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Editorial on the Research Topic

Combining Simulations, Theory, and Experiments into Multiscale Models of Biological Events

The number of publications that combine experiments and computer simulations has been growing
steadily in the last 10 years. However, several challenges still need to be addressed in order to achieve
a systematic integration, especially in the context of multiscale modeling of biological events.
Computationally connecting the different scales—or more precisely the different system
resolutions—constitutes one such difficulty of multiscale models. A second challenge is to
choose the sources of experimental data that are most informative for parameterizing both the
structural model and its inter-molecular interactions. This includes the modeling of the experimental
conditions in order to avoid the misinterpretation of the results.

Quantummethods (QM) coupled to atomisticmodels (AT) have been instrumental in addressing,
for example, the catalysis within an enzyme binding pocket. Five contributions in this special issue
investigate biophysical events using multiscale QM/AT methods. To computationally explore slower
events occurring in larger systems, it is often necessary to simplify the structural details of the system,
an operation known as coarse-graining (CG). In this special issue, seven contributions employ such
reduced models and three couple them with higher-resolution models, in a multiscale fashion. The
interested reader is referred to the comprehensive reviews of Sun et al., and Giulini et al., as a guide to
understanding the mathematical foundations of coarse-graining and multiscale methods, how to
parameterize the inter-molecular forces and the relationship between a model resolution and its
ability to reproduce the physicochemical properties of interest.

In this special issue, we have collected 22 manuscripts that emphasize the current efforts of the
international scientific community to combine together experiments and computer modeling of biological
events at multiple scales. A number of experiments have been performed across the different studies. They
are cryo-EM, cryo-ET, FRET, EPR, AFM, CD, 3C1 and biological assays. Computational methods include
MD, MC, NMA, MSM, ChK2, in silico mutations and whole-cell modeling. The investigated systems are
represented at one or multiple among the QM, AT or CG resolutions or as a continuum, as in the Finite
Element (FE) method.
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Two research groups benchmark their methods for
generating biomolecular structures. Fuchigami et al.
combine AFM with MD simulations of a CG nucleosome
model, modified to account for the AFM tip. With the aim
of finding the nucleosome structure consistent with AFM
images, the authors simulate nucleosome conformers while
simultaneously inferring the geometric AFM tip radius on
which the model (and the images) depend.

Kulik et al. combine a multiscale AT/CG protocol and mid-
resolution cryo-EM maps to search the conformational space of
multi-domain proteins and protein complexes sizing up to 2,211
residues. Their protocol is able to fit a flexible molecular model to
cryo-EM maps with reasonable accuracy, therefore capturing states
of a biomolecule that differ by large-scale movements, such as in the
case of the DNA polymerase. The authors observe that their
multiscale protocol is more beneficial for large biomolecules.

Harastani et al. present a cryo-ET sub-tomogram data analysis
approach, called HEMNMA-3D, to study continuous
conformational variability of the nucleosome. By generating a
reference structure from the sub-tomograms and its normal
modes, the authors retrieve known collective modes of a
nucleosome. At variance with NMA-based methods, which fit
an atomic structure to a cryo-EM map, HEMNMA-3D is
designed to obtain a low-dimensional representation of the
heterogeneity of a given set of EMmaps, such as sub-tomograms.

Gilbert et al. devise a whole-cell modeling strategy and apply it to
generate single-cell chromosome conformations of a genetically
minimal bacterial cell, called Syn3A. Cryo-ET images are used to
determine the cell size and ribosome distribution, within which the
circular CG chromosome is embedded. This work is interesting in
several aspects. A number of observations and model assumptions,
grounded in the careful analysis of gene expression profiles and cryo-
ET images, lead the authors to suggest that the chromosome of Syn3A
cells has no substantial supercoiling or interactions between DNA
segments that are distant in sequence. These initial assumptions are
validated using contact maps calculated from preliminary 3C
experiments and they generate a final cell model in which the
circular chromosome is organized into territories and is not
separated from the other cellular components, as instead occurs in
E. coli. This study and that of Zha et al. emphasize that the generation
of an accurate spatialmodel is often a delicate, preliminary step before
any simulations can be conducted. In order to calculate the various
model parameters, in fact, it is of utmost importance to choose
informative biophysical and complementary methodologies to
validate the computational results.

Several other DNA models exist in the literature, as reviewed
by Sun et al.. Notable among them is oxDNA, which Sengar et al.
describe in detail, discussing when it is worthwhile to use it and
providing guidance to setting up and analyze the simulations.

Two additional large-scale models are presented by Zha et al.,
Saeedimasine et al.. The first research group tests an ultra coarse-
graining strategy to generate microtubule models from 1 to 12
microns. Because these models reproduce known experimental
mechanical properties, they are usable in future investigations
aimed at understanding the supramolecular organization and
small deformations of bundles of microtubules Saeedimasine et al..
propose a CG/FEmultiscale model of the axolemma, which provides

an explanation for the susceptibility of neurons to rupture under an
applied mechanical stress. At the smallest scale, this model includes
themyelin sheath and nodes of Ranvier lipid bilayers, represented at a
CG resolution. Combining the results of the CG simulations with a
FE model of the entire axon, the authors conclude that rupture is
more likely to occur at the nodes of Ranvier instead of myelin,
because myelin is observed to be more mechanically resistant.

Protein co-translational folding is the focus of the works of
Chwastyk and Cieplak, and Yadav et al. The first research group
studies how the geometry of the ribosome influences the co-
translational folding of three model proteins, by performing
simulations with different ribosome structures. The simulations
suggest that protein synthesis is more obstructed in eukaryotes than
in archaea and bacteria, which is consistent with constriction sites
found in different positions of the exit tunnel of these ribosomes.
Whether these constrictionmechanisms are active in cells is unclear
from the simulations alone because the ribosomes are approximated
as rigid bodies. To predict the rate of protein synthesis or the
populations of different nascent polypeptide states from an mRNA
sequence, it is advisable to use mathematical and chemical kinetics
modeling Yadav et al.. Since the predictions are sensitive to the
codon translation rates used, Yadav et al. discuss how to estimate
these kinetic parameters accurately from ribosome profiling data.

The characterization of intrinsic disorder in proteins is an important
biophysical problem with many potential medical applications. An
especially challenging aspect is the characterization of weak deviations
from the random-coil state, due to protein residues that interact non-
randomly andweakly. Towards this aim, Ritsch et al. combine distance
distributions obtained from multiple EPR experiments with protein
ensemble modeling. Because the method to analyze the raw EPR data
typically influences the shape of the distance distributions used for
structure generation, a model that attempts to detect weak deviations
from a random-coil may contain a bias. To reduce such bias, the
authors propose an overlap criterion for the distance distributions and
a two-step modeling strategy to introduce the distance constraints.
Under such controlled conditions, 19 distance distribution restraints
are sufficient to observe deviations of a 133-residue segment from
random-coil behavior.

Protein intrinsic disorder is also modulated by Post Translational
Modifications (PTMs) and the presence of lipid membranes. Chiki
et al. study the effects of PTMs on the aggregation of the first 17 amino
acids of the Huntingtin protein. Key to the experimental success of
their study is the production of phosphorylated T3 or acetylated K6
mutants within a background of oxidized M8. MD simulations
suggest that the modified peptides explore a dynamic ensemble of
disordered and helical conformations, with the helical conformations
possessing a high fraction of short N-term helices. The increased
content of N-terminal helical structure retards aggregation, in
agreement with time-dependent AFM images. Consistent with a
heterogeneous structural ensemble of the modified peptides, the
distance distributions calculated from the simulations show a wide,
often multi-peaked shape. Given the potential to detect weak
deviations, Ritsch et al. EPR experiments performed on the
Huntingtin protein could be used in the future to confirm these results.

Using molecular simulations, Christensen et al. study the
effects of lipid bilayers of varying composition on the insertion
mechanism of IAPP, a disordered peptide involved in glucose
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metabolism and type-II diabetes. The authors observe stabilization
of IAPP helical states near the membrane and a dependence of
IAPP insertion on the lipid composition. The presence of
cholesterol causes the membrane to become more ordered and
therefore less accessible to IAPP. The authors propose this
mechanism to be protective with regard to amyloid formation.

Klein et al. extend their previous computational method to design
a FRET sensor for the detection of cyclic guanosine 3′-5′-
monophosphate (cGMP). As a first step, the authors generate the
structure of the FRET sensor, which includes a linker and a FRETpair
made of two fluorescent proteins. Subsequently, CGMD simulations
are performed to exhaustively sample the conformations of themodel
sensor. The good agreement between the calculated and in vitro
measured FRET efficienciesmakes this method an interesting tool for
the development of small molecule sensors.

Calmodulin (CaM) has been extensively investigated both
computationally and experimentally. Nde et al. generate a CG
model of CaM, which includes the effects of Ca2+ binding, albeit
implicitly. The authors re-parameterize the AWSEM force field in
order to reproduce CaM’s radius of gyration and the ratio of
CaM’s open and closed states. Such a method might be applicable
to study other flexible multi-domain proteins that respond to the
binding of small molecules.

In the remainder of this editorial, we highlight six investigations
on the theme of small molecule or protein binding to either proteins
or RNA. Kaushik and Chang study the association between theHIV
protease and xk263, under conditions of continuous flow of ligands
close to a non-polar monolayer surface. Such conditions are
reminiscent of those used in Surface Plasmon Resonance (SPR)
for measuring binding constants. Besides the results of the
Brownian dynamics simulations, this work could be applied to
study the effects of solvent flow and surfaces on the association of
any protein-ligand system, therefore paralleling and
complementing SPR measurements.

Using enhanced MD simulations, Chyży et al. study the binding
of neomycin to four single-mutants of the N1 riboswitch. The
nucleobase mutations in the apical loop, although distant from the
binding pocket, significantly affect the neomycin-riboswitch
interactions. By carefully comparing their results with previous
experimental work, the authors provide insights into the riboswitch
structure-dynamics–activity relationship.

Narkhede et al. investigate the contribution of electrostatic
forces to the selectivity of viral proteins SPICE and VCP towards
the C3b complement protein, a key component of the complement
immune system. By combining electrostatic calculations, in-silico
alanine scanning and hotspot analysis, the authors identify sites
resistant to local perturbation, where the electrostatic potential is
likely to be evolutionary conserved. Their calculations are further
supported by cofactor activity assays.

Liao et al. study the interactions between the neuropeptides
PACAP and VIP with several receptors. Using a combination of
homology modeling, enhanced MD simulations for the binding
process andMarkov State modeling, the authors find that different
pathways are explored depending on the specific receptor/
neuropeptide pair. The predicted receptor conformations and
transition rates along the different binding pathways might be
a useful dataset for guiding future drug design efforts.

Kalayan et al. investigate the influence of excipients on protein
precipitation, which is relevant to the field of pharmaceutical protein
formulations. The authors apply molecular simulations and their
Energy-Entropy Multiscale Cell Correlation method to understand
why lysozyme precipitates when interacting with the polyanion
tripolyphosphate (TPP) but not with citrate. Overall, solvent and
protein stabilization upon TPP binding are expected to drive binding
via cross-linking with other proteins and therefore precipitation. By
coarse-graining the current model, future simulations might enable
observation of spontaneous cross-linking events, therefore validating
this putative mechanism of precipitation.

Charzewski et al. propose a time-dependent QM/MM
multiscale methodology to study the covalent docking
between beta-lactamase and boron-based inhibitors. The
authors apply this methodology to covalently dock three
beta-lactamase enzymes and two boron-based inhibitors,
obtaining several insights into the intermediate states. The
simulation results suggest that this methodology could be
effective in finding docking pathways by other boron
inhibitors as well.

We conclude this editorial with a few additional messages.
The first regards the importance of carefully estimating the
experimental conditions. For example, when using FRET/EPR
data, the effects of the fluorescent/spin label should be
assessed either with control experiments Ritsch et al. or by
directly incorporating the effects of the label into the model
Klein et al. Similarly, the inclusion of geometrical features of
an AFM tip can improve the model based on AFM images
Fuchigami et al. The second message concerns the use of
complementary experimental data when a single experimental
technique is not sufficient Ritsch et al. or when it is necessary
to validate a complex model Gilbert et al. Lastly, we underline
that building a multiscale model is beneficial to test new
hypotheses on complex events such as brain injury
Saeedimasine et al. or to have access to multiple time and
length scales for calculating different experimental quantities
accurately Zha et al.
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Microtubules are one of the most important components in the cytoskeleton and play a
vital role in maintaining the shape and function of cells. Because single microtubules are
some micrometers long, it is difficult to simulate such a large system using an all-atom
model. In this work, we use the newly developed convolutional and K-means coarse-
graining (CK-CG) method to establish an ultra-coarse-grained (UCG) model of a single
microtubule, on the basis of the low electron microscopy density data of microtubules. We
discuss the rationale of the micro-coarse-grained microtubule models of different
resolutions and explore microtubule models up to 12-micron length. We use the
devised microtubule model to quantify mechanical properties of microtubules of
different lengths. Our model allows mesoscopic simulations of micrometer-level
biomaterials and can be further used to study important biological processes related
to microtubule function.

Keywords: microtubule, persistence length, ultra-coarse-grained model, mechanical property, convolutional and
K-means coarse-graining

INTRODUCTION

Microtubule (Fratzl and Weinkamer, 2007; Conde and Caceres, 2009) is one of the primary
components of the cytoskeleton which is responsible for the morphology of eukaryotic cells. The
building blocks of microtubules are α- and β-tubulins which assemble into a hollow cylinder
structure with grooves. The length of a single microtubule can reach 10 µm and they are associated
with each other in a hierarchical organization such as in the axons (Lazarus et al., 2015; Soheilypour
et al., 2015). A microtubule is generally composed of 13 protofilaments (Kollman et al., 2010) lying
side by side along the longitudinal direction, where the position of each protofilament shifts slightly
to each other. The mechanical properties (Franz et al., 2020) of microtubules play important roles in
sustaining the cell shape, executing the mitotic division and related physiological functions. For
instance, they serve as tracks for the motor proteins kinesin (Gittes et al., 1996) to transport the
substances required for cells.

In order to uncover the microscopic mechanisms of microtubules for transporting substances in
cells, much effort has been put into measuring the biomechanical properties (Dye et al., 1993; Gittes
et al., 1993; Venier et al., 1994; Kurachi et al., 1995; Felgner et al., 1996; Vinckier, 1996; Wagner et al.,
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1999; Kis et al., 2002; Le Goff et al., 2002; VanBuren et al., 2002; de
Pablo et al., 2003; Janson and Dogterom, 2004; Pampaloni et al.,
2006; Schaap et al., 2006; Hawkins et al., 2013; Cross, 2019;
Szatkowski et al., 2019) of microtubules associated with their
function, such as Young’s modulus E, the flexural rigidity κ, and
the persistence length lp. Previous studies have exploited a variety
of advanced techniques including thermal fluctuation (Gittes
et al., 1993), hydrodynamic flow (Venier et al., 1994), atomic
force microscopy (Vinckier, 1996), and optical tweezers (Felgner
et al., 1996) to measure these mechanical quantities. So far,
reported Young’s modulus E, the flexural rigidity κ, and
persistence length lp for microtubules with different lengths
span a large range of 0.31–7.0 GPa (Kurachi et al., 1995;
Vinckier, 1996; Kis et al., 2002; de Pablo et al., 2003; Schaap
et al., 2006; Kis et al., 2008), 0.37–4.0 × 10−23 Nm2 (Gittes et al.,
1993; Venier et al., 1994; Kurachi et al., 1995; Felgner et al., 1996),
and 2.0–6.3 mm (Gittes et al., 1993; Venier et al., 1994; Janson
and Dogterom, 2004; Pampaloni et al., 2006), respectively. Kis
et al. (Kis et al., 2002) first reported that the observed
phenomenon of the measured persistence length was length-
dependent, caused by the anisotropic association of
heterodimeric α- and β-tubulins. This finding was further
demonstrated by Pampaloni et al. (Pampaloni et al., 2006)
using the single-particle tracking method and they observed
that the persistence length lp increased for short lengths
varying from 2.6 to 47.5 μm. It approached a constant value of
lp
∞ � 6.3 mm for lengths beyond 21 μm. All measured results

unambiguously imply that microtubules do not follow the
behavior of an ideal elastic rod and fail to be described with
the worm-like chain model (Kroy and Frey, 1996; Taute et al.,
2008) based on the isotropic hypothesis.

Theoretical modeling of microtubules (Kasas et al., 2004a;
Kasas et al., 2004b; Molodtsov et al., 2005; VanBuren et al., 2005;
Schaap et al., 2006; Deriu et al., 2007; Heuvel et al., 2007; Deriu
et al., 2008; Dima and Joshi, 2008; Deriu et al., 2010; Sept and
MacKintosh, 2010; Wells and Aksimentiev, 2010; Grafmuller and
Voth, 2011; Ji and Feng, 2011a; b; Peter and Mofrad, 2012;
Grafmuller et al., 2013; Theisen et al., 2013; Kononova et al.,
2014; Lazarus et al., 2015; Soheilypour et al., 2015; Havelka et al.,
2017; Stevens, 2017; Szatkowski et al., 2019; Tong and Voth,
2020) faces a huge challenge due to the micrometer length. All-
atom molecular dynamics (MD) simulations have been primarily
used to investigate the atomistic details of the interactions
between the α- and β-tubulins (Deriu et al., 2007; Deriu et al.,
2008; Sept and MacKintosh, 2010; Wells and Aksimentiev, 2010;
Grafmuller and Voth, 2011; Grafmuller et al., 2013; Havelka et al.,
2017) for short microtubules. Recent all-atom simulations (Tong
and Voth, 2020) reached a length scale of a 1 μm microtubule
including 3 protofilaments. Additionally, coarse-grained (CG)
models (Dima and Joshi, 2008; Deriu et al., 2010; Ji and Feng,
2011a; Ji and Feng, 2011b; Theisen et al., 2013; Kononova et al.,
2014; Lazarus et al., 2015; Soheilypour et al., 2015; Stevens, 2017;
Szatkowski et al., 2019) have also been used to model longer
microtubules. For instance, Deriu et al. (Deriu et al., 2010)
constructed a 350 nm long microtubule to estimate its
mechanical properties based on the elastic network model

(Bahar et al., 1997; Atilgan et al., 2001; Xia and Lu, 2012; Xia
et al., 2013a). Nevertheless, their model was still far shorter than
the microtubules measured in experiments (Pampaloni et al.,
2006). In some special CG models, each tubulin monomer of a
microtubule was even represented by one CG bead (Ji and Feng,
2011a; Ji and Feng, 2011b; Lazarus et al., 2015) so that the whole
microtubule model could reach the micrometer length.
Alternatively, other theoretical methods based on continuous
mechanics such as the finite element method (Kasas et al., 2004a;
Kasas et al., 2004b; Schaap et al., 2006) were also used to evaluate
the mechanical properties of macromaterials. However, these
methods had an obvious disadvantage that they could not
reflect the correct surface contour of microtubules, especially
for the functional grooves serving as binding sites to interact with
other proteins.

Ultra-coarse-grained (UCG) models (Dama et al., 2013;
Davtyan et al., 2014; Dama et al., 2017; Zhang et al., 2017a; Jin
et al., 2018; Jin and Voth, 2018) have been rapidly developed
in recent years and applied to simulate the functions of
biomolecular complexes such as the mechanical properties
of F-actin (Katkar et al., 2018), the assembly of HIV capsids
(Grime et al., 2016), and two-state conformational changes of
proteins (Zhang et al., 2020). The bead resolution of UCG
models is lower than the high-resolution models, with one
UCG bead usually representing more than a few residues or
even secondary structure elements. Previously, Voth and
coworkers (Zhang et al., 2008; Zhang et al., 2009)
developed the essential-dynamic coarse-graining (ED-CG)
method to optimize the UCG representation (Sinitskiy
et al., 2012) of proteins and later extended the framework
to the density-based ED-CG method (Zhang and Voth, 2010).
Xia and coworkers (Li et al., 2016a; Li et al., 2016b; Zhang
et al., 2017b) developed a stepwise local iterative
optimization-based fluctuation-maximization coarse-
graining method to derive the optimal UCG representation
(Wu et al., 2020) of large biomolecules. Further, Zhang et al.
(Zhang et al., 2019) developed the convolutional and K-means
coarse-graining (CK-CG) method to derive the UCG
representation of biomolecules directly from the low-
resolution cryo-EM density data (Ming et al., 2002;
Esquivel-Rodriguez and Kihara, 2013), which allows the
construction of models without any atomistic details
needed further. Next, the UCG beads could be
parameterized using the energy potential of the Multiscale
Virtual Particle-based Anisotropic Network Model (MVP-
ANM) (Xia et al., 2013b; Opron et al., 2014; Xia, 2017) for
further functional studies. In the previous study (Zhang et al.,
2019), we have validated the combined CK-CG and MVP-
ANM methods in constructing UCG model for a correct
estimation of the biomechanical properties of short
segments F-actin and collagen fibrils. In this work, we
attempt to verify the usefulness of UCG models in
simulating the mechanical properties such as the length-
dependent persistence length of long microtubules and
expect to apply it to the simulation more complicated and
hierarchically organized biomaterials (Zapp et al., 2020).
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COMPUTATIONAL AND SIMULATION
DETAILS

Data Preprocessing and CK-CG Method
The density file EMD-4043(Grange et al., 2017) of microtubule
used for model construction was downloaded from the cryo-
EM data bank online. The original length of microtubule in the
file EMD-4043 is only 32 nm, in a resolution of 18.5 Å. In order
to construct long microtubules, we replicated the density data
shown in Figure 1A along the longitudinal direction and
extended the 32 nm length to the different lengths ranging
from 1 to 12 μm. Then, we removed the density of solvents
from the raw data with a technique described in the previous
work (Zhang et al., 2019) and evaluated the normalized density
µs (r) according to µs (r) � (µ(r) − µmin)/(µmax − µmin), where µ
(r) denotes the cryo-EM density data. After the preprocessing
on data, the remaining densities are positive and ready as the
input for coarse-graining by using CK-CG method.

Coarse-graining density data is actually to cluster the
adjacent discretized density data into a group of single
UCG particles. In the conventional K-means method, the
positions of center points in initial guess are generated
randomly, which renders the convergence quite slow. In the
CK-CG method, we utilized an idea similar to the
Convolutional Neutral Network model (Li et al., 2019) to
generate the initial guess for clustering, including the steps
of the domain partition, density convolution, and max-

pooling, displayed in Figure 1B. In more detail, the cryo-
EM density data is firstly divided into a series of 3D block
matrixes with the voxel bijl, where the subscripts i, j, and l
denote dimensions. In the next convolution operation, we used
a 3D Gaussian kernel matrix with the voxel kijl to execute a
Hadamard product based convolution operation and saved the
matrix values hijl.

In the subsequent max-pooling, the position corresponding
to the largest density value in each block was chosen as the
initial position of UCG bead for clustering. It has to be
mentioned that if the expected number of UCG beads N is
larger than the number of divided blocksM, the excess number
of (N-M) beads might be automatically assigned into the
blocks with largest values. After generating the initial guess,
the clustering using K-means was carried out until the
convergence was achieved. More details about the procedure
of CK-CG workflow are described in the previous work (Zhang
et al., 2019).

Multiscale Virtual Particle-Based
Anisotropic Network Model
UCG beads derived from CK-CG could be connected with
harmonic springs and parameterized to be the MVP-ANM
model developed by Xia et al. (Xia et al., 2013b; Opron et al.,
2014; Xia, 2017). The energy function EMVP−ANM is a sum of
harmonic interactions as shown in Eq. 1, where cij is a

FIGURE 1 | (A) The data reprocessing includes replicating the density, removing solvent, and normalizing density. (B) The process of coarse-graining cryo-EM data
into 12 UCGbeads using the CK-CGmethod. The density map is first divided into 9 blocks. The Hadamard product for each block is obtained by using a Gaussian kernel
and the subsequent max-pooling generates the initial positions of 9 UCG beads. The positions of the remaining 3 UCG beads are determined by other maximal densities
in the blocks. Then, the 12 positions serve as the centers for clustering to yield the final UCG beads.
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heterogeneous force constant, dij and d0ij denote the instantaneous
and equilibrium distances of pairwise UCG beads i and j, and
H(dc − d0ij) is a Heaviside function depending on a cutoff
distance dc.

EMVP−ANM � ∑
i

∑
j> i

cij(dij − d0ij)2 · H(dc − d0ij) (1)

The parameter cij contains both the contributions from the
density and distance of pairwise UCG beads i and j, with the
expression shown in Eq. 2:

cij � A · (1 +mi)(1 +mj) · e−d2ij/R2 (2)

The parameter A is a scaling factor to control the mechanical
properties of whole model and can be determined by fitting the
experimental Young’s modulus using force-clamped MD
simulation (Isralewitz et al., 2001; Gräter and Grubmuller,
2007) as shown in Figure 2A. The term of (1 +mi)(1 +mj) is
a function representing the mass contributions from the beads i
and j. The distance contribution is defined as a Gaussian function
in which R is a parameter to control the bond strength of pairwise
beads i and j, and it is only taken into account if the equilibrium
distance d0ij is less than the chosen cutoff dc. A minimal cutoff can
be determined through MD simulations by judging whether the
structures of microtubules remain stable all the time. Please see
the details for determining a minimal dc described in
Parameterization of UCG Model below. Additionally, the
parameter cij decays significantly as dij > 3R. Thus, we define
the magnitude of R to be one-third of the minimal cutoff of dc.

Evaluation of Persistence Length FromUCG
MD Simulation
We performed the UCGMD simulation of microtubules at 300 K
and calculated the persistence length according the definition in
Eq. 3:

〈cos θ〉 � e−L/lp (3)

where 〈cos θ〉 means the average value of the cosine of θ
(0≤ θ ≤ π/2) and θ denotes the intersection angle of two
tangent lines at the positions of the head and tail of
microtubules. In order to calculate it, we recorded the
Cartesian coordinates of all the beads every 12 ps in UCG MD
simulation, and obtained a number of frames for further analysis.
For the structure in each frame, we used a 3D liner regression
method in Figure 2B to solve Eq. 3 and derived the persistence
length from the calculated average value of 〈cos θ〉. All the UCG
MD simulations mentioned above were carried out with using the
software LAMMPS (Plimpton, 1995) in the NVT ensembles at
300K. The Langevin dynamics simulation (Grønbech-Jensen,
2019) was performed under the nonperiodic condition with
the damping factor being 10.0 ps. The time step of simulation
is chosen to be 10.0 fs for the simulation of Young’s modulus. For
the estimation of persistence length from a long time UCG
simulation, since the lightest bead in the UCG model is
around 6.0 kg/mol, nearly 6000 times greater than H atom, we

FIGURE 2 | (A) An illustration of force-clamped MD simulation for
measuring Young’s modulus of microtubule. (B) The estimation of persistence
length using a method of 3D linear regression based on thermal fluctuation.

FIGURE 3 | The time cost for building models with (A) different numbers
of UCG beads and (B) different lengths. The blue squares and red dots
represent the results from the K-means and CK-CG methods, respectively.
The integers in plot (A) denote the exact time cost in minutes. In the plot
(b), the set of data are fitted with two quadratic curves, respectively.
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chose a moderate value of 3.0 ps for the integration steps. The
UCG MD simulation for a single microtubule with micrometer
length could reach the time scale of 60 ms.

It has to be mentioned that the persistence length of
microtubules was frequently estimated from the bending
measurements in experiments (Kurachi et al., 1995; Felgner
et al., 1996; Kis et al., 2008) and simulations (Kononova et al.,
2014; Wu and Adnan, 2018). However, our UCG model is not
suitable for being used in a direct simulation of bending
deformation, since the MVP-ANM potential used in our
model is harmonic and invalid in large deformation. A
simulation of the complicated process such as the dissociation
and association of tubulins from microtubule requires a more
complex potential such as a G�o-like potential (Zhang et al., 2017a;
Poma et al., 2017; Poma et al., 2018; Zhang et al., 2020).

RESULTS AND DISCUSSIONS

Coarse-Graining Microtubules With
Different Bead Resolutions and Lengths
Previously, we have constructed a UCGmodel for a short 160 nm
microtubule (Zhang et al., 2019). In this work, we attempt to
coarse-grain the microtubules with the lengths from 1 to 10 μm
which are much longer than the previous one by 1 or 2 orders of
magnitude. In order to demonstrate the efficiency of CK-CG over
the conventional K-means methods, we test its time costs in
coarse-graining the microtubules into different numbers of beads
and lengths.

The first test given is the time cost for coarse-graining a 1 μm
microtubule UCG model into different numbers of UCG beads.
The test was done by running C++ language codes with one CPU
on a CentOS platform. As shown in Figure 3A, the derived
numbers of UCG beads for a fixed-lengthmicrotubule range from
7609 to 33480 beads per micrometer, corresponding to the
averaged masses of UCG beads from 22.0 to 5.0 kg/mol.
Figure 3A shows that the performances of the CK-CG and
K-means methods are similar to each other in deriving the
smaller numbers of UCG beads such as 7009, 9300, 11160,
and 13950, whereas they exhibit distinct difference for large
UCG numbers. The time cost of coarse-graining into 16740,
18600, 20925, and 27900 UCG beads by using CK-CG is almost
half of that of K-means. For instance, coarse-graining into 27900
beads by CK-CG needs merely 149 minutes, while the K-means
method costs 339 min. Also, it is seen that the time costs of both
methods for deriving 23914 and 33480 UCG beads are
comparable to each other. However, no case in which
K-means was obviously superior to CK-CG was observed in
our ten tests. Thus, the performance of CK-CG in coarse-
graining a fixed-length microtubule into different beads
outperforms the K-means method by 47.4 ± 44.4 hours with
95% confidence interval, from the statistical perspective. In this
test, no simple correlation such as the linear relationship was
found to exist between the time cost and the number of coarse-
grained beads.

Next, we tested how the time cost changes with the increased
lengths of microtubules under the same computational condition.

The UCGmodels were built with the constraint of 7609 beads per
micrometer, with the microtubule lengths changing from 1 to
10 μm. Figure 3B shows the comparison of time cost of using CK-
CG and K-means methods for coarse-graining. It is surprisingly
observed that the time cost exhibits a regular quadratic
relationship with the increased length. It is found that the
performances of two methods are nearly the same as the
microtubules are short below 5 μm. Beyond that, the difference
of time cost between them gradually becomes large with the
increased length of microtubule. At the length of 10 μm, the CK-
CG method saves 10 h more than K-means to optimize a total
number of 76090 UCG beads. This comparison indicates that a
good initial guess of center positions is important for accelerating
the convergence of data clustering, especially for the biomolecules
with the length at large scale.

Determination of a Minimal Model for
Microtubule
After validating the efficiency of CK-CG for coarse-graining
micrometer microtubules, we are ready to construct a minimal
model of microtubule for its mechanical simulation. The so-call
“minimal model” must meet two requirements for functional
study: one is that the number of UCG beads for a given length is
so minimal that it can reduce the simulation time to the maximal
extent. Secondly, it is expected that this model is capable of
maintaining the geometric feature of microtubule, especially for
the functional grooves. According to the two requirements, we
designed a minimal model with the possible minimal number of
beads, which is illustrated in Figure 4.

As shown in Figure 4A, the groove along the longitudinal
direction of a microtubule is formed by two adjacent
protofilaments. The simplest and minimal UCG model to
characterize the feature of a groove is to represent each
tubulin with two connected beads, with one shared by two
neighboring tubulins. Since the average molar mass of tubulin
is 55 kg/mol (Fratzl andWeinkamer, 2007), the estimated average
molar mass of UCG beads is 22.5 kg/mol. To derive the positions
of UCG beads, we set the average mass with the value of 22 kg/
mol in the coarse-graining by CK-CG, which lead to a number of
7609 beads per 1 μm in Coarse-Graining Microtubules With
Different Bead Resolutions and Lengths. Figure 4B shows the
side and transverse views of the resulting microtubule model,
where each UCG bead is virtualized with solid dots and the 13
protofilaments are in different colors.

Figure 4C shows the zoomed top and side views of a segment
of density map of 8 tubulins, labeled with the upper cases A-H,
where the density points belonging to the same UCG bead centers
are in the same color. From the top and the side views, we can see
clearly that the bottoms of most grooves are well represented by
one UCG bead, such as the density regions connecting the
adjacent “AB”, “DE”, or “BC” tubulins. Meanwhile, two
adjacent tubulins such as “DG”, “BE”, or “EH” along a
protofilament share the same beads. From the view of UCG
beads, it can be judged that the UCG beads representing the
groove bottoms of tubulins usually reside in a lower position,
while the beads representing the tubulins along the
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protofilaments stay in a high position. Thus, the coarse-grained
beads between two adjacent protofilaments maintain a geometric
“V” shape along the contour surface of the microtubules, which is
potentially important for functional studies including interacting
proteins.

Parameterization of Ultra-Coarse-Grained
Model
Using the potential energy ofMVP-ANMmodel of Eq. 1 to describe
the interaction between pairwise UCG beads requires determining
the two parameters R and A in Eq. 2. As mentioned in Multiscale
Virtual Particle-Based Anisotropic Network Model, the parameter R
could be defined as one-third of minimal cutoff distance dc. In a

word, we need to determine a minimal cutoff at first. As shown in
Figure 5A, we constructed the UCGmodels with the cutoff set as the
tentative values of 6.0, 6.5, and 7.0 nm, respectively. Meanwhile, the
parameter A adopts the empirical values of 6.0 × 10−3, 8.0 × 10−3,
and 1.0 × 10−2 kg−1·s−1. After the 60 ms MD simulation, we found
that all the three microtubule models with the cutoff of 6.0 nm have
collapsed and their structures could not keep stable anymore.
Besides, the UCG models with the cutoffs of 6.5 and 7.0 nm are
stable in the long timeMD simulation andmaintain their tube shape
well. The simulation results also indicate that the stabilities of
microtubules did not depend on the choices of magnitudes of the
parameter A.

To rationalize the choice of a cutoff of 6.5 nm, we analyze the
number of harmonic bonds formed between pairwise UCG beads.

FIGURE 4 | (A) An illustration of the minimal number of UCG beads required for maintaining the grooves of microtubule. (B) The transverse and longitude views of
the built models. (C) Zoomed top and side views of the density map of 8 adjacent tubulins, labeled with the upper cases A-H. The different colors denote the density
regions which are clustered into the UCG beads, with the corresponding UCG bead centers shown.

FIGURE 5 | (A) The structures of constructed UCG models for microtubules at the initial simulation time and after 60 ms. The cutoff distances adopt the values of
6.0, 6.5, and 7.0 nm for three models, with the tested parameter A adopting 6 × 10−3, 8 × 10−3, and 1 × 10−2 kg−1 s−1, respectively. (B) The UCG bond distances below
4.4 nm are colored in gray, while those bonds in 4.4–6.6 nm are in pink. (C) The UCG bonds below 4.0 nm in gray and those in 4.0–4.4 nm are colored in orange.
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In Eq. 2, the strength of harmonic bonds is weakened with an
increasing distance R. When dc adopts the cutoff 6.5 nm, we find
that numerous bonds that describe strong interactions are defined
between UCG beads, shown as gray lines in Figure 5B (Ji and
Feng, 2011a; Kononova et al., 2014). Within the distance between
4.4 and 6.6 nm (2R–3R), bonds describing nonbonded
interactions are found (shown in pink), and they are roughly
40 to 150 times weaker than the bonds within 4.4 nm. In contrast,
Figure 5C shows the formed bonds within 4.0 nm in gray and the
bonds in 4.0–6.0 nm in orange, as the cutoff adopts 6.0 nm. It is
obvious that the two adjacent protofilaments in the UCG model
do not feature sufficient bonding to keep the whole cylinder
structure stable. Thus, the reason of collapse with the cutoff
6.0 nm lies in the lack of sufficient pairwise interactions to
maintain the microtubule’s stability.

Eventually, we chose the cutoff to be 6.5 nm for all models and
the resulting R value is 2.2 nm. The scaling factor A is determined

by fitting the longitudinal Young’s modulus of a 100 nm short
microtubule. There are two reasons that we need to fit Young’s
modulus to derive the parameter A. One is that the longitudinal
Young’s modulus is an independent property and has no
influence on the measurement of the persistence length
according to Eq. 3. The second is that the longitudinal
Young’s modulus is independent of the length L of
microtubule and only intrinsically determined by the strength
of force constant cij. Thus, the parameter A in Eq. 2 is tightly
correlated with the longitudinal Young’s modulus.

Kis et al. (2002) reported that a microtubule had a longitude
Young’s modulus of 100 MPa under 300 K. In our force-clamped
MD simulation, one terminal of the 100 nm microtubule is fixed,
while the other one is pulled with a constant force of 2.36 nN. In
Figure 6A, different values of the parameter A are used for UCG
models to measure the difference between the simulated
displacements and the experimental result around 13.0 nm. As
the parameter A adopts the value of 1.0 × 10−2 kg−1·s−1, the
simulated displacement of microtubule reaches the experimental
value well. So far, both the parameters R and A for the models of
microtubules are determined and ready for the subsequent
simulation of mechanical properties. In addition, we also
performed force-clamped UCG MD simulations with the same

FIGURE 6 | (A) The relationship of the terminal displacements of
microtubule models with the different values used for the parameter A in the
units of kg−1 s−1. The black dashed line represents the experimental
displacement and the colorful curves denote the displacements of
microtubule models changing with time under an external force of 2360 pN in
force-clamp MD simulations. (B) The curves of the displacements of
microtubule models under the different forces ranging from 1.04 to 2.36 nN,
where the black hollow circles denote the average values of the end-to-end
displacements sampled from 100–200 ns. The black line denotes the linear
fitting of the circles.

FIGURE 7 | (A) The angle fluctuation of a 2 μmmicrotubule model within
60 ms. The inset displays the histogram distribution of angles with a black
fitted Gaussian curve. (B) The orange solid squares show the relationship of
the simulated persistence length and flexural rigidity with respect to the
contour length, fitted with a blue curve based on Eq. 4. The green hollow
circles denote the experimental measured results (Pampaloni et al., 2006). The
simulation time ranges from microseconds to milliseconds for the different
microtubules.
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parameters (A � 1.0 × 10−2 kg−1·s−1 and R � 2.2 nm) under
different pulling forces ranging from 1.04 nN to 2.36 nN, as
shown in Figure 6B. It can be observed that the equilibrated
displacements have a good linear relationship with the applied
forces. Based on the slope of the linear relationship, Young’s
modulus is calculated to be 99.2 MPa, which reproduces Young’s
modulus under different forces and verifies the validity of UCG
model (Kis et al., 2002).

Evaluation of Persistence Length
The persistence length of microtubule is evaluated by using MD
simulation based on its thermal fluctuation. It should be noted
that the experimental measurement of thermal fluctuation usually
occurred at time scale of seconds. However, it is impossible to
perform such a long time MD simulation in silicon, even by
employing the UCG model. The previous simulation performed
by Ding et al. (Ding and Xu, 2011) for evaluating persistence
length from thermal fluctuation was 50 μs. In our UCG MD
simulation, we used an integration step of 3 ps and the simulation
time for microtubules with micrometer length could reach
milliseconds. A number of MD trajectories were saved for
further analysis. Figure 7A shows the recorded intersection
angle of a 2 μm microtubule changing with time in MD
simulation. It can be seen that the angle fluctuates between 0.0
and 17.0 degrees and the angles almost exhibit a Gaussian
distribution in the inset. The data in Figure 7A suggest that
our MD samplings are sufficient to evaluate persistence length.

Based on the sampled structures of microtubules with different
lengths, we calculated the persistence lengths corresponding to
different lengths according to Eq. 3. Figure 7B shows the change
of calculated persistence length lp changing with the contour
length, with the longest microtubule being 12 µm. The calculated
flexural rigidity κ according to the formula κ � lpkBT (Pampaloni
et al., 2006) is plotted at the right side of y-axis, where kB is the
Boltzmann constant and T is the simulation temperature. The
simulated data, denoted by the yellow squares, clearly verify that
the persistence length increases nonlinearly with the length.
During the simulated range of length from 0.5 to 12 µm, the
variation tendency of lp is in a good agreement with the
experimental measurements (Pampaloni et al., 2006). In order
to evaluate the magnitude of the persistence length lp

∞, we fitted
the data of calculated lp with the microtubule length L according
to Eq. 4 derived by Pampaloni et al. (Pampaloni et al., 2006). As
shown in Eq. 4 below, the lp has a complicated functional
dependence on the lp

∞ at infinity:

lp � l∞p (1 + 3EI
GkAL2

)
−1

(4)

where E is the longitude Young’s modulus and adopts the
experimental value of 100 MPa (Kis et al., 2002) here, A is the
area of cross section with 25 nm2 for a microtubule composed of
13 protofilaments, I is the area moment of the cross section with
16670 nm4, k is a geometric factor adopting 0.72, and G is the
transverse sheer modulus. Figure 7B shows the fitted blue curve
based on Eq. 4, similar to the fitted one in the previous work
(Pampaloni et al., 2006). The persistence length lp

∞ derived from

our fitting is 7.0 mm, consistent with the experimental value of
6.3 ± 0.8 mm for long microtubules. They also calculated the term
of (3EI/GkA)0.5 to be 21 μm (Pampaloni et al., 2006), which was
considered as a threshold between short and long microtubules.
We further compare our simulation results with the experimental
data denoted by the hollow green circles below 12 μm (Pampaloni
et al., 2006). It appears that our simulation results fit quiet well
with the experimental measurements within the contour length of
10 μm. Besides, in the experimental measurement of
microtubules up to 47.5 μm, the persistence length lp seems to
approach a constant beyond 21 μm. At present, our data obtained
fromUCGMD simulation based on the microtubule models with
the lengths of 0.5–12 μm generated good results for lp and lp

∞

agreeable with known experimental results. In addition, the
calculated values of the flexural rigidity κ for the length of
2–12 μm are in the range of 0.89–11.5 × 10−24 Nm2, falling in
the range of the reported experimental values 3.7–40.0 × 10−24

Nm2 (Gittes et al., 1993; Venier et al., 1994; Kurachi et al., 1995;
Felgner et al., 1996). However, a simulation of microtubules
beyond 21 μm still faces a severe challenge memory
requirement for calculating the interactions between pairwise
particles in the UCG models.

CONCLUSION

In this work, we introduce a systematic strategy to build a UCG
model for microtubule with micrometer length from the cryo-EM
density data. For the large microtubule with micrometer length,
the CK-CG serves as an efficient coarse-graining method to
derive its UCG representation. The comparison of time cost in
coarse-graining the microtubules with the lengths from 1 to
10 μm demonstrates that CK-CG is superior to the
conventional K-means in coarse-graining large systems. A
reasonable minimal model was then determined for modeling
the mechanical properties of microtubules. By means of using the
MVP-ANM force fields, we parameterized the UCG beads and
constructed the corresponding models for the study of
mechanical properties.

We estimated the persistence length of microtubules with
different lengths by using the force-clamp MD simulation
based on thermal fluctuation. The obtained relationship
between the persistence length and contour length accords
well with the previous theoretical and experimental results,
which demonstrates the validity of our method in modeling
the mechanical properties of biomaterials. It is highlighted that
our method has the advantage of being capable of constructing
models directly from the low-resolution density data of cryo-EM,
without any atomistic details required. Thus, it is particularly
suitable for the functional study of macrobiomolecules for which
only low-resolution cryo-EM data are available. Our model relies
on low-resolution cryo-EM data, which is sufficient given our
choice for an ultra-coarse-grained nature of our model. However,
it remains to be examined if higher resolution cryo-EM structures
can further improve models, even those on the very coarse scale
such as the UCG model presented here. However, the current
UCG model is still a sort of ENMs and it is limited to be valid in
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the study of biomechanical properties of biomaterials with small
deformations under external forces. Future work will be invested
into developing more physically meaningful energy potentials for
UCG model and using our method to investigate longer
microtubules and eventually the mechanical properties of a
bundle of microtubules such as those present in axons.
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Short, structured fragments of non-coding mRNA may act as molecular switches upon
binding specific ligands, regulating the translation of proteins encoded downstream this
mRNA sequence. One switch, called riboswitch N1, is regulated by aminoglycosides such
as neomycin. Nucleobase mutations in the apical loop, although distant from the binding
pocket, significantly affect neomycin affinity and riboswitch regulatory efficiency. To explain
this influence, we conducted molecular dynamics simulations using generalized replica
exchange with solute tempering (gREST). Translation assay of a reporter protein in a yeast
system shows that mutating A17 to G in the riboswitch apical loop reduces 6-fold the
translation regulation efficiency of the mutant. Indeed, simulations of the unbound
riboswitch show that G17 frequently stacks with base 7, while base 8 is stabilized
towards the binding site in a way that it may interfere with the conformational selection
mechanism and decrease riboswitch regulatory activity. In the riboswitch complexes, this
single-point A to G mutation disrupts a strong hydrogen bond between nucleotides 5 and
17 and, instead, a new hydrogen bond between residue 17 and neomycin is created. This
change forces neomycin to occupy a slightly shifted position in the binding pocket, which
increases neomycin flexibility. Our simulations of the U14C mutation suggest that the
riboswitch complex with neomycin is more stable if cytosine 14 is protonated. A hydrogen
bond between the RNA phosphate and protonated cytosine appears as the stabilizing
factor. Also, based on the cell-free translation assay and isothermal titration calorimetry
experiments, mutations of nucleotides 14 and 15 affect only slightly the riboswitch ability to
bind the ligand and its activity. Indeed, the simulation of the unbound U15A mutant
suggests conformations preformed for ligand binding, which may explain slightly higher
regulatory activity of this mutant. Overall, our results corroborate the in vivo and in vitro
experiments on the N1 riboswitch-neomycin system, detail the relationship between
nucleobase mutations and RNA dynamics, and reveal the conformations playing the
major role in the conformational selection mechanism.

Keywords: RNA, riboswitch, aminoglycosides, neomycin, molecular dynamics simulations, replica exchange with
solute tempering
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1 INTRODUCTION

Riboswitches are regulatory RNA elements, typically found in 5ʹ-
untranslated regions (5ʹ-UTR) of mRNA and positioned
upstream of the regulated coding sequence. They control gene
expression by directly binding ions and metabolites (McCown
et al., 2017) or responding to changes in pH or temperature
(Bastet et al., 2011). Since additional protein factors are not
necessary for their activity, riboswitches are a valuable tool for
gene regulation in synthetic biology (Serganov and Nudler, 2013;
Berens et al., 2015; Sinumvayo et al., 2018). For example, two
riboswitches can be engineered to form a NOR logic gate
(Boussebayle et al., 2019).

Riboswitches that bind ligands typically contain a ligand binding
sensory domain (aptamer) and expression platform. Interactions
between the aptamer and ligand determine the conformation of
the expression platform. Structural rearrangements of this platform
upon ligand binding influence the expression of genes located
downstream the same mRNA (Berens et al., 2015). Regulation of
gene expression or repression may occur at different levels:
transcription, translation, splicing or mRNA cleavage.

Aptamers are single stranded oligonucleotides that
selectively bind small ligands. They have been designed
even before the discovery of the first natural riboswitch.
Aptamers binding a specific ligand are usually isolated by
an in vitro evolution and selection process (SELEX)
(Ellington and Szostak, 1990) involving screening large
libraries of nucleic acid oligomers (Banerjee and Nilsen-
Hamilton, 2013). Since aptamers are the regulatory parts of
riboswitches, they could be designed to constitute synthetic
riboswitches. The activities of such synthetic riboswitches can
be tested, e.g., by introducing the aptamer to the 5ʹ-UTR of

mRNA in a cell or cell-free system producing a reporter
protein. Then, the regulatory mechanism of the riboswitch
is due to mechanical blocking of scanning the mRNA by the
small ribosomal subunit (Etzel and Mörl, 2017).

A synthetic aminoglycoside-sensing N1 riboswitch (Weigand
et al., 2008) was also discovered through screening of aptamers
that bind aminoglycoside antibiotics. The N1 riboswitch is a 27-
nucleotide-long RNA and is the smallest synthetic riboswitch
found active in vivo (Gottstein-Schmidtke et al., 2014). Its activity
is induced by binding neomycin and was confirmed both in vitro
and in vivo (Weigand et al., 2008). This riboswitch forms a
hairpin with two flexible functional regions: a bulge and apical
loop (Figure 1). Apart from neomycin, N1 riboswitch binds also
paromomycin, tobramycin and ribostamycin. The N1 structure
in the complex with ribostamycin (Duchardt-Ferner et al., 2010)
and paromomycin (Duchardt-Ferner et al., 2016) was determined
by NMR spectroscopy.

The N1 riboswitch is active in yeast if inserted into the 5ʹ-UTR
of an mRNA of a reporter gene (Weigand et al., 2008) expressing
green fluorescent protein. Fluorescence measurements showed
that the expression of green fluorescent protein in yeast depends
on the presence of neomycin that supposedly binds the N1
riboswitch inserted into 5ʹ-UTR. Furthermore, the N1
riboswitch works also for ribostamycin though with slightly
lower regulatory activity (Weigand et al., 2008). Surprisingly,
paromomycin does not inhibit gene expression although it differs
from neomycin by only one chemical group, namely, amino
versus hydroxyl at 6ʹ position of ring I (Supplementary
Figure S1). Using molecular dynamics simulations with
replica exchange (Kulik et al., 2018), we have previously
proposed the reasons for different activities of these ligands by
comparing the dynamics of their complexes. As shown in

FIGURE 1 | (A) Secondary and (B) tertiary structure of the N1 riboswitch in the complex with ribostamycin (PDB ID: 2KXM (Duchardt-Ferner et al., 2010)). (C)
Mutations of nucleobases 14, 15, and 17 of the N1 riboswitch.
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Table 1, dissociation constants for neomycin, ribostamycin and
paromomycin to the isolated riboswitch determined using
isothermal titration calorimetry (ITC) (Duchardt-Ferner et al.,
2016; Weigand et al., 2014) agree with the translation blocking
efficiencies obtained in vivo.

Stopped-flow fluorescence assays of the N1 riboswitch labeled
with cytidine analog at positions 6 and 8 showed that neomycin
binding kinetics is fast and proceeds according to the two-step
binding model, in which the initial non-specific ligand binding is
followed by a specific binding with minor conformational
changes. Also, the study identified the conformational
selection mechanism as dominating in the neomycin binding
(Gustmann et al., 2019).

Several mutations were introduced in the isolated N1
riboswitch to elucidate the importance of the aptamer
sequence for aminoglycoside binding. Mutations of C6, U7,
and U8 nucleotides revealed that the sequence of the bulge is
crucial for the riboswitch activity (Weigand et al., 2011). Various
mutations in the apical loop also hinder riboswitch activity, apart
from U15A (Weigand et al., 2014). Mutational analysis of several
minimal neomycin aptamers similar to N1 have shown that the
formation of the upper stem, between the bulge and apical loop
(Figure 1), is critical for regulatory properties of the riboswitch,
while the sequence of the lower stem may be gently modified
without the loss of function (Weigand et al., 2008). Apart from
activity studies, also dissociation constants show that N1
mutations affect ligand binding (Table 1). For example, the
dissociation constant of neomycin - U14C mutant is two-fold
smaller than of neomycin - N1 riboswitch, although regulatory
activity of the U14C mutant in yeast is preserved (Weigand et al.,
2014) (the relative expression of green fluorescent protein with
and without neomycin is similar as for the non-mutated N1
riboswitch). The experimental Kd of neomycin for the U15A
mutant is close to the reference N1 riboswitch, but the measured
regulatory activity of the U15A mutant in yeast is even better.
Finally, the A17G change drastically increases Kd and decreases
the riboswitch regulatory activity.

To elucidate the link between the nucleobase mutations,
riboswitch dynamics and ligand binding, we performed
generalized replica exchange with solute tempering (gREST)
simulations of selected riboswitch mutants and their
complexes with neomycin. Specifically, we explored the
dynamics of the A17G mutant, which affects the riboswitch

regulatory activity and Kd to the largest extent. For the U14C
mutant, we investigated why in the neomycin complex the
protonated cytosine state is preferred over the deprotonated
state (Weigand et al., 2014). Lastly, we determined the
conformational ensemble of N1 and the U15A mutant in
unbound forms to verify possible enrichment of riboswitch
states preformed for neomycin binding, as suggested by
experiments (Weigand et al., 2014).

2 MATERIALS AND METHODS

2.1 Enhanced sampling methods
Parallel simulations of system copies at different temperatures in
replica-exchange molecular dynamics (REMD) (Sugita and
Okamoto, 1999) increase the sampling of conformations,
which is crucial for elucidating the dynamics of flexible RNA
systems. In our previous work, we applied the REMD method
with 32 replicas to N1 riboswitch with different ligands and
confirmed a significant gain in conformational sampling as
compared to classical MD (Kulik et al., 2018). Here, to reduce
the number of replicas without losing the sampling efficiency, we
employ a recently developed method, called generalized replica
exchange with solute tempering (gREST) (Kamiya and Sugita,
2018). This method stems from REST or REST2 (Wang et al.,
2011; Liu et al., 2005; Moors et al., 2011; Terakawa et al., 2011), in
which the acceptance probability for the replica exchange events
does not depend on the number of explicit water molecules in the
system. This is achieved by dividing the system into a pre-defined
solute region, in which the temperature is exchanged between
replicas, and the solvent region, kept at room temperature during
the simulations. In gREST, the solute selection strategy is more
flexible and the solute can include parts of molecules and selected
potential energy function terms, such as the dihedral-angle term.

2.2 Structure preparation
The structure of N1 riboswitch in the complex with
paromomycin was taken from the RCSB Protein Data Bank
(PDB ID: 2MXS (Duchardt-Ferner et al., 2016)).
Paromomycin was changed to neomycin by replacing 6ʹ-OH
with ammonium group (Supplementary Figure S1). This change
does not influence the binding pose of the ligand as a similar
binding pose is also adopted by ribostamycin in the NMR
structure with PDB ID: 2N0J (Duchardt-Ferner et al., 2016).
Paromomycin, ribostamycin and neomycin are similar, except for
a different substituent at 6ʹ position of ring I (paromomycin: 6ʹ-
OH, ribostamycin: 6ʹ-NH+

3 , neomycin: 6ʹ-NH+
3 ) and lack of ring

IV in ribostamycin that is present in paromomycin and
neomycin. Since paromomycin and ribostamycin exhibit
similar binding mode in NMR-derived N1 structures, then
neomycin, the combination of the former two, should have a
similar mode. The mutant structures were prepared using Pymol
(Schrödinger, LLC, 2010) by replacing appropriate nucleobases.
Since the unbound riboswitch structures were not determined
experimentally, we built them by deleting the ligands. All amino
groups in neomycin were protonated (Kulik et al., 2018).
Structure optimization and calculation of ESP charges of

TABLE 1 | Dissociation constants (Kd) determined from ITC experiments and
regulatory factors (R.f.) calculated as the ratio of relative fluorescence of GFP
expression in the absence and presence of neomycin (Weigand et al., 2014;
Duchardt-Ferner et al., 2016). The smaller the regulatory factor, the lower the
activity of the riboswitch.

Ribostamycin Neomycin Paromomycin

Kd [nM] R.f. Kd [nM] R.f. Kd [nM] R.f

N1 330 ± 30 2.3 9.2 ± 1.3 8.6 5130 ± 26 1.0
U14C − − 24.2 ± 1.5 3.0 − −
U15A − − 11.0± 0.3 10.0 − −
A17G − − 130.9 ± 16.8 1.5 − −
A17C 1530 ± 140 1.1 − 2.9 11890 ± 1550 1.0
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neomycin were carried out in Gaussian 09 with HF/6-31G* level
of theory (Gaussian Inc., 2009). Initial structures were solvated
with a 20 Å shell of TIP3P water molecules around RNA
(Jorgensen et al., 1983). 52 Na+ and 26 Cl− ions were added
using the LEaP program from Amber14 (Case et al., 2014) to
neutralize each unbound system and achieve 100 mM NaCl
concentration, which is the salt concentration used in the UV-
melting experiments of the N1 riboswitch (Weigand et al., 2011).
For the systems with neomycin, 46 Na+ and 26 Cl− ions were
added, while when cytosine was protonated, one more Cl− ion
was necessary. The number of added ions was calculated based on
the number of water molecules in the system. The ion parameters
were taken from (Joung and Cheatham, 2008). Even though the
Mg2+ ions play an important role in the RNA structure-function
(Hayes et al., 2012; Roy et al., 2017a, Roy et al., 2017b, Roy et al.,
2019) and were present in the NMR experiments, their positions
were not determined so they were not considered in the
simulations. GAFF (Wang et al., 2004) parameters for
neomycin were used together with Amber ff99 (Cornell et al.,
1995; Wang et al., 2000) force field for RNA. The force field
parameters for neomycin were validated previously in (Kulik
et al., 2018). The parmbsc0 (Pérez et al., 2007) and χOL3
(Zgarbova et al., 2011) corrections were applied to the RNA
force field (Šponer et al., 2018), previously used in the REMD
simulations of RNA (Kulik et al., 2018; Bergonzo et al., 2014).

2.3 MD and gREST simulations
Energy minimizations, MD and gREST simulations were run with
SPDYN from the GENESIS (v. 1.3 and 1.4) suite of programs (Jung
et al., 2015; Kobayashi et al., 2017). The particle mesh Ewald method
(Essmann et al., 1995) was used to calculate long-range electrostatic
interactions. Lennard-Jones interactions were truncated at 12 Å
cutoff distance and the pair list distance set to 13.5 Å. Water
molecules were kept rigid with the SETTLE algorithm
(Miyamoto and Kollman, 1992). Energy minimizations were
carried out for 5000 steps with steepest descent algorithm with
positional restraints of 10 kcal/mol/Å2 on heavy atoms of RNA and
aminoglycosides. The systems were equilibrated at 310.15 K for 3 ns
in the NVT ensemble with positional restraints gradually decreasing
every 500 ps, whichwas followed by additional 2 ns simulation in the
NPT ensemble without restraints. The atomic coordinates were
saved after the last round of equilibrations to use them as the
starting point for the gREST procedure. Next, for each system, a
30 ns MD production simulation in the NPT ensemble was
performed to calculate the average box size for gREST
simulations. The 100-ns MD production simulation was done in
the NVT ensemble. The previously saved atomic coordinates were
parametrized in LEaP (Case et al., 2014), energy minimized with the
new box size with 5.0 kcal/mol/Å2 harmonic restraints on positions
of heavy atoms of RNA and aminoglycosides, with cutoff distance of
Lennard-Jones interactions at 10 Å and Verlet pair list distance at
11.5 Å. Subsequently, the restart files were used in gREST
equilibration in the NVT ensemble for 150 ps with 5 kcal/mol/Å2

positional restraints and in the NPT ensemble for 150 ps without
restraints. Next, in the gREST production, lasting 300 ns, 8 replicas
were used with exchange attempts every 2000 steps. The solute
region was defined as RNA, aminoglycoside, counterions added to

neutralize the system, and the dihedrals, Coulombic and Lennard-
Jones potential energy terms. The temperatures of the solute region
ranged from 310.15 K to 370.00 K, while the rest of the system was
calculated at 310.15 K (referred to as 310 K hereafter). The RESPA
integrator (Tuckerman et al., 1992) with 2.5 fs time step and SHAKE
algorithm (Ryckaert et al., 1977) were applied to effectively describe
bonds with hydrogens. In conventional MD simulations Langevin
thermostat and barostat (Quigley and Probert, 2004) were used, but,
in gREST, Bussi temperature and pressure control were applied
(Bussi et al., 2007, Bussi et al., 2009). The production simulations are
gathered in Supplementary Table S1. The level of convergence of
the gREST simulations was verified by calculating the overlap
between the covariant matrices of the final gREST trajectory
fragments at 310 K (Supplementary Table S2). The overlap of
the potential energy of replicas and the random walk in the
temperature space in Supplementary Figure S2 confirm that
replicas visit the full range of temperatures. The acceptance ratio
is at least 17% (Supplementary Table S3) and is sufficient for our
simulations (Kamiya and Sugita, 2018).

2.4 Data analysis
For analysis, only the gREST simulation trajectories at 310 K were
used, which is the temperature used in the ITC experiments
(Weigand et al., 2014). The root mean square deviation (RMSD)
was calculated using GENESIS analysis tool (rmsd_analysis)
(Kobayashi et al., 2017) using the initial structure as a
reference. RMSD for neomycin was calculated for all ligand
atoms including hydrogens, after the least squares fitting of
the RNA non-hydrogen atoms to the reference starting
structure. The root mean square fluctuations (RMSF) around
average atom positions, χ torsion angles (defined by
O4′–C1′–N9–C4 atoms) and pseudo-dihedral angles were
analyzed in Gromacs 2019.4 (Abraham et al., 2019). The
pseudo-dihedral angles were defined according to Song et al.
(Song et al., 2009) and were calculated to quantify the flipping of
bases with respect to the RNA backbone. The k-means algorithm
(Forgy, 1965) implemented in the GENESIS analysis tools
(Kobayashi et al., 2017) was used for clustering with a 98%
convergence level to obtain 10 clusters. Hydrogen bonds and
stacking interactions between ligands and RNA were calculated
with cpptraj (Roe and Cheatham, 2013) and MINT (Górska et al.,
2015). Hydrogen bond criteria were: the maximum of 3.5 Å as the
distance between non-hydrogen atoms and the minimum of 150°

for the acceptor-hydrogen-donor angle. First 50 ns of each gREST
simulation was omitted in the analysis, except for the RMSD
calculations. If not stated otherwise, only heavy atoms of RNA
and aminoglycosides were taken into account. Figures were
generated with VMD (Humphrey et al., 1996) and Pymol
(Schrödinger, LLC, 2010).

3 RESULTS AND DISCUSSION

3.1 Nucleotide substitutions in the apical
loop affect the dynamics of the bulge
The RMSD plots as a function of the simulation time are shown in
Supplementary Figure S3. As expected, bound neomycin
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reduces the RMSD of RNA. In all cases, the RMSD stabilizes after
the initial 50 ns of trajectories. Figure 2 shows that consistently
the highest RMSF are in the bulge and apical loop regions of
riboswitches. The fluctuations of the terminal nucleotides are
expected but not considered or discussed because under cellular
conditions the termini are connected with other fragments of
mRNA. Althoughmutations were introduced in the apical loop of
the riboswitch, the fluctuations in the bulge region also change.
For instance, in the bound state, the A17Gmutation causes higher
fluctuations of the bulge as compared to the unmutated N1
riboswitch. There is also a difference in the apical loop
fluctuations between the U14C and U14C+ systems both in
the unbound and bound states. The amplitude of both RMSD
and RMSF values for the N1 riboswitch without mutations
corresponds well with the previous results in the temperature
REMD simulations (Kulik et al., 2018), implying that similar
behaviour of the riboswitch and the same level of conformational
sampling have been achieved in both methods.

3.2 The C6:A17 contact joins the bulge and
apical loop in the riboswitch complexes
To examine how the dynamics of the apical loop affects the
fluctuations of the bulge we compared the representative

structures from gREST simulations (Figure 3 and
Supplementary Figure S4). In the unbound systems, all
colored bases in the bulge and apical loop acquire various
conformations, while the upper and lower stem bases are
stably paired. In the simulations with neomycin, U7 and U8
adopt conformations outside the hairpin, while the apical loop
nucleotides mostly remain stable due to the C6:A17 stacking.
Since this C6:A17 interaction mimics a clip that fastens the bulge
and apical loop together, we call it paperclip C6:A17.

The paperclip C6:A17 is rarely found in the trajectories of the
unbound riboswitch (Table 2), for which the experimental
structures are not known. On the other hand, it is visible in
more than 82% of simulation time in all complexes (Table 3). It is
also present in all experimental NMR models for the riboswitch
complexes with ribostamycin (Duchardt-Ferner et al., 2010) and
paromomycin (Duchardt-Ferner et al., 2016). This finding
implies that the C6:A17 stacking interaction is mainly formed
after neomycin binding and is stabilized by the presence of the
ligand. Assuming the two-step binding mechanism (Gustmann
et al., 2019), the initial neomycin binding is likely followed by the
formation of the C6:A17 paperclip with a minor conformational
change that adjusts the binding pocket to the presence of the
ligand.

The most frequent conformations observed in the trajectories
of unbound riboswitches (named Cluster 1, Cluster 2, Cluster 3 in
Supplementary Figure S5–S9) are characterized by higher
structural variety than those in the bound state. The RNA
binding pocket is often wide open, without any contacts
between the bulge and apical loop. The characteristic paperclip
C6:A17 appears in 35% of the simulation frames of the U15A
riboswitch, including 17% of the conformations in the second
most populated cluster (Figure 3 and Cluster 2 in Supplementary
Figure S8A). This paperclip is not found in the representative
unbound structures of the N1 riboswitch and U14C, U14C+ and
A17G mutants.

3.3 The A17G mutant in the unbound state
forms paperclips involving the U7 base
In the A17G unbound mutant in Clusters 1 and 3 (representing
17 and 16% of the simulation frames, respectively) a strong
contact between the bulge U7 and apical loop G17 bases was

FIGURE 2 | RMSF values per nucleotide at 310 K in: (A) unbound and (B) neomycin-bound riboswitches. RMSF was calculated for all nucleotide atoms including
hydrogen atoms. The block average method was used to calculate the standard error of the mean by dividing the simulation into 10 ns blocks.

TABLE 2 | Selected stacking interactions and hydrogen bonds observed in the
trajectories of unbound riboswitches with standard deviations (in parentheses)
calculated based on the two halves of the trajectory. “–” stands for undetected
interaction. The nucleotide sequence is shown in Figure 1. For the full list of
interactions, see Supplementary Tables S4–S6.

Percentage of simulation time [%]

Base 1 Base 2 N1 U14C U14C+ U15A A17G

Stacking interactions
C6 U7 11 (7) 1 (1) 1 (1) 1 (1) 40 (4)
C6 A17 1 (1) 11 (11) 1 (0) 35 (2) 8 (6)
U7 A17 35 (4) 2 (2) 10 (2) 2 (2) 65 (5)
U8 C12 − 1 (1) 1 (1) 7 (1) 54 (4)
Hydrogen bonds
U8:O2’ C11:N4 − 1 (1) − 1 (1) 52 (2)
U10:OP2 U8:O2’ − 5 (5) 1 (1) 4 (1) 51 (2)
U13:O4 U8:N3 − − − 1 (1) 37 (2)
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found, called paperclip U7:G17 (Figure 3 and Supplementary
Figure S9A). This paperclip exists in the N1 riboswitch without
mutations but it is not common–the U7:A17 stacking is seen in
35% of simulation frames (Table 2). On the other hand, the U7:
G17 stacking interaction is present in 65% of frames. Additional
van der Waals interaction with C6, visible in Cluster 3 of the
A17G mutant, forms a triple stacking interaction, named
paperclip C6:U7:G17. This interaction is present for 25% of
simulation time in the A17G system and was not detected in
other systems (Supplementary Table S5). These paperclips break
and form in time, as illustrated in Supplementary Figure S10.

The A17G mutation changes the dynamics of the C6, U7, U8
and G17 bases, which are able to flip in or out from the

riboswitch. A good way to quantify the flipped-in and flipped-
out states is to analyze pseudo-dihedral angles formed by selected
bases and phosphate groups, which can be carried out according
to the scheme proposed by Song et al. (Song et al., 2009). The
definition of an exemplary pseudo-dihedral angle is shown in
Supplementary Figure S11. Of a particular interest are the high
peaks for the A17G system at 123° for the A17 base and at 170° for
the U7 base, shown in Figure 4A,C, which correspond to the
paperclip U7:G17 arrangement. Figure 4D,E presents the
structural view of the latter paperclip in N1 and A17G
systems. The results of the pseudo-dihedral angle analysis for
all systems are shown in Supplementary Figures S12, S13. Stable
conformations of C6 and A17 bases in the paperclip C6:A17 in

FIGURE 3 | Structures obtained from clustering of N1, A17G and U15A simulations. The paperclips - the van der Waals interactions between the bulge and apical
loop seen in at least 25% of simulation frames - are shown in the insets. For other systems, see Supplementary Figure S4.

TABLE 3 | Selected stacking interactions and hydrogen bonds observed in the trajectories of neomycin-bound riboswitches with standard deviations (in parentheses)
calculated based on the two halves of the trajectory. “–” stands for undetected interaction. The nucleotide sequence is shown in Figure 1. For the full list of interactions,
see Supplementary Tables S7, S8.

Percentage of simulation time [%]

Base 1 Base 2 N1_NEO U14C_NEO U14C+_NEO U15A_NEO A17G_NEO

Stacking interactions
C6 U7 − 35 (4) 18 (17) 10 (2) 26 (2)
C6 U8 27 (3) 4 (2) 5 (1) 10 (7) 7 (2)
C6 A17 87 (3) 93 (1) 94 (4) 94 (4) 82 (7)
U7 A17 − 9 (1) 5 (4) 2 (1) 25 (14)
Hydrogen bonds
G5:O2’ A17:N6* 70 (1) 76 (2) 85 (0) 57 (3) 1 (0)
G5:OP1 C6:N4 23 (1) 26 (6) 18 (2) 17 (5) 3 (1)
G5:OP1 A17:C2* − − − − 31 (4)
G5:OP2 C6:N4 32 (2) 34 (7) 38 (9) 37 (1) 8 (2)
C6:O2’ U7:OP1 32 (1) 19 (6) 30 (1) 21 (5) 4 (1)
U14:N3 A17:OP2 70 (1) − 67 (1) 47 (5) 62 (12)

*in the A17G–mutant A17:C2 changes to G17:NH2, and A17:N6 to G17:O6.
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the riboswitches with neomycin correspond to the high peaks in
their pseudo-dihedral angle distribution (Supplementary Figure
S13). In contrast, the flexible bases in the unbound state reveal a
wide distribution of pseudo-dihedral angles.

3.4 The U8 base is directed towards the
binding site in the unbound A17G riboswitch
The paperclip U7:A17 conformation in the N1 riboswitch is
associated with the C6 pseudo-dihedral angle of −9°
(Figure 4B). In this conformation, the C6 base is directed
towards the riboswitch and, at the same time, U8 is directed
outside. Paperclip U7:G17 in the A17G mutant is also described
by the U7 pseudo-dihedral angle at 170°, but the C6 and U8 bases
locate differently as compared to N1, i.e., C6 is directed outside
and U8 inside the riboswitch (Figure 4E). In turn, the structure
described by the dihedral angle of -149° for C6, shows a
conformation that occurs only in A17G and is characterized
by the presence of C6:U7:G17 triple stacking, as shown in
Figure 4F. The U8 base acquires the same position as in

FIGURE 4 | Pseudo-dihedral angles and types of paperclips observed in the unbound N1 and A17G riboswitches. (A–C) The distribution of pseudo-dihedral
angles for A17, C6 andU7 bases. (D) The structure of the paperclip U7:A17 contact in N1 riboswitch. (E, F) Structures of paperclips U7:G17 andC6:U7:G17 in the A17G
mutant. (G–I) Corresponding molecular surfaces.

FIGURE 5 | The U8 nucleotide surrounding in the unbound state of the
A17G system with hydrogen bonds marked as dashed lines.
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paperclip U7:G17, namely inside the binding site. Molecular
surfaces of the paperclip structures show that the
conformation of the U8 base differs between the N1 and
A17G systems. In the N1 riboswitch (Figure 4G), the binding
site is accessible, but in the A17G mutant this site is occupied by
U8 (Figure 4H,I). In the A17G system, the conformation of the
U8 base in the binding site is stabilized by three hydrogen bonds
(U8:O2’–U10:OP2, U8:O2’–C11:N4 and U8:N3–U13:O4) shown
in Figure 5. The occurrence of those hydrogen bonds varies
between 37% and 52% of the simulation time in the A17G system
and is negligible in all other systems (Table 2). Such position of
U8 in the binding site may withhold neomycin from entering the

riboswitch according to the conformational selection mechanism
and thus result in the depleted activity of the mutated riboswitch.
However, this is just a hypothesis since the presence of U8 in the
A17G binding pocket was not investigated experimentally.

3.5 The A17G mutant changes the hydrogen
bond network around neomycin
The A17G mutation changes the interaction network also in the
neomycin-bound riboswitch. The A to G substitution breaks the
hydrogen bond between G5:O2’ and A17:N6 that occurs in the
N1–NEO structure for 70% of the simulation time (Figure 6A
andTable 3). In the mutant, the N6 amino group is superseded by
a carbonyl group, so a new hydrogen bond is possible with the G5
phosphate oxygen (Figure 6B). However, the latter hydrogen
bond is less stable, as shown by hydrogen bond frequency analysis
(Table 3). In the N1_NEO, U14C_NEO, U14C+_NEO and
U15A_NEO systems, the riboswitch interacts with the N3
group of neomycin through a hydrogen bond with U10:O4 for
more than half of the simulation time (Figure 7). The amino-to-
carbonyl replacement in A17G also results in a new interaction—
G17:O6—NEO:N3. This interaction with neomycin stabilizes the
G17 base for 55% of the simulation time and is not present in
other systems (Supplementary Table S9). The U7 stacking
interaction with G17 also becomes possible in the A17G
complex with neomycin (Supplementary Table S7). Those
interactions point to partial destabilization of G17 in the
A17G complex. The RMSF of base 17 in Figure 2B is higher
in N1 than in the A17Gmutant due to a single event of riboswitch
opening in the N1 complex. This is visible as a peak in the RMSD
plot between 180 and 200 ns (Supplementary Figure S3B, black
line), which reflects an unusual flipped-out position of A17
shown in one of the representative structures of N1 bound
state in Figure 3, present in only 7% of conformations.
Overall, the RMSD values are on average 0.5 Å higher for the
bound A17G structure than for the N1 complex (Supplementary
Figure S3). In step with that, neomycin bound to A17G has some

FIGURE 6 | Location of the G5–A17/G17 and G17–N3 hydrogen bonds in: (A) N1_NEO and (B) A17G_NEO systems.

FIGURE 7 | The shares of selected RNA–neomycin interactions.
* indicates N6 in A17 and O6 in G17. All RNA–neomycin interactions are listed
in Supplementary Table S9.
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additional conformational freedom as its RMSD after RNA fitting
is at some points about two times higher than in other complexes
(Supplementary Figure S14). Due to different interaction
pattern around neomycin, in the A17G complex the ligand is
slightly shifted as compared to the complex without mutation
(Supplementary Figure S15).

The ITC and fluorescence assays for the N1 and A17G mutant
with neomycin are gathered in Table 1. However, the NMR
experiments of the riboswitch were conducted with ribostamycin
only, due to superior spectral resolution of the ligand resonances and
similar binding modes to the riboswitch mutants (Duchardt-Ferner
et al., 2010). Neomycin possesses additional ring IV, whose presence
decreases the dissociation constant and increases the regulatory
activity of N1 riboswitch with respect to ribostamycin (compare
the values for the N1 complexes in Table 1). The imino proton
solvent exchange rate measurements report that the terminal loop
and the U13:U18 base pair in the A17G–ribostamycin complex are
less stable than in the N1 complex (Weigand et al., 2014). According
to our simulation results, in A17G_NEO, the neomycin ring IV
interacts with U18 and G19 phosphate groups. These additional
neomycin–RNA hydrogen bonds might contribute to partial U13:
U18 base pair stabilization in the A17G complex. As a result, we
observe the U13:O2’–U18:N3 hydrogen bond in over 63% and 84%
of frames in N1 and A17G complexes, respectively (Supplementary
Tables S8, S9). Thus, we anticipate that the simulations of the
A17G–ribostamycin complex would lack the stabilizing
interactions between RNA and ring IV of the ligand, leading to
the lower stability of ribostamycin in the complex, larger dissociation
constant and lower regulatory activity in comparison to the
A17G–neomycin complex.

Furthermore, the NOESY spectrum of the 13C-guanine-labeled
RNA suggests the syn conformation of G17 in the A17G complex
with ribostamycin, in contrast to the anti conformation of A17 in the
N1–ribostamycin complex (Weigand et al., 2014). In our simulations
of the unboundA17Gmutant the distribution ofG17 χ torsion angles
shows the syn conformation, while the other unbound riboswitch
variants sample the anti conformation (Supplementary Figure S16).
However, in the complexes with neomycin, all the systems prefer the
anti conformation, with a slight shift in the orientation of the G17
base position due to a different interaction network as pointed out
earlier. The sampling of the syn conformation by G17 seen in NMR
experiments led the authors to suggest that the N3 group of
ribostamycin ring I of ribostamycin does not interact with G17,
the C6:G17 stacking interaction is prevented, which increases ligand
flexibility (Weigand et al., 2014). Taken together, our results point to
other reasons for the observed higher flexibility of the ligand in the
simulations; the C6:G17 stacking is present and a strong hydrogen
bond between G17:O6 and NEO:N3 directs neomycin to bind in a
slightly shifted and less stable position in the A17G binding site with
respect to the N1 complex (Supplementary Figure S15).

3.6 The gREST simulations suggest the
protonation of cytosine 14 in the U14C
mutant
The U-turn motif is characterized by the presence of these
hydrogen bonds U14:O2’–A16:N7, U14:N3–A17:P and A16:

O2’–U18:P (Weigand et al., 2014). Two of these hydrogen
bonds, between U14–A16 and A16–U18 are present in all the
simulations of the neomycin–riboswitch complexes. In the U14C
complex without protonated C, the Watson-Crick edge lacks the
proton underlying the C14:N3–A17:P hydrogen bond. Therefore,
in Table 3, the C14:N3–A17:OP2 hydrogen bond in the
U14C_NEO system is absent and there are no other C14–A17
hydrogen bonds, which destabilizes the U-turn. On the other
hand, the protonated cytosine can form C14+:N3–A17:OP2
interaction, shown in Figure 8, and restore the stability of the
U-turn. This hydrogen bond is present for 67% of the simulation
time in the U14C+_NEO system, which is close to 70% of
simulation frames for the hydrogen bond with U14 in
N1_NEO (Table 3). The U to C function-retaining
replacements in the U-turn motifs have been reported
previously and confirmed in the context of the N1 riboswitch
(Gottstein-Schmidtke et al., 2014; Krepl et al., 2018).

In the unbound state of the riboswitch, the above-mentioned
hydrogen bonds that form the U-turn are rare, even in the U14C+

case (Supplementary Table S6). Thus, when no ligand is present,
the protonation of C14 is not enough for the U-turn formation.
Lack of U-turn causes large fluctuations of the apical loop in all
systems (Figure 2A), especially in the U14C system, while A17 in
the U14C+ mutant fluctuates less than in other systems. Also, the
χ torsion angles of A17 in the U14C+ mutant sample the syn
conformation, similarly to the A17G system, while the N1

FIGURE 8 | Hydrogen bonds between C14+ and A17 observed in the
U14C+_NEO system. The proton connected to the N3 atom is missing in the
U14C mutant without cytosine protonation.
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riboswitch samples the anti conformation. In the unbound
riboswitches, the highest peaks in the pseudo-dihedral angle
distributions of C6, U7, U8, and A17 bases observed in the
N1 system coincide more often with the highest peaks in the
U14C than in the U14C+ system (Supplementary Figure S12).
Those deviations of the U14C+ system from the N1 system prove
that the protonation of C14 cannot mimic the interactions and
dynamics of U14 in the N1 riboswitch. This means that the
U14C+ system is closer to inactive A17G mutant, which may
significantly reduce the number of conformations preformed for
ligand binding. According to the experimental data, the U14C
mutation reduces the N1 riboswitch activity 3-fold, but it is not as
small as for the A17G system (Table 1). Also, the dissociation
constant of the neomycin -U14Cmutant is 3 times larger than for
the N1 system but almost 6 times smaller than for the A17G
system. Thus, the cytosine in the U14C mutant in the unbound
state is probably protonated to a low extent, which would agree
with the imino proton NMR signals for the U14C mutant
(Weigand et al., 2014).

3.7 The U15A mutant displays
conformations preformed for ligand binding
Mutating U15 to A only slightly affects the dynamics of the
riboswitch, which is visible in the similar fluctuations in the
unbound and bound states of the N1 and U15A variants in
Figure 2. The only difference with respect to the unmutated
structure is the presence of the bound state conformations in
the unbound state, such as the paperclip C6:A17 that appears
in the second most populated cluster in the unbound U15A
trajectory - Cluster 2 in Supplementary Figure S8A. The
stacking interaction C6:A17 is not visible in the N1 simulation
(Table 2). Also, the pseudo-dihedral angle distributions of C6,
U8 and A17 in the unbound state resemble those from the
complex (Supplementary Figures S12, S13). Comparison of
1D imino-proton NMR signals of the ligand-free N1 and
U15A systems indicates stronger signals for the U13/18
and U10/21 resonances in the U15A system (Weigand
et al., 2014), confirming the higher degree of preformation
in the latter system. This is in agreement with the frequency of
U13:O2—U18:N3 and U10:O2—U21:N3 hydrogen bonds in
our simulations, which is more than 15% higher in the U15A
simulations than in N1 simulations (Supplementary Table
S6). Thus, the U15A mutation facilitates the conformational
selection and, as a result, increases the regulatory activity of
the N1 riboswitch toward neomycin as evidenced by the
fluorescence assay (Weigand et al., 2014).

4 CONCLUSION AND OUTLOOK

We performed the gREST simulations for a set of single-point N1
riboswitch mutants in the unbound and neomycin-bound states.
The dynamics of the interactions unveiled the reasons behind the
hindered activity of the A17Gmutant. The A17Gmutation affects

the unbound riboswitch dynamics because additional bulge-
apical loop contacts are formed that act as paperclips and narrow
the set of conformations necessary for neomycin entering the
riboswitch. This is in line with the conformational selection
mechanism suggested for the N1 riboswitch. Furthermore, the
dynamical studies of the U14C mutant in different protonation
states of C14 support the protonated state of this cytosine in the
bound state and deprotonated one in the unbound state.
Additionally, the dynamics of the U15A mutant resembles the
dynamics of the riboswitch without mutation, except that in the
unbound state the U15A mutant displays more conformations
preformed for ligand binding than N1. This corresponds to the
slightly higher regulatory activity of this mutant compared to
the unmutated riboswitch (Weigand et al., 2014). Overall, the
U15A mutant is the most effective among the studied
riboswitch sequences because the dynamics of this mutant
in the unbound state facilitates conformational selection for
neomycin binding. Our studies of the mutations introduced to
the N1 apical loop corroborated the experimental data and
provided insight into the riboswitch dynamics–activity
relationship. In the future it would be interesting to
investigate the conformational dynamics of N1 replacing
also the bulge nucleobases, which could unveil the
mutations compensating the apical loop ones analyzed in
this work.
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Case Report: Bayesian Statistical
Inference of Experimental Parameters
via Biomolecular Simulations: Atomic
Force Microscopy
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The atomic force microscopy (AFM) is a powerful tool for imaging structures of molecules
bound on surfaces. To gain high-resolution structural information, one often superimposes
structuremodels on themeasured images. Motivated by high flexibility of biomolecules, we
previously developed a flexible-fitting molecular dynamics (MD) method that allows protein
structural changes upon superimposing. Since the AFM image largely depends on the
AFM probe tip geometry, the fitting process requires accurate estimation of the parameters
related to the tip geometry. Here, we performed a Bayesian statistical inference to estimate
a tip radius of the AFM probe from a given AFM image via flexible-fitting molecular
dynamics (MD) simulations. We first sampled conformations of the nucleosome that fit well
the reference AFM image by the flexible-fitting with various tip radii. We then estimated an
optimal tip parameter by maximizing the conditional probability density of the AFM image
produced from the fitted structure.

Keywords: atomic force microscopy, probe tip, flexible-fitting, coarse-grained molecular simulation, CafeMol

INTRODUCTION

The atomic force microscopy (AFM) is a powerful tool for imaging the structures of molecules bound
on surface at atomic resolution (Ando et al., 2001; Kodera et al., 2006; Kodera et al., 2010; Uchihashi
et al., 2011; Casuso et al., 2012; Ando et al., 2013; Ando et al., 2014; Dufrêne et al., 2017). However,
because the AFM measurement gives only height information and because biomolecular AFM
measurements often provide medium-resolution images, one often seeks molecular structures that fit
to the AFM image. The fitting of rigid molecules can be achieved simply by translating and rotating a
given structure model to find the best match to the AFM image. On the other hand, when the target
molecules are flexible, as are often the case for biomolecules, one needs to allow a structural change of
the model upon superimposing. This so-called flexible-fitting has been successfully applied in the
modeling based on the cryo-electron microscopy data by various methods, for example, the
molecular dynamics flexible fitting (MDFF) method and its extension (Trabuco et al., 2008;
McGreevy et al., 2016; Singharoy et al., 2016), the correlation-coefficient-based method
(Orzechowski and Tama, 2008), and CryoFold (Shekhar et al., 2020). The flexible-fitting can be
realized by using molecular dynamics (MD) simulations, where a fitting score is integrated with the
standard molecular mechanics force field. Recently, we developed a flexible-fitting MD method for
finding molecular structures that fit the AFM image (Niina et al., 2020).

Generally, these fitting processes require knowledge on parameters that characterize the
measurement, of which values are often unknown a priori. Therefore, one challenge is to infer
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these parameters, simultaneously finding the target molecular
structures. In the case of the AFMmeasurement, such parameters
include the size and the shape of the probe tip, which are usually
unknown, but strongly affect the resulting images.

In this brief report, we focus on the inference of the radius of
the AFM probe tip, assuming that it has the spherical shape.
Using a Bayesian statistical inference approach, we examine
feasibility of the inference of the AFM probe tip radius via
flexible-fitting process. We chose a nucleosome as the test
molecule (Figure 1A). The nucleosome consists of a histone
octamer and a duplex DNA of 223 base pairs, and the initial
structure was modeled using crystal structure (PDB ID: 3LZ0), as
described in our previous work (Niina et al., 2017; Fuchigami
et al., 2020).

METHODS

Pseudo-AFM Image Generating Method
The collision detection method: The collision-detection method
is to generate a pseudo-AFM image for a given molecular
structure. It assumes a simple geometry of the probe tip; the
cone-shape with its terminus being a sphere (Figure 1B, lower).
Thus, the tip can be characterized by the two parameters, the tip
radius R and the apex angle θ. In this study, we fix the latter as
θ � 10 degree. For each pixel, we calculate the height of the
bottom of the sphere at which a steric collision between the
tip end and atoms in the molecular models occurs (Figure 1B).

The collision-detection method is available as a tool “afmize”
(http://doi.org/10.5281/zenode.3362044). The BioAFMviewer,
which provides the pseudo-AFM image via a similar method,
is also available (Amyot and Flechsig, 2020).

The smoothed method: While the collision detection method
offers perhaps the most straightforward way to generate a
pseudo-AFM image from a given structure model, the method
does not give a form differentiable with respect to atomic
coordinates of target molecules. This precludes its usage in the
flexible-fitting MD since MD simulations require the force
calculations that include the differentiation of the fitting score.
To this end, we previously proposed a differentiable proxy of the
collision detection method, which we call the smoothed method.
For a target biomolecule represented by its coordinate (xj, yj, zj)
and radius rj for the j-th particle (j � 1, . . . , N), we define the
smoothed height H(sim)

p at the p-th pixel (xp, yp) as

H(sim)
p � c log

⎧⎪⎨
⎪⎩1 +∑

N

j�1

exp⎡⎢⎢⎢⎣−(xj − xp)2 − (yj − yp)2
2σ2

⎤⎥⎥⎥⎦exp(zj + rj
c

)
⎫⎪⎬
⎪⎭. (1)

We assumed xy-plane as the AFM stage and thus that the
z-coordinate represents the height of the target molecule. This
function contains smoothing in xy-directions (characterized by
σ), as well as the smoothing in z-direction (characterized by c)
(Figure 1C).

Importantly, in the smoothed method expression, the tip
radius R does not appear directly. Instead, we previously
showed that the optimal value of σ well correlates with the tip
radius R. Thus, by changing σ, we can effectively generate pseudo-
AFM images of different R’s.

We note that a smaller c corresponds to a closer
approximation to the collision-detection method, but a too

FIGURE 1 | (A) Structure of a nucleosome used in this study. (B and C) Pseudo-AFM images of nucleosome (Scale bar: 5 nm) generated (B) by the collision
detection method and (C) by the smoothed method (upper) and schematic views of these methods (lower).
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small c leads to a sharp change in the force and thus to the
instability of MD simulations. In this study, we fix c � 0.1 nm.

The smoothed method is also available in “afmize” (http://doi.
org/10.5281/zenode.3362044).

Flexible-Fitting Molecular Dynamics
Simulation
Flexible-fitting MD simulations utilize the total potential energy
function, Vtotal � Vphys + VAFM. Here, Vphys represents the
physical interaction of the target molecules as well as their
interaction with the surface, the latter of which is modeled as
a simple Lennard-Jones potential along the z axis. The second
term is defined as VAFM(R) � κNkBT[1 − c.c.(R)], where kB is
the Boltzmann constant, T is the temperature (300 K in this
study), κ is a dimensionless parameter that controls the strength
of the bias (unity in this study), and R is the coordinate of a
simulated molecule. (Niina et al., 2020). The c.c.(R) is the
modified correlation coefficients between the pseudo-AFM
image H(sim)

p (R) of the simulating structure R and the real
experimental AFM image H(exp)

p , defined as

c.c.(R) � ∑p ∈ pixelsH
(exp)
p H(sim)

p (R)���������������
∑p ∈ pixels(H(exp)

p )
2

√ �����������������
∑p ∈ pixels(H(sim)

p (R))2
√ . (2)

See the reference (Niina et al., 2020) for more details.

Coarse-Grained Molecular Dynamics
Simulation
In this study, as the physical interaction part of Vphys, we used a
well-tested coarse-grained model for proteins and DNAs, which
have been extensively used in many recent studies, including
simulations for nucleosomes (Niina et al., 2017; Brandani et al.,
2018; Tan and Takada, 2020). Briefly, proteins are represented by
chains of beads, each of which represents an amino acid. For
DNAs, each nucleotide is approximated by three particles, each
representing sugar, phosphate, and base groups. We used the
energy function AICG2+ for proteins (Li et al., 2014), 3SPN.2C
for DNA (Freeman et al., 2014). Protein-DNA interactions are
modeled by the excluded volume term and the electrostatic
interaction (Fuchigami et al., 2020). See the reference
(Fuchigami et al., 2020) for more details.

All the simulations were performed by CafeMol (Kenzaki
et al., 2011). Specifically, the current simulation setup is
provided as an example of the flexible-fitting MD simulation
in the CafeMol package.

RESULTS

Relationship Between the Tip Radius and
the Parameter σ
Before performing the flexible-fitting MD simulations, we
quantify the relation between the AFM probe tip radius in the
collision detection method and the σ parameter used in the

smoothed method. For ten distinct structures of nucleosomes
obtained by coarse-grained MD simulations, we first generated
pseudo-AFM images by the collision detection method with
various tip radii R’s, ranging between 0.1 and 3.0 nm (with
0.1 nm increment). For each R value, we searched the optimal
σ value with which the smoothed method gives the maximum
correlation coefficient (c.c.) with the image generated by the
collision detection method (Figure 2). We found that, on
average, the optimal σ value for each nucleosome structure
linearly increases with the tip radius R. In addition, the
optimal σ value depends, albeit modestly, on the nucleosome
structure. Especially, for larger tip radius, the optimal σ value
varies structure by structure more significantly (Figure 2). For
each tip radius R, we quantified the optimal σ value by its mean
〈σ(R)〉 and the standard deviation Δσ(R) of the ten samples
(Supplementary Table S1).

Using the Bayes’ theorem, we can estimate the probability
density to have the tip radius R for a given σ as,

P(R|σ) � P(σ|R)P(R)
∑RP(σ|R)P(R)

(3)

where we assumed the discrete representation of the tip radius
(0.1 nm increment). Without any prior knowledge, we assume
P(R) is constant over the range between 0.1 and 3.0 nm. We also
assume that P(σ|R) is well approximated by the normal distribution
with the mean 〈σ (R)〉 and the standard deviation Δσ(R),
i.e., P(R|σ) � N(〈σ (R)〉,Δσ (R)2)/∑RN(〈σ (R)〉,Δσ (R)2) .
The resulting conditional probability density is given in
Supplementary Table S2.

Bayesian Statistical Inference of the Tip
Radius Using Flexible-FittingMDSimulation
To examine the Bayesian statistical inference of the tip radius
unambiguously, we need a test system for which we know the
“correct” tip radius. To this end, in this study, we performed the

FIGURE 2 | Relationship between a tip radius R in the collision detection
method and a parameter σ in the smoothed method. The results from ten
structures of nucleosome are shown in black lines, and the mean with the
standard deviation for each tip radius R are shown in red.
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so-called twin experiment. We first prepared a reference AFM
image of the nucleosome using the collision detection method
with the tip radius of 1.0 nm. This AFM image serves as the

“experimental AFM image” in this study. Thus, the “correct” tip
radius in this study is 1.0 nm.

For the experimental AFM image (Figure 3B), starting from a
different structure (Figure 3C), we performed 106-step flexible-
fitting MD simulations of the nucleosome system with various
values of σ ranging from 0.10 to 0.50 nm (with the 0.01 nm
increment) (exemplified in Figure 3A). We repeated the same
simulations ten times with different random numbers for each
value of σ. The time series of the c.c. between the experimental
and the simulated AFM images clearly show that the c.c.
stochastically increases as a function of time, reaching to a
plateau in all the simulations, successfully obtaining well-fitted
structures (Figure 3D). The averaged plateau value, however,
changes depending on the value of σ (Figure 3A).

To quantify the difference in the reached correlation
coefficient (c.c.), we then estimated the probability density
distributions of the c.c. for different σ values using the latter
half of the time series data, i.e., totally 5,000 snapshots
(representative cases shown in Figure 4). For example, a very
small σ, such as 0.10 nm, resulted in the distribution with low
c.c.’s, suggesting a clearly poor fitting. A rather large σ, such as
0.5 nm, also gave a poor fitting. In between the two limiting cases,
there exists an optimal value of σ. Our previous studies indicated
that the mean, or the median, of the c.c. distribution is not a good
indicator (Niina et al., 2020). Instead, we need to focus on the
upper tail of the distribution of c.c.. Among the nine cases in
Figure 4A (between 0.1 and 0.5 nm, with the 0.05 nm increment),
we found σ � 0.3 nm the optimal value.

Looking into a finer scale (0.01 nm increment) shown in
Figure 4B, we found the highest c.c. value 0.989 at σ �
0.31 nm. From the values of conditional probability density
shown in Supplementary Table S2, it is found that the most
probable value of tip radius R is 1.2 nm, slightly larger than the
“correct” tip radius 1.0 nm. This difference between the correct
and the estimated tip radii is inevitable and acceptable because
AFM image is insensitive to sub-nanometer-order difference in
tip radius. Indeed, pseudo-AFM images generated using 1.0 nm-

FIGURE 3 | Flexible-fitting MD simulations. (A) Representative time
series of the correlation coefficient (c.c.) of pseudo-AFM image of the
simulated structure with the “experimental” AFM image. Shown here are
results from three different σ values, 0.1, 0.3, and 0.5 nm in blue, red,
and green, respectively. (B) The synthetic-AFM image used as an
“experimental” AFM image in the flexible-fitting. Scale bar: 5 nm. (C) The
nucleosome initial structure. (D) The simulated structure with the highest c.c..

FIGURE 4 | The probability density distributions of the correlation coefficient (c.c.) for representative σ values. (A) The overall distribution. The σ in nm unit are 0.1
(red solid), 0.15 (orange solid), 0.20 (green solid), 0.25 (blue solid), 0.30 (magenta solid), 0.35 (blue broken), 0.40 (green broken), 0.45 (orange broken), and 0.50 (red
broken). (B) A close-up view at a high c.c. range. The σ in nm unit are 0.30 (red), 0.31 (orange), 0.32 (green), 0.33 (blue), and 0.34 (magenta).
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radius tip shows a high c.c. of 0.99 or higher with the images
generated using tip with radii of 0.7, 0.8, 0.9, 1.1, 1.2, and 1.3 nm.

To test the statistical significance of the estimation of σ value,
we performed a simple bootstrap test. We first prepared all
patterns of combinations of five samples taken from ten
highest c.c. values obtained from ten flexible-fitting MD
simulations with the same σ value. The number of
combination patterns is 10C5 � 252. In each combination
pattern, the highest c.c. value in the five values was used as
the estimated value. In this way, 252 estimated highest c.c. values
were obtained for each of seven σ values,
σ � 0.28, 0. 29, 0.30, 0.31, 0.32, 0.33, and 0.34 nm. Then, we
performed all-to-all pairwise comparison of 252 estimated
highest c.c. values for σ � 0.31 nm with 252 estimates for the
other six σ values. The σ � 0.31 nm exhibited higher values
against for σ � 0.28, 0. 29, 0.30, 0.32, 0.33, and 0.34 nm with
the probabilities 0.956, 0.998, 0.723, 0.677, 0.986, and 0.957,
respectively. Thus, the σ value can be estimated as
0.31±0.01 nm. Note that the bootstrap test was performed with
five c.c. values, whereas the real estimate used ten c.c. values,
making the latter somewhat more reliable.

DISCUSSION

In this brief report, we investigated the statistical inference of the
AFM probe tip radius via flexible-fitting MD simulations. First,
we statistically characterized the relationship between the tip
radius appeared in the collision detection method and the σ value
used in the smoothed method. Then, with various σ values, we
repeated the flexible-fitting MD simulations to the pre-defined
AFM image of a nucleosome structure. Based on the upper tail
part of the probability density distribution of the correlation
coefficient, we found an optimal value of σ, as well as a well-fitted
structure, for the given AFM image. Combining it with the above-
mentioned relationship between the tip radius and the σ value, we
could infer the probe tip radius, with reasonable accuracy.

As shown in Figure 2, a good linear correlation is observed
between a tip radius R and a parameter σ. In this case, therefore,
the simple linear regression-based method could also work well to
infer a tip radius from a σ value.

One possible limitation in the current approach is in the
treatment of flexible regions of proteins. In the current test
system, the nucleosome contains the histone octamer, which
contain rather long disordered tails. Usually, the AFM
measurements do not clearly detect the configuration of the
histone tails. On the other hand, our collision detection
method and the smoothed method detect such flexible regions
in the same way as the well-folded regions. While fitting of the
well-folded regions is realized in the current simulations,

disordered tail configurations were not well fitted, which could
cause some discrepancy in the tip radius inference.

While the current approach can infer the tip radius with
reasonable accuracy, there can be room for improvement
especially in terms of the estimate efficiency. The current
approach needs to repeat the flexible-fitting MD with various
σ values. This is feasible for the inference of one parameter, and
can be accelerated by using an efficient search method, for
example, a two-stage searching method with coarse and fine
increments. But it is nearly impossible for the case of many
unknown parameters. In the context of AFMmeasurement, there
can be other relevant parameters, such as the apex angle of the
probe cone. For these cases, some improvement may be
necessary. Since inference of the experimental parameters in
the flexible-fitting MD is quite a computationally demanding
process, we may better perform similar inference within the rigid-
body fitting process. In addition, relationship between the tip
radius and the σ value might be somewhat system-dependent. It
would be confirmed by performing the same analysis using other
molecules.
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The detection of small molecules in living cells using genetically encoded FRET sensors has
revolutionized our understanding of signaling pathways at the sub-cellular level. However,
engineering fluorescent proteins and specific binding domains to create new sensors
remains challenging because of the difficulties associated with the large size of the
polypeptides involved, and their intrinsically huge conformational variability. Indeed,
FRET sensors’ design still relies on vague structural notions, and trial and error
combinations of linkers and protein modules. We recently designed a FRET sensor for
the second messenger cAMP named CUTie (Cyclic nucleotide Universal Tag for imaging
experiments), which granted sub-micrometer resolution in living cells. Here we apply a
combination of sequence/structure analysis to produce a new-generation FRET sensor for
the second messenger cGMP based on Protein kinase G I (PKGI), which we named
CUTie2. Coarse-grained molecular dynamics simulations achieved an exhaustive
sampling of the relevant spatio-temporal coordinates providing a quasi-quantitative
prediction of the FRET efficiency, as confirmed by in vitro experiments. Moreover,
biochemical characterization showed that the cGMP binding module maintains virtually
the same affinity and selectivity for its ligand thant the full-length protein. The computational
approach proposed here is easily generalizable to other allosteric protein modules,
providing a cost effective-strategy for the custom design of FRET sensors.

Keywords: CUTie, biosensor, FRET, molecular dynamics, coarse-grained, Sirah, cyclic nucleotide, signaling

INTRODUCTION

The development of genetically encoded sensors based on Föster resonance energy transfer (FRET)
effect is a well-established methodology for the non-invasive and real-time study of a plethora of
cellular events (Nikolaev and Lohse, 2006; Berrera et al., 2008; Meng and Sachs, 2011; Calamera et al.,
2019).

In general, FRET sensors are composed of a molecular detector, which undergoes a
conformational change upon a given signal. A couple of fluorophores suitable for FRET and
linked to convenient domains of the detector module complete the sensor architecture. Two
fluorophores are a suited FRET pair if there is a substantial overlap between the spectra of
emission and absorption of the donor and acceptor, respectively (Lindenburg and Merkx, 2014).
The use of spectral variants of the Green Fluorescent Protein (GFP) as FRET pairs opened the
possibility to generate genetically encoded sensors for monitoring intracellular signaling (Zaccolo
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et al., 2000). In particular, FRET sensors applied to the study of
cyclic nucleotides (CNs) have been instrumental for dissecting
molecular details of the corresponding signaling pathways, and
several protein architectures have been reported to work as FRET
sensors for CNs (Sprenger and Nikolaev, 2013; Pendin et al.,
2016).

In the case of CNs, most often the detector is a cyclic
nucleotide-binding domain (CNBD) genetically fused to
suitable spectral variants of GFP. When the intracellular
concentration of cyclic nucleotides rises, they bind to the
CNBD, triggering an allosteric conformational change that
modifies both fluorophores’ relative distance and/or
orientation, translating into a change of the FRET signal
(Lindenburg and Merkx, 2014). Despite the proven usefulness
of genetically encoded sensors, very little work has been done to
advance on methods to systematically engineer FRET sensors
achieving quantitative predictions of FRET efficiency
(Stangherlin et al., 2014). Indeed, the design of novel sensors
is guided by a limited structural knowledge of the CNBDs. Such a
procedure often results in an undetermined and frustrating
number of trial and error attempts.

We were among the firsts to apply modeling techniques to
improve cAMP FRET sensors (Lissandron et al., 2005) and
provide simple structure-based rules to guide the design of CN
sensors (Machado and Pantano, 2015). More recently, we showed
that the combination of modeling techniques with coarse-grained
(CG) simulations effectively led to a quasi-quantitative prediction
of the FRET change upon raising cAMP concentrations.
Moreover, the rational design of the so-called CUTie sensor
produced for the first time a FRET sensor targetable to
different subcellular compartments that unveiled the presence
of unexpectedly small cellular (nano)domains regulated by cAMP
(Chao et al., 2019). Quantitative predictions of the FRET
efficiency of the CUTie sensor were achieved thanks to the
comprehensive sampling provided by CG simulations. As
confirmed experimentally, our cost-effective approach achieved
an exhaustive conformational sampling of the space accessible to
the fluorescent proteins linked to the cAMP-binding domain of
the regulatory subunit of the RIIβ isoform of Protein kinase A
(Surdo et al., 2017). Here, we aimed to prove the general validity
of our approach by designing and testing a FRET sensor for cyclic
guanosine 3′-5′-monophosphate (cGMP). This latest generation
sensor will be referred as CUTie2 hereafter.

The second messenger cGMP is involved in several
downstream intracellular signaling pathways. Among
others, cGMP plays a central role in regulating the
cardiomyocyte function (Perera et al., 2015; Bork et al.,
2019; Zhao et al., 2020) and is involved in neurological
diseases (Knott et al., 2017; Schepers et al., 2019). In
mammalian cells, the production of cGMP is regulated by
the binding of Nitric oxide (NO) to soluble guanylyl cyclases
and natriuretic peptides, that activate particulate guanylyl
cyclases GC-A and GC-B; while, its degradation is tightly
controlled by eight out of the eleven isoforms of
Phosphodiesterases (Friebe et al., 2020).

The development of cGMP sensors poses the challenge of
achieving simultaneously high affinity for cGMP vs. cAMP,

which is normally present at higher concentrations in
overlapping subcellular compartments (Stangherlin and
Zaccolo, 2012). Nevertheless, a number of cGMP sensors have
been reported (Sprenger and Nikolaev, 2013). The most
frequently used sensors are based on mammalian proteins,
which, due to their relatively high EC50 (Cygnet2.1 and cGI-
500 EC50 � 0.5 μM, cGES-DE5 EC50 � 1.9 μM) (Honda et al.,
2001; Nikolaev et al., 2006; Russwurm et al., 2007) they are useful

FIGURE 1 | Design of CUTie2. (A) Global secondary structure of a
CNBD and multiple sequence alignment of related domains. Rectangles and
arrows are used to indicate α-helices and β-strands. Sequences 1 to 12, and
13 to 24 correspond to cGMP and cAMP binding proteins, respectively.
These correspond to the UNIPROT codes, for the cGMP binding domains: 1)
Q13976, 2) Q13237, 3) A0A444U9Q8, 4) A0A443SJC3, 5) B0X970, 6)
A0A4Y2N1F1, 7) A0A4Y2BIM3, 8) A0A419PY19, 9) A0A2P8Y1R0, 10)
A0A3R7JPE0, 11) A0A444UAH2, 12) A0A0M4ENX8 and the cAMP binding
modules: 13 and 14) P00514, 15 and 16) P12369, 17) A0A2J8TG41, 18)
E0VRT6, 19 and 20) A0A091CJC2, 21) A0A556UFG6, 22) A9QQ52, 23 and
24) A0A384A0R8. Aminoacids are colored by physicochemical character
according to CLUSTAL. (B) Cartoon representation and domain organization
of the CUTie2 sensor. Notice that the N-terminal of the protein remains free to
be eventually fused to arbitrary targeting domains. The schematic architecture
of the sensor and definition of the geometric factors and equations used to
calculate the FRET signal are provided on the right bottom.
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in environments with high concentrations of cGMP. So far, the
sensor with higher affinity for cGMP has an EC50. ∼ 40 nM
(Niino et al., 2009; Calamera et al., 2019).

Therefore, it is highly desirable to count with a targetable
sensor with similar characteristics to those available for cAMP.

The design of allosteric sensors requires the knowledge of the
structure and conformational landscape accessible to the protein.
Schematically, the binding site of CNBDs is constituted by an 8-
stranded β-barrel, which is flanked by two helices commonly
designated as helix A and B (Figure 1A). In most CNBDs, a
C-terminal helix (helix C) acts as a lid that closes the binding
pocket in the presence of CNs (Berman et al., 2005). In absence of
the ligand, the C helix is highly mobile to the point it can’t be
solved by X-ray crystallography. This conformational behavior
makes this family of protein structures good candidates for FRET
sensors, and their C-terminal an obvious place to insert a
fluorescent protein. During the design of the original CUTie
sensor, we found that the loop connecting β-strands 4-5 (named
4-5 loop) is poorly conserved, with frequent insertions in
different cAMP binding domains (see Figure 1A). This
suggested that the 4-5 loop is structurally permissive to insert
a fluorescent molecule without altering CNBD´s characteristics
(Surdo et al., 2017). Therefore, we further explore the possibility
of engineering another CNBD to generate a FRET sensor for
cGMP. With this aim, selected on the human Protein kinase G
(PKG), which has two isoforms (I and II) (Butt et al., 1993;
Hofmann et al., 2009), sharing the same overall architecture and
CNBD organization (Vaandrager et al., 2005; Campbell et al.,
2016).

In-vitro experiments showed that the CUTie2 sensor
developed in-silico maintains a nearly native affinity (EC50 �
277 nM) and over two orders of magnitude selectivity for cGMP
vs. cAMP, reaching a maximal FRET change of 26%. Since
CUTie2 maintains the same architecture of its cognate CUTie,
it might offer the possibility to dissecting simultaneously the
submicrometric coexistence of cAMP and cGMP signals.
Moreover, because of the global similarity of CNBDs, the
procedure illustrated here should be generalizable to arbitrary
proteins of this class.

METHODS

In Silico Design
To find a suitable insertion point for the first fluorescent module,
we perform a multiple sequence alignment of protein containing
CNBDs. To ensure the generality of our results, we consider
sequences from mammals, insect, fish, arachnid, crustacean and
annelid (Figure 1A). CNBD protein sequences are retrieved from
the UniProt database (Bateman, 2019, https://www.uniprot.org)
and aligned using ClustalW in the MPI Bioinformatics Toolkit
(Bioinformatics Toolkit, 2020).

3D starting conformations are built on the base of X-ray
structures of PKGIβ protein (PDBid: 4KU7, residues K223 to
Y351 (Huang et al., 2014)). Because of practical reasons, both
fluorescent modules (Yellow and Cyan Fluorescent Proteins)
were modeled using the X-ray structure PDBid: 1QYO

(Barondeau et al., 2003). This corresponds to a triple mutation
of GFP, without the chromophore moiety. This variant presents
the typical GFP folding and obviates the need to parameterize CG
chromophores. This shortcut is well tolerated within the
coarseness of our approach. Initially, the CNBD, linkers and
the fluorescent module corresponding to the YFP were manually
positioned at distances compatible with covalent bonds and
ligated with Chimera (Pettersen et al., 2004). Subsequently, the
CFP module is attached to Y351 in the CNBD. Once a model is
complete, its structure is energy optimized by CG simulations
(see below). Different initial conformers are generated by
arbitrarily rotating torsional angles between the CNBD and
the CFP module. For simulations in the cGMP-free protein, a
new set of conformers are generated in which the ligand is removed
before starting the molecular dynamics (MD) simulations.

CG Simulations
CG MD simulations are performed using the SIRAH 2.0 force
field under the conditions reported in (Machado et al., 2019). The
interaction parameters for CG cGMP and the simulation protocol
are reported in supplementary material (Supplementary Figure
S1). Briefly, atomistic models are mapped to CG using SIRAH
Tools (Machado and Pantano, 2016) and solvated with CG water
up to 2 nm beyond the last bead in each direction. Explicit CG
ions are added to set an ionic strength of 15 mM. Although
simulation boxes are different for each protomer, systems
typically contained 50,000 beads, roughly representing half a
million atoms. The simulation protocol consists of 5,000 steps
of unrestrained energy minimization, and five MD equilibration
steps in NPT ensemble at 1 bar using the v-rescale thermostat and
Parrinello-Rahman barostat:

(1) Solvent equilibration by 5 ns at 10 K and time step of 2.0 fs.
(2) 40 ps at 300 K and time step of 2.0 fs.
(3) 400 ps at 300 K with a time step of 20 fs.
(4) 400 ps at 300 K with a time step 20 fs and positional restrains

of 1,000 kJ mol-1nm-2 on the whole protein.
(5) Same as the previous one but for 5 ns.
(6) Production simulations for 10 µs.

Each equilibration step starts from 0 K temperature, (i.e.
velocities are zeroed at each restart). We generated 16
different initial conformers in cGMP-bound and eight in
cGMP-free conformation, totalizing a cumulative simulation
time of 0.24 ms. Snapshots are recorded every 100 ps for analysis.

Non-bonded interactions are calculated with a 1.2 nm cutoff
and PME method (Darden et al., 1993; Essmann et al., 1995) for
long-range electrostatics. Simulations are performed using
GROMACS 4.6.7 (http://www.gromacs.org).

Analysis of the Trajectories
The FRET efficiency (E) depends only on the inter-fluorophore
distance (D) and the relative orientation of the chromophores
(commonly named orientational factor, or simply κ2). The
change in FRET is calculated by subtracting the average FRET
values in cGMP-bound and cGMP-free conformations. D is
estimated as the distance between the geometric centers of
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CFP and YFP, while κ2 factor is calculated from the dipoles
defined between the geometric center of the fluorescent protein
and the Cα of Ser147 in each fluorescent module (Figure 1B).
This agrees with the orientation of the dipole moment
estimated from DFT calculations for a variety of
chromophores in different fluorescent proteins (Rosell and
Boxer, 2003). Root Mean Square Deviations (RMSD) are
calculated on the Cα beads.

The FRET efficiencies in cGMP-bound and -free states are
calculated as the running average with sliding windows of 100 ns
over the concatenated trajectories. Obviously, the final averages
are independent of the order in which the trajectories
are concatenated. The standard deviations in the simulated
FRET are calculated after convergence, (i.e. after a cumulative
time � 0.04 ms).

EXPERIMENTAL

All chemicals and reagents used are of analytical grade and
purchased from SIGMA. The DNA plasmid is synthetized by
Genscript and sequenced by the Molecular Biology Unit, Institut
Pasteur of Montevideo.

The recombinant form of CUTie2 is expressed as an
N-terminally six His-tagged protein using the vector
pET28a (+) and Escherichia coli Rosetta (DE3) as
heterologous expression host. The transformed bacteria are
grown at 37°C in 2 YT medium containing 50 μg/ml
Kanamycin and 34 μg/ml Chloramphenicol until an optical
density of 0.8. Thereafter, 0.5 mM IPTG (Euromedex) is added
to the culture and incubation extended for 16 h at 20°C. After
centrifugation at 6,000 g for 30 min at 4°C, the cell pellet is
resuspended in 50 mM Tris-HCl pH 8.0, 300 mM NaCl,
20 mM imidazole (Buffer A), containing a EDTA-free
protease inhibitors cocktail (ROCHE) and Lysozyme (end
concentration 1 mg/ml). The cell suspension is subjected to
sonication and the debris removed by centrifugation at
16,000 g for 1 h at 4°C. The clarified extract is applied to a
1 ml HisTrap column (GE Healthcare) and upon washing in
Buffer A, the His-tagged protein is eluted with buffer A
containing 500 mM imidazole. The fractions containing the
cGMP sensor protein are pooled and concentrated by
centrifugation (5,000 g at 4°C) in a Vivaspin-20 filter
(30 kDa cutoff), and further polished by a Superdex G-200
size exclusion chromatography (10/30 column) run in 50 mM
Tris-HCl (pH 8.0), 500 mM NaCl.

Protein concentration is measured at 280 nm, where ε280 for
CUTie2 60.990 M-1 cm-1. In a Hellma® fluorescence cuvette (total
reaction volume of 120 µL), the sensor (100 nM) is treated with
different concentrations of cGMP or cAMP (0 nM–10 mM) in
PBS buffer containing 1 mM EDTA pH 7.0. Upon addition
of cGMP or cAMP, the fluorescence emission spectrum
(λexc � 435 nm, λem � 460–600 nm) of CUTie2 is recorded in
a Cary Eclipse fluorimeter every 1 min during 10min and using slit
widths of 5 nm and a PMT of 780. The fluorescence intensity (FI)
values corresponding to CFP (485 nm) and YFP (527 nm) in the
absence (C0) or presence of different concentrations of the

corresponding cyclic nucleotides (Cx) are used to calculate the
percentage FRET as follows:

FRET � [(FI
527nm
Cx

FI485nmCx

) − (FI
527nm
C0

FI485nmC0

)] × 100 . (1)

The % FRET vs. Log [cNMP] is plotted, fitted to non-linear
regression equations and statistically analyzed using the
GraphPad Prism six Software (San Diego, CA, United States).
Three independent titration experiments are performed with
three different batches of the recombinant sensor.

RESULTS AND DISCUSSION

In Silico Design
In order to define the structure of the cGMP sensor, we aligned
the protein sequences reported in Figure 1A. We identify the 4-5
loop as a suitable insertion site in cGMP binding domains. The
second fluorescent module is added to the C-terminal of the
protein, after the end of the C-helix. The scheme of the construct
and a molecular representation of CUTie2 are shown in
Figure 1B.

The module corresponding to YFP is inserted within the
cGMP-CNBD. It substitutes the original amino acids Asp286-
Ser-Pro-Ser-Glu282 in the 4-5 loop by the linkers used in the
CUTie sensor, as previous MD simulations suggested they avoid
spurious distortions in the binding domain (Surdo et al., 2017).
The substitution of the original amino acids in the sequence is not
expected to alter significantly the conformation of the CNBD as
they are not determined in the X-ray structure. This assumption
could be verified a posteriori (see below). The CFP is linked
directly to the C-terminal of the CNBD. As a proof of concept of
our methodology, we choose the domain β of human PKG I, for
which the 3D structure and cGMP binding characteristics are well
defined (Huang et al., 2014). A schematic representation of the
CUTie2 sensor and its primary sequence are shown in Figure 1B,
and Supplementary Figure S2, respectively.

Having the primary sequence and structural knowledge of the
protein modules, it is possible to construct 3D representations of
the sensor. However, a quantitative prediction of the FRET
efficiency requires a complete sampling of all relevant
collective variables. In this regard, it may be important to
recall that the FRET effect is a dipole-dipole interaction, which
rapidly decays as the 1/D6 (Figure 1B), where D is the distance
between chromophores. In practical terms, 10 nm is considered
as an upper limit for the distance of interaction between two
fluorescent proteins. On the other hand, the numerical value of κ2
ranges from 0 to 4 (see definition in Figure 1B). Therefore, a
proper sampling of the relevant coordinates to quantify the FRET
effect must achieve a complete sampling of D and κ2 within the
above range. In principle, MD simulations can be used to this aim.
However, the computational cost of such simulations is
prohibitive. Hence, we sorted out to use the accurate and
topologically unbiased SIRAH force field for CG simulations
(Machado et al., 2019). Different starting conformers are

Frontiers in Molecular Biosciences | www.frontiersin.org March 2021 | Volume 8 | Article 6297734

Klein et al. The CUTie2 cGMP Sensor

40

https://www.frontiersin.org/journals/moleculariosciences
www.frontiersin.org
https://www.frontiersin.org/journals/moleculariosciences#articles


prepared in the cGMP-bound and -free states and simulated for
10 μs each.

Figure 2 shows the main determinants of a simulation of
cGMP-bound to CUTie2. The relative mobility of each protein
module (CNBD and the two fluorescent variants), and the whole
construct is characterized in terms of their RMSD from their
initial positions. Individual domains show quite stable and
relatively low RMSD values. However, the CUTie2 sensor as a
whole shows excursions up to 2 nm with stability regions in time-
windows of about 2 µs (Figure 2A). Those flat RMSD regions
show a rough correspondence to the distance between
chromophores (Figure 2B), indicating that the stable regions
in the global RMSD can be identified with large-scale movements
of the fluorescent modules. Indeed, the distance between
chromophores vary from 5 nm up to 8 nm in this particular

staring conformer. Calculation of κ2 shows that the simulation
samples the complete spectrum of values with a much faster
dynamics (Figure 2C). The reason for this difference is rather
obvious, while significant variations in D imply the motion of
entire protein modules, the dynamics of κ2 is related to rotations
of torsional dihedrals associated to the protein backbone, which
happen spontaneously in the nanosecond timescale at room
temperature. The combination of both collective variables as
detailed in Figure 1B allows for a theoretical estimation of the
FRET illustrated in Figure 2D. Because of the marked difference
in the dynamics of D and κ2, the FRET efficiency is mostly
correlated to the inverse of D.

Experimentally, the FRET efficiency averages on a wide
number of conformations and within time windows of
minutes. Intuitively, a proper comparison between simulated
and experimental FRET efficiencies requires performing
simulations of the sensor in cGMP-bound and–free states,
calculating the average FRET efficiencies in both states and,
then subtract both values to obtain the variation in FRET
efficiency upon cGMP binding. For such comparison to be
meaningful, one should assume a broad sampling of the
relevant variables, namely, D and κ2. While Figure 2B
suggests that this is true for κ2, D is still limited to a restricted
range (Figure 2C).

Therefore, we generate two sets of simulations with different
starting conformers in cGMP-bound and–free states. After each
10 μs simulation, we concatenate the trajectories and calculate the
running average of the FRET efficiency (Figure 3A). New
conformers are generated until convergence is reached. In the
cGMP-bound case we generate a total of 16 different conformers for
a cumulative time of 0.16 ms (see Supplementary Figure S3). For
the cGMP-free case, only eight conformers are deemed necessary
since in the absence of cGMP the two fluorophores sample
preferentially higher D distances (see Supplementary Figure S4).

The average change in FRET efficiency resulted in 22% (s.d. 2,
Figure 3A).

To further illustrate the conformational sampling we plot the
FRET efficiencies of the different starting conformers as a
function of D and κ2 to provide a breakdown of the sampling
achieved (Figure 3B, only the cGMP-bound case is shown for
brevity). The whole set of points covers the range D < 10 nm and
0 > κ2 > 4. The spreading of the distribution clearly shows that
some conformers remain trapped in relatively narrow
conformational regions, while others can widely explore the D
variable. Using the backmapping capability of the SIRAH force
field (Machado and Pantano, 2016), we produce pseudo atomistic
representative snapshots from three different starting
conformations. The violet molecule (indicated with the letter
“a” in Figure 3B) remains blocked in a high FRET configuration,
while the red molecule (indicated with “b” in Figure 3B) explores
a much wider range. In contrast, the cyan molecule (indicated
with “c” in Figure 3B) spends most of the time with the two
fluorescent modules far apart from each other, making little
contributions to the global FRET. It is also interesting to
notice that, because of the topology of the sensor, there is a
region of values of D between 3 and 4 nm, which is structurally
forbidden.

FIGURE 2 | CG simulation of the CUTie2 sensor. (A) Instantaneous
RMSD of one randomly chosen conformer in cGMP-bound conformation.
Black, gray, yellow, and cyan correspond to the whole molecule, the CNBD,
the YFP, and the CFP modules, respectively. (B–D) Distance between
chromophores, κ2, and FRET efficiency. The orange line in each panel
corresponds to the average over the entire trajectory.
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Experimental Validation
In order to provide experimental confirmation of the in silico
predictions, the recombinant form of the CUTie2 sensor was
expressed and the FRET signal measured in vitro for cGMP and
cAMP in three independent experiments (see Supplementary
Figure S5).

As shown in Figure 3C, the maximal FRET efficiency obtained
at saturating concentrations of cGMP (FRET ≥26%) compares
well with the computational predictions. Moreover, the effective
concentration of cGMP that triggers a 50% FRET response of
CUTie2 (EC50) to cGMP was 277 ± 60 nM, which nicely matches
the value reported for this CNBD by using competition
fluorescence polarization (Huang et al., 2014). Interestingly,
the Hill´s slope estimated from the three independent cGMP
titration assays with CUTie2 is 1.5 ± 0.4, which is within the range
of values reported for PKG I (Huang et al., 2014) and a related
FRET sensor (Honda et al., 2001), and may suggest a certain
cooperative effect upon ligand binding. As mentioned before, the
selectivity of the sensor for cGMP is essential for in vivo
applications since in many subcellular compartments the
cAMP concentration is higher than that of cGMP (Stangherlin
and Zaccolo, 2012). In this regard, CUTie2 titration with cAMP
revealed an EC50 of 121 ± 11 μM, which shows that the sensor has
a >400-fold higher selectivity for cGMP.

DISCUSSION AND CONCLUSION

This manuscript presents a computational methodology for the
design and quasi-quantitative prediction of FRET efficiency of

genetically encodable sensors for cGMP. The agreement with
experimental data obtained here, and with the previously
published CUTie sensor for cAMP (Surdo et al., 2017) supports
the general validity and transferability of our approach. Within the
standard deviations of FRET changes obtained by the experimental
and computational determinations, our approach could be
considered quasiquantitatively accurate. The capacity of both
fluorescent modules to produce FRET at cGMP concentrations
comparable to those measured for the intact protein strongly
suggests that both the fluorescent proteins and the CNBD adopt
their expected folding. This fact is not entirely obvious if we
consider that YFP is inserted within the folding of the CNBD.
In this regard, it may be worth mentioning that peptide linkers are
present between the CNBD and YFP sequence (Supplementary
Figure S2). These linkers are the same used in the CUTie sensor.
The marked differences in sequence conservation in the region of
the 4-5 loop shown in Figure 1A and the correct functioning of
CUTie and CUTie2 strongly suggest that these linkers are well
suited for inserting a fluorescent module within the 4-5 loop of any
CNBD. The equivalence in cGMP affinity and cAMP selectivity in
relation to the intact CNBD further highlight this fact. This opens
the possibility to generate a portfolio of sensors with different
ligand affinities based on other biochemically well-characterized
CNBDs or other ligand-specific domains that undergo a similar
allosteric-dependent conformational change. CUTie and CUTie2
share the common feature of having a free N-terminal that can be
fused to arbitrary targeting proteins/sequences. Namely, both can
be regarded as FRET tags that can be targeted to different
subcellular localizations determined by the accompanying
protein or targeting signal. In summary, this new sensor holds

FIGURE 3 | FRET efficiency and experimental validation. (A) Averaged FRET values calculated from different conformers vs. simulated time for cGMP-bound and
-free sets of simulations. (B) Assessment of the completeness of the conformational sampling for the cGMP-bound simulations. The FRET efficiency is reported as a
function of D and κ2 for each of the conformers (indicated by different colors). Six particular conformers taken from three trajectories are shown in cartoon representation
to illustrate the conformational dispersion achieved during the simulations. Gray spheres indicate the cGMP binding sites. The letters in lower case indicate the
position of the corresponding conformer in the graph. (C) Representative concentration-response plot for recombinant CUTie2 titrated with different concentrations of
cGMP and cAMP (0–10 mM). The data were fitted to the Boltzmann equation (R2 ≥ 0.98).
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great potential to unravel simultaneous signaling pathways with
submicrometric resolution and high cyclic nucleotide selectivity in
living cells.
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Complement Inhibition
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Poxviruses are dangerous pathogens, which can cause fatal infection in unvaccinated
individuals. The causative agent of smallpox in humans, variola virus, is closely related to
the bovine vaccinia virus, yet the molecular basis of their selectivity is currently incompletely
understood. Here, we examine the role of the electrostatics in the selectivity of the smallpox
protein SPICE and vaccinia protein VCP toward the human and bovine complement
protein C3b, a key component of the complement immune response. Electrostatic
calculations, in-silico alanine-scan and electrostatic hotspot analysis, as introduced by
Kieslich and Morikis (PLoS Comput. Biol. 2012), are used to assess the electrostatic
complementarity and to identify sites resistant to local perturbation where the electrostatic
potential is likely to be evolutionary conserved. The calculations suggest that the bovine
C3b is electrostatically prone to selectively bind its VCP ligand. On the other hand, the
human isoform of C3b exhibits a lower electrostatic complementarity toward its SPICE
ligand. Yet, the human C3b displays a highly preserved electrostatic core, which suggests
that this isoform could be less selective in binding different ligands like SPICE and the
human Factor H. This is supported by experimental cofactor activity assays revealing that
the human C3b is prone to bind both SPICE and Factor H, which exhibit diverse
electrostatic properties. Additional investigations considering mutants of SPICE and
VCP that revert their selectivity reveal an “electrostatic switch” into the central modules
of the ligands, supporting the critical role of the electrostatics in the selectivity. Taken
together, these evidences provide insights into the selectivity mechanism of the
complement regulator proteins encoded by the variola and vaccinia viruses to
circumvent the complement immunity and exert their pathogenic action. These
fundamental aspects are valuable for the development of novel vaccines and
therapeutic strategies.
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INTRODUCTION

Poxviruses are highly dangerous pathogens, whose most notable
member is variola virus, the causative agent of smallpox, which
killed millions of people before the massive vaccination campaign
by the World Health Organization (World Health Organization,
1980). Closely related to variola virus, the vaccine-derived agent,
called vaccinia virus, is causing outbreaks in dairy cattle in India
and Brazil (Trindade et al., 2007; Gurav et al., 2011). Intriguingly,
while these poxviruses are closely related, variola virus is strictly
human-specific, whereas vaccinia virus also infects bovines.
However, the molecular basis of this selectivity is currently
incompletely understood. Its knowledge is fundamental to
understand the onset of smallpox outbreaks dairy cattle, as
arising from vaccinia virus, as well as to develop novel
vaccines and therapeutic strategies.

Both viruses actively evade the complement system, which is
an effector arm of the immune system and one of the major
innate immune responses to viruses. Thanks to an intricate
network of proteins, the complement system regulates
important pathophysiological functions, eliminates pathogens,
ensures homeostasis and forms a bridge between the innate and

adaptive immunity (Bennett et al., 2017; Reis et al., 2019). When
the complement system is activated, the convertase enzyme
converts the complement 3 (C3) protein into its C3b
component, which can associate to cell surfaces (Figure 1A).
Further cleavage events yield C3d (the terminal cleavage product
of C3), which is a natural biomarker of complement activation.
Both variola and vaccinia viruses encode complement regulator
proteins, named SPICE (smallpox inhibitor of complement
enzymes) and VCP (vaccinia virus complement control
protein) respectively, which are structural homologues of the
proteins that regulate complement activation. Specifically, both
SPICE and VCP mimic the interactions of the human Factor H
(FH, which is structurally similar to SPICE and VCP), such as
competing with FH in binding C3b (Figure 1B). At the domain
level, human FH mainly interacts with the following domains:
CUB, TED, MG1, MG2, MG6, MG7, and MG8 (Figures 1C,D;
Supplementary Figure S1). There are two mechanisms of
complement regulation in humans—cofactor activity (CA) and
decay accelerating activity (DAA). The cofactor activity involves a
cofactor (e.g., FH/VCP/SPICE) and a plasma serine protease
factor I (FI) that proteolytically degrades the complement
proteins C3b/C4b, while decay-accelerating activity involves

FIGURE 1 | (A)General overview of complement activation and regulation on healthy cells. Once complement is activated, the active fragment C3b is generated by
the C3 convertase. Further cleavage events yield inactivated iC3b, which gets converted to C3d (yellow). (B) Human complement C3b protein bound to the human
Factor H (FH), as captured via x-ray crystallography (PDB ID: 2WII) (Wu et al., 2009). The C3b protein is depicted as a molecular surface (magenta), binding the first four
complement control protein (CCP) modules of FH (CCP1-4, shown using different colors). (C) Surface representations of complement C3b domains shown in
different colors. (D) Complement C3b in complex with CCP1-4 of human FH. Domains CUB, TED, MG1, MG2, MG6, MG7, and MG8 of C3b provide a binding interface
for human FH.
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the decay or dissociation of the catalytic domain of the
convertases. With these mechanisms, the smallpox and
vaccinia viruses circumvent the complement immunity,
exerting their pathogenic function (Lambris et al., 2008;
Agrawal et al., 2017; Rosbjerg et al., 2017). At the molecular
level, the complement regulator proteins SPICE, VCP, and the
human FH consist of bead-like repeating subunits, known as
Complement Control Protein (CCP) modules, which are
covalently linked forming “beads-on-a-string” structures (Ojha
et al., 2014). SPICE, VCP, and bovine FH display a sequence
identity with the human FH of 27, 33, and 65%, respectively
(Supplementary Figure S2) (Altschul et al., 1990; Gish and
States, 1993). However, the first four CCP modules that bind
C3b display a similar architecture and a sequence identity >90%
with the human FH (Figure 1B; Supplementary Figure S2) (Wu
et al., 2009). Indeed, only the K108 and K120 of SPICE
correspond to E108 and E120 in VCP, which suggests a
change in the electrostatic properties (Yadav et al., 2012).
Considering the similarity of SPICE and VCP, it is intriguing
how these two viral proteins could achieve selectivity toward the
human and bovine isoforms of C3b (Yadav et al., 2012). This has
been further highlighted by experimental studies that show the
SPICE-HuC3b interaction has a KD of 1.3 μM (Forneris et al.,
2016), while that of Hu FH(1-4)-HuC3b interaction is 11.0 μM
(Wu et al., 2009). When relative binding was measured using
SPR, the relative binding strength of SPICE for HuC3b was ∼130-
fold higher than for VCP (Yadav et al., 2008), and relative binding
strength of VCP for BoC3b was ∼2.6 fold higher than for SPICE
(Yadav et al., 2012). Several computational studies have revealed a
key role of the electrostatics in the binding of CCP modules to the
complement receptors, (Sfyroera et al., 2005; Zhang and Morikis,
2006; Yadav et al., 2008; Liszewski et al., 2009; El-Assaad et al.,
2011; Kieslich et al., 2011c; Kieslich and Morikis, 2012; Yadav
et al., 2012; Harrison et al., 2015; Mohan et al., 2015; Harrison
et al., 2020), demonstrating that the diverse electrostatic
properties of CCP modules mediate different specificities
toward the complement proteins. Kieslich and Morikis
(Kieslich and Morikis, 2012) have examined the effect of
electrostatic interactions at the level of the complement C3
fragment C3d and its complement receptor 2 (CR2), whose
formation constitutes the link between innate and adaptive
immunity, proposing that the C3d-CR2 electrostatic specificity
is critical in the onset of adaptive immunity. That study
demonstrated that functional “electrostatic hotspots”
importantly contribute to the protein-protein association and
to the selectivity of C3d and its receptor. In this respect,
electrostatic hotspots comprising clusters of charged residues
have been found to be crucial regulators also across several
other biomolecular systems, functioning also as effective drug
binding sites (Foloppe et al., 2006; Adhireksan et al., 2017).

In this work, we examine the role of the electrostatics in the
selectivity of SPICE and VCP toward the human and bovine
isoforms of C3b. Electrostatic calculations, and in-silico alanine-
scanning of SPICE, VCP, and human factor H bound to human
and bovine C3b have been performed to characterize electrostatic
hotspots, as introduced by Kieslich and Morikis (Kieslich and
Morikis, 2012), identifying sites resistant to local perturbation

where the electrostatic potential is likely to be evolutionary
conserved (Kieslich and Morikis, 2012). The calculations
suggest that the bovine C3b is electrostatically prone to
selectively bind its VCP exogenous ligand. On the other hand,
the human isoform of C3b exhibits a lower electrostatic
complementarity toward its SPICE ligand. Yet, the human
C3b displays a highly preserved electrostatic core, which
suggests that this isoform could be less selective and bind
different ligands, such as both SPICE and the human FH. This
is supported by experimental Cofactor Activity Assays revealing
that the human C3b is prone to bind both SPICE and FH, which
exhibit a diverse ESI map and different electrostatic properties.
Further investigations of the SPICE and VCP mutants reverting
their selectivity (Yadav et al., 2012) reveal that an “electrostatic
switch” into their central modules plays a key role in the process.
Overall, these evidences highlight the critical role of the
electrostatics in the specificity of SPICE and VCP toward the
human and bovine isoforms of the C3b protein, providing
fundamental insights that can help the development of novel
vaccines and therapeutic strategies.

COMPUTATIONAL MATERIALS AND
METHODS

Structure Preparation
Structural models have been based on the crystallographic
coordinates of the structure of the human C3b-FH complex
(PDB ID: 2WII, Figure 1B) (Wu et al., 2009) solved at 2.7 Å
resolution. SPICE and VCP display a sequence identity (Madeira
et al., 2019) with the endogenous human FH of 27 and 33%
respectively (Altschul et al., 1990; Gish and States, 1993).
However, our investigations focused on the first four CCP
modules that bind C3b, which display a similar architecture
and a sequence identity >90% with the human FH (Wu et al.,
2009). The Bovine C3b, SPICE, and VCP structures were
modeled using PDB 2WII as a template through homology
modeling using the software Modeller (Eswar et al., 2006). The
human C3b portion of 2WII served as a reference for bovine C3b,
while factor H was used to model the structures of VCP and
SPICE. Following the homology modeling, an iterative qualitative
assessment (Williams et al., 2018) and refinement of the models
was performed using UCLA SAVES server (SAVES, 2020) and
Modeller. The final models were aligned to PDB 2WII yielding
the following complexes: Human C3b-SPICE, Human C3b-VCP,
Bovine C3b-SPICE, and Bovine C3b-VCP.

Computational Alanine-Scan, Electrostatic
Calculations, and Hotspot Analysis
Electrostatic hotspot analysis has been performed using the
AESOP (Analysis of Electrostatic Similarities Of Proteins)
code, developed by Morikis (Kieslich et al., 2011b; Harrison
et al., 2017) and extensively employed for electrostatic analysis
of proteins (Kieslich et al., 2011a, Kieslich et al., 2011b; Gorham
et al., 2011a, Gorham et al., 2011b; Harrison et al., 2015; Mohan
et al., 2015, Mohan et al., 2016; Zewde et al., 2018; Harrison and
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Morikis, 2019). AESOP enables the analysis of electrostatic
hotspots through the calculation of an Electrostatic Similarity
Indices (ESI), (Kieslich and Morikis, 2012), which assesses the
electrostatic potential upon perturbation (i.e., mutagenesis),
identifying regions of high electrostatic similarity, or those
regions least affected by perturbation. High ESI values identify
regions with resistance to perturbation, where the electrostatic
potential is likely to be evolutionarily conserved, and constitute
functional sites or electrostatic hotspots (Kieslich and Morikis,
2012). The calculation of the ESI involves the following steps: 1)
generation of alanine scan mutations for every ionizable residue
in a protein complex, one at a time, 2) calculation of Poisson-
Boltzmann electrostatic potentials for each mutant protein and
parent, 3) calculation of ESI values and projection on the protein
surface for visualization. The resulting surface maps can be
referred to as ESI perturbation maps, displaying regions of the
protein resistant to perturbation (i.e., displaying high ESI values)
and identifying electrostatic hotspots. Upon alanine-scan and
calculation of the electrostatic potentials, cumulative distribution
of Electrostatic Similarity Index (ESI) is computed as:

ESI(i, j, k) � 1
N

∑
N

n�1
1 −

∣∣∣∣φA(i, j, k) − φB,n(i, j, k)
∣∣∣∣

max(∣∣∣∣φA(i, j, k)
∣∣∣∣, ∣∣∣∣φB,n(i, j, k)

∣∣∣∣),

where φA is the electrostatic potential of the original protein and
φB,n is the electrostatic potential of theN mutants at the grid point
(i, j, k). The ESI is calculated at each grid point (i, j, k) and
normalized by the number of electrostatic potential
comparisons N . This measure of electrostatic similarity
describes the similarity of the electrostatic potential of a set of
mutants to the original parent protein at a given grid point, for a
family of N mutants. For the ESI calculations, an ionic strength
corresponding to 0 mM monovalent ion concentration was used,
as described earlier (Kieslich and Morikis, 2012). As described
above, electrostatic hotspots can be evaluated as the projections of
the ESI values on the protein surface.

In this work, the number of protein mutants generated by
alanine scan are as follows: 66 mutants for FH, 42 mutants for
SPICE, 46 mutants for VCP, 394mutants for the human C3b, and
419 mutants for the bovine C3b. The calculations were performed
at pH 7, mutating the following ionizable amino acids: Asp, Glu,
Arg, Lys, and His. The apparent pKa of the His residues was pre-
determined using PROPKA (Søndergaard et al., 2011).
Electrostatic potentials were calculated by solving the
linearized Poisson-Boltzmann equation using APBS (Baker
et al., 2001). Positional coordinates in the PDB files were
converted to PQR files in preparation for the Poisson-
Boltzmann calculations, by adding hydrogen atoms, atomic
radii, and partial charges, using PDB2PQR (Dolinsky et al.,
2007) and the PARSE force field (Sitkoff et al., 1994).
Electrostatic calculations were performed for the families of
mutant and parent original proteins, using the separated
protein and ligand components from the protein-ligand
complex. The protein-ligand complex structure was centered
in a grid with 161 × 161 × 257 grid points and grid lengths of
144 × 156 × 228 Å, resulting in a resolution of less than 1 Å/grid
point. The protein or ligand was then removed to performed

electrostatic potential calculations of each component. All
mutants of each protein were centered in an identical manner
to assure proper comparison of electrostatic potentials. Ionic
strength corresponding to concentration of monovalent
solvent ions of 150 mM was used in the calculations. Protein
and solvent dielectric coefficients were set to 20 and 78.54,
respectively, as determined in previous studies (Gorham et al.,
2011b). Calculations were performed at 298.15 K temperature.
Additional electrostatic potential analysis was performed for the
VCP mutants E108K, E120K, and E108K/E120K, and the SPICE
mutants K108E, K120E, K108E/K120E/N144E. Electrostatic
calculations have been performed as described above, using
ionic strengths corresponding to 150 mM. The software
Chimera (Pettersen et al., 2004) has been employed to project
ESI values on the 3D structures, thereby visualizing the
electrostatic hotspots.

Cofactor Activity Assay
The cofactor activity of factor H in conjunction with factor I
toward human and bovine C3b was performed by employing a
fluid phase cofactor assay described earlier (Gautam et al., 2015).
In brief, 2 μg of C3b (human or bovine) was mixed with 1.1 μg of
factor H in presence or absence of 15 ng of factor I (human or
bovine) in a total volume of 15 μl, and reaction mix was incubated
at 37 °C for different time intervals. After the indicated time
points, 5 μl of the sample buffer containing DTT was added to the
reaction mix to stop the reaction. The C3b cleavage products were
then resolved on 9% SDS-PAGE gel. The percentage of C3b
cleaved with time was quantitated by densitometric analysis of
α′-chain of C3b. The time required for 50% cleavage of the
α′-chain of C3b was calculated from the plots generated by
plotting the percentage of α′-chain of C3b against time.
Human and bovine C3b, and bovine factor I were purified
from the respective plasma as described (Yadav et al., 2012).
Human factor H and factor I were purchased from Complement
Technology, Inc. (TX, United States). Although it would be more
meaningful to test bovine endogenous ligand (i.e., bovine FH) to
test our hypothesis, however, our efforts to purify bovine FH from
the sera failed, and the same is not available commercially.

RESULTS AND DISCUSSION

The results of homology modeling for the bovine complement
C3b, SPICE, and VCP have been summarized in Supplementary
Table S1 and Supplementary Figures S3–S6. The analyses
revealed that the models are of sufficient quality for the
ensuing computational electrostatic calculations.

In order to understand the role of the electrostatics in the
complementarity between C3b and its ligands, we performed
electrostatic calculations, thereby analyzing the spatial
distributions of the electrostatic potential. Figure 2A shows
the surface projections of the electrostatic potentials for the
bovine and human C3b, as well as for its ligands FH, VCP,
and SPICE. An “open book” view highlights the surfaces of
contact at the interface of the protein-ligand complex. The
surface projections of the electrostatic potential of both bovine
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and human C3b are overall similar. However, a more negative
character in the CUB domain of the human C3b was observed,
compared to the bovine protein (net charges are –30e− for human
C3b and –16e− for bovine C3b). The surface projections of the
electrostatic potential of the ligands, FH, VCP, and SPICE,
display both similarities and pronounced differences.
Electrostatic complementarity between both the bovine and

human C3b proteins and their ligands is evident at the level of
the positively charged ligand module CCP1. Indeed, the CCP1
module of FH, VCP, and SPICE exhibits electrostatic
complementarity with the negatively charged MG7 domain,
where the CCP1 module binds (Figure 2A) (Wu et al., 2009).
Additionally, our hotspot analyses reveal that the CUB and MG6
domains of bovine and human C3b harbor most of the variations

FIGURE 2 | (A) Electrostatic potential surface projection for the bovine and human C3b proteins (left panel) and for the Factor H, VCP and SPICE ligands (right panel).
The left and right panels are separated by an “open book” view, which reveals the surfaces of contact at the interface of the protein-ligand complex. The protein domains of
C3b (C345C, CUB, and TED) and the complement control protein (CCP) modules of Factor H, VCP and SPICE (CCP1-4) are also shown. On the 3D structure of C3b, the
location of the CCP1 and CCP4 binding sites is also shown. The ellipses depict differences in the central regions of bovine and humanC3b. The electrostatic potential is
colored from red (negative) to blue (positive). (B) Electrostatic Similarity Index (ESI), projected on the 3D structure of the bovine and human C3b protein (left panel) and of the
Factor H, VCP and SPICE ligands (right panel). Observed electrostatic hotspots on the ligands are marked as HS1–HS4. The color scheme blue–green–orange represents
low–to–high similarity, corresponding to ESI values of 0.6–0.8–1.0 for the bovine and human C3b, and ESI values of 0.4–0.7–1.0 for the ligands.
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that play a key role in CCP2 binding for FH, SPICE, and VCP
(Figure 2B). Partial electrostatic complementarity is observed
between module CCP4 of FH, VCP, and SPICE and the TED
domain of both bovine and human C3b, although the distribution
of positive and negative patches in CCP4 differs in FH, VCP, and
SPICE. In the case of the middle modules CCP2 and CCP3 of
VCP and SPICE (which display a more negative electrostatic
surface), the electrostatic complementarity appears to be favored
with the bovine C3b, with respect to the human C3b, which shows
increased negatively charged surface. This observation agrees
with the increased specificity observed for VCP toward the
bovine C3b (Yadav et al., 2012). However, it does not explain
the lower specificity of binding for SPICE, which is instead
human complement-specific.

As discussed before, (Kieslich andMorikis, 2012) visual inspection
of the electrostatic potential may not adequately highlight the
electrostatic contributions to protein-protein association. Hence, to
gain further insights into the electrostatic complementarity, we
employed an Electrostatic Similarity Index (ESI) (Carbó et al.,
1980; Hodgkin and Richards, 1987). This analysis enables to
assess the electrostatic potential upon perturbation
(i.e., mutagenesis, details are reported in the Methods section),
identifying regions of high “electrostatic similarity” or those
regions least affected by perturbation. High ESI values indicate
regions with resistance to perturbation with evolutionarily
conserved electrostatic potential (Kieslich and Morikis, 2012), and
pinpoints the presence of electrostatic hotspots. Regions of C3b and
its ligands characterized by high ESI values are shown in Figure 2B,
as identified by the surface projection of ESI values on the 3D
structures. The human C3b displays a larger electrostatic hotspot
(orange surface) in the binding site of all ligand modules (CCP1-
CCP4), extending to the C345C andCUB domains as well, compared
to bovine C3b. A larger electrostatic hotspot is also observed in the
TED domain of the human C3b, which is the binding site of the
CCP4 module. The FH, VCP and SPICE ligands display however
electrostatic hotspot diversity. An electrostatic hotspot in between
modules CCP1-CCP2 is observed in all three ligands, but is more
pronounced in SPICE (indicated in Figure 2B as Hot Spot 1, HS1).
VCP and FH display a second hotspot at the CCP2-CCP3 interface
(HS2), while FH also displays other two regions characterized by
electrostatic hotspots at the level of CCP4 (HS3, HS4). Interpretation
of the ESI maps suggests that HS1, which is conserved in the three
ligands, mediates binding affinities for all three ligands at the level of
the CCP1 binding site on both the human and bovine isoforms of
C3b. A comparison with Figure 2A also shows that HS1 corresponds
to positively charged areas, which are prone to bind the negatively
charged binding site on C3b.

The bovine C3b, which preferentially binds VCP, shows that
several electrostatic hotspots, where the electrostatics is resistant
to perturbation, are distributed on the protein surface
(Figure 2B). This is also observed in the VCP and FH ligands,
where the HS1-3 also display a high electrostatic
complementarity with the bovine C3b (Figure 2A). This is in
line with the higher affinity of VCP for the bovine C3b, compared
to human C3b (Yadav et al., 2012). Indeed, the negative charge of
HS2 in VCP participates in attractive interactions with the
positive charges in the CUB region of the bovine C3b, while

establishing repulsive interactions with the negative charges in
the CUB region of the human C3b (Figure 2A), thus contributing
to the higher selectivity of VCP for bovine C3b.

The human C3b (which is SPICE-specific) shows an extended
hotspot area, while SPICE shows the absence of hotspots in its
complementary central modules CCP2 and CCP3 (Figure 2B).
This observation indicates that while the human C3b strongly
preserves its core electrostatics, its SPICE ligand is highly
susceptible to electrostatic perturbation. Moreover, the central
modules of SPICE display low electrostatic complementarity with
the CUB region of the human C3b (Figure 2A) and the positively
charged HS1 hotspot is the sole electrostatic anchor to the human
C3b. The highly preserved electrostatic core indicated by the
extended hotspot area in the human C3b suggests that this
protein could be less selective in binding to different ligands
like SPICE and FH, which exhibit diverse ESI map and different
electrostatic properties (Yadav et al., 2012).

Overall, analysis of the ESI maps suggests that changes in the
electrostatic properties of the central modules of VCP and SPICE
(i.e., in between CCP2-CCP3) could modulate the selectivity for the
bovine vs. the human C3b (Yadav et al., 2012). Most notably, the
bovine C3b and its VCP ligand display a common heterogeneity of
the ESI maps (Figure 2B) and a high electrostatic complementarity
(Figure 2A). This suggests that the bovine C3b is electrostatically
prone to bind its VCP and FH ligands, which exhibit similar
electrostatic properties. The human isoform of C3b displays a
large electrostatic hotspot, which indicates a highly preserved
electrostatic core. On the other hand, its SPICE ligand shows the
absence of hotspots in the central modules and low electrostatic
complementarity, such that the positively charged HS1 hotspot is the
sole electrostatic anchor to the human C3b. These evidences suggest
that the human C3b, which exhibits a highly preserved electrostatic
core, could be less selective and bind different ligands like SPICE and
FH, which exhibit diverse ESI map and different electrostatic
properties. To support this hypothesis, we performed cofactor
activity assays, where the activity of the human FH at the level of
the human C3b was measured (FH + HuC3b), in comparison with
that of the human FH at the level of the bovine C3b (FH + BoC3b).
These assays were performed in the presence of a critical serine
protease enabling the reaction, viz. factor I, both from bovine and
human species (Figure 3). Compared to our controls (FH+HuC3b+
HuFI), a 31-fold decrease in cofactor activity was observed when the
bovine C3b is bound to the human FH (FH + BoC3b + HuFI),
revealing that the bovine C3b is less prone to bind the human FH.
Additionally, when comparing Cofactor activity Assay of FH +
HuC3b + BoFI, and FH + BoC3b + BoFI, we observe a 19-fold
decrease in relative activity, further supporting the evidence that the
bovine C3b is less specific than the human C3b for the human FH.
These cofactor activity assays were performed analogously to our
previous experimental investigation describing the specificity of VCP
and SPICE toward the bovine and human C3b, respectively (Yadav
et al., 2012). Taken together, these experimental data indicate that the
human C3b is prone to bind to the human FH (Figure 3), as well as
its SPICE ligand (Yadav et al., 2012). Considering the remarkable
differences in terms of electrostatic properties of the human FH and
SPICE ligands (Figure 2), as well as the highly preserved electrostatic
core of the human C3b, the above reported experimental evidence

Frontiers in Molecular Biosciences | www.frontiersin.org March 2021 | Volume 8 | Article 6180686

Narkhede et al. Role of Electrostatics in the Complement Proteins Selectivity

50

https://www.frontiersin.org/journals/moleculariosciences
www.frontiersin.org
https://www.frontiersin.org/journals/moleculariosciences#articles


support that the human C3b is intrinsically less selective than
the bovine C3b. Finally, it is notable that the experimental
results reported in this paper, as well as the data from our
previous study, have been performed by including the enzyme

Factor I in the experimental assay. The binding of the FI
enzyme occurs at a distal site with respect to the FH
binding site on C3b, thereby not interfering with the FH-
C3b interaction (Xue et al., 2017).

FIGURE 3 | Cofactor activity of human factor H for human and bovine C3b. (A) Analysis of cofactor activity by SDS-PAGE gel analysis. C3b (human or bovine) was
mixed with human factor H and factor I (human or bovine), incubated at 37 °C for the indicated time, and examined for C3b cleavage (α′-chain cleavage) by running the
reactionmix on SDS-PAGE. (B) The amount of α′-chain at different time points was quantitated densitometrically and plotted against time. (C)Relative cofactor activity of
factor H against human and bovine C3b in the presence of human or bovine factor I. The molar concentration of the complement components used in the cofactor
assay was: 758 nM Hu/Bo C3b, 11 nM Hu/Bo factor I and 473 nM Hu factor H.

FIGURE 4 | Electrostatic potential maps for the (A) Vaccinia virus complement control protein (VCP) and (B) smallpox inhibitor of complement enzymes (SPICE),
upon point mutations of the E108K, E120K, and E108K/E120K residues in VCP, and upon the reversemutations of K108E, K120E, and K108E/K120E/N144E in SPICE.
The electrostatic potential is represented as isopotential contour maps, with blue and red contours having isovalues of +2 and −2 kBT/e

−, respectively. Two orientations
of the ligands are shown, displaying their solvent side and the side binding C3b (upon a 180° rotation around the horizontal axis). The electrostatic potential
calculations were performed with 150 mM ionic strength.
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To further investigate the electrostatic properties of SPICE and
VCP, we extended our electrostatic analysis to twomutants of SPICE
and VCP. We introduced mutations that have been experimentally
shown to revert the selectivity toward the bovine and human C3b
(Yadav et al., 2012). In SPICE, we introduced the K108E, K120E, and
N144E mutations that confer bovine selectivity, whereas in VCP, we
introduced the E108K, and E120K mutations that confer SPICE-like
activity. Figure 4 shows the spatial distributions of electrostatic
potentials of VCP (panel A), including the E108K, E120K, and
E108K/E120K mutations, and of SPICE (panel B) including the
reverse mutations (K108E ad K120E) and the N144Emutation, at an
ionic strength of 150mM. In VCP, the E108K and E120K mutations
augment the positive electrostatic potential of modules CCP1 and
CCP2. On the other hand, in SPICE, the K108E, K120E, and N144E
mutations reduce the corresponding positive electrostatic potential.
The increase of the positive electrostatic potential in the VCP
modules CCP1 and CCP2, upon switching of the 108 and 120
residues from E–to–K, agrees well with a switch in selectivity toward
the human C3b, which displays a highly negative electrostatic surface
(Figure 2A) (Yadav et al., 2012). As opposite, the decrease of the
positive electrostatic potential upon the reverse K–to–E mutations of
residues 108 and 120 in SPICE, confers reduced affinity for the highly
negatively charged electrostatic surface of the human C3b.
Considering also the experimental evidence that these mutations
revert the selectivity of the SPICE and VCP viral proteins, (Yadav
et al., 2012) these outcomes suggest that an “electrostatic switch” into
their central modules is critical for the opposite selectivity toward the
human and bovine C3b. To gain more insights on this “electrostatic
switch,” we performed the inspection of the electrostatic hotspots in

theVCP and SPICEmutants through the calculation of the ESImaps.
We analyzed the charge reversal for residues 108 and 120 in module
CCP2 from E–to–K in VCP and from K–to–E in SPICE. This
analysis has been carried out on the VCP E108K/E120K and SPICE
K108E/K120E mutants, and compared with the wild-type ligands
(Figure 5). As a result, the E108K/E120K mutation produces a VCP
protein with a SPICE-like electrostatic hotspot map. Indeed, the
E108K/E120K mutation augments the HS1 in VCP (to become
similar to that of SPICE) and abolishes the HS2 hotspot (not
present in SPICE). This is in good agreement with the
experimental evidence that the E108K, E120K mutations in VCP
confer to the latter SPICE-like activity (Yadav et al., 2012). On the
other hand, the SPICE double mutation K108E/K120E generates a
VCP-like electrostatic hotspot map, with reduction of the HS1 area
and appearance of HS2. This confirms the evidence of an
“electrostatic switch” in the central modules of SPICE and VCP.

CONCLUSION

Here, we performed a computational study aimed at shedding
light into the molecular mimicry of the viral proteins VCP and
SPICE of the human FH binding to the complement protein C3b.
These viral proteins exploit their structural similarity with the
human FH to evade the immune response of the complement
system, which is one of the important factors in their
pathogenicity. Although SPICE and VCP are structural
homologues and differ for a few amino acid mutations, they
exhibit different selectivity toward the human and bovine

FIGURE 5 | Electrostatic Similarity Index (ESI), projected on the 3D structure of (A) the vaccinia virus complement control protein (VCP) and of (B) the smallpox
inhibitor of complement enzymes (SPICE). ESI is computed and projected on the proteins as wild-type (WT, left panel) and upon mutation of the residues 108 and 120
(right panel). Observed electrostatic hotspots on the ligands are marked as HS1–HS2. The color scheme blue–green–orange represents low–to–high similarity,
corresponding to ESI values of 0.4–0.7–1.0.
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isoforms of C3b (Yadav et al., 2012). Inspired by an early study by
Kieslich andMorikis (Kieslich andMorikis, 2012), demonstrating
that the diverse electrostatic properties of the Complement
Control Proteins (CCP) mediate different specificities toward
the complement proteins, we performed an electrostatic analysis
of the SPICE and VCP ligands and of their human and bovine
C3b counterparts. Electrostatic calculations, in-silico alanine-
scan and electrostatic hotspot analysis were used to
characterize the electrostatic complementarity of the protein-
protein interaction and the onset of electrostatic hotspots, which
are crucial regions where the electrostatic potential is resistant to
permutation and is likely to be evolutionarily conserved (Kieslich
and Morikis, 2012).

The calculations reveal that the bovine C3b, which
preferentially binds VCP (Yadav et al., 2012), shows high
electrostatic complementarity with its VCP ligand, displaying
also several electrostatic hotspots that are also observed in VCP
and FH. This suggests that the bovine C3b is electrostatically
prone to selectively bind its VCP ligand. The human isoform of
C3b displays a highly preserved electrostatic core, as arising from
the observation of an extended electrostatic hotspot. On the other
hand, its SPICE ligand shows the absence of hotspots in the
central modules and low electrostatic complementarity, such that
the positively charged HS1 hotspot is the sole electrostatic anchor
to the human C3b. Considering this low electrostatic
complementarity, the highly preserved electrostatic core in the
human C3b suggests that this protein could be less selective in
binding ligands like SPICE and FH. Additional investigations
considering mutants of SPICE and VCP that revert their
selectivity toward the bovine and human C3b (Yadav et al.,
2012), reveal that an “electrostatic switch” into the central
modules of the ligands is critical for their opposite selectivity.
Taken together, these evidences highlight the critical role of the
electrostatics in the specificity of SPICE and VCP toward the
human and bovine isoforms of the C3b protein. Considering the
pathogenesis of the vaccinia virus, causing outbreaks in dairy
cattle in India and Brazil (Trindade et al., 2007; Gurav et al.,
2011), the mechanistic aspects arising from this electrostatic
analysis could provide critical insights to develop novel
vaccines and therapeutic strategies.
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Recent advances in methodology enable effective coarse-grained modeling of

deoxyribonucleic acid (DNA) based on underlying atomistic force field simulations.

The so-called bottom-up coarse-graining practice separates fast and slow dynamic

processes in molecular systems by averaging out fast degrees of freedom represented by

the underlying fine-grained model. The resulting effective potential of interaction includes

the contribution from fast degrees of freedom effectively in the form of potential of mean

force. The pair-wise additive potential is usually adopted to construct the coarse-grained

Hamiltonian for its efficiency in a computer simulation. In this review, we present a

few well-developed bottom-up coarse-graining methods, discussing their application

in modeling DNA properties such as DNA flexibility (persistence length), conformation,

“melting,” and DNA condensation.

Keywords: DNA condensation, coarse-grained model, molecular renormalization group, inverse Monte Carlo,

multi-scale coarse-graining, force matching, relative entropy, persistence length

1. INTRODUCTION

Deoxyribonucleic acid (DNA) is the genetic information carrier of higher living organisms. To
pass the encoded information from generation to generation, it has to allow efficient duplication
and compaction. We still lack a full understanding of many fundamental aspects of DNA physics
that determine DNA properties and function. To name a few, double-helical DNA encounters
topological difficulties during replication (Postow et al., 2001) and compaction (Schiessel, 2003).
Physically, curvature and elasticity of the DNA double helix are crucial for DNA compaction into
chromatin and chromosomes, which is essential to cell division and gene expression regulation.
Additionally, the conformational dynamics of DNA is crucial to its interaction with other
macromolecules in the cell (Stelzl et al., 2017).

Furthermore, DNA-based nanoscale materials have attracted a large amount of attention
in recent years. Particularly, the programmable design of DNA origami has found promising
application in many fields, such as cancer therapy (Rajagopalan and Yakhmi, 2017). Hence, the
knowledge of how DNA mechanics operates from atomistic level (nanometer) to macromolecule
level (micrometer) will undoubtedly advance our understanding of the machinery of living
organisms and grant us more control in designing nanomaterials and nanomachines based
on DNA.

As an indispensable tool in DNA study, molecular modeling has advanced considerably in
the past two decades. Developers continuously improve the extensively used all-atom (AA) force
field models. Many AA force field deficiencies were exposed and subsequently corrected after
microsecond-long AA simulations become available (Hart et al., 2012; Galindo-Murillo et al., 2016).
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With extensive simulations, we have gained atomic-level insights
on DNA dynamics (Lavery et al., 2009), DNA flexibility (Minhas
et al., 2020), and other physical properties of DNA.

Despite the success of AA DNA models in studying DNA
dynamics, flexibility, and binding properties, many important
questions, such as nucleosome organization within chromatin
that package DNA in the eukaryotic cell nucleus, are still out
of their reach. With recent advances in multi-microsecond AA
simulations, partial DNA unwrapping from the histone core of
the nucleosome can be characterized in detail (Shaytan et al.,
2016). However, other important relative motion between DNA
and the histone proteins of the histone octamer (HO) that
wraps DNA in nucleosomes (Kono and Ishida, 2020), such
as sliding, is still beyond the capability of AA-MD. Lowering
the model’s resolution by merging groups of highly correlated
atoms to individual interaction sites is an effective way to study
these features. These low-resolution models are usually called
coarse-grained (CG) models. In such models, the fluctuations
of unimportant degrees of freedom are implicit. Furthermore,
with a low number of degrees of freedom, we effectively deal
with a smoother free energy surface of the molecular system.
Consequently, CG models speed up the simulation in two ways–
there are fewer interacting particles in the simulation system–
and faster dynamics due to the smoother free energy surface.
Within CGmodels, we can observe molecular dynamics at a large
temporal and spatial scale using widely available computational
resources, such as workstations and freely accessible simulation
software packages.

The development of CGmodels is not always straightforward,
and it remained something of an art rather than rigorous science
for a long time. For simple molecular systems, such as liquids
of small molecules, the CG model is usually straightforward
with a small number of parameters. It is convenient to tune
these parameters to reproduce correct macroscopic quantities,
such as density and/or surface tension. It is widely known as
“top-down” modeling. As the need for a complex model arises,
it is usually challenging, if not impossible, to complete the
modeling with only top-down approaches as the number of
parameters in the model could be exceedingly large. There is not
enough information for all parameters to be determined with
high confidence.

Another CG modeling approach relies on the lower level,
higher resolution models, commonly referred to as fine-grained
(FG) models. These so-called “bottom-up” methods achieve the
desired modeling by averaging out the unimportant degrees of
freedom. For instance, water molecules are usually implicit in CG
modeling of proteins, while their effects on, for example, protein
conformation is implicitly included in the effective Hamiltonian
of the CG model. Therefore, the central task of bottom-up CG
modeling is to derive all parameters of the target CG model with
the information presented by an underlying fine-grained model,
usually an AA model.

Mathematically, bottom-up coarse-graining strives to project
a higher dimensional Hamiltonian to a lower-dimensional
space, with the requirement that a certain set of properties
is maintained. This set of properties is defined by carefully
choosing an objective function that determines the properties

of interest and their relative weights. Practitioners have a
number of algorithms based on statistical mechanics tackling this
projection with various objective functions. Some approaches try
to preserve interaction forces by averaging out the fast degrees
of freedom by integration (Noid et al., 2008). Some minimize
the information loss in the coarse-graining process, characterized
by a relative entropy (Shell, 2008, 2016; Chaimovich and Shell,
2011). Others aim to reproduce structural features of the
molecular system represented by the radial distribution functions
(RDF) (Lyubartsev and Laaksonen, 1995; Soper, 1996). It is
worth noting that the objective function does not necessarily
consist of elementary physical quantities such as force or particle
correlation. It can be a combination of various quantities
with predetermined weights, such as distance distributions
(Leonarski et al., 2013), force variations (Zhang et al., 2018;
Wang et al., 2019), and entropy loss (Wang and Gomez-
Bombarelli, 2019). Even macroscopic quantities can be included
in such designed objective function to accommodate a wide
range of modeling goals. These modeling efforts with designed
objective functions gained more popularity in the past decade
as machine learning approaches became common. Nevertheless,
choosing or designing a suitable objective function is the most
critical part in such cases, as the optimization methods are
readily available using machine learning algorithms. This process
is something of an art, requiring experience in solving such
modeling problems. Generally, all CG modeling efforts can be
described by a common framework as depicted in Figure 1.
The key elements in the framework are the objective function,
the optimization algorithm, and the simulation engine. The
simulation engine produces simulation results that are evaluated
by the objective function with respect to the targeting reference
data, before the trial CG model being subjected to optimization.
The modeling is successful when the quality of the CG model is
good enough judged by the objective function. In this review, we
will focus on bottom-up coarse-graining algorithms originating
from statistical mechanics. Readers interested in novel objective
functions andmodeling withmachine learning are referred to the
review by Gkeka et al. (2020).

Though mathematically well-defined, the bottom-up coarse-
graining process is not straightforward in practice, especially
for complex molecular models, such as DNA and proteins.
Many aspects of interactions and configurations of DNA
could collectively determine one specific property, e.g., bending
flexibility. It is challenging to model all these kinds of
interactions accurately at the same time. Nevertheless, many
coarse-grained DNAmodels, based on atomistic force fields have
been developed, following the bottom-up philosophy. In this
review, we review the application of bottom-up coarse-graining
methods for studying and understanding DNA properties. We
will first introduce bottom-up modeling methods in section 2.
Some selected representative bottom-up DNA models will be
summarized to give an overview of its recent development.
The pros and cons of bottom-up modeling different properties
of DNA will be presented. Lastly, we will summarize the
current stage of bottom-up DNA models and discuss the future
development of bottom-up coarse-graining of DNA. DNA is
a highly charged polyelectrolyte. The long-range electrostatic
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FIGURE 1 | General workflow of coarse-grained modeling. Essential tools for coarse-grained modeling include a software that performs simulation, an objective

function to evaluate simulation data and an optimization algorithm to improve the CG model. The final model, which will reproduce the reference data, is obtained

when the objective function is satisfied. When the reference data is extracted from fine-grained model simulations, this flow chart represents a general bottom-up

coarse-graining algorithm. When the reference data is macroscopic quantities obtained in experiments, this flow chart indicates a top-down coarse-graining

procedure. Hybrid coarse-grained modeling is achieved with reference data from both lower-level models and experiments, with a corresponding objective function.

interactions between DNA, small mobile ions (due to salt), and
other charged small molecules, as well as biomacromolecules,
dominates most, if not all, their physicochemical properties
(Bloomfield et al., 2000). Dramatic salt effects and the strong
influence of the valence of counterions on DNA physical
properties are observed. In some cases, it leads to counter-
intuitive behavior such as like-charged attraction between the
DNA polyions (Guldbrand et al., 1986; Nordenskiold et al., 2008;
Korolev et al., 2010, 2016). Bottom-up approaches represents
arguably the most rigorous way of extracting the effective
electrostatic potentials between the charged CG sites.

2. BOTTOM-UP COARSE-GRAINING

2.1. Theoretical Background
In physical terms, bottom-up coarse-graining is the process
of removing unimportant degrees of freedom (DOF) from a
detailed high-resolution model and formulation of a simpler
model, which contains only essential DOFs. Assume that at the

high-resolution level, the system is described by a Hamiltonian
(potential energy) H(q1, · · · , qn), where {qi; i = 1, · · · , n}
are coordinates of particles. The potential energy function
typically represents the atomistic force field. However, it can
be the potential energy of an already existing CG model, or
in the case of ab initio modeling, can represent the energy
surface obtained from quantum chemical computations. Coarse-
graining is described in terms of mapping of FG coordinates
(degrees of freedom) {qi; i = 1, · · · , n} to CG coordinates
{Qj; j = 1, · · · ,N} withN≪n, which ismathematically expressed
as mapping functionsM:

Qj = Mj(q1, · · · , qn) (1)

Generally important DOF, represented by coarse-grained sites,
can be chosen in different ways, often based on experience
grounded in chemical and physical intuition. Typically one
chooses CG sites according to the center-of-masses (COM) of
the atom groups forming the CG units, while other choices
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(such as taking coordinates of specific atoms) are also possible.
For instance, one can aim to minimize the information loss
due to the mapping operation (Giulini et al., 2020), or choose
beads representing collective motions (Zhang et al., 2008). The
Hamiltonian H(q1, · · · , qn) defines all properties of the high-
resolution system and, through the mapping functions (Equation
1), all properties of the CG system. The task of the bottom-up
approach is to define the effective interaction potentials for the
CG sites, denoted HCG(Q1, · · · ,QN), which provides the same
properties for the CG system as the properties defined by the
FG Hamiltonian H(q1, · · · , qn) through the CG mapping. In
other words, bottom-up modeling is the practice of solving the
inverse problem: to determine the CG interaction potential that
reproduces known properties obtained from simulations of the
FG system.

The CG Hamiltonian, which satisfies the consistency
condition, can be deduced from the FG Hamiltonian by
integrating over non-interesting degrees of freedom: (Noid et al.,
2008; Lyubartsev et al., 2015)

HCG(Q1, · · · ,QN) = −
1

β
ln

∫ n
∏

i=1

dqi

N
∏

j=1

δ(Qj −Mj(q1, · · · , qn))

exp(−βH(q1, · · · , qn))+ C (2)

The above coarse-grained Hamiltonian, HCG, is also known
as an N-body potential of mean force. It provides precisely
the same structural properties for the CG model as the FG
system mapped by Equation (1) to the CG representation.
Thermodynamic properties (average energy, free energies,
pressure) can also be reproduced, given the fact that the
original and CG Hamiltonians have the same partition function.
However, a caveat is that the CG Hamiltonian depends on the
thermodynamic conditions (temperature, volume, or density).
These dependencies need to be considered while obtaining
thermodynamic properties by taking the derivative of the
partition function with respect to thermodynamic parameters
(Lyubartsev, 2018). Reconstruction of correct dynamics in
the CG system is a more challenging task, which leads to
a generalized Langevin equation with a memory function
(Romiszowski and Yaris, 1991). Approximately, dynamics can
be reconstructed within a dissipative particle dynamics approach
implementing the Mori-Zvanzig formalism (Eriksson et al., 2008;
Hijon et al., 2010) or by normal Langevin dynamics with an
appropriately chosen friction constant.

However, modeling a CG system using an N-body potential
(Equation 2) is practically impossible. In all implementation of
bottom-up coarse-graining, one resorts to simpler functions such
as additive pair potentials. Hence, the task is reformulated into
finding the best possible approximation to the exact Hamiltonian
in Equation (2), in the form of additive pair interactions:

HCG(Q1, · · · ,QN) ≈ 6i,jUij(Rij) (3)

where Rij is the distance between CG sites i and j.
We note that the use of only pair potentials is not a restriction.

Other types of interactions can be included in Equation (3). For

example, angle (3-body) or torsion (4-body) potential terms are
commonly used for macromolecular CG models. Other forms
expressing multi-body interactions can also be included as long
as they can be handled efficiently by the simulation software. The
task of building a CG force field can be reformulated into finding
“as good as possible” an approximation to the exact many-body
potential according to Equation (3). For instance, finding the best
fit of forces coming from both sides of Equation (3) gives rise to
the force-matching method (Ercolessi and Adams, 1994; Izvekov
et al., 2004), also known as theMulti-Scale Coarse-Graining (MS-
CG) method (Izvekov and Voth, 2005). Another approach that
rests on minimizing the entropy difference between FG and CG
models corresponds to the relative entropyminimizationmethod
(Shell, 2008).

All bottom-up approaches can be approximately divided into
two categories: thermodynamics-based coarse-graining aiming
at a reproduction of thermodynamic properties (free energies,
average forces), and structure-based coarse-graining, aiming at
the reproduction of structural properties of the FG system. The
theoretical justification of structure-based coarse-graining is the
Henderson theorem (Henderson, 1974) that defines a one-to-
one relationship between a set of radial distribution functions
(RDF) and a set of pair potentials for CG sites. Rudzinski
and Noid (2011) later generalized the Henderson theorem to
include multiple RDFs between different types of CG sites and
intramolecular structural properties such as bond lengths and
angles distributions. Below we present several well-developed
bottom-up CG modeling methods and discuss the connections
among them.

2.2. Iterative Boltzmann Inversion
We first discuss the simplest algorithm of bottom-up coarse-
graining, which is Iterative Boltzmann Inversion (IBI). This
method is usually categorized as structure-based coarse-
graining, where the pair potential approximation (Equation 3)
is fitted to reproduce various distribution functions obtained
in atomistic simulations. Common target distributions include
radial distribution functions (RDF), bond length distributions,
angle value distributions, etc. The IBI approach is implemented
through an iterative algorithm (Soper, 1996; Reith et al., 2003).
The pair interaction potential is in each iteration updated with a
correction term originating from the mean-field approximation:

U i+1
αβ = U i

αβ − kBT ln





giαβ (r)

g
ref
αβ (r)



 (4)

The pair potential between site types α and β used in iteration
i + 1 is obtained by applying the correction term (second term
on the right-hand side) to the pair potential in iteration i.
To determine the correction, the pair RDF, giαβ (r), is obtained
through proper sampling with the current interaction potential,

U i
αβ , and subsequently compared with the reference RDF, g

ref
αβ (r),

from an FG simulation. The iterative algorithm is started with a
bootstrapping potential, usually, a simple potential of mean force:
(Soper, 1996; Reith et al., 2003)

U0
αβ (r) = −kBT ln g

ref
αβ (r) (5)
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The convergence of the effective potential is expected when the
correction term approaches zero, which also means (Equation 4)
that the CG RDF is nearly equal to the RDF of the reference FG
simulations. Thus, the inverse problem is solved, and the effective
potential is obtained.

Correction of the potential according to Equation (4) is
straightforward to implement. This correction is determined only
by the value of the same distribution function, while correlations
between different interaction terms are completely neglected.
As a result, the IBI approach often faces convergence problem
even for relatively simple systems such as ion solutions (Hess
et al., 2006), where RDFs between different pairs of anions and
cations are strongly correlated with each other. In the practical
calculation of CG potentials by RDF inversion, it might be
instructive to start the iterative process using the IBI approach.
This brings the system RDFs close to the reference values, after
which one may switch to other algorithms, which take into
account correlations between different interaction terms and
provide better convergence when the RDFs are close to the
reference functions.

2.3. Inverse Monte Carlo
The Inverse Monte Carlo (IMC) method (Lyubartsev and
Laaksonen, 1995; Lyubartsev, 2018) (also known as Newton
Inversion; Lyubartsev et al., 2010) is a general method to
invert ensemble averages, and particularly RDFs, to effective pair
potentials. For any multi-component system, it goes through
an inverse process and produces as output the effective pair
potentials between CG sites, which in direct CG simulations
reproduce the same RDFs as those obtained in the detailed
FG simulations.

Within the IMC approach, both RDFs and interaction
potentials are discretized into two sets of values: histogram
of particle-particle distances {Gα;α = 1, · · · ,m}, which after
ensemble averaging and normalization to bulk particle density
yields RDF, and tabulated pair potentials {Uα;α = 1, · · · ,m},
which are determined for the same set of distances as the RDFs.
In standard simulations (direct problem), we have the interaction
potential U as input, and by running MC or MD simulation, we
can evaluate averages {〈Gα〉} and thus obtain the RDF as output.
In coarse-graining by IMC, we solve the inverse task: from

averages determined in FG simulations ({〈G
ref
α 〉}) we determine

the CG effective potential U.
The solution to this non-linear inverse problem can be

obtained iteratively by the Newton-Raphson method (hence
named the Newton Inversion). Let us determine the Jacobian of
the G(U) dependence by defining its elements:

Jαγ =
∂〈Gα〉

∂Uγ

(6)

This Jacobian (anm×mmatrix) determines how changes of the
potential are related to the changes of the RDF:

1EG = J1 EU (7)

where we use vector notations for the sets of values of the
potential and RDF. Respectively, corrections to the potential,

which produce the desired changes of the RDF are determined
by the inverse matrix:

1 EU = J−1(EG− EGref ) (8)

The Jacobian itself can be computed in Monte Carlo or MD
simulations by (Lyubartsev and Laaksonen, 1995):

∂〈Gα〉

∂Uγ

= −
1

kBT
(〈GαGγ 〉 − 〈Gα〉〈Gγ 〉) (9)

Recall that G is discretized RDF and U is discretized potential
energy, as formulated in IMC and implemented in the MagiC
software (Mirzoev et al., 2019). More generally, G can be any
set of observables, and Uγ can represent an arbitrary parameter
of potential energy. The G(U) dependence in this general sense
can be computed in similar ways as in Equation (9), which
has been used in the molecular renormalization group (Savelyev
and Papoian, 2009a,b, 2010) and ForceBalance (Wang et al.,
2014) methods.

Equations (8) and (9) allow us to solve the inverse problem by
an iterative procedure. We start from a trial set of potential. In
practical simulations, one can start either from zero or from the
pair potentials of mean force and then run an MC simulation,
followed by computation of RDFs expressed in terms of 〈Gα〉,
as well as the cross-correlation terms according to Equation (9).
It is followed by inverting the Jacobian defined by Equation (6)
(which solves the corresponding system of linear equations) to
obtain corrections to the interaction potential U. The procedure
is repeated until convergence.

In practical computations, the direct use of Equations (8) and
(9) may lead to divergence since the method is based on linear
extrapolation (Equation 7) of a generally non-linear relationship.
A simple way to regularize the procedure is to iterate by “small
steps” to ensure staying in the linear regime, i.e., to multiply the
difference of RDF, EG− EGref , by a scaling factor 0 < λ < 1.

Dealing with long-range electrostatic interactions, which are
important in the coarse-graining of highly charged systems such
as DNA, requires special considerations. In the first application
of IMC to the ionic solution (Lyubartsev and Laaksonen, 1995),
the electrostatic part of the interaction was separately treated in
the simulations. The non-electrostatic part of the interactions is
expected to be of short range. While the electrostatic interaction
is considered invariable, the short-range interaction is optimized
by the IMC procedure to reproduce the RDF within the specified
cut-off distance.

2.4. Molecular Renormalization Group
Savelyev and Papoian (2009a,b) have proposed an approach
similar to IMC bottom-up coarse-graining inspired by the
renormalization group theory. The so-called Molecular
Renormalization Group Coarse-Graining (MRG-CG) relies
on iteratively updating the trial interaction potential, using
a Jacobian identical to Equation (6). The novelty is that the
Jacobian is obtained by

∂〈Gα〉

∂Kγ

= −
1

kBT

[〈

Gα

∂U

∂Kγ

〉

− 〈Gα〉

〈

∂U

∂Kγ

〉]

(10)
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where Kγ represents an arbitrary parameter of the potential
U . It is apparent that when the Hamiltonian takes the form
U =

∑

α KαGα , Equation (10) becomes Equation (9). Therefore,
MRG-CG is a generalization of IMC.

In the original implementation of IMC (Lyubartsev and
Laaksonen, 1995), tabulated potentials were used as the default
functional form of the coarse-grained potential, as can be
expressed as a collection of delta-functions:

UCG =

m
∑

i

Kiδi(r− ri) (11)

where i goes through all m entries of the tabulated potential.
In other words, the CG Hamiltonian is expanded on a delta-
function basis set, usually with a large number of parameters {Ki}.
With the generalization introduced by MRG-CG, one can choose
a convenient basis set with much fewer parameters for expanding
the Hamiltonian. High efficiency is expected if the chosen basis
set is optimal.

2.5. Relative Entropy Minimization
In this approach, a quantity called the relative entropy based on
information theory was proposed to be used as a minimization
objective in bottom-up coarse-graining. The relative entropy is
defined as (Chaimovich and Shell, 2011)

Srel =
∑

i

PFG(i) ln
PFG(i)

PCG(M(i))
+ 〈Smap〉FG

Smap(I) = ln
∑

i

δI,M(i)

(12)

where the summation goes over all configurations {i} in FG
ensemble, P(i) is the probability of configuration i in FG
ensemble, FG and CG denote FG reference quantities and CG
quantities respectively. Note that the mapping entropy Smap is
not dependent on the CG effective potential. It represents the
entropy loss of mapping a set of FG microstates {i} into one
single CG microstate I. Under the canonical ensemble, we have
the following expression for relative entropy after substituting
configurational probabilities:

Srel = β〈UCG − UFG〉FG − β(ACG − AFG)+ 〈Smap〉FG (13)

Here, A = −kBT lnZ is the Helmholtz free energy, and all
averaging is performed under the FG ensemble. Note that the
free energy term ACG is evaluated over the FG ensemble, with
the operation of the mapping function and the CG potential
function. Hence, the term −β(ACG − AFG) characterizes the
free energy difference over the same FG ensemble, but in
representations of respective CG and FG models.

From an information theory point of view, relative entropy
quantifies the information loss in the coarse-graining process.
A good CG model is expected to have minimal information
loss when compared to its FG reference model. Therefore, we
minimize the relative entropy Srel to generate a CG model with
respect to the adjustable parameters in CG Hamiltonian.

Minimizing relative entropy with respect to an arbitrary
parameter λ of CG Hamiltonian requires

∂Srel

∂λ
= β

〈

∂UCG

∂λ

〉

FG

− β

〈

∂UCG

∂λ

〉

CG

= 0

∂2Srel

∂λ2
= β

〈

∂2UCG

∂λ2

〉

FG

− β

〈

∂2UCG

∂λ2

〉

CG

+ β2

〈

(

∂UCG

∂λ

)2
〉

CG

− β2
〈

∂UCG

∂λ

〉2

CG

> 0

(14)

Similar to other coarse-graining algorithms, the minimization of
relative entropy is achieved through iterations. With a simple
update rule (Shell, 2008) as:

λi+1 = λi −
∂Srel/∂λ

∂2Srel/∂λ2
(15)

the parameter of Hamiltonian, λ, is updated between iteration i
and i+ 1 by the negative ratio of the first derivative to the second
derivative of Srel with respect to λ. Here, the minimization of
Srel is implemented as a Newton-Raphson iterative algorithm. In
the case of UCG being linear in λ, i.e., UCG(QN) = λf (QN) +
· · · , where f (QN) is a function depending on CG coordinates,
Equation (15) becomes

λi+1 = λi − kBT
〈f 〉FG − 〈f 〉CG

〈f 2〉CG − 〈f 〉2CG
(16)

We may note here that when expanding the CG Hamiltonian
with a linear basis set, the correction term in Equation (16) is
calculated through the correlation of f . It indicates connections
to structure-based coarse-graining. We will discuss this further
in section 2.8.

2.6. Force Matching
Initially proposed by Ercolessi and Adams (1994), the force
matching method was later given a solid theoretical basis by
Izvekov et al. (Izvekov et al., 2004; Izvekov and Voth, 2005; Noid
et al., 2008). The objective in force matching is to minimize
the difference in the force as quantified by a functional of the
force residual:

χ2[F] =
1

3N

〈

N
∑

I=1

|fI(q
n)− FI(M

N
Q(q

n))|2
〉

(17)

In this way, given a CG mappingMN
Q(q

n), the forces given by the
FG force field, fI(qn), as exerted on atoms forming the CG site I,
are replaced by the force given by the CG force field, FI(QN). As
in other coarse-graining methods, a pairwise basis set, {φ2(RIJ)},
is usually adopted to expand the CG force field for efficiency:

FI(Q
N) =

∑

I 6=J

φ2(RIJ)êIJ =
∑

k

ck
∑

I 6=J

uk(RIJ)êIJ (18)

where {uk} is a set of B-spline functions, êIJ is the unit vector
pointing from bead I to bead J. The minimization problem of the
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force residual functional, with respect to a parameter set {ck}, can
be solved in a variational manner. In the further development of
the forcematchingmethod, regularization (Lu et al., 2010) and an
iterative algorithm (Lu et al., 2013) were introduced to improve
accuracy in reproducing structure correlations.

When working with pair-wise additive potential, the force
matching method can also be accomplished by solving a linear
system. Early implementation of the force matching algorithm,
employed discrete delta functions to represent forces in the form
of (Noid et al., 2007)

f (r) =
Nd
∑

d

fdδD(r − rd) (19)

with δD(r) = 1 when −1r/2 ≤ r < 1r/2, and δD(r) = 0
otherwise. By minimizing the force residual (Equation 17) with
respect to the force table elements fd, a linear equation system is
obtained (Noid et al., 2007)

∑

d′

fd′Gdd′ = bd (20)

where

bd =

〈

∑

i

∑

j 6=i

(EFI,AAi · EuIij)δD(r
I
i,j − rd)

〉

I

(21)

and

Gdd′ =

〈

∑

i

∑

j 6=i

∑

k6=i,j

(EuIij · Eu
I
ik)δD(r

I
ij − rd)δD(r

I
ik − rd′ )

〉

I

(22)

The symmetric matrix G contains all the information, up to
three-body correlation, to connect the table elements of CG
forces, fd, and forces in the fine-grained ensemble, bd.

2.7. Other Coarse-Graining Approaches
While bottom-up coarse-graining, as described, is a rigorous
and self-consistent approach, the accuracy of the bottom-up CG
model relies on the quality of the underlying fine-grained model.
Deficiency in the all-atom force field could result in incorrect
behavior of the derived CG model. For instance, in Maffeo et al.
(2014), the CG model of single-stranded DNA obtained by IBI
from atomistic simulations could not reproduce experimentally
measured radius of gyration. A top-down refinement was
subsequently applied to non-bonded interactions to improve the
accuracy of the resulting CG model. Such a hybrid bottom-up
– top-down approach is useful when fine-grained simulation
cannot produce the correct ensemble due to either inaccuracy
in the FG model or sampling difficulties. The hybrid approach
can also be accomplished by constructing a hybrid objective
function before optimization by machine learning algorithms
(Leonarski et al., 2013; Zhang et al., 2018; Wang and Gomez-
Bombarelli, 2019; Wang et al., 2019; Gkeka et al., 2020). The
objective function contains contributions from both the fine-
grained simulation and macroscopic measurements. An optimal

model should be obtained even though the whole process is not
trivial as many hyper parameters are involved in the machine
learning algorithm and objective function.

Efforts were also made to derive models in ways similar
to the development of classical atomistic force fields. In such
practice, a model with a generalized representation of certain
atom groups (CG site types) is produced, hoping that these
types of CG sites can be used as building blocks in applications
of modeling macromolecules. Instead of deducing interaction
potential between atom types as in classical force fields, the
potential of mean force among these CG site types is calculated
through simulations of the moieties constituting the CG sites,
using a fine-grained model. The extension of the MARTINI
force field to DNA (Uusitalo et al., 2015) follows this modeling
philosophy. It is still considered a bottom-up modeling approach
since it is based on an atomistic force field model. However
it is not a systematic approach, as we described above. Self-
consistency is lost in such modeling practices.

While evaluating a CG model’s quality, a comprehensive
view should be taken to balance various criteria with sound
reasons. One should recognize the shortcomings of bottom-up
coarse-graining when the resulting CG model fails to reproduce
experiments. For such cases, one may seek help from other
approaches of deriving the CG model, e.g., by combination with
a top-down approach.

2.8. Connection Among Bottom-Up
Coarse-Graining Methods
The Henderson uniqueness theorem (Henderson, 1974;
Rudzinski and Noid, 2011) states that for liquids with only
pair-wise interactions, under given temperature and density,
the pair-wise potential, which gives rise to a given radial
distribution function, is unique up to a constant. As such, a
connection is immediately clear among all structure-based
coarse-graining methods, including IBI, IMC and MRG-CG.
For an inverse modeling problem with a given set of RDFs
and intramolecular distributions, all structure-based modeling
methods will arrive at the same set of pair-wise potential up to
numerical precision, as long as they can produce the potential
as their answer. In practice, IBI has an inherent limitation of
ignoring all correlations between pair-wise interactions, resulting
in IBI being less capable of producing CG potentials with good
precision, especially in complex systems withmany CG site types.
when the IBI approach can provide a satisfactory CG model, it
is usually the most efficient one since the evaluation of the RDF
produced by a trial potential is much faster than the evaluation
of correlations between RDFs required by other methods.

Although relative entropy minimization is formulated from
very different principles compared to structure-based coarse-
graining, it has been shown that a CG system described by pair-
wise potentials obtained by the relative entropy minimization
reproduces the RDFs of the FG system (Chaimovich and Shell,
2011). Hence, relative entropy minimization leads to the same
result in CG modeling as structure-based methods taking into
account the Henderson uniqueness theorem. Indeed, similarities
between relative entropy minimization and other modeling
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TABLE 1 | Summary of coarse-grained DNA models.

DNA

models

Representation Main features Modeling method Achieved modeling target

IMC DNA 5 beads per two

base pairs

Explicit ion; Stable double helical structure IMC Reproduces the bending persistence

length of dsDNA; Reproduces multivalent

ion-induced DNA aggregation

Fan Bonds

Model

1 bead per

nucleotide

Double helix is maintained by intra- and

inter-strand bonds. Explicit ions

MRG-CG or IMC Bending persistence length of dsDNA can

be reproduced with scaled potential or

specific bonding structure

“sugar”

model

6 beads per

nucleotide

Explicitly modeling the sugar ring

conformation with a double-well bond;

Explicit Ions

Boltzmann Inversion; Energy

Relaxation; Empirical adjustments

Reproduced both A-DNA and B-DNA

conformations

3SPN DNA

Model

3 beads per

nucleotide

Specific potential energy terms for base

interactions

Top-down modeling for DNA; Relative

entropy minimization for ion

Well reproducing DNA melting curve,

shapes and curvature

methods have been point out by Chaimovich and Shell (2011).
The equivalence becomes even more evident from the fact
that in the practical implementation of the relative entropy
minimization described by Shell (2008), the method involves
inversion of the same cross-correlation matrix (Equations 9, 16)
as in the IMC method.

The interconnection between the force matching approach
and structure-based coarse-graining has been analyzed by
Rudzinski and Noid (2011). It was shown that both approaches
could be formulated in terms of an information function that
discriminates between the ensembles generated by atomistic and
CG models. While the relative entropy approach (and thus
other structure-based CG methods) minimizes the average of the
information function, the force matching method minimizes the
average of its squared gradient. It is why force matching usually
produces particle distributions different from the FG reference
distributions in practice.

Furthermore, it was shown (Noid et al., 2007) that the
kernel that describes the effects of three-particle correlations in
the force matching method is equivalent to the kernel of the
Yvon-Born-Green (YBG) equation, which relates equilibrium
particle 2- and 3-body correlation functions to the additive
pair-wise Hamiltonian. In later work by Lu et al. (2013), the
force matching algorithm based on the YBG equation can be
applied iteratively to reproduce the RDF of liquids as done
in structure-based coarse-graining. Considering the Henderson
uniqueness theorem, we see that the iterative force matching
method (Lu et al., 2013) produces the same CG model if it is
applied to minimize the RDF difference between the FG and
CG models.

We see that, though developed from different theoretical
backgrounds, there is a common theme among the discussed
bottom-up coarse-graining methods. When a pair-wise additive
potential is adopted, all methods reside in the generalized Yvon-
Born-Green hierarchy, either directly, or through modifications
as in the later development of force matching. More generally,
as proposed by Shell (2008) and later elaborated by Rudzinski
and Noid (2011), relative entropy is a fundamental quantity in
bottom-up coarse-graining, which connects all structure-based
methods and force-based methods.

3. COARSE-GRAINED DNA MODELS

Modeling of DNA, both in vivo and in vitro, is inherently a
multiscale problem, which requires several levels of resolution,
from atomistic (and perhaps quantum-chemical) to models
describing higher-order structures of DNA in chromatin. Recent
years have seen many CG DNA models differing by levels
of details developed through both bottom-up and top-down
approaches. Here we give a brief description of somemodels with
emphasis on bottom-up models. A summary of these models is
provided in Table 1.

3.1. IMC Model of dsDNA
We have developed a coarse-grained dsDNA model, focused on
the dsDNA double helical shape and a strong emphasis on DNA
electrostatic interactions. The first version of this model was
proposed by Fan et al. (2013) as a component of a CG nucleosome
core particle model. In this model, DNA is represented as a
chain of two-base pair units. Each unit contains five CG beads
representing two base pairs. Four of the five beads represent
phosphate groups with −1e charge, denoted “P” beads. The
central bead, called the “D” bead, represents the other atoms
of these two base pairs, namely four nucleosides, bearing zero
charge. Four types of bonds are defined, between “D” bead and
“P” beads in the same unit, between adjacent “P” beads on the
same strand of DNA, between “D” beads of adjacent units, and
lastly, between corresponding “P” beads across the minor groove.
These fragments are put together to form a DNA chain with two
helices formed by the phosphate groups (Figure 2A).

The total interaction potential consists of bonded and non-
bonded interactions:

Utot =
∑

bonds

Ubond(r)+
∑

angles

Uang(φ)+
∑

i,j

(Uel(rij)+ USR(rij))

(23)
where the electrostatic potential is modeled with screened
Coulomb potential with ǫ = 78

Uel(rij) =
qiqj

4πǫ0ǫrij
(24)
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FIGURE 2 | Graphical representation of selected bottom-up coarse-grained DNA models. (A) the IMC DNA model (Sun et al., 2019; Minhas et al., 2020). Electrostatic

interaction is modeled with explicit ion and phosphate beads (red), in addition to its apparent double-helical structure. Base-pair dynamics is simplified as it is not the

primary modeling target. (B) Model by Savelyev and Papoian (2010). A double-helical structure is maintained by a series of inter-strand bonds. (C) Model by Naômé

et al. (2014). Similar to (B). (D) The “sugar” DNA model (Kovaleva et al., 2017). Sugar puckering is modeled with a double-well bond potential, so that it is capable of

simulating A-DNA and B-DNA transition. (E) 3SPN model (Knotts et al., 2007; Sambriski et al., 2009; Hinckley et al., 2013; Freeman et al., 2014). Capable of

simulating base-pair dynamics with its detailed Hamiltonian.

In the original formulation (Fan et al., 2013), the model was built
within a top-down principle, with empirically chosen parameters
for intra- and intermolecular interactions. Subsequently, Korolev
et al. (2014) developed it into a standalone model of DNA in
which intramolecular bonded interactions were parameterized
by the IMC approach based on atomistic simulations of DNA
with the CHARMM27 force field. For convenience, bonded
potentials,Ubond(rij) andUang(φ), obtained by IMC in a tabulated
form, were fitted to harmonic potentials and used in such form
for subsequent CG simulations. This model has successfully
reproduced the persistence length of dsDNA in a wide range of
salt concentrations (Korolev et al., 2014).

In a recent effort to implement a full bottom-up model
and extend the application range of this model, Sun et al.
(2019) have recalculated all interaction potentials for DNA
and a number of mono- and multivalent ions by IMC, both
bonded and non-bonded. The fine-grained simulation was
conducted with four segments of 36-bp dsDNA, described by
the CHARMM27 force field. The length of the FG simulations
is significantly longer than earlier versions of this model.
Interaction potentials involving monovalent ions (Na+, K+, and
Cl−) and multivalent ions [Mg(H2O)

2+
6 and Co(NH3)

3+
6 ] are

derived from the same FG simulations to perform explicit ion
simulations on a larger scale with the CG model. Except for the
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electrostatic potential, all potential terms are derived in tabulated
form, as usually done within the IMC algorithm. The model
showed its suitability to study multivalent ion-induced DNA
aggregation while preserving its accuracy in DNA mechanical
properties, i.e., the ion concentration-dependent persistence
length (Minhas et al., 2020).

This IMC derived DNA model is designed to work with
explicit ions. Themodel has proven its capabilities in reproducing
the mechanical property of dsDNA and phase separation of DNA
induced bymultivalent ions. The topology of themodel preserves
the dsDNA’s double-helical structure, though it excludes the
capability of modeling base pair dynamics, such as bubbling and
melting. We will discuss its merits and deficiencies in more detail
in the following sections.

A further step of coarse-graining was conducted based on this
CG DNA model, producing a mesoscale DNA model (Sun et al.,
2019), which showcases the inherent convenience of performing
multiscale modeling with bottom-up coarse-graining methods.
In this mesoscale model, the dsDNA chain is represented by
a chain of spherical beads, each bead representing six base
pairs of dsDNA. There are totally three interaction terms in
the total potential energy, one bond, one angle and one non-
bonded term.Withminimal computational resources, simulation
of DNA as long as 10 kb was realized. Experimentally observed
hexagonal packing in multivalent ion-induced DNA condensates
was reproduced in simulations with this mesoscale model.
Interestingly, the dynamic process of a single dsDNA chain
forming a toroid was described based on simulations within
this model.

3.2. The Fan Bonds Model
Savelyev and Papoian (2009a,b) have developed a two-bead
per base pair model for dsDNA. This model represents each
nucleotide with one bead located at its geometric center. In
addition to the bonds that connect nucleotide beads on the same
strand, the base-pairing and stacking interactions are collectively
modeled by a series of inter-strand bonds, which are called “fan”
bonds. These interaction terms are designed to maintain the
double-helical structure of dsDNA (Figure 2B).

As noted in the theory section above, this Fan Bonds model
expands its Hamiltonian over a compact basis set when modeled
with the MRG-CG method. The Hamiltonian of this dsDNA
model adopts the following form: (Savelyev and Papoian, 2010)

Ubond,fan =

4
∑

α=2

Kα(l− l0)
α

Uang =

4
∑

α=2

Kα(θ − θ0)
α

Uion−DNA;ion−ion =
∑

i>j

[

A

r6;12ij

+

3;5
∑

k=1

Bke
−Ck(rij−Rkij)

2
+

qiqj

4πǫ0ǫrij

]

(25)

Usage of quartic polynomials for bonds and angles and sums of
Gaussians for non-bonded interactions significantly reduces the

number of parameters. Indeed, the free energy difference between
this CG model and the all-atom model is decreased to ∼ 0.5kBT
in a small number of iterations, which illustrates an efficient
algorithm. Finally, the salt concentration-dependent persistence
length of dsDNA was reproduced within a scaling factor.

Naômé et al. (2014) have modeled dsDNA with a topology
similar to the Fan Bonds model using the IMC approach, while
adopting tabulated potentials (Equation 11) to model the system
Hamiltonian (Figure 2C). Unlike the model by Savelyev and
Papoian (2009a,b), where bonded and non-bonded potentials
were derived separately, their model follows a more systematic
way of deriving all interaction terms from the same calculation,
considering cross-correlation among all interaction terms. The
inverse problem was solved in two stages, with IBI and IMC
respectively. The final model was obtained after a significantly
larger number of iterations (∼75 iterations) of than MRG-
CG modeling. We clearly see the benefit of having fewer
parameters in the MRG-CG method. Various modeling options
such as the number of fan bonds and the optimal procedure in
solving the inverse problem were explored in their work. The
salt concentration-dependent DNA persistence length was well-
reproduced with the optimal number of fan bonds, without any
scaling factor.

3.3. The “sugar” DNA Model
Kovaleva et al. (2017) have formulated the “sugar” DNA model,
designed to include the flexibility of the ribose rings. Each
nucleotide is represented by six beads – three for the backbone
and three for the base (Figure 2D). CG beads are placed on
selected atom positions in each nucleotide. The mass of each
CG bead is balanced to ensure that the center of mass of the
base doesn’t move during the mapping operation. The two
major conformations of ribose ring, C2′-endo and C3′-endo,
are modeled with a double-well potential for P-C1’ bond. The
transition between these two states corresponds to the transition
between C2′-endo and C3′-endo conformations.

Most of the bonded potential functional parameters were
derived from atomistic simulations with the AMBER99SB bsc0
force field by Boltzmann inversion, except for the well depth
of the aforementioned double-well potential. The depths of two
wells of P-C1’ potential is set to equal value, as the all-atom
sampling is not optimal. In cases where the Boltzmann inversion
is not working well, the so-called “relaxation” method is used,
where the relevant particle pair is set at a series of distances while
relaxing the rest of the system to obtain energy function for this
pair. Note that a hybrid approach is adopted in this model to
achieve the modeling target. Lastly, using the ion-ion effective
potential previously derived by IMC (Lyubartsev and Marčelja,
2002), the “sugar” DNA model successfully modeled the A-DNA
and B-DNA states, as well as the transition between the two
(Figure 2D).

3.4. The 3SPN Model
As an example of a top-down DNA model and hybrid top-down
and bottom-up modeling, we discuss the 3-site-per-nucleotide
(3SPN) model first developed by Knotts et al. (2007). The
first implementation of the 3SPN model (denoted 3SPN.0)
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was primarily designed to reproduce the melting temperatures
of oligonucleotides. Empirically determined relative interaction
strengths among non-bonded interaction terms reduce the
parameter set to one single interaction energy ǫ, which is
subsequently determined with a trial-and-error approach. In
the subsequent development, Sambriski et al. (2009) improved
the 3SPN model and derived a new version, 3SPN.1. A new
solvent-induced attraction term was introduced in this version
of the 3SPN model, and other interaction parameters were
further tuned to make the model more precise. As a result, DNA
mechanics was improved significantly (Figure 2E).

In the subsequent development of the 3SPN model, denoted
3SPN.2 (Hinckley et al., 2013), the authors employed a
more detailed interaction Hamiltonian, including a cross-
stacking potential to reproduce experimentally determined base
interaction energies such as base step energies and base stacking
free energies. The resulting model improved the molecular
flexibility for both ssDNA and dsDNA. More recently, Freeman
et al. (2014) introducedDNA sequence dependence to the 3SPN.2
model. At the same time, additional stability of the helix was
implemented using weak dihedral potentials.

Besides developing the 3SPN model by a top-down route,
efforts have been made to derive ion-ion, ion-DNA interactions
through bottom-up approaches. De Biase et al. (2012) first
used a predetermined functional form for ion-ion and ion-
DNA interactions, together with 3SPN.1 model. The parameters
were derived so that radial distribution functions from all-atom
molecular dynamics simulation were satisfactorily reproduced.
Subsequently, De Biase et al. (2014) used IMC to derive ion-
related potential terms fitted to an empirical functional form. The
accuracy of reproducing the RDF was significantly improved in
the latter study.

Additionally, the developers of the 3SPN model, Hinckley
and de Pablo (2015), developed a transferable coarse-grained
ion model for simulations of nucleic acids. Dimethylphosphate
(DMP) was adopted as a model molecule for the phosphate group
of nucleic acids. Relative entropy minimization was utilized to
derive the CG effective potential for ion-ion and ion-phosphate
interactions. Ion concentration-dependent persistent length of
dsDNA and dsDNA potential of mean force were demonstrated
with the new ionmodel. Although this ionicmodel only describes
ion-ion and ion-phosphate interactions, the authors argued it is
a general model, which can be used with other CG models of
nucleic acid with explicit charged phosphate sites.

4. DISCUSSION

4.1. Interactions in CG DNA Models
As straightforward as it is theoretically, modeling interactions of
DNA in a CG model is not trivial in practice. Since a few types
of interactions are involved, it is difficult, if not impossible, to
model all aspects of DNA interactions with a reduced number of
DOF accurately. We first consider the practice of modeling the
DNA conformation ensemble and discuss modeling interaction
between DNA and other molecules or ions later.

An ideal model with general applicability would require fairly
accurate modeling of four DNA properties, namely electrostatic

interaction, sugar puckering, base-pair stacking, and base-pair
hydrogen bonding. Long range electrostatic interactions are
crucial to DNA chain conformation and mechanical properties.
Sugar puckering is essential in the transition between A-DNA
and B-DNA, which in turn contributes to DNA thickness and
bending flexibility. For nucleic bases, their stacking and hydrogen
bonding interactions are anisotropic and directional due to
aromaticity. To our knowledge, there is to date no ideal CG DNA
model designed to model all these properties simultaneously.
All CG DNA models are compromising and focusing on some
particular aspect of the interactions in DNA.

Since most CG models are designed with implicit solvent,
various screening methods are usually adopted to model
electrostatic interaction, sometimes in conjunction with
modifications of charge values (Savelyev and Papoian, 2009b). In
such cases, the solvent is treated as a uniform medium without
structure. The simplest form of electrostatic interaction potential
uses a constant relative permittivity with Coulomb’s law:

Uel =
qiqj

4πǫ0ǫrij
(26)

where ǫ0 is the vacuum permittivity, ǫ is the relative permittivity.
It is used in the IMC dsDNA model (Korolev et al., 2014; Sun
et al., 2019; Minhas et al., 2020), the MRG-CG model (Savelyev
and Papoian, 2009a, 2010), the “sugar” model for its ion-ion and
ion-DNA interactions (Kovaleva et al., 2017), and a few other
models. Some models use the Debye-Huckle potential, generally
in the form (Savelyev and Papoian, 2009b; Morriss-Andrews
et al., 2010; He et al., 2013; Hinckley et al., 2013; Kovaleva et al.,
2017)

Uel =
qiqj

4πǫ0ǫrij
· e−rij/λD (27)

where λD is the Debye length of interacting particles. Effectively,
interacting particles experience larger permittivity at a longer
distance. More complicated forms of distance-dependent
permittivity, such as employing a switching function (Kovaleva
et al., 2017), are used in some models. Nevertheless, a suitable
screened interaction can be engineered to model the electrostatic
interaction in CG models where solvent degrees of freedom
are missing. However, experience and tweaking might be
necessary to obtain an appropriate choice that reproduces a
given experimental data-set.

We note here that from the structure-based coarse-graining
point of view, electrostatic interaction is part of the force
that determines particle correlations alongside short-range
interaction, which includes van der Waals attraction, short-
range repulsion, and implicit effect of water solvation. With
a systematic modeling approach such as IMC, these factors
are included in the effective pair interactions as the model’s
target is to reproduce particle correlation functions. If there was
an inaccuracy in the electrostatic interaction, the electrostatic
potential’s error could be absorbed into the short-range
interaction potential and vice versa, such that the final total
potential reproduces the target particle correlation functions.

Though sugar puckering is essential to DNA backbone
conformation, its modeling is not common in bottom-up
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CG DNA models, partially due to the inaccuracy in force
field parameters and difficulties in the sampling of the C2′-
endo and C3′-endo conformations. Additionally, modeling these
interactions requires higher resolution, including more CG beads
(and DOFs) compared to what is present in most available CG
models. The “sugar” DNAmodel (Kovaleva et al., 2017) explicitly
models sugar puckering with a double-well bond potential and a
specifically designed bonding structure along the DNA backbone.
Additional empirical modifications are needed upon bottom-up
modeling to achieve optimal results, manifesting the difficulties
mentioned before. Many CG DNA models consider B-DNA
only; hence they have not included sugar puckering in their
parameter set.

Due to the planar conformation of nucleic bases, interactions
originating from them are anisotropic. To realistically represent
this anisotropy, there should be a sufficient number of DOF in
the CG description. The simplest way is to represent individual
nucleic bases with multiple coarse-grained beads. For example, in
the “sugar” DNAmodel, each base is modeled by three CG beads
with balanced mass distribution (Kovaleva et al., 2017) such that
the base plane is easily defined. In this way, base stacking and
hydrogen bonding potentials can be projected onto a few suitable
degrees of freedom. Another popular choice is to use anisotropic
potentials at interaction sites. The number of interaction sites
is minimal, though the number of degrees of freedom is not
necessarily small. Gay-Berne potential (Gay and Berne, 1981;
Persson, 2012), a generalized Lennard-Jones potential with
anisotropy, is frequently adopted to model ellipsoidal CG beads.
For instance, ellipsoidal beads are used in the NARES DNA
model (He et al., 2013; Liwo et al., 2014; Yin et al., 2015) and used
by Li et al. (2016). One should note that using anisotropic beads
does not necessarily result in a better model, as seen in Li et al.
(2016). No matter through a bottom-up or top-down approach,
determining parameters in these models is not a trivial task.
Furthermore, anisotropic potentials require more computational
time to compute the forces compared to the models based
on isotropic distance-dependent potentials. We also note that
anisotropic beads may not be necessary for modeling DNA
properties intrinsically related to base interactions. For example,
the 3SPN model (Knotts et al., 2007) reproduces the dsDNA
salt-dependent melting temperature with isotropic beads.

In a simplified representation, DNA base pair interactions can
be approximated by bonded fluctuations, as done in the IMC
dsDNA model (Korolev et al., 2014; Sun et al., 2019; Minhas
et al., 2020) and the G-quadruplex model by Rebič et al. (2015).
Though the details of basepair conformation and dynamics are
lost, these representations are incredibly efficient in simulation
and are easily extended to large molecules. In cases where base
pair dynamics is considered secondary, bonded representation
could be superior to more detailed base pair models.

4.2. Mechanical Properties of DNA
DNA mechanical properties are essential for understanding
the DNA behavior in chromatin of the cell nucleus and DNA
nanomaterial development. These properties are determined
by a combination of DNA intramolecular interactions
(backbone rigidity, basepair interactions) and the electrostatic

polyelectrolyte nature of DNA. To test the performance of
any dsDNA model, the bending flexibility characterized by the
bending persistence length is usually the first property tested
against known experimental data. In simulations, the bending
persistence length, Lp, is approximated by an exponential decay
of the angular correlation function:

〈êi · êi+n〉 = exp

(

−nI

Lp

)

(28)

where êi is a unit vector along segment i, I is the average
segment contour length, angle brackets denote ensemble average.
Since the importance of the electrostatic interaction for
DNA bending flexibility, testing salt concentration-dependent
persistence length is a rigorous way to test the performance of
a new model. Though, it should be noted that the approximation
of an exponential correlation function as above, albeit good for
a worm-like chain polymer, is ignoring the DNA sequence effect
and intrinsic DNA curvature (Mitchell et al., 2017).

With the IMC dsDNA model, Korolev et al. (2014) tested
the salt concentration-dependent persistence length, where the
bonded potential is fitted to harmonic function based on IMC
inverted potential. The result showed a very good agreement with
experimental data. When the bonded potentials were substituted
with accurate tabulated IMC inverted potential (Minhas et al.,
2020), the bending persistence length still agrees well with
experiments. However, when torsion persistence length was
tested with this model, the result showed a significantly larger
value than experimentally reported data (Korolev et al., 2014).
It was explained by reasoning that while ion-dependent DNA
bending is determined mostly by long-range electrostatic forces,
the torsion flexibility does not depend much on electrostatics.
It is determined mostly by basepair twisting, which is relatively
short range. Since the IMC dsDNA model simplifies basepair
movement to bonded fluctuations, it is challenging to reproduce
DNA twisting satisfactorily.

In the two-bead per basepair models by Savelyev and Papoian
(2010) and Naômé et al. (2014), the long-range interactions
are implemented with explicit ions similarly to the works by
Korolev et al. (2014) and Minhas et al. (2020) while the bonding
of CG sites along DNA was different. These models show that
persistence length is sensitive to the bonding structure. With an
optimal bonding structure, the salt-dependent persistence length
can be reproduced well.

Figure 3 compares the result of predictions of the dependence
of persistence length on salt for these above mentioned bottom-
up CG DNA models. Generally, all bottom-up models provide
near quantitative agreement with experimental measurements
of persistence length over a wide range of salt concentration.
The agreement is particularly good at physiological salt. The
predictions at salt concentrations below 1 mM display more
variation between models and compared to experiments. The
results from the IMC model (Minhas et al., 2020) do a good
job over a wide range of salt concentrations and are similar
to the data obtained by Naômé et al. (2014) and to those of
Hinckley and de Pablo (2015). In the latter work, bottom-up
derived CG potentials for the ionic interactions were used, while
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FIGURE 3 | Ionic strength dependent persistence length of dsDNA modeled

by coarse-grained DNA models using explicit ions in the simulations. Data

from five models are plotted: Savelyev and Papoian (2010), Korolev et al.

(2014), Naômé et al. (2014), Hinckley and de Pablo (2015), and Minhas et al.

(2020). The gray band corresponds to the spline approximation of the

experimental data (Hagerman, 1981; Kam et al., 1981; Manning, 1981; Rizzo

and Schellman, 1981; Cairney and Harrington, 1982; Porschke, 1991;

Baumann et al., 1997) with a confidence interval of 0.99995.

internal DNA interactions were obtained from the empirically
parameterized 3SPN model. The persistence length calculations
by Savelyev and Papoian (2010), which displayed consistently
larger persistence length values, resulted, however,in good
agreement with experimental data following uniform rescaling of
all CG DNA structural parameters.

If a more detailed CG DNA model is used, it is more
challenging to attribute long-range correlation to specific
interactions since these are determined collectively by a group
of degrees of freedom. For instance, in Morriss-Andrews et al.
(2010), the modeled bending persistence length of single-
stranded DNA is lower than experiments.

Another interesting mechanical property is force-extension
curve of ssDNA. Maffeo et al. (2014) derived a two-bead per
nucleotide model with a hybrid approach, i.e., using IBI to
derive a primer model, then refined it by fitting to the radius of
gyration of ssDNA. The force-extension curve obtained by this
model fits better than the other two top-down models to the
experimental curve.

4.3. DNA Aggregation and Compaction
Properties
As a highly-charged polyelectrolyte, DNA has been extensively
studied in solution both as a standalone subject and as a
component of complexes formed with other molecules. Efforts
have been made to model such molecular systems and to
get insights from a physical perspective. Besides the bending
flexibility discussed in section 4.2, quantities such as radius of
gyration (Maffeo et al., 2014), melting temperature (Hinckley
et al., 2013), and even knotting probabilities (Rieger and Virnau,
2018) are adopted as modeling targets, especially in top-down
models. There are additional studies of DNA-protein complexes

with top-down models, such as the NARES model for DNA-
protein complex (Yin et al., 2015) and free energy associated
with nucleosome unwrapping (Lequieu et al., 2016). Although
DNA solution structure can be directly simulated once a bottom-
up model is acquired, the result may not always agree with
experimental data. For instance, in the ssDNAmodel designed by
Maffeo et al. (2014), the direct result of the CG model derived by
IBI significantly underestimates the radius of gyration of ssDNA.
Correction to the interaction potential was made afterward to
obtain agreement with experimental data.

Another application of CG DNA models is to study
DNA condensation and phase separation. Positively charged
multivalent cations and polyelectrolytes can induce DNA
condensation under physiological salt conditions, which is
important for understanding DNA compaction in the cell
nucleus. Accurate effective potentials between DNA and
multivalent ions are crucial to these studies. Córdoba et al. (2017)
studied the dependence of DNA packing inside nanometer-
sized viral capsids on multivalent cations using the 3SPN.2C CG
DNAmodel incorporating bottom-up effective potentials for ion-
phosphate interactions (Figure 4). Multivalent cations such as
spermidine and magnesium induce attraction between packaged
DNA leading to DNA condensation. At high concentrations
of spermidine, the condensation reduced the pressure inside
the virus capsid. Savelyev and Papoian (2010) used their CG
bottom-up “fan” model to predict the structural phase transitions
in torsionally stressed DNA nanocircles due to the presence
of salt (see Figure 4B). The model predicted phase transition
to a buckled state in the overtwisted DNA nanocircle under
physiological salt conditions.

In work by Sun et al. (2019), a fully bottom-up model of
dsDNA in the presence of multivalent ions was built based
on atomistic simulations with the CHARMM27 force field.
Subsequently the model was used to study DNA condensation
in the presence of Cobalt(III)-hexammine (CoHex3+) ion. The
model successfully reproduced the experimentally observedDNA
condensation into hexagonally ordered structures (Figure 4C).
Furthermore, the developed CG model was used to make one
more step in coarse-graining, to obtain a CGDNAmodel suitable
for mesoscale simulation. It resulted in a “super-coarse-grained”
DNA model with a simple bead-on-string topology and a single
IMC-derived long-range potential between the beads, effectively
accounting for the effect of water and ions. The super-CG model
of DNA was used to study the formation of toroidal structures
formed by long (40k base pairs) DNA in the presence of CoHex3+

ions, resulting in excellent agreement with electron microscopy
observations of DNA toroids formation. It is worth emphasizing
that this model, allowing simulation of DNA on a micrometer
length scale, was derived exclusively from atomistic simulations
without using any empirical parameters.

5. CONCLUDING REMARKS

To model large biomolecular systems such as the components of
organelles of a living cell (e.g., chromatin in the cell nucleus),
an atomistic approach based on all-atom MD simulations is
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FIGURE 4 | Application of different coarse-grained DNA models illustrating multi-scale phenomena, including (A) DNA compaction in virus capsid (Córdoba et al.,

2017); (B) phase behavior of circular DNA (Savelyev and Papoian, 2010); (C) multivalent ion-induced DNA condensation (Sun et al., 2019).

neither computationally feasible nor practically useful since the
vast number of DOF makes the analysis complicated. Within
the coarse-grained approach, the macromolecular systems can
be reduced to a description with effective sites, representing
many atoms, which reduces the computational demand and
simplifies the analysis by focusing on those DOFs that are
of interest for a specific problem at hand. To obtain the
effective potentials describing the interactions between the CG
sites, we generally have two possibilities, either a top-down
approach that fits the potentials to some available experimental
data or the bottom-up approach discussed in this review. We

have presented an overview of the approach of bottom-up CG
computer simulations of DNA, which enables the modeling
of multiscale DNA structure, dynamics, and interactions with
various bio-macromolecules. As discussed thoroughly here, the
available methods are in principle equivalent. They enable
rigorous extraction of the effective potentials that reproduces
the system’s behavior in an FG description based on a given
AA force field. These potentials are particularly advantageous
when dealing with highly charged systems such as DNA.
The IMC method e.g., enables rigorous modeling of DNA
mechanical properties and aggregation of very large DNA
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assemblies, with a reduction of the number of particles of several
orders of magnitude, but still using effective potentials that
implicitly incorporate the effects of the solvent water. Further
development of this approach to model packaging of DNA
in chromatin and even chromosomes is a highly challenging
problem, which though in principle, can be handled within the
same methodology.

We foresee that as the methodology and computational
capability improve, physics-based models, derived by bottom-up
modeling or from other physical principles, will be taking up
more important roles toward illustrating biophysical processes
relevant to experimental studies. It is even more evident when
one considers the development in experimental techniques,
such as Cryo-EM and single-molecule experiments. These
experimental methods are reaching into finer and finer scales
to probe the underlying physics. The gap between physical
simulations and wet-lab experiments is diminishing. With
the inherent multiscale nature of bottom-up coarse-graining,
multiple molecular models spanning a few magnitude of length
scale can be generated rigorously. More accurate interactions will
be modeled to conduct simulations. With a minimal number
of empirical parameters, simulations can provide better insights
into molecular characteristics at each scale. Though there is still
much development to be expected in bottom-up coarse-graining
methods, we believe the connections between microscopic

molecular characteristics and experimental observations will
improve, leading to a deeper understanding of DNA physical
properties at large spatial and temporal scales.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual
contribution to the work, and approved it for publication.

FUNDING

AL was supported by the Swedish Research Council
(Vetenskapsrådet), grant 2017-03950, and computational
resources provided by the Swedish National Infrastructure for
Computing (SNIC) through National Supercomputer Center
(NSC). This work was supported by a Ministry of Education
(MOE), Singapore, Academic Research Fund Tier 3 Grant
(MOE2019-T3-1-012) to LN.

ACKNOWLEDGMENTS

We acknowledge the generous support of computer time
allocation from the National Supercomputing Centre
(NSCC) Singapore.

REFERENCES

Baumann, C. G., Smith, S. B., Bloomfield, V. A., and Bustamante, C. (1997). Ionic
effects on the elasticity of single dna molecules. Proc. Natl. Acad. Sci. U.S.A. 94,
6185–6190. doi: 10.1073/pnas.94.12.6185

Bloomfield, V., Crothers, D., Tinoco, I., Killman, P., Hearst, J., Wemmer, D.,
et al. (2000). Nucleic Acids: Structure, Properties, and Functions. Sausalito, CA:
University Science Books.

Cairney, K. L., and Harrington, R. E. (1982). Flow birefringence of t7
phage DNA: dependence on salt concentration. Biopolymers 21, 923–934.
doi: 10.1002/bip.360210506

Chaimovich, A., and Shell, M. S. (2011). Coarse-graining errors and numerical
optimization using a relative entropy framework. J. Chem. Phys. 134:094112.
doi: 10.1063/1.3557038

Córdoba, A., Hinckley, D. M., Lequieu, J., and Pablo, J. J. (2017). A molecular view
of the dynamics of dsDNA packing inside viral capsids in the presence of ions.
Biophys. J. 112, 1302–1315. doi: 10.1016/j.bpj.2017.02.015

De Biase, P. M., Markosyan, S., and Noskov, S. (2014). Microsecond simulations
of dna and ion transport in nanopores with novel ion-ion and ion-nucleotides
effective potentials. J. Comput. Chem. 35, 711–721. doi: 10.1002/jcc.23544

De Biase, P. M., Solano, C. J. F., Markosyan, S., Czapla, L., and Noskov, S. Y.
(2012). BROMOC-D: Brownian dynamics/Monte-Carlo program suite to study
ion and dna permeation in nanopores. J. Chem. Theory Comput. 8, 2540–2551.
doi: 10.1021/ct3004244

Ercolessi, F., and Adams, J. B. (1994). Interatomic potentials from first-principles
calculations: The force-matching method. Europhys. Lett. 26, 583–588.
doi: 10.1209/0295-5075/26/8/005

Eriksson, A., Jacobi, M. N., Nyström, J., and Tunstrøm, K. (2008). Using force
covariance to derive effective stochastic interactions in dissipative particle
dynamics. Phys. Rev. E 77:016707. doi: 10.1103/PhysRevE.77.016707

Fan, Y., Korolev, N., Lyubartsev, A. P., and Nordenskiold, L. (2013). An advanced
coarse-grained nucleosome core particle model for computer simulations of
nucleosome-nucleosome interactions under varying ionic conditions. PLoS
ONE 8:e54228. doi: 10.1371/journal.pone.0054228

Freeman, G. S., Hinckley, D. M., Lequieu, J. P., Whitmer, J. K., and de Pablo, J. J.
(2014). Coarse-grained modeling of dna curvature. J. Chem. Phys. 141:165103.
doi: 10.1063/1.4897649

Galindo-Murillo, R., Robertson, J. C., Zgarbova, M., Sponer, J., Otyepka,
M., Jurecka, P., et al. (2016). Assessing the current state of amber force
field modifications for DNA. J. Chem. Theory Comput. 12, 4114–4127.
doi: 10.1021/acs.jctc.6b00186

Gay, J. G., and Berne, B. J. (1981). Modification of the overlap potential to mimic a
linear site-site potential. J. Chem. Phys. 74, 3316–3319. doi: 10.1063/1.441483

Giulini, M., Menichetti, R., Shell, M. S., and Potestio, R. (2020). An information-
theory-based approach for optimal model reduction of biomolecules. J. Chem.

Theory Comput. 16, 6795–6813. doi: 10.1021/acs.jctc.0c00676
Gkeka, P., Stoltz, G., Barati Farimani, A., Belkacemi, Z., Ceriotti, M., Chodera, J.

D., et al. (2020). Machine learning force fields and coarse-grained variables in
molecular dynamics: Application to materials and biological systems. J. Chem.

Theory Comput. 16, 4757–4775. doi: 10.1021/acs.jctc.0c00355
Guldbrand, L., Nilsson, L. G., and Nordenskiold, L. (1986). A Monte Carlo

simulation study of electrostatic forces between hexagonally packed DNA
double helices. J. Chem. Phys. 85, 6686–6698. doi: 10.1063/1.451450

Hagerman, P. J. (1981). Investigation of the flexibility of DNA
using transient electric birefringence. Biopolymers 20, 1503–1535.
doi: 10.1002/bip.1981.360200710

Hart, K., Foloppe, N., Baker, C. M., Denning, E. J., Nilsson, L., and MacKerell, A.
D. (2012). Optimization of the charmm additive force field for DNA: improved
treatment of the bi/bii conformational equilibrium. J. Chem. Theory Comput. 8,
348–362. doi: 10.1021/ct200723y

He, Y., Maciejczyk, M., Ołdziej, S., Scheraga, H. A., and Liwo, A. (2013). Mean-
field interactions between nucleic-acid-base dipoles can drive the formation
of a double helix. Phys. Rev. Lett. 110:098101. doi: 10.1103/PhysRevLett.110.
098101

Henderson, R. (1974). A uniqueness theorem for fluid pair correlation functions.
Phys. Lett. A 49, 197–198. doi: 10.1016/0375-9601(74)90847-0

Hess, B., Holm, C., and van der Vegt, N. (2006). Osmotic coefficients of atomistic
nacl (aq) force fields. J. Chem. Phys. 124:164509. doi: 10.1063/1.2185105

Frontiers in Molecular Biosciences | www.frontiersin.org 15 March 2021 | Volume 8 | Article 64552769

https://doi.org/10.1073/pnas.94.12.6185
https://doi.org/10.1002/bip.360210506
https://doi.org/10.1063/1.3557038
https://doi.org/10.1016/j.bpj.2017.02.015
https://doi.org/10.1002/jcc.23544
https://doi.org/10.1021/ct3004244
https://doi.org/10.1209/0295-5075/26/8/005
https://doi.org/10.1103/PhysRevE.77.016707
https://doi.org/10.1371/journal.pone.0054228
https://doi.org/10.1063/1.4897649
https://doi.org/10.1021/acs.jctc.6b00186
https://doi.org/10.1063/1.441483
https://doi.org/10.1021/acs.jctc.0c00676
https://doi.org/10.1021/acs.jctc.0c00355
https://doi.org/10.1063/1.451450
https://doi.org/10.1002/bip.1981.360200710
https://doi.org/10.1021/ct200723y
https://doi.org/10.1103/PhysRevLett.110.098101
https://doi.org/10.1016/0375-9601(74)90847-0
https://doi.org/10.1063/1.2185105
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Sun et al. DNA Bottom-Up Modeling

Hijon, C., Espanol, P., Vanden-Eijnden, E., and Delgado-Buscalioni, R. (2010).
Mori-Zwanzig formalism as a practical computational tool. Faraday Discuss.
144:301–322. doi: 10.1039/B902479B

Hinckley, D. M., and de Pablo, J. J. (2015). Coarse-grained ions for
nucleic acid modeling. J. Chem. Theory Comput. 11, 5436–5446.
doi: 10.1021/acs.jctc.5b00341

Hinckley, D. M., Freeman, G. S., Whitmer, J. K., and de Pablo, J. J. (2013). An
experimentally-informed coarse-grained 3-site-per-nucleotide model of DNA:
structure, thermodynamics, and dynamics of hybridization. J. Chem. Phys.
139:144903. doi: 10.1063/1.4822042

Izvekov, S., Parrinello, M., Burnham, C. J., and Voth, G. A. (2004). Effective
force fields for condensed phase systems from ab initio molecular dynamics
simulation: a newmethod for force-matching. J. Chem. Phys. 120, 10896–10913.
doi: 10.1063/1.1739396

Izvekov, S., and Voth, G. A. (2005). A multiscale coarse-graining method for
biomolecular systems. J. Phys. Chem. B 109, 2469–2473. doi: 10.1021/jp044629q

Kam, Z., Borochov, N., and Eisenberg, H. (1981). Dependence of laser
light scattering of dna on nacl concentration. Biopolymers 20, 2671–2690.
doi: 10.1002/bip.1981.360201213

Knotts, T. A., Rathore, N., Schwartz, D. C., and de Pablo, J. J. (2007). A coarse grain
model for dna. J. Chem. Phys. 126:084901. doi: 10.1063/1.2431804

Kono, H., and Ishida, H. (2020). Nucleosome unwrapping and unstacking. Curr.
Opin. Struct. Biol. 64, 119–125. doi: 10.1016/j.sbi.2020.06.020

Korolev, N., Luo, D., Lyubartsev, A. P., and Nordenskiold, L. (2014). A coarse-
grained dna model parameterized from atomistic simulations by inverse monte
carlo. Polymers 6, -1675. doi: 10.3390/polym6061655

Korolev, N., Lyubartsev, A. P., and Nordenskiold, L. (2010). Cation-induced
polyelectrolyte-polyelectrolyte attraction in solutions of dna and nucleosome
core particles. Adv. Colloid Interface Sci. 158, 32–47. doi: 10.1016/j.cis.2009.
08.002

Korolev, N., Nordenskiold, L., and Lyubartsev, A. P. (2016). Multiscale coarse-
grained modelling of chromatin components: DNA and the nucleosome. Adv.
Colloid Interface Sci. 232, 36–48. doi: 10.1016/j.cis.2016.02.002

Kovaleva, N. A., Koroleva, I. P., Mazo, M. A., and Zubova, E. A. (2017).
The “sugar” coarse-grained dna model. J. Mol. Model. 23, 1–16.
doi: 10.1007/s00894-017-3209-z

Lavery, R., Zakrzewska, K., Beveridge, D., Bishop, T. C., Case, D. A., Cheatham,
T.homas, I., et al. (2009). A systematic molecular dynamics study of nearest-
neighbor effects on base pair and base pair step conformations and fluctuations
in B-DNA. Nucleic Acids Res. 38, 299–313. doi: 10.1093/nar/gkp834

Leonarski, F., Trovato, F., Tozzini, V., Les, A., and Trylska, J. (2013). Evolutionary
algorithm in the optimization of a coarse-grained force field. J. Chem. Theory

Comput. 9, 4874–4889. doi: 10.1021/ct4005036
Lequieu, J., Cordoba, A., Schwartz, D. C., and de Pablo, J. J. (2016). Tension-

dependent free energies of nucleosome unwrapping. ACS Central Sci. 2, 660–
666. doi: 10.1021/acscentsci.6b00201

Li, G., Shen, H., Zhang, D., Li, Y., and Wang, H. (2016). Coarse-grained modeling
of nucleic acids using anisotropic gay-berne and electric multipole potentials. J.
Chem. Theory Comput. 12, 676–693. doi: 10.1021/acs.jctc.5b00903

Liwo, A., Baranowski, M., Czaplewski, C., Golas, E., He, Y., Jagiela, D., et al.
(2014). A unified coarse-grained model of biological macromolecules based
on mean-field multipole-multipole interactions. J. Mol. Model. 20:2306.
doi: 10.1007/s00894-014-2306-5

Lu, L., Dama, J. F., and Voth, G. A. (2013). Fitting coarse-grained distribution
functions through an iterative force-matching method. J. Chem. Phys.
139:121906. doi: 10.1063/1.4811667

Lu, L., Izvekov, S., Das, A., Andersen, H. C., and Voth, G. A. (2010). Efficient,
regularized, and scalable algorithms for multiscale coarse-graining. J. Chem.

Theory Comput. 6, 954–965. doi: 10.1021/ct900643r
Lyubartsev, A., Mirzoev, A., Chen, L., and Laaksonen, A. (2010). Systematic

coarse-graining of molecular models by the newton inversion method. Faraday
Discuss. 144, 43–56. doi: 10.1039/B901511F

Lyubartsev, A. P. (2018). “Inverse Monte Carlo methods,” in Coarse-Grained

Modeling of Biomolecules, ed G. A. Papoian (Boca Raton, FL: CRC Press; Taylor
Francis Group), 1–26. doi: 10.1201/9781315374284-1

Lyubartsev, A. P., and Laaksonen, A. (1995). Calculation of effective interaction
potentials from radial distribution functions: a reverse Monte Carlo approach.
Phys. Rev. E 52, 3730–3737. doi: 10.1103/PhysRevE.52.3730
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Multi-Scale Flexible Fitting of
Proteins to Cryo-EM Density Maps at
Medium Resolution
Marta Kulik1†‡, Takaharu Mori1 and Yuji Sugita1,2,3*†

1Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Japan, 2RIKEN Center for
Computational Science, Kobe, Japan, 3RIKEN Center for Biosystems Dynamics Research, Kobe, Japan

Structure determination using cryo-electron microscopy (cryo-EM) medium-resolution
density maps is often facilitated by flexible fitting. Avoiding overfitting, adjusting force
constants driving the structure to the density map, and emulating complex conformational
transitions are major concerns in the fitting. To address them, we develop a new method
based on a three-step multi-scale protocol. First, flexible fitting molecular dynamics (MD)
simulations with coarse-grained structure-based force field and replica-exchange scheme
between different force constants replicas are performed. Second, fitted Cα atom
positions guide the all-atom structure in targeted MD. Finally, the all-atom flexible fitting
refinement in implicit solvent adjusts the positions of the side chains in the density map.
Final models obtained via the multi-scale protocol are significantly better resolved and
more reliable in comparison with long all-atom flexible fitting simulations. The protocol is
useful for multi-domain systems with intricate structural transitions as it preserves the
secondary structure of single domains.

Keywords: flexible fitting, multi-scale methods, replica exchange, molecular dynamics simulation, cryo-EM density
map, all-atom force field, coarse-grained force field, targeted molecular dynamics

INTRODUCTION

The technical advances in single-particle cryo-EM result in a rapid escalation of the number of
available density maps at increasingly higher resolutions recently crossing the 1.3 Å barrier (Yip et al.,
2020) (Nakane et al., 2020). Also, the lower molecular weight limit of this method already reached
much below 50 kDa (Wu and Lander, 2020). In order to extract structural information from the
experimental densities, computational techniques such as rigid-docking (Wriggers et al., 1999)
(Roseman, 2000), flexible fitting (Tama et al., 2004) (Topf et al., 2008) (Trabuco et al., 2008)
(Whitford et al., 2011) (Dou et al., 2017) (Mori et al., 2019), and de novo modeling (Lindert et al.,
2012) (Wang et al., 2015) (Terashi and Kihara, 2018) are essential to assign or refine the atomic
positions into those maps. The choice of the computational method depends on the map resolution
(Villa and Lasker, 2014). At near-atomic resolution (typically 3-5 Å), the structural details visible in
the density give enough confidence for building the models de novo, even though the completeness
and accuracy of such models would be lower than those based on atomic resolution density maps
(Wang et al., 2015) (Zivanov et al., 2018). However, the density maps do not always reach so high
resolutions due to intrinsic flexibility or fluctuation of biomolecules, and the methods other than de
novo building are often required in such cases.

Flexible fitting has been widely used to guide the initial structure toward the target density map, in
which normal mode analysis (Tama et al., 2004) or MD algorithms are utilized (Trabuco et al., 2008)
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(Orzechowski and Tama, 2008). Here, a biasing potential is added
to the molecular mechanics force field, and its force constant
regulates the magnitude of the fitting. The flexible fitting usually
requires a starting structure in a different state or closely related
to the one prepared from other methods such as homology
modeling. The results of the flexible fitting are strongly
system-dependent, often fail for complex conformational
changes or for globular-shaped molecules when low- or
medium-resolution maps (>5 Å) are treated. This is mainly
due to degeneracy of the experimental data, which prevents us
from determining a unique conformation (Goh et al., 2016).
Another common problem is overfitting, which leads to excessive
deformations of the fitted structure and usually occurs when the
applied force is too strong. On the other hand, a too weak force
constant brings poor results of the flexible fitting. This issue
underlines the importance of the optimization of the force
constant.

REUSfit is one of the useful methods to overcome this problem
(Miyashita et al., 2017), which is an extension of the replica-
exchange umbrella-sampling method (REUS) (Sugita et al.,
2000). Here, copies of the original system are prepared, and
different force constants in the biasing potential are assigned to
each replica. The flexible fitting is carried out in parallel, where
the force constants are exchanged during the simulation. REUSfit
showed better results than simple MD-based flexible fitting, as it
enables the automatic adjustment of the force constant
(Miyashita et al., 2017). However, REUSfit is computationally
expensive if it is employed with the all-atom (AA) model with
explicit solvent.

To date, various molecular models at different resolutions
have been developed in efficient and accurate MD simulations of
proteins, ranging from Coarse-grained (CG) Cα models
(Kolinski, 2004) (Kmiecik et al., 2016), through AA models in
implicit solvent (Schaefer et al., 1998) (Grochowski and Trylska,
2008) (Onufriev and Case, 2019) and in explicit solvent (Zhou,
2003). CGmodels are computationally efficient, among which the
Go model has been widely used for tackling large conformational
changes of proteins (Taketomi et al., 1975) (Whitford et al., 2010)
(Kobayashi et al., 2015). Implicit solvent model like the GB/SA
model treats solvent molecules as the continuum to reduce the
computational cost for the solute-solvent or solvent-solvent
interaction calculations (Anandakrishnan et al., 2015). CG
model is the most suitable for REUSfit, while high-resolution
molecular model is eventually desired to refine the protein
structure, as it reveals the atomic interactions in biomolecules
at a greater level of detail and accuracy.

In this study, we propose a multi-scale protocol in the cryo-
EM flexible fitting that can connect CG and AA models in order
to reach the final structural models with a quality not accessible
by using any of those simulationmethods separately. We focus on
medium resolution density maps, i.e., around 5-8 Å, since the
flexible fitting is generally useful for such maps. We tested our
protocol in various systems and found that it is particularly useful
for the protein complexes with large conformational transitions,
such as Ca2+-ATPase and DNA polymerase.

METHODS

Flexible Fitting Algorithm
In MD simulations with flexible fitting, biomolecular structure is
guided toward the EM density map by a biasing potential VEM.
This potential is simply added to the force field function and
depends on a given force constant k and a cross-correlation
coefficient CC between the target density map and the one
calculated in the course of the simulation (Orzechowski and
Tama, 2008):

VEM � k(1 − CC).
CC is computed for each (i,j,k) voxel containing the target ρtarg

and calculated ρcalc densities (Tama et al., 2004):

CC �
∑
ijk
ρtarg(i, j, k)ρcalc(i, j, k)

����������������������
∑
ijk
ρtarg(i, j, k)2∑

ijk
ρcalc(i, j, k)2

√

Introduction of REUS scheme (Sugita et al., 2000) to the
flexible fitting simulations enables to dynamically adjust the
force constant during the simulation. This approach attributes
higher force constants to the replicas with higher CC, i.e., better
fitted to the target density maps. The exchange probability
between two replicas i and j, with force constants km and kn
and CC to the target map equal to CCi and CCj, respectively, is
estimated in the following way (Miyashita et al., 2017):

w(X→X’) ≡ w(x[i]m
∣∣∣∣x[j]n ) � { 1, for Δ ≤ 0

exp(−Δ), for Δ > 0
Δ � β(kn − km)(CCj − CCi)

The parameter β stands for the inverse temperature and here is
the same for all replicas. This method was implemented in
GENESIS as REUSfit (Miyashita et al., 2017). For details about
the generation of density maps with a Gaussian mixture model
and about the domain decomposition and atomic decomposition
parallelization strategies developed to speed up the flexible fitting
simulations, see (Mori et al., 2019).

Targeted MD Algorithm
In targeted MD, the aim is to simulate the conformational
transition of a molecule at initial configuration vector rI to the
known target state given by configuration vector rF. For each
configuration, a distance between the current and target
configuration can be calculated as (Schlitter et al., 1994):

ρ � |r − rF|
In order to force the system to undergo the desired transition,

we introduce a force constraint Fc:

ϕ(r) � |r − rF|2 − ρ2 � 0

Fc ≡ λ dϕ
dr

� 2λ(r − rF)
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The Lagrangian multiplier λ is calculated to satisfy the above
equations. At every time step, ρ is diminished by Δρ until the final
value ρf is reached:

Δρ � Δt(ρ0 − ρf)
T

,

where T stands for the total simulation time. In GENESIS, the
RMSD is used instead of distance. Therefore, the implemented
method is based on internal coordinates rather than on Cartesian
coordinates.

Chosen Systems
Seven different systems, containing PDB structures in at least two
different conformations, were selected for flexible fitting
simulations using simulated density maps: Ca2+-ATPase
(Toyoshima and Nomura, 2002) (Toyoshima et al., 2000)
(Toyoshima and Mizutani, 2004) (Toyoshima et al., 2007),
Na+ K+-ATPase (Morth et al., 2007) (Kanai et al., 2013),
Adenylate Kinase (Müller et al., 1996) (Müller and Schulz,
1992), Ribose Binding Protein (Björkman et al., 1994)
(Björkman and Mowbray, 1998), Maltodextrin Binding Protein
(Sharff et al., 1992) (Quiocho et al., 1997), Diphtheria Toxin
(Bennett et al., 1994) (Bennett and Eisenberg, 1994) and CO
Dehydrogenase (Darnault et al., 2003). In the case of simulations
with the experimental density maps, two systems were chosen, for
which PDB structures in two states, as well as an experimental
Cryo-EM density map for one of those states, are available:
Magnesium Transporter CorA (Matthies et al., 2016) and
DNA Polymerase (Fernandez-Leiro et al., 2015).

CG Simulations
The MMTSB Go model Web Server was used to prepare the Cα
model parameters based on the potential energy function
developed by Karanicolas and Brooks (Karanicolas and
Brooks, 2003). For the structures containing more than one
protein chain, in-home scripts were prepared to combine
parameters for different chains, taking into account the inter-
and intra-chain interactions. Additionally, the native contact
values between τ500 and the tail of PolIIIα were increased
threefold to prevent τ500 from detaching from the polymerase
complex, as this interaction was previously reported stable upon
the studied conformational transition (Fernandez-Leiro et al.,
2015). The initial and target PDB structures were superimposed
using the Cα atoms. The simulated density maps were generated
at 5 Å resolution with 2 Å voxel size using the target PDBs and
emmap_generator tool from the GENESIS package (Mori et al.,
2019). The resolution and voxel size of the experimental density
maps were left unchanged and the negative values were removed
with the SITUS voledit tool (Wriggers et al., 1999).

The flexible fitting molecular dynamics simulations with
replica exchange (REUSfit) were performed using 32 replicas
at force constants 500; 524; 555; 593; 636; 684; 737; 794; 856; 921;
991; 1,065; 1,144; 1,228; 1,318; 1,415; 1,519; 1,632; 1,755; 1,889;
2,035; 2,195; 2,371; 2,564; 2,777; 3,011; 3,269; 3,553; 3,865; 4,209;
4,586; 5,000 kcal/mol. The distribution of the force constants was
based on a preliminary survey to ensure the sufficient overlap of
the biasing potential between replicas. The cutoff distance for the

native and non-native contact interaction terms was set to 20 Å.
All bond lengths were fixed with the SHAKE algorithm (Ryckaert
et al., 1977). The temperature was kept constant at 200 K using
the Berendsen thermostat (Berendsen et al., 1984). The exchanges
were attempted every 2 ps and each replica was simulated for
250 ns with a time step of 20 fs, except for DNA Polymerase,
where 10 fs was used as a time step. The density map was
recalculated at every time step with the truncation of the
Gaussian function to zero for the densities below 1% of the
maximum value (Tama et al., 2004). The REUSfit of each system
were repeated 20 times with different initial velocities. The
highest CC structures in each simulation were chosen as the
best models in each run.

AA Simulations
CHARMM C36 force field parameters for proteins (Best et al.,
2012) were prepared using psfgen plugin in VMD (Humphrey
et al., 1996) with the patches for disulfide bonds where necessary.
GBSA implicit solvent model with OBC2 parameters (Onufriev
et al., 2004) was used with salt concentration 0.15 M and the
surface tension coefficient 0.005 kcal·mol−1·Å−2. The dielectric
constant was set to 78.5. For the AA simulations, the 1 Å voxel
size of the simulated density maps was used. The experimental
density maps were the same as at CG level. In the second step of
the multi-scale protocol, the Cα positions from 5 best models
from CG simulations were used as a target in targeted MD
simulations of AA structures in implicit solvent. The
simulations in NVT ensemble with Langevin thermostat with
the friction coefficient gamma set at 5 ps−1 were performed for
1 ns with time step 2 fs. The final structure after targeted MD will
have low RMSD value with respect to the target but we perform
additional alignment using the Cα atoms to shift the center of
mass of the system.

The last step of the multi-scale simulations is the refinement of
the last frame of the targeted MD trajectories with the flexible
fitting simulations to the density maps. The simulation is
performed for 1 ns using a similar set of parameters as the
Targeted MD simulation. For comparison, the AA flexible
fitting simulations starting from original PDB structure are
carried out in 5 replicates and referred to as the simple
protocol. The best models from each of those simulations are
chosen according to the highest CC. All simulations were done in
GENESIS version 1.4 (https://www.r-ccs.riken.jp/labs/cbrt/).

Analysis
Various tools were used for the analysis of the best final models
M1, M2, M3, SP and also S0 and RF: CC without rigid body
docking was calculated in the collage program from Situs package
(Wriggers et al., 1999); RMSD in Gromacs 2016.4 (Abraham
et al., 2015) with gmx rms tool; CaBLAM and Ramachandran
outliers and MolProbity score in Phenix (Williams et al., 2018)
(Adams et al., 2010).

CaBLAM and Ramachandran outliers and MolProbity score
depend on the relation between the geometry of the final models
and a high-quality protein dataset from PDB database, called
Top8000. CaBLAM is a method to evaluate the geometry of the
protein backbone using the virtual angles and dihedrals created
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by the Cα atoms and carbonyl groups [details in (Williams et al.,
2018)]. Ramachandran outliers use the φ and ψ angles of the
protein backbone for analysis.

Secondary structure score is determined by comparing the
secondary structure of the fitted model and the target, namely by
counting the Hamming distance between two strings,
representing the coded secondary structure features for each
residue, as calculated by mkdssp version 2.2.1 (Touw et al.,
2015) (Kabsch and Sander, 1983) and in-house scripts. The
Hamming distance is normalized by dividing it by the length
of the string and representing it as a percentage.

RESULTS

Multi-Scale Protocol for Flexible Fitting
Our multi-scale protocol involves three steps (Figure 1, left
scheme). In step 1, REUSfit with the Cα Go model
(Karanicolas and Brooks, 2003) is employed. In this model,
one amino acid is represented by a single bead at their Cα
atom position, and the beads interact via the structure-based
potential that is constructed from the native structure. The
interactions between side chains are scaled for respective
amino acid types using Miyazawa-Jernigan contact energies
(Miyazawa and Jernigan, 1996). In REUSfit, the

cross-correlation-coefficient (CC) between the calculated and
experimental density maps is included in the biasing potential.
We carry out five individuals runs, and the best models, called
M1, are chosen from each run according to the highest CC. In
step 2, we carry out targeted MD (Schlitter et al., 1994) starting
from the initial atomic structure toward M1, where the implicit
solvent model (GB/SA) (Onufriev et al., 2004) is used to reduce
the computational cost. Note that the experimental density map is
not used in this step. Since targeted MD imposes the restraint on
the root-mean-square deviation (RMSD) with respect to the
target structure, the Cα coordinates in the AA model do not
exactly match the target CG model. Therefore, additional
alignment to M1 is necessary to shift the center of mass of the
obtained structure after the targeted MD. The final atomic
structure is called M2. In step 3, M2 is further refined with
the CC-based flexible fitting using the experimental density map.
Here, the GB/SA implicit solvent model is again used as in step 2.
The final models are chosen according to their CC and
named M3.

We compare the best final models obtained via two protocols,
starting from the same initial structure S0: the multi-scale
protocol and one, long, all-atom flexible fitting simulation
called a simple protocol (SP) (Figure 1, right scheme). The
computational condition is same as in step 3 of the multi-scale
protocol.

The two protocols are applied to a range of systems with
simulated and experimental density maps, shown in Table 1.
Simulated density maps serve as a test of accuracy and precision
of fitting. The density maps were generated from X-ray crystal
structures of the target biomolecules at 5 Å resolution. Tested
systems include a small protein such as Adenylate Kinase as well
as relatively large ones, for instance, DNA polymerase. All tested
systems are classified as having two significantly different states in
initial and target structures. The transitions between the two
states represent varying levels of difficulty in each case.
Particularly, Ca2+-ATPase and Diphtheria Toxin are difficult
to fit correctly (initial RMSD >10 Å), while Ribose Binding
Protein and Maltodextrin Binding Protein are relatively easy
(initial RMSD <4 Å). For the experimental density maps, we
have chosen two systems, for which both the cryo-EM density
maps and fitted models were available, together with a starting
structure in a different physiological state, involving complex
conformational transition between the two states. Two systems
fulfilling all the criteria were found, with cryo-EM density maps at
resolution in the range 5-8 Å: magnesium transporter CorA
(Matthies et al., 2016) and DNA polymerase (Fernandez-Leiro
et al., 2015).

Large Conformational Transitions can be
Fitted Well With Multi-Scale Protocol
First, we focus on Ca2+-ATPase, which requires large
conformational transitions during the flexible fitting. Ca2+-
ATPase undergoes a series of structural changes between E2,
E1·2Ca2+, E1P, and E2P states (Supplementary Figure S1),
linked with Ca2+ transport against the concentration gradient
(Toyoshima, 2008). If the flexible fitting is performed in these

FIGURE 1 | Comparison between the multi-scale protocol and a simple
flexible fitting protocol. The positions of Cα atoms in the CG model are shown
as red spheres joined by a ribbon representing the pseudobonds. The blue
cartoon depicts the protein modeled with AA in implicit solvent. Density
map is shown in wireframe representation.
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states, the movements of cytoplasmatic domains (A, P, and N)
and transmembrane helices in domain M are challenging for us,
since the A domain rotates by 90° from the E1P to E2P state and

the inclination of the N domain with respect to the P domain in
the E1·2Ca2+ and E1·AMPPCP crystal structures changes by
almost 90° as well.

TABLE 1 | Systems used in the flexible fitting simulations using either simulated or experimental density maps. The RMSD was calculated between the Cα atoms of the initial
structure and the target structure, for the number of residues (and chains), specified in the last column.

System State (PDB ID) of the initial → target structures Density map, resolution [Å] RMSDt (Cα) [Å] # of residues (chains)

Ca2+-ATPase E2 (1iwo) → E1·2Ca2+ (1su4) simulated, 5.0 14.0 994 (1)
E1·2Ca2+ (1su4) → E1·ATP (1vfp) simulated, 5.0 13.7 994 (1)
E1·ATP (1vfp) → E2P (2zbf) simulated, 5.0 11.2 994 (1)
E2P (2zbf) → E2 (1iwo) simulated, 5.0 5.5 994 (1)

Na+ K+-ATPase K+·E2 (3kdp) → Na+·E1P·ADP (3wgu) simulated, 5.0 11.6 1,280 (2)
Na+·E1P·ADP (3wgu) → K+·E2 (3kdp) simulated, 5.0 11.6 1,280 (2)

Adenylate kinase open (4ake) → closed (1ake) simulated, 5.0 7.1 214 (1)
Ribose binding protein closed (2dri) → open (1urp) simulated, 5.0 4.1 271 (1)
Maltodextrin binding protein open (1omp) → closed (1anf) simulated, 5.0 3.8 370 (1)
Diphtheria toxin open (1ddt) → closed (1mdt) simulated, 5.0 15.6 523 (2)
CO dehydrogenase closed (1oaoC) → open (1oaoD) simulated, 5.0 7.9 729 (1)
Magnesium transporter CorA closed (3jcf) → open (3jcg) Experimental (EMD-6552), 7.1 9.7 1,653 (5)
DNA polymerase Bound (5fkv) → free (5fku) Experimental (EMD-3201), 8.3 14.2 2,211 (7)

FIGURE 2 | Flexible fitting of Ca2+-ATPase from E2 to E1·2Ca2+ state. (A) RMSDt of Cα atoms of best CC models of each of 32 MD replicas at different force
constants for 20 independent simulation runs. The best CC replica in each run is colored and the chosen 5 best models are highlighted in red. MD and REMD panels
show simulations without and with exchanges between replicas, respectively. (B) Average CC of the initial structure (S0) and 5 best models in the multi-scale protocol
stages: CG REMD simulations (M1), targeted MD (M2), AA MD (M3) and in the simple protocol (SP). Standard deviation is shown as an error bar. (C) RMSDt of the
(Cα) atoms of the same structures. (D) Initial structure used for simulations, superimposed on the target density map. (E, F) The highest CC model obtained using the
multi-scale protocol and simple protocol, respectively.
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In Figure 2A, the left panel shows 20 individual runs of the
flexible fitting from E2 to E1·2Ca2+ states using the CG model at
different force constants (500–5,000 kcal/mol), which corresponds
to REUSfit without replica exchange. The final fittedmodels with the
highest CC are colored and chosen as the best models. Their RMSD
with respect to the target structure (RMSDt) around 2 Å represent
the successful simulations with well-fitted domain A. However, there
are multiple failed attempts. Introducing the exchanges between the
replicas brings substantial improvement, and all the attempts are
successful (right panel in Figure 2A). Each fitting run of the multi-
scale protocol is highly repeatable due to exchanges between replicas.
Therefore, a single fitting simulation following the multi-scale
procedure is sufficient to obtain a reliable result, which is visible
in the low values of standard deviation of multiple replicates in
Table 2. Best models from the simple protocol reveals significantly
higher standard deviations. Similar results were obtained in the
previous work using 10 Å resolution maps (Miyashita et al., 2017).
Thus, the structures with the correct Cα atoms positions (M1) can be
further used in the multi-scale protocol in targeted MD and refined
to obtain M2 and M3 models, respectively.

In Figure 2B, we summarize the results of the multi-scaling
protocol, comparing the averaged CC of the obtained M1, M2,
and M3 models. For comparison, CC of the initial structure S0,
reference structure RF, and the results of the simple protocol (SP)
are also shown. The best models obtained using our multi-scale
protocol (CC � ∼0.88) are significantly better than that in the
simple protocol (CC � ∼0.80), indicating a successful fitting to the
density map. RMSDt of the M3 model is also smaller (1.5 Å) than
that of the SP model (8.9 Å) (Figure 2C). In addition, the
MolProbity score (Keedy et al., 2009), CaBLAM (Williams
et al., 2018), and Ramachandran outliers of the M3 model are
better than the SP model (Supplementary Figure S2). The
RMSDt of the SP models are closer to the S0 structure,
implying that during the single-step fitting, smaller
conformational changes occurred than during the three-step
multi-scale protocol. In fact, RMSDi (RMSD with respect to
the initial structure) of the M2 and M3 models is larger than
that of the SP model (Supplementary Figure S2).

In themulti-scale protocol, all three steps show similar averaged
values of the CC (Cα) and RMSDt (Cα), around 0.88 and
1.5–1.7 Å, suggesting that the first CG simulation with REUSfit
is the most important to determine the positions of the Cα atoms.
Targeted MD is also working well to superimpose the all-atom
model to the CC model by means of a gradual decrease of the
RMSD of Cα atoms to their target positions. The protein side
chains follow the conformational changes induced by the shift of
Cα atoms. The detailed conformation of the protein side chains can
be refined in step3, as the density map is not present during the
targeted MD. We found that RMSDt of all non-hydrogen atoms is
improved from 2.7 to 2.4 Å (Supplementary Figure S2). Although
each domain undergoes almost rigid-body rotation and thus most
side chains are already well positioned in the targeted MD, further
refinement seems to be possible in step3.

One of themain differences between theM3 and SPmodels is the
orientation of the A domain. In the initial structure, the N and A
domains are contacting each other (Figure 2D), and they are
separated during the fitting. The A domain acts as an actuator ofT
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the gating of the ion pathway and it has to rotate in order to regulate
the Ca2+ binding and release. In the CG simulation, this shift occurs
with a domain rotation. This success extends to the all-atom level in
the next stage of the multi-scale protocol, resulting in a correct final
model (Figure 2E and Supplementary Movie S1). On the other
hand, in the simple protocol the A domain was simply fitted to the
density without correct rotation, and none of the simulations was
successful (Figure 2F and Supplementary Movie S2). Since the
orientation of the A domain can affect the transmembrane domain
through the loop connecting them, the conformation of the
N-terminal side of the M1 helix is also reproduced in the M3model.

Interestingly, troublesome regions in the flexible fitting in the
other physiological states of Ca2+-ATPase and Na+ K+-ATPase are
similar, including the transmembrane M1 and M2 helices and A
domain. (Supplementary Figure S3). In these cases, the multi-
scale protocol still performs significantly better than the simple
protocol (see Table 2 below). The main reason behind this is the
rotation of the A domain between E1 and E2-type states,
performed correctly in the multi-scale protocol and incorrectly
in the simple protocol. Without the proper rotation, the secondary
structure of the A domain in SP models becomes deformed to
accommodate to the density map. In the transition from
E1·2Ca2+ to E1·ATP state, the transmembrane helices M1
and M2 undergo shifting and rearrangement with bending of
the N-terminal of the M1 helix. This is reasonably well reflected
in M3 models but not in SP models, where M1 helix is bent in
opposite way than expected.

In order to represent the degree of disruption of the secondary
structure of a protein, we are introducing in this work a newmeasure
called a “secondary structure score.” This score is based on a
Hamming distance between two strings, containing the coded
secondary structure elements of each residue of two structures
that are compared (see the details in the Methods section). The
smaller is the value of the secondary structure score, normalized and
indicated as a percentage, the more similar are two structures. The
last panel of the Supplementary Figure S2 shows the secondary
structure scores calculated between the target structure and each
model M2, M3 and SP. Here, it is well visible that the secondary
structure of the best SP model (31%) deviates much more from the
target structure than the best M3 model (22%).

Diphtheria Toxin also requires correct domain rotation during
the fitting. The initial structure is shown in the S0 panel inFigure 3,
where RMSDt is 15.6 Å. To emphasize the change in orientation of
the relevant domain (R domain), its C-terminal fragment was
highlighted in red. The M3 and SP panels are the highest-CC
models obtained from the multi-scale and simple protocols,
respectively. The M3 model showed correct orientation of the
domain R [average RMSDt (Cα) � 0.9, RMSDi (Cα) � 15.6, and CC
(Cα) � 0.89], while it was wrong in the SP model [average RMSDt
(Cα) � 9.6, RMSDi (Cα) � 11.7, and CC (Cα) � 0.84]. In addition,
there was a disruption of the secondary structure of several
β-strands in the R domain of the SP model (bottom panel in
Figure 3 and Supplementary Figure S4, average secondary
structure score � 33%). Such disruption is not observed in the

FIGURE 3 | Simulations of Diphtheria Toxin. Initial structure (S0), the highest CC models obtained using the multi-scale protocol (M3) and the simple protocol (SP)
are superimposed with the target density map. The R domain is shown in blue with residues 520-535 highlighted in red. The graph below depicts the secondary structure
elements in the R domain of the structures from M3, SP and the reference structure (RF), as assigned by the Stride web server. β-strands, 3-10 helices and isolated
β-bridges are shown in green, blue and orange, respectively.
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multi-scale protocol (average sec. struct. score � 19%), presumably
because the CG simulations with the Go model enable keeping the
native contacts within the domain. A slight improvement of the
secondary structure during the final refinement in the multi-scale
protocol may be caused by the adjustments of the side chains into
the density map, which may influence the backbone geometry and
hydrogen bonds between strands.

Simple Conformational Changes in Small
Proteins do not Require Multi-Scale
Procedure
The flexible fitting simulations were also performed for several
small systems: Adenylate Kinase, Maltodextrin Binding Protein,
Ribose Binding Protein, and CO Dehydrogenase. Even though
the two conformational states of those systems are classified as

significantly different and referred to as “open” and “closed”
states in the literatures, the overall transition between them is very
simple and does not involve large rotation or shift in the
component domains. For those systems, the best models
obtained from the multi-scale protocol are similar to those
from the simple protocol (Supplementary Figure S5). As a
representative, let us take Ribose Binding Protein. The CC
(Cα) in the M1, M2, M3, SP, and RF models is 0.89–0.90, and
the RMSDt (Cα) is ∼0.6 Å. We found that the multi-scale
protocol gives structures of a comparable quality in terms of
the MolProbity scores. The average score is 1.34 ± 0.11 in M3,
while 1.23 ± 0.08 in SP (see Supplementary Table S1). The
average values of Ramachandran, rotamer and CaBLAM outliers
are similar within the standard deviation. However, the best M3
models selected basing on the CC are slightly better than the best
SP models. Although the multi-scale protocol is applicable to

FIGURE 4 | Fitting of Magnesium Transporter CorA to experimental density map. (A) RMSDt of Cα atoms of best CC models for runs of simulations without (MD)
and with exchanges between replicas (REMD), respectively. 5 best models are highlighted in red. (B) Average CC of the initial structure (S0) and 5 best models in the
multi-scale protocol stages (M1, M2, M3) and in the simple protocol (SP) with standard deviation as an error bar. (C) Average RMSDt of the (Cα) atoms. (D) The side view
and bottom view of the initial structure with the target density map. (E) The highest CCmodels obtained using themulti-scale and (F) simple protocol. Panels (G,H)
show the enlarged view on the chain A with the reference structure in dark gray.

Frontiers in Molecular Biosciences | www.frontiersin.org March 2021 | Volume 8 | Article 6318548

Kulik et al. Multi-Scale Flexible Fitting

79

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


small proteins, the simple protocol seems to be enough in most
cases. The multi-scale protocol is useful to search large
conformational space. Involving the CG models in the protocol
is much more beneficial for large proteins and their complexes.

The Multi-Scale Protocol Performs Well for
Experimental Cryo-EM Density Maps
CorA is responsible for magnesium uptake in prokaryotes. In the
closedMg2+-bound state, it forms a symmetrical pentamer.While
moving to the open Mg2+-free state, the 5-fold symmetry is lost.
The density map of the latter state is used here as the target of
flexible fitting simulations. In order to assess the performance of
our protocol by calculating RMSDt, we have used the model fitted
by rigid body methods and deposited by the density map authors
in the RCSB PDB database. We realize that this model may not be
highly accurate due to its low resolution but that is the only
“answer” model that could be used for comparison and we may
possibly contribute to its refinement.

To examine the usefulness of REUSfit in the multi-scale protocol,
we first compare CG MD with and without replica exchange. In
Figure 4A, we see that REUSfit produced all themodels in the RMSDt
range 1–2Å, suggesting that we can select a reliable model even from

one simulation without considering the effect of the force constant.
Since the targeted MD worked well in step 2, the all-atom model was
superimposed to the CGmodel effectively. As a result, the multi-scale
protocol gives significantly better models than simple protocol in
terms of both CC (Cα): 0.74 vs 0.70 and RMSDt (Cα): 1.8 vs 4.5 Å
(Figures 4B,C). Similar tendency was obtained in the averaged
RMSDt for non-hydrogen atoms, CaBLAM outliers, MolProbity
score, and secondary structure score (Figure S7). The reason
behind it is the difficulty of fitting is the skew of chain A (dark
blue inFigures 4D–F). The comparison of two chosen helices of chain
Awith the target structures shows that theywere fitted correctly by the
multi-scale protocol in the CG step of the protocol using REUSfit and
trapped in a wrong density patch in the best model obtained with the
simple protocol (red arrows in Figures 4G,H). The REUSfit method is
able to rescue the system from being trapped in local density minima
by the efficient conformational sampling.

Step 3 did not improve the structure with respect to the target
model, as both CC and RMSDt values of the M2 and M3 models
are similar. As already mentioned, the target model is not a high-
resolution structure of the system. Also, the resolution of the
density map is 7.1 Å. Therefore, it is difficult to conclude whether
the final refinement step brings any improvement to the
structure. It is expected that for the target density maps of

FIGURE 5 | DNA polymerase fitting. S0: Initial structure with the target density map. Position of DNA is shown in black (not included in simulations). M3 and SP are
the highest CCmodels obtained with the multi-scale and simple protocols, respectively. τ500 and tail of PolIIIα are additionally superimposed with the reference structure
(RF) in dark gray in the insets. The average CC and RMSDt for 5 best models in each run are shown in the graphs with standard deviation marked as error bars.

Frontiers in Molecular Biosciences | www.frontiersin.org March 2021 | Volume 8 | Article 6318549

Kulik et al. Multi-Scale Flexible Fitting

80

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


higher resolution, step 3 would contribute more to the quality of
the structure.

The second target using the experimental density map is the
DNA polymerase III from E. coli. It serves as an enzyme for DNA
replication. The complex consists of several factors of different
functionality, such as the clamp for sliding along the DNA and
exonuclease working as a proofreader. To build the DNA lagging
strand, the polymerase needs to quickly and repeatedly release
and reposition DNA. In order to understand this process, several
structures of the complex have been solved, both in DNA-bound
and DNA-free states (Fernandez-Leiro et al., 2015). Here, we
performed flexible fitting to a density map of a DNA-free state
starting from the DNA-bound state structure. DNA was removed
from the original PDB structure before the simulations (Dark
gray in S0 panel of Figure 5).

The best model obtained with the simple protocol reveals many
inaccuracies with respect to the density map in the regions of the
τ500 domain and neighboring tail of PolIIIα, when compared with
the modeled reference structure (SP panel in Figure 5). Particularly,
the tail of PolIIIα that undergoes a rearrangement upon DNA
binding is not in a correct position, significantly stretching out of
the contours of the density map. Applying the multi-scale protocol
allowed avoiding such problems. The secondary structure of those
domains is retained with their simultaneous shift toward the correct
position within the target density map (M3 panel in Figure 5). Both
CC and RMSDt of the Cα atoms of the best final models are
significantly improved by using the multi-scale protocol, from 0.82
to 0.85 and from 7.2 to 4.1, respectively (bottom left panel in
Figure 5). Similarly, as in the case of the CorA, the CG
simulations with REUSfit largely contribute to the correct fitting.

Overall Performance of Multi-Scale
Protocol
In Tables 2, 3 and Supplementary Table S1, we summarize the
CC, RMSD, and other parameters of the best models obtained from
the simple and multi-scale protocols for all test sets. In the cases of
Adenylate Kinase, Maltodextrin Binding Protein, Ribose Binding
Protein, and CO Dehydrogenase, which include a simple rotation
or shift of the component domains, the two protocols are almost
comparable. However, in the case of Ca2+-ATPase, Na+ K+-
ATPase, Diphtheria Toxin, Magnesium Transporter, and DNA
polymerase, which includes complicated conformational changes,
multi-scale protocol showed better scores than the simple protocol.
In the simple protocol, RMSDt of all the heavy atoms is high,

reaching even 9.2 Å for Ca2+-ATPase and 10.3 Å for Diphtheria
Toxin. In some cases, we also observe disruptions of the secondary
structures in the rotated/shifted domain, resulting in higher
secondary structure scores (>30%), and thus, poor MolProbity
score and high Ramachandran and CaBLAMoutliers. In the multi-
scale protocol, RMSDt came down below 2.5 Å in all systems with
simulated density maps and to 2.9 and 4.5 Å in the experimental
density maps systems. The secondary structure scores are mostly
less than 30%, and the main chain geometry is consistently at least
0.5% better than for the SP best models. We suggest that multi-
scale protocol is useful for large proteins or their complexes in
which a complex conformational transition, such as a rotation or
domain rearrangement, occurs between two states.

DISCUSSION

To date, several methods relying on MD simulations have been
developed in order to flexibly fit protein structures to the target
density maps. Here, we use the CC-based approach (Tama et al.,
2004). This can be combined with structure-based force fields, as
in MDfit (Whitford et al., 2011), which enables us to prevent the
structure from breaking secondary or tertiary structure contacts
during the fitting due to native contact energy term. However,
new stable contacts cannot be created during the fitting, even if
there is a contact in the target structure. MDFF uses the physics-
based force field such as CHARMM, which allows for creating
new contacts, but requires secondary structure restraint (Villa
and Lasker, 2014) (Trabuco et al., 2008). In our approach, we aim
to design a fitting method that does not only keep secondary and
tertiary structure relations, but also allows for the refinement of
side chain positions, including breaking or creating new contacts.
Therefore, we use a structure-based model for the first stage of the
protocol, and CHARMM force field with the CC-based biasing
potential for the third stage, joined together by targeted MD. One
advantage of our method is that in the second and third stages we
do not introduce any secondary structure restraints, as in CC-
based methods, but we take advantage of those restraints at an
earlier step by using the structure-based model. Although the
protocol requires the correct secondary structure in the initial
model, it allows the changes of the secondary structure in the
target structures via the non-restraint MD simulations.

Another advantage of our protocol is that we are searching a large
conformational space in the first stage with REUSfit (Miyashita et al.,
2017), where the computational cost is reduced with the CG model.

TABLE 3 | Quality of the best models obtained using the simple and multi-scale protocol for the experimental density maps.

System Str. c.c. RMSDt
(Cα) [Å]

RMSDt
(AA) [Å]

MolProbity
score

Ramachandran
outlier [%]

Rotamer
outlier [%]

CABLAM
outlier [%]

Sec.
struct.

index [%]

Magnesium
transporter
CorA

MS3 0.77 (0.77 ± 0.00) 1.7 (1.8 ± 0.1) 2.9 (3.0 ± 0.0) 1.70 (1.70 ± 0.02) 2.8 (3.0 ± 0.6) 7.3 (7.3 ± 0.4) 5.3 (4.5 ± 0.5) 18 (19 ± 1)
SP 0.74 (0.74 ± 0.00) 4.4 (4.5 ± 0.1) 5.1 (5.1 ± 0.1) 1.75 (1.76 ± 0.01) 2.9 (3.3 ± 0.5) 7.2 (7.7 ± 0.3) 4.8 (5.9 ± 0.7) 22 (22 ± 1)

DNA
polymerase

MS3 0.85 (0.85 ± 0.00) 4.1 (4.1 ± 0.4) 4.5 (4.5 ± 0.3) 1.84 (1.80 ± 0.03) 3.6 (3.6 ± 0.4) 9.3 (8.2 ± 0.7) 6.7 (6.3 ± 0.4) 21 (21 ± 1)
SP 0.82 (0.82 ± 0.00) 6.3 (7.2 ± 0.8) 6.6 (7.5 ± 0.8) 1.84 (1.81 ± 0.02) 4.4 (3.9 ± 0.4) 8.5 (8.1 ± 0.4) 6.1 (6.5 ± 0.3) 23 (24 ± 1)
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REUSfit increases the reliability of the fitting, since exchanging the
force constants between replicas can promote a feedback loop to
output the structures with the highest CC in different fitting trials.
Extending the normal MD simulation or using other methods
increasing the sampling such as accelerated MD would also lead
to a wide conformational search (Hamelberg et al., 2004). However,
it may not choose and promote the same fitted pose in many runs
when dealing with a complex conformational transition.

For systems with large and complex conformational changes,
it is difficult to obtain reliable results just using a simple method,
as the results may not be converged (Ahmed et al., 2012).
Frequently, wrong fitting poses are obtained, similarly as in
the case of Diphtheria Toxin presented here. Thus, for such
cases, our multi-scale approach combining CG and AA model is
powerful to reach a final model with reliable backbone positions
by REUSfit and also containing hydrogen atoms. The
consideration of the hydrogen atoms and hydrogen bonds is
of importance for proteins and it allows for refinement of the side
chains. Introducing a protocol consisting of three steps may be
seen as a disadvantage of our method due to the relative
complexity of setting up the files for both CG and AA
simulations and running 3 different types of simulations
consecutively in comparison with a single flexible fitting run.
All necessary functionalities are implemented within the
GENESIS suite of programs (Jung et al., 2015) (Kobayashi
et al., 2017) (Mori et al., 2019).

The protocol uses targeted MD to convey the information
about the correct Cα atoms positions after structure-based
model fitting to the AA simulations. The most
straightforward way one could imagine for going from Cα
only model to AA model would be to rebuild the protein
backbone and side chains basing on conventional geometrical
principles. Various tools were examined in step 2, including for
example PULCHRA (Rotkiewicz and Skolnick, 2008) and
SCWRL4 (Krivov et al., 2009). In our experiences, none of
them was free of severe errors in rebuilt structures, especially in
the case of the slightly distorted main chain after flexible fitting
simulation. Common problems included strange dihedral
angles of the backbone, overlapping side chains and ring
penetration (i.e., insertion of a covalent bond into an
aromatic ring). We consider that targeted MD is generally
applicable to back mapping in multi-scale simulations that
combine CGMD and AAMD when at least one reliable
experimental structure is available. Another method that
could be taken into consideration for retrieving atomic detail
from CG model is a recently developed back mapping method
using Bayesian inference and restrained MD (Peng et al., 2019).

In this study, we tried to obtain the one best model from one
experimental density map. Understanding the experimental data
as an ensemble average of the multiple conformations is also
important, since many conformations can reproduce the same
experimental data (degeneracy problem) (Rieping et al., 2005)
(Cossio and Hummer, 2013) (Olsson et al., 2017). In the cryo-
EM, multiple states of proteins can be classified with the 3D
reconstruction protocol for a large amount of 2D images (Bai
et al., 2015). However, the obtained 3D density map is still an
ensemble average of molecules with sufficient conformational

fluctuations in solution. In addition, noise or random errors might
be contained in the map to some extent, even if high-resolution
density maps are obtained. To address these issues in the structure
modeling, various inferential algorithms have been proposed
(Bonomi et al., 2017). Particularly, metainference calculates the
ensemble average using multiple-replica simulations, and also
considers effects of the noise and errors in the energy function
based on the Bayesian inference (Bonomi et al., 2016), which was
recently applied to the cryo-EM structure modeling (Bonomi et al.,
2018). Introduction of the ensemble average, noise, or errors will be
one of the future extensions of our protocol.

CONCLUSION

We have designed a multi-scale protocol by integrating the
CGMD with the AAMD in a single flexible fitting workflow.
Performed simulations for several systems containing intricate
domain rotations, domain shifts and transitions between open
and closed states show that we can improve the accuracy and
reliability of the flexible fitting procedure in comparison with a
single, long AA flexible fitting simulation. The protocol performs
well both for simulated and experimental density maps from
cryo-EM and it is recommended to use with large proteins or
their complexes.
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Molecular Basis of Class B GPCR
Selectivity for the Neuropeptides
PACAP and VIP
Chenyi Liao1,2, Jacob M. Remington1, Victor May3 and Jianing Li1*

1Department of Chemistry, University of Vermont, Burlington, VT, United States, 2State Key Laboratory of Molecular Reaction
Dynamics, Dalian Institute of Chemical Physics, Dalian, China, 3Department of Neuroscience, University of Vermont, Burlington,
VT, United States

The related neuropeptides PACAP and VIP, and their shared PAC1, VPAC1 and VPAC2
receptors, regulate a large array of physiological activities in the central and peripheral
nervous systems. However, the lack of comparative and molecular mechanistic
investigations hinder further understanding of their preferred binding selectivity and
function. PACAP and VIP have comparable affinity at the VPAC1 and VPAC2 receptor,
but PACAP is 400–1,000 fold more potent than VIP at the PAC1 receptor. A molecular
understanding of the differing neuropeptide-receptor interactions and the details
underlying the receptor transitions leading to receptor activation are much needed for
the rational design of selective ligands. To these ends, we have combined structural
information and advanced simulation techniques to study PACAP/VIP binding selectivity,
full-length receptor conformation ensembles and transitions of the PACAP/VIP receptor
variants and subtypes, and a few key interactions in the orthosteric-binding pocket. Our
results reveal differential peptide-receptor interactions (at the atomistic detail) important for
PAC1, VPAC1 and VPAC2 receptor ligand selectivity. Using microsecond-long molecular
dynamics simulations and the Markov State Models, we have also identified diverse
receptor conformational ensembles and microstate transition paths for each receptor, the
potential mechanisms underlying receptor open and closed states, and the interactions
and dynamics at the transmembrane orthosteric pocket for receptor activation. These
analyses reveal important features in class B GPCR structure-dynamics-function
relationships, which provide novel insights for structure-based drug discovery.

Keywords: G protein-coupled receptor, membrane protein, signaling, molecular dynamics, conformational
transition, ligand selectivity

INTRODUCTION

Pituitary adenylate cyclase-activating peptide (PACAP, ADCYAP1, P18509) and vasoactive
intestinal polypeptide (VIP, VIP, P01282) are two important neuropeptides for neural
development, body calcium homeostasis, glucose metabolism, circadian rhythm,
thermoregulation, inflammation, feeding behavior, pain modulation, stress and related endocrine
response (Harmar et al., 2012; Bortolato et al., 2014; Culhane et al., 2015; Liao et al., 2019b; Liao et al.,
2019c). Their important roles are mediated by activating three class B G protein-coupled receptors
(GPCRs) including the PAC1 (ADCYAP1R1 and related splice variants), VPAC1 (VIPR1), and
VPAC2 (VIPR2) receptors, which share over 60% sequence similarity within this GPCR subtype.
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Interestingly, PACAP and VIP display distinct selectivity for the
PAC1 and VPAC1/2 receptors (Vaudry et al., 2009): PACAP
(PACAP38 and the C-terminally truncated PACAP27) and VIP
have comparable high affinity for the VPAC1 and VPAC2
receptors (Gottschall et al., 1990; Lam et al., 1990), whereas
the PACAP peptides are 400–1,000 fold more potent than VIP
as agonists for PAC1 receptor (Gottschall et al., 1990;
Dautzenberg et al., 1999).

From recent progress in X-ray crystallography and cryogenic
electron microscopy (cryo-EM) (Hollenstein et al., 2013; Yang
et al., 2015; Jazayeri et al., 2017; Zhang et al., 2017a; Zhang et al.,
2017b; Zhang et al., 2018; Duan et al., 2020; Kobayashi et al.,
2020; Liang et al., 2020; Wang et al., 2020), several class B
receptor structures have been established. We have now
integrated the structural information with simulations, theory
and available experimental findings to examine: 1) differences in
intrinsic PAC1 and VPAC1/2 receptor dynamics; 2) differential
PACAP and VIP interactions and energetic impacts at the
receptor subtypes; and 3) the interactions and dynamical
features of PACAP-induced activation of the PAC1null
receptor. Class B GPCRs have been suggested to have
receptor features and dynamics distinct from those described
for class A receptors, presumably because of the presence of the
extracellular domain (ECD) (Liao et al., 2017), the apparent
absence of “toggle switches” (Li et al., 2013), and other signature
features. The class B receptors are likely to adopt unique
conformational changes in the heptahelical transmembrane
(7TM) domain following neuropeptide binding for receptor
activation. Different from some class B receptors (Hollenstein
et al., 2014; Yang et al., 2015; Graaf et al., 2016; Jazayeri et al.,
2016; Jazayeri et al., 2017; Song et al., 2017; Zhang et al., 2017a;
Zhang et al., 2017b; Liang et al., 2018), the detailed and
comparative examination of the PAC1 and VPAC1/2
receptor function and actions have not been well
investigated. Accordingly, we have integrated long-timescale
molecular dynamics (MD) simulations with other
computational and theoretical techniques to study the
conformational ensembles and transitions of two PAC1
receptor variants (namely PAC1null and PAC1s) (Liao et al.,
2019c), VPAC1, and VPAC2 receptors, as well as their
interactions with the neuropeptides PACAP and VIP. The
PAC1null receptor has no intracellular loop 3 (ICL3) inserts
(neither hip nor hop inserts) from alternative splicing, and
represents one of the most prevalent receptor isoforms in the
central nervous system (CNS). The PAC1s receptor is similar to
the PAC1null variants, but has a 21-amino acid deletion
(residues 89–109) in the ECD. For reasons unknown, the
PAC1s receptor is not highly expressed in the CNS (or any
tissue) and yet this variant was chosen for structural
determination (Sun et al., 2007; Kumar et al., 2011; Wang
et al., 2020). Distinct from structural determination, our
simulations and analyses detail the receptor conformational
transitions and peptide interactions that are biologically
relevant to the receptor subtype. While the PAC1 receptor
has been recognized as an emerging target for stress-related
disorders (Ressler et al., 2011), our studies, for the first time,
reveal the molecular basis underlying PACAP receptor

selectivity which may be essential for the rational design of
effective therapeutic agents.

MODELS AND METHODS

Model Preparation and MD Simulation
Setup
The ligand-free and ligand-binding full-length receptor systems.
Our homology modeling was carried out with the protein
modeling program Prime (Schrödinger, Inc.) (Zhao et al.,
2011; Li et al., 2011) which built the full-length VPAC1 and
VPAC2 including the ECD, the 7TM, as well as the linker loop
(see details in Supplementary Table S2). The PAC1s model was
modified from our previous PAC1null receptor model (Liao et al.,
2017) by deleting the 21-amino acid in ECD. For each receptor,
we generated a number of initial models which were distinct in
the ECD orientation to better sample different conformational
states (Supplementary Figure S1). The Membrane Builder in
CHARMM-GUI (Jo et al., 2008) was employed to build the
protein/membrane complex systems, each of which contains a
receptor with/without a ligand, a lipid bilayer of ∼ 225 POPC
molecules, ∼ 27,000 TIP3P water molecules, counter ions, and
0.12 M NaCl, totaling ∼ 120,000 atoms in a periodic box ∼94 ×
94 × 147Å3.

The ligand-ECD complex systems. To understand the distinct
binding affinity of PACAP/VIP for PAC1null, PAC1s, VPAC1
and VPAC2 receptors, we simulated the ECD of each receptor
and PACAP/VIP in a solvent environment. PACAP/VIP was
initially placed near the position based on known peptide-
binding modes to class B GCPRs (Sun et al., 2007; Grace
et al., 2010; Parthier et al., 2007; Pioszak and Xu, 2008)
(Supplementary Figure S2). We used the PDB Reader of
CHARMM-GUI (Jo et al., 2008) to prepare protein then
solvated and neutralized with addition of 0.12 M NaCl in
VMD (Humphrey et al., 1996) (see our simulation summary
in Supplementary Table S1).

Our simulations were performed with the CHARMM36-
cmap force field (Best et al., 2012). Each system went
through energy minimization, 285-ns multiple-step
equilibrations, and MD simulations using the NAMD
package (Phillips et al., 2005). Both equilibration and
production runs were performed in the NPT ensemble
(310K, 1 bar, Langevin thermostat and Nose-Hoover
Langevin barostat) with a time step of 2 fs. All of the bond
lengths to the hydrogen atoms in the protein or lipid molecules
were constrained. The particle mesh Ewald (PME) technique
was used for the electrostatic calculations. The van der Waals
and short-range electrostatics were cut off at 12.0 Å with switch
at 10.0 Å. Each system was carried out 1000 ns for 4–5 replicas.

Enhanced sampling for ligand-binding simulations. Adaptive
tempering was employed to enhance conformational sampling
under PACAP or PACAP6-38 insertion for ∼ 400 ns, in which the
simulation temperature was dynamically updated as a
continuously random variable in the range of 310–360 K with
the Langevin equation (Zhang and Ma, 2010) implemented in
NAMD (Supplementary Figure S3).
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MARKOV STATE MODEL

Markov state models (MSMs) of molecular kinetics were applied
on the collection of MD trajectories, from which we identified the
transition pathways and estimated the long-time statistical
dynamics between the conformational states of interest (Pande
et al., 2010; Prinz et al., 2011). The ligand-free full-length receptor
MD trajectories were used for MSM construction. We used the
MSMBuilder 3.8.0 program Bowman et al., 2009a; Bowman et al.,
2009b to construct the transition matrices of MSM. Trajectories
that contain stable conformational states (measured by Cα root-
mean-square deviation (RMSD) in Supplementary Figure SM2)
were prepared by saving the Cα coordinates of a GPCR protein
with atomic indices. Thus, we have 4,519–14,281 conformations
in each trajectory. We grouped the conformational ensembles
into a set of clusters, called microstates, based on Cα RMSD using
the k-centers algorithm with 33–55 cluster centers Bowman
et al., 2009b.

With the microstate discretization, we used the maximum
likelihood estimation to build the reversible transition matrices at
the lag time series. The evolution of the transition probability
between closed and open conformational states of a receptor
protein was evaluated at a series of lag times τ, 2τ, . . ., nτ by
performing the Chapman-Kolmogorov test (Prinz et al., 2011)
which confirmed that our model at the chosen lag time is
Markovian (Chodera et al., 2007; Noé et al., 2009; Prinz et al.,
2011) (Supplementary Figures SM4,SM5). Finally, this was
achieved at a lag time of 1.2–2.4 ns as judged by flat lines in
the implied timescales plots (Supplementary Figure SM3) (see
Ref. Liao et al., 2019a for our detailed implementation of the
Chapman-Kolmogorov test).

Using the transition-path theory (TPT) (Weinan and Vanden-
Eijnden, 2006; Berezhkovskii et al., 2009; Metzner et al., 2009; Noé
et al., 2009), we calculated the transition path connecting between
the stable conformational states in a transition matrix and estimated
the time quantity to travel from one set of states to the others by the
lag time divided by the minimum net flux in the transition path
(Supplementary Table S3). Thus, the transition time refers to the
time quantity to complete one transition between two stable
conformational states. The division of macrostates were calculated
from the eigenfunction structure using the Perron Cluster Cluster
Analysis (PCCA) method (Noé et al., 2007). Supplementary Figure
SM6 illustrates the 3D projections of the microstates andmacrostate
divisions in accordance to ECD orientation and position by
backbone center-of-mass (COM) distances between ECD and
extracellular loop 1 (ECL1) (dECD-ECL1) and extracellular loop 3
(ECL3) (dECD-ECL3), respectively. Detailed constructions and
validation of MSM were described in the Supplementary Material.

Data Analysis
Binding free energy (ΔGb) of PACAP/VIP peptide bound to the
ECD and per-residue free energy decomposition were computed
over the last 500 ns MD trajectories using the Molecular
Mechanics Generalized Born Surface Area (MM-GBSA)
method (Miller et al., 2012) by MMPBSA.py tool (version:
14.0) in the Amber package (Case, 2018). The second
modified Bondi radii set were used in the GB method. ΔGb

was given as an average of five replicas in each system.
Conformational analysis and distance analysis were performed
with TCL scripts implemented in VMD 1.9.1 (Humphrey et al.,
1996) and plotted by matplotlib. The average distances involving
a group of residues were calculated by the distance between the
backbone COMs of groups of residues. Water density map were
calculated using MDAnalysis python package. The tilt angle of
ECD is defined as the angle between the vector along the
N-terminal helix and the Z-axis. For example, the vector along
the N-terminal helix of PAC1 ECD is calculated by summing the
C-O vectors along the helical residues 30–47.

RESULTS AND DISCUSSION

Conformation Ensembles and Transitions of
PAC1 and VPAC1/2 Receptors
Building on our previous study of PAC1null receptor (Liao et al.,
2017), we first examined the conformations of full-length
PAC1null, PAC1s, VPAC1, and VPAC2 receptors, as well as
the transitions within the conformational ensembles, which are
key in understanding the differential actions of these receptors
beyond amino acid sequences. With MD simulations totaling 20
microseconds to sample different conformations, we constructed
MSM transition pathways between conformational microstates
for PAC1s and VPAC1/2 receptors to compare with those shown
for the PAC1null receptor described previously (Liao et al., 2017)
(Figure 1). Similar to the PAC1null receptor, the ligand-free
PAC1s and VPAC1/2 receptors display a wide diversity of
conformational states with respect to the ECD orientation (θ)
and ECD-7TM backbone COM distance (d), which reflect in part
the actions of the linker region that tethers the ECD to the 7TM.
Free energy maps based on the conformation density are shown
in Supplementary Figure S4, where the low energy regions
correspond to the stable conformational states in Figure 1 are
circled with the same color. The energy barriers between the
stable conformational states vary from 0.5 to 3.5 kcal/mol. We
define the closed (θ > 80 degree, d < 55 Å), semi-open (θ � ∼60
degree, d < 55 Å), and open states (θ � ∼40 degree, d < 55 Å) to
distinguish these conformational states. ECD-unrestricted
conformations refer to those with ECD not touching the 7TM
(d > 55 Å), which include most intermediate states (colored in
yellow in Figure 1), as well as some stable conformational states
in systems of VPAC1 and VPAC2, e.g., the state in red in
Figure 1C and the state in green in Figure 1D. Without
binding to 7TM, they are capable to change to other stable
states much faster. The conformational states in red and
orange in Figure 1D that have the ECD-ECL1 backbone
COM distance ∼10 Å shorter than ECD-ECL3 backbone COM
distance are labeled as the on-side conformations.

For the PAC1null receptor, we previously showed that the 21-
amino acid loop in ECD interacts with ECL3 to potentially
sustain the open time of the receptor (Liao et al., 2017).
Consistently in this work, with the deletion of the 21 amino
acids in PAC1s, the receptor microstate transitions between the
open conformational state and closed conformational states
(Figure 1A) are faster by a factor of 2 (transition time up to
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400 µs for PAC1s and up to 1,000 µs for PAC1null,
Supplementary Table S3). The free energy map also exhibits
∼3 kcal/mol higher energy barrier between the open and closed
states in PAC1null compared with it in PAC1s (Supplementary
Figure S4). While the functional implications of these differences
remain to be investigated, the open state of PAC1null, once
formed, may be sustained longer than that for PAC1s to
facilitate peptide trapping and PAC1null receptor activation.
Overall, the conformational microstate transitions for the
VPAC2 receptor appear the fastest (0.8–80 µs) compared to
the VPAC1 (40–600 µs) or the PAC1 receptor variants
(21–366 µs), in agreement with the free energy difference
between states in Supplementary Figure S4. Therefore, despite
significant primary amino acid sequence homology, the different
PAC1 and VPAC receptors display unique intrinsic ensemble
dynamics and conformational microstate transition times.

Several of the ligand-free receptor conformations resemble the
peptide-bound receptor states identified in the structural
solutions with respect to ECD orientation (θ) and ECD-7TM
(d) or ECD-ECL backbone COM distances. For example, both the
PAC1null and PAC1s receptors could adopt stable open
conformations (θ � ∼40°, 45 < d < 55Å), which have been
seen in the peptide-bound PAC1 (PDBID: 6M1I) and other
Class B receptor structures, including the glucagon receptor
(GCGR, PDBID: 5YQZ), parathyroid hormone 1 receptor
(PTH1, PDBID: 6FJ3), and glucagon-like peptide-1 receptor

(GLP-1, PDBID: 5VAI) with minimum RMSD of 4.2Å
(Supplementary Figure S5). In addition, the “semi-open”
conformations of the VPAC1 receptor are similar to the
CGRP-bound calcitonin receptor-like receptor (CLR) structure
(PDBID: 6E3Y, θ � ∼60°, d < 55Å) with RMSD of 5.4 Å.
Moreover, the VPAC2 receptor “on-side” conformations with
ECD in contact with ECL1 share similar features (θ < 80°, short
ECD-ECL1 distance) with an antagonist-bound GCGR structure
(PDBID: 5XEZ) with minimum RMSD of 4.6 Å. Beyond the
relative orientation and position of ECD to 7TM, the 7TM
conformations in the ligand-free receptor approximated those
for the inactive GPCR structures (with lowest RMSD � 2.0–2.5Å
in 7TM) than the peptide-bound active receptors
(Supplementary Figures S6,S7), consistent with the actions of
peptides to initiate transmembrane dynamics for receptor
activation. In aggregate, these findings suggest that the PAC1
and VPAC1/2 receptors, even without peptide binding, have
dynamic transitions between the open and closed
conformational states, which prepare them for ligand binding
and subsequent receptor activation/deactivation.

Distinct Affinity of PACAP and VIP to the
Receptor ECDs
For Class B receptors, the ECD acts as a high-affinity peptide trap
and subsequent peptide-ECD dynamics result in the presentation

FIGURE 1 | (A) Transition pathways for (A) PAC1s, (B) PAC1null, (C) VPAC1 and (D) VPAC2 receptors. Stable conformational states are colored in blue, red,
green, and orange respectively. Intermediate states are colored in yellow. Most intermediate states are ECD-unrestricted conformations. The VPAC1 conformation in red
and the VPAC2 conformation in green also belong to the ECD-unrestricted conformational ensemble. PAC1null is remade from our recent study (Liao et al., 2017). The
kinetic transition time between certain conformational states are labeled with units in nanoseconds.
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of the peptide N-terminus to the orthosteric binding site in the
7TM to initiate receptor activation. Our MSM analyses suggest
the dynamic processes (peptide binding, large-scale ECD
rotation, and peptide insertion) occur on a time scale greater
than tens of microseconds. Thus, we applied a total of 40
microseconds MD simulations on the ligand-ECD systems;
with the ECD-peptide complex trajectories we employed the
MM-GBSA method (Miller et al., 2012) to estimate the binding
free energy (ΔGb) of PACAP or VIP to the ECD of PAC1null,
PAC1s, VPAC1 and VPAC2 receptors, as well as the ΔGb

contribution per residue. Our results (Figure 2A) show that
PACAP binding to PAC1null receptor is the most favorable
among receptor and peptide combinations. Specifically, ΔGb of
PACAP is around 1.4 times of ΔGb of VIP in binding PAC1null
ECD; the difference decreases in PAC1s and VPAC1, and
become comparable for PACAP and VIP binding VPAC2

ECD (Figure 2A). This provides an energetic basis for PAC1
receptor binding selectivity for PACAP (Kd ≈ 0.5 nM) over VIP
(Kd >500 nM) (Vaudry et al., 2009), which corresponds to that
PACAP-binding free energy (−13.2 kcal/mol with Kd converted
by ΔGb � RTlnKd, T � 310 K) is about 1.5 times of VIP
(−8.9 kcal/mol) in binding PAC1null, while VPAC1 and
VPAC2 receptors appear to exhibit comparable binding
affinity (Kd ≈1 nM) for PACAP and VIP (Vaudry et al.,
2009). Notably, the experimental binding energies were
obtained with full-length receptor systems, and the
interactions between the ligand and 7TM may also affect the
magnitude of the ΔGb values for comparison with our
calculation estimations. Therefore, here we compare the
relative values of ΔGb for the different systems as opposed
to the absolute magnitude which differs from prior
experiments.

FIGURE 2 |Binding selectivity and recognition of PACAP and VIP on PAC1null, PAC1s, VPAC1 and VPAC2 receptors. (A) Binding free energy (ΔGb) of PACAP and
VIP on PAC1null, PAC1s, VPAC1 and VPAC2 receptors respectively by averaging the ΔGb values from five replicas with bars representing the standard deviation.
Representative binding conformations are displayed on the right, where residues to calculate free energy decomposition in (B) are colored in blue; only residues 1–27 are
displayed for PACAP and VIP. (B) ECD per-residue free energy decomposition (average of five replicas) in PAC1 and VPAC1/2 binding PACAP (red column) and VIP
(blue column). β3–β4 including the loop between is labeled. The 21 amino acids (residues 89–109) are labeled in PAC1null. (C)Close view of the N-terminal residues 1–13
of PACAP interacting with transmembrane orthosteric pocket of PAC1 receptor. Hydrogen bonds are shown in dashed lines. Comparison of PACAPwith VIP at residues
1–13 by direct mutations is shown at the bottom right.
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To examine the ligand-ECD complex conformations, we
performed structural clustering on the last 200- ns trajectories
and identified six complex conformational states based on ECD
orientation and the bound peptide in a vertical pose for receptor
activation (Figure 2A; a-e). State (a) is found in PACAP binding
PAC1null, PAC1s and VPAC2 receptors, which was resolved in
the PAC1 receptor cyro-EM structure (PDBID: 6M1I, Figure 2
state(f)). State (b) in which the ECD tile angle is decreased
compared to state (a) is found prevalently in PACAP/VIP
binding the VPAC1 receptor. While the PAC1s receptor
adopts state (a) upon PACAP binding, it establishes state (c) if
bound to VIP. Similarly, the VPAC2 receptor adopts state (a) in
PACAP binding, but it alters to state (e) with VIP, which is
comparable to the bound ligand bound CRF1 conformation
(PDBID: 2L27).

According to previous theoretical and experimental findings
(Vaudry et al., 2009; Wang et al., 2020), we examined the
interacting residues between the receptor ECD (Figure 2B)
and the C-terminal region of PACAP/VIP (amino acid
residues 13–26). The PACAP and VIP C-terminal
hydrophobic V19xxY22LxxV/I26 sequence appears to contribute
to the hydrophobic interactions with PAC1null/PAC1s and
VPAC1/2 receptor residues I61PAC/L70VPAC1/I59VPAC2; the
PACAP/VIP R14K15 residues contribute to hydrogen bonding
with the ECD (Supplementary Figure S10). The β3-β4 loop in
both PAC1null/PAC1s and VPAC2 receptor (environs
L80FxxF84,PAC and V78FxxF82,VPAC2 respectively) interacts
with PACAP/VIP (Figure 2, state (a)). In contrast, the ECD
helix 1 rather than the β3-β4 loop in VPAC1 receptor
interacts with the peptide (Figure 2, state (b)). In the different
receptor ECD C-terminal region, segments F131xxxxF136,PAC1null,
F110xxxxF115,PAC1s, Y118xxxxxL124,VPAC1, and V106xxxxY111,VPAC2

also contribute to ligand-receptor hydrophobic interactions.
For the PAC1null receptor, there are a few notable differences

in PACAP and VIP binding. Firstly, both states (a) and (d) in
Figure 2 are identified in PAC1null-PACAP binding; state (a) is
similar to the cyro-EM structure (Wang et al., 2020) and state (d)
is close to the Nuclear Magnetic Resonance (NMR) model (Sun
et al., 2007). PAC1null receptor VIP binding can also be in state
(a). Secondly, PAC1null receptor hydrophobic residues
72–140PAC1null play major role in PACAP binding, such as
M72, L80FxIF84xP86, VW90, I95, L106xLxxM111, F127, F131, F136,
and Y139 (Figure 2B); only E142 and D145 at the ECD C-terminal
region contributes significantly to hydrogen bonding with the
ligand. Different from PACAP, VIP can also interact with
charged/polar residues 78–87PAC1null such as E79, R82, N85 and
D87. Lastly, PACAP interacts with residues 92–130PAC1null

extensively, while VIP interacts with few. This also supports
the finding that another short variant with deletion of residues
53–109PAC1null significantly reduces VIP binding affinity over
PACAP (Dautzenberg et al., 1999). These remarkable interaction
differences together contribute to the binding preference for
PACAP. Compared with PAC1null, PAC1s missing the 21-
amino acid loop loses the interaction formed by residues
86–111 of PAC1null which results in decrease in ligand-ECD
binding affinity.

Integrating our finding on ligand-ECD interactions, PAC1
receptor cyro-EM structure (Wang et al., 2020) and biochemical
data, the C-terminal region of PACAP/VIP plays a major role in
binding with ECD, while the peptide N-terminus interacts with
the receptor ECLs and 7TM activation site. Based on alignment
with the cyro-EM structure (Wang et al., 2020), we simulated
PACAP1-13 insertion in PAC1 7TM, without PACAP C-terminal
residues 13–26 associations to the ECD. Within a few hundred
nanoseconds, PACAP residues 1–4 rearranges to form a
D3PACAP-R199PAC1 interacting pair (Figure 2C). The depth of
peptide N-terminus into the 7TM is not significantly changed,
but H1PACAP reorients to form hydrogen bond with ECL3, while
PACAP residues D8, Y10, R12 and Y13 interact with ECLs
(Figure 2C). These interactions result in outward
conformational transition of TM6 at the intracellular face of
receptor. However, in longer simulations, PACAP1-13 is also
observed to shift away from its primary position toward the
V-gap between TM5 and TM6, allowing TM6 to transition back
to former inactive conformational state. Thus, these observations
show the importance of PACAP C-terminus-ECD binding to
constraint the peptide N-terminus within the 7TM orthosteric
interaction site and sustain the activation process.

PACAP-Induced Activation of PAC1null
Receptor
To further understand how PACAP interacts with the full-length
receptor, we simulated the PAC1null receptor (a homology
model of the inactive state (Siu et al., 2013; Liao et al., 2017))
bound to the PACAP1-38 peptide, with the first 13 residues partially
inserted into the receptor 7TM. We use the Wootten numbering
(Wootten et al., 2013) in this section to better demonstrate the
residue positions in PAC1null receptor. Given the timescale of
PAC1R activation, we combined microsecond scale MD
simulation and adaptive tempering (Zhang and Ma, 2010) to
enhance conformational sampling under these conditions. The
N-terminus of PACAP underwent conformational rearrangement
in the orthosteric site with a clear TM6 outward movement of ∼
4 Å with the TM6-TM3 distance close to the relaxed GCGR and
GLP-1 receptor structures (Supplementary Figures S11,S12),
indicating an “active” state.

A detailed examination suggests that the formation of this
state results from several key interactions. As shown in Figure 3B
(top panel), D3PACAP and PAC1null R1992.60 near the receptor
extracellular face appears to migrate closer together in the first
700 ns, but becomes entrapped in a separate conformation for
another 1500 ns. During adaptive tempering, the average distance
between H1PACAP and the surrounding receptor K206/D207ECL1,
E374/E380/E385ECL3, and K1541.40 decreases gradually and
appears to form hydrogen bond (H-bond) networks with an
average small distance of ∼5 Å. The hydrogen bonding between
the D3PACAP sidechain and H1PACAP amino terminus weakens
during adaptive tempering resulting in the ability for D3PACAP to
form a new pairing with receptor R1992.60. As a result of
D3PACAP-R1992.60 interactions, the average distance between
R1992.60 and N2403.43, H3656.52 and Q3927.49 increases
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significantly (Figure 3B, middle panel), indicating weakened
contacts between TM2, TM3, TM6, and TM7 (Figure 4D). At
the receptor intracellular face, K180ICL1 transitions from a solvent
orientation to face E247/R185, and decreasing K180ICL1-E2473.50/
R185ICL1 distance (Figure 3B, bottom panel) converts the
PAC1null receptor from an apparent “inactive” to “active”
conformation that allows G protein interactions. Direct
mutagenesis on residues 4–13PACAP (i.e., N-terminal G4A,
I5V, S9N, S11T, Y13L found in VIP sequence) in the “active”
conformation caused the revocation of the spreading H-bond
network around H1 and ECLs and led to inward movement of
TM6 (Supplementary Figure S12) and stronger TM2, TM3,
TM6 and TM7 interactions (Figure 4D).

To investigate the effects of the first few residues at the
N-terminal, we removed PACAP residues 1-5 from the PACAP-
bound PAC1null complex, to simulate the effects of the PAC1
receptor antagonist PACAP6-38. Starting from an active
conformation, we employed 45 ns adaptive tempering to
accelerate the process, as conventional MD simulations show
that longer times may be needed to relax an “active”
conformational state (Supplementary Figure 12B). As shown
in Figures 4A,B a 4∼6 Å inward movement of TM6 was
observed, indicating the closing of the intracellular G protein
binding site into an inactive state. Compared to the “active”
conformation, E374ECL3 is released and shifted to face the
solvent. A return of enhanced TM2, TM3, TM6 and TM7
interactions are subsequently observed (Figure 4D), resulting
in decreased average distance between R1992.60 and N2403.43,
H3656.52 and Q3927.49, and the distance between the R350ICL3-
E406H8 pair (Figure 4A).

Key interactions between the N-terminus of PACAP or
PACAP6-38 and PAC1null receptor is summarized in
Figure 4C comparing with residue interactions in the ligand-
free conformations from our previous study (Liao et al., 2017).
Compared with the recent PAC1 receptor cryo-EM structure
(Wang et al., 2020), key contact like D3PACAP-R1992.60 was also
found in our simulations, although the N-terminus of PACAP
underwent conformational rearrangements in our simulations.
Together, the C-termligand-ECD and N-termligand-7TM
interactions present the unique structure features of class B
GPCR in activation: ligand-ECD binding initially constraints
the peptide close to 7TM; under optimized binding state,
interactions between residues 8–15 of PACAP/VIP and ECLs
help dock the N-terminus of the peptide into the pocket and
initiate activation (Schäfer et al., 1999).

CONCLUSION

In summary, we have used advanced simulation and modeling
techniques combined with prior experimental knowledge to
examine the differential binding selectivity, conformation
ensembles and microstate dynamic transitions among the
PACAP/VIP receptor variants and subtypes, and a few key
interactions in the orthosteric-binding pocket. The PAC1null,
PAC1s, VPAC1 and VPAC2 receptors demonstrate unique
conformation and transition states. Expectedly, from residue
interactions and free energy calculations, PACAP C-terminal
binding to PAC1null receptor ECD is favored over VIP. The
PAC1s receptor variant harboring a 21-amino acid ECD deletion

FIGURE 3 | Representative conformation of PACAP-activated PAC1null receptor. (A) Structural alignment of PACAP-activated (red) and ligand-free (cyan)
conformations. Ligand-free conformation is from our recent study(Liao et al., 2017) with only the 7TM shown. PACAP is shown in green cartoon and ECD is shown in
surface representation. (B) Time evolution of average distance or pair distance of key charged/polar residues locating at the extracellular side, middle transmembrane,
and intracellular side of the PAC1null receptor, which are displayed in (C) accordingly. Adaptive tempering period is in light orange strip background.
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has been enigmatic because after identification from cloning, the
variant appears absent or expressed at very low levels in all
tissues examined to date; the PAC1null receptor by contrast is
dominant. Our analyses show that the ECD 21-amino acid loop
in the PAC1null receptor allows several functional advantages
including potential enhancement of the receptor open state to
facilitate peptide entrapment and increasing peptide binding
affinity. The simulations reveal the receptor conformational
changes upon ECD-bound peptide dynamics and peptide

N-terminal presentation to the 7TM orthosteric activation
site. Notably, the interaction of PACAP residues 8–15 to the
ECLs is observed to help dock the peptide N-terminal into the
orthosteric pocket and facilitate D3PACAP–R199PAC1null

interactions that result in 7TM transitions and TM6
dynamics to initiate activation. Interestingly, the ECD not
only functions for high affinity binding but also appears to
constraint the orientation of the peptide N-terminus in the
orthosteric site to maintain the activation state. These

FIGURE 4 | Time evolution of average distance or pair distance of key charged/polar residues locating at extracellular side, middle transmembrane, and intracellular
side of PAC1null binding PACAP6-38, which are illustrated in (B) accordingly. Adaptive tempering period is in light orange strip background. (B) Final snapshot of
PACAP6-38 bound PAC1null (cyan) superposed on PACAP-activated PAC1null structure (red), in which an inward shifting of TM6was observed. (C)Wheel plot of major
polar and hydrophobic interactions in the N-terminus of PACAP bound PAC1null (in red), N-terminus of PACAP6-38 bound PAC1null (in blue), and residue
interactions within ligand-free PAC1null (in green). (D) Stack histogram of number of contacts between the intracellular half of TM6 (residues 344–360) and TM2, TM3,
and TM7 in PAC1null receptor with: PACAP, PACAP deleted (ΔPACAP), PACAP6-38 (P6-38), and PACAP mutant (G4A, I5V, S9N, S11T, Y13L). Collections of the last
120 ns of each replica were used for the contact calculations for the PACAP, ΔPACAP, P6-38, and PACAPmutant systems. G1-G4 represent the four major ligand-free
conformational states in Figure 1B. We used the last 960 ns of each 2- μs ligand-free system (Liao et al., 2017) for the contact calculations.
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observations may be common to other Class B GPCRs and
provide mechanistic insights for the development of
therapeutics.
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Characterization of Weak Protein
Domain Structure by Spin-Label
Distance Distributions
Irina Ritsch1, Laura Esteban-Hofer1, Elisabeth Lehmann2, Leonidas Emmanouilidis 2,
Maxim Yulikov1, Frédéric H.-T. Allain2 and Gunnar Jeschke1*

1Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland, 2Department of Biology, ETH Zürich, Zürich,
Switzerland

Function of intrinsically disordered proteins may depend on deviation of their
conformational ensemble from that of a random coil. Such deviation may be hard to
characterize and quantify, if it is weak. We explored the potential of distance distributions
between spin labels, as they can be measured by electron paramagnetic resonance
techniques, for aiding such characterization. On the example of the intrinsically disordered
N-terminal domain 1–267 of fused in sarcoma (FUS) we examined what such distance
distributions can and cannot reveal on the random-coil reference state. On the example of
the glycine-rich domain 188–320 of heterogeneous nuclear ribonucleoprotein A1 (hnRNP
A1) we studied whether deviation from a random-coil ensemble can be robustly detected
with 19 distance distribution restraints. We discuss limitations imposed by ill-posedness of
the conversion of primary data to distance distributions and propose overlap of distance
distributions as a fit criterion that can tackle this problem. For testing consistency and size
sufficiency of the restraint set, we propose jack-knife resampling. At current desktop
computers, our approach is expected to be viable for domains up to 150 residues and for
between 10 and 50 distance distribution restraints.

Keywords: low-complexity domains, RNA-binding proteins, ensemble structure, EPR spectroscopy, random coil,
intrinsically disordered, liquid-liquid phase separation

INTRODUCTION

Based on Anfinsen’s influential thermodynamic hypothesis, function of proteins was considered for a
long time to depend exclusively on domains that are well represented by a single conformer with
minimum free energy. Structure of such domains can be specified at atomic resolution and can be
characterized by well-established techniques, such as x-ray crystallography, NMR spectroscopy, and
cryo-electron microscopy. However, meanwhile it is also well-established knowledge that a
substantial fraction of the genome codes for intrinsically disordered domains (IDDs) or proteins
(IDPs) that are also functional, without relying for their function on three-dimensional structure
defined at atomic or near-atomic resolution (Uversky, 2019). Often, IDDs and IDPs are described as
structure-less, implying that they exhibit random-coil behavior similar to the one postulated for
chemically denatured proteins (Fitzkee and Rose, 2004). However, this assumption is at odds with
the observation that many disordered domains contain evolutionary conserved residues and that
mutations in such domains can be pathogenic. This applies even to disordered domains that have not
been found to fold upon binding to other proteins or nucleic acids, suggesting that conformation
space of proteins cannot be described by a dichotomy of atomic-resolution structure and complete
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absence of structure. Instead, there exists a continuum between
order and disorder (Uversky et al., 2005; Habchi et al., 2014).
IDDs are ubiquitous in nucleic-acid binding proteins, as has been
demonstrated early for transcription factors (Liu et al., 2006).
More recently, formation of membrane-less organelles by RNA-
binding proteins has been associated with the presence of IDDs
(Brangwynne et al., 2015; Uversky, 2017). Despite impressive
development of characterization techniques for IDDs over the
past two decades, quantification of weak deviation from random-
coil behavior has remained a complicated problem. In a dynamic
picture, such weak order corresponds to correlated motion of
residues or groups of residues with large sequence separation that
would not be expected in a random coil (Kurzbach et al., 2016). In
an ensemble-average picture, this correlated motion is expected
to cause heterogeneity of segmental radius of gyration across the
peptide sequence. In other words, sections of the chain will be
more or less compact, depending on where in the sequence they
are situated.

While the radius of gyration is easy to measure for the whole
chain, such measurements are not feasible for sections of the
chain. However, it is well known from polymer physics that the
radius of gyration and the root mean square (RMS) end-to-end
distance both scale by an exponential law with respect to the
number of residues, with the scaling exponent coinciding for ideal
chains. The end-to-end distance of chain sections is accessible by
distance measurements between spin labels using pulsed dipolar
spectroscopy (PDS) techniques, in particular by the double
electron resonance (DEER) experiment. Such measurements
are well established for proteins (Schiemann and Prisner,
2007; Jeschke, 2012). The primary data that they provide can
be processed into distance distributions (Jeschke et al., 2002;
Bowman et al., 2004; Chiang et al., 2005), which can in turn be
predicted from polymer physics models (Zheng et al., 2018) and
from ensemble models of a domain (Jeschke, 2016). Such
characterization by distance distribution measurements has
been applied to IDPs in the past (Drescher, 2012; Geist et al.,
2013). Here we develop a general approach for using distance
distribution data in ensemble modeling and for analyzing such
ensembles in terms of weak order.

The first approaches for experimentally informed ensemble
modeling of intrinsically disordered proteins utilized small-angle
x-ray scattering curves (Bernado et al., 2007) or ensemble mean
values of NMR parameters, such as various chemical shifts,
3JHNHa couplings, residual dipolar couplings, paramagnetic
relaxation enhancements, and nuclear Overhauser
enhancements (Marsh and Forman-Kay, 2012). The maximum
entropy principle allows for combining molecular dynamics
(MD) simulations with any type of constraints or restraints for
which a forward model exists that can compute the measured
quantity from atomic coordinates of a conformer (Cesari et al.,
2018). Alternatively, ensembles resulting from unbiased MD
simulations or other sampling techniques can be reweighted
based on the maximum entropy principle (Köfinger et al.,
2019). A somewhat similar approach, which has been
discussed for DEER data, estimates the maximum occurrence
of a conformer in an ensemble that is consistent with
experimental restraints (Gigli et al., 2018). Principles of

modeling proteins ensembles have been recently reviewed
(Bonomi et al., 2017).

Our approach is based on the idea that knowledge of the
probability distribution of experimental restraints, as is the case
with DEER distance distributions, provides us with additional
information compared to ensemble mean values. Hence we can
apply our restraints as “distribution restraints”. In a first
modeling step, distribution restraints can guide sampling, as
they allow for testing to what extent a single conformer is
consistent with experimental data (Jeschke, 2016). In a second
step, they can be used, together with other types of restraints, in
ensemble reweighting (Jeschke, 2021). For application work, such
integration with other types of data is desired and may often be
necessary in order to sufficiently restrain the model and test its
reliability. In the present study, we develop an approach that
provides ensemble models from only distance distribution data
and tests their robustness.

This development faces three obstacles. As a first obstacle, the
reference state of complete disorder is assumed, but not proved to
correspond to a Flory self-avoiding walk random coil. We need to
test whether this approximation is sufficiently good in the range
where label-to-label distance distribution measurements can be
performed. To that end, we analyze data from a recent study on
liquid-liquid phase separation (LLPS) of the intrinsically
disordered N-terminal domain (NTD) of fused in sarcoma
(FUS), where sections 10–29 and 105-128 exhibited featureless,
Gaussian-like distance distributions (Emmanouilidis et al., 2021).
Specifically, we address the question whether PDS EPR can
distinguish between Gaussian-like distributions and self-
avoiding walk distributions with variable scaling exponent ν
(SAW-ν distributions) within the segment-length range where
its distance distribution fidelity is best. This question is important
for specifying restraints in modeling. As a second obstacle,
conversion of primary data to distance distributions is an ill-
posed problem (Jeschke et al., 2002; Chiang et al., 2005; Gigli
et al., 2018), which may be particularly difficult to solve for very
broad distributions that extend to rather long distances (Jeschke
et al., 2004). We address this problem by systematic analysis of 19
distance distributions obtained on heterogeneous nuclear
ribonucleoprotein A1 (hnRNP A1), a human protein
predominantly active in mRNA regulation (Jean-Philippe
et al., 2013). HnRNP A1 consists of a glycine-rich domain
(188–320), which is an intrinsically disordered low-complexity
domain (LCD) with a similar amino acid composition as the
NTD of FUS, tethered to two folded RNA recognition motifs
(RRMs). We analyze DEER data obtained with one or both label
sites in the LCD of hnRNP A1 with different approaches and
check how this influences ensemble modeling. Apart from
addressing data analysis, hnRNP A1 also provides a reference
case for analyzing weak structure in flexible domains tethered to
folded domains with known structure. This is achieved by
including the previously reported solution structure of the
RRMs (Barraud and Allain, 2013) in the modeling. As a third
obstacle, it is difficult to estimate howmany distance distributions
are required for sufficiently restraining an ensemble model in the
regime of weak order. In order to answer this question, we
perform jack-knife resampling, where systematically one of the
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19 restraints for hnRNP A1 is left out and the corresponding
distance distribution is predicted by an ensemble model fitted to
the other 18 restraints. Finally, we discuss limitations of our
approach as well as possible extensions.

MATERIALS AND METHODS

Sample Preparation for hnRNP A1
A construct of His6-tagged wild-type hnRNPA1 (P09651, isoform
A1-A), was already available in the Allain group at ETH Zurich,
and a two-step affinity chromatography protocol was adapted
from (Barraud and Allain, 2013) to purify all mutants. Further
experimental details can be found in (Ritsch, 2019). In summary,
point mutations of the partially buried native Cys in the folded
domains to non-reactive residues (C43S, C175A), and to
introduce pair-wise engineered Cys spin labeling sites were
introduced by sequential application of site-directed
mutagenesis with PCR primers with the desired point
mutation. Spin labeling was performed with MTSL (2,2,5,5-
tetramethyl-3-pyrroline-3-methylmethanethiosulfonate) in
50 mM sodium phosphate buffer, pH 6.5, 100 mM L-arginine,
and 100 mM L-glutamate at approximately 10 times molar excess
and 10 μM hnRNP A1 concentration. Excess spin label was
removed on a PD10 desalting column (GE Healthcare), and
the labeled protein was concentrated in 10 kDa MWCO
centricons (Amicon Ultra-4 Centrifugal Filter Units, Merck
and Cie). DEER samples were prepared by mixing with d8-
glycerol (1:1 ratio, v:v), and transferring ∼35 μL solution at
approximately 25 μM hnRNP A1 concentration to 3 mm outer
diameter quartz capillaries and flash-freezing by immersion into
liquid nitrogen.

DEER Measurements on hnRNP A1
The DEER measurements were performed at a home-built high
power Q-band spectrometer (≈34 GHz) controlled by a Bruker
Elexsys E580 bridge in a home-built TE001-type resonator at
50 K. The 4-pulse DEER pulse sequence was used, with pulse
lengths of t(π) � t (π/2) � 16 ns. The pump pulse length was either
16 or 12 ns (on the maximum of the nitroxide spectrum), and a
pump/detection frequency separation of 100 MHz was used. The
first refocusing delays was t1 � 400 ns, and the second refocusing
delay was set individually for each sample (as long as possible to
be able to still detect a reasonably strong echo). The time-step was
either 12 or 8 ns.

Distance Distribution Analysis
The sample preparation and DEER measurements of FUS are
described in detail in (Emmanouilidis et al., 2021). Distance
distribution analysis for FUS was performed using DeerLab
0.9.0 (downloadable at jeschkelab.github.io/DeerLab/). Briefly,
we used a multi-pathway kernel K(t, r) of the form
K(t, r) � [Λ0 + λ1K0(t, r) + λ2K0(t − T0,2, r)]e−k(λ1 |t|+λ2|t−T0,2|)

where K0 is the elementary dipolar kernel, Λ0 accounts for the
contribution of unmodulated dipolar pathways, λ1 and λ2

describe the amplitudes of the modulated dipolar pathways,
T0,2 is the refocusing time of the additional modulated dipolar
pathway, and k is the background decay rate. While K0 is fixed,
Λ0, λ1, λ2, and k are fit parameters. We assumed an exponential
background function. The distance distribution P(r)was fitted by
Tikhonov regularization (using either the Bayesian information
criterion or the residual method for regularization parameter
selection), by fitting a single Gaussian distribution by varying
mean distance and full width at half maximum Γ, or by fitting the
SAW-ν model by varying RMS end-to-end distance and scaling
exponent ν. Standard deviations σr were computed as
σr � Γ/

����
8ln2

√
. The dispersed phase data were taken not from

the biphasic sample, but from monophasic dispersed FUS 1–267
sample in 0.6 M urea that had been prepared for obtaining initial
values and lower and upper bounds for fitting biphasic data, as
shown in (Emmanouilidis et al., 2021). Distance distribution
analysis for hnRNP A1 was performed by single-Gaussian
fitting in DeerAnalysis 2019 using default settings, by single-
Gaussian and Tikhonov analysis in DeerLab 0.8b, and by DeerNet
from Spinach version 2.5.5446. For Tikhonov analysis,
regularization parameters were either selected by the AIC
criterion or fixed at α � 5. In DeerAnalysis and DeerLab, a
monoexponential background function was assumed
corresponding to a homogeneous distribution of remote spin
labels in three-dimensional space. DeerNet is trained with
stretched exponential background functions (Worswick et al.,
2018), thus also allowing for fractal dimensionality lower than
three of the spatial distribution of remote labels. Results of single-
Gaussian analysis with LongDistances1 were provided by
Christian Altenbach and results of multi-Gaussian analysis by
DD (Stein et al., 2015) were provided by Eric Hustedt.

Generation of Raw Ensembles
Raw ensembles were generated in MMM using the Domain
Ensemble Modeller described in (Jeschke, 2016). Briefly, in
unrestrained mode the Domain Ensemble Modeller generates
peptide backbone models that conform to residue-specific
Ramachandran statistics for backbone torsions ϕ and ψ as
provided by (Hovmoller, 2002). In restrained mode, each
distance distribution restraint is tested in a given conformer as
soon as backbone coordinates for both sites are available. The
mean spin label position at the newly generated site is predicted
from backbone coordinates, the label-to-label distance is
computed, and a probability is estimated for this distance to
be consistent with a Gaussian restraint. If the product of these
probabilities for all evaluated restraints drops below a certain
threshold, the conformer is discarded and generation of a new
conformer is started. As such rejection of conformers typically
occurs well before they are completely generated, the approach
improves sampling of the part of conformational space that is
consistent with the restraints.

Restraints were set as 〈r〉, √2σr and an acceptance threshold
corresponding to probability 0.75 was used. For FUS, a fixed
number of conformers was generated in a single run. For FUS

1http://www.biochemistry.ucla.edu/Faculty/Hubbell/.
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1–267, this number was 90 and in all other cases it was 2,500. For
unrestrained FUS 1–100 and 67–166, two runs with 2,500
conformers each were performed. For hnRNP A1, PDB
structure 2LYV of UP1 (Barraud and Allain, 2013) was used
for the RRMs. Coordinates of only residues 1–187 were kept. In
all runs, LCD models were generated for all 20 models in the
NMR structure, expending 1 h computation time on eight
processor cores per NMR model. This generated about 400
conformers. For the unrestrained ensemble, 48 min were
expended per NMR model, leading to 2,146 conformers.

Ensemble Fitting
Ensemble fitting was performed with the module_ensemble_fit
function of MMMx (github.com/gjeschke/MMMx, commit
55a7fef). Distance distribution files were provided in a four
column format with the first column being the distance axis
(units of nanometers), the second column being the distance
distribution, and the third and fourth column the lower and
upper bound of the uncertainty band (used only for plotting). The
only change with respect to the corresponding module in MMM,
as described in (Jeschke, 2021), is adaptive block size in iterative
fitting. If less than 10% of the specified block size are available for
the next iteration, block size is increased by 50%. If the number of
retained conformers later drops, block size is reduced to the
originally specified value, which was 100 in our computations.

RESULTS

The Random-Coil Reference State
Probing the Reference State by DEER Distance
Distributions
Before we can address the problem of weak structure, we need to
establish what can be inferred by DEER distance distributions on
an unstructured protein. In particular, we are interested in the
question what level of detail can be realistically interpreted in an
ensemble model informed by such distributions. We analyze this
on the example of the NTD of FUS, where we used protein
constructs that do not contain any well-structured domains and
are thus well suited as a fully disordered reference system.

We define structure as deviation from the maximum-entropy
state of a protein domain under given solvent conditions. From a
polymer physics view, this maximum-entropy state corresponds
to a random coil. Since protein domains are not homopolymers,
some deviation from simple polymer physics models is expected.
For instance, Ramachandran angle preferences are residue-
specific even in loop regions of proteins (Hovmoller et al.,
2002), suggesting that the maximum-entropy state of a
domain depends on sequence. Therefore, the random-coil
reference state itself must be characterized first before
conclusions can be drawn on weak structure.

It has been demonstrated as early as 2004 that randomization
of backbone torsion angles of structured proteins leads to
ensembles whose RMS end-to-end distances R and radii of
gyration RG conform to expectations for random coils, with a
scaling law R∝N] where N is the number of residues and ] ≈ 0.6
for chemically denatured proteins (Fitzkee and Rose, 2004).

These conditions correspond to a Flory random coil in a good
solvent where it maximally expands (] � 3/5). A single-molecule
Förster resonance excitation transfer (FRET) study found
] ≈ 0.62 for denatured and IDPs, whereas foldable sequences
in water exhibited ] ≈ 0.48, close to the condition of a Θ-solvent
(] � 1/2) that offsets monomer-monomer interactions
(Hofmann et al., 2012). Accordingly, the distribution P(r) of
end-to-end distances in IDDs is expected to conform to a self-
avoiding random walk. Dependence of chain dimension on
solvent quality is then quantified by the scaling exponent ν.
An expression for P(r) as a function of R and ν has been
derived (SAW-ν model) and compared to molecular dynamics
(MD) simulations (Zheng et al., 2018). The distribution is skewed
with a steeper flank toward short distances than toward long
distances.

In recent work on the NTD of FUS, we found distance
distributions between spin labels for the two chain sections
10–29 and 105–128 that were experimentally indistinguishable
from a Gaussian distribution, which is symmetric
(Emmanouilidis et al., 2021). In particular, we have studied
this NTD in a denatured state in the presence of 3 M urea, in
a dispersed state at low concentration in the presence of 0.6 M
urea, and in a bulk condensed phase that is obtained at 0.6 M urea
concentration and higher protein concentration by liquid-liquid
phase separation and isolation of the condensed phase by
centrifugation. In order to rationalize the finding that
distributions are very well approximated in all three cases, we
first computed the distributions according to the SAW-ν model
for poor- and good-solvent conditions and compared them to a
Gaussian distribution (Figure 1A). Whereas in poor-solvent
conditions, where the chain maximally compacts (] � 1/3, red
line), asymmetry of P(r) is pronounced, it is only modest in good-
solvent conditions (green line). A fit of the good-solvent P(r) by a
Gaussian distribution (black line) shows rather minor deviations
that may be hard to resolve by EPR distance distribution
measurements. The main deviation at short distances is
usually below the lower limit of the distance range of PDS
techniques, whereas extension of the SAW-ν distribution to
longer distances than in a Gaussian distribution may be hard
to separate from intermolecular background.

In order to corroborate this hypothesis, we have generated
unrestrained ensembles of the NTD of FUS (residues 1–267) and
of two 100-residue sections thereof (1–100 and 67–166) by a
Monte-Carlo algorithm that samples from residue-specific
Ramachandran distributions of backbone torsion angles for
loop regions in proteins (Hovmoller et al., 2002). Otherwise,
this algorithm only avoids backbone and sidechain clashes
(Jeschke, 2016). The simulation of 100-residue sections
allowed to generate much larger raw ensembles than could be
obtained within the same computation time for the complete
NTD. The ranges were selected such that both studied
subsections 10–29 and 105–128 were flanked to both sides
with the maximum number of residues possible for a 100-
residue construct. We consider the ensuing ensembles as good
approximations for the maximum-entropy state of a protein
sequence. In order to compare them with the Flory random
coil model, which departs from a freely jointed chain model, we
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analyzed the scaling of the RMS end-to-end distance Rk for all
segments with their length k, assigning the CA-CA distance
between residues i and j to k � j-i (Jeschke, 2021). For an

ensemble of 90 conformers of FUS 1–267 (gray points in
Figure 1B), we find a best fit Rk � 5.23·k0.57 Å (dark gray line)
in rather good agreement with values inferred by FRET and MD

FIGURE 1 | End-to-end and label-to-label distance distributions simulated for the unrestrained NTD of FUS and sections thereof. Residue-specific Ramachandran
statistics was assumed as extracted by Hovmoller et al. (2002) from PDB for residues not denoted as helix or strand by DSSP. (A) End-to-end distributions predicted by
the self-avoid walk model with variable scaling exponent (SAW-ν) by Zheng et al. (2018) for a poor solvent (ν � 1/3, red) and for a good solvent (ν � 3/5, green) and fit of a
normal distribution to the good-solvent case (black). (B) Segment-wise root mean square CA-CA distances extracted from 90 simulated conformers of FUS 1–267
(gray), and 2,500 conformers of FUS 1–100 (light green) and FUS 66–167 (light red, horizontally shifted by 20 segments for clarity) and fits by a power law b·kν (solid black,
green, and red lines, respectively). (C)CA-CA distance distribution for residues 10–29 in 5,000 conformers of FUS 1–100 (light red dots) and fits by the SAW-νmodel (red
line) and a normal distribution (black line) as well as theMTSL-MTSL distance distribution (pale green dots) with fit by a normal distribution (green line). (D)CA-CA distance
distribution for residues 105–128 in 5,000 conformers of FUS 67–166 (light red dots) and fits by the SAW-νmodel (red line) and a normal distribution (black line) as well as
MTSL-MTSL distance distribution (pale green dots) with fit by a normal distribution (green line).

TABLE 1 | Fit parameters of experimental distance distributions for MTS labels attached at the ends of segments 10–29 and 105–128 in FUS NTD 1–267. The mean value
〈rDEER〉 and standard deviation σr,DEER are specified for Gaussian fits, while the RMS end-to-end distance RDEER and scaling exponent νDEER are specified for the SAW-ν
distribution.

Site1 Site 2 Conditions 〈rDEER〉 [Å] σr,DEER [Å] RDEER [Å] νDEER

10 29 3 M urea 36.7 9.4 37.4 0.85
10 29 0.6 M urea 31.8 9.9 33.2 0.75
10 29 Bulk condensed 29.7 10.9 31.8 0.64
105 128 3 M urea 39.7 11.2 40.9 0.82
105 128 0.6 M urea 35.9 11.5 37.3 0.76
105 128 Bulk condensed 31.6 11.7 33.7 0.64
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FIGURE 2 | Distance distribution measurements of sections delimited by spin labeling sites (10–29 or 105–128) measured with FUS NTD 1–267. The left column
shows primary data (black dots), their DeerLab fit by a single Gaussian distribution (green, left ordinate) and the fit residual (blue dots, right ordinate). Signals from minor
pathways at the end of 4-pulse DEER data or at the middle of 5-pulse DEER data were included in the kernel (Fabregas Ibáñez et al., 2020). The right column shows
distance distributions obtained by Tikhonov regularization with choice of the regularization parameter by the Bayesian information criterion or residual method
(black with gray uncertainty band), by single-Gaussian fitting (green with pale green uncertainty bands) and ensemble fits of the Gaussian distribution (red) from raw
ensembles of 2,500 conformers each.
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simulations for IDPs (Hofmann et al., 2012; Zheng et al., 2018).
Variation of the Rk for different pairs (i,j) at the same k appears to
be substantial. However, we could trace this back to the low
number of conformers used in this analysis. When we repeated
the analysis with ensembles of 2,500 conformers each for FUS
1–100 (green) and FUS 67–166 (red), we found a much narrower
distribution of the Rk around the best-fit scaling laws 5.25·k0.57 Å
and 5.17·k0.58 Å, respectively. We note, however, that the Rk are
not symmetrically distributed around the scaling law at all k. The
Rk appear to increase somewhat more steeply than the mean
scaling law for small k and somewhat less steeply for large k. This
point is extended below.

We have then inquired whether the distributions of CA-CA
distances in the unrestrained ensembles (red dots in Figures
1C,D) conform to the SAW-ν distribution (red lines). We find
R � 27.7 Å and ν � 0.78 with a RMS deviation (RMSD) of 0.163
for section 10–29 in FUS 1–100 and R � 31.9 Å, ν � 0.77 with
RMSD 0.171 for section 105–128 in FUS 67–166. The scaling
exponents ν appear to be too large, as they should not exceed 0.6
for a random coil in a good solvent. Moreover, Gaussian fits
(black lines) of the same distributions result in similar RMSD.We
find a mean value 〈r〉 � 27.0 Å and standard deviation σr � 8.2 Å
with RMSD 0.155 for section 10–29 in FUS 1–100 and 〈r〉 �
31.0 Å and standard deviation σr � 9.7 Å with RMSD 0.170 for
section 10–29 in FUS 105–128.

Measurement of the distribution between spin labels
further complicates detection of the asymmetry, as the
label-to-label distribution is a convolution of the CA-CA
distribution with a contribution from the sidechain rotamer
distribution of the label. In order to assess this effect, we have
simulated the label-to-label distribution by a rotamer library
approach (Polyhach et al., 2011) in MMM (Jeschke, 2018).
Since on the order of 100 × 100 rotamers at the two sites are
populated for each backbone conformer, the resulting
distributions (green points in Figures 1C,D) are much
smoother. They are fitted quite well by Gaussian
distributions (dark green lines) with 〈rlabel〉 � 29.7 Å and
standard deviation σr,label � 10.8 Å for section 10–29 in FUS
1–100 and 〈rlabel〉 � 33.4 Å and standard deviation σr,label �
12.1 Å for section 105–128 in FUS 67–166.

Figure 2, with original data taken from (Emmanouilidis et al.,
2021), demonstrates that the quality of Gaussian distribution fits
to the primary DEER data is high for FUS 1–267 denatured in 3 M
urea, fully dispersed at 5 μM protein concentration in 0.6 M urea,
and in bulk condensed phase after LLPS. In the left column,
primary data that were only phase and zero-time corrected (black
dots) are superimposed by fits in DeerLab (Fabregas Ibáñez et al.,
2020) in which a single Gaussian distance distribution and an
exponential background function are simultaneously fitted (green
line, left ordinate). The exponentially decaying background
accounts for interaction with spin labels in other FUS NTD
molecules that are assumed to be homogeneously distributed
in three-dimensional space. The residuals are shown as blue dots
(right ordinate). The only apparent deviations of the residual
from the expected white noise occur near zero time in the two
bulk condensed phase measurements and correspond to an
underestimate of the short distance contribution by the fit.
Note that an overestimate would be expected if the data were
better represented by an SAW-ν distribution. The likely cause of
the underestimate is neglect of the contribution at very short
distances in the DeerLab simulations, as it is expected to be
suppressed by insufficient excitation bandwidth. This
suppression appears to be weaker than assumed.

In the right column of Figure 2, distance distributions
obtained by Tikhonov regularization (black lines with gray
uncertainty bands, 95% confidence interval) are compared
with the fitted Gaussian distributions (dark green lines with
pale green uncertainty bands). Tikhonov regularization does
not make an assumption about the shape of the distribution,
except for a certain degree of smoothness. Although it can be
argued that the Tikhonov distributions deviate from the Gaussian
distributions toward the expected more asymmetric shape with
lower contributions at short distances and higher contributions at
the longest distances, these deviations are minor and are clearly
seen only in the bulk condensed phase data. Nevertheless, we have
attempted fits of the DEER data by the SAW-ν model. The fitted
distributions are shown as blue lines with pale blue uncertainty
bands in Figure 2, the fit parameters are reported in Table 1
alongside the parameters of the Gaussian fits, and the fits of the
primary data and fit residuals are shown in Supplementary

FIGURE 3 | Segment-wise root mean square CA-CA distances (dots) for chain sections 10–29 in FUS 1–100 (A) and 105–128 in FUS 67–166 (B) and attempted
fits by a scaling law b·kν. For unrestrained ensembles, the average is over 2,500 conformers with uniform population. For restrained ensembles, the average population-
weighted and the number of conformers in the fitted ensembles is given in the legend in parentheses.
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Figure S1. Only for FUS 1–267 in 3 M urea do the SAW-ν fits
differ significantly from the distributions obtained by Tikhonov
regularization or Gaussian fits. However, in these cases the
asymmetry is opposite to the expected one, with more gradual
increase of P(r) at short distances and steeper decrease at longer
distances. This can be traced back to the unphysical scaling
exponents of ν � 0.85 for segment 10–29 and 0.82 for segment
105–128 that we find by these fits. These findings reinforce our
conclusion that parameters of the SAW-ν model cannot reliably
be extracted by fitting DEER distance distributions for chain
segments containing about 20 residues. The maximum-entropy
reference state is well approximated by Gaussian label-to-label
distance distributions. On the one hand, this finding justifies the
use of Gaussian restraints in generating raw ensembles, as
introduced in (Jeschke, 2016). On the other hand, it suggests
that longer segments would need to be studied in order to extract
parameters of the SAW-ν model. Such an approach would,
however, be limited by uncertainty of the shape of DEER
distance distributions at distances longer than 50–80 Å.

We also note that measurements for the characterization of
LLPS are more sensible in the biphasic system containing both the
dispersed and condensed phase under otherwise identical
conditions, as such samples match the surface-to-volume ratio
of biological membraneless organelles and such measurements
require much less protein (Emmanouilidis et al., 2021). In such
systems, however, the separation of the distance distributions
corresponding to the dispersed and condensed phase introduces
further uncertainty. We have therefore limited our analysis in the
present study to the distance distributions of monophasic protein
samples (either in solution or a large phase-separated
compartment).

A Hybrid Experimental and Computational Approach
We have then turned to the question whether a hybrid
experimental/computational approach can shed more light on
the reference state. To that end we have generated six raw
ensembles of 2,500 conformers each of FUS 1–100 and 67–166
by the Monte Carlo approach introduced in (Jeschke, 2016) by
imposing the Gaussian restraints for sections 10–29 and 105–128,
respectively, in the denatured, dispersed, and bulk condensed
states. We have then refined these ensembles by fitting
populations of the conformers and discarding all conformers
with less than 1% of the population of the most populated
conformer, as described in (Jeschke, 2021). These
computations have been performed with an implementation of
the EnsembleFit module of MMM into the successor program
MMMx2. With this size of the conformer basis set, we find that
the Gaussian distance distributions can be fitted virtually
perfectly for both sections in all conditions tested (red dashed
lines in the right column of Figure 2). The overlap of the
normalized experimental and ensemble-simulated distance
distributions varies between 98.2% (105–128, 0.6 M urea,
dispersed) and 99.1% (10–29 0.6M urea, dispersed) with sizes
of the refined ensemble between 47 (10–29, 3 M urea, denatured)

and 145 (10–29, 0.6 M urea, dispersed) conformers. We found
that fit quality was converged with respect to adding further
conformers from the raw ensemble after evaluating about 1,000
conformers.We conclude that themethodology of generating raw
ensembles of conformers by aMonte Carlo approach and refining
and reducing these ensembles by population fitting can provide
relatively small ensembles that fully represent the information
contained in EPR-measured label-to-label distance distributions.

We have then tested whether these ensembles allow for
inference on the scaling exponent ν of random-coil models.
To that end, we have performed the analysis of the scaling of
Rk for all segments of length k for FUS sections 10–29 and
105–128 for all conditions tested. The data is displayed in
Figure 3 together with data from the unrestrained ensembles
(gray). In all cases we find that fits by a scaling law b·kν are
mediocre. Fitted scaling exponents ν are in a reasonable range
between 0.538 (FUS 10–29 unrestrained) and 0.619 (FUS 10–29,
3M urea), as are the Kuhn lengths b between 5.14 Å (FUS
105–128, 0.6 M urea) and 5.58 Å (FUS 10–29, 0.6 M urea).
However, deviations from the fits are systematic, with longer
RMS end-to-end distances for the longest segments than
predicted. This corresponds to chains that are stiffer than
predicted. Comparison of the unrestrained case with
Figure 1B reveals that such deviations are much smaller for
longer chains than for the short sections considered here. Such
behavior of shorter chain sections being stiffer than longer ones
we have encountered before in the context of semi-rigid organic
polymers (Godt et al., 2006; Jeschke et al., 2010). We note that the
sections studied here are oligomers in the sense of the Flory
random-coil model, as their length is less than ten times the Kuhn
length b. As a consequence, we caution against assuming
random-coil behavior for the fully disordered reference state.
Instead, we advocate unrestrained Monte-Carlo simulations of
large ensembles of conformers based on Ramachandran statistics
for loop regions. These raw ensembles can then be fitted to
experimental distance distributions and the resulting refined
ensembles can be analyzed in terms of the distributions of Rk
for segment lengths k. If these distributions are narrow and
scaling of the mean values is monotonous and smooth, we can
assume the chain to be in a fully disordered state. This need not be
the case in general, as we demonstrate in the following on the
example of the glycine-rich domain of hnRNP A1. This domain
has high composition similarity to the FUS NTD, but was here
studied in the context of the full length protein including the
folded RNA-recognition motifs.

Computation of Distance Distributions for
Ensemble Fitting
Choice of DEER Data Processing Approach
Accuracy of DEER distance distributions is limited by
experimental and computational aspects (Jeschke, 2012). From
an experimental point of view, excitation bandwidth limitations
cause partial suppression of contributions below about 18 Å.
Since the assumptions of weak coupling of the two spins and
of negligible exchange coupling break down below about 15 Å,
few efforts have been made to overcome this excitation2http://www.github.com/gjeschke/MMMx.
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bandwidth limitation. At long distances, the shape or even width
of the distribution become uncertain, as this information is
encoded in the decay of the dipolar oscillations and can thus
be recovered only up to distances where several dipolar oscillation
periods are still within the maximum observation time tmax. The

accessible tmax depends on electron spin decoherence time and
can vary strongly between proteins. For soluble proteins
measured with high-power Q-band DEER, shape information
is typically reliable up to 50 to 80 Å, depending on whether the
solvent and protein can be deuterated. The reliable distance range

FIGURE 4 | Distance distributions computed by different approaches from primary DEER data for 19 pairs of MTS-labelled sites. The approaches are DeerNet in
Spinach 2.5.5446 (orange), multi-Gaussian fit with the number of Gaussians determined by the Bayesian information criterion (BIC) in DD (red), single Gaussian fit
including background in LongDistances (green), Tikhonov regularization with regularization parameter α determined by the Akaike information criterion (AIC) in DeerLab
0.8b (blue), and Tikhonov regularization with fixed α � 5 in DeerLab 0.8b (gray/black). Pale areas denote uncertainty bands (50% confidence interval for DeerLab,
95% confidence interval for DeerNet and DD).

Frontiers in Molecular Biosciences | www.frontiersin.org April 2021 | Volume 8 | Article 6365999

Ritsch et al. Weak Structure by Distance Distributions

103

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


for a given sample also depends on the signal-to-noize ratio and
on the presence of instrumental or experimental artifacts in the
data, as conversion of the primary data to a distance distribution
is an ill-posed problem where a least-squares solution is strongly
affected by slight deviations of the data from the forward model
(Jeschke et al., 2002; Chiang et al., 2005). During the past two
decades, several approaches were suggested for tackling this
problem, such as Tikhonov regularization (Bowman et al.,
2004; Jeschke et al., 2004; Chiang et al., 2005), fitting by
multiple Gaussians, whose number is determined by a
statistical criterion (Stein et al., 2015), and training an
ensemble of neural networks with large sets of forward-
modelled data that cover the expected men values, widths, and
shapes of DEER signals (Worswick et al., 2018). All recent
implementations provide, both, the most probable distance
distribution according to the computational approach and
confidence intervals. We note, however, that estimates of
confidence intervals for ill-posed problems may not cover model
bias, which for regularization approaches includes bias arising from
the choice of the regularization parameter. The latter aspect has been
studied recently (Edwards and Stoll, 2018) and different criteria have
been proposed for the choice of the regularization parameter. With
such a large variety of approaches existing, it is of interest whether
ensemble modeling is robust with respect to the choice of the data
processing approach. The problem is further complicated by the
necessity to separate the dipolar evolution function from
intermolecular background (Jeschke et al., 2006). Analysis of the
DEER data for FUS NTD sections above has revealed that
different fit approaches may lead to different distance distributions
even for data sets of rather high quality.

In our approach, we first generate a raw ensemble of
conformers with restraints that specify only the mean and
standard deviation of a single Gaussian per site pair (Jeschke,
2016). These parameters are more robust than the shape of the
distribution (Jeschke et al., 2004; Jeschke, 2012). In a second step,

we reweight and contract the raw ensemble by varying conformer
populations and discarding conformers with less than 1% of the
population of the most populated conformer (Jeschke, 2021). In
this ensemble fitting step, we use full distance distributions rather
than only mean distance and width. However, even if the
distribution used in the second step is the same Gaussian used
in the first step, ensemble reweighting can improve the fit quality
with the same or with an even smaller number of conformers.
Thus, the question arises which approach should be used for
generating distance distributions for the use as restraints in
ensemble reweighting, which depends on the selected fit
criterion. Here, we consider maximization of overlap of
experimental and predicted distance distributions (Jeschke,
2021), defined by

od � ∑min{Ppred ,PDDR}, (1)

where Ppred is the forward-modelled distance distribution for the
reweighted ensemble and PDDR is the distance distribution
obtained from experimental data, both given as vectors with
non-negative elements whose sum is unity.

In particular, we maximize the geometric mean o �
(∏M

m�1 om)1/M of the overlaps om for all M restraints, which
strongly penalizes large overlap deficiency 1- om of individual
restraints. Even if the ensemble of conformers is consistent
with the primary time-domain data, large overlap deficiency
can arise if conversion to the distance distribution uses a
poorly suited approach. In principle, the problem could be
solved by directly fitting to the primary data (Hilger et al.,
2007). However, this makes fitting computationally expensive
and would preclude global optimization of populations
(Jeschke, 2021) for large sets of conformers. An alternative
ensemble reweighting approach based on the maximum
entropy principle (Köfinger et al., 2019) could be used as
well in this second step.

TABLE 2 | Single-Gaussian restraint sets (mean distance 〈r〉 and standard deviation σr) for hnRNP A1 obtained with three different program packages (DeerAnalysis, DA;
DeerLab, DL; LongDistances, LD).

Site1 Site2 〈r〉DA [Å] σDA [Å] 〈r〉DL [Å] σDL [Å] 〈r〉LD [Å] σLD [Å] 〈r〉DL/〈r〉DA 〈r〉LD/〈r〉DA

52 231 37.5 18.1 36.7 19.5 36.9 19.4 0.979 0.984
144 231 49.7 15.4 52.7 14.9 51.8 17.2 1.060 1.042
182 231 33.3 14.8 31.7 14.8 31.7 14.8 0.952 0.952
52 271 28.1 19.7 29.4 19.9 29.5 19.9 1.046 1.050
144 271 45.7 18.6 44.7 21.1 45.2 20.8 0.978 0.989
182 271 30.5 18.8 33.2 17.1 33.4 17.2 1.088 1.095
52 316 37.5 18.2 36.3 21.2 34.2 23.6 0.968 0.912
144 316 44.1 11.7 45.6 16.9 57.3 38.5 1.034 0.873
182 316 34.8 15.7 33.8 15.6 34.0 15.6 0.971 0.977
32 231 51.2 15.5 50.7 15.8 50.9 17.1 0.990 0.994
52 197 35.6 13.8 34.9 14.2 34.4 14.5 0.980 0.966
182 190 22.5 6.2 22.0 6.3 22.2 6.1 0.978 0.987
182 197 27.4 9.5 27.9 9.2 28.1 9.1 1.018 1.026
182 223 31.4 14.2 31.0 14.5 31.1 14.2 0.987 0.990
182 252 36.6 12.7 29.9 15.1 27.6 16.5 0.817 0.754
182 297 34.1 15.8 34.2 16.1 34.5 15.9 1.003 1.012
231 271 20.1 15.3 24.5 14.1 24.7 13.9 1.219 1.229
231 316 27.1 16.5 28.5 14.1 26.5 15.4 1.052 0.978
271 316 22.6 15.8 24.9 14.6 25.3 14.5 1.102 1.120
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In order to assess current approaches for conversion of dipolar
signals to distance distributions in this context, we have analyzed
19 DEER data sets obtained on dispersed hnRNP A1. Given that
there is no prior structural information available for a priori
screening of suitable labeling in the LCD, we primarily mutated
available Ser residues with approximately uniform sequence
separations to Cys. The labeling sites in the folded domains of
hnRNP A1 were selected to be spatially well separated and solvent
accessible. Note that label site selection in folded domains
typically requires case-by-case considerations with general
guidance provided by rotamer modeling (Polyhach and
Jeschke, 2010). Specifically, for the generation of distribution
restraints labeling sites in folded domains with low local
backbone flexibility can provide more precise distance
information (Jeschke, 2016), but may be less tolerant toward
site-directed mutagenesis and successive spin labeling. The
selected sites 52 and 144 are located in partially flexible loops
of the RRMs of hnRNP A1, which provides a good trade-off. The
dataset consists of 16 restraints between RRM-LCD sites, and
three between LCD-LCD sites.

The data were analyzed by fitting with a single Gaussian
distribution, multiple Gaussian distributions, whose number is
determined by a statistical criterion (Stein et al., 2015), the neural
network approach DeerNet (Worswick et al., 2018), and
Tikhonov regularization (Bowman et al., 2004; Jeschke et al.,
2004; Chiang et al., 2005) with the regularization parameter either
determined by a statistical criterion (Edwards and Stoll, 2018) or
fixed at a value that is judged from appearance of the distributions
(Figure 4). Multi-Gaussian fitting was performed in DD (Stein
et al., 2015) using either the Akaike or Bayesian information
criterion for determining the optimal number of Gaussian
components. Analysis in terms of a single Gaussian
distribution was performed with three different software
packages, DeerAnalysis (Jeschke et al., 2006) version 2019,
DeerLab (Fabregas Ibáñez et al., 2020) version 0.8b, and
LongDistances3. The latter two programs simultaneously fit
the distance distribution and background, whereas in
DeerAnalysis we first performed background separation and
then fitted the dipolar evolution function. Figure 4 shows the
results obtained with LongDistances. The mean distances and
standard deviations obtained with all three approaches are listed
in Table 2. For most data sets, agreement between the results of

all three approaches is rather good, with the exceptions of site
pairs 144–316 and 182–252. In these two cases, the single-
Gaussian model is too simplistic for separating the pair
contribution from background with sufficient certainty. As an
example for fit quality of the primary data, the results obtained
with Tikhonov AIC fitting are shown in Supplementary
Figure S2.

Turning to different distribution models, for site pair 144–316
with a very broad distance distribution extending to rather long
distances, all approaches run into difficulties, although agreement
between Tikhonov regularization, DeerNet and multi-Gaussian
fitting is reasonable. Splitting of a broad distribution into many
moderately broadened peaks, such as encountered for site pair
52–316 when using the Akaike information criterion for
determining the regularization parameter for Tikhonov
regularization, may be detrimental to fitting with the overlap
criterion as it substantially reduces overlap (Supplementary
Figure S3 left). For this reason, we have resorted to Tikhonov
regularization with a fixed regularization parameter α � 5
(Supplementary Figure S3, middle), which is not expected to
oversmooth distributions for the case at hand. In contrast, a single
narrow Gaussian component, as it is sometimes found with the
multi-Gaussian parametrized model, is less detrimental, since it
contributes only a small fraction of the distribution
(Supplementary Figure S3, right).

For most of the site pairs, agreement of the distance
distributions is good between all approaches. This applies, in
particular, to comparatively narrow distributions, which do not
extend beyond 60 Å. For data sets where the approaches disagree
more strongly, we also find broader uncertainty bands with the
individual approaches. Note, however, that not all distributions
agree within their specified uncertainties. Differences between the
distance distributions obtained with different approaches indicate
limited quality of the data sets, mainly because of mediocre signal-
to-noize ratio or a maximum observation time that is insufficient
for high confidence in background separation. We note that these
features are not a sign of poor experimentation. Depending on
width of the distribution and maximum distance, obtaining
higher-quality data may be unrealistic.

Ensemble Fitting to Distance Distributions With
Moderate Shape Uncertainty
The question then arises, whether distance distributions of such
site pairs can still be used in ensemble fitting. The answer is not
necessarily negative, since the overlapmetric is less affected by the

TABLE 3 | Geometric mean overlap o, number of conformers, radius of gyration Rg, and ensemble width Γ in ensembles of hnRNP A1 LCD (188–320) by using distance
distributions computed with different approaches (see also Figure 4) in ensemble fitting from the same raw ensemble.

Analysis approach Mean overlap o Number of conformers Rg [Å] Γ [Å]

DeerNet 0.836 57 24.0 46.6
Multi-Gaussian (AIC) 0.880 52 23.3 47.6
Multi-Gaussian (BIC) 0.882 56 23.4 47.6
Single Gaussian (LongDistances) 0.863 49 23.7 48.2
Single Gaussian (DeerLab) 0.883 52 23.7 47.4
Tikhonov (α by AIC criterion) 0.846 50 23.8 48.4
Tikhonov (α � 5) 0.876 50 23.7 48.2

3http://www.biochemistry.ucla.edu/Faculty/Hubbell/.
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differences than the appearance of the distributions. Therefore,
we have studied this question in detail. To that end, we have
performed ensemble fitting from the same raw ensemble for all
individual sets of distance distributions displayed in Figure 4, as
well as for the Gaussian distribution obtained by DeerLab
(parameters listed in Table 2). As a result, we have obtained

refined ensembles with a reduced number of conformers and with
populations assigned to these conformers.

The overview of results in Table 3 demonstrates that fit quality
and size of the population-fitted ensembles vary only moderately
between the different restraint sets, despite the apparent
differences in the fitted distance distributions (i.e., the

FIGURE 5 | Ensemble fitting of the LCD (residues 188–320) of hnRNP A1 with jack-knife resampling. A raw ensemble of 331 conformers was generated based on
Gaussian restraints. Conformer populations were fitted by maximizing geometric mean overlap between simulated (green) and experimental (black) distance
distributions. Conformers with less than 1% of the population of the most populated conformer were discarded, resulting in a refined ensemble with 60 conformers. The
procedure was repeated with all possible sets of 18 out of the 19 restraints, giving slightly different sizes of the raw and refined ensembles. The unused restraint was
predicted from the “leave-one-out” ensemble (red). All conformers found in individual ensembles during jack-knifing were combined with the 60 conformers in the initial
ensemble and used as the basis set for the final ensemble fit (blue lines).
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resolution of spikes and peaks) obtained with the different
approaches (see Figure 4). As an example for fit quality,
results are shown in Figure 5 for the case of Tikhonov
regularization with fixed regularization parameter α � 5, with

the experimental distributions as black lines with gray uncertainty
bands and the prediction from the fitted ensemble as green lines.
We note that in some cases, features of the distribution shape are
fitted that cannot be reproduced by a Gaussian, most notably for

FIGURE 6 | Ensemble analysis for the LCD of hnRNP A1. The left column shows root mean square CA-CA distances for all possible segments of the LCD (residues
188–320) as a function of segment sequence length (black dots), their mean values per segment sequence length (green line), and a random coil fit (red line). The right
column shows the deviation of the RMS CA-CA distances from the mean value for this segment sequence length (green line in the left column). Red hues correspond to
segments more extended than the average and blue hues to segments more compact than the average.
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site pairs 32–231, 182–223, and 182–252. Thus, reweighting of
conformers after generation of the raw ensemble can partially
recover underfitting of structural information in the input single
Gaussian model. Still, geometric mean overlap o is maximum for
the ensemble fit to the single Gaussian distributions obtained in
DeerLab.

We have also compared the ensembles obtained with
restraints sets from the six data analysis approaches. Such
comparison is complicated by the fact that the sets of selected
conformers are distinct and the domain is only moderately
structured. Therefore, we have opted for ensemble analysis
approaches that can reveal weak structure. First, we considered
segment-wise RMS end-to-end distances (Jeschke, 2020) as
displayed for FUS in Figures 1B, 3. The corresponding plots
for hnRNP A1 LCD are shown in the left column of Figure 6.
Whereas the unrestrained ensemble (top) exhibits similar
behavior as the FUS NTD ensembles, for the restrained
ensemble model of hnRNP A1 (second from top), scaling of
segment end-to-end distances is less regular and the
distributions are broader. While the patterns obtained with
different data analysis approaches (Supplementary Figures
S4, S5, left column) are not identical, they do exhibit very
similar features. In particular, with all approaches the LCD of
hnRNP A1 exhibits scaling behavior that decidedly differs
from the one of the unrestrained ensemble. In the
restrained ensembles, segment-wise end-to-end distances do
not increase monotonously, but rather decline at segment
sequence lengths k > 100. Furthermore, segment
compactness varies considerably at the same sequence
length in the range 40 < k < 100. In order to analyze this
variation in more detail, we use a measure related to the
proximity matrix introduced in (Jeschke, 2021). The
proximity matrix is related to, but distinct from, the contact
matrix or map that can be obtained by NMR techniques, such
as paramagnetic relaxation enhancement (Salmon et al., 2010;
Clore, 2013). Unlike the contact map, which reveals close
approach of residues with large sequence distance, the
proximity matrix quantifies the deviation of the RMS CA-
CA distance of residue pairs from the one predicted for that
segment length k from the random-coil scaling law b·kν, where
parameters b and ν are fitted to all segments of the chain. This
deviation is normalized to the predicted RMS CA-CA distance.
Thus, the proximity matrix also reveals compaction of chain
segments that does not lead to contact. For the case at hand, we
consider a more intuitively interpretable matrix ΔL, whose
elements are the absolute deviation of the RMS CA-CA
distance of residue pairs (i,j) from the mean RMS CA-CA
distance for all segments of the same length k (green line in the
right column in Figure 6). The matrix elements ΔLij for residue
pairs (i,j) are then defined as

ΔLij �
����
〈R2

ij〉
√

− 1
nk

∑
m−l�k

�����
〈R2

lm〉
√

(2)

where nk is the number of residue pairs (l,m) with k � j–i � m–l
and 〈/〉 denotes the ensemble average. This matrix is visualized
in Figure 6 (right column) with blue color encoding segments

shorter than average and red color encoding those longer than
average. The color scale is the same for all ensembles.

In the restrained ensembles (second row from top), we find a
pattern of locally shortened and lengthened segments that is
broadly replicated with all distance analysis approaches (right
column in Supplementary Figures S4, S5), although details
differ. This pattern strongly differs from the unrestrained
reference state (top row), which exhibits behavior that is very
similar to the one of the reference state for FUS NTD.

Likewise, radii of gyration of the LCD are very similar
(minimum 23.3 Å for multi-Gaussian distributions, maximum
24.0 Å for DeerNet) as are ensemble widths

Γ �

��������������
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2
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i�1 ∑N

j�i+1pipj
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where indices i and j run over conformers in the ensemble, the pi
and pj are conformer populations, and theDij are RMS coordinate
deviations between conformers upon optimal superposition. We
find that Γ varies between 46.6 Å and 48.4 Å (Table 3). In
conclusion, ensemble fitting to distance distributions by
maximization of overlap is rather robust with respect to
moderate variation in distribution shape.

Validation of the Restraint Set by Jack-Knife
Resampling
For atomic-resolution structures, it is relatively well understood
what constitutes a good or at least a sufficient restraint set. The
same cannot be said for ensemble modeling of weakly structured
proteins. On the one hand, the problem appears hopelessly
underdetermined. Backbone conformation of each individual
conformer with nres residues is determined by 2(nres-1) torsion
angles, which would suggest 262 free parameters per conformer
for the glycine-rich domain of hnRNP A1 (188–320), whereas we
have obtained only 19 distance distribution restraints. On the
other hand, the unstructured reference state is characterized by
only one (radius of gyration Rg or RMS end-to-end distance R) or
at most two (b, ν) parameters. As we do not know beforehand,
how strongly a particular protein or domain is structured, we
need to estimate the number of required restraints during
modeling. Moreover, the restraint set might not be internally
consistent. With labeling approaches, this may happen if a label
biases conformation. We have encountered such a case for the
FnIII-3,4 domains of integrin α6β4, were some spin-labelled
mutants had to be discarded, as they caused strong changes in
relative domain orientations as seen by changes in small-angle
scattering (SAXS) curves (Alonso-García et al., 2015). In a
computational study on amyloid-beta, it was found that
attachment of a spin label biased the conformer distribution of
this intrinsically disordered peptide to some extent (Sasmal et al.,
2017). It is not always possible to safely exclude such bias by
additional experiments. Hence, size and internal consistency of a
set of distance distribution restraints need to be validated
alongside modeling.
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Robustness of an ensemble can be estimated by resampling
approaches, such as bootstrapping or jack-knifing (Berman et al.,
2019). In jack-knifing, as many additional modeling runs are
performed as there are restraints. In each run, one of the restraints
is left out without replacement. It is tested, how strongly the
ensemble changes and how well the left out restraint is predicted.
Jack-knife resampling has been used before in the context of
distance distribution restraints for estimating uncertainty of a
high-resolution model of the dimer of Na+/H+ antiporter NhaA
(Hilger et al., 2007). Bootstrapping approaches often remove
more than one restraint and they replace left-out restraints by
some remaining restraints, effectively increasing the weight of
these doubly selected restraints.

Here, we implement jack-knife resampling in our ensemble
modeling pipeline. To that end, we have generated raw ensembles
of about 400 conformers each for all 19 restraint sets where one of
the restraints is left out. We have then performed ensemble fitting
with the same restraint left out and predicted the distance

distribution for this unused restraint. These 19 predictions
from 19 ensemble fitting runs are displayed as red lines in
Figure 5. In general, they agree quite well with the
experimental distributions, indicating that the set is, both,
internally consistent and sufficiently large. Interestingly, while
several restraints were measured as permutations of label
combinations of major reporter sites, a few sites appeared only
in a single restraint (folded: 32; LCD: 190, 197, 223, 252, and 297),
and might thus be more critical for overall ensemble convergence.
Indeed, the case of 182–252 is such a case of an ‘isolated’ restraint
for which the deletion appears to lead to a slightly broader
ensemble compared to the fit with all restraints. However, the
predicted restraint fulfilment upon deletion of a restraint was not
in general worse for isolated restraints than for restraints
involving multiply restrained sites. Therefore, at least in this
particular case of hnRNP A1 it appears that the coverage of
labeling sites in the LCD sequence was sufficient to avoid
modeling bias. However, it is clear that such consideration

FIGURE 7 | Ensemble model for the LCD of hnRNP A1. The two RRMs (PDB 2lyv, Barraud and Allain, 2013) are shown in gray, with the N terminus to the left in the
left panel and to the front in the right panel. RRM 1 is on the bottom and RRM 2 on the top. Residues in the LCD are rainbow color coded from blue (residue 188) to red
(320). Population of conformers is encoded by coil thickness, with the most populated conformer having a thickness of 0.25 Å. CA atoms of the N-terminus of RRM 1 are
shown as purple spheres with radius 1.5 Å and CA atoms of the C-terminus of RRM 2 are shown as maroon spheres with the same radius. Visualization by
ChimeraX (Goddard et al., 2018) via an MMMx script.
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must be made case-by-case, since the problem is strongly
dependent on geometry and extent of ordering of domains in
a given protein (Jeschke, 2016).

Returning to hnRNP A1, in a few cases, notably for site pairs
52–271, 52–316, 144–316, and 182–252, background separation
may have removed genuine contributions at long distances.
Except for pair 52–271, these distributions were flagged as
being less reliable by disagreement between results from
different data analyses approaches. In a few other cases, such
as 182–271 and 32–231, the leave-one-out predictions appear to
confirm distance distribution shapes that deviate from a single
Gaussian.

We have combined all 19 leave-one-restraint-out ensembles
and have renormalized populations to unity sum. From this
“super-ensemble”, we have computed segment-wize RMS end-
to-end distances and the segment length deviationmatrix (middle
row in Figure 6). Because of the large size of the super-ensemble,
these data are smoother. In general, they exhibit the same features
as the initial ensemble obtained with all restraints.
Unsurprisingly, the radius of gyration (23.7 Å) and width
Γ � 48.2 Å, are unchanged.

While jack-knife resampling provides smooth estimates for
segment-wise RMS end-to-end distances and the segment length
deviation matrix derived from them, it does not directly provide
an improved ensemble. However, during jack-knife resampling
the modeling pipeline generates a large number of conformers
that are consistent with at least nr-1 of nr restraints. During
ensemble refinement and reduction, the approach selects
conformers that best fit nr-1 of nr restraints. This provides a
much improved basis set of conformers for fitting with all
restraints. In our case, the 19 leave-one-restraint-out
ensembles contain 1,119 conformers. Together with the 60
conformers in the initial ensemble, we have a basis that better
samples conformational space and should thus allow for an
improved fit. This expectation is indeed borne out, as can be
seen by comparing the blue lines (fit with 1,179 pre-selected
conformers) with the green lines (initial fit with 331 conformers)
in Figure 5. In fact, the large raw ensemble may allow for some
overfitting, i.e., the final ensemble may reproduce some features
of the distance distributions that are uncertain, as can be seen by
comparison with Figure 4. Overfitting of distance distributions is
not easily quantified, as the distributions are solutions of an ill-
posed problem. In future work, we will address this problem by
considering fit quality of the primary data. In any case, the final
ensemble fitted with the improved basis set provides smoother
segment-wise RMS end-to-end distances and a smoother
segment length deviation matrix than the initial ensemble.
These characteristics are closer to the jack-knife mean
estimates (bottom row in Figure 6). Therefore, we consider
this ensemble with 129 conformers and mean overlap
o � 0.919 as a better representation of the structure of the
glycine-rich domain of hnRNP A1 than the initial fit. We note
that jack-knife resampling generally provides a large number of
conformers that are consistent with at least nr-1 of nr distance
distribution restraints. Since finding such conformers is
computationally more expensive than ensemble reweighting,
final computation of a “super-ensemble” is advantageous.

This final ensemble is visualized in Figure 7 together with an
ensemble with the same number of 129 conformers randomly
selected from an unrestrained raw ensemble with 2,146
conformers. For the unrestrained ensemble, we assumed
uniform populations of the conformers. The restrained
ensemble is much more compact. Residues 188–240 are
located on the side of the two RRMs away from the N
terminus, to a larger extent than in the unrestrained ensemble.
Beyond residue 240, in the restrained ensemble the chain tends to
backtrack toward the RRM, leaving the N-terminal side of the
RRMs, but not the opposite side exposed. This exposure is also
apparent in the unrestrained ensemble, where it is a purely
geometrical effect. However, it is more pronounced in the
restrained ensemble. Since the function of hnRNP A1 involves
RNA binding, biological interpretation of this result requires
further experiments including RNA binding, which are beyond
the scope of this work and will be reported elsewhere. We may
note here that, although a random-coil model obviously does not
fit the weakly structured LCD of hnRNP A1 very well (Figure 6),
it does predict scaling exponents ν ≈ 0.48, as they have earlier
been observed for foldable proteins (Hofmann et al., 2012). Yet,
the LCD is obviously not folded, as the distance distributions
shown in Figures 4, 5 can be fitted only with a broad distribution
of conformers.

DISCUSSION

Model for the Unstructured Reference State
and Detection of Weak Structure
For peptide chains of 100 or more residues, residue-specific
Ramachandran statistics for loop regions is nicely consistent
with Flory random coil scaling of segment RMS end-to-end
distances (Figure 1B). Unfortunately, this approximation is
not very good for short sections of 20–25 residues (Figure 3),
which appear to be stiffer than predicted by a self-avoiding
random walk of a freely jointed chain model, irrespective of
the solvent conditions and condensation state. Attempts to
extract random-coil parameters from DEER distance
distributions are further confounded by convolution of the
backbone end-to-end distance distribution with the rotamer
distribution of the spin label side chain. Both problems are
expected to lessen if the section length is increased. However,
such a strategy shifts the mean of the distribution from the most
favored range for DEER (25–40 Å) toward longer distances. This
in turn shifts contributions by the longest conformers to a range
where separation of the single-chain contribution from the
intermolecular background becomes uncertain.

Therefore, our approach for recognizing deviation from an
unstructured reference state is hybrid. First, we generate a large
raw ensemble of 1,000–5,000 conformers that is in broad
agreement with experimental restraints that are approximated
by single Gaussian distributions in this step. The raw ensemble is
based on residue-specific Ramachandran statistics for loop
regions that is biased only by the experimental restraints. No
residue-residue interaction potential is assumed. Second, we
refine and contract this raw ensemble by fitting populations of
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conformers and by discarding conformers with very low
population. In this step, we fit to full distance distributions
that can have any shape. Third, we analyze scaling of
segment-wise RMS end-to-end distances Rk with segment
sequence length k and distribution of the Rk for given k.
Broad distributions of the Rk and non-monotonic scaling of
the mean Rk with k reveal deviations from random-coil
behavior. These deviations can be heterogeneous along the
sequence. We can map them to residue pairs by computing a
segment length deviation matrix, whose elements are defined by
Eq. 2. Indeed, based on our analysis of the full length hnRNP A1
construct, which contains both a strongly and a weakly ordered
domain, we demonstrate that the segment analysis approach
cannot only globally, but also locally uncover LCD structural
deviations from random coil behavior.

This approach does not make any assumptions on the LCD
beyond Ramachandran statistics. Even that assumption can, to
some extent, be altered by the experimental restraints. With the
numbers of conformers indicated above, it appears to be possible
to fit experimental DEER distance distributions within their
uncertainty for unstructured and weakly structured domains of
100–150 residues length on a current desktop computer. For
longer domains or constructs, the number of required conformers
in the raw ensemble may need to be reassessed or larger
computational resources are required. It is also expected that
the more structured a domain is, the more conformers need to be
sampled in order to obtain a representative ensemble. In the limit
of highly structured domains, the approach is not expected to be
competitive with strategies that estimate variation from atomic-
resolution structure.

Robustness of Distance Distribution
Restraints
The mapping of dipolar signals to distance distributions is not
continuous in a mathematical sense of the term. Accordingly,
computation of distance distributions corresponds to solving an
ill-posed problem. The solution must be stabilized in some way,
for instance, by regularization (Bowman et al., 2004; Jeschke et al.,
2004; Chiang et al., 2005), by restricting it to a space of
parametrized distribution functions (Stein et al., 2015), or by
training a neural network for a restrained set of distance
distributions (Worswick et al., 2018). Especially for weakly
ordered or unstructured domains, fits by a single Gaussian
function appear to work surprisingly well, as demonstrated
here. In general, different analysis approaches provide
distributions that may differ beyond their own uncertainty
estimates (Figure 4). This indicates that model bias is a matter
of concern. We find that differences between results from
different approaches are minor if distributions are only
moderately broadened and well within the preferred distance
range of DEER. They can be large if the width is several tens of
Ångström or if background separation becomes uncertain.

Ensemble fitting by distance distribution restraints is stabilized
by the overlap criterion, as overlap of an ensemble-predicted
distribution with the various distributions computed from the
same experimental data varies much less than the shape of the

various experiment-derived distributions. This finding applies to
minor deviations between distance distributions computed by
different approaches, as they are seen in Figure 4. If there exist
major differences between distance distributions obtained by
different approaches, data is of poor quality and should not be
used for ensemble fitting. If in doubt, it may be prudent to
perform ensemble modeling with distance distribution restraint
sets derived by alternative approaches, as we have demonstrated
here for the glycine-rich domain of hnRNP A1. In any case, we
recommend to process experimental data sets by three different
approaches: Tikhonov regularization, multi-Gaussian fitting, and
neural network analysis. As seen in Figure 4, such comparison
can reveal restraint uncertainty better than merely computation
of uncertainty bands for a single data analysis approach.
Comparison of the three distributions also reveals whether
single-Gaussian restraints are a sensible choice for final
ensemble fitting, as appears to be the case for hnRNP A1
188–320. This question is important, as fitting of a single
Gaussian, on the one hand, is the most robust approach, but
on the other hand, runs the largest risk of model bias.

For hnRNP A1, we have found that 19 distance distribution
restraints suffice for stably characterizing substantial deviation of
a 133-residue segment from random-coil behavior. Depending on
how large such deviations are, the number of required distance
distribution restraints may vary. Jack-knife resampling provides a
general approach for testing whether a restraint set is sufficient
for a given problem. If it is not, further restraints need to be
added. For the case of hnRNP A1, we cannot exclude that less
than 19 restraints would have sufficed. Establishing this would
require a systematic analysis of how many and which restraints
can be left out without substantially changing the proximity
matrix. Such an analysis is computationally very expensive and
beyond the scope of the current study.

Resampling for Ensemble Model Validation
The number of distance distribution restraints nres that enter into an
ensemble model is expected to be in the range between 10 and 50.
With much less than 10 restraints, it is unlikely that structure can be
revealed except, perhaps, for very short peptides. Measuring much
more than 50 restraints appears to be unrealistic because of the effort
required in sample preparation. In this situation, jack-knife resampling
appears to be a viable approach for ensemble validation, as we have
demonstrated here for nres � 19 on hnRNP A1 188–320. Jack-knife
resampling requires nres + 1 modeling runs, one of them with all
restraints and nres runs where one of the restraints is left out. We have
shown that these modeling runs provide an improved basis set of
conformers that can be used as input for a final ensemble fit.
Regarding computational effort, such jack-knife resampling is
certainly feasible for domains with up to 150 residues and for up
to 50 restraints on current desktop computers. Further automation in
software packages is required to make jack-knife resampling
convenient. This will be pursued in further development of MMMx.

Choice of Labeling Sites
For characterizing the LCD of hnRNP A1, we relied on three
reference sites in the structured domain of the protein. Such a
choice is advantageous in cases where a structured domain
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exists and where the localization of the intrinsically disordered
domain with respect to the structured domain is of interest.
Could we have characterized weak order of the LCD on its
own, provided that it would have been the same as in the
presence of the RRM? To answer this question, we
performed a computational experiment that assumed the
final ensemble of our study as ground truth. In addition to
the three experimental intra-LCD restraints (231–271,
231–316, and 271–316) we simulated distance distributions
for 16 additional intra-LCD site pairs. These pairs were
selected from LCD sites that we had also labeled in our
experiments (190, 197, 223, 231, 252, 271, 297, and 316) by
limiting sequence distance to no more than 85 residues,
i.e., the maximum sequence separation within the LCD in
our experimental restraints (Supplementary Table S1). With
these restraints, we generated a raw ensemble of 1,290
conformers and then performed ensemble reweighting with
the EnsembleFit module of MMMx. The final ensemble fits
the 16 simulated and three experimental restraints with an
overlap deficiency of 0.047. As seen in Supplementary Figure
S6, site-resolved compaction of the LCD is reasonably well
reproduced with this set of restraints, with notable deviations
near the C terminus. In our original restraint set, residue 316
is localized with respect to the RRM by three restraints,
whereas in the simulated restraint set, due to our chosen
maximum cutoff segment length of 85 residues, it is not
localized with respect to any site upstream of residue 231.
This suggests that some site pairs with long sequence
separation must be included in the set in order to avoid
that structural features are missed.

CONCLUSION

Ensemble modeling and refinement with label-to-label
distance distributions measured by EPR pulsed dipolar
spectroscopy is a feasible approach for characterizing weak
structure in protein domains. Our approach involves
generation of a basis set of conformers that is consistent
with Ramachandran statistics for loop residues and with
restraints. This raw ensemble is refined and contracted by
fitting to distance distributions restraints. It is then analyzed
in terms of segment-wize RMS end-to-end distributions. For
estimating uncertainty and validating restraints, we
recommend computation of distance distributions from
primary data by several alternative approaches and jack-
knife resampling of the restraints in ensemble modeling.
The current implementation is viable up to about 150
residues and up to about 50 distance distribution restraints
on current desktop computers. Extension of these limits
appears to be feasible. Our approach could be extended to
integrative modeling that uses restraints from further
experimental techniques in ensemble refinement.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

IR prepared hnRNP A1 samples, measured most hnRNP A1
DEER data, performed most of the hnRNP A1 DEER data
analysis, and contributed to conception of the modeling and
data analysis approaches. LE-H prepared FUS samples,
measured FUS DEER data, performed all FUS DEER data
analysis, contributed to conception of the data analysis
approaches and implemented the SAW-ν model in DeerLab.
EL performed preparatory work and provided guidance on
hnRNP A1 sample preparation. LE optimized conditions for
liquid-liquid phase separation of FUS and provided guidance.
MY provided guidance and measured some of the hnRNP A1
DEER data. FA was involved in conception of the whole project
and provided guidance. GJ was involved in conception of the
whole project, implemented modeling and data analysis
approaches into MMM and MMMx, performed part of hnRNP
A1 DEER data analysis, ensemble modeling, jack-knife
resampling, and ensemble analysis, provided guidance and
wrote the first version of the manuscript. All authors
contributed to the final version of the manuscript.

FUNDING

This work was funded by Swiss National Science Foundation
grants 200020_188467 (hnRNP A1 and modeling aspects) and
CRSII5_170976 (FUS).

ACKNOWLEDGMENTS

We thank Christian Altenbach for analyzing data with
LongDistances, Eric Hustedt for analyzing data with DD, and
both of them as well as Matthias Elgeti, Luis Fábregas Ibáñez, Ilya
Kuprov, Daniel Nettels, and Ben Schuler for helpful discussions.
This project also profited from discussions in a consortium on a
white paper on measuring, analyzing, and interpreting distance
distributions. In this context, we are grateful to Marina Bennati,
Enrica Bordignon, Jack Freed, Daniella Goldfarb, Hassane
Mchaourab, Thomas Prisner, Olav Schiemann, and Stefan
Stoll. We thank a reviewer for a question that inspired the
computational experiments described in Choice of Labeling Sites.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fmolb.2021.636599/
full#supplementary-material.

Frontiers in Molecular Biosciences | www.frontiersin.org April 2021 | Volume 8 | Article 63659918

Ritsch et al. Weak Structure by Distance Distributions

112

https://www.frontiersin.org/articles/10.3389/fmolb.2021.636599/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmolb.2021.636599/full#supplementary-material
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


REFERENCES

Alonso-García, N., García-Rubio, I., Manso, J. A., Buey, R. M., Urien, H.,
Sonnenberg, A., et al. (2015). Combination of X-ray crystallography, SAXS
and DEER to obtain the structure of the FnIII-3,4 domains of integrin α6β4.
Acta Cryst. D Biol. Crystallogr. 71, 969–985. doi:10.1107/S1399004715002485

Barraud, P., and Allain, F. H.-T. (2013). Solution structure of the two RNA
recognition motifs of hnRNP A1 using segmental isotope labeling: how the
relative orientation between RRMs influences the nucleic acid binding topology.
J. Biomol. NMR 55, 119–138. doi:10.1007/s10858-012-9696-4

Berman, H. M., Adams, P. D., Bonvin, A. A., Burley, S. K., Carragher, B., Chiu, W.,
et al. (2019). Federating structural models and data: outcomes from A
workshop on archiving integrative structures. Structure 27, 1745–1759.
doi:10.1016/j.str.2019.11.002

Bernadó, P., Mylonas, E., Petoukhov, M. V., Blackledge, M., and Svergun, D. I.
(2007). Structural characterization of flexible proteins using small-angle X-ray
scattering. J. Am. Chem. Soc. 129, 5656–5664. doi:10.1021/ja069124n

Bonomi, M., Heller, G. T., Camilloni, C., and Vendruscolo, M. (2017). Principles of
protein structural ensemble determination. Curr. Opin. Struct. Biol. 42,
106–116. doi:10.1016/j.sbi.2016.12.004

Bowman, M. K., Maryasov, A. G., Kim, N., and DeRose, V. J. (2004). Visualization
of distance distribution from pulsed double electron-electron resonance data.
Appl. Magn. Reson. 26, 23–39. doi:10.1007/BF03166560

Brangwynne, C. P., Tompa, P., and Pappu, R. V. (2015). Polymer physics of
intracellular phase transitions. Nat. Phys. 11, 899–904. doi:10.1038/
NPHYS3532

Cesari, A., Reisser, S., and Bussi, G. (2018). Using the maximum entropy principle
to combine simulations and solution experiments. Computation 6, 15. doi:10.
1016/j.sbi.2016.12.00410.3390/computation6010015

Chiang, Y.-W., Borbat, P. P., and Freed, J. H. (2005). The determination of pair
distance distributions by pulsed ESR using Tikhonov regularization. J. Magn.
Reson. 172, 279–295. doi:10.1016/j.jmr.2004.10.012

Clore, G. M. (2013). Generating accurate contact maps of transient long-range
interactions in intrinsically disordered proteins by paramagnetic relaxation
enhancement. Biophys. J. 104, 1635–1636. doi:10.1016/j.bpj.2013.01.060

Drescher, M. (2011). EPR in protein science. Top. Curr. Chem. 321, 91–119. doi:10.
1007/128_2011_235

Edwards, T. H., and Stoll, S. (2018). Optimal Tikhonov regularization for DEER
spectroscopy. J. Magn. Reson. 288, 58–68. doi:10.1016/j.jmr.2018.01.021

Emmanouilidis, L., Esteban-Hofer, L., Damberger, F. F., de Vries, T., Nguyen, C. K.
X., Fábregas Ibáñez, L., et al. (2021). NMR and EPR reveal a compaction of FUS
upon condensation to droplets formation. Nat. Chem. Biol. [Epub ahead of
print]. doi:10.1038/s41589-021-00752-3

Fábregas Ibáñez, L., Jeschke, G., and Stoll, S. (2020). DeerLab: a comprehensive
software package for analyzing dipolar electron paramagnetic resonance
spectroscopy data. Magn. Reson. 1, 209–224. doi:10.5194/mr-1-209-2020

Fitzkee, N. C., and Rose, G. D. (2004). Reassessing random-coil statistics in
unfolded proteins. Proc. Natl. Acad. Sci. U.S.A. 101, 12497–12502. doi:10.
1073/pnas.0404236101

Geist, L., Henen, M. A., Haiderer, S., Schwarz, T. C., Kurzbach, D., Zawadzka-
Kazimierczuk, A., et al. (2013). Protonation-dependent conformational
variability of intrinsically disordered proteins. Protein Sci. 22, 1196–1205.
doi:10.1002/pro.2304
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Islet amyloid polypeptide (IAPP) is a proposed cause of the decreased beta-cell mass
in patients with type-II diabetes. The molecular composition of the cell-membrane
is important for regulating IAPP cytotoxicity and aggregation. Cholesterol is present
at high concentrations in the pancreatic beta-cells, and in-vitro experiments have
indicated that it affects the amyloid formation of IAPP either by direct interactions
or by changing the properties of the membrane. In this study we apply atomistic,
unbiased molecular dynamics simulations at a microsecond timescale to investigate
the effect of cholesterol on membrane bound IAPP. Simulations were performed with
various combinations of cholesterol, phosphatidylcholine (PC) and phosphatidylserine
(PS) lipids. In all simulations, the helical structure of monomer IAPP was stabilized by the
membrane. We found that cholesterol decreased the insertion depth of IAPP compared
to pure phospholipid membranes, while PS lipids counteract the effect of cholesterol.
The aggregation propensity has previously been proposed to correlate with the insertion
depth of IAPP, which we found to decrease with the increased ordering of the lipids
induced by cholesterol. Cholesterol is depleted in the vicinity of IAPP, and thus our
results suggest that the effect of cholesterol is indirect.

Keywords: cholesterol, amylin, simulations, diabetes, aggregation, amyloid

INTRODUCTION

Islet amyloid polypeptide (IAPP, also known as amylin) is co-secreted with insulin (Lukinius et al.,
1989) from the beta cells of the pancreatic islets, and together with insulin it regulates the glucose
metabolism (Lutz, 2010, 2012; Hay et al., 2015). In most patients with type-II diabetes mellitus
(T2DM) IAPP aggregates to form islet amyloid (Maloy et al., 1981; Westermark, 1995; Westermark
et al., 2011). IAPP aggregation is cytotoxic and contributes to the loss of beta cell associated
with progressed T2DM (Abedini and Schmidt, 2013; Cao et al., 2013). While T2DM is initially
characterized by a reduced insulin response, the loss of beta cells decreases the production of insulin
and IAPP and thus further reduces the regulation of the glucose metabolism (Höppener et al.,
2000). The cytotoxic mechanism of IAPP toward beta cells is unclear, but it has been hypothesized
to be related to both membrane damage, inflammation, receptor interactions, oxidative stress,
mitochondrial dysfunction, and inducing defects in autophagy (Abedini and Schmidt, 2013;
Milardi et al., 2021).
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Islet amyloid polypeptide is a 37 residue peptide with a
net positive charge of +3 (N-terminal, Lys1 and Arg11) at
physiological pH, as illustrated in Figure 1A. A histidine residue
at position 18 can be protonated to carry a positive charge
depending on the pH (Abedini and Raleigh, 2005). A disulfide
bridge connects Cys2 and Cys7 and loops the N-terminus.
IAPP is an intrinsically disordered peptide, meaning that it
varies between multiple folded and unfolded conformations in
solution as revealed by NMR experiment and CD spectroscopy
(Williamson and Miranker, 2007; Williamson et al., 2009).
At hydrophobic/hydrophilic interfaces (e.g., the interface of
a phospholipid bilayer or a micelle) IAPP can stabilize in a
conformation with amphiphilic α-helices (Knight et al., 2006).
Based on structural ensembles solved from NMR experiments of
micelle bound IAPP the α-helical structure of IAPP can be either
straight (helical from residue 5 to 28) (Patil et al., 2009) or kinked
(with a turn at residue Ser19 to Phe23, as sketched in Figure 1B)
(Nanga et al., 2011). The helicity of membrane bound IAPP has
also been observed on large unilamellar vesicles (LUVs) using
circular dichroism (Jayasinghe and Langen, 2005; Knight et al.,
2006; Engel, 2009; Khemtémourian et al., 2011; Lee et al., 2012).

Few structures of the mature fibrils are available; Wiltzius et al.
(2008) has proposed a structure based on X-ray crystallography
of two IAPP segments and Luca et al. (2007) has proposed a
structure using constraints from solid-state nuclear magnetic
resonance spectroscopy. Common for the fibril structures is the
stacking of IAPP peptides along the fibril axis, with beta sheets
forming between adjacent peptides. The individual peptides have
a turn spanning from residue His18 to Phe23 (Luca et al., 2007).

Membrane damage induced by IAPP oligomers or amyloid
is a proposed mechanism of cytotoxicity (Raleigh et al., 2017).
Several studies have investigated membrane induced IAPP
aggregation, since islet amyloid is located at the beta cell
surfaces. The cell membrane is complex and contains many
different lipids (Nicolson, 2014) and the aggregation is very
dependent on the lipid composition, as indicated from observed
lipid dependent changes in fibril morphology and the rate of

FIGURE 1 | (A) Sequence of IAPP. (B) Sketch of the secondary structure of
IAPP in the helical kinked conformation.

formation (Sciacca et al., 2018). Dye-leakage and Thioflavin-
T (ThT) assay fluorescence experiments are commonly used to
study IAPP aggregation on model membranes to investigate
the aggregation rate and membrane perforation of IAPP
(Zhang et al., 2017). The aggregation rate and membrane
perforation of IAPP is drastically increased in model systems
with zwitterionic phosphatidylcholine (PC) lipids and anionic
lipids such as phosphatidylglycerol (PG) and phosphatidylserine
(PS) (Sciacca et al., 2008; Zhang et al., 2017). Working toward
more realistic membrane models, several studies have recently
focused on the interactions between IAPP and membrane
cholesterol (CHOL) (Li et al., 2016; Zhang et al., 2017, 2018; Hao
et al., 2018). CHOL is highly abundant in mammalian plasma
membranes and it has been shown to be important for the
function of many membrane associated peptides and proteins
(Grouleff et al., 2015), transporting both ions and molecules
e.g., the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) (Li
et al., 2004), the dopamine transporter (Zeppelin et al., 2018),
aquaporins (Jacob et al., 1999), and peptides such as amyloid-β (Ji
et al., 2002; Habchi et al., 2018). CHOL changes the fluidity and
order of lipid membranes thereby indirectly affecting proteins
that are embedded or attached to the membrane, or directly by
interacting with the protein or peptide in a manner that affects
structure and function (Grouleff et al., 2015; Zeppelin et al.,
2018). Some experiments points toward an inhibiting role of
CHOL toward IAPP aggregation, whereas other studies indicate
that CHOL accelerate IAPP aggregation and cytotoxicity (Li et al.,
2016; Zhang et al., 2017; Hao et al., 2018).

Zhang et al. (2017) studied the membrane interactions of
IAPP in large unilamellar vesicles, probing amyloid formation
using ThT fluorescence and membrane permeabilization from
dye leakage experiments. They found that CHOL slows down
amyloid formation and dye leakage in membranes consisting
of 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC or PC),
10% 1,2-dioleoyl-sn-glycero-3-phosphatidylserine (DOPS or PS),
and CHOL concentrations of 20 and 40%. They also showed
that high concentrations of anionic DOPS lipids (above 25%)
diminish the effect of CHOL (Zhang et al., 2017). In a follow-
up study, Zhang et al. further investigated the effect of changing
the type of sterol. They investigated the membrane binding,
perforation, and amyloid formation on membranes with eight
different types of sterols (Zhang et al., 2018). They noticed that for
the fraction of vesicles that bound IAPP, the membrane leakage,
and amyloid formation was inversely correlated with the ordering
of the lipids in the vesicles. This points to the conclusion that the
effect of CHOL is indirect, thus dictated by changing membrane
properties, rather than by a direct interaction of CHOL with
IAPP. In a study by Yang et al. the interaction between the
19 N-terminal residues of IAPP and small unilamellar vesicles
(SUVs) consisting of DPPC and CHOL was studied. Using 31P-
NMR they estimated the dissociation constant of IAPP from
the vesicle for different concentrations of CHOL, and found
that the N-terminal fragment bound stronger to membranes
with increasing concentrations of CHOL. Based on mutational
studies they hypothesized a direct interaction between IAPP and
CHOL by CH−π interactions between Phe15 and CHOL (Li
et al., 2016). Sciacca et al. (2016) studied the effect of CHOL in
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LUVs with DOPC, DPPC, and CHOL in a ratio known to form
lipid nanodomains with the formation of liquid ordered domains
with saturated lipids and CHOL and liquid disordered domains
containing unsaturated lipids. A DOPC:DPPC ratio of 1:2, CHOL
accelerated amyloid formation and leakage with a CHOL content
of 20 or 40%, compared to pure DOPC vesicles, as shown
from ThT fluorescence and dye leakage experiments, respectively.
Based on atomic force microscopy imaging they found that the
disruption of the membrane occur at the boundary between the
lo and ld domains (Sciacca et al., 2016). Several studies point to
the same conclusion: Membranes with CHOL-induced domain
formation accelerate IAPP aggregation and membrane damage,
and IAPP will have a high affinity for the boundary between the
lo and ld domain (Trikha and Jeremic, 2011; Caillon et al., 2014).
Conversely, in membranes without domain formation, CHOL
inhibits the aggregation and membrane damage induced by IAPP
(Zhang et al., 2017).

Interactions between IAPP and phospholipid membranes
have previously been investigated using MD simulations. Many
of these studies have focused on simple membrane compositions
composed of zwitterionic phospholipids and anionic lipids such
as PG or PS (Dong et al., 2018). Simulation studies have
previously been performed with CHOL, however, these studies
have been coarse-grained, and thus not able to investigate the
details of the interactions between IAPP and CHOL. In this study

we apply atomistic molecular dynamics (MD) simulations to
investigate the interaction between IAPP and lipid bilayers with
various lipid compositions. With MD simulations, we achieve
atomistic details about the interactions between IAPP and lipid
bilayers with a mixture of CHOL, DOPC, and DOPS lipids.
Further analysis of the effect of these lipids on membrane-
bound IAPP are performed. Lipid rafts and the effect of these
on membrane-bound IAPP will not be discussed further in
this paper, since the focus herein is on the effect of CHOL
on IAPP in membranes that do not form lipid rafts. Due to
the limited timescale of MD simulations, the investigations are
limited to the membrane-bound helical state of a monomer, and
not the effect of the lipids on the oligomerization and resulting
conformation transitions, which was recently described from
simulations in membranes without CHOL (Skeby et al., 2016;
Christensen et al., 2017).

MATERIALS AND METHODS

Islet amyloid polypeptide is expected to be helical in the
membrane bound state (Jayasinghe and Langen, 2005; Knight
et al., 2006; Engel, 2009; Khemtémourian et al., 2011; Lee
et al., 2012). As for most other amphiphilic helices, crossing
the lipid headgroup region involves an energy-barrier, and

FIGURE 2 | (A,B) Top view of the atomistic starting structures of kinked and straight IAPP peptides in the membrane bound helical conformation. Water and ions are
not shown. (C,D) Sketches of the membrane bound state of kinked and straight IAPP peptides shown from the side. The peptide is illustrated in green and DOPC,
DOPS, and CHOL are shown in blue, red, and yellow, respectively.
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simulating the binding is therefore computationally challenging
(Ben-Tal et al., 1996). Coarse-grained MD simulations of a
single IAPP peptide placed above lipid bilayers of each of
the chosen bilayer compositions were performed initially to
position IAPP at the membrane surface, while maintaining the
helical conformation (Supplementary Figure 1A). Within 0.5 µs
the peptides were bound to the bilayer, with the amphiphilic
helices in the hydrophobic/hydrophilic interface of the bilayer
(Supplementary Figure 1B). Crossing the headgroup region is
a complex process, but in the coarse grained simulation the
process is simplified and the amphiphilic helices can quickly cross
this barrier and be positioned at the hydrophobic/hydrophilic
interface. The membrane bound structures were subsequently
converted to atomistic structures using the Martini Backward
script (Wassenaar et al., 2014). To increase the sampling, two
starting conformations of the peptides were applied; a straight
conformation with a helical conformation spanning from residue
7 to 28, and a kinked conformation with residues 7 to 18
and residues 23 to 28, respectively, forming each an α-helix,
with a turn between the two helical regions (as sketched in
Figures 2, 3). Both of these starting conformations are based
on micelle bound structural ensembles of IAPP from NMR
experiments (Patil et al., 2009; Nanga et al., 2011). This procedure
was executed for different combinations of the lipids: DOPC,

DOPS, and CHOL. Four repeats of 1 µs were produced for
each of four membrane compositions: DOPC, DOPC/CHOL,
DOPC/DOPS, and DOPC/DOPS/CHOL; and for each of the two
initial peptide conformations (Straight/Kinked). An overview of
the atomistic simulations can be found in Table 1. The membrane
compositions are chosen to compare well with experimental
data from the literature (Zhang et al., 2017). Examples of the
DOPC/DOPS/CHOL setup is illustrated in Figure 2.

Coarse-Grained Simulations
The coarse-grained simulations were performed in Gromacs
2016.3 (Abraham et al., 2015) with the polarizable Martini 2.2P
forcefield for protein and water (Yesylevskyy et al., 2010) and
the lipids and ions modeled using the MARTINI 2.0 forcefield
(Rzepiela et al., 2011; de Jong et al., 2013). The systems were
built using the Insane script (Wassenaar et al., 2015), which
can build lipid bilayers with the lipids randomly placed in each
leaflet in the specified ratio and placing a peptide relative to the
bilayer. The peptides were placed with the center of mass 40 Å
from the membrane center and in a random orientation in each
simulation repeat. The systems were minimized using steepest
descent optimization, followed by a 50 ns equilibration with the
number of particles, pressure, and temperature (NPT ensemble)
kept constant, and with the protein constrained. The protein was

FIGURE 3 | The secondary structure of IAPP in the kinked or straight conformation. (A,B) Simulation structures of a kinked (based on PDB-ID 2L86) and a straight
peptide (based on PDB-ID 2KB8) with the helical residues colored green. (C) Fraction of combined simulation time with each residue in a helical conformation for the
kinked and straight peptides in the presence, with and without the presence of lipid membranes. (D) Helical wheel of the N-terminal helix of the kinked peptides.
(E) Helical wheel of the C-terminal helix of the kinked peptides. (F) Helical wheel of the straight helix of the straight peptides.
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released and a production run of 0.5 µs was performed in the
NPT ensemble. The secondary structure of IAPP was restrained
to the secondary structure of the starting structure, as is common
practice in the MARTINI 2.0 forcefield (Rzepiela et al., 2011; de
Jong et al., 2013). The flexible ends and kink region of IAPP were
not constrained during the membrane binding simulations.

The leap-frog integrator (Hockney et al., 1974) was used
with a timestep of 20 fs. During the NPT equilibration the
Berendsen pressure coupling (Berendsen et al., 1984) was used
with a time-constant of τp of 12 ps and reference pressure of
1 bar. The pressure coupling was applied semi-isotropically (x-
y and z decoupled), and with an isothermal compressibility of
3 10−4bar−1 for the system. In the production run the pressure
was controlled with the Parrinello-Rahman barostat (Parrinello
and Rahman, 1981) with a τp of 24 ps, a compressibility of
3 10−4bar−1 and a reference pressure of 1 atm. The velocity
rescaling algorithm was used to keep the temperature constant
with a coupling constant τt of 1 ps. The coulomb interactions
were treated using a reaction-field,(Tironi et al., 1995) with a
cutoff of 1.1 nm and a relative electrostatic screening of 2.5 (de
Jong et al., 2016). The van der Waals interactions are cut-off at
1.1 nm using a potential shift cutoff-scheme.

Atomistic Simulations
The atomistic simulations were performed in Gromacs 2016.3
(Abraham et al., 2015) which uses the leap-frog integrator
(Hockney et al., 1974). The lipids, water, and ions were modeled
using the CHARMM36 force field (Klauda et al., 2010), and
proteins were modeled using the CHARMM36m force field
(Huang et al., 2016), a recently developed force field with
improved parameters for simulating intrinsically disordered
peptides and the recommended force field for simulations of
proteins and lipids from the CHARMM force field developers
(Huang et al., 2016). To obtain a 2 fs timestep, all bonds to
hydrogens are constraint using the LINCS algorithm (Hess et al.,
1997). All histidine was modeled as the neutral δ-tautomer,
which is known to allow binding of IAPP to the bilayer surface
(Skeby et al., 2016).

The membrane bound structures returned from the Martini
backward script (Wassenaar et al., 2014), were first minimized
using the steepest descent algorithm with a maximum of 5,000
steps. The initial velocities were assigned randomly from a
Maxwell-Boltzmann distribution. Then a 0.1 ns equilibration was
performed in a canonical ensemble with number of particles,
volume, and temperature constant (NVT ensemble). Next, a
3 ns equilibration was performed in the NPT ensemble. Finally,
a 1 µs simulation production run was performed, also in
the NPT ensemble.

The electrostatic interactions were calculated using Particle
Mesh Ewald (Essmann et al., 1995) with a grid spacing of
0.1 nm and a short-range cutoff of 1.2 nm, using the Verlet
cutoff-scheme. The van der Waals interactions were calculated
with a force-switch modification (Steinbach and Brooks, 1994)
that switch off the interaction between 1.0 and 1.2 nm. The
temperature was controlled using the Nose-Hoover thermostat
(Hoover, 1985), with a time constant of 1 ps, to keep the

temperature at a constant temperature of 310K. A pressure of
1 atm was held using the Parrinello-Rahman pressure coupling
(Parrinello and Rahman, 1981), with a time-constant of 5 ps,
applied uniformly in the x-y dimension and separate in the
z-dimension.

RESULTS

A series of simulations of membranes with DOPC, DOPS, and
CHOL was performed to investigate the interactions between
IAPP and the lipid components of the membrane and to study the
membrane bound structure of IAPP and how it depends on the
bilayer composition. The simulations are summarized in Table 1
of the methods section.

The Helical Conformations Are Stabilized
at the Membrane Interface
The simulations were initiated in the α-helical membrane bound
state. The initial structure of the peptides in this study is helical
peptides with a kink (Figure 3A) or with a single straight helix
(Figure 3B). It can be seen from Figure 3C, that the helicity
is stabilized by the membrane, likely due to the amphiphilic
nature of the helices, with the hydrophobic residues buried
in the membrane and the hydrophilic residues exposed to the
solvent. The amphiphilicity of the peptide can be seen from the
orientation of the hydrophobic and hydrophilic residues in the
helical wheels in Figures 3D–F generated from a projection of
the Cα atoms on the plane perpendicular to the helix axes. The
residues Ala8, Leu12, Phe15, Leu16, Phe23, Ile26, and Leu27
are the hydrophobic residues of the helices, that are oriented
toward the interior of the membrane. Without the presence of
a lipid membrane, the α-helix is not stable, and from the helical
fractions in Figure 3C it can be seen that the helices are unfolded
most of the time.

TABLE 1 | Simulation overview of atomistic simulations with various membrane
composition including DOPC, DOPS, and CHOL.

Membrane
composition

Lipid ratio Helix
conformation

Number of
repeats

Simulation
time

– – Kinked 3 1 µs

Straight 3 1 µs

DOPC 100% – 1 1 µs

Kinked 4 1 µs

Straight 4 1 µs

DOPC:DOPS 70 – 30% – 1 1 µs

Kinked 4 1 µs

Straight 4 1 µs

DOPC:CHOL 60 – 40% – 1 1 µs

Kinked 4 1 µs

Straight 4 1 µs

DOPC:DOPS:CHOL 45 – 15 –
40%

– 1 1 µs

Kinked 4 1 µs

Straight 4 1 µs
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The helicity fraction is described as the fraction of the
accumulated simulation time each residue is helical (Figure 3B).
For membrane inserted peptides, the energy barrier for
conformational changes is very high, and is thus an event
that occurs at a relatively long timescale (Ulmschneider and
Ulmschneider, 2018), and therefore the helicity of IAPP starting
in the kinked or straight will be analyzed separately. For the
peptides starting in the kinked conformation, the helical fraction
in the N-terminus peaks from Cys7 to Leu16, with decreasing
fractions toward each end of the helix. In the C-terminus the
helicity peaks from residue Asn21 to Ile28 (Figure 2C). The
helical fraction of the N-terminus peaks at 1, meaning that
some central residues are not seen to unfold at any point
during the simulations. The C-terminal peaks at 0.8, indicating
that all residues are unfolded at some point in the simulation
series. The helicity varies less for the straight peptides than
the kinked peptides. From the helicity fraction of the straight
peptides in Figure 3B it can be seen that the helicity peaks
from residue Asn3 to Ser28, with residues Thr9 to Phe23 helical
throughout all simulation repeats. In the kinked peptides, the
turn connecting the two helical segments consist of the 18-
HSSNN-22 fragment, these are all hydrophilic residues and can
therefore not contribute to the hydrophobic side of the helix.
However, the turn region has been proposed to be important
for the oligomerization of IAPP. Especially His18 and the charge
state of this residue is found to be important for interactions
between the IAPPs (Abedini and Raleigh, 2005; Christensen
et al., 2017). In the straight peptides the kink region is tackled
by having Ser20 and Ser19 on the hydrophobic side of the
helix, oriented toward the sides of the helix, possibly allowing
the hydrophilic sidechains to interact with the hydrophilic
headgroups (Figure 3F).

The number of helical residues in the course of the simulations
is shown in Figure 4A, separated for the N-terminal residues
Lys1 to Ser19 and the C-terminal residues Ser20 to Tyr37, and
when a lipid membrane is present. Figure 4B shows mean and
standard deviation of the number of helical residues for the last
0.5 µs of the simulations. For the peptides initiated in a kinked
conformations, the number of helical residues in the N-terminus
remains around 10 and shows very little fluctuation in the
simulations. The largest fluctuations in the helicity observed is
in the C-terminus, as seen from Figure 4A only around five
residues remain helical, and in some simulations the C-terminal
helix completely unfolds. The peptides starting in the straight
conformation have around 13 and 5 helical residues in the
N-terminus and C-terminus, respectively. Both parts of the
straight helix seems to be more stable than the two helical
segments of the kinked peptides, as seen from the small error
bars for the straight peptides in Figure 4B. It can be speculated
that the stability of the straight peptides is most likely due
to the fact that it has fewer helix ends where unfolding can
occur, and an increase in intramolecular interactions arising
from the secondary structure. There are no obvious differences
in the stability of the helicity depending on the membrane
composition. In the simulations of IAPP in solvent, with no lipid
bilayer in the simulations, the helicity is less stable as seen from
Figures 4A,B. The N-terminal helix is unfolded in all repeats and

only in a single repeat does the C-terminal part of the straight
helix remain helical.

Insertion of Peptide on the Membrane Is
Affected by the Membrane Lipids and the
Peptide Conformation
Figure 5 shows the average distance between each residue
and the x/y-plane as measured as the average z-coordinate of
the phospholipid phosphates, with z being the direction of
the bilayer normal; the plane is used as an indication of the
hydrophobic/hydrophilic interface. The simulation series are
compared in pairs to show the effect of adding additional lipid
types to the simulation system. In all simulations the hydrophilic
residues of the helix are pointing away from the membrane
while the hydrophobic residues are mostly pointing toward the
membrane, giving rise to a zigzag-shaped curve. Most of the
helical residues are placed below the hydrophobic/hydrophilic
interface, indicating that the peptides are inserted in the
membrane. Generally the highest variation in the membrane
distance is seen in the non-helical region (residue 1 to 7 and
residue 27 to 37), since these parts of the peptide are not usually
inserted into the membrane.

The difference in the mean residue-membrane distances
(1membrane distance) between the two simulation series in
question is shown in Figure 6. The background color of the
plots is an indication of whether the 1membrane distance is
significantly different from 0, using the T-test for comparing
the means of two simulation series. The difference between
pure PC and PC/PS membranes has a negligible effect on
the membrane distance in both the kinked and the straight
conformation (Figures 6A,B), as seen from a 1membrane
distance close to 0. This indicates that the membrane bound state
of IAPP is well-defined in these simple phospholipid membranes.
Addition of CHOL to a DOPC membrane increases the distance
between the peptides and the membrane interface, and most
significantly in the helical regions, as seen from an increase
in 1membrane distance of up to 4 Å in Figures 6A,B. The
same is observed when comparing the membrane distance of
a PC/PS membrane to a PC/CHOL membrane (Figures 6A,B).
Interestingly, the peptides starting in the kinked conformation
bound to a PC/PS and a PC/PS/CHOL membrane have the
similar distance to the membrane interface (Figure 6A), this
indicates that PS lipids keep the helices closer to the membrane,
and thus counteracts the effect of CHOL. This effect is, however,
not seen for the straight peptides, where the addition of CHOL
still significantly increases the membrane distances compared to
PC/PS membranes (Figure 6B).

There are general differences between the position
of the kinked and the straight peptides. Comparing
Figures 5A,B, it can be observed that the top of the helical
segment of the straight peptides is positioned about 2 Å
below the hydrophobic/hydrophilic interface in a pure
phospholipid membrane, and the top of kinked helices in
corresponding membranes are positioned at the level of the
hydrophobic/hydrophilic interface. The membrane positions
and the insertion for the straight and the kinked peptides
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FIGURE 4 | Number of helical residues for each series of simulation (PC in blue, PC/CHOL in green, PC/PS in red, and PC/PS/CHOL in purple). The number of
helical residues is plotted separately for the N-terminus (residue 1–19, first row) and the C-terminal (residue 20–37, second row) and separated for the peptides
starting in the kinked conformation and the straight conformation. (A) The development of the number of residues in a helical conformation in time. (B) Mean and
standard deviation of the number of helical residues in each of the simulation repeat.

are compared in Figures 7A,B. Not surprisingly, the turn
region (residue 19–22) is positioned significantly deeper in
all simulations with straight peptides when comparing to the
kinked peptides. In the pure phospholipid membranes (pure
DOPC or DOPC/DOPS), the conformation affects the position
of the helical segments. In the DOPC membrane the N-terminal
helix is inserted about 2 Å deeper for the peptide in the straight
conformation, and most significantly for residues Gln10 and
Asn14 (Figure 7B). In the DOPC/DOPS membranes both parts
of the helix are inserted significantly deeper in the membrane
by about 2 Å (Figure 7B). In the CHOL containing membranes
there is no significant difference in the membrane distance, other
than in the kink region, as seen in Figure 7B.

Cholesterol Increases the Order and
Thickness of Lipid Bilayers
The difference in the position of IAPP on the membrane upon
the addition of CHOL and/or DOPS can either be due to changes
in the membrane fluidity or arise from direct interactions with

the lipids. With the addition of CHOL to the lipid bilayers the
order and rigidity is expected to increase (Gracià et al., 2010).
The area per lipid was calculated using the Membrainy tool
(Carr and MacPhee, 2015). From Figure 8A it can be seen that
in the simulations with CHOL, the area per lipid is decreased
from around 70Å2 to ∼53Å2. Changing from a composition
of DOPC to DOPC/DOPS decreases the area per lipid slightly
from around 70Å2 to around 67Å2. The lipid diffusion is also
affected by the addition of CHOL (Figure 8B), in the DOPC
bilayers the lipid diffusion is about 7 · 10−8cm2/s, whereas in
a DOPC/CHOL bilayer the diffusion has dropped to half, to
about 3.5 · 10−8cm2/s. The diffusion in a DOPC/DOPS bilayer
is about 5.5 · 10−8cm2/s, slightly less than for a pure DOPC
bilayer. The diffusion coefficients were calculated using the gmx
msd tool of GROMACS 2018.1 (Abraham et al., 2015). The same
pattern is observed for the order parameter (Figure 8C): CHOL
increases the order parameter, and DOPC/DOPS membranes
are also slightly more ordered than DOPC membranes. The
order parameters were also calculated using the Membrainy tool
(Carr and MacPhee, 2015). Another sign of the membranes
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FIGURE 5 | Position of Cα of the peptide relative to the phosphate plane for. (A) The kinked conformation (B) straight conformation. Each panel shows the average
distance between the IAPP Cα and the x-y plane spanned at the average z-coordinate of the phospholipid phosphates (indicated with a dashed line). The lines are
colored based on the composition of the lipid membrane in the simulations. The average for the individual simulations are shown in thin lines and the common
average in a thicker line. For the sake of comparison, two systems are shown simultaneously. The background color of the plots indicates whether the position on
the membrane is significantly different between the two simulation series (green: p ≤ 0.05, yellow: 0.05 < p < 0.10, red: p > 0.10, as explained below).

FIGURE 6 | Each panel shows the differences between the peptide insertion in the (A) kinked and the (B) straight IAPP. The mean and standard deviation is
indicated with a blue and black lines, respectively. The background color of the plots indicates the significance of the difference (green: p ≤ 0.05, yellow:
0.05 < p < 0.10, red: p > 0.10).

with CHOL bring more ordered is reflected in the membrane
thickness (Figure 8D), which is increased from around 3.8 nm
to around 4.1 nm when adding CHOL. The membrane thickness
was calculated from the distance between the peaks of the
phospholipid phosphate density of each leaflet.

For the simulations with the straight peptides, the increased
membrane distance in the presence of CHOL correlates with the
increased membrane thickness and order. This effect is, however,
not seen in the simulations with the kinked peptide, where the
presence of DOPS lipids seems to diminish the effect of CHOL
on the positioning of the helix on the membrane.

Anionic Lipids Are Enriched in the
Vicinity of IAPP and Cholesterol Is
Depleted
The lipid depletion-enrichment index (D-E index) is calculated
to investigate local concentration variations of the lipids

surrounding the peptide (Corradi et al., 2018). The analysis is
based on the method developed by Corradi et al. (2018) and
(Corradi et al., 2018). The first panel in Figure 9A shows the
D-E index of lipids within the first lipid shell surrounding the
membrane bound peptide (lipids within 7 Å of the IAPP1−19).
For the systems with DOPC and DOPS lipid there is a significant
depletion of DOPC and a significant enrichment DOPS within
the at all the measured distances (7, 14, and 21 Å), the effect is,
however, decreasing with the distance. The distances 7, 14, and
21 Å, were used in the original paper by Corradi et al. (2018)
and represent the three nearest lipid shells around IAPP1−19,
as illustrated in Figure 9B. The enrichment is most likely
due to favorable interactions between the cationic residues of
IAPP and the anionic groups of the PS headgroup. In the
systems with DOPC and CHOL, there is a slight depletion of
CHOL within the first shell around the peptide. The depletion
of CHOL is independent of DOPS, and therefore indicates a
preference for interactions between the helix and phospholipids
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FIGURE 7 | Comparison of membrane positions of straight and kinked IAPP relative to the membrane. (A) Position of Cα of the peptide relative to the phosphate
plane, colored as in Figure 5. (B) Differences between the peptide insertion in the kinked and the straight IAPP, colored as in Figure 6.

FIGURE 8 | Membrane properties. (A) Area per lipid. (B) Diffusion coefficient. (C) Order parameter (D) Membrane thickness. The properties are shown for each
simulation series (each individual simulation marked by an X), with S indicating the simulation series with IAPP starting in the straight conformation.
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FIGURE 9 | Depletion enrichment index (D-E index) of lipids around the peptide. (A) The panels represent the D-E index of the lipids within 7, 14, and 21 Å. The first
column shows the values of the D-E index, colored on a scale from 0.5 to 1.5. The second column shows the p-values. The statistical significance was evaluated
using the single sample T-test, with 1 as the null-hypothesis, indicating that there is no enrichment or depletion of a given lipid type around the peptide. (B) The
phospholipid phosphates within 7 Å (green), 14 Å (yellow), and 21 Å (red) of IAPP1-19. The D-E index is calculated for each simulation series, and the simulation
series with IAPP starting in the straight conformation are denoted with an “S.”

rather than CHOL, as seen by the values below 1 in the
CHOL column for the 0–7 Å range. More variation is seen
in the three component system with both DOPC, DOPS, and
CHOL, the DE-indices are less significant, probably due to the
increased possibility of variation, and thus more sampling is
required. However, the enrichment of DOPS in the inner shell
is significant for the systems starting with the peptide in a
kinked conformation.

Flexibility in the N-terminal Loop Shows
Two Dominant Orientations
Since the effect of the lipids on the position of IAPP can
not be explained completely by the physical properties of the
membrane, a structural clustering is performed to investigate
the specific interactions between the lipids and IAPP. In order
to perform a structural clustering of IAPP and the membrane
lipids, the conformational flexibility of IAPP has to be taken
into account. The largest flexibility is in (a) the N-terminal
loop (residue Lys1 to Cys7), (b) in the C-terminus after
the C-terminal helix from residue Ser28 to Tyr37, and (c)
in the kink region of the peptides between the N-terminal
and C-terminal helix; the kink usually includes residue His18

to Phe23, and allows for variation in the angle between
the two helices.

A geometric clustering was performed to better understand
the flexibility in the N-terminal loop (More details are available
in the Supplementary Material). It was found to be oriented
in one of two ways for most of the simulation time. Either
the N-terminal loop is pointing to the left or the right side
compared to the helix, when viewing from the N-terminus, as
illustrated in Figure 10: These two orientations collect 72.8%
of the conformations sampled by the peptides (38.0 and 34.8%,
for orientation 1 and 2, respectively) the additional clusters
contained far fewer structures (Supplementary Figure 2).
In the individual simulations the peptide does not sample
both orientations equally. Figures of the distribution of the
orientations for each simulation repeat are found in the SI along
with calculations of the median structure for each repeat. It is seen
from the graphs that when CHOL is present IAPP orientation 1
(O1) is slightly favored over orientation 2 (O2).

The effect of the orientation of the N-terminal loop might
seem insignificant, however, the N-terminal loop contains two
of the charges and is therefore essential for the interaction with
the phospholipids. In addition, Cys2-Cys7 disulfide bridge in
the N-terminal loop has also been proposed to decrease the
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FIGURE 10 | N-terminal loop orientations, structures with loop orientation 1
(O1) and 2 (O2) are shown in blue and red, respectively. (A) Ensemble of
structures from the two largest clusters (B) central structure from each of the
two orientations. The C-terminal region is hidden for clarity.

propensity of IAPP to aggregate (Milardi et al., 2008). The
importance of the N-terminal orientation will become apparent
in the following analysis, about the specific interactions between
IAPP and the membrane lipids.

Certain Regions of the N-terminal Helix
Favor Lipid Interactions
The 3D occupancy maps in Figure 11 reveals the volumes around
IAPP1−19 with a high density of DOPC, DOPS and CHOL in
the simulations (with the peptide aligned in the helical segment
IAPP7−16). The analysis is repeated for IAPP with the N-terminal
loop in each of the two orientations. The occupancy maps can be
seen from other angles in Supplementary Figure 4.

DOPC is the lipid present at the highest concentration in
the bilayer in all simulations. The density map in Figure 11A
indicates that DOPC preferentially interacts with IAPPO1 in two
regions around the peptide; at the N-terminal of the peptide,
where DOPC interacts with the loop region (Lys1 – Cys7). Seen
from above (Figure 11A) DOPC also preferentially interacts
with the right side of the N-terminal helix, on this side it can
interact with Arg11, Phe15, and Asn14. At the kink region,
DOPC has a preferential interaction near Phe15, His18, and
Ser19. The interaction volumes of DOPC are very dependent on
the orientation of the N-terminal loop; DOPC interacts mainly
with IAPPO2 in the loop region around Lys1, between Lys1 and
Arg11, between Arg11 and Phe15, and near His18 and Phe15
(Figure 11B). In both of the orientations of the N-terminal loop,
DOPC shows a preference toward binding to the right side of the
helix (Figures 11A,B).

DOPS is negatively charged, with two negative charges
and one positive charge in the head group, and therefore
preferentially interacts with the cationic groups of IAPP. In
IAPPO1, DOPS interacts near the N-terminus and Lys1 or
between Arg11, Phe15, and Asn14 (Figure 11C). IAPPO2 has the
positive charges of Lys1 and the N-terminus on the same side
as Arg11, which makes it favorable for DOPS to be positioned
in the cleft between these residues, to the right side of the
helix (Figure 11D).

Cholesterol is much more hydrophobic than DOPC and
DOPS, and is therefore less prone to interactions with
the hydrophilic face of the amphipathic helix. However,

CHOL has a hydroxyl group that preferentially interacts
with the hydrophilic groups near the interface, such as
exposed backbone atoms and residue sidechains at the helix
ends (Figures 11E,F). The interaction volumes of CHOL
are mostly positioned below the helix, in the vicinity of
the hydrophobic residues Leu12, Leu16, and Phe15. The
interactions are unspecific, more evenly distributed around
the IAPP than the phospholipids, and seem to be less
dependent on the orientation of the N-terminal loop and Lys1
(Figures 11E,F).

The Binding Modes of the Lipids May Be
Related to the Insertion of the Peptide
For a more detailed description of preferred binding sites of
the membrane lipids to IAPP we have performed a distance
based clustering of the helix-lipid pairs (details available
in Supplementary Material). It was observed from the 3D
Occupancy maps, that CHOL interacts differently with IAPP1−19
than the phospholipids, and these will therefore be presented
separately. The following analysis is based on a collection of all
the IAPP-lipid pairs in all structures with the N-terminal loop in
either O1 or O2.

For the phospholipids, the dominant interactions are very
dependent on hydrogen bonding and salt bridge interactions
between the lipids headgroup and the hydrophilic residues. The
most frequently occurring binding modes (BMs) of DOPC and
DOPS are illustrated with representative structure in Figure 12,
and the relative frequencies are shown in Supplementary Table 1.
The five largest cluster will be discussed here, as they constitute
the vast majority of the interactions.

Binding mode 1 (BM1) This is the most prominent lipid
binding mode placed on the right side of the helix, with the
lipid binding in a pocket between Arg11 and Asn14 and the tails
between Leu12 and Phe15. This binding mode is independent of
the orientation of the N-terminal loop and the binding mode is
observed for both DOPC and DOPS lipids. Bindingmode 2 (BM2)
is another prominent “binding mode.” It entails the unspecific
salt-bridge interactions with Lys1, both DOPC and DOPS has a
negative charge at the phospholipid phosphate which can interact
with Lys1, the N-terminus, or bridging between the two. In the
case of DOPS, the two negative charges can interact with Lys1
and the N-terminus simultaneously, thus making this interaction
very favorable for DOPS lipids, as seen from the relatively high
occurrence of this binding mode for DOPS lipids compared to
DOPC lipids. Independent of the orientation of the N-terminal
loop, it is a common interaction point for the phospholipids. In
Binding mode 3 (BM3) the N-terminal loop between Cys2 and
Cys7 consists of several hydrophilic residues (Asn3, Thr4, and
Thr6), and it has exposed backbone atoms, making it a good
interaction point for the hydrophilic headgroups of both DOPC
and DOPS. In O2 of Binding mode 4 (BM4) the N-terminus
and Lys1 is pointing toward the right side of the helix. In
this orientation the phospholipid can interact with Lys1 (or the
N-terminus) and Arg11 simultaneously. Binding mode 5 (BM5)
only occurs for the loop in O1, where the phospholipids can bind
between Gln10 and Lys1 (or the N-terminus).
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FIGURE 11 | 3D Occupancy maps of the lipids around IAPP1−19, depending on the orientation of the N-terminal loop (A) DOPC around IAPPO1 (B) DOPC around
IAPPO2 (C) DOPS around IAPPO1 (D) DOPS around IAPPO2 (E) CHOL around IAPPO1 (F) CHOL around IAPPO2. IAPP1−19 is shown in green, and selected residues
are labeled.

In addition to the binding modes presented here, less
frequently occurring binding encounters are found, e.g., some
binding modes interacting with the kinked region, more details
about these binding modes are available in Supplementary
Material. The major binding modes presented here compares
well with the 3D occupancy maps in Figure 8, however, the
binding modes that involve the more flexible loop region and
Lys1 might be under-represented in the occupancy maps.

It would be expected that the membrane composition affects
the distribution and frequency of the lipid binding modes.
The lipids could potentially be competing for the binding site,
and the change in positioning of the helix in the presence of
CHOL could affect the frequency of experiencing a given binding
modes. The binding frequency of the binding modes could
also be dependent on whether IAPP is straight or kinked. The
fraction of each simulations series contributing to the binding
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modes of phospholipids and CHOL is shown in Supplementary
Figures 7, 8, respectively. Few trends can be observed: For DOPC
the contribution from each simulation is very heterogeneous
across the simulation series, this indicates that the other lipids are
not significantly competing with DOPC for any of the binding
modes. In the interactions between DOPS and IAPP in O1, the
straight peptides contributes most to BM1 and BM2, while the
kinked peptides seem to provide better lipid interactions as in
BM3 and BM5. None of these binding modes are in the kink-
region, which indicates that the difference might arise from
the difference in membrane insertion, which depends on the
conformation of IAPP (as shown in Figure 7). There is a smaller
fraction of the DOPS lipids interacting in BM4 in the presence of
CHOL, which could indicate competing interactions.

Moving on to cholesterol, the 3D Occupancy maps show
the interactions between the N-terminal helix and CHOL is
less dependent on the orientation of the N-terminal loop.
The interactions between CHOL and the N-terminal helix are
primarily defined by hydrophobic interactions and hydrogen
bonding of the hydroxyl group. The binding modes of CHOL are
depicted in Figure 13, and their relative frequencies are listed in
Supplementary Table 2.

Binding mode 1 (BM1) of CHOL to the N-terminus of IAPP
is at the kink region, this region has several hydrophilic residues

(His18 and Ser19) and exposed backbone in the kinked peptides.
At the kink region the hydrophobic residues Phe15, Leu16 and
Val17 can interact with the hydrophobic rings of CHOL. Even for
the straight peptides the kink region is an important interaction
point (Supplementary Figure 8), due to interactions with these
residues. Binding mode 2 (BM2) is at the left side of the helix, near
the N-terminal. In BM2, CHOL hydrogen bond to Thr9 or Gln10,
and interact with the hydrophobic residues Leu12 and Ala13. In
binding mode 3 (BM3) CHOL interacts with the N-terminal helix
end, most frequently interacting with Ala8, Thr9, and Leu12,
and the exposed backbone atoms. Binding mode 4 (BM4) is very
unspecific, in this binding position CHOL interacts with the
hydrophobic residues below the helix, most frequently Leu12 and
Phe15. In Binding mode 5 (BM5), CHOL interacts with the right
side of the helix between the loop and Arg11, with hydrogen
bonding to Arg11 and hydrophobic interactions with Ala8.

The relative occurrence of the CHOL binding modes can
also be affected by the orientation of the N-terminal loop, the
conformation of IAPP (straight or kinked), and the membrane
composition. The relative contribution of each simulations series
to the binding modes is shown in Supplementary Figure 8.

Binding mode 1 involves binding in the kink region, it is
therefore expected to be affected by whether IAPP is in a straight
or a kinked conformation. In the PC/CHOL membranes, BM1

FIGURE 12 | Representative structures of the phospholipid binding modes (BM1-5), for (A) DOPC and (B) DOPS. IAPP is shown in green, with green carbons, and
the lipids are shown with orange carbons.

FIGURE 13 | Representative structures of the CHOL binding modes (BM1-5). IAPP is shown in green, with green carbons, and the CHOL is shown with orange
carbons.
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is observed more frequently for the CHOL binding to IAPP
in the kinked conformation than in the straight conformation,
independent of the orientation of the N-terminal loop. In the
PC/PS/CHOL membrane, this trend is not observed, and their
relative binding frequency is independent of the conformation
of IAPP, as seen in Supplementary Figure 8. This also indicates
that the binding frequency of CHOL in BM1 on IAPP in
the kinked conformation is reduced in the presence of DOPS
(Supplementary Figure 8). Since DOPS does not have a strong
tendency to interact with the kink region (As seen in Figure 11C),
it is not likely that the effect is due to competitive interactions. In
the system PC/CHOL S (straight conformation), PC/PS/CHOL,
and PC/PS/CHOL S, IAPP is inserted deeper in the membrane
than in the PC/CHOL systems, as shown in Figure 7. It could
therefore be, that the change in the binding frequency of CHOL
in BM1 is affected by the positioning of IAPP in the membrane,
which could make binding in the kinked region less favorable.

Other than the variations in the binding frequency in BM1
there are no major variations across the systems. The binding
modes are very evenly distributed around IAPP1−19, which was
also observed from the 3D occupancy maps in Figure 11.

CONCLUSION

Cholesterol is an important element of the lipid membrane,
and it is often present as a sizeable fraction of the membrane
lipids. CHOL affect the aggregation propensity and membrane
effects of IAPP, however, the specific role of CHOL is unclear.
This study investigates the effect of CHOL on the membrane
bound state of IAPP.

The results presented here, confirm the stabilizing effect of
lipid bilayers toward the helical structures of IAPP. Both the
straight and the kinked conformations of IAPP were found
to be stable on the membrane but unfolded in solution. The
C-terminus was found to be less structured than the core
membrane binding region in the N-terminal half of the peptide,
which is in good agreement with previous results (Skeby et al.,
2016). No significant variation of the helix stability was observed
between the membrane compositions, but the straight helices
were found to be more stable than the kinked helices, as seen from
the secondary structure calculation shown in Figure 4.

It was found that the depth of membrane insertion of
the amphipathic helices was affected by CHOL and whether
IAPP was in a straight or a kinked conformation. CHOL
generally results in a less deep insertion of the IAPP, than
in pure phospholipid membranes, which can be explained by
the increased ordering of lipids. A deep binding indicates
a strong binding, and IAPP is observed to bind weaker to
ordered membranes in experiments (Zhang et al., 2018). The
present study has revealed that a membrane compositions of
PC/PS/CHOL and a kinked conformation of IAPP, the PS
lipids diminishes the effect of CHOL, and IAPP binds as
deeply as in the pure phospholipid membranes, as seen from
the membrane distance calculation in Figure 6. This concurs
with the experimental results from Zhang et al. (2017) that
CHOL in simple phospholipid membranes generally inhibits

membrane induced amyloid formation of IAPP, and that
the presence of PS lipids diminishes the inhibiting effect of
CHOL. The insertion depth of IAPP was also affected by
the conformation of IAPP, the straight conformation inserted
significantly deeper than the kinked conformation, especially in
the pure phospholipid membranes.

It was found that the membrane patch around IAPP1−19
was enriched with DOPS lipids and slightly depleted of CHOL,
as seen from the D-E indices in Figure 9. The interactions
between IAPP1−19 and the phospholipids is very dependent on
the positively charged groups (N-terminal, Lys1, and Arg11).
CHOL has a less well-defined interaction pattern, and it mostly
interacts underneath the helix and with the kink region, as can
be observed from the most frequent CHOL binding modes and
3D occupancy maps. It has been proposed from experiments
that CHOL interacts directly with Phe15, which increases the
binding affinity of IAPP to the membrane (Hao et al., 2018). It was
proposed that CHOL interacted with a specific CHOL binding
segment that involved a CARC motif that included Arg11, Phe15,
and Val17, but this is not supported by our results. Phe15 is,
however, found to be important for CHOL interaction, since
Phe15 is centrally positioned in the N-terminal helix, and thus
involved in many of the binding modes.

Based on these results we propose, that the effect of CHOL on
the membrane bound state of IAPP and the membrane induced
amyloid formation, is based on changes in insertion of IAPP
due to changes in the physical properties of the membrane,
rather than through direct interactions. We managed to observe
significant changes in the insertion depth of IAPP in the presence
of CHOL, and we found that PS can diminish the effect of CHOL.
This provides a structural interpretation of the effect of CHOL
on the membrane binding and the effect of the lipids on the
aggregation rate.

This study is a step toward a deeper understanding of the role
of CHOL in IAPP aggregation. Further studies, which take lipid
raft formation into account need to be performed, but this topic
is reserved for future work.
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Ligand–protein association is the first and critical step for many biological and chemical

processes. This study investigated the molecular association processes under different

environments. In biology, cells have different compartments where ligand–protein binding

may occur on a membrane. In experiments involving ligand–protein binding, such as

the surface plasmon resonance and continuous flow biosynthesis, a substrate flow

and surface are required in experimental settings. As compared with a simple binding

condition, which includes only the ligand, protein, and solvent, the association rate

and processes may be affected by additional ligand transporting forces and other

intermolecular interactions between the ligand and environmental objects. We evaluated

these environmental factors by using a ligand xk263 binding to HIV protease (HIVp) with

atomistic details. Using Brownian dynamics simulations, we modeled xk263 and HIVp

association time and probability when a system has xk263 diffusion flux and a non-polar

self-assembled monolayer surface. We also examined different protein orientations and

accessible surfaces for xk263. To allow xk263 to access to the dimer interface of

immobilized HIVp, we simulated the system by placing the protein 20Å above the

surface because immobilizing HIVp on a surface prevented xk263 from contacting with

the interface. The non-specific interactions increased the binding probability while the

association time remained unchanged. When the xk263 diffusion flux increased, the

effective xk263 concentration around HIVp, xk263–HIVp association time and binding

probability decreased non-linearly regardless of interacting with the self-assembled

monolayer surface or not. The work sheds light on the effects of the solvent flow

and surface environment on ligand–protein associations and provides a perspective on

experimental design.

Keywords: molecular modeling, molecular recognition, drug design, GeomBD, ligand-receptor binding

INTRODUCTION

Molecular association is the first critical step in all chemical and biological processes such as the
immune response, signal transduction, drug-protein binding, and chemical catalysis (Ozbabacan
et al., 2010; Dill and Bromberg, 2012; Baron and McCammon, 2013; Lin et al., 2020). Simulation
techniques play a crucial role in investigating the environment that may affect ligand–protein
binding, which provides a fundamental understanding of molecular recognition and reduces the
cost and time in molecular design. Although diffusion-controlled association rate constants may
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be approximated analytically, most ligand–protein systems have
slower association rates than the diffusion-limited rate because
the association event involves multiple steps (Di Cera, 2017;
Pang and Zhou, 2017). Conformational rearrangement of both
molecules largely determines their binding kinetics, but the two
molecules must have an initial encounter first. This first step
may be greatly affected by the environment, which can result in
different measured association-rate constants.

Although many ligand–protein bindings take place in a
closed system without water flow such as in an experimental
beaker or cell, ligand–protein association can also occur in a
more dynamic environment. Different compartments within a
cell also create various membrane environments when ligands
and proteins associate and function (Zotter et al., 2017).
For example, techniques using continuous flow biocatalysis
have been developed recently to improve the efficiency of
chemical synthesis, such as improved mixing, mass transfer,
and automation (Planchestainer et al., 2017; Britton et al.,
2018). Surface plasmon resonance (SPR), a powerful technique
to measure molecular binding kinetics and thermodynamics,
also utilizes flow chemistry and a continuous flow environment
(Hinman et al., 2018; Prabowo et al., 2018; Ershov et al.,
2020). However, how the flow may affect the ligand–protein
association processes is unclear. Moreover, these methods need
to immobilize one molecule on a surface that may have
intermolecular interactions with the molecules to be tested.
Therefore, the choice of surface and flow rate usually need to be
optimized for various systems.

In addition to experimentally measured values such as
association rate constants, molecular simulation can reveal
atomistic details of molecular association to further interpret
experimental results and understand binding mechanisms.
Molecular encounter usually involves two molecules searching
for each other in a vast space and for longer than a
nanosecond search time. Brownian dynamics (BD) simulations
have been used for computational assessment of the encounter
processes for several decades (Northrup et al., 1984; Huber and
McCammon, 2019). Many software packages are available for
studying a variety of problems related to bimolecular association.
For example, MacroDox, UHBD, BrownDye Simulation of
Diffusional Association (SDA), BD_BOX, BROMOC, ReaDDy,
Smoldyn, SEEKR, and BDpack are used to probe ligand–protein
associations with a flexible or rigid biomolecular model (Madura
et al., 1995; Northrup et al., 1999; Huber and McCammon, 2010;
Długosz et al., 2011; Schöneberg and Noé, 2013; De Biase et al.,
2015;Martinez et al., 2015; Saadat and Khomami, 2015; Andrews,
2017; Votapka et al., 2017). Our group has been developing the
GeomBD program, which focuses on using BD to investigate
inter-enzyme intermediate transfer and substrate association on
surface environments in biosensor and nanoenzyme structures
(Roberts and Chang, 2015, 2016). Because of the diverse bio-
systems and binding environments, modifying an existing BD
package to answer various questions is common practice.

Here we used the HIV protease (HIVp) and xk263 as a model
system to study the effect of flow and surface on ligand–protein
associations. HIVp belongs to the class of aspartyl proteases and
is essential for maturation and assembly of infectious virions

(Kohl et al., 1988). The protein cleaves the large polyprotein
precursors to mature viral proteins (Huang et al., 2014), an
essential function for viral replication, and is a major drug
target for AIDS treatment. This is a well-studied system with
rich experimental binding data for many inhibitors and FDA
approved drugs (Ghosh et al., 2016). The flexible flaps of HIVp
can serve as a gate: its opening and closing affects ligand binding.
In proteins, an open/closed rate of a gate related to the diffusion
of their binding partners determines a fast or slow gating for
ligand binding (Szabo et al., 1982; McCammon, 2011). Because
of the complex gating behavior of HIVp and its importance
in therapeutics, earlier work applied BD to study drug–HIVp
binding and also developed a specialized coarse-grained model
for HIVp to model the large-scale motions of the flaps (Tozzini
and McCammon, 2005; Chang et al., 2006; Kang et al., 2011; Li
et al., 2012; Bernetti et al., 2019).

In this work, we used BD simulations to examine the xk263–
HIVp association under the influence of ligand diffusion flux
and a surface environment. The simulation applied rigid-body
BD movements and considered atomistic details using pre-
computed grids when computing intermolecular interactions
and driving forces. The HIVp was immobilized on a surface
or artificially placed 20Å above the surface. We introduced
a self-assembled monolayer (SAM) with a CH3 terminal
group to model a hydrophobic surface environment (Cholko
et al., 2019). We analyzed ligand association time and binding
probability with different diffusion fluxes of xk263, surface
and HIVp orientations. The non-polar SAM provided only
weak intermolecular attractions with xk263, but the surface did
not accelerate the xk263 encounter processes. The x-direction
diffusion flux of xk263 significantly reduced weak intermolecular
interactions and searching near the surface which shortened the
association time but also significantly reduced the probability
of successful binding. The concentration gradient of xk263 was
affected by the xk263 diffusion flux as well. Our studies suggest
that the flow may have noticeable effects on molecular encounter
processes and provide insights into the differences in the ligand–
protein association in diverse conditions, such as in static cells or
a continuous flow biocatalysis environment.

METHODS

Model System
The model system is a rectangular prism (400 × 400 × 220
Å3), closed at the top, and consisting of HIVp, xk263, and a
SAM surface (Figure 1A). The crystal structure of HIVp and the
xk263 inhibitor were obtained from the Protein Data Bank (codes
1HHP and 1HVR, respectively) (Spinelli et al., 1991; Lam et al.,
1994). The HIVp flaps, two polypeptides that cover the active site,
are in the open position. The semi-open form crystal structure
of HIVp was simulated to derive the open form (Supplementary
Methods) (Huang et al., 2017). HIVp was kept fixed in the
model (Figure 1B). The SAM surface with HIVp at the center
consisted of undecanethiol chains on a gold sheet of 1 atom
thickness (Supplementary Methods) (Cholko et al., 2019). The
size of the SAM was 400 × 400 Å2 having a hexagonal packing
pattern with a packing density in the order of 1014 cm−2, which
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FIGURE 1 | Model system. (A) HIVp is placed at the center of the CH3-SAM surface with xk263 ligands in a yz-plane when a simulation starts. (B) Structure of an

open-form HIVp in cartoon representation. (C) xk263 ligand, and (D) undecanethiol molecule used to build the SAM surface. Notably, in each BD run, the molecular

system has only one xk263 and one HIVp. To speed up the calculations, multiple replicas of xk263 are simulated simultaneously, but the replicas do not interact with

each other.

FIGURE 2 | Two orientations of HIVp. The protein is placed 20 Å above the SAM (A) parallel to the yz-plane and (B) perpendicular to the yz-plane.

gives an average chain separation of 4.98 Å. The system had a
periodicity in the y-direction and termination boundary in the
+x-direction as the ligand flows in the +x-direction. HIVp had
two orientations (Figure 2).

Simulation Details
The in-house modified GeomBD2 program was used for all
BD runs (Roberts and Chang, 2016). The program first creates
three grid files: the exclusion volume, screened Coulumbic
potential, and 12-6 Lennard-Jones potential for HIV and SAM.
Intermolecular interactions between ligand xk263 and HIVp or
SAM are grid-based calculations, and the forces are estimated
numerically (Roberts and Chang, 2016). To speed up the
calculations, these precalculated grids are extended up to 40 and
15 Å around HIVp or SAM for screened Coulumbic and 12-6 LJ
potentials, respectively. The force field parameters were obtained
fromAmber-ff14SB for HIVp and CH3-SAM. The partial charges

of xk263 and SAMwere computed by using the AM1-BCC charge
method with the antechamber program (Cholko et al., 2019).
The motion of the ligand is a Brownian motion, governed by
an overdamped Langevin equation, in implicit water (Northrup
et al., 1984).

ri (t+1t)=ri (t)−
Di

kBT

∂E

∂ri
1t+

√

2Di1tR (1)

where Di is the translational or rotational diffusion coefficient, kB
is Boltzmann’s constant, T is temperature, δE/δri is the potential
gradient computed numerically based on the potential grids,
1t is the time step, and R is the stationary Gaussian random
number with a zero mean. To obtain the flow for the ligand, the
overdamped Langevin equation is modified by adding N, a small
fractional number, in the displacement of the x-direction.

xi (t+1t)=xi (t)−
Di

kBT

∂E

∂xi
1t+

√

2Di1tR+N (2)
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For each molecular system, we terminated the simulation when
the runs generated at least 600 xk263-HIVp associates and the
computed average association time was within the standard
deviation of <3%. A successful xk263–HIVp association is
defined as xk263 reaches within 11.5 Å ASP25, a residue
in the active site of HIVp, and the association time is
recorded. Notably, after generating 600 successful bindings,
the computed average associating time for each system
is within 3%.

In the system, xk263 starts diffusing from the yz-plane at the
-x-direction boundary (Figure 1A). A run is ended when xk263
reaches the binding pocket or the +x-direction boundary, and
another new run will be started by randomly placing xk263 in
a new position on the yz-plane (Figure 3). The clock random
number seed is used, so no two runs can be identical. In addition,
we can save trajectories of our BD runs to visualize ligand
diffusion and binding/unbinding events.

Calculations for System Analysis
For the calculations of diffusion flux, diffusion coefficients, CH3-
SAM interaction, and xk263 distribution, we used the trajectories
with no termination at the +x-direction boundary. So, the
trajectories used for the calculations are continuous and 0.3-µs
long for each case.

xk263 Diffusion Flux
The diffusion flux is the rate of molecules transferred across the
plane per unit time per unit area, representing the flow of xk263.
It was calculated by using the continuous BD trajectories and
reported in units of molecules/s.m2. The plane is an imaginary
plane at the +x- directional boundary perpendicular to the
direction of flow. The calculated flux densities according to the
N values (in Equation 2) are reported (Supplementary Table 1).

Diffusion Coefficient
The diffusion coefficient was calculated by Einstein’s relation,
<r2 > = 2nDt, where r is the displacement in time t, n is the
dimensionality, and D is the diffusion coefficient.

CH3-SAM–xk263 Interaction Energy
To calculate the interaction energetics of xk263 with CH3-
SAM, we used the selected portion of continuous trajectories
with xk263 diffusions within 25 Å above the CH3-SAM.
The interaction energy includes 12-6 Lennard-Jones potential
and screened Coulombic potential. The cutoffs for vdW and
electrostatic potential were 12 Å and 40 Å, respectively.

The calculation of 12-6 Lennard-Jones potential is as follows:

Evdw=4 ∈

(

σ 12

r12ij
−

σ 6

r6ij

)

(3)

where rij is the distance between atoms i and j, ǫ is the pairwise
well-depth parameter and σ is the distance at which the atomic
radii meet and where the potential changes sign.

σ=
σi+σ j

2
(4)

ǫ=
√

ǫiǫj (5)

FIGURE 3 | Schematic top view of the simulation box. HIVp is placed on

CH3-SAM, and two initial starting positions of xk263, A and B, are on the

yz-plane. The simulation is terminated after xk263 binding to HIVp, and

another new replica will start. If xk263 reaches the +x-direction wall, the

simulation is also terminated, and a new replica will start in a different position

on the yz-plane.

TABLE 1 | Summary of molecular systems used in this study.

Details of model system

HIVp orientations 2

Periodic wall y

Flow direction x

Top Closed in z-direction

Ligand concentration 110 µM

Ligand initial position As a yz-plane

Surface with and without CH3-SAM

Protein height 0 and 20 Å above the surface

Box dimension 400 × 400 × 220 Å3

Termination Reaching +x-direction wall or within 11.5 Å of ASP 25′

The calculation of screened Coulombic potential is as follows:

ESC=
keqiqje

−krij

rijǫ
(6)

where rij is the distance between two point-charges i and j
from the ligand and receptor, respectively, qi and qj are the
partial electron charges of the ligand point charges i and receptor
point charges j, k is the screening parameter, ke is the Coulomb
constant, kb is the Boltzmann constant and ǫ is the solution
dielectric constant.

xk263 Distribution
The distribution of xk263 in the system was calculated by using
continuous BD trajectories. The volume of the system was
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divided into 11 slices of 20 Å height each. The total number
of appearances of xk263 replicas was computed for each slice
in 0.3 µs. The calculation of g(z), distribution, is according to
Equation 8

g (z)=
N

M
=

N

nR×
v
V×f

(7)

where N is the total number of appearances of xk263 replicas in
a slice within a certain number of frames, M is the expected total
number of appearances approximated from a random diffusional
motion, nR is the number of xk263 replicas in the system, v is the
volume of the slice, V is the total volume of the system, and f is
the number of frames to be analyzed.

RESULTS AND DISCUSSION

Understanding ligand–receptor associations in various
environments is of vital importance in drug binding in
cells or in different experiments. In this study, we analyzed the
effects of the SAM surface, the diffusion flux of ligand xk263
and the position of HIVp from the surface and in comparison
with results with a static environment (Table 1). HIVp has
flexible flaps, which are mostly in closed conformations (Katoh
et al., 2003; Kang et al., 2011). To bind with a ligand, the
flaps may open spontaneously or are induced to open by the
ligand. Because this study focuses on the initial molecular
encounter processes, we chose a flap open conformation and
used rigid-body BD simulations to model the ligand association.
In addition, the orientation of HIVp with respect to the +x
direction diffusion flux of xk263 can affect ligand association.
Therefore, we examined two HIVp orientations, perpendicular
and parallel with the ligand flux (Figure 2). We modeled 60
different systems (Figure 4). We chose the values of xk263
diffusion flux that gradually show the changes of the modeled
values with the flux.

Environmental Factors Involved in Ligand
Diffusion and Distribution
Intermolecular Interactions Between xk263 and

CH3-SAM
We first examined the interactions between xk263 and CH3-
SAM when the ligand diffusion flux varies. Table 2 shows weak
van der Waals (vdW) interactions between xk263 and CH3-SAM
regardless of the flux, which resulted in no significant adsorption
of xk263 on SAM (Figure 6A). Because of the hydrophobic
nature of CH3-SAM and xk263, it is not surprising that the
electrostatic interaction was close to zero.

Notably, our BDmovement yielded the translational diffusion
coefficient of xk263, Dlig = 5.58 ± 0.33 × 10−6 cm2/s when a
system had no SAM and no ligand diffusion flux. The modeled
ligand diffusion coefficient is in good agreement with analytical
values, Danalytical = 4.91 × 10−6 cm2/s, which also validates our
simulation setting and BD algorithm (Supplementary Methods).
Although the intermolecular vdW was weak, the attractions still
affected the diffusion of xk263 molecules, and the molecule
diffused a little slower in the presence of SAM with or without
xk263 diffusion flux (Figure 5, Supplementary Table 1). Because
the flow rate is inversely proportional to the viscosity (Pfitzner,
1976), the diffusion coefficient of xk263 increased with increasing

TABLE 2 | Interaction energies between xk263 and CH3-SAM in 7 different xk263

diffusion fluxes.

xk263 diffusion flux (× 1022/s.m2) Eelec (kcal/mol) EvdW (kcal/mol)

0 −0.045 ± 0.14 −1.126 ± 0.89

0.45 −0.056 ± 0.12 −1.098 ± 0.65

1.09 −0.010 ± 0.11 −1.547 ± 1.14

3.43 0.015 ± 0.14 −1.194 ± 0.95

5.62 0.003 ± 0.11 −1.488 ± 0.96

11.29 0.006 ± 0.10 −1.273 ± 1.13

17.20 0.005 ± 0.13 −1.069 ± 0.83

FIGURE 4 | Sixty different systems used in this study. The two HIVp orientations are shown in Figure 2.
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xk263 diffusion flux, as anticipated. However, because the water
flow rate was not equal to the xk263 diffusion flux, we did not see
a simple linear relationship between the two values.

FIGURE 5 | Plot of translational diffusion coefficient of xk263. Diffusion

coefficient increases with xk263 diffusion flux. (see Supplementary Table 1
for numerical data).

Distribution of xk263 in the Simulation Tube
We further investigated whether the environment may affect
the concentration gradient of xk263 along the z-direction when
the molecule diffuses in the square tube. The system was
partitioned into slices of 20 Å each along z-direction, and
Figure 6 shows the distribution of xk263 as a function of their
distance above the surface. The distribution of xk263 for a slice,
g(z), is the ratio of number of observed xk263 and number
of expected xk263 approximated from a random diffusional
motion. The systems include HIVp with one orientation
shown in Figure 2A. When there was no SAM and the
xk263 diffusion flux was small (green line in Figure 6A), the
distribution of xk263 was the same throughout the z-direction
(distribution ratio = ∼1). In contrast, when CH3-SAM was
present (Figures 6A–C), xk263 was double that in the first slide
(within 20 Å of the SAM) when diffusion flux of xk263 was
<1.09 × 1022 molecules/s m2. The results suggest that even if
the intermolecular attraction between xk263 and CH3-SAM is
weak, the concentration can be increased by 2-fold, which helps
to increase the probability of a molecular encounter. Studies for
various systems also showed that local molecular concentration
can be effected by a surface; for example, surface catalyzed
biomolecular reaction using nanoreactors, nucleotidase co-
localization, and absorption of biomacromolecules on hydrogels
(Roa et al., 2017; Pérez-Mas et al., 2018; Rahmaninejad et al.,
2020).

FIGURE 6 | Plot of concentration distribution of xk263, g(z), as a function of the distance above the CH3-SAM, z, in seven different diffusion fluxes (A–G). The space

was partitioned into equally sized slices with a height of 20 Å. g(z) is the ratio of number of observed xk263 and the number of expected xk263 approximated from a

random diffusional motion.
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TABLE 3 | Average association time (tavg) with different xk263 diffusion fluxes.

HIVp perpendicular to the yz–plane, tavg (ns) HIVp parallel to the yz-plane, tavg (ns)

xk263 diffusion
flux (× 1022

/s.m2)

0Å above the
surface, With

SAM

0Å above the
surface, No

SAM

20Å above the
surface, With

SAM

20Å above the
surface, No

SAM

0Å above the
surface, With

SAM

0Å above the
surface, No

SAM

20Å above the
surface, With

SAM

20Å above the
surface, No

SAM

0 1491.55 1064.41 1213.45 901.99 1405.77 1084.49 1124.5 905.21

0.45 126.50 122.00 108.70 110.17 145.54 124.90 128.30 111.68

1.09 55.56 51.93 43.61 45.28 53.71 50.05 47.98 44.65

3.43 18.73 18.83 15.042 15.57 17.77 17.83 16.23 15.53

5.62 11.08 10.48 10.31 9.47 10.78 11.01 9.75 9.55

11.29 5.62 5.52 5.52 4.80 5.53 5.38 4.89 4.89

17.20 3.69 3.59 3.33 3.25 3.58 3.69 3.27 3.26

TABLE 4 | Inverse of average association time per molarity and percentage of successful binding with different xk263 diffusion fluxes.

xk263 diffusion
flux (× 1022

/s.m2)

0Å above the surface,
With SAM

0Å above the surface, No
SAM

20Å above the surface,
With SAM

20Å above the surface,
No SAM

1/tavg perM
(/nsM)

Association
percentage

1/tavg per M
(/nsM)

Association
percentage

1/tavg per M
(/nsM)

Association
percentage

1/tavg per M
(/nsM)

Association
percentage

HIVp perpendicular to the yz-plane

0 6.09 18.59 8.54 18.14 7.49 18.67 10.08 19.18

0.45 71.86 3.02 74.52 3.82 83.63 3.53 82.52 4.24

1.09 163.63 1.22 175.07 1.73 208.45 1.67 200.75 2.16

3.43 485.44 0.52 482.66 0.64 604.35 1.00 583.76 0.89

5.62 820.41 0.35 867.45 0.33 881.41 0.90 959.31 0.65

11.29 1618.17 0.18 1646.61 0.14 1646.43 0.70 1892.99 0.43

17.20 2461.66 0.11 2532.29 0.07 2732.55 0.46 2793.33 0.34

HIVp parallel to the yz-plane

0 6.47 17.15 8.38 17.85 8.08 18.99 10.04 20.61

0.45 62.46 3.25 72.78 3.88 70.86 3.43 81.40 4.22

1.09 169.25 1.21 181.64 1.71 189.48 1.86 203.61 1.92

3.43 511.39 0.38 509.78 0.48 559.99 0.71 585.19 0.75

5.62 842.87 0.22 825.62 0.21 931.88 0.40 952.29 0.42

11.29 1645.34 0.05 1690.36 0.05 1858.74 0.14 1858.13 0.15

17.20 2538.08 0.02 2461.19 0.02 2781.88 0.06 2788.36 0.07

The SAM retains xk263 near the surface only when the
diffusion flux of the ligand was small. When the flux increases,
the local concentration of xk263 near the surface decreased,
and xk263 had the highest concentration near the middle
of the z-direction (see ∼100 Å in Figures 6D–G). The
distribution of concentration gradient along the z-direction
was the same with or without SAM, which suggests that the
weak intermolecular interactions can be altered easily when
xk263 has diffusion flux in the x-direction. Our results
are consistent with experiments showing the quadratic
curve of concentration gradients with flow (Chen et al.,
2017). With larger diffusion flux, a significantly smaller
amount of xk263 diffused near the surface where HIVp
locates, and the reduced distribution also contributed
toward probability of small xk263–HIVp association,
discussed later.

HIVp–xk263 Association in Different
Environments
HIVp Immobilized on the Surface
We modeled the average xk263–HIVp association time and the
binding percentage when HIVp was 0 Å above the surface with
SAM (Tables 3, 4 with SAM) or without SAM. Theoretically, if
xk263 employs only 3-dimensional diffusion within a sphere, the
average association time to bind to HIVp located in the center
of the sphere is 2648.4 ns when the system has no external
flux (Supplementary Methods) (Adam and Delbrück, 1968).
The association time modeled by our simulation is 1491.55 ns
is close to the theoretical value. The faster binding time than
theory is due to use of a box, and xk263 did not need to
search the whole sphere to associate with HIVp. Notably, existing
association rate theories describe system without diffusion flux
(Berg and Purcell, 1977; Szabo et al., 1980; Shoup and Szabo,
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FIGURE 7 | Plot of average association time vs. xk263 diffusion flux. HIVp is placed (A) perpendicular to the yz-plane and (B) parallel to the yz-plane; Similar data

imply no effect of HIVp orientation on the association time. In each plot, coinciding lines (red, green, blue, and magenta) show no effect of hydrophobic CH3-SAM or

height of the receptor from the surface.

FIGURE 8 | Plot of association percentage vs. xk263 diffusion flux under two different HIVP’s orientation (A,B). Association percentage is defined as the fraction of

successful binding from the total number of trajectories in the system.

1982) and further theoretical work in molecular association with
buffer flowing is needed. Although the interactions between
xk263 and CH3-SAM were small, to examine the environment
effects, we turned off the intermolecular vdW and electrostatic
interactions, so the system was in a confined space without
intermolecular attractions or repulsion (without SAM). The x-
direction diffusion flux of xk263 gradually increased from zero
to 1.7 × 1023 molecules/s m2, and the average xk263–HIVp
association time decreased non-linearly. The correlation was
observed in a previous study, showing that the association time
for human immunoglobulin G (IgG) and Staphylococcus aureus
protein A (SpA) decreased with increasing flow rate (Ogi et al.,
2008). The average association time did not differ without or
with SAM in the presence of diffusion flux (Table 3). This
is not surprising because the CH3-SAM provides only weak

attractions to xk263, and the surface neither increased the local
concentration of xk263 to assist ligand association nor retained
the ligand from binding to HIVp (Figure 6) (Cholko et al., 2020).
However, if the attraction between a ligand and surface is large, it
may affect experimental results. As a result, existing experimental
studies considered the choice of the surface for the sensor
or SPR to optimize experimental sensitivity and accuracy. For
example, phospholipid/alkane bilayers might be a better option
for molecular binding in biomolecular systems using SPR (Plant
et al., 1995). These phospholipid derivatized surfaces may bring
non-specific interactions for xk263 which is absent in our current
model, which can result in slightly longer association time.

We report the inverse of association time per molarity and
the association percentage (Table 4). When xk263 was freely
diffused in the tube without diffusion flux, the association rate
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approximated using the average association time, 1/1491.55 ns
per M, yielded kon = 7.8 × 109 1/Ms. Using the diffusion
coefficient from the BD run (Supplementary Table 2), our
simulated kon was approximately a half of the analytical value,
kon = 4πRD = 1.2 × 1010 1/Ms because the analytical
formula does not consider molecular geometry in association.
Our modeled kon was also slightly slower than that measured
using SPR for another highly similar cyclic urea compound,
2.5 × 1010 1/Ms (Markgren et al., 2002). The first phase in
SPR utilizes buffer flowing and detects binding signals, which
require successful collision to have the correct ligand and
HIVp orientation and enough energy. The flow may influence
successful collision, especially on biomolecular systems which
usually have complex molecular geometry. Of note, the inverse
association time increased linearly with xk263 diffusion flux
(Supplementary Figure 1), which suggests that the association
rate may also increase linearly with the flow. However, our
modeled diffusion coefficients (Supplementary Table 2) show an
exponential increase with the xk263 diffusion flux (Figure 5).
When particles have flux moving along the +x direction, the
ligand did not freely diffuse in all directions, and the equation
for the diffusion-controlled association system, kon = 4πRD, was
no longer suitable to approximate the association rate constants.
Therefore, we cannot directly estimate kon from the increased
diffusion coefficient.

The additional +x direction drift velocity also reduced the
initial encounter probability. When the flux was >3.43 × 1022

molecules/s.m2, xk263 passed the tube without sufficient time to
freely diffuse in the y and z directions, which resulted in reduced
search space and tremendously decreased association percentage.
Large diffusion flux also yielded fewer xk263 molecules staying
near both the SAM andHIVp surface. Notably, xk263may diffuse
on the surface of HIVp before binding to the pocket. The xk263
diffusion flux in the +x direction perturbed the interactions
between xk263 and HIVp, and the weakened intermolecular
attractions also led to decreased association percentage.

In typical experimental settings, an immobilized protein
can have multiple orientations. Therefore, we chose two
representative orientations—the binding pocket of HIVp
perpendicular or parallel to the flux of xk263—to examine
whether the orientation against the flow affects ligand
binding. Tables 3, 4, Figures 7, 8 show no difference in
average ligand association time and binding percentage with
the two orientations. Because the binding pocket of HIVp is
widely accessible for the ligand, the impact of the orientation
was insignificant. However, some proteins exhibit a certain
direction for ligands to enter the binding pocket, and their
orientation against the flux of the ligands can affect the
ligand–protein association.

Artificially Localized HIVp 20 Å Above the
Surface
Although different HIVp orientations did not affect xk263
association time, existing studies showed that the dimer interface
(the bottom part of HIVp) is the most popular region for
ligands’ initial encounter of HIVp (Roberts and Chang, 2016).

After reaching the dimer interface, the ligand can undergo
surface diffusion to reach the binding pocket. When we placed
HIVp 0 Å above the surface, this bottom region became
partially inaccessible to xk263. Therefore, immobilized HIVp
was artificially placed 20 Å above the surface so that xk263
can easily reach the bottom region. When the whole HIVp
surface was accessible to xk263, the association time was reduced
by 10–20% when the xk263 diffusion flux was <1.09 × 1022

molecules/s.m2, which suggests that the additionally available
bottom region accelerates xk263 binding (Table 3) and slightly
increases the association percentage (Table 4). Even when HIVp
was placed 20 Å above the surface, the location was not far
enough to eliminate the intermolecular xk263–SAM interactions.
As a result, xk263 spent longer time near SAM when xk263
diffusion flux was small, thus resulting in longer time to
associate with HIVp when SAM was present rather than absent.
When the flux exists, the association time was the same when
the SAM was present or absent, regardless the position of
HIVp (Table 3).

CONCLUSION

Ligand–protein encounters can occur in any environment
that may provide additional intermolecular interactions or the
transporting forces to the ligand. For example, in experimental
settings such as using SPR to study ligand–protein binding,
the choice of the surface and the flow rate are all optimized
for measurements. In this study, we used BD simulations to
investigate the effect of the CH3-SAM surface on xk263–HIVp
association. The non-polar surface provided weak intermolecular
vdW attractions with xk263 to slightly increase the ligand binding
time. The effects quickly vanished when xk263 had an x-direction
diffusion flux, and the association time decreased when the
diffusion flux increased regardless of the presence of SAM or
only a special plane. With no diffusion flux, xk263 was twice
more concentrated within 20 Å of the SAM surface because
of the xk263–SAM interactions. The concentration gradient
did not increase binding time but increased xk263–HIVp
binding probability. When the xk263 diffusion flux increased,
the middle region of the square tube had the highest xk263
concentration, which is the same as existing experiments showing
a quadratic curve of concentration gradients with flow. The
results also show that when HIVp was placed on the surface
(0 Å above the surface), the bottom part of the protein, a
known high-probability site of the xk263–HIVp first encounter,
was not accessible to xk263. Because xk263 could bind non-
specifically on the HIVp surface and then utilize surface
diffusion to reach the binding site, occluding this bottom
region increased ligand binding time by 10–20% in the static
environment. However, with large xk263 diffusion flux, all the
weak intermolecular interactions and searching along the HIVp
surface were eliminated, which resulted in a fast association
time and small binding probability. This work brings insights
into how ligand diffusion flux and the environment may affect
ligand–protein association.
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Cryogenic electron tomography (cryo-ET) allows structural determination of biomolecules

in their native environment (in situ). Its potential of providing information on the dynamics

of macromolecular complexes in cells is still largely unexploited, due to the challenges

of the data analysis. The crowded cell environment and continuous conformational

changes of complexes make difficult disentangling the data heterogeneity. We present

HEMNMA-3D, which is, to the best of our knowledge, the first method for analyzing cryo

electron subtomograms in terms of continuous conformational changes of complexes.

HEMNMA-3D uses a combination of elastic and rigid-body 3D-to-3D iterative alignments

of a flexible 3D reference (atomic structure or electron microscopy density map) to

match the conformation, orientation, and position of the complex in each subtomogram.

The elastic matching combines molecular mechanics simulation (Normal Mode Analysis

of the 3D reference) and experimental, subtomogram data analysis. The rigid-body

alignment includes compensation for the missing wedge, due to the limited tilt angle

of cryo-ET. The conformational parameters (amplitudes of normal modes) of the

complexes in subtomograms obtained through the alignment are processed to visualize

the distribution of conformations in a space of lower dimension (typically, 2D or 3D)

referred to as space of conformations. This allows a visually interpretable insight

into the dynamics of the complexes, by calculating 3D averages of subtomograms

with similar conformations from selected (densest) regions and by recording movies

of the 3D reference’s displacement along selected trajectories through the densest

regions. We describe HEMNMA-3D and show its validation using synthetic datasets.

We apply HEMNMA-3D to an experimental dataset describing in situ nucleosome

conformational variability. HEMNMA-3D software is available freely (open-source) as part

of ContinuousFlex plugin of Scipion V3.0 (http://scipion.i2pc.es).

Keywords: cryo electron tomography, continuous conformational changes, flexible-reference alignment, normal

mode analysis, nucleosomes in situ
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1. INTRODUCTION

Cryogenic electron microscopy (cryo-EM) image collection and
analysis technique referred to as single-particle analysis (SPA)
allows near-atomic structural resolution of purified biomolecular
complexes (in vitro). It is based on the principle of reconstructing
a three dimensional (3D) structure from two dimensional
(2D) parallel-beam projection images of vitrified specimens
containing many copies of the same macromolecular complex
at unknown orientations and positions. The 3D reconstruction
requires extracting macromolecular complexes (particles) from
the collected images into individual (single-particle) images
and determining the particle orientation and position in
every single-particle image. On the other hand, cryogenic
electron tomography (cryo-ET) is gaining popularity for studying
biomolecular complexes in their native environments (in situ).
Cryo-ET requires the acquisition of multiple 2D projection
images of the specimen in a range of orientations. In most
practices, the specimen is physically rotated around a single axis
(perpendicular to the electron beam) inside the cryo electron
microscope. An image is collected at each tilting angle in a
specific range (e.g., −60 to 60◦ with a step of 1◦), yielding a tilt
series representing 2D projections of the specimen. The tilt series
is then used to computationally reconstruct a 3D volume called
tomogram. A tomographic reconstruction typically contains
hundreds of copies of a target biomolecular complex at
unknown orientations and positions. These copies are then
identified and extracted into individual (single-particle) volumes
called subtomograms, either manually or semi-automatically
(via template matching methods). Subtomograms suffer from
a low signal-to-noise ratio (SNR), which is due to exposing
the sample to a low electron dose during data acquisition in
order to preserve the fragile biological structure. Additionally,
subtomograms suffer from the so-called missing wedge artifacts,
which are due to inability to include in the 3D reconstruction
the images from all orientations (the maximum tilt angle in the
microscope is usually limited to ± 60◦). The missing wedge
artifacts are often observed as elongation along the beam axis,
blurring, and distracting caustics in the subtomograms. Due
to the low SNR and the missing wedge artifacts, cryo-ET data
processing is mainly based on rigid-body aligning and averaging
many subtomograms to enhance the data quality and reveal the
targeted biomolecular structure (Leigh et al., 2019).

The primary technique for macromolecular structural
determination is so-called subtomogram averaging (StA), in
which subtomograms are classified, rigid-body aligned and
averaged into 3D density maps iteratively (Mahamid et al.,
2016; Schur et al., 2016; Wan and Briggs, 2016; Albert et al.,
2017; Böck et al., 2017; Bykov et al., 2017; Pfeffer et al.,
2017; Riedel et al., 2017; Wan et al., 2017; Davies et al., 2018;
Guo et al., 2018; Hutchings et al., 2018; Kovtun et al., 2018;
Mosalaganti et al., 2018; Park et al., 2018; Kaplan et al., 2019;
Rapisarda et al., 2019). However, with recent instrumentation
and software development, more research moves in the direction
of studying single-particle subtomograms individually (with no
or a minimum of averaging) by developing new methods for
denoising, missing wedge correction, and 3D reconstruction

(Zhang and Ren, 2012; Moebel and Kervrann, 2020; Zhai et al.,
2020).

Biomolecular complexes are not rigid but flexible entities
with gradual (continuous) conformational transitions, and this
flexibility is usually referred to as continuous conformational
variability. If not properly taken into account, conformational
heterogeneity limits the resolution of the resulting 3D structure.
However, SPA research in the last decade has shown that
disentangling the different conformations and identifying the
conformational transitions from heterogeneous samples is
valuable to study molecular mechanisms of action of complexes
(Dashti et al., 2014; Jin et al., 2014; Zhou et al., 2015; Abeyrathne
et al., 2016; Banerjee et al., 2016; Haselbach et al., 2018).
The majority of available SPA computational methods rely
on optimized biochemical specimen preparation protocols and
data classification, and simplify the problem of conformational
heterogeneity by assuming that the data can be classified into
a small number of different conformations (Penczek et al.,
2006, 2011; Fu et al., 2007; Elad et al., 2008; Scheres, 2012;
Lyumkis et al., 2013). However, some SPAmethods explicitly take
into account continuous conformational variability and aim at
determining the full conformational distribution (Dashti et al.,
2014; Jin et al., 2014; Sorzano et al., 2014; Katsevich et al., 2015;
Tagare et al., 2015; Frank and Ourmazd, 2016; Andén and Singer,
2018; Harastani et al., 2020). They represent images in a low-
dimensional space, referred to as space of conformations or
energy landscape, and allow a 3D visualization of conformational
changes along trajectories in this space. For more information on
SPA methods for continuous conformational variability analysis,
the reader is referred to the recent reviews by Jonić (2017) and
Sorzano et al. (2019).

Methods reported to deal with cryo-ET data heterogeneity
are based on rigid-body alignment and can be classified into (i)
post-alignment classification approaches, and (ii) simultaneous
alignment and classification approaches (Förster et al., 2008;
Scheres et al., 2009; Stölken et al., 2011; Xu et al., 2012;
Chen et al., 2014; Bharat and Scheres, 2016; Himes and
Zhang, 2018). In the first family, the starting point is usually
the covariance matrix representing the similarities of each
pair of aligned subtomograms. The covariance matrix serves
as a basis for a classification technique with some variants
including dimensionality reduction. The second family of
methods is based on competitive alignment. An example of
the competitive alignment is a multireference alignment in
which a subtomogram is compared with a set of different
references provided by an expert user based on a prior knowledge
and, then, attributed to the reference that yields the highest
similarity score. Another example is maximum-likelihood-
based alignment, where each subtomogram contributes to all
references with a probability. The main drawback of the post-
alignment classification approaches is that the classification is
heavily dependent on the alignment quality that degenerates
with broadly heterogeneous specimens. The main drawback
of the simultaneous alignment and classification methods is
that the number of classes must be decided and set prior to
the use of the methods. Besides, the methods that require
prior knowledge of the specimen’s anticipated conformations
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are prone to overfitting and data misinterpretation. Finally, as
macromolecular complexes are not rigid but flexible entities
with continuous conformational transitions, particles assigned
to the same class will rarely, if ever, have perfectly identical
conformations. Formore information regarding the classification
based techniques for cryo-ET conformational heterogeneity, the
reader is referred to a recent review on the available techniques
by Castaño-Díez and Zanetti (2019).

Existing multivariate statistical analysis techniques adapted to
cryo-ET analysis of continuous flexibility of particular systems
have been used previously (e.g., Mattei et al., 2016). However, to
the best of our knowledge, no method is currently available that
has been specifically designed for cryo-ET analysis of continuous
conformational variability of a general-case macromolecular
complex. In this article, we present one such method,
named HEMNMA-3D, which allows analyzing continuous
conformational variability of macromolecular complexes by
cryo-ET. It is inspired by HEMNMA, a method for continuous
conformational variability analysis in SPA (Jin et al., 2014;
Sorzano et al., 2014; Harastani et al., 2020). HEMNMA
interprets the conformation in each cryo-EM single-particle
image by comparing this image with 2D projections of a 3D
reference (an atomic structure or a density map) deformed
elastically using normal modes. Normal Mode Analysis (NMA)
is a method for molecular mechanics simulation. One of its
main applications is elastic deformation of an existing atomic
structure of one conformation to fit an electron microscopy
density map (EM map) of a different conformation of the
same macromolecule, which is usually known as normal
mode flexible fitting and allows obtaining atomic resolution
models for the EM map (Tama et al., 2004a,b). However,
as HEMNMA, HEMNMA-3D can use normal modes of an
atomic structure or a density map. As in the case of the
reference density-map structure in HEMNMA, HEMNMA-3D
converts the density map into a collection of 3D Gaussian
functions, referred to as pseudoatoms, and computes normal
modes of this pseudoatomic structure, following the procedures
described in Nogales-Cadenas et al. (2013), Jin et al. (2014),
and Jonić and Sorzano (2016). HEMNMA-3D uses the atomic
or pseudoatomic normal modes to elastically deform the 3D
reference to match the conformation of the complex in the
given series of subtomograms (3D data) (see Figure 1). More
precisely, HEMNMA-3D uses a combination of elastic (based on
normal modes) and rigid-body 3D-to-3D iterative alignments of
the 3D reference to match the conformation, orientation, and
position of the complex in each subtomogram, and includes
compensation for the missing wedge. The conformational
parameters (amplitudes of normal modes) of the complexes
in subtomograms obtained through the alignment are then
processed to visualize the distribution of conformations in a
space of lower dimension (typically, 2D or 3D) referred to as
space of conformations. This space allows a visually interpretable
insight into the dynamics of complexes, by calculating 3D
averages of subtomograms with similar conformations from
selected (densest) regions and by recording movies of the
3D reference’s displacement along selected trajectories in the
densest regions.

In this article, we describe HEMNMA-3D and show its
validation using synthetic datasets. Additionally, we show
an application of HEMNMA-3D with an experimentally
obtained dataset for in situ nucleosome conformational
variability. HEMNMA-3D software is available freely (open-
source) as part of ContinuousFlex plugin of Scipion V3.0
(http://scipion.i2pc.es). The article is organized as follows:
section 2 describes building blocks of HEMNMA-3D workflow,
notably, in 2.5 we describe the software developed for this
method. In section 3, we present (i) the process of synthesis of
test datasets and HEMNMA-3D validation using these synthetic
test data, and (ii) use of HEMNMA-3D with experimental, in situ
nucleosome data, and we discuss these results. The conclusions
are provided in section 4.

2. MATERIALS AND METHODS

The flowchart in Figure 2 describes the workflow of the proposed
method, which was inspired by the workflow of HEMNMA (Jin
et al., 2014; Harastani et al., 2020). A graphical summary of the
method is presented in Figure 3. The workflow comprises the
following steps: (1) Input: the input to the method are a reference
structure and a set of subtomograms. In the case where the
reference structure is a density map (a 3D volume, such as an EM
map or a subtomogram average), a conversion to 3D Gaussian
functions (pseudoatoms) takes place. (2) Normal mode analysis
of the reference atomic structure or the reference pseudoatomic
structure (obtained by converting the reference density map
into 3D Gaussian functions in the previous step). (3) Combined
iterative elastic and rigid-body 3D-to-3D alignment of the
reference structure with each input subtomogram independently
from other subtomograms, with missing wedge compensation.
(4) Visualization of the computed conformations, after projecting
the conformational parameters obtained for all subtomograms
onto a low-dimensional space. In the remaining part of this
section, we describe these steps in more detail. Please note
that the first two steps of the workflow are exactly as those of
HEMNMA and were thoroughly presented, tested and discussed
in our previously published works on HEMNMA, its tools
and applications (Nogales-Cadenas et al., 2013; Jin et al., 2014;
Sorzano et al., 2014; Jonić and Sorzano, 2016; Harastani et al.,
2020). However, for completeness of the present article, we here
recall their basic principles. We close this section by a brief
description of the software implemented for HEMNMA-3D.

2.1. Input Reference and Conversion of
Reference Density Maps Into Pseudoatoms
A reference structure of the molecule targeted in the
subtomograms can be used in the form of an atomic model
(PDB formatted files) or a density map, such as an EM map
(SPA reconstruction) or a subtomogram average (obtained
using classical StA without taking into account conformational
heterogeneity). Although our method can be used with both
atomic and density-map reference structures, one should prefer
the use of a reference density map from the data at hand, if it
can be obtained. If a reference density map is used, it must be
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FIGURE 1 | The general scheme of elastic deforming of a reference structure (atomic or pseudoatomic) using normal modes to fit a density map (e.g., an EM map or

a subtomogram average).

converted into a collection of Gaussian functions (pseudoatoms)
with a carefully selected standard deviation (pseudoatom size,
whose default value is 1 voxel Nogales-Cadenas et al., 2013;
Jonić and Sorzano, 2016). The pseudoatom size should lead to a
structure (called pseudoatomic structure) that, converted back
to a density map, approximates the input density map with a
small error (given a target approximation error, whose default
value is 5% Nogales-Cadenas et al., 2013; Jonić and Sorzano,
2016). Optionally, a mask on the density map can be used prior
to the conversion into pseudoatoms (e.g., a spherical binary
mask of a given radius) to reduce background noise. Such masks
may also be useful if applied on input cryo-ET subtomograms
to maximize the chance of having a single molecular complex
in each subtomogram (Preprocessing block in the workflow
in Figure 2A).

2.2. Normal Mode Analysis
This step involves computing normal modes of a reference
atomic or pseudoatomic structure, for the 3D-to-3D elastic
alignment in the next step. The computation of normal modes
is based on the elastic network model (Tirion, 1996; Tama
et al., 2002) by representing the interaction between the
(pseudo-)atoms as if they are locally connected by elastic springs
(within a cutoff distance). Normal Mode Analysis requires the
diagonalization of a 3N × 3N matrix of second derivatives of
the potential energy (Hessian matrix), where N is the number
of nodes in the elastic network model determined by the total
number of atoms (or pseudoatoms) in the input reference. In

the case of atomic structures, we use the rotation-translation
block (RTB)method, which divides the structure into blocks (one
or a few consecutive residues per block) whose rotations and
translations are considered rather than all degrees of freedom
for all atoms (Durand et al., 1994; Tama et al., 2000). Since
the RTB method reduces the basis for Hessian diagonalization,
it allows fast computing of normal modes. Since pseudoatomic
structures usually contain fewer nodes (pseudoatoms) than
atomic structures, normal modes can be obtained by a direct
diagonalization of the 3N × 3N Hessian, which is referred to
as the Cartesian method. As in the case of HEMNMA, we here
use the RTB and Cartesian method implementations of Tama
et al. (2002) and Suhre and Sanejouand (2004), respectively.
Larger values of the interaction cutoff distance (the distance
below which atoms or pseudoatoms do not interact) lead to
more rigid motions. The atomic interaction cutoff distance may
be set manually (by default 8 Å) and the pseudoatomic cutoff
distance is recommended to be computed automatically based
on the distribution of the pseudoatomic pairwise distances (e.g.,
as the value below which is a given percentage of all distances
as in Nogales-Cadenas et al., 2013; Jin et al., 2014; Jonić and
Sorzano, 2016; Harastani et al., 2020). The modes are computed
along with their respective collectivity degrees, which count the
number of atoms or pseudoatoms affected by the mode as in
Brüschweiler (1995). To allow faster data analysis and avoid noise
overfitting in the 3D-to-3D elastic alignment in the next step, we
select a subset of normal modes (usually, less than 10) with lowest
frequencies and highest collectivities, as previously described (Jin
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FIGURE 2 | Flowchart of HEMNMA-3D. (A) Workflow. (B) Combined iterative elastic and rigid-body 3D-to-3D alignment step (the core module of HEMNMA-3D).

FIGURE 3 | A graphical summary of the dataflow of HEMNMA-3D. (A) Input subtomograms containing the same biomolecule but at different orientations, positions

and conformations (here represented with a low level of noise for illustration). (B) Input subtomograms projected onto a low-dimensional “space of conformations,”

describing and visualizing the biomolecular conformational variability contained in the subtomograms. (C) Grouping of close points (subtomograms with similar

biomolecular conformations) and averaging of subtomograms in these groups. (D) Animating biomolecular motion along trajectories identified in the densest regions.

et al., 2014; Sorzano et al., 2014; Harastani et al., 2020). Low-
frequency high-collectivity normal modes have been shown to
be relevant to functional conformational changes (Tama and
Sanejouand, 2001; Delarue and Dumas, 2004; Wang et al., 2004;
Ma, 2005; Suhre et al., 2006; Tama and Brooks, 2006). The first

six (lowest-frequency) normal modes are related to rigid-body
transformations and are thus not used for the 3D-to-3D elastic
alignment in the next step. The rigid-body 3D-to-3D alignment is
done without using these rigid-body normal modes, as explained
in the next paragraph. Additionally, a prior knowledge about the
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conformational transitions of the complex under study can be
used to select the normal modes for the use in the next step. The
HEMNMA-3D graphical interface helps the user decide which
normal modes to select. The reader is referred to Ma (2005)
and Tama and Brooks (2006) for reviews on the usefulness and
limitations of NMA.

2.3. Combined Iterative Elastic and
Rigid-Body 3D-to-3D Alignment
This step, represented in Figure 2B, is the backbone of the
proposed method. It has been inspired by the combined
iterative elastic and rigid-body 3D-to-3D alignment step of
StructMap method (Sorzano et al., 2016), which was proposed
for pairwise similarity analysis of SPA high-resolution EM maps
(no missing wedge). In HEMNMA-3D proposed here, this step
comprises simultaneous NMA-based elastic alignment (search
for amplitudes of a linear combination of normal modes)
and rigid-body alignment (search for orientation and position,
meaning three Euler angles and x, y, and z shifts) of the
reference structure with each given subtomogram. It refines
the amplitudes of displacement along each used normal mode
(elastic parameters) as well as the angles and shifts (rigid-body
parameters) of the reference structure until the best match
is obtained between this reference structure and the given
subtomogram. The latter is achieved bymaximizing the similarity
between the subtomogram and the density volume from the
elastically deformed, oriented and shifted reference, and includes
missing wedge compensation. The missing wedge compensation
is done by calculating the cross-correlation between the reference
and subtomogram density maps only in the region of the Fourier
space where the data can be trusted, i.e., by constraining the
cross-correlation evaluation to the Fourier space region that
excludes the missing wedge region (the region outside of the one
specified by the tilt angle range, e.g., −60 to +60◦). To maximize
this constrained cross-correlation (CCC), we use a variant of
Powell’s UOBYQAmethod, which subjects the objective function
to a trust-region radius (Berghen and Bersini, 2005). To control
the elastic deformation with highly noisy data, the radius of
the trust region is adjusted iteratively. The scaling factor of
the initial trust-region radius is a parameter that controls the
normal-mode amplitude search range and can be modified by
the user. It should have a positive value and its default value
of 1 produces good results in general. It may be increased
(typically to a value between 1 and 2) or decreased (e.g., between
0.5 and 0.9), if expecting larger or smaller conformational
changes, respectively. For each subtomogram, the normal mode
amplitudes are initiated with zeros, meaning that the non-
deformed reference is used in the first iteration. As the iterations
evolve, the reference model is displaced with the new guesses
of the normal mode displacement amplitudes, converted into
a volume and rigid-body aligned with the subtomogram using
the method of fast rotational matching. Fast rotational matching
has been largely used for rigid-body fitting of atomic models
to high-SNR consensus EM maps (Kovacs and Wriggers, 2002;
Kovacs et al., 2003). It has been extended to alignment of noisy
subtomograms in Chen et al. (2013) and this implementation is

used in our work. At the end of each iteration, the CCC is found
and fed to the numerical optimizer (Berghen and Bersini, 2005).
The iterations repeat until the final value of the trust-region
radius or the maximum number of iterations is reached.

2.4. Visualizing and Utilizing the Space of
Conformations
The number of elastic alignment parameters (normal mode
amplitudes) is determined by the number of selected normal
modes for the 3D-to-3D elastic alignment. The ensemble
of normal mode amplitudes (for all subtomograms) can
be projected onto a lower-dimensional space, so-called
conformational space, using a dimensionality reduction
technique. Here, we use linear Principal Component Analysis
(PCA) as it is the most widely known and intuitively clear
dimensionality reduction method, but other dimension
reduction methods could also be used (linear or nonlinear).
The dimensionality reduction is usually performed to two
or three dimensions, which allows a global data display and
easier modeling of conformational changes. Each point in the
conformational space represents a subtomogram and close points
correspond to similar conformations in the subtomograms. The
points that differ significantly from the remaining observations
(too isolated, outlier points) may be excluded from the further
analysis, by excluding the points below a certain p-value based
on the Mahalanobis distance (the distance between each point
and the whole distribution) (Mahalanobis, 1936). The excluded
points can be explained by the fact that some orientations of
the molecule combined with the missing wedge artifacts and
the high noise make some volumes more difficult to align
with the elastically deformed reference. After excluding such
outlier points, the space of conformations can be analyzed to
reveal molecular dynamics. This can be done by averaging
subtomograms of similar conformations in the densest regions
of the conformational space or by exploring the densest regions
by fitting curves (approximation by line segments) through
the data and displacing the reference structure along these
curves (referred to as trajectories) to animate the motion along
them. The 1-CCC color bar of the conformational space shows
coloring the points according to the value of the CCC between
the subtomograms and the density maps from the elastically
deformed reference model. Subsequently, the colors provide
the level of confidence in the obtained conformations. Those
subtomograms in which we have less confidence (subtomograms
with lower CCC values) than in the “consensus” observations
(subtomograms with higher CCC values) can be eliminated from
the group averages.

2.4.1. Averaging Subtomograms of Similar

Conformations
Close points in the conformational space can be grouped, which
results in grouping subtomograms of similar conformations
and averaging them. Before computing group averages, the
rigid-body alignment parameters found during the combined
iterative elastic and rigid-body alignment are applied on
the subtomograms. Optionally, before computing group
averages, the missing-wedge Fourier space region of individual
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subtomograms may be filled in with the corresponding region of
the global average computed from all subtomograms. A similar
procedure of missing wedge filling of individual subtomograms
is used in EMAN2 software package (Galaz-Montoya et al.,
2015). The subtomogram averages obtained from the selected
groups of subtomograms can be overlapped and compared to
understand the conformational changes of the complex in the
given set of subtomograms.

2.4.2. Animating Motions (Trajectories)
Distinct trajectories can be determined through the data in the
conformational space, and animated to see the motion of the
biomolecule while it is displaced along the trajectory. To animate
a trajectory, several points (e.g., 10) along the trajectory should
be mapped back to the original displacement space (e.g., using
inverse PCA), resulting in elastic alignment parameters that
can be used to deform the reference atomic or pseudoatomic
structure. Concatenating and displaying the resulting structures
can show a movie-like animation of the reference biomolecule
traveling across the specified trajectory.

2.5. Software Implementation and
Technical Details
The software of HEMNMA-3D method proposed here is freely
available (open-source). It is a part of ContinuousFlex plugin
for the open-source software Scipion3 (De la Rosa-Trevín et al.,
2016). ContinuousFlex was introduced in Harastani et al. (2020)
and also contains HEMNMA software. The software provides a
graphical user interface (GUI) and is empowered with a C++
backend with a message passing interface (MPI) parallelization
scheme to efficiently analyze large datasets (simultaneous analysis
of N subtomograms using N computing threads). We tested
the software on our local workstations and on supercomputer
centers. On our local workstations (2.2 GHz Intel Xeon Silver
4214 CPU processors), the current implementation takes around
10 and 30 min to analyze a subtomogram of size 643 voxels
with three and six normal modes, respectively. These times are
reported for the two types of complexes used in this article,
together with the number of normal modes used in these two
cases. They are the average times required for all iterations of
analyzing one subtomogram using a single computing thread
while the different subtomograms are analyzed in parallel using
different computing threads (if the time is measured for the entire
dataset, it will vary with the size of the dataset). It should be
noted that the software allows the use of any number of MPI
threads and any number of normal modes. However, the more
modes are used, the slower the processing. Finally, it should be
noted that there is no constraint regarding the size of the dataset
(the number of subtomograms) or the size of the individual
subtomograms (the number of voxels) that can be analyzed with
our software.

3. RESULTS AND DISCUSSION

In this section, we present and discuss the results of HEMNMA-
3D with synthetic and experimental subtomograms.

3.1. Synthesizing Datasets for Testing the
Method Performance
For testing HEMNMA-3D in general, and the combined elastic
and rigid-body 3D-to-3D alignment module in particular (which
is the core module of the proposed method), we synthesized two
datasets of conformationally heterogeneous subtomograms that
mimic discrete and continuous conformational variability, called
“Discrete” and “Continuous” datasets, respectively. The flowchart
for the data generation procedure is shown in Figure 4 and is
detailed in the following.

The “Discrete” dataset comprises 900 synthetic subtomograms
representing three different (synthetic) conformations of the
atomic PDB:4AKE structure (Müller et al., 1996) of adenylate
kinase chain A (1656 atoms), i.e., 300 subtomograms per
conformation. We generated this dataset using the atomic
PDB:4AKE structure and its first two non-rigid-body normal
modes, i.e., modes 7 and 8. Precisely, the three conformations are
represented by the following amplitudes of modes 7 and 8: (mode
7, mode 8) ∈ {(−150, 0), (+150, 0), (0, +150)}.

The “Continuous” dataset comprises 1,000 synthetic
subtomograms representing a continuum of conformations
of the same PDB:4AKE structure. We generated this dataset
using this atomic structure and its modes 7 and 8 using a linear
relationship between the amplitudes of the two modes. More
precisely, the synthesized amplitudes of modes 7 and 8 were
identical and randomly distributed in the range [−200, +200]
(uniform distribution).

Normal-mode amplitudes do not have a physical unit.
Nonetheless, the Root Mean Square Deviation (RMSD)
(Kufareva and Abagyan, 2011) between the reference atomic
coordinates and these coordinates displaced using normal-mode
amplitudes transforms the normal mode amplitudes in physical
units. To provide a basis for further evaluation of the method
performance, we found a RMSD of 6.95 Å corresponding to the
displacement using the amplitude of 200 for each of the two
combined modes 7 and 8 (this represents one half of the full
range of the synthesized motion).

To generate a subtomogram, first, we deform the atomic
structure using appropriate amplitudes for the selected normal
modes depending on the dataset in hand, i.e., we use (mode
7, mode 8) = (+150, 0) or (−150, 0) or (0, +150) to create a
subtomogram in the “Discrete” dataset, while we assign a random
value in the range [−200, 200] for both mode 7 and mode 8 to
generate a subtomogram in the “Continuous” dataset. Then, we
convert the deformed structure to a volume of size 643 voxels and
the voxel size of 2.2 Å3 (Peng et al., 1996). Afterwards, we rotate
and shift this volume in 3D space using random Euler angles
(each of the three Euler angles was randomized in the range [0,
360◦]) and random shifts (the shift along each of the x, y, and
z axes was randomized in the range [−5, +5] voxels), and we
project the rotated and shifted volume using tilt values −60 to
+60◦ to obtain a tilt series. We simulate microscope conditions
by adding heavy noise (signal to noise ratio SNR = 0.01) and
modulating the images with a contrast transfer function (CTF)
of defocus −1 µm, so that one part of the noise is affected
by the CTF and the other is not (Sorzano et al., 2007; Chen
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FIGURE 4 | Flowcharts of synthesis of the datasets used for testing and validating HEMNMA-3D, namely “Discrete” dataset (left) and “Continuous” dataset (right).

FIGURE 5 | Examples of synthetic subtomograms containing the same molecule but at different orientations, positions and conformations, for two different noise

levels. (A) Low level of noise (SNR = 0.5). (B) High level of noise (SNR = 0.01).

et al., 2013). Finally, we reconstruct a volume (our synthetic
subtomogram) from the tilt series using a Fourier reconstruction
method (Sorzano et al., 2013). A few examples of the synthesized
subtomograms (SNR= 0.01) and their less noisy version (SNR=

0.5, for illustration) is presented in Figure 5.

3.2. Synthetic Discrete-Type
Conformational Variability
In this experiment, our goal is to retrieve the ground-truth
amplitudes of normal modes 7 and 8 by the combined elastic and
rigid-body alignment (the core module of HEMNMA-3D) of a
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FIGURE 6 | Plots showing the output of the 3D-to-3D elastic and rigid-body alignment module of HEMNMA-3D with “Discrete” dataset (synthetic subtomograms are

simulating discrete conformational heterogeneity). (A) Use of the atomic structure (chain A of PDB:4AKE) and its normal modes to estimate the conformational

parameters (normal-mode amplitudes) and rigid-body parameters (orientation and shift) of the molecules in the input synthetic subtomograms. (B) Use of a

pseudoatomic structure (from a simulated density map) and its normal modes to estimate the conformational and rigid-body parameters of the molecules in the input

synthetic subtomograms. The goal was the retrieval of the ground-truth relationship between the amplitudes along normal modes 7 and 8; ideally, all data should lay in

one of the following three clusters of normal-mode amplitudes: (mode 7, mode 8) ∈ {(-150, 0), (150, 0), (0, 150)}; each point in the plot represents a subtomogram and

close points represent similar conformations. Note that the dashed curves enclose the data points where p-value > 0.01 in Table 1. See the text for more details on

this experiment.

TABLE 1 | Mean absolute error and standard deviation between the estimated and ground-truth normal-mode amplitudes along with the angular and shift distances

obtained with HEMNMA-3D and “Discrete” synthetic dataset, using an atomic structure (Atomic) and simulated EM map (Volume) as input references.

Experiment Mode 7 Mode 8 Mode 9 Angular (deg) Shifting (vox)
p-Value Samples

Ref Dataset Mean Std Mean Std Mean Std Mean Std Mean Std

Atomic “Discrete” 16.51 11.87 10.91 7.64 10.70 6.66 1.33 0.77 0.19 0.09 p > 0.01 871/900

Volume “Discrete” 17.70 13.26 11.90 10.13 12.29 8.03 1.33 0.81 0.21 0.10 p > 0.01 870/900

The data points below the p-value of 0.01 were excluded from the error evaluation based on the Mahalanobis distance measure (few data points differing significantly from the remaining

observations, which would not be selected in real-case experiments as being too isolated and far from other points). The number of points used for the error computation is shown in

the last column of the table (column Samples) and the region with the kept points (p-value > 0.01) is shown in Figure 6.

referencemodel with the subtomograms in the “Discrete” dataset.
In other words, the goal is to find a solution for the challenging
inverse problem of finding the conformation of the structure
in each subtomogram. Since the proposed method can use two
choices for the reference model, namely, an atomic structure and
a density map (e.g., an EM map or a subtomogram average), we
performed two types of tests. In the first test type, the atomic
structure used to generate the synthetic subtomograms (chain A
of the PDB:4AKE) was used as a reference for retrieving normal
mode amplitudes of the synthetic subtomograms. In the second
test type, we converted (Peng et al., 1996) the atomic structure
into a density map (volume) of size 1283 voxels and voxel size of
1 Å3, and we used this density map as a reference for retrieving
normal mode amplitudes of the synthetic subtomograms. In the
case of the reference density map, normal modes were computed
from the corresponding structure obtained by converting the
density map into pseudoatoms (1675 pseudoatoms for the given

pseudoatom radius of 1.25 voxels and the target approximation
error of 5%). In both cases (reference atomic structure and
reference pseudoatomic structure, with their corresponding
normal modes), we used three modes (modes 7, 8, and 9)
instead of only two modes (modes 7 and 8 that were used
to generate synthetic subtomograms), to make the 3D-to-3D
elastic and rigid-body alignment task even more challenging.
Figure 6 presents the estimated amplitudes of normal modes
7 and 8 (the estimated amplitude of normal mode 9 is close
to 0 and is therefore not shown graphically). Table 1 presents
the mean absolute error and the standard deviation between
the estimated and ground-truth normal-mode amplitudes along
with the angular and shift distances. In both test cases, the
three distinct synthetic groups of subtomograms are correctly
separated, taking into account the extreme noise level. The results
show a less accurate alignment in the second case, which is
expected since, in that case, the atomic structure was used to
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FIGURE 7 | Averages of the three groups (enclosed by ellipses) of

subtomograms identified from the output of the 3D-to-3D elastic and

rigid-body alignment module of HEMNMA-3D with “Discrete” dataset (shown

in Figure 6A), using the atomic structure (chain A of PDB:4AKE) and its

normal modes to estimate the conformational parameters (normal-mode

amplitudes) and rigid-body parameters (orientation and shift) of the molecules

in the input synthetic subtomograms. Subtomograms are represented by

points and close points represent similar conformations. The numbers of

volumes written above the shown subtomogram averages are the numbers of

synthetic subtomograms used for computing these subtomogram averages

(the numbers of points enclosed by the corresponding ellipses). On the

bottom, the subtomogram averages are shown at 50% transparency along

with the corresponding ground-truth deformed atomic structure (in red).

generate the dataset and the pseudoatomic structure was used
as the reference model for the method to estimate the normal-
mode amplitudes from this generated dataset. This is in contrast
to the first test case where the same atomic structure was used
to create the dataset and as the reference for the method to
estimate the normal-mode amplitudes from this dataset. We
found a RMSD of 0.55 and 0.60 Å corresponding to a combined
displacement along modes 7, 8, and 9 with the mean absolute
errors in Table 1 for the tests with atomic and pseudoatomic
structures, respectively. Similarly, we found a RMSD of 0.94 and
1.06 Å corresponding a combined displacement along modes
7, 8, and 9 with the sum of the mean and standard deviation
of the absolute errors in Table 1 for the tests with atomic and
pseudoatomic structures, respectively. Hence, the error range
is significantly inferior to the half range of the synthesized
motion (6.95 Å) and the pixel size used to create the data (2.2
Å). Figure 7 shows grouping and averaging the subtomograms

in the first test type (atomic reference). We compared the
obtained subtomogram averages with the corresponding ground-
truth volumes (density maps from ground-truth deformed
models, without noise and missing wedge, used for synthesizing
noisy and CTF-affected tilt-series from which subtomograms
were obtained by 3D reconstruction). The visual comparison
shows no significant difference between them. The resolutions
calculated using Fourier shell correlation—FSC (threshold value
of 0.143), after applying onto the subtomogram average a large
spherical mask (radius of 28 voxels) with smooth edges (Gaussian
smoothing with Gaussian standard deviation of five voxels), are
5.30, 5.35, and 5.74 Å for the three subtomogram averages shown
from left to right in Figure 7, respectively. Without masking
subtomogram averages, these resolutions are 6.31, 6.10, and 6.43
Å, respectively. As a basis for comparison, we provide the
resolutions of three individual subtomograms arbitrarily chosen
from the three corresponding subtomogram averaging groups.
The resolutions of individual subtomograms with masking (the
mask already described) are 10.58, 10.57, and 12.75 Å. The
resolutions of the same subtomograms without masking are
12.67, 13.55, and 14.72 Å. These results show that a twice better
resolution is obtained after averaging only about 300 individual
subtomograms per group (Figure 7).

3.3. Synthetic Continuous-Type
Conformational Variability
Similarly to the previous experiment, our goal in this experiment
is to find a solution for the inverse problem of finding the
conformation of the structure in each subtomogram using the
combined elastic and rigid-body alignment of a reference model
with the subtomograms in the “Continuous” dataset. We used
the same two reference models as in the previous experiment
to estimate the normal-mode amplitudes: an atomic structure
(chain A of PDB:4AKE) and a density map from this atomic
structure. Also, as in the previous experiment, we used three
modes for both tests (atomic or pseudoatomic modes 7, 8,
and 9). Figure 8 presents the estimated amplitudes of modes
7 and 8 (the estimated amplitude of mode 9 is close to 0 and
is not shown in the plots). Table 2 shows the mean absolute
error and the standard deviation between the estimated and
ground-truth normal-mode amplitudes along with the angular
and shift distances. In both test cases, a linear relationship
between the estimated amplitudes of normal modes 7 and
8 is clearly distinguishable, which is close to the identity
relationship between the ground-truth amplitudes taking into
account strong noise present in the data. As in the previous
experiment, the results show a slightly less accurate alignment
in the second test type (pseudoatomic reference) for the same
aforementioned reason. We found a RMSD of 0.66 and 0.75 Å
corresponding to a combined displacement along modes 7, 8,
and 9 with the mean absolute errors in Table 2 for the tests with
atomic and pseudoatomic structures, respectively. Similarly, we
found a RMSD of 1.09 and 1.21 Å corresponding a combined
displacement along modes 7, 8, and 9 with the sum of the mean
and standard deviation of the absolute errors in Table 2 for
the tests with atomic and pseudoatomic structures, respectively.
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FIGURE 8 | Plots showing the output of the 3D-to-3D elastic and rigid-body alignment module of HEMNMA-3D with “Continuous” dataset (synthetic subtomograms

are simulating continuous conformational heterogeneity). (A) Use of the atomic structure (chain A of PDB:4AKE) and its normal modes to estimate the conformational

parameters (normal-mode amplitudes) and rigid-body parameters (orientation and shift) of the molecules in the input synthetic subtomograms. (B) Use of a

pseudoatomic structure (from a simulated density map) and its normal modes to estimate the conformational and rigid-body parameters of the molecules in the input

synthetic subtomograms. The goal was the retrieval of the ground-truth relationship between the amplitudes along normal modes 7 and 8 (ideally linear relationship,

with equal amplitudes of normal modes 7 and 8); each point in the plot represents a subtomogram and close points represent similar conformations. Note that the

dashed ellipses enclose the data points where p-value > 0.001 in Table 2. See the text for more details on this experiment.

TABLE 2 | Mean absolute error and standard deviation between the estimated and ground-truth normal-mode amplitudes along with the angular and shift distances

obtained with HEMNMA-3D and “Continuous” synthetic dataset, using an atomic structure (Atomic) and simulated EM map (Volume) as input references.

Experiment Mode 7 Mode 8 Mode 9 Angular (deg) Shifting (vox)
p-Value Samples

Ref Dataset Mean Std Mean Std Mean Std Mean Std Mean Std

Atomic “Continuous” 20.12 11.30 12.78 11.24 12.74 7.71 1.31 0.79 0.19 0.10 P > 0.001 960/1,000

Volume “Continuous” 21.94 12.59 14.03 9.92 15.68 10.04 1.34 0.80 0.21 0.10 P > 0.001 957/1,000

The data points below the p-value of 0.001 were excluded from the error evaluation based on the Mahalanobis distance measure (few data points differing significantly from the remaining

observations, which would not be selected in real-case experiments as being too isolated and far from other points). The number of points used for the error computation is shown in

the last column of the table (column Samples) and the region where p-value > 0.001 is shown in Figure 8.

Hence, the error range is significantly inferior to the half range
of the synthesized motion (6.95 Å) and the pixel size used to
create the data (2.2 Å). Figure 9 shows grouping and averaging
of subtomograms in this experiment, with eight subtomogram
averages calculated along the distribution of the points for the
first test type (atomic reference). The subtomogram averages
show different conformations of adenylate kinase chain A. Note
that the noise contained in the individual subtomograms (SNR
= 0.01, Figure 5B) was reduced through subtomogram averaging
(Figure 9). Additional experiments, for other noise levels in input
subtomograms, can be found in Supplementary Figure 1 and
Supplementary Table 1.

3.4. Experimental Cryo-ET Data:
Nucleosomes in situ
We applied our method on a dataset comprising 650 in
situ subtomograms of nucleosomes collected from a cell of a
Drosophila embryonic brain, whose conformational variability
was detected but not fully explored in a previous work (Eltsov

et al., 2018). The subtomograms had the size of 643 voxels
and the voxel size of 4.4 Å3. A density map obtained with
classical subtomogram averaging (without taking into account
conformational heterogeneity) was used as the reference density
map for HEMNMA-3D (Figure 10C). The resolution of this
reference density map is around 2 nm (as determined by
Fourier Shell Correlation between the reference density map
and the density map from the atomic nucleosome structure
PDB:3w98 Iwasaki et al., 2013 shown in Figure 10B). For more
information on how this reference density map (global initial
subtomogram average) was obtained, please see section 1 of
the Supplementary Material (Nucleosome data preparation and
acquisition). This reference density map was converted into
pseudoatoms (1368 pseudoatoms for the pseudoatom radius
of 0.5 voxels and the target approximation error of 5%) and
normal mode analysis of the obtained reference pseudoatomic
structure was performed. The combined elastic and rigid-body
alignment was performed using the pseudoatomic structure and
a set of its six low-frequency high-collectivity normal modes.
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FIGURE 9 | Averages of eight groups (enclosed by ellipses) of subtomograms identified from the output of the 3D-to-3D elastic and rigid-body alignment module of

HEMNMA-3D with “Continuous” dataset (shown in Figure 8A), using the atomic structure (chain A of PDB:4AKE) and its normal modes to estimate the conformational

parameters (normal-mode amplitudes) and rigid-body parameters (orientation and shift) of the molecules in the input synthetic subtomograms. Subtomograms are

represented by points and close points represent similar conformations. The numbers of volumes written above the shown subtomogram averages are the numbers

of synthetic subtomograms used for computing these subtomogram averages (the numbers of points enclosed by the corresponding ellipses). On the bottom, the

subtomogram averages are shown at 50% transparency along with the corresponding theoretical centroid deformed atomic structure (in red).

We selected modes 7–11 and mode 16, as described above
and in our previous works (Jin et al., 2014; Sorzano et al.,
2014; Harastani et al., 2020). Modes 7–11 were selected as
being the five lowest-frequency non-rigid-body modes with
collectivities above 0.5. They include the mode related to gaping
motion (mode 7) and the mode related to breathing motion
(mode 9), which have been described in previous nucleosome
studies (Zlatanova et al., 2009; Eltsov et al., 2018). Mode
16 was selected as being related to a motion that could be
potentially interesting but it is more complex (a slightly higher
frequency motion), potentially including gaping- and breathing-
like motions. The normal-mode amplitudes estimated through
the alignment (six normal mode amplitudes per subtomogram)
were then projected onto a 2D space of conformations using
PCA. The space of conformations is presented in Figure 10.
Recall that each of the points represents a subtomogram, and
close points represent similar conformations. By inspecting this
conformational space, we identified four densest regions with

70, 183, 74, and 64 points from left to right in Figure 10D.
Following this analysis, we grouped the subtomograms in each
of these four regions and averaged them. Before averaging,
we filled in the missing-wedge Fourier space region of the
individual subtomograms with the corresponding region of
the global average computed from all subtomograms (please
note that this global average was computed after aligning
subtomograms using the rigid-body alignment parameters found
along with the 3D-to-3D elastic alignment by HEMNMA-3D,
which is a similar density map to the initial global average
map shown in Figure 10C as both density maps result from
averaging conformational heterogeneous subtomograms). The
displacement of the reference pseudoatomic structure (converted
into a density map) along two directions D1 and D2 in
the space of conformations is shown in Figure 11 and in
Supplementary Videos 1, 2. The significant difference between
the four group averages (Figure 10D) and the reference density
map (Figure 10C) as well as the motion observed along the two
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FIGURE 10 | Illustration of HEMNMA-3D use with in situ cryo-ET nucleosome dataset. (A) Space of conformations resulting from projecting the estimated amplitudes

of six normal modes onto a two-dimensional space using PCA. (B) Nucleosome atomic structure PDB:3w98, for comparison purposes. (C) Nucleosome

subtomogram average (around 2 nm resolution) used as the input reference density map for HEMNMA-3D, obtained by classical subtomogram averaging, without

taking into account conformational heterogeneity [for more information on how this global initial subtomogram average was obtained, see section 1 of the

Supplementary Material (Nucleosome data preparation and acquisition)]. (D) Four subtomogram averages from four densest regions in the space of conformations

(regions encircled with ellipses) showing different nucleosome conformations, mainly, different gap distances between the nucleosome gyres. The numbers of volumes

written above the subtomogram averages shown in (D) are the numbers of in situ cryo-ET subtomograms used for computing these subtomogram averages (the

numbers of points enclosed by the corresponding ellipses).

directions D1 and D2 (Figure 11, Supplementary Videos 1, 2)
can be described, mainly in terms of opening the nucleosome
by increasing the distance between the two gyres of the DNA

superhelix. This result consents the previous findings, observed
but not fully explored in a previous study (manual analysis) of the
nucleosome conformational variability (Eltsov et al., 2018). The
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FIGURE 11 | Displacement of the reference density map along two directions D1 and D2 in the space of conformations obtained (Figure 10) with HEMNMA-3D with

in situ cryo-ET nucleosome dataset. (A) Space of conformations (left) as shown in Figure 10 and two directions D1 and D2 used to displace the reference density

map (Figure 10C) in this space (right). (B) Displacement of the reference density map along the D1 and D2 directions (10 frames of the corresponding trajectory are

shown row-wise).

group averages are also compared with the atomic nucleosome
structure PDB:3w98 in Supplementary Figure 2.

4. DISCUSSION AND CONCLUSIONS

This article presents HEMNMA-3D, the first cryo-ET
subtomogram data analysis approach to study continuous

conformational variability of biomolecular complexes, which
maps a set of subtomograms into a space of conformations
using a reference model and its normal modes. The
conformational space permits (i) grouping (and averaging)
subtomograms with similar conformations and revealing hidden
conformations and (ii) recording animated displacements
of the reference model along the densest regions of the
space, along trajectories identified by curve fitting of the
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data in these regions. These HEMNMA-3D outputs could
be valuable to cryo-ET studies of molecular mechanisms
involved in conformational changes of complexes in vitro and
in situ. HEMNMA-3D is thoroughly tested using synthetic
subtomograms and applied to a cryo-ET experimental
dataset (nucleosome subtomograms recorded in situ in
Drosophila interphase nucleus). It provides promising
results coherent with previous findings. An open-source
software with a graphical user interface is provided for this
method with a C++ backend and a Message Passing Interface
parallelization scheme.

Both HEMNMA-3D and NMA-based flexible fitting
are NMA applications concerned with estimating the
molecular conformation in density maps based on an
atomic or pseudoatomic reference. However, the purpose
of HEMNMA-3D is different from that of the classical
NMA-based fitting methods. Classical NMA-based fitting
methods aim at determining an atomic representation of
an EM density map, which is done by flexible fitting of a
given atomic structure into that EM map. The purpose of
HEMNMA-3D is to get a low-dimensional representation
of the heterogeneity of a given set of EM maps, such as
subtomograms. Such low-dimensional representations do not
require pushing the limits of the fitting accuracy as in the
case of classical flexible fitting of atomic structures into EM
maps, which also prevents overfitting. Besides, HEMNMA-3D
performs a rigid-body alignment simultaneously with the
flexible alignment, which accounts for the missing wedge of the
low-SNR subtomograms, whereas classical NMA-based fitting
methods typically use high-SNR average consensus EM maps
reconstructed from single particle cryo-EM images without
missing wedge.

The uniform random distribution of conformations was used
in our experiments with synthetic data to show that HEMNMA-
3D finds the correct values (within an acceptable error) for
any conformation, rotation and translation, and that it does
not yield wrong biased solutions (e.g., systematic alignment
errors, such as a wrong biased alignment to one or the
other conformation and systematic rotational or translational
errors). Taking into account the independent analysis of each
individual subtomogram, HEMNMA-3D should be able to
recover any other conformational distribution, with similar
errors to those obtained with the conformational distributions
used in this article.

The tests with synthetic data using a pseudoatomic structure
from a simulated density map as a reference were used to
demonstrate the ability of the method to retrieve the ground
truth conformations with a comparable accuracy to the
accuracy achieved using an atomic reference despite that
(i) the pseudoatomic reference was not used to synthesize
the data (the datasets were synthesized using the atomic
reference), (ii) pseudoatomic coordinates unlikely coincide
with atomic coordinates (pseudoatomic coordinates are
obtained through volume-to-pseudoatoms conversion, which
does not use any prior information about atoms), and (iii)
the method for calculating normal modes is different for a
pseudoatomic reference (Cartesian method) and an atomic

reference (RTB method). In experimental cases, one could
obtain pseudoatoms from a density map of higher resolution
than the data itself, if such density map is already available
(e.g., an EMDB map obtained by high-resolution single
particle cryo-EM reconstruction) or if it can be simulated
from an available atomic structure (as in our synthetic data
experiments). However, a preferred choice for the reference
density map should be a density map from the data itself,
which can be obtained by classical subtomogram averaging
(without taking into account conformational heterogeneity),
as was the case in the nucleosome experiments shown in
this article.

The synthetic subtomogram datasets used in this work do
not account for crowdedmolecular environments, radiation dose
accumulation during tilting, and differences in CTF defocus over
the tilted planes. Nevertheless, the synthesized subtomograms
used here were challenging, as containing a small number of
voxels and as being obtained by 3D reconstruction from synthetic
tilt images affected by strong noise and CTF, which altogether
lowered the resolution of the reconstructed subtomograms.
The subtomograms were additionally affected by the missing
wedge artifacts. Despite such difficult conditions, HEMNMA-3D
finds the correct conformational, orientational, and translational
parameters, which suggests that it can be useful in practice,
and this usefulness was here demonstrated with experimental
nucleosome subtomograms.

In experimental cases, such as the nucleosome study shown
in this article, the number of used normal modes will always
be smaller than the actual number of normal modes (the entire
set of modes is too large to be included in our calculations
as this would require too long computing times). Therefore,
the conformational landscape will always be an approximation
of the actual conformational landscape. Small sets of selected
potentially relevant modes have been shown to produce good
approximation of the actual conformational landscape of the
nucleosome studied here by HEMNMA-3D as well as of other
complexes studied by HEMNMA. In some cases, a single
normal mode could be enough, such as in the case of 70S
ribosomes, where the normal mode describing the rotation
between the two subunits 30S and 50S was used to analyze
conformational and compositional variability of EF-G bound
and unbound 70S ribosome cryo-EM dataset (Jin et al., 2014).
HEMNMA-3D uses the same software for NMA and the same
numerical optimizer (to estimate the amplitudes of normal
modes iteratively) as HEMNMA, and it should thus have
similar performance as HEMNMA regarding the determination
of the conformational landscape using a smaller number of
normal modes. HEMNMA-3D software (ConinuousFlex plugin
of Scipion V3.0) helps the user decide which normal modes
to select, based on the lowest-frequency highest-collectivity
criterion and including or not a prior knowledge about the
conformational transitions, as is the case with HEMNMA
software (Harastani et al., 2020).

HEMNMA-3D can deal with larger sets of subtomograms
than those shown in this article. Each subtomogram is analyzed
independently of other subtomograms, meaning on a separate
computing thread. The same computing time per subtomogram
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is required for larger and smaller datasets of the same molecular
complex and the time required to process the entire dataset varies
with the size of the dataset.
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Jonić, S. (2016). Structmap: elastic distance analysis of electron microscopy
maps for studying conformational changes. Biophys. J. 110, 1753–1765.
doi: 10.1016/j.bpj.2016.03.019

Sorzano, C. O. S., de La Rosa-Trevín, J. M., Tama, F., and Jonić, S. (2014). Hybrid
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Nascent Folding of Proteins Across
the Three Domains of Life
Mateusz Chwastyk* and Marek Cieplak

Institute of Physics, Polish Academy of Sciences, Warsaw, Poland

We study the nascent behavior of three model coarse-grained proteins in six rigid all-atom
structures representing ribosomes that come from three domains of life. The synthesis of
the proteins is implemented as a growth process. The geometry of the exit tunnel is
quantified and shown to differ between the domains of life: both in volume and the size of
constriction sites. This results in different characteristic times of capture within the tunnel
and various probabilities of the escape. One of the proteins studied is the bacterial YibK
which is knotted in its native state. A fraction of the trajectories results in knotting and the
probability of doing so is largest for the bacterial ribosomes. Relaxing the condition of the
rigidness of the ribosomes should result in a better avoidance of trapping and better proper
folding.

Keywords: ribosome exit tunnel, geometry, molecular dynamics, coarse-grained models, protein folding, proteins
with knots

INTRODUCTION

Ribosome is a biomolecular nanomachine that performs protein synthesis at its peptidyl-transferase
center (PTC) as directed by an mRNA template. The schematic picture of the protein being created
by the ribosome is presented in Figure 1. In terms of the evolution, the PTC has been recognized as
the earliest part of the ribosome (Prosdocimi et al., 2020). Ribosome itself is an aggregate made of 2–6
RNA chains and around 50 proteins comprising altogether between 100,000 and 220,000 atoms. Six
examples of the ribosomal structures, together with some parameters of their description, are listed in
Table 1. Ribosomes are involved in the regulation of translation and they influence the folding
process (Kaiser et al., 2011). The synthesis takes place at the rate that depends on the domain of life.
For prokaryotes, it is about 20 amino acids (Young and Bremer, 1976) and for eukaryotes four amino
acids (Boström et al., 1986; Ingolia et al., 2011). The PTC secretes the nascent protein into the exit
tunnel that ends with a “mouth” that opens into the surrounding solvent. After the detachment from
the center, the protein escapes the ribosome in less than 1 ms (Bui and Hoang, 2020; Nissley et al.,
2020). The movement of the protein toward the solvent gets started at the PTC and then it is
influenced mostly by diffusion, interactions with the walls of the tunnel, and the gain in the entropy
associated with the escape. The walls of the tunnel are rough and its diameter varies between 10 and
20 Å (Voss et al., 2006; Cabrita et al., 2010; Frank and Gonzalez, 2010). It has been established
(Melnikov et al., 2012; Dao Duc et al., 2019; Liutkute et al., 2020) that the very geometry of the tunnel
depends on the domain of life. In particular, we find that the diameter in the bacterial ribosomes can
reach even 30 Å. This happens at the branching points in the tunnel.

Here, we present results of a theoretical study in which we probe the impact of the nature of the
ribosome on protein folding in a coarse-grained model. Specifically, we consider six ribosomes from
three domains of life, bacteria, archea and eukarya, and elucidate the difference in behavior of three
model bacterial proteins in the six ribosomal tunnels. The bacterial ribosomes considered correspond
to structures PDB:5NJT (Beckert et al., 2017) and PDB:5AFI (Fischer et al., 2015) that originate from
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B. subtilis and E. coli respectively. The remaining structures and
their origins are listed in Table 1. The first protein selected is the
streptococcal protein G (Gronenborn et al., 1991) (PDB:1GB1) of
56 residues that is a common object of simulational studies. The
second is YibK (Lim et al., 2003) (PDB:1J85) derived from
Haemophilus influenze. YibK consists of 156 residues. The
reason to consider it is that its native structure contains the
deep trefoil knot between sites 75 and 119. It means that the
backbone of the protein entangles themselves in to a knot. In the
case of deeply knotted proteins, the transient state during the
knotting process is often a slipknot. It is a conformation in which

one of the protein termini adopts a hairpin-like conformation
that threads a loop formed by the remainder of the chain (Faísca,
2015). The ribosomal action has been proposed (Chwastyk and
Cieplak, 2015) to solve the puzzle of how the deeply knotted
proteins form. An additional mechanism that may enhance
knotting still further involves confinement generated by post-
translational action of chaperonins (Takagi et al., 2003; Mallam
and Jackson, 2011; Soler et al., 2016; Zhao et al., 2017; Especial
et al., 2019; Chwastyk et al., 2021). It should be noted that the
ribosome itself also provides a confining space that may favor
formation of secondary structures (Elcock, 2006). The last protein
we consider is Trp-Cage miniprotein (PDB:1L2Y) (Neidigh et al.,
2002). It is composed of 20 amino acids and its small size allows it
to fold near the PTC.

Theoretical studies of cotranslational folding, especially when
knotting is involved, should start by considering simple coarse-
grained structure-based models (see, e.g., ref (Sikora et al., 2009))
as they introduce a bias toward the native state. In our previous
paper (Chwastyk and Cieplak, 2015), the mouth of the ribosome
has been represented as an infinite repulsive plate which grows
proteins by starting from the N-terminus. The plate has turned
out to be positioning the planar knot loop of YibK (between sites
75–95) in a way that allows for formation of a C-terminal slipknot
and then threading of the C-terminus through the loop on
detachment. The effectiveness of this mechanism depends on
the scheme to derive the contact map and it increases with time
separation between the successive events of the emergence of new
residues, tw. The longest used was 5,000 τ where τ is of order
1 ns—the characteristic time scale of the CG simulation (Sikora
et al., 2009). A better approach is to implement a steady growth at
the PTC (Hoang and Cieplak, 2000; Krobath et al., 2013; Bui and
Hoang, 2020).

Another simple model (Dabrowski-Tumanski et al., 2018)
represents the exit tunnel as a smooth funnel-like potential. It is
combined with an axial force that acts on the fully formed
sequence placed near the PTC and pushes it toward the mouth.
Necessarily, this force must induce an acceleration which is
likely spurious. This approach was used for a large deeply
knotted protein Tp0624 of 421 residues. The crucial
ingredient in achieving high effectiveness in knotted folding
was adding attractive centers at the mouth of the exit tunnel.

FIGURE 1 | The schematic representation of the small and large
ribosomal subunits (the green ovals). The arrow points to the peptidyl-
transferase center where the conversion of the nucleic acid genetic
information (mRNA) into the polypeptide (the red string) takes place. The
cylindrical cut-out, considered in our simulations, is marked by the thin, green
lines. The N-terminus of the synthesized protein is marked by the red circle
with the letter “N”.

TABLE 1 | Six ribosomal structures considered in our analysis.

PDB Organelle MM [kDa] Pch/RNAch VT (R = 4Å) [Å3] VT (R = 3Å) [Å3] ST/VT [1/Å] Cat/Rat

bacteria 5NJT B. subtilis Beckert et al. (2017) 2,111.70 48/3 27145 ± 407 34920 ± 490 0.33 11971/133097
5AFI E. coli Fischer et al. (2015) 2,302.71 52/6 25628 ± 255 36295 ± 779 0.33 12330/152717

archaea 4V9F H. marismortui Gabdulkhakov et al. (2013) 1,486.40 31/2 11333 ± 132 15188 ± 156 0.41 14499/103831
4V6U P. furiosus Armache et al. (2012) 2,602.99 63/5 16446 ± 216 24348 ± 362 0.38 13052/173979

eukarya 6EK0 H. sapiens Natchiar et al. (2017) 3,842.38 76/5 16822 ± 246 26838 ± 248 0.41 12702/219596
5XY3 T. vaginalis Li et al. (2017) 1713.54 40/3 20043 ± 175 25213 ± 229 0.40 11680/107145

The bacterial ribosomes considered correspond to structures PDB:5NJT and PDB:5AFI that originate from B. subtilis and E.coli respectively. The archaeal ribosomes were from H.
marismortui and from P. furiosus (PDB:4V9F and PDB:4V6U) The last two eukarya ribosomes are eukaryotic and they come fromH. sapiens (PDB:6EK0) and from T. vaginalis (PDB:5XY3).
The second column shows the PDB code of the particular structure. The third column lists the source organism (italicized) and the references for the presented data. The fourth column lists
the total structure molecular weight; the fifth column lists the number of unique proteins and, after the slash of the, nucleic acid chains. The sixth column lists the volume of the exit tunnel
calculated with the probe radius R � 4Å and the seventh for R � 3Å. The eighth column lists the surface-area-to-volume ratio for the exit tunnels. The last column lists the fraction of the
atoms within the cylindrical cut-out, considered in our simulations, to the total number of atoms that make the full structure of the ribosome. The two numbers differ by an order of
magnitude.
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However, we find that such centers generate trapping at
the mouth.

Making comparisons between the domains of life, however,
cannot be based on the ribosome models that are just generic.
Here, we consider a coarse-grained model (Chwastyk et al.,
2021) in which the growth takes place at the PTC and the tunnel
has the shape that is determined by the structure file of the
ribosome so that it is sensitive to the species (In ref. (Chwastyk
et al., 2021), we have discussed the bacterial structure PDB:4V4J
from Thermus thermophilus.). We first compare the geometries
of the tunnels arising in the six ribosomes of Table 1 and show
how they differ across the domains of life. We then compare the
folding processes and show that the bacterial ribosomes enhance
the folding and knotting processes stronger than the other
ribosomes. The relatively small average diameters of the
archaea and eukarya ribosomal exit tunnels make the protein
growing process difficult. The most efficient folding process
happens within the ribosomal structure which is natural for a
given protein.

The Geometry of the Ribosomal Exit
Tunnels
The complexity of the full ribosomal structuremakes it hard to include
all of the atoms in the simulations. Thus we limit the number of
relevant atoms to a cylindrical cut-out of radius RR � 70 Å around the
ribosomal exit tunnel as illustrated in Figures 2, 3. The cylinder
originates at the plane that goes through the PTC. It is oriented

towards the mouth of the ribosome as shown in Figure 2 against the
background of the full ribosome. The structures around the ribosomal
exit tunnel incorporated in our simulations are presented in Figure 4.
Each cylinder is composed of rRNA and ribosomal proteins atoms.
The specific number of nucleic acid and protein chains are listed in
Table 1. Here, we consider these atoms to be fixed rigidly during the
dynamics but an improved model should allow for their flexibility.

The location of the PTC was determined based on the data
presented by Dao Duc et al. (2019)—it is found at the extension of
the L22 and L4 proteins (Trylska, 2009; Dao Duc et al., 2019). In
order to identify the tunnels and their volumes, we used the
SPACEBALL algorithm (Chwastyk et al., 2014; Chwastyk et al.,
2016a; Chwastyk et al., 2016b). The algorithm involves sending
probing particles along main directions of a grid (at ten rotations
of the ribosome) and checking which grid sites are accessible.
Usually, one takes the radius of the probing particles to be 1.4 Å
which is equal to the diameter of the water molecule. Here, we use
primarily the radius of 4 Å in order not to penetrate the all-atom
representation of the walls of the tunnel, but we also make
comparisons to calculations done with the radius of 3 Å.

Our calculated volumes are somewhat smaller in comparison to
the results obtained by Dao Duc et al. (2019). They got
(3.85 ± 0.37)×104 Å3 by considering 10 bacteria and
(2.78 ± 0.13)×104 Å3 for nine eukarya. When we decreased the
radius of our probe to 3 Å we got very similar results, listed in
Table 1. The difference in our algorithm is that we do not specify
the position of the tunnel before undertaking the volume
calculation. In addition, we make rotations of the grid. In the

FIGURE 2 | The location of the cylindrical cut-out (the red shadow) of radius RR � 70Åwithin the full structure of ribosomes (the green colour) from different domains
of life. The white spot within the red blob shows the position of the exit tunnel.
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first step, Dao Duc et al. (2019) search for the tunnel position by
usingMOLE 2.0 (Sehnal et al., 2013) program and then implement
HOLLOW (Ho and Gruswitz, 2008) approach to determine the
volume. TheHOLLOWapproach is very similar to ourmethod but
for well defined structure. This allows for the usage of smaller
probes and thus to obtain larger volumes.

We observe that the bacterial ribosomes are associated with
tunnels of the largest volume and are thus expected to obstruct the
motion toward the exit the least. The SPACEBALL-derived tunnel
spaces are shown in Figure 4 in the red color. Despite the existence
of pronounced side channels, the bacterial tunnels comewithmuch
fewer regions that are difficult to access. This was confirmed just by
looking at the detected exit tunnel and by calculating the surface-
area-to-volume ratio for the exit tunnels (seeTable 1). The smallest
value of this parameter was obtained for the bacterial exit tunnels
and the largest one, for the eukaryotic tunnels.

The details of the cylindrical structures are shown in Figure 3. They
are focused on the mouth regions and demonstrate that the openings
are fairly irregular—they are not smooth funnel-like surfaces. The
panels in Figure 3 also show the vertical distances from the PTC plane
to the most distant atoms. These distances vary between 94Å and
109Å and do not distinguish between the domains of life.

As in Dao Duc et al. (2019), we find that there are several
constriction sites (CS) in the ribosomes. The first of these, CS1, is

located around 30 Å from the PTC for each of the six ribosomes
studied. The second, CS2, is at 20 Å farther away from CS1. The
width of CS2 depends on the domain of life: it is narrow in the
eukaryotic case (the radius is around 8 Å), a bit wider for the
archaea ribosomes (the average radius is around 11 Å), and still
wider for the bacterial case (the average radius is around 15 Å). The
locations of the CS1 and CS2 are marked in Figure 4.

COTRANSLATIONAL FOLDING

Description of the Molecular Dynamics
Model
The protein is modeled within the structure-based approach, as
described in refs (Sulkowska and Cieplak, 2008; Sikora et al.,
2009). with a chirality potential being responsible for the
backbone stiffness. The contact interactions are selected by
using the overlap criterion (Wołek et al., 2015) between the
atoms of the residues as determined in the fully folded native
state. The contacts correspond to the potential wells between the
effective residues are located at the α-C atoms. The depth of the
wells is denoted as ε. The remaining interactions are softly
repulsive with the characteristic length of 4 Å. When one
starts from an extended conformation and studies folding then

FIGURE 3 | Structures of the cylindrical cut-outs around the ribosomal exit tunnels from the three different domains of life. Each of the six panels shows the all-atom
representation of the cylinder. The colors are meant just to generate a sense of perspective. The structures shown below the main picture represents the very exit of the
cylinder. Up to five colors are used to indicate the vertical positions. The ball-like structure on the right of the cylinder represents the top view of the exit mouth.
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the process is declared accomplished if all contacts get
established. i.e., the distance between the residues involved
becomes smaller than 1.5 σ, where σ denotes the width of the
corresponding well. The temperature is controlled by random
forces and the room temperature, TR is around 0.35ε/kB. Each of
the ribosomal atoms is a source of the soft repulsive potential that
is cut at 4 Å and has the amplitude of ε.

Dynamically, the bottom of the cylinder is represented by a
repulsive wall with the potential 3

�
3

√
2 ε σ0/( z)9, where z denotes the

distance away from the plate and σ0 � 4 · 2−1/6. This wall prevents
making any backward steps. The models that incorporate the
sequential growth consider it taking place either at the PTC or,
effectively, at the mouth.

The most common practice is to place a fully synthesized
chain near the PTC (Frank and Gonzalez, 2010; Elcock, 2006;
Dabrowski-Tumanski et al., 2018; Nissley et al., 2020) and
then to monitor folding (Nilsson et al., 2015; Kudva et al.,
2018; Bock et al., 2018). The exit through the mouth can be
helped computationally by switching from a CG simulation to
a steered all-atom molecular dynamics approach with a steady
motion of a pulling cantilever (Nissley et al., 2020). Another
method is to apply a constant force (Dabrowski-Tumanski
et al., 2018). Here, we incorporate the sequential growth at the
PTC. Each of the amino acids emerges with some time interval
after the previous one created earlier. The direction of the
amino acid motion is given by the repulsive potential
accelerating the created bead toward the exit of the tunnel.

Since the mRNA is translated from the 5’ to 3’ ends, the
proteins are synthesized from the N terminus to the C
terminus, so the N terminus emerges first, as presented in
Figure 1. This method is similar to the one considered in ref
(Bui and Hoang, 2020). There are several differences,
however: 1) all protein and RNA atoms of the walls
provide repulsion (not just the α-C atoms), 2) the
backward motion is prevented by the repulsion from the
bottom wall, 3) the growth is implemented in a quasi-
continuous fashion, 4) in one variant of the model, used
for the YibK protein, we introduce electrostatics-mimicking
contacts at the mouth of the ribosome, similarly to
Dabrowski-Tumanski et al. (2018). The strength of these
contacts is the same as in the case of the intramolecular
contacts. We declare that the contacts can be created
between two amino acids with opposed electric charge. We
have found that the presence of such contacts do not impact
the knotting process, but impedes the dissociation of the
protein from the ribosome, so the results presented here
have been obtained without these attractive contacts.

We represent our results as in Figure 5. It shows the
histograms of distances of the N-terminal points of the
proteins awya from the PTC. The bin size was chosen so that
the first bin corresponds to the trajectories that are stuck between
the PTC and CS1, the second one—between CS1 and CS2 and the
others—the trajectories that resulted in proteins leaving the
ribosome.

FIGURE 4 | The ribosomal exit tunnels (the red shape) detected by the SPACEBALL algorithm (Chwastyk et al., 2014; Chwastyk et al., 2016a; Chwastyk et al.,
2016b) within the ribosomal structures from different domains of life. The arrows point to the constriction sites (CS1 and CS2). The green shadow represents the all
atoms that are present in the cut-out part of the ribosomes. The PTC is always at the bottom of each panel.
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Protein G
The upper panels of Figure 5 are for protein G. The temperature
is equal to TR and tw is set to 100 τ, similarly to ref. (O’Brien et al.,
2011). The panels show that the most difficult part of the
movement of the growing protein is to pass through
constriction CS1. For the two eukaryotic ribosomes, almost all
of the trajectories get stuck at CS1. In the case of the two archaea
ribosomes, this happens with 60–80% of the trajectories and
around 20% get stuck at CS2. However, the bacterial ribosomes
offer an easier passage for protein G: 40% of the trajectories stop
at CS1, another 40% at CS2. Thus around 20% reach the mouth of
the ribosome. Folding takes place after the exit and the median
folding time of protein G in the 5NJT and 5AFI ribosomes is
7747τ and 7566τ respectively. An illustration of the various stages
of the process is given in Figure 6. The folding process is
considered to be accomplished when all native contacts are
established for the first time (the distance between the
corresponding α-C atoms is smaller than 1.5 σ where σ is the
length parameter associated with the potential well. We
considered 90 folding trajectories for each of the ribosomes.

When tw is increased to 500τ, the number of trajectories
that get stuck at the CS1 becomes similar for the two

eukaryotic ribosomes and for the 4V6U archaea ribosome.
However, it gets halved for the bacterial ribosomes while it
increases from 80 to 100% for 4V9F (archaea). A further
increase in tw results in an increased probability of stopping at
CS1 because there is more time to penetrate the exit tunnel
nooks. The eukarya ribosomes do not allow for proteins
leaving the ribosomal exit tunnel. We expect that when the
walls are made flexible the protein will have a better chance of
negotiating the constrictions at any tw, but this remains to be
demonstrated. These results are based on 60 trajectories for
each ribosome.

Protein YibK
We now consider the knotted YibK protein. The knot ends are
at LEU-75 and LYS-119 in the native state. We examine the
impact of the full ribosomal structure on the knotting process.
Unfortunately, it was impossible to reach tw � 5000τ, as in ref
(Chwastyk and Cieplak, 2015). that this time gives the highest
value of the percentage-wise success of reaching the properly
knotted folded conformation. tw longer than 100τ decreases the
number of trajectories with the full exit of the protein. To be
able to examine the knotting process we did a numerical trick

FIGURE 5 | The histograms of the distances between PTC and the N-terminus after time tE of simulations at TR � 0.35ε/kB and with tw � 100τ. The results are for
three different domains of life. The upper panels are for 1GB1, with tE � 50000τ, and the lower ones for 1J85, with tE � 150000τ.
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and we allowed for a fast growth (with tw � 100τ) at the
beginning of the protein synthesis and then switched to a
slower process with tw � 1000τ when the process reached
LEU-75. This trick generates between 63 to 70 trajectories
out of 100, depending on the ribosome, that manage to
escape from the tunnel.

For this set of successful trajectories, about 10% resulted in
formation of non-native temporal knots with one knot end at
LYS-119. Another ∼10% resulted in temporal knots with
improperly located knot ends. We expect, however, that an
extension of the simulation will eventually move the ends to
the proper locations. The most interesting situation is observed
for the 5AFI ribosome. Only in this case, 1% of 1,000 trajectories
resulted with the properly folded and knotted conformations. The
knotting mechanism was based on a slipknot transient
conformation, the same as observed in ref. (Chwastyk and
Cieplak, 2015). In addition, 10% of the trajectories resulted in
one temporal knot end located at LYS-119 and 5% of the
trajectories with temporal knot elsewhere. Again, an extension
of the simulations is expected to move the knot ends to their
native locations. When we increased the temperature from TR to
0.45 ε/kB the total number of trajectories that escape the tunnel
got decreased, but the success in folding and knotting was similar
to the one at TR.

Trp-Cage Miniprotein
In the case of the very short protein (1L2Y) which we also
examined, all of the 100 trajectories got stuck at the CS1.

Nevertheless, there is enough space between PTC and CS1 for
this short protein to accomplish correct folding. This happens for
all trajectories and the average folding time is 1979τ. The average
here is over the trajectories and the six ribosomes.

CONCLUSION

We have demonstrated the existence of differences in the
dynamical behavior of nascent proteins across the domains of
life. These differences result from the dissimilarities in the
ribosomal geometries. The tight eukarya ribosomal exit
tunnels impede the protein movement towards the exit. The
wider constrictions sites found in the two other domains of life
allow for proteins for an easier squeezing through away from the
PTC. It is important to mention that the percentage-wise success
of reaching the properly knotted and folded conformations was
found to be the highest for 5AFI ribosome that originates from
the E. coli bacterium. The YibK protein is also bacterial
(Haemophilus influenzae). The two bacteria have one common
ancestor (de Rosa and Labedan, 1998) which suggests that the
5AFI ribosome is evolution-related to the one that makes YibK. It
is thus natural to consider YibK in this ribosome and expect the
best folding results in this case.

If the longer sequences manage to exit the mouth and start
making globular structures then this process, in principle, should
be helped by attractive contacts at the mouth by generating an
extracting mechanism. However, we find such contacts to be

FIGURE 6 | Top: Six snapshots of protein G (the red color) at various stages of its development that start at its synthesis (A) and, in many cases, end with the
detachment (E). The average time needed by the ribosome to release the protein depends on tw. The exit tunnel (in green) corresponds to the eukaryotic structure PDB:
6EK0. The blue plane represents the origin of the repulsive potential. The PTC is located at the center of the plane. In (B), the protein is stuck permanently at the CS1. In
(C), the jamming is at CS2. In (D), the protein has reached the mouth of the tunnel. Bottom: Distances between the PTC and the N-terminus (solid-red line) or
C-terminus (dotted-blue line) as a function of time. The left panel corresponds to the situation presented in (D) (protein is leaving the ribosome). The graph in the center
corresponds to the situation shown in (C) (the protein gets stuck at CS2). The last graph shows the situation corresponding to (B) (the protein is stuck between PTC and
CS1). In all cases, the C-terminus gets released after the synthesis of the 56-residue protein which, for tw � 100τ, corresponds to 5,600 τ.
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disruptive to the process because they also capture the extracted
protein at the mouth. The reason why the attractive patches at the
mouth appear to promote knotting in Dabrowski-Tumanski et al.
(2018). may be related to the fact that the bulk driving force used
also eliminates the capture. This point needs to be elucidated
further.

In our current model, the ribosomal molecules are considered
to be rigid. Relaxing this condition should result in better escape
rates and possibly also in a stronger knotting success. Moreover, it
will allow for usage of the all-atom protein model, because right
now the side chains block the protein that attempt to squeeze
through away from the PTC. The flexibility can be introduced
either by connecting the atoms to fixed centers by harmonic
springs or by coarse-graining the RNA and protein chains of the
ribosome (Kudva et al., 2018). We hope to address these issues in
future research. We also plan to use the Dynamical Structure-
Based model (Mioduszewski and Cieplak, 2018) to consider the
exit times for selected intrinsically disordered proteins and study
their behavior in the tunnel.
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P., et al. (2013). MOLE 2.0: Advanced Approach for Analysis of

Biomacromolecular Channels. J. Cheminform. 5, 39. doi:10.1186/1758-2946-
5-39

Sikora, M., Sułkowska, J. I., and Cieplak, M. (2009). Mechanical Strength of 17 134
Model Proteins and Cysteine Slipknots. Plos Comput. Biol. 5, e1000547. doi:10.
1371/journal.pcbi.1000547

Soler, M. A., Rey, A., and Faísca, P. F. N. (2016). Steric Confinement and Enhanced
Local Flexibility Assist Knotting in Simple Models of Protein Folding. Phys.
Chem. Chem. Phys. 18, 26391–26403. doi:10.1039/c6cp05086g

Sulkowska, J. I., and Cieplak, M. (2008). Selection of Optimal Variants of Go-like
Models of Proteins through Studies of Stretching. Biophys. J. 95, 3174–3191.

Takagi, F., Koga, N., and Takada, S. (2003). How Protein Thermodynamics and
Folding Mechanisms Are Altered by the Chaperonin Cage: Molecular
Simulations. Proc. Natl. Acad. Sci. 100, 11367–11372. doi:10.1073/pnas.
1831920100

Trylska, J. (2009). Simulating Activity of the Bacterial Ribosome. Quart. Rev.
Biophys. 42, 301–316. doi:10.1017/s0033583510000028

Voss, N. R., Gerstein, M., Steitz, T. A., and Moore, P. B. (2006). The Geometry of
the Ribosomal Polypeptide Exit Tunnel. J. Mol. Biol. 360, 893–906. doi:10.1016/
j.jmb.2006.05.023

Wołek, K., Gómez-Sicilia, À., and Cieplak, M. (2015). Determination of Contact
Maps in Proteins: a Combination of Structural and Chemical Approaches.
J. Chem. Phys. 143, 243105. doi:10.1063/1.4929599

Young, R., and Bremer, H. (1976). Polypeptide-chain-elongation Rate in
Escherichia coli B/r as a Function of Growth Rate. Biochem. J. 160, 185–194.
doi:10.1042/bj1600185

Zhao, Y., Dabrowski-Tumanski, P., Niewieczerzal, S., and Sulkowska, J. I. (2017).
The Exclusive Effects of Chaperonin on the Behavior of Proteins with 52
Knotknot. Plos Comput. Biol. 14, e1005970. doi:10.1371/journal.pcbi.1005970

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Chwastyk and Cieplak. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Molecular Biosciences | www.frontiersin.org June 2021 | Volume 8 | Article 6922309

Chwastyk and Cieplak Nascent Folding of Proteins

168

https://doi.org/10.1038/cr.2017.104
https://doi.org/10.1002/prot.10323
https://doi.org/10.3390/biom10010097
https://doi.org/10.1038/nchembio.742
https://doi.org/10.1038/nsmb.2313
https://doi.org/10.1039/c8cp03309a
https://doi.org/10.1038/nature24482
https://doi.org/10.1038/nsb798
https://doi.org/10.1016/j.celrep.2015.07.065
https://doi.org/10.1021/jacs.9b12264
https://doi.org/10.1021/ja107863z
https://doi.org/10.3390/life10080134
https://doi.org/10.3390/life10080134
https://doi.org/10.1186/1758-2946-5-39
https://doi.org/10.1186/1758-2946-5-39
https://doi.org/10.1371/journal.pcbi.1000547
https://doi.org/10.1371/journal.pcbi.1000547
https://doi.org/10.1039/c6cp05086g
https://doi.org/10.1073/pnas.1831920100
https://doi.org/10.1073/pnas.1831920100
https://doi.org/10.1017/s0033583510000028
https://doi.org/10.1016/j.jmb.2006.05.023
https://doi.org/10.1016/j.jmb.2006.05.023
https://doi.org/10.1063/1.4929599
https://doi.org/10.1042/bj1600185
https://doi.org/10.1371/journal.pcbi.1005970
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


From System Modeling to System
Analysis: The Impact of Resolution
Level and Resolution Distribution in
the Computer-Aided Investigation of
Biomolecules
Marco Giulini 1,2, Marta Rigoli 1,2, Giovanni Mattiotti 1,2, Roberto Menichetti 1,2,
Thomas Tarenzi1,2, Raffaele Fiorentini 1,2 and Raffaello Potestio1,2*

1Physics Department, University of Trento, Trento, Italy, 2INFN-TIFPA, Trento Institute for Fundamental Physics and Applications,
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The ever increasing computer power, together with the improved accuracy of
atomistic force fields, enables researchers to investigate biological systems at the
molecular level with remarkable detail. However, the relevant length and time scales of
many processes of interest are still hardly within reach even for state-of-the-art
hardware, thus leaving important questions often unanswered. The computer-aided
investigation of many biological physics problems thus largely benefits from the usage
of coarse-grained models, that is, simplified representations of a molecule at a level of
resolution that is lower than atomistic. A plethora of coarse-grained models have
been developed, which differ most notably in their granularity; this latter aspect
determines one of the crucial open issues in the field, i.e. the identification of an
optimal degree of coarsening, which enables the greatest simplification at the
expenses of the smallest information loss. In this review, we present the problem
of coarse-grained modeling in biophysics from the viewpoint of system representation
and information content. In particular, we discuss two distinct yet complementary
aspects of protein modeling: on the one hand, the relationship between the resolution
of a model and its capacity of accurately reproducing the properties of interest; on the
other hand, the possibility of employing a lower resolution description of a detailed
model to extract simple, useful, and intelligible information from the latter.

Keywords: modeling, coarse-graining, molecular dynamics, proteins, biophysics

1 INTRODUCTION

Among the many revolutions that have spangled the 20th Century, the advent and diffusion of the
computer is certainly one of the most momentous. Computing machines have impacted human life
and society in practically all compartments, such as communication, work, information, education,
health, and entertainment. The scientific environment is certainly one of the main leaders of this
revolution, but it has been largely affected by it as well: in fact, computers have not only changed the
way we do science, they also created new ways of doing science that were simply unthinkable before.
Besides the “trivial” usage of computers in speeding up regular calculations (that is, to carry out the
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job of Los Alamos’ human computers1 in a faster and more
human-friendly manner), a novel technique arose that rapidly
became pervasive of practically all scientific fields, as well as a field
per se: computer simulations.

Among the synonyms of simulation we can find words such as
copy, facsimile, imitation, counterfeit, and fake. Computer
simulations are indeed all these things: while aiming at
reproducing, as faithfully as possible, the real object of study,
its properties, and its dynamics, they necessarily are but the
shadow of a dream—the fictitious dance of a projection of the
object. And yet, precisely in this intangible nature lies their power.

Simulations constitute a bridge between the experimental
investigation of a system and its abstract, theoretical study.
While the former relies on direct observation, probing, and
quantitative measurement, the latter describes the system or
phenomenon of interest in terms of quantities and relations
among them, and carries out the investigation making use of
mathematical manipulations. The computational approach takes
from both: it presupposes a representation of the system in terms
of rather idealized fundamental constituents, whose nature is
closer to abstract Platonic entities rather than physical,
“Aristotelian” ones. Such representation enables the
investigation down to a level of detail that is practically and
even fundamentally inaccessible to experiments; however, its
usability in the study and comprehension of Nature
presupposes that a one-to-one relation can be established
between the constitutive elements of a real system and those
of its model. The validity of the latter depends on the capacity of
the modeler of identifying the essential features of a system and
endowing the model with them; a model is just as good as the
pieces of which it is made.

The field of application of this computational microscope (Lee
et al., 2009) spans several orders of magnitude in space and time.
Depending on the specific property or phenomenon of interest,
various models can be employed that describe reality (or rather a
part of it) in a relatively small length and time scale interval; no
single model can be employed to study whatever system, for two
reasons: our limited computational capacity, and the intrinsic
limitations of the model.

At present, the most successful description we possess of the
constituents of matter and their interactions is provided by the
Standard Model of particle physics: even though the latter is an
incomplete and effective2 theory, it still provides the most
powerful and predictive (Hanneke et al., 2011; Aoyama et al.,
2015) framework for the investigation of physical reality; that is to
say, this theory constitutes the sharpest conceptual device we
currently have at hand to rationalize observed phenomena and
predict new ones. Nonetheless, a straightforward and brute-force
application of such model to the study of systems larger than a
small atomic nucleus is practically unfeasible: in fact, the
associated computational cost makes it impossible to simulate,

in terms of relativistic quantum fields, even the smallest molecule
for a physically interesting time scale. Hence the first of the two
aforementioned limitations.

All models beyond the most fundamental one (if any) are
affected by both shortcomings. Certainly there will be systems too
large or processes too slow to be studied by means of any derived
representation; additionally, all these non-fundamental, effective
representations will have a range of validity beyond which the
model does not make sense. Non relativistic quantum mechanics
works well for slow, low-energy particles, but the resolution of the
processes it can reproduce is limited from below; additionally, it is
too complex to study systems composed by more than a few
atoms. Fortunately, within appropriate ranges of time, size, and
energy, further effective theories can be constructed, that allow
one to incorporate quantum mechanical properties in classical
potentials: this process, epitomized by the Born-Oppenheimer
approximation, fills the gap between quantum and classical
mechanics, and between the small world and the not-so-small
(e.g., molecular) world.

In general, then, the larger the scale of the system, and the
longer the time scales of the processes of interest, the harder it is
to perform simulations at a given level of resolution. This
limitation originates from the increasing duration of the
simulation and, in turn, the necessity to employ larger and
larger memory and computing power. However, even when
sufficient computational resources are at hand, another issue
lies before us, which is the capability to make sense of the
simulation. A detailed description of a large macromolecule,
e.g., one in which each atom is described as a point-like
particle, is certainly sufficient to reproduce several properties
that would not involve quantum mechanical features explicitly,
but it might as well be excessively detailed for the purpose. A
simplified representation of the system and its interactions might
be sufficient to reproduce the process of interest.

A further reduction of resolution is thus possible, in which the
system is not described in terms of atoms, but rather of effective
interaction sites each of which is representative of a group of
several atoms. A model whose resolution is lower than atomistic
is commonly referred to as a coarse-grained (CG) model. CG
models range all possible resolutions from a few atoms per site up
to the continuum, and a plethora of strategies have been
developed to parametrize them so as to reproduce one or
more properties of the system of interest. In fact, exactly as
any effective theory can be trusted in a limited range of length and
times scales only, so it is for any particular CG model.

This apparently trivial observation opens up a crucial issue, whose
practical and philosophical implications have just started to be studied
(see Figure 1), namely the identification of the level of model detail
that is the most appropriate for the study of a given phenomenon. In
fact, the construction of a model is implicitly dictated by its purpose,
and its usage implicitly complies (or should comply) with the range of
validity in which the model is effective. Insofar, the decision of the
model resolution has largely been based on intuition, and quantitative
investigation of the appropriate level of detail is really just in its
infancy.

A second, even more subtle issue is the definition of the
appropriate resolution distribution, that is, whether each

1https://www.atomicheritage.org/history/human-computers-los-alamos.
2The SM is incomplete as it does not incorporate the general-relativistic theory of
gravity; furthermore, it is an effective theory as it holds for energies lower than the
Planck scale (see e.g., Burgess (2020)).
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system part should be represented with the same level of detail, or
rather a modulation of the latter can be implemented so as to
attribute higher resolution (and more computational resources)
to a given region, while reducing the accuracy elsewhere. This task
actually requires solving two problems: first, one has to determine
what level of resolution can be employed, and where; second, one
has to devise a model that guarantees the appropriate degree of
accuracy to each region of the system, such that the various
regions at different resolution can interact with one another
seamlessly.

Besides the questions related to the construction of
computational models of physical systems a further one lies,
that tackles the issue of system representation from a different
perspective, namely that of employing modeling strategies for the
analysis of the system. Computer simulations of large systems are
becoming increasingly more feasible, which bears with it two
major consequences: on the one hand, the steady growth in the
amount of data to make sense of, even for a single run; on the
other hand, the increase in the complexity of the systems and
processes that can be tackled, which naturally requires a richer
and often system-specific toolbox of analysis instruments. These
are essential to safely navigate the sea of data produced, and land
to the shores of the system’s understanding; the latter, however,
can only be achieved through a process of reduction and synthesis,
by which the vast amount of numbers crunched and spat out by
the computer are distilled into a few, intelligible and interpretable
parameters, their time evolution, and their relations.

This is indeed what is being done since the dawn of
thermodynamics, as systems composed by bazillions of
particles are eventually described and studied in terms of a
handful of quantities (temperature, pressure, volume, chemical
potential, compressibility, specific heat...). The necessity behind
this procedure is the human incapacity of making sense of ∼ 1023

degrees of freedom; the reason behind the success of such a
drastic program, which brings down that number of coordinates
to less than ten, is the fact that indeed a full, meaningful
characterization of the system is intrinsically achievable in
terms of those few variables and no more than that.

In the case of a system as simple as a gas or a liquid, the
identification of those parameters that are relevant and sufficient
for a complete description and understanding of the system is
straightforward and largely intuitive. When the object of study is
a macromolecule, however, things might be more subtle: one can
wonder if it is possible to devise an algorithmic procedure aimed
at the identification of those variables in terms of which a
simplified representation of the system can be achieved, which
maximizes the insight about it while at the same time retaining
the lowest number of descriptors. Questions such as this hold the
promise of discriminating, in an unsupervised manner, the signal
from the noise in the outcome of a computer simulation.

The scope of this review is to present and discuss in some
detail the questions raised insofar. The extension and richness of
the field of modeling and coarse-graining forces us to renounce at
any expectation of exhaustiveness: we however hope to provide
the readers with a sufficiently broad and organized overview to
grasp and appreciate the variety and diversity of models and
methods that have been developed in the context of computer
simulations of macromolecules. Our focus will lie on applications
to proteins. This choice has two reasons: first, any attempt at
including more than this class of systems might have easily
doubled the length of the manuscript, as the field of biological
and artificial soft matter modeling is just as broad as the list of
systems itself; second, all the issues we discuss find in proteins a
most evident, remarkable, and interesting playground. Many
problems that we pose make little to no sense in other
contexts: for example, it is relatively uninspiring (even though

FIGURE 1 | In the construction of a model we are confronted with several questions, whose apparent philosophical quality entails a rather practical nature. In
particular, we ask ourselves: Can one always coarse-grain? Is there an optimal level of resolution? Is a single level of resolution meaningful? How to identify the optimal
resolution level or distribution? And how can we implement it in practice? (In the picture: “The thinker”, A. Rodin, 1904).
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not devoid of insight (Harmandaris et al., 2006; Ohkuma and
Kremer, 2017)) to wonder about a modulation of the model
resolution in a long homopolymer, or to question whether an
intrinsically optimal level of detail exists in the representation of a
lipid bilayer. On the contrary, these questions can have as many
different answers as the proteins they are applied to, due to the
diversity of size, structure, function, and properties that these
molecules exhibit.

The remainder of the paper is structured as follows. In Section
2 we introduce some fundamental concepts upon which the
procedures of modeling and coarse-graining are constructed.
Albeit non-standard and universally accepted terms are
introduced, these are sufficiently intuitive and serve the
purpose of removing some of the potential ambiguities that
such a broad and rich field entails. In Section 3 we discuss the
most fundamental models one commonly finds in the context of
soft and biological matter simulation, namely atomistic models.
We enter the field of coarse-graining in Section 4, where we
recapitulate the main general ideas, and illustrate examples of the
models and methods that have been developed. Specifically, in
Section 5 we focus on those models where the degree of detail is
uniform through out the system, while in Section 6 we consider
those strategies that make use of two or more resolution levels in
the same model. In Section 7 we shift from the idea of modeling
to that of filtering, that is, reading a simulation with a lower level
of detail so as to discriminate those structural characteristics that
entail the largest amount of information about the system
properties. Finally, in Section 8 we summarize with a few
concluding thoughts.

2 REPRESENTATION, MODEL AND FILTER

In order to carry out some kind of computer-aided quantitative
investigation of a macromolecular system, e.g., a molecular
dynamics simulation, it is necessary to provide a
representation of the system. By this term we refer to a
collection of mathematical entities conceptually associated to a
corresponding physical entity: for example, the physical entity
“atomic nucleus” is associated to a point in three dimensions
whose position in space is determined through its coordinates in a
(usually three-dimensional) Cartesian space. This point is the
mathematical entity associated to the physical atomic nucleus,
and a collection of such points, one for each atom of the molecule
and its environment, constitutes the representation of the system
we feed the computer with.

As such, the representation is a static object. This does not mean
that it cannot be informative per se: indeed, knowing the position of
the molecule’s atoms allows us to establish geometrical relationships
among them, fromwhich, in turn,we can infer properties that connect
shape and function. A particularly intuitive example is provided by the
crystallographic orNMR techniques that turn realmolecules in a set of
atomic coordinates. However, in order to make a step forward from
structure to function it is necessary to expand the set of properties the
representation is endowed with and, most importantly, to confer to it
the capacity of actively producing dynamic information. To this end,
we have to “dress” the representation with interactions, thus enabling

it to evolve in time or to sample its accessible phase space. When
properties and interactions are specified for a given representation of
the system, we dub it a model. Models are thus mathematical
idealisations of a system that, by means of an appropriate
processing of their properties and interaction, can produce
nontrivial information (e.g., time series, correlation and response
functions, conformational sampling...).

Once a representation or a model are given, though, one can
apply to them the same procedure that leads from the real-life
system to the idealized representation. More specifically, given a
representation that we think of as the more fundamental one,
thus dubbed first level representation (FLR), it is possible to
establish a quantitative relationship from its mathematical
entities to those of a second level representation (SLR),
typically given in smaller number than those of the first one.
As an example, all the atoms constituting a protein in the first
level representation can be associated to one single point for each
amino acid, so that the second level representation constitutes a
simplified description of the first. If this procedure is applied to all
configurations obtained in a molecular dynamics simulation, the
result is a trajectory generated with the model defined at the first
level, but described in terms of the second level representation.
Hence, the SLR cannot produce nontrivial information by itself,
but it can return a subset of the information produced by the
underlying model; because of this property we refer to such SLR
overlaid on a model as a filter3. These ideas are illustrated in
Figure 2.

For a given system, one can provide representations at different
levels of resolution: restricting our considerations to particle-based
representations of proteins, we can let each of these particles represent
an atom, part of an amino acids, an entire amino acid, a group of
amino acids, an entire protein and so on.When the size of the system
is such that a particle-based description of it does not make sense any
more, continuumor quasi-continuum representations come into play,
such as finite elements representations, where the surface of a protein
is described in terms of a triangular tessellation, or descriptions
involving density fields. Each of these representations is
informative in its own right, in that it can highlight different
structural features of great importance—atom proximity, binding
pocket geometry, solvent-accessible surface area, overall shape, and
so on. As already highlighted, however, the amount of information
they can deliver is limited to what can be extracted from the structure
alone; to gain further insight, conformational sampling, time
correlation and energetics are required, which can only be
achieved through simulation and, in turn, rely on a set of
interactions. Each of the aforementioned representations thus
constitutes the basis for a wide range of models, differing by
complexity, accuracy, computational requirements, and so on.
These models are employed to investigate the behavior and
properties of systems at various level of detail, ranging from all-
atomdescriptions, where each atom is explicitly accounted for, to very
coarse and qualitative pictures where an entire protein is treated as a
featureless sphere. Evidently, the choice of a model over another

3As it will be detailed in the following sections, filters and SLRs are referred to in the
literature as mappings and mapped representations, respectively.
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depends on the problem one is interested in: the resolution of the
model determines the lowest-level, most fundamental causes it can
produce, and with it the processes and properties it can generate.

Filters, on the other hand, have not been developed so far with
the same intensity as models, in spite of the fact that their usage is
ubiquitous. We cannot think of making sense of an all-atom
molecular dynamics simulation by examining all 3N coordinates
in each frame at a time: a process of synthesis4 is necessary in
order to extract, from such a large amount of data, the relevant
and intelligible bit that we can make use of. This process is often
carried out quantitatively, e.g., by defining a specific reaction
coordinate that allows one to discriminate between two distinct

conformers of a molecule. In such a case, one has to know in
advance what to look at in order to construct this coordinate;
rather frequently, however, a qualitative approach is the first and
possibly unique one, and it takes the form of a visual inspection of
the MD trajectory. Albeit very sophisticated, as it passes through
immensely complex neural networks (our brains), the
information is eventually reduced to simple notions such as
“open” and “closed”.

More quantitative examples of filters are available, such as
simplified representations of a protein in terms of quasi-rigid
domains, where a group of amino acids is treated as a unique
block whose internal dynamics is neglected. To determine the
structure of these domains (i.e., which amino acids belong to
which domain) on the basis of their dynamical properties it is
necessary to make use of a model defined at a higher resolution
with respect to the blocks themselves; however, once their

FIGURE 2 | Pictorial illustration of modeling and filtering. A real system, such as a protein (panel (A), PDB code 2CPG) can be described in terms of the position of its
atoms (panel (B)). If we assume it to be the most detailed representation, this constitutes the first level representation (FLR). By “dressing” it with interactions we obtain a
model (panel (C)) that can be used to perform conformational sampling, e.g., through a molecular dynamics simulation. The resulting conformations can be inspected
with the same level of detail of the FLR; alternatively, only a subset of the model’s degrees of freedom can be taken into account: in this latter case we have a lower-
resolution, second level representation (SLR), that is obtained through the application of a filter to the FLR (panel (D)).

4In a currently very popular language, one might call this a feature extraction
process.
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identity is fixed, the trajectory can be studied filtering out the
movement internal to the blocks and focusing on the relative
displacements among them. This procedure of feature
extraction enables one to derive, from a large amount of
data inherent in the output of a model defined at the fist
level of representation, a smaller and more manageable
amount of information defined at the second level of
representation.

In the following, we will provide an overview of the most
common models employed in the computer-aided investigation
of proteins, and discuss what impact the level and distribution of
the detail of the underlying representation has on the capacity of
the model to generate information; subsequently, we will discuss
how filters can be employed to rationalize the impressive amount
of data produced in a single MD run and separate the signal from
the noise.

3 ALL-ATOM MODELING

The models of reference in the computational study of molecular
systems are the so-called all-atommodels. They are defined at an
atomic scale resolution, meaning that each atomic nucleus is
represented as a material point-like particle.

In all-atom models, each particle interacts with the
surrounding ones through classical potentials. This is justified
by the Born-Oppenheimer approximation (Born and
Oppenheimer, 1927), which allows one to eliminate the
electron degrees of freedom by taking the quantum-
mechanical expectation value over the electronic wave
function, under the assumption of an effective decoupling of
nuclear dynamics and electronic ground state. As a result, the
interaction energy, which is quantum in nature, can be
approximated by a classical potential energy surface that
depends only on the position of the atomic nuclei, ignoring
the evolution of the electronic distributions. Moreover,
interactions in all-atom models are based on the assumption
that the contribution of each atom to the Born-Oppenheimer
potential energy can be approximated by a sum of few-body
terms, each shaped into a simple, empirical and semi-empirical
functional form. These energy terms, which collectively take the
name of force field, can generally be divided in two types: those
describing bonded interactions, and those describing interactions
between particles close in space but not connected by any
chemical bonds (non-bonded interactions). The former are
associated to the presence and distortion of chemical bonds,
and are modeled as a sum of contributions with a dependence on
bond lengths, bond angles, and dihedral angles; non-bonded
interactions, instead, are described in terms of Van der Waals,
electrostatic, and hydrogen bond potentials.

Force field parameters are obtained from experimental data
and quantum-level calculations performed on specific sets of
systems. Bond lengths and corresponding stiffness values, as well
as angle parameters, are commonly determined from
crystallographic or spectroscopic data; Van der Waals terms
from small molecules liquid density, heat of evaporation, or
solvation free energies; partial atomic charges from quantum-

mechanical calculations (González, 2011). As no unique
parametrization strategy exists, a plethora of atomistic force
fields have been developed through the years, all having a
strikingly similar functional form but different coefficients. In
the case of proteins, examples of common atomistic force fields
are Amber (Maier et al., 2015) and CHARMM (Huang and
MacKerell, 2013); recently, improved versions of these force
fields for both folded and intrinsically disordered proteins
have also been developed (Huang et al., 2017; Robustelli et al.,
2018), in addition to force field types designed for amyloid
assembly (Nguyen et al., 2021). In any of these force fields,
each amino acid type in a defined protonation state is
described through the same set of parameters, irrespective of
its position along the protein sequence; exceptions are the N- and
C-termini, which usually require ad hoc parameterisations
according to the capping groups. Moreover, particles within
each residue are generally not distinguished on the basis of the
sole chemical element, but according to the atom type. This
distinction is much stronger than the one based on the atomic
number, since atom types differ also in their hybridization state
and the local electronic environment of the atoms they are
covalently bonded to. The definition of atom types in a force
field is of fundamental importance, since it determines the
specificity of the interactions.

Even within the limits of validity imposed by the
aforementioned approximations, these models are of
tremendous importance to perform an in silico exploration of
a macromolecule’s energy landscape, with the aim of bridging the
gap between structure, dynamics, and function. In this regard, the
conformational sampling method of choice in the biophysics
community is molecular dynamics (MD), through which
successive configurations of the system are generated by
numerically integrating Newton’s equation of motion, thus
allowing the calculation of both equilibrium and time-
dependent properties.5

Atomistic MD has brought a significant progress in a wide
range of biological applications in the last decades, due to the
advancement of novel algorithms and high-performance
computing. The gap between timescales resolved in
simulations and in experiments has been significantly reduced
due to the concurrent advances in the corresponding techniques;
particularly significant is the recent diffusion of graphic
processing units (GPUs) for MD calculations (Stone et al.,
2010; Lindert et al., 2013; Sweet et al., 2013), and the
consequent GPU implementation of popular molecular
modeling software packages (Lee et al., 2018; Kutzner et al.,
2019; Phillips et al., 2020). Groundbreaking was the
development in the last decades of the supercomputer Anton
(Shaw et al., 2008; Shaw et al., 2009; Shaw et al., 2014), specifically

5Monte Carlo (MC) is another popular simulation technique, which, however,
found less space in the all-atom investigation of biomolecular systems; its main
disadvantages, when compared to MD, are the inefficiency for exploring the
configurational space of large biomolecules, the slowness of the convergence
rate, and the lack of information about the time evolution of structural events
(Adcock and McCammon, 2006).
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designed for running atomistic MD simulations with extremely
high efficiency (Pan et al., 2016; Masureel et al., 2018; Pan et al.,
2019).

Making use of standard resources, computational scientists
can nowadays access micro-to millisecond timescales with atomic
detail, for systems comprising several hundreds of thousands of
particles. This is sufficient to characterize many critical biological
processes, such as ligand-binding events and the folding of small
proteins (Kubelka et al., 2004; Freddolino et al., 2008). However,
several phenomena are still inaccessible with all-atom MD; this is
the case of large-scale structural rearrangements, whose
characteristic time scale typically impairs an exhaustive
exploration of the accessible conformational space. To alleviate
this limitation, diverse enhanced sampling techniques have been
developed, including metadynamics and replica exchange MD,
which boost the conformational sampling by “helping” the
system overcome high free energy barriers; excellent reviews
on these topics can be found in Bernardi et al. (2015) and
Yang et al. (2019).

The advances in the field of atomistic simulation are paralleled
by the increase in the amount of information they generate. MD
trajectories, which consist of the set of three Cartesian
coordinates per atom per simulation time step, can easily
result in an enormous quantity of raw data: appropriate tools
are required to separate the most meaningful information buried
in the high dimensional space of the simulation output from the
rest, thus addressing specific questions about the phenomenon
under investigation. Indeed, this challenge led to the development
and application of several dimensionality reduction algorithms
(Sittel and Stock, 2018; Tribello and Gasparotto, 2019) to the
analysis of all-atom MD trajectories. Still, no standard procedure
or unique technique exists that can allow the blind and automated
determination of the fundamental degrees of freedom of the
system. Nowadays, the common approach consists in combining
several analysis tools in a system-specific fashion, in order to
reduce data complexity and facilitate the understanding. The
specific analyses performed are strictly connected to the molecule
simulated, to the technique used to generate the dynamics, and to
the type of information one is interested in.

In order to investigate the behavior of a protein in terms of its
structural stability, it is standard procedure to compute the root
mean square deviation (RMSD) and the root mean square
fluctuation (RMSF) on the positions of a subset of particles,
typically the Cα atoms. The former quantity indicates the global
evolution in time of the atomic position, and gives indications on
the drift from a given conformation; the latter instead is usually
time-averaged on a residue basis, and can help to identify the
relative flexibility of protein segments. In addition, secondary
structure content can be monitored by applying analysis
algorithms such as STRIDE (STRuctural IDEntification)
(Frishman and Argos, 1995) or DSSP (Define Secondary
Structure of Proteins) (Kabsch and Sander, 1983), which
assign a secondary structure conformation to each residue on
the basis of the hydrogen bond pattern of its backbone. In the case
of the STRIDE method, the secondary structure assignment
includes torsion angle potential calculations, as well as
statistical propensities extrapolated from experimentally

determined structures. The information provided by DSSP and
STRIDE is useful to follow the evolution of the secondary
structures in time, and eventually to detect changes associated
to partial unfolding or disorder-to-order transitions (Lin et al.,
2019).

The combination of RMSD, RMSF, and secondary
structure analysis can give details on specific regions of the
protein that are more stable than others. As an example, in
recent works (Spagnolli et al., 2019; Spagnolli et al., 2020),
one of us investigated the stability of atomistic models of
infectious prion proteins by combining the aforementioned
analysis techniques in a synergistic approach. Due to
difficulties in the wet lab procedure, experimentally solved
structures of prion proteins are still unavailable; therefore,
testing the stability of models via MD simulation represents
an extremely important step toward the 3D structure
elucidation.

If the protein under investigation undergoes large
conformational changes, it can be appropriate to group, or
cluster, the configurations explored during the simulation on
the basis of their structural similarities. To this aim, various
clustering methods have been developed in the past 30 years, each
presenting different algorithmic characteristics and
computational performances (Shao et al., 2007). The 2D
RMSD matrix, which includes the deviations between any pair
of trajectory frames, typically defines the distance between the
conformations to cluster. Based on this measure, a variety of open
source tools are available to perform the clustering; among these,
it is worth mentioning the widely used MDAnalysis package
(Michaud-Agrawal et al., 2011), which employs python libraries
to perform the calculations.

Clustering can also be combined with principal component
analysis (PCA), as in Wolf and Kirschner (2013) and Wolf and
Kirschner (2013), where the two approaches are applied to the
trajectory of a bacterial ribosomal domain. The advantages of
applying PCA prior clustering analysis lie in the remarkable
dimensionality reduction, which results in a simplification of
the clustering operation, and in a better visualization of the
clusters when plotted in the most represented PCA space.

While clustering allows one to easily identify the variety of
conformations sampled during an MD simulation, it can hardly
give information on the dynamics of transitions between them.
Kinetically relevant states and their rates of interconversion can
instead be estimated from Markov state models (Chodera and
Noé, 2014). Starting from large sets of individual short MD
trajectories, this approach has been used to tackle biological
problems happening at relatively long time-scales, such as
protein folding, protein-ligand binding, or large
conformational changes.

Tools from information theory can also be employed to
analyze atomistic trajectories. For instance, cross-correlation or
mutual information (Lange and Grubmüller, 2006) can shed light
on concerted movements between protein regions; while the
former captures only linear correlations between residues, the
latter can detect also the non-linear ones. Both cross-correlation
and mutual information can be used to build a network
representation of the protein, where each residue is defined as
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a node and the graph edges between neighboring elements are
weighted according to the correlations extracted from an MD
simulation. The resulting network can be analyzed through well-
established techniques of graph theory, such as node centrality
and edge betweenness (Böde et al., 2007). These analyses proved
valuable in the study of allostery, as described in the work of
(Bowerman and Wereszczynski, 2016). Here, the authors
simulated at atomistic level the enzyme thrombin, and
calculated correlations among residues in terms of cross-
correlation, mutual information, and non-linear generalized
correlation. The latter is then employed to construct a graph
and obtain information about allosteric pathways and hotspots.

In spite of the advancements in simulation tools and analysis
techniques, however, the simulation of large macromolecules and
slow biophysical processes still remains out of reach for detailed,
atomistic models. Additionally, such a high level of detail in the
description of the system can even represent a limitation in the
comprehension of the system of interest and its properties. To
overcome these limitations simpler representations are employed,
which offer an increased efficiency at the expenses of a lower
degree of resolution. These coarse-grained models are the object of
the following sections.

4 COARSE-GRAINED MODELING:
GENERAL FRAMEWORK

In 1975, Levitt and Warshel published a paper in which they
employed an extremely crude representation of a protein in terms

of few sites endowed with simple interactions to gain insight in
the process of protein folding (Levitt and Warshel, 1975); while
the specific results obtained have been later questioned (Hagler
and Honig, 1978), this work represents a milestone as the first,
pioneering attempt to investigate fundamental biophysical
problems making use of minimalistic models of the system
instead of extremely accurate ones. Since then, biomolecular
CG modeling has steadily grown to become an essential tool
in the computational investigation of biological matter: only
considering proteins, a whole zoo of CG models and
techniques has been developed, which aim at capturing the
physicochemical behavior of a large variety of molecules over
a wide range of characteristic length and time scales (Saunders
and Voth, 2012; Kmiecik et al., 2016; Singh and Li, 2019; Nguyen
et al., 2021). Given this extreme diversity, we deem it useful to
briefly recapitulate the main concepts underlying the
development or choice of a CG model.

As discussed in Section 2, the first ingredient required in
the construction of a CG model for a biomolecular system is
the selection of a SLR, obtained by superimposing a mapping
to the fundamental representation—in our case, the atomistic
one. The mapping constitutes the observational filter
connecting the detailed description of the protein’s
instantaneous configuration to its low resolution
counterpart, meaning that, in the latter, only a limited
amount of the original degrees of freedom is explicitly
employed. One can think of this process as putting on a
pair of “coarse-graining glasses” whose effect is that of
blurring an already neat and defined image (see Figure 3).

FIGURE 3 | The process of filtering is akin to wearing a pair of spectacles while enjoying a perfect eyesight. The loss of detail is generally considered a defect,
however it does have the advantage of simplicity and parsimony - if it is done properly. Artwork by R. Potestio.
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Critically, inherent to the CG mapping is the definition of the
elemental units composing the newly-introduced representation:
in particle-based CG pictures (Noid, 2013; Kmiecik et al., 2016),
such units are the effective interaction sites, or “beads”, obtained
by lumping together subsets of the system’s constituent atoms.
Depending on the chosen resolution level, each site can be
representative of small to medium-sized chemical moieties
(Monticelli et al., 2008; Bereau and Deserno, 2009; Darrè
et al., 2015), single or groups of amino acids (Clementi et al.,
2000; Atilgan et al., 2001; Micheletti et al., 2004; Zhang et al.,
2017), up to entire molecular structures (Chu and Voth, 2006;
Sept and MacKintosh, 2010; Dama et al., 2013). In all these cases,
the mapping is formally expressed as the functional relation
R � M(r) between the effective sites’ coordinates R and the
atomistic ones r (Noid et al., 2008a; Rudzinski and Noid,
2011).6 In continuous or quasi-continuous CG representations
(Oliver et al., 2013; Welch et al., 2020), the elemental units can
instead be identified with the finite volume elements employed to
decompose the protein’s macroscopic structure, and the mapping
can be considered as the specific discretization mesh prescription
employed in numerical calculations.

The selection of the level of resolution employed to describe a
system is per se an already highly nontrivial problem, as this
process naturally introduces a lower bound in the length scales
the CG representation is in principle able to resolve. Indeed, for a
CG observer it will be impossible to capture fluctuations of the
system taking place below the size of the average radius of a
bead—or the distance between two beads—in particle-based
pictures, or smaller than the size of the discretization mesh in
continuous ones. In turn, this implies that a CG representation
characterized by a specific minimum length scale, when
employed to inspect the system, can only enable the
investigation of emergent properties or phenomena occurring
at or above such scale: it is technically impossible for the CG filter
to grasp the rotation of a specific protein side chain around its
main axis, if it is depicted as a point-like particle. This limitation
has to be explicitly accounted for when designing the low-
resolution representation of a system.

Subsequently, for the simplified representation to acquire
predictive power—that is, for the CG mapping to become a
model—interactions among its effective degrees of freedom
must be introduced. In the case of continuous CG
representations, this amounts at providing, as input
parameters, the appropriate material properties of the protein,
e.g., shear viscosity and shear/bulk moduli, which determine the
overall stress tensor of the system and consequently its
hydrodynamic behavior (Oliver et al., 2013). Particle-based CG
models, on the other hand, require the definition of the
interaction potential—more precisely, a free energy—acting
among the point-like effective sites that constitute the
molecular structure (Rudzinski and Noid, 2011; Noid, 2013).
As during the last decades substantial effort has been devoted to
the development and application of particle-based CG protein

models, we here showcase the main approaches behind the
parameterization of the associated constitutive interactions.
Our objective in this and the following sections is to provide
the reader with an idea of the diversity of the available models,
their properties, and their applications in a qualitative and non-
exhaustive manner; for much more detailed and technical
presentations the interested reader is referred to the excellent
reviews that have been recently presented in the literature (Noid,
2013; Kmiecik et al., 2016; Singh and Li, 2019; Nguyen et al.,
2021).

Depending on the nature of the ingredients employed in the
construction of the CG potential, particle-based models are
usually divided in three main classes: knowledge-based, top-
down, and bottom-up models (Noid, 2013).7

In the knowledge-based approach, the parameters of the CG
potential are identified through statistical analyses performed
over one or more experimentally resolved, static protein
structures. To some extent, knowledge-based methods thus
directly translate bioinformatic or “frequentist” information
about the occurrence of specific local properties—such as side-
chain affinities (Tanaka and Scheraga, 1976; Miyazawa and
Jernigan, 1996; Bahar and Jernigan, 1997; Davtyan et al.,
2012), backbone torsional angles (Betancourt, 2008; Kim et al.,
2013), or hydrogen bond capabilities (O’Meara et al., 2015)—to
the forces acting among the system’s CG effective sites. Top-down
models, on the other hand, typically hinge on simple functional
forms for the CG potential, the a priori choice of which is dictated
by physicochemical intuition, and fine-tune their constituent
parameters so as to reproduce a set of experimentally-
measured meso-to macroscopic observables for the system at
hand, including structural and/or thermodynamic ones
(Monticelli et al., 2008; Coluzza, 2011; Najafi and Potestio,
2015; Dignon et al., 2018; Perego and Potestio, 2019; Dignon
et al., 2019).

The two aforementioned CG strategies do not explicitly rely
on the existence of a more fundamental model of the protein, in
our case an all-atom force field; the problem of distilling the
interactions among CG sites directly from those governing the
microscopic constituents, so that the former become emergent
properties of the latter, is addressed in bottom-up methodologies.

Bottom-up CG’ing stems from a rigorous statistical mechanics
framework in which the high-resolution detail of a system is
explicitly integrated out in favor of a lower-resolution
representation (Rudzinski and Noid, 2011). This process
results in an effective interaction among the CG sites, the
potential of mean force (PMF), which in principle provides a
complete, faultless description of the system as observed through
the “CG glasses”, see Figure 3. The price one pays for the
simplification is that the PMF is intrinsically many-body in
nature: even if the energetic landscape of the original
microscopic system comprises only pair potentials among its

6Note that this definition does not straightforwardly apply to the case of adaptive
resolution models, vide infra.

7We stress that this sharp distinction is getting more and more smeared as the field
of CG modeling steadily evolves: indeed, complementary ingredients extracted
from each of the three aforementioned classes are often combined together in
parametrizing the CG potential of a protein.
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constituent atoms, once the resolution reduction is performed a
whole hierarchy of interactions appears that involve, in addition
to pairwise terms, triplets of CG sites, quadruplets, and so on
(Dijkstra et al., 1999). These many-body components can play a
key role in generating, and comprehend the origin of, the correct
large-scale behavior of a system (D’Adamo et al., 2015;
Menichetti et al., 2017), such as, in the case of proteins,
secondary structure motifs (Kolinski et al., 1993; Derreumaux,
1999; Bereau and Deserno, 2009; Liwo, 2013; Sieradzan et al.,
2017); at the same time, however, their presence makes the exact
determination of a PMF largely unfeasible in practice, except for
very simple microscopic models (Diggins et al., 2018).

The ultimate goal of bottom-up strategies has thus become the
construction of increasingly accurate approximations to the
correct result, achieved by relying on a wide variety of
different theoretical techniques. Approaches exist that allow
the explicit calculation of the set of interactions composing the
low-resolution potential, including the aforementioned many-
body terms, through a systematic decomposition of the PMF in
terms of Kubo cluster cumulants (Liwo et al., 2014; Sieradzan
et al., 2017; Liwo et al., 2020). Other methods focus instead on
reproducing a subset of the system’s structural observables
(Lyubartsev and Laaksonen, 1995; Soper, 1996; Tschöp et al.,
1998; Mullinax and Noid, 2009a; Lyubartsev et al., 2010;
Rudzinski and Noid, 2015) or aim at approximating the MB-
PMF by means of variational approaches, either directly (Shell,
2008; Shell, 2016), or matching the many-bodymean forces—that
is, the gradient of the MB-PMF (Izvekov and Voth, 2005; Noid
et al., 2008a; Noid et al., 2008b). In the case of structure-based
techniques, the implicit assumption is that, if the model generates
a set of important properties whose values are quantitatively in
line with those of the high-resolution model, this is a sign of CG
interactions reasonably approximating the MB-PMF; conversely,
if the CG potential optimally reproduces the MB-PMF as in
variational approaches, one can expect it to give rise to
observables that match the AA ones.

Recently, many of these strategies have benefited from the
introduction of machine learning protocols that aim at easing the
construction and usage of bottom-up CG force fields; notable
examples are, in the case of force-based methods, DeepCG for
liquid water (Zhang et al., 2018) and CGnets for small peptides
(Wang et al., 2019). Despite having been so far applied to
relatively small systems, the promising results obtained suggest
that machine learning techniques will soon grow to become a
cornerstone in the parameterization of accurate CG potentials for
biologically relevant macromolecules.

Irrespective of the parameterization workflow, CG
interactions pose nontrivial conceptual challenges. In principle,
the selection of a filter with a specific level of resolution allows one
to observe all phenomena in the system that occur at a length scale
equal to or larger than the characteristic size of the elemental CG
units; in the construction of a CG model, though, it is the choice
of the interactions that limits its ability to reproduce such
phenomena. If the CG potential accurately reproduces the
MB-PMF, all thermodynamical properties and observables of
the system can be obtained, even if they originate from processes
that take place at a scale below the resolution level of the model

(Wagner et al., 2016; Lebold and Noid, 2019a; Lebold and Noid,
2019b; Dannenhoffer-Lafage et al., 2019). However, in practical
applications it is not possible to calculate all many-body
contributions that appear in the PMF, let alone embodying
them into computationally manageable functional forms. In
the construction of the CG potential one is thus doomed to
rely on a limited basis set of interaction terms, commonly
consisting in few-body ones, which leaves out high-order
contributions; consequently, some effects of the removed
DoF’s will not appear. With a limited expansion of the MB-
PMF, we thus expect that a reduction in the resolution level will
correspond to a decrease in the spectrum of properties and
phenomena that the model is able to predict.

In some occasions it is reasonable to suppose that a
particularly well-chosen representation of the system might
lead to a substantial simplification of the interactions, e.g., by
making many-body terms small or even negligible (D’Adamo
et al., 2015): if this were the case, the MB-PMF could be expressed
through simple interactions among few constituents, thus making
the model simple to parametrize and understand. Alternatively, if
the many-body nature of the PMF cannot be reduced or
neglected, more complex interactions have to be incorporated,
as it is done in the case of density-dependent potentials (Allen and
Rutledge, 2008; Sanyal and Shell, 2016; Wagner et al., 2017;
Sanyal and Shell, 2018; Rosenberger et al., 2019; DeLyser and
Noid, 2019; Shahidi et al., 2020).

It is thus of paramount importance, for a successful usage of
coarse-graining methods, to identify which is the simplest
model—in terms of representation and interactions—that is
capable of accurately reproducing the properties of interest.
This problem will be addressed in Sections 5 and 6 of this
work, where we will present an overview of examples taken from
the literature. Specifically, in Section 5 we will focus on the
interplay between resolution level and range of observable
phenomena: we will discuss how, in general, by decreasing the
former we limit the latter, but at the same time we gain access to
larger length and time scales. The discussion will be restricted to
the case of homogeneous CG representations, that is, models in
which roughly the same level of resolution is employed
throughout the whole protein structure.

The homogeneity constraint will be subsequently relaxed in
Section 6, where we will focus on examples of hybrid models in
which different levels of resolution are concurrently coupled in
the description of the protein and/or the surrounding solvent.
This approach is particularly suited for the study of phenomena
localized on a well-defined region of the molecular structure: in
such a case, the high-resolution level is typically dictated by the
characteristic length scale of the phenomenon of interest, while
the rest of the system can be described with a coarser, and
consequently computationally less expensive, degree of detail.

5 COARSE-GRAINED MODELING:
RESOLUTION LEVEL

In Section 4 we discussed how a reduction in the resolution level
of a CG model can in turn lead to a limitation in the amount of
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emergent properties or phenomena the model is able to
reproduce. Critically, this is not a mere consequence of the
increase in the model’s smallest length scale; it also stems
from our incapacity to parametrize CG potentials capable of
comprehensively capturing the increasing amount of microscopic
detail that gets integrated out.

In this section we will explicitly investigate this tradeoff by
relying on a subset of protein CG models extracted from the
literature (Saunders and Voth, 2012; Kmiecik et al., 2016; Singh
and Li, 2019; Nguyen et al., 2021). We will restrict our analysis to
homogeneous models and present them in order of decreasing
resolution, moving from the most detailed CG representations all
the way down to continuum pictures. For each resolution step, we
will mention what phenomena the corresponding model is
appropriate to investigate.

Before starting the discussion, however, a couple of remarks
are in order. Firstly, we stress that the following list is not
exhaustive. The CG models selected in this work serve the
only purpose of providing the reader with a representative
landscape of the possible descriptions employed to investigate
biomolecular systems across a wide range of time and length
scales.

Secondly, although a decrease in the resolution of the CG
model should in principle correspond to an increase in the
characteristic sizes of the analyzed systems and phenomena it
can produce—thanks to the reduction in the associated
computational cost—in the presented applications this will not
always be the case. This is a consequence of our choice of ranking
CG models according to their resolution level rather than their
chronological appearance: more detailed and thus resource-
intensive CG models, when recent, benefited from the modern
explosion experienced in accessible computational power,

enabling their applications to system sizes that only a few
years earlier would have been unconceivable to address at
such a high level of detail. The inverse correlation between
resolution and accessible time/length scales should thus be
interpreted as a trend rather than a rule.

To construct our hierarchy of CGmodels, in the following we will
resort to a division in fourmain categories that account for similarities
in the underlying CG’ing philosophies. Specifically, in Section 5.1 we
will discuss explicit solvent CG models, whose elemental units aim at
preserving, in a reasonable although approximate manner, the
chemical features of the original microscopic components of the
protein as well as those of the solvent in which the protein is
immersed. Subsequently, in Section 5.2 this relatively high degree
of local detail will be significantly reduced through the introduction of
implicit solvent CG models. It is in this context that a decrease in
resolution, combined with further simplifications in the associated
interactions, more severely implies a bottleneck in the landscape of
phenomena a specific model can capture. The residue-based
decomposition of a protein that is common to both explicit and
implicit solvent CGmodels will be then loosened in Section 5.3, where
we will discuss Ultra-CG ones. Here, a single effective site becomes
representative of group of residues, a small protein, up to an entire
molecular complex. Finally, in Section 5.4 the particle-based CG’ing
scheme will be abandoned in favor of protein models in the
continuum. A schematic representation of this resolution-based
hierarchy of CG force fields, providing information about which
emergent phenomena each class of models can provide insights on, is
presented in Figure 4.

5.1 Explicit Solvent Coarse-Grained Models
The uppermost rung of a hierarchy of CG models arranged in
order of decreasing resolution is occupied by particle-based ones

FIGURE 4 | A schematic illustration of the relation between a model’s accuracy and its capacity of reproducing long time-scale phenomena. In principle, an
extremely accurate model might reproduce all phenomena that take place at a characteristic length and time scale that lies above that of its fundamental constituents;
however, practical limitations make its usage impossible beyond a certain limit. The coarser the model, the longer the time scale that can be achieved, at the expenses of
a shorter and shorter list of processes that it can manage to produce.
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that account for the solvent environment in a simplified but
explicit manner. Immersed in this CG solvent, an ensemble of
beads is then employed to describe a protein, each bead being
meant to encapsulate a small chemical moiety comprising few
constituent atoms, thus resorting to a rather moderate level of
CG’ing. Notable examples in this class of models include the
popular SIRAH (Darrè et al., 2015; Machado et al., 2019) and
MARTINI (Marrink et al., 2007; Monticelli et al., 2008) force
fields, in which, within a relatively “granular” solvent, a quite
conspicuous number of effective interaction sites is employed to
represent a single amino acid composing the protein structure.
Particular attention is further paid to approximately capturing the
“local” chemical features and flexibility of amino acid side chains,
so that several beads can be employed in their description.
Overall, this fairly high level of detail can limit the
computational speedup generated by these models, especially
due to the presence of the solvent; at the same time, it often
allows an almost one-to-one reconstruction, or backmapping, of
the microscopic structure starting from the CG one (Darrè et al.,
2015).

Interactions among the CG sites are parametrized to account
for the average properties of the atoms they enclose, and include
bonded as well as non-bonded contributions; in both SIRAH and
MARTINI, the former are tailored so as to reproduce (a subset of)
structural features, such as bond distances and the bending and
dihedral angles between consecutive units. Different philosophies
lie instead at the core of the determination of the non-bonded
potentials: while SIRAH aims at providing an accurate
description of the system electrostatics and sterics (Darrè
et al., 2015; Machado et al., 2019), MARTINI mainly targets
experimental free energies of partitioning of small chemical
fragments between a polar and an apolar phase (Marrink
et al., 2007; Monticelli et al., 2008). In both cases, the result of
this overall parameterization protocol is a “dictionary” of CG
building blocks, one per amino acid, that can be combined
together to model the protein structure of interest and
investigate its behavior.

The resolution level and chemical specificity characterizing the
fundamental units of SIRAH and MARTINI enables their
application to the investigation of large-scale conformational
and/or thermodynamic properties of a system, as well as to
problems in which the local detail, down to a sub-residue
level, can play a crucial role on the system emergent
phenomena: among these we mention the rearrangement of
side chains; hydrogen bonding; and protein-solvent, protein-
protein, or protein-substrate interactions. Despite the similar
length scales characterizing the elemental units composing the
two models, however, already at this limited degree of CG’ing the
delicate interplay between resolution level and effective
interactions has a considerable impact on the spectrum of
observable phenomena. Restricting ourselves to one significant
example, SIRAH was shown to be able to preserve the stability of
proteins comprising α-helix as well as β-sheet elements in absence
of explicit topological biases (Darrè et al., 2015). On the contrary,
MARTINI requires secondary structure motifs to be enforced a
priori, thus preventing its application in studies involving folding
or general conformational rearrangements (Monticelli et al.,

2008; Poma et al., 2017; Souza et al., 2020). While this
limitation is commonly associated to the relatively low
resolution at which the protein backbone is treated in
MARTINI (one bead per peptide), it should rather be
considered a direct consequence of the particular choice in the
parametrization of the interactions: in fact, effective models exist
that rely onMARTINI-like CG representations and are capable of
stabilizing secondary structure elements without introducing ad
hoc constraints (Alemani et al., 2010; Spiga et al., 2013).

This crucial difference naturally introduces a distinction in the
class of phenomena on which the twomodels can provide insight.
Specifically, SIRAH has been largely applied in the study of
problems where structural properties, in combination with the
local chemical detail, are pivotal: these include the dynamic
behavior of disordered proteins (Ramis et al., 2019), the
impact of post-translational modifications on protein
structural stability (Garay et al., 2019), and the prediction of
protein-protein binding free energies (Patel and Ytreberg, 2018).
On the other hand, the parametrization of MARTINI is based on
polar/apolar phase partitioning, which makes it particularly
suited in the analysis of protein-membrane systems.
Applications include the insertion and assembly of membrane
proteins and protein-protein complexes in lipid bilayers (Bond
and Sansom, 2006; Periole et al., 2012), the investigation of the
effect of protein crowding on transmembrane diffusion
(Javanainen et al., 2013), and the simulation of proteins in
realistic membrane environments (Corradi et al., 2018).
Recently, the model was also shown capable of predicting
protein-ligand binding affinities with no prior knowledge of
binding pockets or pathways (Souza et al., 2020).

5.2 Implicit Solvent Coarse-Grained Models
Explicit solvent CG models are required when, although by
relying on a blurred microscope, an attempt of tackling all of
the intricacies of a system’s local chemical maze is conducted. On
the contrary, their level of resolution can be considered excessive
when dealing with phenomena that take place at larger length
scales, such as protein folding, conformational rearrangements,
or self-assembly. Consider for example the case in which a net
attraction/repulsion between pairs of amino acids constitutes the
driving force of the macroscopic process; for this to emerge from
the CG model, a much lower resolution than that of SIRAH or
MARTINI might be sufficient, e.g., removing the solvent and
describing each amino acid as an effective interaction unit.

In principle, such a procedure should come at the price of
introducing a more complex (free-)energetic landscape among
the elemental sites to compensate for the additional reduction in
detail. This, however, is largely unfeasible in practice, and one
typically relies on further approximations, such as the derivation
of the low-resolution potential through the truncation of formal
statistical mechanics series expansions (Liwo et al., 2014), or its a
priori definition in terms of extremely simplified functional forms
(Derreumaux, 1999; Voegler Smith and Hall, 2001; Bereau and
Deserno, 2009; Cheon et al., 2010).

This discussion brings us to the second class of CG models
within our hierarchical ladder, that is, implicit solvent ones. Here,
as the name suggests, the solvent degrees of freedom are
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integrated out from the description, and one only accounts for the
effect they on average exert on the proteins under investigation.
Such proteins, on the other hand, are still decomposed in terms of
the their constituent residues, albeit in an increasingly simpler
form as the structural coarsening progresses. It is in this context
that the correlation between resolution level, CG interactions, and
range of observable phenomena becomes particularly strong: a
decrease in the first is usually not balanced by an increase in the
second, which in turn can result in a reduction of the third.

Among implicit solvent CG models, the more detailed ones
aim at preserving the “chemical identity” of each amino acid.
Since such information is inherently contained in the side chain,
this directly translates into the usage of one or more explicit CG
beads representing it and accounting for its chemical features, in
addition to the effective sites that are employed to describe the
peptide backbone. In analogy with the case of the explicit solvent
models discussed in Section 5.1, the desired outcome is again a
protocol in which the fundamental units embodying each amino
acid type can be joined together to assemble the specific system
under investigation. Examples of such intermediate resolution CG
force fields are OPEP (Derreumaux, 1999; Maupetit et al., 2007;
Sterpone et al., 2013), the one by Bereau and Deserno (BD)
(Bereau and Deserno, 2009), PRIME (Voegler Smith and Hall,
2001; Cheon et al., 2010), AWSEM (Davtyan et al., 2012; Wu
et al., 2018), and UNRES (Liwo et al., 2014; Sieradzan et al., 2017;
Liwo et al., 2020).

The first model, OPEP, is characterized by a high degree of
structural detail (Derreumaux, 1999; Maupetit et al., 2007;
Sterpone et al., 2013). All the heavy atoms composing the
protein backbone as well as the amide hydrogens are retained
as CG sites, while a single bead describes the side chain of each
amino acid—except for proline, which is represented by all its
heavy atoms. Interactions among these fundamental units are
then parametrized via a combination of structural,
thermodynamic and knowledge-based approaches, and
comprise conventional bonded and nonbonded
contributions—e.g., harmonic or Lennard-Jones potentials—as
well as terms that account for hydrogen bond capabilities and ion
pair interactions. Interestingly, while the original version of the
model neglected the solvent degrees of freedom, hydrodynamic
interactions were later incorporated in OPEP by coupling it with a
Lattice Boltzmann representation of the solvent (Sterpone et al.,
2015). As for BD and PRIME, they lean on a similar CGmapping
prescription to describe each amino acid, namely three beads for
the backbone and one for the associated side chain. Notable
differences exist, however, in the derivation of their constitutive
interactions. In particular, in analogy with OPEP, BD is again
defined in terms of a conventional basis set for the bonded and
non-bonded interactions, whose fundamental parameters are
tuned by combining structural and knowledge-based protocols
(Bereau and Deserno, 2009). In addition to terms accounting for
connectivity, steric repulsion, side chain affinities, and hydrogen
bond capabilities, the BD force field aims at favoring the correct
α/β secondary structure ratio through the presence of additional
bonded potentials mimicking dipolar-like interactions that tend
to stabilize β-sheet components. Furthermore, BD was later
generalized to protein-lipid systems (Bereau et al., 2014).

PRIME, on the other hand, resorts to a very crude interaction
network in which extremely simplified potentials such as hard-
sphere and square-well functions describe steric repulsion and
bonding/attractive interactions among the effective sites,
respectively (Voegler Smith and Hall, 2001). This choice
enables the usage of discontinuous molecular dynamics
(Rapaport, 1978; Bellemans et al., 1980), further speeding up
simulations. Originally blind to the side chain chemical detail,
PRIME was later generalized via a knowledge-based approach so
as to capture their specificity (Cheon et al., 2010). In AWSEM,
three CG sites, respectively located on the peptide Cα, Cβ, and
oxygen atoms, are employed to represent a single protein amino
acid (Davtyan et al., 2012; Chen et al., 2016; Wu et al., 2018).
Bonded potentials among the AWSEM CG units are then
complemented with a complex network of nonbonded
interactions: these include hydrogen-bonding terms,
bioinformatic terms biasing the formation of local structures, 8

nonlocal terms describing contacts—either direct or water/
protein-mediated—among distal residues along the sequence,
and burial terms that aim at accommodating an amino acid
into its preferential environment—e.g., the protein bulk or
surface. The corresponding parameters are tuned via a
combination of structural and knowledge-based approaches.
AWSEM further enables the simulation of membrane proteins
by relying on an implicit membrane potential (Kim et al., 2014).
Finally, UNRES maps each amino acid onto three CG sites,
namely the Cα atom, the center of the peptide bond, and the
side chain, the latter being described as an ellipsoid of revolution
(Liwo et al., 2014). Only the last two elements, however, are
explicit effective interaction sites, while the Cα sites only serve the
purpose of tracing the protein geometry. Interactions among the
UNRES building blocks are then parametrized through a rigorous
bottom-up procedure: the potential of mean force of the system is
expanded in a truncated series of Kubo-cluster cumulants, which
enable the derivation of the multi-body interactions acting among
the CG sites in a systematic manner (Liwo et al., 2014; Sieradzan
et al., 2017; Liwo et al., 2020).

The computational speedup generated by OPEP, BD, PRIME,
AWSEM and UNRES enables their application to problems
whose characteristic time and length scales were, until
recently, prohibitively large to be effortlessly accessed by
conventional all-atom simulations. Specifically, OPEP was
largely employed in the context of folding and structure
prediction of isolated proteins, protein-ligand and protein-
protein complexes (Wei et al., 2004; Shen et al., 2014;
Lamiable et al., 2016; Kynast et al., 2016), in aggregation
studies (Lu et al., 2012; Nasica-Labouze and Mousseau, 2012),
as well as to investigate the structure of long, intrinsically
disordered amyloid monomers (Nguyen and Derreumaux,
2020). Moreover, the introduction in OPEP of a Lattice
Boltzmann solvent paved the way for its exploitation to

8We exclude from the discussion the AAWSEM force field developed by Wolynes
and coworkers (Chen et al., 2016; Chen et al., 2017) in which the local structure
biasing terms are obtained through explicit all-atom MD simulations of fragments
of the protein under investigation, thus rendering the model non transferable.
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analyze hydrodynamic effects on biomolecular systems, including
the behavior of proteins under shear flow (Sterpone et al., 2018)
or the impact of molecular crowding on the dynamics of protein
suspensions (Sterpone et al., 2014). Applications of the BDmodel
encompass the investigation of folding processes, including the
analysis of the interplay between secondary and tertiary
structures in cooperative folding (Bereau et al., 2010), as well
as peptide aggregation phenomena (Bereau and Deserno, 2009).
Given the additional computational gain provided by its
discontinuous potentials, PRIME was instead extensively
exploited to investigate the behavior of large-scale systems,
especially in the context of aggregation of fibrils in presence or
absence of fibrillation seeds or inhibitors (Nguyen and Hall, 2004;
Cheon et al., 2011; Wang et al., 2017; Wang and Hall, 2018). In
addition to protein folding (Jin et al., 2020), applications of
AWSEM include the investigation of protein-protein
association (Zheng et al., 2012) and fibrillar aggregation
processes (Zheng et al., 2016; Chen et al., 2020), as well as the
analysis of the static and dynamic behavior of intrinsically
disordered proteins (Wu et al., 2018; Lin et al., 2019). The
incorporation of an implicit membrane potential in AWSEM
enabled it to provide insight on the folding behavior of
transmembrane proteins (Lu et al., 2018) and protein
assemblies (Truong et al., 2015). Finally, while UNRES was
originally applied to perform protein structure prediction via
energy minimization (Liwo et al., 1999), subsequent MD-based
studies include the investigation of folding processes (Liwo et al.,
2005), self-assembly of protein complexes (Sieradzan et al., 2012),
fibrillar aggregation (Rojas et al., 2010; Rojas et al., 2017), as well
as conformational transitions in molecular chaperones (Gołaś
et al., 2012).

The power of the intermediate resolution CG models lies in
their transferability, that is, the possibility of employing them to
provide insight on the behavior of systems that were not directly
involved in the models’ parameterization. It follows that
particular care must be taken as far as meso-to macroscopic
properties are concerned; while these can be explicitly included in
the construction of the effective potential, for the latter to be
transferable the introduced restraints should be flexible enough so
as not to bias the model predictions toward very specific
outcomes, associated to particular systems. This requirement is
especially evident in the case knowledge-based approaches, in
which abstraction of the interaction parameters from the stable
conformation of a specific protein—conformation that is here
interpreted as the emergent property participating in the
parameterization of the CG potential—is achieved by
performing a statistical analysis over an ensemble of structures
(Tanaka and Scheraga, 1976; Miyazawa and Jernigan, 1996; Bahar
and Jernigan, 1997; Betancourt, 2008; Kim et al., 2013; O’Meara
et al., 2015). It is thus possible, and indeed often advantageous, to
design transferable implicit solvent CG models tackling well-
defined large-scale problems; at the same time, one should make
their constitutive ingredients as general as possible, so as to enable
the characteristic phenomenon of the system of interest to arise
from the model, without the need of imposing it a priori. On the
other hand, one might need implicit solvent CG models that are
more severely bound to a subset of knownmacroscopic properties

associated to a specific biomolecule. In this case, the model could
be asked, e.g., to reproduce the experimentally resolved tertiary
structure of a particular system. The emergent property now
directly represents an input of the CG’ing protocol.

One could clearly resort to standard CG’ing strategies and
develop a dedicated effective model in which these conditions are
satisfied (Izvekov and Voth, 2005; Rudzinski and Noid, 2011;
Shell, 2016); this often lengthy parameterization procedure,
however, should at least in principle be repeated from the
ground up every time a new system is investigated, for which
the same kind of external piece of information is available. It is
therefore highly desirable to construct CG models that rely on
more “intuitive” interaction potentials and are easily
generalizable to arbitrary systems through a minimal fine-
tuning. The particular choice of the phenomenological
potential will play a pivotal role in defining the class of
phenomena the model can additionally provide insight on.
The simplification of the interaction network typically goes on
par with an additional reduction in the resolution level and
chemical detail, with every amino acid composing the
molecule being now described as a single interaction site.

A notable example of this second class of implicit solvent CG
models is represented by structure-based ones, such as G�o-like
models (GLM) (Hills and Brooks, 2009; Takada, 2019) or elastic
networkmodels (ENM) (Sanejouand, 2013; Togashi and Flechsig,
2018). Here, the external macroscopic input involved in the
construction of the effective CG potential is the static, either
stable or metastable, three-dimensional spatial conformation
assumed by the protein of interest. Both GLM and ENM
describe the interaction among the elemental CG units in
terms of very general functional forms, tailored to reproduce
the target structure but easily applicable to arbitrary ones; the
complexity and richness of the basis set, however, significantly
decreases while moving from GLMs to ENMs, generating a
crucial impact on the spectra of phenomena these two classes
of models can respectively capture.

G�o models originally represented a protein as a self-avoiding
walk on a lattice (Taketomi et al., 1975). Large-scale structural
information enters GLMs through attractive interactions
occurring between pairs of sites that, although distant along
the protein sequence, are in direct contact in the native
conformation. Despite this extremely crude description, such
models are capable of driving a protein to spontaneously fold
toward its native state (Go, 1983). The lattice formulation was
later extended to the continuum enabling the use of MD
simulations (Clementi et al., 2000). Here, a protein is
represented by sites located on its Cα atoms and interacting
via simple potentials whose functional form is borrowed from
standard all-atom force fields. The folded conformation is
enforced in both bonded and non-bonded interaction terms:
the former are parametrized by setting the equilibrium
structural parameters equal to the distances and bond/dihedral
angles of the protein native state; non-bonded contributions are
instead conceptually akin to the lattice version of the model, so
that general, unspecific attractive (resp. repulsive) interactions
occur between residues that form (resp. do not form) a native
contact. In both cases the strength of the interaction parameters is
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independent of the residues’ chemical detail; this condition,
together with the Cα mapping prescription, was later relaxed
in subsequent generalizations, which relied on more chemically-
realistic functional forms for the interactions (Karanicolas and
Brooks, 2002), as well as quasi-atomistic descriptions of the
biomolecule (Whitford et al., 2009).

Due to their extreme simplicity and flexibility, GLMs have a
long and successful history in the field of protein folding (Hills
and Brooks, 2009; Hu et al., 2017; Takada, 2019). Furthermore,
the original native-centric standpoint was later extended to
account for the presence of multiple (meta)stable
conformational basins, allowing transitions between them at
greatly reduced computational cost (Best et al., 2005; Okazaki
et al., 2006). Applications in this context range from the
investigation of conformational rearrangements of “simple”
proteins (Lu and Wang, 2008), all the way up to, e.g., large-
scale molecular motors (Hyeon et al., 2006; Kanada et al., 2013).

Sticking to a structure-based CG’ing protocol but further
reducing the complexity of the interaction basis set one
encounters elastic network models (Sanejouand, 2013; Togashi
and Flechsig, 2018). ENMs stem from the pioneering observation,
made by Monique Tirion (Tirion, 1996), that the low-frequency
dynamics of globular proteins, in the vicinity of their native
conformation, can be accurately reproduced by replacing the
system’s complex interaction network by a set of Hookean
springs of equal strength connecting neighboring atoms up to
a given cutoff distance. CG equivalents of this original version of
the model have been subsequently developed, which typically
retain one or two atoms per amino acid (Atilgan et al., 2001;
Micheletti et al., 2004). Structural information is more strictly
enforced in ENMs compared to GLMs, preventing the study of
processes such as folding or tertiary structure rearrangements. As
for the latter, however, it was shown that ENMs are able to
capture at least the essential, early-stage behavior of a protein’s
conformational changes, further cementing their role as a
fundamental building block in the edifice of mesoscopic CG
modeling of biomolecules (Tama and Sanejouand, 2001;
Petrone and Pande, 2006). Moving away from protein
simulations, the simplicity of ENMs allowed their application
to the investigation of the low-energy fluctuations of complex
systems where all-atom as well intermediate resolution CG
models would prove computationally too demanding, ranging
from macromolecular motors such as ribosomes (Tama et al.,
2003) up to entire viral capsids (Tama and Brooks, 2005; Grime
et al., 2016).

5.3 Ultra Coarse-Grained Models
The class of models presented in Sections 5.1 and 5.2, although
characterized by a gradual decrease in the level of detail, always
rely on a residue-based decomposition of a protein, in which only
one or few effective interaction centroids describe each amino
acid composing the biomolecule. To push the applicability of
particle-based CG models to the investigation of phenomena
occurring at even larger time and length scales, one possibility is
that of resorting to ultra coarse-graining (UCG) methods. Here,
each CG site becomes representative of larger chemical entities,
be that few residues, whole proteins or even entire molecular

complexes (Chu and Voth, 2006; Sept and MacKintosh, 2010;
Zhang et al., 2017). Several examples of UCG models, ranging
from more “chemically accurate” to more heuristic ones, have
been presented in the literature. While more traditional
applications typically focus on single proteins (Zhang et al.,
2017; Zhang et al., 2020), UCG methods have provided
impressive insights into the behavior of overwhelmingly
complicated macromolecular structures (Saunders and Voth,
2012; Hagan and Zandi, 2016), including actin filaments (Chu
and Voth, 2006), bacterial flagella (Arkhipov et al., 2006a), and
viral capsids (Arkhipov et al., 2006b; Nguyen et al., 2009; Grime
et al., 2016).

As pointed out in Dama et al. (2013), from a conceptual point
of view UCG models pose notable additional challenges
compared to their more detailed counterparts, which are, as it
is the case for the previously discussed studies, often overlooked
in the construction of the UCG effective interaction potential of a
system. Specifically, as the structural coarsening progresses,
several internal states of the system can end up being mapped
onto the same CG configuration. For instance, let us consider the
case of a macromolecular complex, a whole protein of which is
represented as a single UCG site. If the protein undergoes a
conformational rearrangement between two states that leave the
CG site coordinates unaltered, both states contribute to the
energetic landscape of a single CG macrostate and, as far as
the model is concerned, they are indistinguishable. At the same
time, the rearrangement could play a key role in the generation of
the macroscopic phenomenon of interest, and it would thus be
desirable to construct a UCG model able to discriminate the two
conformational basins. To tackle the problem of constructing CG
models for systems possessing internal states, Voth and
coworkers have recently developed an extremely elegant
Theory of Ultra Coarse-Graining (UCGT) in a series of works
(Dama et al., 2013; Davtyan et al., 2014; Dama et al., 2017), to
which we refer the interested reader. While applications of this
theory have been, to our knowledge, so far limited to relatively
high-resolution CG representations of liquids, UCGT represents
an extremely promising framework for the development of
accurate UCG models of biologically relevant macromolecules.

5.4 Continuous Models
Particle-based CG models share the fundamental common
feature of tracking the dynamics of a system through each of
its mesoscopic constituent degrees of freedom, or effective
interaction sites. As an extreme act of coarse-graining, such a
scheme can be completely abandoned in favor of representations
that treat the whole macromolecular body as a continuous
medium subject to the laws of hydrodynamics.

In this perspective, starting from the observation that a
protein in its folded, globular conformation behaves as a
viscoelastic solid (Wang and Zocchi, 2011), Harris et al.
introduced the Fluctuating Finite Elements Analysis (FFEA)
scheme for macromolecular simulations (Oliver et al., 2013). In
FFEA, fluctuations of a biomolecule around its native
conformation are described through hydrodynamic
observables, with the evolution of the system in response to
stress being obtained by means of finite element analysis.
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Notably, in addition to elastic and viscous factors, the effect of
thermal noise is directly incorporated into the protocol by
means of an appropriate stress tensor. The absence of an
atomistic level of detail clearly sets a dramatically large
lower bound to the length scales achievable by FFEA; on the
other hand, this method represents a promising opportunity
for pushing the analysis of biological systems to truly meso-to
macroscopic scales. Originally applied to the prediction of the
dynamics of globular proteins close to their native states
(Oliver et al., 2013), FFEA was later employed to analyze
the behavior of complex macromolecular systems such as
molecular chaperones (Solernou et al., 2018), conformational
transition of molecular motors (Richardson et al., 2014;
Hanson et al., 2015; Richardson et al., 2020; Hanson et al.,
2021), and the effect of the application of stretching and
torsional forces on the structural stability of antibodies (van
der Heijden et al., 2020).

A straightforward application of FFEA to the case of highly
elongated biomolecules such as thin, rod-like structures is
difficult because of the variety of length scales characterizing
the conformational variability of these systems. To tackle the
problem,Welch et al. recently introduced the Kirchhoff biological
rod algorithm (KOBRA), a fluctuating rod model designed to
perform continuum simulation of slender molecules (Welch
et al., 2020). In KOBRA, a thin system is represented as an
elastic material curve subject to thermal noise, whose dynamic
equations of motion are solved based on a discretization in terms
of straight rods connecting a set of nodes. The first application of
the model on elongated protein complexes showed promising
results; furthermore, the coupling of KOBRA with FFEA suggests
the possibility of generating mesoscopic, continuous models of
biomolecular systems comprising globular as well as slender
components.

6 COARSE-GRAINED MODELING:
RESOLUTION DISTRIBUTION

The first historical applications of hybrid multiscale models of
biomolecules trace back to the 1970s, with the works of Warshel
and Karplus (1972) and, a few years later, of Warshel and Levitt
(1976). These works, coupling a quantum mechanical and a
classical description, led the foundation for the quantum
mechanics/molecular mechanics (QM/MM) methodologies
(Amaro and Mulholland, 2018; Magalhães et al., 2020),
whose relevance was recognized by the attribution of the
Nobel prize in Chemistry to Karplus, Warshel, and Levitt in
2013. The development of QM/MM approaches opened the way
for the coupling of lower resolution levels for the investigation
of phenomena happening at increasingly larger length scales. In
this section, we present examples of such coupling schemes and
their range of applications. These include processes of ligand
binding studied with hybrid atomistic/coarse-grained
resolutions, or protein conformational changes reproduced
by the integration of CG scales at different levels of detail. In
addition, examples of a dual description of the solvent
(atomistic/CG or atomistic/continuum) are reported: they

allow the construction of a larger simulation box,
representing a computationally efficient solution for finite-
size effects. Importantly, all these cases require the definition
of the resolution domains during the phase of simulation set-up,
on the basis of some previous knowledge of the system. This
issue is overcome by the use of coarse-graining as an informative
tool, as explained in Section 7.

6.1 Coupling Quantum
Mechanical–Classical Atomistic Models
In QM/MM, a computationally expensive quantum mechanical
approach is used to simulate only a subset of atoms, where a
classical force field may fail: a typical example is the active site of
an enzyme, where a chemical reaction takes place. The other
components of the system, including the rest of the protein and
the solvent, are treated in a less computation-intensive way by
molecular mechanics. The classical, atomistic description of the
largest part of the system allows the simulation of full proteins in
their natural environment, either the solvent or the lipid bilayer;
however, the time-consuming quantum mechanical
calculations—even though restricted to a small number of
residues—limit the time scale spanned, which typically covers
a few hundreds of picoseconds.

Despite this limitation, which can nonetheless be alleviated by
the application of enhanced sampling techniques (Yang et al.,
2019), the QM/MMmethod is having an increasing impact on the
study of biomolecules (Lonsdale et al., 2013; Lonsdale et al., 2014;
Tyzack et al., 2016), mostly enzyme-ligand complexes. For
instance, QM/MM simulations proved useful to compute
binding free-energy profiles and barriers for enzyme-catalyzed
reactions (Barnes et al., 2013), and to characterize binding
kinetics (Haldar et al., 2018). Moreover, QM/MM plays a key
role in drug design for the discovery of covalent inhibitors
(Lodola et al., 2008; Ranaghan et al., 2014), small organic
molecules that steadily inactivate the target protein by forming
a covalent bond.

Although enzymatic reactions have been the primary target of
QM/MM studies, the approach proved to be effective also for the
investigation of proton transfer events, where the excess positive
charge is propagated through a network of hydrogen bonds
dynamically connecting water molecules, protein residues,
and/or cofactors. Since this process involves breaking and
forming covalent bonds and charge delocalization, a QM
description is required at least in the region where the transfer
takes place. Recent applications include the study of ion channels,
such as the Cl−H+antiporter ClC-ec1 (Chiariello et al., 2020).
Here, DFT-based QM/MM simulations and well-tempered
metadynamics (Barducci et al., 2008) free energy calculations
were performed, contributing to explain the transport inhibition
in ClC anion/proton exchangers. Another less obvious field of
application of QM/MM simulations is the computational study of
metallodrugs—namely coordination and organometallic
complexes, typically containing platinum, silver, gold,
vanadium, or iron ions (Palermo et al., 2016). The variety of
coordination modes, bond breaking and formation, ligand
exchange reactions, charge-transfer, and polarization effects in
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these molecules requires a QM description of the drug and its
binding site on the biomolecular target. A widely studied case is
the mechanism of action of cysplatin, one of the most effective
and broadly used chemotherapeutic agents (Calandrini et al.,
2015).

A recent methodological progress in QM/MM simulations is
the development of a Hamiltonian adaptive multiscale scheme
(Boereboom et al., 2016). As solvent molecules diffuse in and out
of the reactive region, they are gradually included into (and
excluded from) the QM computation. This was later
implemented along with state-of-the-art path integral
simulation techniques, which allow for the calculation of
quantum statistical properties, and ring-polymer and centroid
molecular dynamics, which allow the calculation of approximate
quantum dynamical properties (Kreis et al., 2017). In another
definition of QM/MM adaptive scheme, the boundaries of the
QM region change during the simulation, adapting themselves to
the reaction site (Mones et al., 2015). These advancements pave
the way for further methodological developments in the QM/
MM field.

6.2 Coupling Atomistic–Coarse-Grained
Models and Beyond
Biological phenomena do not always involve the breaking/
formation of chemical bonds, which require an accurate
description of the electronic structure. It is the case, for
instance, of non-covalent protein-protein and ligand-protein
interactions, including the vast majority of drug discovery
applications, where the designed drug is not supposed to
undergo any chemical reaction once accommodated in the
protein binding site. If the domains involved in the interaction
are known in advance, e.g., from experimental evidence or
previous computational analysis, one can additionally exploit
the inherently multiscale nature of the problem to build a
hybrid atomistic/coarse-grained (AA/CG) set-up, where the
atomistic detail is retained only in the region of interest (in
the above example, the binding site of a receptor). The rest of the
macromolecule is instead treated at a lower, coarse-grained
resolution, bringing the immediate advantage of a reduced
computational cost.

This general idea gave rise to a variety of approaches, where
the details of each method (namely, the resolution distribution
and the parameterization of interactions) are specifically
designed to tackle the system under investigation. Examples
range from the multi-resolution model of a polyamide melt
(Gowers and Carbone, 2015), where only the amide groups
involved in the formation of the hydrogen bonds are
maintained at atomistic resolution, to multimeric complexes
including both proteins and nucleic acids, as in Villa et al.
(2004), Villa et al. (2005), and Dans et al. (2010). In the latter
case, a multi-resolution simulation of the lac repressor protein
from E. coli and a 107-bp-long DNA segment is performed,
where the protein and the two bound operators are described
atomistically, while the DNA loop is modeled as an elastic
ribbon connecting the terminal base pairs of the DNA
operators.

In most of AA/CG applications the size of the atomistic region
is larger than a single chemical moiety, but substantially smaller
than the protein itself. This is the case of ligand-binding
multiscale studies, where an atomistic resolution is required
for only a few protein residues. In the work by Fogarty and
coworkers (Fogarty et al., 2016), an ENM representation of the
hen egg-white lysozyme is coupled with an atomistic description
of the active site, with and without the inhibitor di-N-
acetylchitotriose. The same model has been employed by
Fiorentini and coworkers (Fiorentini et al., 2020) with the aim
of assessing the accuracy of a hybrid AA/CG description of the
protein for binding free energy calculations.

A hybrid method specifically designed for the study of ligand-
protein interactions is the so-called Molecular Mechanics/
Coarse-Grained approach (MM/CG) (Neri et al., 2005; Neri
et al., 2006; Leguèbe et al., 2012; Tarenzi et al., 2019). In its
first version (Neri et al., 2005), MM/CG is validated on
cytoplasmic enzymes, whose catalytic site is represented
atomistically, while the rest of the protein is described at a CG
resolution according to a G�o-like model. Despite the absence of
explicit solvent, the method showed a good agreement between
the RMSF of the MM/CG simulations and the fully atomistic
ones, and a good overlap between the subspaces of the most
relevant eigenvectors computed with MM/CG and atomistic MD.

TheMM/CGmethod was then applied tomembrane receptors
of pharmacological relevance. In particular, with the introduction
of a surface potential surrounding the transmembrane region of
the protein and mimicking the interaction with the lipid bilayer
(Leguèbe et al., 2012), the MM/CG was specifically tailored for
predicting binding poses in low-resolution models of membrane
proteins, such as homology models of G-protein-coupled
receptors (GPCRs). The paucity of experimental structural
information and the low sequence identity between members
of the family lead to models with inaccurate side chain
orientations, which may introduce biases in fully atomistic
simulations: in such cases, coarse-graining part of the receptor
allows atomistic residues in the binding site to relax more easily to
the biologically functional conformation. Atomistic water
molecules in the extracellular side, hydrating the binding site,
are confined by a repulsive potential. This approach has been
widely tested on bitter taste receptor GPCRs (Schneider et al.,
2018; Fierro et al., 2019), and recently implemented in a
webserver pipeline (Schneider et al., 2020).

In the latest implementation of the method (Open Boundary
MM/CG) (Tarenzi et al., 2019), the multi-resolution model of the
protein is coupled to an adaptive resolution description of the
solvent through the Hamiltonian adaptive resolution (H-AdResS)
scheme (Potestio et al., 2013) (see Section 6.3 for further details).
Water is modeled with atomistic accuracy in the two hemispheres
capping the intracellular and extracellular parts of the receptor,
and free diffusion is ensured with a surrounding reservoir of CG
water molecules. The improved hydration model leads to the
simulation of a rigorous statistical ensemble and enables accurate
binding free energy calculations for a drug design purpose
(Korshunova and Carloni, 2021).

We conclude this subsection mentioning multi-resolution
models where the two or more resolutions concurrently
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employed are coarse-grained, that is, lower than atomistic. These
approaches aim at reproducing the large-scale conformational
dynamics of large biomolecules in a particularly efficient manner,
and are especially easy to rationalize. Proteins have been modeled
as networks of a small number of CG sites, fewer than the total
number of residues (Doruker et al., 2002; Kurkcuoglu et al., 2004;
Eom et al., 2007), and unevenly distributed along the primary
structure. The partitioning among resolution levels can be
performed on the basis of previous knowledge of the working
of the system functions: this is the case of the multiscale network
model (Jang et al., 2009): here, the fine-grained region is
constituted by specific functional sites represented at the
residue level as an ENM; the remaining regions are described
at a lower resolution, including only a subset of the Cα atoms as
interaction sites.

In other approaches, the choice of the level of resolution and
its distribution along the protein structure is not so obvious. This
is the case of the essential dynamics coarse-graining (ED-CG)
(Zhang et al., 2008; Zhang et al., 2009), where residues
undergoing collective dynamics are represented by pseudo-
nodal points. Such CG sites are determined through a
variational approach, with the objective of reproducing the
protein’s essential dynamics.

This last example illustrates in a rather clear manner the
relationship between the filter or mapping on one hand, and
the resulting model on the other. The definition of the CG sites is
not determined by their chemical structure or identity (as it is the
case for residue-to-bead mappings), but rather it is a consequence
of their emergent properties, such as the internal flexibility. This,
in turn, implies a non-uniform assignment of atoms to beads, as
different parts of the protein can show different degrees of a given
property, so that each CG site represents an arbitrary number of
atoms—or, alternatively, the resolution of the model varies non-
uniformly along the structure in terms of mass, number of atoms,
or chemical identity. More importantly, the mapping is not
assigned by the modeler from the top down: it is identified by
the system itself as the solution to a minimization process. This is
to say, a cost function is defined whose argument is the mapping
and whose minimum is the optimal mapping. The idea that the
system “informs the modeler” about which representation of itself
is the most appropriate (given certain criteria) represents a crucial
step forward in the process of modeling, and bears important
consequences on the interpretation of its outcomes. Section 7 of
this paper is devoted to exploring these ideas.

6.3 Multiscale Schemes Tailored for Solvent
Description
We conclude this section with an overview of those multi-
resolution approaches that have been applied to liquids and
diffusive systems, rather than to bonded structures whose
parts have a fixed resolution.

Needless to say, the most important liquid in biology is water.
Water molecules often play a direct role in biological processes,
such as ligand binding and enzymatic catalysis, by establishing
stable non-bonded interactions with protein residues and/or
ligands. At the same time, bulk solvent undoubtedly represents

the computationally most expensive component of the simulation
box. Several multiscale schemes have been designed in order to
tackle this duality; they are based on the common idea that water
in the hydration shell of a biomolecule requires an atomistic
description, while bulk water can be described at a coarser
resolution. However, such schemes pose the problem of
enabling proper diffusion of solvent molecules across regions
at different resolution, while keeping the overall thermodynamic
equilibrium under control. This issue is tackled, e.g., in Szklarczyk
et al. (2015) through the so-called “flexible boundaries for
multiresolution solvation” (FBMS). Here, the spatial
partitioning between atomistic and coarse-grained solvent is
enforced by means of half-harmonic distance restraints, which
attract atomistic molecules to the surface of the solute and repel
the CG beads. A restraint-free region at intermediate distances
enables the formation of a buffer layer, where the atomistic and
CG solvents can mix freely.

An alternative is given by those methods that allow solvent
molecules to smoothly change their resolution on the fly when
transitioning between an atomistic region and a CG region; these
include the adaptive resolution scheme (AdResS) (Praprotnik
et al., 2005) and the Hamiltonian adaptive resolution scheme
(H-AdResS) (Potestio et al., 2013). In both cases, solvent
molecules are free to diffuse between regions at different
resolution, without constraints; in so doing, they pass through
a hybrid resolution layer, where interactions between molecules
are governed by an interpolation of atomistic and CG forces (in
case of AdResS) or potentials (in the case of H-AdResS). The
interpolation scheme is defined by a position-dependent
transition function, which smoothly couples the two domains.
Moreover, tailored correction forces can be automatically
calculated and applied to the molecules in the hybrid region,
in order to ensure a uniform density profile across the
simulation box.

The relevance of such approaches in the context of
biomolecular simulations has been assessed by studying
ubiquitin at fully atomistic resolution in a multi-resolution
AdResS solvent (Fogarty et al., 2015), and atomistic proteins
atox1 and cyclophilin J in an H-AdResS solvent (Tarenzi et al.,
2017). In both works, each CG water molecule is represented as a
single bead located on the molecule’s center of mass. CG particles
interact through a potential derived from Iterative Boltzmann
Inversion (Reith et al., 2003; Rosenberger et al., 2016), which
reproduces the centre-of-mass radial distribution function of the
atomistic solvent; the protein is placed at the center of the
atomistic region, which is shaped as a sphere. A study on the
effect of the high-resolution region radius on the solute and the
hydration solvent was also performed. In Kreis et al. (2016), a
similar approach is employed, however, the shape of the high
resolution region is self-adjusting during the course of the
simulation, following the conformational changes of an
atomistic polypeptide during folding. The adaptive resolution
representation of the solvent served also for the calculation of
solvation free energies of side-chain analogues, using the AdResS
(Fiorentini et al., 2017) or H-AdResS (Korshunova and Carloni,
2021) scheme. Further applications of adaptive resolution
simulation methods include the coupling of atomistic water
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with a supramolecular, MARTINI-style model (Zavadlav et al.,
2019), or even an ideal gas representation (Kreis et al., 2015),
which can also provide an innovative solution for solvation free
energy calculation, by pulling the solute from the atomistic
solvent region to the CG one (Heidari et al., 2019).

A natural evolution of particle-based multiscale approaches
toward even coarser resolutions is the coupling of atomistic
solvent and continuum representations, which aims at
extending the range of applicability of such models to system
sizes beyond those reachable by particle-based models alone.
Several examples exist of simulation schemes including atomistic
and continuum descriptions for the simulations of water
(Brünger et al., 1984; Beglov and Roux, 1994; Im et al., 2001;
Lee et al., 2004; Deng and Roux, 2008; Wagoner and Pande, 2011;
Wagoner and Pande, 2013; Petsev et al., 2015). Attempts of triple-
scale simulation of liquid water have also been performed, by
concurrently coupling atomistic, CG, and continuum models
(Delgado-Buscalioni et al., 2009; Zavadlav et al., 2018).
Applications of an atomistic/continuum representation of the
solvent for biomolecular studies have been performed in
Wagoner and Pande (2018), where the boundary between the
explicit/continuum solvent models can adapt itself in response to
the conformational fluctuations of the atomistic peptide
simulated; and in Hu et al. (2019), for a multi-resolution
simulation of protein diffusion in water under a steady shear flow.

7 ON CHOOSING THE OPTIMAL
RESOLUTION LEVEL AND DISTRIBUTION,
AND ON MODELING AS AN ANALYSIS
TOOL

In the previous sections we showed how coarse-graining
techniques model soft matter systems, proteins in particular,
using a plethora of simplified representations, each one
characterized by its level of detail. In addition, several
methods have been developed to concurrently employ, in the
same simulation setup, models at different resolution, so as to
provide a small subregion with an accurate description and the
remainder of the system with a computationally efficient one. In
both cases, the level of detail and its distribution is usually
determined a priori on the basis of various characteristics
(chemical identity, biological function, intuition), depending
on the usage one does of the model. Recently, however,
interest has grown around the idea of allowing the system
itself to decide the “best” coarse-grained description of it.
Clearly, the notion of “best” is relative, and it necessarily has
to answer to the question best for what?

In this final section we report on the recent attempts to find the
optimal resolution of a biomolecule, namely the “most
appropriate” number and selection of degrees of freedom to
describe it, together with their spatial distribution. These two
concepts are deeply intertwined and several studies suggest the
existence of a link among the optimal resolution, the distribution
of detail assigned in the coarse-grained model, and the relevant
properties of the system of interest. This connection has its roots

in the philosophy behind bottom-up CG modeling, which
assumes that the properties of a system should emerge from
the behavior of a statistical mechanics-based, simplified model
obtained through the (exact) integration of a subset of its degrees
of freedom. Usually, this concept of “behavior” refers to the time
evolution of the CG system and its conformational space
sampling, which enable one to comprehend and understand it.
Here, we argue that the process of simplification (mapping) itself
can provide hints to non-trivial features of the high-resolution
model. This hypothesis has immediate consequences, such as the
conversion of coarse-graining methods into analysis tools, a
change of paradigm that could constitute a valuable
instrument for the analysis of high-resolution, fully atomistic
representations of biomolecules.

In bottom-up CGmodeling, the choice of the CGmapping has
proved to be critical for the properties of interest to emerge
systematically (Mullinax and Noid, 2009b; Rudzinski and Noid,
2011). This idea is pushed forward by Rudzinski and Noid
(Rudzinski and Noid, 2014), who quantitatively rationalize
how the quality of the modeling is influenced by the quality of
the mapping. Specifically, the authors group the configurations
sampled in a MD simulation into n (m) distinct molecular states
of the high-resolution (low-resolution) system; as the low-
resolution macrostates clearly depend on the choice of the
mapping scheme, Rudzinski and Noid posit that the most
informative CG representation should generate a bijective
correspondence between atomistic and CG molecular states.
This approach allows, in principle, to estimate the optimal
level of resolution as well as its distribution. It is thus the
system itself that informs the modeler about its low-resolution
description that maximizes the consistency with the high-
resolution behavior.

This promising paradigm is at the heart of a recent work by
Fiorentini and coworkers (Fiorentini et al., 2020), in which a
protein-ligand system is considered and the relationship
between the binding free energy and the chosen level of
resolution is quantified. The authors consider several
hybrid atomistic–coarse-grained representations of the
protein by treating a variable number of amino acids at the
all-atom level. The resulting values of binding free energy are
compared with the atomistic reference, showing that the
accuracy of the dual-resolution model does not necessarily
increase with the spatial extension of the atomistic region.
This result suggests the existence of a system-specific, optimal
number of amino acids that should be modeled with high
detail in such hybrid schemes.

In general, then, the idea has started to emerge that a
macromolecular system admits one or more optimal reduced
models, that is, simplified representations in terms of which it
(viz. its high-resolution model) can be observed with a marginal
loss of information in spite of a loss of detail. Furthermore, it
appears more and more evident that such an optimal
representation cannot, in general, be uniform: the degree of
fidelity with which the original, high-resolution structure is
reproduced in the simplified model can vary from point to
point, in parallel with the system’s chemical, mechanical,
dynamical, and functional properties.
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Foley and coworkers (Foley et al., 2015; Foley et al., 2020) have
pioneered the analysis of the CG model spectrum in a formal and
systematic way. In Foley et al. (2015) they considered a one-bead-
per-residue Gaussian network model (GNM) of proteins as the
reference, high-resolution representation; then, taking advantage
of the exact integrability of GNMs, they performed a systematic
decimation of the system’s beads to investigate how reduced
models at varying degrees of resolution manage to reproduce
fluctuations and correlations of the original model. In so doing,
they showed that the information loss that is inherent in the
process of coarse-graining is not a monotonic function of the
resolution, as an optimal value of the latter was found for which
the information content per CG bead (quantified by an
appropriate measure) exhibits a maximum. These works thus
highlighted the relation between the informativeness of a
representation and its resolution level.

The impact of resolution distribution was later studied by
Koehl and coworkers, also in this case making use of ENMs: the
Decimate (Koehl et al., 2017) algorithm progressively reduces the
resolution of a biomolecule by creating a hierarchy of increasingly
simplified models, in the spirit of the renormalization group
theory. As expected, such CG mappings show an uneven
distribution of detail: in the case of globular proteins, for
example, optimal models tend to concentrate atoms on the
surface of the molecule, thus heavily coarse-graining the inner
region—whose mechanical properties require fewer degrees of
freedom to be aptly reproduced. A related approach is employed
in a work by Diggins et al. (2018): here, the authors identify the
CG beads that produce a coarse-grained ENM whose
Hamiltonian interaction matrix is as close as possible,
measured according to an appropriate distance, to the high-
resolution, atomistic ENM. The proposed selection of atoms
proves to outperform a random assignment in terms of several
observables, such as the intra-block dynamics fraction.

Most of the mentioned approaches can be grouped under the
umbrella of methods to optimize the SLRs of a biomolecule in
order to improve the capability of the reducedmodels to faithfully
reproduce the atomistic properties of interest. We now
summarize the existing methods that, acting as pure filters,
focus only on the choice of the SLR without considering the
parametrization of the effective interactions.

The first prominent attempts at finding the most informative
reduced description of a biomolecule can be ascribed to Voth and
coworkers, who employed the χ2 residual of essential dynamics to
estimate the optimal number and partitioning of coarse-grained
sites for large protein complexes (ED-CG) (Zhang et al., 2009;
Zhang and Voth, 2010; Sinitskiy et al., 2012). In particular, in
Sinitskiy et al. (2012) this χ2 is subject to a constrained
minimization, in which the addition of a CG site to a
simplified description of a molecule is accepted only if there is
a substantial gain in information about the system. Related works
(Li et al., 2016a; Li et al., 2016b; Wu et al., 2020) by Xia and
colleagues start from the ED-CG method to develop several
protocols for the determination of the optimal representations
of biomolecules. In Li et al. (2016a) the authors introduce the
stepwise optimization with boundary constraint (SOBC)
algorithm to enhance the numerical performances of ED-CG

(Zhang et al., 2009; Zhang and Voth, 2010) on large proteins.
Subsequently (Li et al., 2016b) they propose to maximize the
ENM pairwise fluctuations between atoms that are mapped to
different CG sites (fluctuation maximisation). The resulting
reduced models, once equipped with simple, harmonic
interactions, are capable of matching the large-scale
fluctuations of the corresponding fine-grained counterparts.
More recently, Wu et al. (2020) adopt a combination of ED-
CG and internal clustering validation indices to estimate the
proper number of sites to coarse-grain proteins. Their results
suggest that the appropriate number of Cα atoms to be preserved
in a simplified model should lie between one half and one fourth
of the total.

Multiple examples of the application of CG’ing methods to
analyze simulation data of biomolecules rely on quasi-rigid
domain decomposition (Hinsen, 1998; Aleksiev et al., 2009;
Potestio et al., 2009). Polles et al. (2013) employed a quasi-
rigid domain decomposition of several viral capsids to single
out their fundamental mechanical blocks; once validated on a
dataset of known viruses, this method is used to formulate
predictions about structures whose mechanical subunits had
not been characterized yet. Following a similar approach
Morra et al. (2012) studied MD trajectories of three
representatives of the heat shock protein 90 (Hsp90) family,
simulated with and without substrates. They observed that,
when the protein is partitioned in as few as three quasi-rigid
domains, the relative rigid-like movements of the latter can
account for a significant fraction of the system fluctuations,
thus allowing to pinpoint two optimal axes for rigid rotations
of the domains. In turn, the position of these hinges was shown to
correspond to two interfaces: while the biological importance of
one of them had already been assessed, the other one was hitherto
unknown, thus highlighting a potentially druggable
functional site.

These remarkable results prove that it is possible to exploit
CG methodologies to perform a detailed analysis of the
fundamental aspects of an atomistic system. Nevertheless, it
is important to notice how these approaches rely on the
examination of mechanical properties of the system of
interest; although they certainly represent simple, intuitive
variables to look at, such features do not seem to be as
fundamental as the underlying problem they are applied to.
Examples of more profound approaches exist that aim at
optimizing the SLR of biomolecules in a systematic way
(Delvenne et al., 2010; Chen and Habeck, 2017; Boninsegna
et al., 2018; Wang and Gómez-Bombarelli, 2019). Delvenne
et al. (2010) rank SLRs according to the quality of the
corresponding partitioning induced on the protein graph.
Chen and Habeck (2017) propose a Bayesian procedure that
extracts the optimal SLR from a single macromolecule or cryo-
EM map. Boninsegna et al. (2018) combine time-averaged
diffusion maps (Banisch and Koltai, 2017) and Markov
State Models (Bowman et al., 2013) to select groups of
atoms that are mutually close (coherent) over a
conformational basin. Wang and Gómez-Bombarelli (2019)
employ a variational autoencoder to learn a set of latent CG
variables (that is, a SLR) from the atomistic configuration

Frontiers in Molecular Biosciences | www.frontiersin.org June 2021 | Volume 8 | Article 67697620

Giulini et al. From System Modeling to System Analysis

188

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


(FLR): in the decoding process the SLR aims at reconstructing
the original FLR in a deterministic procedure.

In the spirit of searching for a more significant and
informative metric to link the FLR with the space of
associated SLRs, some of us proposed a method (Giulini et al.,
2020; Errica et al., 2021) that aims at optimizing the choice of the
CG mapping through the minimization of the information loss
between the description given by the all-atom model and its
reduced representation. More specifically, the approach relies on
the calculation of the mapping entropy Smap (Shell, 2008;
Rudzinski and Noid, 2011; Foley et al., 2015), which is the
“distance”, in a Kullback-Leibler sense, between the all-atom
Boltzmann distribution and its projection onto the CG space.
Figure 5A illustrates a comparison of these distributions.

Given a reference all-atomMD simulation and a CGmapping,
this protocol optimizes the latter until a (necessarily local)
minimum of Smap is reached (see Figure 5B). CG mappings
obtained from independent minimisations of Smap share features
that are connected to the relevant biological properties of
proteins. Moreover, the resolution is not uniformly assigned
across the structures, but rather it is distributed to preserve
the maximum amount of information about the original,
atomistic description.

Since the calculation of Smap can be computationally time-
consuming, some of us (Errica et al., 2021) have proposed a
machine learning model to accelerate the assessment of the
quality of a coarse-grained mapping. This improvement allows
one to estimate the correct density of states of the system
(expressed in terms of the mapping entropy) by means of the
Wang Landau sampling scheme, a calculation that would be
computationally intractable without such machine learning-
based acceleration.

In conclusion, all the works showcased here reflect the
emergence of a profound need in the computational
biophysics community: that of a strategy to build a
faithful simplified representation of a molecular system in
an entirely unsupervised manner. In standard coarse-
graining recipes, such reduced descriptions must be
equipped with proper effective interactions in order to
generate data. However, the impressive development of
techniques to enhance the performances of atomistic
simulations is making this necessity less and less pressing.
In contrast, the huge amount of high-resolution data
produced at each MD run these days might benefit from
the capacity of CG models to serve as powerful instruments
to make sense of the data.

FIGURE 5 | (A) The mapping entropy is defined as the Kullback-Leibler distance between the atomistic, fully detailed probability distribution (left panel) and its
blurred reconstruction (right panel), obtained from a reduced description obtained neglecting a subset of degrees of freedom (middle panel). (B) The algorithmic
implementation of the method introduced by Giulini and coworkers (Giulini et al., 2020) iteratively refines the CG mapping until convergence: the resulting, optimal SLR
generates a reconstructed FLR that adheres as much as possible to the original one.
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8 DISCUSSION

In this reviewwe have presented a broad, though certainly incomplete,
overview of the ideas and motivations behind coarse-grained
modeling. The construction of a model of a physical system,
simple enough to be employed and understood while detailed
enough to enable nontrivial insight, is one of the core activities of
science in general. In the study of soft and biological matter, this need
becomes particularly pressing and complex, as the advantages of
generality, symmetry, and universality one enjoys in areas such as
particle physics or statistical mechanics of critical systems lose ground
in favor of specificity, peculiarity, and non-transferability; these latter
characteristics, however, are those that confer to soft matter its
spectacular spectrum of properties.

In such a varied and diverse scenario, one needs a comparably large
toolbox of models and analysis techniques to crack the code of the
relation among the constituents of a system, their arrangement and
relations, and the emergent properties. The term “coarse-grained
models” encompasses indeed such a variety, providing descriptions
of the same system at different levels of resolution and detail, and
serving as instruments to produce a given behavior as well as
techniques to analyze it.

During the past few decades the vast majority of the effort has
been put in the usage of coarse-grained models in lieu of more
detailed, but also computationally more expensive descriptions;
the recent impressive advancements of computer science are
releasing pressure from this need, and all-atom simulations
can now be performed of systems whose size and time scales
were yesterday achievable by low-resolution models only.

However, the feasibility of large-scale all-atom simulations is
not really putting coarse-grained models out of their job, but
rather it is making them change employment: indeed, the
extraordinary amount of data generated by such simulations
is, in general, all but trivial to understand, and appropriate
methods of analysis are required to make this information
intelligible. The knowledge acquired in the development of

effective low-resolution models thus proves especially useful in
discriminating the signal from the noise.

To conclude, based on the presented analysis of the
development of protein modeling throughout the decades, we
foresee that a bright future lies ahead of coarse-graining: there will
always be an inpatient necessity of simple models to investigate
complex phenomena, as the curiosity of researchers is bound to
lie beyond the capacity of their tools; complementarily, as more
and more systems will be viable for accurate and detailed
simulations, the need will grow for algorithmic, unsupervised
methods to climb the mountain of data, reach its top and say we
understand.
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Understanding the intricate interplay of interactions between proteins, excipients, ions and
water is important to achieve the effective purification and stable formulation of protein
therapeutics. The free energy of lysozyme interacting with two kinds of polyanionic
excipients, citrate and tripolyphosphate, together with sodium chloride and TRIS-
buffer, are analysed in multiple-walker metadynamics simulations to understand why
tripolyphosphate causes lysozyme to precipitate but citrate does not. The resulting
multiscale decomposition of energy and entropy components for water, sodium
chloride, excipients and lysozyme reveals that lysozyme is more stabilised by the
interaction of tripolyphosphate with basic residues. This is accompanied by more
sodium ions being released into solution from tripolyphosphate than for citrate, whilst
the latter instead has more water molecules released into solution. Even though lysozyme
aggregation is not directly probed in this study, these different mechanisms are suspected
to drive the cross-linking between lysozyme molecules with vacant basic residues,
ultimately leading to precipitation.

Keywords: statistical mechanics, entropy, free energy methods, multiscale, metadynamics method, protein-protein
binding, protein-excipient binding, protein hydration

1 INTRODUCTION

Protein therapeutics are increasingly being developed in the biopharmaceutical industry to
combat a wide range of diseases (Dimitrov, 2012; Faber and Whitehead, 2019). Compared with
traditional small drug molecules, the large and complex structures and marginal stability of
biomolecules make necessary the development of sophisticated formulations which can
stabilise the structure of such therapeutics to ensure their safe administration and efficacy
(Wang, 2015). Without the correct formulation conditions, proteins are prone to aggregation,
precipitation or phase separation (Moussa et al., 2016). The modulation of protein-protein
interactions (PPIs) in formulations is commonly achieved by the addition of small molecules,
termed excipients. However, a lack of understanding of how excipients operate is hampering
further development because such systems comprise multiple, transient, weak interactions
between proteins, excipients, other ions and water in solution (Falconer, 2019). This is an
extension of the difficulties in understanding aqueous electrolytes, where behaviour even of
simple salt solutions is not well explained, particularly at higher concentrations (Collins, 1997).
It is therefore important to develop new strategies to identify the effects of excipients on protein
stability to improve therapeutic formulations in the biopharmaceutical industry.
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A particularly intriguing phenomenon relating to the
mechanism of excipients operation was recently revealed for
the case of the protein lysozyme interacting with two
excipients, namely tripolyphosphate (TPP) and citrate (CIT).
Lysozyme is a small, stable protein that is widely studied and
known to remain largely folded in both experiments and
simulations and so does not require extensive sampling of
protein tertiary structural changes. Experimental data, as
illustrated schematically in Figure 1, has shown how TPP
excipients cause lysozyme to precipitate out of solution and
then resolubilise at higher TPP concentration, but similarly
charged CIT excipients do not cause lysozyme precipitation at
any concentration (Bye and Curtis, 2019).

The reason for these trends is not clearly understood, but it is
hypothesised that TPP cross-links lysozyme due to more
polarised, multi-directional P-O- bonds which form stronger
interactions with basic residues. Conversely, CIT may have
sterically hindered hydrogen bonding with donors on the
protein surface, which prevents cross-linking between multiple
lysozyme molecules (Bye and Curtis, 2019). In this work we
concentrate on the differences between TPP and CIT at the
excipient concentration where TPP causes lysozyme
precipitation but CIT does not.

Computational methods can contribute much to
understanding protein-excipient binding, given the high level
of detail that they provide. However, conventional methods for
molecular binding are less suitable for such problems because
they tend to be aimed at systems in which there are specific
binding sites between a substrate and its target, owing to the long-
standing influence of structure-based drug design. Rather, it is
typically the case for excipients that they bind non-specifically to
protein surfaces and in some cases not even directly to proteins at
all (Zalar et al., 2020). This diminishes the usefulness of
computational techniques such as docking studies and
alchemical free-energy methods in favour of ensemble-based
methods such as molecular dynamics (MD) or Monte Carlo
(MC) simulations that are able to sample the wide range of
relevant configurations (Schames et al., 2004; Spyrakis et al., 2015;
Yu et al., 2018; Barata et al., 2016). Given the large number of
possible configurations that need to be sampled, more efficient
enhanced-sampling simulation methods are required. Most

enhanced sampling methods for proteins have been conducted
to explore protein folding, allostery or protein-ligand binding
(Singh et al., 2017; Du et al., 2017; Barducci et al., 2013; Verona
et al., 2017). Studies of multiple ligands interacting with a protein
surface have shown how increased sampling produces binding
affinities comparable to experiment (Troussicot et al., 2015) as
well as how co-solutes can affect dissociation of proteins
(Banerjee et al., 2019). The use of multiple simulations starting
from different poses of two proteins has been shown to be
effective in reproducing native protein-protein association
structures and in the prediction of new bound configurations
(Plattner et al., 2017). Such methods may yield the extent of
excipient binding via brute-force probabilities between bound
and unbound but are unable to explain the calculated stability for
different excipients. Achieving this requires more detailed
strategies such as determining how all of the molecules in a
system contribute to the total Gibbs free energy. However, most
such studies on proteins have focused on the contribution of
water molecules or the protein itself (Tarek and Tobias, 2000;
Gerogiokas et al., 2016; Chong and Ham, 2017).

Here we seek to understand how lysozyme is differentially
stabilised by the excipients TPP and CIT to help explain its
aggregation behaviour by applying a free energy method that
calculates energy and entropy directly from a simulation called
EE-MCC (Energy-Entropy Multiscale Cell Correlation).
Energy is calculated directly from the system Hamiltonian
by summing over per-atom energies. Entropy is calculated
for all molecules in the system from forces and coordinates
at multiple length scales using MCC, which has been applied to
liquids (Higham et al., 2018; Ali et al., 2019), chemical reactions
(Ali et al., 2020), and proteins (Chakravorty et al., 2020). The
three length scales employed here from smallest to largest are 1)
water and monatomic ions, 2) excipients and residues, and 3)
the whole protein, which are classified here as united-atom,
monomer, and polymer levels, respectively. We examine the
Gibbs free energy for mixing a lysozyme dimer with TRIS buffer
and counterions with five excipient molecules, either TPP or
CIT, together with counterions, corresponding to the
concentration at which TPP-induced aggregation is detected
experimentally. Protein-excipient configurations are sampled
using metadynamics and multiple-walker simulations to allow
the exploration of more transient interactions than would be
possible using a conventional molecular dynamics simulation.
Although, the large phase space required to sample solute
interactions remains a bottle-neck, we observe several
important differences between CIT and TPP containing
solutions that may help explain their effects on lysozyme
aggregation.

2 METHODS

2.1 Multiscale Cell Correlation Entropy
Theory
InMCC, entropy S is calculated in a multiscale fashion in terms of
cells of correlated units. The total entropy is calculated as a sum of
components Sklij using the equation

FIGURE 1 | Lysozyme precipitation at intermediate tripolyphosphate
(TPP) concentrations and re-solubilisation at higher concentration.
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S � ∑
molecule

i

∑
level

j

∑
type

k

∑
motion

l

Sklij (1)

In this equation, S is calculated for each kind of molecule i,
at the appropriate length scales j for each molecule, in terms
of translational or rotational motion l over all units at that
level, and in terms of vibration or topography k for each type
of motion. Vibrational entropy relates to the average size of
energy wells for that unit while topographical entropy relates
to the probability distribution of the energy wells. Length
scales are defined at the united-atom (UA), monomer (M)
and polymer (P) levels for the protein, at the UA and M levels
for excipients, and the UA level for water and
monatomic ions.

2.1.1 Vibrational Entropy
The entropy of internal molecular vibrations of a unit in the
x, y, z directions at each length scale are calculated from the
frequencies ]i of Nvib number of translational or rotational
vibrations using

Svib � kB ∑
Nvib

i�1
( h]i/kBT
eh]i/kBT − 1

− ln(1 − e−h]i/kBT)) (2)

where h is Planck’s constant, kB is Boltzmann’s constant and T is
temperature. Frequencies ]i are obtained from the eigenvalues λi
of diagonalised mass-weighted force and inertia-weighted torque
covariance matrices using

]i � 1
2π

����
λi
kBT

√
(3)

The forces and torques are rotated into appropriate reference
frames defined by the type of unit as shown in Supplementary
Table S1. In the mean-field approximation, forces at the polymer
level and torques at all levels are halved. For all but the highest
length scale in each molecule, vibrational entropies associated
with the six smallest frequencies in the force covariance matrix
are removed to avoid double counting translation and rotation at
the higher level.

2.1.2 Conformational Entropy
Translational topographical entropy at the united-atom level is
otherwise known as conformational entropy. It is calculated from
the probabilities pi of sets of conformers for all dihedrals in the
monomer using

StopoUA � −kB ∑
Nconf

i�1
pi ln pi (4)

whereNconf is the number of sets of conformers. Each conformer i
is assigned by discretising the distribution of observed dihedral
angles into 30+ bins, conformers are centered on peaks defined at
bins for which two adjacent bins are less populated and no peaks
are closer than 60+, and each dihedral angle is assigned to the
nearest peak.

2.1.3 Orientational Entropy
The entropy arising from water molecule orientations with
respect to neighbouring united atoms is a generalisation from
before (Higham et al., 2018) that captures anisotropy due to the
presence of solutes. Orientational entropy is calculated using

SorientUA � kB∑
c

p(c) ln[(Neffπ)
3
2p(HBav)/σ] (5)

where c is the coordination-shell type of a water molecule and σ is
the symmetry number of water, equal to 2. The average bias in
hydrogen bonds (HBs) p(HBav) is a weighted average over the
HB biases to all Nc neighbours in the coordination shell

p(HBav) � ∑np(HBi)Ni

Nc
(6)

where Ni is the number of neighbours of type i in the
coordination shell and p(HBi) is the bias in hydrogen-bonding
with neighbour i given by

p(HBi) � p(Di)
p(Di) + p(Ai) × p(Ai)

p(Di) + p(Ai) (7)

where p(Ai) is the probability of accepting from neighboring
species i over all other neighbours being accepted from and p(Di)
is the probability of donating to neighbouring species i over all
other neighbours being donated to. For bulk water,
p(Di) � p(Ai) � 1, but when solutes are nearby, the HBs may
be biased in one direction, thus reducing the number of
orientations of the water molecule. The effective number of
neighbours Neff that a water molecule can accept and donate
HBs with is calculated from the HB probabilities relative to the
unbiased value 0.25 as

Neff � ∑
i

p(HBi)Ni

0.25
(8)

Neighbouring water molecules are identified by the solute they
are closest to when in the solute coordination shell and labeled as
bulk otherwise. Neighbouring solutes are identified as their
particular united atoms that are proximal to the water
molecule. Contacts between united atoms are defined using
the relative angular distance (RAD) algorithm (Higham and
Henchman, 2016). HBs are defined topologically (Henchman
and Irudayam, 2010; Irudayam et al., 2010; Irudayam and
Henchman, 2011) based on the acceptor with the most
negative qDqA/r2 for each donor, where qD and qA are the
charges of the donor and acceptor, respectively, and r is the
distance between them. We use a qualitative proxy for positional
entropy of the mixing molecules by considering the number of
solute-water contacts. We neglect the contribution of the
orientational entropy of the excipients, assuming for these
weakly binding molecules that it does not change significantly.

2.2 Molecular Energy
The potential (U) and kinetic (K) energies per atom i from
simulation are summed to give the enthalpy H of a given unit
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H ≈ ∑
i

(Ki + Ui) (9)

ignoring the negligible pressure-volume term.

2.3 Water Molecule Assessment Based on
Coordination Shell Neighbours
The immediate environment of a water molecule is defined by
what molecules are in its first coordination shell. This is used to
assess the free energy of water molecules depending on what
solutes they interact with. As there are many possible local
configurations of a coordination shell, we simplify the
definition of local water environments by defining five
categories of water contacts with various combinations of
excipients and counterion or lysozyme molecules as follows:

1) WP: UAs from only one protein.
2) WPP: UAs from two proteins.
3) WEP: UAs of one protein and any excipient or counterion.
4) WEPP: UAs of two proteins and any excipient or counterion.
5) WE: UAs of any excipient or counterion.

2.4 Change in Free Energy for Excipient
Binding
The free-energy change for binding five TPP or CIT excipient
molecules to the buffered protein relative to an infinitely dilute
excipient with their neutralising counterions is calculated using

ΔG � ∑
X

[GX,bndNX + GW,bndNWX ,bnd + GW,bulk(NWX ,dil − NWX ,bnd)]

− [GX,dilNX,dil + GW,dilNWX ,dil]
(10)

where X is each type of solute, NX is the number of solute
molecule X, and NWX is the number of water molecules in the

hydration shell of solute X. The subscripts “bnd”, “dil” and “bulk”
refer to the bound or unbound dilute solutions and bulk water,
respectively. The unbound protein dimer comprises chloride ions
and five TRIS molecules (2-amino-2-hydroxymethyl-propane-
1,3-diol) as shown in Figure 2. The five unbound excipients
comprise a single dilute excipient molecule with three
neutralising sodium counterions. The number of water
molecules that are released from solvation shells go into bulk,
and so they are assigned the free energy of pure water, which is
obtained from a simulation of pure water.

2.5 Well-Tempered Metadynamics
Metadynamics allows for enhanced sampling compared to
standard molecular dynamics (MD) simulations by forcing
simulations to sample unexplored regions of free energy
landscapes (Laio and Parrinello, 2002). Sampling is directed
through the use of collective variables (CVs), whose choice
depends on the system studied and the problem under
consideration. Each CV is selected to most efficiently sample
regions of interest, such as sampling dihedrals on a flexible
peptide to find new and metastable conformations. To bias the
system to previously unexplored regions, a biasing potential is
used to add Gaussian functions to the potential, which depends
on what regions of the potential energy landscape have been
historically explored. This potential has the form

V( s→, t) � ∑
kτ<t

W(kτ) exp⎛⎝ −∑
d

i�1

(si − s(0)i (kτ))2
2σ2i

⎞⎠ (11)

where V(s, t�→) is the history-dependent bias potential summed
over all selected instantaneous collective variables s→ at time t.
For each collective variable i, Gaussian functions (kernals)
with width σ i and heightW(kτ) are deposited every interval of
t steps. Over a long enough time, the bias potential converges
to minus the free energy G( s→) (plus a constant C) as a
function of all the CVs

FIGURE 2 | Schematic of the binding process between a set of five excipients, each with neutralising Na+ ions, and a buffered protein-dimer system with
neutralising Cl−.
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V( s→, t→∞) � −G( s→) + C (12)

The CVs chosen are to efficiently fill metastable states and
overcome barriers to neighbouring unexplored metastable states. To
improve the convergence of metadynamics simulations, the height of
the Gaussian is decreased with longer simulation time using well-
tempered metadynamics (WT-MTD) (Barducci et al., 2008)

W(kτ) � W0 exp⎛⎝ − V(s(0)i (kτ), kτ)
kBΔT

⎞⎠ (13)

where W0 is the initial Gaussian height and ΔT is a temperature
value selected to regulate the extent of exploration of free-energy,
selected based on the bias factor γ as follows

c � T + ΔT
T

(14)

This is the ratio between the temperature of the CVs and the
system temperature. WT-MTD helps with free-energy barrier
crossing by simulating CVs at higher temperatures and reduces
noise by gradually reducing Gaussian heights.

2.5.1 Reweighting Simulations From the Bias Potential
Because the bias potential in WT-MTD simulations is time-
dependent, the weighting w for each simulation frame is
calculated from the saved history-dependent bias potential
applied at a given time frame t (Tiwary and Parrinello, 2015)

w(t) � exp(V(u) − V(s ,→ t)
kBT

) (15)

where V(u) is the unbiased potential, equal to zero. Each
statistical contribution to thermodynamics calculated here
using MCC theory is weighted according to the above
equation at a given simulation frame over all analysed frames
using

Aw � Anwn +∑n−1
t Atwt

wn + ∑n−1
t wt

(16)

Statistical values (A) used to calculate the free energy of
excipients and water molecules at frame t are weighted (Aw)
using a rolling average, where the weighted value of current frame
n is added to the weighted values of all previous frames. The main
influence of the biased potential between solutes and solvent is on
the topographical entropy of water molecules, which is accounted
for here. Protein values are not weighted because protein
conformations are not sampled using a bias and the
weightings would not greatly affect protein entropy, and in
practice because the program used to calculate protein entropy
does not account for biases.

2.6 Selection of Collective Variables and
Metadynamics Variables
CVs are selected based on how efficiently the interactions
between solutes can be sampled without having to sample

more expensive molecular conformations. We therefore
consider the number of contacts made between molecule types
in the system. Three possible contact CVs are sampled: 1)
protein-protein contacts of any side-chain oxygen or nitrogen
between each protein, 2) polyanion-protein contacts of any
oxygen on the polyanion with any oxygen or nitrogen on
residue side chains and 3) any contacts between water oxygens
and any O or N atom on a protein or polyanion. We therefore
efficiently sample protein-protein interactions, protein-
polyanion interactions and water-solute interactions. For each
CV, the rational switching function, s(r) is used to set boundaries
between a contact and no contact such that

s(rij) �
1 − (rij−d0r0

)6

1 − (rij− d0r0
)12

(17)

where a contact s(rij) between atoms i and j and distance rij is 1 if
less than distance r0 and zero if beyond this distance. The
switching function allows for the transition between 1 to 0 to
be a continuous value for CV derivatives. A 10 Å neighbour list
cutoff is used and updated every 2000 steps, with a contact being
defined as two atoms between 0.5 and 6.5 Å distance. Contacts are
described as O or N atoms within 6.5 Å with the switching
function starting at 5 Å to gradually set the contact to zero at
6.5 Å. These contact definitions are used during metadynamics
simulations. For post-processing of simulations, contacts are
defined by coordination shells using the RAD algorithm as
mentioned in Section 2.4.

The Gaussian width σ for each CV is selected based on the
standard deviation observed from unbiased simulations. Contacts
between solutes are set with σ � 4 and for contacts with water
molecules σ � 30. The Gaussian height, W(kτ), is set to
1.5 kJmol− 1 and Guassians are deposited every 500 steps.
Simulations are run at T � 298 K and the bias factor γ is set
to 20. WT-MTD calculations for each system are performed
across 25 simulations with differing starting poses of two
lysozyme proteins and described in more detail next.

2.7 Multiple Walkers
Multiple walkers are multiple simulations running
independently, but sharing information about already visited
configurations along several CVs. Because we want to study
non-specific interactions, which is characterised by many
possibilities of weak or indirect interactions with the protein,
there is no precise starting configuration to use. We thus consider
multiple starting structures for sampling of interactions between
proteins and polyanions. We use multiple walkers of 25 possible
starting structures of various orientations between two proteins as
shown in Figure 3. Starting poses are generated in VMD by
sampling 90° orientations about the protein principal axes, giving
21 starting dimers with different protein surfaces facing each
other. An additional four poses are included of the same protein
surfaces facing each other but rotated about the dimer principal
axes. While more starting poses and simulations would be
required to achieve full protein-excipient sampling, this
number of structures was chosen to resolve the different
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effects of the two excipients in a computationally efficient
manner. A similar method to sample between multiple starting
configurations is bias-exchange metadynamics, where many
collective variables are sampled and exchanged between
multiple simulations (Piana and Laio, 2007). Here we use
multiple walkers instead of bias-exchange for a few reasons.
Multiple walkers allow for simulations to start and run at
different times, unlike with the bias-exchange method, where
information is swapped every step between simulations. For
multiple walkers, previously visited configurations over all
steps and simulations are read in and biased toward unvisited
configurations. Given that we use a high performance computing
(HPC) cluster, our simulations can run independently without
the need to wait for all 25 simulations to be simultanously
running, therefore efficiently using the CPU resources.
However, a disadvantage of multiple walkers is that only a few
collective variables can be sampled. Guided by the previous
experimental work (Bye and Curtis, 2019), we assume that
sampling contacts between protein and excipients is sufficient
to determine possible mechanisms for solute interactions. Lastly,
because we use LAMMPS for per-atom energy, we are restricted

to using multiple walkers rather than replica exchange, which is
not currently supported for use between PLUMED and
LAMMPS, as the latter uses temperature swaps, while
PLUMED uses coordinate swaps between biased simulations.

2.8 System Setup
Structures of systems containing two lysozyme proteins
surrounded by 14,400 water molecules to represent 100 mM
protein concentration are created for three different conditions
of excipient: tris(hydroxymethyl)aminomethane (TRIS) buffer
only, citrate (CIT) with buffer and tripolyphosphate (TPP)
with buffer. The two polyanion-containing systems have five
polyanions to represent a concentration of approximately
20 mM and three TRIS molecules for approximately 10 mM
buffer concentration for all systems. These conditions are
comparable to experiment at the concentration where TPP
precipitates lysozyme, while CIT does not (Bye and Curtis,
2019). Each system is created with 25 replicates of different
starting poses of lysozymes with respect to each other. CIT or
TPP are randomly assigned within a 30 Å radius sphere centered
within a box of approximately 80 Å

3
for each system respectively.

FIGURE 3 | The 25 starting poses for two lysozyme proteins for each multiple-walker simulation. First and last protein residues in the sequence are highlighted in
orange and cyan, respectively. The x, y and z axes (red, green, blue) lie at the origin of each simulation box.
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Each molecule in the system is neutralised with sodium or
chloride ions depending on charge. Protein structure
coordinates are taken from the Protein Data Bank with PDB-
ID 2VB1 (Berman et al., 2000). The protein is ionised according
to pKa of side chains at pH 9 using the PDB2PQR web server
(Dolinsky et al., 2004). TPP and TRIS have a population of two
charges at pH 9, so two TRIS molecules are set with 1+ charge and
the other neutral, while for TPP onemolecule is 4− charge and the
other four have 5− charge. All five CIT molecules are 3− charge.
Small-molecule geometries are built using Avogadro (Hanwell
et al., 2012) and initial protein poses are created using VMD
(Humphrey et al., 1996). Then all excipient, counterion and
solvent molecules are populated around proteins, with at least
an 8 Å layer of water molecules to the edge of the box using
Packmol (Martínez et al., 2009). Additional systems of each
excipient and counterion species surrounded by 900 water
molecules are created to represent dilute reference systems
with which to calculate changes in energy and entropy.
Lysozyme is parametrised using ff14SB (Maier et al., 2015),
water with TIP3P (Jorgensen et al., 1983) and and counter-
ions with Joung and Cheetham parameters for TIP3P water
(Joung and Cheatham, 2008). TRIS and CIT parameters are
calculated using the AMBER GAFF (Wang et al., 2004) and
TPP parameters with GAFF2 force field, partial charges are
parametrised with the AM1-BCC charge method using
antechamber (Wang et al., 2006), with additional parameters
for the TPP O-P-O-P dihedral and P-O-P angle from Meagher
et al. (Meagher et al., 2003).

2.9 Simulation Protocol
Each system is treated as a periodic box and initially minimized for
5,000 steepest descent steps with sander in AMBER18 (Pearlman
et al., 1995). Topology and initial coordinates are converted to
LAMMPS formatted files with InterMol (Shirts et al., 2017). A
short 0.2 ns equilibration is conducted at NVT (number, volume,
temperature) conditions to slowly heat the systems to 298 K and
then equilibrated for 12 ns at constant NPT (number, pressure,
temperature) conditions at 1 atm pressure with 1 fs time-steps in the
LAMMPS simulation package (Plimpton, 1995). Restraints on
protein Cα atoms are placed with a 500 kJmol− 1 spring constant.
After standard deviations for each CV are calculated, restraints on

backbone atoms are removed and 10 ns of production simulations
are performed. In total, 300 ns of equilibration and 250 ns
production simulation time are conducted for each of the three
systems over all 25 walkers. To maintain constant pressure and
temperature, each system is controlled using a Nose-Hoover
thermostat and barostat respectively. Temperature is relaxed
every 0.2 ps and pressure is relaxed every 0.5 ps with an isotropic
stress tensor across x, y, z box dimensions. For non-bonded
iteractions, these are truncated to 8 Å, beyond which the particle-
particle particle-mesh (PPPM) (Hockney and Eastwood, 1988) is
used. All bonds to hydrogen atoms are constrained using the
SHAKE algorithm (Ryckaert et al., 1977). Multiple walker well-
tempered metadynamics sampling is performed using the
PLUMED-2.0 plugin within LAMMPS (Tribello et al., 2014;
Bonomi et al., 2019). Per-atom coordinates, forces, potential and
kinetic energies are saved every 10 ps and a total of 20,000 frames are
analysed for each system. Potential and kinetic energies are
outputted per atom using the pe/atom and ke/atom flags
respectively within LAMMPS. For potential energy, two and
three-body energy terms are divided evenly over involved atoms
and the long-range PPPM contributions are calculated using the
method from Heyes (Heyes, 1994) within LAMMPS. For water and
excipient free energy calculations, output files and topologies are
read using the MDAnalysis python library (Michaud-Agrawal et al.,
2011) and analysed with an in-house developed python program
POSEIDON Beta V2 available at https://github.com/jkalayan/
PoseidonBeta. For proteins, LAMMPS output files are first
converted to CHARMM. psf and. dcd formats and stripped of
solvent and excipients using CPPTRAJ (Roe and Cheatham, 2013)
and protein entropy is calculated using code available at https://
github.com/arghya90/CodeEntropy.

3 RESULTS

3.1 Free Energy Change for the Formation of
Each Lysozyme-Polyanion System
The total change in Gibbs energy, enthalpy and entropy for
mixing each lysozyme-polyanion system from the individually
separated polyanions and the protein-TRIS systems are shown in
Table 1.

TABLE 1 | Total ΔG, ΔH and TΔS and molecular components to form the lysozyme-polyanion systems.

ΔG / kJmol − 1 ΔH / kJmol − 1 TΔS / kJmol − 1

Species X TPP CIT TPP CIT TPP CIT

Lysozyme −297 −226 −287 −267 10 −42
Polyanion 131 −76 136 −29 5 47
TRIS −106 −85 −97 −80 9 6
Na+ 4 −4 4 −4 1 0
Cl− −3 −1 −3 −1 0 0
Wlysozyme 4 −14 28 17 23 32
Wpolyanion −43 31 −84 30 −41 −1
WTRIS 34 40 38 43 4 3
WNa+ 2 −18 −28 −27 −29 −9
WCl− −2 −1 0 1 2 2
Total −276 −355 −293 −315 −17 39
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Also included is a decomposition over all five kinds of solute in
the system, namely protein lysozyme, polyanion TPP or CIT,
buffer TRIS, counterions Na+ or Cl− and all the water in the first
hydration shell of each of species, denoted by WX. Estimation of
standard errors in each thermodynamic property are extrapolated
from a repeated simulation of dilute citrate as detailed and
presented in Supplementary Tables S2 and S3. The dominant
error is that of the protein ΔG at 12.1 kJmol− 1 for both excipient
systems, with slightly larger errors in ΔH and smaller errors in
TΔS. Standard errors are also estimated based on the number of
starting poses, which are analysed in five groups of five poses and
are presented in Supplementary Table S4. These also show a
similar largest contribution from the protein, with values of
15 kJmol− 1 for TPP and 21 kJmol− 1 for CIT systems. Further
entropy decompositions are illustrated in Figures 4A,B according
to the vibrational entropy at polymer, monomer and united-atom
levels and the topographical entropy, which is conformational for
proteins and polyanions and orientational for all molecules.

When interpreting the results, we refer to ΔG or ΔH values that
are negative as stabilising the system, and conversely positive changes
in components as destabilising the system. The opposite holds for
TΔS. The total free energy change for polyanion mixing is large and
negative, indicating that the CIT system is stabilised compared to
TPP. The main contribution to the greater stability overall is lower
CIT free energy compared to the destabilisation of TPP. This is offset
by the reverse trend for hydratingwatermolecules around polyanions,
with are stabilised near TPP but destabilised near CIT. Substantial

energy-entropy compensation occurs in the stabilising of water
molecules hydrating TPP, with water energy decreasing more than
entropy. TRIS molecules are consistently stabilised for either
polyanion, largely due to energy, while their surrounding waters
are both destabilised. Cl− and Na+ions are weakly affected upon
mixing, although there is a greater change for the water molecules.
The water solvating Na+ is stabilised in the CIT system because of
enthalpy but destabilised in TPP due to enthalpy-entropy
compensation because of a loss in orientational entropy.

Also of note is the number of contacts between each kind of
species. Table 2 gives the number of contacts for the unbound
systems, namely the separated excipient with Na+ counterions
and the two lysozymes buffered with TRIS and Cl− counterions,
while Table 3 gives the contacts for the mixed polyanion-protein
systems. A comparison of the tables shows the most noticeable
change is a reduction in the number of contacts between Na+ and
polyanions upon binding for both polyanions, from 51.1 to 30.5
for TPP and from 16.3 to 7.7 for CIT. However, Table 1 indicates
that this release of Na+ into solution is only destabilising in the
TPP system.

For proteins, there is a lower energy for both polyanions due to
favorable electrostatic interactions between oppositely charges
molecules, in particular, involving charged patches on lysozyme
as shown in Figure 5. However, protein free energy is seen to be
more stable with TPP than CIT. This is due to both energy and
entropy (Table 1), with contributions from all components of
protein entropy (Figures 4A,B). Interestingly, both protein

FIGURE 4 |Change in free energy (orange line), enthalpy (grey bar) and entropy (bars in shades of blue) of (A) solutes and (B)water molecules around solutes in the
TPP and CIT systems. (C) Change in free energy for CIT vs. TPP of each residue classified by type (top) and of water around each residue (bottom). The dashed line
represents y � x.
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conformational and surrounding water orientational entropy are
larger in the presence of polyanions, which suggest weaker
interactions of the protein with its environment.
Correspondingly, an increase in residue RMSD is observed in the
CIT and TPP systems in Figure 5C. Water around proteins is
destabilised in both energy and entropy in the presence of
polyanions, bringing about slightly more stabilisation for CIT
than TPP. Further decomposition of the change in free energies
for each kind of residue according to charge, hydrophilicity and
hydrophobicity and for their surrounding waters are plotted in
Figure 4C. The free energy of basic residues, particularly Arg, is
reduced for both polyanions but more so in the TPP system than
CIT system. The free energy of acidic residues is generally more
destabilised with TPP than with CIT.

3.2 Interactions Between Solutes
Given the free-energy destabilisation for TPP but stabilisation for
CIT, we assess further how interactions with other solute
molecules may cause these differences in free energy. In dilute
solution TPP has more UA contacts with Na+, namely 10.2
contacts per TPP with an average TPP charge of −4.8,
suggesting strongly bound Na+ as calculated from the number
of contacts between molecules in Tables 2, 3. Dilute CIT has 3.3
contacts with Na+, matching its −3 cha+rge and suggesting Na+ is
not as tightly bound. In protein solutions, TPP and CIT have
approximately 60 and 50% reductions in contacts with Na+
respectively, but only TPP is destabilised.

From Figure 5A, both polyanions have similar numbers of
contacts in similar regions of positively charged patches on the
protein surface. Patches are generated on the protein using
Poisson-Boltzmann electrostatics as described in previous
work (Kalayan et al., 2020). CIT has overall weaker
interactions over the protein surface, while TPP interacts with
fewer regions of the protein but with higher occupancy. From
Figure 5B, TPP still has a high percentage of Na+ contacts
compared with all other solutes, even though TPP forms more
contacts with the protein that CIT. Similarly, Na+ interacts more
with TPP than the protein or CIT. As TPP has more strongly
bound Na+, we assume that the loss of some bound counterions
destabilises TPP. Interactions between TPP and basic residues
stabilise the protein, but do not appear to stabilise TPP. For CIT,
the loss in half of the interacting Na+ is compensated by the
interactions with basic residues which stabilise CIT.

As to why TPP remains bound to the lysozyme surface even
though it is destabilised, we observe stabilisation of residues
that TPP interacts with most frequently from Figures 5C, 4C,
where highest percentage occupied residues are also reduced
the most in free energy. Therefore protein stabilisation may
prevent TPP from being released into solution. Another
possible reason for TPP remaining in the bound state may
be attributed to surrounding water molecules as described in
more detail next.

3.3 Specific Residue Interactions of Water
Molecules
In Figure 6, water molecules are analysed based on the solutes in
their first coordination shell. Total numbers of each water type
are given in Table 4. By studying interactions of water with
solutes, we can also infer which solutes are in close proximity to
one another from the reduction in water coordination.

TABLE 2 | Number of contacts between species in the separated excipient and lysozyme systems.

Species X Lysozyme TPP CIT TRIS Na+ (TPP) Na+ (CIT) Cl−

Lysozyme 3.8 - - 5.7 - - 0.9
TPP - - - - 51.1 - -
CIT - - - - - 16.3 -
TRIS 5.7 - - 0.0 - - 0.1
Na+ - 51.1 16.3 - 0.0 - -
Cl− 0.9 - - 0.1 - - -
Water 918.5 76.0 91.3 54.1 79.9 69.8 137.8

TABLE 3 | Number of contacts between species in the polyanion-lysozyme
systems.

TPP system

Lysozyme Polyanion TRIS Na+ Cl− NX

Lysozyme 15.1 17.5 7.3 3.2 0.8 2
Polyanion 17.5 0.1 8.1 30.5 0.0 5
TRIS 7.3 8.1 0.4 0.2 0.0 3
Na+ 3.2 30.5 0.2 - 0.1 24
Cl− 0.8 0.0 0.0 0.1 0.0 18
Water 866.1 76.8 34.9 100.5 133.2 -

CIT system

Lysozyme 16.4 16.7 10.2 2.4 0.8 2
Polyanion 16.7 0.7 9.0 7.7 0.0 5
TRIS 10.2 9.0 0.6 0.1 0.0 3
Na+ 2.4 7.7 0.1 0.0 0.1 15
Cl− 0.8 0.0 0.0 0.1 - 18
Water 864.1 77.1 31.1 77.3 133.0 -

TABLE 4 | Number of water-molecule environments for each protein-excipient
system.

Water contact type TRIS TPP CIT

WP 906.9 843.1 837.2
WPP 5.2 15.0 15.4
WEP 6.4 7.8 11.0
WEPP 0.0 0.3 0.5
Total 918.5 866.1 864.1
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Representation of each water type is shown in part A. In part B,
distributions of water energy and entropy for each water type are
shown, where water molecules interacting with just protein
residues (WP and WPP) have similar distributions for all three
systems. However, when a polyanion is in the system, WEP and
WEPP water molecules are most energetically stabilised in the TPP
system. Some water molecules are stabilised in the CIT system,
but to a greater extent many water molecules remain less stable
compared to bulk water.

Part C in Figure 6 shows the water environments based on their
interactions with the nearest two residues, ordered by acidic, basic,
uncharged polar and non-polar from left to right. More destabilised
WEP and WEPP are present for CIT compared to TPP because
excipients are near more hydrophobic residues than in the TPP
system.WP andWWPP water molecules generally are less stable than
in bulk. The distribution of neighbouring residues interacting with
WWP water molecules is less specific than residues involved in WPP

interactions. This also indicates that PPIs between lysozyme
molecules without excipients involved occur mostly between
hydrophilic residues. In the presence of polyanions, protein-
protein interactions occur mainly between arginine residues.
However, in the presence of CIT, PPIs also occur between
hydrophobic residues, which explains the distribution of less stable
WEPP water molecules in the CIT system in part B.

4 DISCUSSION

Protein precipitation is often characterised by the propensity for
ions to “salt-out” a protein. Furthermore, the ion-specificity to
cause precipitation can be ranked in the Hofmeister series
(Hofmeister, 1888). The mechanism by which protein

precipitation occurs is generally considered to be caused by
ions forming stronger interactions than proteins with
surrounding solvent. It is assumed that stronger ion-solvent
interactions leads to a more structured water HB network,
explaining the designation of such ions as kosmotropes
(Collins, 1997). It is the loss of water at the protein surface
that then drives PPIs between hydrophobic regions. Suggested
mechanisms for protein precipitation assume that ions do not
interact preferentially with the protein surface, and instead
remain fully hydrated in solution due to strong interactions
with water. In the case of multivalent anions or cations,
however, these ions bind onto the protein surface as shown by
the change in net protein charge in experimental measurements
of their zeta potentials (Matsarskaia et al., 2016; Roosen-Runge
et al., 2013; Matsarskaia et al., 2018). At the concentration when
the net charge of a globular protein is neutral, the propensity to
precipitate is high because repulsive interactions are screened by
bound ions. This phenomenon is observed for polyvalent cations
(Y3+, La3+, Al3+, Fe3+) when interacting with net-negatively
charged globular proteins (Roosen-Runge et al., 2013). Yet
similar studies with polyvalent anions shows selectivity
between anions to salt out proteins, even though ion binding
to the protein and net-neutrality both occur universally (Bye and
Curtis, 2019).

To understand why ion specific protein precipitation occurs,
the change in both the stability and contacts between solutes
molecules is studied for conditions where TPP causes lysozyme to
precipitate but CIT does not. Stability is assessed by the change in
Gibbs free energy for mixing lysozyme with each excipient and
the contributions of all molecules involved. This analysis shows
several differences between TPP and CIT-containing systems.
First we observe TPP destabilisation upon interaction with

FIGURE 5 | A) Charged patches on lysozyme at pH 9 for two opposing orientations (top). Average percentage of residue contacts (darker regions have more
contacts) of polyanions mapped onto the protein surface for the same orientations (middle and bottom). Regions with no contacts are represented as CPK structures.
(B) Percentages of solute-solute interactions in TPP (left) and CIT (right) systems. C Change of per-residue RMSD compared to the protein in buffer only plotted against
percentages of polyanion interactions with each residue.
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lysozyme, caused by the release of half of the strongly bound Na+
ions surrounding TPP. Although unfavourable for TPP, protein
binding occurs due to the overall stabilisation of the protein,
which is stronger than TPP destabilisation. Conversely, CIT is not
destabilised upon protein binding, even with the loss of Na+ ions,
which are not strongly bound to CIT. However, cross-linking
with another protein does not occur with CIT because this is not
favourable for the surrounding water molecules.

The stability and contacts of water surrounding each solute
reveals the stabilisation of water around TPP, but overall
destabilisation around CIT. Upon binding to the protein, TPP
does not lose any water-molecule contacts. Instead, water-
molecule energy is stabilised but entropy is lost, therefore
forming a more structured HB network around TPP and
agreeing with the description of TPP as a kosmotropic ion.
Thus instead of water being stabilised upon release into
solution as is usually the case for PPIs, water is stabilised by
forming strong interactions with protein-bound TPP when
replacing released Na+ counterions. Water entropy around
CIT does not change greatly (TΔS � −1 kJ mol-1) when CIT
interacts with the protein but the contacts of CIT with water

moleculesreduce by ∼ 15%. The lack of strongly bound, ordered
water molecules suggests that CIT behaves as a chaotropic salt,
thereby not salting out the protein. Overall, the stabilisation of
water around lysozyme upon CIT binding maintains lysozyme
solubility.

Although water is slightly destabilised around lysozyme in the
presence of TPP, it does not seem to be destabilised enough to
cause precipitation via hydrophobic interactions. Instead the
combination of overall solvent and protein stabilisation upon
TPP binding is expected to drive binding via cross-linking with
other proteins at moderate TPP concentration. In the conditions
simulated here, five polyanion molecules per lysozyme pair
closely represents a 20 mM concentration. There are a total of
34 basic residues on the lysozyme pair at pH 9 with a net charge of
16+, therefore giving many vacancies for TPP cross-linking. At
100 mM TPP concentration, experiment shows that lysozyme is
fully resolublised into solution (Bye and Curtis, 2019) and there
are approximately 29 TPP molecules per lysozyme pair. Each
basic residue can be bound individually at 100 mM TPP, and
therefore no cross-linking between proteins would be required.
To more conclusively explain the experimental data, much longer

FIGURE 6 | A)Water types (WP,WPP,WEP,WEPP,WE) based on what solute types are in their coordination shell (grey dashed circles). (B)Distribution of water types
energy, entropy and free energy (top to bottom) for each system: TRIS only buffer (black), buffer + TPP (cyan) and buffer + CIT (magenta). (C)Water free energy for each
water type in TPP and CIT systems is based on which residue pairs are in a water coordination shell.
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simulations with more starting poses would be required that
can explicitly account for direct lysozyme-lysozyme binding
and cross-linking of lysozyme molecules by excipients at
varying concentrations of each excipient. Adequately
addressing such questions may require coarse-grain
simulations to achieve the necessary sampling. At the same
time, greater model accuracy may also be required by
accounting for the possibility of variable protonation states
of amino acids and excipients arising from their changing
environments using constant pH simulations. This makes
clear that much work remains in order to fully understand
the effects of excipients on protein behaviour.

5 CONCLUSION

Lysozyme-excipient systems have been studied to understand
how excipients differentially interact with lysozyme using a
statistical-mechanics based free-energy method called Energy-
Entropy Multiscale Cell Correlation that calculates the energy
and entropy of each solute and hydration shell water
molecules. Simulations are conducted using multiple walker
metadynamics simulations followed by reweighting to give a
Boltzmann distribution. We observe different contacts and
thermodynamic properties when the excipient TPP interacts
with lysozyme compared to the excipient CIT. A possible
mechanism by which TPP precipitates lysozyme is
suggested to be due to the stabilisation in free energy of
both lysozyme and solvent surrounding TPP upon TPP
interacting with basic residues and the release of bound
Na+ ions.
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A Primer on the oxDNA Model of DNA:
When to Use it, How to Simulate it and
How to Interpret the Results
A. Sengar1, T. E. Ouldridge1*, O. Henrich2, L. Rovigatti 3,4 and P. Šulc5,6

1Centre for Synthetic Biology, Department of Bioengineering, Imperial College London, London, United Kingdom, 2Department of
Physics, SUPA, University of Strathclyde, Glasgow, United Kingdom, 3Department of Physics, Sapienza University of Rome,
Rome, Italy, 4CNR Institute of Complex Systems, Sapienza University of Rome, Rome, Italy, 5Center for Molecular Design and
Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, United States, 6School of Molecular Sciences, Arizona
State University, Tempe, AZ, United States

The oxDNAmodel of Deoxyribonucleic acid has been applied widely to systems in biology,
biophysics and nanotechnology. It is currently available via two independent open source
packages. Here we present a set of clearly documented exemplar simulations that
simultaneously provide both an introduction to simulating the model, and a review of
the model’s fundamental properties. We outline how simulation results can be interpreted
in terms of—and feed into our understanding of—less detailed models that operate at
larger length scales, and provide guidance on whether simulating a system with oxDNA is
worthwhile.

Keywords: coarse-grained modelling, deoxyribonucleic acid, nanotechnology, biophysics, molecular simulation
(molecular modeling)

1 INTRODUCTION

Deoxyribonucleic acid (DNA) is a macromolecule that acts as a storage medium for genetic information
for all living organisms (Alberts et al., 2002). In nature, the molecule is most often found as a double helix
of two strands. The structure of each strand comprises of a backbone of covalently linked sugar and
phosphate groups. Each sugar is further attached to a base moiety: adenine (A), guanine (G), cytosine (C)
or thymine (T). Certain intra- and intermolecular interactions between these bases drive the formation of
the aforementioned double helical structure.

Crucially, the base pairing that holds these duplexes together is highly specific; to a first approximation,
Awill only bind to T andCwill only bind toG, and vice versa.Matching—or complementary—sequences
therefore bind to each other much more strongly than to non-complementary sequences. The different
base identities, along with the rules of complementarity, allow information to be encoded into the single
strands and copied from generation to generation (Watson and Crick, 1953).

The DNA double helix has a diameter of about 2 nm, and a helical pitch of about 3.4–3.6 nm.
Double strands are relatively stiff, with large bending disfavoured on lengthscales below around
40–50 nm (Seeman, 2003). By contrast, single strands are very flexible (Murphy et al., 2004; Chen
et al., 2012) forming loops and kinks with only a handful of bases or fewer.

These thermodynamic, mechanical and structural properties influence DNA’s biological role, but
also make it an ideal material for nanoscale engineering. The simplicity of interactions between
strands, and the predictability of the structural and mechanical properties of the product, have
enabled the rational design of a host of synthetic structures (Fu and Seeman, 1993; Goodman et al.,
2005; Rothemund, 2006; Douglas et al., 2009; Ke et al., 2012; Zhang et al., 2015; Tikhomirov et al.,
2017; Wagenbauer et al., 2017), computing architectures (Adleman, 1994; Rothemund et al., 2004;
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Qian et al., 2011; Cherry and Qian, 2018; Woods et al., 2019) and
dynamic systems (Yurke et al., 2000; Shin and Pierce, 2004;
Muscat et al., 2011; Zhang and Seelig, 2011; Wickham et al.,
2012; Srinivas et al., 2017; Tomov et al., 2017).

DNA’s importance to biology, nanotechnology and simply as a
canonical model biopolymer for biophysicists means that modelling
its behaviour is a key challenge. Unsurprisingly, therefore, models
spanning an enormous range of complexity have been proposed to
analyse and rationalize the behaviour of DNA. In this pedagogical
review, we will first discuss this range of models and their interplay,
before focusing on a particular coarse-grained model, oxDNA.

The oxDNA model, first published in 2010 (Ouldridge et al.,
2010a) (and with a slightly updated potential in 2011 (Ouldridge
et al., 2011)), has now been extensively applied to problems in
nanotechnology (Ouldridge et al., 2013a; Doye et al., 2013; Srinivas
et al., 2013;Machinek et al., 2014; Snodin et al., 2016, 2019;Henning-
Knechtel et al., 2017; Hong et al., 2018), soft matter (De Michele
et al., 2012; Rovigatti et al., 2014; Procyk et al., 2020; Stoev et al.,
2020), biophysics (Matek et al., 2012; Romano et al., 2013; Matek
et al., 2015;Mosayebi et al., 2015;Harrison et al., 2019; Nomidis et al.,
2019) and biology (Lee et al., 2015; Wang et al., 2015; Craggs et al.,
2019). Numerous tools exist to generate and visualize systems with
oxDNA (Henrich et al., 2018; Suma et al., 2019), alongside two
independent, publicly-available code bases for actually running
simulations with at least three qualitatively distinct algorithms for
simulating the model (Ouldridge et al., 2011; Snodin et al., 2015).
One of these code bases has recently been incorporated into a
webserver (Poppleton et al., 2020).

Despite this uptake, however, there is insufficient clarity on
how the basic properties of the oxDNA model make it well- or
poorly-suited to studying certain systems. Moreover, many
interesting phenomena require non-trivial simulation
techniques if they are to be probed with oxDNA. Although
those techniques have been widely applied, and software
implementing them with oxDNA is available,
documentation supporting their use is limited. Equally,
there is very little help with the intuition required to use
these techniques successfully. Finally, a major aspect to
interpreting the results from oxDNA is rationalizing its
predictions in terms of less detailed models. Unfortunately,
however, there are many subtleties in doing so.

In this pedagogical review we implement a series of exemplar
simulations that allow us to address these shortcomings. These
simulations will establish a well-documented set of examples for a
series of approaches that can be adapted by users, and this review
will provide some of the intuition for how to use these approaches
successfully. Simultaneously, we will use these examples to
illustrate key aspects of the oxDNA model that determine its
usefulness, and will explore how to interpret the results in terms
of DNA models at different scales.

2 DNA MODELS ACROSS LENGTH SCALES

At the smallest and most fundamental scale, quantum chemistry
calculations can be used to estimate the nucleotide properties
from first principles (Hobza and Šponer, 1999; Pérez et al., 2004;

Šponer et al., 2004; Šponer et al., 2008). However, these
calculations are computationally extremely expensive and are
unable to capture the collective behaviour of whole strands in
solution. Nonetheless, insight from this field has been
incorporated into classical atomistic force fields AMBER
(Cornell et al., 1996) and CHARMM (Brooks et al., 1983) that
use empirical force fields to model interactions between atoms.
These force fields are iteratively parameterised using both
comparison to experimental data and information from lower-
level quantum mechanical descriptions. In recent years, advances
in computational resources have allowed these models to simulate
large systems—such as DNA origami—for long enough
timescales to analyse their equilibrium properties. Given long
simulations, these atomistic models are able to sample the
conformation of large structures (Nguyen et al., 2014; Rocklin
et al., 2017) and the breaking and formation of base pairs (Brown
et al., 2015). However, at the time of writing, a systematic study of
DNA duplex formation thermodynamics, as represented by
atomistic models, has not been performed. As such, it is
unknown how well these atomistic models represent DNA
thermodynamics—historically, the force fields have required
adjustment as new systems and longer time scales are studied
(Pérez et al., 2007; Yoo and Aksimentiev, 2012). This fact,
alongside the heavy computational load in simulating large
systems or significant structural changes, mean that atomistic
approaches are currently limited to a fraction of the systems of
interest in DNA-based biophysics, biology, soft matter and
nanotechnology.

In an effort to access longer timescales, a number of “coarse-
grained” or “mesoscale” models have been introduced (Savelyev
and Papoian, 2009; Ouldridge et al., 2011; Hinckley et al., 2013;
Korolev et al., 2014; Maciejczyk et al., 2014; Maffeo et al., 2014;
Machado and Pantano, 2015; Uusitalo et al., 2015; Dans et al.,
2016; Ivani et al., 2016; Chakraborty et al., 2018; Maffeo and
Aksimentiev, 2020). These models represent DNA with a much-
reduced set of degrees of freedom relative to atomistic
approaches. In particular, solvent (and solvated ions) are
usually treated implicitly, and groups of atoms in the DNA
are replaced by a single site with effective interactions. As a
result, these models can access longer length and time scales than
atomistic descriptions.

The procedure for coarse-graining ranges from “bottom-up”
approaches that seek to formally map the statistical behaviour of a
more detailed model into a coarse-grained description (Savelyev
and Papoian, 2009; Maciejczyk et al., 2014; Maffeo et al., 2014), to
“top-down” approaches such as oxDNA that are more ad hoc,
instead seeking to reproduce as many experimentally relevant
properties as possible (Ouldridge et al., 2009; Hinckley et al.,
2013; Machado and Pantano, 2015; Uusitalo et al., 2015;
Chakraborty et al., 2018; Maffeo and Aksimentiev, 2020).
Bottom-up approaches have been most successfully used to
study fluctuations within the duplex state, where the atomistic
models on which they are built are best parameterised. Top-down
approaches, by contrast, have found their application in the
analysis of processes that involve DNA outside of its canonical
B-form, including duplex hybridization (Ouldridge et al., 2013b),
strand displacement (Srinivas et al., 2013; Irmisch et al., 2020),
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stress-induced structural transitions (Romano et al., 2013; Wang
and Pettitt, 2014; Sutthibutpong et al., 2016) and the properties of
nanostructures with branched helices and single-stranded
sections (Rovigatti et al., 2014; Engel et al., 2020).

Although highly-simplified, all of the coarse-grained
models cited above attempt to represent the discrete, three-
dimensional structure of DNA explicitly. An important role in
our understanding of DNA is played by even simpler models.
In thermodynamic terms, two classes of model have received
particular attention. Firstly, the Peyrard-Bishop-Dauxois
model and its variants have been used to probe the
statistical properties of the duplex denaturation transition
in the thermodynamic limit (Dauxois et al., 1993; Cocco
and Monasson, 1999; Nisoli and Bishop, 2011). These
models represent DNA through two or three continuous
degrees of freedom per base pair.

A second approach dispenses with continuous degrees of
freedom altogether, taking an Ising-like approach in which
base pairs are either present or absent. Originally introduced
by Poland and Scheraga to probe the duplex denaturation phase
transition (Poland and Scheraga, 1966), the approach was
adapted and carefully parameterized (SantaLucia, 1998;
SantaLucia and Hicks, 2004; Huguet et al., 2010; Bae et al.,
2020) to describe binding equilibria for strands of moderate
length (oligonucleotides). It is difficult to overstate just how
influential the nearest neighbour model has been, particularly
in the development of nucleic acid nanotechnology, as it allows
rational design of an ensemble of strands to produce the desired
thermodynamics. The NUPACK software suite automates this
process of system analysis and thermodynamics-based design by
implementing the nearest-neighbour model (SantaLucia and
Hicks, 2004). A number of attempts have been made to
augment this thermodynamic model with realistic kinetics
(Flamm et al., 2000; Xayaphoummine et al., 2005; Srinivas
et al., 2013; Schaeffer et al., 2015).

At its simplest, the nearest-neighbour model allows a two-state
approximation to the binding of A and B, in which the strands are
either fully bound or fully dissociated. In this limit, the
concentration of the product [AB] can be estimated using the
equation

[AB]
[A][B] � exp(− ΔHAB − TΔSAB/kT). (1)

Here ΔHAB and ΔSAB are computed by summing contributions
from each nearest-neighbor set of two base pairs, together with
terms for helix initiation and various structural features, all of
which are assumed to be temperature independent.

Another class of models ignores thermodynamics entirely,
instead providing a continuum-level description of DNA
mechanics. Most notably, DNA is frequently modelled as a
semi-flexible polymer (or worm-like chain, WLC)
characterised by a bending modulus (Kratky and Porod, 1949).
This model can be augmented with an extensional modulus
(Odijk, 1995) and a representation of twist with associated
twist modulus (Yamakawa, 1977). It is also possible to
consider coupling between the modes of deformation (Gore
et al., 2006; Nomidis et al., 2019). As with the nearest-

neighbour model of DNA, the influence of these approaches is
enormous, particularly within the biophysics community. The
elastic rod is the starting point for understanding the geometry of
DNA, and the null model against which results are compared and
interpreted.

There is actually quite a large gap in complexity between
mesoscopic models such as oxDNA and the continuum WLC
models or the nearest neighbour model of thermodynamics.
The time required to analyse the same system with these
methods differs by many orders of magnitude. It is
intriguing that, to our knowledge, there are few approaches
that come close to bridging this gap. Fundamentally, it is not
easy to combine the mechanics of semiflexible DNA as captured
by theWLC, the geometry and topology of DNA structures, and
the thermodynamics of DNA duplex formation as described in
the nearest-neighbour model, in a representation that is
simultaneously quantitatively useful and substantially
simpler than the existing mesoscale models. Approaches
such as Benham’s description of melting in circularly
negatively-supercoiled DNA (Fye and Benham, 1999)
achieve this marriage in specific contexts. The variety of
possible behaviour, however, and the sensitive interplay of
topology, structure, mechanics and thermodynamics in
many systems of interest, make the development of such
models extremely hard and currently necessitate the
application of coarse-grained models such as oxDNA.

In the rest of this pedagogical review, we first provide a high-
level description of the basics of the oxDNA model and
simulation techniques. We then present prototypical
simulations to demonstrate key properties of oxDNA, and
discuss how results from these simulations can be interpreted
in terms of simpler DNA models at different length scales. While
doing so, we discuss specific challenges in obtaining meaningful
data from oxDNA simulations, and discuss where oxDNA
provides added value. Initialisation files, processing scripts and
supporting instructions are provided for all simulations presented
here at (Sengar, 2021). This review should then serve as an
introductory tutorial to applying oxDNA.

One drawback of this format is that the examples are presented
as a fait accompli; just re-running the code will provide a limited
experience of the real process of simulating oxDNA. We strongly
encourage readers using this document as a tutorial to attempt to
construct as much as possible of the simulations for themselves,
and then to compare to the results obtained here. Alternatively,
users may try to construct variants to simulate similar systems.
Additional guidance on the nuts and bolts of running simulations
can be found at Ref (oxDNA wiki, 2015; LAMMPS
Documentation, 2021), where instructions on visualizing the
output can also be found. In general, we have found that
checking one or two snapshots of a simulation can avoid
many wasted hours simulating and studying faulty systems.

3 THE OXDNA MODEL

The oxDNA model was originally developed to study the self-
assembly, structure and mechanical properties of DNA
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nanostructures, and the action of DNA nanodevices—although it
has since been applied more broadly. To describe such systems, a
model needs to capture the structural, mechanical and
thermodynamic properties of single-stranded DNA, double-
stranded DNA, and the transition between the two states. It
must also be feasible to simulate large enough systems for long
enough to sample the key phenomena. As discussed in Section 2,
mesoscopic models in which multiple atoms are represented by a
single interaction site are the appropriate resolution for
these goals.

We will now outline the key features of the oxDNAmodel, the
specific mesoscale model that is the focus of this review. While
doing so, we note that there are effectively three versions of the
oxDNA potential that are publicly available. The original model,
oxDNA1.0 (Ouldridge et al., 2011), lacks sequence-specific
interaction strengths, electrostatic effects and major/minor
grooving. oxDNA1.5 adds sequence-dependent interaction
strengths to oxDNA1.0 (Šulc et al., 2012), and oxDNA2.0
(Snodin et al., 2015) also includes a more accurate structural
model, alongside an explicit term in the potential for screened
electrostatic interactions between negatively charged sites on the
nucleic acid backbone. In addition to these three versions of the
DNA model, an RNA parameterisation “oxRNA” has also been
introduced (Šulc et al., 2014).

It is worth noting that the three versions of oxDNA are very
similar; most of the changes involve small adjustments of the
geometry and strength of interactions. Structurally, the most
significant change is the addition of a screened electrostatic
interaction in oxDNA 2.0, which is typically small unless low
salt concentrations are used. Moreover, subsequent versions of
the model have been explicitly designed to preserve aspects of
earlier versions that performed well. So oxDNA 1.5 and oxDNA
1.0 are very similar, except that oxDNA predicts sequence-
dependent thermodynamic effects that are absent in oxDNA
1.0. oxDNA 2.0 is designed to preserve the thermodynamic
and mechanical properties of oxDNA 1.5 at high salt as far as
possible, but improves the structural description of duplexes (and
structures built from duplexes) and allows for accurate
thermodynamics at lower salt concentrations.

As a result, therefore, the discussion provided here for
simulation of one version of the model largely applies to all.
Moreover, it is worth noting that, even given the improved
accuracy of oxDNA 2.0 in certain contexts, simulations of
earlier versions of the model are still potentially valuable.
oxDNA 2.0 comes into its own when it is essential to
incorporate longer-range electrostatics at low salt
concentrations, or when the detailed geometry of the helices
are particularly important. A good example would be when
simulating densely packed helices connected by crossover
junctions in DNA origami (see Section 8). In other contexts,
the reduced complexity of oxDNA 1.5 and hence its improved
computational efficiency (along with slightly greater focus on
basic thermodynamics and mechanics) may be beneficial.
Further, it is often helpful to use oxDNA 1.0 in these contexts,
as the comparison of versions 1.0 and 1.5 can help to distinguish
sequence-dependent and generic effects.

In all three parameterisations, oxDNA represents each
nucleotide as a rigid body with several interaction sites,
namely the backbone, base repulsion, stacking and hydrogen-
bonding sites, as shown in Figure 1. In oxDNA1.0 and
oxDNA1.5, these sites are co-linear; the more realisic geometry
of oxDNA2.0 offsets the backbone to allow for major and minor
grooving.

Interactions between nucleotides depend on the orientation of
the nucleotides as a whole, rather than just the position of the
interaction sites. In particular, there is a vector that is
perpendicular to the notional plane of the base, and a vector
that indicates the direction of the hydrogen bonding interface.
These vectors are used to modulate the orientational dependence
of the interactions, which allows the model to represent the
coplanar base stacking, the linearity of hydrogen bonding and
the edge-to-edge character of the Watson–Crick base pairing.
Furthermore, this representation allows the encoding of more
detailed structural features of DNA, for example, the right-
handed character of the double helix and the anti-parallel
nature of the strands in the helix.

The potential energy of the system is calculated as:

V0 � ∑
〈ij〉

(Vb.b. + Vstack + V ′
exc) + ∑

i,j ∉ 〈ij〉
(VHB + Vcr.st. + Vexc + Vcoax),

(2)

with an additional screened electrostatic repulsion term for
oxDNA 2.0. In Eq. 2, the first sum is taken over all pairs of
nucleotides that are nearest neighbors on the same strand and the
second sum comprises all remaining pairs. The terms represent
backbone connectivity (Vb.b.), excluded volume (Vexc and V ′

exc),
hydrogen bonding between complementary bases (VHB), stacking
between adjacent bases on a strand (Vstack), cross-stacking (Vcr.st.)
across the duplex axis and coaxial stacking (Vcoax) across a nicked
backbone. The excluded volume and backbone interactions are a
function of the distance between repulsion sites. The backbone
potential is a spring potential mimicking the covalent bonds
along the strand. All other interactions depend on the relative
orientations of the nucleotides and the distance between the
hydrogen-bonding and stacking interaction sites.

A crucial feature of the oxDNAmodel is that the double helical
structure is driven by the interplay between the hydrogen-
bonding, stacking and backbone connectivity bonds. The
stacking interaction tends to encourage the nucleotides to
form co-planar stacks; the fact that this stacking distance is
shorter than the backbone bond length results in a tendency
to form helical stacked structures. In the single-stranded state,
these stacks can easily break, allowing the single strands to be
flexible. The geometry of base pairing with a complementary
strand locks the nucleotides into a much more stable double
helical structure.

The model was deliberately constructed with all interactions
pairwise (i.e., only involving two nucleotides, which are taken as
rigid bodies). This pairwise character allows us to make effective
use of cluster-move Monte Carlo (MC) algorithms, which
provide efficient equilibrium sampling (see Section 8).
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It is convenient to use reduced units to describe lengths,
energies and times in the system. A summary of the
conversion of these “oxDNA units” to SI units is provided in
Supplementary Appendix A.

4 SIMULATING THE MODEL: MOLECULAR
DYNAMICS (MD) VS VIRTUAL-MOVE
MONTE CARLO (VMMC)
The oxDNA model is far too complicated to approach
analytically. Publicly released code to simulate oxDNA is
available as a standalone package (oxDNA wiki, 2015), or as a
module (LAMMPS Documentation, 2021) for the popular
LAMMPS simulation software. We note that in the process of
preparing this manuscript, a small error was identified in the
potential as implemented in LAMMPS (see Supplementary
Appendix B). This error is only really noticeable when
simulating unpaired DNA bases. Nonetheless, we recommend that
potential users of the LAMMPS implementation wait for the stable
LAMMPS release in Summer 2021. Thefixwill be verified through an
erratum attached to the original publication Henrich et al. (2018).

There are two broad types of simulation technique that can be
applied to probe the model: molecular dynamics (MD) and
Monte Carlo (MC). Molecular dynamics (Frenkel and Smit,
2002) algorithms evolve their constituent molecules according
to Newton’s laws of motion, and so are a natural choice for
simulating particle systems. For coarse-grained models such as
oxDNA, in which the solvent is implicit, it is necessary to include
a thermostat to both set the temperature and ensure diffusive
rather than ballistic dynamics. The default MD algorithm for the
standalone version of oxDNA is an Andersen-like algorithm
(Russo et al., 2009), in which particle velocities and angular
velocities are resampled from a Boltzmann distribution with a
frequency that sets the effective diffusion coefficient. In the

LAMMPS implementation, the model utilises a Langevin
thermostat for rigid bodies (Davidchack et al., 2015), which
applies small friction- and noise-based updates to the
momentum and angular momentum at each step. The relative
size of these contributions sets the temperature.

A challenge of MD simulations is that when strong, short-
ranged interactions are present—as in oxDNA—they place a limit
on the maximum integration time step that can be used while
preserving numerical stability. Interestingly both the Andersen-
like and Langevin thermostats act to stabilise the simulations,
allowing larger time steps to be used than if the equations of
motion were integrated without noise or drag to generate energy-
conserving, ballistic motion.

Both MD algorithms generate dynamical trajectories that can
be used to probe system kinetics (more on this in Section 7).
However, it is also common to use MD to take equilibrium
averages over the configurations of a particular system. In the
limit of small time steps, both Andersen-like and Langevin
algorithms will converge on a steady state in which they
sample configurations x from the Boltzmann distribution
peq(x)∝ exp(−βV0(x)/kBT), where V0(x) is the potential
energy of the model. How small the step size needs to be
depends on a number of details, such as the strength of
coupling to the thermostat. For parameters that have become
an unofficial default for oxDNA, we illustrate the accuracy of the
algorithm as a function of step size in Supplementary
Appendix B.

Monte Carlo (MC) (Metropolis and Ulam, 1949) simulations
are an alternative approach for sampling from the same
Boltzmann distribution, but evading the drawbacks caused by
the presence of a timestep altogether. In the standard MC
approach (Frenkel and Smit, 2002), configurational moves
x→ y are proposed randomly, with a symmetric probability
distribution that satisfies pgen(x→ y|x) � pgen(y→ x|y). If these
proposed moves are accepted with a probability

FIGURE 1 | Structure and interactions of the oxDNA model (adapted from (Snodin et al., 2015; Doye et al., 2020). (A) Three strands forming a nicked duplex as
represented by oxDNA2.0, with the central section of the complex illustrating key interactions fromEq. 2 highlighted. Individual nucleotides have an orientation described
by a vector normal to the plane of the base (labelled n), and a vector indicating the direction of the hydrogen bonding interface (labelled b). (B) Comparison of structure in
oxDNA1.0 and oxDNA1.5 vs oxDNA2.0. In the earlier version of the model, all interaction sites are co-linear; in oxDNA2.0, offsetting the backbone site allows for
major and minor grooving.
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pacc(x→ y) � max(exp(−(V0(y) − V0(x))/kBT , 1)), then the
Boltzmann distribution peq(x)∝ exp(−βV0(x)) is the
stationary distribution of the simulation and a long simulation
will sample from that distribution, assuming ergodicity.

In principle, the moves x→ y can be arbitrarily large without
leading to errors, since it is not necessary to integrate the
derivative of the potential, only calculate its values at the
endpoints. However, standard MC techniques incorporate
sequential updates of individual particles as the moves x→ y.
For a model of a strongly-attractive system such as oxDNA, these
moves must be extremely small or the acceptance factor will
always be small. The result is painfully slow equilibration,
particularly if large scale movements of strands is required to
observe it.

Virtual-move Monte Carlo (VMMC) (Whitelam and Geissler,
2007; Whitelam et al., 2009) is an alternative that circumvents the
drawbacks of MC algorithms. VMMC first proposes a single
particle move, then generates a co-moving cluster of particles
based on which interactions are best preserved by moving the
particles in unison while ensuring that the correct, detailed-
balanced stationary distribution is retained. The cluster
building process is based on assessing the change in pairwise
interactions, and so VMMC is especially suited to oxDNA, which
has exclusively pairwise interactions. We have implemented the
variant from the appendix of Ref (Whitelam et al., 2009). in the
standalone code.

For those with limited experience of simulating oxDNA, it is
not obvious whether VMMC or MD is the optimal approach to
sampling a given system. We illustrate the relative efficiencies of

the two algorithms when simulating ssDNA of length 20, 100 and
1,000 bases, in terms of the computational time required to reach
states representative of equilibrium from the same
unrepresentative starting condition.

We simulate the poly (dT) molecules with (a) 20 bases, (b) 100
bases and (c) 1,000 bases, using oxDNA1.0 (Ouldridge et al.,
2011). Simulations are performed at T � 27oC, in a periodic box
of 20, 100 and 1,000 simulation units for 20, 100 and 1,000 bases,
respectively. For the MD simulations, we simulate for 60,000
simulation units of time (a nominal 182 ns), with a time step of
dt � 0.003 (see Supplementary Appendix B); each simulation
therefore has 2 × 107 steps in total. For VMMC, we attempted
60,000 VMMC steps per particle. The proposed moves are:
rotation about a random axis, through an angle up to 0.22
radians; and translation through a distance of up to 0.22 units.
These choices produce a nice balance of cluster sizes, ranging
from individual nucleotides to entire strands.

Strands are initialized in a fully stacked, helical conformation
as illustrated in Figures 2A,C, and relax to more-representative,
partially-stacked conformations (Figures 2B,D) as the simulation
is run. The relaxation of the strands is associated with an increase
in the potential V0, and so we illustrate equilibration by plotting
that potential averaged over 20 independent simulations as a
function of simulation progress in Figure 3. The average value of
the potential in equilibrium, 〈V0〉eq, can be approximated by the
average over the data collected in the second half of the
simulations. We then estimate the equilibration time scale as
the time required for 〈V0(t)〉 − 〈V0〉eq to reach 1/e of its initial
value for the first time.

FIGURE 2 | Snapshots of poly (dT) molecules used in the equilibration time tests. Non-representative initial states of poly (dT) molecules (left), and representative
configurations obtained post-equilibration (right). (A) and (B): poly (dT) with 20 nucleotides; (C) and (D) poly (dT) with 100 nucleotides.
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The “simulation progress” axes in Figure 3 are not directly
comparable for MD and VMMC; one measures simulation time,
the other attempted VMMC steps per particle. The most relevant
quantity is the actual computational time required to equilibrate
the system on a given architecture; in simple contexts, this time is
also indicative of the speed with which the algorithm samples the
equilibrium ensemble. Table 1 shows the total runtime of the
simulations and the equilibration time as a fraction of that
runtime. In computational time, the VMMC algorithm is able
to equilibrate the poly (dT) molecules more quickly (compared to
MD algorithm) in all the three cases. VMMC is around 15 times
as fast for the 20-nucleotide strand, dropping to around 4 times as
fast for the 1000-nucleotide strand. The large moves available to
VMMC, and the lack of a requirement to differentiate potentials,
provide this benefit. Note, however, that the ratio of the

equilibration times for MD to VMMC algorithms decreases as
the system size increases; as can be seen in Table 1, the
equilibration time for VMMC simulations increases super-
linearly with system size. This super-linear increase arises
because more steps must be taken to equilibrate larger systems
and because larger clusters tend to be built for larger systems,
resulting in each step taking longer on average.

The relative efficiency of VMMC and MD approaches will
depend to some degree on the choice of damping parameters and
seedmoves; we have not carefully optimised our choices for either
technique, but have used values that generally work well. The
relative efficiency will also depend on the particular system:
VMMC lends itself to systems in which large movements are
important. Our metric for efficiency (speed with which systems
reach a state that is representative of equilibrium) is also fairly

FIGURE 3 | Equilibration plots for the ploy (dT) molecules with (A) 20 bases, (B) 100 bases, (C) 1,000 bases, obtained as averages over 20 independent
simulations. For both MD and VMMC, the potential V0 is plotted as a function of simulation progress, in units of reduced time (3.03 ps) for MD and attempted steps per
particle for VMMC.

TABLE 1 | Computational time for equilibration of poly (dT) molecules of various lengths. Simulations were performed using a single core Intel(R) Core(TM) i5-4300U CPU @
1.90GHz.

Strand
length

Total runtime (MD)
in seconds

Total runtime (VMMC)
in seconds

Equilibration time as a fraction of
total runtime (MD)

Equilibration time as a fraction of
total runtime (VMMC)

20 409.67 14.804 0.0118 0.0244
100 1804.18 147.57 0.0128 0.0287
1,000 32493.0 4187.03 0.0134 0.0299
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crude. Nonetheless, the general rule of thumb that VMMC is
more efficient for smaller systems—particularly those with
significantly fewer than 1,000 nucleotides, such as the
sampling of duplex formation in oligonucleotides - is a helpful
one. It is also particularly easy to enhance VMMC using umbrella
sampling, as explained in Section 6.1.1.

For sufficiently large systems, such as DNA origami, MD
should equilibrate faster, and therefore provide improved
sampling. Another major advantage of the MD approach is
much more facile parallelisation when simulating large
systems. The standalone code allows for parallel simulation on
GPUs (graphical processing units), and the LAMMPS module for
parallel simulations across multiple CPUs (central processing
units) using MPI. These approaches are demonstrated in
Section 8.

5 MECHANICAL PROPERTIES OF DNA

The mechanical properties of DNA are central to its role across
nanotechnological, biophysical and biological contexts. DNA’s
flexibility and response to applied stress determine the
conformation and accessibility of the genome inside cells
(Lewis et al., 1996; Nikolov et al., 1996; Widom, 2001;
Richmond and Davey, 2003). Moreover, not only is the
stiffness of dsDNA important in maintaining the
conformation of DNA nanostructures, but the relative
flexibility of ssDNA crucially allows for joints and flexible
hinges. These properties are widely-studied in bulk and single-
molecule experiments in vitro (Crothers et al., 1992; Smith et al.,
1996; Strick et al., 1996; Wang et al., 1997; Rivetti et al., 1998;
Mills et al., 1999; Podtelezhnikov et al., 2000; Dessinges et al.,
2002; Bryant et al., 2003; Seol et al., 2004; Fujimoto et al., 2006;
Gore et al., 2006; Lionnet et al., 2006; Seol et al., 2007; Du et al.,
2008; Forth et al., 2008; Mosconi et al., 2009; Demurtas et al.,
2009; Brutzer et al., 2010; Gross et al., 2011; Salerno et al., 2012;
Tempestini et al., 2013; Fields et al., 2013; Le and Kim, 2014; Kim
et al., 2015).

It is therefore essential that a coarse-grained model provides a
reasonable representation of these properties. In this section, we
both discuss the mechanical properties of oxDNA, and show how
to construct simulations that can probe these properties.

5.1 Stiffness of Duplex and
Single-Stranded DNA
Themost commonmetric used to quantify the stiffness of DNA is
the persistence length, defined in the textbook of Cantor and
Schimmel as (Cantor and Schimmel, 1980)

Lps � 〈L · l0〉
〈l0〉

. (3)

Here, L is the end-to-end vector of the polymer and l0
represents the vector between the first two monomer units.
dsDNA is most commonly thought of as a semi-flexible
polymer or wormlike chain (Kratky and Porod, 1949). In this

picture, the discrete series of inter-base pair vectors are
approximated as a continuous, differentiable polymer axis with
a quadratic free energy of curvature. For an infinitely long, semi-
flexible polymer, correlations in the alignment of the polymer axis
decay exponentially with separation, with a decay rate given
determined by Lps. When translated back to the language of
inter-base-pair vectors, we obtain

〈ln · l0〉
〈l0〉2

� exp(− n〈l0〉/Lps), (4)

where ln is the vector between base pair n − 1 and base pair n.
It is relatively straightforward to both assess whether the

wormlike chain model is a good model for oxDNA, and to
extract Lps. We simply simulate a duplex system for long
enough to sample a representative set of configurations,
calculate the correlation between inter-base-pair vectors as a
function of separation, and fit the results to the exponential
decay of Eq. 4.

In Figure 4, we plot the results of such a procedure. To obtain
these data, we simulate a DNA duplex of length 500 base pairs at
27°C using oxDNA1.5. We perform 20 VMMC simulations with
2 × 107 attempted steps per particle for VMMC. The first 105

moves are treated as an initialization period and no data is
collected. Additionally, the base pairs at the ends of the duplex
are more flexible than those well within the bulk; to obtain
properties representative of bulk DNA, we therefore do not
include the five base pairs at either end in our analysis.
Correlations are calculated from the default configurational
outputs of the model, using the code provided in (Sengar,
2021). In order to obtain a good sample, it is helpful to output
these configurations with a high frequency; we use a small value
for the parameter to output energy configurations after a single
VMMC move per particle.

As is evident from Figure 5, the correlation of the duplex axis
indeed follows an exponential fall-off, to within sampling error.
Fitting Eq. 4 to ln(〈ln .l0〉

〈l0〉2 ) gives Lps ≈ 131〈l0〉 � 131 ×

FIGURE 4 | Plot of correlation of inter-segment vectors vs distance
(number of base pairs along the DNA) for 500 dsDNA (blue curve) and 100
ssDNA (red curve). dsDNA fitted with an exponential decay with a decay
constant of 0.0076134.
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0.4118 ≈ 53.95 simulation units� 45.91 nm, consistent with
experimental estimates of 40–50 nm (120–150 base pairs) at
high [Na+] concentrations (Savelyev, 2012; Herrero-Galán
et al., 2013).

Indeed, more generally, the mechanical properties of double-
stranded oxDNA are well-described by a semiflexible polymer
model, and its torsional and extensional moduli have been
analysed elsewhere (Ouldridge et al., 2011; Matek et al., 2015).
Significant deviations from this behaviour - such as sharp kinks
facilitated by broken base pairs—are generally only observed
when large stresses are applied to the molecule (Romano et al.,
2013; Matek et al., 2015), in agreement with experiment.

ssDNA behaves very differently in oxDNA. In Figure 4, we
plot the correlations of backbone-site-to-backbone-site vector for
a 100-base poly (dT) ssDNA, obtained from running simulation
in oxDNA1.5 at 27°C. We perform 20 VMMC simulations with
2 × 107 attempted steps per particle. The first 105 moves are
treated as an initialization period and no data is collected. For
these simulations, we have set the stacking strength between the
nucleotides to zero (the consequences of non-zero stacking
strength will be addressed in Section 5.2). From Figure 4 and
Figure 5, it is apparent that the correlation drops very rapidly,
meaning that unstacked ssDNA is very flexible in oxDNA, as it
should be; adjacent backbone-to-backbone vectors can bend
through a large angle. But importantly, it is worth noting that
the drop in correlation between vectors with separation along the
polymer cannot be well described by an exponential as in Eq. 4.
The convexity of ln(〈ln .l0〉

〈l0〉2 ) is indicative of more distant
backbone-to-backbone vectors being aligned more strongly
than would be expected from the alignment of two adjacent
backbone-to-backbone vectors.

The reason for this behaviour is that it is the excluded volume
of nucleotides that gives unstacked ssDNA its “stiffness” in
oxDNA. The excluded volume of nucleotides discourages
ssDNA from folding back on itself, but importantly it leads to
very different polymer properties than assumed in common
polymer models such as the freely-jointed chain and the

wormlike chain. For these classic polymer models, the
statistical properties are entirely determined by interactions
between parts of the polymer that are adjacent along the
backbone, whereas the curvature of ln(〈ln .l0〉

〈l0〉2 ) in Figure 5 is
indicative of interactions between more distant points along the
polymer contour playing a role.

As a result, using a wormlike chain with a given Lps (or a freely
jointed chain with a given Kuhn length) to understand ssDNA in
oxDNA is misleading. The overall tendency of the polymer to
swell to fill a large volume - due to its excluded volume - would
suggest a far greater degree of local stiffness than actually present.
This effect is retained even when stacking between adjacent
nucleotides is included.

Importantly, these complexities also apply to physical ssDNA,
as well as the oxDNA model. Single DNA have linear dimensions
on the order of 1 nm, and experimental attempts to measure the
mechanical properties of oxDNA (usually reported as persistence
lengths) are of a similar order of magnitude (Smith et al., 1996;
Rivetti et al., 1998; Mills et al., 1999; Murphy et al., 2004).
Describing ssDNA in this way is not self-consistent; any
polymer with this cross-section and flexibility would be
strongly affected by excluded volume, so these models cannot
be accurate. The result has been that experiments on large scale
properties of relaxed ssDNA (Rivetti et al., 1998; Murphy et al.,
2004), which are sensitive to excluded volume effects, tend to
produce larger estimates for quantities like Lps than experiments
on shorter sections of ssDNA, or ssDNA under high tension
(Smith et al., 1996; Rivetti et al., 1998).

Low salt concentrations, which lead to weaker screening of
electrostatic interactions between non-adjacent nucleotides make
the above effect stronger (Smith et al., 1996; Dessinges et al.,
2002). Base-pairing interactions in non-homopolymeric ssDNA
have a confounding effect; the formation of secondary structure
tends to condense the strand, making it appear more flexible
when its statistics are modelled with a wormlike chain or a freely-
jointed chain (Smith et al., 1996). Overall, as for oxDNA, simple
descriptions of the mechanical properties of physical ssDNA
should be treated with caution.

5.2 Response of ssDNA to Tension
A common mechanism for probing the mechanical properties of
DNA is to apply force, whether torsional (Strick et al., 1996;
Bryant et al., 2003; Forth et al., 2008; Mosconi et al., 2009; Brutzer
et al., 2010; Salerno et al., 2012; Tempestini et al., 2013),
extensional (Smith et al., 1996; Strick et al., 1996; Wang et al.,
1997; Dessinges et al., 2002; Seol et al., 2004; Gore et al., 2006; Seol
et al., 2007; Huguet et al., 2010; Gross et al., 2011) or shearing
(Forth et al., 2008; Hatch et al., 2008; Mosconi et al., 2009; van
Mameren et al., 2009; Brutzer et al., 2010; Salerno et al., 2012;
Tempestini et al., 2013; Wang and Ha, 2013).

Experiments have focused on both the elastic properties
associated with small deformations (Smith et al., 1996; Strick
et al., 1996; Wang et al., 1997; Bryant et al., 2003), and large scale
structural transitions (Smith et al., 1996; Strick et al., 1996;
Dessinges et al., 2002; Bryant et al., 2003; Seol et al., 2004;
Gore et al., 2006; Seol et al., 2007; Hatch et al., 2008; Forth
et al., 2008; Mosconi et al., 2009; van Mameren et al., 2009;

FIGURE 5 | Log plot of correlation of inter-segment vectors vs distance
(number of base pairs along the DNA) for 500 dsDNA (blue curve) and
100ssDNA (red curve). dsDNA fitted with an exponential decay with a decay
constant of 0.0076134.
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Brutzer et al., 2010; Gross et al., 2011; Salerno et al., 2012; Wang
and Ha, 2013; Tempestini et al., 2013).

Applying external tension is relatively straightforward in
molecular simulation; there are more subtleties associated with
applying boundary conditions for external torsion (Matek et al.,
2012; Matek et al., 2015), but it is also possible. In the case of
oxDNA, small external stresses have been used to help
parameterise and characterise the model (Ouldridge et al.,
2011; Matek et al., 2015; Skoruppa et al., 2017; Nomidis et al.,
2019); larger stresses have been applied to provide insight into
experiments on structural transitions (Matek et al., 2012; Romano
et al., 2013; Wang and Pettitt, 2014; Matek et al., 2015; Mosayebi
et al., 2015;Wang et al., 2015; Engel et al., 2018; Desai et al., 2020).

Systems with internally-induced stress, where the drive to
form base pairs in one part of an assembly applies stress to
another part, have also been studied (Harrison et al., 2015;
Sutthibutpong et al., 2016; Wang and Pettitt, 2016; Wang
et al., 2017; Tee and Wang, 2018; Caraglio et al., 2019;
Harrison et al., 2019; Engel et al., 2020; Fosado et al., 2021;
Park et al., 2021).

As an example, in this section we demonstrate the force-
extension properties of ssDNA as represented by oxDNA. Optical
tweezer experiments with ssDNA have a long history (Smith et al.,
1996). These original experiments with naturally-occurring DNA
exhibited formation and stabilization of secondary structure in
high salt conditions and low-moderate force, although this was
not explicitly modelled at the time. The presence of this secondary
structure makes simulation of DNA heteropolymers hard; it is
challenging to equilibrate a long strand with many competing
base-pairing configurations (we have had some success using
methods based on parallel tempering (Romano et al., 2013).
Instead, therefore, we simulate 100-nucleotide-long
homopolymeric poly (dA) using oxDNA1.0 and oxDNA1.5.

The helicity in oxDNA is driven by stacking interactions
between adjacent nucleotides. As is evident from Figure 2,
this stacking has a residual effect on the structure of ssDNA

strands, which are partially stacked in equilibrium. We will use
force-extension simulations to probe the consequences of single-
stranded stacking in oxDNA.

For these simulations, which are similar to original results in
(Šulc et al., 2012), we use both a version of the parameters
with no stacking interacting, a sequence-averaged stacking
interaction (oxDNA1.0), and a sequence-specific stacking
interaction (oxDNA1.5) for which poly (dA) has the strongest
interaction of all sequences. All simulations are performed at
T � 27oC, in a periodic box of length 100 simulation units with
each simulation running for 4 × 8 steps with dt � 0.005 which
equals to a total run time of 2 × 106 units. Four sets of simulations
are performed for 12 difference values of force.

Figure 6A shows that extensive stacking has only a moderate
effect on the force-extension properties of the ssDNA at low force.
In the sequence-dependent model, poly (dA) is close to 90%
stacked at 27°C—see Figure 6B. However, the increased stiffness
due to the tendency to form stacked single helices (akin to the
initial state in Figure 3) is counteracting by the shorter end-to-
end distance of the backbone when it is forced to wind around
the helix.

At larger forces, however, we clearly see a signal of stronger
stacking. Larger force is required to extend the strands with
stronger stacking, and a plateau-like feature is evident in the
system with the strongest stacking. A similar plateau was
observed by Seol et al. for RNA stretching (poly(A) and
poly(C)) (Seol et al., 2004; Seol et al., 2007) but was absent for
poly(U). Those authors hypothesised that the plateau arises as the
shorter end-to-end distance in helical stacked confirmations
becomes prohibitive; additional force is then required to
disrupt the stacking interaction to allow further extension,
causing an increase in the gradient of the force-extension
curve. After the bases have unstacked, the gradient becomes
less steep again.

Broadly speaking, this explanation is borne out by oxDNA.
Notably, however, Seol et al. (Seol et al., 2004; Seol et al., 2007)

FIGURE 6 | The response of ssDNA to tension, and the role of stacking therein. (A) Force-extension plots for 100-nucleotide poly (dA) using three models: no
stacking (black); average stacking strength (oxDNA1.0, blue) and sequence-dependent stacking (oxDNA1.5, red). Stronger stacking leads to an increased force at larger
extensions, and extremely strong stacking results in a plateau-like feature as stacking is disrupted. (B) Stacking probability for average stacking strength (oxDNA1.0,
blue) and sequence-dependent stacking (oxDNA1.5, red) as a function of applied force. Adjacent nucleotides are defined as stacked if the stacking energy between
the pair is more than -0.1 units.
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concluded that a relatively low stacking probability should give a
pronounced plateau. By contrast, in Figure 6B—obtained by
probing configuration output files to assess the degree of stacking
(Sengar, 2021) we see that strands with an initial stacking
probability of 78% show only a hint of the plateau. This
discrepancy arises because, in the minimal model of Seol et al.
(Seol et al., 2004; Seol et al., 2007), even a single pair of stacked
nucleotides has a much shorter end-to-end distance along the
ssDNA backbone than an unstacked pair. The explicit
representation of 3D structure in oxDNA, however, captures
the fact that the shortening of the end-to-end distance along the
DNA backbone is only significant when several bases in a row are
stacked into a helix, so that the backbone really has to wrap back
round upon itself. As a result, extension can occur while
disrupting only a fraction of the stacking interactions, and
ssDNA in oxDNA remains significantly stacked even at high
force (Figure 6B).

While oxDNA’s representation of the polynucleotide
backbone is simplistic, these geometrical arguments also apply
to physical DNA - suggesting that even weak plateau-like
behaviour in ssDNA force-extension curves is evidence of
strong stacking, and the absence of a plateau is not proof
of an absence of stacking. More generally, this system is
indicative of the value that oxDNA can provide. The system
involves an interplay between basic structure, mechanics and
thermodynamics of ssDNA. When applied, oxDNA reveals
subtleties that are not directly apparent from a more minimal
model. Indeed, it is quite common to construct very simple
models to interpret biophysical experiments on the mechanical
properties of DNA (Hatch et al., 2008; Qu and Zocchi, 2011;
Salerno et al., 2012; Vafabakhsh and Ha, 2012; Fields et al., 2013;
Tempestini et al., 2013; Wang and Ha, 2013; Meng et al., 2014);
simulations with oxDNA often reveal physically reasonable
relaxation mechanisms that aren’t factored into these simpler
models (Harrison et al., 2015; Matek et al., 2015; Mosayebi et al.,
2015; Skoruppa et al., 2017; Harrison et al., 2019). At this stage, it
is also worth highlighting a general virtue of coarse-grained
models that is apparent in these simulations. It is very simple
just to switch off interactions—such as the stacking here—to
isolate the effect those interactions have on the system. Doing so
can be incredibly helpful in interpreting the physical cause of
experimental signals.

6 THERMODYNAMIC SIMULATIONS WITH
OXDNA

6.1 Duplex Formation Thermodynamics
As well as representing the structure andmechanical properties of
ssDNA and dsDNA, oxDNA is also designed to capture the
thermodynamics of the hybridization transition from ssDNA to
dsDNA. Needless to say, accurately capturing the
thermodynamics of this transition is essential for any model
hoping to describe biological and nanotechnological processes
involving the forming and disruption of base pairs.

To assess the thermodynamics of a simple duplex, it is typical
to simulate an isolated pair of strands in a periodic cell that is

large enough to prohibit self-interactions (unit cell size of >
≈
2n

oxDNA length units, where n is the duplex length, is generally
sufficient). Given a sufficiently long VMMC or MD simulation,
the fraction of time spent in the bound state can be estimated and
used to infer quantities such as melting temperatures, as
outlined below.

However, particularly for longer strands, simulating this
process can be prohibitively slow. For two short strands in
solution, the vast majority of configurations have well-
separated strands and no base-pairing interactions.
Enthalpically favourable base-pairing provides a compensatory
advantage to configurations with many well-formed base pairs
(fully-formed duplexes). To obtain a good estimate of the fraction
of strands bound in equilibrium, it is necessary to pass between
these two sub-ensembles (completely unbound and fully bound)
many times; as a rule of thumb, we have found that around 10
interconversions will start to provide meaningful statistics.

Unfortunately, interconversion requires the system to
transition through states with only one or two base pairs that
benefit neither from the large ensemble of configurations
accessible to dissociated strands, nor the favourable
interactions of fully-bound strands. These configurations with
Q � 1, 2 base pairs are rare in the equilibrium ensemble, and have
a relatively high free energy

F(Q) � −kTln(peq(Q)) + C, (5)

where C is a Q-independent constant, and peq(Q) is the
probability of observing Q base pairs in equilibrium. The high
free energy of these intermediate states makes dissociation and
association rare event processes that are challenging to sample
directly.

6.1.1 Umbrella Sampling
To overcome this difficulty, simulations can be augmented with
umbrella sampling (Torrie and Valleau, 1977). For a system with
coordinates x (in our case, nucleotide positions and orientations),
umbrella sampling involves identifying a collective order
parameter λ(x) for the transition of interest, and then
applying a bias W(λ(x)) to force the system to occupy
otherwise undesirable values of λ(x) that lie along the
transition path more frequently. Unbiased statistical averages
can be extracted from these biased samples using

〈A(x)〉eq �〈 A(x)
W(λ(x))〉biased

, (6)

where A(x) is a quantity of interest. Essentially, the contribution
of each configuration sampled to the average is reduced by a
factor of the bias applied.

A common approach with umbrella sampling is to
perform a series of separate simulations with very strong
biases tightly centred on distinct values of λ(x). Simulations
centred on adjacent values of λ(x) can then be knitted
together using procedures such as the Weighted
Histogram Analysis Method (WHAM), allowing the
calculate of the free energy difference between the start
and end point (Kumar et al., 1992).
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Generally, however, we have found that this sophisticated
approach is not necessary for oxDNA, and a particularly
straightforward umbrella sampling method is built into the
standalone oxDNA code. When using VMMC, it is possible to
specify discrete order parameters λ(x) based on the number of
base pairs between user-defined groups of nucleotides. For duplex
formation, it is fairly straightforward to iteratively identify a
biasing potential that facilitates both the sampling of all states
and the rapid transition between fully bound and completely
detached configurations.

This biasing potential doesn’t need to be fine tuned so that all
values of λ(x) are equally probable in the biased sample—just
good enough to facilitate multiple transitions backwards and
forwards. Typical examples for 5-base and 8-base duplexes are
given in (Sengar, 2021). For more complex systems, more
sophisticated λ(x) and the use of multiple sampling windows
are sometimes necessary—we refer the reader to (Ouldridge et al.,
2010a; Ouldridge et al., 2013a; Machinek et al., 2014; Harrison
et al., 2019). Even in these cases, however, the principles are
similar to those outlined here.

We perform umbrella sampling simulations on an 8-
nucleotide duplex at 312K in a simulation volume of side
length 15 units, using the oxDNA1.5 version of the model.
Five independent simulations are performed for 7.7 × 108

VMMC steps per particle. The quantity peq(Q) obtained from
simulations is used to calculate a free energy F(Q) according to
Eq. 5 and plotted in Figure 7. The shape of this graph is typical
for duplex formation, showing the expected large jump in free
energy from 0 to 1 base pairs. From 1 to 6 base pairs there is a
steady drop in the free energy as configurations are stabilised by
additional base-pairing interactions that are favoured once the
strands are in close proximity. The final base pairs are less
favourable, as base pairs at the end of a duplex are prone to
fraying (SantaLucia and Hicks, 2004; Ouldridge et al., 2011).

The shape of F(Q) gives a good guide to constructing first
estimates of umbrella biases W(λ(x)) for duplex formation in
general. Ignoring the dissociated state, W(λ(x)) should increase

roughly exponentially with the number of base pairs broken, since
it must counteract exp(−F(Q)/kT). The slope of F(Q), and hence
the required rate of exponential growth in W(λ(x)), is
determined by the temperature; as a crude rule of thumb, a
bias of a factor of 10–15 is required per base pair broken at 300K;
this required bias falls to a factor of 3-4 by 330 K.

The initial jump in free energy from 0 to 1 in 7 is largely
determined by the simulation volume; for simulation cells similar
in size to this one, a factor of 3000–10000 is a reasonable first
guess for the required weight of the 1-base-pair state relative to
the 0-base-pair state.

In addition to biasing by the number of base pairs formed, it is
sometimes helpful to also use a distance-based contribution to
the order parameter. Built in to the standalone oxDNA code is the
ability to define additional dimensions of λ(x) that depend on
the minimum separation between sets of nucleotides, rather than
the number of base pairs. We have found that a simple division of
the 0-base-pair state into configurations in which the strands are
close (less than 4 units apart) and far apart (4 or more units apart)
can reduce the amount of time spent sampling the independent
diffusion of strands around the simulation volume. For
simulation volumes similar to this one, the close state should
be weighted by around 5–10 relative to the distant state, which
dominates the unbound ensemble.

6.1.2 Melting Temperature Curves
Although free-energy profiles for a single pair of strands are
informative, they aren’t directly comparable to the majority of
experiments. Indeed, the thermodynamics of the oxDNA model
was parameterised to reproduce the nearest neighbour model
(SantaLucia, 1998), which in turn was fitted to—and
predicts—experimental melting curves in bulk conditions. The
Santalucia parameterisation of the nearest neighbour model
(SantaLucia and Hicks, 2004) assumes that DNA duplex
formation is essentially a two-state transition between a well-
formed duplex and separated single strands. The free-energy
profiles produced by oxDNA, such as Figure 7 are consistent
with this picture; the ensemble is dominated by configuration
with either zero base pairs, or a large number. In this limit, the
melting behaviour can be well-characterised by the fraction of
strands that are expected to have base pairing with another strand
at a temperature T in a bulk system, f∞(T).

To calculate f∞(T) in this two-state description, it is first
necessary to obtain data at a range of temperatures. In principle,
these data can be obtained through separate simulations.
However, we have found that a technique called single
histogram reweighting (Ferrenberg and Swendsen, 1988) is
sufficient to infer f∞(T) accurately over a large enough range
of temperatures to describe the melting transition. The basic idea
is to treat a simulation at a temperature T as a biased sample of the
ensemble at another temperature T ′; this bias can be corrected in
the same way as the bias applied during umbrella sampling:

〈A(x)〉T ’ � 〈A(x)exp(V0(x,T)/kT − V0(x,T ′)/kT ′)〉T. (7)

Here V0(x,T) is the value of the potential in the original
simulation at temperature T (V0(x,T ′) is slightly different due to

FIGURE 7 | Free-energy profile of an 8-base-pair duplex (3′-ACTGACGT-5′
and 3′-ACGTCAGT-5′) at 312K in a simulation volume of side length
15 units.
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a T-dependent term in the potential (Ouldridge et al., 2011)).
Extrapolation to nearby temperatures using single histogram
reweighting is built into the oxDNA standalone code. It is
important to note that if umbrella sampling, and particularly
temperature reweighting, are applied, then it is especially
important to simulate for a good equilibration time before
results are collected. Normally, any initial unrepresentative
states will be swiftly overwhelmed within an average taken
over the whole course of the simulation. The unbiasing
factors in Eq. 6 and Eq. 7, however, can cause
unrepresentative initial states to be assigned enormous
weights in the ensemble average that are effectively
insurmountable, rendering the simulation results
meaningless.

Given well-sampled data of the formation of a single duplex
in a simulation volume, it is tempting to assume that the
fractional yield of states with more than one base pair in a
single duplex simulation, f1(T), is equal to the bulk yield of
duplexes f∞(T) in a system with the same total concentration
of strands. Unfortunately this is not the case; simulations of
only a single target duplex neglect concentration fluctuations
within unit cells that have large effects on the yield of products
(Ouldridge et al., 2010b; Ouldridge, 2012). Quantitative
comparison to experimental data is therefore impossible
unless extrapolations to bulk conditions can be performed.
Assuming ideal behaviour of solutes, Extrapolation is possible.
For dimerisation between non-self-complementary strands
(Ouldridge et al., 2010b)

f∞(T) � (1 + 1
2Φ(T)) −

���������������
(1 + 1

2Φ(T))
2

− 1

√√
, (8)

where Φ(T) � f1(T)/(1 − f1(T)). A similar result holds for self-
complementary duplexes (Ouldridge et al., 2010b), and
algorithms exist to extrapolate to bulk for more complex
assemblies (Ouldridge, 2012).

Melting curves obtained for 5-base and 8-base duplexes, using
umbrella sampling, temperature reweighting and extrapolation to
bulk, are reported in Figure 8. The melting temperatures Tm for
these duplexes – defined, in the two state model, as the
temperature at which f∞(T) is 0.5 – are close to the values
predicted by the nearest neighbour model at the same conditions
(17.8°C and 56.1°C) (SantaLucia and Hicks, 2004). This
agreement is, of course, due to the model being fitted to these
data. However, it is worth noting that although duplexes are often
described as having a single “melting temperature”, the
temperature at which f∞(T) is 0.5 depends on the
concentration of the individual strands, [C] with (Ouldridge
et al., 2011)

dTm

d[C] ∼
ΔT
[C]. (9)

Here, ΔT is the width of the transition over which f∞(T) goes
from largely bound to largely unbound. To match nearest
neighbour predictions for melting temperatures over a range
of concentrations, therefore, it is necessary that transition widths
are also comparable; achieving a good match was a major part of
oxDNA’s parameterisation.

6.2 Thermodynamics of More Complex
Structures
Although accurately simulating basic duplex formation was
necessary for the parameterisation of oxDNA, little new
information is to be gained from performing these simulations
again. The model is trained to reproduce the thermodynamics of
the nearest neighbour model, so simulating the thermodynamics
of duplex formation is an expensive way to get at an
approximation to said nearest neighbour model.Where
oxDNA can add value is if duplex formation occurs as part of
some more complex system - possibly one in which internally or
externally-applied stresses, or topological constraints, are relevant
(Romano et al., 2012; Šulc et al., 2012; Ouldridge et al., 2013a;
Mosayebi et al., 2015; Kočar et al., 2016; Fonseca et al., 2018; Tee
and Wang, 2018; Harrison et al., 2019). As an example, we
simulate the formation of a small pseudoknotted structure
(Figure 9) leveraging the intuition and techniques discussed in
Section 6. Here, the two sequences 3′-AGCTTCCATG-5′ and 3′-
AAGCTCATGG-5′ cannot form a single continuous duplex, but
can form two 5-bp duplexes section if both strands bend back on
themselves. The stability of this structure cannot be inferred from
the nearest neighbour model, but it can easily be simulated with
oxDNA. Applying umbrella sampling, we simulate the system at a
temperature of 308K in a periodic cell of side-length 20 using
oxDNA1.5.

The resulting free-energy profile, Figure 10, shows that, at the
temperatures of interest, forming two arms is less favourable than
forming only one. The advantage obtained by bringing the strand
into close proximity via the binding of the first duplex is not
enough to overcome the internal stress generated by the structure.
This internal stress is evidenced by the much shallower slope of
the free energy profile for forming base pairs 6–10 than 1-5.

FIGURE 8 | Melting transition of oligonucleotides. Fractional yield of
5mer (3′-AGTCT-5’/3′-AGACT-5′) and 8mer (3′-ACTGACGT-5’/3′-ACGTCA
GT-5′) duplexes in bulk (f∞(T))) as predicted by oxDNA1.5 at a total
concentration of 7.96 × 10− 4 M for each strand.
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7 DYNAMICAL SIMULATIONS

The simulations described hitherto probe static quantities
obtained in the equilibrium ensemble. However, the dynamics
of DNA-based systems can be equally important. In particular,
the time required for reactions to happen is crucial when
constructing complex self-assembling systems or functional
circuits, particularly those that are intended to remain out of
equilibrium, or exhibit an extremely slow relaxation to
equilibrium (Dunn et al., 2015; Srinivas et al., 2017; Fern and
Schulman, 2018; Cabello-Garcia et al., 2021).

Unlike the thermodynamic and structural properties, oxDNA
has not been carefully parameterised to the dynamics of physical
DNA. Coarse-graining is generally known to speed up timescales
by smoothing free-energy landscapes (Murtola et al., 2009).
Moreover, the explicitly dynamical algorithms (particularly the
Andersen-like thermostat) give a fairly crude approximation to

the dynamics expected from small molecules in solution. Neither
the Anderson-like nor the Langevin thermostat incorporates
cooperative hydrodynamics (an updated version of the
Langevin thermostat developed to describe hydrodynamic
effects (Davidchack et al., 2017) has not yet been implemented
in LAMMPS), and both are typically run with large effective
diffusion coefficients to enhance sampling (see Supplementary
Appendix A).

Nonetheless, the dynamics of oxDNA is fundamentally
constrained by the combination of its free-energy landscape
and its embedding of that free-energy landscape in an explicit
geometrical description. For comparison, it is surprisingly
difficult to generate meaningful dynamics based on just the
free-energy landscape predicted by the nearest neighbour
model without an explicit geometrical representation (Srinivas
et al., 2013; Schaeffer et al., 2015) [add commented-out citation].

As a result, dynamical simulations of oxDNA can provide
useful insight into dynamical properties of physical DNA; the
model has been particularly successful in describing toehold-
mediated strand displacement (Srinivas et al., 2013; Machinek
et al., 2014; Haley et al., 2020; Irmisch et al., 2020), one of the
fundamental reactions of DNA nanotechnology. Importantly, the
focus should always be on comparing the relative dynamics of two
similar systems – for example, the dependence of strand
displacement rates on toehold lengths. Unlike the
thermodynamic and mechanical properties of oxDNA,
absolute values of dynamical properties are largely irrelevant.

As an example, we simulate the dissociation kinetics of
duplexes of length 4 (3′-ATAT-5’/3′-ATAT-5′), 5 (3′-ATATA-
5’/3′-ATATA-5′) and 6 (3′-ATATAT-5’/3′-ATATAT-5′) at
320 K using the Anderson-like thermostat applied to
oxDNA1.5, Figure 11. Example trajectories, showing the
energy of the system per nucleotide, illustrate the two-state
nature of the system discussed earlier in Section 6. The
strands spend a substantial amount of time in states with an
energy of approximately -1.0 in oxDNA units (duplex
configurations), before suddenly transitioning to states with an

FIGURE 9 | Pseudoknot unbound (A) and bound (B) states, for seqeunces 3′-AGCTTCCATG-5’/3′-AAGCTCATGG-5’.

FIGURE 10 | Free energy vs number of base pairs formed for the complex
3′-AGCTTCCATG-5’/3′-AAGCTCATGG-5′ in a simulation volume of side length
20 oxDNA units.
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energy around -0.2 (single-stranded states). As hinted at by these
examples, longer strands take exponentially longer to dissociate
(the simulation steps taken to reach an energy of -0.2 per
nucleotide, averaged over 10 simulations for each length, are:
9117 ± 2883, 64032 ± 20249, 279744 ± 88463). This exponential
suppression of the dissociation rate with strand length is
consistent with dissociation being a rare event that requires
the crossing of a free energy barrier whose height grows
linearly with duplex length at fixed temperature (here, 320 K),
as suggested by the free-energy profile in Figure 7.

In this case, all systems studied showed the required behaviour
on relatively short time scales. Frequently, it is necessary to
simulate much slower processes. We have found that the
forward flux sampling (FFS) technique (Allen et al., 2009) is
an effective tool for simulating dynamical processes with a longer
timescale. However, FFS is trickier to implement than umbrella
sampling, and is not yet built in to the released code in an
optimal way.

8 Simulation of Large Structures
Another significant application area for oxDNA has been the
simulation of large structures to assess their conformation,
stability and flexibility (Fernandez-Castanon et al., 2016;
Schreck et al., 2016; Sharma et al., 2017; Shi et al., 2017;
Benson et al., 2018; Choi et al., 2018; Coronel et al., 2018;

Berengut et al., 2019; Brady et al., 2019; Hoffecker et al., 2019;
Snodin et al., 2019; Berengut et al., 2020; Chhabra et al., 2020;
Poppleton et al., 2020; Tortora et al., 2020; Yao et al., 2020).

In this context, oxDNA represents an alternative to the CanDo
model and simulation package (Castro et al., 2011). The added
complexity of oxDNA has a computational cost, but means that it
is better able to handle irregular systems. For such simulations,
use of oxDNA2.0 is strongly recommended given its better
representation of structure, particularly in the context of DNA
origami. A more detailed primer on setting up these simulations
can be fund in Ref (Doye et al., 2020); here we focus only on
technical aspects of the simulations.

As briefly mentioned in Section 4, MD algorithms can
facilitate the simulation of really large systems by allowing
parallelisation across GPU threads or multiple CPUs. The
oxDNA standalone code is GPU-enabled via the CUDA C
API and supports runs on single CPUs and single GPUs,
whereas the LAMMPS version of oxDNA uses the Message
Passing Interface (MPI) and is optimised for parallel runs on
multi-core CPUs and distributed memory architectures.

To provide benchmarks and examplar codes, we have
performed large-scale simulations with both implementations
on two different compute architectures, namely a NVIDIA
V100 PCIe GPU with 5,120 CUDA cores at Arizona State
University’s High Performance Computing Facility, and the

FIGURE 11 | Energy per nucleotide vs simulation time step for (a) 4mer, (b) 5mer, (c) 6mer duplexes at 320 K. Sudden transitions from low to high energy are
indicative of rare-event melting.
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ARCHIE-WeSt HPC facility at the University of Strathclyde
consisting of 64 Intel Xeon Gold 6138 (Skylake) processors
@2.0GHz with 40 cores per node and 2,560 cores in total. The
GPU and single-core CPU runs were performed with the oxDNA
standalone code SVN version 6989. The GPU runs all used mixed
precision and an edge-based approach (Rovigatti et al., 2015). The
LAMMPS stable version from March 3, 2020 was used for the
multi-core CPU runs (the small error in the LAMMPS
implementation highlighted in Supplementary Appendix B is
irrelevant for the purposes of these efficiency comparisons). All
runs were performed with the oxDNA2.0 model featuring
sequence-dependent stacking and hydrogen-bonding
interactions.

Two different benchmarks were studied to analyse the
performance of both implementations. The first one consisted
of a varying number of double-stranded octamer duplexes and
investigated the performance at different system sizes, ranging
from 8 octamers with 128 nucleotides in total to 262,144 octamers
with 4,194,304 nucleotides in total. The concentration of
octamers was kept constant at one octamer per 203 oxDNA
length units, whereas the temperature and salt concentration
were set to T � 293K and [Na+] � 500 mM, respectively.

The second benchmark consisted of a DNA origami “pointer”
structure (Bai et al., 2012) (15,238 nucleotides) and tested the
performance at different salt concentrations between [Na+] �
100mM and 1 M. The salt concentration is another performance-
critical aspect in the simulation of nucleic acids that is often
neglected. The reason is that the salt concentration affects the
Debye screening length, which is proportional to the inverse
square root of the salt concentration. The temperature of this
second benchmark was fixed at T � 293K . The initial
configuration was converted from the cadnano format using
the TacoxDNA server (Suma et al., 2019), then relaxed using
oxdna.org (Poppleton et al., 2021), implementing the protocol

from (Doye et al., 2020) followed by a simulation at the respective
salt concentration.

It is worth emphasising that origami structures such as the
pointer are a setting in which the improved structural model of
oxDNA2.0 is essential. Unless an accurate model is used,
relatively small discrepancies can contribute strain that builds
up across the structure, resulting in large scale distortion.

Figure 12 shows the results of the oligomer benchmark, which
are expressed as time per integration time step in milliseconds.
On a single Intel Xeon Gold CPU the standalone code
implements a single timestep slightly faster than the LAMMPS
implementation. Note, however, that the actual efficiency will
depend on the choice of coefficients of coupling to the
thermostats (see Supplementray Appendix B).

When deployed in parallel on more CPUs, the LAMMPS
implementation offsets this disadvantage almost immediately. Its
performance at the larger side of system sizes is more or less ideal
as evidenced through the linear increase of time per integration
step with system size. For smaller system sizes, and depending on
how many CPUs were used, the performance levels off due to a
build-up of MPI communication overheads. However, there is
still a noticeable speed-up e.g. for 8,192 nucleotides on 320 MPI-
tasks or 65,536 nucleotides on 2,560 MPI-tasks, which comes
down to a very low 25 nucleotides per MPI-task. This unusually
good performance of a parallel molecular dynamics code has been
reported before (Henrich et al., 2018) and is owed to the rather
complex oxDNA force field as the code spends a good deal of time
carrying out the force calculation.

The GPU-implementation of the standalone code retains a
significant advantage over the LAMMPS implementation for all
but the largest benchmark sizes and runs on the full ARCHIE-
WeSt system size (2,560 MPI-tasks) and its performance levels
only off when the GPU becomes under-subscribed with threads at
smaller system sizes. We can conclude that the LAMMPS
implementation of oxDNA, besides its capability to run on a

FIGURE 12 | Performance of the oligomer benchmark as time per time
step for various system sizes: Shown are results of the oxDNA standalone
code on a single CPU and NVIDIA V100 GPU and of the LAMMPS
implementation of the oxDNA2 model at different CPU counts.

FIGURE 13 | Performance of the pointer benchmark as time per time
step at various salt concentrations: Shown are results of the oxDNA
standalone code on a single CPU and NVIDIA V100 GPU and of the LAMMPS
implementation of the oxDNA2.0 model at different core counts.

Frontiers in Molecular Biosciences | www.frontiersin.org June 2021 | Volume 8 | Article 69371016

Sengar et al. A Primer on oxDNA

226

http://oxdna.org
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


variety of CPU architectures, is very suitable for studying small
and intermediate system sizes, whereas the GPU-implementation
has clearly the edge at large-scale simulations.

Figure 13 shows the performance with the pointer benchmark,
again expressed as time per time step in milliseconds. This time the
LAMMPS implementation is marginally faster than the oxDNA
standalone code on a single CPU. Again, the GPU-runs of the
standalone code features significantly shorter run times on all but
the largest core counts and lowest salt concentrations. It appears
the increase in run time between high and low salt concentration is
slightly larger for the GPU-implementation of the standalone code.
This could be due to a slightly better handling of neighbour lists in
LAMMPS.

Most importantly, however, an increase in runtime by a factor
8–9 can be seen at all core counts when moving from high to
moderate salt concentrations. This slowdown is in line with the
increase in Debye length by about a factor 3 and reflects the
longer cutoff radii and neighbour lists of the pair interactions.
This large performance difference should be taken into account
when choosing simulation parameters: For instance it is nearly
always more convenient to perform relaxation runs to create well-
initialized configurations at high salt concentrations (e.g. [Na+] �
1 M). Indeed, unless the response of the system to decreased salt
concentration is of specific interest, we would generally
recommend using high monovalent salt concentration such as
[Na+] � 1 M for the actual data collection.

9 CONCLUSION

We have reviewed the properties of, and simulation methods
available for, the oxDNA model. In the process we have created a
well-documented library of examplar simulations available from
(Sengar, 2021). Equally importantly, however, we have attempted
to provide the necessary intuition both for successfully running
oxDNA-based simulations, and also for identifying which
systems would actually benefit from those simulations in the
first place.

Having explored the model’s strengths in some detail, it is worth
noting a few natural directions for improvements. Although the
model has well-parameterised sequence-dependent thermodynamics,

and a good representation of average mechanical properties, it lacks
sequence-dependent structure and mechanics. Incorporating this
feature would be useful in and of itself, but would also be a useful
first step towards building a model that could interface with other
molecules such as proteins (Procyk et al., 2020).
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Hobza, P., and Šponer, J. (1999). Structure, Energetics, and Dynamics of the
Nucleic Acid Base Pairs: Nonempirical Ab Initio Calculations. Chem. Rev. 99,
3247–3276. doi:10.1021/cr9800255

Hoffecker, I. T., Chen, S., Gådin, A., Bosco, A., Teixeira, A. I., and Högberg, B.
(2019). Solution-controlled Conformational Switching of an Anchored
Wireframe DNA Nanostructure. Small 15, 1803628. doi:10.1002/smll.
201803628

Hong, F., Jiang, S., Lan, X., Narayanan, R. P., Šulc, P., Zhang, F., et al. (2018).
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Elucidating Axonal Injuries Through
MolecularModelling ofMyelin Sheaths
and Nodes of Ranvier
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Around half of the traumatic brain injuries are thought to be axonal damage. Disruption of
the cellular membranes, or alternatively cytoskeletal damage has been suggested as
possible injury trigger. Here, we have usedmolecular models to have a better insight on the
structural and mechanical properties of axon sub-cellular components. We modelled
myelin sheath and node of Ranvier as lipid bilayers at a coarse grained level. We built ex-
novo a model for the myelin. Lipid composition and lipid saturation were based on the
available experimental data. The model contains 17 different types of lipids, distributed
asymmetrically between two leaflets. Molecular dynamics simulations were performed to
characterize the myelin and node-of-Ranvier bilayers at equilibrium and under deformation
and compared to previous axolemma simulations. We found that the myelin bilayer has a
slightly higher area compressibility modulus and higher rupture strain than node of Ranvier.
Compared to the axolemma in unmyelinated axon, mechanoporation occurs at 50%
higher strain in the myelin and at 23% lower strain in the node of Ranvier in myelinated
axon. Combining the results with finite element simulations of the axon, we hypothesizes
that myelin does not rupture at the thresholds proposed in the literature for axonal injury
while rupture may occur at the node of Ranvier. The findings contribute to increases our
knowledge of axonal sub-cellular components and help to understand better the
mechanism behind axonal brain injury.

Keywords: coarse grainedmodel, molecular dynamics simulations (MD simulations), brain injury, axonal membrane,
mechanoporation

1 INTRODUCTION

Traumatic brain injury (TBI) (Menon et al., 2010) is an injury to the brain caused by an external
force. Causes include falls, vehicle collisions and violence. One of the most common consequence of a
TBI is diffuse axonal injury, a multifocal damage to white matter (Johnson et al., 2013). Such an
injury is invisible to conventional brain imaging, and can only be histologically diagnosed and one of
its hallmarks is the presence of axonal swellings (Hill et al., 2016).

Axons are long projection of the nerve cell surrounded by a membrane, called axolemma.
Axolemma separates the interior of the axon from the outside environments. In the nervous
system, axons may be myelinated, or unmyelinated. When the axon is myelinated, a extra
multilamellar membrane, called myelin sheath, insulates segments of axon. The sheath consists of
repeating units of double bilayers separated by 3–4 nm-thick aqueous layers that alternate between the
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cytoplasmic and extracellular faces of membranes (Inouye and
Kirschner, 1988a). Dehydrated myelin is unusual in that it is
composed of 75–80% lipid and 20–25% protein by weight,
compared with around 50% of lipids in most other cell
membranes (Williams et al., 1993). Multiple lipids make up the
myelin sheath, and each sheath contributes to the structure,
adhesive stability, and possibly the pathogenesis of the myelin
membrane. The asymmetric distribution of lipid composition on
the cytoplasmic and extracellular faces likely also plays an
important role (Inouye and Kirschner, 1988b). Axolemma and
myelin compositions differ both in lipid type and degree of
saturation. Table 1 summarizes the available experimental data
on lipid composition for axolemma and myelin. The most striking
feature of myelin lipid composition is the enrichment in glycolipids
together with long-chain fatty acids (DeVries et al., 1981).

Short unmyelinated segments, nodes of Ranvier, occur
periodically between segments of the myelin sheath in
myelineted axons. In nodes of Ranvier, the axolemma is directly
exposed to the extracellular space. The nodes are uninsulated and
highly enriched in ion channels (Westenbroek et al., 1989; Catterall
et al., 2005), allowing them to participate in the exchange of ions
required to regenerate the action potential. One of the voltage-
gated ion channels, embedded in myelinated axons, is sodium
channel protein type subunit alpha, Nav1.1 (Duflocq et al., 2008).
In axonal membrane, the density of sodium channels varies
between 5 and 3,000 channels/μm2: lower densities are observed
in unmyelinated axons, while higher densities are found in the
nodal portions of myelinated axons (Wann, 1993; Hu and Jonas,
2014). Interestingly, sodium channels have also been proposed to
influence the injury response (Iwata, 2004).

Experimental observations have so far led to the formulation of
twomain theories regarding the cellular primary injurymechanism.
Disruption of the axolemma (Pettus and Povlishock, 1996; LaPlaca
and Thibault, 1997; Fitzpatrick et al., 1998), or alternatively
cytoskeletal damage (Tang-Schomer et al., 2012) has been
suggested mainly as injury trigger. However, using a purely
mechanical approach we discarded microtubule damage as
injury trigger and revealed instead high level of strains on the
axonal membrane (Montanino and Kleiven, 2018). To further
investigate the molecular level effects of such strains, we bridged
the finite element model of the axon with a molecular-based
membrane model (Montanino et al., 2020). Despite the
approximation of the models, we showed that in a typical injury

scenario, the axonal cortex sustains deformations large enough to
entail pore formation in the adjoining lipid bilayer. The observed
axonal deformation at which poration occurs (10–12%) agrees well
with the thresholds obtained both with in-vitro (Hemphill et al.,
2011; Nakadate et al., 2017) and in-vivo/ex-vivo (Bain and Meaney,
2000; Singh et al., 2015) stretch injury experiments and allows us to
provide quantitative evidences that do not exclude pore formation
in the membrane as a result of trauma.

When investigating the progression of axonal injury in the white
matter, several studies have observed impairments at themyelin level
in the form of delamination of the myelin lamellae (Maxwell, 2013)
and general loss of myelin, or demyelination, (Mierzwa et al., 2015;
Mu et al., 2019). While white matter degeneration is undoubtedly a
distinctive feature of traumatic brain injury, the causal relationships
between myelin disruption and the multitude of events associated
with axonal damage is still unclear. Computational models of the
axon can potentially clarify the damage-causality chain, provided
that a mechanical description of myelin is obtained.

Here, we aim to describe membrane-component of myelinated
axon at molecular level and to elucidate if and where membrane
rupture can occur as a result of an injury. To achieve this, we have
used molecular-based model for myelin sheath and for node of
Ranvier in line with experimental composition (Table 1) and a coarse
grained (CG) description. For myelin, we have built ex-novo the
model based on experimental lipid composition and saturation from
central nervous system (O’Brien and Rouser, 1964; Manzoli et al.,
1970; Inouye and Kirschner, 1988b; Bosio et al., 1998). For the node
of Ranvier, we have used an already available plasma membrane
model (Ingólfsson et al., 2014), since too few experimental data on the
axolemma composition for central nervous system are available.
Molecular dynamics (MD) simulations have been used to
characterize the molecular system at equilibrium and under
deformation. Finally the deformation results from molecular
simulations are combined with the axonal deformation obtained
using an axonal finite element (FE) model (Montanino et al., 2020).

2 METHODS

2.1 Molecular Model
2.1.1 Model for Myelin Sheath
The myelin is described as lipid bilayer. The membrane model
contains 17 different types of lipids, distributed asymmetrically

TABLE 1 | Experimental and modelled lipid composition in weight fraction for different types of membrane.

Lipid type Membrane PC PE SM PS Glycolipid CHOL Other

Myelin (exp)a 0.11 0.17 0.06 0.06 0.28 0.28 0.04
(0.01) (0.01) (0.03) (0.01) (0.03) (0.01) (0.02)

Myelin model 0.12 0.22 0.03 0.09 0.23 0.29 0.02
Axolemma (exp)b 0.20 0.19 0.08 0.06 0.20 0.24 0.10

(0.09) (0.07) (0.05) (0.03) (0.05) (0.03) (0.07)
Plasma modelc 0.30 0.17 0.17 0.06 0.05 0.17 0.08

For composition observed experimentally the average values is reported together with the maximum deviations from the mean values (in parentheses).
adata for the central nervous system of human, bovine and rat from Rasband and Macklin (2012) and references inside.
bdata from central and peripheral nervous system from Camejo et al. (1969); Zambrano et al. (1971); DeVries et al. (1981); DeVries et al. (1999).
cplasma membrane model of Ingólfsson et al. (2014) was used to describe the axolemma.
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between two leaflets, labelled as extracellular and cytoplasmic
leaflet. The extracellular leaflet is characterized by having
phosphatidylcholine (PC) (7%), phosphatidylethanolamine
(PE) (8%), cholesterol (CHOL) (43%), cerebroside (39%),
sphingomyelin (SM) (2%), phosphatidylserine (PS) (1%) and
other anionic lipids, while the cytoplasmic leaflet contains PC
(11%), PE (27%), CHOL (44%), SM (3%), PS (12%) and other
anionic lipids. Note that the reported values are in mol%.
Supplementary Table S1 lists all the lipid types used and their
disposition in the leaflets together with the level of saturation of
fatty acids. The membrane model was built accounting the
available experimental data: we use the values derived by
Inouye and Kirschner (Inouye and Kirschner, 1988b) for
myelin in central neurons system to define the lipid
disposition in the extracellular and cytoplasmic leaflet; the
work of Manzoli and coworkers (Manzoli et al., 1970) to
define the saturation of the lipid tails for phospholipids, while
the saturation values for cerebroside have obtained from O’Brien
and Rouser (1964) and Bosio et al. (1998).

2.1.2 Model for Node of Ranvier
To describe the region of Node of Ranvier, we use a lipid bilayer
embedded with ion channels. A channel concentration of 3,086
channels/was used to describe the node. The mammalian
plasma membrane model designed by Ingólfsson et al. (2014)
and deposited onMARTINI webpage (http://www.cgmartini.nl/
) was used to describe the membrane. The model contains 63
different types of lipids distributed asymmetrically between two
leaflets. The extracellular leaflet has a higher level of tails
saturation and contains PC (36%), PE (6%), CHOL (31%),
SM (19%), glycolipids (6%), and other lipids (2%). The
cytoplasmic leaflet, which has a higher level of
polyunsaturation, contains PC (17%), PE (25%), CHOL
(29%), SM (9%), PS (11%), anionic phosphatidylinositol (PI)
(2%), and other lipids (7%).

As model for the protein we used the Homo sapiens Nav1.1.
The three-dimensional (3D) structure of Nav1.1 has not been yet
resolved experimentally, however, the encoding gene is known
(SCN1A gene) (Malo et al., 1994). We used the 3D structure
obtained previously using homology modeling (for details see
(Montanino et al., 2020)). As template, the cryo-electron
microscopy structure of putative sodium channel from
American cockroach, NavPaS (PDB ID: 5X0M) (Shen et al.,
2017) was used. The structure had 100% confidence (matching
probability) and 48% sequence identity (identical residues) with
NavPaS. The missing terminal domains and linkers were added
and the structure was energy minimized and shortly equilibrated
in the PC lipid bilayers at the atomistic level using CHARMM36
force field (Pastor and MacKerell, 2011; Best et al., 2012) before
building the CG model.

2.1.3 Force Field
The membrane and protein systems were described at the coarse-
grained level using the MARTINI2.2 force field (Marrink et al.,
2004; Marrink et al., 2007; Monticelli et al., 2008; de Jong et al.,
2013) together with one-bead non-polar water model (Marrink
et al., 2007). In the MARTINI model, small groups of atoms (3–4

heavy atoms) are united into beads which interact with each other
by means of empirical potentials.

2.2 Systems Setup
2.2.1 Myelin Model
The myelin was modelled as a bilayer having the composition
reported inTable 1. The initial lipid coordinates were constructed
using the 2,000 lipids and an initial box of 24 × 24 × 12 nm. The
equilibrated 20 nm bilayer (at 16 μs) was used as template to build
a 40 nm bilayer and a multi-bilayers system. The 40 nm bilayer
system has a total of 8,000 lipids and was placed in a cubic box of
41 × 41 × 14 nm and solvated by about 138,000 CG water beads.
The multi-bilayers system was built using a distance of 1.7 and
1.6 nm between extracellular layers and cytoplasmic layers,
respectively, and was placed in a cubic box of 21 × 21 ×
48 nm and solvated by about 106,000 CG water beads. To all
the systems NaCl was added to mimic the ionic strength at
physiological condition (150 mM NaCl).

2.2.2 Node-of-Ranvier Model
A channel concentration of 3,086 channels/μm2 was used to
describe the node. The bilayer (containing a total of 6,500
lipids) was placed in a cubic box (42 × 42 × 18 nm) and
solvated by about 190,000 CG water beads. NaCl was added to
mimic the ionic strength at physiological condition (150 mM
NaCl). To achieve a concentration of 3,086 channels/μm2, 16
copies of proteins were embedded in a larger bilayer (containing
15,000 lipids in a cubic box of 69 × 69 × 20 nm). The proteins
were located at 5 nm distance from each other.

2.3 Molecular Dynamics Simulations
All MD simulations were performed using the GROMACS
simulation package, version 2016 (Abraham et al., 2015)
(manual.gromacs.org/2016). The bilayer systems were
equilibrated at constant temperature (37°C) and pressure
(1 bar). The temperature was held constant using velocity
rescale thermostat (Bussi et al., 2009) with a time constant of
1.0 ps. The pressure was held constant using semi-isotropic
Parrinello-Rahman barostat (Parrinello and Rahman, 1981)
with a time constant of 12 ps (compressibility of 3 ×
10−4 bar−1). The Verlet cutoff scheme (Páll and Hess, 2013)
and a timestep of 10 fs (for myelin system) and 15 fs (for
protein-membrane system) were used. Periodic boundary
conditions were applied. Non-bonded interactions were
calculated between all beads using a cutoff of 1.1 nm. Long-
range electrostatic interactions were treated using a reaction field
potential (Tironi et al., 1995) with switching distance of 1.1 nm in
line with MARTINI setting. After a short equilibration, 16 μs
were performed for both node-of-Ranvier and 20 nm myelin
models, while 25 μs MD simulations were performed for 40 nm
and multi-layer myelin model. Supplementary Figure S1 shows
equilibration of box dimension and energy within the first 16 μs.
Note, the protein positions were kept fixed in only the simulations
at equilibrium to allow the relaxation of the lipid distribution.

To evaluate membrane behavior under mechanical stress we
performed 6 μs simulations at constant areal strains (NPzAT
ensemble) for the node-of-Ranvier and 40-nm myelin model.
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No position constrains was applied to the proteins Values < 0.05
were considered for areal strain. The last 4 μs are used for data
production. To monitor the pore formation, we first fast pre-
deformed the bilayers in x direction up to 30% strain (using a
deformation speed of 1 × 10−5 nm/ps), then starting from 30%
strain two independent simulations were performed using slower
deformation speeds: 2.5 × 10−6 nm/ps and 25 × 10−6 nm/ps.
Stretching simulations were performed for the node-of-Ranvier
and myelin (40 nm and multi-layer) model. No position
constrains was applied to the proteins.

2.4 Simulation Analysis
To describe the structure of lipid bilayers, we calculated bilayer
thickness and number of lipid contacts. Bilayer thickness was
calculated using the method proposed by Pandit et al. (2003),
Pandit et al. (2004) and implemented in APL@Voro software
(Lukat et al., 2013). Using Voronoi tessellation, the methods
identifies the normal distance between phosphorus atoms from
two leaflets that are “vertical neighbors” of each other.

Lipid contacts were calculated by counting the number of
neighboring lipids within 1.5 nm of proteins or lipids by
considering the first tail bead after the headgroup of lipid or
polar group of cholesterol molecules. Enrichment factors were
calculated as (Corradi et al., 2018):

Enrichment(L) � Ratio(L)x
Ratio(L)bulk (1)

In which Ratio(L)x � (no.L)x
(tot.no.lipids)x and Ratio(L)bulk � tot.no.(L)

tot.no.lipids

where x was chosen 0.7 and 2.1 nm for lipids around the protein
in node-of-Ranvier model and 1.5 nm for lipid distribution
around each lipid type in myelin model.

The partition coefficient Kmem/wat was calculated as
[solute]mem/[solute]wat , where [solute] denotes the
concentration of water molecules in the lipid bilayers and
water solution, respectively. [water]mem was obtained by
dividing the average number of water molecules by the lipid
bilayers volume, while for the water concentration in water the
experimental value (55.5 mol/L) was used. The membrane
volume was corrected to account for the presence of the protein.

The software VMD (Humphrey et al., 1996) was used for
graphical representations. Reported values were averaged on 5 μs
and the errors were obtained by dividing the data production into
five parts and calculating the standard error between them, if it
was not specified differently.

2.5 Mechanical Properties
Area compressibility modulus (KA) is defined as the derivative of
surface tension as function of the areal strain,

KA � ( zc

zϵA
)T (2)

where c is the surface tension and the areal strain (ϵA) is defined
as ϵA � ( A

A0
) − 1. Eq. 2 was chosen to be in line with

experimental approach (Needham and Nunn, 1990; Rawicz
et al., 2000) used on biological membrane. Evans et al. (1976)

and Needham and Nunn (1990) observed a linear relation
between surface tension for small areal change (<0.05 areal
change) in their study on red blood cell and chlosterol-rich
membrane, respectively.

To calculate area compressibility modulus, we used NPzAT
simulations at three strain values (ϵA < 0.05). We divided
production data in 4 parts and calculated the average c and ϵA
values c is calculated according to the following

c � lz(Pzz − Pxx

2
− Pyy

2
) (3)

where Pxx , Pyy, and Pzz are diagonal elements of pressure matrix
and lz is the box height along z.

We performed linear regression between the obtained c and ϵA
values, the slope of the regression line isKA and the standard error
of the slope is the standard error of KA.

2.6 Multiscale Approach
To provide insights into the initiation of axonal damage, we
combined the FE model of a generic portion of an axon with
the molecular-based myelin and node-of-Ranvier models. The
node-of-Ranvier model was used to exemplify the approach in
Figure 1. Firstly, the axon FE model was utilized to simulate
typical stretch injury scenarios, then as a result of axonal
deformation, maximum local deformations happening at the
cortex level was extracted and applied to the molecular
models. The multiscale approach together with details on
axon FE simulations was previously described and
published in Montanino et al. (2020). The axon FE model
(Figure 1C) was validated and described in Montanino and
Kleiven (2018). The axon FE model is a 8 μm long
representative volume of an axon consisting of three main
compartments: a microtubule (MT) bundle, the
neurofilament network and the axolemma-cortex complex
wrapping the entire structure. To create a general axonal
behavior, 10 different FE axon models were generated by
randomly moving the MTs discontinuities locations, while
keeping the average MTs length of the original model. Details
regarding the element and material modelling choices can be
found in Montanino and Kleiven (2018). All simulations were
performed in LSDYNA using an implicit dynamic solver and
the 1st and 2nd principal strains (ϵx , ϵy) in the cortex plane
were extracted as function of axonal strain for axonal strain
rates of 1, 20, and 40/s.

3 RESULTS AND DISCUSSION

3.1 Structural Features of Myelin Model
The myelin membrane was modelled as a lipid bilayers, having 17
different types of lipids, distributed asymmetrically between two
leaflets, labelled as extracellular and cytoplasmic leaflet
(Figure 2). The lipids distribution and saturation were
assigned accounting for a collection of experimental data on
leaflet mole composition, fatty acid length and saturation. In
particular, we used the values derived by Inouye and Kirschner
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(1988b) for myelin in central neurons system to define the lipid
disposition in the extracellular and cytoplasmic leaflet; the work
of Manzoli et al. (1970) to define the saturation of the lipid tails
for phospholipids, while the saturation values for cerebroside
were obtained from O’Brien and Rouser (1964) and Bosio et al.
(1998). Supplementary Table S1 reports details on the lipid
composition of the myelin model together with the experimental

reference. In Table 1 we compare the model’s lipids abundance
with a wide collection of data on lipid composition observed for
myelin sheath in the central nervous system of diverse species
(human, bovine, rat). The myelin model has a composition in line
with experimental data, small deviations are observed for PE, PS
and glycolipid, whose weight fraction is between myelin and
axolemma experimental composition.

FIGURE 1 | Representation of the combined finite element-molecular based modeling approach (Montanino et al., 2020). (A) Finite element axonal model where a
quarter of the model was removed to reveal the arrangement of the inner structures. (B) Single undeformed cortex element and a juxtaposed virtual lipid bilayer. (C)
molecular bilayer model. (D) The axon finite element model is deformed of a quantity (εaxon ). (E)Maximum localized deformations (εxεy ) are extracted and applied to the
molecular model. (F) Visualization of the induced pore upon deformation of the molecular model.

FIGURE 2 | Graphical representation of node-of-Ranvier bilayer model (70 nm) at 16 μs (A, B) and myelin bilayer model (40 nm) at 25 μs (C, D) together with a
draw of a neuron. Both up and down leaflets are shown. Molecules are colored as follows: PC lipids are in blue, PE in yellow, CHOL in green, SM in orange, PS in purple,
glycolipids in red, anionic lipids in pink, the rest of lipids in gray, protein in black VDW representation, and water is not visualized for clarity.
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The myelin bilayers were simulated for 16 μs. Box dimensions
and total energy converged in the first microseconds
(Supplementary Figure S1). To check the convergence of the

lipid distribution, we compare the numbers of lipid
neighboring for the 20 and 40 nm bilayers: the values over the
last 5 μs agrees within the fluctuations (Supplementary
Figure S2).

The equilibrated myelin bilayer has a thickness of
4.51 nm (Table 2), larger than axolemma bilayers and
comparable with the value derived using cable theory and
the mean dielectric constant of squid axon myelin (around
4.5 nm) (Min et al., 2009). Table 3 reports the lipid
enrichment factor. In the extracellular leaflet a depletion
of phospholipids (in particular PC and PE, and SM) is
observed around glycolipids. A deplection of PI around
PI and enrichment of PS around SM are also reported. In
the cytoplasmic leaflet no relevant enrichment/depletion is
observed, most of the values are with 5% from an
homogeneous distribution.

3.2 Node-of-Ranvier Model
Node of Ranvier was modelled as lipid bilayer with embedded ion
channels. We use a plasma membrane lipid bilayers
composition. Table 1 compares the composition with lipid
abundance observed for axolemma in mammalian neuron
system. The values are closer to the composition of
axolemma than to the one of myelin. The larger deviation
from experimental values is observed for the glycolipids. We
have also to note that we can not exclude that the
experimental composition for axolemma may be
contaminated by myelin lipids (DeVries et al., 1981). In
comparison with the composition used to describe myelin
sheath, model for node-of-Ranvier is characterized by a
lower content of glycolipids and CHOL molecules and
higher content of PC and SM lipids, in line with the trend
shown by experimental values. The model is also
characterized by having shorter long-chain fatty acids
than myelin model in line with experimental observation
(DeVries et al., 1981).

To describe the proteins in the node, we use sodium channel
protein type subunit alpha (Nav1.1), a characteristic protein of
nodal portions of myelinates axons, belonging to the family of
voltage-gated ion channels (Duflocq et al., 2008). It is known that
several different ion channels are present, but currently
information are available to model solely sodium channel
protein type subunit alpha (Nav1.1). 16 proteins were
embedded in the bilayers (equivalent to 3,000 channels/μm2)
to mimic a value of ion channel concentration in line with the

TABLE 2 | Bilayers structural and mechanical properties. In parenthesis standard error.

Properties Simulated Models Area compressibility
Modulus KA(mN/m)

Thickness Coefficient (nm) Water partition
logKmem/wat

Rupture Strain

model for unmyel.axon 352 (3)a 4.168 (0.001)a −1.75 (0.01)a 0.47a; 0.51a

node-of-Ranvier model 252 (20) 4.032 (0.001) −1.50 (0.01) 0.36b; 0.40c

myelin model 339 (12) 4.506 (0.015) −1.98 (0.01) 0.70b; 0.82c

Lowest observed rupture strains are reported for each deformation rate.
aData from Montanino et al. (2020).
bdeformation rate 2.5 × 10−6 nm/ps.
cdeformation rate 25 × 10−6 nm/ps.

TABLE 3 | Lipd enrichment factor in myelin bilayer. Number of lipids within 1.5 nm
of a reference lipid type are reported for the extracellular and cytoplasmic
leaflet separately. Standard errors are less than 0.1

Lipids type PC PE PS SM PI Glycolipid CHOL

Extracellular leaflet
PC 1.15 1.16 1.15 1.11 1.14 0.84 1.08
PE 1.16 1.14 1.08 1.03 1.07 0.85 1.07
PS 1.12 1.04 0.89 1.17 0.91 0.88 1.07
SM 1.13 1.05 1.23 1.08 1.13 0.88 1.06
PI 1.13 1.06 0.94 1.10 0.38 0.89 1.07
Glycolipid 0.77 0.78 0.83 0.79 0.82 1.03 1.07

Cytosplasmic leaflet
PC 0.99 1.00 1.03 1.00 1.00 - 1.00
PE 1.00 0.99 1.04 0.97 1.04 - 0.99
PS 1.02 1.02 0.95 1.02 0.94 - 1.00
SM 1.03 0.99 1.06 1.01 1.02 - 0.98
PI 1.01 1.04 0.96 1.01 0.92 - 0.99

FIGURE 3 | Surface tension as function of the areal strain for myelin and
node-of-Ranvier model, colored in red and black respectively. Reported data
(circles) corresponds to theaverageon1 μs time-window. The slopeof the line isKA.
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experimental observation for the node of Ranvier (Wann, 1993;
Hu and Jonas, 2014). Below we compare the results with
previously performed simulations of a bilayer, having the same
lipid composition as the node but only one embedded protein,
representing a condition closer to axolemma in unmyelinated
axon (Montanino et al., 2020).

We checked the convergence of lipid distribution around the
proteins by monitoring the lipid-protein contacts
(Supplementary Figure S3). In general, the lipid-protein
contacts are in overall agreement with the contact recorded
for one protein embedded in the bilayer. The node-of-Ranvier
bilayer has a thickness of around 4.0 nm (Table 2). High protein
density makes the bilayer slightly thinner: a values of 4.2 was
calculated for the bilayer with one embedded protein. The
difference in lipid composition (both in tail length and head-
group) between the node-of-Ranvier and myelin bilayers results
difference in the thickness and the water permeability, given the
proportionality between the partition coefficient Kmem/wat and
the permeability (Pm). The myelin is thicker and is less
permeable to water than the node of Ranvier. Now we can
proceed to evaluate what is the effect of the composition on the
mechanical feature.

3.3 Bilayer Models Under Deformation
To study the bilayers response to mechanical deformation, we
performed simulations at three different areal strains. Figure 3
reports the surface tension as a function of the areal strain for
each membrane model. In general, the surface tension increases
linearly for small areal strain. The myelin model shows the
steepest slope of surface tension-areal strain (Figure 3). That
means that the myelin model is more resistant to change its area
than node-of-Ranvier model.

The area compressibility modulus, KA, was estimated for small
areal strain values (less than 0.05) and reported in Table 2. A
larger KA values is observed for the myelin model than for node-
of-Ranvier models: a value of 339 mN/m and 252 mN/m,
respectively for myelin and node-of-Ranvier bilayers, was
obtained. At this point we can not distinguish if the difference
is due to the protein concentration, lipid composition or a
combination of them. The value for the axolemma model in
unmyelinated (plasma membrane with one embedded protein) is
in line with the area compressibility modulus measured for red
blood cell membranes (375 ± 60 mN/m) at 37°C by Waugh and
Evans (1979). Unlucky a validation for all the models toward
experiments is not possible due to lack of experimental data. A
previous study (Saeedimasine et al., 2019) shows that atomistic
and CG simulations give different KA values, but similar trend
upon change in lipid composition. That gives us trust in the
observed trend, even if the absolute values can not be validated.

Simulations at different deformation rate were performed to
identify the rupture points. We define the rupture point when at
least one pore is formed in the bilayer. To detect the formation we
monitored the surface tension: a jump in the surface tension
corresponds to the formation of at least one pore. In the myelin
model pores were observed at 0.7–0.8 strain while in the node-of-
Ranvier model at around 0.4 (Figure 4). Poration in both bilayers
occurs in region lacking protein and glycolipids. This type of lipids
are mainly found in the outer leaflet of membranes and are known
to make the bilayer more resistant to deformation thanks to
interactions between sugar headgroups (Saeedimasine et al., 2019).

To provide insights into the initiation of axonal damage, we
combined the FE model of a generic portion of an axon with the
molecular-based myelin and node-of-Ranvier models. Firstly, the
axon FE model was utilized to simulate typical stretch injury
scenarios, then as a result of axonal deformation, maximum local
deformations happening at the cortex level was extracted and
applied to the molecular models (Figure 1). Figure 5 shows the
relation between the applied axon deformation and the resulting
maximum local deformation observed at different strain rates.

FIGURE 4 | Node-of-Ranvier (A) and myelin (B) bilayers at 0.36 and 0.70 strain, respectively. For color code see Figure 2.

FIGURE 5 | Axonal deformation versus maximum local strains at three
strain rates: 1 s−1 (black), 10 s−1 (red) and 40 s−1 (green). Values obtained
from finite element simulations of axonal stretch (Montanino et al., 2020). The
dotted line corresponds to rupture strain observed for myelin model (and
dashed-dot lines to the myelin multi-layer model), while the dashed line
corresponds the to rupture strain observed for the node-of-Ranvier model.
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We found that higher strain rates do not lead to higher local
maximum strains for axonal strains less than 12%. This is due to
the viscoelastic properties of tau proteins and of the cortex itself
resulting in less cortex deformation at strain rate 40/s compared
to 1 or 20/s (Montanino et al., 2020).

We connect the bilayer strain at which local events occurs
in molecular model (e.i pore formation) with the maximum
local strain observed in the finite element simulations during
axonal deformation. This allows to understand which axonal
strain correspond to the bilayer rupture. The node-of-Ranvier
model can withstand an applied deformation up to 36%,
corresponding to axonal deformation of 9–11% (see dashed
line in Figure 5). At higher strains pore formation is observed.
While poration occurs at a larger cortex strain (70%) for the
myelin model and this corresponds to an axonal deformation
of 15–23%.

Myelin sheath consists of not one bilayer but of repeating units
of double bilayers separated by aqueous layers. To verify the effect
of the multi layers structure on the rupture threshold, we have
built a double bilayers myelin model (Figure 6), equilibrated and
deformed it as it was done for the single bilayer model. The
distances between the bilayers were taken from X-ray diffraction
data (Caspar and Kirschner, 1971; Kirschner et al., 1989): 1.6 and

1.7 nmwere reported as widths of the spaces between membranes
at the cytoplasmic and extracellular appositions, respectively, for
the central nervous system. Starting from a strain value of 0.66
pore formation can occur in one of the bilayers (Figure 6). The
first pore formation is followed by formation of multiple pores in
different layers (at strain 0.73). This corresponds to an axonal
strain of 14–22%, in line of what observed for the single-bilayer
myelin model.

All in all, our results show that mechanoporation occurs at
49–74% higher strain for the myelin and at 15–23% lower
strain at the node of Ranvier compared with axolemma with
one embedded protein. In vivo and ex vivo experiments on
uniaxially oriented neuronal cell and spinal nerve showed
injurious changes above 10% applied strain (Singh et al., 2015;
Nakadate et al., 2017). Experiments conducted on non-
oriented neuronal culture indicated that mechanoporation
occurs only when strains higher than 10% were uniaxially
applied to the culture (Hemphill et al., 2011). If mechanico-
poration trigger axonal brain injury, our results indicate that
such events in myelined axon will occur at the level of the node
of Ranvier. Indeed, according to our models, poration in the
node-of-Ranvier occurs at axonal strains going from 9% to
11%, while myelin rupture occurs at axonal strains larger
than 15%.

Although our modeling approach brings some insights into
the axonal injury mechanism, note that we do not aim to describe
the injury event, since those events occur at time scale (fraction of
seconds) not accessible to current molecular simulations.
Moreover, the simulated bilayers are simplified models of
cellular membrane: they do not account for all the different
embedded proteins, they are described by a coarse grained
model (where a group of atoms is described by a particle).
Finally, the model does not account for possible protein
structural change at different strains, since the protein is
described as a semi-rigid body.

4 CONCLUSION

In this study, we combine CG molecular dynamics simulations
and FE method to improve our understanding of what can trigger
axonal brain injury. To achieve this we used molecular models to
describe sub-cellular components of the myelinated axon, in
particular myelin sheath and node of Ranvier, and a FE
simulations of the axon.

The ex-novo built myelin model well reproduces the myelin
experimental composition and structural feature of myelin. The
model is more glycolipid-rich with longer fatty acid tails than the
model used to describe the node-of-Ranvier. The myelin bilayer
has a higher thickness, rupture point and area compressibility
modulus than node of Ranvier. The results support a scenario
where node-of-ranvier is most vulnerable component, myelin
has more of a supporting role given that it likely will not porate
before the axolemma, in unmyelined axon, and node-of-
Ranvier do.

Combining the results with finite element simulations of
the axon model, we provided quantitative evidences that

FIGURE 6 | Graphical representation of multi-layer myelin at 25 μs. The
multi-bilayers system was built using a distance of around 1.7 nm between
extracellular and cytoplasmic layers. For lipid molecules color code see
Figure 2 and for bilayer composition see Table 2.
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mechanoporation of the axon membranes is an event that
cannot be excluded in a typical axonal injury scenario. Our
results indicate that mechanoporation may occur at the node
of Ranvier at the thresholds proposed in the literature for
axonal injury, while no myelin rupture is observed at the
injury threshold. Poration occurs at more than 50% higher
strain for the myelin compared with node-of-Ranvier and
axolemma (in unmyelinated axon). The findings contribute
to increase our knowledge of axonal sub-cellular
components and help to understand better the mechanism
behind axonal brain injury. Finally, our work shows the
power of combining FE and MD to describe complex
biological scenario, that requires the description of
different length scale.
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Quantitative prediction on protein synthesis requires accurate translation initiation and
codon translation rates. Ribosome profiling data, which provide steady-state distribution of
relative ribosome occupancies along a transcript, can be used to extract these rate
parameters. Various methods have been developed in the past few years to measure
translation-initiation and codon translation rates from ribosome profiling data. In the review,
we provide a detailed analysis of the key methods employed to extract the translation rate
parameters from ribosome profiling data. We further discuss how these approaches were
used to decipher the role of various structural and sequence-based features of mRNA
molecules in the regulation of gene expression. The utilization of these accurate rate
parameters in computational modeling of protein synthesis may provide new insights into
the kinetic control of the process of gene expression.

Keywords: ribosome profiling, ribo-seq, translation-initiation rate, codon translation rate, codon usage bias,
quantitative modeling of protein synthesis

1 INTRODUCTION

Protein molecules carry out a vast array of biological functions. Indeed, almost every cellular process,
from genome regulation to energy metabolism, requires a unique set of proteins with their precise
concentration in a cell (Berg et al., 2002; Miyazaki and Esser, 2009). Therefore, the abundance of
proteins in a cell is tightly regulated by various mechanisms acting at the level of transcription and
translation (Curtis et al., 1995; Wu and Belasco, 2008). Understanding this regulation of protein
synthesis remains one of the active areas of research from the last few decades (Merrick, 1992; Proud,
2006; Dever et al., 2016; Kummer and Ban, 2021). It was previously believed that cellular protein
levels are primarily determined by mRNA copy number (Greenbaum et al., 2003; Lu et al., 2007).
However, recent studies demonstrated that the translational regulation of protein synthesis also
contributes significantly to in vivo protein abundance (Vogel et al., 2010; Li et al., 2014).
Translational regulation is achieved by various structural and sequence-based features of mRNA
molecules that can kinetically control the rate of protein synthesis (Kudla et al., 2009; Vogel et al.,
2010; Tuller et al., 2010). Therefore, the knowledge of the rates at which different steps of translation
occur and their connection with those mRNA features would provide key information concerning
how the expression of an individual gene is regulated.

Single-molecule experiments provided significant insights into the details of the process of protein
synthesis (Munro et al., 2008; Volkov and Johansson, 2018). However, little was known on how
different mRNA features can control protein synthesis until the Next Generation Sequencing (NGS)
experiments started uncovering various kinetic properties of this process (Ingolia et al., 2019). Several
methods have been developed in the last decade that allows the accurate extraction of translation rate
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parameters using ribosome profiling data (Weinberg et al., 2016;
Duc and Song, 2018; Sharma et al., 2019). The analysis of these
translation rate parameters and their use in protein synthesis
simulations have started unraveling the sophisticated mechanism
that nature has developed to optimize the use of cellular resources
(Tuller et al., 2010; Diament et al., 2018; Lyu et al., 2020).

In this mini-review, we provide the brief overview of a few
recently developed methods that extract translation rate
parameters from ribosome profiling data. We explain the
technical details and assumptions made in these approaches,
and also comment on their accuracy in several different
contexts. We also highlight some of the recent results that use
ribosome profiling data to provide new insights into the kinetic
control of protein synthesis. This mini-review aims to promote
the use of big biological data sets among biophysicists, biophysical
chemists and system biologist to achieve greater accuracy and
reliability in the quantitative modeling of protein synthesis.

2 QUANTITATIVE MODELING OF PROTEIN
SYNTHESIS

The first mathematical model of protein synthesis was developed
by MacDonald et al. (1968), and since then various similar
models and their extensions were proposed to understand the
different aspects of mRNA translation (Garai et al., 2009; Sharma
and Chowdhury, 2012; Ciandrini et al., 2013; Margaliot and
Tuller, 2013). Among these, the totally asymmetric simple
exclusion process (TASEP) is a model which incorporates key
steps regulating in vivo protein production and is extensively used
to stimulate protein synthesis. In this model, an mRNA is
considered as a one-dimensional lattice where each site in that
lattice represents a single codon. A ribosome in this model is like
an extended particle that covers ten consecutive codon positions
of a transcript where its location is usually identified by the
position of its A-site (Sharma and O’Brien, 2017; Ingolia et al.,
2009). The ribosome A-site is located at the sixth codon from the
5′ end of the ribosome. Therefore, a ribosome at the jth position
covers j − 5 to j + 4 codons (Ahmed et al., 2019). Protein synthesis
in this model is divided into three sub-steps: initiation, elongation
and termination (Merrick, 1992) (Figure 1A). Initiation occurs
when a ribosome assembles at the start codon of the ith transcript
with rate α(i) (Kozak, 1999; Merrick and Pavitt, 2018). A
ribosome initiates protein synthesis with its A-site at the
second codon position of the transcript, therefore the
translation initiation occurs when the first six codons are not
occupied by another ribosome. The limited availability of
ribosomes in a cell makes translation-initiation a rate-limiting
step of the protein synthesis (Shah et al., 2013). The ribosome
then starts taking a series of stochastic steps toward the stop
codon. On the ith transcript, a ribosome slides from codon
position j to j + 1 with rate ω(j, i). In each of such steps, a
ribosome selects cognate aa-tRNA molecule, forms a peptide
bond and then moves to the next codon position (Sharma and
Chowdhury, 2011; Sharma and Chowdhury, 2012) Note that
multiple ribosomes simultaneously move on a single transcript
where each of them synthesizes a separate copy of protein.

Therefore, due to mutual exclusion, a ribosome cannot move
to the next codon if its passage is blocked by another downstream
ribosome. After arriving at the stop codon, the ribosome
terminates the process, and releases a fully synthesize protein
with rate β(i). The termination of protein synthesis also leads to
the disassembly of the ribosome at the stop codon (Hellen, 2018).

The TASEP with an uniform elongation rate, unitary particle
size, and infinite lattice size is exactly solved by Derrida et al.
(1992). Later, Lazarescu and Mallick (2011) extended this work
by solving the TASEP with finite lattice size. Adding to this,
Kolomeisky (1998) provided an analytical solution for TASEP
with local inhomogeneities. For extended particles, Shaw et al.
(2004) solved the TASEPmodel under mean-field approximation
for uniform elongation rate. Recently, Szavits-Nossan et al. (2018)
provided an analytical solution for the TASEP with non-uniform
elongation rate and extended particle size; however, it ignores the
higher-order terms of power series solution of the model.
Therefore, in the absence of any exact analytical solution,
computer simulation of the TASEP model is the best possible
approach for making reliable quantitative predictions on protein
synthesis.

Multiple approaches have been used in the past to simulate
protein synthtesis on TASEP model, including kinetic Monte-
Carlo (Zia et al., 2011), next reaction method (Gibson and Bruck,
2000; Duc and Song, 2018), Gillespie’s method (Gillespie, 1977),
etc. The Gillespie’s method is one of the very efficient approach
for studying stochastic systems and is commonly used to simulate
the TASEP model (Gillespie, 1977). Solving TASEP using this
method requires to calculate the parameter

R � ∑
j�1

Li

T(j) (1)

which is the sum total of rates for all transitions that lead to a new
state from the current state of the translation system. (Note that
every unique arrangement of ribosomes on a transcript is a
separate state.) In Eq. 1, T(1) � α(i), T(j) � ω(j, i)δ(j) for
2≤ j< Li − 1 and T(Li) � β(i)δ(Li); δ(j) is one when a
ribosome occupies the jth codon position of the transcript,
otherwise it is zero, and Li is the total number of codons in
the ith transcript. The TASEP model assumes that all transitions
in translation system are Markovian therefore, the dwell time in a
given state is exponentially distributed with a mean value of 1

R.
This quantity is calculated by generating an exponentially
distributed random number τ � 1

R ln(r1), where r1 is a random
number that is uniformly distributed between 0 and 1. The next
transition is randomly chosen according to the relative
contributions of all possible transitions in R (Eq. 1). For this,
another random number r2, which is uniformly distributed
between 0 and R, is generated, and the next transition is
identified according to the selection criteria given in Table 1
(A flow-chart explaining the various steps of protein synthesis
simulations is shown in Figure 1B). Repeating this procedure
generates a trajectory of protein synthesis on a given mRNA
transcript, which can be used to calculate various quantities: rate
of protein synthesis, average and codon-specific ribosome
density, in-silico ribosome profiles, etc.
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3 METHODS OF EXTRACTING
TRANSLATION RATE PARAMETERS

Accurate quantitative predictions for protein production
critically depends on having precise estimates of translational
rate parameters. Therefore, in this section, we discuss common
approaches to extract translation rate parameters from
ribosome profiles which provides the access to a plethora of
information about the protein synthesis process. In ribosome
profiling experiment, translation elongation is arrested by
the treatment with drug cycloheximide (Figure 1C). Then,
after the cell lysis, the portions of the mRNA molecule
that are not protected by ribosomes are digested by
nucleases. The remaining ribosome-protected mRNA

fragments are subsequently sequenced and aligned to a
reference genome. The typical length of a ribosome-protected
mRNA fragment is 28–31 nucleotides; therefore, fragments
outside this range are excluded from the analysis (Pop et al.,
2014). Note that a ribosome translates the codon present at
its A-site. Therefore, the position of A-site is identified on
those ribosome-protected mRNA fragments (Ahmed et al.,
2019), referred to as the read aligned to the A-site codon.
Within a transcript, more ribosome-reads aligned to a
codon means a longer translation time for that particular
codon. This steady-state profile of ribosome occupancy can
be used in extracting translation initiation and codon
translation rates. Many computational methods have been
developed in the past to extract these rate parameters from

FIGURE 1 | (A) A pictorial illustration of the steps involved in the process of protein synthesis. Ribosome subunits assemble at the start codon with rate α(i) when
no ribosome occupies the first six codons of the transcript. Then, the ribosome starts moving toward the stop codon by a single codon at a time. It hops from codon j to
j + 1 with rate ω(j, i). Note well, a ribosome cannot move to the next codon if it is occupied by another ribosome. After arriving at the stop codon, the ribosome terminates
protein synthesis and releases fully synthesized protein with rate β(i) (B) The flow-chart describes the computational algorithm of protein synthesis simulations
using the Gillespie’s method. For details, see the main text and table (1) (C) explains various experimental and computational steps involved in preparing ribosome
profiles.
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ribosome profiling data. We categorize these methods into
three different groups.

3.1 Optimization Based Methods
These methods take advantage of some known characteristics of
the translation process and extract codon translation rates by
optimizing or fitting a function of ribosome profiling reads. For
example, Dana and Tuller (2014) proposed a method for
extracting the “typical” translation time of a codon by fitting a
function that characterizes ribosome dwell time distribution. To
do that, Dana and Tuller (2014) first normalize the ribosome
footprint counts by the average reads aligned to the transcript.
That is,

r̂(j, i) � r(j, i)
1

Li−40∑Li−20
j�21 r(j, i) (2)

r(j, i) in Eq. 2 is the number of ribosome profiling reads aligned
to the jth codon of the ith transcript. To minimize any sampling
error, the authors recommend excluding the genes with
median read counts less than one. In addition to that, the
first and the last 20 codons were removed from the analysis as
unusually high ribosome footprint density was found in those
regions (Ingolia et al., 2009). Then, the distribution of
normalized footprint count for a codon type “c”(e.g., CUU,
AUG) is computed using the data collected from the whole
transcriptome. It was found that this distribution is a
superposition of the normal and exponential distributions
(Dana and Tuller 2014; Dana and Tuller , 2015). Authors
rationalize this observation by proposing that the normal
distribution characterizes the typical decoding time for a
codon type (τ1) whereas the exponential distribution reflects
the delay (τ2) caused by rare translation pauses and ribosomal
interference. Therefore, the distribution of codon translation
time (τ), a sum of random variables τ1 and τ2, is the
convolution of the normal and exponential distribution, and
has the following functional form.

f (τ, μc, σc, λc) � λc
2
e
λc
2 (2μc+λcσ2c−2τ)erf[μc + λcσ2c − τ�

2
√

σc
] (3)

In Eq. 3, μc and σc are the mean and standard deviation of the
normal distribution, respectively. λc is the coefficient for
exponential distribution whose inverse is the average time delay
caused by rare translation pauses and ribosomal interference. The
distribution in Eq. 3 was then fitted with normalized read
distribution of codon “c”, providing μc, the “typical” codon
translation time. Using this analysis, the authors calculate the
‘typical’ decoding time for all 61 sense codons.

Pop et al. (2014) proposed a similar method that calculates
gene-specific and globally averaged translation time of a codon
type “c” (i.e., μic and μc, respectively) by maximizing the following
objective function.

max(μic, μc)⎡⎢⎢⎣log∏
i,j

μ
i(r(j,i)/Ji)
c e− μ

i
c −∑

i,c

wi
c(logμic − logμc)2⎤⎥⎥⎦ (4)

The first term in the objective function represents the
likelihood of observed ribosome profiles for a specific μic
whereas the second term minimizes the difference between the
global and gene-specific average translation time. wi

c in Eq. 4 is a
ratio of the total number of “c” codons in the ith transcript to all
transcripts. Therefore, the genes with more “c” codons will have
greater weightage in the objective function. Ji is the ribosome
flux at transcript i which was fixed to ∑

j ∈ i

r(j,i)
Li
. Then, L-BFGS

algorithm (Byrd et al., 1995) is applied to search the numerical
values of μic and μc that maximizes the objective function in
Eq. 4. The inverse of the μc is the translation rate of codon “c”.

In another optimization based approach, Szavits-Nossan and
Ciandrini (2020) have used the non equilibrium analysis of
ribosome profiling data to infer the ratio of elongation to
initiation rate i.e. k(j, i) � ω(j,i)

α(i) . In this method, k(j, i)s were
calculated by minimizing the difference between
experimentally measured and numerically computed codon-
specific ribosome density of a transcript. For this, an objective
function

S � ∑
Li

j�2
(ρana{k(j, i)} − ρ(j, i))2 (5)

is minimised by using the Least-Squared optimization technique.
ρana{k(j, i)} in Eq. 5 is numerically computed by using an
expression derived by Szavits-Nossan et al. (2018) whereas
ρ(j, i)s were calculated by distributing the experimentally
measured polysome density according to the distribution of
ribosome profiling reads along a transcript. Optimizing the
objective function in Eq. 5 yields the numerical values of
k(j, i). Unlike Pop et al. (2014) and Dana and Tuller (2014),
this method does not put any constraint on the variations in the
translation rate of a codon type. Therefore, the normalized rates
obtained from this method can precisely capture the local
variation in codon translation rates along a transcript.

3.2 Simulation Based Methods
Simulation based methods follow an iterative procedure, where in
each iteration, translation rate parameters are altered until the

TABLE 1 | A list of the types of transitions and conditions in simulation algorithm.

Conditions Transitions

r2 < T(1), and the first six codon positions of the transcripts are unoccupied Translation-initiation

∑
j

k�1
T(k)≤ r2 < ∑

j+1

k�1
T(k), a ribosome is at the jth codon position with no ribosome at (j + 10) Transition of the ribosome from codon position j to j + 1

∑Li−1
k�1

T(k)≤ r2 < ∑Li
k�1

T(k), a ribosome is at the Lthi codon Translation-termination
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simulation output converges to its experimentally measured
counterparts. For example, Gritsenko et al. (2015) compared
the experimentally measured and simulated ribosome
densities on mRNA segments of different lengths. This
comparison on short mRNA segments allows capturing the
local variation in codon translation rates whereas in long
segments it increase the reliability of measured rate
parameters. These mRNA segments were constructed by
dividing the whole transcript into two parts in such a way
that both of them get an equal number of combined ribosome
profiling and RNA-seq reads. The daughter segments were
further divided recursively using the same approach until a
reliable estimate of ribosome density can be made.

To implement this method, Gritsenko et al. (2015) used an
experimental observation that ribosome density on a mRNA
segment is distributed log-normally among all its replicates.
This means the probability of finding a specific value of
ribosome density in a single observation can be expressed as

P(C,Ni
k

∣∣∣∣rik, σ i
k)∝ 1

Ni
k

���
2π

√ e

lnNi
k
+lnC−ri

k

2(σi
k)2 (6)

rik and σ ik in Eq. 6 are the mean and standard deviation of
ribosome density for the kth segment of transcript i; Ni

k is the
number of ribosomes on the same mRNA segment which was
observed in a single snapshot of protein synthesis simulations.
The experimental ribosome density was calculated by taking the
ratio of the normalized ribosome profiling reads with the RNA-
Seq reads aligned to the same segment. Since this quantity is
measured in arbitrary units, a parameter C was introduced to
scale it to the simulated ribosome density. rik in Eq. 6 was
calculated by taking the mean of ribosome density from the
data collected from all replicates of the same experiment. The
shape parameter σ ik was calculated for a group of segments with
the same length as it was not possible to reliably calculate σ ik from
a very small number of replicates. Then, using Eq. 6, Gritsenko
et al. (2015) define an objective function Ψ that quantifies how
well the simulation model predicts experimentally measured
ribosome densities.

Ψ � ∑
i

∑
k

[ − 1
2σ ik

(lnNi
k − rik + lnC)2 − lnNi

k] (7)

Gritsenko et al. (2015) carry out the transcriptome-wide protein
synthesis simulations by supplying some initial translation rate
parameters to the model. Snapshots taken from protein synthesis
simulations produced Ni

k for each mRNA segment which were used
to compute Ψ in the model evaluation step. Then, using the
numerical value of Ψ, a genetic algorithm (Covariance Matrix
Adaptation Evolutionary Strategy) proposes new initiation and
codon translation rates, which were further used to simulate
protein synthesis on the whole transcriptome. This process is
repeated until Ψ is maximized which produces the translation
initiation and codon translation rates.

In an another simulation based study, Duc and Song (2018)
measured translation rate parameters by comparing the
normalized in vivo ribosome profiling reads (Eq. 2) with those

obtained from simulations. This method also requires initial
translation rate parameters to generate in-silico ribosome
profiles which will be refined in every iteration of the method.
Initial codon translation rates were estimated as follows.

ω(j, i) �
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min⎛⎝ωmax,
∑Li

j�1r(j, i)
r(j, i) ⎞⎠, if r(j, i)≠ 0

ωmax, otherwise

(8)

ωmax here is a crude guess of the maximum codon translation rate
in S. cerevisiae. The initial translation initiation rates were
calculated by following a method developed by Ciandrini et al.
(2013). In that method, initiation rate of a transcript is varied
until the simulated average ribosome density matches with what
has been measured in polysome profiling experiments. These
initial translation rate parameters were then used to simulate
protein synthesis and generate in silico ribosome profiles. In each
step, simulated and in vivo ribosome profiles were compared and
error ε is computed for each codon of a transcript.

ε(j) �
∣∣∣∣∣∣∣∣∣
r(j, i)
∑jr(j, i) −

rsim(j, i)
∑jrsim(j, i)

∣∣∣∣∣∣∣∣∣ (9)

Authors also defined codon positions with significant error where

it was larger than
10∑j

ε(j)
Li

. It is very likely that ribosome profiling
reads at such positions may have been influenced by extensive
ribosome traffic-jams which increases the dwell time of downstream
ribosomes. Therefore, for such cases, translation rate of neighboring
codons were also updated in the next iteration cycle. Authors used
the following updating rules in each iteration of the method.

ω(j, i) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1ω(j, i) for codon jwhere ε(j) <
10∑jε(j)

Li

λ2ω(j, i), for codons j − 30 to j − 10 when ε(j) >
10∑jε(j)

Li

ω(j, i) otherwise

(10)

λ1 and λ2 are chosen using the golden section search algorithm.
After updating the codon translation rates, a transcriptome-
wide simulations of protein synthesis were carried out and then
the same procedure is repeated until no error sites were
detected. This provides the translation initiation and codon
translation rates that generates in silico ribosome profiles similar
to the in vivo profiles.

3.3 Chemical Kinetic Based Methods
Chemical kinetic-based methods do not require extensive
simulations of protein synthesis. Instead, they rely on analytical
expressions of translation rate parameters that use ribosome
profiling and RNA-Seq data as input variables. A recent
publication used the mean-field and steady-state assumptions,
and derived the following analytical expressions for translation-
initiation and codon translation rates (Sharma et al., 2019).

α(i) � 〈ρ(i)〉(Li − 1)
〈TT(i)〉[1 − ∑11

k�2ρ(k, i)]
(11)
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ω(j, i) � ∑Li−1
j�2 ρ(j, i)

ρ(j, i)〈TT(i)〉 (12)

In Eq. 11, Eq. 12 〈TT(i)〉 is the time a ribosome takes to move
from the start to stop codon whereas ρ(i) is the average ribosome
density on the transcript. 〈TT(i)〉 can be calculated by using a scaling
relation between gene translation time and the number of codons in a
transcript (Sharma et al., 2018) if gene-specific reliable estimates of
protein synthesis times are not available. The average ribosomedensity
on a transcript is proportional to the ratio of the number of ribosome
profiling and RNA-Seq reads aligned to that transcript. This
proportionality was used to estimate the average ribosome density
on a transcript (Sharma et al., 2019). ρ(j, i)s were calculated by
distributing the ρ(i)s according to the variations in ribosome profiling
reads across the transcript i. This new analysis method neither relies
on heuristic and ad-hoc approaches nor requires extensive protein
synthesis simulations, and implementing this equation-based method
is much easier than others.

4 STATISTICAL NOISE AND SEQUENCE
BIASES IN MEASURED TRANSLATION
RATE PARAMETERS
Ribosome profiles provide single codon resolution to the protein
synthesis process. However, these data sets are very noisy and are
subjected to numerous biases associated with various steps of the
ribosomeprofiling experiment, including the amplification of ribosome
footprints by RT-PCR, nuclease digestion, cell lysis, etc. (O’Connor
et al., 2016; Mohammad et al., 2019; Xiao et al., 2016; Hussmann et al.,
2015). Such statistical errors and biases will also be reflected in the
measured translation rate parameters. Dana and Tuller (2014)
minimize their impact by ignoring any variation in the translation
rate of a codon type. This approach drastically reduces the total number
of parameters to be extracted from the ribosome profiling data. It
minimizes the statistical uncertainty in the measurement of codon
translation rates and also averages out various sequence biases.
However, a major drawback of this approach is that it does not
account for the context-dependent variations in codon translation
rates. The other extreme approach taken by Szavits-Nossan and
Ciandrini (2020) measures the translation rate for each codon in an
mRNA transcript but such measurements are subjected to a higher
degree of stochastic noise. A few probabilistic and machine learning
models have also been applied to minimize the effect of noise and
biases in the identification of A-site position on ribosome footprints
(Fang et al., 2018; Tunney et al., 2018; Gobet et al., 2020). Thesemodels
have successfully captured the context-dependent variation in codon
translation rates and also performed well in transcripts with low
abundance (Liu et al., 2020; Michel et al., 2016).

5 MOLECULAR DETERMINANTS OF
TRANSLATION RATE PARAMETERS

A closer look at the measured translation rate parameters
unraveled the molecular determinants of translation-initiation

and codon translation rates (Sharma et al., 2019; Duc et al., 2018).
For example, tRNA pool hypothesis proposed codon translation
rates to be proportional to the availability of cognate tRNA
molecules (Ikemura, 1981; Ikemura, 1985). However, this
hypothesis was never explicitly tested as there was no method
that allowed translation rate measurement for all codons. Codon
translation rates measured by ribosome profiling experiments
supported this hypothesis in S. cerevisiae and E. coli (Dana and
Tuller, 2014; Sharma et al., 2019). However, no such behaviour
was observed in mouse cell lines (Gobet et al., 2020; Ingolia et al.,
2011). Interestingly, a strong correlation between codon usage
and tRNA abundance is observed in mammalian cells (Gobet
et al., 2020; Gobet and Naef, 2017; Neelagandan et al., 2020),
suggesting that tRNA levels are tuned according to their
requirement in a cell.

In addition, an analysis of measured codon translation rate has
shown that mRNA structures downstream to the A-site codon
increase their translation time (Sharma et al., 2019). The reason
for this increase is that the ribosome has to first unfold the
structure to proceed to the next codon (Qu et al., 2011). The
average increase of 6.7% in codon translation time was reported
due to the presence of a structure in mRNA molecule. However,
depending upon the stability of that structure, it may vary from
one codon to another. Similarly, the presence of proline amino
acid on the ribosome P-site increases the median translation time
of a codon by 19% (Sharma et al., 2019) because the
stereochemistry of proline amino acid delays the peptide bond
formation with adjacent amino acid (Pavlov et al., 2009).
Furthermore, Duc and Song (2018) have discovered that the
aqueous environment inside the ribosome exit tunnel leads to a
faster translation of codons when hydrophobic amino acid
residues are present inside the tunnel. Electrostatic charges on
the nascent-protein have been shown to modulate the translation
elongation rate (Duc and Song, 2018; Riba et al., 2019). The
ribosome exit tunnel is negatively charged. Therefore, the
presence of positively charged amino acid into the tunnel
decreases the translation rate of downstream codons
(Figure 2A). The identity of the amino acid at the ribosome
P-site also affects the translation rate of the A-site codon. In S.
cerevisiae, eighty six different pairs of amino acids at the A- and
P-sites speed up the elongation rate whereas it is slowed down in
the case of eighty one other pairs of amino acids (Ahmed et al.,
2020). A similar behaviour was also observed in mouse liver cells
where different codon combinations at A- and P-sites, E- and
P-sites, and E- and A-sites can speed up or slow down the
translation elongation (Gobet et al., 2020). Post-translational
modifications of tRNA molecules also enhances the rate of
translation elongation in S. cerevisiae, N. crassa and C. elegans
(Lyu et al., 2020; Nedialkova and Leidel, 2015). In addition to
these molecular factors, patterns of slow and fast codons can
cause ribosome traffic-jams on a transcript, and can significantly
affect the time a ribosome spends at a given codon position
(Diament et al., 2018; Duc et al., 2018).

Translation initiation is another rate-limiting step (Shah et al.,
2013) and sets an upper bound to the rate at which proteins are
produced from a single transcript (Szavits-Nossan and Ciandrini,
2020). Initiation rates measured from ribosome profiling
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experiments also identified its molecular determinants
(Figure 2B). For example, significant negative correlations of
initiation rate with the free energy of mRNA folding near the start
codon and transcript length were observed in multiple studies
(Weinberg et al., 2016; Duc et al., 2018; Sharma et al., 2019). A
stable structure near the start codon makes this region
inaccessible to a ribosome for initiating the process of protein
synthesis, thus decreasing the translation initiation rate. Indeed,
many mRNA sequence design algorithms minimize folding
energy in this region to enhance the production heterologous
proteins (Salis et al., 2009; Angov, 2011). Similarly, the length of
the coding sequence of a transcript is inversely proportional to the

translation initiation rate (Duc and Song, 2018; Sharma et al.,
2019). It is because the ribosomes completing protein synthesis at
the termination end can easily diffuse to the start codon in shorter
mRNA transcripts (Fernandes et al., 2017). These faster initiation
rates in shorter transcripts help them in producing more proteins.
Moreover, the presence of AUG codons upstream to the start
codon can interfere in the recruitment of ribosomes for
translation initiation, thus resulting in a decrease in the
translation initiation rate (Sharma et al., 2019). Furthermore,
the presence of KOZAK sequence in S. cerevisiae transcripts leads
to a faster initiation as it serves as a stable binding site for the
small ribosome subunit (Sharma et al., 2019). These new findings

FIGURE 2 | (A)mRNA structure, low tRNA abundance, and the presence of proline and positively charged amino acids in ribosome exit tunnel increase ribosome
dwell time, resulting in higher ribosome profiling reads for those codon positions (B) Presence of mRNA structure at the 5′ end and length of the coding sequence in a
transcript anti-correlate with initiation rate.
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have demonstrated that a combination of several molecular
factors work in tandem to finely modulate the translation-
intiation and codon translation rates.

6 CONCLUDING REMARKS AND FUTURE
DIRECTIONS

The development of ribosome profiling has allowed access to
relative ribosome occupancy at single codon resolution (Ingolia
et al., 2009; Ingolia et al., 2019). Many computational tools can
convert this time-independent steady-state information into the
kinetic rate parameters of protein synthesis (Dana and Tuller
2014; Pop et al., 2014; Szavits-Nossan and Ciandrini, 2020).
Analysis of these rate parameters and their use in protein
synthesis simulations give significant insight into the
translational regulation of an individual gene (Shah et al.,
2013; Lyu et al., 2020). These rate parameters also help
identify various structural and sequence-based mRNA features
that control the rate of protein synthesis (Weinberg et al., 2016;
Duc et al., 2018; Sharma et al., 2019). Furthermore, the knowledge
of these rates offers an unprecedented opportunity to explore and
model other parallel and downstream processes influenced by
translation-elongation kinetics, including co-translational protein
folding, mRNA degradation, protein translocation through a
membrane, chaperone binding, post-translational modifications,
etc (Sharma and O’Brien, 2018; Radhakrishnan et al., 2016).

Analysis of measured translation rate parameters
demonstrated that a combination of multiple molecular factors
determines the translation-initiation and codon translation rates
(Sharma et al., 2019). The strength with which these molecular
factors act on translation rate parameters can vary from one place

to another. Therefore, the same codon at two different locations
can be translated at different rates. Current approaches can
capture this context-dependent variation in codon translation
rates (Sharma et al., 2019; Szavits-Nossan et al., 2018). However,
none of them can quantify the impact of each molecular factor on
translation-initiation and codon translation rates. Decoupling
their effects would enable the scientists to make reliable
predictions on translation rate parameters by only looking at
mRNA sequence features, thus providing deeper insights into the
context-dependent variation in codon translation rates.

Reliable predictions on protein synthesis, from a single
transcript to the whole-cell level, are required for numerous
synthetic biology applications (Purcell et al., 2013; Burke
et al., 2020). For example, carefully placing the molecular
determinants of translation rate parameters may help in
designing heterologous genes and synthetic biological
circuits. Moreover, in the absence of reliable gene
expression models, synthetic biology relies heavily on the
trial and error approach (Purcell et al., 2013; El Karoui
et al., 2019). Therefore, the accurate predictions made by
the quantitative models of protein synthesis will speed up the
whole process of designing synthetic biology products with
potential applications in areas such as drug delivery, cellular
engineering, next-generation drugs, deployable medical
devices, etc (Salis et al., 2009; Goldberg et al., 2018;
Macklin et al., 2014).
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Generating Chromosome Geometries
in a Minimal Cell From Cryo-Electron
Tomograms and Chromosome
Conformation Capture Maps
Benjamin R. Gilbert1, Zane R. Thornburg1, Vinson Lam2, Fatema-Zahra M. Rashid3,4,
John I. Glass5, Elizabeth Villa 2, Remus T. Dame3,4 and Zaida Luthey-Schulten1*

1Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States, 2Division of Biological Sciences,
University of California San Diego, San Diego, CA, United States, 3Leiden Institute of Chemistry, Leiden University, Leiden,
Netherlands, 4Center for Microbial Cell Biology, Leiden University, Leiden, Netherlands, 5Synthetic Biology Group, J. Craig Venter
Institute, La Jolla, CA, United States

JCVI-syn3A is a genetically minimal bacterial cell, consisting of 493 genes and only a single
543 kbp circular chromosome. Syn3A’s genome and physical size are approximately one-
tenth those of the model bacterial organism Escherichia coli’s, and the corresponding
reduction in complexity and scale provides a unique opportunity for whole-cell modeling.
Previous work established genome-scale gene essentiality and proteomics data along with
its essential metabolic network and a kinetic model of genetic information processing. In
addition to that information, whole-cell, spatially-resolved kinetic models require cellular
architecture, including spatial distributions of ribosomes and the circular chromosome’s
configuration. We reconstruct cellular architectures of Syn3A cells at the single-cell level
directly from cryo-electron tomograms, including the ribosome distributions. We present a
method of generating self-avoiding circular chromosome configurations in a lattice model
with a resolution of 11.8 bp per monomer on a 4 nm cubic lattice. Realizations of the
chromosome configurations are constrained by the ribosomes and geometry
reconstructed from the tomograms and include DNA loops suggested by experimental
chromosome conformation capture (3C) maps. Using ensembles of simulated
chromosome configurations we predict chromosome contact maps for Syn3A cells at
resolutions of 250 bp and greater and compare them to the experimental maps.
Additionally, the spatial distributions of ribosomes and the DNA-crowding resulting
from the individual chromosome configurations can be used to identify macromolecular
structures formed from ribosomes and DNA, such as polysomes and expressomes.

Keywords: cryo-electron tomography, chromosome conformation capture (3C) maps, computational modeling,
whole-cell models, chromosome modeling, ribosome distribution, bacterial minimal cell, JCVI-syn3A

1 INTRODUCTION

JCVI-syn3A is a genetically minimal bacterial cell, consisting of 493 genes and a single short 543 kbp
circular chromosome derived from a Gram-positive bacterium, Mycoplasma mycoides. Previous
work established genome-scale gene essentiality and proteomics data along with its essential
metabolic network (Hutchison et al., 2016; Breuer et al., 2019) and a kinetic model of genetic
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information processing (Thornburg et al., 2019). The kinetic
model of genetic information processes of DNA replication,
transcription, and translation requires positions and length of
genes along the chromosome. Spatially resolving and solving
these kinetic models require cellular architecture, including
spatial distributions of ribosomes and the circular
chromosome. The first iteration of a bacterial cell with a
synthetic genome was JCVI-syn1.0, whose synthesized genome
is 1,079 kbp (Gibson et al., 2010). Syn1.0 has a doubling time of
approximately 60 min and shows a spherical morphology with a
radius of ∼ 200 nm (Hutchison et al., 2016). Two additional
cycles of targeted genomic reduction resulted in JCVI-syn3.0, a
cell whose synthetic genome is only 531 kbp but still
autonomously replicates (Hutchison et al., 2016). Syn3.0 has a
slower growth rate than Syn1.0, with a doubling time of
approximately 180 min (Hutchison et al., 2016), and based on
optical and scanning electron microscopy (SEM), Syn3.0 exhibits
a pleomorphic morphology with significant variations
(Hutchison et al., 2016; Pelletier et al., 2021). The organism

that is the subject of this study, Syn3A, was created from
Syn3.0 through the addition of 19 genes present in Syn1.0.
While this addition made a less minimal genome, it resulted
in cells with a robust spherical morphology and an average
doubling time of approximately 110 min (Breuer et al., 2019).
Super-resolution fluorescence microscopy (STORM) imaging
(private communication, Taekjip Ha) reveals that it recovers
the spherical morphology of Syn1.0, with a radius of 200–250 nm.

To create chromosome geometries for our spatial models and
subsequent simulations of gene expression and translation, we
develop a method of generating self-avoiding circular
chromosome configurations with a resolution of 11.8 bp per
monomer on a 4 nm cubic lattice. To place the chromosome
inside the cell volume, we use cryo-electron tomography (cryo-
ET) to define the cell boundaries and ribosome distribution,
which define the regions available to the chromosome. Cryo-
ET data shows that the ribosomes appear to be nearly randomly
distributed throughout the cell. In cryo-ET of bacteria, the
position of the chromosome is typically determined by the

FIGURE 1 | Workflow Diagram: Cryo-ET data is used to reconstruct spherical Syn3A cells, constrained chromosome configurations are generated within the
reconstructed cells and resulting in silico chromosome contact maps are compared to the experimental 3C-Seq map. (A): The left side is a single z-slice of the
tomographic reconstruction. The right side are the ribosomes (yellow) identified using template-matching and the membrane segmentation (orange) superimposed on
the z-slice. (B): The shape of the blotted cells is approximated by an ellipsoid that is manually compared to the tomographicmembrane segmentation (orange). In an
iterative procedure, a series of minimal surface area enclosing ellipsoids (MSAEE) are fit around the ribosome coordinates while extraneous ribosomes assessed to be
outside of the true membrane are removed within each iteration. The final fitted ellipsoid is shown in blue and the extraneous ribosomes in red. (C): As Syn3A cells are
known to have a spherical morphology, the ribosome coordinates and ellipsoidal membrane approximation are then transformed to a sphere with equivalent surface
area. (D): The continuum representation is then converted to an 8 nm cubic lattice representation used for whole-cell simulations with LM. (E): Circular and self-avoiding
chromosome configurations are generated as a lattice polymer on a 4 nm cubic lattice. The 4 nm lattice is coincident with the 8 nm cubic lattice and the chromosomes
are constrained to avoid the ribosomes and remain within the membrane. In the representative DNA configuration, monomers are colored red and blue on opposite arms
of the chromosome. (F): In silico contact maps from ensembles of generated DNA configurations are compared to the experimental 3C-Seq map.
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absence of ribosomes. For example, the cryo-ET studies of slow-
growing Escherichia coli show ribosomes primarily localized at
the poles and along the sides of the nucleoid so that the DNA can
be inferred to be confined within the enclosed nucleoid region
(Roberts et al., 2011). Based on the tomograms for Syn3A
presented in this study, we assume the chromosome is
randomly distributed among the ribosomes. We also present
experimental chromosome conformation capture (3C) maps, a
technique that shows the frequency at which different regions of
the chromosome are in contact with each other (Dekker et al.,
2002). This map shows only a single main diagonal with some
small (< 4 kbp) features along it and has no other significant
features.

Using our knowledge of Syn3A’s proteome data and genome,
along with the experimental cryo-ET and 3C-Seq maps, we have
created a physics-based model of the chromosome to generate
chromosome configurations and predict contact maps. A
diagram of the workflow is presented in Figure 1 that shows
the process of annotating ribosome locations and membrane
from the tomograms and using the ribosome locations as
constraints on chromosome configurations. The configurations
are also influenced by the features present in the experimental
contact map. Hi-C analysis, a variant of the chromosome
conformation capture (3C) method, has been used extensively
to describe the structure of eukaryotic chromatin (Lieberman-
Aiden et al., 2009; van Berkum et al., 2010; Belton et al., 2012).
Those chromosome contact maps are used to generate chromatin
structures based on topologically associated domains (TADs)
observed in the contact maps (Dekker et al., 2013; Rao et al.,
2014; Fudenberg et al., 2016; Di Pierro et al., 2017). While
considerations of the energy functions used in the chromatin
models for eukaryotic studies are helpful in designing a bacterial
study, there are bacteria-specific proteins and related effects that
need to be considered when constructing a bacterial chromosome
model and how the effects would appear in the resulting contact
map (Le et al., 2013; Marbouty et al., 2015; Verma et al., 2019).
The 3D structure of the circular bacterial chromosome at both the
global and local levels is determined by effects of various nucleoid
associated proteins (NAPs) and is also influenced by the
crowding of ribosomes. With its reduced genome, Syn3A lacks
many of the NAPs that cause significant features in the
chromosome structure which leads to considerable variation
from the structures and Hi-C/3C maps observed in other
bacteria such as Mycoplasma pneumoniae, Bacillus subtilis,
Caulobacter crescentus, and Pseudomonas aeruginosa.

The global structure of the chromosome, also known as the
cellular disposition of the chromosome (Lioy et al., 2018, 2020),
describes how regions of the chromosome are organized within the
confines of the cell. Factors affecting the global structure include
possible attachment of the chromosome to the membrane, as inM.
pneumoniae, and loading of SMC proteins near the origin by a
complete parABS system, which causes alignment of the two arms
of the circular chromosome (Wang et al., 2014; Wang and Rudner,
2014; Lioy et al., 2020). The parABS system includes two proteins,
parA and parB, which site-specifically load SMC onto parS sites on
the DNA (Livny et al., 2007). Both of these effects result in a
secondary diagonal, orthogonal to the main diagonal, in

chromosome contact maps as observed in maps for M.
pneumoniae, B. subtilis, C. crescentus, and P. aeruginosa (Le
et al., 2013; Marbouty et al., 2015; Tran et al., 2017; Trussart
et al., 2017; Lioy et al., 2020). However, the experimental contact
map presented in the results section reveals that Syn3A does not
have a secondary diagonal. Syn3A does not have a complete
parABS system because it lacks the parB protein (Breuer et al.,
2019) and the complete signature parS sites, i.e. no sequences
greater than a 10/16 match to the consensus sequence (Livny et al.,
2007) were identified in a BLAST search of the genome. For
comparison, when performing the same search on B. subtilis, we
foundmatches of 14/16 and higher. Livny et al. also identifiedMeso,
Urea and Mycoplasmas as members of the Firmicutes that lack
complete parABS systems (Livny et al., 2007). Therefore, we do not
expect to see alignment of the two arms of the chromosome via the
parABS system and would not expect to see a secondary diagonal
due to this effect. Additionally, Syn3A does not have any annotated
proteins that attach theDNA to themembrane (Breuer et al., 2019),
so we would not expect to see a secondary diagonal due to
attachment of the DNA, unlike M. pneumoniae which has an
attachment organelle (Trussart et al., 2017).

Factors affecting local structure include supercoiling,
plectonemic loops resulting from supercoiling, small loops
formed by SMC bridging distant chromosome segments, and
bending and stiffening by proteins such as histone-like protein
(HU), heat-stable nucleoid structuring protein (H-NS), and
integration host factor (IHF) (Dame, 2005; Ohniwa et al.,
2011; Dame and Tark-Dame, 2016; Dame et al., 2019; Verma
et al., 2019; Birnie and Dekker, 2021). These micro level effects
can strongly affect gene expression as localized crowding affects
the access of the RNA polymerase (RNAP) to genes and
supercoiling and plectonemes affect the RNAP’s ability to
transcribe a gene (Kim et al., 2019). Of the proteins HU, IHF,
and H-NS, Syn3A only has one gene, JCVISYN3A_0350, which is
annotated as a putative histone-like protein with a proteomics
count of 28. The count of 28 for this protein is significantly lower
than the counts seen in other bacteria. For example, fast growing
E. coli contains more than 12,000 HU (Wang et al., 2015), B.
subtilis contains almost 9,000 HU (Wang et al., 2015), and
Mesoplasma florum contains 9,500 HU (Matteau et al., 2020).
Due to its small count, we do not expect any significant
contributions to the stabilizing of chromosome loops by the
protein encoded by gene JCVISYN3A_0350 and do not
include it in our model.

Supercoiling is formed during transcription by the RNAP,
which induces positive supercoiling in the forward direction and
negative supercoiling in the reverse (Chong et al., 2014; Verma
et al., 2019). Supercoiling can be eliminated by topoisomerases,
gyrases, and positive/negative supercoiling annihilating each
other along free DNA (Chong et al., 2014; Dorman, 2019;
Verma et al., 2019). The experimental contact map presented
in the Results is too sparse to distinguish between short
(< 10 kbp) supercoiled domains and loops and we do not see
any larger interaction domains. We do not include supercoiling
because of this, and given the low proteomics count of HU, we
infer the DNA is in a relaxed state. As discussed above, Syn3A
does not have genes that code for proteins that would attach the

Frontiers in Molecular Biosciences | www.frontiersin.org July 2021 | Volume 8 | Article 6441333

Gilbert et al. Chromosome Geometries in a Minimal Cell

255

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


DNA to the cell membrane. Since the chromosome is therefore
most likely not fixed at any location, we assume that, in general,
DNA is mostly free, allowing positive and negative supercoiling to
annihilate each other more easily. Additionally, the genome-wide
proteomics counts show that we have a total of 187 RNAP and
roughly 250 DNA gyrases that can alleviate positive supercoiling,
150 type IV DNA topoisomerases that can alleviate negative
supercoiling, and 175 type I topoisomerases that can alleviate
either (Chong et al., 2014; Breuer et al., 2019). Other bacteria are
observed to have fewer topoisomerases and gyrases than RNAP,
for example, fast-growing E. coli has roughly 3,800 topoisomerase
I, 1,200 topoisomerase IV, and 6,000 to 8,000 gyrases while
having over 10,000 RNAP (Bremer and Dennis, 2008; Wang
et al., 2015). Another Gram-positive bacterium, B. subtilis, has
3,000 RNAP while only having 1,200 gyrases, 900 topoisomerase
I, and 200 topoisomerase IV (Wang et al., 2015). The more closely
related M. pneumoniae has 5,000 topoisomerase I, 200
topoisomerase IV, and 1,800 gyrases while having around
6,000 RNAP (Kühner et al., 2009). It is then more likely in
these systems where larger domains have been observed in their
chromosome contact maps that the proteins removing
supercoiling cannot keep up with the supercoiling induced by
RNAP due to their lower relative counts. Therefore, it is our
assumption that as supercoiling is formed by RNAP in Syn3A,
there are sufficient gyrases, topoisomerases, and negative/positive
supercoiling pair annihilations to keep the DNA in a more
relaxed configuration with no significant supercoiled domains.

While Syn3A does not have a complete parABS system, it does
contain 202 structural maintenance of chromosomes (SMC)
proteins, which can bridge distant loci via loop extrusion
powered by ATP-hydrolysis (Ganji et al., 2018; van Ruiten
and Rowland, 2018). The SMC protein is a long coiled-coil
protein that dimerizes and has head and hinge domains
separated by approximately 50 nm (Diebold-Durand et al.,
2017). The number of SMC in Syn3A is smaller than the 448
observed in B. subtilis (Wang et al., 2015) and 900 observed inM.
pneumoniae (Kühner et al., 2009), but Syn3A also has a smaller
volume and shorter chromosome, which could result in a higher
density of loops. M. florum is not much larger than Syn3A and
only has 85 SMCs (Matteau et al., 2020). With a higher density of
SMC in both volume and chromosome length, we assume the
effects of SMC looping can be significant in the chromosome
structure of Syn3A. We manually annotate any of the observed
regions of contact along the main diagonal in the experimental
3C-Seq map as possible loops (< 4 kbp) and implement them as
looping restraints in our chromosome model.

Finally, based on the cryo-ET images of Syn3A cells presented
in the results, the chromosome in Syn3A is more constrained by
ribosomes than in other bacteria. From the cryo-ET of Syn3A we
infer that the ribosomes are uniformly distributed throughout the
cells and that there is no clearly-defined condensed nucleoid
region. The lack of a condensed nucleoid region is in contrast to
the rod-shaped E. coli where the ribosomes are primarily located
at the poles and along the sides of the nucleoid region (Nevo-
Dinur et al., 2011; Roberts et al., 2011; Bakshi et al., 2012).We saw
this distribution in cryo-ET data of slow-growing E. coli that was
part of a previous Lattice Microbes (LM) simulation of the lac

genetic switch (Roberts et al., 2011). We observe a ribosome
number density of 12,920–19,370 ribosomes/μm3 in Syn3A cells,
which is higher than the density of 4,200 ribosomes/μm3 in M.
pneumoniae (Trussart et al., 2017; O’Reilly et al., 2020). The
density of ribosomes in E. coli was previously found to be 27,000
ribosomes/μm3 (Bakshi et al., 2012), which is greater than the
density in Syn3A, but the inferred ribosome density within the
nucleoid region is 2,000–8,000 ribosomes/μm3. Given this,
relative to other bacterial cells, the crowding of the ribosomes
in Syn3A more strongly constrains the possible chromosome
configurations.

In this paper, we first explain how the cellular architecture and
ribosome distributions are obtained from three-dimensional
cryo-electron tomograms. Using ensembles of constrained
DNA configurations from our circular chromosome model on
a lattice, we predict contact maps for individual cells at
resolutions of 250 bp and greater and compare them to our
experimental 3C-Seq map at 1,000 bp resolution. The DNA
configurations in this study are generated with the intent of
incorporating them into stochastic whole-cell models of Syn3A
simulated using the reaction-diffusion master equation (RDME)
as implemented in LM (Roberts et al., 2013; Hallock et al., 2014;
Earnest et al., 2018). In the whole-cell simulations, the cellular
space is divided into cubic subvolumes, so we chose to model the
DNA as a lattice polymer. The DNA configurations, cell sizes, and
ribosome locations presented here will later be directly
incorporated into cell geometry in the kinetic simulations and
will influence both diffusion and the locations at which genetic
information reactions take place. We also identify potential
complexes formed from ribosomes and DNA in our spatial
model, such as polysomes and expressomes (O’Reilly et al.,
2020), that would affect the reactions within a kinetic model.

2 METHODS

2.1 Reconstructing Cell Geometries From
Cryo-Electron Tomograms
2.1.1 Tomogram Collection and Processing
One of the primary challenges for cellular cryo-ET is to prepare a
specimen such that it is thin enough to be transparent to electrons
and to vitrify thoroughly. Due to the small size of Syn3A, this can
be accomplished by placing cells on a Quantifoil EM grid and
blotting the majority of the liquid away followed by plunge
freezing, leaving a thin layer of ice with cells embedded within it.

Initially, samples were frozen onQuantifoil Cu 200mesh R 1/4
grids (ElectronMicroscopy Sciences), which have patterned holes
1 μm in diameter, with 4 μm spacing between holes (i.e., 5 μm
periodicity). Our rationale was that using smaller holes would
retain more Syn3A cells on the grid after blotting. However, we
found that because the synthetic cells lack a cell wall, they are
supple and get distorted in the direction of the flow of the
medium as it is blotted away from the grid. This issue was
resolved by switching to Quantifoil Cu 200 mesh R 2/1 grids,
which have larger holes. Syn3A cells were grown to mid-log-
phase at 37°C in SP4 medium (Williamson andWhitcomb, 1975)
using KnockOut™ serum replacement (Invitrogen), to a density
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of ∼ 108 cells/ml. 4 μl of sample was deposited on glow-
discharged grid, blotted on the backside of the grid for 6 s
using Whatman No. 1 filter paper, and plunged into a 50/50
mixture of ethane and propane (Airgas) cooled to liquid nitrogen
temperatures using a manual plunger (Max Planck Institute of
Biochemistry).

These Mycoplasma cells with synthetic genomes were more
radiation sensitive than we have encountered for other bacteria.
Imaging conditions were chosen to keep cumulative electron dose
under 120 e/Å2. All data were acquired using a Titan Krios
(ThermoFisher Scientific, TFS) at 300 kV and a Gatan K2
camera with a GIF energy filter, using SerialEM v3.7.4
automated protocols (Mastronarde, 2005; Schorb et al., 2019).
The microscopic parameters were: 1) Pixel size: 0.53 nm (FOV:
2 μm) or 0.43 nm (FOV: 1.6 μm), 2) Target defocus: 6 μm, 3)
Total accumulated dose: 90–120 e/Å2, 4) Tilt scheme: dose
symmetric from 0° to ± 60° every 2°, 5) 70 μm objective
aperture. Individual tilt-series frames were aligned using
MotionCor2 (Zheng et al., 2017). Tomograms were
reconstructed using IMOD v4.10.29 (Kremer et al., 1996;
Mastronarde, 1997; Mastronarde and Held, 2017) and binned
by four for downstream template matching. Additionally, non-
linear anisotropic diffusion (NAD) filtering was applied in IMOD
to enhance contrast for visualization.

At the pixel size and target defocus used for acquisition, the
ribosome distributions are easily discerned and can be seen for
the small and large cells in Supplementary Figures S1,S2,
respectively. The small cell’s dimensions and ribosome count
were in good agreement with those reported previously
(Hutchison et al., 2016; Breuer et al., 2019). However, the cells
were flattened into ellipsoids, and sometimes further elongated.
This well-known effect from blotting seems amplified in these

cells due to the absence of a cell wall. The frozen cells were
flattened to ∼ 160 nm.

To determine the ribosome distribution inside cells, we used
two different approaches based on template matching, with one
of them continuing to 3-D classification. First, one has to identify
all ribosomes within the tomogram. Template matching is
performed by creating a 3-D template of the target structure,
and comparing it to each voxel in the tomogram using a 6-D
search (three spatial and three rotational degrees of freedom) to
identify regions that correlate highly with the template. It is
noteworthy that the contrast difference between ribosomes and
their surroundings in Syn3A was greatly reduced compared to
other bacteria, e.g. E. coli, suggesting that the mass density
(molecular crowding) of Syn3A is higher.

In our first approach, we used Dynamo v1.1.509 (Castaño-
Díez et al., 2012) with a bacterial ribosome structure (PDB:
5MDZ) as the initial template filtered to 20 Å resolution in
UCSF Chimera (Pettersen et al., 2004), resampled to match
the pixel size, and contrast scaled to match that of the target
tomograms. A threshold cross correlation was selected so that it
contained most ribosomes that were clearly inside the cell
boundary. Final particle positions were inspected visually, and
removed if they were membrane segments. Membranes were
segmented using TomoSegMemTV (Martinez-Sanchez et al.,
2014), and ribosomes outside of this segmented membrane
were excluded. Starting with a high-correlation threshold, the
first approach initially identified 547 ribosomes in the small cell
and 849 ribosomes in the large cell. Fitting approximate cell
boundaries in section 2.1.2 reduced these ribosome counts to 503
and 820 for the small cell and large cell, respectively.

In our second approach, tilt-series were preprocessed using
Warp v1.0.9 (Tegunov and Cramer, 2019) for sub-frame motion

FIGURE 2 | (A)—Z-slices from the cryo-ET data of the small and large Syn3A cells. The ribosomes are the objects with higher density than the surrounding
cytoplasm that are distributed throughout the cells. (B)—Cumulative ribosome distributions with 8 nm bins in the reconstructed spherical geometries of a small cell of
radius 201.26 nm with 503 ribosomes and large cell of radius 247.42 nm with 820 ribosomes when the first approach was used, and a small cell of radius 203.52 nm
with 684 ribosomes and large cell of radius 241.20 nm with 1,095 ribosomes when the second approach was used. Also shown are the reconstructed spherical
geometries resulting from the first approach to template matching.
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correction and 3D-CTF estimation. Tilt-series were aligned using
IMOD and the final reconstructions were created in Warp for
subsequent processing. Template matching of ribosomes within
tomograms was performed in Warp, using an initial ribosome
template generated from about 200 manually picked particles
from Syn3A tomograms using IMOD to avoid template bias.
Extracellular particles were initially discarded based on cell
boundaries defined in Dynamo. Obvious false positives (e.g.,
membrane segments, ice particles) were manually removed.
The remaining particles were used for 3D alignment and
classification in Relion v3.1 (Scheres, 2012). For each cell of
interest, particles were subject to successive rounds of binary
classification with a large (500 Å or 83 binned pixels) mask, the
class which contained particles that did not appear as ribosomes
were removed from subsequent rounds. This was done until the
two classes reached about equal population. A schematic of the
overall process is presented in Supplementary Figure S3.
Coordinates and orientations of the remaining particles were
imported into Amira for visualization. While starting with a
lower correlation threshold, this second approach resulted in 718
ribosomes in the small cell and 1,136 ribosomes in the large cell,
as the quality of fit increased. An additonal round of binary
classification, deemed too restrictive, gave counts similar to the
first approach. Fitting approximate cell boundaries in section
2.1.2 reduced these ribosome counts to 684 and 1,095 for the
small cell and large cell, respectively.

The second approach that starts with a lower correlation
threshold and includes subsequent iterative 3-D classification,
is more accurate to find the final true-positive ribosomes and
ribosome distributions (Lasker et al., 2021). However, it requires
considerably more resources and expertise. Thus, we introduce
both approaches. Even though they give slightly different
distributions, both are in agreement with estimates from other
experimental and computational data (Breuer et al., 2019), and
notably do not significantly affect the outcome of the
chromosome geometries generated, as shown in Figure 2. A
summary of the ribosome counts for both approaches at each
stage of our workflow are presented in Table 1.

2.1.2 Determining the Spherical Cell Size and
Ribosome Distribution
Given a set of ribosome coordinates, the bounding membrane
and shape of the deformed cell can be approximated using an
ellipsoid. This was done by calculating an ellipsoid with minimal
surface area that encloses the centers of all the ribosomes. The
solution for the minimal surface area enclosing ellipsoid
(MSAEE) was found using the minimize routine in the SciPy

package with the sequential least-squares programming (SLSQP)
method. To optimize the calculation, only the convex polytope of
the ribosome coordinates was used to constrain the enclosing
ellipsoid. The optimal enclosing ellipsoid is always constrained by
four ribosomes that form a tetrahedral shape bounding the
ellipsoid.

Some ribosomes identified by template matching are
extraneous ribosomes, e.g., ribosomes that are present in the
cell periphery but correspond to a nearby lysed cell. The
extraneous ribosomes were iteratively removed from the set
of coordinates and a series of ellipsoids were iteratively fit after
each extraneous ribosome removal until the relative change in
the ellipsoid surface area between iterations fell below 0.001%.
At the end of each iteration, we choose the ribosome among the
four bounding ribosomes having the greatest projection along
the major axis of the enclosing ellipsoid as the extraneous
ribosome and remove it. The number of extraneous
ribosomes removed are summarized in Table 1 for all cases.
Figure 2A shows z-slices of the cryo-ET data for both the small
and large Syn3A cells. Notably, the spatial distribution of
ribosomes in these cells are largely homogeneous, but small
regions of about 150 nm appear to have fewer ribosomes than
the surrounding cytoplasm.

After an ellipsoid approximating the membrane surface was
calculated, both the ellipsoid and the enclosed ribosome
coordinates were transformed to a spherical cell with
equivalent surface area. A surface-area preserving
transformation was chosen as previous measurements on
bilayer vesicles indicated that the membrane area can only
strain by approximately 5% before lysing (Needham and
Nunn, 1990), thus we assume that there is a small change in
volume during the blotting procedure due to mass transport of
water across the membrane. The equation of an ellipsoid centered
at c is {x ∈ R3

∣∣∣∣(x − c)TATA(x − c)≤ 1}, where A is the matrix
describing the shape of the ellipsoid, and the equation of a sphere
centered at the origin is {x ∈ R3

∣∣∣∣xTR−2x ≤ 1}, where R � RI and R
is the radius of the sphere. For ribosome coordinates, {ri}, the
transformed coordinates, {ρi}, are given by transforming all of the
coordinates to a unit sphere centered at the origin by translating
them by the vector c and transforming them with the matrix A.
The coordinates in the unit sphere representation are then scaled
by the matrix R to a sphere with surface area equivalent to the
MSAEE. The overall transformation is given by

ρi � RA(ri − c). (1)

The transformation preserves the relative distances amongst the
ribosomes and the shapes of the voids between the ribosomes. In a

TABLE 1 | Summary of the ribosome distributions and cell geometries resulting from the two template matching methods for both the small and the large cell.

Small cell Large cell

Approach 1 Approach 2 Approach 1 Approach 2

Ribosomes from template matching 547 718 849 1,136
Extraneous ribosomes 44 34 29 41
Remaining ribosomes 503 684 820 1,095
SA-equivalent sphere radius (nm) 201.26 203.52 247.42 241.20
Ribosome density (ribosomes/μm3) 14,730 19,370 12,920 18,630
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final step, the ribosome coordinates are expanded anisotropically
along the semiaxes of the ellipsoid to ensure the ribosomes at the
extremes reach the membrane. Two representative spherical
geometries resulting from this transformation and the radial
distribution of ribosomes are shown in Figure 2B.

After the transformed ribosome coordinates are determined
for the spherical cell, the coordinates are projected onto the 8 nm
cubic lattice used for Lattice Microbes simulations and converted
to a star shape comprised of seven 8 nm cubic sites to
approximate the ribosome diameter of 20 nm. The set of
ribosome coordinates on the 8 nm lattice and the boundary
imposed by the cell membrane then serve as constraints when
generating the ensemble of chromosome configurations.

2.2 Modeling Bacterial Chromosome
Configurations
The three primary objectives of creating a chromosomemodel for
Syn3A are creating realistic spatial heterogeneities due to DNA
crowding that are discernable at the 8 nm resolution used in
spatially-resolved kinetic models of Syn3A, matching the cell
architecture dictated by the cell boundary and ribosome distri-
bution, and reproducing the intra-chromosomal interactions in
chromosome conformation capture experiments through DNA-
looping.

Computational models for chromosomes can be broadly
classified into two groups, direct models and inverse models
(Rosa and Zimmer, 2014). This distinction is not entirely black
and white and it is discussed in the following paragraphs. Direct
models use a minimal set of assumptions about the underlying
physics of DNA or chromatin to create a polymer model, and
the results of simulating the model can then be compared to
experimental data (Rosa and Zimmer, 2014). These models
range on length-scale from 1 bp per monomer models of the
E. coli chromosome (Hacker et al., 2017) to 500–50,000 bp per
monomer models of human chromosomes (Di Pierro et al.,
2016). The models at the smallest length scales often use a
Kratky-Porod model (Kratky and Porod, 1949) or a worm-like
chain model for the polymer, where the persistence length of the
DNA is explicitly incorporated. In contrast, the models at the
largest length scales often use a Rouse model (Rouse, 1953) for
the polymer, in which the monomers are assumed to be
uncorrelated equilibrium globules of DNA. These models
based on Rouse dynamics are well-suited for eukaryotic
chromosomes on the order of 107-108 bp, where the DNA is
organized in nucleosomes comprised of histone octamers and
other higher-order structures. A comprehensive discussion of
possible interactions in the direct models of DNA polymers can
be found in the review by Haddad et al. (Haddad et al. 2017) and
the Minimal Chromatin Model of Di Pierro et al. (Di Pierro et al.
2016). The complexity of interactions in polymer models of
DNA can range from those in homopolymer models to block
copolymer models, and finally heteropolymer models (Haddad
et al., 2017). Additionally, direct chromosome models can
include the influence of NAPs, SMC, or bridging proteins in
strings and binders models (Annunziatella et al., 2018; Ryu et al.,
2021), where other particles diffuse amongst the chromosome

and cause multi-point intrachromosomal interactions. After a
polymer model has been specified and the chromosome of
interest has been mapped to the model, molecular dynamics
or Monte Carlo methods are used to sample configurations of
the direct models.

Inverse models are data-driven and use large sets of
experimental data to create a compatible model (Rosa and
Zimmer, 2014; Oluwadare et al., 2019). The most common
form of experimental data used in inverse models are
chromosome contact maps resulting from 3C methods. The
interaction frequencies in the contact maps are inverted to
produce distance-based restraints for the chromosome models
(Rosa and Zimmer, 2014). In addition to these distance-based
restraints, constraints that are based on the known properties of
the chromosome, such as the topology and excluded-volume
effects, can be incorporated into the inverse models. A single ideal
chromosome configuration that simultaneously satisfies all
restraints and constraints can then be determined using
iterative methods (Duan et al., 2010; Lesne et al., 2014; Hua
and Ma, 2019). However, in reality, no single chromosome
configuration will capture all of the interactions present in the
contact map, as the contact map is an average over a population of
cells. Instead, methods such as simulated annealing are used to
find families of optimal chromosome configurations (Rosa and
Zimmer, 2014; Junier et al., 2015). The chromosome of M.
pneumoniae (Trussart et al., 2017) and that of C. crescentus
(Umbarger et al., 2011) were modeled in this fashion using the
Integrative Modeling Platform (Russel et al., 2012). Inverse
models have also been built using maximum entropy
techniques (Di Pierro et al., 2017; Messelink et al., 2021).

At the start of this study there was no experimental
chromosome contact data for Syn3A, so we chose to create a
direct model of the chromosome and because we intend to
incorporate the chromosome configurations in simulations of
whole-cell models using a lattice-based methodology (Roberts
et al., 2013), we decided to use a lattice polymer model. There is a
rich history of proteins and other polymers being modeled using
discrete lattice models (Verdier and Stockmayer, 1962;
Heilmann and Rotne, 1982; Lau and Dill, 1989; Madras et al.,
1990; Dill et al., 1995). Bacterial chromosome configurations
have previously been directly modeled using lattice models
(Buenemann and Lenz, 2010; Messelink et al., 2021) and
continuous models have been constructed by interpolating
between lattice models and relaxing the system (Goodsell
et al., 2018). However, none of the models satisfied all three
of our requirements of 1) being at the spatial resolution needed
to introduce spatial heterogeneities on the 8 nm lattice, 2) self-
avoidance, and 3) able to be constrained by the cell boundary
and ribosomes. We investigated modifying an existing model,
such as Goodsell et al.‘s (Goodsell et al., 2018), but found that
none were easily extensible.

2.2.1 Growing a Self-Avoiding Polygon Model of
Syn3A’s Chromosome
We model the circular chromosome of Syn3A as a circular
lattice polymer. To account for the volume-exclusion effects, the
circular lattice polymer is required to be strictly self-avoiding.
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These circular and self-avoiding configurations of monomers on
a lattice are known as self-avoiding polygons (SAPs) and have
been previously used to model E. coli and C. crescentus
chromosomes (Buenemann and Lenz, 2010). The SAP model
of Syn3A’s circular chromosome is defined on a 4 nm cubic
lattice and each monomer is represented by a 4 nm × 4 nm ×
4 nm cube. These monomers contain cylindrical segments of
DNA 4 nm in length, which corresponds to approximately
11.8 bp per monomer. The 543 kbp chromosome of Syn3A is
represented by 46,188 of these monomers. The total volume
excluded by monomers in the chromosome is 2,956,032 nm3. At
the two extremes, in the small cell with a radius of 201.26 nm, a
single chromosome occupies nearly 9% of the cytoplasmic
volume, and in the large cell with a radius of 247.42 nm, a
single chromosome occupies just below 4% of the cytoplasmic
volume.

Mathematically, the SAP configurations within the
reconstructed cell geometries are described by the set of
monomer coordinates, {ri}, on the cubic lattice, that satisfy four
different constraints, two SAP constraints, a circularity constraint
(gcirc) and a self-avoidance constraint (gSA), and two cell geometry
constraints, a membrane constraint (hmem) and a ribosome
constraint (hribo). The circularity constraint requires that

consecutive monomers are adjacent in the lattice, the self-
avoidance constraint requires that no monomers share
coordinates, the membrane constraint requires that the
monomers remain within the cell, and the ribosome constraints
require that the monomers do not intersect any ribosomes. The
ribosomes in the 8 nm lattice representation are converted to a
4 nm lattice representation, where they are the same star shape, but
now formed from fifty-six 4 nm cubes. These constraints are
formulated mathematically using constraint functions that are
equal to 1 when the constraints are satisfied and 0 when the
constraints are not satisfied. All four of these constraints must
be satisfied while growing and moving the SAP. While satisfying
the constraints, the configurations are sampled from the canonical
ensemble with a Hamiltonian that specifies intrachromosomal
interactions, including looping, which will be referred to as
restraints. The Hamiltonian is described in section 2.2.3.

A SAP with a greater number of monomers can be grown from
an existing SAP by severing the bond between a pair of
consecutive monomers and adding a closed branch orthogonal
to the vector between that pair of monomers (Buenemann and
Lenz, 2010; Goodsell et al., 2018). This is done in an unbiased
fashion by randomly selecting consecutive pairs of monomers to
serve as a branch-point and then randomly proposing growths in
the orthogonal directions, an example of proposed growths is
depicted in Figure 3A. Each proposed growth is only accepted if
the resulting SAP satisfies all of the constraints. For example,
growth #1 in Figure 3Bmay have been accepted because all of the
other proposed growths violated the ribosome constraints. If a
satisfactory growth can not be found, then the SAP is moved
before searching for growths again. Pseudocode for the SAP
growth algorithm is presented in Algorithm 1.

2.2.2 Circularity-Preserving Moves and Proof of
Ergodicity
If we start with a valid SAP configuration and then only change
the configuration using moves that result in a polymer
configuration still satisfying the circularity constraint, then,
provided that the moves are ergodic and the new
configurations are self-avoiding, we can sample SAP

FIGURE 3 | (A)—SAP with the set of proposed growths orthogonal to branch-point at monomers 4 and 5 shown in red. (B)—SAP after growth #1 with a size of 4
was accepted and incorporated into the SAP, increasing the SAP size from 16 monomers to 20 monomers.

Algorithm 1 | SAP-Growth Algorithm.
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configurations using random sequences of the circularity-
preserving moves. The proof of ergodicity follows the proof
outlined in (Messelink et al., 2021).

A SAP on a lattice may be represented as a series of
displacements along the cubic lattice from a starting location
(Messelink et al., 2021). Displacements in the positive and
negative Cartesian directions are denoted by X+, Y+, and
Z+and X−, Y−, and Z−, respectively. To ensure circularity, the
number of positive and negative displacements should be equal for
every direction on the lattice, or symbolically, NA+ � NA− , where
A � X,Y, or Z (Messelink et al., 2021). Traveling counter-clockwise
from the origin, the SAP in Figure 4 is described by the sequence -
(origin)Y−X+Y−X+Y−X+Y+X+Y+X+Y+Y+Y+X−X−X−X−X−Y−Y− → (origin).

There are a variety of circularity-preserving moves that can
transform the sequence while maintaining the circularity. For our
program, we chose an extension of the Verdier-Stockmeyer
moveset (Verdier and Stockmayer, 1962; Sokal, 1995) with kink
moves and 2 to N/2 monomer crankshaft moves. A kink move is
the interchange of two symbols in a subsequence AB→BA

(Messelink et al., 2021). The move labeled kink move in
Figure 4 is equivalent to X−Y− →Y−X−. A crankshaft
move alters a motif of a specific type. The motif is a
subsequence where the monomers at the start and end of the
subsequence share two Cartesian coordinates (Messelink et al.,
2021). Symbolically, within such a subsequence, NA+ ≠NA− , while
NB+ � NB− andNC+ � NC− . The crankshaft move is then a rotation
of magnitude π/2, π, or 3π/2 about the vector separating the
monomers at the start and end of the subsequence, applied to all of
themonomers between those two. Generally, the transformation of

symbols within the subsequence undergoing a crankshaft move
will be A ± →A ± , while B ± → (C ± ,B∓ ,C∓ ) and
C ± → (B ± ,C∓ ,B∓ ). The move labeled crankshaft move 1 in
Figure 4 is equivalent to
Y−X+Y−X+Y+X+Y+ →Z−X+Z−X+Z+X+Z+.

Starting from a sequence of at least two symbol types
satisifying the condition NA+ � NA− , where A � X,Y, or Z,
combining the kink and crankshaft moves can produce any
sequence of symbols that also satisfies the condition
(Messelink et al., 2021). This result allows for ergodic
sampling of sequences, which is equivalent to ergodic
sampling of polymer configurations satisfying the circularity
constraint. However, the Verdier-Stockmeyer moveset is
known to be non-ergodic for self-avoiding walks (SAWs) and
SAPs due to the presence of knotted configurations (Madras and
Sokal, 1987; Madras et al., 1990) and there is the additional
challenge of confinement imposed by the ribosome and the cell
boundary constraints. We attempted to mitigate these issues by
incorporating the extended crankshaft moves and growing the
SAPs to sample configurations that would otherwise be
inaccessible by a single SAP being dynamically sampled using
a Markov chain Monte Carlo method.

The relative frequencies of the kink moves and crankshaft
moves have significant impact on the overall speed of the
algorithm and are linked to the ergodicity (Sokal, 1995). The
speed of the algorithm can be improved by performing multiple
kink or crankshaft moves from a single enumeration of all
possible kink or crankshaft moves in the current
configuration, respectively. However, following the single
enumeration, in addition to satisfying the SAP and spatial
constraints, all kink or crankshaft moves performed must be
compatible.

The list of possible kink moves are stored as an array of three
element vectors of monomer indices, (i − 1, i, i + 1), where the i-th
monomer in the middle will be moved by interchanging two of its
coordinates that match with the coordinates of the i − 1-th and
i + 1-th monomers. After at least one kink move is proposed and
accepted, all following kink moves may not have their i − 1-th or
i + 1-th monomers be one of the middle monomers that was
moved in the previously accepted kink moves. Proposed kink
moves are then rejected based on this condition. The list of
possible crankshaft moves are stored as an array of two element
vectors (i, j) of monomer indices, where i< j and i and j are the
monomers defining the ends of the subset of the SAP which will be
transformed by the crankshaft moves, and an array of two element
vectors (d,ω), describing the length of the SAP subset, d, and the
direction around the SAP in which the SAP subset is defined, ω.
After at least one crankshaft move has been accepted, all following
crankshaft moves must have their (i′, j′) either both belonging to
the SAP subset that was moved by the crankshaft move or both not
belonging to the SAP subset that was moved. Proposed crankshaft
moves are then rejected based on this condition.

Crankshaft moves are the most computationally expensive to
both enumerate and sample; however, they cause the fastest
change in the configuration. The naive solution to this
problem was to assign a frequency at which crankshaft moves
were performed, ηcrankshaft, and multiplicities for the number of

FIGURE 4 |Circularity-preservingmoves on a cubic lattice—An example
kink move is shown in green. Two example crankshaft moves are shown in red
and blue. Following a single enumeration of the set of possible crankshaft
moves, multiple crankshaft moves can be made, provided that they are
compatible with the crankshaft moves previously sampled from that set of
possible crankshaft moves. An example of this is shown by the composition of
crankshaft moves 1 and 2 in the purple.
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kink and crankshaft moves that were performed after a single
enumeration of kink or reflect moves, gkink and gcrankshaft,
respectively. These parameters describing the sampling were then
manually adjusted. Using this methodology prevents ergodic
sampling from ever occurring. This can be illustrated by
considering the fact that as long as crankshaft moves are sampled
in batches of gcrankshaft every ηcrankshaft iterations, then unless only a
single crankshaft move is possible, there will never be an instance in
which a kink move is sampled immediately after a crankshaft move.
The inverse case is also true. An alternative is to randomly select the
iterations at which crankshaft moves will be enumerated and
performed, where the probability is given by pcrankshaft � η−1crankshaft.
Once the move type is determined using this criteria, randomly
sample the number of moves to be performed from a distribution
whose mean is equal to the multiplicity of the respective move type.
For example, in the case of discrete uniform distributions nkink �
u(0, 2gkink) and ncrankshaft � u(0, 2gcrankshaft). Now there exists the
possibility that any sequence of kink and reflect moves may be
sampled. Pseudocode for the SAP movement algorithm is
presented in Algorithm 2.

2.2.3 Energy Functions and Metropolis-Hastings
Sampling
TheHamiltonian for the SAPmodel of the chromosome has three
contributions, a bending energy related to the stiffness of DNA, a
nearest-neighbor interaction, and a harmonic interaction acting
as a restraint to recreate the effect of DNA looping.

H � Hbend +Hn.n. +Hloops (2)

The contribution to the Hamiltonian due to the bending
stiffness of linear DNA is

Hbend({ri}) � −κ ∑
N−1

i�2
(ri+1 − ri) · (ri − ri−1) (3)

and is parameterized by the bending energy per unit length squared,
κ. This Hamiltonian incurs an energy penalty for every bend in the
lattice polymer and can be used to model the stiffness of a polymer,
a quantity often characterized by the persistence length. One
interpretation of the persistence length, lp, is the constant
describing the exponential rate at which the polymer
orientations become decorrelated (Brinkers et al., 2009; Hsu and
Binder, 2012; Zhang et al., 2019)

〈(ri+s+1 − ri+s) · (ri − ri−1)〉mono.

l2
� exp(−sl/lp), (4)

where 〈f (ri)〉mono is the average over the N monomers in the
configuration and l is the lattice size. Consider the case of a
SAW on a cubic lattice, in which the lattice polymer can
become immediately decorrelated, thus consider the case
when s � 1

〈(ri+1 − ri) · (ri − ri−1)〉mono. � 1
N − 2

⎡⎣ ∑
N−1

i�2
(ri+1 − ri) · (ri − ri−1)⎤⎦

� −H
bend({ri})
(N − 2)κ (5)

leading to an equation with the bending Hamiltonian
parameterized by κ. Assuming the lattice polymer is in
thermal equilibrium at inverse temperature β � 1/kBT , we can
take a thermal average of this equation

−〈H
bend({ri})〉

(N − 2)κl2 � exp(−l/lp) (6)

and κ can be calculated by solving this root-finding problem
through Monte Carlo sampling of SAW configurations using
Wang-Landau sampling (Wang and Landau, 2001). In this study,
the value of κl2 (3.872kBT) was estimated using the exact solution
for a non-reversal random walk and the consensus persistence
length for DNA of 50 nm (Vologodskii et al., 1992; Manning,
2006; Brinkers et al., 2009; Geggier et al., 2010; Mantelli et al.,
2011).

κ � − 1
βl2

log[e
l/lp − 1
4

] (7)

The contribution to the Hamiltonian due to pairwise nearest-
neighbor interactions is

Hn.n. � ϵ ∑
N−1

i�1
∑
N

j�i+1
δK(l − ∣∣∣∣ri − rj

∣∣∣∣) (8)

and was used to tune the excluded-volume effects of DNA
(ϵ � kBT). Lastly, the contribution to the Hamiltonian when
looping restraints are imposed is

Hloops({ri}) � ∑
N−1

i�1
∑
N

j�i+1
kij
∣∣∣∣ri − rj

2
∣∣∣∣ (9)

These pairwise harmonic interactions were used to create
looping between portions of chromosome bound by SMC
proteins (kijl

2 � 10,000kBT).
A Markov chain Monte Carlo algorithm (Metropolis et al.,

1953; Hastings, 1970) was used to sample configurations governed
by this Hamiltonian from the canonical ensemble. We use the
Metropolis criterion, A({ri′}, {ri}) � min(1, P({ri′})/P({ri})),
(Metropolis et al., 1953), for the acceptance probability of
moving from the current configuration, {ri}, to the proposed
configuration, {ri′}. The probability of a configuration satisfying
the SAP constraints (gcirc and gSA) and geometric constraints
(hmem and hribo) is

Algorithm 2 | SAP-Move Algorithm.

Frontiers in Molecular Biosciences | www.frontiersin.org July 2021 | Volume 8 | Article 64413310

Gilbert et al. Chromosome Geometries in a Minimal Cell

262

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


P({ri}) � 1
Z [gcirc({ri})gSA({ri})] × [hmem({ri},R)hribo({ri}, {ρi})]

× exp[ − βH({ri})],
(10)

where Z is the canonical partition function of the system
found by summing over all possible configurations of N
monomers on a cubic lattice. Assuming the current
configuration, {ri}, and the proposed configuration, {ri′},
always satisfy the circularity constraint because they are
generated from sequences of circularity-preserving moves,
then the ratio of probabilities is

P({ri′})
P({ri}) � gSA({ri′})hmem({ri′},R)hribo({ri ′}, {ρi})

gSA({ri})hmem({ri},R)hribo({ri}, {ρi})
× exp(− β[H({ri′}) −H({ri})]).

(11)

Additionally, if the proposed configuration satisfies the self-
avoidance and geometric constraints, which can be determined
without evaluating energy changes, then the acceptance probability
given by the Metropolis criterion, A({ri′}, {ri}) � min(1, e− βΔE), is

simply a function of the energy difference,
ΔE � H({ri′}) −H({ri}), and the sampling favors low-energy
configurations that better agree with the stiffness of DNA, the
excluded-volume effects, and the DNA-looping restraints.

2.2.4 Summary of Complete Algorithm for Generating
Chromosome Configurations
The final algorithm generated chromosome configurations by
alternating cycles of growing and moving the SAP configurations
to relax the newly grown portion. Pseudocode for the final
algorithm is presented in Algorithm 3. In an early
implementation, a single relaxation occurred after the growth
was completed, but it was found that the alternating cycles of
growth and relaxation were required because the combined
effects of confinement and the exponentially increasing
attrition rate due to violations of the self-avoidance constraint
became overwhelming as the SAP grew larger. The relative
frequencies and durations of these alternating growth and
relaxation cycles were chosen empirically to maximize the
speed of generating relaxed configurations of the complete
chromosome. An example of how the alternating growth and

FIGURE 5 | (A)—Reconstructed ribosome distribution in the small cell. The 100 monomers on either side of the origin are shown in red and blue. Ribosomes are
depicted as yellow stars in the 8 nm lattice representation. (B)—Complete chromosome configuration generated on the 4 nm lattice within the reconstructed
architecture of the small cell. The circular chromosome is colored starting at the origin as red to grey to blue, before returning to the origin where blue and red meet.

FIGURE 6 | (A)—Centroid of 30 chromosome configurations is shown within the ribosome distribution. The same color scheme for centroid is used as for the
chromosome in Figure 5. (B)—Magnified view of centroid in 6A calculated from 30 configurations, radius of gyration is 24.93 nm. (C)—Magnified view of centroid
calculated from 90 configurations, radius of gyration is 11.99 nm.
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relaxation cycles affect the total energy over the course of a
simulation for a test case with 5,000 monomers is presented in
Supplementary Figure S4. While this procedure more rapidly
relaxes the system, the exponentially increasing attrition rate
of rejected moves prevents us from definitively stating that we
reach equilibrium in the system with 46,188 monomers. The
relative frequencies and durations are described by functions, τ
and σ, both are dependent on the current number of
monomers, N, and separately depend on empirical
parameter vectors, α and γ, respectively. The algorithm was
implemented in Fortran 90 and a single chromosome
configuration of 46,188 monomers can be generated in
approximately 12–14 h on a single CPU core at 3.5 GHz.
The algorithm is embarrassingly parallel and the program
uses OpenMP to generate multiple configurations
simultaneously. An example reconstructed cell architecture
is shown in Figure 5A and the resulting constrained
chromosome configuration is shown in Figure 5B.

Starting with fixed ribosome positions and cell orientation
from the cryo-ET, we initialize the configurations by randomly
placing a circular fragment of the chromosome and then
independently generate hundreds of chromosomes within an
otherwise identical cell. To test if the monomers along the
chromosome are identically distributed within the cell, we
calculate the centroid of the ensemble of chromosome
configurations. The monomer coordinates of the centroid are
the ensemble averages of the monomer coordinates in the
chromosome configurations. The center of mass of a sphere is
at its center, thus we expect the centroid of the ensemble of
chromosome configurations to be approximately located at the
center of the spherical cell. We find the centroid of 30
configurations to be located in the center of the cell, as shown
in Figure 6A. Furthermore, if the number of identically
distributed chromosome configurations is increased, we expect
the centroid to collapse to the center, which we quantify with its
radius of gyration. The centroid of 30 configurations in Figure 6B
has a radius of gyration of 24.93 nm and it is reduced to 11.99 nm
when the centroid is calculated from 90 configurations, as shown
in Figure 6C.

Other bacteria that are not genetically-minimal have additional
regulatory systems used to control their chromosome organization,
such as attachment organelles and parABS systems. Due to these
regulatory systems, their chromosomes show consistent
configurations that correlate the genomic position with the
internal structure of the cell (Umbarger et al., 2011; Marbouty
et al., 2015; Trussart et al., 2017) and this is reflected in their
centroids. For example, in a model of M. pneumoniae’s
chromosome, Trussart et al. saw a consistent alignment and
interweaving of the two chromosome arms of the centroid
(Trussart et al., 2017). As a comparison, we tested fixing the
origin of our chromosome at the membrane and found that the

centroid had a consistent alignment of the two chromosome arms at
the fixed origin and monomers near the origin were found near the
membrane (data not shown). Since there are no interactions
correlating the genomic position and the internal structure of
the cell, we compared the average radius of gyration for
chromosome configurations generated in the small cell with and
without ribosomes present to test the excluded volume effect of
ribosomes. The average radius of gyration without ribosomes was
145.40 nm and was 133.59 nm when ribosomes were present. We
also tested the effect of further increasing the number of ribosomes
by randomly placing 497 ribosomes in addition to the 503 from the
tomogram in the small cell and found that the average radius of
gyration further decreased to 124.29 nm. We attribute this
reduction in the average radius of gyration to the additional
confinement caused by the volume exclusion of the ribosomes.

2.3 3C-Seq Library Preparation
JCVI-syn3A chromosome contact maps were prepared with 3C-
Seq (Lioy and Boccard, 2018), a chromosome conformation
capture technique reminiscent of Hi-C (Crémazy et al., 2018).
The protocols differ in that following the restriction digestion of
the fixed chromosome, restriction fragment ends are not filled-in
with biotin-labelled nucleotides in 3C-Seq (Crémazy et al., 2018;
Lioy and Boccard, 2018). The modification reduces the cost of
chromosome conformation capture in prokaryotes since the
requirement for biotin-labelled nucleotides is alleviated. 3C-
Seq increases the diversity of restriction enzyme options
available for library preparation from only enzymes that
generate 5′-overhangs that can be filled-in by the Klenow
fragment, to include enzymes that generate 3′-overhangs, and
blunt-ends. Furthermore, sticky ends generated by restriction
digestion are not “blunted” in 3C-Seq, increasing ligation
efficiency since sticky-end ligation occurs more efficiently than
blunt-end ligation. In addition, the absence of biotin at restriction
fragment ends eliminates the requirement of removing biotin-
labels from unligated ends, DNA purification following biotin
removal, and enrichment of biotin-labelled ligation junctions,
effectively, reducing the library preparation time by at least 30%.

Syn3A was cultured to stationary phase in 25 ml of SP4-KO
medium in a 50 ml conical tube at 37°C. The cells were fixed with
a final concentration of 1% formaldehyde (Sigma-Aldrich) at
25°C for 30 min and 4°C for a further 30 min. The reaction was
quenched with 0.125 M glycine (Sigma-Aldrich) for 15 min at
4°C. The fixed cells were collected by centrifugation and washed
twice with 1X HE pH 8.0 [10 mMHEPES (Sigma-Aldrich), 1 mM
EDTA (Sigma-Aldrich)]. The cell pellet was flash-frozen with
liquid nitrogen in a 1.5 ml low-binding microfuge tube and stored
at −80°C until use. Fixed Syn3A cells were resuspended in 100 μl
of 1X HE pH 8.0 and mechanically sheared with 0.5 mm glass
beads (Sigma-Aldrich) using a vortex mixer. Membranous
structures in the lysate were solubilised with 0.5% SDS
(Sigma-Aldrich) for 15 min at 37°C in a Thermomixer®
(Eppendorf) with shaking at 1,000 rpm. SDS was quenched
with 1% Triton X-100 (Sigma-Aldrich) in 1X CutSmart buffer
(NEB) for 15 min at 37°C in a Thermomixer® (Eppendorf) with
shaking at 1,000 rpm. The extracted chromatin was digested with
100 U of NlaIII (NEB) for 3 h at 37°C. The reaction was

Algorithm 3 | Complete Algorithm For Generating Chromosome Configurations.
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terminated with 0.5% SDS (Sigma-Aldrich) for 20 min at 37°C.
The digested chromatin was centrifuged at 20,000 xg for 1 h at
4°C. The supernatant was removed and the gel-like pellet was
dissolved in 200 μl of nuclease-free water (ThermoFisher
Scientific). The DNA concentration of the dissolved chromatin
was determined using the Qubit® HS dsDNA assay kit
(ThermoFisher Scientific) and the Qubit® fluorometer
(ThermoFisher Scientific). 3 μg of DNA was used for ligation
in 1X T4 DNA ligase buffer (NEB) supplemented with 100 μg/

ml BSA (NEB) in a final volume of 1,000 μl. The reaction was
carried out with 4000 CEU of T4 DNA ligase (NEB) at 16°C for
16 h and 25°C for 1 h. Ligation was terminated with 10 mM
EDTA pH 8.0 (usb Corporation). Ligated DNA (the 3C library)
was extracted twice with 25:24:1 phenol:chloroform:isoamyl
alcohol (Sigma-Aldrich) and once with chloroform (Sigma-
Aldrich). The library was precipitated with 0.1 × 1.0 M
NaOAc (Sigma-Aldrich) pH 8.0, 0.025 × 5 mg/ml glycogen
(Invitrogen), and 2.5 × 100% ethanol (Sigma-Aldrich) at -20°

FIGURE 7 | (A)—3C-Seq contact map at 1,000 bp resolution with the color-scale adjusted to make weak secondary features along the diagonal more apparent.
The four manually annotated loops listed in Table 2 are indicated with cyan boxes. (B)—Circular chromosome of Syn3A with features shown as arrows and arcs around
the perimeter - constructed using CGview (Petkau et al., 2010). The proteomics of a 400 nm Syn3A cell (Breuer et al., 2019) are plotted in red around the middle ring and
the innermost ring contains the annotated loops in green. (C)—In silico contact map resulting from 150 configurations with looping interactions added at the
positions of the manually annotated loops in Table 2. A locus size of 1,000 bp was used to match the 3C-Seq map. The interactions at the ribosomal RNA operons have
been removed from the map to enhance visual clarity. Cyan squares are again used to indicate regions containing the loops. (D)—Magnified view of the region within the
cyan square containing the fourth loop in the in silico contact map. The map was recalculated at a resolution of 250 bp and the maximum of the color-scale was
increased to better resolve the characteristic signature of a loop.
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C overnight. Precipitated DNA was pelleted by centrifugation
and the pellet washed twice with 70% ethanol (Sigma-Aldrich).
The pellet was air-dried and dissolved in 50.0 μl of 10 mM Tris
(Sigma-Aldrich) pH 8.0. The 3C library was purified with 3X
KAPA HyperPure beads (KAPA Biosystems) and eluted in
20.0 μl of 10 mM Tris (Sigma-Aldrich) pH 8.0.3C-Seq
libraries for next-generation sequencing were prepared using
the KAPA HyperPlus Kit (KAPA Biosystems) according to the
manufacturer’s protocol. 3C-Seq libraries were sequenced on an
Illumina® platform.

3 RESULTS

3.1 3C-Seq and in Silico Contact Maps
The 3C-Seq library prepared using the restriction enzyme
NlaIII had a total of 1,819,715 reads that were mapped at a
resolution of 1,000 bp. A histogram of restriction digestion
fragment sizes and distribution NlaIII cut sites in Syn3A’s
chromosome are presented in Supplementary Figures S5,S6,
respectively. The contact map was normalized to be a doubly-
stochastic matrix using the matrix-balancing procedure of
Knight and Ruiz (Knight and Ruiz, 2012; Rao et al., 2014)
and is shown in Figure 7A. The chromosome contact map
shows a primary diagonal of high interaction frequency that
reflects the physical proximity of loci that lie close to each other
along the primary sequence of the DNA polymer. A secondary
diagonal cannot be detected implying the absence of inter-arm
interactions along the chromosome. The absence of a
secondary diagonal is in contrast to the chromosome
contact maps of M. pneumoniae (Trussart et al., 2017), B.
subtilis (Marbouty et al., 2015), and C. crescentus (Le et al.,
2013; Tran et al., 2017). Notably, there are two regions of the
chromosome that are devoid of interactions, these regions
correspond to the two identical ribosomal RNA operons in
Syn3A and can be seen in Figure 7B. No interactions were
assigned to these regions as sequencing reads arising from
either copy could not be distinguished. There are smaller
secondary features along the diagonal that we interpret to
be regions of high interaction due to looping. However, as
this is a preliminary map with a low read depth and signal-to-
noise ratio, chromosome architecture cannot be reliably
interpreted and standard loop and chromosome interaction
domain (CID) annotation software (Durand et al., 2016b) was

unable to reliably process the map. Upon visual inspection at a
resolution of 250 bp, the map shows four interactions, with
distinct signatures reminiscent of loops (Fudenberg et al.,
2016). Snapshots of the four interactions at 250 bp
resolution in Juicebox (Durand et al., 2016a) are shown in
Supplementary Figure S7. We infer the end points of
these loops to be such that they fully encompass genes in
the corresponding regions of the chromosome. The positions
of these manually annotated loops, the genes they
encompass, and the corresponding proteomics are presented
in Table 2, and the loop locations within the contact map can
be seen in Figure 7A.

By comparing the annotated loops to the proteomics (Breuer
et al., 2019), as shown in Figure 7B, we can investigate
correlations between the relative expression levels and the
locations of the loops. For reference, the average proteomics
count in Syn3A is approximately 180 (Breuer et al., 2019). We
will refer to the loops according to their order along the genome.
The first loop encompasses the genes pdhC and lpdA, which
respectively code for the E2 and E3 subunits of the PDH
complex. These genes have identical proteomics counts and
lower expression levels than the genes surrounding them.
Upstream are genes coding for enzymes in the main pathway
of the central metabolism in Syn3A (Breuer et al., 2019) and
downstream are genes coding for components of the PTS
system, another essential part of the central metabolism. The
second loop encompasses the genes ywjA (0371) and ywjA
(0372), which code for the two subunits of the flippase. This
is the longest loop and the two genes within it have the greatest
disparity in expression levels. The third loop encompasses the
genes lgt and trx, which code for lipoprotein diacylglyceryl
transferase and thioredoxin reductase, respectively. The
proteomics counts of both proteins coded by these genes are
lower than average, as are those of the genes immediately
downstream. However, less than 10 kbp upstream is an
operon for ribosomal proteins, which contains some of the
most highly-expressed genes in Syn3A’s genome (Breuer
et al., 2019). The fourth loop encompasses genes that code
for two uncharacterized proteins, JCVISYN3A_0877 and
JCVISYN3A_0878, both of which have very low proteomics
counts. The expression levels of the nearby genes are similarly
low. Our most consistent findings are twofold. First, the loops
are all between 2 and 4 kbp in length. Second, the loops often
contain genes with common expression levels.

TABLE 2 | Loops inferred from 3C-Seq library of Syn3A. The gene annotations and locus tags are those in the NCBI entry for Syn3A’s genome (https://www.ncbi.nlm.nih.
gov/nuccore/CP016816.2) and the locus tags are abbreviated to only the 4-digit number.

Start (bp) Stop (bp) Length (bp) % in silico Genes encompassed Proteomics

138,324 141,557 3,233 8.7 pdhC 182
— lpdA 182
217,523 221,263 3,740 12.7 ywjA (0371) 175
— ywjA (0372) 65
491,413 493,784 2,371 16.7 lgt 55
— trx 100
526,669 528,859 2,190 20.7 0877 9
— 0878 7

Frontiers in Molecular Biosciences | www.frontiersin.org July 2021 | Volume 8 | Article 64413314

Gilbert et al. Chromosome Geometries in a Minimal Cell

266

https://www.ncbi.nlm.nih.gov/nuccore/CP016816.2
https://www.ncbi.nlm.nih.gov/nuccore/CP016816.2
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


The chromosome configurations on the 4 nm lattice, with
11.8 bp monomers, enable the calculation for contact matrices at
any resolution greater than 11.8 bp per locus. Equally-sized
contiguous regions of the chromosome can be classified as loci
and the pairwise interactions between the loci counted according
to the relative pairwise distances between monomers belonging to
the loci. In the foreground of Figure 7C is a representative
example of the interaction counting. When counting the total
number of interactions between the red and blue loci using an
arbitrary threshold distance indicated by the dashed line, the
black monomer in the red loci contributes three interactions to
the total interaction count between the loci. Due to a relative
scarcity of chromosome models at a similar resolution in terms of
bp per monomer and uncertainty about what proteins are
involved in protein-DNA formaldehyde cross-linking (Dekker
et al., 2002; van Berkum et al., 2010), the distance for assessing
interactions can be chosen from a minimum of 4 nm
corresponding to lattice spacing to a maximum of 50 nm. The
maximum distance corresponds to the length of SMC proteins,
which is the maximal distance spanned by a nucleoid-associated
protein in Syn3A (Diebold-Durand et al., 2017; Marko et al.,
2019; Ryu et al., 2021). We selected a contact radius of 8 nm
because it is an integer multiple of our lattice spacing and the
resulting maps show the best agreement with 3C-Seq map. This
distance metric can be used alongside any locus size converted to
units of monomers to generate contact matrices for ensembles of
computationally generated chromosome configurations.

Contact maps were calculated for chromosome configurations
within the small cell. A locus size of 1,000 bp was chosen to match
the resolution of the 3C-Seq chromosome contact map. As was
the case for the experimental contact map, the contact map was
normalized to be a doubly-stochastic matrix using a matrix-
balancing procedure. Unfortunately, the precision of the in silico
contact maps is limited by the number of chromosome
configurations used to calculate the ensemble-averaged
interaction frequencies, a number many orders of magnitude
lower than the number of cells in typical 3C-Seq experiments.

In the absence of a sequence-specific system, such as the
parABS system, dictating the global structure of the
chromosome and promoting inter-arm interactions, we
decided to explore a test case of introducing looping
interactions at the positions of the manually annotated loops
to test the efficacy of our model. We consider a loop to be
successfully formed if the monomers at the endpoints are
separated by less than 16 nm, the percentage of configurations
with successful loop formation are shown for each loop in
Table 2. One or more loops were formed in 75 of the 150
configurations. As expected, decreasing the length of the loop
increased the probability that it was successfully formed. The in
silico contact map generated from 150 configurations in the small
cell is presented in Figure 7C. The contact map shows a single
diagonal in Figure 7C, which is consistent with the 3C-Seq
contact map and indicates that the majority of interactions are
self-interactions within loci or interactions between neighboring
loci. The strongest signal characteristic of a loop was observed for
the fourth loop, which is the shortest, and Figure 7D shows a
magnified view of the surrounding region in the contact map.

Using the 3C-Seq map, we plotted the interaction frequency as
a function of genomic distance and observed a plateau after the
initial decrease in interaction frequency. We fit a power law of the
form P(x)∝ xs to two regimes within the strictly-decreasing
region before the plateau, i.e. the region extending from self-
interactions along the diagonal to interactions with loci at
distances less than or equal to 10 kbp away, and found a range
of exponents (s � −0.519 to s � −2.210). We repeated this
calculation for the in silico map and found a narrower range
of exponents than in the 3C-Seq case (s � −0.720 to s � −1.132).

Plots of the two datasets and their contact laws are presented
in Supplementary Figure S8. In both cases, the steepest rate of
change and largest exponent was found in the region whose
lower limit corresponded to interactions of loci separated by
1 kbp. For the in silico case, the calculated values of s are in
closer agreement to the value expected when confined
homopolymers are organized as fractal globules (s � −1),
with clearly defined territories caused by topological
constraints, rather than equilibrium globules (s � −1.5)
(Lua et al., 2004; Lieberman-Aiden et al., 2009; Mirny,
2011; Rosa and Zimmer, 2014; Sanborn et al., 2015). The
organization of the chromosome into territories can be
observed for the in silico case in Figure 5B as the
separation into distinct colored regions.

The plateau is more pronounced in the 3C-Seq case, than the
in silico case, and all interactions in the 3C-Seq dataset are nearly
equally probable at genomic distances greater than 100 kbp.
While the plateau in the 3C-Seq dataset is a characteristic of
equilibrium globules (Lieberman-Aiden et al., 2009; Mirny, 2011)
and some mathematically-predicted fractal globules, such as the
Sierpinski triangle and inside-out Hilbert curves (Sanborn et al.,
2015), we are unable to infer a topological state of the Syn3A
chromosomes sampled using 3C-Seq because of the significant
variations in the exponents of the power law and the sensitivity to
the regime chosen for fitting. It is possible that these variations
and the steep drop off are a consequence of the low coverage in
the preliminary 3C-Seq map or reflect biologically relevant levels
of organization.

3.2 Spatial Model of JCVI-syn3A
Computational modeling of spatially-resolved kinetics in Syn3A
is done by simulating the reaction-diffusion master equation
(RDME) in Lattice Microbes (LM) (Roberts et al., 2013;
Hallock et al., 2014; Earnest et al., 2017, 2018; Bianchi et al.,
2018) using a stochastic simulation algorithm. When using the
RDME, physical space is discretized into a cubic lattice
representation. The size of the cubic lattice dictates both the
resolution of the spatial modeling and the maximum allowable
timestep when modeling the kinetics, smaller lattice sizes reduce
the maximum allowable timestep. A lattice size of 8 nm was
chosen as an acceptable compromise between creating a high-
resolution spatial model of Syn3A, while permitting simulations
over biologically-relevant time scales. Each of these 8 nm lattice
sites can contain a maximum of sixteen particles. Previous work
on combining LM simulations and tomogram data, directly
reconstructed cell architectures in LM (Earnest et al., 2017).
Unfortunately, as discussed earlier, the tomograms do not
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show well-defined DNA strands. Instead, chromosome
configurations consistent with the ribosome distributions
observed in the tomograms are generated using our method,
and those are used for the spatial models.

We have also used the spherical cell architecture reconstructed
from the tomograms to predict the number of ribosomes involved
in polysomes, the number of ribosomes at or near the membrane,
and the number of ribosomes close enough to DNA to form an
expressome. To predict the number of ribosomes involved in
possible polysomes, we calculate the pairwise distances between
all ribosome pairs in the spherical cell. Annotating any pair
within a center-to-center distance of 22 nm to be in a possible
polysome, as was experimentally measured in E. coli (Brandt
et al., 2009), we calculate 194, approximately 39%, of the 503
ribosomes from the first template matching method (approach 1)
are involved in possible polysomes. In the second template
matching method with 3D classification (approach 2), this
number increases to 373, approximately 55%, of the 684
ribosomes in possible polysomes. If we instead use a center-to-
center distance of 18 nm such that the ribosomes are almost in
contact, we find that 125, approximately 25%, of the 503
ribosomes from approach 1 are involved in possible
polysomes. In approach 2, we find that 274, approximately
40%, of the 684 ribosomes are in possible polysomes using the
18 nm distance. In cryo-ET of a closely related organism M.
pneumoniae, sub-tomogram averaging over many cells predicted
that an average of 16.4% of ribosomes are involved in polysomes
(O’Reilly et al., 2020). The discrepancies arise from several
factors: First, M. pneumoniae only has 300 ribosomes per cell
(Seybert et al., 2006; Yus et al., 2009; O’Reilly et al., 2020) and has
a larger volume than Syn3A (Kühner et al., 2009), so it is not
unreasonable that the higher ribosome density in Syn3A results in
a larger fraction ribosomes involved in polysomes. Second, the
method to define polysomes in (O’Reilly et al., 2020) exclusively
looks at ribosomes that are in very close proximity and oriented
so that the mRNA exit channel of one ribosome aligns with the
mRNA entry of the next. In cells, polysomes are likely to be more

relaxed than this configuration. Our predicted fractions of
ribosomes involved in polysomes are all lower than the 70%
observed in fast-growing E. coli using absorption spectroscopy
(Phillips et al., 1969; Forchhammer and Lindahl, 1971).

To estimate the number of ribosomes on or near the
membrane, we calculate the number of ribosomes within a
cytoplasmic shell directly inside the membrane. We annotate a
ribosome as being within the cytoplasmic shell if its center is
within the shell. Using a 10 nm thick shell, the approximate
radius of a ribosome, we find that 53, approximately 10%, of the
503 ribosomes from approach 1 are near the membrane. We find
a similar number of ribosomes within the same distance in
approach 2, 60 (9%) of the 684 ribosomes. If we extend the
shell to 20 nm thick, we find that 122, approximately 24%, of the
503 ribosomes in approach 1 are near the membrane. In approach
2, we found 136, or 20%, of the 684 ribosomes are within 20 nm of
the membrane. The range of our calculated fractions agrees with
the observed 15% of ribosomes being membrane-bound in cryo-
ET of S. melliferum (Ortiz et al., 2006).

Expressomes are macromolecular complexes of RNA
polymerases (RNAPs) and ribosomes that couple transcription
and translation, they were first identified in E. coli (Kohler et al.,
2017). In M. pneumoniae a maximum of 19% of ribosomes have
been identified to be in an expressome complex in which NusA
and NusG help to connect or direct the mRNA from production
by RNAP to the ribosome (O’Reilly et al., 2020). Given the
proteomics counts of RNAP, NusA, and NusG within a
400 nm cell of 187, 238, and 464 respectively (Breuer et al.,
2019), the possibility of expressome complexes emerging in
the whole-cell model is certainly possible. Using the 4 nm
lattice representation, we searched for possible expressomes by
counting chromosome monomers directly adjacent to the star-
shaped ribosomes. We find that on average there are 106 of the
503 ribosomes in approach 1 with a DNA monomer directly
adjacent, a fraction of approximately 21%. From ribosomes
identified in approach 2, we found that 127 of the 684
ribosomes, roughly 19%, were directly adjacent to the DNA on

FIGURE 8 | Coarse-graining, before and after—The coarse graining procedure localizes up to eight effective monomers in the 4 nm chromosome configurations
(same color scheme as Figure 5) within the 8 nm chromosome lattice sites (green). Circled in orange there is an example of genomically-distant regions being localized
within the same chromosome site.
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average. This is in good agreement with the fraction of 2.8–19% of
ribosomes found to be in expressomes in M. pneumoniae by
O’Reilly et al. (O’Reilly et al., 2020).

The computationally-generated chromosome configurations
on the 4 nm lattice are converted to the 8 nm lattice before being
used in RDME simulations. The conversion is done using a
coarse-graining procedure where the 4 nm effective monomers
are localized within the 8 nm lattice site containing them. These
8 nm lattice sites are then identified as chromosome sites. Due to
the self-avoiding nature of the chromosome model, each 8 nm
chromosome site can contain up to a maximum of eight
monomers, where each monomer contains 11.8 bp of DNA.
The number of monomers within the 8 nm lattice site are
directly converted to up to eight of the maximum of sixteen
particles within a lattice site. This coarse-graining procedure

preserves the overall volume exclusion of the chromosome and
the spatial heterogeneities caused by varying chromosome
densities throughout the cell, and allows for genomically
distant pieces of the chromosome to be spatially localized
within the 8 nm chromosome sites. Figure 8 shows the coarse-
graining of a chromosome configuration in the small cell. The
kinetic model of genetic information processing in Syn3A
(Thornburg et al., 2019) can then be extended to include the
effects of RNA polymerases diffusing between the spatial
locations of genes within the chromosome (Weng and Xiao,
2014).

Two means were used to quantify the diffusivity of the coarse-
grained chromosome configurations. First, the average monomer
occupancy of the coarse-grained chromosome sites was
calculated, with the target average occupancy being under 3

FIGURE 9 | (A)—Relative frequencies of chromosome site monomer occupancies in the small cell from 150 configurations with no looping interactions. (B)—
Distribution of connected-component sizes for different monomer occupancy thresholds for the small cell from 150 configurations with no looping interactions.

FIGURE 10 | (A)—First chromosome (green) generated within the large cell architecture of radius 247.42 nm and containing 820 ribosomes (yellow). (B)—An
additional second chromosome (magenta) was generated within the large cell architecture while avoiding the first chromosome (green). (C)—The isolated second
chromosome (magenta) in the large cell architecture after the removal of the first chromosome.
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monomers per coarse-grained chromosome site, as shown in
Figure 9A. Second, connected-component labeling was used to
identify contiguous regions of high monomer occupancy, where
diffusing particles may become trapped for extended periods of
simulation time, as shown in Figure 9B. Maintaining an
acceptable number of particles per lattice site has a significant
impact on the efficiency of the multi-particle diffusion used in the
GPU-accelerated LM (Hallock et al., 2014). The results for the
small cell when the second approach for template-matching was
applied, with the high ribosome packing density, showed that all
150 computationally-generated chromosome configurations were
diffuse enough to be used for RDME simulations of Syn3A. The
configurations satisfy the first criterion and there were no
instances in which connected-components with an occupancy
greater than 8 monomers per coarse-grained chromosome site
could form closed shapes on the 8 nm lattice. The large cell is
presumed to be near the end of the cell cycle, after DNA
replication has been completed, and a second chromosome
can be placed within the cell architecture, as shown in
Figure 10. We assume the small cell and large cell are
representative examples of cells at the start and end of the cell
cycle, respectively, and the combination of the small and large cell
architectures enable whole-cell simulations of Syn3A at the start
and end of the cell cycle.

4 DISCUSSION

We developed a procedure to reconstruct single-cell geometries of
Syn3A cells from cryo-electron tomograms. The procedure has
two parts, the determination of the cell size and subsequent
transformation of the ribosome distribution to a cell with
spherical geometry, and the generation of circular
chromosome configurations constrained by the spherical cell
boundary and the ribosome distribution, and restrained by a
small number of DNA loops observed in the experimental 3C-Seq
map. Cell geometries were reconstructed for the small cell
assumed to be at the start of the cell cycle and a large cell
considered to be near the end of the cycle, when two
chromosomes would be present.

The 3C-Seq chromosome contact map at a resolution of
1,000 bp has no secondary diagonal and confirms our
assumption that Syn3A has no factors affecting the global
structure of the chromosome. We based this assumption on
our knowledge of the genome-scale gene essentiality and
proteomics data, which indicated Syn3A lacked a parABS
system or attachment organelle. Our computational model of
the chromosome reproduced this behavior while constrained by
the reconstructed cell geometry. Furthermore, we generated the
DNA configurations under the assumption that the DNA was in
a relaxed state with limited supercoiling. This was justified due
to the high abundance of proteins that modify the supercoiling
state, topoisomerases and gyrases, relative to the number of
RNAP, and the relatively low abundance of proteins that form
topological constraints and stabilize supercoiled loops, such as
HU. We were able to model local structures, whose signatures
were observed in the 3C-Seq map at a resolution of 250 bp.

Currently, SMC is the only annotated protein in Syn3A that can
form unsupercoiled loops, so it is possible the observed loops are
formed by SMC. Recent studies show that SMC functions
through active loop extrusion rather than static loop
stabilization (van Ruiten and Rowland, 2018), so there are
potentially additional unannotated effects and/or proteins
causing the experimentally observed loops or causing
localization of the actively-extruding loops through
preferential SMC binding at the annotated locations. Our
chromosome model does not include active loop extrusion
and is only capable of reproducing the results of active loop
extrusion in an ensemble average sense. At this time, we wish to
avoid making further definitive statements about the nature of
the local structure of Syn3A’s chromosome until deeper
sequencing is completed. Future experiments with additional
restriction enzymes that cut the DNA at complementary
positions and greater depth of the reads will help to improve
our analysis.

We can speculate that the significant differences in the global
chromosome organization of bacterial cells with natural
genomes, such as B. subtilis, C. crescentus, and M.
pneumoniae, to Syn3A with its synthetic genome are a result
of genome minimization, both natural and targeted. The parent
organism from which all variants (Syn1.0, Syn3.0, and Syn3A)
are descended is M. mycoides, a choice that was made because
Mycoplasma cells have small genomes that have been naturally
reduced over evolutionarily-long time scales. This reduction
likely occurred because they are parasitic organisms that can rely
on a stable environment provided by their host. Mycoplasmas
have dispensed of the genes that code for complex regulatory
systems, such as the parABS system, and the remaining genes
largely code for environment-independent functions essential to
all life (Hutchison et al., 2016). Chromosome organization at the
local level is dictated by NAPs and the supercoiling state of the
DNA. Notably, while there is a significant disparity in the
relative proteomics counts of NAPs in Syn3A and naturally-
occurring bacteria, with the majority of NAPs being wholly
absent from Syn3A’s genome, there is no such disparity in the
counts of proteins that modify the supercoiling state of the
DNA. These proteins are essential to the function of Syn3A,
which is not surprising due to the relationship between
supercoiling and the universal process of transcription
(Chong et al., 2014; Dorman, 2019).

From the reconstructed cell geometries, we estimated
fractions of ribosomes that could be attached to the
membrane or are complexed in possible polysomes and
expressomes. We simply used distances between ribosomes
and the membrane, other ribosomes, and the DNA,
respectively, to predict these numbers. To confirm these
estimates of the polysomes we could use the orientations of
the ribosomes’ entry and exit channels such that the ribosomes
can pass mRNA between each other (O’Reilly et al., 2020). The
membrane-bound ribosomes can be further characterized by
determining which of those ribosomes have their 50S subunit
facing the membrane (Ortiz et al., 2006). Further analysis of
expressomes would require a template involving the RNAP
and the essential transcription factor NusA that was found
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to attach the RNAP to the ribosome in cryo-ET of M.
pneumoniae (O’Reilly et al., 2020). In the same M.
pneumoniae study, subtomogram averaging was used to more
confidently assign expressome structures along with orientation
of the mRNA entry site to help identify ribosomes complexed
with RNAP.

The effects of ribosomes attached to the membrane or
complexed in polysomes and expressomes can all be included
in future whole-cell, spatially-resolved kinetic models. The
configurations resulting from the SAP model of the bacterial
chromosome are directly transferrable to the 8 nm lattice
representation used for LM simulations of whole Syn3A cells
through a coarse-graining procedure. The coarse-grained
chromosome configurations specify the spatial heterogeneities
caused by DNA-crowding in whole-cell kinetic models of Syn3A
and define the spatial locations of genes to investigate spatial and
temporal correlations in gene expression (Weng and Xiao, 2014;
Thornburg et al., 2019). Future work will focus on assigning
chromosomal interactions based on improved experimental 3C-
Seq libraries, improving the model to include dynamic formation
and relaxation of supercoiling and plectonemic loops, and
incorporating dynamic representations of the chromosome
(Miermans and Broedersz, 2020) within the LM simulations,
which will include DNA diffusion and chromosome replication.
The compactness and degree local structure of the DNA
determines the accessibility of its genes to RNAP which is an
important consideration in the whole-cell simulations of all the
cellular networks being developed for the minimal cell JCVI-
syn3A.
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Investigating Crosstalk Among PTMs
Provides Novel Insight Into the
Structural Basis Underlying the
Differential Effects of Nt17 PTMs on
Mutant Httex1 Aggregation
Anass Chiki 1†, Zhidian Zhang1,2†, Kolla Rajasekhar1, Luciano A. Abriata2, Iman Rostami1,3,
Lucien F. Krapp2, Driss Boudeffa1, Matteo Dal Peraro2* and Hilal A. Lashuel 1*
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Post-translational modifications (PTMs) within the first 17 amino acids (Nt17) of the
Huntingtin protein (Htt) have been shown to inhibit the aggregation and attenuate the
toxicity of mutant Htt proteins in vitro and in various models of Huntington’s disease. Here,
we expand on these studies by investigating the effect of methionine eight oxidation (oxM8)
and its crosstalk with lysine 6 acetylation (AcK6) or threonine 3 phosphorylation (pT3) on
the aggregation of mutant Httex1 (mHttex1). We show that M8 oxidation delays but does
not inhibit the aggregation and has no effect on the final morphologies of
mHttex1aggregates. The presence of both oxM8 and AcK6 resulted in dramatic
inhibition of Httex1 fibrillization. Circular dichroism spectroscopy and molecular
dynamics simulation studies show that PTMs that lower the mHttex1 aggregation rate
(oxM8, AcK6/oxM8, pT3, pT3/oxM8, and pS13) result in increased population of a short
N-terminal helix (first eight residues) in Nt17 or decreased abundance of other helical
forms, including long helix and short C-terminal helix. PTMs that did not alter the
aggregation rate (AcK6) of mHttex1 exhibit a similar distribution of helical conformation
as the unmodified peptides. These results show that the relative abundance of N- vs.
C-terminal helical conformations and long helices, rather than the overall helicity of Nt17,
better explains the effect of different Nt17 PTMs on mHttex1; thus, explaining the lack of
correlation between the effect of PTMs on the overall helicity of Nt17 and mHttex1
aggregation in vitro. Taken together, our results provide novel structural insight into the
differential effects of single PTMs and crosstalk between different PTMs in regulating
mHttex1 aggregation.

Keywords: post-translational modifications, huntingtin, molecular dynamics simulation, chemical semi-synthesis,
atomic force microscope

Edited by:
Joanna Trylska,

University of Warsaw, Poland

Reviewed by:
Marek Cieplak,

Institute of Physics (PAN), Poland
Beata Wielgus-Kutrowska,

University of Warsaw, Poland
Birgit Strodel,

Helmholtz-Verband Deutscher
Forschungszentren (HZ), Germany

*Correspondence:
Hilal A. Lashuel

hilal.lashuel@epfl.ch
Matteo Dal Peraro

matteo.dalperaro@epfl.ch

†These authors contributed equally to
this work

Specialty section:
This article was submitted to

Biological Modeling and Simulation,
a section of the journal

Frontiers in Molecular Biosciences

Received: 26 March 2021
Accepted: 06 July 2021
Published: 26 July 2021

Citation:
Chiki A, Zhang Z, Rajasekhar K,
Abriata LA, Rostami I, Krapp LF,
Boudeffa D, Dal Peraro M and
Lashuel HA (2021) Investigating

Crosstalk Among PTMs Provides
Novel Insight Into the Structural Basis
Underlying the Differential Effects of

Nt17 PTMs on Mutant
Httex1 Aggregation.

Front. Mol. Biosci. 8:686086.
doi: 10.3389/fmolb.2021.686086

Frontiers in Molecular Biosciences | www.frontiersin.org July 2021 | Volume 8 | Article 6860861

ORIGINAL RESEARCH
published: 26 July 2021

doi: 10.3389/fmolb.2021.686086

275

http://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2021.686086&domain=pdf&date_stamp=2021-07-26
https://www.frontiersin.org/articles/10.3389/fmolb.2021.686086/full
https://www.frontiersin.org/articles/10.3389/fmolb.2021.686086/full
https://www.frontiersin.org/articles/10.3389/fmolb.2021.686086/full
https://www.frontiersin.org/articles/10.3389/fmolb.2021.686086/full
https://www.frontiersin.org/articles/10.3389/fmolb.2021.686086/full
http://creativecommons.org/licenses/by/4.0/
mailto:hilal.lashuel@epfl.ch
mailto:matteo.dalperaro@epfl.ch
https://doi.org/10.3389/fmolb.2021.686086
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2021.686086


INTRODUCTION

Huntington’s disease (HD) is a fatal, autosomal
neurodegenerative disease characterized by motor
(Huntington, 1872; Ross and Tabrizi, 2011) and cognitive
declines (Marder et al., 2000) as well as psychiatric symptoms
(Paulsen et al., 2001). HD is caused by a mutation in the
huntingtin gene (HTT), resulting in an expansion in the CAG
repeat within its first exon (Gusella et al., 1983; MacDonald,
1993), which is then translated into an extended polyglutamine
(polyQ) repeat in the huntingtin protein (Htt) (Kremer et al.,
1994). HD occurs when the length of the polyQ repeat is higher
than the critical threshold of ≥36 (Snell et al., 1993). At the
neuropathological level, HD is characterized by neuronal
degeneration in the striatum and the cortex (Reiner et al.,
1988; Rosas et al., 2003) and the formation and accumulation
of nuclear inclusions composed of mutant Htt (polyQ repeat ≥36)
aggregates and other proteins (DiFiglia et al., 1997; Hodgson
et al., 1999). Several studies have shown that these inclusions are
composed of fibrillar and potentially oligomeric species derived
from N-terminal fragments containing expanded polyQ repeats
(Mangiarini et al., 1996; DiFiglia et al., 1997; Lunkes et al., 2002;
Landles et al., 2010; Sathasivam et al., 2013). One of the major
N-terminal fragments found in these inclusions represents an
N-terminal fragment that corresponds to exon1 of the Htt protein
(Httex1) (Landles et al., 2010; Sathasivam et al., 2013).
Overexpression of mutant Httex1 alone with polyQ length
ranging from 80 to 175 reproduces many aspects of HD
pathology in various animal and cellular models, including the
formation of huntingtin inclusions (Mangiarini et al., 1996;
Martindale et al., 1998; Scherzinger et al., 1999; Barbaro et al.,
2015).

Although increasing evidence suggests that mutant Htt
aggregation and toxicity play central roles in HD’s
pathogenesis, the molecular events responsible for triggering
mutant Htt aggregation, the nature of the toxic species, and
the mechanisms by which they cause neurodegeneration remain
unknown. Initial efforts focused on disentangling the relationship
between Htt aggregation and toxicity and HD have focused on
identifying modifiers of Htt aggregation based on targeting the
polyQ repeat domain, which has been shown to be the primary
sequence responsible for initiating Htt aggregation. However,
recent studies suggest that post-translational modifications
(PTMs) in close proximity or far from the polyQ domain have
the potential to modify not only mutant Htt levels and functions,
but also its aggregation and toxicity (Thompson et al., 2009;
Aiken et al., 2009; Steffan et al., 2004; Gauthier et al., 2004; Warby
et al., 2005; Yanai et al., 2006; Jeong et al., 2009; O’Rourke et al.,
2013). Interestingly, several of these PTMs occur within the first
N-terminal 17 amino acids of Htt, directly flanked by the polyQ
domain (Figure 1A). These modifications include
phosphorylation at multiple serine and threonine residues (T3,
S13, and S16), acetylation, ubiquitination, and SUMOylation at
selected lysine residues (K6, K9, K15) (Figure 1A). Mutating both
S13 and S16 to aspartate to mimic the phosphorylation was
shown to reverse the pathology of mutant Htt in an HD
mouse model (Gu et al., 2009) and modulate Htt aggregation

in different cellular models (Mangiarini et al., 1996; Martindale
et al., 1998; Scherzinger et al., 1999; Barbaro et al., 2015).
Recently, we showed that phosphorylation at T3, S13, and/or
S16 inhibited the aggregation of WT and mutant Httex1 in vitro
(Chiki et al., 2017; DeGuire et al., 2018).

Furthermore, TBK1 (TANK-binding kinase 1) mediated
phosphorylation of mutant Httex1 at S13 and S16 lowers its
levels and results in a significant reduction in Httex1 aggregation
and inclusion formation in different cellular models and a C.
elegans model of HD (Hegde et al., 2020). These findings,
combined with our observation that the levels of
phosphorylated Htt at T3 are decreased in pathological
conditions (Cariulo et al., 2017), suggest that phosphorylation
within the Nt17 domain protects against mutant Htt aggregation.
Similarly, SUMOylation at multiple N-terminal lysine residues
inhibits Httex1 aggregation in vitro (Sedighi et al., 2020).
Interestingly, although lysine acetylation at K6, K9, or K15
does not significantly alter the aggregation profile of Httex1
(Chiki et al., 2017), acetylation at K6 was shown to
significantly inverse the inhibitory effects of phosphorylation
at T3 on aggregation (Chiki et al., 2017). Similarly,
phosphorylation of S13 and S16 was shown to regulate Httex1
acetylation at K9 (Thompson et al., 2009), and ubiquitination/
SUMOylation at K6 and K9 (Thompson et al., 2009; O’Rourke
et al., 2013). Finally, competing modifications, such as
ubiquitination and SUMOylation, were shown to exert
different effects on Htt levels and degradation (Steffan et al.,
2004). Taken together, these findings, combined with the fact that
multiple reversible PTMs cluster within eight amino acids in
Nt17, suggest that many of these modifications act in concert
rather than individually and that the Htt PTM code involves
crosstalk between different PTMs, in particular, those that exist
close to each other.

One PTM that remains unstudied and its effect on mutant Htt
aggregation remains unknown is the oxidation of methionine 8
(oxM8). This residue is highly conserved (DiGiovanni et al.,
2016), and the levels of M8 oxidation were shown to be
higher in the R6/2 HD mouse model (Mitomi et al., 2012).
However, the absence of immunochemical methods to detect
M8 oxidation has precluded studies aimed at understanding its
relevance and potential roles in HD neuropathology. Despite this,
methionine oxidation is one of the most common modifications
that occur under oxidative stress (Hoshi and Heinemann, 2001),
and has been linked to the pathogenesis of HD (Kumar and
Ratan, 2016) and other neurodegenerative diseases. Elevated
levels of oxidative stress markers, including reactive oxygen
species (ROS), were found in blood (Chen et al., 2007) and
postmortem brains of HD patients (Polidori et al., 1999).
Although there is no direct evidence establishing that M8 is
oxidized, several studies have suggested that this could occur
under oxidative stress conditions and that M8 oxidation could act
as a sensor of ROS to regulate Htt phosphorylation and
localization (DiGiovanni et al., 2016; Son et al., 2019). Mitomi
and colleagues (Mitomi et al., 2012) showed, using hydrogen
peroxide (H2O2) mediated oxidizing conditions in vitro, that
oxidation at M8 occurs only post-aggregation on non-soluble
forms of mutant Httex1. Recent studies based on quantitative
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FIGURE 1 | Chemical and enzymatic methods for the generation of Httex1-43Q-oxM8, Httex1-43Q-oxM8/pT3, and Httex1-43Q-oM8/AcK6. (A) Schematic
presentation of the Httex1 sequence, highlighting the cluster of PTMs in the Nt17 domain. (B) Schematic presentation of the SUMO-based strategy used to produce
Httex1-43Q-oxM8 and Httex1-43Q-oxM8/pT3. The SUMO-Httex1-43Q was produced and purified by Nickel IMAC purification and subsequently oxidized or both
oxidized and phosphorylated by GCK. Next, the SUMO tag was removed by ULP1, and the desired protein was purified by RP-HPLC. (C) Schematic
representation for the semisynthetic strategy used for the generation of mHttex1-oxM8/AcK6 (adapted from Chiki et al. (2017)). (D) Characterization of Httex1-43Q-
oxM8, Httex1-43Q-oxM8/pT3, Httex1-43Q-oM8/AcK6, and unmodified Httex1-43Q by ESI/MS, UPLC, and SDS-PAGE.
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NMR showed that TiO2 nanoparticles induced M8 oxidation and
abolished the aggregation of a model peptide of Httex1, and
reduced the model peptide binding to lipids micelles (Ceccon
et al., 2018). However, most of these studies were carried out
either using Nt17 peptides, GST-tagged Httex1 protein (Mitomi
et al., 2012), or a model peptide consisting of only the Nt17 linked
to short polyQ tracts of only 7 or 10 glutamines, lacking the
proline-rich domain and most the C-terminal domain of Httex1
(Ceccon et al., 2018). Additionally, in some studies, the H2O2 was
not removed from the solution prior to the aggregation
experiments.

Here, we used an integrative approach combining biophysical
and computational studies to gain insight into the effect of M8
oxidation and potential crosstalk between M8 oxidation with
neighboring PTMs in regulating the structure and aggregation of
mutant Httex1. Toward this goal, we used chemoenzymatic
approaches to produce site-specific modified Httex1 proteins
bearing different PTMs, including: 1) oxM8, 2) oxM8 and
phosphorylation at T3, and 3) oxM8 and acetylation at K6.
With these proteins in hand, we performed systematic studies to
understand the effect of M8 oxidation and its crosstalk with pT3
and AcK6 in modulating the structure, aggregation, and fibrillar
morphology of Httex1. To further understand the structural basis
underlying the effects of these modifications on mutant Httex1
aggregation, we performed circular dichroism (CD) analysis and
atomistic molecular simulations to investigate how these different
combinations of PTMs influence Nt17 structure and helicity. Our
findings provide new insight into the PTM code of Nt17, and the
differential effects of PTM-induced conformational changes on
mutant Httex1 (mHttex1) aggregation.

RESULTS

Production of Oxidized Mutant Httex1
Proteins
Httex1 contains two methionine residues within its Nt17 domain.
The N-terminal methionine is cleaved by aminopeptidase
resulting in N-terminally acetylated alanine as the first residue
(Arnesen et al., 2010). This means that once expressed, Httex1
contains only a single methionine residue at position 8 (M8).
Investigating the biological role of M8 oxidation is more
challenging than other Nt17 PTMs, such as phosphorylation,
because there are no natural amino acids that mimic methionine
oxidation and factors that are known to induce protein oxidation,
such as oxidative stress, are not always chemoselective. Therefore,
to investigate the effect of M8 oxidation on Httex1 aggregation,
we sought to prepare mutant Httex1 proteins that are
homogeneously oxidized at M8. Several protocols have been
used to oxidize methionine residues in proteins in vitro,
including treatment with H2O2, transition metal ions, 2,2-
azobis (2-amidinopropane) dihydrochloride (AAPH), tert-butyl
hydroperoxide (t-BHP), and UV exposure (Keck, 1996;
Wasylaschuk et al., 2007; Ji et al., 2009; Luo et al., 2011).

In the context of Httex1, previous studies have shown that
treatment with H2O2 allows for efficient oxidation of M8 within a

GST-Httex1 fusion protein (Mitomi et al., 2012), Nt17 peptides
(DiGiovanni et al., 2016), or Httex1 model peptides consisting of
Nt17 domain with ten additional glutamine residues (Nt17Q10)
(Ceccon et al., 2018). Some of the limitations of these studies are:
1) none of the proteins used represent the native sequence of
Httex1; 2) the extent of oxM8 was not always confirmed by mass
spectrometry or other methods; or 3) in some studies, the
structural or aggregation properties of the protein and peptide
models was assessed in the presence of the oxidizing agent, H2O2.
It is known that incubation of proteins under such harsh
conditions for an extended period might modify other residues
within the sequence, such as histidine or phenylalanine (Li et al.,
1995), which could alter the sequence and biophysical properties
of Httex1.

To overcome these limitations, we developed a strategy for
producing native mutant Httex1 specifically oxidized at M8
(oxM8). We took advantage of recent advances from our lab
that allow for the generation of milligram quantities of highly
pure mutant Httex1 fused to the SUMO protein (Reif et al., 2018)
(Figure 1B). The desired PTMs (oxidation or phosphorylation)
are then introduced, using enzymatic or chemical approaches,
into Nt17 of the fusion protein, followed by removal of the SUMO
protein and purification of the modified mutant Httex1 by RP-
HPLC (Chiki et al., 2020).

Mutant Httex1, with 43 glutamine residues (mHttex1) fused to
a SUMO tag protein at its N-terminal (SUMO-mHttex1), was
expressed and purified as previously described (Supplementary
Figure 1A,B) (Reif et al., 2018). Next, the fusion protein was
subjected to oxidation using 400 mM of H2O2 in 50 mM Tris,
500 mM NaCl, 500 mM Imidazole, pH 7.5. The oxidation
reaction was monitored over time by ESI/MS (Supplementary
Figure 1C). For each time point, an analytical scale cleavage
reaction of the SUMO tag using the ULP1 enzyme was
performed, and the resulting cleaved product was analyzed by
ESI/MS. As shown in Supplementary Figure 1C, the M8 residue
was completely oxidized after 2 h of incubation with H2O2. The
oxidized SUMO-mHttex1 was then subjected to ULP1 cleavage.
Upon verifying the complete removal of the SUMO tag,
m-Httex1-oxM8 was immediately purified by reverse phase
HPLC (RP-HPLC) (Supplementary Figure 1E). The fractions
containing the protein of interest were then pooled together and
lyophilized. The final purity of the mHttex1-oxM8 was verified by
ESI/MS, UPLC, and SDS-PAGE (Figures 1D).

To investigate the effect of potential crosstalk between oxM8
and other Nt17 PTMs on mutant Httex1 aggregation, we
generated mutant Httex1 proteins oxidized at M8 and
phosphorylated at T3 (pT3) or acetylated at K6 (AcK6). To
produce mHttex1 oxidized at M8 and phosphorylated at T3
(mHttex1-oxM8/pT3), we first generated SUMO-mHttex1-
oxM8 as described above. After overnight dialysis to remove
the excess of H2O2, the fusion protein was co-incubated overnight
with GCK kinase, a kinase that we recently reported to efficiently
phosphorylate Httex1 specifically at T3 (Chiki et al., 2020). The
extent of phosphorylation was monitored by ESI/MS. As shown
in Supplementary Figure 1D, the ESI/MS spectrum of the
SUMO-mHttex1-oxM8 showed an additional +80 Da,
indicating the addition of a single phosphate group. The
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SUMO-mHttex1-oxM8/pT3 was then subjected to UPL1
cleavage followed by RP-HPLC purification of mHttex1-oxM8/
pT3 (Supplementary Figure 1F). The protein’s purity was
verified by ESI/MS, UPLC, and SDS-PAGE (Figure 1D).

To produce mutant Httex1 that is both oxidized at M8 and
acetylated at lysine 6, we employed a semisynthetic protein

strategy (Figure 1C) that we previously used to introduce
single or multiple PTMs within Nt17 of mHttex1 (Chiki et al.,
2020). mHttex1-AcK6/oxM8 was produced using native chemical
ligation between the Htt A10C-90 43Q and Ac-2-9-Nbz AcK6/
oxM8 peptides (characterization by ESI-MS and UPLC is shown
in Supplementary Figure 2B), followed by desulfurization to

FIGURE 2 | Biophysical studies to elucidate the effect of pT3, OxM8, and AcK6 on mutant Httex1 aggregation. (A) Httex1 aggregation studies (at 5 µM) of Httex1-
43Q-oxM8, Httex1-43Q-oxM8/pT3, Httex1-43Q-oM8/AcK6, and unmodified mHttex1 monitored by UPLC sedimentation assay to determine the proportion of
remaining monomer (error bars, S.D. derived from n � 3 independent experiments fitted with exponential decay). (B) Secondary structure analysis of unmodified Httex1-
43Q and Httex1-43Q-oxM8 by CD at 0 and 48 h of aggregation. (C) Electron microscopy after 48 h of aggregation (scale bars � 200 nm). (D) Secondary structure
analysis of Httex1-43Q-oxM8 and Httex1-43Q-oxM8 by CD at 0 and 48 h post-aggregation initiation.
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convert cysteine 10 back to the native alanine (Supplementary
Figure 2C). The purity of mHttex1 AcK6/oxM8 was determined
by SDS-PAGE, UPLC, and ESI/MS (Figure 1D).

Oxidation at M8 Delays the Aggregation of
Mutant Httex1
To determine the effect of oxM8 on mutant Httex1 aggregation,
mHttex1-oxM8, and mHttex1 were subjected to a disaggregation
protocol, as previously reported (Reif et al., 2018). Any remaining
aggregates were removed by filtration through a 100 kDa filter
before initiating the aggregation. The extent of and kinetics of
aggregation were monitored by quantifying the amount of soluble
proteins at different time points using a previously described
UPLC-based sedimentation assay (Vieweg et al., 2016; O’Nuallain
et al., 2006a; Jayaraman et al., 2011). Also, the effect of oxidation
on the secondary structure and morphology of the fibrils was also
assessed by circular dichroism spectroscopy (CD) and electron
microscopy (EM). Figure 2A shows the percentage of the
remaining soluble protein over time. As expected, unmodified
mHttex1 exhibited almost complete depletion of the soluble
monomer (Figure 2A) and full conversion into aggregates
after 48 h, which was confirmed by a shift in the CD spectra
from random coil to a ß-sheet structure (Figure 2B) and the
presence of mature long fibrils (Figure 2C). In contrast,
mHttex1-oxM8 showed a delay in aggregation compared to
the unmodified mHttex1 (Figure 2A). The aggregation of
mHttex1-oxM8 showed 68 and 39% remaining monomer after
12 and 24 h, respectively, compared to 40 and 13% for the
unmodified mHttex1 (Figure 2A). However, after 48 h, both
proteins exhibited complete aggregation as discerned by the
complete disappearance of soluble Httex1 (Figure 2A) and the
CD spectra of both proteins, which showed a signal that
corresponds to predominantly ß-sheet-rich structures

(Figure 2B). The fibrils formed by mHttex1 oxM8 after 48 h
were similar to those formed by the unmodified mutant Httex1,
suggesting that oxM8 influences aggregation’s kinetics but not the
final structure of the fibrils (Figure 2C).

Interestingly, we consistently observed the presence of a
population of oligomers for the oxidized Httex1 at early time
points (Figure 3 and Supplementary Figure 3). These oligomer
populations were observed in a higher amount after 4 h of
aggregation by EM, at which unmodified mHttex1 already
showed fibrils formation (Supplementary Figure 3). After
6 h, mHttex1-oxM8 showed a mixture of oligomers and short
fibrils (Supplementary Figure 3), whereas only fibrils were
observed in the case of the unmodified mHttex1. To further
validate our observations and quantitatively assess differences in
dimensions and morphological properties of the aggregates
formed by the two proteins, we performed time-dependent
atomic force microscopy (AFM) studies. Consistent with our
EM analysis, unmodified mHttex1 and mHttex1-oxM8 showed
the presence of both fibrils and oligomers at 25 min, as shown in
Figure 3A. Interestingly, at 2 h, mHttex1 predominantly formed
longer fibrils with a mean length of 167 nm compared to
mHttex1 oxM8, which formed a mixture of oligomers and
short fibrils (111 nm). Similarly, after 6 h of incubation,
unmodified mHttex1 formed fibrils with a mean length of
215 nm and a height of 5.5 nm (Figure 3), whereas mHttex1
oxM8 samples showed a mixture of shorter fibrils and
protofibril-like structures with average lengths and heights of
140 and 4.8 nm, respectively (Figure 3). These observations are
consistent with the slower aggregation kinetics observed for the
mHttex1 oxM8 in the sedimentation assay. Taken together,
these results suggest that the delay in the aggregation of the
oxidized mutant Httex1 could be associated with the formation
and accumulation of oligomers (on- or off-pathway), that
eventually convert into fibrils at later stages.

FIGURE 3 | AFM analysis comparison between unmodified and Httex1-43Q-OxM8. (A) Time-dependent AFM images of aggregates formed by Httex1-43Q and
Httex1-43Q-oxM8 (nm, nanometer), the oligomers are indicated with green arrows. Quantitative analysis of the length (B) and height (C) of fibrils measured from AFM
images. All the plots for the length and height of the Httex1-43Q-oxM8 fibrils differ from the Httex1-43Q with a statistical significance of at least p < 0.05 (scattered plot
represents the mean and range).
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Crosstalk Between M8 Oxidation and
Phosphorylation at T3 or Acetylation at K6
To determine the effect of PTM crosstalk on aggregation within the
Nt17 domain, we investigated and compared the aggregation kinetics
and properties of Httex1-oxM8/pT3 and -oxM8/AcK6. Previously,
we showed that >60% of mHttex1-pT3 remains soluble after 48 h of
aggregation, indicating an inhibitory effect of T3 phosphorylation on
mutant Httex1 in vitro (Chiki et al., 2017). As shown in Figure 2, the
oxidation of M8 does not seem to influence the inhibitory effect of
phosphorylation at T3. Even after 48 h of incubation, ∼50% of the
protein remained soluble, whereas more than 98% of the unmodified
proteins have been converted to fibrillar aggregates (Figure 2A). The
CD spectrum showed that the remaining protein retains a random
coil signature, suggesting that the remaining soluble protein
represents monomers or disordered soluble oligomers
(Figure 2D). Analysis by EM showed the accumulation of
oligomers and short fibrils similar to those we previously reported
formHttex1-pT3 (Chiki et al., 2017). On the other hand, oxidation of
M8 in the context of the K6 acetylated mutant Httex1 dramatically
altered the aggregation properties of the protein. Previously, we have
shown that acetylation of K6 or K9 does not significantly influence
the aggregation of mutant Httex1. However, as shown in Figure 2A,
the presence of both acetylation at K6 and methionine oxidation at
M8 (mHttex1-oxM8/AcK6) results in significant inhibition of
mutant Httex1 aggregation. Only 8% of mHttex1 oxM8/AcK6
aggregated after 48 h (Figure 2A) as determined by the
sedimentation assay and confirmed by CD and EM, which show
predominantly disordered conformation and the accumulation of
only oligomers and small fibrils (Figure 2C,D). These results suggest
that the addition of oxM8 reversed the aggregation ofmHttex1-AcK6
and illustrates how the combination of different Nt17 PTMs could
differentially influence the aggregation properties of the protein.

Oxidation at M8 Decreases the Helicity of
the Nt17 Peptides
To gain insight into the mechanisms by which oxM8 and its
combination with other PTMs influence the aggregation of
mutant Httex1, we investigated how the individual Nt17
PTMs and different combinations of PTMs influence on the
structural properties of the Nt17 domain. We confirmed that
Nt17-AcK6 exhibited increased helical content (Pastore et al.,
2019) compared to the Nt17-WT peptide (Supplementary
Figure 4) (Pastore et al., 2019). Additionally, by CD, we
observed that Nt17-pT3 has a higher propensity to adopt
helical conformation compared to other Nt17 peptides
(Supplementary Figure 4, Table 1). When oxM8 was added
to Nt17-AcK6 and Nt17-pT3, we observed a reduced CD signal at
222 nm for the Nt17-oxM8/pT3 and Nt17-oxM8/AcK6 peptides
(Supplementary Figure 4), indicating a decrease in the helical
content which was confirmed by determining their secondary
structure content from the CD spectra (See Supplementary
Table 1).

Furthermore, to investigate if the decrease in the helicity
induced by oxM8 persists even at a high concentration of the
peptides, we conducted CD studies (Supplementary Figure 5A)

at different Nt17 peptide concentrations (60, 90, 120, 150, and
200 μM). As shown in Supplementary Figure S5, all of the
peptides showed a small increase in the helical content with
increasing concentrations (Supplementary Figure 5B). oxM8
slightly decreased the helical content of Nt17-pT3 peptides over
different concentrations. The effect of oxM8 was stronger when it
was added to the Nt17-AcK6 peptide; it significantly decreased its
helical content over the whole range of tested concentrations
(Supplementary Figure 5B). Taken together, these results
suggest that the oxidation of M8 decreases the helicity of the
Nt17 in the presence of PTMs, and this can play a role in
modulating the aggregation of mutant Httex1.

To better understand how oxM8 and other PTMs influence
the conformational properties of Nt17, we conducted atomistic
molecular dynamics (MD) studies on Nt17. For these studies, we
decided to include the first two glutamine residue as preliminary
studies suggested that they could be involved in stabilizing Nt17
conformations. Previously, it has been shown that there is no
difference in the overall structure between the Nt17 and the Nt19
(Nt17 + QQ) (Chiki et al., 2017). We simulated the Nt19 with
single and double PTMs to analyze the crosstalk between
oxidation at M8, and phosphorylation at T3 or S13, or
acetylation at K6. The simulations were run for a total of
13 μs using the CHARMM36m force field and a modified
TIP3P water model (Jorgensen et al., 1983), which have been
shown to be effective for the simulation of intrinsically disordered
proteins. The phosphate group of phosphorylated threonine was
in a dianionic form. The parameters for phosphorylated
threonine and acetylated lysine were obtained from the
CHARMM36 parameters for modified residues (see Methods).

Both CD and MD showed that oxidation at M8 decreased the
overall helicity of Nt19 Nt19-pT3 and Nt19-AcK6 (Table 1). The
CD experimental data showed that for Nt19-pT3, oxidation atM8
resulted in a decrease of overall helicity by 13%, while a more
significant effect was observed for Nt19-AcK6, whose helicity
decreased by 69% (Table 1). Likewise, theMD results also showed
that oxidation at M8 decreased the overall helicity of Nt19, with a
more significant decrease in helicity for Nt19-AcK6 (Table 1).
The residue-wise helicity calculated from MD showed that the
core region of Nt19 (residue 4–13) had a more significant
decrease, while the N-term residues (1–3) were less affected
(Figure 4). Overall, oxM8 has a higher impact on Nt19-AcK6
and on the core region of Nt19 in general. These observations are
consistent with our aggregation studies and CD analysis data.

The Formation of a Short N-Terminal Helix in
the Simulations Correlates With
Suppressed Aggregation In Vitro.
The MD results were further analyzed to explore the structure
and dynamics of PTM crosstalk and gain insight into the
structural basis underlying the differential effects of Nt17
PTMs on the aggregation of mutant Httex1. We first
performed a principal components analysis of the backbone
dihedral angles (dPCA) (Mu et al., 2005) to distinguish among
the various conformations adopted by the peptides with
different PTMs. The first two components that depict a large
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part of the differences in the conformations were used for
generating an energy map (Figure 5). dPCA showed well-
separated minima corresponding to various helical forms and
revealed a very broad and shallow minimum corresponding to a
wide-range of unfolded conformations connected by very low
barriers.

To investigate the connection between the major
conformations and the aggregation rates of mHttex1 with
different PTMs, we classified the PTMs into three groups
based on their effects on the aggregation of mHttex1 and the
helicity of Nt17. In Group 1, we grouped PTMs that showed
higher helicity and had a lower aggregation rate. In Group 2,
PTMs that showed lower helicity but also lower aggregation rate,
while in Group 3, PTMs that showed an aggregation rate similar
to unmodified Httex1. dPCA showed that for all PTMs in Group
1, there were several local minima corresponding to
conformations where the first 8 N-terminal residues adopted a
helical conformation while the rest remained disordered
(Figure 5). When T3 was phosphorylated, and when both T3
and oxM8modifications were present, this short N-terminal helix
was 7 times more populated than for the unmodified peptide.
Meanwhile, the N-terminal helix was 4 times more populated in
oxM8/AcK6 compared to the unmodified peptide, yet the
abundance of all other helical forms was reduced by half
compared to the unmodified peptide (Figure 6). For Group 2,
the abundance of the N-terminal helix of pS13 and oxM8 was
similar to the unmodified peptide, but a 94 and 30% decrease was
observed for other types of helices in pS13 and oxM8. For Group
3, the abundance of either short N terminal helix or other types of
helices in AcK6 was similar to that of the unmodified peptide. By
comparing the helicity data with aggregation data, it then appears
that the higher abundance of a short N-terminal helix and lower
abundance of other Nt17 helical conformations, like a long helix

or short C-terminal helix in the MD simulations, correlates with
lower aggregation rates of mHttex1.

Oxidation of M8 Increased Abundance of
the Short N-Terminal Helix
To analyze how the PTMs modulate the stability of the short
N-terminal helix, we searched for the key differences in structural
dynamics in simulations of peptides with oxidized and reduced
methionine. For this, we computed the distance matrix between Cα
atoms for all frames of each MD simulation (Supplementary
Figure 6), compared the distributions of Cα pairwise distances
through Kullback-Leibler divergences of two distance matrices, as
described in Methods, and plotted the divergences into heat maps.
Heat maps comparing pT3 with WT and oxM8/pT3 with WT
(Supplementary Figure 6) show a significant change in the distance
between the first eight residues and residue 1 or 2. Heat maps
comparing WT and oxM8/AcK6 show that significant changes
occur at a distance between residue 4 and residue 9/10.

The distance distributions (Figure 7A) are similar for pT3 and pT3/
oxM8 but were different for WT. The peak for oxM8/pT3 and pT3
corresponds to a conformation where the phosphate group of pT3
forms a salt bridge with the NH3

+ group of M1 (Figure 7C), which is
not observed in WT, where M1 and T3 remained apart. A previous
study by Yalinca et al. has shown that phosphorylation stabilizes helical
conformation between A2 and L7, because of the increased negative
charge that counterbalances the helix dipole (Yalinca et al., 2019). Also,
the distribution of distances between Cα of L4 and K9 in WT, AcK6,
and oxM8/AcK6 (Figure 7B) is similar forWT andAcK6 but different
for AcK6/oxM8. The peak for WT and AcK6 corresponded to the
distance between L4 and K9 when they were in a helix conformation.
The peak for AcK6/oxM8 corresponds to a conformation where there
was a turn at M8, so the distance between L4 and K9 decreased.

TABLE 1 | Helicity of Nt19. CD and MD both showed decrease in helicity when M8 was oxidized.

Nt19 WT vs. oxM8 pT3 vs. oxM8/pT3 AcK6 vs. oxM8/AcK6

MD % change in helicity −20 −21 −60
CD % change in helicity NA −13 −69

FIGURE 4 | Helical propensity of Nt19. The secondary structure was obtained with STRIDE from the MD trajectories of (A)WT and oxM8 (B) pT3 and pT3/oxM8 (C)
AcK6 and AcK6/oxM8. The helicity for each residue was calculated based on the sum of the total number of frames that are in a-helix or 310 helical conformations divided by
the total number of frames.
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Another aspect we examined is the distance between the sulfur
atom of M8 and the center of the aromatic ring of F11 because a
previous study (Valley et al., 2012) has shown that when this distance
is below 6 Å, an interaction between sulfur of M8 and the aromatic
ring could stabilize the structure. For WT, pT3, and AcK6, a peak
below 6 Å (Figure 7D) was observed for the distance between M8’s
sulfur atom and F11’s aromatic ring. When M8 is oxidized, the
distance distribution shifts toward larger values, suggesting the
disruption of the stabilization effects brought by these interactions.

The residue pair distance analysis for WT, pT3, AcK6, oxM8/
pT3, and oxM8/AcK6 shows that the change in abundance of
short N-terminal helix and other helix resulted from 1)
stabilization of N-terminal helix by phosphate group of T3
(pT3, oxM8/pT3) and 2) breaking the long helix between
residue 8 and 9 with oxidation at M8 (oxM8/AcK6) and
destabilization of the long helix due to disruption of the
interaction between residue 8 and 11.

DISCUSSION

Among all Htt Nt17 PTMs, methionine oxidation remains the
least well understood and studied. To address this knowledge gap,

we first developed an efficient method to produce milligram
quantities of highly purified untagged mutant Httex1 that is
site-specifically oxidized at M8. To investigate the crosstalk
between M8 oxidation and neighboring PTMs, we used
protein semisynthetic and chemoenzymatic strategies
developed by our group (Chiki et al., 2017) to generate
mutant Httex1 proteins bearing oxidized M8 and acetylated
K6 (mHttex1-AcK6/oxM8) or phosphorylated at T3
(mHttex1-AcK6/pT3). These advances enabled us to
investigate, for the first time, the role of crosstalk between
these different PTMs in regulating Nt17 conformation and
mutant Httex1 aggregation in vitro. We choose K6 and T3
because of their close proximity to M8 and the fact these are
the only two PTMs that have been shown to significantly
influence the helicity of Nt17 and modify the effect of
neighboring PTMs on Nt17 structure and Httex1 aggregation
(Chiki et al., 2017).

Our results demonstrate that oxidation at M8 delayed the
aggregation of mHttex1 but did not alter the morphology of the
structure of the Httex1 fibrils. We hypothesized that this delay is
caused by methionine oxidation-induced formation of oligomers
at the early stages of the aggregation, which undergo relatively
slower conversion to fibrils. As shown in Figure 3 and highlighted

FIGURE 5 | Conformational ensembles of Nt19 with different PTMs. dPCA was performed on dihedral angles calculated for the Nt19 backbone, and a free energy
map was generated with the first two components. The white asterisk indicated the starting structure (in extended conformation). The major structures that correspond
to local minima include fully disordered conformation, short N-term helix, and long helix. The peptides are classified based on the effect of each PTM on helicity and
aggregation rate: oxM8/Ack6, pT3, and oxM8/pT3 increased Nt19 helicity and decreased aggregation rate (GROUP 1), pS13 and oxM8 decreased Nt19 helicity
and decreased aggregation rate (GROUP 2), AcK6 had no significant effect on aggregation rate (GROUP 3).
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in previous studies (Vieweg et al., 2016; Chiki et al., 2017;
DeGuire et al., 2018), oligomers are rarely observed during the
fibrillization of the unmodified mutant Httex1 due to its high
propensity to misfold and fibrillize. In contrast, our imaging
studies of oxM8 aggregation consistently revealed the transient
accumulation of oligomers at the early stages of the aggregation
process (Supplementary Figure 3).

Although acetylation at K6 was previously shown not to
influence the aggregation of mutant Httex1, when this
modification is combined with oxidation at M8, we observed a
strong inhibitory effect on mutant Httex1 aggregation and the
accumulation of mainly oligomeric and short fibrillar structures.
In contrast, the combination of methionine oxidation and
phosphorylation at T3 did not modify the aggregation
inhibitory effect induced by pT3. Our findings are consistent
with previous observations on the effect of methionine oxidation
on the aggregation of other amyloid-forming proteins. For
example, oxidation at M35 attenuates the aggregation
amyloid-β(1–40) (Friedemann et al., 2015; Gu and Viles,
2016), Aβ1-42, and the highly amyloidogenic Arctic Aβ1-40
variant (Johansson et al., 2007). Similarly, oxidation of
methionine 109 and 112 in the prion peptide PrP106-126
inhibits its fibrillization in vitro (Bergström et al., 2007).
Furthermore, methionine oxidation was shown to inhibits the
aggregation of alpha-synuclein protein and promote the
formation of stable oligomers (Zhou et al., 2010). In the case

of Httex1, previous studies have shown that oxidation at M8
abolished aggregation of a model peptide consisting of Nt17 plus
ten glutamine residues (Nt17Q10) (Ceccon et al., 2018).

To understand the structural basis underlying the effect of
methionine oxidation and its crosstalk with pT3 and AcK6 on
mHttex1, we performed CD and MD analyses of the
conformational properties of the unmodified Nt17 peptide and
Nt17 peptides bearing pT3, or AcK6 in the presence or absence
of the oxM8. We observed that methionine oxidation reduced the
helical content of Nt17, independent of co-occurring PTMs and
peptide concentration. Consistent with our previous studies (Chiki
et al., 2017; DeGuire et al., 2018), we observed that the effect of PTMs
on the overall helicity of the Nt17 peptide did not correlate with their
impact on the aggregation propensity of mutant Httex1 in vitro.
However, it was noticed that all PTMs that are associated with a
slower aggregation rates have a higher abundance of short helices at
the first 8 N-term residues and a lower abundance of other helical
conformations. According to the simulations, the higher abundance
of short N-term helices in Nt17-pT3 and oxM8/pT3 could derive
from direct stabilization via a salt bridge between the phosphate
group at T3 and theNH3

+ group ofM1,while their higher abundance
in Nt17-oxM8/AcK6 could result from breaking long helices with a
turn between residue 9 and 10, as well as destabilization of the long
helices due to disruption of the interaction between residue 8 and 11
of oxM8/AcK6. The simulation results provide an interesting
perspective, i.e., that the overall helicity only provides ensemble-

FIGURE 6 | The abundance of N-term helix was high for PTMs that delayed aggregation. The abundance of short N-terminal helix and other helical forms was
calculated for each peptide. Peptides with a lower aggregation rate showed a higher abundance of N-terminal helix and a lower abundance of other helical
conformations.
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averaged structure information; with the same overall helicity as
measured by CD, some modified peptides contain a higher
abundance of short N-term helix, and some contain a higher
abundance of the long helix or short C-term helix forms. Previous
studies suggested that the helical conformation of Nt17 is a major
driver of the initiation of mutant Htt oligomerization and
fibrillization. Our findings suggest Nt17 exists as an ensemble of
different helical conformations, among which somemight be vital for
aggregation, while others, like short N-term helix, have no impact or
even disfavor the aggregation process.

Our findings on the effect of the crosstalk between the different Nt17
PTMs highlight the complexity of the Nt17 PTM code and suggest that
Htt’s normal function and aggregation are likely regulated by a complex
interplay between different PTMs (Figure 8). A major challenge in
addressing this complexity is the large number of possible PTM
combinations, even within short stretches of sequences in proteins,
such asNt17. This, combinedwith the challenges of introducingmultiple
PTMs into proteins, has led to either abandoning efforts to investigate
this complexity or resorting to studying protein fragments. Our findings
here show that while working with peptide fragments provides useful

FIGURE 7 | Distance distribution of atom pairs in Nt19 with different PTMs. (A) Distance between Cα of M1 and Cα of T3 was lower in pT3 and oxM8/pT3 than in
WT. (B) The distance between Cα of L4 and K9 was lowered in oxM8/AcK6 compared to WT and AcK6 due to the bend at M8. (C) A peak below 4 Å was shown in the
distribution of the distance between hydrogens of NH3

+ and oxygens of the pT3 phosphate group, indicating pT3 might promote ionic interaction at this N-terminal end.
(D) The distance between the sulfur atom of M8 and the center of the F11 aromatic ring increased in peptides with M8 oxidation, indicating the stabilization by the
interaction of sulfur and the aromatic ring was weakened.
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insights, extrapolations of findings from these fragments to predict their
properties in the context of full-length proteins are not straightforward.
The work presented here represents our initial efforts in this direction
and aims at exploring the extent to which this is possible using peptide
systems in which the effect of PTMs can be experimentally and
computationally measured and predicted. Also, our work
demonstrates the promising potential of integrating experimental and
computational approaches for characterizing molecular mechanisms.

MATERIALS AND METHODS

Materials
The pTWIN1 vector containing human Httex1 fused to His6-
SUMO was ordered from GeneArt Gene Synthesis (Life
Technologies); E. coli B ER2566 from NEB; ampicillin, DTT,
isopropyl ß-D-1-thiogalactopyranoside (IPTG), and hydrogen
peroxide solution 30%, imidazole, complete Protease Inhibitor
Cocktail, magnesium chloride (MgCl2), magnesium sulfate
(MgSO4), and trifluoroacetic acid from Sigma; PMSF from
AppliChem; EGTA solution from Boston Bioproducts; Mg-
ATP from Cayman; EDTA from Fisher Scientific; Luria Broth
(Miller’s LB Broth) from Chemie Brunschwig; acetonitrile
(HPLC-grade) from Macherey Nagel; spectrophotometer semi-
micro cuvettes from Reactolab; C4 HPLC column from

Phenomenex; HisPrep 16/10 column from GE Healthcare;
GCK kinase (0.5 μg/ul, cat. # BC047865) from MRC PPU
Reagents; Uranyl formate (UO2(CHO2)2) and Formvar/
carbon 200 mesh, Cu 50 grids from EMS; high-precision cell
made of Quartz SUPRASIL 1 mm light path from Hellma
Analytics; Dulbecco’s Buffer Substance (PBS w/o Ca and Mg)
ancienne ref. 47,302 (RT) SERVA from Witech; and 100-kD
Microcon fast flow filters from Merck Millipore.

Expression and Purification of
SUMO-Httex1-43Q
Expression of His6-SUMO-Httex1-Qn (n� 23 or 43). The
expression and purification of His-SUMO-Httex1-43Q were
performed as previously reported (Reif et al., 2018). Httex1-
43Q with a His-SUMO tag at its N-terminal was cloned into
the pTWIN1 plasmid with ampicillin (Amp) resistance. Then, the
plasmid was transformed in E-coli ER2566, and the resulting
transformed bacterial cells were plated onto an agar plate
containing ampicillin (Froger and Hall, 2007). Next, 400 ml
LB + Amp (100 μg/ml) medium was inoculated with a single
colony and incubated at 37°C overnight to start the day after the
12L expression at an optical density (OD600) density of 0.15.
When the OD600 value was around 0.6, the culture was induced
with 0.4 mM IPTG and incubated at 18°C overnight. The cells

FIGURE 8 | A combined experimental and computational approach unravels the structural basis of PTM crosstalk in regulating aggregation of Huntingtin exon 1.
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were harvested by centrifugation (3,993 rpm, 4°C, 10 min) and
resuspended in buffer A (50 mM Tris, 500 mM NaCl 30 mM
Imidazole, pH 7,5, 0,65 um filtrated) with PMSF and protease
inhibitors. The suspended bacterial pellet was subjected to
sonication on ice (70% amplitude, total sonication time 5 min,
intervals of 30 s sonication, 30 s pause), followed by
centrifugation (39,191 rpm, 4°C, 60 min). The supernatant was
filtered (0.45 µm, syringe filters) and passed through a Ni-NTA
column. The protein was then eluted with 100% IMAC buffer B
(50 mM Tris, 500 mM NaCl 15 mM Imidazole, pH 7.5, 0.65 µm
filtrated). The purified fusion protein was kept ice for further
reactions. The final yield of Httex1-43Q was 1.23 mg/L of culture.

Production of Httex1-43Q oxM8 and
Httex1-43Q oxM8/pT3
SUMO-Httex1-43Q (10 mg in 18 ml) fusion protein was treated
with 1 ml of 30% H2O2 to perform the oxidation directly on the
SUMO fusion protein. After 2 h of the reaction, 30 µl was
supplemented with 1 µl of ULP1 (1 mg/ml), and the extent of
the oxidation was verified by LC/MS. 1 oxidation corresponds to
+16 Da to the molecular weight of Httex1-43Q. When the
completion of the oxidation was confirmed, 400 µL of ULP1
enzyme was added to the reaction solution to cleave the SUMO
tag, and the reaction was directly injected in RP-HPLC, C4
column using a gradient of 25–35% solvent B (Acetonitrile
+0.1 TFA) in solvent A (H2O+ 0.1% TFA), over 40 min at
15 ml/min. The fractions were analyzed by LC/MS; the ones
containing the protein were pooled and lyophilized. The
quality of the of protein was analyzed using LC/MS, UPLC,
and SDS-PAGE. The final yield of Httex1-43Q oxM8 was
0.76 mg/L of culture.

For the generation of Httex1-43Q oxM8 and Httex1-43Q
oxM8/pT3, the oxidation was performed as above, and when
completed, the oxidized fusion protein was dialyzed against 4 L of
TBS buffer overnight at 4°C and then supplemented with 10x
phosphorylation buffer to obtain a final buffer with the following
composition and concentration: 50 mM Tris, 25 mM MgCl2,
8 mM EGTA, 4 mM EDTA, 1 mM DTT. Mg-ATP (5 mM) was
added to the solution, and the pH was adjusted, and finally, GCK
was added at a ratio of 1:30 w/w (kinase:protein) to the Httex1-43
oxM8 (666 µL), and the reaction was incubated at 30°C overnight.
Next, the extent of the phosphorylation was verified by LC/MS,
and when it was completed, 400 µL of ULP1 was added to the
phosphorylation reaction solution to cleave the SUMO tag.
Finally, Httex1-43Q-oxM8 was separated from the SUMO tag,
and other impurities by HPLC and the fractions containing the
protein were pooled and analyzed by LC/MS, UPLC, and SDS-
PAGE. The final yield of Httex1-43Q oxM8/pT3 was 0.6 mg/L of
culture.

Semi-Synthesis of Httex1-43Q oxM8/AcK6
The semi-synthesis of Httex1-43Q oxM8/AcK6 was performed as
previously reported (Chiki et al., 2017). Briefly, 5 mg of Htt-
A10C-90-43Q with free N-terminal cysteine was dissolved in neat
TFA, and the TFA was dried under nitrogen after 30 min. The
dried Htt-A10C-90-43Q was redissolved in 5.0 ml ligation buffer

(8 M urea, 0.5 M L-Proline, 30 mM D-Trehalose, 100 mM TCEP
and 100 mM MPAA). The pH was adjusted to 7.0 with 10 M
NaOH, and the peptide Ac-2-9Nbz AcK6/oxM8 peptide (2.5 mg)
was added to the reaction mixture. The native chemical ligation
was monitored by LC-ESI-MS until the complete consumption of
A10C-90 43Q. Next, the ligation reaction was desalted with hitrap
26/10 desalting column, and fractions containing the Httex1-
A10C-43Q oxM8/pT3 were pooled and lyophilized. To recover
the native alanine, the protein mixture was disaggregated and
dissolved in 100 mMTCEP, 40 mM L-methionine, 20 vol% acetic
acid in H2O. Freshly prepared nickel boride suspension (1.0 ml)
was added to the resulting solution, and the resulting suspension
was incubated at 37°C. After 2 h, a loss of 32 Da was observed.
Insoluble nickel was removed from the reaction mixture via
sedimentation (4°C, 4,000 g, 10 min). The supernatant was
subjected to RP-HPLC purification with a gradient of 25–55%
buffer B (MeCN +0.1% TFA) in buffer A (H2O+ 0.1% TFA). The
fractions containing Ac-Httex1-43Q oxM8/pT3 were analyzed by
LC-MS andUPLC, pooled, and lyophilized. The final purity of the
protein was checked by LC/MS, UPLC, and SDS-PAGE. The final
of the semisynthesis reaction was 27% (1.35 mg of final protein/
5 mg of Htt-A10C-90-43Q starting material).

UPLC-Based Sedimentation Assay
To perform aggregation studies, Httex1 was disaggregated as
previously reported (Reif et al., 2018) using TFA, and after
evaporating the TFA, the protein was filtered through a 100-
kDa filter. The final volume was adjusted with PBS to have
the desired concentration and incubated at 37°C. To determine
the percentage of the remaining soluble monomer during the
aggregation, 40 µL was taken at each indicated time point, and
insoluble aggregates were removed by centrifugation (4°C,
20,000 g, 30 min). The supernatant was injected into the
UPLC. The peak area was measured for each time point, and
the changes in the area were used to calculate the fraction of
soluble protein compared to t � 0 being 100%. The exponential
decay function y � Ae b(x) + c was used to fit the data of different
aggregation curves (O’Nuallain et al., 2006b). All the mutant
Httex1 aggregated protein curves had an adjusted R2 ranging
from 0.97 to 0.99 (except Httex1-43Q AcK6/oxM8 with
R2 � 0.78).

Electron Microscopy
For TEM analysis, 5 µl of aggregation solution was spotted onto a
Formvar/carbon-coated 200-mesh glow-discharged copper grid
for 1 min. The grid was then washed 3x with water and stained for
3×10 s with 0.7% w/v uranyl formate. Imaging was performed on
a Tecnai Spirit BioTWIN electron microscope equipped with a
LaB6 gun and a 4 K × 4 K FEI Eagle CCD camera (FEI) and
operated at 80 kV.

Atomic Force Microscopy (AFM) Imaging
AFM was performed on freshly cleaved mica discs that are
positively functionalized with 1% (3-aminopropyl)
triethoxysilane (APTS) in an aqueous solution for 3 min at
room temperature. For fibril deposition on the substrates, a
20-µL aliquot of 5.2 µM protein solution was loaded on the
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surface of mica discs at defined time-points. Deposition took
3 min and was followed by a gentle drying by nitrogen flow. The
mica discs were stored in a desiccator for one day before imaging
to avoid prolonged exposure to atmospheric moisture. AFM
imaging was performed at room temperature by a Park NX10
operating in a true non-contact mode that was equipped with a
super sharp tip (SSS-NCHR) Park System cantilever. The length
and height quantifications were performed semi-automatically
using XEI software developed by Park Systems Corp by taking
advantage of the grain detection method and thresholding
(masking) the background values. The quantified data was
plotted and analyzed in GraphPad Prism 8.

Circular Dichroism
mHttex1 proteins (100 µL) during the aggregation or 120 µL of
the Nt17 peptides (at 60 µM in PBS) were removed from the
mixture and analyzed using a Jasco J-815 CD spectrometer and a
1.0 mm quartz cuvette. Ellipticity was measured from 195 to
250 nm at 25°C.

Origin was used to smooth the data through Savitzky-Golay
fitting (8 points window). The mean residue molar ellipticity
(θMRE) was plotted, and BeStSel (Micsonai et al., 2018) was used
for fitting and calculating the helicity. Average helicity and
standard deviation were calculated from 3 repeats.

Molecular Dynamics Simulations
The starting structure for molecular dynamics simulations was a
fully extended form of Htt 19 peptide. The length of this extended
conformation was 68 Å, and the buffer distance between each side
of the peptide and the periodic boundary was 10 Å, resulting in a
water box with a width of 88 Å. The HTT 19 peptide was solvated
using explicit CHARMM36m (Huang et al., 2017) modified
TIP3P water model (Jorgensen et al., 1983) and 20 mM K+

and Cl− ions. The simulation was conducted with GROMACS
(Abraham et al., 2015), and CHARMM-GUI was used to generate
inputs. A CHARMM36m forcefield was used with modified
residues for phosphorylated threonine and acetylated lysine
residues (Grauffel et al., 2010). The phosphate group of
phosphorylated threonine was in a dianionic form. The
oxidized methionine used in this simulation was an R
diastereomer, and its parameters were obtained from
previously published papers (Lockhart et al., 2020). The
system was minimized with the steepest descent and
equilibrated to 1 atm and 303.15 K with constraints on the
backbone. The nonbonded interaction cut-off was 12 Å. The
time step was 1 fs for equilibration and 2 fs for production.
The Nosé−Hoover temperature (Nosé, 1984) coupling method
was used to maintain temperature, and the isotropic
Parrinello−Rahman (Parrinello and Rahman, 1981; Nosé and
Klein, 1983) method was used for pressure coupling. LINCS
algorithm (Hess et al., 1997) was used for H-bond. The
production was run for 13 μs for each system.

Data Analyses
To perform dPCA (Mu et al., 2005), the dihedral angles were
calculated for the Nt19 backbone, and a transformation from
the space of dihedral angles (ϕn, ψn) to metric coordinate

space was done by taking trigonometric function (cos ϕn, sin
ϕn, cos ψn, sin ψn). Then, the transformed dihedral data of each
post-translationally modified Nt19 was combined, and a PCA
analysis was done. A free energy map was generated with the
first two components. The secondary structure was obtained
with the STRIDE (Frishman and Argos, 1995) algorithm
implemented in VMD (Humphrey et al., 1996). The overall
helicity for each peptide was calculated based on the sum of
the total number of residues that are in a-helix or 310 helical
conformations at every frame and then divide by the total
number of frames.

We analyzed and compared the effects of each post-
translational modification of Nt1-19 on the dynamics using a
statistical analysis of the distribution of pairwise distances
between residues. For each MD of Nt1-19, we reduce the
ensemble of conformations to a statistical description of the
distances between all pairs of Cα in Nt1-19. For each pair of
residues within Nt1–19, we compute the distribution of the
Euclidean distances between the two Cα with a bin resolution
of 0.5 Å. We, therefore, describe every MD with a corresponding
histogram of distances summarizing the dynamics of the
structure. The differences in residue-residue dynamics between
MDs can be quantified using the Kullback-Leibler divergence
(Kullback and Leibler, 1951) from a reference histogram of
distances.
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Exploring Covalent Docking
Mechanisms of Boron-Based
Inhibitors to Class A, C and D
β-Lactamases Using Time-dependent
Hybrid QM/MM Simulations
Łukasz Charzewski, Krystiana A. Krzyśko and Bogdan Lesyng*

Department of Biophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland

Recently, molecular covalent docking has been extensively developed to design new
classes of inhibitors that form chemical bonds with their biological targets. This strategy for
the design of such inhibitors, in particular boron-based inhibitors, holds great promise for
the vast family of β-lactamases produced, inter alia, by Gram-negative antibiotic-resistant
bacteria. However, the description of covalent docking processes requires a quantum-
mechanical approach, and so far, only a few studies of this type have been presented. This
study accurately describes the covalent docking process between two model inhibitors -
representing two large families of inhibitors based on boronic-acid and bicyclic boronate
scaffolds, and three β-lactamases which belong to the A, C, and D classes. Molecular
fragments containing boron can be converted from a neutral, trigonal, planar state with sp2

hybridization to the anionic, tetrahedral sp3 state in a process sometimes referred to as
morphing. This study applies multi-scale modeling methods, in particular, the hybrid QM/
MM approach which has predictive power reaching well beyond conventional molecular
modeling. Time-dependent QM/MM simulations indicated several structural changes and
geometric preferences, ultimately leading to covalent docking processes. With current
computing technologies, this approach is not computationally expensive, can be used in
standard molecular modeling and molecular design works, and can effectively support
experimental research which should allow for a detailed understanding of complex
processes important to molecular medicine. In particular, it can support the rational
design of covalent boron-based inhibitors for β-lactamases as well as for many other
enzyme systems of clinical relevance, including SARS-CoV-2 proteins.

Keywords: NAMD, covalent docking, boron-based inhibitors, 3-nitrophenyl boronic acid, bicyclic boronate,
antibiotic resistance, β-lactamases, time-dependent QM/MM

INTRODUCTION

Gram-negative bacteria can cause serious infections in immunocompromised patients, including
urinary tract infections, pneumonia, hepatitis, sepsis, soft tissue infections, and peritonitis. It is well-
known fact that these bacteria are resistant to such antibiotics as Penicillin, Cephalosporins,
Monobactams, or Carbapenems, because of the ability to breakdown the β-lactam antibiotics by
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β-lactamases. The reaction mechanism of class A β-lactamases
consists of acylation of an active site serine by the antibiotic
molecule, followed by deacylation and release of the cleaved
compound. Acylation is related to the formation of the
tetrahedral intermediate. This reaction mechanism was
described in detail using QM/MM and high-level ab initio
calculations to model the rate-determining step for the
formation of a tetrahedral intermediate in acylation (Hermann
et al., 2009).

In recent years, significant progress has been made in the
design and synthesis of a new class of antibiotics resistant to the
β-lactamase mechanisms. In particular, boron-based inhibitors
have proven to be effective inhibitors of β-lactamases due to
chemical blockade of the tetrahedral transition state forced by
these enzymes, and typically due to low toxicity. Boronic acid
derivatives, as well as cyclic boronates, have been lately tested in
their ability for inhibiting β-lactamases produced, among others,
by Gram-negative pathogens Escherichia coli and Klebsiella
pneumoniae. An overview of boron-based small molecules in
disease detection and treatment is presented (Theraja, et al.,
2017). The combination of theoretical and crystallographic
approaches has provided important insight into the molecular
stabilization of boron-based compounds in various target
proteins, such as proteasomes, tyrosine kinases, histone
deacetylases, GPCRs, glutamate racemases, amino acid
transporters, autotaxin, and in particular β-lactamases
(Calvopiña, et al., 2017; Bello, 2018; Cahill et al., 2019; Song
et al., 2021). Based on crystallographic and NMR data,
mechanism of proton transfer in class A β-lactamase catalysis
and inhibition by Avibactam were described (Pemberton et al.,
2020).

A number of boron-based chemicals are known as therapeutic
agents or drugs, such as Ixazomib, Tavaborole, Crisaborole,
Vaborbactam or Taniborbactam (VNRX-5133) Ban et al.
(2015), Thareja et al. (2017), Krajnc et al. (2019a), Krajnc
et al. (2019b), Lang et al. (2020), Lence and Gonzales-Bello

(2021), for specifications see e.g. Drug Central 2021, https://
drugcentral.org/. Two authors of this study (Ł.Ch. and K.A.K)
participated in integrated studies involving the modeling,
synthesis, and biological activity analysis of a large series of
boron-based inhibitors of KPC/AmpC β-lactamases (Durka
et al., 2019). One should also mention recent work on the
evaluation of Bortezomib and other boron-containing
compounds, as inhibitors of SARS-CoV-2 main protease, e.g.
Vega-Valdez et al., 2020). A very comprehensive overview of the
mechanisms of β-lactamase inhibition by boron-based inhibitors,
including cyclic boronates, and their applications in biomedicine
is reported (Brem et al., 2016; Cahill et al., 2017; Cahill et al., 2019;
Tooke et al., 2019; Tooke et al., 2020; Song et al., 2021).

What is so special about the boron atom? The boron atom
constitutes the basis of a huge number of chemical derivatives
with very diverse chemical properties; some common borate
derivatives including their systematic names are presented
(Figure 1). Metalloid boron has many similarities to
neighboring carbon and silicon. All three elements form
covalent compounds. However, boron has one distinct
difference as its outer 2s22p1 electronic structure contains one
less valence electron than it has valence orbitals. Boron atom is
formally trivalent, but due to its empty p-orbital, it can act as a
strong acid - the so-called Lewis acid. Its acidic properties will be
important for the topic of this work. Lewis acid accepts electrons
from electron pair donors, such as H2O, HO−, NH3, or CH3

−. The
lone electron pair of the nucleophile interacts with the vacant
p-orbital of boron that facilitates the chemical reaction. The
interaction of boron with molecular groups having lone
electron pairs leads to a tetrahedral transition state, with a
valence bond configuration similar to one found in carbon
(Figure 2). This way, boronic molecular fragments can easily
be converted from the neutral, trigonal planar sp2 hybridization
state to the anionic, tetrahedral sp3 state in a process sometimes
calledmorphing, which may (or may not) lead to the formation of
a chemical bond between boron and the electron donor moiety. It

FIGURE 1 | Several well-known simple borane compounds are shown along with their systematic names. The structures of 3-nitrophenylboronic acid (3-NPBA)
and the bicyclic boronate inhibitor ((3R)-3-[[2-[4-(amino)cyclohexyl]acetyl]amino]-2-hydroxy-3,4-dihydro-1,2-benzoxaborinine-8-carboxylic acid, BBI), which are the
subject of this study, are also presented.
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should also be mentioned that in some cases the boron derivatives
may also act as Brønsted-Lowry acids. The term Lewis acid is
more general than Brønsted-Lowry acid. In the Brønsted-Lowry
model, an acid is characterized as a proton donor and a base as a
proton acceptor. The Lewis acid-base model also describes
reactions without proton transfer, but where single electron
pairs can form new bonds. 3-nitrophenylboronic acid (3-
NPBA) and bicyclic boronate derivatives are known covalent
inhibitors of β-lactamases (Ke et al., 2012; Brem et al., 2016). 3-
NPBA and a bicyclic boronate inhibitor (BBI) being the subjects
of this study are shown (Figure 1). 3-NPBA can form a reversible
chemical bond with a serine hydroxyl group of the target protein,
providing additional covalent-stabilization compared to the
initial nonbonded-type interaction, which is the key goal of
the discussed activities. The process of formation of such a
bond is, however, quite sensitive to the local electric field,
depending on the relative orientations of the interacting
molecular fragments. In addition, in the case of enzymes, the
entire process runs through several transition states that have not
been clearly defined so far. Therefore, intentional covalent
docking may require a few non-obvious adjustments in order
to yield reliable results. Until now, most of the covalent docking
work has been supported by heuristic procedures Krajnc et al.
(2019a), Krajnc et al. (2019b), and only a few studies of this type
of process have been described based on approximate quantum-
mechanical methods e.g. (Sgrignani et al., 2015; Krivitskaya and
Khrenova, 2021; Lence and Gonzalez-Bello, 2021).

An important problem of boronic acids is their oxidative
instability. Phenylboronic acid and its borate esters are
oxidized by reactive oxygen species. Quite recently it has been
found Graham et al. (2021) that reducing the electron density on
the boron increases its oxidative stability. The oxidation of a
boronic acid can be slowed down by the presence of a pendant
carboxyl group, which is the ligand to the boron atom. The
ensuing derivative, oxaborolone, is 104-fold more resistant to
oxidation.

Organoboron compounds participate in free radical reactions
(Renaud et al., 2007; Kumar et al., 2020). Recent studies describe
C-B bond formation mechanisms via radical intermediates
(Friese and Studer, 2019). Photoactivation processes of boron-
species, as well as applications to the creation of C–H, C–C, C–O,
B–C, and B–S bond, are discussed in review (Duret et al., 2015). It
should be emphasized, however, that as far as the mechanisms of
interaction of covalent inhibitors of boron with β-lactamases are
concerned, so far there are no experimental or theoretical data
that would indicate the radical mechanisms of the formation of

chemical bonds of the boron atom with hydroxyl groups of serine
residues.

The aim of this work is to accurately describe the covalent
docking process between two model inhibitors - representing two
large families of inhibitors based on boronic acid and bicyclic
boronate scaffolds, and three β lactamases belonging to the A, C,
and D enzyme classes, namely KPC-2 β-lactamase (class A),
GC1 β-lactamase (class C), and OXA-24 β-lactamase (class D).
Class B is not included in this study as it is an ortholog different
structurally and mechanistically. As class B catalysis is based on
Zn2+ ions instead of serine, these metallo-β-lactamases would
require a separate study. For a more detailed β-lactamases
classification description and properties see e.g. (Bush, 2018;
Keshri et al., 2018; Philippon et al., 2016). As mentioned, the
first inhibitor is 3-NPBA, and the second one is the inhibitor
based on the bicyclic boronate scaffold, named in this study as
BBI, (Figure 1). Systematic name of this compound is (3R)-3-[[2-
[4-(amino)cyclohexyl]acetyl]amino]-2-hydroxy-3,4-dihydro-
1,2-benzoxaborinine-8-carboxylic acid, and it is a close analog of
the known Taniborbactam antibiotic (Krajnc et al., 2019a; Krajnc
et al., 2019b; Liu et al., 2020).

Although the crystallographic structures (6TD1, 6YEN and
6RTN) of Taniborbactam complexes with β-lactamases are
available Krajnc et al. (2019a), Krajnc et al. (2019b), Lang
et al. (2020), Tooke et al. (2020), we decided to use BBI for
which such crystallographic data are not available. Among other
things, we wanted to prove that the multi-scale modeling and
simulation procedures used in this study are so effective that they
can be applied to other boron inhibitors of biomedical
importance for which direct data from crystallographic or low-
temperature electron microscopy of their complexes with protein
targets are not available.

MATERIALS AND METHODS

In order to accurately simulate the covalent binding process,
quantum mechanical and classical molecular mechanical
approaches (QM/MM) have to be applied. In particular, a
time-dependent molecular dynamics model with a quantum
description of structural changes inside the active site should
be used, applying quantum-classical molecular dynamics
simulations. A number of multiscale molecular modeling and
bioinformatics methods are applied in this study, which is briefly
discussed below. An overview of multi-scale molecular modeling
methods is presented among others in the following reviews

FIGURE 2 | A simplified diagram of the Lewis acid-base model of boronic acid in water.
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Lesyng and McCammon (1993), Lesyng and Rudnicki (2003),
Gruziel et al. (2007), and a number of quantum-classical
molecular dynamics models along with their numerical
implementations are discussed in Bała et al. (1996), Lesyng
(1999), Bała et al. (2000), Grochowski and Lesyng (2003).
Selected methodologies described above have been used in
this study.

Thus, in this study, motions of all atomic nuclei are governed
by Newtonian dynamics, and electronic degrees of freedom are
described by the evolution of the multi-electronic wave function
in an adiabatic way. By adiabatic quantum dynamics, we mean an
approximate theoretical model where the wave function of the
quantum domain is always in the lowest electronic eigenstate,
dependent exclusively on instantaneous positions of the atomic
nuclei (molecular geometry based on the Born-Oppenheimer
approximation). This approach will hereinafter be referred to
as adiabatic quantum-classical molecular dynamics. When it
comes to selecting the quantum method, its practical
applications in drug design should rather be limited to fast
semi-empirical or DFT methods. Within this theoretical
framework, taking also into account the accuracy of the QM/
MM methods and their computational MD performance, three
semiempirical quantum mechanical models PM6, PM7 Stewart
(2013), Stewart (2016), and DFTB3 Gaus et al. (2011) deserve
attention. PM6 and PM7 have been developed on the basis of the
NDDO (Neglect of Diatomic Differential Overlap)
approximation. DFTB stands for Density Functional Tight-
Binding method. Regarding PM6 and DFTB3 methods,
aposteriori (D3H4) corrections were designed to improve the
hydrogen bond and dispersion interaction energies, Řezáč and
Hobza (2012), and Řezáč (2017). The PM6 + D3H4, PM7, and
DFTB3 + D3H4 models, as well as a few others, have been tested,
including in the analysis non-bonded interactions of inhibitors
with enzymes (Križ and Řezáč, 2020).

In this study time-dependent QM/MM simulations were
carried out using a high-performance NAMD molecular
modeling environment with an implemented quantum
potential energy generator MOPAC (Melo et al., 2018; Phillips
et al., 2020). In more detail, the NAMD classical environment,
VMD visualization environment, and the quantum mechanical
package MOPAC Stewart (2016), were integrated into a
comprehensive, customizable, and easy-to-use suite. Regarding
technical aspects of the hybrid QM/MM model implemented in
the NAMD environment, such as definitions of QM regions,
mechanical and electrostatic embedding, link atoms, point charge
alternations, link atom charge, and charge groups, see http://
www.ks.uiuc.edu/Research/qmmm/.

When deciding to use the NAMD environment, the user has a
choice of two semi-empirical quantum mechanical models: PM7,
or PM6 with a mentioned above a posterioriD3H4. While PM6 +
D3H4 is slightly better at predicting free energy differences of
non-bonded inhibitors interacting with enzymes (Križ and Řezáč,
2020) PM7 has an advantage in predicting structures and heat of
formation of chemical bonds. It was parameterized using
experimental and advanced ab initio reference data,
augmented by a new type of reference. In particular, molecular
structures containing chemical bonds with boron are slightly

better represented in the PM7 model, http://openmopac.net/
PM7_and_PM6-D3H4_accuracy/Survey_of_Solids.html/. It has
also been validated in the combined docking with classical the
MMF94 force field (Sulimov et al., 2017). It should also be noted
that time-dependent QM/MM simulations with PM7
Hamiltonian were successfully applied in the theoretical
studies of boron-doped derivatives of graphene (Chaban and
Prezhdo, 2016).

Therefore, in this work, a hybrid computational model was
applied, consisting of the high-performance NAMD
computational modeling environment with the classical
CHARMM36 force field Vanommeslaeghe et al. (2010), and
the MOPAC/PM7 quantum module–serving as the generator
of the Born-Oppenheimer potential energy surface.

Structures deposited in Protein Data Bank Berman et al.
(2000) of the following β-lactamases: KPC-2 β-lactamase (class
A, PDB code 3RXX; Ke et al. (2012)), GC1 β-lactamase (class C,
PDB code 1Q2Q; Venkatesan et al. (2004)), and OXA-24 (class D,
PDB code 4F94; June et al. (2013)) were studied. With regard to
OXA-24 β-lactamase, two forms were considered - wild type,
containing carboxylated Lys 84 and its mutant - Lys 84 to Asp 84,
denoted hereafter as K84D. The reason for considering the K84D
mutant was that we were not able to observe covalent binding in
the wild-type. Such a mutation has already been described
Schneider et al. (2011), and as indicated the mutant was
capable to bind and hydrolyze carbapenems, as well as to
covalently bind inhibitors. Considering these biochemical
properties and similar electrostatic potential the K84D mutant
might effectively mimic the behavior of wild-type.

The covalent bond between 3-NPBA and Ser 70 was removed
from KPC-2 β-lactamase structure, and substrate-state
protonation was restored using Molecular Modeling
Environment 2019 (MOE, 2019). The structure was optimized
by the energy minimization, applying the AMBER10 force field
Case et al. (2008) utilizing mild string restraints on aromatic ring
carbons in order to preserve ring orientation. Figure 3 presents
KPC-2 β-lactamase with the docked 3-NPBA substrate molecule.
As finding the structural core of considered proteins and
optimizing structural alignment was not trivial, DAMA - a
novel multiple structure alignment method was applied
(Essentia Proteomica server, https://dworkowa.imdik.pan.pl/EP/
DAMA/, Daniluk and Lesyng, 2011; Daniluk et al., 2021). Using
DAMA, the KPC-2, GC1, and OXA-24 structures were
compared, analyzed, and aligned with the identification of the
biologically significant similarities. 3-NPBA in an orientation
corresponding to the geometry of the optimized KPC-2
β-lactamase complex was introduced to GC1 and OXA-24.
The BBI inhibitor was docked in a very similar way as 3-
NPBA. Its initial conformation was derived from the structure
of Taniborbactam. The inhibitor was inserted into the KPC-2,
GC1, and OXA-24 binding pockets and oriented similarly to the
Taniborbactam poses in the crystallographic 6TD1, 6YEN, and
6RTN structures Krajnc et al. (2019a), Krajnc et al. (2019b), Lang
et al. (2020), Tooke et al. (2020), respectively. Covalent bonds
between serine and the boron atom were removed. The resulting
systems were optimized by applying the ligand and pocket
sidechains minimization in the AMBER10 force field without
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FIGURE 3 | KPC-2 β-lactamase with the docked 3-NPBA substrate molecule (left). The chemical formula of 3-NPBA (middle). The optimized molecular structure
with an atomic resolution of KPC-2 β-lactamase focused on the active site with 3-NPBA docked (right). The distance between Ser 70 hydroxyl oxygen and the boron
atom of 3-NPBA was 2.57 Ă. The β-lactamase α-helices are shown in red, β-strands in yellow and turns in blue.

TABLE 1 | Approximate time-periods characterizing the covalent docking process between 3NPBA and the members of the A, C, and D β-lactamases classes. 3-NPBA for
simplicity is denoted as NPB. Tarrival is the time to reach a given state on the reaction path, calculated from the beginning of the process. Tduration is the average time to
reach the next state, calculated from the previous one. All times, along with their standard deviations in parentheses, are given in ps. The atomic names follow the CHARMM
force field nomenclature as well as the IUPAC nomenclature, and showwhich atom hasmoved towards which atom in another molecular fragment. The distances describing
the changes in geometry are given in Å. Graphical representations of the reaction steps are shown in Figures 4, 6. In class C, stage #A2was observed only in the second
simulation, reversing step #A1 and leading back to the structure as in step #1. The simulations in class C which were stabilized at stage #A1 resulted in blocking step #2.

Step Description of the transfer
process (CHARMM)

Description of the transfer
process (IUPAC)

Change of the
distance

Tarrival

First
simul.

Second
simul.

Third
simul.

Average
Tarrival

Average
Tduration

Class A – KPC-2

#1 Lys73:HZ3 → Glu166:OE2 Lys73:N6-H → Glu166:O5 2.0 → 1.0 0.20 0.55 0.27 0.34 (±0.15) 0.34 (±0.15)
#2 Glu166 (proton

rearrangement)
Glu166 (proton
rearrangement)

– 9.05 2.95 24.28 12.09 (±8.97) 11.75 (±9.06)

#3 NPB:B → Ser70:OG NPB:B1 → Ser70:O3 2.1 → 1.6 9.35 5.75 24.95 13.35 (±8.33) 1.26 (±1.10)
#4 Ser70:HG → Lys73:NZ Ser70:O3-H → Lys73:N6 2.0 → 1.0 9.35 6.98 25.20 13.84 (±8.09) 0.49 (±0.53)
#5 NPB:B → Ser70:OG NPB:B1 → Ser70:O3 1.6 → 1.5 10.10 7.00 25.40 14.17 (±8.04) 0.32 (±0.31)

Class C – GC1

#1 NPB:B → Ser64:OG NPB:B1 → Ser64:O3 2.1 → 1.6 0.20 0.15 0.22 0.19 (±0.03) 0.19 (±0.03)
#A1 Lys318:HZ3 → Tyr150:OH Lys318:N6-H → Tyr150:O4 1.7 → 1.1 0.67 0.20 0.30 0.39 (±0.20) 0.20 (±0.19)
#A2 Tyr150:HZ3 → Lys318:NZ Tyr150:O4-H → Lys318:N6 1.5 → 1.1 – 0.95 – 0.95 (±0.00) 0.75 (±0.00)
#2 Ser64:HG → Tyr150:OH Ser64:O3-H → Tyr150:O4 2.5 → 1.0 – 1.35 – 1.35 (±0.00) 0.40 (±0.00)

NPB:B → Ser64:OG NPB:B1 → Ser64:O3 1.6 → 1.5

Class D – OXA-24, mutant K84D

#1 NPB:B → Ser81:OG NPB:B1 → Ser81:O3 2.1 → 1.6 0.25 0.30 0.43 0.33 (±0.07) 0.33 (±0.07)
#2 H2O:H1 → Asp84:OD2 H2O:O-H → Asp84:O4 2.0 → 1.0 0.38 0.50 0.55 0.48 (±0.07) 0.16 (±0.04)

Ser81:HG → H2O Ser81:O3-H → H2O 2.0 → 1.0
#3 NPB:B → Ser81:OG NPB:B1 → Ser81:O3 1.6 → 1.5 0.43 0.50 0.57 0.50 (±0.06) 0.03 (±0.02)
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any restraints. Next, structures of all complexes were carefully
virtually titrated at pH � 7. For titration purposes, we used the
generalized Born model Labute (2008), Labute (2009)
implemented in Protonate 3D of the MOE modeling
environment. The method uses a modified version of the
Generalized Born/Volume Integral (GB/VI) formalism for
implicit solvent electrostatics. Based on our previous research
and experience with generalized BornmodelsWojciechowski and
Lesyng (2004) we judge the above choice as sufficiently precise.
The applied procedure resulted in assigning protons to all
dissociable functional groups. Protonate 3D includes side-
chain rotamer, tautomer, and ionization states of all chemical
groups during the course of the free energy minimization of a
system. It is very important modeling element in this project. In
particular, effective electrostatic interactions determine the
zwitterionic structure of the boron-based inhibitors, as well as
the protonation states of selected water molecules located in the
enzyme active sites. The refined structures were used for the
initial conditions to start time-dependent QM/MM simulations
using NAMD. Structures were solvated, Na+ and Cl-ions were
introduced to neutralize the total charge of the systems and
provide ionic strength to 0.05 M. Periodic boundary conditions
were applied. The quantum domain consisted of the 3-NPBA (or
BBI) inhibitor and all protein residues and water molecules
containing at least one atom at a distance smaller than 5 Å
from 3-NPBA or 7 Å from BBI. BBI is larger and more
elongated than 3-NPBA, therefore its quantum domain has

been assumed to be larger. As mentioned, the PM7
Hamiltonian was applied. Prior to productive time-dependent
QM/MM simulations, the molecular systems were once more
optimized, next thermalized, and equilibrated for 20 ps The
productive simulations typically consisted of 20 independent
50 ps runs with a 0.5 fs time-step. The MD trajectories were
analyzed using the VMD graphical interface (Humphrey et al.,
1996).

The energy barriers for both ligands and all three classes of
complexes were estimated applying the steered MD technique
(SMD), which has been executed applying the NAMD Adaptive
Biasing Forces (ABF) module. For the QM domain, a minimal
subset of residues required to construct the reaction pathway has
been selected (i.e., only the residues listed inTable 1 and Table 2).
The distance bias has been applied to the inhibitor’s boron atom
and the target serine hydroxyl oxygen atom (Ser 70, Ser 64, Ser 81
for the A, C, and D classes, respectively). A force constant of
5,000 kcal/mol/Å2 has been applied during 5 ps simulations to
reduce the B–Ser oxygen distance up to 1.4 Å from that one
obtained during the docking procedure. All other conditions were
kept exactly the same as in the production runs. Since the
propagation of reaction in SMD simulation is significantly
slowed down, the QM subsystem energy has been smoothened
by the moving average applying a 250 fs window.

Regarding the optimal simulation procedures, the so-called
computational assays, for enzymatic activities, including also
β-lactamases, several valuable publications dealing with

TABLE 2 | Approximate time-periods characterizing the covalent docking process between the bicyclic boronate inhibitor (BBI) and the members of the A, C, and D
β-lactamases classes. Tarrival is the time to reach a given state on the reaction path, calculated from the beginning of the process. Tduration is the average time to reach the
next state, calculated from the previous one. All times, along with their standard deviations in parentheses, are given in ps. The atomic names follow the CHARMM force field
nomenclature as well as the IUPAC nomenclature, and show which atom has moved towards which atom in another molecular fragment. The distances describing the
changes in geometry are given in Å. Graphical representations of the reaction steps are shown in Figures 7, 8. In class D, two distinct paths involving one or two H2O
molecules in step #3 were observed, and are denoted as #A3 and #B3.

Step Description of the transfer
process (CHARMM)

Description of the transfer
process (IUPAC)

Change of the
distance

Tarrival

First
simul

Second
simul

Third
simul.

Average
Tarrival

Average
Tduration

Class A – KPC-2

#1 BBI:B → Ser70:OG BBI:B2 → Ser70:O3 2.8 → 1.7 0.26 0.37 0.57 0.40 (±0.13) 0.40 (±0.13)
#2 Ser70:HG → H2O Ser70:O3-H → H2O 2.0 → 1.0 0.28 0.42 0.61 0.44 (±0.14) 0.03 (±0.01)

H2O:H2 → Glu166:O H2O:O-H → Glu166:O5 1.7 →1.0
#3 BBI:B → Ser70:OG BBI:B2 → Ser70:O3 1.7 → 1.5 0.28 0.42 0.62 0.44 (±0.14) 0.003

(±0.004)

Class C – GC1

#1 BBI:B → Ser64:OG BBI:B2 → Ser64:O3 2.8 → 1.7 0.35 0.32 0.38 0.35 (±0.02) 0.35 (±0.02)
#2 Ser64:HG → Tyr150:OH Ser64:O3-H → Tyr150:O4 2.5 → 1.0 0.65 0.35 0.47 0.49 (±0.12) 0.14 (±0.12)

BBI:B → Ser64:OG BBI:B2 → Ser64:O3 1.7 → 1.5

Class D – OXA-24, mutant K84D

#1 BBI:B → Ser81:OG BBI:B2 → Ser81:O3 2.9 → 1.7 0.45 0.37 0.44 0.42 (±0.03) 0.42 (±0.03)
#2 Ser81:HG → H2O(1) Ser81:O3-H → H2O(1) 1.7 → 1.0 0.47 0.43 0.47 0.46 (±0.02) 0.03 (±0.01)
#A3 H2O(1):H1 → Asp84:OD1 H2O(1):O-H → Asp84:O4’ 1.7 → 1.0 0.55 0.55 – 0.55 (±0.00) 0.07 (±0.05)
#B3 H2O(1):H1 → H2O(2) H2O(1):O-H → H2O(2) 1.7 → 1.0 – – 0.45 0.45 (±0.00) 0.004 (±0.00)

H2O(2):H1 → Asp84:OD2 H2O(2):O-H → Asp84:O4 1.7 → 1.0
#4 BBI:B → Ser81:OG BBI:B2 → Ser81:O3 1.7 → 1.5 0.55 0.55 0.57 0.56 (±0.01) 0.04 (±0.01)
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formulation simulation standards for QM/MM methods should
be mentioned, in particular (Mulholland, 2005; Fonseca et al.,
2012; Van der Kamp andMulholland., 2013; Chudyk, et al., 2014;
Lence, et al., 2018; Hirvonen et al., 2019). Special attention should
be devoted to an overview of biomolecular simulations and
computational assays (Huggins et al., 2019). However, with
regard to covalent docking with boron-based inhibitors, it
would be very difficult to directly apply a simulation protocol

discussed in the mentioned above works. Also, quite recently an
electronegativity equalization method at the σπ level (ABEEMσπ)
polarizable force field (ABEEMσπ PFF) of boronic acid and
β-lactamase has been developed to determine the potential
energy functions and parameters (Lu et al., 2020). This should
work for the complex of boronic acid with β-lactamases, andmay,
however, not be working well for the complex of the bicyclic
boronate inhibitor with β-lactamases.

FIGURE 4 | Successive steps of the chemical reaction leading to the bond formation between the Ser 70 hydroxyl group of KPC-2 β-lactamase, and the boron
atom of 3-NPBA. Most important molecular and atomic labels are given in Figure 6 (Class A). Curved arrows indicate the proton transfer processes, straight arrows
indicate distance reduction. Step #1 – proton transfer from Lys 70 to Glu 166 (Ser 70 - 3-NPBA-boron distance, 2.1 Ă). Step #2 – proton location rearrangement leading
to hydrogen bond formation with 3-NPBA-boron (Ser 70 - 3-NPBA-boron distance, 2.1 Ă). Step #3 – the boron atom moves towards the Ser 70 hydroxyl group
(Ser 70 - 3-NPBA-boron distance, 1.6 Ă). Step #4 – proton transfer between Ser 70 and Lys 73 (Ser 70 - 3-NPBA-boron distance, 1.6 Å). Step #5 – a movement of the
boron atom towards the Ser 70 hydroxyl group (Ser 70 - 3-NPBA-boron distance, 1.5 Å). Final structure–the chemical bond is formed between the hydroxyl oxygen of
Ser 70 and the boron atom of 3-NPBA (Ser 70 - 3-NPBA-boron distance, 1.50 Å). Step #4 and step #5 can be described as representatives of the leading transition state
on the reaction path.
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In conclusion, in our opinion, the semi-empirical Hamiltonian
PM7 used in this work mimics quite well more advanced ab initio
methods for enzymatic reactions involving boron atoms.
Embedding the QM kernel in the NAMD environment is fully
functional and effective. As mentioned, a very important element
of this type of modeling is careful titration of the initial molecular
state, followed by the energy minimization, thermalization, and
equilibration tasks.

RESULTS

The QM/MM simulations for KPC-2, GC1, and K84D mutant of
OXA-24 have successfully reproduced the entire enzymatic
process leading to the chemical bond formation between the

boron atom of the inhibitor and the hydroxyl group of the
catalytic Ser 70 residue (Ser 64 and Ser 81 for GC1 and OXA-
24, respectively). The reaction didn’t occur in the case of the wild
type OXA-24 enzyme. We suspect that the presence of
carboxylated lysine might be connected with some
electrostatic/protonation changes, which we were not able to
identify and include in the simulations.

The simulation results will be more precisely described for the
complex of 3-NPBA with KPC-2. The movie of the whole process
for this enzyme is available (Supplementary Video S1). During
all independent QM/MM simulations the reaction scenario
appeared to be the same, indicating intermediate stages and
proton transfer processes in the active site. The only
differences refer to the time-periods of successive processes.
The activation process consists of three steps: first Lys 73 is

FIGURE 5 | Structural multiple-alignment of the β-lactamases members for the A (KPC-2 β-lactamase), C (CG1 β-lactamase), and D (OXA-24 β-lactamase) enzyme
classes. Global alignment with two orientations (top), and presentation of the active sites (bottom) resulting from the global alignment. Water residue in class D active
site is depicted with balls and sticks representation. Residues crucial in the QM/MM simulations are presented as sticks.
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deprotonated by Glu 166, then one observes rearrangement of the
hydrogen bond system in the active site resulting in a hydrogen
bond of Glu 166 with one of the hydroxyls of 3-NPBA, and then
the key Ser 70 is deprotonated by Lys 73. This immediately allows
the formation of the chemical bond between deprotonated
hydroxyl of Ser 70 and the boron atom of 3-NPBA. The
described above processes are visualized (Figure 4). Note that
the hybridization of the boron atom has changed from sp2 (initial
state) to sp3 (final state). Simulation correctly predicts changes of
the distances between functional groups in the active site,
resulting in the final structure very similar to the
crystallographic 3RXX structure.

As for the QM/MM simulations of the covalent docking
process to representatives of classes C and D β-lactamases,
they were preceded by a detailed comparison of the structures
of GC1 and OXA-24 with the reference enzyme KPC-2. Global
structural multiple-alignment indicated all essential similarities

(Figure 5). 10 long, 100 ps, QM/MM simulations of wild-type
OXA-24 were carried out in order to check whether there were
any unforeseen intuitive processes leading to covalent docking.
The simulations, however, did not bring the system out of its
initial state. Therefore, similar yet free from post-translational
modifications K84D mutant was applied. In this case, covalent
docking has proved successful. Scenarios for the covalent docking
processes for the members of A, C, and D classes were identified
and compared (Figure 6). A detailed description of the covalent
docking reaction steps between 3-NPBA and the above-
mentioned three β-lactamases, as well as their approximate
time-periods, are described (Table 1). In the case of class C
and D β-lactamases, one sees slightly different scenarios for the
formation of a chemical bond between the boron atom of 3-
NPBA and the oxygen of the Ser 64 (GC1) or Ser 81 (OXA-24)
hydroxyl group, compared to class A. Specifically for GC1 β-
lactamase, although the productive reaction path is shorter than

FIGURE 6 | Schematic representation of the successive steps in the formation of the chemical bond between the boron atom of the 3-NPBA inhibitor and the
hydroxyl groups of serine β-lactamases. The active site residues belong to KPC-2 β-lactamase (class A), GC1 β-lactamase (class C), and the K84D mutant of OXA-24
β-lactamase (class D). On the left - curved arrows indicate the proton transfer processes, straight arrows indicate distance reduction. In class C, steps #A1 and #A2
(denoted by blue annotations) were observed, however, they are mutually reversible, leading finally to the structure as in step #1. On the right, conventional
simplified diagrams showing reaction steps - the arrows symbolically indicate the electron transfer processes. Description of the time-periods related to the presented
steps is given in Table 1.
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for KPC-2, there is a possible dead-end involving Lys 318
(Figure 6, blue annotation), which does not lead to the final
state, and only withdrawal from it may lead to the effective
formation of the above-mentioned bond. In turn, for the K84D
mutant of OXA-24 β-lactamase, an important role in the
enzymatic process is played by the water molecule from the
nearby environment of this enzyme. After deprotonation of the
water molecule, the formed hydroxyl anion acts as a very strong
base, ultimately leading to the proton dissociation from the
hydroxyl group of Ser 81, and effective interaction of the
deprotonated hydroxyl group with the boron atom, resulting

in the formation of a stable chemical bond -B-O-, as in the
previous cases. The most important fragments of the covalent 3-
NPBA docking processes to GC1 and OXA-24 are visualized in
Supplementary Video S2and inSupplementary Video S3,
respectively.

Analyzing the reaction time-periods of the chemical bond
formation in 3-NPBA systems, it can be seen that the bottleneck -
which in the case of KPC-2 is stage #2, consists of the
rearrangement of hydrogen bonds in the active site (11.75 ps).
It should be emphasized, however, that there is a significant
deviation of times assigned to this process (2.40–24.01 ps), so the

FIGURE 7 |Schematic representation of the successive steps in the formation of the chemical bond between the boron atom of bicyclic boronate inhibitor (BBI) and
the hydroxyl groups of serine β-lactamases. The active site residues belong to KPC-2 β-lactamase (class A), GC1 β-lactamase (class C), and the K84Dmutant of OXA-24
β-lactamase (class D). Curved arrows indicate the proton transfer processes, straight arrows indicate distance reduction. In class D, steps #A3 and #B3 denote two
distinct reaction paths leading to different protonation of Asp84 in the final structure. On the right, conventional simplified diagrams showing reaction steps - the
arrows symbolically indicate the electron transfer processes. Description of the time-periods related to the presented steps is given in Table 2.
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average value for the three analyzed trajectories should be treated
as a very approximate one. The remaining steps are in all cases
very fast and are in the range of 0.20–0.75 ps It should be noted,
however, that in the case of GC1 only one third of the trajectories
turned out to be productive, at least in terms of the simulation
times. If the other two trajectories were significantly lengthened,
they might reach the final state, but the average time of the
catalytic process would be much longer. Also, one should note
that Tyr 150 at the beginning of simulations is in anionic form,
according to computational titration results. Similar simulations
with neutral Tyr 150 form did not result in the -B-O- bond
formation.

Regarding covalent docking of the BBI inhibitor, the
simulation results are more precisely described for the
complex of BBI with KPC-2. Successive steps of the chemical
reaction leading to the bond formation between the Ser 70
hydroxyl group of KPC-2 β-lactamase, and the boron atom of
BBI are presented (Figure 7). The catalytic site of class A beta-
lactamases containing bicyclic boronates contains additional
water molecule, which is absent in crystallographic structures
of non-cyclic boronates (like 3-NPBA). The presence of this
particular water molecule, often called deacyling water due to
its function in beta-lactam catalysis, suggest that the course of
bond formation with BBI might be different. Indeed, the reaction
follows a different path, where water mediates the proton transfer
form Ser 70 to Glu 166. This pathway is free from the bottleneck
identified in 3-NPBA binding. In resulting structure Glu 166
forms hydrogen bond with the water molecule, which in turn
forms another hydrogen bond with the ligand’s hydroxyl group
(using hydrogen transferred from Ser 70). The movie of the whole
covalent docking process for this enzyme is available
(Supplementary Video S4).

The covalent docking of BBI to GC1 took exactly the same
course as observed in 3-NPBA, however the interference of Lys
was not observed in any simulation. BBI docking to OXA-24
follows similar steps as 3-NPBA, which involve one water
molecule mediating proton transfer from Ser81 to Asp84.
However, an alternative pathway, involving two water
molecules, has been observed in this system, which,
interestingly, leads to slightly different final state. The proton
transferred through both water molecules binds to different
oxygen of Asp 84 carboxyl group.

Most important fragments of the covalent BBI docking
processes to GC1 are visualized inSupplementary Video S5,
and to OXA-24 in Supplementary Video S6as well as
Supplementary Video_7 (two reaction paths for OXA-24,
identified). A detailed description of the covalent docking
reaction steps between the BBI covalent inhibitor and the
above-mentioned three β-lactamases, as well as their
approximate time-periods, are described (Table 2).
Interestingly, the intermediate Ser oxygen–boron distance, in
which the system waits for proton transfers to take place, is
0.1 Ă shorter in BBI.

Due to the almost immediate timescale of the reaction steps,
SMD simulations were used to shed a light on the energy profile
of the reaction pathways. A few energy barriers has been
observed. One should stress, however, the following. The

dynamics of the reaction site is highly cooperative. In the case
under study, the surface of the chemical reaction consists of a
series of narrow maxima in the configuration space, that are
traversed as a result of the strong coupling of the reaction site with
the dynamics of the enzyme as a whole. In such a situation, an
arbitrary choice of a one-dimensional reaction path in the SMD
process must always lead to an overestimation of the energy
barriers. The classical Potential of Mean Force (PMF) in this case
is not a well-defined physical property. After all, the system does
not have to choose the reaction path that we indicated, because
the path is multidimensional, and we significantly disturb the
natural dynamics of enzymes. The one-dimensional choice is
justified when it concerns, for example, the slow degree of
freedom. Although in this case, we chose a fairly natural
reaction path, which is the distance between the boron atom
and the oxygen of the serine hydroxyl group, it is probably not the
slowest degree of freedom, because the boron atom strongly
interacts with the oxygen atom. To summarize the applied
SMD procedure gives us only an upper estimate of the PMF -
the real barriers are smaller. Below are the upper estimates.

In the case of 3-NPBA ligand, a barrier below 11 kcal/mol
occurs between 1.5–4.0 ps (B–Ser:O distance: 2.2 → 1.7 Å) for
class A, below 7 kcal/mol between 1.6–3.0 ps (2.6 → 1.9 Å) for
class C, and below 5 kcal/mol between 1.0–1.8 ps (2.3 → 2.1 Å)
for class D.

For BBI a barrier below 9 kcal/mol occurs between 0.2–2.2 ps
(B–Ser:O distance: 2.8 → 2.2 Å) for class A, below 12 kcal/mol
between 0–2.5 ps (2.8→ 2.1 Å) for class C, and below 12 kcal/mol
between 1.0–3.0 ps (2.7 → 2.0 Å) for class D. Representative
energy profiles for each system are illustrated in
Supplementary Figures S3, S4).

It should be added that in real systems, such as those studied in
this paper, most likely quantum tunneling effects play an
indispensable role due to cooperative proton transfer
processes. This can lower the barriers even further. These
effects can be accounted for by applying quantum dynamics,
based explicitly on the time-dependent Schroedinger equation.
This type of physics was, inter alia, used in a full description of the
phospholipase A2 reaction mechanism andmodel proton transfer
systems Bala et al. (1996), Lesyng (1999), Bala et al. (2000),
Grochowski and Lesyng (2003). This requires, however, much
faster than PM6, PM7 or DFTB3 generators of the potential
energy surface.

DISCUSSION

Multiscale molecular modeling methods have been applied in
covalent docking studies using two boron-based inhibitors (3-
NPBA and BBI, representing two large families of inhibitors,
characterized by boronic acid and bicyclic boronate scaffolds),
and three serine β-lactamases (KPC-2, GC1 and OXA 24,
representing the A, C and D enzyme classes). This resulted in
six successful covalent docking events and seven reaction paths
(two paths identified for OXA-21). It should be noted that due to
the presence of the functional -NO2 group in 3-NBPA, and
-COO- in BBI the inhibitors are quite reactive.
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In the main thread of this research, the hybrid, quantum-
classical molecular mechanics and adiabatic quantum-classical
molecular dynamics model were applied. The DAMA and MOE
modeling environments were used in the analysis of the
biomolecular structures, virtual titration, and their preparation
to the simulations of the covalent docking processes. The QM/
MMmodel implemented in the NAMD/VMD environment, with
the approximate PM7 Hamiltonian describing the quantum
domains of the enzymes, appeared to be a very effective
approach to simulating the covalent docking processes. From
the computational point of view, and with the current state of
development of computing techniques, adiabatic time-dependent
QM/MM simulations are fully acceptable for practical
applications for molecular design or drug design experiments.
3D visualization with VMD and MOE tools, based on accurate
physical simulations of this enzymatic process, provided detailed
information on the very specific role of active site amino acid
residues, water molecules and boron-containing molecular
fragments, in the covalent docking process. Class B, which
contains significantly different metallo (Zn+2) β-lactamases,
has not been studied.

The covalent 3-NPBA docking mechanism to KPC-2 has been
described in great detail. Other systems with less accuracy, but the
attached diagrams, tables and videos also allow to recreate all the
details. In particular, results of the QM/MM simulations of the
covalent reactions between the boron atom and hydroxyl of Ser
81 are well documented in a form of seven movies available in
“Supplementary Material” (Supplementary Video S1. MOV, 3-
NPBA–KPC-2; Supplementary Video S2. MOV, 3-NPBA–GC1;
Supplementary Video S3. MOV, 3-NPBA–OXA 24;
Supplementary Video S4. MOV, BBI–KPC-2; Supplementary
Video S5. MOV, BBI–GC1; Supplementary Video S6. MOV and
Supplementary Video S7. MOV present two reaction paths for
the BBI–OXA 24 complex).

In the case of class D for the wild-type enzyme, the formation
of the required -B-O- bond was not achieved due to the presence
of a carboxylated Lys 84 derivative in the active site. However, it
was shown that the K84D mutant very easily leads to the
formation of the expected bond due participation of a water
molecule from the solvent, which because of the proton
dissociation acts as a strong catalytic base initiating the
productive reaction path. The positioning of carboxylated Lys
84 in the active site suggests that in a wild-type system, the Ser 81
hydrogen transfer may occur directly to Lys carboxyl oxygen. For
members of class A and C, deprotonated Lys 73 and Lys 318, act
as such bases, respectively.

To the best of our knowledge, this study is the first one that
describes in detail, the course of the covalent docking processes
resulting from the quantum description of structural changes in
the enzyme active sites, and with the participation of the 3-NPBA
inhibitor with the boronic acid scaffold (Figures 3–6 and
Table 1), as well as the BBI inhibitor with the bicyclic
boronate scaffold (Figure 7 and Table 2). It should be noted
that in class D, one or two water molecules play a key role in the
deprotonation of Ser 84, which is a prerequisite for the final
reaction to form a covalent bond between the boron atom and
serine oxygen. The role of these water molecules can be related to

the concept of “flip-flop” hydrogen bonds, and/or “water wires”,
which have been observed in many biomolecular systems,
including enzyme systems. For a review of the first
experimental observations and quantum-mechanical analysis
of the “flip-flop” hydrogen bonds see (Saenger et al., 1985;
Jeffrey and Saenger, 1991). Below are some representative
publications analyzing the mechanisms of delocalized
hydrogen bonds and “water wires” (Cui and Karplus, 2003;
Cukierman, 2003; Marx, 2006; Yan et al., 2007; Sakti et al.,
2019; Setny, 2020). The analysis of structural conformational
changes coupled with proton transfer processes shows that the
covalent docking reactions described in this study are highly
cooperative processes, and future studies should probably also
take into account the quantum-dynamical effects associated with
cooperative proton transfer mechanisms.

In order to better understand electron charge rearrangements
during the covalent docking processes, the Mulliken atomic
charges have been computed as functions of time. These data
are presented in Supplementary Figures S3, S4. There is no
indication that any larger electron transfer processes assigned to
protons take place. Atomic charges are quite typical and to our
surprise, changes of the atomic charges assigned to protons are
small. In conclusion, radical reactions involved in covalent
docking mechanisms of boron-based inhibitors are highly
unlikely - at least for the A, C, and D β-lactamases.

Changes of Mulliken atomic charges, related especially to the
change of the hybridization state of atomic orbitals on the boron
atom, from the sp2 to sp3 type and formation of the -C-B-O- bond
are also presented (Figure 8). Boron is the electropositive atom in
comparison to the oxygen atom. Before the formation of the
chemical bond with oxygen in 3-NPBA system, its Mulliken
charge was about +0.46 e. After the reaction, this charge drops
down to about +0.35 e. In turn, oxygen of the serine hydroxyl
group, after creating the chemical bond, increases its negative
charge from −0.44 e to −0.60 e, and thus becomes similar to the
other two oxygen atoms chemically bonded to the boron atom. In
BBI systems similar boron charge drop was observed, from the

FIGURE 8 | Atomic Mulliken charges on the boronmolecular fragment of
the 3-NPBA inhibitor, as well as on the hydroxyl group of Ser 70. The charges
were computed for the initial state, before the formation of the chemical -B-O-
bond. In parentheses are changes of the charges for the final state, after
the formation of the chemical bond.
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+0.49 e to +0.32 e after bond formation. Serine oxygens charge
however acted differently and changed from −0.68 e to −0.54 e
acquiring similar charge to the heterocyclic oxygen. The charge
on oxygen in the BBI boron-attached hydroxyl group changed
from −0.70 e to −0.48 e.

The energy profiles for the 3-NPBA–KPC-2 and BBI–KPC-2
complexes were assessed by monitoring the energy changes of the
QM subsystem consisting of the residues and the inhibitors directly
involved in the reaction, as well as by applying SMD simulations.
Visual analysis of the SMD trajectories suggests that the observed
energy barriers for both 3-NPBA and BBI in each β-lactamase class
are amongst others associated with the tension created by bending
boron substituents out of the primary trigonal plain when
approaching the serine oxygen atom. We think that right after
the system breaks this barrier the boron atom undergoes the
morphing process, and the sp3-associated tetragonal geometry
relaxes this tension, resulting in a further energy decrease.

The analysis of structural changes in the enzyme active sites,
involving also the 3-NPBA inhibitor, showed during the time-
dependent QM/MM simulations several geometric preferences
finally leading to the covalent docking processes. Thus, the
distance between the boron atom and the oxygen atom of the
serine hydroxyl group should be in the order of 3 Å, or slightly
less before the chemical bond is formed. This distance can be
compared to the sum of the Pauling atomic radii of those atoms,
which are 1.65 and 1.42 Å, respectively. The resulting distance,
due to long-range non-bonded interactions, and following
covalent interactions, rapidly decreases. It should be
emphasized that the nonbonded interactions after molecular
structure optimization reduce this distance up to 2.6 Å (or to
2.8 Å for bicyclic boron inhibitors). The orientation of the
inhibitor’s C-B bond in relation to the HO-C serine bond,
defined by the C-B-O angle should be close to 90°. It gives the
possibility of the interaction of the “empty” 2pz orbital of boron in
its initial sp2 hybridization, with the 2pz orbital of oxygen.
Deprotonation of the hydroxyl group allows donation of
electrons to the boron atom and its transition to the sp3

hybridization, thus increasing this angle to the range of
105–120°. After the formation of the chemical bond, the
distance between the boron atom and the serine oxygen atom
drops down to about 1.5 Å. As already noted, there should be at
least one fairly strong basic group in the active site that will be able
to sequentially deprotonate the hydroxyl groups bound to the
boron atom, as well as the hydroxyl group of serine.

In order to obtain the highly specific effects of boron-based
inhibitors, care must be taken that the optimal orientation of the

boron atom to a particular serine group is correlated with as many
other local interactions as possible. Such interactions can be
hydrogen bonds, salt bridges, or localized hydrophobic
interactions. The idea is that the chemically active inhibitor
should only bind in a highly specific manner to a selected
binding site belonging to a particular protein, and therefore
that it cannot attack other hydroxyl groups, which could lead
to serious side effects.

Presented results allow for a much deeper understanding of
the complex covalent docking processes important for molecular
medicine, related in particular to the design of novel drugs. They
should support the rational design of covalent boron-based
inhibitors for β-lactamases, which are the weapon of
antibiotic-resistant bacteria, as well as for many other enzyme
systems of clinical relevance.
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Coarse-Grained Modeling and
Molecular Dynamics Simulations of
Ca2+-Calmodulin
Jules Nde1,2, Pengzhi Zhang1, Jacob C. Ezerski 1, Wei Lu2, Kaitlin Knapp2, Peter G. Wolynes2

and Margaret S. Cheung1,2*

1Department of Physics, University of Houston, Houston, TX, United States, 2Center for Theoretical Biological Physics, Rice
University, Houston, TX, United States

Calmodulin (CaM) is a calcium-binding protein that transduces signals to downstream
proteins through target binding upon calcium binding in a time-dependent manner.
Understanding the target binding process that tunes CaM’s affinity for the calcium ions
(Ca2+), or vice versa, may provide insight into how Ca2+-CaM selects its target binding
proteins. However, modeling of Ca2+-CaM in molecular simulations is challenging because
of the gross structural changes in its central linker regions while the two lobes are relatively
rigid due to tight binding of the Ca2+ to the calcium-binding loops where the loop forms a
pentagonal bipyramidal coordination geometry with Ca2+. This feature that underlies the
reciprocal relation between Ca2+ binding and target binding of CaM, however, has yet to
be considered in the structural modeling. Here, we presented a coarse-grained model
based on the Associative memory, Water mediated, Structure, and Energy Model
(AWSEM) protein force field, to investigate the salient features of CaM. Particularly, we
optimized the force field of CaM and that of Ca2+ ions by using its coordination chemistry in
the calcium-binding loops to match with experimental observations. We presented a
“community model” of CaM that is capable of sampling various conformations of CaM,
incorporating various calcium-binding states, and carrying the memory of binding with
various targets, which sets the foundation of the reciprocal relation of target binding and
Ca2+ binding in future studies.

Keywords: calmodulin dynamics, calcium-binding protein, conformational changes, intrinsic disorder, AWSEM,
community model

INTRODUCTION

Calmodulin (CaM) is a calcium-binding protein that is present in all eukaryotic cells (Berchtold and
Villalobo, 2014; Villalobo et al., 2018; Chin and Means, 2000). CaM is composed of two globular
domains separated by a central linker. The two domains (N- and C-domains) are constituted of two
calcium-binding helix-loop-helix motifs each, namely, EF-hand motifs (Chattopadhyaya et al., 1992;
Fernandes and Oliveira-Brett, 2017). Upon sufficient increase in Ca2+ concentration, Ca2+-free CaM
transitions to the Ca2+-loaded CaM (Figure 1), exposing the hydrophobic target-binding surfaces of
CaM to the solvent (Figure 2) (Barton et al., 2002; Vetter and Leclerc, 2003; Park et al., 2008;
Gromiha and Gromiha, 2010; Wu et al., 2012; Fernandes and Oliveira-Brett, 2017). This transition is
accompanied by large conformational changes mutually induced by the conformational changes in
the CaM-binding target (CaMBT) peptides (Wang et al., 2013; Liu et al., 2017a; Archer et al., 2019;
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Bekker et al., 2020). The most unique feature of CaM is its
reciprocal relation between Ca2+ binding and target binding
(Meador et al., 1993; Weinstein and Mehler, 1994; Wall et al.,
1997; Wriggers et al., 1998; Chin and Means, 2000; Hoeflich and
Ikura, 2002; Westerlund and Delemotte, 2018), where the
conformational changes in the CaM/CaMBT compound
further tune CaM’s affinity for the Ca2+ ions (Hoffman et al.,
2014; Zhang et al., 2017). The important feature that the net
charges of Ca2+ ions vary with the conformations of a calcium-
binding loop (Zhang et al., 2021), however, has not been
accurately captured in molecular dynamics simulations on
calcium-binding proteins.

The 148-amino acid CaM is an evolutionarily conserved
protein across all vertebrates (Davis and Thorner, 1989;

Tripathi et al., 2015a), while it is capable of binding more
than 300 variations of CaMBTs (Yamniuk and Vogel, 2004).
Such structural variability permits its regulation upon the
stimulation of calcium ions processes (Clapham, 2007;
Carafoli, 2002; Bootman, 2012) in a wide range of biological
activities (Chin and Means, 2000; Hoeflich and Ikura, 2002)
including cellular motility, neurogenesis, memory formation,
muscle contraction, and neuronal transmission (Bootman,
2012; Marambaud et al., 2009; Berridge, 2006). A large and
growing body of literature has investigated the structures and
dynamics of CaM upon calcium binding (Wriggers et al., 1998;
Mehler et al., 1991; Her et al., 2018; Anthis et al., 2011). The
crystal structure of the Ca2+-CaM shows a dumbbell-like
structure with a central α-helical linker (Figure 1B). However,
in solution, the central linker demonstrates higher flexibility
(Wriggers et al., 1998; Her et al., 2018; Anthis et al., 2011;
Ikura et al., 1992; Chou et al., 2001), which enables the two
globular domains of CaM to orient independently from each
other (Wriggers et al., 1998; Shepherd and Vogel, 2004; Qin and
Squier, 2001). Moreover, this flexibility of the central linker could
justify the compact structure of the Ca2+-CaM (Figure 1D) upon
target binding (Barton et al., 2002; Shepherd and Vogel, 2004).
Additionally, Ca2+-CaM has been shown to crystallize in the
collapsed conformation in the absence of the target (Figure 1C),
indeed providing more evidence of the backbone plasticity of the
Ca2+-CaM (Fallon and Quiocho, 2003) and domain-domain
interactions. The structural distribution between the collapsed
and extended conformations is roughly 1:9 (Anthis et al., 2011).

Amyriad of computational approaches, ranging from all-atom
to coarse-grained (Weinstein and Mehler, 1994; Spoel et al., 1996;
Wriggers et al., 1998; Vigil et al., 2001; Yang et al., 2001; Barton
et al., 2002; Komeiji et al., 2002; Yang et al., 2004; Zuckerman,
2004; Monticelli et al., 2008; Nandigrami and Portman, 2016; Liu
et al., 2017b; Gong and Sun, 2017; Robustelli et al., 2018; Delfino
et al., 2019; Sun and Kekenes-Huskey, 2021), have been employed
to model the structural dynamics of CaM. However, these models
have yet to capture the reciprocal relation between Ca2+ binding
and target binding. The modeling of CaM is often limited for a
specific purpose to either bind the target or the calcium ions. As

FIGURE 1 | Representative conformations of calmodulin (CaM). (A) Ca2+-free CaM, or apoCaM (PDB ID: 1CFD); (B) Ca2+-bound CaM, or holoCaM, in the
extended conformation (PDB ID: 1CLL); (C) holoCaM in the collapsed conformation without a target peptide (PDB ID: 1PRW); (D) holoCaM with a target peptide
(PDB ID 1CDM). We visualized the structures using the Visual Molecular Dynamics (VMD) program (Humphrey et al., 1996). Ca2+ ions are shown in yellow spheres,
the N-terminal and C-terminal domains of CaM are shown in red and blue, respectively, the central linker is shown in grey, and the target peptide is in green.

FIGURE 2 | Ca2+ induced conformational change. (A) apoCaM, (B)
holoCaM. Ca2+ ions are shown in yellow spheres, the N-terminal and
C-terminal domains of CaM are shown in red and blue, respectively, and the
central linker is shown grey. Upon conformational change, the four
methionine residues (shown as beads in purple), initially buried inside the EF-
hands, are exposed to the solvent.
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such, CaM is treated as a folded protein (Shepherd and Vogel,
2004; Yang et al., 2004; Zuckerman, 2004) or a folded protein with
intrinsically disordered regions (Robustelli et al., 2018), where, in
most cases, Ca2+ effects are ignored for simplicity (Spoel et al.,
1996; Yang et al., 2001; Shepherd and Vogel, 2004; Robustelli
et al., 2018). When Ca2+ is considered, it is treated as a particle
with fixed charges as in an aqueous solution (Monticelli et al.,
2008; Gong and Sun, 2017). When Ca2+ ions are implicitly
included, their charges are often distributed to all the
negatively charged residues present in the EF-hand motifs
(Nandigrami and Portman, 2016) without any consideration of
the coordination geometry of the Ca2+ ion, which is influenced by
the conformation of a calcium-binding loop (Zhang et al., 2021).
Our group has recently proposed a coarse-grained model to study
the dynamics of CaM that accounts for both considerations
(Wang et al., 2013; Zhang et al., 2017), but it is yet to
reproduce the reciprocal relationship between calcium binding
and target binding as both require intensive data-driven efforts.

One of the main challenges for developing an appropriate
force field involving Ca2+ is that CaM is a structurally flexible
protein about its central linker while the binding of Ca2+ to the
two domains of CaM increases the rigidity of the local domains. A
compromise between rigidity and softness has to be considered in
order for CaM to accurately select, bind, and activate its binding
targets. We, therefore, turned to the coarse-grained approach that
adopts the Associative memory, Water mediated, Structure, and
Energy Model (AWSEM) force field (Wang et al., 2011; Zhang
et al., 2017) to fulfill these requirements. The next challenge is to
properly include the Ca2+ ions in the force field of a coarse-
grained model since this would allow us to understand the
reciprocal relationship between calcium binding to CaM and
binding of a target (Wang et al., 2013; Tripathi et al., 2015b).
Although in separate studies, there have been development in
AWSEM force fields on structurally flexible proteins (Wu et al.,
2018) or on di-valent ions (Tsai et al., 2016), both features,
however, have yet to be combined for modeling CaM.
Particularly, the coordination chemistry of Ca2+ ions and the
structural flexibility allowing CaM to flex according to its binding
targets and surrounding environment is important in modeling
the adaptive behavior of CaM (Wang et al., 2013; Liu et al., 2017a;
Archer et al., 2019; Bekker et al., 2020). By taking into account the
coordination chemistry of the Ca2+ ions as well as the flexible
nature of the central linker of CaM, our proposedmodel for Ca2+-
CaM elucidates the many-body effects of calcium binding on the
geometrical shape of the calcium-binding loop and allows large
conformational changes for binding various targets.

MATERIALS AND METHODS

Coarse-Grained Modeling Using the
AWSEM Force Field
We used the AWSEM force field (Davtyan et al., 2012; Tsai et al.,
2016) to build the model of Ca2+-CaM. AWSEM is a transferable
coarse-grained protein model, which uses three beads (Cα, Cβ,
and O atom from the peptide bond) to represent each amino acid
residue (except for glycine, which lacks Cβ). The positions of all

the rest of the other atoms along the backbone are deduced by
assuming an ideal geometry of the system. The total energy
function used in AWSEM is given in Eq. 1,

V � VBB + VPMF + VDH + VFM (1)

which is composed of two main terms: the physics-based terms,
VBB + VPMF + VDH , and the knowledge-based term, VFM .

(a) The backbone term, VBB, from Eq. 1, maintains the backbone
geometry of protein. Its expression is given in Eq. 2,

VBB � Vcon + Vchain + Vχ + Vrama + Vexcl. (2)

Vcon and Vchain represent the connectivity and chain terms,
respectively. The former links neighboring residues, while the
latter maintains ideal bond angles around the Cα atoms of each
residue. The chirality potential,Vχ , which is applied to all residues
except for glycine, maintains the local residue chirality. Vrama

represents the Ramachandran potential, which biases the protein
chain conformation toward the allowed Ramachandran regions.
The excluded volume potential, Vexcl , is used to avoid chain
collapse and unphysical entanglements.

(b) The many-body potential of mean force VPMF , from Eq. 1,
takes into account the nature of the interacting residues, and
its expression is given in Eq. 3:

VPMF � Vcontact + Vburial + VHB (3)

The contact term Vcontact represents the pairwise additive and
the many-body terms that consider interactions between residues
far apart in sequence. The burial term Vburial accounts for a
particular residue’s type propensity. The hydrogen bond term
VHB is composed of three other terms given in Eq. 4:

VHB � Vβ + VP−AP + Vhelical, (4)

where Vβ and VP−AP are for the hydrogen bonding interactions in
β-sheet conformations. The former stabilizes already formed β
hydrogen bonds, while the latter allows a protein to undergo
parallel and anti-parallel β-sheet conformations before the
stabilization of the hydrogen bond. The helical term Vhelical

ensures the formation of α-helices.

(c) The electrostatic interactions in solution with implicit solvent
are described by the Debye–Hückel term (Tsai et al., 2016)
VDH from Eq. 1. The expression is given in Eq. 5:

VDH � KElec ∑
i< j

qiqj
εrrij

exp( − rij
lD
), (5)

where qi and qj represent the charges of beads i and j; rij is the
distance between the two beads;
KElec � (4πε0)

−1 � 332.24 kcal mol−1e−2�A; εr represents the
dielectric constant of the media; and lD is the Debye–Hückel
screening length, which is given by lD �

�����������
εrε0kBT/2e2I

√
. kB is the

Boltzmann constant, T is the temperature, e represents the
elementary electric charge, and I is the ionic strength of the
implicit solvent.
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(d) VFM from Eq. 1, is a bioinformatic fragment memory
potential that structurally biases short fragments of the protein
chain, typically composed of 3–9 residues at a time, towards
conformations that are based on “memory” structures. As listed
in Table 1, the memory structures selected from the Protein Data
Bank (PDB) were used to speed up the conformational search of
the native states. Its expression is given in Eq. 6:

VFM � −λFM ∑
60

m�1
.∑

3

n�1
Wm

n ∑
i,j ∋ 3≤ |i−j|≤ 9

cijexp
⎡⎢⎢⎢⎣ − (rij − rmij )2

2σ2ij
⎤⎥⎥⎥⎦, (6)

where the outer sum is over the aligned memory (from
m � 1 to 60), the sum in the middle with a variable n is over
the three segments of CaM (n � 1 is N-domain, n � 2 is central
linker, and n � 3 is C-domain), and the inner sum is over all
possible pairs of Cα and Cβ atoms within the memory fragments
that are separated by two or more residues;

∣∣∣∣i − j
∣∣∣∣≤ 9 gives the

maximum sequence separation of interacting residues, which is
either the length of the memory or the maximum cutoff,
whichever is shorter. rij and rmij represent the instantaneous
distance and the corresponding distance in the memory
fragment between the atoms i and j; cij is the residue
type dependence interaction strength; σ ij represents the
sequence separation dependent width. Its expression is given
by σ ij �

∣∣∣∣i − j
∣∣∣∣0.15.

We used 60 non-redundant structures of CaM taken from our
prior study (Tripathi et al., 2015c) (Table 1), either free or in
complex with the target peptides, to build the memory fragments
for the coarse-grained model of CaM. We used the 60 sequence
homologs of Ca2+-CaM since we are interested in studying the
dynamics and the folding properties of CaM. We divided each
memory into three segments: N-domain of CaM, from residue 5

to residue 76; the flexible central linker, from residue 77 through
residue 81; and C-domain of CaM, from residue 82 to residue 147
(as illustrated in Figure 1). The weight of each segment is
controlled by a memory weight parameter Wm

n and a global
parameter λFM (Eq. 6). Because the central linker has its own
memories of large variations in the structures, essentially it was
modeled with more structural flexibility than the two globular
domains of CaM.

We summarized CaM models using various values of λFM and
Wm

n parameters in Table 2 for our molecular simulations. All
other parameters for AWSEMwere set by default as defined in the
original ASWEM study (Davtyan et al., 2012; Tsai et al., 2016).
The parameters of the default setting are also provided in the
Supplemental Information (SI 1).

Modeling Ca2+ Ions in ASWEM Force Field
Calcium-binding proteins in most cases contain the EF-hand
calcium-binding motif which is formed by the pentagonal
bipyramidal geometry (Figure 3; Supplementary Figure S1 in
the SI) (Drake et al., 1997; Yang et al., 2002). The literature on
modeling those proteins, in general, does not clearly explain how
Ca2+-binding effects are considered during the simulations. We
developed an implicit Ca2+ model that evenly splits the Ca2+

charges to a selection of residues. Partial charges on the sidechain
beads of the negatively charged residues that coordinate Ca2+

collectively in the Ca2+ binding loops (Figure 3) were adjusted to
reflect the Ca2+- binding effect (Table 3). To note, charges on
those acidic residues which do not coordinate (Ca2+) remain
intact (−1 e). This simple approach incorporates the
coordination geometry of the Ca2+ and allows us to improve
the modeling of many-body effects in the local Ca2+ binding loops
which furthermore controls the open/close state of the helix-
loop-helix EF-hand and the global conformation of calmodulin.

In this study, we compared the abovementioned approach
(approach III) with two other calcium models:

I. Splitting the Ca2+ charges evenly to the neighboring
negatively charged residues (Tsai et al., 2016).

II. Splitting the Ca2+ charges evenly to the residues that
participate with the calcium coordination and the radius of
gyration of the sidechain beads are constrained by a stiff
harmonic potential with a force constant of 30 kcal/mol/Å2.

III. The same with approach II except that the harmonic
constraint is removed.

Comparing to approach I of Ca2+ in AWSEM (Tsai et al.,
2016), in approach III calcium charges were split according to the
coordination chemistry of calcium; comparing to approach II, in
approach III more degrees of freedom to the Ca2+ coordination
residues allow sampling of more different conformations of CaM.

Simulation Details
We performed the coarse-grained simulations with the open-
source MD package LAMMPS, in which AWSEM code was
implemented (Davtyan et al., 2012). We used the periodic
boundary conditions on the cubic box of 400 Å on each side
so that even unfolded CaM can fit in the box. Initial velocities
were chosen randomly from a Boltzmann distribution with the
average squared velocity equal to 3 kBT/m, where kB is the

TABLE 1 | The PDB IDs of the 60 non-redundant CaM memory structures for the
AWSEM model and the Rg of the CaM. In the case of CaM complexes, only
the coordinates of CaM were used for memory. m is the index for the memories.

m PDB ID Rg (�A) m PDB ID Rg (�A) M PDB ID Rg (�A)

1 1PRW 14.60 21 3GP2 15.96 41 2BBM 17.03
2 3EWT 15.17 22 3DVM 16.00 42 2BCX 17.25
3 2LGF 15.23 23 1CKK 16.05 43 2KNE 18.67
4 3DVJ 15.31 24 2FOT 16.05 44 4DCK 18.87
5 3BYA 15.38 25 2JZI 16.12 45 1SK6 19.30
6 2LHI 15.38 26 1CM1 16.20 46 1XFU 19.31
7 2HQW 15.41 27 3DVK 16.22 47 2L1W 19.46
8 2L7L 15.43 28 2VAY 16.26 48 1K9O 19.46
9 3EWV 15.52 29 2O60 16.28 49 1PKO 19.49
10 1IWQ 15.57 30 2WEL 16.35 50 1S26 19.50
11 1L7Q 15.59 31 1QTX 16.43 51 1LVC 19.70
12 3DVE 15.61 32 2O5G 16.47 52 1CFF 19.78
13 1CDM 15.66 33 1QS7 16.50 53 4G27 20.79
14 3SUI 15.68 34 3GOF 16.50 54 2L53 21.00
15 3BXL 15.80 35 3BXK 16.51 55 2KDU 25.65
16 1IQ5 15.90 36 1MXE 16.55 56 4EHQ 22.07
17 1ZUZ 15.93 37 2Y4V 16.62 57 4DJC 22.31
18 3HR4 15.94 38 2BE6 16.65 58 2YGG 23.66
19 2KOF 15.95 39 2F3Y 16.68 59 1G4Y 25.32
20 2LL6 15.95 40 1SY9 16.83 60 1CLL 21.80
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Boltzmann constant, m is the mass, and the temperature is T. We
also used the cutoff distance of 3.5 Å and κ (inverse of the Debye
length) � 0.0127 Å−1 in the electrostatic term.

Simulated annealing: firstly, we denatured the protein at 450K using
the initial structure built from the crystal structure (PDB ID: 1CLL)

(Chattopadhyaya et al., 1992); then, we performed simulated annealing
onCa2+-CaMby cooling down the system to a low temperature (280K)
for 2,000,000 time steps for each value of λFM (models I.1–3 inTable 2).

Production simulation: we employed the umbrella sampling
(US) method (Roux, 1995) to evaluate the thermodynamic

TABLE 2 | Summary of Ca2+-CaM models with different values of the global and local memory weight and the average Rg (Rg) and the ratio between the collapsed and
extended states (γc:e) from the umbrella sampling simulations. The models that best reproduce experimental results from our simulations are marked with *. The
experimental measured Rg � 20.0 ∼ 22.5 �A and γc:e ∼ 0.11.

Models λFM Wm
n Rg (�A) γc:e

Wothers
n W1CLL

1 W1CLL
2 W1CLL

3

I.1 1 1 1 1 1 22.05 0.001
I.2 0.1 1 1 1 1 20.51 0.48
I.3 0.01 1 1 1 1 19.86 0.64
II.2 0.1 1 2 2 2 20.34 0.59
II.3 0.1 1 3 3 3 20.66 0.47
II.4 0.1 1 4 4 4 20.43 0.50
II.5 0.1 1 5 5 5 20.70 0.37
II.6 0.1 1 6 6 6 20.52 0.38
II.7 0.1 1 7 7 7 21.11 0.16
*II.8 0.1 1 8 8 8 21.15 0.14
*II.9 0.1 1 9 9 9 21.26 0.10
III.1 0.1 1 5 1 5 19.91 0.73
III.2 0.1 1 5 2 5 19.70 0.82
III.3 0.1 1 5 3 5 19.84 0.77
III.4 0.1 1 5 4 5 20.03 0.58
III.6 0.1 1 5 6 5 20.43 0.48
III.7 0.1 1 5 7 5 21.20 0.16
*III.8 0.1 1 5 8 5 21.35 0.12
III.9 0.1 1 5 9 5 21.59 0.07

FIGURE 3 | Illustration of a Ca2+ binding loop at the fourth EF-hand of CaM (PDB ID: 1CLL). The pentagonal bipyramidal geometry of the Ca2+ coordination is
represented with the dotted lines in the top view (A) and side view (B). The red sticks linked with the dotted lines represent oxygen atoms that participate in coordination.
The water molecule, shown in pink, completes the spherical coordination through hydrogen bonding.

TABLE 3 | The adjusted partial charges of the negatively charged residues participated in calcium coordination in the four calcium-binding loops of CaM. The amino acid
sequences of the calcium-binding loops are provided as a reference. The subscript indices stand for the positions of the starting/ending residues in the CaM sequence.
Underscored residues are the selected amino acids with negative charges as shown in the third column. We adjusted the partial charges on the sidechain beads of those
residues based on the bipyramidal pentagonal coordination geometry of the calcium ion.

Calcium loop Amino acid sequence Adjusted partial charges on selected amino acids

Loop 1 20DKDGDGTITTKE31 -0.5, -0.5, -0.5, -0.5
Loop 2 56DADGNGTIDFPE67 -0.5, -0.5, -0.5, -0.5
Loop 3 93DKDGNGYISAAE104 -0.33, -0.33, -0.33
Loop 4 129DIDGDGQVNYEE140 -0.5, -0.5, -0.5, -0.5
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properties of Ca2+-CaM using different memory parameters. We
conducted the production simulations in canonical ensemble
(NVT) at the constant temperature of 300 K. Radius of
gyration (Rg) of Ca2+-CaM was used as the reaction
coordinate, which was restrained by a harmonic potential Ei

Restr �
1
2 k(Rg

i − Rgi0)
2 with a force constant k � 50 kcal/Å2. The

equilibrium positions of the harmonic potential Rg0 range
from 13.00 Å to 26.00 Å with a bin size of 0.25 Å, making up
a total of 53 windows (i � 0, 1, 2, . . ., 52). The setup of the force
constant and the equilibrium positions of the windows is justified
by the fluctuations of Rg around the corresponding equilibrium
positions as well as the overlap in the Rg distribution between
neighboring windows, which are provided in Supplementary
Figures S4–S5, respectively, in the SI. For each window,
2,000,000 time-steps of constrained molecular simulations
were conducted using different initial conditions. To generate
the initial structures at each window for the US simulations,
molecular dynamics simulations were carried out for the Ca2+-
CaM from the crystal structure of CaM (PDB ID: 1CLL, in the
coarse-grained model) at a temperature T � 300 K. Structures
with Rg closest to Rgi0 were selected as the initial configurations. A
set of 5 US simulations were carried out at each window with the
same initial configuration and different random initial velocities.
The integration time step is 2 fs. It is important to note that with
the smoothed CG potential, the realistic time represented by a
time step is longer than 2 fs. Coordinates and Rg were recorded
every 1,000 time steps for analyses, making up 10, 000 frames of
data for analysis at each window. We analyzed the data using a
multi-state Bennett acceptance ratio (MBAR) estimator with the
pymbar program (Shirts and Chodera, 2008).

Data Analysis
We described the conformational changes of the Ca2+-CaM
during the simulations by calculating the radius of gyration
(Rg) and the pairwise comparison (Qw) from the crystal
structure (PDB ID: 1CLL).

Radius of Gyration (Rg)
Rg describes the compactness of the protein, and its definition is
given in Eq. 7:

Rg �
���������
∑N

i�1 miΔr2i
∑N

i�1 mi

√
. (7)

In the case of PDB structures, mi is the mass of the ith atom and
Δri is the distance between the ith atom and the center of mass of
the system. In the case of coarse-grained structures, only the Cα
beads are used, mi is the mass of the Cα bead of the ith residue, and
Δri is the distance between the Cα bead of the ith residue and the
center of mass of the system.

Pairwise Comparison
Qw measures the degree of similarity of conformations from the
trajectories with respect to the native structure through the
pairwise comparison. In other words, it compares the pairwise
distances of Cα atoms (beads) among the residues in each
instantaneous structure to counterpart in the native structure.

This value is normalized to 1, with a higher value corresponding
to the greater similarity to the native structure. In this case, Qw is
the extended crystal structure of Ca2+-CaM (PDB ID: 1CLL), Qw

� 1. The expression of the order parameter Qw is given in Eq. 8:

Qw � 2

(N − 2)(N − 3) ∑
|j−i|≥ 2

exp⎡⎢⎢⎢⎣ − (rij − rmij )2
2σ2

ij

⎤⎥⎥⎥⎦, (8)

whereN is the total number of residues, rij represents the instantaneous
distance between Cα atoms (beads) of residues i and j, rmij is the same
distance in the reference structure (PDB ID: 1CLL), and σ ij is obtained
from the following relation σ ij � (1 + ∣∣∣∣i − j

∣∣∣∣)0.15.
Definition of Collapsed and Extended Conformations
of CaM
In our analyses, we used the parameter Rg to define a collapsed
or extended conformation. The Rg cutoff was set according to
the potential of mean force (PMF) and distribution of Rg in our
simulations (Figures 4–8). A collapsed conformation is
defined if Rg < 18.5Å; otherwise, an extended conformation
is defined.

RESULTS AND DISCUSSION

The goal is to create a computational model for CaM accommodating
its several key functions including divalent ion binding, conformational
dynamics, and target recognition. In order to achieve this, we adopted a
pool of 60 CaM or CaM complex structures from our previous study
(Tripathi et al., 2015c) representing full-length CaMwithoutmutations
and its complex with 24 unique target proteins/peptides. As stated in
theMaterials andMethods Simulation Details, our approach is to tune
the two scaling parameters λFM andWm

n to adjust the global and each
segment of the multiple memories, respectively, relative to other terms
in the total energy function. After optimizing the memory parameters,
three models of calcium are compared to describe the divalent ion
binding.

Each of the 60 memories has a specific conformation of
calmodulin which could be helpful in target recognition and
target selection; therefore, clustering the 60 memories may leave
out important conformations that accommodate recognition of a
specific target protein. Potentially, there could be as many as 181
fragment memory parameters to be determined in the most
complicated scenario. However, in the general practice of
AWSEM modeling, a search in the available determined
structures in the database according to the match in the
desired amino acid sequence is conducted to generate a library
of memory structures. Therefore, to avoid excessive tuning of the
parameters, the individual memory weight Wn

m is kept as a
constant default value. Because the unbound extended form of the
Ca2+/CaM (PDB code: 1CLL) was found to be most dominant
experimentally, we adjusted its local memory weight parameter
correspondingly, while keeping others the default Wothers

n � 1.
The actual parameters we tuned eventually reduce to λFM and
W1CLL

n (n � 1, 2, 3 to represent N-domain, central linker, and
C-domain of the protein).
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Parameterization of our CG model was guided by the existing
following experimental measures: Rg of Ca2+-CaM spans from
20.0 to 22.5 �A measured by small angle X-ray scattering (SAXS)
experiments (Seaton et al., 1985; Heidorn and Trewhella, 1988;
Kataoka et al., 1991); in addition, the population of CaM’s
collapsed conformation is about 10% measured by nuclear
magnetic resonance (NMR) experiments (Anthis et al., 2011)
(i.e., the ratio between the population of the collapsed
conformation and that of the extended population is cc: e ∼ 0.11).

The Global Parameter Weight Controls the
Energy Barrier Between Extended and the
Collapsed States of Ca2+-CaM
Firstly, we determined the magnitude of the fragment memory
interaction by investigating its effect on the folding properties of
Ca2+-CaM. We carried out simulated annealing using the
unfolded structure of the Ca2+-CaM (Qw ∼ 0.2 as shown in

Supplementary Figure S2 in the SI) with three orders of
magnitudes of the global scaling parameter λFM � 1, 0.1, 0.01.
At λFM � 1, the system transitions abruptly from the unfolded to
the folded state (Supplementary Figures S3A, S3B) in the SI; at
λFM � 0.1, smooth transitions of Ca2+-CaM from the unfolded to
the folded structure were observed with Qw reaching a maximum
value of 0.67 (Supplementary Figures S3C, S3D) in the SI; at
λFM � 0.01, the maximum value of Qw was less than 0.55 and the
total energy of the system did not stabilize on a long timescale
(Supplementary Figures S3E, S3F) in the SI.

In addition, we carried out US simulations to evaluate
thermodynamic properties of Ca2+-CaM with the global scaling
parameter in three orders of magnitudes λFM � 1, 0.1, and 0.01,
while keeping the local memory scaling parameters Wm

n � 1. The
PMF and the probability distribution as a function of Rg were
computed using the MBAR estimator (Figure 4) and the average
Rg (Rg) and the ratio between the population of collapsed
conformation and that of the extended conformation (γc:e) were

FIGURE 4 | PMF and Rg distribution of the Ca2+-CaMmodels using the global memory weight of different order of magnitudes. The memory weight parameters of
the Ca2+-CaM models are listed in Table 2 (model I; λFM � 1, 0.1, 0.01, and Wm

n � 1). (A, C, E) The reweighted free energy profile as a function of Rg from US
simulations with λFM � 1, 0.1, 0.01, respectively. (B, D, F) The probability distribution as a function of Rg. The standard errors in the PMF are provided.
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evaluated from the PMF. For λFM � 1, Ca2+-CaMmostly samples the
extended conformations (with Rg ∼ 21.5 to 22.5 �A) and the free
energy barrier between the extended and collapsed conformations is
quite large (∼6 kBT); therefore, the system lacks the capacity of
shifting between multiple conformations. For λFM � 0.1, there are
four minima in the PMF of Ca2+-CaM with Rg ranging from 15 to
22 �A (Figure 4), and the free energy barrier between the collapsed
states and the extended state is ∼ kBT; the Rg of Ca

2+-CaM is within
the experimental range (Rg � 20.51 �A); however, γc:e (∼ 0.48) is
much higher than the experimental one (∼ 0.11) (Anthis et al., 2011).
It is worthwhile to note that the minimum at Rg ∼ 15 �A resembles a
completely collapsed structure as found in our previous study
(Homouz et al., 2009). For λFM � 0.01, there are noticeably two
minima located at Rg ∼ 17 �A and Rg ∼ 20.5 �A, sampling a
somewhat collapsed conformation and a less extended
conformation (comparing with λFM � 1, 0.1) respectively with
free energy barrier < kBT. Rg � 19.86 �A, below the
experimentally measured Rg range (Seaton et al., 1985; Heidorn
and Trewhella, 1988; Kataoka et al., 1991) and γc:e (∼ 0.64) is much
higher than the experimental value (Anthis et al., 2011).

In summary, the global memory parameter λFM is effective for
controlling the sampling of the collapsed and extended conformations
of CaM as well as reproducing the averaged Rg. A large value of the
scaling parameter λFM might tend to limit the malleability of Ca2+-
CaM in favor of the extended conformation (initial configuration of the
simulations). Decreasing λFM leads to an increase in γc:e and a decrease
in Rg. This is because decreasing the weight of the memory potential
favors the hydrophobic interactions among residues of the two
domains of Ca2+-CaM and reduces the free energy barrier between
the two major conformations of Ca2+-CaM (extended and collapsed
forms); consequently, the system becomes more flexible and can shift
easily between the extended and collapsed conformations.

Single Memory Optimization Captures the
Dynamics of Ca2+-CaM
Although the global fragment memory weight of λFM � 0.1 resulted
in a system that can sample themajor two conformations of the Ca2+-
CaM and Rg is within the experimental range (Seaton et al., 1985;
Heidorn and Trewhella, 1988; Kataoka et al., 1991), the ratio between

FIGURE 5 | PMF and Rg distribution of the Ca2+-CaM models for
different values of the local memory weight W1CLL

n (n � 1, 2, 3). The memory
weight parameters of the Ca2+-CaM models are listed in Table 2 (model II;
λFM � 0.1, Wothers

n � 1, and W1CLL
n � 1 − 9). (A) The reweighted free

energy profile as a function of Rg from US simulations (B) and the probability
distribution as a function of Rg. The standard errors are too small to show and
are provided in Figures S6 in the SI.

FIGURE 6 | PMF and Rg distribution of the Ca2+-CaM models for
different values of the local memory weightW1CLL

n (n � 2) for the central linker of
CaM. The memory weight parameters of the Ca2+-CaM models are listed in
Table 2 model III; λFM � 0.1, Wothers

n � 1, W1CLL
1,3 � 5, W1CLL

2 � 1 − 9. (A)
The reweighted free energy profile as a function of Rg from US simulations (B)
and the probability distribution as a function of Rg. The standard errors in the
PMF are provided in Figure S7 in the SI.
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the collapsed and the extended populations γc:e did not match the
experimentally measured value (Anthis et al., 2011). Therefore, finer
tuning of the local memory parameters Wn

m is required for
reproducing γc:e in the abovementioned NMR experiment (Anthis
et al., 2011).

Since the crystal structure of Ca2+-CaM (PDB ID: 1CLL)
demonstrates a value of Rg that is closest to the experimentally
measured values and does not bind a target, we first examined
whether variation in single memory weight of this structure (W1CLL

n )
could give rise to the conformational changes of the Ca2+-CaM. We
performed a series of molecular simulations using US withW1CLL

n �
1, 2, . . . , 9 and maintaining λFM � 0.1 and Wothers

n � 1 (Table 2
Model II). From the PMF profiles and the probability distributions
shown in Figure 5, we show that the Ca2+-CaM samples both the
extended and collapsed conformations in all the models we explored.
In general, with the increase ofW1CLL

n , stability of the collapsed state
decreases and the barrier between the extended and collapsed states
increases, hence an increase in Rg and decrease in γc:e. Specifically,
without tuning any other local memory weights, W1CLL

n � 8, 9, and
Rg and γc:e match with experimental values (Seaton et al., 1985;
Heidorn and Trewhella, 1988; Kataoka et al., 1991; Anthis et al., 2011)
quite well (Table 2).

Central Linker of the Ca2+-CaM Determines
the Conformational Change of Ca2+-CaM
Although the X-ray crystallography experiment shows that the
central linker that connects the two domains of Ca2+-CaM has a

helical structure, numerous studies including NMR have shown
its high flexibility in solution. To explore the relationship between
the flexible linker and the dynamics of Ca2+-CaM in more detail,
we carried out a series of US molecular simulations with the
memory weight of the central linker of the Ca2+-CaM, W1CLL

2 �
1, 2, . . . , 9 while keeping λFM � 0.1 andWothers

n � 1, andW1CLL
n (n

� 1,3) � 5 (Table 2 Model III). As shown in the PMF profiles
(Figure 6), W1CLL

2 shows a similar effect on the thermodynamic
properties of the Ca2+-CaM; with the increase of W1CLL

2 , stability
of the collapsed state decreases and the barrier between the
extended and collapsed states increases, hence an increase in
Rg and decrease in γc:e (Table 2). This is likely because the two
globular domains of CaM consist of stable secondary structures
(mostly α-helices) and the involving fragments are fully
represented and heavily weighted by Wothers

n (n � 1, 3) in
other 59 memories, whereas the central linker connecting the
two domains of CaM is modeled as an intrinsically disordered
peptide; hence, the stability of the Ca2+-CaM is more sensitive to
the parameterW1CLL

2 corresponding to the central linker of CaM.
Therefore, tuningW1CLL

n for the whole CaM is mostly equivalent
to tuningW1CLL

2 for the central linker. This can also be seen in the
three highlighted models in Table 2, which reproduce the
experimentally measure Rg and γc:e well (Seaton et al., 1985;
Heidorn and Trewhella, 1988; Kataoka et al., 1991; Anthis et al.,
2011).

In order to illustrate the conformational changes of Ca2+-CaM
in solution, we selected representative snapshots from the
simulations using the Ca2+-CaM model with λFM � 0.1, Wothers

n

FIGURE 7 | Representative snapshots of the Ca2+-CaM model obtained from our simulations. The model that best reproduces experimental measurements was
used (λFM � 0.1, Wothers

n � 1, W1CLL
1,3 � 5, and W1CLL

2 � 8). (A) The completely collapsed conformation of the Ca2+-CaM; (B) the collapsed conformation; (C) the
intermediate conformation; and (D) the extended conformation. These structures are represented along the probability distribution of Rg.
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� 1, W1CLL
1,3 � 5, and W1CLL

2 � 8, as highlighted in Table 2. The
unstructured central linker of the extended structure (Figure 7D)
unwraps and bends to allow the two domains of the Ca2+-CaM to
interact with each other, as shown in Figure 7A–C). Figure 7A
represents a completely collapsed structure similar to the
compact structure (PDB ID: 1PRW) or in CaM-target
complexes, however, the chance for Ca2+-CaM to sample this
structure is low. Figure 7B represents a collapsed structure.
Figure 7C represents a structure in the transition state
between the collapsed and extended states.

Coordination Geometry Is Necessary for
Representing Divalent Ions in
Coarse-Grained Models
Although it can be tempting to use the available intrinsically
disordered protein (IDP) force fields such as AWSEM-IDP (Wu
et al., 2018) (due to the disordered nature of the central linker) to
study the dynamics of Ca2+-CaM, the heterogeneity of CaM
needs to be considered. The high rigidity of the two domains
upon calcium-binding limits the use of IDP force fields, thus

making the computational investigation of CaM even more
complex.

We further manifest the importance of coordination chemistry
by comparing the three approaches to modeling Ca2+ as described
in MethodModeling Ca2+ Ions in ASWEM Force Field in Figure 8.
With approach I, the Ca2+ charges were evenly distributed to all the
negatively charged residues (Tsai et al., 2016) and Ca2+-CaM
presents an equal probability of sampling the completely
collapsed conformation and the extended conformation (γc:e �
1.01). Rg ∼ 18.64 Å is well below the experimental values (Seaton
et al., 1985; Heidorn and Trewhella, 1988; Kataoka et al., 1991).
With approach II by applying constraints on the Ca2+ loops, Ca2+-
CaM samples favorably the completely collapsed conformation
with Rg ∼ 15 Å (γc:e � 22.87). Consequently, the binding selectivity
of Ca2+-CaM could be impeded due to the lack of the flexibility of
calcium-binding loop in the system. Being confined in this
completely collapsed conformation, Ca2+-CaM lacks the
capacity of recognizing, binding, and activating the targets.
With approach III (w/coordination chemistry), Ca2+-CaM
samples both extended and collapsed conformations while
preferring the former.

FIGURE 8 | PMF and Rg distribution of the Ca2+-CaM for different Ca2+models. The optimizedmemory parameters for the Ca2+-CaMmodel were used (λFM � 0.1,
Wothers

n � 1,W1CLL
1,3 � 5, andW1CLL

2 � 8). The three charge models are described in theMethod section. (A) The reweighted free energy profile as a function of Rg from the
US simulations (B) and the probability distribution as a function of Rg. The standard errors in the PMF are provided.
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Force field development for Ca2+ ion is mostly limited to
the aqueous solution rather than in protein-bound
environments (Probst et al., 1985). One of the main
challenges in computer simulations of macromolecules
remains the development of force fields with the
appropriate implementation of the metal ion (Gifford et al.,
2007; Duarte et al., 2014; Li and Merz, 2017; Liao et al., 2017;
Fracchia et al., 2018; Huang and MacKerell, 2018). Due to the
high sensibility of the molecules upon bivalent metal ion
binding, taking the Ca2+-induced conformational changes
in CaM as an example, a lack of appropriate approach to
model its effects on the molecules could impede the capability
of the target molecule to transduce its signals, thus, leading to
the inactivation and/or malfunction of the signaling pathways
(Gaertner et al., 2004; Wang et al., 2011).

Most calcium-binding proteins such as CaM contain the EF-
hand (helix-loop-helix) structural domain as the calcium-binding
motif (Lepšík and Field, 2007; Capozzi et al., 2006). In this motif,
the calcium ion is coordinated in a pentagonal bipyramidal
configuration (Figure 3). The canonical positions 1, 3, 5, 7, 9,
and 12 represent the positions of the residues involved in calcium
coordination (Clapham, 2007; Gifford et al., 2007). Table 3 shows
simple and efficient ways to consider the effect of the Ca2+ ions in
the force field, where we distributed its charges to the negatively
charged residues present in the pentagonal bipyramidal
configuration. In contrast to other approaches where the
harmonic constraint is applied to the calcium coordinated
residues in the loop, or the charges are distributed to all the
negatively charged residues in the system, our approach (III) not
only considers the heterogeneity of CaM but also takes into
account the coordination chemistry of calcium by giving the
coordinated residues the freedom to participate to the different
conformations of the system, which are relevant to the target
selectivity of Ca2+-CaM.

The Distribution of Ca2+-CaM
Conformations Is Beyond the Extended and
the Collapsed Structures
Ca2+-CaM undergoes substantial conformational changes upon
binding to a target, in most cases, the Ca2+-CaM develops a
collapsed form that wraps around the target peptide with the two
domains coming in proximity (Meador et al., 1993; Westerlund
and Delemotte, 2018; Tidow and Nissen, 2013). For various
CaMBT molecules, CaM undergoes structural rearrangement
to different degrees during the complex formation. Thus, the
collapsed conformation of the intact Ca2+-CaM (e.g., Figure 7)
assembles a vast variety of structures including a structure that
resembles the compact conformation of a specific Ca2+-CaM/
target complex (Figure 1D). This was also observed by X-ray
crystallography (Fallon and Quiocho, 2003) and NMR studies
(Anthis et al., 2011). This collapsed structure of the Ca2+-CaM
(Figure 7A) confirms the earlier experiments that show multiple
conformations of the Ca2+-CaM in solution, as well as the
interaction between opposing domains of CaM (Johnson,
2006; Anthis et al., 2011; Her et al., 2018).

Previous studies have shown that the high flexibility of the
linker in solution allows the two domains to independently
undergo multiple conformations (Malmendal et al., 1999;
Chou et al., 2001; Barton et al., 2002; Hoeflich and Ikura,
2002; Komeiji et al., 2002; Park et al., 2008; Wu et al., 2012).
Structural differences can be inferred from crystallography,
but the dynamical insights are pivotal to understand Ca2+-
CaM interactions with the targets. Experimental and
computational studies including NMR spectroscopy, X-ray
crystallography, small-angle X-ray scattering, and molecular
dynamics simulations unveil important details of the
dynamics of Ca2+-CaM and paint a clear portrait of its
conformational motions at the origin of the binding
selectivity. The available structures of Ca2+-CaM show that
it crystallizes into two major conformations: extended
(Chattopadhyaya et al., 1992) and collapsed (Fallon and
Quiocho, 2003), while in solution, Ca2+-CaM adopts
multiple conformations (Project et al., 2006; Park et al.,
2008; Wu et al., 2012; McCarthy et al., 2015; Fernandes
and Oliveira-Brett, 2017; Jing et al., 2017; Her et al., 2018;
Villalobo et al., 2018; Shimoyama, 2019). The conformational
changes of CaM upon Ca2+ binding have been under intensive
investigation (Weinstein and Mehler, 1994; Gilli et al., 1998;
Project et al., 2006; Park et al., 2008; Wu et al., 2012). The goal
of such studies is to understand the molecular mechanism that
leads to the Ca2+-CaM target binding selectivity. How Ca2+-
CaM interacts with its CaMBTs is of major interest. This
presented community model of CaM allows transitions
between a rich set of states beyond the two major extended
or the collapsed conformations and are applicable for various
Ca2+ bound conditions; this further could improve the
interpretation of how target binding may tune CaM’s
affinity for Ca2+ ions (Gaertner et al., 2004; Zhang et al., 2017).

CONCLUSION

Here, we developed a “community model” of CaM that samples
various conformations of CaM, incorporates various calcium-
binding states, and carries the memory of binding with various
targets. The model would be useful for studying the reciprocal
relationship interplay between target binding and calcium
binding through CaM’s conformational changes as the next
step. We demonstrated a workflow of the development of the
AWSEM model for CaM guided by physical knowledge and
experimental data. Should new structures of CaM (or CaM/
CaMBT complex) structures become available, the model can
be easily expanded by including these structures in the memory
library.
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