldwide, and more than 15 million existing
confirmed cases. In this global public health emergency, we
are still facing a very serious situation. In the face of SARS-
CoV-2, understanding the impact of SARS-CoV-2 infection
on the nervous system and its invasion mechanism is of
great significance for the reasonable treatment of patients. In
this paper, the effects of SARS-CoV-2 on nervous system are
systematically analyzed and reviewed (Figure 1).

THREE MECHANISMS OF SARS-COV-2
INVADING THE NERVOUS SYSTEM

The central nervous system is protected by a highly complex
brain barrier system, which is the first line of defense against
virus invasion. The brain barrier is composed of the blood-
brain barrier, blood-cerebrospinal fluid barrier, and brain-
cerebrospinal fluid barrier. The blood-brain barrier has a
maximum surface area that can be used for communication
between the brain and blood. It consists of cerebral capillary
endothelial cells, extracellular matrix, and astrocyte podocytes.
The blood-cerebrospinal fluid barrier is located in the choroid
plexus of the ventricle of the brain. The epithelial cells of the
choroid plexus are mainly responsible for the barrier function
of the blood-cerebrospinal fluid barrier. The blood-brain barrier
and the blood-cerebrospinal fluid barrier can inhibit paracellular
diffusion, protect the central nervous system from the influence
of the constantly changing blood environment, infections and
toxins, and are crucial for maintaining the homeostasis of the
central nervous system (7–9).

To cause a central nervous system infection, the virus must
first successfully cross the protective barrier of the brain. Crossing
the blood-brain barrier or the blood-cerebrospinal fluid barrier

requires special adaptation of the virus. Despite this, SARS-COV-
2 can still enter the nervous system rapidly in some special ways
after infection (10–13).

The following three ways may be the main ways for SARS-
COV-2 to invade the central nervous system: (1) SARS-CoV-2
directly infects vascular endothelial cells by means of angiotensin
converting enzyme 2, thus directly crosses the blood-brain
barrier. (2) SARS-CoV-2 enters the central nervous system
through synaptic connections via the olfactory nerve. (3) SARS-
CoV-2 Induces Inflammation to destroy the Brain Barrier System
and enter the central nervous system.

SARS-CoV-2 Directly Infects Vascular
Endothelial Cells and Crosses the
Blood-Brain Barrier
Studies have shown that similar to SARS-COV, SARS-COV-2 can
use ACE2 to enter the cell interior (14, 15). The spike protein
(S protein) in SARS-CoV-2 is a trimer projecting from the viral
membrane and contains a receptor binding domain (RBD) in
each monomer. Through it, the viral protein can directly interact
with ACE2 receptors on the surface of many host cells. S protein
is the main tool for SARS-CoV-2 to bind to the ACE2 receptor
(infect cells), and it can strongly bind to ACE2 (16). Therefore,
the S protein may be used as a key target for the treatment of
COVID-19 and vaccine development.

In addition, host cell protease also plays an important role
in virus entry and infect cells (17, 18). The S1 subunit of S
protein on the surface of SARS-CoV-2 first binds to neuron
ACE2 receptor and adheres to the surface of target cells; then,
the S2 subunit of the virus is activated by the serine protease
TMPRSS2 of host cells, and the virus can enter the nerve cells
(19). Therefore, TMPRSS2 activity is very important for the
infection and transmission of SARS-CoV-2 in host cells and is
important pathogenesis of neurological complications (20–22).

Although the S protein activity of SARS-CoV-2 is weaker
than that of previous coronaviruses (23). However, the binding
affinity of SARS-CoV-2 S protein to ACE2 is 10–20 times higher
than that of SARS-CoV S protein to ACE2 (15). This is due
to the fact that the receptor binding domain of SARS-CoV2
is different from that of previous coronaviruses on several key
amino acid residues (17). It contains 4 positively charged residues
and five negatively charged residues, so SARS-CoV-2 S protein
is slightly more positively charged than SARS-CoV S protein.
Although the charge difference between the S proteins of SARS-
CoV-2 and SARS-CoV is quite small, this effect can be amplified
by the presence of a large number of S proteins on the virus
particles (16).

At the interface between the SARS-CoV-2 RBD and the
cellular ACE2 receptor, the difference in the amino acid content
of the S protein can lead to a more specific interaction
between the S protein and the host cell receptor. Therefore,
compared with SARS-CoV, SARS-CoV-2 is more likely to
establish interactions with different targets in the human body
through non-specific and specific interactions. All of these can
ultimately increase the ability of SARS-CoV-2 to enter human
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FIGURE 1 | The mechanism of SARS-CoV-2 causing nervous system infection and nervous system diseases.

cells (16), which may explain why COVID-19 has stronger
pathogenicity, transmissibility, and greater global influence (17).

This charge difference between SARS-CoV-2 and SARS-CoV
S proteins can have a significant impact on endothelial cell
adhesion and crossing the blood-brain barrier (16) so that SARS-
CoV-2 infected with vascular endothelial cells of the blood-brain
barrier has a higher efficiency of reaching the brain and can
cross the blood-brain barrier directly into the central nervous
system (16).

Through the study of the distribution of ACE2 in the nervous
system, it was found that ACE2 was expressed in different brain
regions, such as subfornical organs, nucleus tractus solitarius and
ventrolateral region of the medullary head, as well as regions
such as motor cortex and raphe. According to spatial distribution
analysis, ACE2was also expressed in the substantia nigra (24–26).
Due to the existence of ACE2 receptors in glial cells and neurons,
it has become a potential target for SARS-CoV-2 causing brain
injury and neurological symptoms (27).

In addition, ACE2 is widely attached to the extracellular
surfaces of the lungs, arteries, heart, kidneys, intestines, and brain
(cell membranes) (16, 28, 29). In addition to respiratory system

involvement, SARS-COV-2 infection may also cause multi-
organ dysfunction. Despite the predominance of respiratory
symptoms, there is post-infection damage to the myocardium,
kidneys, intestines, and liver, perhaps ACE2 provides a crucial
link between immunity, inflammation, and cardiovascular
disease (17).

The autopsy of novel coronavirus pneumonia showed brain
edema and partial degeneration of neurons (30). However, there
is not enough autopsy evidence to prove that SARS-CoV-2
exists in neurons and glial cells. Further studies are needed to
prove this.

Olfactory Nerve Pathway
Among the 12 pairs of cranial nerves, the olfactory nerve is not a
real nerve but a conduction bundle of the central nervous system.
It can directly contact the brain (31), coupled with the special
location and structure of the olfactory nerve itself, we speculate
that perhaps in the mechanism of SARS-CoV-2 invading the
central nervous system, the virus entering the central nervous
system through the olfactory nerve is also one of the main ways
(32, 33). And the olfactory nerve provides this way to enter
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FIGURE 2 | SARS-CoV-2 invades the brain through the olfactory nerve.

the central nervous system, successfully bypassing the blood-
brain barrier (34–36), effectively making it a channel between
nasal epithelium and central nervous system. In the early stage
of respiratory transmission, SARS-CoV-2 can enter the brain
through the olfactory nerve (37) (Figure 2).

In the nasal cavity, the special olfactory neuroepithelium has
an apical surface mainly composed of support cells, supporting
the dendritic processes of neurons containing olfactory cilia
(38). The dendrites of olfactory neurons are directly exposed in
the airway of the nose (10). Although the olfactory system is
very effective in controlling viral nerve invasion under normal
conditions (39), however, data from several studies indicate that
nasal respiratory epithelial cells express ACE2 and TMPRSS2
(31, 38, 40–42). As mentioned above, SARS-CoV-2 can enter the
cell with the help of ACE2 and the serine protease TMPRSS2 of
the host cell.

The expression of ACE2 and TMPRSS2 located in the
olfactory neuroepithelium indicates a potential entry point for
SARS-CoV-2 into the central nervous system (31), so that
the virus can invade the olfactory nerve. The retrograde or
anterograde transport of neurons is realized by kinesin and
kinesin (37, 43, 44). During the infection process, SARS-CoV-2
uses the olfactory nerve to pass through the cribriform plate of
the ethmoid bone to cause brain invasion (45, 46), which results
in a rapid, transneuronal spread of the SARS-CoV-2 to relevant
regions of the brain, which in turn interacts with ACE2 expressed
on the surface of brain neurons (47–49). This cell tropism may
be the reason why SARS-CoV-2 is highly infectious and related
to olfactory dysfunction (38).

Because SARS-CoV-2 can directly act on nasal respiratory
epithelial cells in the nasal cavity, olfactory dysfunction often
occurs in the early stages of the disease. In mild to moderate
cases, sudden loss of smell and taste is considered to be the
strongest predictive symptom of early infection with the SARS-
CoV-2 virus (50), and this mild, non-specific symptom can
become asymptomatic. Or the only manifestation of a mildly

infected person. The report of symptoms related to anosmia
should be regarded as a sign of SARS-CoV-2 infection and a sign
of COVID-19 (51, 52). If it is accompanied by transient brain
edema and other neurological diseases, the first consideration
should be the neuroinvasiveness of SARS-CoV-2 (38).

The olfactory dysfunction caused by SARS-CoV-2 may be
explained by the following four mechanisms: ① Viral infections
of the nasal mucosa can trigger inflammation of the nasal tissue,
including the olfactory mucosa, thereby creating an obstructive
barrier between odor chemicals and olfactory receptors; ② direct
damage to olfactory receptors could prevent odor signals from
being transmitted; ③ the virus, being neurotropic, can attack
the area of the brain responsible for smell along the path of the
olfactory nerve;④ Loss of sense of smell may actually be a sequela
of brain edema and partial neurodegeneration. Any or all of these
four mechanisms may lead to loss of sense of smell in COVID-19
(53). Therefore, exploring the relationship between early loss of
sense of smell and a long-term sense of smell has special clinical
and prognostic value (54).

Although there have been many studies proving that the
olfactory neuroepithelium expresses ACE2 and TMPRSS2,
there are no sufficient and strong studies to prove that
ACE2, TMPRSS2, and SARS-CoV-2 are widely present in the
transmission bundle from the olfactory bulb to the CNS. In the
future, further research is needed to resolve these inconsistencies,
and more autopsy reports are needed to prove the presence of
SARS-CoV-2 in the olfactory tract. Finally, the distribution of
SARS-CoV-2 infected cells in human olfactory nerve conduction
tracts was determined.

Coronavirus Induces Inflammatory
Responses to Disrupt the Blood-Brain
Barrier System
The destruction of the blood-brain barrier through inflammation
is also one of the ways for SARS-CoV-2 to enter the
central nervous system. Infection with SARS-CoV-2 can destroy
the blood-brain barrier by producing a large number of
inflammatory mediators in the following three ways.

SARS-CoV-2 Directly Induces the Release of

Cytokines by Immune Cells
When SARS-CoV-2 enters the human body, the virus activates
immune cells, such as monocytes/macrophages, neutrophils, T
cells, natural killer cells, and mast cells. The activated immune
cells kill the virus by synthesizing and releasing cytokines (55–
59). These cytokines mainly include interferon (IFN), interleukin
(IL), chemokine, and tumor necrosis factor (TNF) (60). Some
of their functions are to promote the inflammatory response
and some to inhibit the inflammatory response. These cytokines
are maintained in a balanced state in the healthy human body.
Among them, pro-inflammatory factors can activate and recruit
other immune cells, immune cells can secrete more cytokines,
activate, and recruit more immune cells, thus forming a positive
feedback cycle (55).

SARS-CoV-2 can cause immune cells to produce excessive
immunity, cytokines are uncontrolled, a large number of
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cytokines are released, amplifying positive feedback, breaking
the balance, marking an uncontrolled and dysfunctional immune
response, leading to systemic inflammation, further aggravating
the inflammatory response and increasing the severity of the
disease. Although this excessive immune response can kill
the virus, it can also cause some additional damage. Among
them, the blood vessels suffered the most damage. Cytokine
storms make the vessel wall more easily penetrated, and the
blood-brain barrier is disrupted (61), causing neocoronavirus
to enter the brain, inducing corresponding central nervous
system symptoms.

Activation of Glial Cells Releases Proinflammatory

Cytokines
Some neurotropic viruses can induce the pro-inflammatory state
of glial cells and make them secrete cytokines (62). As mentioned
earlier, glial cells express ACE2, We speculate that SARS-CoV-
2, which enters the central nervous system through olfactory
nerve, blood-derived, and other pathways, may also activate glial
cells and induce a pro-inflammatory state (37, 63). In addition,
experiments have confirmed that glial cells secrete a large number
of inflammatory factors after being infected with coronavirus,
such as interleukin-6, interleukin-12, interleukin-15, and tumor
necrosis factor α, etc. (52). These cytokines can also damage the
blood-brain barrier, further promote coronavirus to enter the
brain, causing symptoms of central nervous system disease.

So far, the autopsy report on the glial cells of SARS-CoV-2
patients is still insufficient. We propose this possible mechanism
based on the existing literature. In future studies, more autopsy
reports are needed to prove whether SARS-CoV-2 infects glial
cells through ACE2, or whether there are other receptors that can
bind to SARS-CoV-2 in glial cells.

Vascular Endothelial Growth Factor Induces

Inflammation
Vascular endothelial growth factor (VEGF) is widely distributed
in the central nervous system (64). In addition, the combination
of SARS-CoV-2 and ACE2 can activate the renin-angiotensin
system which is involved in inflammation response, and then
further promote the synthesis of VEGF through the binding
of angiotensin II (AngII) and angiotensin II type 1 receptor
(AT1R). In fact, in brain diseases, VEGF not only promotes
angiogenesis but also destroys the blood-brain barrier by
inducing inflammatory responses (64, 65).

Inflammation is the precursor and companion of blood
vessel formation, manifested by increased vascular permeability
and recruitment of inflammatory cells (65). ACE2 is a key
enzyme that catalyzes Ang I and Ang II to Ang 1-9 and
Ang 1-7, respectively (66). When SARS-CoV-2 attacks ACE2,
the inactivation of this enzyme can lead to the enhancement
of the ACE/AngII/AT1R axis signal, followed by excessive
AngII production. In the brain infected with SARS-CoV-2, the
cumulative feedback of Ang II promoted the increase of ACE2.
VEGF in turn reversely enhances Ang II, thus forming a vicious
cycle in the release of pro-inflammatory cytokines, including
TNF-α, IL-1β, IL-6, IL-8, and ICAM-1 (64, 67). In addition,
among these cytokines, interleukin-6 (IL-6) is an important

FIGURE 3 | Inflammation induced by VEGF destroys the blood-brain barrier.

member of pro-inflammatory cytokines, which is positively
correlated with the severity of COVID-19 symptoms. It may be
used as one of the indicators of the severity of COVID-19 (37, 58)
(Figure 3).

CLINICAL MANIFESTATIONS OF NERVOUS
SYSTEM DISEASES CAUSED BY
SARS-COV-2

The neurological diseases possibly caused by SARS-CoV-2 can
be divided into three major categories: ① Nervous system
consequences of related lung and systemic diseases, such as
cerebrovascular disease; ② The virus directly invades the central
nervous system, such as encephalitis; ③ Potential immune-
mediated complications after infection, such as Guillain-Barre
syndrome (GBS) and other types of demyelinating diseases.

Cerebrovascular disease refers to a group of diseases that occur
in the blood vessels of the brain and cause brain tissue damage
due to the disturbance of intracranial blood circulation.

Although the main manifestation of patients infected with
SARS-CoV-2 is a lung disease, there are also cerebrovascular
diseases (68). When the virus proliferates in lung tissue, it causes
diffuse alveolar and interstitial inflammatory exudates, and even
hyaline membrane formation. This will lead to abnormal alveolar
gas exchange, hypoxia of the central nervous system, an increase
of anaerobic metabolism of brain tissue, induction of intercellular
edema, obstruction of cerebral blood flow, causing ischemia of
cerebral circulation, with the increase of intracranial pressure,
the brain function deteriorated gradually. It may even induce
the occurrence of acute cerebrovascular disease, such as acute
ischemic stroke (3, 37).

On the other hand, cerebral hemorrhage caused by elevated
blood pressure may also be the result of the expression of ACE2
receptor (69, 70). ACE2 is one of the cardio-cerebrovascular
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FIGURE 4 | Cerebrovascular disease caused by SARS-CoV-2.

protective factors, which plays an important role in regulating
blood pressure and anti-atherosclerosis mechanism (71). SARS-
CoV-2 may cause an imbalance of the renin-angiotensin
system (RAS) by acting on the ACE2 receptor, leading to
microcirculation disorder, affects cerebral blood flow regulation
(72, 73), leading to an abnormal increase of blood pressure,
and increases the risk of cerebral hemorrhage and ischemic
stroke (Figure 4).

Encephalitis refers to the inflammatory lesions of brain
parenchyma caused by pathogens, including neuronal damage
and nerve tissue damage. It is characterized by acute episodes and
common symptoms include headache, fever, nausea, vomiting,
fatigue, convulsions, and disturbance of consciousness (37). At
present, the presence of viral encephalitis in many patients
infected with SARS-CoV-2 further speculated the existence of
this neurological complication (74–77).

The treatment team of Beijing Ditan Hospital confirmed the
presence of SARS-CoV-2 in the cerebrospinal fluid of patients
infected with SARS-CoV-2 through genome sequencing, thereby
clinically confirming viral encephalitis (37). This provides a solid
foundation for SARS-CoV-2 to cause encephalitis. However, no
signs of inflammation were found in brain tissue images of
patients infected with SARS-CoV-2 (78). We guess that SARS-
CoV-2 will produce virion vacuoles like MERS-CoV and SARS-
CoV, if this hypothesis holds, then vacuolation may be a defense
against infection. This problem needs further study and more
pathological cases to clarify.

In patients with SARS-CoV-2, SARS-CoV-2 can stimulate
immune cells to produce a variety of cytokines, resulting in
an immune response process that causes nerve demyelination
(79). For example, SARS-CoV-2 can cause Guillain-Barré
syndrome (80, 81). Guillain-Barre syndrome, also known as
acute idiopathic polyneuritis or symmetrical polyradiculitis, is an
acute polyradiculoneuropathy (82). Clinical manifestations are
progressive ascending symmetrical paralysis, quadriplegia, and
varying degrees of sensory disorders (83). The exact pathogenesis
of nerve demyelination caused by SARS-CoV-2 is not clear and
remains to be further studied.

FUTURE PROSPECTS

COVID-19 is a challenge to the world. At present, there is
sufficient evidence that SARS-CoV-2 can invade the central
nervous system and induce nervous system diseases. The
possible pathways of SARS-CoV-2 invasion into the central
nervous system include direct invasion of infected endothelial
cells, invasion through the olfactory nerve, and invasion by
inducing inflammation to destroy the brain barrier system.
These pathways are all related to ACE2 receptors, so the
relationship between SARS-CoV-2 and ACE2 should be further
studied so as to take better measures to protect the central
nervous system in patients with COVID-19. In fact, human
respiratory viruses may also enter the central nervous system
through other different ways, including the trigeminal nerve,
cerebrospinal fluid, lymphatic system, and so on. The three
mechanisms discussed in this article may be applicable to
SARS-CoV-2, but we must be alert to other invasion mechanisms
of SARS-CoV-2 until there is conclusive pathological evidence.
In addition, it can be inferred from the existing data that
encephalitis, cerebrovascular disease, nerve demyelination
symptoms, and olfactory changes in COVID-19 patients
are all likely to be related to SARS-CoV2 infection. These
symptoms can be used as potential indicators of patient
severity and prognosis. Understanding these knowledge
is very important for the prevention and treatment of
central nervous system symptoms and the rehabilitation of
COVID-19 patients.

In addition, recent studies point out that other proteins
expressed in nerve cells, such as Nrp1, may also become
receptors for SARS-CoV-2. Future work needs to verify whether
SARS-CoV-2 can invade the central nervous system using
alternative receptors.
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In late December 2019, multiple atypical pneumonia cases resulted in severe acute
respiratory syndrome caused by a pathogen identified as a novel coronavirus SARS-CoV-
2. The most common coronavirus disease 2019 (COVID-19) symptoms are pneumonia,
fever, dry cough, and fatigue. However, some neurological complications following SARS-
CoV-2 infection include confusion, cerebrovascular diseases, ataxia, hypogeusia,
hyposmia, neuralgia, and seizures. Indeed, a growing literature demonstrates that
neurotropism is a common feature of coronaviruses; therefore, the infection
mechanisms already described in other coronaviruses may also be applicable for
SARS-CoV-2. Understanding the underlying pathogenetic mechanisms in the nervous
system infection and the neurological involvement is essential to assess possible long-
term neurological alteration of COVID-19. Here, we provide an overview of associated
literature regarding possible routes of COVID-19 neuroinvasion, such as the trans-
synapse-connected route in the olfactory pathway and peripheral nerve terminals and
its neurological implications in the central nervous system.

Keywords: severe acute respiratory syndrome coronavirus 2, coronavirus disease 2019, central nervous system,
neurotropism, neuroinvasion, neurological alterations, long-term sequelae
INTRODUCTION

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a positive single-stranded
RNA coronavirus responsible for the severe pneumonia coronavirus disease 2019 (COVID-19), as
the World Health Organization named in February 2020. As of December 2020, the World Health
Organization reported more than 71 million confirmed cases and more than 1.6 million deaths
worldwide. SARS-CoV-2 is the seventh member of the coronavirus family that infect humans.
Among them, NL63-CoV, HKU1-CoV, 229E-CoV, and OC43-CoV, typically cause common cold
symptoms, while SARS-CoV, MERS-CoV, and now the SARS-CoV-2 are responsible for the SARS
pandemic in 2002 and 2003, MERS in 2012 and the current COVID-19 pandemic, respectively (1).
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SARS-CoV-2 is a betacoronavirus that shares almost 80%
sequence identity with SARS-CoV and 50% sequence identity
with MERS-CoV (2). Similar to SARS-CoV, SARS-CoV-2 binds to
the enzymatic domain of the angiotensin-converting enzyme 2
(ACE-2) receptor exposed on the surface of several cell types,
including alveolar cells, intestinal epithelial cells, endothelial cells,
kidney cells, monocytes/macrophages, as well as neuroepithelial
cells and neurons (3, 4). After spike (S) protein binding to ACE-2
receptor, a subsequent cleavage by transmembrane protease serine
2, cathepsin, or furin, probably induces the endocytosis and
translocation of SARS-CoV-2 into endosomes (5, 6), or a direct
viral envelope fusion with host cell membrane for cell entry (7).
Interestingly, SARS-CoV-2 in silico modeling shows a highly
structural sequence similarity of 74-79% with SARS-CoV;
however, SARS-CoV-2 exhibits some differences associated with
a higher binding affinity ACE-2 receptor (8). It has been suggested
that the SARS-CoV-2 S protein is slightly more positively charged
than SARS-CoV, and the ACE-2 binding interface has a negative
electrostatic potential. This electrostatic difference allows a
stronger interaction between these two proteins (9, 10).
Therefore, this increased binding affinity may promote high
virulence of SARS-CoV-2 (11, 12).

COVID-19 symptoms include mild-to-medium fever, cough,
diarrhea, fatigue, and dyspnea, progressing to acute respiratory
distress syndrome (13). In addition to systemic symptoms,
patients also can experience neurological affectation, including
headache, dizziness, hypogeusia, hyposmia, myalgia, ataxia, and
seizures (14, 15). There are reports of brain edema, partial
neurodegeneration, even encephalitis in severe cases of COVID-
19 (13, 16, 17). To date, there is no described direct mechanism of
SARS-CoV-2 neuroinvasiveness (18). However, it is known that
coronaviruses are not always limited to the respiratory system, but
they can reach the central nervous system (CNS), inducing
neurological impairments (19). This neuroinvasive capacity has
been well demonstrated for most beta coronaviruses, including
SARS-CoV (20), MERS-CoV (21), 229E-CoV (22), OC43-CoV
(23), and HEV (24). Although the SARS-CoV-2 neuroinvasion
mechanism remains unknown, considering the high similar viral
sequence and infection pathways reported from other
betacoronavirus (i.e., SARS-CoV), a similar pathogenic process
may be applicable for SARS-CoV-2 (19).
NEUROINVASIVENESS PATHWAYS

Despite being a highly protected system with multilayer barriers,
the CNS can be reached by some viruses that can infect neurons
and glial cells (25). A significant evidence body demonstrates that
coronaviruses may reach the CNS inducing neurovirulence (26).
Nonetheless, coronaviruses’ determinant route to infect the CNS
has not been fully described (27). Usually, the viral infection
begins in the peripheral tissues with a subsequent spreading to
peripheral nerves and, finally, the CNS (28). This process may
explain neurological lesions’ presence, particularly demyelination
(29). Moreover, bypasses peripheral barriers, such as the blood-
brain barrier (BBB), would be another mechanism (28). In the
case of SARS-CoV-2 infection, hyposmia is denoted as one
Frontiers in Immunology | www.frontiersin.org 2168
frequent symptom (16), indicating an olfactory dysfunction
probably due to neuronal and non-neuronal cells infection in
the olfactory system and the involvement of cranial nerves (30,
31). In this way, the CNS invasion, specifically the respiratory
center in the medulla and pons, may promote acute respiratory
distress in patients with COVID-19 (32).

Although experimental evidence regarding SARS-CoV-2
neuroinvasiveness is still lacking (33), post-mortem studies
evidenced the virus’s presence in the brain microvasculature,
cerebrospinal fluid, even neurons (4, 26, 34). Also, studies
demonstrated that the ACE-2 receptor is expressed on neuron
and glial cells of structures such as the olfactory epithelium, cortex,
striatum, substantia nigra, and the brain stem (35), supporting the
SARS-CoV-2 potential to infect cells throughout the CNS.
Therefore, there are suggested mechanisms for coronaviruses
neuroinvasion (Figure 1), including the neuronal anterograde and
retrograde spreading in the transcribial route (8, 16) and (19, 33) the
hematogenous route (36). The neuronal retrograde/anterograde
transport and the trans-synaptic transfer are supported by in vitro
studies where the SARS-CoV-2 is detected within neuronal soma
and neurites using human brain organoids (31, 37).
TRANSCRIBIAL ROUTE AND NEURONAL
TRANSPORT DISSEMINATION

Growing evidence shows that some coronaviruses first invade
peripheral nerve terminals, then are anterograde/retrograde
spread throughout the CNS via synapses (19, 24, 38), a well-
documented neuroinvasive route for coronaviruses such as
HEV67 (24, 39) and OC43-CoV (23). Among the peripheral
nerves, the olfactory nerve is considered one of the strongest
candidates for SARS-CoV-2 dissemination into CNS because of its
close localization to olfactory epithelium (27). The olfactory
epithelium cells highly express the ACE-2 receptor and the
TMPRSS2, necessary for viral binding, replication, and
accumulation (40). Recent studies found that neuropilins also
have an essential role in cell infectivity. Interestingly, while
neuropilin-1 alone promotes SARS-CoV-2 entry and infection,
its coexpression with ACE-2 and TMPRSS2 markedly potentiates
this effect (41). Similar to ACE-2 and TMPRSS2, the neuropilins
are expressed abundantly in the respiratory and olfactory
epithelium, becoming the nasal cavity epithelium, a key
infection site for CNS infection (8, 41). A recent study presented
evidence of SARS-CoV-2 entrance to CNS by crossing the neural-
mucosal interface with subsequent penetration of defined
neuroanatomical areas receiving olfactory tract projections,
including the primary respiratory and cardiovascular control
center in the medulla (42). Here, SARS-CoV-2 RNA and
characteristic CoV substructures were detectable in the olfactory
epithelium and olfactory mucus cells. A subsequent colocalization
study within the olfactory mucosa using neuronal markers
revealed a perinuclear S protein immunoreactivity in TuJ1+,
NF200+, and OMP+ neural cells (42). In this way, SARS-CoV-2
may penetrate the CNS throughout the olfactory receptor cells that
pass the cribriform plate contacting second-order neurons of the
spherical glomeruli (32, 43). This passage of the olfactory nerve
January 2021 | Volume 11 | Article 621735
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via the cribriform plate of the ethmoidal bone was termed
transcribial route.

During HEV67 infection, the first coronavirus reported invading
porcine brains; the nasal mucosa, lung, and small intestine are first
infected. Then is spread to medullary neurons via peripheral nerves
using the clathrin-mediated endocytic/exocytic system (24, 44). In
OC43-CoV infection, a human coronavirus sharing more than
91% homology with HEV67 (45), once in the olfactory bulb, this
coronavirus can disseminate to the cortex and other regions
including the hippocampus and spinal cord (23, 46). In MHV-
CoV infection, the MHV-CoV also accesses the CNS through the
olfactory nerve and disseminates it to the limbic system and
brainstem (7, 47). The cortical areas with MHV-CoV persistence
are associated with demyelinating lesions due to the trafficking and
accumulation of T cells and macrophages that participate in myelin
destruction (48).

In the intranasal administration of SARS-CoV andMERS-CoV
into transgenic mice, the viral CNS invasion is possible through
the transcribial route, gaining direct access to the olfactory bulb,
and then spreading to the thalamus and brainstem (21, 49).
However, the exact mechanism of early CNS access is still
Frontiers in Immunology | www.frontiersin.org 3169
unclear. In this context, it has been suggested that SARS-CoV-2
might spread from the olfactory epithelium to the olfactory bulb
towards the olfactory nerve, employing the endocytosis/exocytosis
system for transsynaptic transfer (34, 50).

In addition to the transcribial route and the olfactory nerve, the
virus may use other peripheral nerves such as the vagus nerve,
which lungs and gut afferents reach the brainstem (32, 51). The gut-
brain axis is a key component involved in disorders that affect the
CNS (52). Interestingly, SARS-CoV-2 was detected in COVID-19
patient feces (53). A recent in vitro study demonstrated the SARS-
CoV-2 capacity to infect human intestinal epithelium (54).
Moreover, it has been reported the anterograde and retrograde
viral transmission from duodenal cells to brainstem neurons (55).
Therefore, it is possible that upon enterocyte SARS-CoV-2
infection, a further transmission to glial and neuronal cells within
the enteric nervous system could reach the CNS via the vagus nerve
(27, 51). In this line, different sets of data demonstrated that initial
lung SARS-CoV infection leads to a secondary viral spreading to the
brain, particularly thalamus and brainstem regions such as
medullary nuclei of the dorsal vagal complex (56). Similarly,
Matsuda et al., 2004 reported the influenza A virus spreading
FIGURE 1 | Mechanisms of virion attachment/infection and possibles routes of SARS-CoV-2 neuroinvasiveness. SARS-CoV-2 spike protein interaction with the
ACE-2 receptor may promote a direct host cell membrane fusion and the virion nucleocapsid release or induce a Furin/TMPRSS2-mediated endocytosis. Once in the
epithelial cells, SARS-CoV-2 spreads to CNS through peripheral neurons in the olfactory epithelium and the second-order neurons along the olfactory nerve
(Transcribial route). Similarly, the virus may use different peripheral nerves such as the vagus nerve, which afferences from the lungs and gut reach the brainstem. In
the hematogenous route, the viremia induces the infection and viral transcytosis across vascular endothelial cells, as well as leukocytes infection and mobilization
towards the BBB, and in several cases, the BBB disruption. CS, Cytokine storm.
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from the respiratory tract to the vagal ganglia through the vagus
nerve, suggesting a possible transmission from the respiratory
mucosa to the nucleus of the solitary tract and the nucleus
ambiguous in the brain stem by vagal dissemination (57).
However, evidence regarding the enteric nervous system and the
SARS-CoV-2 vagus nerve dissemination is almost null, and further
research is required.

HEMATOGENOUS ROUTE

The infection and damage of cells of epithelial barriers allow the
virus entrance to the bloodstream and lymphatic system,
spreading to multiple organs, including the brain (50).
Specifically, the BBB is one of the most frequent viral entry
routes to the CNS (58). In this way, there are two possible
mechanisms for SARS-CoV-2 spreading, which involves the
circulation of viral particles into the bloodstream (25, 33): the
infection and viral transcytosis across vascular endothelial cells,
and the leukocytes infection and mobilization towards the BBB,
a well-described mechanism termed Trojan horse (59).

In the first scenario, the virus in peripheral circulation and the
sluggish blood flow within the microvasculature appear to be
responsible for the binding enhancement of S viral protein and
ACE-2 receptor in the capillary endothelium, promoting the viral
transport across the basolateral membrane (8, 60). A structural
analysis reported that viral-like particles were actively budding
across brain capillary endothelial cells, suggesting the
hematogenous route as the most probable pathway for SARS-
CoV-2 entry (4). Moreover, an in vivo research of MERS-CoV
tropism demonstrated a virus’s bloodstream circulation followed
the endothelial infection (61). Tseng et al. reported a low-level
viremia and brain detection of high viral titers two days after
intranasal inoculation of SARS-CoV, supporting the virus
transmission through the hematogenous route (62). Additionally,
SARS-CoV-2 triggers a systemic inflammatory response due to the
cytokine storm, with remarkable BBB permeability effects (58, 63).
The disruption of this barrier may result in the viral and infected
immune cell entry, promoting a further inflammatory response
enhancement (64).

In contrast, peripheral lymphocytes and macrophages’
possible infection allows their use as dissemination vehicles
facilitating the pass across BBB, meninges, and choroid plexus
(58, 65). Interestingly, the coronavirus ability to infect leukocytes
(mainly monocytes/macrophages) has been reported in the
229E-CoV and SARS-CoV (66, 67), but only in 229E-CoV has
reported the activation of chemokine secretion (67). This trojan
horse mechanism generally involves the extravasation of infected
leukocytes into meninges and the cerebrospinal fluid (68).
However, compelling evidence for immune cell infection by
SARS-CoV-2 is still unclear so far.

SHORT- AND LONG-TERMNEUROLOGICAL
MANIFESTATIONOF COVID-19

To date, it has beenwidely described that a broad spectrum of virus
infection can spread through the body and eventually reach and
Frontiers in Immunology | www.frontiersin.org 4170
affect the mammalian peripheral nervous system (PNS) and CNS
when optimal conditions exist (28). Though coronaviruses are
mainly associated with upper and lower respiratory disease, their
particular neuroinvasive potential is associated with remarkably
neurological affections. The hypoxia promoted by respiratory
distress has been associated with disturbed brain metabolism and
a subsequent neurological manifestation (36). Notwithstanding,
there is still a debate regarding if the neurologicalmanifestations are
a primary neurologic symptomor secondary consequences of acute
respiratory distress syndrome. The evidence supports the
neuroinvasive and neurotropism and possible long-term
neurological sequelae of coronaviruses, including SARS-CoV and
MERS-CoV (69).

Regardless of neuroinvasiveness mechanisms, emergent data
fromcase reports andclinical studiesdemonstrated thatCOVID-19
patients exhibit some CNS and PNS complications, ranging from
mild to fatal incomes. The most frequent neurological symptoms
are mostly nonspecific in the short-term, such as loss of smell and
taste, headache, malaise, myalgias, and dizziness. In contrast,
moderate-to-severe cases developed acute cerebrovascular
diseases, impaired consciousness, and skeletal muscle injury (70).
Indeed, these manifestations can be considered a direct virus effect
in the CNS (19, 71).

Unfortunately, recovery of the acute infection does not promise a
full viral clearance, and if the infection becomes chronic, itmay result
in long-term sequelae, including chronic neurological impairment
(36). Some studies reported the coronavirus persistence in the CNS
and some neurologic and tissular affections (69). In mice surviving
acute encephalitis caused by OC43-CoV, the viral RNA could be
detected even six months post-infection; in correlation with the viral
persistence, these mice also display a reduced locomotor activity,
subjacent decreased density of hippocampal layers and gliosis
(72). Similarly, the RNA of MHV-CoV is detectable in the brain,
even 10–12-month post-infection. Surprisingly, the chronic-CNS
demyelination persists as late as 90 days post-infection to scattered
demyelinated axons at 16 months after infection (73). Interestingly,
case reports support that neurotropic viral infection promotes an
exacerbated inflammatory response leading to encephalitis or CNS-
target autoimmune (i.e., demyelination) response in COVID-19
patients (29, 58).

Guillain-Barre and Miller-Fisher cases are reported without
SARS-CoV-2 detection in cerebrospinal samples, supporting the
inflammatory response’s role in neurological manifestations (47,
74). Whether the dysregulated immune response remains after the
illness resolution, neurological disorders can be developed, including
dementia, depression, and anxiety (56, 75). Furthermore, the hypoxia
and cerebrovascular diseases reported in COVID-19 patients,
particularly encephalitis and stroke, are expected to produce
permanent or at least long-term neurological impairments (76).

AlthoughadirectassociationbetweenSARS-CoV-2andcognitive
impairment is still not correlated, the viral neurotropism and the
already reported neurological manifestations support this possible
association. A cohort study reported cognitive complaints after
SARS-CoV-2 infection, specifically between 10 and 35 days after
hospital discharge (71). Here, oxygen therapy and headache were
the main variables strongly related to poor performance in
neuropsychological tests, indicating cognitive deficits related to
January 2021 | Volume 11 | Article 621735
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attention, memory, and executive function. A case series report
evidenced a marked cognitive impairment independent of delirium
(4ATscore for deliriumwasunobtrusive) in severely affected patients
after 4 to 5 weeks of acute disease onset (47). Another cohort study
reported an altered mental status, reflecting neurological and
psychiatric, such as encephalopathy, encephalitis, psychosis, and
dementia-like syndrome in patients from 23–94 years old; however,
cerebrovascular events predominated in older patients (77).

Currently, additional neurological complications reported in
other coronaviruses infectionsmay be applicable for SARS-CoV-2.
However, the precise and well documentation of neurological
symptoms, comprehend the immune response, and the direct
impact of brain infection is still needed to better prognosis and
prevent long-term effects of SARS-CoV-2 infection.
CONCLUSION

Regardless of the different routes of neuroinvasion, it has been
demonstrated that SARS-CoV-2 affects the CNS. As overwhelming
proof, there is the isolation of SARS-CoV-2 from cerebrospinal fluid,
the colocalization within the olfactory system, the ultrastructural
evidence of frontal lobe budding SARS-CoV-2, and the list of
neurologic manifestations in the COVID-19 patients. Unfortunately,
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it is unclear if the neurological symptoms of COVID-19 result from
cytokine storm-induced neuroinflammation or some brain areas’
infection. Nevertheless, the CNS and immune system involvement
might have remarkably neurologic long-term consequences, including
the development of neuropsychiatric disorders. Therefore, the
awareness of the CNS invasion pathways, the degree of CNS and
PNS involvement, and the time course of the viral spreads throughout
the nervous system will help comprehend the pathological
consequences better and improve the treatment’s diagnostic criteria
of possible neurological sequelae.
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Critical illness and sepsis are commonly associated with subclinical seizures. COVID-19

frequently causes severe critical illness, but the incidence of electrographic seizures in

patients with COVID-19 has been reported to be low. This retrospective case series

assessed the incidence of and risks for electrographic seizures in patients hospitalized

with COVID-19 who underwent continuous video electroencephalography monitoring

(cvEEG) between March 1st, 2020 and June 30th, 2020. One hundred and twenty-two

patients were initially identified who resulted SARS-CoV-2 nasopharyngeal RT-PCR

swab positivity with any electroencephalography order placed in the EMR. Seventy-nine

patients met study inclusion criteria: age ≥18 years, >1 h of cvEEG monitoring, and

positive SARS-CoV-2 nasopharyngeal swab PCR. Six (8%) of the 79 patients suffered

electrographic seizures (ES), three of whom suffered non-convulsive status epilepticus.

Acute hyperkinetic movements were the most common reason for cvEEG in patients

with ES (84%). None of the patients undergoing cvEEG for persistent coma (29% of all

patients) had ES. Focal slowing (67 vs. 10%), sporadic interictal epileptiform discharges

(EDs; 33 vs. 6%), and periodic/rhythmic EDs (67 vs. 1%) were proportionally more

frequent among patients with electrographic seizures than those without these seizures.

While 15% of patients without ES had generalized periodic discharges (GPDs) with

triphasic morphology on EEG, none of the patients with ES had this pattern. Further

study is required to assess the predictive values of these risk factors on electrographic

seizure incidence and subsequent outcomes.

Keywords: COVID-19, coronavirus, EEG, seizure, status epilepticus

INTRODUCTION

Coronavirus disease 2019 (COVID-19) has been associated with several neurological syndromes
(1). The existing literature suggests that the incidence of seizures in COVID-19 patients
is relatively low. Small case series have described new-onset electrographic seizures (2,
3)—both clinical and subclinical—and status epilepticus (4) in patients with COVID-19,
but a larger retrospective review including 304 COVID-19 patients did not find any
cases of clinical seizures (5). The patients in the larger study were not monitored with
continuous video electroencephalography (cvEEG), so it is possible that these patients had
electrographic subclinical seizures. Electrographic subclinical seizures are of particular concern
in COVID-19 patient since up to one fifth of patients with COVID-19 are critically ill (6);
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subclinical seizure activity can be seen on cvEEG in as many as
19% of critically ill patients in medical intensive care units [ICUs;
(7, 8)]. The goal of this study is to describe the results of 257 EEG
days across 79 patients as well as to identify the incidence of, and
risk factors for, detecting seizures on cvEEG.

METHODS

Subjects
In this retrospective case series, we evaluated patients who
were hospitalized at four New York Presbyterian Hospitals—
Columbia University Irving Medical Center (CUIMC), Morgan
Stanley Children’s Hospital, Allen Hospital, or Lawrence
Hospital—from March 1st 2020 to June 30th 2020 and fulfilled
the following inclusion criteria: (1) age ≥18 years old; (2)
a positive SARS-CoV-2 nasopharyngeal Real-Time Reverse
Transcriptase PCR swab; and (3) connection to cvEEG during
the same hospitalization for COVID-19 for longer than 1 h.
Patients were excluded if the cvEEG was performed during a
separate hospitalization. Patient information and cvEEG results
were obtained from review of the electronic medical record. This
study was approved by the institutional review board at CUIMC.

EEG Placement and Monitoring
Electrode placement followed the international 10–20 system.
EEG was recorded using a digital video EEG bedside monitoring
system (Xltek; Natus Medical) EEGs were interpreted by
board-certified clinical neurophysiologists/epileptologists and
reported using the American Clinical Neurophysiology Society’s
Standardized Critical Care EEG Terminology (9).

Procedures and Statistics
Major indications for EEG monitoring were acute hyperkinetic
movements, altered mental status, and persistent coma. Acute
hyperkinetic movements were either focal or generalized.
Altered mental status was defined as acute encephalopathy,
either fluctuating, declining or stable, with level of alertness
higher than coma. Patients with persistent coma connected to
cvEEG were typically those who remained clinically comatose
despite the withdrawal of sedating or anesthetic medications.
Other indications for EEG monitoring were acute therapeutic
temperature management protocol in post-cardiac arrest
patients. All cases of acute brain injury were diagnosed
clinically or radiographically. The Salzburg criteria were used
for classifying non-convulsive status epilepticus, as applied
ultimately by fellowship-trained epilepsy faculty at Columbia
University Medical Center (10). R version 3.6.1 was used to
calculate descriptive statistics, including frequencies, median,
interquartile range (R Foundation for Statistical Computing,
Vienna, Austria).

RESULTS

A total of 79 patients met the inclusion criteria comprising
257 days of EEG recording (Table 1). The most common
indication for cvEEG was hyperkinetic movements, followed by
altered mental status and persistent coma. Six (8%) patients

TABLE 1 | Cohort characteristics.

Clinical characteristics All patients

(n = 79)

Seizures on

EEG

(n = 6)

No seizures on

EEG

(n = 73)

Median age (IQR) 64 (57, 70) 61 (57, 66) 64 (57, 71)

Number of female patients (%) 25 (31.6) 4 (66.7) 21 (28.8)

Total days of recording 257 47 210

Median days of recording per

patient (IQR)

2 (1, 3) 6 (5, 12) 2 (1, 3)

Number of seizure days

(percentage of total days of

recording)

11 (4.3) 11 (23.4) x

History of seizure (%) 7 (8.9) 3 (50.0) 4 (5.5)

History of chronic brain

disease (%)

24 (30.4) 4 (66.7) 20 (27.4)

ICU admission (%) 64 (81.0) 4 (66.7) 60 (82.2)

Acute brain injury (%) 27 (34.2) 3 (50.0) 24 (32.9)

Anoxic/Hypoxemic injury 4 (5.1) 0 (0) 4 (5.5)

Acute ischemic stroke 11 (13.9) 0 (0) 11 (15.1)

Acute intracranial hemorrhage 12 (15.2) 2 (33.3) 10 (13.7)

PRES 1 (1.3) 0 (0) 1 (1.4)

Worsening vasogenic edema 1 (1.3) 1 (16.7) 0 (0)

Primary reason for admission (%)

COVID-19 only 60 (75.9) 2 (33.3) 58 (79.5)

Neurologic disease 7 (8.8) 2 (33.3) 5 (6.8)

COVID-19 + Neurologic

disease

6 (7.6) 2 (33.3) 4 (5.5)

Other (or Other +COVID-19) 6 (7.6) 0 6 (8.2)

Disposition

Discharged 56 (70.8) 4 (66.6) 56 (76.7)

Deceased 21(26.5) 2 (33.3) 19 (26.0)

Still in hospital 2 (2.5) 0 2 (2.7)

Acute intracranial hemorrhage includes subarachnoid, lobar, subdural, and

subcortical/brainstem hemorrhages.

PRES, Posterior Reversible Encephalopathy Syndrome.

Worsening vasogenic edema occurred in the setting of multifocal metastatic disease.

“Other” reasons for admission: hip fracture (x2) +/– COVID-19; undifferentiated

encephalopathy (COVID-19 negative on admission), falls in setting of decompensation,

gastrointestinal cancer, and cardiac arrest.

had seizures captured on EEG, with 3 of these meeting criteria
for non-convulsive status epilepticus. Five of the 6 patients
with electrographic seizures were monitored due to concern
for seizure in the setting of hyperkinetic movements; the sixth
was monitored for fluctuating mental status in the setting of
acute intracranial hemorrhage. None of the patients monitored
for persistent coma or post-cardiac arrest (N = 27) had
electrographic seizures (Table 1).

Seventy-six percent of the patients in our cohort were
admitted primarily for SARS-CoV-2 PCR positivity and/or
suspicion with associated symptoms, including acute respiratory
distress syndrome, hypoxemia, cough, fever, and gastrointestinal
illness. Two of these patients subsequently developed
electrographic seizures. The other 4 patients with electrographic
seizures were primarily admitted for acute neurologic illness
(including refractory seizures and intracranial hemorrhage),
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TABLE 2 | EEG: Indication and findings.

Indication for EEG All patients

(n = 79)

Seizures on

EEG

(n = 6)

No seizures on

EEG

(n = 73)

Altered mental status 22 (27.8) 1 (16.7) 21 (28.8)

Acute hyperkinetic

movements

30 (40.0) 5 (83.3) 25 (34.2)

Persistent coma 23 (29.1) 0 23 (31.5)

Other (including TTM) 4 (5.1) 0 4 (5.5)

Findings on EEG

Diffuse slowing or attenuation 78 (98.7) 6 (100.0) 72 (98.6)

Focal slowing (not including

bitemporal slowing)

11 (13.9) 4 (66.7) 7 (9.6)

Sporadic interictal ED 6 (7.6) 2 (33.3) 4 (5.5)

Periodic/Rhythmic ED 5 (6.3) 4 (66.7) 1 (1.4)

GPDs with triphasic

morphology

11 (13.9) 0 11 (15.1)

NCSE 3 (3.8) 3 (50.0) x

ED, Epileptiform Discharges (not including GPDs with Triphasic Morphology); GPD,

Generalized Periodic Discharges; NCSE, Non-Convulsive Status Epilepticus; TTM,

Targeted Temperature Management.

three of whom had systemic COVID-19 symptoms or signs on
admission (Table 1). Interestingly, one of these four patients was
coincidentally found to have asymptomatic SARS-CoV-2 PCR
positivity on admission with electrographic seizures observed
within 24 h of admission.

Twenty-seven patients experienced acute neurological injury
(ANI) either upon presentation or during hospitalization, with
the most common causes being ischemic and hemorrhagic
strokes (13.9 and 15.2% of study population, respectively; see
Table 1). Only 7 patients in our study had a documented history
of prior seizures, 3 of whom were subsequently found to have
electrographic seizures. Four of the 6 patients with electrographic
seizures in our cohort were discharged from the hospital while
the other two suffered severe comorbid, fatal, neurologic disease
(Table 1).

In patients who had seizures recorded on EEG, the
interictal background was more likely to show focal slowing,
sporadic interictal epileptiform discharges, and periodic
epileptiform discharges. Specifically, four of the six patients
with electrographic seizures had lateralized, generalized,
or bilateral independent periodic epileptiform discharges.
Each of these four patients had underlying brain pathology:
multifocal brain metastases with worsening vasogenic edema,
acute subarachnoid & intraparenchymal hemorrhage, prior
subarachnoid hemorrhage complicated by epilepsy, and prior
PRES with associated prior seizures. Of the other two patients
with electrographic seizures, one had subdural and subarachnoid
hemorrhage. The other had de Novo seizures without clear
underlying brain pathology despite neurologic investigation
(Tables 2, 3).

Conversely, only one patient without electrographic
seizures had periodic or rhythmic epileptiform activity;
specifically, this patient developed lateralized periodic

discharges over the left posterior head region in the setting
of a poorly differentiated intraparenchymal process favored
to be reversible posterior leukoencephalopathy over another
inflammatory process.

Furthermore, the EEG was less likely to show generalized
periodic discharges with triphasic morphology in patients who
suffered electrographic seizures (Table 2).

DISCUSSION

We detected electrographic seizures in six of 79 patients
with COVID-19 that underwent EEG monitoring, three of
whom had new-onset seizures. This is a small percentage of
patients suffering from electrographic seizures, and most were
in the setting of hyperkinetic movements, acute neurologic
disease on admission, and prior history of epilepsy or
neurologic disease.

Specifically, three of the six patients with seizures on EEG
had a prior history of seizures (see Table 3). Of these, one
(patient B) had epilepsy secondary to brain metastases requiring
dual anti-seizure therapy and had a breakthrough seizure 1
month prior to admission. A second patient (patient C) had
epilepsy secondary to reversible posterior leukoencephalopathy
related to liver transplantation and immunosuppression in 2017,
which resulted in seizures and non-convulsive status epilepticus
during the current admission. This patient continued to have
breakthrough seizures every 3 months on triple therapy. A
third patient (patient D) had epilepsy secondary to an ischemic
infarct in 2012 and was seizure free on dual therapy prior to
admission. All three patients initially had seizures similar to
their known semiology, but all progressed to non-convulsive
status epilepticus.

Of the remaining three patients (see Table 3), two (patients
E & F) had concurrent intracranial hemorrhages—including
subarachnoid hemorrhage; the latter is a known risk factor for
seizures (11, 12). The final patient (patient A) had renal cell
carcinoma which was widely metastatic, including metastases
to the spine. A non-contrast head CT did not disclose any
obvious intracranial abnormalities, but further workup for
intracranial disease was not completed before discharge. He
was transitioned to palliative care shortly after discharge due
to systemic progression of malignancy. Although the patient
was mildly hyponatremic on admission, the clinical suspicion
upon discharge was that unrecognized intracranial metastatic
disease was themost likely etiology for clinical and electrographic
seizures (see Table 3).

In addition to history of seizures and brain injury/disease, we
found that hyperkinetic movements and periodic or rhythmic
epileptiform activity on EEGweremore common in patients with
electrographic seizures; no patients with persistent coma or GPDs
with triphasic morphology suffered electrographic seizures. Of
our patients connected to cvEEG for persistent coma in COVID-
19, none experienced seizures. As such, the diagnostic yield of
cvEEG in comatose COVID patients—without the mitigating
risk factors discussed above—appears to be low.
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TABLE 3 | Characteristics of patients with electrographic seizures.

Patient # Age Gender Primary indication for

admission

Chronic neurological

history

Acute neurological insult

on admission or during

hospital stay prior to

seizures

Acute systemic COVID-19

symptoms on admission or

during hospital stay prior to

seizure

Reason for EEG

connection

A 51 M Symptomatic COVID-19

infection (dyspnea and

myocarditis) + witnessed

new- onset seizures

N N* Y (dyspnea & myocarditis) Hyperkinetic

movements (left sided

shaking)

B 57 F Witnessed seizures +

symptomatic COVID-19 &

influenza infection

Y (multifocal metastatic

lesions)

Y (worsening vasogenic

edema on neuroimaging)

Y (febrile) Hyperkinetic

movements (clinical

seizures)

C 61 F Symptomatic COVID-19

infection

Y (PRES c/b focal

epilepsy)

N Y (severe hypoxia) Hyperkinetic

movements (myoclonic

jerks)

D 68 F Clinical status epilepticus Y (ischemic stroke c/b

focal epilepsy)

N Y (febrile) Hyperkinetic

movements (clinical SE

at OSH)

E 66 M Symptomatic COVID-19

infection

N Y (SDH & SAH) Y (severe hypoxia) Hyperkinetic

movements (left

arm/face shaking)

F 83 F Acute intracranial

hemorrhages with emergent

craniotomy

N Y (SAH, ICH, SDH) N Fluctuating mental

status

*Patient A was admitted for hyperkinetic movements in the setting of acute COVID-19 symptoms including dyspnea, myocarditis, and fever. Initial head CT scan did not show acute

intracranial abnormality. However, subsequent imaging was not completed. This patient had widespread metastatic renal cell carcinoma, although there was no acute or prior evidence

of intracranial metastases. Still, clinical suspicion was that electrographic seizures during this admission were triggered by unrecognized intracranial metastatic disease.

There were several strengths to the study. First, cases were
drawn from 4 hospitals within the same hospital network,
which yielded a fairly large number of patients included in
study. Moreover, all patients included in the study underwent
EEG for a median of 2 days per patient. ACNS and Salzburg
criteria were systematically applied to all EEGs reviewed,
thus yielding standardized and relatively generalizable results
across institutions.

The main limitation of this study is the lack of a SARS-
CoV-2 negative comparator group to which these results could
be evaluated. However, this case series was in part inspired by
a similar study investigating the occurrence of electrographic
seizures in critically ill patients at the same institution (8).
Specifically, those investigators evaluated 98 patients admitted
to Medical ICU for severe sepsis secondary to non-COVID-
19 infections. They found 14 episodes of periodic discharges
without non-convulsive seizures and 11 episodes of periodic
discharges plus non-convulsive seizures. Direct comparison of
these two studies is clearly limited, particularly given that 20%
of the patients in this case series did not require intensive care.
Still, in the cohort analysis by Gilmore and colleagues, they
found prior history of neurologic disease to be a significant
predictor of periodic discharges and non-convulsive seizures in
their patients (8). Similarly, we found five of the 6 patients with
electrographic seizures in this study to have chronic and/or new-
onset neurologic disease. Another significant limitation of this
study is the potential for under sampling given the need to reduce
exposure to our EEG technicians.

Ultimately, we found a relatively low incidence of
electrographic seizures (8%) in SARS-CoV-2 positive

patients undergoing cvEEG monitoring. Five of the six
patients with electrographic seizures had history of chronic
and/or acute neurologic disease otherwise sufficient to
cause or trigger seizures. As discussed above, one of the
six patients with electrographic seizures had no clear
history of chronic or acute neurological disease; however,
the leading clinical suspicion was that unrecognized
intracranial metastases were the most likely etiology for
these seizures.

This adds to evolving literature indicating that seizures
comprise a relatively small percentage of patients undergoing
cvEEG monitoring in the setting of COVID-19 illness (13, 14).
Moreover, findings on interictal EEG such as focal slowing
and epileptiform discharges appear to increase the likelihood
of also recording electrographic seizures in this population.
If other studies support these findings, routine EEG may be
sufficient to identify COVID-19 patients at risk of electrographic
seizures without the mitigating factors discussed above. Given
risk to staff and limited resources in COVID-19 pandemic,
using the aforementioned risk factors—including hyperkinetic
movements, chronic and/or acute intracranial disease, history
of epilepsy, and epileptiform discharges or focal slowing on
routine EEG—may help identify patients more appropriately of
cvEEG monitoring.
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Background/Objective: During the COVID-19 pandemic, smell and taste disorders

emerged as key non-respiratory symptoms. Due to widespread presence of the disease

and to difficult objective testing of positive persons, the use of short surveys became

mandatory. Most of the existing resources are focused on smell, very few on taste or

trigeminal chemosensation called chemesthesis. However, it is possible that the three

submodalities are affected differently by COVID-19.

Methods: We prepared a short survey (TaSCA) that can be administered at the

telephone or through online resources to explore chemosensation. It is composed

of 11 items on olfaction, taste, and chemesthesis, in order to discriminate the three

modalities. We avoided abstract terms, and the use of semiquantitative scales because

older patients may be less engaged. Statistical handling included descriptive statistics,

Pearson’s chi-squared test and cluster analysis.

Results: The survey was completed by 83 persons (60 females and 23 males), which

reported diagnosis of COVID-19 by clinical (n = 7) or molecular (n = 18) means,

the others being non-COVID subjects. Cluster analysis depicted the existence of two

groups, one containing mostly asymptomatic and one mostly symptomatic subjects. All

swab-positive persons fell within this second group. Only one item, related to trigeminal

temperature perception, did not discriminate between the two groups.

Conclusions: These preliminary results indicate that TaSCA may be used to easily track

chemosensory symptoms related to COVID-19 in an agile way, giving a picture of three

different chemosensory modalities.

Keywords: COVID-19, olfaction, taste, chemesthesis, trigeminus, self-assessment, chemical senses, recovery
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INTRODUCTION

After the first weeks of SARS-CoV2 spreading (1) and the
worldwide dissemination of COVID-19 pandemic, it became
clear that the virus is able to affect different organs, while
giving the most dismal outcomes in the case of respiratory
tract infection (2). In addition to severe respiratory symptoms,
rather non-specific signs were reported as initial manifestation
of infection, like fever, myalgia, and headache1. However, other
symptoms emerged as associated to the infection, including the
loss of smell termed anosmia (3–5), whose sudden onset appeared
as a typical feature of the COVID-19 disease (6, 7). Actually, other
viruses may affect the ability to smell, however in these cases the
loss of olfactory function is smoother and associated to various
degree of nasal symptoms, like running nose (8), while in the case
of COVID-19, the loss of smell may appear also in the absence of
any other symptom, often in a sudden and dramatic way. The
consequences of olfactory loss, whatever the cause, may be life-
threatening, by reducing the awareness of potentially dangerous
stimuli like gas or rotten food (9).

While the loss of smell is the most apparent sign of
chemosensory involvement and can be regarded as a predictor
of COVID-19 (10–14) also taste loss (ageusia) may be present,
and in some cases the trigeminal chemical sense (15) called
chemesthesis is involved (14, 16).

During the initial phase of the pandemic, we followed
some mildly symptomatic COVID-19 patients experiencing
symptoms related to the chemical senses. However, most of
the existing survey at that time were focused on olfaction,
and none put together olfaction, taste and chemesthesis. We
observed that patients could not easily discriminate between
the three different chemosensory modalities, which are sensitive
to different stimuli and use a variety of transduction pathways
and central connections to reach specific sensory areas in the
brain. Hence, we felt compelled to create an agile tool to collect
information on these three chemosensory modalities, that could
be used either online or as direct or telephone interview, to
allow the widest collection of data and reach even persons in
remote areas.

The need for a tool easy to use and manage, that allows
patients to respond and follow the evolution of their symptoms,
prompted us to create a very short online survey on the
three chemosensory modalities, focusing on items which are
part of everyday life for most people. We referred to sensory
experiences related to specific objects, instead of using more
generic terms (like “smell”) and tried to discriminate between
different odorant sources, in case the subject has no relevant
experience: for example, one person in isolation may not have
a direct contact with perfumes, yet may still retrieve some soap to
smell. We also avoided the use of semi-structured scales, since
these may be difficult to be adopted by older persons. Taste-
Smell-Chemesthesis Agile (TaSCA) survey is presented here
along with the responses collected online from April 30 to the
end of May 2020, from asymptomatic, non-affected persons and

1https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/symptoms.html

(accessed November 23, 2020).

COVID-19 positive patients. The aim of the present work is to
show that this tool may discriminate between persons showing
chemosensory systems involvement or not, and may serve as a
proof-of-principle for the use of TaSCA in conditions in which
direct testing is prevented.

METHODS

The survey was created to collect data for an observational,
prospective single center study aimed at determining
medium/long term consequences of COVID-19 on neurological
status (NEUROCOVID, Ethical Committee Prot. 056881). Data
herein presented were collected online in May 2020, during the
first COVID-19 outbreak, by soliciting patients and non-affected
persons to participate. No exclusion criteria were set, since we
aimed at establishing differences between groups of patients and
healthy subjects and explore the viability of TaSCA as a tool for
COVID-19 patients.

The questionnaire is composed of three sheets implemented
in Google Forms. One introductory sheet is entitled “COVID-
19 and taste and smell disturbances” and shows an introductory
statement. It presents onemandatory question, on the willingness
to participate, and 3 more questions (name or nickname, gender,
and age). The following sheet is the actual survey. The subject
should answer to 12 questions. The first 11 questions take in
consideration the sensory experience in the last days, with respect
to the usual sensitivity. One of four responses is possible: (1)
No change in the last period (I sense as always), (2) Moderate
change (I sense less than usual),3 Loss of function (I don’t sense
those items), (3) Don’t know/don’t remember, in the case the
person did not had the chance to sense the item in the last
period, because of physical constraints. The questions explore
smell (questions 1, 3, 5), nasal and oral chemesthesis (questions
2, 4, 10, 11), and taste (questions 6, 7, 8, 9). The last question
refers to the presence of symptoms related to COVID-19, with
the possibility to add some notes. The third and last sheet is
salutation and thanks. The questionnaire in the original language
is available at the link:

https://docs.google.com/forms/d/1yvCBD8QBWTv1dOahp
YWVhMRfS-8WaESCx80jhDIBW_Q/viewform?ts=5ea2c7
76&edit_requested=true

The printout is presented in the Supplementary Material 1,
while the English translation is shown in Figure 1.

Data Analysis
Data were analyzed using IBM SPSS Statistics v26
(RRID:SCR_019096) to produce descriptive statistics, Pearson’s
chi-squared analysis and cluster analysis. Descriptive statistics
were calculated for each item.

As a first step, we asked whether the items were able to indicate
a difference among persons experiencing a change in sensitivity
and COVID-19 status. Hence, the 4 types of responses were
coded as 0 (no change in sensitivity, answer 1) or 1 (there was
a change in the last period, answers 2 and 3). Concerning answer
4, we manually coded it as 0 if all the other responses indicated
no change.
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FIGURE 1 | TaSCA questions on taste, smell, and chemesthesis impairment.

The hierarchical agglomerative algorithm according to
Ward’s method was applied for clustering (17), since this
warrants robust results (18), using squared Euclidean distance
for assessing similarity and Pearson’s chi-square to test for
difference between the clusters for each item. Significance
level was set at p < 0.0045 after Bonferroni correction for
multiple comparisons.

RESULTS

Eighty-three persons completed the survey: 60 females and
23 males. 56 were asymptomatic, 7 had a COVID-19 clinical
diagnosis based on symptoms (because during the first pandemic,
access to naso-pharyngeal swab was restricted to patients with
severe symptoms), 18 had a SARS-CoV2 positive nasopharyngeal
swab and 2 self-reported sudden olfactory loss but when the swab
test become available, it turned out to be negative. Age ranged
from 19 to 73 years old (mean± SD: 35.98± 16.61). All subjects
presented valid data: percentages of response for each item are
presented in Table 1.

In the open question, 42 subjects (50.6%) reported no
symptoms related to COVID-19, 27 (32.5%) declared some
symptoms and 14 (16.9) answered “I don’t know.”

Several items had 5 cases or less for the responses 0-1-
2 (Table 1): 6 for response 0, 5 for response 1, and 4 for
response 2. Due to the low frequencies, the responses were
categorized in 2 classes namely, 0: No change compared to
previous sensitivity, 1: Change compared to previous sensitivity
(see Table 1, last column).

Cluster analysis showed that two main groups emerged from
data, one composed of 53 subjects (63.8%) and the other of 30
subjects (36.2%). The relative dendrogram is shown in Figure 2.

Apparently, group 1 mostly collects asymptomatic subjects
(92.5%), while 73% persons in group 2 received a diagnosis of
COVID-19 (Supplementary Material 2).

Supplementary Material 3 reports the distribution of subjects
in the two groups emerged from the cluster analysis with respect
to the absence or presence of modification in sensitivity: for
items 1 to 10, the percentage of subjects reporting a change in
sensitivity is significantly different in the two groups. Only for
item 11, related to temperature perception, the reported change
in sensitivity is not significantly different between the two groups
(Supplementary Material 3).

Supplementary Material 4 reports the raw data for the
cluster analysis.

The mean responses in the two groups are shown in Figure 3.
Concerning the last item, on the presence of COVID-19-

related symptoms, 3 responses were analyzed: (1) Yes, (2) No,
(3) I don’t know. The two groups emerged from cluster analysis
significantly differed between each other (Pearsons’ chi-squared
= 42.344, df = 2, p < 0.0001). In group 1, 71.7% (38 subjects)
reported no symptoms, 7.5% (n = 4) reported symptoms and
20.8% (n = 11) did not know, while in group 2 13.3% (n = 4)
did not report symptoms, 76.7% reported symptoms (n = 23),
and 10% (n= 3) did not know.

DISCUSSION

Often regarded as an ancillary sense, olfaction has a great role
in our everyday life for its involvement in lifeguarding processes
(e.g., avoiding dangerous chemicals) as well in food evaluation.

The COVID-19 pandemic brought to the attention of
clinicians an astonishing number of persons infected with mild
symptoms, the most intriguing being a sudden and complete

Frontiers in Neurology | www.frontiersin.org 3 February 2021 | Volume 12 | Article 633574181

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Mucignat-Caretta et al. Chemosensory Survey for COVID-19 Patients

TABLE 1 | Percentage (%) of response and number (N) of persons reporting a

modification in their sensitivity.

0—Don’t

Know

1—Don’t

Feel

2—Moderate

Change

3—No

Change

No. of persons

reporting a

change

ITEM 1 1.2% 19.3 9.6 69.9 24

Flowers N = 1 16 8 58

ITEM 2 12.0 15.7 8.4 63.9 20

Mint 10 13 7 53

ITEM 3 0 19.3 8.4 72.3 23

Perfumes 0 16 7 60

ITEM 4 13.3 13.3 3.6 69.9 14

Acetone 11 11 3 58

ITEM 5 26.5 8.4 4.8 60.2 11

Gas 22 7 4 50

ITEM 6 1.2 7.2 10.8 80.7 15

Sweet taste 1 6 9 67

ITEM 7 2.4 9.6 12.0 75.9 18

Salty taste 2 8 10 63

ITEM 8 8.4 7.2 12.0 71.1 17*

Bitter taste 7 6 10 59

ITEM 9 6.0 6.0 8.4 79.5 12

Sour taste 5 5 7 66

ITEM 10 21.7 4.8 4.8 68.7 8

Piquant 18 4 4 57

ITEM 11 2.4 0 3.6 94.0 3

Temperature 2 0 3 78

*One person reported hypersensitivity.

loss of olfaction (6), which may last for a variable period of
time, often accompanied by taste and chemesthesis impairment
(14). While anecdotical self-reports are intriguing, to pose a
diagnosis and follow the course of the disease, it is necessary to
develop instruments that allow a reliable quantification of the
functional impairment.

In the case of chemical senses, two main objective tests have
been developed and used over the years in the clinic, namely
the Sniffin’ Sticks (19) and the University of Pennsylvania Smell
Inventory Test (UPSIT) (20), while others are being developed.
Their use is mandatory to have an objective evaluation of the
impairment, since the subjective report is often misleading (21).
However, they both require the direct testing of the patient, which
may be difficult or impossible in the case of COVID-19 infected
persons. On the contrary, collecting data from patients may be
of paramount importance to follow the disease. Sadly, the utility
of self-reporting about chemical sensitivity has been repeatedly
questioned (22).

Many questionnaires are available to test olfactory function
and some of them are widely used (23–25). However, in the case
of COVID-19 disease some caution should be warranted. First,
most of the currently available surveys are focused on either smell
or taste and almost none take into consideration the trigeminal
chemical sensitivity. However, one of the most intriguing
feature of COVID-19-related chemical senses impairment is the
involvement of multiple chemosensory modalities in the disease,

FIGURE 2 | Dendrogram showing clustering emerged from cluster analysis. In

white boxes, the branch containing mostly symptomatic patients, in orange

the branch containing no swab-positive subject.

as well as their sudden loss of function. Hence, the development
of surveys specifically targeting all three chemical sensitivity is
long needed. Another feature of COVID-19 disease is the wide
range of age of affected persons, yet the diagnostic tools should
be easily accessible to most of them: hence, we avoided the use
of visual-analog scales, which may be more sensitive than other
descriptors but less flexible in terms of accessibility.

Other tools have been developed, including the 40-items
GCCR multi-lingual online questionnaire (14), however this
requires the access to the web and a certain degree of confidence
in using online surveys, which may prevent older persons
to access it. Moreover, given the worldwide diffusion of the
pandemic, it may be useful to create agile instruments that
are easily administered using different tools, including self-
administration, direct interviews or over the phone, besides
online presentation. Lastly, while most available tools may be
complete and hence rather long, we focused the questions on
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FIGURE 3 | The two groups emerging from cluster analysis present a different

response pattern.

the three chemical modalities to have a glimpse of their relative
degree of impairment. By keeping the questions tied to real
objects that could be sensed and avoiding abstract terms, we tried
to grasp the sensory experience in a more faithful way.

Present data show that mostly asymptomatic patients
cluster together, while most patients experiencing chemosensory
impairment, with particular involvement of olfaction, cluster
together, suggesting that TaSCA survey may be a valuable tool
in case of impossibility to administer more objective tests. It
may also help in collecting critical information on the objective
sensitivity in a fast and easy way.

The present work is limited to the initial collections of
a case-series to test whether it could discriminate between
symptomatic and non-symptomatic patients. Since it relied on
the voluntary participation of subjects, we did not attempt to
refine sampling, to stay closer to the real-life use: hence, the sex
balance is skewed toward females, probably because females are
more compliant and willing to take part in preliminary testing.
Similarly, we did not take any action on age balance, leaving this
for future investigations.

Some initial speculations are possible on the present data.
Whether items concerning olfaction are the most discriminative
indexes, compared to taste and trigeminal will be explored in
future work. Also, with a larger sample it will be possible to
fully assess the psychometric and statistical properties of the
questionnaire, including for example case-control approaches
and cutoff point determination. Interestingly, item 11 on thermal
sensitivity does not appear to discriminate between the 2 groups
that emerged from cluster analysis. This suggests that the
trigeminus nerve may be differentially affected in its different
sensory components. Chemical sensitivity in trigeminal afferents
involves receptors which are also temperature-gated (26, 27), but
cold receptors also exist (28–30), and functional specializations
have been reported for trigeminal receptors (31). It is worth
to include item 11 because it may discriminate among persons
experiencing true chemosensory deficit from deceitful answers.

While obtained in a limited number of subjects, these data
show that TaSCA is a short survey available in the same form
online, on paper or for oral interview that may be used to
screen chemosensory deficits in COVID-19 patients. It remains
to be determined its possible use in other conditions where these
sensory systems may be involved.

In COVID-19 patients which are still positive, isolated
at home or when direct objective testing is not feasible or
recommendable, TaSCA could be easily administered. It is fast,
yet complete in exploring all three chemosensory modalities
and could be used also with patients still presenting annoying
symptoms, which may prevent them from extensive sessions of
online or live testing.

Possibly, it could be useful in the future for repeated self-
checking with substances commonly available in most houses,
given the necessity of long-term monitoring for possible adverse
outcomes (32).
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Patients with an alcohol abuse disorder exhibit several medical characteristics and

social determinants, which suggest a greater vulnerability to the severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) infection and a worse course of the coronavirus

disease 2019 (COVID-19) once infected. During the first wave of the COVID-19, most

of the countries have register an increase in alcohol consumption. However, studies

on the impact of alcohol addiction on the risk of COVID-19 infection are very scarce

and inconclusive. This research offers a descriptive observational retrospective cohort

study using real world data obtained from the Electronic Health Records. We found

that patients with a personal history of alcohol abuse were 8% more likely to extend

their hospitalization length of stay for 1 day (95% CI = 1.04–1.12) and 15% more likely

to extend their Intensive Care Unit (ICU) length of stay (95% CI = 1.01–1.30). They

were also 5.47 times more at risk of needing an ICU admission (95% CI = 1.61–18.57)

and 3.54 times (95% CI = 1.51–8.30) more at risk of needing a respirator. Regarding

COVID-19 symptoms, patients with a personal history of alcohol abuse were 91%

more likely of exhibiting dyspnea (95% CI = 1.03–3.55) and 3.15 times more at risk of

showing at least one neuropsychiatric symptom (95% CI = 1.61–6.17). In addition, they

showed statistically significant differences in the number of neuropsychiatric symptoms

developed during the COVID-19 infection. Therefore, we strongly recommend to warn

of the negative consequences of alcohol abuse over COVID-19 complications. For this

purpose. Clinicians should systematically assess history of alcohol issues and drinking
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habits in all patients, especially for those who seek medical advice regarding COVID-19

infection, in order to predict its severity of symptoms and potential complications.

Moreover, this information should be included, in a structured field, into the Electronic

Health Record to facilitate the automatic extraction of data, in real time, useful to evaluate

the decision-making process in a dynamic context.

Keywords: alcohol abuse (AA), COVID-19, neuropsychiatric symptoms, real world data, electronic health record

INTRODUCTION

Patients with a substance abuse condition (SAC), such as
alcoholic patients, exhibit several medical characteristicsm and
social determinants that suggest a greater vulnerability to the
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2) infection and, even more, a worse course of the coronavirus
disease (2019) COVID-19 once infected.

According to the European Monitoring Center for Drugs and
Drug Addiction and several studies (1, 2) on the implications
of COVID-19 for illegal drugs users, they may suffer from
more cardiovascular and respiratory pathologies, being also
more vulnerable to damage from COVID-19 infection (3, 4).
In addition to this cardiopulmonary comorbidity, the fact that
immune response may be compromised in this population and
that they may lack health-seeking behavior could increase the
severity of the COVID-19 infection (5). Moreover, medications
used for COVID-19 may be less effective and worse tolerated by
drug users, who are also at an increased risk for pharmacological
agent–drug of abuse interactions (6, 7).

An independent effect of “chronic alcohol abuse” on acute
respiratory distress syndrome (ARDS) in critically ill patients
has been demonstrated in a prospective cohort study (8). A
recent systematic review and meta-analysis found that any
measure of high relative to low alcohol consumption was
associated with a significantly increased risk of acute respiratory
distress syndrome (ARDS) [odds ratio (OR) 1.89; 95% CI, 1.45–
2.48] (9). Alcohol can increase the risk of developing ARDS
through various mechanisms including alveolar epithelium
dysfunction, alcohol-induced oxidative stress, and interference

on alveolar macrophage function (9). In hospitalized patients
with pneumonia, having an alcohol-related diagnosis was

associated with a greater likelihood of admission to the Intensive
Care Unit (ICU) (OR, 1.63) and a longer length of stay (adding

extra 0.6 days) (10).
Although an increase in alcohol consumption has been a

constant in most of the countries that have gone through the
first wave of COVID-19 (1), studies on the impact of alcohol

addiction on the risk of COVID-19 infection are very scarce and

inconclusive (11). In the 760 cases of COVID-19 detected in a
cohort of 387,109 adults followed up in the United Kingdom,

obesity and smoking increased the risk of infection but not heavy
drinking, although the impact of alcohol abuse was not studied

(11). Understanding heavy drinking for men as consuming 15
drinks or more per week, and for women 8 drinks or more
per week, the average profile of patients with an alcohol abuse
condition attended at the Hospital 12 de Octubre is of a heavy

drinker with a daily basis and a systematic alcohol consumption.
It is worth to note that the binge drinking is usual in Spain,
but the person does not usually seek medical advice neither at
the hospital nor at the Primary Care System; since asking for
toxic habits is not systematically explored during the medical
intervention unless directly relatedmedical issues related to them
are observed, these patients have no alcohol abuse condition
diagnosis noted in their medical records.

Considering that alcohol-dependent patients associate
multiple medical comorbidities and immune system disorders,
in both phases, active consumption and withdrawal, it is
foreseeable to assume that this population is more prone to get
infected and suffer more severe complications from COVID-19
(2, 12). Hence, our aim is to assess whether alcohol consumption
is associated with an increased severity of COVID-19 infection in
hospitalized patients and an increased presence of neurological
symptoms, considering the co-occurrence of other possible
medical comorbidities.

MATERIALS AND METHODS

Study Design
Descriptive, observational, retrospective cohort study in which
data were obtained from Electronic Health Records (EHRs),
admission information, and ad-hoc fulfillment of some variables
of interest. The inclusion criteria were as follows: having at least
one episode of hospitalization at the Hospital Universitario 12
de Octubre between February 25th and September 4th, 2020 and
a diagnosis of COVID-19. The exposition criterion was having
at least one diagnosis related to past or present alcoholism.
The exclusion criteria were as follows: patients with incomplete
data and patients with confidential occupational health data or
errors due to low data quality. A match was performed using the
propensity score matching with a replacement method (13, 14).
Each alcoholic individual was paired with two non-alcoholic
individuals who had the closest propensity score to minimize
bias and improve the quality of matching; to compensate for
the difficulty in identify confounding factors, indirect methods
were used, and some of the alcoholic patients were paired
with more than one control (60:128). Possible confounding
factors or observable covariates were sex, age, obesity, vital
state, pulmonary thromboembolism, ischemic temporal accident
or stroke, confusion, diabetes, chronic obstructive pulmonary
disease (COPD), arterial hypertension, anxiety, depression,
asthma, liver disease (hepatitis or cirrhosis), smoking, human
immunodeficiency virus (HIV), transplantation, cancer,
cognitive impairment or dementia, and psychosis.
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EHR Semiautomatic Extracted Variables
The variables considered in the study were as follows:
demographics (age and sex); personal health history
(neuropsychiatric history and hepatic damage); severity risk
for COVID-19 comorbidities (diabetes, arterial hypertension,
obesity and overweight, chronic obstructive pulmonary disease);
COVID-19 diagnosis (clinical diagnosis and PCR result);
admission variables (length of stay and ICU admission).

Outcomes
Vital state at hospital discharge, neuropsychiatric COVID-
19 symptoms (psychosis, depression, anxiety, posttraumatic
syndrome, cognitive impairment, confusion, transient ischemic
attack, stroke, anosmia, ageusia).

Ad-hoc Follow-Up Variables
Result variables: COVID-related chief complaint, vital state,
length of stay, ICU admission, ICU length of stay, and
complications. Adjustment variables: age, sex, personal
history of alcoholism, diabetes, arterial hypertension, obesity
and overweight, COPD, asthma, hepatitis, cirrhosis, toxic
habits, smoking, human immunodeficiency virus (HIV),
transplant, psychosis, depression, cognitive impairment or
dementia, and anxiety. COVID-19 signs: levels of alkaline
phosphatase (ALP), alanine transaminase (ALT), gamma-
glutamyl transferase (GGT), reactive C-protein, D dimer, and
fibrinogen at diagnosis. COVID-19 symptoms: pneumonia,
type of pneumonia (unilateral, bilateral), fever, cough, asthenia,
degree of asthenia, diarrhea, vomit, dyspnea, degree of dyspnea
(low, moderate, severe), anosmia, ageusia, confusion, memory
loss, psychotic crisis, delirium, depression, anxiety, sleep
disorders, attention and concentration disorders, emotional
lability, speech impairment, euphoria, aggressiveness, irritability,
hallucinations, suicidal tendencies, posttraumatic syndrome, and
consciousness level.

Statistical Analysis
The variables were summarized by means and standard
deviation or median (p50) and the interquartile range (p25-p75),
according to the normality distribution. To check the normality
distribution, the Shapiro–Wilk test was used. Qualitative
variables were expressed in absolute numbers (number of cases)
and in relative frequencies (percentage). To compare alcohol-
related variables between groups, we used the Student’s T-test or
the non-parametric Mann–Whitney U-test, chi-square test (X2),
or Fisher’s exact test, depending on the nature of the variables.

A logistic regression model was created to study the
association between possible risk factors for alcoholism adjusted
for age, sex, obesity, cognitive impairment–dementia, HIV,
smoking, transplantation, diabetes, anxiety, liver disease,
depression, and psychosis. The results of the model are presented
in the form of OR together with the 95% confidence interval
(95% CI) (Table 1). The statistical study was completed with
a multivariate analysis, considering both risk factors with a
significant result in the univariate analysis and those that had
some relevance (p< 0.1). The use of a selection by steps was used
to highlight the most relevant factors, identify those significant

sets among the possible variables, and avoid confusion in the
model due to possible relationships between them since this
method determines the significance of the effect of a variable
in the presence of those already in the model. The Hosmer
and Lemeshow test was used to evaluate the goodness of fit of
the model.

All analysis were performed using the STATA version 16
statistical software. In all cases, the level of confidence was 95%,
considering that there was statistical significance when p ≤ 0.05.

RESULTS

During the study period, the Hospital Universitario 12 de
Octubre offered health assistance (Figure 1) in 72,364 episodes
to patients either at the emergency department, as inpatients or
as a reference laboratory for the PCR technique from Primary
Care. Fourteen thousand seven hundred eight had a diagnosis
of COVID-19; 847 had at least one diagnosis or reference to a
personal history of alcoholism (1.17% of the total episodes) of
whom 88 had COVID-19 (10.39% of the alcoholic patients; 0.6%
of the COVID-19 patients). Table 1 summarizes the descriptive
analysis of demographic-related variables. The cohort of patients
diagnosed with alcohol abuse had a higher proportion of male
patients (p= 0.032).

Twenty-eight patients who met the exclusion criteria were
removed from the cohort. Six of the patients were hospital
workers, and their data were confidential occupational health
data. Fifteen were misclassified since they had no hospital
admission, having only a positive PCR demanded from the
Primary Care. Lately, seven patients were misclassified as
“confirmed COVID-19,” but they had no COVID-19 diagnosis
or it was finally ruled out. Thus, the final cohort was composed
of 60 patients with a confirmed personal record of alcoholism,
a diagnosis of COVID-19, and an EHR episode registered as
“alcoholic.” Alcoholic patients were paired 2:1 with 128 non-
alcoholic patients. We considered non-alcoholic patients as those
who had an explicit comment of “no alcohol consumption” or the
absence of a diagnosis of alcohol abuse in the medical records.

In the descriptive analysis of the historic cohorts (see Table 1),
there were statistically significant differences in the length of
inpatient stay (p < 0.001), being longer for alcoholic patients
with a mean of 9 days compared to non-alcoholics in which the
mean was 5 days. There were also differences in the frequency of
ICU admission (p = 0.005) and in the length of stay in ICU (p <

0.001), as well as in the need of respirator (p= 0.0049). However,
it is important to highlight that the variables of cirrhosis (p
< 0.001) and other toxic habits such as smoking (p < 0.001)
and drug addiction (p < 0.001) were significantly higher in
the alcoholic cohort, which could be related to the severity of
the disease.

As for the COVID-19 symptoms, the univariate analysis
showed differences in several result variables. The final
multivariable model showed no significant differences for
respiratory or digestive symptomatology with the exception of
dyspnea (p= 0.043). There were, however, statistically significant
differences in the neuropsychiatric symptoms (p = 0.001);
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TABLE 1 | COHORT descriptive analysis.

Total Non-alcoholic Alcoholic p-value

N = 188 N = 128 N = 60

Age [mean (SD)] 60.45 (16.55) 59.93 (18.52) 61.56 (11.29) 0.53

Sex (% men) 134 (71.28%) 85 (66.41%) 49 (81.67%) 0.038

Non-COVID derivation (%) 39 (20.74%) 15 (11.71%) 24 (40.00%) <0.001

COVID confirmed (%) 123 (65.43%) 72 (56.25%) 51 (85.00%) <0.001

Health outcomes

Vital state (%) 36 (19.15%) 23 (17.97%) 13 (21.67%) 0.56

Length of stay (IC95%) 5.00 (0.00–10.00) 2.00 (0.00–8.00) 9.00 (5.00–17.00) <0.001

ICU admission 13 (6.91%) 4 (3.13%) 9 (15.00%) 0.005

ICU length of stay (95% CI) 0.00 (0.00–0.00) 0.00 (0.00–0.00) 0.00 (0.00–0.00) <0.001

Need for respirator 26 (13.83%) 11 (8.59%) 15 (25.00%) 0.0049

PCR 101 (53.72%) 58 (45.31%) 43 (71.67%) <0.001

Complications 42 (22.34%) 23 (17.97%) 19 (31.67%) 0.040

Personal health history

Diabetes 47 (25.00%) 29 (22.66%) 18 (30.00%) 0.279

Arterial hypertension 75 (39.89%) 48 (37.50%) 27 (45.00%) 0.339

Obesity and overweight 28 (14.89%) 15 (11.72%) 13 (21.67%) 0.082

OCPD 29 (15.43%) 20 (15.63%) 9 (15.00%) 0.999

Asthma 13 (6.91%) 7 (5.47%) 6 (10.00%) 0.351

Hepatitis 31 (16.49%) 15 (11.72%) 16 (26.67%) 0.019

Cirrhosis 27 (14.36%) 6 (4.69%) 21 (35.00%) <0.001

Drug addiction 15 (7.98%) 4 (3.13%) 11 (18.33%) <0.001

Smoker 44 (23.40%) 22 (17.19%) 22 (36.67%) <0.001

Ex-smoker 21 (11.17%) 8 (6.25%) 13 (21.67%)

HIV 6 (3.19%) 3 (2.34%) 3 (5.00%) 0.389

Transplant 13 (6.91%) 7 (5.47%) 6 (10.00%) 0.348

Psychosis 5 (2.66%) 3 (2.34%) 2 (3.33%) 0.651

Depression 38 (20.21%) 20 (15.63%) 18 (30.00%) 0.031

Suicidal attempts 6 (3.19%) 2 (1.56%) 4 (6.67%) 0.083

Cognitive impairment 20 (10.64%) 10 (7.81%) 10 (16.67%) 0.078

Anxiety 27 (14.36%) 20 (15.63%) 7 (11.67%) 0.509

Laboratory parameters

AST 35.0 (24.0–51.0) 33.0 (24.0–44.0) 42.0 (26.0–70.0) 0.066

ALT 66.0 (27.0–131.5) 50.0 (24.0–99.0) 115.0

(49.0–255.0)

<0.001

Gama GT 133.53 (278.5) 72.74 (72.49) 236.33 (430.18) <0.001

C-reactive protein 5.60 (1.43–12.82) 6.44 (1.34–12.49) 4.70 (1.62–16.56) 0.789

Fibrinogen 658.09 (207.17) 658.35 (194.77) 657.67 (229.24) 0.989

MCV 91.35 (7.03) 91.13 (6.57) 91.74 (7.83) 0.609

D-dimer 786 (414–1,463) 669 (381–1,488) 992 (600–1,463) 0.390

COVID-19 debut symptoms

Pneumonia (yes/no) 103 (54.79%) 65 (50.78%) 38 (63.33%) 0.119

Unilateral pneumonia 22 (11.70%) 13 (10.16%) 9 (15.00%) 0.219

Bilateral pneumonia 81 (43.09%) 52 (40.63%) 29 (48.33%)

Fever 114 (60.64%) 75 (58.59%) 39 (65.00%) 0.431

Cough 94 (50.00%) 64 (50.00%) 30 (50.00%) 1.000

Asthenia 41 (21.81%) 30 (23.44%) 11 (18.33%) 0.459

Diarrhea 46 (24.47%) 30 (23.44%) 16 (26.67%) 0.719

Vomits 15 (7.98%) 11 (8.59%) 4 (6.67%) 0.782

Dyspnea 86 (45.74%) 52 (40.63%) 34 (56.67%) 0.043

Anosmia 15 (7.98%) 13 (10.16%) 2 (3.33%) 0.149

(Continued)
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TABLE 1 | Continued

Total Non-alcoholic Alcoholic p-value

N = 188 N = 128 N = 60

Ageusia 15 (7.98%) 12 (9.38%) 3 (5.00%) 0.389

Anosmia and Ageusia 8 (4.26%) 6 (4.69%) 2 (3.33%) 1.000

Confusion 22 (11.70%) 9 (7.03%) 13 (21.67%) 0.006

Memory loss 7 (3.72%) 2 (1.56%) 5 (8.33%) 0.035

Psychotic crisis 2 (1.06%) 0 (0.00%) 2 (3.33%) 0.101

Depression 8 (4.26%) 5 (3.91%) 3 (5.00%) 0.711

Anxiety 12 (6.38%) 7 (5.47%) 5 (8.33%) 0.531

Sleeping problems 11 (5.85%) 7 (5.47%) 4 (6.67%) 0.749

Attention problems 12 (6.38%) 7 (5.47%) 5 (8.33%) 0.529

Emotional lability 8 (4.26%) 3 (2.34%) 5 (8.33%) 0.111

Disorders of consciousness 21 (11.17%) 12 (9.38%) 9 (15.00%) 0.319

Speech impairment 6 (3.19%) 5 (3.91%) 1 (1.67%) 0.67

Aggressiveness 3 (1.60%) 0 (0.00%) 3 (5.00%) 0.031

Irritability 2 (1.06%) 0 (0.00%) 2 (3.33%) 0.100

Hallucinations 4 (2.13%) 1 (0.78%) 3 (5.00%) 0.097

Other NP symptoms 19 (10.11%) 7 (5.47%) 12 (20.00%) 0.004

At least one NP symptom 51 (27.13%) 25 (19.53%) 26 (43.33%) 0.001

Number of NP symptoms

(median)

0.00 (0.00–1.00) 0.00 (0.00–0.00) 0.00 (0.00–2.00) <0.001

Frequency and statistical significance between variables in patients with any annotation in their medical record of alcohol abuse (alcoholic) vs. patients without a reference to alcohol

abuse (non-alcoholic).

NP, neuropsychiatric; MCV, mean corpuscular volume; COPD, chronic obstructive pulmonary disease; HIV, human immunodeficiency virus; ICU, intensive care unit; GGT, gamma-

glutamyl transferase; GOT (AST), glutamyl oxaloacetic transaminase/aspartate aminotransferase; non-COVID derivation, patient who seek medical attention due to symptoms initially

unrelated to COVID-19.

FIGURE 1 | Patients flow and final cohort identification. *During the matching process, to compensate for the difficulty in identify cofounding factors, some of the

alcoholic patients were paired with more than two controls.

statistical significance was reached for confusion (p = 0.006),
memory loss (p = 0.035), violent behavior (p = 0.031) and other
neuropsychiatric symptoms (p < 0.001).

The variable “other neuropsychiatric symptoms” was diverse,
including pain (n = 4), stroke (n = 2), agitation (n = 2),

confusion and disorientation (n = 2), hepatic encephalopathy (n
= 2), weakness and walking impairment (n = 3), bradypsychia
(n = 2), dysarthria (n = 2), Guillain-Barre syndrome (n = 1),
hemiparesis (n = 1), panic attack (n = 1), dementia (n = 1),
diplopia (n= 1), and syncope (n= 1). Five of the patients showed
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more than one symptoms. The neuropsychiatric symptoms (NP
symptoms) variable included all the neuropsychiatric symptoms
but not ageusia and anosmia, which were analyzed separately.

One hundred one (53.72%) patients of the global cohort were
diagnosed with COVID-19 having a supporting positive PCR test
for SARS-CoV-2, while the other 87 patients were diagnosed as
COVID-19 without this diagnosis test, receiving only a clinical
diagnosis, most probably due to the initial lack of test supplies.
Patients with a personal history of alcohol abuse were more
frequently tested as positive for SARS-CoV-2 than patients
without personal records of alcoholism (p = 0.003) and more
frequently (40.00 vs. 11.71%) requested medical assistance in the
hospital setting with the suspicion of COVID-19 (p < 0.001).

Adjustment was incomplete due to certain characteristics of
alcoholism, such as its association to other toxic habits, for
instance drug abuse and smoking (p < 0.001), more frequent
than in non-alcoholic patients, and the effects of alcohol over
the liver function that can lead to cirrhosis (p < 0.001) and
hepatitis (p = 0.025). In addition, depression (p = 0.031) was
not completely paired in the non-alcoholic population. Thus,
the analytical variables measuring liver function (ALT and GGT)
showed significant differences (p < 0.001) between alcoholic
and non-alcoholic patients. However, the median values in
these variables were in the pathological range in both cohorts;
besides, depression as a COVID-19 symptom had no significant
differences between both cohorts.

In the univariate analysis of the paired cohorts, patients with
a personal history of active alcohol abuse were 8% more likely
to extend their length of stay for 1 day (CI95% = 1.04–1.12)
and 15% more likely to extend their ICU length of stay (CI95%
= 1.01–1.30). They were 5.47 times more at risk of needing
ICU admission (CI95% = 1.61–18.57) and 3.54 times (CI95% =

1.51–8.30) more at risk of requiring a respirator. As for the
symptoms of COVID-19, patients with a personal history of
alcohol abuse showed 91% more frequency of dyspnea (CI95%
= 1.03–3.55), they were 3.15 times more at risk of exhibiting at
least one neuropsychiatric symptom (CI95% = 1.61–6.17), and
they reached statistically significant differences in the number of
NP symptoms developed during the COVID-19 infection. In the
final model for the multivariate analysis (see Table 2), patients
with a personal history of alcohol abuse were 2.38 times more at
risk of developing at least one neuropsychiatric symptom (CI95%
= 1.01–5.59). Through the Hosmer and Lemeshow test, we can
verify that the goodness-of-fit test in the proposed multivariate
model (Annex 1) is considered a good fit since the value of the
Cg statistic was 0.8324.

DISCUSSION

The most relevant results of our study indicate that patients with
COVID-19 infection and alcohol abuse had more complications
as suggested by longer lengths of stays, greater need for ICU
and ventilator support, and significantly more neuropsychiatric
complications such as the presence of confusion, memory
deficits, violent behavior, and other neuropsychiatric symptoms.
However important for prognosis and management of patients,

TABLE 2 | Logistic regression model, odds ratios in univariate, and multivariate

analysis.

p-value OR (95% CI) Multivariate analysis

(*) OR (95% CI)

Length of stay <0.001 1.08 (1.04–1.12) 1.07 (1.03–1.12)

ICU admission 0.029 1.15 (1.01–1.30)

AST 0.045 1.01 (1.00–1.02)

GGT <0.001 1.01 (1.00–1.01) 1.01 (1.00–1.01)

C-reactive protein 0.994 0.99 (0.96–1.03)

Fibrinogen 0.987 0.99 (0.99–1.00)

MCV 0.611 1.01 (0.96–1.06)

D-dimer 0.350 0.99 (0.99–1.00)

Number of NP symptoms 0.009 1.31 (1.07–1.61)

Death 0.549 0.79 (0.37–1.69)

ICU admission 0.006 5.47 (1.61–18.57)

Need of respirator 0.004 3.54 (1.51–8.30)

PCR 0.001 3.05 (1.58–5.91)

Complications 0.038 2.11 (1.04–4.29)

COPD 0.912 0.95 (0.40–2.24)

Asthma 0.260 1.92 (0.62–5.98)

Hepatitis 0.012 2.74 (1.25–6.01) 2.46 (0.85–7.08)

Drug addiction 0.001 6.96 (2.11–22.90)

Suicidal attempts 0.088 4.50 (0.80–25.29)

COVID <0.001 4.41 (2.00–9.71) 3.22 (1.02–10.09)

Pneumonia 0.180 1.67 (0.89–3.14)

Unilateral pneumonia 0.171 1.98 (0.74–5.27)

Bilateral pneumonia 0.168 1.59 (0.82–3.10)

Fever 0.403 1.31 (069–2.48)

Cough 0.999 1.00 (0.54–1.85)

Asthenia 0.431 0.73 (0.34–1.58)

Diarrhea 0.631 1.19 (0.49–2.40)

Vomits 0.650 0.76 (0.23–2.49)

Dyspnea 0.041 1.91 (1.03–3.55)

Anosmia and ageusia 0.670 0.70 (0.14–3.58)

NP symptoms 0.001 3.15 (1.61–6.17) 2.38 (1.01–5.59)

NP, neuropsychiatric; MCV, mean corpuscular volume; COPD, chronic obstructive

pulmonary disease; ICU, Intensive Care Unit; GGT, gamma-glutamyl transferase; GOT

(AST), glutamyl oxaloacetic transaminase/aspartate aminotransferase.

*Drug addiction was excluded due to the ample range of the CI.

alcohol abuse conditions are neither properly identify on the
EHR nor systematically screened while caring for a patient; and
this can have important impact on the patient’s healthcare.

Regarding COVID-19 complications, our findings are
consistent with those of other studies that have also found that
high-dose alcohol consumption increases the risk for ARDS
(9), ICU admission, and longer hospital lengths of stay (10).
Chronic alcohol consumption can induce ciliary dysfunction in
the respiratory tract that reduces the capacity for bacterial and
viral clearance (15).

Possibly the most suggestive finding in our study is the
correlation between a personal history of alcoholism and
neuropsychiatric complications, as evidenced by the presence of
significant symptoms in that group such as confusion, memory
loss, violent behavior, and other neuropsychiatric manifestations.
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These manifestations may reflect the greater severity of the
disease, and, in fact, in a study that included patients admitted to
ICU, up to 84% presented neurological complications, indicating
that these were more frequent in the most severe cases (16). It
could also be due to the presence of the virus in the central
nervous system (CNS), as it has been pointed out in a recent
review of the neurological complications of COVID-19 (17).

There are multiple possible routes of entry of the virus into the
CNS: through the olfactory bulb, through the blood–brain barrier
(BBB) (18), through infected leukocytes, or through axonal
transport in peripheral nerves (19). The enzyme angiotensin-
converting enzyme 2 (ACE2), through which the virus enters
into the cell, is found in the cerebral vascular endothelium
(17). COVID infection can damage endothelial cells and activate
proinflammatory and thrombotic pathways (17). Thus, the most
severe symptoms may also be a consequence of the cytokine
storm (16).

One of the plausible hypothesis to explain the increased
CNS vulnerability to the COVID infection in patients with a
personal history of alcohol abuse is that ethanol is able to interact
forcefully at different levels, acting on both natural or innate
immunity [phagocytosis, natural killer (NK) cells, complement]
and on specific or acquired immunity (20, 21). In particular,
the activity of NK cells is altered by the following actions of
ethanol: interference of the bond between NK and the target
cells, modification of the production and use of some cytokines,
alteration of cytolytic activity, alteration of signal transduction,
and a direct effect on the neuro-endocrine system (22). Another
entry pathway could be related to an increased permeability of
the BBB (23, 24), which would favor the proinflammatory cascade
caused by the virus.

As for the strengths and limitations of the study, one
of the main issues observed during the pandemic is the
insufficient quality of clinical and epidemiological data to design
observational studies and to elaborate hypothesis for future
researches. Another key difficulty is to identify patients whomeet
clinical characteristics of interest, other than COVID-19-related
information (currently well-recorded). Automatic extraction of
information from EHR could be of great help in a pandemic.
This study has been supported by real world data (RWD)
semiautomatically extracted from EHR and compared with the
current gold standard for retrospective studies, the manual EHR
review. The iterative approach for patient cohort identification
has been very specific in the variable’s identification even though
not very sensitive (<2% of patients with a personal record
of alcohol abuse were identified, although within inpatients, it
was expected to be identified around 20%). In this way, one
supposedly alcoholic patient was considered as non-alcoholic
and three non-alcoholic patients were identified as alcoholic by
the reviewers. Thus, 98.3% of the patients identified as patients
with a personal history of alcohol abuse were confirmed as so by
individual andmanual review of the health records of every single
patient (gold standard), and 97.6% of the patients identified as
non-alcoholic were confirmed as so by the gold standard.

Despite this strength, several limitations should be taken
into account. First, identifying alcoholism exposure was done
following medical records of EHR and not any other objective
measures. For this reason, there could be a selection bias

since alcoholism, among other substance abuse conditions, is
a stigmatized disease that carry psychological and physical
suffering to the patients who could minimize or deny their
alcohol consumption; in addition, because alcohol consumption
is considered part of a cultural legacy within our social context,
it could be not systematically recorded in the patient’s medical
records, underdiagnosing alcohol abuse. Moreover, the chances
of being codified as an alcoholic are higher when associating
pathologies such as cirrhosis or a severe dependence. Finally,
drug abuse and smoking habit are systematically explored in
patients identified as alcoholics but not in non-alcoholics, and
therefore, the significant differences observed in these variables
could be due to an appropriate diagnosis in alcoholic and ex-
alcoholic patients but a misdiagnosis in non-alcoholic patients.

On the other hand, medical history should have been
structured in the “personal health history” section of EHR, and
it has not, and in this way, the semiautomatic identification
of variables could have been mistaken. Ideally, a multicentric
observational prospective cohort study including the variables
from our database and the systematic recording of toxic
habits in all COVID-19 inpatients could greatly reinforce our
conclusions regarding the impact of alcohol abuse in COVID-
19 neuropsychiatric symptoms and prognosis. In fact, alcohol
consumption has an important effect on the central nervous
system and on mental health and, in COVID-19 patients, seems
to increment significantly the probabilities of suffering at least
one neuropsychiatric symptoms and frequently more than one.
Unfortunately, the insufficient size of the cohort and the intrinsic
limitations of this study do not allow a stronger assessment;
however, it is a research topic worth exploring in depth.

In conclusion, considering the use and abuse of alcohol that
is occurring in the general population as a consequence of
the pandemic, it would be advisable to warn of the negative
consequences that these habits may have on the complications
of COVID-19 infected people.

Clinicians should systematically assess history of alcohol
issues and drinking habits in all patients, especially for those who
seek medical advice regarding COVID-19 infection in order to
prevent symptoms severity and complications that results from
this association.

Information regarding personal health records should be
recorded in a structured field of EHR to facilitate the automatic
extraction of data for observational studies in real time, useful to
evaluate the decision-making process in a dynamic context.
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The current pandemic caused by the new severe acute respiratory syndrome coronavirus

2 (SARS-CoV-2) has become a public health emergency. To date, March 1, 2021,

coronavirus disease 2019 (COVID-19) has caused about 114 million accumulated

cases and 2.53 million deaths worldwide. Previous pieces of evidence suggest that

SARS-CoV-2 may affect the central nervous system (CNS) and cause neurological

symptoms in COVID-19 patients. It is also known that angiotensin-converting enzyme-2

(ACE2), the primary receptor for SARS-CoV-2 infection, is expressed in different brain

areas and cell types. Thus, it is hypothesized that infection by this virus could generate

or exacerbate neuropathological alterations. However, the molecular mechanisms that

link COVID-19 disease and nerve damage are unclear. In this review, we describe

the routes of SARS-CoV-2 invasion into the central nervous system. We also analyze

the neuropathologic mechanisms underlying this viral infection, and their potential

relationship with the neurological manifestations described in patients with COVID-19,

and the appearance or exacerbation of some neurodegenerative diseases.

Keywords: SARS-CoV-2, storm cytokine syndrome, neuroinflammation, blood-brain barrier, neurological

alterations, neurodegenerative diseases, Alzheimer’s disease

INTRODUCTION

Coronavirus disease 2019 (COVID-19) was first reported in December 2019 in Wuhan, in Hubei
province, China (1). InMarch 2020, the world health organization (WHO) declared the COVID-19
a pandemic. Almost a year later, on March 1, 2021, more than 114 million cases and 2.53 million
deaths have been reported (2–4). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
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the causative agent of COVID-19, is 100 nm with an oval
shape and covered with crown-shaped glycoprotein spikes (5).
It is transmitted through respiratory droplets from infected
individuals or contact with fomites. Once SARS-CoV-2 enters the
body, the onset of symptoms ranges from 2 to 14 days. Patients
can manifest clinically from asymptomatic or mild symptoms to
moderate or severe symptoms (6, 7). Mild to moderate symptoms
manifest as fever, dry cough, nasal congestion, sore throat,
runny nose, fatigue, myalgias, diarrhea, anosmia, and ageusia
as main symptoms (6, 7). The severe condition is characterized
by atypical pneumonia, which can be observed as “ground-
glass opacification” with bilateral multi-lobular consolidations
by imaging studies (8). Between 5 and 30% of patients develop
acute respiratory distress syndrome, characterized by rapid onset
and with generalized inflammation in the lungs, requiring
invasive life support therapy, such as mechanical ventilation
(6, 7). There is increasing evidence that these critically ill
COVID-19 patients suffer a so-called “cytokine storm syndrome,”
characterized by the release of many pro-inflammatory cytokines
[interleukin (IL)-1β and IL-6] and a low number of T cells
into the bloodstream (9). The mean period from the onset
of the symptoms to death is around 13 days [interquartile
range (IQR) 11–18 days], and this depends on advanced age
(>65 years) and comorbidities such as diabetes mellitus (DM),
hypertension, cardiovascular disease, or chronic obstructive
pulmonary disease (COPD) (10). These comorbidities are also
risk factors for severity and transfer to intensive care unit (ICU),
endotracheal intubation, and death in patients with COVID-19
(11). However, there may be bias in the epidemiological data
due to the in-hospital stay of the patient, as well as the human
development index of each country. SARS-CoV-2 also may be
able to invade multiple organs, including the nervous system,
and thus cause multiple organ dysfunction syndrome (MODS)
(12). The neurological manifestations are beginning to take on
unquestionable importance, mainly in the critical patient (13, 14).
Neurological manifestations of COVID-19 and other coronavirus
infections involve febrile seizures, disorientation, difficulty in
speaking, encephalitis, and stroke (15–18). The mechanisms by
which SARS-CoV-2 can spread, infect, cause damage to nerve
cells and finally affect both the central (CNS) and peripheral
(PNS) nervous system, are not yet understood. This review will
analyze the potential mechanisms by which SARS-CoV-2 can
invade the CNS and PNS and generate a neurotoxic environment
that may trigger or worsen neurological disorders.

SARS-CoV-2: Structure and Mechanism of
Infection
The coronaviruses (CoVs) belong to the Orthocoronaviridae
subfamily; order: Nidovirales; subordination: Cornidovirineae;
family: Coronaviridae (19). They can be grouped into four
genera, including α/β/γ/δ-CoV: α and β infect mammals and γ/δ
infect birds (20). CoVs are large, positive-stranded RNA viruses,
and they are enveloped with a lipid membrane derived from
a host cell. The protein protruding from the virus membrane
is the spike (S) protein, giving the virus the appearance of a
solar corona (1) (Figure 1A). Coronaviruses have single-stranded

RNA of between 26.4 and 31.7 kilobases, making them the
largest of RNA viruses (21). CoVs have several main structural
proteins (Figure 1A): nucleocapsid (N) proteins, which surround
the RNA genome; membrane (M) proteins (also known as
E1 membrane glycoprotein or matrix protein) (20); envelope
(E) proteins, involved in virus assembly, and S protein, which
mediates virus entry into host cells. Some CoVs also encode an
envelope-associated hemaglutinin-esterase protein (HE) used as
an invading mechanism (22).

The S protein is the main antigenic component of SARS-
CoV-2 structural proteins and is comprised of two subunits,
S1 and S2 (23). This protein is multifunctional, contributing
to host receptor binding, pathogenesis, and cell tropism. The S
protein binds to host receptors on target cells, inducing virion
particle endocytosis, and then catalyzes the fusion between host
and viral membranes, allowing the virus genome penetration
into the host cytoplasm (24). The S1 domain has a high-
affinity association with the host receptor angiotensin-converting
enzyme 2 (ACE2) (25). The receptor-binding domain (RBD)
of the S protein binds to the extracellular peptidase domain
of ACE2, mediating cell entry (25, 26). SARS-CoV-2 uses the
SARS-CoV receptor ACE2 for entry and the transmembrane
serine protease 2 (TMPRSS2) for S protein priming. The
endosomal cysteine proteases cathepsin B and L (CatB/L) can
be used to mature the S protein (27, 28). However, while
TMPRSS2 is indispensable for viral spread and pathogenesis,
the CatB/L activity is not essential (Figure 1B step 1). Once
the virus enters the host cell, viral replication begins with
translation of the replicase-polymerase gene and assembly of the
replication-transcription complex. This complex also transcribes
the genomic regions to structural proteins. New virions are
assembled in the endoplasmic reticulum and Golgi apparatus
released from the cell (Figure 1B step 1) (29). Finally, the newly
assembled SARS-CoV-2 virions possess protein S on the surface
and are ready to infect any cell that expresses the ACE2 receptor
with no further requirement for TMPRSS2 activity (30).

SARS-CoV2 Pathophysiology
The SARS-CoV-2 pathophysiology is not yet clear. It has been
suggested that it can be similar to SARS-CoV (31, 32) with two
possible responses (32):

1) After the viral infection occurs, active viral replication
and dissemination through ACE2 receptors occurs with
the associated host antiviral responses. SARS-CoV-2
downregulates ACE2 receptors, with loss of their catalytic
effect at themembrane surface. Inflammation and thrombosis
have been related to enhanced and unimpeded angiotensin
II effects through the ACE-Angiotensin II-AT1 receptor axis
(33) (Figure 1B step 2). The SARS-CoV-2 infection can lead
to an acute immune response. This response is driven by
inflammatory alveolar and monocyte-derived macrophages
that can be activated by pathogen-associated molecular
patterns (PAMPs) and damage-associated molecular patterns
(DAMPs) released by infected pneumocytes (34–36).
Subsequently, several pro-inflammatory mediators such as
tumor necrosis factor-alpha (TNF-α) and IL-1β, secreted
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FIGURE 1 | Pathological mechanisms of SARS-CoV-2 in the pulmonary alveolus. (A) Mode of transmission and main structural proteins of SARS-CoV-2. (B)

Mechanisms of SARS-CoV-2 infection and pulmonary inflammatory immune response. ACE2, angiotensin-converting enzyme 2; Ang, angiotensin; ARDS, acute

respiratory distress syndrome; AT1R, angiotensin II type I receptor; CASP1, aaspase 1; E protein, envelope small membrane protein; HE, hemagglutinin esterase;

IL1β, interleukin 1 beta; IRAKs, interleukin-1 receptor-associated kinases; M protein, membrane protein; MyD88, myeloid differentiation primary response 88; N

protein, nucleoprotein; N, neutrophils; NF-κB, nuclear factor Kappa B; NK, natural killer cells; NLRP3, nucleotide-binding domain-, leucine-rich repeat-containing

receptor, pyrin domain-containing 3; RNA, ribonucleic acid; S protein, spike protein; TMPRSS2, transmembrane serine protease 2; TRAF6, tumor necrosis factor

receptor-associated factor 6.

by alveolar macrophages, initiate the acute inflammatory
cascade that triggers cell death and damage. Aside from
PAMP/DAMP production, the recruitment of immune
cells and activation of the nucleotide-binding domain
leucine-rich repeat-containing receptor, pyrin domain-
containing 3 (NLRP3), establish a pro-inflammatory positive
feedback cascade (32, 34, 35) (Figure 1B steps 3 and 4).
This localized inflammatory cell death could lead to a
hyper-inflammatory microenvironment and spread to the
vasculature, inducing leakage, edema, and pneumonia in
COVID-19 patients (35, 37). Serum of COVID-19 patients
is characterized by increased levels of the following: IL-2,
IL-7, IL-10, TNF-α, protein monocyte chemoattractant-1
(MCP1; also known as C-C motif chemokine ligand 2 CCL2),
granulocyte colony-stimulating factor (G-CSF), macrophage
inflammatory protein 1 alpha (MIP1α; also known as CCL3),
C-X-C motif chemokine ligand 10 (CXCL10), C-reactive
protein (CRP), D-dimers and ferritin (19, 38–40).

2) The SARS-CoV-2 infection can also lead to the generation
of adaptive immunity and neutralizing antibody (NAb). The
virus-NAb complex can trigger Fc receptor (FcR)-mediated
inflammatory response and acute lung injury. SARS-CoV-2

can infect cells that have FcRs, which provide the ability
for antibody-mediated internalization. This mechanism can

occur in macrophages, monocytes, or B cells even without

ACE2 and TMPRSS2 expression, and especially during

infection (41). The internalization of the virus–antibody

immune complexes can also promote tissue damage and

inflammation by activating myeloid cells via FcRs (42). Both

primary and secondary responses culminate in the postulated

pathogenesis of SARS-CoV-2 infection (32). Interestingly, it

has been suggested that fatal COVID-19 is characterized as a

cytokine release syndrome (CRS) induced by a cytokine storm
and associated with adverse outcomes of acute respiratory

distress syndrome (ARDS) (Figure 1B step 5) and high
mortality rate (43, 44).

For mechanistic insights into the life cycle of SARS-CoV-
2, the mouse hepatitis virus (MHV) represents a suitable
comparator. MHV is a βCoV very similar to SARS-CoV, MERS-
CoV, and SARS-CoV-2 (45). Therefore, an MHV animal model
could contribute to the elucidation of the neuropathological
mechanisms of SARS-CoV-2 in the following aspects: (1)
MHV can invade and replicate in the CNS, triggering lesions

Frontiers in Neurology | www.frontiersin.org 3 April 2021 | Volume 12 | Article 660087195

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Pacheco-Herrero et al. Elucidating the Neuropathology of SARS-CoV-2

in the white matter (45); (2) Infection with MHV induces
meningoencephalitis in an acute stage and subsequently subacute
chronic inflammatory demyelination in the brain and spinal cord
(46); (3) CD4 and CD8T lymphocytes, especially γδ T cells, play
an important role in the MHV-induced demyelination process
(47); (4) MHV can be translocated from the initial inoculation
brain area to the spinal cord through the transit of viral particles
in glial and neural cells, as well as by mechanisms that involve the
fusion of lipid membranes (48); (5) After intranasal MHV-CoV
inoculation in mice, the virus can access the CNS through the
olfactory nerve and spread from this area to neuroanatomically
interconnected structures such as the limbic system and the
brainstem (49).

Potential Neuroinvasive Pathways of
SARS-CoV-2
There are four possible routes by which SARS-CoV-2 could enter
the CNS: (1) the hematopoietic pathway and subsequent rupture
of the blood-brain barrier (BBB); (2) via blood-cerebrospinal
fluid (B-CSF); (3) transsynaptic viral spreading; (4) through the
entry to circumventricular organs (CVO). In this section, we will
discuss the four routes in greater detail.

1) Coronaviruses access the bloodstream via the airway and
infect immune cells, which may cross BBB facilitated by
pro-inflammatory cytokines and chemokines (Figure 2B step
1). The mechanism by which infected immune cells cross
the BBB may occur via intercellular adhesion molecule 1
(ICAM-1) mediated transport that is upregulated by TNF-α,
followed by activation of matrix metalloproteinases (MMPs)
such as MMP9, which specifically influences cellular leakage
and membrane degradation (50). Besides, SARS-CoV-2
tropism, toward the CNS endothelial cells (BECs) favors BBB
disruption; by entering the cytosol of the astrocyte via the
receptor; the virus increases the release of pro-inflammatory
cytokines, such as IL-2, IL-6, IL-7, IL-8, TNFα, CCL2,
CCL3, CCL7, and CXCL10. The reactive astrocyte could
lead to activation of microglia and the peripheral immune
infiltrate such as macrophages, neutrophils, and lymphocytes
(Figure 2B step 2) (51–54), which could end in neurotoxicity.
DM, hypertension, and metabolic syndrome are risk factors
for both contracting COVID-19 and a poor prognosis in
patients. These comorbidities also contribute to vascular
and BBB alteration (55), increase neuroinflammation, and
exacerbate neuropathology (56).

2) The CSF circulation comprises both a directional CSF flow
and a pulsatile to and from movement throughout the
entire brain and which involves a local fluid exchange
between blood, interstitial fluid, and CSF (57). It has
been suggested that viral infection may occur via B-
CSF and alter gene expression in the choroid plexus.
This process activates the nuclear factor kappa (NF-kB),
upregulates MMP9, and affects B-CSF permeability and
immune cell trafficking (MMP8, TNFα, IL6, IL1B, MCP1,
intercellular adhesion molecule 1 (ICAM1) (58), leading to a
neuroinflammatory environment.

3) Another entry route to the CNS for SARS-CoV-2 could
be through axonal transport and transneuronal spread
from olfactory, gustatory, trigeminal, and vagal nerves,
allowing the virus to infect the brainstem in the early stages
of infection (Figures 3A–D) (52, 59). The transneuronal
pathway is one of the potential routes that would allow
SARS-CoV-2 to enter through the primary sensory neurons,
which communicate with the mitral cells. Mitral cells have
projections toward the ventricle and the medulla, and this
favors the transfer of the virus from the cerebrospinal
fluid toward the lymphatic system within the CNS and
toward the PNS (60). The virus could also enter the CNS
following the transneuronal olfactory bulb pathway and
is reflected by changes at the level of the olfactory nerve,
bulb, and cortex (61–63). It has been proposed that SARS-
CoV-2 could spread retrogradely through transsynaptic
transfer, using an exocytosis/endocytosis mechanism
or via rapid axonal transport, which would move the
virus along the microtubules to the neuronal soma (64).
Supporting this hypothesis, it has been shown that some
CoVs and other viruses such as rabies and hemagglutinating
encephalomyelitis can enter and spread to the CNS via
retrograde transsynaptic pathways (65–67), from peripheral
nerve endings through membranous-coating-mediated
endocytosis and exocytosis (66). Mechanisms have also
been described by which viruses can enter and leave
axons, both retrograde and anterograde, through coupled
transport mediated by vesicles or separate transport which
is not mediated by vesicles (68). For this reason, it would
be interesting in the future to know if SARS-CoV2 uses
transsynaptic transport and to trace neural circuits, using
specific labeling techniques.

4) Finally, we suggest that SARS-CoV-2 might enter the CNS
through CVOs. CVOs include the subfornical organ, the
paraventricular nucleus, the nucleus tractus solitarius (NTS),
and the rostral ventrolateral medulla, all of which express
ACE2. Besides, these CVOs are highly vascularized and lack
a BBB (69). Therefore, these areas would be more susceptible
to the virus, triggering neurovascular damage, as we have
discussed previously.

Once SARS-CoV-2 enters the CNS, it could bind to CNS cells,
such as neurons, astrocytes, oligodendrocytes, and microglia
(70), due to the presence of ACE2 (28, 71) and TMPRSS2 (72)
receptors and probably via binding to other receptors (Table 1).
It is important to highlight that the expression of ACE2 is low
in the human brain, with a higher expression in certain areas
such as thalamus and choroid plexus. ACE2 also has access to
peptides in the circulation in the cerebrospinal and interstitial
fluid, and it is present in pericytes and smooth muscle cells of
human brain vessels (95). ACE2 receptors have been reported
in other organs, mainly enterocytes, renal tubules, gallbladder,
cardiomyocytes, male reproductive cells, placental trophoblasts,
ductal cells, eye, and vasculature. In the respiratory system, its
expression is limited (96). ACE2 plays a role in attenuating
microvascular pathology and protecting against atherogenesis,
endothelial dysfunction, thrombus formation, oxidative stress,
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FIGURE 2 | Schematic representation of the pathophysiological mechanisms of SARS-CoV-2. (A) Peripheral pathological events triggered by SARS-CoV-2 infection.

(B) Possible CNS pathological mechanisms caused by the severe peripheral hyperinflammation associated with COVID-19. ACE2, angiotensin-converting enzyme 2

receptor; AJs, adherent junctions; Aβ; amyloid-beta; BBB, blood-brain barrier; C1q, the complement component 1q; CASP1, caspase1; CCL, chemokine (C-C motif)

ligand; CNS, central nervous system; CXCL10, C–X–C motif chemokine 10; GSDMD, gasdermin-D; IL, interleukin; MMPs, metalloproteinases; NETs, neutrophil

extracellular traps; NF-κB, Nuclear factor Kappa B; N-GSDMD, N-terminal gasdermin; NLRP3, nucleotide-binding domain-, leucine-rich repeat-containing receptor,

pyrin domain-containing 3; TJs, tight junctions; TLR3, toll-like receptor 3; TNF-α, tumor necrosis factor-alpha; α-syn, alpha-synuclein.

and inflammatory cascades responsible formonocyte-endothelial
cell interaction (71, 97).

SARS-CoV-2 interaction with ACE2 could cause astrogliosis
and microgliosis, increase BBB permeability, allowing monocyte
and leukocyte infiltration to the CNS in multiple brain regions
(98, 99). These areas include the olfactory bulb, choroid
plexus, cerebral cortex, caudate/putamen, ventral striatum,
thalamus, hypothalamus (paraventricular nuclei), spinal cord,
hippocampus, frontal cortex (52, 95, 100), substantia nigra,
middle temporal gyrus (64, 101), and other brain areas (Table 1).
Since many viruses have neurotropic properties (102), SARS-
CoV-2 could spread through neuroanatomically interconnected
pathways (103) and lead to nerve cell dysfunction and
neurodegeneration in the CNS.

Can the Systemic Inflammation by
COVID-19 Trigger Neurovascular
Disturbance?
In this section, we highlight evidence at the systemic level and
locally in the respiratory tract tissue of patients with COVID-19.
Since this virus induces lung pathology, the detailed information
of other organs and systems such as the CNS has yet to be fully

investigated. Therefore, the nerve signaling pathways proposed
here are based on the systemic evidence from similar viruses.

Channappanavar and Perlman focused on the systemic
immune response against pathogenic human coronaviruses such
as SARS-CoV and Middle East respiratory syndrome CoV
(MERS-CoV). They proposed that a dysregulated immune
response in the host is responsible for triggering the pulmonary
pathology and fatal clinical manifestations (104).

On the other hand, high levels of viral replication in the host
could contribute to tissue damage. Two mechanisms might be
responsible: first, the delayed induction of interferon responses
and second, the production of interferon inhibitory proteins by
the human CoVs. Therefore, early unmitigated viral replication
could be responsible for the high and exaggerated production
of cytokines and chemokines by infected alveolar epithelial cells,
macrophages, and leukocytes infiltrated into the lung tissue,
which leads to severe damage (Figure 2A steps 1–3) (104). Other
investigators have concluded that COVID-19 is characterized
by an extreme hyper-inflammatory process followed by hyper-
coagulation (Figure 2A step 4) (105).

CRS is a systemic inflammatory response that can be triggered
by SARS CoV-2 infection, characterized by a drastic increase in
the levels of the pro-inflammatory cytokines (Figure 2A) (106).
The CRS may induce a MODS in COVID-19 patients, which
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FIGURE 3 | Potential routes for infection and spread of SARS-CoV-2 to systemic organs and the central nervous system through the cranial nerves (N). (A)

SARS-CoV-2 could enter through the olfactory mucosa (causing anosmia), spread through the olfactory nerve (N I) and end in the olfactory cortex. (B) SARS-CoV-2

could also enter through the lacrimal and salivary glands, spread through the facial (N VII) and glossopharyngeal (N IX) nerves, and end in their respective brain stem

nuclei. (C) The infection could spread from the taste buds (triggering ageusia) through the N VII and N IX nerves ending in the NTS located in the brain stem. (D)

SARS-CoV-2 could also enter through the respiratory tract, reach the respiratory system and via the vagus nerve (N X), spread to other systemic organs innervated by

this nerve, and end in the brain stem. (E) Finally, once the virus reaches the brain stem, it can spread to the brain through neuroanatomically interconnected pathways.

The SARS-Cov2 infection can cause multiple organ dysfunction syndrome (A–E). The red dashed arrows indicate the possible dissemination route for SARS-CoV-2

through the cranial nerves.
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TABLE 1 | Receptors or proteins related to SARS-CoV-2 infection in the nervous system.

Receptor

or protein

Expression in nerve

cells

Neuroanatomic areas of

gene expression*

Pathological effects on the nervous system References

ACE2 Neurons, astrocytes,

microglia, BECs,

OLGs

PG, Acb, Hy, SC, Cd, SN,

Cb, HiF, FroCx, Amg, Pu

and ACC

The direct binding of SARS-CoV-2 to the ACE2 receptor could trigger

microvascular dysfunction, disrupt coagulation processes, cause neuronal

depolarization, and increase expression of glutamate and MMPs, resulting

in neuroinflammation, seizures, and hemorrhages.

(56, 58, 69, 73–

75)

TMPRSS2 PG, Hy, Cb, Amg, Cd, HiF,

SN, Acb, ACC, FroCx, Pu

and SC.

It acts as a co-receptor for ACE2 and cleaves S protein, facilitating viral

binding to the ACE2 receptor and its activation. Therefore, it promotes the

same effects described for ACE-2.

(76–78)

DPP4 Astrocytes (in murine) FroCx, SC, ACC, PG, SN,

Hy, HiF, Amg, Cb, Acb, Cd

and Pu.

It is strongly associated with MERS-CoV. The murine models for DPP4

receptor infected with MERS-CoV have shown neuronal damage and

peripheral immune infiltrates.

(79–81)

TLR4 Astrocytes, microglia Cd, SN, Acb, Amg, Pu, SC,

ACC, FroCx, y, HiF and Cb.

Molecular docking studies have demonstrated the binding of the native S

protein of SARS-CoV-2 to TLR1, TLR4, and TLR6. However, TLR4 is most

likely to recognize molecular patterns from SARS-CoV-2 to induce

inflammatory responses. In CNS, it could promote the neuroinflammation

environment.

(82, 83)

ATR1 Neurons, astrocytes PG, SN, Hy, Cb SC,HiF, Cd,

Acb, Pu, Amg, FroCx and

ACC

It has been suggested that SARS-CoV-2 causes lung damage by increasing

Ang II production. The hyperactivation of Ang II/ATR1/ACE signaling results

in increased expression of pro-inflammatory cytokines, macrophage

activation, and possibly BBB dysfunction.

(84–87)

ITGB1 Microglia SC, PG, SN, Hy, HiF,Pu, Cd,

Amg, FroCx, Acb, ACC and

Cb.

It has been suggested that ITGB1 could bind to S protein through the RGD

or KGE motif. ITGB1 mainly activates the MI3K/MAPK pathways, inducing

an inflammatory response.

(24, 88, 89)

CatB and

CatL

Microglia, neurons,

astrocytes.

Cat B: FroCx, PG, SC, Cb,

Hy, Acb, ACC, Cd, SN, Pu,

HiF and Amg

Cat: PG, SC, FroCx, Cb,

SN, Hy, Cd, Acb, Pu, ACC,

HiF and Amg

It has been suggested that S protein priming is partly dependent on the

endosomal proteases, CatB and CatL. Nevertheless, TMPRSS2 is essential

for viral entry into primary target cells and viral spread in the infected host.

Also, CatB and CatL can contribute to the neuroinflammatory process.

(90, 91)

NLRP3 Microglia, astrocytes,

neurons

SC, FroCx, Acb, Hy, SN,

ACC, HiF, Amg, Cd, PG, Pu,

Cb

To date, it is unclear if SARS-CoV-2 activates the NLRP3 inflammasome.

However, SARS-CoV expresses at least three proteins (viroporins) that

activate the NLRP3 inflammasome: envelope (E), ORF3a, and ORF8b. The

NLRP3 inflammasome activation could trigger inflammatory cell death.

(92–94)

Neuroanatomic areas and nerve cells in which these receptors or proteins are expressed and their possible neuropathological effects.

Acb, nucleus accumbens; ACC, anterior cingulate cortex; ACE2, angiotensin-converting enzyme 2; Amg, amygdala; ATR1, angiotensin receptor type 1; BBB, blood-brain barrier;

BECs, brain endothelial cells; Cat, cathepsin; Cb, cerebellum; Cd, caudate nucleus; DPP4, dipeptidyl peptidase-4; FroCx, frontal cortex; HiF, hippocampal formation; Hy, hypothalamus;

ITGB1, integrin subunit beta 1; KGE, Lys-Gly-Glu; MAPK, Mitogen-Activated Protein Kinases; MERS-CoV, Middle East Respiratory Syndrome Coronavirus; MI3K, myo-inositol 3-kinase;

MMPs, matrix metalloproteinases; NF-kB, nuclear factor kappa B; NLRP3, nucleotide-binding domain-, leucine-rich repeat-containing receptor, pyrin domain-containing 3; OLGs,

oligodendrocytes; PG, pituitary gland; Pu, putamen; RGD, Arg-Gly-Asp; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; SC, spinal cord (cervical c-1), SN, substantia

nigra; TLR, Toll Like Receptor; TMPRSS2, transmembrane protease serine 2.

*The GTEx Analysis Release V8 (dbGaP Accession phs000424.v8.p2) was used to obtain the gene expression data (from highest to lowest expression) in several brain areas.

is characterized by acute failure of different organs such as the
liver, kidney, heart, and as well as hematological, gastrointestinal,
and neurological disorders (Figure 3) (107). Besides, it has
been proposed that patients who died from severe COVID-
19 have a significant endothelial affectation or “endothelitis,”
which may be associated with MODS. It has been suggested
that endothelial dysfunction in several organs may be triggered
by the interaction between SARS-CoV-2 with ACE2 receptors
that express endothelial cells and the subsequent inflammatory
response (108, 109). This inflammatory response can contribute
to increased vascular permeability, edema, and the synthesis
of coagulation factors (110). From a meta-analysis, it has been
reported that levels of D-dimer, an indicator of fibrinolysis,
have been reported following severe infection by COVID-19
(111). The formation of clots could result in the occlusion of
blood vessels and cerebral arteries, which can lead to cerebral

venous thrombosis. Therefore, we assume that some of the
symptoms and even neurological complications may be caused
by the systemic cytokine storm and subsequent endothelium
and BBB dysfunction (Figure 2). In this way, systemic hyper-
inflammation caused by maladaptive innate immunity may
trigger neurovascular function damage, a BBB rupture, and
activate the CNS innate immune signaling pathways (112). This
BBB disruption could promote immune cell infiltration (113)
(Figure 2B steps 1 and 2). The intracerebral cytokine storm
also could contribute to the BBB rupture (114, 115), leading
to a vicious cycle of increasing pathology. These events may
also be responsible for developing other neuropathies such as
necrotizing encephalopathy or Guillain-Barré syndrome (GBS)
(116, 117). The coagulopathy observed in COVID-19 could
make patients prone to thrombotic cerebrovascular or bleeding
events (118).
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On the other hand, microglia and astrocytes are the main
cell lineages that mediate immunological processes within the
CNS. Thus, microglia, the macrophage of the CNS par excellence,
can also promote states of hyper-inflammation that exacerbate
hypercoagulation by infiltration of professional immune cells
and coagulation elements. Nevertheless, we hypothesize that
SARS-CoV-2 could activate the microglia and, subsequently,
induce the reactivation of A1 astrocytes via secreting IL-1α, TNF,
and the complement component 1q (C1q), as occurs in other
neurological diseases (119) (Figure 2B step 3). Besides, exposure
to the viruses or their components promotes the expression
and activation of Toll-like receptors (TLR) in astrocytes.
This signaling promotes the production and release of pro-
inflammatory mediators and induces inflammatory responses
in the CNS (Figure 2B step 3), eliminating the pathogen as
demonstrated for Flavivirus infections (82, 120). Therefore,
this pathological signaling causes neuronal degeneration and
dysfunction of the nerve cells short or long term.

Viroporins belong to a family of small transmembrane
proteins that include CoV protein E (121, 122), which could
generate neurotropism of SARS-CoV. According to previous
studies, viroporins can promote the activation of the NLRP3
inflammasome (123, 124). The NLRP3 inflammasome is a
subcellular multiprotein complex that is highly expressed
in several nerve cells and CNS areas (Table 1). Activation
of the NLRP3 occurs after infection by the influenza A
virus and SARS-CoV (125) (Figure 2B step 4). After NLRP3
inflammasome activation, caspase-1 and other non-canonical
inflammasome caspases (caspase-4, caspase-5, or caspase-11)
activate gasdermin-D (GSDMD), which subsequently forms
pores in the cell membrane. These pores facilitate the secretion
of IL-1β and IL-18 and, importantly, they also enable the
simultaneous influx of Na+ and water molecules, facilitating
neuroinvasion by causing excessive cellular swelling, membrane
rupture, and subsequent pyroptosis, an inflammatory form of cell
death (126, 127). Therefore, it is possible that pyroptosis may
occur in nerve cells (Figure 2B step 4).

Neurological and Neuropsychiatric
Manifestations, Diagnostic, and Treatment
in Patients With COVID-19
The respiratory symptoms caused by the SARS-CoV-
2 virus are still the most readily identified and studied.
However, neurological manifestations are beginning to
take on unquestionable importance, mainly in the critically
affected patient. Our understanding of the long-term
neurological symptoms is limited and presents a real challenge
(13, 14, 62, 128). A physiopathological explanation for the
neurological and neuropsychiatric manifestations of COVID-19
has yet to be found. Although there are hypotheses about the
direct effects of SARS-CoV-2 on the CNS and PNS, evidence
suggests that these effects can be attributed to other causes such
as: (1) the impact of the systemic inflammatory response caused
by the virus and (2) the underlying comorbidities of the patients
(62, 129, 130). Patients with mild COVID-19 have been reported
to have non-specific neurological disorders such as headache and

myalgias, dizziness, dysgeusia, and anosmia with variations in
their prevalence (Table 2) (13, 14).

Some studies point to headache as the most common
neurological symptom and often as the only symptom of
COVID-19 (129, 147). However, other authors have defined
the headache as a consequence of systemic disease. It has been
suggested that the chronic release or exposure of vasoactive
peptides such as Calcitonin Gene-Related Peptide (CGRP; pain
and migraine-related peptide) (148) can activate trigeminal
sensory fibers and thus modulate the transmission of impulses
related to headache (149). Besides, in COVID-19, a close link
between cytokine storm and headache has been proposed, due
to the release of the vasoactive peptides (150).

In contrast, for hospitalized patients, encephalopathy with
neuropsychiatric manifestations such as delirium and agitation
have been observed. There has also been a considerable
increase in the reports of patients with neuromuscular diseases,
among which are GBS with some of its variants and several
rhabdomyolysis cases. However, it has not been possible to find
a clear relationship between these manifestations and COVID-
19. An increasing incidence of neurological manifestations has
been observed in COVID-19-infected patients that have been
associated with severe health conditions and prolonged hospital
stays (129, 134). However, there are also reports of neurological
manifestations in outpatients with COVID-19 infection (129,
138). Therefore, it is difficult to determine the incidence of each
of the neurological manifestations due to the different screening
methods applied for each reported case.

Neurological disorders such as multiple sclerosis (MS),
encephalopathy, and GBS, have been associated with SARS-
CoV2. In some cases, CNS demyelination has occurred shortly
after SARS-CoV-2 infection, suggesting a causal relationship
between these two pathologies (151). Viruses, such as the
Epstein-Barr virus (EBV), have been linked to MS, with
high titers of EBV antibodies found in MS patients. Viral
induced demyelination could be a direct result of viral infection
of oligodendrocytes, which leads to cell death and myelin
degeneration, or to the exacerbated inflammatory response
caused by virus replication (152, 153). The cytokine storm caused
by SARS-CoV-2 may cause the activation of glial cells and
the start of the demyelination process (154). Conversely, other
studies suggest that SARS-CoV-2 could act as an accelerating
factor for MS but not the trigger for the disaese (155). Likewise,
several case reports have reported the appearance of GBS after
SARS-CoV-2 infection (156–158). Although hypoxic/metabolic
changes caused by intense inflammatory response against the
virus together with the presence of comorbidities, may result
in encephalopathy (159) there is still insufficient evidence to
prove that SARS-CoV-2 virus infection invades the CNS directly
to provoke encephalopathy (151). In the same way, despite the
complications associated with SARS-CoV-2 infection in patients
with GBS, there is no clear evidence yet that COVID-19 initiates
GBS (151).

Cerebral events have been associated with SARS-CoV-2
patients, with cerebral ischemic events being the most frequent.
Cerebral hemorrhages and microhemorrhages are also noticed
(62, 144) (Table 2).
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TABLE 2 | SARS-CoV-2 infection in the central and peripheral nervous system: clinical manifestations, mechanism of pathogenicity, laboratory, and clinical findings and

suggested treatment.

Clinical manifestation The probable mechanism of

pathogenicity

Laboratory and/or clinical

alterations

Treatment or

recommendations

References

Central nervous system

Headache: occurs in

∼70% of patients, with an

average duration of 3 days.

(1) Direct viral invasion of the trigeminal

nerve endings in the nasal or oral cavity. (2)

An increase in the levels of peptides

related to the circulating calcium gene has

been linked to the trigeminal vascular

activation.

The use of neurological and

laboratory imaging techniques is only

recommended if the headache is

associated with focal neurological

symptoms.

(1) NSAIDs and steroids are

not recommended as they

can exacerbate COVID-19

symptoms. (2)

Anticonvulsants may offer

benefits.

(131–133)

Delayed awakening: has

been observed in some

patients after ventilation for

COVID-19-related ARDS.

A relationship between posterior

circulation inflammation and brainstem

function may be related to altered

consciousness.

(1) Brain MRA: an increase in the

abnormal contrast has been observed

in the arterial wall associated with

endotelialitis. (2) EEG: non-specific

changes have been observed. (3) In

serum and CSF: oligoclonal bands

have been observed.

The use of IV

methylprednisolone has

been proposed for 5 days,

followed by decreasing

doses of prednisone.

(130)

Encephalopathy: One

study Liotta et al. (134)

determined that it was

present in about a third of

patients, and was

associated with increased

mortality.

It has been proposed that they may be

involved in toxic-metabolic processes

such as hypoxemia, ROS production, and

organ failure.

MRI: intensity changes in the

leptomeningeal spaces, in the mesial

temporal lobe, and the hippocampus,

as well as frontotemporal

hypoperfusion.

The use of low potency

antipsychotic agents and

alpha-2 agonists has been

proposed to control

psychomotor agitation.

(134–136)

Ischemic stroke event: is

a life-threatening

complication and is

associated with

cardioembolic events.

(1) Elevated inflammation, DIC, and

hypoxia have been associated with a state

of hypercoagulability. (2) Complement

activation is associated with microvascular

damage leading to thrombotic injury.

(1) The neuroimaging patterns

observed are extensive vessel

thrombosis, embolism, or stenosis,

followed by affected multiple vascular

territories. (2) Laboratory studies have

revealed an increase of D-dimer,

fibrinogen, antiphospholipid antibody

levels.

Prophylactic or therapeutic

anticoagulation therapy, as

well as thrombectomy, have

been recommended.

(62, 137)

Hemorrhagic stroke: has

been attributed to

COVID-19 and risk factors

as anticoagulation, trauma,

and hypertension.

Lupus anticoagulant and antiphospholipid

antibodies have been suggested to play a

role in its pathophysiology.

Imaging studies have revealed

microhemorrhage foci, hematomas

larger than 5cm, surrounding edema,

and even descending hernia.

Reduce risk factors that

affect hypertension,

aneurysm, and states of

anticoagulation.

(62)

Peripheral nervous system

Olfactory disorders:

present around 86% of

COVID-19 patients:

anosmia (79%), hyposmia

(20.4%), phantosmia (12%),

and parosmia (32%)

Lechien et al. (138).

(1) Nasal epithelial damage is

characterized by a reduced number of

ORs and abnormal dendrites that do not

reach the epithelial surface or lack sensory

cilia. (2) Substitution of ONE with

metaplastic squamous epithelium. (3)

Inflammation can lead to impairment of

ORs and also damage of olfactory

neurons.

MRI has shown abnormalities in the

signaling of one or both olfactory

bulbs, edema of the olfactory bulb,

and microhemorrhage in one of the

olfactory bulbs.

The most widely used

treatments for olfactory

dysfunction are saline nasal

irrigations, nasal

corticosteroids, oral

corticosteroids, vitamins,

and trace elements.

(138–141)

Gustatory disorders:

present around 88% of

COVID-19 patients:

hypogeusia (79%) or

dysgeusia (21%) Lechien

et al. (138)

(1) Diffuse expression of ACE2 receptors

(modulation of taste perception) in the oral

mucosa, particularly in the tongue. (2)

SARS-CoV-2 can bind to sialic acid

receptors, accelerating the degradation of

taste particles.

Recent evidence suggests that

imaging or laboratory studies are not

usually done on patients who only

manifest gustatory disorders.

Treatment for these

disorders has not been

established; however,

l-carnitine or trace elements

and vitamins have been

used.

(138, 142)

Neuromuscular

disorders: myalgia and

fatigue affect between 44

and 70% of patients. About

10% of patients have a

skeletal muscle injury.

(1) SARS-Cov-2 could trigger viral

myositis. (2) Alteration in the expression of

ECA2 in skeletal muscle. (3) Skeletal

muscle damage from cytokine storm.

(1) Elevated serum creatine kinase

levels. (2) Muscle injury has been

associated with multiple organ

damage, such as liver dysfunction

(increased levels of LDH, ALT, and

AST) and kidney (increased levels of

blood urea nitrogen and creatinine).

The use of corticosteroids

has resulted in benefits.

(129, 143)

(Continued)
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TABLE 2 | Continued

Clinical manifestation The probable mechanism of

pathogenicity

Laboratory and/or clinical

alterations

Treatment or

recommendations

References

Guillain-Barre Syndrome

GBS: has been associated

with COVID-19.

Interestingly, the interval

between the onset of

COVID-19 symptoms and

the first symptoms of GBS

has ranged from 5 to 10

days.

(1) It has been proposed that it serves the

same mechanisms as typical GBS,

consisting of demyelination of peripheral

nerve roots. (2) Peripheral nerve damage

can be caused by the immune response to

SARS-CoV-2, driven by the production of

autoreactive antibodies (anti-ganglioside).

(1) Hematological and biochemical

examinations have shown

leukocytosis, leukopenia,

thrombocytosis, thrombocytopenia,

and elevated levels of CRP. (2) CSF

tests have shown cytological

dissociation of albumin. (3) EMG has

been associated with a demyelinating

process. (4) MRI has revealed an

enhancement in the caudal nerve

roots and the facial nerve.

The therapeutic protocol to

GBS associated with

COVID-19 has been

typically used for this

pathology: IV

immunoglobulin or plasma

exchange, supportive care,

and antiviral drugs.

(144–146)

ACE2, angiotensin-converting enzyme 2; ALT, alanine transaminase; ARDS, acute respiratory distress syndrome; AST, aspartate aminotransferase; CNS, central nervous system; CRP,

C-reactive protein; CSF, cerebrospinal fluid; DIC, disseminated intravascular coagulation; EEG, electroencephalography; EMG, electromyography; GBS, Guillain-Barre syndrome; IV,

intravenous; LDH, lactate dehydrogenase; MRA, magnetic resonance angiography; MRI, magnetic resonance imaging; NSAIDs, non-steroidal anti-inflammatory drugs; ONE, olfactory

neuroepithelium; ORs, olfactory receptors; ROS, reactive oxygen species.

As discussed previously, the cranial nerves might also be
susceptible to a direct or indirect injury caused by SARS-CoV-
2. According to a recent study, about 86 and 88% of patients
with COVID-19 develop olfactory and gustatory alterations,
respectively (138). These findings might be specific for SARS-
CoV-2 infection and be useful to distinguish them from other
causes. Interestingly, the presence of these dysfunctions can
precede the onset of respiratory symptoms (160, 161) and may
predict a mild clinical course of the disease (162) (Table 2).
Besides, it has been proposed that pericytes of the olfactory
bulb, which express high levels of the ACE2 receptor, may be
responsible for triggering the cytokine storm and thus causing
olfactory disorders in COVID-19 patients (163).

On the other hand, neuroimaging data could help us
understand the pathological effects of SARS-CoV-2 in the
CNS and PNS. Unfortunately, published brain imaging
findings from confirmed COVID-19 patients are currently
scarce and limited to small case series. However, it has been
possible to correlate them with the potential pathophysiological
mechanisms involved. For example, in a recent study, it was
shown that patients with COVID-19 presented multifocal
petechial hemorrhages associated with BBB rupture (164).
In another study, microhemorrhages and macrohemorrhages
were associated with posterior reversible encephalopathy
syndrome (165) (Table 2). Although the underlying mechanism
of brain abnormalities detected through neuroimaging remains
to be understood, these findings provide further evidence
that CNS damage can occur in COVID-19 patients. The
correct understanding of pathophysiological mechanisms of
neurological manifestations may reveal potential therapeutic
targets (Table 3). Depending on the neurological complications
associated with COVID-19, treatments would need to be
adjusted accordingly (Table 2).

Neurohistopathological Findings by
COVID-19
The histopathological analysis of nervous tissue of patients
who presented neurological complications and died due to

COVID-19 is undoubtedly precious to our understanding of the
pathophysiology and potential therapeutic strategies (Table 4).

Solomon et al. analyzed nervous tissue from 18 patients
infected with SARS-CoV-2 who had also presented with certain
comorbidities such as DM, hypertension, cardiovascular disease,
hyperlipidemia, chronic kidney disease, and dementia. The
histological examination (Table 4) revealed a greater number of
copies of SARS-CoV-2, acute hypoxic-ischemic injury, neuronal
loss, and perivascular inflammation in several brain areas,
and even pathological features of Alzheimer’s disease (AD)
were observed (175). A different case report described the
brain from a 73-year-old man with unspecified neurological
manifestations (Table 4), hypertension and DM and positive
for SARS-CoV-2 with cranial computed tomography. The
results showed right cerebellar intra-parenchymal hemorrhage,
edema, medulla compression, and tonsillar herniation. After 18 h
without improvement, the patient died of palliative extubation.
Brain histopathology revealed severe global hypoxic changes with
scattered hypereosinophilic shrunken neurons in several brain
areas and mild perivascular inflammatory infiltrates (Table 4)
(177). This study also suggested a preference of the virus to
the cerebellar Purkinje cell layer. In addition, astrogliosis was
noted in the superior frontal and orbital cortices, while microglial
activation in the cortex was not evident (177).

A study focused on describing the SARS-CoV-2 tropism
within the olfactory mucosa to the CNS examined autopsy
material from 33 patients positive for the virus. The authors
showed viral RNA for SARS-CoV-2 within the olfactory mucosa
sampled directly beneath the cribiform plate. They also found
viral RNA in anatomically distinct regions such as cornea,
conjunctiva and oral mucosa. Using immunohistochemistry,
in situ hybridization, and electron microscopy, they suggested
that SARS-CoV-2 neuroinvasion to the CNS occurs via axonal
transport, thus explaining the well-documented neurological
symptoms (Table 4) (178). The authors also proposed that
SARS-CoV-2 infection in the cerebellar region may occur by
the migration of the virus-carrying leukocytes across the BBB,
without directly connecting this area to the olfactory mucosa.
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TABLE 3 | Current drugs used against COVID-19.

Drug Mechanism of action Results of clinical case

reports

Adverse effects Dose References

Antiviral drugs

Remdesivir The prodrug, belonging to the group

of nucleotide analogs, generates an

active metabolite capable of entering

cells and inhibits viral RNA

polymerase. Inhibitory capacity

against SARS-CoV-2 in vitro has

been observed*.

Decreased recovery time,

disease progression, as well

as mortality compared to

placebo.

- Infusion-related

hypotension

- Hepatotoxic

- Nephrotoxic

- Gastrointestinal symptoms

- First dose of 200mg

- 100 mg/day for 5–9 days.

(166)

TMPRSS2 antagonist

Camostat Produces GBPA, that inhibits many of

the serine proteases that SARS CoV

and SARS-CoV-2 use for

virus-to-host cell membrane fusion,

like TMPRSS2**.

Reduces the likelihood of

serious infection, as well as

morbidity and mortality.

- Eruption

- Pruritus

- Oedema

- Urticaria

It has been used at different

doses in humans and other

pathologies. e.g., : 200mg

every 8 h

(167)

Nafamostat

mesylate

Inhibited SARS-CoV-2S

protein-mediated entry into host cells

with about 15-fold-higher efficiency

than camostat, with a 50% effective

concentration.

In combination with

Favipiravir has shown a

decrease in mortality.

Hyperkalemia 0.2mg per kg/hour by

continuous IV infusion, for

14 days.

(168, 169)

Monoclonal antibodies

Tocilizumab IL-6 receptor antagonist May reduce the hospital

stay, the need for ICU

admission, and the need for

invasive mechanical

ventilation.

- Increased risk of

secondary infections.

- Hypersensitivity reactions

- Neutropenia and

thrombocytopenia

- Hepatotoxicity

>75 kg: 600mg single dose

<75 kg: 400mg

single dose***

(170)

Anakinra IL-1 receptor antagonist Reduced both needs for

invasive mechanical

ventilation and mortality in

severe COVID-19 patients.

- Elevation of liver enzymes

three times higher than

their reference value.

- Possible

thromboembolic events.

100mg every 6 h for a

maximum of 15 days.

(171, 172)

Mavrilimumab Binds to GM-CSFRα**** and disrupts

downstream signaling.

Fast clinical improvement,

decrease both the need for

mechanical ventilation and

mortality.

No adverse reactions to the

infusion were observed.

6mg/kg single dose. (173)

Steroids

Dexamethasone - Anti-inflammatory action.

- Inhibits phospholipase A2 and,

consequently, prostaglandin,

thromboxane, and leukotriene

synthesis

- Suppresses leukocyte migration

- Recovers the BBB by upregulation

of ZO-1 tight junction protein

Decreased mortality in

patients requiring oxygen

therapy and mechanical

ventilatory support when

treatment is initiated 7 days

after symptom onset.

- Hyperglycemia

- Increased risk of bacterial

and fungal infections.

6 mg/day for 10 days. (174)

GBPA, 4-[4-guanidinobenzoyl-oxy] phenylacetic acid; GM-CSF, Granulocyte-macrophage colony-stimulating factor (GM-CSF); TMPRSS2, Transmembrane serine protease 2.

*Inhibitory activity against SARS-CoV-1 and MERS-CoV has been demonstrated.

**The high expression of TMPRSS2 in different brain areas could be a potential therapeutic target for neurological manifestations and complications.

***According to safety criteria and clinical trial data.

****GM-CSF is a cytokine with a cardinal role in inflammation modulation. Ligand binding to the GM-CSF receptor-α (GM-CSFRα) activates multiple pro-inflammatory pathways and, in

macrophages and neutrophils, results in increased secretion of pro-inflammatory cytokines.

Other cranial nerves have been considered as the route
for entrance of the virus to the CNS (Figure 3) (181, 182).
Regarding ageusia, the pathogenesis may involve an alteration
in the glossopharyngeal, facial, vagus nerve, or the nucleus
tractus solitarii (NTS), at the brainstem level (183). In an
immunohistochemistry analysis of the cranial nerves from two
individuals, SARS-CoV-2 and viral proteins were found within

the medulla oblongata and in both glossopharyngeal and vagal
nerves from the lower brainstem (179), suggesting these areas
as a potential route for virus entry into the CNS and peripheral
tissue (Table 4).

Other authors found hypereosinophilia or nuclear and
cytoplasmic condensation of neurons in the cerebrum and
cerebellum of severe COVID-19 patients due to hypoxic
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TABLE 4 | Neurohistopathological findings in patients infected with SARS-CoV-2 and their association with neurological manifestations.

Characteristics of the

patients

Tissue and PMI Histopathological findings Neurological

manifestations

References

Central nervous system

n = 18

age range: 53–75 years

comorbidities: AF, ALL, BPH,

CAD, CKD, COPD, DM, ESRD

on HD, EtOH use disorder, HF,

HTN, ILD, MGUS, NHL, OCD,

OSA, PPV, PVD, RA-SLE.

Inferior-frontal lobe with

olfactory tract/bulb, corpus

callosum, hippocampus,

occipital lobe, anterior basal

ganglia, thalamus,

cerebellum, midbrain, pons,

and medulla. PMI: NS.

Acute hypoxic-ischemic injury with neuronal

loss in the cerebral cortex, hippocampus, and

cerebellar Purkinje cell layer. Arteriolosclerosis

with perivascular rarefaction, a microglial

nodule, and perivascular inflammation with

scattered microglia were also detected.

It is associated with the

confusional state, myalgia,

headache or, hypogeusia.

(175)

n = 6

age range: 58–82 years

comorbidities: EtOH use

disorder, HTN, COPD, CKD,

PHT, PVD, CAD, AF.

Hippocampus, neocortex,

cerebellum, and brainstem

nuclei. PMI: NS.

Lymphocytic panencephalitis and meningitis.

Neuronal cell loss and axon degeneration in the

dorsal motor nuclei of the CN X and V, NTS,

dorsal raphe nuclei, and medial longitudinal

fasciculus.

Associated with altered

consciousness.

(176)

n = 1

age: 73 years

commorbidities: DM and HTN.

Cortex, hippocampus,

amygdala, striatum. PMI:

NS.

Cerebellar hemorrhage, acute infarcts, global

hypoxic changes with scattered

hypereosinophilic shrunken neurons in the

cerebral cortex, striatum, thalamus, amygdala,

hippocampus, and the Purkinje cell layer.

Headache, nausea,

vomiting, and loss of

consciousness.

(177)

Cranial nerves and peripheric nervous system

n = 33

age range: 67–79 years

commorbidities: DM, HTN, CVD,

HLD, CKD, PS and dementia.

Olfactory mucosa, bulb and

tuber, oral mucosa,

trigeminal ganglion, medulla

oblongata, and cerebellum.

PMI: NS.

High levels of viral SARS-CoV-2 RNA

(RT–qPCR) and protein within the olfactory

mucosa. Lower levels were found in the

cornea, conjunctiva, and oral mucosa; and in

only a few COVID-19 autopsy cases, the

cerebellum was positive for SARS-CoV-2.

Alterations of smell and

taste perception, impaired

consciousness, headache,

and behavioral changes

(178)

n = 2

age: 51 and 94 years

commorbidities: COPD, IHD

and AML

Glossopharyngeal, vagal

nerves and other brain

areas. PMI: 3.3 days

SARS-CoV-2 viral proteins mapped to isolated

cells.

Ageusia (179)

n = 21

age range: 41–78 years

commorbidities: DM, CVD,

COPD, asthma, ASM and AHM.

Olfactory bulbs, NTS and

other brain areas. PMI: NS.

Extensive inflammation and infiltrating immune

cells.

Anosmia and dampening of

the respiratory system.

(180)

AF, atrial fibrillation; AHM, active hematological malignancy; ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; ASM, active solid malignancy; BPH, benign prostatic

hyperplasia; CAD, coronary artery disease; CKD, chronic kidney disease; CN, cranial nerves; COPD, chronic obstructive lung disease; CVD, cardiovascular disease; DM, diabetes

mellitus; ESRD on HD, end stage renal disease on dialysis; EtOH use disorder, alcohol use disorder; HF, heart failure; HLD, hyperlipidemia; HTN, hypertension; IHD, ischaemic heart

disease; ILD, interstitial lung disease; MGUS, monoclonal gammopathy of undetermined significance; n, number of patients; NHL, non-Hodgkin lymphoma; NS, not specified; NTS,

nucleus tractus solitarius; OCD, obsessive compulsive disorder; OSA, obstructive sleep apnea; PHT, pulmonary hypertension; PMI, postmortem interval; PS, prior stroke; PVD, peripheral

vascular disease; RA-SLE, rheumatoid arthritis - systemic lupus erythematosus; RT-qPCR, reverse transcription-quantitative polymerase chain reaction.

brain changes (Table 4). The olfactory bulb histopathological
analysis showed many activated microglia with enlarged bodies

and T-cell extravasation into the parenchyma and elevated
levels of reactive astrocytes (180). Interestingly, the NTS

showed astrogliosis and a massive microglial activation with
the formation of a microglia nodule and T cells in the

leptomeninges of the medulla oblongata (180). This implies

extensive inflammation in this area, which results in a
dysregulation of the respiratory system (184). One of the

main limitations of these studies is that it is not clear
whether the histopathological findings are the result of patients’

comorbidities/aging, or due to SARS-CoV2 neuro-infection.

Further investigations are necessary to make the corresponding

comparison with healthy subjects with appropriate age ranges
and to understand the neuropathological mechanism of SARS-

CoV-2 and its relationship with neurological manifestations and

patient comorbidities.

The Potential Role of SARS-CoV-2 in the
Pathogenesis of Neurodegenerative
Diseases
The SARS-CoV-2 neurotropism has already been documented
in several reports (Table 2) (185–187). However, it
remains unknown whether SARS-CoV-2 contributes to
neurodegenerative pathogenesis. It has been hypothesized
that viruses can cause neurological problems by affecting
neurotransmitter release, lysing the cells, inducing apoptosis,
commanding neuronal transcriptional pathways or indirectly
activating the immune response (188).

Neuroinvasive animal CoVs, such as the porcine
hemagglutinating encephalitis virus (PHEV) or MHV have been
shown to induce different types of neuropathology. Similarly,
human CoVs, such as HCoV-229E and HCoV-OC43, have been
implicated in establishing or exacerbating neurodegenerative
diseases (189–192).

Frontiers in Neurology | www.frontiersin.org 12 April 2021 | Volume 12 | Article 660087204

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Pacheco-Herrero et al. Elucidating the Neuropathology of SARS-CoV-2

AD is the most common cause of dementia among the elderly.
Neuropathological hallmarks of AD include the neurofibrillary
tangles, consisting of intraneuronal and hyperphosphorylated
tau, and the extracellular accumulation of amyloid β-peptide
(Aβ) in the brain parenchyma in the form of neuritic
plaques (193, 194). The neurovascular unit (NVU) and BBB
dysregulation are also critical pathophysiological events in
neurodegenerative diseases, including AD. Previous studies have
suggested a relationship between AD and infectious agents.
Chlamydia pneumoniae, Helicobacter pylori, Borrelia burgdorferi,
and herpes simplex virus have been reported in post-mortem AD
brain (195) and a relationship between virus infection and Aβ has
been suggested. Soscia et al. noticed that Aβ exerted antimicrobial
activity against relevant microorganisms and was modulated in
response to some environmental stressors. Thus, transient viral
infection could initiate or accelerate Aβ accumulation in the
brain and neuronal damage (Figure 2B steps 5 and 6) (196).
ACE2 can induce an increase of nitric oxide (NO) in the brain,
which becomes neurotoxic. NO and other reactive species, which
could be produced as a consequence of viral internalization
and impairment of cell organelles (mitochondria, lysosomes),
could, in turn, increase misfolding and aggregation of cellular
proteins (197).

It has been proposed that SARS-CoV-2 could increase the
hyperphosphorylation of tau in the axonal region (52, 198–
200), promoting disassembly of microtubules and, subsequently,
neuronal degeneration (Figure 2B steps 5 and 6) (201). Likewise,
it has been suggested that persistent CoV infections can
induce a neuroimmune response and a pro-inflammatory
state, and activate glial cells (202). Microglial cells may be
chronically activated by a single stimulus, such as pathogen
infection, resulting in slow and progressive neuronal loss
through multiple neurotoxic factors (203). Interferon (IFN),
which has a role in mediating AD pathology, directly activates
microglia and stimulates a pro-inflammatory response derived
from SARS-CoV-2 infection (204). Therefore, it seems that the
neurotropism of SARS-CoV-2 can lead to the activation of
microglial cells, trigger chronic neuroinflammation, and finally,
neurodegeneration (Figure 2B).

Finally, it has been found that ACE2 is upregulated in the
cerebral vasculature of dementia cases. ACE2 increases the
intracellular level of angiotensin 2, causing vasoconstriction
and promoting brain degeneration (205). Buzhdygan et al.
demonstrated that S1 could promote BBB alteration in an
advanced 3Dmicrofluidic model of the BBB, being able to induce
different types of neuropathology (98).

Like AD, viral agents have been associated with parkinsonism
disorders. These include the post-encephalitic parkinsonism
linked to the 1918 influenza A H1N1 pandemic (206) and the
parkinsonism associated with Epstein Barr, Coxsackie,West Nile,
herpes and the human immunodeficiency (HIV) viruses (207–
209). Parkinson’s disease (PD) is the second most common
and fastest-growing neurodegenerative disorder (210). It is
characterized by dopaminergic neuronal loss in the substantia
nigra pars compacta and the accumulation of misfolded α-
synuclein (α-syn), which is found as intracytoplasmic inclusions
called “Lewy bodies” (211). SARS-CoV-2 could play a role in

the epidemiology of PD, since pro-inflammatory events triggered
by viral infections could act as predisposing factors to the
development of PD (Figure 2B steps 5 and 6) (Table 2) (212–
214). This inflammatory environment can trigger the long-
term neuronal loss, misfolding, aggregation, and spread of α-
syn through the CNS (215, 216). Interestingly, it has been
proposed that α-syn plays an essential role in response to
infection, promoting a higher expression of α-syn, as occurs
in the West Nile virus encephalitis (217, 218). Furthermore,
α-syn aggregation can activate microglia, favoring the pro-
inflammatory response and cellular damage signals, leading
to slow and progressive neuronal death (219). However, it
remains unknown whether SARS-CoV-2 could contribute to
neurodegenerative pathogenesis, or whether it only uses the CNS
as a reservoir, making it difficult for the virus to replicate, due to
the low level of ACE2 receptors expressed in CNS (220).

CONCLUSION

COVID-19 pandemic has become a real challenge for the
scientific community around the world. Although SARS-
CoV-2 mainly affects the respiratory tract, more evidence
suggests that this virus can also invade the CNS causing
neurological manifestations. The possible routes of SARS-CoV-
2 neuroinvasion include: (1) the hematopoietic pathway via the
BBB, (2) via the B-CSF, (3) via retrograde axonal transport
through the cranial nerves, and (4) via the circumventricular
organs. Once the virus enters the CNS, it binds to cell
receptors, including ACE2. This receptor is expressed in several
brain areas and in both neuronal and non-neuronal cell
types. The binding of SARS-CoV-2 with ACE2 can promote
neuroinflammation, hypercoagulation, microhemorrhages, BBB
dysfunction, generation of reactive species, phosphorylation of
tau, protein misfolding and aggregation, and neuronal death,
features that are closely related to the appearance or progression
of neurodegenerative diseases. Further studies on the molecular
changes in the brain triggered by SARS-CoV-2 infection would
facilitate timely diagnosis and therapeutic approaches.
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Acute Transverse Myelitis (ATM):
Clinical Review of 43 Patients With
COVID-19-Associated ATM and 3
Post-Vaccination ATM Serious
Adverse Events With the ChAdOx1
nCoV-19 Vaccine (AZD1222)
Gustavo C. Román1,2,3*†, Fernando Gracia4,5,6†, Antonio Torres7, Alexis Palacios8,
Karla Gracia9 and Diógenes Harris10

1 Department of Neurology, Neurological Institute, Houston Methodist Hospital, Houston, TX, United States, 2 Weill Cornell
College of Medicine, Cornell University, New York, NY, United States, 3 Department of Neurology, Texas A&M University College
of Medicine, Bryan, TX, United States, 4 Neurology Service, Hospital Paitilla, Panama City, Panama, 5 Faculty of Health Sciences,
Interamerican University of Panama, Panama City, Panama, 6 Neurology Service, Hospital Santo Tomás, Panama City, Panama,
7 Infectious Disease Service, Hospital Santo Tomás, Panama City, Panama, 8 Neuroradiology Service, Complejo Hospitalario
Metropolitano, CSS (Caja de Seguro Social), Panama City, Panama, 9 Interamerican University of Panama, Panama City,
Panama, 10 Neurosurgery Service, Complejo Hospitalario Metropolitano, CSS, Panama City, Panama

Introduction: Although acute transverse myelitis (ATM) is a rare neurological condition
(1.34-4.6 cases per million/year) COVID-19-associated ATM cases have occurred during
the pandemic.

Case-finding methods: We report a patient from Panama with SARS-CoV-2 infection
complicated by ATM and present a comprehensive clinical review of 43 patients with
COVID-19-associated ATM from 21 countries published from March 2020 to January
2021. In addition, 3 cases of ATM were reported as serious adverse events during the
clinical trials of the COVID-19 vaccine ChAdOx1 nCoV-19 (AZD1222).

Results: All patients had typical features of ATM with acute onset of paralysis, sensory
level and sphincter deficits due to spinal cord lesions demonstrated by imaging. There
were 23 males (53%) and 20 females (47%) ranging from ages 21- to 73- years-old (mean
age, 49 years), with two peaks at 29 and 58 years, excluding 3 pediatric cases. The main
clinical manifestations were quadriplegia (58%) and paraplegia (42%). MRI reports were
available in 40 patients; localized ATM lesions affected ≤3 cord segments (12 cases, 30%)
at cervical (5 cases) and thoracic cord levels (7 cases); 28 cases (70%) had longitudinally-
extensive ATM (LEATM) involving ≥4 spinal cord segments (cervicothoracic in 18 cases
and thoracolumbar-sacral in 10 patients). Acute disseminated encephalomyelitis (ADEM)
occurred in 8 patients, mainly women (67%) ranging from 27- to 64-years-old. Three ATM
patients also had blindness frommyeloneuritis optica (MNO) and two more also had acute
motor axonal neuropathy (AMAN).
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https://www.frontiersin.org/articles/10.3389/fimmu.2021.653786/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.653786/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.653786/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.653786/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.653786/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.653786/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:gcroman@houstonmethodist.org
https://doi.org/10.3389/fimmu.2021.653786
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.653786
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.653786&domain=pdf&date_stamp=2021-04-26


Román et al. Acute Transverse Myelitis and COVID-19

Frontiers in Immunology | www.frontiersin.
Conclusions: We found ATM to be an unexpectedly frequent neurological complication
of COVID-19. Most cases (68%) had a latency of 10 days to 6 weeks that may indicate
post-infectious neurological complications mediated by the host’s response to the virus.
In 32% a brief latency (15 hours to 5 days) suggested a direct neurotropic effect of SARS-
CoV-2. The occurrence of 3 reported ATM adverse effects among 11,636 participants in
the AZD1222 vaccine trials is extremely high considering a worldwide incidence of 0.5/
million COVID-19-associated ATM cases found in this report. The pathogenesis of ATM
remains unknown, but it is conceivable that SARS-CoV-2 antigens –perhaps also present
in the AZD1222 COVID-19 vaccine or its chimpanzee adenovirus adjuvant– may induce
immune mechanisms leading to the myelitis.
Keywords: COVID-19, neurological complications, SARS-CoV-2 neurotropism, myelitis, transverse myelitis,
COVID-19 ChAdOx1 nCoV-19 vaccine
INTRODUCTION

Neurological complications of coronavirus disease 2019 (COVID-19)
are well recognized (1–3) and affect both the central nervous system
(CNS) and the peripheral nervous system (PNS). Neurological injury
results from the affinity of the COVID-19 etiological agent, the Severe
Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), for the
angiotensin-converting enzyme 2 (ACE2) receptor present in
neurons and glial cells endowing high neuroinvasive potential to
SARS-CoV-2 compared to previous coronaviruses. The high
frequency of anosmia during the acute infection probably reflects
viral invasion of the olfactory bulbs. Cells with abundant ACE2
receptors are infected first by this coronavirus including nasal
epithelium cells, ciliated bronchial epithelial cells and type II
pneumocytes, explaining the severity of the pulmonary
involvement. Also, the presence of ACE2 receptors for the viral S
protein in endothelial cells correlates with the frequent vascular
complications of COVID-19 resulting from endotheliitis and
microvascular brain injury (4) that induces the host’s immune
response with cytokine storm, hyperinflammation, coagulopathy,
thrombosis and embolism resulting in ischemic and hemorrhagic
strokes and multisystemic complications affecting lungs, heart,
kidneys and liver.

According to Borchers and Gershwin (5), ATM is a rare
neurological condition in adults with an estimated incidence ranging
between 1.34 and 4.6 cases permillion annually with amean age of 35-
40 years. We report a patient with SARS-CoV-2 infection in Panama
who developed acute transverse myelitis (ATM) and we present the
results of a comprehensive review of COVID-19-associated myelitis
that yielded 42 additional cases reported in 21 countries worldwide
(6–44) published from March 2020 to January 2021 during year 1 of
the pandemic (Table 1 and Supplementary Table 1A). Furthermore,
3 ATM serious adverse events were reported with the ChAdOx1
nCoV-19 (AZD1222) vaccine trials (45, 46).
CASE DESCRIPTION

A previously-healthy 72-year-old man presented to the
emergency department at a hospital in Panama City, Panama,
org 2213
complaining of sudden difficulty to urinate. The urologist
diagnosed neurogenic bladder and placed a Foley catheter.
Three days later the patient developed dysesthesias in arms
and legs and weakness of all four limbs. Neurologic
examination showed 3+/5 strength in the upper extremities
and 1+/5 in the lower limbs with spastic paraplegia,
generalized hyperreflexia, bilateral Babinski, and spontaneous
pyramidal jerking of both legs; sensory examination disclosed
decreased proprioception in the legs and a tactile sensory level
below Th9. The patient was alert and oriented; higher cortical
functions, cranial nerves and cerebellar examination were
all intact.

He denied fever, headache, ageusia, anosmia, fatigue, diarrhea
or upper respiratory symptoms during the past 3 weeks. Past
medical history was negative except for hypertension controlled
with enalapril. The SARS-CoV-2 RNA PCR nasal swab test was
negative on 2 occasions. His wife was asymptomatic, but her
nasal swab test was positive, and she had SARS-CoV-2
antibodies. The patient’s serology demonstrated recent
infection with SARS-CoV-2 IgG index = 3.53 (normal <1.6)
and IgM index = 5.1 (normal <0.6). Chest X-rays showed mild
cardiomegaly but no evidence of consolidation or pleural
effusion. Chest computerized tomography (CT) scan was
normal. Electrocardiogram showed mild left ventricular
hypertrophy. The patient was afebrile and his general physical
evaluation was normal. Respiratory rate 16 breaths per minute,
oxygen saturation 98% on room air, blood pressure 130/80
mmHg, heart rate 78 beats per minute and temperature 36.8°C.

Laboratory results showed normal white blood cell count
(8,100/mL) with normal hemoglobin (14.7g/dl). Inflammatory
markers showed elevated C-reactive protein at 1.7mg/dl and high
erythrocyte sedimentation rate at 51mm/hr (normal range
0-10mm/hr). Coagulation profile was normal. Protein C,
Protein S, Antithrombin III, and activated Protein C resistance
were within normal limits. Hematology consult found no
associated pathology. Hepatic and thyroid function tests were
normal. VDRL and HIV tests were negative. Autoimmune
immunological screening was negative for lupus anticoagulant,
anti-nuclear antibodies (ANA), anti-neutrophil cytoplasmic
antibodies, rheumatoid factor, anti-cardiolipin, and
April 2021 | Volume 12 | Article 653786
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TABLE 1 | Summary of SARS-CoV-2-Associated Myelitis Published Cased from March-2020 until January-2021.

Case Country Sex/Age
years

Myelitis Type Lesion Level Other Clinical Features Ref.

ATM LEATM C CT Th Conus

1 CN M/66 ATM Th10 Zhao (6)
2 IR M/60 LEATM C1-4 Saberi (7)
3 GB M/40 ATM C1-2 ADEM

Brainstem rhombencephalitis
Wong (8)

4 IT W/54 LEATM C2-
Th6

Bulbomedullary lesions Zanin (9)

5 DK W/28 LEATM X X X X Medulla oblongata to conus medullaris Sarma (10)
6 ES W/69 LEATM C7 -

Th1
Medulla to C7- Th1 Sotoca (11)

7 DE M/60 ATM Th9 Late lesions Th3-5 Th9-10 Munz (12)
8 IT W/64 ATM Th8 ADEM – NMO Monoclonal gammopathy CSF

SARS-CoV-2 (+)
Novi (13)

9 IT W/22 ATM X Giorgianni (14)
10 US W/61 LEATM C1-

Th1
AMAN Valiuddin (15)

Maideniuc (16)
11 AE M/32 LEATM C2-Th-

L
Al Ketbi (17)

12 BR W/42 ATM C5 Trigeminal nucleus Barros- Domingues
(18)

13 IR M/21 LEATM C1-Th Zoghi (19)
14 US M/24 LEATM Th7-

12
Durrani (20)

15 CH M/63 ATM Th10 Zachariadis (21)
16 TR M/48 ATM C2-3 ADEM

CSF: SARS- CoV-2 (+)
Otluoglu (22)

17 QA M/52 LEATM Th3-
10

Abdelhady (23)

18 US M/44 LEATM C5-7
Th3-6

conus
medullaris

ADEM Utukuri (24)

19 US W/40 ATM C1 ADEM
Pons, medulla

McCuddy (25)

20 AU M/60 LEATM Th7-
10

Chow (26)

21 US G/3 LEATM C1 to
Th6

Lower medulla to Th6 Kaur (27)

22 MD M/27 LEATM C4-
Th5

HIV (+) Lisnic (28)

23 IN W/59 ATM Th6-7 Chakraborty (29)
24 IR M/63 LEATM C7-

Th12
Hazrati (30)

25 BR W/51 LETM Th6-
10

Lumbar radiculitis Corrêa (31)

26 IT W/70 ATM C7-
Th1

AMAN
Anti-GD1b IgM

Masuccio (32)

27 IR W/53 ATM Th8-
10

Baghbanian (33)

28 IT M/64 ATM Rifino (34)
29 IT M/64 ATM Rifino (34)
30 ES M/50 ATM C5-C6 Águila- Gordo (35)
31 TR G/14 LEATM C2-5 Güler (36)
32 MX M/73 LEATM C1 -

C3-6
Atlas to C3-C6 cervical spondylotic myelopathy Guadarrama - Ortiz

(37)
33 US M/26 LEATM C4-7

Th5-8
Edema optic nerves
MOG-IgG-mediated NMOSD

Zhou (38)

34 ID W/45 ATM Th3-4 Munir (39)
35 GB W/33 LEATM C1-7

Th2
ADEM
Brain & pontomedullary

Paterson (40)

36 GB W/27 ATM Conus
medullaris

ADEM
diffuse T2 white matter and corticospinal lesions

Paterson (40)

(Continued)
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complement C3, C4. Rheumatology consult found no underlying
disease. Aquaporin-4 antibody (anti-AQP4) and myelin
oligodendrocyte glycoprotein antibody IgG (anti-MOG-IgG) in
serum were both negative (Quest diagnostics Nichols
Institute, CA).

Gadolinium-enhanced magnetic resonance imaging (MRI) of
the brain was normal. MRI of the spinal cord revealed mild
cervical and thoracic cord enlargement and swelling with diffuse
hyperintensities. On the axial projections, cord hyperintensities
at C4-C5 and Th3-Th4 were observed with irregular patchy
imaging but without contrast enhancement consistent with
ATM (Figure 1). No apparent hemorrhagic components were
present, and the conus medullaris had normal appearance.

Cerebrospinal fluid (CSF) showed no cells, hyperproteinorraquia
of 76mg/dl and normal glucose. Meningitis CSF panel was negative
for bacteria, yeast and viruses. Gram, acid-fast bacilli and fungus
stains were negative. CSF oligoclonal bands (IgG) demonstrated 3
well-defined gamma restriction bands thatwere not present in serum
(Quest diagnostics Nichols Institute, CA).

The patient was treated with a pulse dose of IV
methylprednisolone 1g/d for 5 days, enoxaparin 40 mg daily,
followed by IV gamma-globulin (IVIG) 30g/day for five days.
Oral prednisone was prescribed for the next 30 days. He
recovered partial strength in his upper limbs (4+/5) but the
severe spastic paraplegia (1+/5) and the neurogenic bladder
remained unchanged. He is undergoing physical therapy and
rehabilitation treatment.
CASE-FINDING REVIEW

We performed a comprehensive search of the literature using
PubMed, Medline, Scopus, Web of Science, EMBASE, and
Google Scholar up to January 5, 2021. For PubMed we used
Frontiers in Immunology | www.frontiersin.org 4215
the following key search terms: (“Myelitis, Transverse” [MeSH]
OR “Myelitis” [All Fields] OR “Myelitis, Acute” [All Fields] OR
“Encephalomyelitis” [All Fields] OR “Neuromyelitis Optica”
[MeSH] OR “Mye loneuropa thy ” [A l l F i e ld s ] OR
“Encephalomyelitis, Acute Disseminated” [MeSH] OR “Acute
Disseminated Encephalomyelitis” [All Fields]) AND (“COVID-
19” [MeSH Term] OR “SARS-CoV-2” [MeSH Term] OR
“coronavirus” [All Fields]). Table 1 and Supplementary Table
1A list the total 43 patients reported in 21 countries worldwide,
as follows: 7 cases from Iran (IR), 6 each from Italy (IT) and the
United States of America (US), 4 from the United Kingdom
(GB), 2 cases each from Brazil (BR), Spain (ES), and Turkey
(TR), plus single case reports from Australia (AU), Belgium (BE),
China (CN), Denmark (DK), Germany (DE), India (IN),
Indonesia (ID), Mexico (MX), Moldova (MD), Panama (PA),
Pakistan (PK), Qatar (QA), Switzerland (CH), and the United
Arab Emirates (AE). Patient 10 from the US was published twice
(15, 16).
RESULTS

Early reports of neurological complications of COVID-19 from
China (2) and France (3) included no cases of ATM. Therefore, it
was unexpected to collect 43 cases of COVID-19-associated
myelitis in a period of 10 months around the world. Given a
total of 86 million COVID-19 cases as of 5 January 2021
(coronavirus.jhu.edu) the incidence of myelitis is 0.5 per
million. Based on a single hospital COVID-19 series with 1760
patients from Italy (34), SARS-CoV-2-associated ATM may
represent 1.2% of all neurological complications of COVID-19.

COVID-19-associated ATM was reported in 23 males (53%)
and 20 females (47%) ranging in age from 21 to 73 years (mean
age 49 years) excluding children. There were three age groups: (i)
TABLE 1 | Continued

Case Country Sex/Age
years

Myelitis Type Lesion Level Other Clinical Features Ref.

ATM LEATM C CT Th Conus

37 GB M/48 LEATM Th5-6
Th10-
11

Conus
medullaris

Paterson (40)

38 IR M/47 LEATM C2-
Th2

Advani (41)

39 IR W/67 LEATM C3-C6 Advani (41)
40 PK M/56 LEATM Th4-

Th8
Ali (42)

41 IR G/11 LEATM Th3-
Th6

Nejad- Biglari (43)

42 BE W/38 LETM C3-
Th4

Fumery (44)

43 PA M/72 LEATM C2-
Th9

Román-Gracia (this
report)
April 2021 | Volum
Names of Countries: Australia = AU, Belgium = BE, Brazil = BR, China = CN, Denmark = DK, Germany = DE, India = IN, Indonesia = ID, Iran = IR, Italy = IT, Mexico = MX, Moldova = MD,
Panama = PA, Pakistan = PK, Qatar = QA, Spain = ES, Switzerland = CH, Turkey = TR, United Arab Emirates = AE, United Kingdom = GB, United States of America = US.
ADEM, acute disseminated encephalomyelitis; AMAN, acute motor axonal neuropathy; ANA, antinuclear antibodies; AQP4, aquaporin-4; ATM, acute transverse myelitis; (C, cervical; CSF,
cerebrospinal fluid; G, girl; HIV, human immunodeficiency virus; LEATM, Iongitudinally-extensive acute transverse myelitis; M, man; MOG-IgG, myelin oligodendrocyte
glycoprotein antibody-immune globulin G; NMOSD, neuromyelitis optica spectrum disorder; SARS-CoV-2, severe acute respiratory syndrome-coronavirus-2, Th, thoracic; W, woman.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Román et al. Acute Transverse Myelitis and COVID-19
Pediatric cases: Patient 21, a 3-year-old Navajo girl in the USA
(27), Patient 31, a 14-year-old girl in Turkey (36), and Patient 41,
an 11-year-old girl from Iran (43). (ii) Young adult cases: 13
patients, 7 men and 6 women, ages 21-42 years with mean age of
29 years. (iii): Older adults: 27 patients, 18 men and 9 women,
ranging from 44-73 years (mean age 58 years).

The main manifestations of the spinal cord lesions based on
clinical examination included two major groups, quadriplegia
and paraplegia. There were 27/40 patients (58%) with
tetraparesis/quadriplegia resulting from cervical cord-upper
thoracic cord lesions compared with 15/40 (42%) with acute
paraparesis/paraplegia from thoracic cord lesions. The
anatomical distribution of the spinal cord lesions by MRI
imag ing was repor t ed in 40 case s (Table 1 and
Frontiers in Immunology | www.frontiersin.org 5216
Supplementary Table 1A). Localized ATM lesions affected
≤3 cord segments in 12 cases (30%) at cervical (5 cases) and
thoracic cord (7 cases) levels, and 28 cases (70%) had
longitudinally-extensive ATM (LEATM) involving ≥4
spinal cord segments in cervicothoracic (18 cases) and
thoracolumbar-sacral regions (10 cases). In 3 case reports the
lesions are described as ‘myelitis’ without further clinical
information. Cervical cord lesions extended in some cases to
the brainstem causing rhombencephalitis (8), as well as
involvement of pons and medulla oblongata. Patient 4 from
Denmark (10) had the most extensive lesions reported affecting
the entire spinal cord from the medulla oblongata to the conus
medullaris. Patients 18, 36 and 37 had lesions affecting the
conus medullaris.
FIGURE 1 | Spinal cord MRI. (A) Sagittal Short-T1 Inversion Recovery: Mild cervical cord thickening and diffuse hyperintensities in cervical and dorsal cord (red
arrows). (B) Sagittal T1 + gadolinium. No contrast enhancement. (C, D) Axial T2 (C4-5 and T3-4 levels) showing diffuse cord hyperintensities (red arrows).
April 2021 | Volume 12 | Article 653786
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The latency period from the onset of COVID-19 symptoms
to the first neurological manifestations followed a dual
distribution: (i) Short latency: 15 hours to 5 days in 11/34
patients (32%) and (ii) Long latency: 10 days to 6 weeks in 68%
(Table 1 and Supplementary Table 1A). The shorter latency
period may indicate a direct neurotropic effect of SARS-CoV-
2 during the initial infection causing para-infectious myelitis.
Longer latency periods may indicate a post-infectious
neurological complication resulting from the host response
to the virus. No particular geographic origin, distribution by
sex or age group, nor clinical picture were associated with
shorter or longer latency periods. Treatments included
steroids in most patients, along with IVIg in a few instances;
some patients also received respiratory support. There were 2
deaths reported (Patient 17 from Qatar and Patient 23 from
India). SARS-CoV-2 RNA PCR in the CSF was positive in 2
cases (18, 24).
ATM AND OTHER
NEUROINFLAMMATORY SYNDROMES

According to Hartung and Aktas (47) a number of
neuroimmunological disorders affecting CNS and PNS are
expected to occur during COVID-19. Although the immune
mechanisms causing ATM remain unknown other neurological
disorders of neuroimmune nature were reported concurrently
with the myelitis (Table 1 and Supplementary Table 1A). These
included acute disseminated encephalomyelitis (ADEM),
neuromyelitis optica (NMO) and acute motor axonal
neuropathy (AMAN).
ACUTE DISSEMINATED
ENCEPHALOMYELITIS (ADEM)

Reichard et al. (48) reported the neuropathological findings,
extensive vascular lesions and perivenous demyelination of
ADEM in association with COVID-19. Myelitis as part of
ADEM was diagnosed in 8/40 patients (20%) summarized in
Table 1 and Supplementary Table 1A. In contrast with the
overall male preponderance in this series, ADEM with ATM
affected predominantly women (67%) ranging in age from 27-
64 years (mean age 43 years). Lesions revealed by spinal cord
MRI included LEATM from medulla oblongata and cervico-
thoracic cord (Th6) in Patient 3 (8); cervicothoracic spinal
cord lesions down to the conus medullaris in Patient 18 (24);
C1-7-Th2 in Patient 35 (40); and, Th5-6 and Th10-11 down to
the conus medullaris in Patient 37 (40). ATM at Th8 level
occurred in Patient 8 (13); at C2-3 level in Patient 16 (22); pons
and medulla-cord junction in Patient 19 (25); and,
intramedullary lesion of the conus medullaris in Patient 36
(40). Brain MRI lesions consistent with ADEM included
among others, multiple T1 post-Gd enhancing white matter
lesions plus bilateral edema of the optic nerves; hyperintense
Frontiers in Immunology | www.frontiersin.org 6217
FLAIR lesions in the medial temporal lobe; bilateral lesions
involving cerebral white matter, corpus callosum and
brainstem including pons and medulla-cord junction.
NEUROMYELITIS OPTICA (NMO) AND
NMO SPECTRUM DISORDERS (NMOSD)

NMO and NMOSD are relatively common conditions in
neuroimmunology (49–51) previously reported after SARS-
CoV-2 infection (52). We found 3 patients with myelitis and
visual loss due to optic nerve edema diagnosed with NMO.
Patient 8 (13), is a 64-year-old woman with ATM and visual
loss. Patient 33 (38), is a 26-year-old Hispanic man from the
USA with positive MOG-IgG antibodies who developed
papilledema, blindness and dysesthesias of the upper
extremities due to bilateral optic neuritis and LEATM cord
lesions from C4-Th2. Patient 25, from Rio de Janeiro, Brazil
(31) is a 51-year-old Caucasian woman, with a 2-week history
of COVID-19 who developed band-like dysesthesias at the
Th6-10 dermatomes, urinary retention, leg numbness and
paraparesis. Brain MRI showed enhancing T2/FLAIR lesions
in anterior fornix and subfornical organ. Spinal cord
MRI demonstrated LEATM at Th6-10 with lumbar
radiculitis. Serum ANA was positive (1:320). Anti-AQP4
ant ibodies were pos i t ive in serum and CSF. This
encephalomyeloradiculitis is probably a form of COVID-19-
associated NMOSD. According to Jarius et al. (53) NMO and
NMOSD are caused in >80% of cases by pathogenetic IgG
autoantibodies to AQP4 but only 1 case was positive in this
cohort. A 15-year-old Caucasian boy with SARS-CoV-2-
associated NMO reported by de Ruijter at al (52). had
blindness without myelitis but with positive anti-MOG-
IgG antibodies.
ACUTE MOTOR AXONAL NEUROPATHY
(AMAN)

AMAN may be found in patients with clinical Guillain-Barré
s y n d r om e (GB S ) , a n a c u t e immun e -m e d i a t e d
polyradiculoneuropathy reported as the most common form of
peripheral nerve lesion in patients with COVID-19 (54, 55).
Based on electrophysiological features GBS can be classified into
several subtypes including acute inflammatory demyelinating
polyneuropathy (AIDP), acute motor and sensory axonal
neuropathy (AMSAN), and AMAN (54, 56).

We found reports of 2 patients that presented concurrently
AMAN with ATM indicating simultaneous involvement of
CNS and PNS. Patient 10, a 61-year-old woman from the US
(15, 16) developed quadriparesis due to LEATM affecting C1-
Th1 and concurrent AMAN with negative anti-MOG-IgG and
anti-AQP4-IgG antibodies. Patient 26, a 70-year-old woman
from Italy (32) developed quadriparesis from ATM at C7-Th1
and AMAN with positive anti-GD1b IgM antibodies.
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OTHER IMMUNE/INFLAMMATORY
FACTORS

In addition to the above patients other immune or inflammatory
mechanismsmay have contributed toCOVID-19-associatedATM.
Patient 22 is a 27-year-old HIV-positive man from Moldova (28)
whodevelopedparaplegiadue toLEATMinvolvingC4-Th5. Patient
32 is a 72-year-oldman fromMexico (37) with preexisting cervical
spondylotic myelopathy that evolved to tetraparesis after SARS-
CoV-2 infection due to ATM at the C1-C3-C6 levels.
DISCUSSION

Theneurotropismof the coronaviruses ingeneral andSARS-CoV-2
in particular has been well demonstrated (57–60). Moreover, the
numerous neurological complications of COVID-19 are well
recognized (1–4, 34, 40, 47, 48, 54, 55, 57, 61). Symptoms
reflecting central nervous system involvement include headache,
anosmia and dysgeusia, agitation, delirium, and impaired
consciousness (1, 61). Stroke is common, probably reflecting the
endoteliitis (62) and small-vessel brain lesions (4) causing brain
hemorrhages, arterial and venous thromboses, and subarachnoid
hemorrhage, as well as rare cases of acute hemorrhagic necrotizing
encephalopathy (48, 61). Neuropathological examination of fatal
adult cases of COVID-19 (63–65) showed in addition to vascular
lesions (4) low-grade localized encephalitis affecting brainstem
respiratory and cardiovascular centers (63).

According to Paterson et al. (40) the postulated mechanisms
causing ATM and the various neurological syndromes associated
with SARS-CoV-2 include, either individually or in combination,
direct viral neuronal injury (57–60) and the host’s secondary
hyperinflammation syndrome (61, 66, 67). SARS-CoV-2 enables
interleukin (IL)-1 synthesis and release (68) leading to
inflammasome activation. Also, IL-6, a proinflammatory
mediator, is elevated in COVID-19 and induces CNS immune
responses (68). Type I interferon (IFN) is dysregulated in
COVID-19 and can affect innate and acquired immunity (69).
COVID-19 patients exhibit increased circulating levels of IL-2,
IL-8, IL-17, granulocyte colony-stimulating factor, granulocyte-
macrophage colony-stimulating factor, interferon gamma-
induced protein 10, and monocyte chemoattractant protein 1
(69, 70). IFN release can result in inflammation and immune
system suppression (70). These immune factors may lead to the
so-called “cytokine storm” syndrome that triggers coagulopathy
and thrombosis (71). Also, of critical importance during
COVID-19 are the para- and post-infectious inflammatory or
immune-mediated neurological disorders (72–75), also observed
after vaccination (76, 77), that affect both the CNS and the PNS
causing GBS, ADEM, NMOSD, and ATM, among others.
ACUTE TRANSVERSE MYELITIS (ATM)

Definition and Differential Diagnosis
The term ATM is used here to identify patients with myelitis
described during COVID-19. Most COVID-19-associated ATM
Frontiers in Immunology | www.frontiersin.org 7218
cases reported here fulfill the strict definition of the Transverse
Myelitis Consortium Working Group (78) requiring clinical
evidence of bilateral sensory, motor, or autonomic dysfunction
referable to the spinal cord, and confirmed by MRI images.

ATM is different from acute flaccid myelitis or AFM (79) the
predominantly pediatric form of acute flaccid paralysis with
anterior myelitis or “polio-like syndrome” with spinal cord
gray matter lesions. Epidemiological data for pediatric cases of
AFM from a national surveillance program in the US (80)
reported as of July 2020 a total of 633 cases of AFM with a
median age of 5.3 years with peaks in 2014, 2016 and 2018. Non-
polio enteroviruses, including EV-D68 and EV-A71, are the most
frequent etiological agents (81). Children are relatively
unaffected by SARS-CoV-2, probably because of low ACE2
receptors in the olfactory mucosa (82) and there has been no
increase in cases of AFM up to July 2020. Patient 21 (27), a
3-year-old Navajo girl, is the youngest pediatric case of SARS-
CoV-2-associated ATM reported in this series. Three weeks after
an asymptomatic COVID-19 infection she developed a flaccid
quadriparesis as a result of LEATM extending from the lower
medulla and C1 to the Th6 spinal cord segments. These lesions
are clearly different from those of pediatric AFM (83).

According to West and colleagues (84), ATM remains a rare
immune-mediated neurological condition with an estimated
incidence of up to 3 per 100,000 patient years (0.003%). ATM
can be caused by autoimmune, inflammatory, and infectious
agents but the main differential diagnosis is with multiple
sclerosis. Clinical features and imaging usually eliminate from
the differential diagnosis of ATM other noninflammatory
conditions such as traumatic, compressive, neoplastic or
vascular lesions (84).

Pathogenesis of COVID-19-Associated ATM
The latency period between SARS-CoV-2 infection and onset of
the neurological symptoms was unknown in many instances
because of asymptomatic COVID-19. In most cases (68%) the
latency period ranged from 10 days to 6 weeks; in the remaining
32% (11/34 cases) the latency period ranged from hours to 5
days; the shortest period was 15 hours for Patient 22, the HIV-
positive man from Moldova (28). Very short latency periods of
respectively 2 and 3 days occurred for Patient 11 from UAE (17)
and Patient 17 from Qatar (23). It is unknown if these two
patients had been previously infected with the Middle East
Respiratory Syndrome coronavirus (MERS-CoV).

The neurological complications of viral infections can be
either para-infectious, i.e., due to direct viral neurotropism, or
post-infectious, i.e., resulting from immune-mediated reactions
against the virus (48, 57–59, 61–68). Except for the three para-
infectious cases mentioned above, most cases of SARS-CoV-2-
associated myelitis had longer latency periods suggesting a post-
infectious origin.

According to Blackburn and Wang (72), the proposed
mechanisms of post-infectious neurological disorders include
molecular mimicry, epitope spreading, bystander activation and
polyclonal B-cell activation. Molecular mimicry is due to the
presence in microorganisms of epitopes that share marked
similarity in peptide sequence or three-dimensional structure
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to host’s antigens. Therefore, lymphocytes activated by the
infection may cross-react with self-antigens. In epitope
spreading the specific initial response to an antigen is
broadened to include other different epitopes. Also, during the
immune response to a highly virulent pathogen autoreactive
lymphocytes may be activated during the inflammatory cascade
resulting in autoimmunity by “bystander activation.” Finally,
polyclonal B-cell activation may occur with chronic viral
infections that persist in the host such as herpesviruses.
Molecular mimicry and bystander activation appear to be the
most likely mechanisms explaining SARS-CoV-2-associated
ATM. The antibodies reported in patients with COVID-19-
associated ATM included 3 cases of positive anti-MOG-IgG
antibodies and single cases of positive anti-GD1b IgM
antibodies, ANA, and anti-AQP4 antibodies in serum and CSF.
POST-VACCINATION ATM

Neurological complications of vaccination were first recognized
in 1885 with Pasteur’s rabies vaccine obtained from rabbits’
spinal cords. More recently, in 1977, we reported 21 cases of GBS
and brain demyelination (77) resulting from the use in Colombia
of the suckling mouse brain (SMB) rabies vaccine containing
neural tissue antigens causing neurological complications that
included GBS, ADEM, chronic leukoencephalitis, and myelitis
(77). Concurrent involvement of CNS and PNS occurs in post-
viral infections such as Zika (75). These lesions resemble those of
experimental autoimmune encephalomyelitis induced in animals
with the use of myelin antigens and Freund’s adjuvant (74, 76,
84). Current rabies vaccine obtained from tissue culture of
human diploid cells eliminated this problem.

The US national vaccination campaign in 1976 against the A
New Jersey “swine flu” influenza using the A/NJ/1976/H1N1
vaccine was associated with increased incidence of GBS (85).
Nachamkin et al. (86) postulated that Campylobacter jejuni
antigens that mimic human gangliosides capable of inducing
an anti-GM1 antibody response could have caused GBS.
Campylobacter antigens were not present in any of the
vaccines examined. However, these authors demonstrated that
the 1976, 1991-1992, 2004-2005 influenza vaccines induced IgG
and IgM anti-GM1 antibodies in mice. Recent cases of ATM
following H1N1 vaccination have been reported (87–90)
indicating that influenza vaccines may induce immune
mechanisms targeting the spinal cord. It may be important to
notice that the COVID-19 ChAdOx1 nCoV-1 vaccine
(AZD1222) contains chimpanzee adenovirus antigens
as adjuvant.

In 2003, an experimental vaccine (AN1792) containing
synthetic aggregated Ab42 fragments with QS-21 as adjuvant
targeting the amyloid precursor protein with the aim of
preventing the development of Alzheimer’s disease resulted in
meningoencephalitis in 6% of the vaccinated patients (91). The
trial was discontinued and neuropathology studies (92)
confirmed the presence of meningoencephalitis with strong
MCH class I immunoreactivity in collapsed amyloid plaques
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and multinucleated giant cells suggesting that a fragment of b-
amyloid was the possible origin of the post-vaccination reaction.

Numerous other vaccines have caused neurological post-
vaccination complications including diphtheria-tetanus-polio,
measles, mumps, rubella, Japanese B encephalitis, and
pertussis. According to Karussis and Petrou (76), the most
recent cases of CNS demyelination after vaccination include
vaccines against influenza, human papilloma virus, hepatitis A
or B, measles, rubella, yellow fever, anthrax, meningococcus and
tetanus. Other than GBS, ATM, and ADEM, other post-
vaccination reactions include neuromyelitis optica (NMOSD),
isolated ophthalmoplegia, brachial neuritis and other
mononeuropathies. Post-vaccination reactions have declined
with the use of recombinant proteins, rather than in vivo
infected animal tissue (73). Recent research on the
immunopathogenesis of ATM (93) has emphasized the role of
interleukins IL-6 and IL-17. In myelitis, IL-6 is elevated in the
CSF and predicts disability (94). Production of both IL-6 and IL-
17 by peripheral blood mononuclear cells is increased in ATM
(94). IL-17 regulates cytokines (TNFa, IL-1b and IL-6) to
stimulate IL-6 production by astrocytes. The role of adjuvants
as contributing factors to the immune and inflammatory
reactions to vaccines has also been emphasized (95).

ChAdOx1 nCoV-19 Vaccine (AZD1222) Trials
The ChAdOx1 nCoV-19 vaccine (AZD1222) consists of a
replication-deficient chimpanzee adenoviral ChAdOx1
containing the SARS-CoV-2 structural surface vector
glycoprotein antigen (spike protein; nCoV-19) gene (45). The
safety and efficacy report of four randomized controlled trials
conducted in Brazil, South Africa and Great Britain for the
AZD1222 COVID-19 vaccine informed the occurrence of three
cases of ATM as serious adverse events (45, 46).

One participant developed ATM 14 days after ChAdOx1
nCoV-19 booster vaccination and was diagnosed as idiopathic,
short segment, spinal cord demyelination possibly related to
vaccination (45, 46). The second participant developed ATM 10
days after a first vaccination with ChAdOx1 nCoV-19. It was
initially assessed as possibly vaccine-related but later considered
unlikely when further investigation revealed pre-existing, but
previously unrecognised, multiple sclerosis (45, 46). The third
patient with ATM occurred in a control subject 68 days after
receiving the meningococcal conjugate (MenACWY) vaccine.
Initially considered possibly related, it was finally considered
unlikely to be vaccine-related by neurological experts (45, 46).
However, no information was provided regarding COVID-19
infection in this unvaccinated subject. These three ATM serious
adverse events resulted in temporarily halting of the vaccine trial
until the affected participants began to show signs of recovery.

The occurrence of three reported ATM cases among 11,636
participating subjects is extremely high considering the
worldwide incidence of 0.5/million COVID-19-associated
ATM cases found in this report during year 1 of the pandemic.
Moreover, Agmon-Levin et al. (96) in a systematic review (1970–
2009) fund in 39 years only 37 reported cases of ATM in
association with several different vaccines.
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CONCLUSION

This review confirms that ATM is not uncommon as a
neurological complication associated with COVID-19 infection
around the world, responsible perhaps for 1.2% of all
neurological complications caused by this coronavirus. It
occurs acutely in a small number of patients as a para-
infectious manifestation but most cases of SARS-CoV-2-
associated ATM have longer latency periods suggesting a post-
infectious origin. These facts suggest probable viral antigen(s) in
SARS-CoV-2 target the spinal cord –perhaps also present in the
COVID-19 vaccine AZD1222 or its chimpanzee adenovirus
adjuvant– and may induce immune mechanisms leading to
ATM. Research to identify the responsible antigen(s) and the
immunopathogenesis of COVID-19-associated ATM must
be encouraged.
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Concurrent Guillain- Barré syndrome, transverse myelitis and encephalitis post-
Zika: A case report and review of the pathogenic role of multiple arboviral
immunity. J Neurol Sci (2018) 395:47–53. doi: 10.1016/j.jns.2018.09.028

76. Karussis D, Petrou P. The spectrum of post-vaccination inflammatory CNS
demyelination. Autoimmun Rev (2014) 13:215–24. doi: 10.1016/
j.autrev.2013.10.003

77. Toro G, Vergara I, Román GC. Neuroparalytic accidents of antirabies
vaccination with suckling mouse brain vaccine. Clinical and pathologic
study of 21 cases. Arch Neurol (1977) 34:694–700. doi: 10.1001/archneur.
1977.00500230064011

78. Transverse Myelitis ConsortiumWorking Group. Proposed diagnostic criteria
and nosology of acute transverse myelitis. Neurology (2002) 59:499–505. doi:
10.1212/WNL.59.4.499

79. Messacar K, Schreiner TL, Van Haren K, Yang M, Glaser CA, Tyler KL, et al.
Acute flaccid myelitis: A clinical review of US cases 2012-2015. Ann Neurol
(2016) 80:326–38. doi: 10.1002/ana.24730

80. Kidd S, Lopez A, Nix WA, Anyalechi G, Itoh M, Yee E, et al. Clinical
characteristics of patients with confirmed acute flaccid myelitis, United States,
2018. MMWR Morb Mortal Wkly Rep (2020) 69:1031–8. doi: 10.15585/
mmwr.mm6931e3:10.15585/mmwr.mm6931e3

81. Majer A, McGreevy A, Booth TF. Molecular pathogenicity of enteroviruses
causing neurological disease. Front Microbiol (2020) 11:540. doi: 10.3389/
fmicb.2020.00540

82. Patel AB, Verma A. Nasal ACE2 levels and COVID-19 in children. JAMA
(2020) 323:2387. doi: 10.1001/jama.2020.8946
Frontiers in Immunology | www.frontiersin.org 11222
83. Murphy OC, Pardo CA. Acute flaccid myelitis: A clinical review. Semin Neurol
(2020) 40:211–8. doi: 10.1055/s-0040-1705123

84. West TW, Hess C, Cree BAC. Acute transverse myelitis: Demyelinating,
inflammatory, and infectious myelopathies. Semin Neurol (2012) 32:97–113.
doi: 10.1055/s-0032-1322586

85. Schonberger LB, Bregman DJ, Sullivan-Bolyai JZ, Keenlysidee RA, Ziegler
DW, Retailliau HF, et al. Guillain-Barré syndrome following vaccination in
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During the COVID-19 pandemic, adverse neurological effects have been described. In

addition to unspecific neurological symptoms, cranial nerve deficits have appeared as

part of SARS-CoV-2 infection. In this case report, we describe a 74-year-old patient who

developed bilateral paralysis of the vocal cords some weeks following his dismissal in

stable condition after COVID-19 pneumonia. After ruling out central lesions, peripheral

tumors, and other possible causes, therapy was initiated with methylprednisolone,

inhalations, and oxygen. The patient showed no improvement, so laterofixation after

Lichtenberger was performed. The dyspnea worsened after several weeks, so a laser

posterior cordectomy was performed with satisfactory outcome.

Keywords: COVID-19, SARS-CoV-2, vocal cords, palsy, cranial nerve, recurrens

INTRODUCTION

Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) is a novel corona virus that
was first detected in the Chinese city of Wuhan in 2019 (1). The resulting disease, Corona Virus
Disease 2019 (COVID-19), has spread pandemically and is now a critical threat to the global
healthcare system.

The pandemically significant pathomechanism leads to pneumonia with, in the most dramatic
case, serious organ failure and respiratory decompensation, which leads to the need for ventilation.
In addition, the majority of infections are a- or oligo-symptomatic, with the symptoms of a
mild-to-moderate flu-like infection of the respiratory tract. In addition to cough and fever,
sensory impairments, such as a reduction in smell and taste, are also observed (2). Besides these
relatively harmless limitations, however, critical neurologic complications such as encephalitis and
encephalomyelitis have been reported, especially in clinically severe cases (3).

In addition, affection of peripheral and cranial nerves in the context of a COVID-19 infection
were also reported in several case reports and series, with paralysis of the eye muscles described
most commonly (3).

Nevertheless, neuropathies of the facial nerve (4) and more caudally located nerves such as the
phrenic nerve (5) have also been observed in COVID-19. The exact pathomechanisms are still
unclear and in the interest of current research, a direct neurotoxic effect of the virus or a virally
triggered autoimmune vasculitis of the nerves have been hypothesized (6).

In this context, the tenth cranial nerve, the vagus nerve, plays a special role. In addition to its
sensitive, sensory and vegetative parts, it and its branches innervate various muscles in the head
and neck region. The fibers innervating the larynx and the vocal cords also run over the vagus
nerve and regulate the glottis, the narrowest and thus most critical point in the human airway.
While unilateral vocal cord palsy mainly causes hoarseness, bilateral vocal cord palsy, especially
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in the acute situation, represents a dangerous respiratory
emergency requiring immediate action. Neuropathy of the vagus
nerve in the context of COVID-19 has already been described,
at least partially, but with deficits in the more cranial pharyngeal
region and simultaneous impairment of the ninth cranial nerve,
the glossopharyngeal nerve (7).

This report describes the case of a patient with bilateral vocal
cord palsy after undergoing COVID-19 infection, which could be
a rare neuronal manifestation of SARS-CoV-2.

CASE REPORT

A 74-year-old female was admitted to our hospital after syncope,
most likely of orthostatic genesis, during a bronchopulmonary
infection and suspicion of COVID-19 pneumonia. Pre-existing
conditions included high blood pressure, as well as implantation
of knee endoprosthesis on both sides and hip endoprosthesis on
the right side.

A computed tomography (CT) scan of the thorax showed
frequently reported CT features of COVID-19 pneumonia and
the nasopharyngeal smear for SARS-CoV-2 was PCR positive.

With the patient’s consent, therapy with off-label
use hydroxychloroquine was initiated. Due to persistent
recurrent fevers, additional empirical antibiotic therapy with
clarithromycin was initiated.

Six days after admission, the patient developed increasing
respiratory insufficiency with deterioration of the peripheral
SpO2, despite oxygen administration, and was urgently
transferred to the intensive care unit. She was intubated and
ventilated for a total of 17 days and was extubated successfully
after that. The patient was then transferred to a peripheral
hospital for early rehabilitation where she stayed for 9 days. At
that time, she did not show any significant dyspnea.

Two weeks after discharge from the rehabilitation center, the
patient was again urgently transferred to our hospital due to
dyspnea. After acute cardiopulmonary reasons for the dyspnea
were ruled out, an inspiratory stridor was noticed, and the patient
was presented to the department of otorhinolaryngology, head
and neck surgery as well as in our phoniatrics section.

Using the “RBH-scale,” the Roughness, Breathiness and
Hoarseness of the speaking voice are each subjectively rated
by the examiner as 0 (no disorder), 1 (low-grade disorder), 2
(moderate-grade disorder) or 3 (high-grade disorder). With the
Voice Handicap Index (VHI), 3 domains (functional, physical,
and emotional aspects of the voice disorder) are self-assessed
by the patient with 10 questions each. Patients indicate whether
the described stresses caused by the voice disorder occur in
their everyday life never (0 points), almost never (1 points),
sometimes (2 points), almost always (3 points), and always (4
points) (8). The patient showed a high graded dysphonia with a
R3B1H3 in the RBH-scale and 67 points in the VHI. The voice
sounded highly rough with pathological phonatoric effort. In
the laryngostroboscopic examination, we found a bilateral vocal
cord palsy with hyperplastic vestibular folds (Figure 1). During
phonation we detected a small glottal gap with missing mucosal
waves and amplitudes. Only some passive vibrations could be

FIGURE 1 | Initial finding via laryngoscopy: The paralyzed vocal cords (white

arrow) are partially covered by the hyperplastic vestibular folds (black arrow).

seen. During respiration the vocal folds were also fixed in medial
to mediolateral position without recognizable lateral movements.
During inspiration, the vocal folds were driven medially because
of the Bernoulli effect. During pauses, it could be heard how the
patient breathed heavily. The voice range profile was narrow with
little dynamic range and no projection of voice.

Imaging via MRI and CT scan found no morphological cause
for vocal cord palsy, no cerebral ischemia, bleeding, or cerebral
or pulmonary tumor or other cervical or thoracic mass that could
compress or affect recurrent laryngeal nerve function. Serological
laboratory testing ruled out increased autoimmune parameters
or an ongoing or past neurotropic viral infection. Furthermore,
a neurological consultation showed no evidence of critical illness
neuropathy or other signs and symptoms of neurological disease
that could affect vocal cord function, e.g., progressive bulbar
palsy. Consequently, it was assumed that the SARS-CoV-2 virus
resulted in a neurological affection of the recurrent nerves.

We started a therapy with intravenous methylprednisolone,
inhalations, and oxygen via nasal mask. While there was
no improvement, we performed a laterofixation according to
Lichtenberger (9) under intubation anesthesia, using a special
endo-extralaryngeal needle carrier instrument to lateralize the
paralyzed vocal fold in the sense of an arytenoidopexy. Apart
from hyperplastic vestibular folds, which occur compensatory
after vocal cord palsy, no morphologic features such as tumors
or scars on the vocal cords were found intraoperatively.

Thereafter, there was a marked improvement in dyspnea
(Figure 2) and the patient could be discharged to outpatient
follow-up care The patient still showed a high graded dysphonia
that changed to a R1B3H3 in the “RBH”-scale and improved to
34 points in the VHI. The voice quality changed from a rough
to a breathy voice due to the unmodulated air passing the post-
therapeutic significant glottal gap. In the laryngostroboscopic
examination, the fixed vocal folds hardly vibrated and there
is a large glottal gap during attempted phonation. Still, there
were no recognizable mucosal waves and amplitudes. The voice
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FIGURE 2 | Post-operative finding via laryngoscopy after laterofixation on the

right side: The right vocal fold is fixed laterally (white arrow) and thus widens

the glottic gap, while the position of the left vocal fold is unchanged (black

arrow). The vestibular folds are less swollen.

range profile was slightly improved, but there was still a high
graded hoarseness as hearable in the additional material. After
several weeks, the patient returned with worsening of dyspnea,
and a laser posterior cordectomy was performed, which resolved
the dyspnea, nevertheless it did not improve the patient’s voice
quality (Figure 3). The patient is currently stable and continues
to be seen in regular intervals.

DISCUSSION

Different neurological symptoms have been described in the
context of a SARS-CoV-2 infection.

In a systematic review, an overall average of 59.45% of patients
experienced olfactory disturbance (3). Ageusia and anosmia are
specific symptoms of COVID-19 and, in contrast to other flu-
like infections of the upper airway, do not seem to be caused
by nasal congestion or rhinorrhea (2). Rather, a neurotoxic
effect of the virus on the sensory cells of the nasal and oral
mucosa may occur (10). To determine whether the presented
patient also showed sensory deficits, we performed olfactory
testing. Hyposmia, (specifically identification, discrimination,
and threshold) was found. Besides presbyacusis, other testing
of the vestibular, gustatory, and hearing functions showed no
signs of impairment. In light of the currently hypothesized
pathomechanism of SARS-CoV-2 by binding to the angiotensin-
converting enzyme 2 (ACE2) as his receptor and entering the
nervous system (11), the evidence of anosmia suggests that the
virus had infiltrated the patient’s nervous system. This makes a
neurotoxic effect of the virus on other nervous structures, such as
the brain nerves, seem plausible, at least in theory. However, due
to the fact that olfactory impairment seems to occur at a very high
frequency in the context of COVID-19 infections, whereas motor
paralysis is reported as a very rare phenomenon, no definite
causal relationship can be deduced here either.

FIGURE 3 | Post-operative finding via laryngoscopy after laser posterior

cordectomy: The posterior portion of the glottic gap is open (white arrow),

while the anterior portion of the right vocal fold is still swollen postoperatively

(black arrow).

Besides a differential diagnosis of COVID-19 associated vocal
cord palsy with the infection, we discussed intubation damage.
However, there was no stridor during the inpatient stay in the
rehabilitation center, and dyspnea was not pronounced at that
time. In addition, intraoperatively there were no morphologic
changes of the vocal folds (such as scarring strands) that would
go beyond compensatory hyperplasia of the vestibular folds.
Therefore, it seems unlikely that any bilateral intubation trauma
would have become symptomatic and clinically noticeable only
weeks later. However, no clear causal association between focal
paralysis and infection with SARS-CoV-2 can be demonstrated at
this stage of research.

The time from the classic symptoms of COVID-19, such as
fever and cough, to the onset of neurologic failure was longer in
our case, 46 days, than in most published cases of cranial nerve
palsy. Specifically, it appears that the palsy of the eye muscles
(controlled by the fourth, fifth and sixth cranial nerves) occurs
earliest within the scope of the infection, namely within a few
days (12–14). However, it should also be noted that there were
still failures of the cranial nerves that control the eye muscles in
individual cases with a significantly longer latency; e.g., bilateral
trochlear palsy was only described after 11 days (15).

Palsy of the cranial nerves that lie further caudally, such as
the seventh cranial nerve, has also been described after about
1 week, thus leading to COVID-associated Bells paralysis (4).
Also branches of the cervical plexus like the phrenic nerve,
which innervates the diaphragm, have also been described as the
sites of COVID-associated paralysis. In these patients, specific
symptoms appeared ∼1 week after general symptoms of the
disease began (5).

An affection of the ninth cranial nerve (the glossopharyngeal
nerve) was described in a patient who developed oropharyngeal
dysphagia 29 days after the first symptoms of COVID-19 (7).
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To the best of our knowledge, a report on paralysis of the 11th
or 12th cranial nerves (accessory and hypoglossal nerves) has not
yet been published.

Syndromes in which multiple cranial nerves fail, similar to
Miller Fisher syndrome, are described with an onset latency of
3–5 days (12).

In summary, it can be speculated that cranial nerves, which
are further cranial, are affected more often and show earlier
failures, whereas caudal cranial nerves are affected less frequently,
and if they are affected, they are affected later in the course
of the disease. This observation is congruent with the fact
that an affection of the brain stem was detected in a mouse
model used in a previous study on the SARS-CoV virus and
that this virus enters the brain primarily via the olfactory
bulb (16).

The temporal differences in the involvement of the different
can be determined by the anatomical location of the different
nerves and their core areas; however, different theories exist on
the pathophysiological mechanism of nerve damage. The virus
appears to have a direct effect on the affected nervous structures,
such as the olfactory bulb, when early-onset failures, such as
odor reduction occur. For late-onset failures, the time course
contradicts a direct neurotoxic effect of the virus because the
late-onset palsy described above developed at times when the
virus no longer caused systemic symptoms. Rather, it is currently
assumed that molecular mimicry leads to a virally triggered
autoimmune response of the infected person, which is directed
against the nerves and their supplying vessels. This corresponds
to the suspected pathomechanism in the post-viral olfactory
dysfunction (17). Fotuhi et al. suggest a classification system
called Neurocovid Stage I–III (6). In Neurocovid Stage I, the
extent of SARS-CoV-2 binding to the angiotensin-converting-
encyme-2 (ACE2) receptor is limited to the nasal and oral
mucosa, resulting in a limitation in smell and taste. Persistence
and progression of the infection can lead to Neurocovid Stage II
where focal palsy occurs due to the above-mentioned molecular
mimicry, possibly due to vasculitis in the nerves and muscles
triggered by the hyperactivated immune system. In stage III,
a cytokine storm damages the blood-brain barrier, including
symptoms, such as delirium, encephalopathy and/or seizures.

Previous electron microscopic studies indicate that the virus
has a high affinity for the ACE2 receptor and that the receptor
plays an important role in penetrating the nervous system (18).
Reports show that the incidence of hyposmia as a result of
COVID-19 infection is different by region. While relatively few
patients (5%) experienced hyposmia (19) in the initial infection
area of Wuhan, China, European studies show significantly
higher incidences of hyposmia (up to 88% of those infected) in
the context of COVID-19 (20). Initial studies also show that a
higher allele frequency of an intron variant of ACE2 (rs4646127)
can be found in Asia (21) and that the different variants of the
ACE2 receptor have a different affinity for SARS-CoV-2 (22).
However, a clear risk gene for the neuronal manifestation of
COVID-19 infection has yet to be identified. Therefore, it is
speculated that therapy with ACE inhibitors might increase the
risk of a nerve attack due to SARS-CoV-2. In our case, the patient
was treated with an ACE inhibitor (ramipril) due to arterial

hypertension. However, retrospective studies (23) do not seem
to prove this and advocate for the continuation of drug therapy
because of the organo-protective benefits of ACE inhibitors.

A retrospective study found neurological manifestations
especially in patients with lymphopenia, thrombocytopenia,
and higher blood-urea concentrations (19). Our case showed
lymphopenia with 1.05∗10E9/L (reference range 1.4–3.2∗10E9/L)
and thrombocytopenia with 117 ∗ 10E9/L (reference range
165–387∗10E9/L), but no increased urea values during the
phase of nerve paralysis. However, during the initial COVID-
19 pneumonia, there was an increased urea level with 108.3
mg/dl (reference range 21–43 mg/dl) and lymphocytopenia (1.04
∗ 10E9/L) with normal thrombocytes at the same time.

In most of the published case reports, therapy with i.v.
corticoids and i.v. immunoglobulins were initiated, resulting
in a clear improvement in symptoms overall. Recurrence palsy
plays a special role in the case described in this report
because its occurrence (especially bilateral) can lead to an acute
life-threatening risk to the airway and spontaneous healing
cannot occur.

CONCLUSION

In addition to the typical symptoms and forms of manifestation,
COVID-19 can cause complications in individual cases that
do not correspond to the average appearance. Sensory and
motor deficiency symptoms (a neuronal affection of SARS-CoV-
2) should be considered, especially for high-risk patients, and
further diagnostics and specific therapies should be initiated.
Vocal cord paralysis can also occur as a rare complication in the
setting of or following COVID-19 infection andmay be due to the
neurotoxic effects of SARS-CoV-2. It is important for clinicians
to consider this as a possible differential diagnosis in COVID-
19 patients with dyspnea. Close interdisciplinary coordination is
also highly recommended.
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COVID-19 is increasingly being linked to brain health impacts. The emerging situation

is consistent with evidence of immunological injury to the brain, which has been

described as a resulting “brain fog.” The situation need not be medicalized but rather

clinically managed in terms of improving resilience for an over-stressed nervous system.

Pre-existing comparisons include managing post-concussion syndromes and/or brain

fog. The objective evaluation of changes in cognitive functioning will be an important

clinical starting point, which is being accelerated through pandemic digital health

innovations. Pre-morbid brain health can significantly optimize risk factors and existing

clinical frameworks provide useful guidance in managing over-stressed COVID-19

nervous systems.

Keywords: SARS-CoV-2, coronavirus, brain inflammation, cognition, neuromodulation, neuroplasticity, mental

health, moral injury

INTRODUCTION

The Coronavirus 2019 (COVID-19) pandemic has manifested in many clinical presentations.
Central nervous system (CNS) involvement is not a rare complication of this virus. In the current
analysis, we postulate that: (1) pre-morbid brain health may be a significant modifiable risk
factor when considering clinical sequelae; and (2) a framework similar to concussion management
may provide helpful guidance in next-steps for COVID-19 clinical management. In this way,
CNS related concerns can be represented as treating an “over-stressed” nervous system. It is
not desirable, from a public health perspective, to create a unifying diagnosis that potentially
“medicalizes” COVID-19 related CNS symptomatology and dysfunction to the detriment of
empowering environmental and lifestyle choices that are within a patient’s control.

This article first summarizes current state of knowledge pertaining to neuroinflammation and
the neurological consequences related to COVID-19, then suggests “brain health” risk factors
amenable to modification, and proposes means to measure cognitive brain function in a cost-
effective and efficientmanner, with simple strategies to potentiallymitigate long-term consequences
of post COVID-19 “brain fog.” Similar concepts around brain fog have been identified in
association with concussion, anoxic insult, and chemotherapy. While any one of these may serve as
a potential model, given its prevalence the concussion model is adopted in this brief analysis.

228

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2021.630986
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2021.630986&domain=pdf&date_stamp=2021-09-27
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:ryan@healthtechconnex.com
mailto:markus.besemann@forces.gc.ca
https://doi.org/10.3389/fneur.2021.630986
https://www.frontiersin.org/articles/10.3389/fneur.2021.630986/full


D’Arcy et al. COVID-19 Brain Health Management

IMMUNOLOGICAL INJURY TO THE BRAIN

CNS involvement with COVID-19 is real, measurable, and
potentially modifiable. Increasing evidence has demonstrated
that COVID-19 is associated with CNS dysfunction, as
demonstrated by a range of neurological and mental health
symptoms spanning from acute to potentially chronic conditions
(see literature review below). We propose an approach to
prevent, mitigate and rapidly identify the small but significant
minority of those with residual symptoms realizing that the
reasons for residual symptoms might be complex and multiple.
The underlying pathophysiology of this involvement appears to
revolve around neuroinflammation, a common factor amongst
many conditions affecting neurological function. The propensity
toward inflammation is dependent on many variables, of which
some are modifiable. Consequently, there is a constellation of
physical, psychological, and cognitive factors that contribute to
whether or not a specific injury leads to functional disability or
not. This model is not dissimilar to those currently in place for
concussion care (1).

SARS-CoV-2 was initially thought to infect primarily the

lower respiratory tract and cause lung damage. However,

a growing body of evidence suggests that under certain

circumstances SARS-CoV-2 can infect the CNS and cause

neurological complications (2). It was clear even in the
early months of the COVID-19 pandemic that neurological
manifestations, such as headache, dizziness, confusion, ageusia
and anosmia were common in more than 50% of the hospitalized
COVID-19 patients (3, 4). Surprisingly, acute cerebrovascular
disease with increased risk of stroke is also emerging as
an important neurological complication in hospitalized
patients with severe COVID-19 disease (5, 6). The long-term
consequences of these symptoms on brain health may not be
realized for years or decades. While our knowledge on the
neurological impacts of SARS-CoV-2 continues to evolve, the
lessons learnt from recent studies can provide an important
roadmap to advance our understanding of SARS-CoV-2
pathogenesis (7–9). Neuropathological examination of post-
mortem brain specimens obtained fromCOVID-19 patients have
shown acute hypoxic-ischemic changes in the cerebellum and
loss of neurons in cerebral cortex, hippocampus and cerebellar
Purkinje cell layer. Further testing of brain tissue using molecular
and immunohistochemical analysis revealed the presence of
low levels of viral ribonucleic acid (RNA) or nucleocapsid
proteins (9). In a case series study, early post-mortem brain
magnetic resonance imaging (MRI) scans of COVID-19 patients
demonstrated hemorrhage, posterior reversible encephalopathy
syndrome and non-specific deep white matter changes, possibly
due to the blood-brain barrier (BBB) breakdown (8). Another
study showed elevated plasma levels of neurofilament light chain
protein (NfL), a marker of neuronal injury and glial fibrillary
acidic protein (GFAP), a marker of astroglial injury in COVID-19
patients, suggestive of direct CNS damage (7). Although these
studies provide evidence of CNS damage in COVID-19 patients,
whether these lesions are due to direct viral infection of the
brain could not be established and further mechanistic studies
are warranted.

The blood-brain barrier (BBB) represents a formidable
barrier that prevents harmful substances, including viruses
from entering the CNS. SARS-CoV-2 possibly deploys several
strategies to evade the innate immune responses, traverse the
BBB and gain entry into the CNS (10). The spike protein
of SARS-CoV-2 binds the angiotensin converting enzyme-2
(ACE-2) receptor to infect brain endothelial cells and activate
inflammatory and thrombotic pathways (11, 12). Given the
importance of the BBB for the maintenance of cerebral blood
flow, cerebrovascular endothelial cell dysfunction could lead to
alterations in BBB function. SARS-CoV-2 infection has been
associated with meningitis and pan-encephalitis and viral RNA
was detected in the cerebrospinal fluid (CSF) of a COVID-
19 patient (13, 14). A case of acute hemorrhagic necrotizing
encephalitis on MRI scans has been reported in COVID-19
patients, suggestive of hyperinflammation (15). In addition,
increased serum and CSF levels of proinflammatory cytokines,
IL-1β, and IL-6 have been reported in SARS-CoV-2-associated
encephalitis (16). Systemic exposure to pathogenic levels of
proinflammatory mediators could result in immunopathogenic
and neuronal injury (17), eventually leading to cognitive
dysfunction. Similar to the 1918 Spanish Flu pandemic,
with reports of encephalitis lethargica and post-encephalitis
parkinsonism (18), case study evidence of parkinsonism has
emerged after SARS-CoV2 infection (19). Therefore, it is
important to diagnose and treat the neurological manifestations
in COVID-19 patients at an early stage in the disease process to
limit the long-term sequelae.

FACTORS AFFECTING RESILIENCE AND
RECOVERY

Public health measures to limit the transmission of SARS-
CoV-2 have also consequently impacted conventional evaluation
and treatment options and practices. Like any complex
condition, a bio-psycho-social model is needed that integrates
the inflammation effects with those related to psychosocial and
other stressors. CNS care in a COVID-19 era involves treating
an already over-stressed nervous system. Care can involve
addressing multiple factors spanning from direct neurological
injury, mental health, post-traumatic stress disorder (PTSD), and
potentially extending to the emerging concept of “moral injury”
when the impact to front-line responders and many others is
also considered.

In this respect, COVID-19 can expose vulnerabilities in brain
resiliency and challenge a host of underlying factors that support
brain health. Cognitive and mental health complaints appear
to be emerging as early reported symptoms (20). In essence,
COVID-19 has stressed the nervous system, but a system that in
many cases was already stressed to begin with. As any biological
homeostatic system, resilience can be seen as a common thread
that brings together CNS injury, cognitive functioning, general
mental health and resiliency, PTSD, andmoral injury. Prevention
and recovery therefore involves searching for links (diet, exercise,
sleep, et cetera) to some key factors that can be influenced in
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order to manage common symptoms that have previously not
been understood to be connected.

CLINICAL MANAGEMENT NEXT STEPS

By comparison, all consensus guidelines for concussion
management show that reassurance and expectation for a
positive outcome are the single most important factors in
management. It is reasonable to assume that for a multi-factorial
condition such as COVID-19, barring any evidence to the
contrary, a similar approach should be implemented. Given the
significant amount of media-coverage and the already escalating
toll on mental health, public policies that encourage and promote
pro-active approaches to pre-habilitation and “normalization”
of non-specific symptoms might avoid potentially inappropriate
and costly labeling of non-specific neurological symptoms.
As any practicing neurologist will certainly attest, there is no
shortage of “functional neurological disorder” in daily practice.
A consensus statement has been recently published to guide
rehabilitation post-COVID-19 (21).

A recent review has outlined five major categories of
modifiable personal factors that contribute to baseline brain
health and which may be protective against various CNS
conditions: (1) exercise; (2) cognitive stimulation; (3) sleep; (4)
dietary considerations; and (5) social connectedness (22). The
detailed review of these is beyond the scope of this article, but
a few points are worthy of mention. The effects of physical
activity on brain function are well-established. The effects of
brain-derived neurotrophic factor (BDNF) on neuroplasticity
and neuromodulation are well-known. Regrettably, with some
exceptions, COVID-19 public health measures have affected
the access to exercise facilities or outdoor activity for many.
Physical activity needs to increase prominently in public health
messaging as lack of exercise is a major cause of chronic
diseases (23). In the now famous video “23 ½ h,” Dr. Michael
Evans makes a very compelling argument that it only takes
30min of brisk walking per day to achieve most exercise
related health benefits (24). Clearly this mode of exercise should
be available to all in a COVID-19-safe manner. The role of
cognitive stimulation has gained greater awareness, with various
applications and technologies available to help facilitate cognitive
and mental well-being (25). The importance of sleep and diet
for brain health has been validated and amply documented, with
dietary considerations particularly focused on anti-inflammatory
diets (e.g., omega-3 fatty acids and medium chain triglyceride
supplementation, magnesium, Intermittent fasting and Ketosis,
etc.) (26). Simple modifications in this domain could have
significant impacts in reducing the pre-morbid burden of dietary-
related CNS inflammation that may predispose individuals to an
“inflammatory storm” that may have otherwise been potentially
less severe. Finally, if social connectedness is key to cognitive and
brain health, there is an interesting paradox brewing insofar as
the precise tools used to contain the spread of disease may be
contributing directly or indirectly to long-term disease burden
from a CNS perspective.

THE IMPORTANCE OF COGNITIVE
FUNCTION

By the same token, measuring cognitive function in an objective
manner would allow for serial tracking of CNS involvement and
recovery. In contrast to traditional neuropsychological testing,
which can be time-consuming and is increasingly challenging
to access in a post-COVID-19 era, there have been several
recent digital health advances in cognitive evaluation. A number
of user-friendly, portable cognitive/behavioral evaluation
technologies have been developed (e.g., BrainFX, CBS Health,
BrainHQ, etc.). Novel portable neurophysiological options
are also emerging. In terms of the most recent advances in
neurotechnology capable of deployment to clinical frontlines,
portable electroencephalography (EEG) can now provide non-
invasive, objective, neurophysiological, monitoring systems (e.g.,
BrainScope, NeuroCatch R© Platform, and eVox System) and
may prove beneficial in mitigating the long-term consequences
of cognitive impairments from COVID-19. The key clinical
management advance here is early and sensitive evaluation,
which can lead to earlier and more effective interventions.

As the medical axiom states: You can’t treat what you
can’t measure. In HIV, it took more than a quarter of a
century to establish the HIV-associated neurocognitive disorder
HAND (27). Accordingly, it will be important to start with
evaluating basic cognitive complaints within the framework
of an over-stressed nervous system and anticipate the rise of
descriptors such as “brain fog” similar to that which occurs in
concussion. Historically, rapid, objective, and accurate clinical
evaluation of cognitive function has been difficult, particularly
now in the pandemic era. However, digital health advances
have overcome the inherent challenges of cognitive screening
and neuropsychological testing that rely on subjective behavioral
responses that can be error prone (28). Through the use of
portable EEG, it is possible to obtain objective neurophysiological
testing through low-cost, clinically accessible technologies (29).
These devices have been used, particularly for point-of-care
concussion management, and are actively used in the current
pandemic era (30).

Specifically, cognitive evoked potentials are increasingly being
shown to be useful within a vital sign framework that overcomes
historical clinical limitations of EEG. The timing for such
an advance is critical. Recent CNS COVID-19 reports have
highlighted the importance of objectively monitoring vital
neurocognitive functions over the longer term (30). Modeled
from vital sign frameworks, cognitive brain function can be
monitored as an objective, sensitive, physiological evaluation
of evoked responses that is clinically accessible, particularly in
pandemic times (31–35). The basic framework uses a portable
EEG for rapid, automated, standardized evaluation of three
established cognitive evoked potentials for Auditory sensation
(36), Basic attention (37), and Cognitive processing (38) in
under 10min. In a post-pandemic era, the deployable features of
this type of digital health technology are becoming increasingly
important tools to investigate subjective cognitive complaints.
The detection of subtle cognitive changes may provide further
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alignment between COVID-19 and concussion in terms of
mitigation strategies. Here, emerging cognitive rehabilitation
advances will be important to begin evaluating in future
prospective studies.

DISCUSSION

COVID-19 has pushed our personal and collective resources
to their limits, with evidence-based impacts on cognitive and
related brain health issues. The good news remains that there
is much that can be done to improve individual resilience to
CNS injury/inflammation.

As we have seen with the relative concussion epidemic, in
order to fully understand multisystem, complex issues one needs
to start at the beginning with simple yet solid foundational
evidence-based interventions that are: (1) Cost effective; (2)
Clinically effective; and (3) Result in functional improvements or,
at the very least, mitigate functional impairment and (4) Can be
implemented on a large-scale.

What other epidemics and pandemics have taught us is
that, reducing complex problems to simple organ system injury
models rarely provides tangible and lasting solutions at least in
the domain of human functioning and participation in life [as
per the World Health Assembly’s International Classification of
Functioning, Disability and Health, (39)]. In fact often, well-
intentioned medically focussed interventions can inadvertently
contribute to the problem for which the solution was intended.
Notwithstanding the immense and commendable work that
is being done in the realm of these other conditions, it is

paramount that over-medicalization or dramatization of CNS
symptomatology and dysfunction be kept to the minimum
required to recognize and treat serious pathology but not to
create a new pandemic of “worried-well” as has been the case in
other areas of health care, specifically in the case of concussion.
In the current analysis, we conclude that pre-morbid brain health
optimization can significantly modify the risk factors and that
a framework similar to concussion management provides useful
guidance in clinically managing over-stressed nervous systems.
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