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Editorial on the Research Topic

Recent Approaches for Assessing Cognitive Load From a Validity Perspective

INTRODUCTION

“Cognitive load can be defined as a multidimensional construct representing the load that
performing a particular task imposes on the learner’s cognitive system” (Paas et al., 2003, p. 64).
It is assumed that assessed cognitive load under various experimental conditions represents the
working memory resources exerted or required during the task performance. Cognitive load is widely
studied in diverse disciplines such as education, psychology, and human factors. In educational
science, cognitive load is used to guide instructional designs; for instance, when developing
instructional designs, overly high cognitive load should be avoided because it may hinder
knowledge construction and understanding. Generally, cognitive load theory offers valuable
perspectives and design principles for instruction and instructional materials (e.g., Sweller, 2005;
Kirschner et al., 2006; Paas and van Merriënboer, 2020).

The present Research Topic invited contributions describing approaches to measure cognitive
load and examining the validity of these approaches. “Measuring cognitive load is [. . .]
fundamentally important to education and learning” (Chandler, 2018, p.x) and several
approaches have been proposed to measure cognitive load and function as indicators of
learners’ working memory resources during task performance, or as input for personalized
adaptive tak selection (e.g., Salden, 2006). Cognitive load measurements can also advance
cognitive load theory by providing an empirical basis for testing the hypothetical effects of
instructional design principles on cognitive load (Paas et al., 2003). However, Martin (2018)
points out that “Finding ways to disentangle different kinds of load and successfully measure
them in valid and reliable ways remains a major challenge for the research field” (p.38). The
contributions of the present Research Topic address this challenge and, hence, contribute to the
development of a fundamentally important area of cognitive load research.

In this editorial piece, we first provide a summary of recent approaches to measure cognitive
load, use the assessment triangle (National Research Council, 2001) as a framework to systemize
existing and forthcoming research in the field of cognitive load measurement, then we analyze
the studies published in this Research Topic based on the assessment triangle.
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Recent Approaches for Assessing
Cognitive Load
Assessment of cognitive load has been a significant direction in
cognitive load theory and research (e.g., Paas et al., 2003; Paas
et al., 2008; Brünken et al., 2010). Although several classifications
of cognitive loadmeasurement methods have been proposed (e.g.,
analytic vs. empirical, Xie and Salvendy, 2000; direct vs. indirect,
Brünken et al., 2010), the subjective-objective classification (see
Paas et al., 2003) is most frequently used. Whereas subjective
methods are based on self-reported data, objective methods use
observations of performance, behavior, or physiological
conditions. The self-reported data are preferably collected after
each learning unit or test task with rating scales for perceived
mental effort (e.g., Paas, 1992), perceived task difficulty (e.g.,
Kalyuga et al., 1999), or both (e.g., Krell, 2017; Ouwehand et al.).
Subjective measures are considered less sensitive to fluctuations
in cognitive load and are generally used to estimate overall
cognitive load. This means that students give one rating for a
whole learning unit or test task or a series of learning units or test
tasks. Although it has been argued that it is not possible to
differentiate between different types of cognitive load
(i.e., intrinsic, extraneous, germane) with the conventional
rating scales, recent research has shown that the scales can be
adapted to differentiate between the different types of cognitive
load successfully (e.g., Leppink et al., 2013; Leppink et al., 2014).

Although subjective measures have been found easy to use,
valid, and reliable (e.g., Paas et al., 1994; Leppink et al., 2013;
Krell, 2017), cognitive load researchers have continuously
searched for objective measures, which are not influenced by
opinions and perceptions of people. This research has resulted in
a wide range of objective techniques. The first objective method
used in cognitive load research was an analytical method to
analyze the effectiveness of learning from conventional goal-
specific problems versus nonspecific problems based on the
number of statements in working memory, the number of
productions, the number of cycles to a solution, and the total
number of conditions matched (Sweller, 1988). Another objective
technique is based on the so-called dual-task paradigm (Bijarsari),
which holds that performance on a secondary task performed in
parallel with a primary task is indicative of the cognitive load
imposed by the primary task (for examples see: Chandler and
Sweller, 1996; Van Gerven et al., 2000; Brünken et al., 2010). An
objective technique that is increasingly used in cognitive load
research is based on the assumption that changes in cognitive
load are reflected by physiological variables. In this category of
objective techniques, measures of the heart (e.g., heart-rate
variability: e.g., Minkley et al., 2018; Larmuseau et al., 2020),
brain (e.g., EEG: e.g., Antonenko et al., 2010; Wang et al., 2020),
eye (e.g., pupil dilation: e.g., Lee et al., 2020) and skin (e.g.,
galvanic skin response: e.g., Nourbakhs et al., 2012; Hoogerheide
et al., 2019) have been used (for a review see, Paas, and Van
Merrienboer, 2020). Psychophysiological measures are sensitive
to instantaneous fluctuations in cognitive load.

Independent of the specific approach, which is employed in a
study to measure cognitive load (i.e., subjective or objective), it is
crucial to provide evidence that the specific measure allows

inferences about the amount of cognitive capacity that a
learner invested for learning or solving a task and, if
applicable, for which type of cognitive load (e.g., intrinsic,
extraneous, germane). In the next section, a framework for the
systematic development and evaluation of educational and
psychological assessments is introduced: the assessment triangle.

The Assessment Triangle
The assessment triangle (Figure 1) has been proposed by the US
National Research Council (National Research Council, 2001) to
emphasize that each educational assessment is a means to
produce some data “that can be used to draw reasonable
inferences about what students know” (p.42). While this
statement refers to knowledge assessment, the framework also
applies to broader contexts such as cognitive load assessment. The
process of collecting evidence for supporting the specific
inferences a researcher aims to draw is represented in the
assessment triangle as a triad of construct (What is
measured?), observation (How is it measured?), and
interpretation (Why can we infer from observation to
construct?) (Shavelson, 2010). For an assessment to be
effective, each of the three elements must be considered and
be in synchrony (National Research Council, 2001). Below, we
explain how each dimension of the assessment triangle is reflected
in the context of cognitive load research.

Construct
In the case of cognitive load assessment, the construct under
consideration is cognitive load. While cognitive load is generally
defined as an individual’s cognitive resources used to learn or
perform a task (e.g., Paas et al., 2003), further differentiations
have been proposed, distinguishing between several types of
cognitive load such as extraneous, intrinsic, and germane

FIGURE 1 | Assessment triangle (adapted from Shavelson, 2010).
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cognitive load (e.g., Paas et al., 2003) or mental load and mental
effort (e.g., Krell, 2017). For example, Choi et al. (2014) propose a
model of cognitive load in which three main assessment factors of
cognitive load are included: mental load, mental effort, and
performance; see also (Paas and Van Merriënboer, 1994).

While the basic definition of cognitive load is shared by most
researchers, the theoretical distinction between different types of
cognitive load is still under debate (de Jong, 2010; Sweller et al.,
2019). For example, task performance is sometimes
conceptualized as being one aspect of cognitive load (e.g.,
Choi et al., 2014) others see it as an indicator for cognitive
load (e.g., Kirschner, 2002). Furthermore, the most established
conceptualization of cognitive load encompassing three types of
extraneous, intrinsic, and germane cognitive load is also critically
discussed (Kalyuga, 2011). For a specific cognitive load
assessment, it is necessary to be clear and precise as to what
one aims to measure. It is argued that an assessment approach is
most effective if an explicit and clear concept of the construct of
interest is used as a starting point (National Research Council,
2001).

Observation
Observation refers to the data that are collected using a specific
method and aimed to be interpreted as evidence to draw
inferences about the construct under investigation (National
Research Council, 2001)—in this case: cognitive load. Various
approaches have been suggested to measure cognitive load
(Brünken et al., 2010). Subjective approaches using self-reports
on rating scales are frequently used to assess cognitive load, while
several objective approaches are still in an earlier stage of
development and evaluation (Antonenko et al., 2010; Sweller
et al., 2011; Ayres et al.). However, the validity of different
approaches and the extent to which they represent cognitive
load are still under debate (Solhjoo et al., 2019; Mutlu-Bayraktar
et al., 2020).

Taking into consideration the different types of cognitive load
suggested in the literature as well, this makes it necessary to
carefully decide on which measurement method to use in a given
context and for a given purpose. Furthermore, researchers should
be clear about what kind of measures they decided to apply and
for what reasons. Related to subjective approaches for cognitive
load measurement, for instance, it is not always entirely clear
which construct the items are aimed to measure. For example,
many researchers use category labels related to task complexity
but label them broadly as measures of cognitive load (de Jong,
2010).

Interpretation
Interpretation refers to the extent to which valid inferences can be
drawn from data (e.g., self-reports on rating scales) to (the level
of) an individual’s invested cognitive resources. The
interpretation of data as evidence for an individual’s cognitive
load means generalizing from a specific form of data (e.g.,
subjective ratings on single items) to the more global construct
of cognitive load (or a specific type, such as mental effort). This is
an essential step for the operationalization of the construct.
However, the interpretation of measured data may be

questioned, for example, if this interpretation is made only
based on subjective ratings on items assessing mental effort.
This is because cognitive load—as proposed by Choi et al.
(2014)—is not only composed of the assessment factor of
mental effort but also of mental load and performance. This
demonstrates that the evaluation of the validity of the proposed
interpretation of test scores is critical and complex.

In more general terms, it is proposed to consider different
sources of evidence to support the claim that the proposed
inferences from data to an individual’s cognitive load are
valid. This is why “the evidence required for validation is the
evidence needed to evaluate the claims being made” (Kane,
2015, p.64).

Validity
In the Standards for Educational and Psychological Testing, the
authors elaborate on different “sources of evidence that might be
used in evaluating the validity of a proposed interpretation of test
scores for a particular use” (p.13). These sources of validity
evidence are: Evidence based on test content, on response
processes, on internal structure, and on relations to other
variables (American Educational Research Association et al.,
2014). Gathering evidence based on test content hereby means
analyzing the relation “between the content of a test and the
construct it is intended to measure” (American Educational
Research Association et al., 2014, p.14). Sources of evidence
based on test content often consist of expert judgments.
Concerning the assessment of cognitive load, it is necessary,
for example, to ask why a specific approach (e.g., subjective)
has been chosen and to what extent this decision influences the
intended interpretation of the obtained data. Furthermore,
quality criteria such as objectivity and reliability are necessary
prerequisites for the valid interpretation of test scores (American
Educational Research Association et al., 2014). The current
concept of validity includes aspects of reliability and fairness
in testing as part of the criteria that offer evidence of a sufficient
internal structure. Gathering evidence based on response
processes takes into account individuals’ reasoning while
answering the tasks to evaluate the extent to which the
proposed inference on an individual’s cognitive resources is
valid. For this purpose, research methods like interviews and
think-aloud protocols are typically employed. Gathering evidence
based on relations to other variables means considering relevant
external variables, for example, data from other assessments (e.g.,
convergent and discriminant evidence) or categorical variables
such as different subsamples (e.g., known groups). For example, a
comparison between subjective and objective measures has been
proposed as a source of validity evidence for subjective measures
and as a way to learn about what the different measures are
measuring (Leppink et al., 2013; Korbach et al., 2018; Solhjoo
et al., 2019).

Based on the considerations above, validity can be seen as an
integrated evaluative judgment on the extent to which the
appropriateness and quality of interpretations based on
obtained data (e.g., subjective ratings or other diagnostic
procedures) are supported by empirical evidence and
theoretical arguments. Hence, “validity refers to the degree to
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which evidence and theory support the interpretations of test
scores for proposed uses of tests” (American Educational
Research Association et al., 2014, p.11). Therefore, the
validation of an instrument is not a routine procedure but is
carried out through theory-based research, with which different
interpretations of test data can be legitimized or even falsified
(Hartig et al., 2008). Kane (2013) further argued that researchers
have to critically demonstrate the validity of test interpretations
based on a variety of evidence, especially by considering the
evidence that potentially threatens the intended interpretation
(“falsificationism”).

The Contributions in this Research Topic
In the following, the 12 contributions of this Research Topic are
analyzed and discussed based on the assessment triangle and the
above thoughts on validity.

Minkley et al. based their study on the cognitive load
framework Choi et al. (2014) and investigated relationships
between causal and assessment factors of cognitive load in
samples of secondary school students. The study aimed to test
the assumed convergence between subjective (self-reported
mental load and mental effort) and objective (heart rate)
measures of cognitive load and to provide evidence for the
assumed relationships between assessment factors of cognitive
load (mental load and mental effort) and related causal factors in
terms of learner characteristics (self-concept, interest and
perceived stress). From their findings, the authors conclude
that it is still unclear if objective measures can be validly
interpreted as an indicator for an individual’s cognitive load
and in which contexts. The authors emphasize the need for a
clear theoretical framework of cognitive load, including the
different objective measures.

Andersen and Makransky, in their contribution, evaluated an
adapted version of the widely used Cognitive Load Scale by
Leppink et al. (2013) called Multidimensional Cognitive Load
Scale for Physical and Online Lectures (MCLS-POL). In three
studies, the authors provide validity evidence based on test
content (utilizing theoretical considerations and previous
studies), on internal structure (through psychometric
analyses), and on relations to other variables (using group
comparisons). Overall, the authors conclude that their findings
provide evidence for the validity of the MCLS-POL but that some
minor limitations should be considered in future studies (e.g.,
some subscales with only a few items).

Klepsch and Seufert evaluated items that have been formulated
to measure active (“making an effort”) and passive (“experiencing
load”) aspects of cognitive load. The authors report on two
empirical studies, which are based on theoretical
considerations concerning the relationship between active and
passive aspects of cognitive load and intrinsic, extraneous, and
germane load, as well as established load-inducing instructional
design principles (e.g., the split-attention principle). Hence, the
authors address validity evidence based on test content, internal
structure, and relations to other variables. The findings suggest
that it is possible to distinguish between active and passive aspects
of load and that this can be related to the three types of cognitive
load (i.e., the active load is associated with GCL, while the passive

load is associated with ICL and—less strongly—with ECL). The
items were not able, however, to entirely provide the expected
measures of active and passive load in the different load-inducing
instructional settings.

Zu et al. investigated how learner characteristics affect the
validity of a subjective assessment instrument developed to assess
extraneous, intrinsic, and germane cognitive load. In three
experiments, the authors asked students to sort the items of
the instrument and provide reasons for their groupings
(experiment 1), administered the instrument alongside an
electric circuit knowledge test before and after an instructional
unit on electric circuits (experiment 2), and provided students
with a test including different load-inducing problems and asked
them to fill out the instrument subsequently (experiment 3).
Overall, the findings provide validity evidence based on test
content from the target population’s view (experiment 1) and
based on relations to other variables (i.e., known-groups
comparison) from experiment 3; experiment 2, however,
shows that the instrument’s internal structure varied
depending on the students’ level of content knowledge. The
authors discuss that content knowledge might moderate how
students self-perceived their cognitive load. This emphasizes that
learner characteristics have to be considered to draw valid
inferences from self-reports on learners’ cognitive load.

Ehrich et al. propose a new cognitive load index, which is
derived from item response theory (IRT) estimates of relative task
difficulty. The authors argue that the proposed index combines
key assessment factors of cognitive load (i.e., mental load, mental
effort, and performance); hence, providing theoretical arguments
as validity evidence based on test content. Empirically, Ehrich
et al. administered a version of “Australia’s National Assessment
Program—Literacy and Numeracy” test to calculate raw test
scores from which relative task difficulty, that is, the proposed
cognitive load index, was estimated. For this measure, they
provide validity evidence based on internal structure (as the
IRT model shows appropriate fit in the given context) and on
relations to other variables. For the latter, the authors illustrate
that students’ scores on two standardized assessments (numeracy
and literacy) predicted the cognitive load index as expected.

Bijarsari presents in her theoretical article current taxonomies
of dual tasks for capturing cognitive load. She argues that there is
a lack of standardization of dual tasks over study settings and task
procedures, which—in turn—results in a lack of validity of dual-
task approaches and comparability between studies. Based on a
review of three dual-task taxonomies, Bijarsari proposes a
“holistic taxonomy of dual-task settings,” which includes
parameters relevant to the design of a dual-task in a stepwise
order, guiding researchers in the selection of the secondary task
based on the chosen path.

Martin et al. administered the “Load Reduction Instruction
Scale-Short” (LRIS-S) to students in high school science
classrooms and applied multilevel latent profile analysis to
identify student and classroom profiles based on students’
reports on the LRIS-S and their accompanying psychological
challenge and threat orientations. The authors explicitly adopted
a within- and between-network construct validity approach on
both the student and the classroom level. The analysis suggested

Frontiers in Education | www.frontiersin.org January 2022 | Volume 6 | Article 8384224

Krell et al. Editorial: Assessing Cognitive Load

7

https://www.frontiersin.org/articles/10.3389/feduc.2021.632907/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2021.642084/full
https://www.frontiersin.org/articles/10.3389/feduc.2021.645284/full
https://www.frontiersin.org/articles/10.3389/feduc.2021.647097/full
https://www.frontiersin.org/articles/10.3389/feduc.2021.648324/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2021.648586/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2021.656994/full
https://www.frontiersin.org/journals/education
www.frontiersin.org
https://www.frontiersin.org/journals/education#articles


five instructional-motivational profiles (student-level within-
network), which also showed differences in persistence,
disengagement, and achievement (student-level between-
network). At the classroom level, the authors identified three
instructional-psychological profiles among classrooms (within-
network) with different levels of persistence, disengagement, and
achievement (between-network). Hence, the authors consider
learner characteristics (motivational constructs) and
environment characteristics (classrooms) and adopt a validity
approach that considers evidence based on internal structure and
on relations to other variables on both the student level and the
classroom level.

Ayres et al., in their review, analyzed a sample of 33
experiments that used physiological measures of intrinsic
cognitive load. The findings show that physiological measures
related to four main categories were used in the analyzed studies
(heart and lungs, eyes, skin, brain). For evaluation of the validity
of the measures, the authors considered construct validity and
sensitivity (i.e., the potential to detect changes in intrinsic
cognitive load across tasks with different levels of complexity).
The findings propose that the vast majority of physiological
measures had “some level of validity” (p.13) but varied in
terms of sensitivity. However, subjective measures, which were
also applied in some of the studies, had the highest levels of
validity. The authors conclude that a combination of
physiological and subjective measures is most effective for
validly and sensitively measuring intrinsic cognitive load.

Kastaun et al. examined the validity of a subjective (i.e., self-
report) instrument to assess extraneous, intrinsic, and germane
cognitive load during inquiry learning. Validity is evaluated by
investigating relationships between causal (e.g., cognitive
abilities) and assessment (e.g., eye-tracking metrics) factors
about the scores on the cognitive load instrument. In two
studies, secondary school students investigated a biological
phenomenon and selected one of four multimedia scaffolds.
Cognitive-visual and verbal abilities, reading skills, and spatial
abilities were assessed as causal factors of cognitive load, and the
learners indicated their representation preference by selecting one
scaffold. In sum, the authors considered validity evidence based
on test content and on relations to other variables, explicitly
stating four validity assumptions: 1) the three scales have a
sufficient internal consistency, 2) the three subjective measures
detect different cognitive load levels for students in grades 9 and
11, 3) there are theoretically sound relationships between the
three subjective measures and causal factors as well as 4)
assessment factors. The findings consistently support
assumptions 1) and 2) but only partially assumptions 3) and 4).

Thees et al. investigated the validity of two established
subjective measures of cognitive load in the learning context
of technology-enhanced STEM laboratory courses. Engineering
students performed six experiments (presented in two different
spatial arrangements) examining basic electric circuits and,
immediately after the experimentation, answered both
instruments. The authors analyzed various sources of validity
evidence, including the instruments’ internal structure and
relation to other variables (i.e., group comparison). The
intended three-factorial internal structure could not be found,

and several subscales showed insufficient internal consistency.
Only one instrument showed the expected group differences.
Based on these findings, the authors suggest a combination of
items from both instruments as a more valid instrument, which,
however, still has low reliability in the subscale for the extraneous
cognitive load.

Ouwehand et al. investigated how visual characteristics of
rating scales influenced the validity of subjective cognitive load
measures. They compared four rating scale measures differing in
visual appearance (two numerical scales and two pictorial scales),
which asked participants to rate mental load and mental effort
after working on simple and complex tasks. The authors address
validity evidence on test content (by asking the respondents to
comment on the scales in an open-ended question) and on
relations to other variables (by comparing resulting measures
between scale type and task complexity). The findings show that
all scales revealed expected differences in mental load and mental
effort between simple and complex tasks; however, numerical
scales provided expected relationships between cognitive load
measures and performance on complex tasks more clearly than
visual scales, while the opposite was found for simple tasks. In
sum, this study hints that subtleties in measurements (i.e., item
surface features such as visual appearance) can influence findings
and, hence, could be a potential threat to the valid interpretation
of test scores.

Schnaubert and Schneider investigated the relationship
between perceived mental load and mental effort and
comprehension and metacomprehension under different
design conditions of multimedia material. The authors varied
the design of the learning material (text-picture integrated, split
attention, active integration) and tested for direct and indirect
effects of mental load and mental effort on metacomprehension
judgments. Beyond indirect effects via comprehension, both
mental load and mental effort were directly related to
metacomprehension (which differed between the multimedia
design conditions). Based on their findings, the authors discuss
that subjectivity (i.e., subjective experience of cognitive processes)
needs to be considered more explicitly for validly assessing
cognitive load with subjective methods.

SUMMARY AND DISCUSSION

To summarize, the present Research Topic includes two
theoretical papers (i.e., literature reviews) and ten empirical
studies. The theoretical papers show, for the specific areas of
analysis, that there is a lack of validity in and comparability
between most studies using dual tasks to capture cognitive load
(Bijarsari) and that the validity and sensitivity are limited for
most physiological approaches (Ayres et al.). Both studies
illustrate the need for further research in terms of conceptual
clarification and methods development and evaluation,
respectively. Compared to other constructs, such as general
cognitive abilities (e.g., Liepmann et al., 2007) or domain-
specific competencies (e.g., Krüger et al., 2020), standardized
representative validation studies for cognitive load assessments
are highly needed but widely missing. Hence, instead of
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evaluating new methods of cognitive load assessment, further
systematic study of the different existing methods is needed. For
example, to investigate under what conditions and for whom a
specific subjective method works well and why would be more
critical than just applying an existing or a new method. In
addition, the measurement methods are typically considered
one of several dependent variables in complex learning
environments, which consist of many other elements (Choi
et al., 2014). Therefore, it is challenging to disentangle the
differential effects on the cognitive load measures. More
fundamental research into the methods is needed to get a
detailed picture of the factors affecting the obtained measures.
For instance, Ouwehand et al. demonstrated that research on item
surface features could provide valuable insights on the validity of
subjective ratings. Such fundamental research should precede
more applied research.

Of the ten empirical studies, one used cognitive load measures
to investigate the proposed relationship between causal and
assessment factors of cognitive load. Based on their findings,
Minkley et al. specifically emphasize the need for precise
conceptual integration of the various objective measures for
cognitive load. The remaining nine empirical studies provide
studies on the validity of newly developed cognitive load
measures (e.g., active and passive load; Klepsch and Seufert)
or on the validity of establishedmeasures adapted to new contexts
(e.g., technology-enhanced STEM laboratory courses; Thees et al.
). Studies of the latter type show that published scales should be
evaluated before they can be validly used in new contexts.

Besides proposing specific cognitive load measures, the
empirical studies in this Research Topic also provide
valuable findings for cognitive load assessment in general.

For example, Zu et al. show that learner characteristics
should be considered to interpret subjective cognitive load
measurements validly. All studies in this Research Topic
found—to a greater or lesser extent—next to supportive
evidence also evidence that potentially threatens the validity
of the investigated measures. For example, Thees et al. could
not find the assumed three-factorial internal structure of their
data, and several of their subscales showed insufficient internal
consistency. Generally, it is likely that the unsolved issue of
how to conceptualize cognitive load (e.g., two vs. three types;
Kalyuga, 2011) highly influences cognitive load measures and
their validity—at least if scholars do not evaluate the
appropriateness of the selected approach for their study
context. Furthermore, it is also crucial for researchers to
reflect on the consequences of new developments in
cognitive load theory in the research on cognitive load
measurement. One example is the recently identified
possibility of working memory resource depletion, which
may occur following extensive mental effort (Chen et al.,
2018).

Concluding, the studies collected in this Research Topic
illustrate the need for further research on the validity of
interpretations of data as indicators for cognitive load. Such
research, to be systematic and theory-guided, can be fruitfully
framed within the assessment triangle (Figure 1).
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Cognitive load theory (CLT) has been widely used to help understand the process of

learning and to design teaching interventions. The Cognitive Load Scale (CLS) developed

by Leppink and colleagues has emerged as one of the most validated and widely used

self-report measures of intrinsic load (IL), extraneous load (EL), and germane load (GL).

In this paper we investigated an expansion of the CLS by using a multidimensional

conceptualization of the EL construct that is relevant for physical and online teaching

environments. The Multidimensional Cognitive Load Scale for Physical and Online

Lectures (MCLS-POL) goes beyond the CLS’s operationalization of EL by expanding

the EL component which originally included factors related to instructions/explanations

with sub-dimensions including EL stemming from noises, and EL stemming from both

media and devices within the environment. Through three studies, we investigated the

reliability, and internal and external validity of the MCLS-POL using the Partial Credit

Model, Confirmatory Factor Analysis, and differences between students either attending

a lecture physically or online (Study 2 and 3). The results of Study 1 (N = 250) provide

initial evidence for the validity and reliability of the MCLS-POL within a higher education

sample, but also highlighted several potential improvements which could be made to the

measure. These changes were made before re-evaluating the validity and reliability of

the measure in a new sample of higher education psychology students (N = 140, Study

2), and psychological testing students (N = 119, Study 3). Together the studies provide

evidence for a multidimensional conceptualization cognitive load and provide evidence

of the validity, reliability, and sensitivity of the MCLS-POL and provide suggestions for

future research directions.

Keywords: cognitive load, confirmatory factor analysis, item response theory, online lecture, Rasch measurement

INTRODUCTION

Cognitive load theory (CLT) posits that the strain put on working memory by the learning content
plays a key role in whether or not the student succeeds in learning (Sweller et al., 2011a). A
fundamental assumption is that working memory is limited in terms of capacity, but long term
memory has a much greater capacity as information is stored in schemas (Chi et al., 1982). Thus,
working memory becomes a form of bottleneck that requires instructors to design learning content
in a way that can maximize the amount of information that is stored in the long term memory.
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Originally, the CLT assumed that cognitive load was a
unidimensional construct pertaining only to the total capacity of
working memory (Ayres, 2018), and there is still disagreement
about how to conceptualize different types of cognitive load
(Kalyuga, 2011 Tindall-Ford et al., 2019). However, three distinct
types of cognitive load are primarily described, including:
Intrinsic Load (IL), which relates to the students perceived
difficulty of the learning material, the difficulty of the learning
material varies based on the materials composition and the
materials’ element interactivity (Sweller et al., 1998; Tindall-
Ford et al., 2019). Extraneous Load (EL) which consist of
non-intrinsic parts of the learning situation i.e., non-relevant
information presented together with relevant information or
inefficient instructional design, which will unnecessarily strain
the workingmemory of the student (Sweller et al., 2011b). Finally,
Germane Load (GL) is already existing cognitive resource which
can ease the learning e.g., strategies for learning (Sweller et al.,
2011b; Ayres, 2018). Some researchers have argued that GL is part
of IL (Sweller, 2010; Kalyuga, 2011). Others argue that it makes
sense to separate GL from IL and describe how GL is tied to
actual effort that leads to a better understanding of the content
(e.g., Klepsch et al., 2017), Finally, a recent article by Klepsch
and Seufert argues that IL stems from a passive experience of a
task, opposite GL that stems from an active experience of a task
(Klepsch and Seufert, 2021).

Many attempts at measuring cognitive load have been
proposed including objective tasks such as secondary tasks
(Sweller et al., 2011c) and psychophysiological measures such as
eye tracking (Zheng and Cook, 2012; Scharinger et al., 2020), and
EEG (Antonenko et al., 2010;Makransky et al., 2019a; Baceviciute
et al., 2020). Recently an article by Minkley, Xu, and Krell have
compared subjective and objective factors of CL which found
heart rate to be related to self-reported metal effort but not
self-reported mental load, and self-reported mental effort and
mental load predicted task performance better than heart rate
measures (Minkley et al., 2021). However, the most common way
to measure cognitive load is through self-report measures.

Previously, a single item measure by Paas (1992) has been
widely used and further developed to measure several types of
cognitive load (Ayres, 2006; Cierniak et al., 2009). However,
single item scales have also been criticized due to several
limitations including being too simplistic, making it difficult for
learners to make sensible distinctions between the complexity
of the material (IL) and inadequate instructions (EL; Kirschner
et al., 2011). Several other self-report scales assess cognitive load
with multiple items including a scale developed by Klepsch et al.
(2017) which assess IL, EL, and GL, a measure to assess mental
load and mental effort developed by Krell (2017), in addition to
the cognitive load scale by Leppink et al. (2013), which we use in
this article. We have chosen to build on the cognitive load scale
by Leppink and colleagues as the items assess a broader domain
such as a lecture.

In this article we aim to validate a revised version of Leppink
and colleagues’ Cognitive Load Scale (Leppink et al., 2013; CLS).
The CLS has been widely used in educational settings, and several
studies provide support for the validity and reliability of the
instrument (e.g., Leppink et al., 2013; Hadie and Yusoff, 2016;

Andersen andMakransky, 2020). This includes construct validity
assessed through exploratory factor analysis (Leppink et al., 2013)
or confirmatory factor analyses (Leppink et al., 2013; Hadie and
Yusoff, 2016; Andersen and Makransky, 2020) and item response
theory (Andersen and Makransky, 2020). The reliability has also
been examined, typically through Cronbach’s Alpha (Cronbach,
1951) or similar estimates (Leppink et al., 2013; Hadie and
Yusoff, 2016; Andersen and Makransky, 2020) and furthermore
the external validity has been examined by investigating how
the scales are correlated to learning outcomes (Andersen and
Makransky, 2020). Although there is mounting evidence of the
reliability and construct validity of the CLS, there are still several
gaps in this literature. A main gap in the literature are that there
may be a need to revisit the content validity of the EL dimension
of the CLS, and there is a need to evaluate the sensitivity of these
potential dimensions of EL in physical and online lectures.

Regarding the content validity of the EL dimension, a
recent study suggests that the EL may be a multidimensional
construct consisting of several sub-components. Andersen and
Makransky (2020) provide reliability and validity evidence
that the EL dimension should be split into three subscales
measuring distinct forms of EL in virtual reality environments.
The subscales included: EL stemming from instructions (e.g.,
“The instructions and/or explanations used in the simulation
were very unclear”), EL stemming from interaction (e.g., “The
interaction technique used in the simulation made it harder
to learn”), and EL stemming from the environment (e.g.,
“The virtual environment was full of irrelevant content”).
This multidimensional conceptualization was theorized within
immersive environments, but has not been suggested or
investigated in traditional teaching environments. In this article
we propose that the multidimensional conceptualization of EL
is not only relevant in virtual learning environments, but rather
that it is also necessary for accurately measuring cognitive load
in physical and online lectures. Although, cognitive load theory
does not clearly address the idea that disturbances and noises
might increase EL (Sweller et al., 2011b), research suggests that
multitasking using mobile devices reduce learning (Kuznekoff
and Titsworth, 2013; Chen and Yan, 2016). Furthermore, research
suggests that noises in learning environments can also influence
learning (Ali, 2013; Servilha and Delatti, 2014), thus the idea
that noises and disturbances add to EL seems straightforward.
Therefore, we have devised items for three subscales to measure
EL in relation to physical and online lectures addressing
contemporary issues, including noises in the environment or
distractions from devices such as mobile phones, which might
provoke EL. In addition to the original conceptualization of EL
from Leppink et al. (2013) that includes instructions and or
explanations (e.g., “The instructions and/or explanations during
the activity were very unclear”), our theoretical conceptualization
of EL includes sub-dimensions stemming from noise (e.g.,
“Noises in the environment made it difficult to focus on the
learning content”), and devices (e.g., “My activities on my
phone/computer made it difficult to focus on the learning
content”). Besides the newly developed EL subscales we also
employed the Intrinsic Load subscale (e.g., “The topics covered
in the activity were very complex”), and the Germane Load (GL)
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TABLE 1 | Items and scales included in the Study 1.

Scale

IL The topics covered in the activity were very complex.

IL The activity covered theories that I perceived as very complex.

IL The activity covered concepts and definitions that I perceived as very

complex.

EL ins The instructions and/or explanations during the activity were very

unclear.

EL ins The instructions and/or explanations were, in terms of learning, very

ineffective.

El ins The instructions and/or explanations were full of unclear language.

EL noi Other students talking in the classroom made it difficult to focus on the

learning content.

EL noi Students talking to me during the activity made learning ineffective.

EL noi Other noises and distractions during the activity made it hard to learn.

EL dev My activities on my phone/computer made it difficult to focus on the

learning content.

EL dev Messages and notifications from my phone/computer made learning

unclear.

EL dev Others’ phone/computer use distracted me, making it hard to learn.

GL The activity really enhanced my understanding of the topic(s) covered.

GL The activity really enhanced my knowledge and understanding of

cognitive load.

GL The activity really enhanced my understanding of the theories covered.

GL The activity really enhanced my understanding of concepts and

definitions.

IL, Intrinsic Load; EL Ins, Extraneous Load Instructions; EL Noi, Extraneous Load Noises;

EL Dev, Extraneous Load Devices; GL, Germane Load.

subscales (e.g., “The activity really enhanced my understanding
of the topic(s) covered”). The new measure is labeled the
Multidimensional Cognitive Load Scale for Physical and Online
Lectures (MCLS-POL and can be seen in Table 1). Although
several factors influence teaching in both online (Elkaseh et al.,
2015) and offline learning (McKenzie and Schweitzer, 2001;
Kappe and van der Flier, 2012) environments, we propose that
these components of cognitive load are specifically relevant
factors that can influence learning in offline (Klatte et al., 2013;
Chen and Yan, 2016; Cerdan et al., 2018) and online lectures
(Blasiman et al., 2018; Zureick et al., 2018; Costley et al., 2020).
Specifically, with the global COVID-19 pandemic, the use of
online teaching platforms is quickly increasing (König et al.,
2020) and there is evidence that factors such as noise (Servilha
and Delatti, 2014) and disturbances from devices (Chen and Yan,
2016) can create cognitive load when learning.

A related gap in the literature that we attempt to account for
in this article is the limited number of studies that investigate the
sensitivity of the different dimensions of cognitive load in realistic
learning environments. Currently some studies have found
meaningful differences of groups in cognitive load (Klepsch et al.,
2017; Andersen and Makransky, 2020) and others have found
predictive validity through regression analyses (Zukić et al., 2016;
Andersen and Makransky, 2020).

In this paper we conduct three studies. In the first study, we
validate each sub-scale of the MCLS-POL using the Partial Credit

Model (PCM) from Item Response Theory (IRT), and second,
we used confirmatory factor Analysis (CFA) to investigate the
structural validity of the MCLS-POL. In the second and third
studies we implement changes to the scale and investigate the
sensitivity of the different sub-dimensions during a lecture in
a higher education psychology bachelor course on the topic
of educational psychology (Study 2), and a different lecture in
a higher education psychology masters course on the topic of
psychological testing (Study 3) which both took place in the
Fall 2020 semester. Importantly, the setting of Study 2 and
Study 3 took place during the COVID-19 pandemic and students
were selected to either attend the lecture in person or online
via Zoom (Kohnke and Moorhouse, 2020) which gave us the
opportunity to investigate if the components of cognitive load
differed across settings. Finally, we compared scores across Study
2 and Study 3 to investigate whether the scales would reflect
the difference between the two courses. Thus, in this article
our aim is to investigate whether it is possible to develop and
validate questionnaires measuring cognitive load, particularly the
expanded scales of extraneous cognitive load pertaining to EL
from instruction, noise, and devices. In regard to comparing
online with off-line learning, our research hypotheses are that
there should be no differences in terms of intrinsic cognitive load
or germane cognitive load between online and offline lectures
as the materials and the possible germane resources should be
similar. Furthermore, we don’t expect any differences in relation
to EL from instructions, since students in both online and off-line
learning environments receive the same instructions. However,
we expected to find differences across the newly developed
extraneous cognitive load scales related to devices and noises
because there will be differences between the online and off-line
learning contexts which could influence these factors of EL.

STUDY 1

Methods Study 1
Sample
Data was collected at a European University during the fall
2019 semester. The psychology students (N = 250) were asked
to voluntarily answer a short online survey in relation to
their current course in educational psychology (n = 120) or
psychological testing (n = 130). A total of 80.8% reported being
females (n = 202), 18.4% males (n = 46), and 0.8% (n = 2)
reported another gender than male or female. The mean age was
25.46 with an SD of 5.45.

Item Development
A team of subject matter experts consisting of an expert
in educational psychology, a specialist in human computer
interaction, and a psychometrician further developed the scales
of Leppink and colleagues’ CLS. Based on a previous study
where the EL scale was conceptualized using three separate EL
subscales aimed at measuring CL in virtual reality (Andersen and
Makransky, 2020), we took a similar approach by conceptualizing
EL as a multidimensional construct with several subscales.
However, instead of being aimed at learning in virtual reality
it was aimed at learning during lectures, and was based on the
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literature that specified the factors that could create extraneous
cognitive load within physical and online lectures. We aimed to
make the items so generic that it should be possible to transfer
them from one context to another without rewriting them,
however in keeping with Leppink et al. (2013) formulation item
2 of the Germane Load scale specifically mentions the course
subject (i.e., “The activity really enhanced my knowledge and
understanding of [course subject].”) and therefore has to be
modified accordingly for each study (seeTable 1 for all items used
in Study 1).

Statistical Analyses
In this study, we employ two methodologies to investigate the
construct validity of the MCLS-POL. The first methodology is
that of item response theory (IRT; Embretson and Reise, 2000)
which estimates a probability function for endorsing each item
of a scale in relation to the scales’ total score, that allows for
detailed analyses of each item. The second methodology is that
of confirmatory factor analysis (CFA; Kline, 2011), in which we
model the relationship between items and several latent variables
called factors. Therefore, we can evaluate the fit of a model
including all items and all scales as latent factors and their
relation in just one model.

As the IRT approach is focused on each individual scale,
it makes sense to conduct the IRT analyses first and let the
knowledge from the IRT analyses inform the overall CFA model
which will contain all scales. For an IRT model of the Rasch
model family to be valid it must live up to five assumption
(Rosenbaum, 1989). The assumptions are: (a) unidimensionality;
the scale must measure one latent construct only, (b) the items
must be monotonic in relation to the total scale, (c) the items
must be locally independent, i.e., the items are conditionally
independent after accounting for the total score, (d) the items
must not show differential item functioning, e.g., students of the
same ability should have equal probability of endorsing an item
regardless of gender or age, (e) items must be homogenous such
that that the rank order of the items of the difficulties remain the
same despite differing abilities of the respondent, e.g., the most
difficult item should be the most difficult item to endorse for all
respondents. We will address each assumption for every scale in
the analyses.

In some cases where we find deviations from assumptions
of no Differential Item Functioning (DIF) (d) or no Local
Dependence (LD) (c), we are still able to obtain close to optimal
measurement. When DIF or LD is uniform, we can model this
with a graphical log linear Rasch model (GLLRM; Kreiner and
Christensen, 2004). This model can account for the differences
in item functioning when DIF is present, however when using
sum scores we will need to equate across DIF affected groups to
make the sums scores comparable. When uniform LD is present
it does not influence the sums scores, however LD dependency
will inflate estimates of reliability such as Cronbach’s Alpha
(Cronbach, 1951) and we will instead use a Monte Carlo method
to compute the estimate of reliability (Hamon and Mesbah,
2002). Factor analysis can be used to create a model where each
item’s relation to the scales is part of amatrix of regressions. In the
confirmatory approach, we restrict the model, such that items of

a given scale only load on the hypothesized factor and not any of
the other factors. This allow us to not only consider the properties
of the scales independently as in IRT, but also to investigate if
there might be overlap between items across and other scales.

In Study 1 for IRT analyses of the polytomous items of the CL
scales, we used the Partial Credit Model (PCM; Masters, 1982)
in the Digram program (Kreiner and Nielsen, 2013). An overall
test of DIF and homogeneity was conducted with Andersen’s
conditional likelihood test (Andersen, 1973). Item fit was assessed
with item rest score correlations (Christensen and Kreiner, 2013).
For the analyses of items-wise DIF in relation to gender, age
(grouped by 1 = 0–23, and 2 = 23 and above), and course and
LDwe used Keldermans’ likelihood ration test (Kelderman, 1984)
andGoodmann andKruskal’s partial gamma correlation (Kreiner
and Christensen, 2004).

For Pure PCM models in Study 1 we used Cronbach’s Alpha
(Cronbach, 1951) to estimate reliability. For scales with evidence
of LD we used aMonte Carlo procedure to estimate the reliability
since Cronbach’s Alpha is prone to inflation for scales with local
dependence. To account for false discovery rates due to the
multiple testing we used the Benjamini and Hochberg procedure
(Benjamini and Hochberg, 1995). For example, we employed
the procedure to test of all possible item pairs in relation to
local dependence.

To conduct the CFA we used the Lavaan package (version 0.6-
5) in the R statistical programming language (version 3.6.3). To
estimate the loading of the model, we used the diagonally least
square method (Li, 2016), since the items were ordinal. We used
the Comparative Fit Index (CFI) and the Tucker Lewis Index
(TLI) with values above 0.95 to indicate acceptable fit (Hu and
Bentler, 1999). Besides CFI and TLI we used the Root Mean
Square Error of Approximation (RMSEA) and the Standardized
Root Mean Square Residual (SRMR) were values below 0.06 and
0.08, indicate a good fit, respectively (Hu and Bentler, 1999).

Results Study 1
Results of Fit to the Partial Credit Model
The Rasch analysis of the IL scale indicated no evidence against
the fit to a PCM. The overall test found no evidence of breach
of homogeneity, the overall test, or the item-wise tests of DIF in
relation to gender, age, or course. There was no evidence against
item fit and no evidence of local dependence (see Table 2). The
reliability of the scale measured in terms of the Cronbach’s Alpha
was 0.89. Therefore, we concluded that the scale provided valid
and reliable measurement.

The analyses of EL instructions scale exhibited evidence of
DIF in relation to course for item 1, such that it was easier
for students of psychological testing to endorse the statement
“The instructions and/or explanations during the activity were
very unclear” than for students of educational psychology, despite
similar levels of EL related to instructions. When the DIF was
added to a graphical log linear Rasch model, then neither the
overall test nor the item-wise test showed evidence of DIF. There
was no evidence of breach of homogeneity, or against item fit.
Finally, there was no evidence of local dependence between items
and the reliability was 0.84. Therefore, we concluded that the
scale provided valid and reliable measurement.
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TABLE 2 | Results for the Rasch analyses of the scales in Study 1.

Scale Overall test Item fit DIF gender DIF age DIF course LD r

IL X X X X X X 0.89

EL Ins X X X X % X 0.84

EL Noi % X % % % % 0.81

EL Dev X X X % X % 0.62

GL X X % X X %6 0.90

IL, Intrinsic Load; EL Ins, Extraneous Load Instructions; EL Noi, Extraneous Load Noises;

EL Dev, Extraneous Load Devices; GL, Germane Load; DIF, Differential Item Functioning;

LD, Local Dependence; r, reliability. %, unacceptable, where the check mark should be

acceptable.

The Analyses of the Extraneous load scale for noise, showed
evidence of both DIF and local dependence. Although, no
evidence against item fit andwith a reliability coefficient of 0.81, it
was not possible to find a working model with LD and DIF which
could converge, thus there was no fit to a PCM of a GLLRM for
the EL N scale.

For the extraneous load scale in relation to devices, we found
evidence of DIF in relation to age for item 2,meaning it was easier
for younger students to endorse the statement: “Messages and
notifications from my phone/computer made learning unclear.”
and local dependence between item 1 “My activities on my
phone/computer made it difficult to focus on the learning content,”
and item 2 “Messages and notifications from my phone/computer
made learning unclear.” After adding these two deviations from
the PCM to a GLLRM, there was no further evidence of DIF or
LD, and no evidence against item fit or homogeneity, but the
reliability of the scale was only 0.62. Therefore, we conclude that
the scale did not fit the PCM, and that we were able to model the
DIF and LD, however, the scale had low reliability.

To achieve a working model for the Germane Load scale item
2: “The activity really enhanced my knowledge and understanding
of cognitive load/psychological testing.” was omitted. Further
analysis of the remaining three items showed evidence of DIF
relative to gender for item 4, Such that it was easier for females
to endorse: “The activity really enhanced my understanding
of concepts and definitions,” despite having the same level
of germane load. Furthermore, we found evidence of local
dependence between item 3: “The activity really enhanced my
understanding of the theories covered.” and item 4: “The activity
really enhanced my understanding of concepts and definitions.”
After these two instances were added to a GLLRM, there was
no further evidence of DIF or LD and no evidence against item
fit or against homogeneity, and the scale had a reliability of
0.90. Therefore, we concluded that the scale did not fit a pure
Partial Credit Model, but could still provide close to optimal
measurement after accounting for DIF and LD.

Results of Fit to the Confirmatory Factor Analysis
A Confirmatory Factor analysis was run including all items from
all scales with the exception of item 2 from the GL scale because
it did not fit the Partial Credit model in the previous analysis,
and without the EL Noise scale which did not converge during
the PCM analyses. The model grouped each scale’s item so they
formed a latent construct for each scale, e.g., all IL items loading

only on the latent construct of IL. The model achieved acceptable
fit values. The CFI was 0.999 and the TLI was 0.999. The RMSEA
was <0.001 and SRMR was 0.041, thus all values indicated the
model was acceptable.

Discussion Study 1
Overall the IRT and CFA analyses provided positive evidence of
the construct validity of the MCLS-POL with few minor cases
of LD and DIF which could be modeled. However, three major
issues were identified. The first was that the EL Noise scale
would not converge to a meaningful model. Adding instances
of local dependence to the model led to other instances other
local dependence until the program could no longer converge.
Second, although the EL devices scales converged to a model
after accounting for LD between two items and accounting for
DIF, the scales reliability was lower than conventional cut-off
for satisfactory reliability. Finally, item 2 from the GL scale had
to be eliminated as it did not fit the model. These issues were
dealt with in a revision of the MCLS-POL which is described in
Study 2. Overall we found evidence against the validity of the EL
noise scale, but we found no evidence against the validity of the
other scales.

STUDY 2

Study 2 was conducted to improve the MCLS-POL based on
the results of Study 1. We were interested in investigating
the criterion validity of the different sub-scales within the
MCLS-POL in addition to testing the reliability and validity
of the measure using the PCM and CFA as in Study 1.
Sensitivity was tested by using an experimental design where
students experienced a lecture in educational psychology either
physically or online through Zoom. An experiment was possible
because restrictions due to the COVID-19 pandemic meant that
approximately half of the students were assigned to a group who
had to follow the lecture online instead of physically in order
to increase physical distancing in the lecture hall. The students
attending the lecture online followed the same lecture as the
students who were physically present, while online the students
could choose between seeing just the lecture slides or the teacher
in front of the lecture slides, while listening to teacher speak.
To examine if the uses of scales scores made sense we used the
validity frame work of Kane (2013), and examined whether the
scales showed meaningful differences such that online students
experienced more EL than off-line students as hypothesized in
the introduction.

Item Revision
Before conducting the study, we reformulated the wording of the
items for the EL Noise scale so the item content became more
general based on the finding that the scale did not fit the PCM
in Study 1. For example, we changed the wording of item 1 from
“Other students talking in the classroom made it difficult to focus
on the learning content” to “Noises in the environment made it
difficult to focus on the learning content” (see Table 3 for all items
used in Study 2 and Study 3). This was also useful as restrictions
due to the COVID-19 pandemic meant that approximately half

Frontiers in Psychology | www.frontiersin.org 5 March 2021 | Volume 12 | Article 64208415

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Andersen and Makransky Development and Validation of the MCLS-POL

TABLE 3 | Items and scales included in the Study 2 and Study 3.

Scale

IL The topics covered in the activity were very complex.

IL The activity covered theories that I perceived as very complex.

IL The activity covered concepts and definitions that I perceived as very

complex.

EL Ins The instructions and/or explanations during the activity were very

unclear.

EL Ins The instructions and/or explanations were, in terms of learning, very

ineffective.

EL Ins The instructions and/or explanations were full of unclear language.

EL Ins Low quality audio made the instructions hard to follow.

EL Noi Noises in the environment made it difficult to focus on the learning

content.

EL Noi Distractions in the environment made learning ineffective.

EL Noi Unrelated events occurring in the environment made it difficult to focus.

EL Deva My activities on my phone/computer made it difficult to focus on the

learning content.

EL Deva Messages and notifications from my phone/computer made learning

unclear.

EL Devb Others’ phone/computer use distracted me, making it hard to learn.

EL Dev Technical issues made learning ineffective.

EL Dev Problems with technology made it difficult to focus.

GL The activity really enhanced my understanding of the topic(s) covered.

GL The activity really enhanced my knowledge and understanding of

[course subject].

GL The activity really enhanced my understanding of the theories covered.

GL The activity really enhanced my understanding of concepts and

definitions.

IL, Intrinsic Load; EL Ins, Extraneous Load Instructions; EL Noi, Extraneous Load Noises;

EL Dev, Extraneous Load Devices; GL, Germane Load.
aCombined to make an EL Media scale.
bOmitted from final analyses.

of the students were assigned to a group who had to follow the
lecture online to increase physical distancing in the lecture hall.
Given the difference between participating in a lecture physically
and online we expected differences in the EL sub-scales of Noise,
and Devices. We also added two more items to the EL Devices
sub-scale as the results from Study 1 indicated that the scale had
a low reliability.

Sample
Data were collected at a European University during the fall
2020 semester. The psychology students (N = 140) were asked
to voluntarily answer a short online survey in relation to their
current course in educational psychology. A total of 76.4%
reported being females (n= 107), 22.9%males (n= 32), and 0.7%
(n = 1) did not wish to answer the question. The mean age was
23.29 with a SD of 3.83. Due to the COVID-19 pandemic, the
University restricted the number of students who could attend
the lecture physically and students were assigned to either attend
in person or online through Zoom prior to the lecture. A total of
62 students attended the lecture in person, the rest of the students
attended the lecture through the Zoom online streaming service
(n= 78). The students experienced the same lecture with the only
difference being their presence in the classroom, or experiencing

it online through Zoom. TheMCLS-POL was administered at the
end of the lecture through SurveyMonkey.

Statistical Analyses
In Study 2 for IRT analyses of the polytomous items of the CL
scales, we used the Partial Credit Model (PCM; Masters, 1982)
in RUMM (Andrich et al., 2003), the switch from Digram to
RUMM was made as RUMM is able to handle scales based on
only two items which became a necessity in Study 2. An overall
test of fit to the PCMwas conducted with a chi-square test, where
significance indicate misfit in relation to the model (Pallant and
Tennant, 2007). Item fit was deemed acceptable if the residuals
of the models were within −2.5 and +2.5 (Pallant and Tennant,
2007). Local dependence was assessed by examining the residual
correlations between items, where we expected the residual
correlation to be close to zero. We used items residuals above
0.20 as indicative of local dependence (Christensen et al., 2017).
The presence of DIF was examined through analysis of variance
in items scores across age, gender, and whether the student was
present physically or attended the lecture online, in cases where
we tested with multiple items we corrected the p-values with the
Bonferroni correction to adjust for false discovery rates.

Results for Study 2
Results of Fit to the Partial Credit Model
The Rasch analyses of the five scales provide almost no evidence
against fit in the overall test or in relation to item fit. A minor
deviation was found for the IL scale as the overall test rejected
at fit (p < 0.001) however this might be due to item 2 which
fit to the PCM was rejected at p > 0.05 but not p > 0.01 after
Bonferroni correction. Furthermore, the residuals for the item fit
was between−2.5 and 2.5, thus we concluded the scale fit.

The only major deviation from the model was related to
the EL Devices scale where we identified strong evidence of
multidimensionality. After reexamining the wording of the items
it was clear that the items were assessing two separate constructs:
Onemeasuring the EL fromMedia with the following items (item
1, “My activities on my phone/computer made it difficult to focus
on the learning content” and item 2, “ Messages and notifications
frommy phone/computer made learning unclear”) and the second
measuring EL from devices with the following items (item 4,
“Technical issues made learning ineffective” and item 5, “Problems
with technology made it difficult to focus”). Furthermore, item 3
did not fit any of the scales and was eliminated. After the split
both scales fit the model and for all scales the reliability was
satisfactory (see Table 6).

For the other sub-scales, we only found evidence of one
instance of DIF depending on whether the students attended the
course physically or online in two items on the EL Instructions
scale, such that is was easier for physically present students
to endorse the statement in item 2 “The instructions and/or
explanations were, in terms of learning, very ineffective” than the
students attending the lecture online. Opposite of this it was
easier for the online students to endorse the statement of item 4
“Low quality audio made the instructions hard to follow,” than for
the physically present students, despite having similar levels of EL
in relation to instructions. For the GL scale we again omitted item
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TABLE 4 | Results for the Rasch analyses of the scales in Study 2 in RUMM.

Scale Overall test Item fit DIF gender DIF age DIF location LD r

IL % X X X X X 0.86

EL Ins X X X X % X 0.73

EL Noi X X X X X X 0.85

EL Med X X X X X X 0.85

EL Dev X X X X X X 0.87

GL X X X X X X 0.88

IL, Intrinsic Load; EL Ins, Extraneous Load Instructions; EL Noi, Extraneous Load noise;

EL Med, Extraneous Load Media; EL Dev, Extraneous Load devices; GL, Germane Load;

DIF, Differential Item Functioning; LD, Local Dependence; r, reliability. %, unacceptable,

where the check mark should be acceptable.

TABLE 5 | A comparison of the students who attended the course online and

those who were physically present on the scales in the MCLS-POL in Study 2.

Scale Online Physical present t(138) p Cohen’ s d

M SD M SD

IL 2.773 0.717 2.586 0.731 −1.281 0.202 0.259

EL Ins 2.234 0.718 1.762 0.505 −4.558 <0.001 0.746

EL Noi 2.368 0.962 1.591 0.614 −5.795 <0.001 0.940

EL Med 2.820 1.165 2.226 0.904 −3.401 <0.001 0.746

EL Dev 2.532 1.070 2.016 0.784 −3.290 <0.001 0.541

GL 3.724 0.713 3.944 0.538 2.071 0.040 0.343

IL, Intrinsic Load; EL Ins, Extraneous Load instructions; EL Noi, Extraneous Load Noises;

EL Med, Extraneous Load Media; EL Dev, Extraneous Load Devices; GL, Germane.

TABLE 6 | Results for the Rasch analyses of the scales in Study 3 RUMM.

Scale Overall test Item fit DIF gender DIF age DIF zoom LD R

IL X X X X X X 0.93

EL Ins X X X X X X 0.84

EL Noi X X X X % X 0.81

EL Med X X X X X X 0.85

EL Dev X X X X X X 0.90

GL X X X X X X 0.90

IL, Intrinsic Load; EL Ins, Extraneous Load Instructions; EL Noi, Extraneous Load noise;

EL Med, Extraneous Load Media EL Dev, Extraneous Load Devices; GL, Germane Load;

DIF, Differential Item Functioning; LD, Local Dependence; r, reliability. %, unacceptable,

where the check mark should be acceptable.

2 to achieve a working model, the p-value for item fit of item 3 in
the GL scale was 0.0163 (Bonferroni corrected cut-off was 0.016).
However, as the residuals was inside −2.5 to + 2.5 we accepted
it. Table 4 illustrates how all other items fit the PCM providing
evidence of the validity and reliability of the revised version of
the MCLS-POL.

External Validity Results
Table 5 shows the difference between being physically present
and attending the lecture online. Independent samples t-tests
were conducted to investigate if the differences between the
physical and online groups were significant. For the IL scale
there was no significant difference between being physically
present or attend online [t(138) =−1.281, p= 0.202] as expected.

Furthermore, EL Noise was significantly higher [t(138) =−5.795,
p < 0.001] for online students (M =2.368, SD = 0.962) than
for physically present students (M = 1.591, SD = 0.614). EL
Media was significantly higher [t(138) = −3.401, p < 0.001]
for online students (M =2.820, SD =1.165) than for physically
present students (M = 2.226, SD = 0.904). EL Devices was
significantly higher [t(138) = −3.290, p < 0.001] for online
student (M = 2.532, SD = 1.070) than for physically present
students (M = 2.016, SD = 0.784). All of these fit the a-
priori hypotheses. However, contrary to the a-priori predictions
EL Instructions was significantly higher [t(138) = −4.558, p <

0.001] for online student (M = 2.234, SD = 0.718) than for
physically present students (M =1.762, SD = 0.505). The online
students (M = 3.724, SD = 0.713) also experienced significantly
[t(138) = 2.071, p = 0.040] lower GL than the physically present
students (M = 3.944, SD = 0.538). These results suggest that the
MCLS-POL is sensitive to differences between students learning
in different environments and provides support for the external
validity of the measure. However, students also reported different
levels of EL related to instructions and GL which was not
expected in the a-priori predictions.

Discussion Study 2
Study 2 revealed that the EL Devices scale should be split into two
sub-scales in order to create valid measurement. A meaningful
categorization was made by creating an EL Media subscale, and
an EL Devices subscale. The EL Media sub-scale consisted of
the item “My activities on my phone/computer made it difficult
to focus on the learning content” and the item “Messages and
notifications from my phone/computer made learning unclear.”
The EL Devices sub-scale consisted of the item ”Technical issues
made learning ineffective” and the item “Problems with technology
made it difficult to focus.” Due to the item wording (i.e., the first
two items pertaining to disturbances from the devices and the
second two items pertaining to technology in general) it made
sense to split the scale into two distinct scales. Furthermore,
comparing the students based on whether they were physically
present or attending the lecture online revealed meaningful
differences such that the students attending the lecture online
experience significantly more EL related to instructions, noise,
media, and devices, as well as significantly less GL than the
students who were physically present in the lecture hall. The
difference between the groups on IL was not significant. To
investigate if these results would replicate in a new setting we
conducted a follow-up study.

STUDY 3

Study 3 was conducted to test the validity of the MCLS-
POL in a new context by replicating Study 2 in a sample of
psychology master students who were participating in a lecture
about psychological testing. The same statistical analyses were
conducted as in Study 2.

Sample
Data was collected at a European University during the fall
2020 semester. The psychology master students (N = 119) were
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TABLE 7 | A comparison of the students who attended the course online and

those who were physically present on the scales in the MCLS-POL in Study 3.

Scale Online Physical present t(117) p Cohen’ s d

M SD M SD

IL 3.181 0.836 3.200 0.718 0.092 0.927 0.023

EL Ins 2.544 0.745 2.463 0.814 −0.848 0.629 0.106

EL Noi 2.370 0.950 1.741 0.669 −3.878 <0.001 0.703

EL Med 2.696 1.021 2.333 1.047 −1.608 0.111 0.354

EL Dev 2.179 1.015 1.740 0.764 −2.076 0.040 0.455

GL 3.266 0.677 3.037 0.822 −1.471 0.144 0.322

IL, Intrinsic Load; EL Ins, Extraneous Load Instructions; EL Noi, Extraneous Load Noises;

EL Med, Extraneous Load Media; EL Dev, Extraneous Load Devices; GL, Germane Load.

asked to voluntarily answer a short online survey in relation to a
course in psychological testing. A total of 89.1% reported being
females (n = 106), and 10.9% males (n = 13). The mean age
was 27.25 with an SD of 6.65. Similar to Study 2, students were
assigned to attending the course physically or online prior to
the lecture but students who were allowed to attend physically
were given the option of attending online. A total of 27 students
attended the lecture in person, the rest of the students attended
the lecture through the Zoom online streaming service (n = 92).
The students attending in person had to wear a mask while
entering the lecture hall, which they could remove while seated
and they had to sit with distance between them. The teacher also
had to wear a mask when entering the lecture hall, but the teacher
was allowed to remove the mask during the lecture.

Results for Study 3
Results of fit to the Partial Credit Model
The Rasch analyses of the six scales provide almost no evidence
against fit in the overall test or in relation to item fit. We only
found evidence DIF depending on whether the students attended
the course online or by being physically present in relation to
two items on the EL Noise scale, such that it was easier for
physically present students to endorse “Noises in the environment
made it difficult to focus on the learning content,” while it was
easier for student attending online to endorse “Distractions in the
environment made learning ineffective,” despite having the same
level of EL related to noise. Again we split the EL device scale into
two separate two-item scales. One measuring the EL from media
and the second measuring EL from devices. After the split both
scales fit the model and for all scales the reliability was above 0.80
and thus satisfactory (see Table 6).

External Validity Results
Table 7 shows the difference between being physically present
and attending the lecture online. The EL noise and the EL devices
scales showed significant differences across type of attendance
as predicted. For the EL Noises scale scales the students who
attended the lecture online (M = 2.370, SD= 0.745) experienced
significantly [t(117) = −3.878, p < 0.001] more EL related to
noises than the students who were physically present (M= 1.741,
SD = 0.669). Similarly, on the EL Devices scale the students
who attended the lecture online (M = 2.179, SD = 1.015)

experienced significantly [t(117) = −2.076, p = 0.040] more EL
related to devices than the students who were physically present
(M = 1.740, SD = 0.764). However, although the online lecture
group (M = 2.696, SD = 1.021) also experienced more EL
related to media than the students who were physically present
(M = 2.333, SD = 1.047) this difference did not reach statistical
significance [t(117) = −1.608, p = 0.111]. Finally, the difference
between the groups on IL, EL related to instructions, and GL
were not statistically significant as predicted. The results suggest
that the EL noise and EL devices scales within the MCLS-POL
is sensitive to differences between students learning in different
environments and provides support for the external validity of
the measure.

Discussion Study 3
Study 3 showed that all six scales provide valid measurement.
Furthermore, comparing the students based on whether they
were physically present or attending the lecture online revealed
differences in a way that the students attending the lecture
online experience significantly more EL related to noises and
devices than the students who were physically present, other
than those two scales there were no significant difference in
the experienced CL. These results suggest that it is important
to have a multidimensional conceptualization of EL as different
components of EL can influence learning in physical and online
environments differently.

It is not immediately clear why the differences in mean
between students attending the lecture physically and students
attending online in Study 3 are not similar to that of
students in Study 2. One explanation might be that the master
students attending Psychological Testing were more accustomed
to lectures than the bachelor students attending Educational
Psychology. Thus, we might reason that more experienced
learners are less hampered by different types of extraneous load
despite attending lectures online.

RESULTS OF COMBINING DATA FROM
STUDY 2 AND STUDY 3

Results of the Confirmatory Factor
Analysis
Before comparing the sum scores of Study 2 and Study 3 we
conducted a confirmatory factor analysis with all items loading
on their respective factors by combining data from Study 2 and
Study 3. The fit indices were CFI = 0.99, TLI = 0.99, and both
RMSEA and SRMR = 0.06 which are all satisfactory for the six
factor model.

Comparing Cognitive Load Across Study 2
and Study 3
Although the samples of psychology students in Study 2
and Study 3 differed because the students in the educational
psychology course were second year bachelor students and the
students in the psychological testing course were master students,
we were interested in comparing the cognitive load ratings
across the studies. Since psychological testing is considered a
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TABLE 8 | Difference between scores on the MCLS-POL in Study 2 and Study 3.

Scale/course Educational psychology Psychological testing t p Cohen’ s d

M SD M SD

IL 2.67 0.72 3.18 0.81 −5.317 <0.001 0.67

EL Ins 2.03 0.67 2.53 0.76 −5.625 <0.001 0.70

EL Noi 2.02 0.91 2.23 0.93 −1.775 0.077 0.23

EL Med 2.56 1.09 2.61 1.04 −0.423 0.673 0.05

EL Dev 2.30 0.98 2.08 0.98 1.827 0.069 0.22

GL 3.82 0.65 3.21 0.72 7.158 <0.001 0.89

IL, Intrinsic Load; EL Ins, Extraneous Load Instructions; EL Noi, Extraneous Load Noises; EL Med, Extraneous Load Media; EL Dev, Extraneous Load Devices; GL, Germane Load.

more cognitive straining course by many students, we wanted
to compare the scales across the two courses. To ensure the
scales were comparable across the studies we performed a
CFA which yielded satisfactory fit indices. When comparing
across courses we found IL to be significantly [t(257) = −5.317,
p < 0.001] higher for students from psychological testing
(M = 3.18, SD = 0.81) than for students of educational
psychology(M = 2.67, SD = 0.72). Similarly, We found EL
instruction to be significantly [t(257) = −5.625, p < 0.001]
higher for students from psychological testing (M = 2.53,
SD = 0.76) than for students of educational psychology
(M = 2.03, SD = 0.67). On the other hand GL was significantly
[t(257) = 7.158, p < 0.001] lower for students of psychological
testing(M = 3.21, SD = 0.65) than for students of educational
psychology (M = 3.82, SD = 0.65, see Table 8). The differences
between the groups were not significant for the other scales.

CONCLUSION

Through three studies we describe the further development
and validation of the MCLS-POL. We provide evidence of the
validity and reliability of the expanded CLS which supports the
multidimensional conceptualization of cognitive load. Overall
there was evidence of meaningful external validity in terms of
meaningful group difference between students experiencing a
lecture physically and students who experience the same lecture
online. However, since one of the scale was split into two separate
scale with only two items each, we highly recommend that
researchers wishing to use these scale enhance these two scales
by adding more items to them.

The studies also reveals meaningful challenges that students
as well as lectures face as more teaching is conducted online.
The results from Study 2 revealed that the students attending
the lectures online experienced more EL on all four EL load
sub-scales, meaning that they experienced extraneous cognitive
load related to instructions, noises, media, and devices, which
was greater than what the students who were physically present
experienced. Furthermore, the physically present students in
Study 2 also reported higher GL than the students who attended
the lecture online.

The students attending the lecture online in Study 3 similarly
experienced more cognitive load related to EL from media and
devices than the physically present students. The finding that
there were no differences on IL between the students who

experienced the lecture physically or online in Studies 2 and 3, but
there were differences in different components of EL suggests that
theMCLS-POL is sensitive at identifying different components of
cognitive load.

A limitation of these studies is the lack of measurement of
learning, and the subsequent hypothetical analyses of differences
in learning across the students attending either online or off-line
and correlations between the CL scales and learning outcome.
However, as we examined the cognitive load across differing
course, creating a measure of learning with similar properties
across courses was difficult. Future studies might address this by
examining learning in just one type of course.

The reason for providing online lectures in Studies 2 and
3 was due to the extraordinary consequences of the COVID-
19 pandemic in 2020. However, many universities are aiming
at providing more online lectures, due to several advantages
such as accessibility issues e.g., the ability to reach more
students and allow students to access high quality educational
opportunities even though they are unable to be physically
present (Waschull, 2001; Cascaval et al., 2008; French and
Kennedy, 2017; Makransky et al., 2019b). In contrast to the
benefits this article highlights some of the caveats of online
teaching related to the strain it can provide for students in
terms of more EL, which should be addressed when conducting
online lectures.
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The present study is based on a theoretical framework of cognitive load that distinguishes
causal factors (learner characteristics affecting cognitive load e.g., self-concept; interest;
perceived stress) and assessment factors (indicators of cognitive load e.g., mental load;
mental effort; task performance) of cognitive load. Various assessment approaches have
been used in empirical research to measure cognitive load during task performance. The
most common methods are subjective self-reported questionnaires; only occasionally
objective physiological measures such as heart rates are used. However, the convergence
of subjective and objective approaches has not been extensively investigated yet, leaving
unclear themeaning of each kind of measure and its validity. This study adds to this body of
research by analyzing the relationship between these causal and assessment (subjective
and objective) factors of cognitive load. The data come from three comparable studies in
which high school students (N � 309) participated in a one-day out of school molecular
biology project and completed different tasks about molecular biology structures and
procedures. Heart rate variability (objective cognitive load) was measured via a chest belt.
Subjective cognitive load (i.e., mental load and mental effort) and causal factors including
self-concept, interest, and perceived stress were self-reported by participants on
questionnaires. The findings show that a) objective heart rate measures of cognitive
load are related to subjective measures of self-reported mental effort but not of mental
load; b) self-reported mental effort and mental load are better predictors of task
performance than objective heart rate measures of cognitive load; c) self-concept,
interest and perceived stress are associated with self-reported measures of mental
load and mental effort, and self-concept is associated with one of the objective heart
rate measures. The findings are discussed based on the theoretical framework of cognitive
load and implications for the validity of each measure are proposed.
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INTRODUCTION

Cognitive load can be broadly defined as a psychological
construct representing an individual’s cognitive resources
used to learn or perform a task. As such, cognitive load is
an established construct in education and psychology, often
used as a guidance to optimize instructional designs (e.g., Paas
and van Merriënboer, 1994; Kirschner et al., 2006) and is
considered as a control variable in assessment contexts (e.g.
Minkley et al., 2018; Nehring et al., 2012). It is assumed that
measures of cognitive load under various experimental
conditions represent the working memory resources exerted
or required during task performance. Within assessment
contexts but traditionally also within instructional design
contexts, cognitive load has been conceptualized in terms of
the perceived complexity of tasks (mental load) and the
invested mental effort while working on the tasks (e.g., Paas
and van Merriënboer, 1994; Choi et al., 2014; Krell, 2017;
Skuballa et al., 2019). Mental load refers to the amount of
cognitive resources required to solve the problem, whereas
mental effort refers to the cognitive sources that are actually
invested during problem solving. This theoretical distinction is
powerful because it allows to separate internal and external
dimensions of cognitive load and can guide further research
(Paas and van Merriënboer, 1994; Choi et al., 2014). However,
mental load and mental effort are typically assessed using
subjective self-reports on questionnaires (e.g., Krell, 2017),
which assumes that the respondents are aware of their actual
amount of cognitive load, which they invested to solve a task
(Solhjoo et al., 2019). Furthermore, such subjective measures
have been critically discussed due to issues of validity (de Jong,
2010; Kirschner et al., 2011; van Gog and Paas, 2008). Hence,
some studies use objective, physiological measures as indicators
for cognitive load (e.g., various heart rate or pupillometric
measures; Solhjoo et al., 2019; Zheng and Cooke, 2012).
However, it is not clear to which extent objective measures
converge with subjective measures as indicators for an
individual’s cognitive load in the corresponding contexts.
The convergence of assessment methods provides evidence
for validity of these measures.

Validity is an integrated evaluative judgment on the extent to
which the appropriateness and quality of interpretations and
measures based on test scores (or other diagnostic procedures)
are supported by empirical evidence and theoretical arguments
(Messick, 1995; Kane, 2013). According to the argument-based
approach to validation (Kane, 2013), validation depends on the
intended interpretation and use of test scores and requires to
provide argumentative evidence that an intended test score
interpretation is legitimate. Hence, the validation of an
instrument is not a routine procedure, but is carried out
through theory-based research, with which different
interpretations of a test score can be legitimized or even
falsified (Hartig et al., 2012). In the Standards for Educational
and Psychological Testing, it is emphasized that “validity refers to
the degree to which evidence and theory support the
interpretations of test scores for proposed uses of tests”
(AERA et al., 2014, p. 11). The authors further elaborate on

different “sources of evidence that might be used in evaluating the
validity of a proposed interpretation of test scores for a particular
use” (p. 13), including validity evidence based on relations to
other variables. Hence, what has been named the external aspect
of construct validity (Messick, 1995) are conceptualized as one
source of validity evidence in the argument-based approach to
validation (Kane, 2013). Specifically, comparison studies with
subjective and objective measures of cognitive load “may lead to
new insights on convergence between biological [i.e., objective]
and subjective measures and on what these different types of
measures are measuring” (Leppink et al., 2013, p. 1070). Hence,
comparison between subjective and objective measures have been
proposed as a source of validity evidence for subjective measures
(Solhjoo et al., 2019).

Clearly more research about subjective and objective cognitive
load measures, their interrelationships, and association with
theoretically important variables such as emotion and
motivation are needed to contribute to a comprehensive
understanding of cognitive load and its assessment
approaches. The present study contributes to this body of
research by examining the convergence of subjective and
objective measures of cognitive load and the relationship
between causal and assessment factors of cognitive load.

Causal Factors and Assessment Factors of
Cognitive Load
In a theoretical framework of how cognitive load might be
conceptualized in the context of problem solving, Paas and
van Merriënboer (1994) distinguished between causal and
assessment factors of cognitive load. Causal factors include
learner characteristics (e.g., prior knowledge, cognitive
capabilities, motivation, and affect) as well as task
environment (e.g., task complexity, time pressure). In a more
recent revision of the framework, the dimension of task
environment in the causal factors has been subdivided into
learning task and the physical learning environment (Choi
et al., 2014). Furthermore, two- and three-way-interactions
illustrate the fact that each causal dimension may affect
cognitive load depending on characteristics of the other
dimensions. For example, the amount of cognitive load a
learner invests to solve a given task might depend on task
complexity, the specific context or goal (e.g., just for fun vs.
high stakes test), and the learner’s interest related to the given
problem. In terms of assessment factors, the authors distinguished
between a task-relevant cognitive load dimension of mental load,
a person-relevant cognitive load dimension of mental effort and
task performance (Paas and van Merriënboer, 1994). Mental load
is based on characteristics of the task, representing the cognitive
capacity needed to process a task. In contrast, mental effort
reflects an individual’s invested cognitive capacity while
working on a task. Assessments of mental effort are thought
to provide information about the amount of controlled
processing a person is engaged in (Paas and van Merriënboer,
1994).

Some of the assessment factors are hypothesized to be affected
by the causal factors during problem solving. In particular Paas
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and van Merriënboer (1994) conceptualized mental load as
independent from person characteristics and, thus, as being
constant for a given task (e.g., in terms of cognitive capacity
necessary to process the number of elements in a given task).
Whereas mental effort and task performance are affected by all
three causal dimension factors. Sweller et al. (2011) propose
mental load and mental effort as being two different but, in
most cases, positively correlated constructs, with the former being
the hypothetically required and the latter being the occurring
cognitive resources in relation to the learning task. However, the
relationship between mental load and mental effort, as well as the
relationship between mental load, mental effort, and task
performance, might not necessarily be positive. For example,
both high or low mental load could result in rather low mental
effort due to the moderating role of person characteristics such as
motivational variables and persons may reach the same number
of correct answers on a test but need to work with different
amounts of mental effort (Paas et al., 2003). Relatedly, Moreno
(2010) suggested conceptualizing cognitive load within a
cognitive-affective theory of learning and emphasizes ‘that
cognitive capacity is a parameter that students bring to the
learning task whereas motivation determines the actual
amount of cognitive resources invested in the learning task’
(p. 137).

This framework provides a powerful tool for researchers as it
allows to further investigate cognitive load by narrowing down
into its constituent dimensions and provides venues for further
research. For example, relating measures of mental effort and task
performance allows to investigate the cognitive capacity needed
for reaching a specific level of performance (Paas and van
Merriënboer, 1994). Further research questions that can be
derived from the framework are related to the specific
relationships between learner characteristics, such as emotion

and motivation, and individual’s invested mental effort (Moreno,
2010; Hawthorne et al., 2019; Skuballa et al., 2019).

The present study focuses on this framework of cognitive load
(Figure 1) and is, therefore, related to the assessment and causal
factors of cognitive load, assuming that the actual cognitive
capacity that needs to be investigated to process a given task
(i.e., mental load) is necessarily intertwined with the causal
factors such as learner characteristics (especially relatively
stable characteristics such as prior knowledge) and, thus, is
likely to vary between individuals. Thus, it focuses on the
associations between the assessment factors and causal factors,
in particular the learner characteristic aspects in terms of
motivation and affect. Furthermore, we examined the level of
convergence between cognitive load measures obtained via
objective and subjective approaches. Below we first elaborate
on recent research on subjective and objective measures of
assessment factors of cognitive load, then we review literature
on learner characteristic related variables including self-concept,
interest, and perceived stress as causal factors of cognitive load.

Subjective Measures of Cognitive Load
Subjective measures of cognitive load ask respondents to self-
report the amount of cognitive load after working on a task
(Sweller et al., 2011) and this has been the primary approach in
research practice (e.g., Paas 1992; Nehring et al., 2012). One basic
assumption of subjective measures is that individuals are aware
and can quantify and report on their cognitive load (Solhjoo et al.,
2019). One of the first scales that have been proposed for
subjective measurement of cognitive load was developed by
Paas (1992), who introduced a single-item nine-point mental
effort rating scale. This scale asks respondents to rate their
invested mental effort, ranging from “very, very low mental
effort” to “very, very high mental effort”.

FIGURE 1 | Cognitive load as reflected by causal factors and assessment factors, including two- and three-way interactions between the causal factors (adapted
from Choi et al., 2014, p. 229).
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However, subjective measurement of cognitive load ‘has
become highly problematic’ (Kirschner et al., 2011, p. 104).
Krell (2015) summarized several reasons for this:

(1) Many studies adapt the scale initially developed by Paas
(1992) and change the wording or number of category
labels without re-evaluating its psychometric properties
(Paas et al., 2003; van Gog and Paas 2008).

(2) Often, only a single item is used to measure cognitive load,
although the use of several items would increase
measurement precision (Leppink et al., 2013).

(3) Sometimes, it is not entirely clear which construct the items
are aimed to measure. Whereas Paas (1992) focused on
mental effort, many researchers use category labels related
to task complexity such as ‘difficulty’ and still consider it as
measures of cognitive load (van Gog and Paas 2008; de Jong
2010).

(4) Finally, van Gog and Paas (2008) emphasize that most
measures target cognitive load as a whole and not specific
dimensions of it, such as mental effort or mental load.

In response to such criticisms, new subjective measures of
cognitive load have been proposed. For example, some authors
(Klepsch et al., 2017; Leppink et al., 2013) developed instruments
to assess three dimensions of cognitive load: intrinsic load,
extraneous load, and germane load (cf. Paas et al., 2003).
These dimensions reflect the cognitive capacity caused by the
complexity of a problem (intrinsic cognitive load), the design of
learning material (extraneous cognitive load), and the effort
invested to solve a given task (germane cognitive load). Hence,
related to the framework used in the present study (Figure 1),
germane and extraneous cognitive load are related to ME,
whereas intrinsic cognitive load is related to mental load
(Choi et al., 2014). For both instruments, validity evidence
based on various sources (e.g., internal structure, test content)
have been provided (cf. AERA et al., 2014) and the authors
conclude that their instrument is useful, feasible, and reliable
(Klepsch et al., 2017) or that it could be used for research
purposes in various knowledge domains (Leppink et al., 2013),
respectively.

Related to the framework of cognitive load, which is used in
the present study (Figure 1), Krell (2015, 2017) proposed the
Students’ Mental Load and Mental Effort in Biology Education-
Questionnaire (“StuMMBE-Q”). This instrument was designed to
measure students’ mental load and mental effort on 12 rating
scale items. Besides its development in the context of student
assessment in biology education, it has been widely applied in
various other contexts (e.g., Nebel et al., 2016; Knigge et al., 2019).
Evidence for the valid interpretation of the ratings as indicators
for students’ mental load and mental effort have been provided
based on test content, internal structure, and relation to other
variables (AERA et al., 2014). For example, psychometric analyses
confirmed a two-dimensional data structure, representing
measures of mental load and mental effort (Krell, 2015).
Furthermore, students’ self-reported mental load and mental
effort significantly increased with increasing task-complexity
(Krell, 2017). In preceding studies using the StuMMBE-Q,

students’ task performance was significantly negatively
correlated with their self-reported mental load but not
associated with their self-reported mental effort (Krell, 2015,
2017).

In sum, subjective measurement has been the primary
approach in assessment of cognitive load. However, this
approach is subject to influence from causal factors, in
particular individual differences such as prior knowledge,
interest and motivation. Thus, subjectively perceived cognitive
load might not accurately reflect the characteristics and demands
of the learning task. Objective measures, on the other hand, may
provide more accurate reflection on task complexity presented to
the learner.

Objective Measures of Cognitive Load
Besides the measurement of cognitive load via self-reports on
questionnaires (e.g., Paas, 1992; Leppink et al., 2013; Krell, 2017),
other approaches suggest or use more objective, physiological
measures as indicators for respondents’ cognitive load (cf. Sweller
et al., 2011); such as eye movements (Ikehara and Crosby, 2005;
Zu et al., 2019), degree of pupil dilation (Huh et al., 2019), or
physiological stress parameters such as heart rate and cortisol
secretion (Veltman and Gaillard, 1993; Kennedy and Scholey,
2000; Cranford et al., 2014). Previous research has attempted to
triangulate both objective and subjective cognitive load measures
(Kahneman and Peavler., 1969; Antonenko et al., 2010; Zu et al.,
2019). Physiological measures have also been proposed as sources
for validity evidence for self-reports, if positive correlations
between both measures can be shown (e.g., Solhjoo et al.,
2019). However, some studies were able to show such positive
relations (e.g. Solhjoo et al., 2019), while others found differences
between self-reports and physiological measures, suggesting that
both might assess separate aspects of cognitive load (e.g., Zheng
and Cooke, 2012 for pupillometric measures).

Based on the Biopsychosocial Model of Challenge and Threat
(Blascovich and Mendes, 2000; Blascovich, 2008) individuals can
perceive performance tasks as ’challenge’ or ’threat’, depending
on how they assess task demands and their own resources.
’Challenge’ occurs when resources exceed demands
(comparable with low mental load) and ’threat’ if demands
exceed resources (comparable with high mental load). In this
model, the individual relevance of the performance goal is also
important, as task engagement (comparable to mental effort) is
necessary for challenge and threat states (Blascovich and Mendes,
2000). Challenge and threat states are marked by different
cardiovascular patterns. Challenge states are indexed by
increases in heart rate, dilation of arteries and increased blood
pump, whereas threat states result in little or small increase in
heart rate, constriction, and less bloodstream (Seery, 2011; Seery,
2013).

Besides the measurement of the heart rate itself (heart rate,
e.g., Solhjoo et al., 2019), some heart rate variability measures
were also used in educational and psychological research,
including the ratio between high frequency and low frequency
components (LF/HF ratio, e.g., Minkley et al., 2018), and the
time-related root mean square of successive differences (RMSSD,
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e.g., Minkley et al., 2018). If a person is confronted with a complex
problem or task, where demands exceed their resources, the
RMSSD typically decreases (e.g., Malik et al., 1996), as it
represents parasympathetic activity which in turn characterizes
relaxation (Laborde et al., 2017). In contrast the LF/HF ratio as
well as the heart rate increases (e.g., Malik et al., 1996; Isowa et al.,
2006). Both parameters basically represent (at least the
proportion of; LF/HF ratio) sympathetic activity, which in
turn increases under stress (Laborde et al., 2017).

Thus, it is plausible to assume a relationship between subjective
measures and heart rate- or hormone- based objective measures of
cognitive load, which is rarely investigated yet. One study of the
authors found a significant positive correlation between self-
reported mental load (i.e., perceived task complexity) and
perceived stress but no or rather small correlations between
self-reported mental load and physiological stress responses
(cortisol concentration, heart rate variability; Minkley et al.,
2018). Veltman and Gaillard (1993) report similar findings and
conclude that cortisol concentration might not be a valid indicator
for mental activity and that heart rate variability might indicate
cognitive load only in high demanding tasks. The study of Kennedy
and Scholey (2000) points in a similar direction: Although a
correlation between heart rate and demanding (mental
arithmetic, word retrieval) vs. non demanding (control) tasks
could be observed, this correlation was not present when the
mental arithmetic tasks were further differentiated regarding
their difficulty (serial subtraction of three vs. seven). In contrast,
Cranford et al. (2014) observed a higher heart rate in chemical tasks
designed to achieve high cognitive load compared to the heart rate
in low cognitive load tasks. Unfortunately, the authors did not
assess any self-report measure of cognitive load from their
participants. However, a recent study by Solhjoo et al. (2019)
found positive correlations between self-report measures of
cognitive load and heart rate variability for a small sample of
ten medical students. In contrast, Woody et al. (2018) found no
association between cognitive load and cortisol concentration or
heart rate. Hence, it is still vague regarding to what extent and
under which circumstances objective measurements capture
cognitive load and to what extent they converge with subjective
measures of cognitive load.

Motivation and Emotion as Causal Factors
of Cognitive Load: Interest, Self-Concept,
and Stress Perception
As shown in Figure 1, in the theoretical framework proposed by
Paas and van Merriënboer (1994), causal factors of cognitive load
consist of both task characteristics and learner characteristics. To
date much research of causal factors have focused on varying task
characteristics such as worked example vs problem solving.
Although there has been research on the roles of learner
characteristics in terms of learner prior knowledge (Kalyuga
et al., 2003) and age (van Gerven et al., 2002) on cognitive
load, less is known about motivation and emotion and how
they affect cognitive load. The related cognitive theory of
multimedia learning (Moreno, 2010) also suggested that
learner’s motivational and affective factors play an important

role in the cognitive processes that are captured by the germane
cognitive load, which in part is reflected by the learner’s invested
mental effort. Motivated learners are more likely to be engaged
during the learning process, thus their cognitive resources are
more likely directed at schema constructions important for
knowledge acquisition. In a similar way, empirical research
also confirmed that factors such as learner’s emotion,
enjoyment, or stress, can influence available working memory
resources (Plass and Kalyuga, 2019) thus affecting the learner’s
experienced cognitive load, whereas other constructs such as
academic self-concept are less studied in the current context
but may also affect cognitive load (Seufert, 2020). In the present
study, we look specifically at constructs representing interest,
stress related emotion, and academic self-concept of ability
(ASCA) and how they may relate to cognitive load
measurements. Below we review relevant literature in these
motivational (interest and ASCA) and affective (emotion -
stress) causal factors and how they affect or could theoretically
affect cognitive load. Additionally, to account for the relevance of
objective and subjective differentiation of cognitive loadmeasures
in the present study, we also review a relatively small pool of
literature that studied the relationships between motivation,
emotion and objectively measured cognitive load.

Interest
According to Ainsley et al. (2002), p.545, interest is an
individual’s “predisposition to attend to certain objects and
events and to engage in certain activities”. Since an interested
learner is more likely to attend to the learning tasks, their working
memory resources are more effectively directed at processing new
information afforded by the learning task (i.e., more germane
processing and thus higher mental effort). On the other hand, the
focused attention and positive affect associated with interest (or
“flow”; see Csikszentmihalyi, 2013) could also mean the learner
may experience less perceived task difficulty (i.e., less mental
load). Learner’s interest is often found inversely associated with
perceived cognitive load during task performance and higher
invested effort. For example, learners with higher learning
interest viewed the same tasks to be less difficult (i.e., mental
load) even when they invested more effort (Milyavskaya et al.,
2018). Skuballa et al. (2019) also found that learner’s topic interest
was associated with decreased perceived task difficulty. It seems
that the more motivated the learner is, the less difficulty they
perceive the task, and the more mental effort the learner will
invest in the learning task. This body of literature largely supports
the role of interest as a causal factor of cognitive load.

Academic Self-Concept
The ASCA represents one’s self-evaluation of their competencies
in academic domains (Marsh et al., 2012). Although to our
knowledge no previous study has investigated the association
between ASCA and cognitive load, ASCA may affect the
perceived cognitive load in several possible ways. ASCA has
been shown to have reciprocal relationships with both the
learner’s achievement and their interest (e.g., Marsh et al.,
2005). The bi-directional relationships with achievement and
interest implies that a learner with a higher ASCA may also
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have a higher level of prior knowledge (i.e., achievement), and is
also more interested in the topic. For a given task, a higher prior
knowledge is likely to be associated with less cognitive load,
because the learner already has consolidated knowledge “chunks”
and therefore the number of elements to be processed for
performing the task is reduced (Sweller et al., 2019).
Consequently, the learner is likely to experience relatively less
cognitive load, in particular perceived difficulty (i.e., mental load).
Similarly, since ASCA is reciprocally related to interest, a learner
with high ASCA is likely to be interested in the task, perceive less
task difficulty (i.e., mental load), and invest more effort
(i.e., mental effort). Based on this theoretical conjecture, ASCA
is a causal factor of cognitive load, and this relationship is likely
supported by empirical research.

Emotion (Stress)
Emotions, in particular negative valence emotions, have been
suggested to be a source of increased extraneous load (Sweller
et al., 2019). Plass and Kalyuga (2019) elaborated on how
emotion might affect cognitive load and they suggested that
negative emotion such as stress may indeed increase the burden
of neural circuitry involved in learning thus increasing cognitive
load and reducing task processing efficiency. Moreover,
Blascovich (2008) claims that individuals perceive tasks as
’challenge’ or ’threat’, depending on their assessment of task
difficulty and possibilities of dealing with them. As a result, the
individual may pursue or disengage with the task. Empirical
research has yielded somewhat inconsistent results regarding
this proposition (e.g., Fraser et al., 2012; Knörzer et al., 2016).
Based on a sample of undergraduate medical students who
worked on a simulation training, Fraser et al. (2012) found
that stress-related invigorating emotions are associated with
higher perceived cognitive load. In their experimental study,
Knörzer et al. (2016) induced negative emotions prior to a
learning task. Although participants in the experimental
group rated higher perceived task difficulty (i.e., mental load)
than those in the control group (neutral emotion), this effect was
not statistically significant. The ratings on mental effort also did
not differ between the two groups. However, both studies were
based on relatively small sample sizes (n < 100) thus further
evidence is needed in larger, multiple samples to provide
stronger statistical power. In sum, although there is a
theoretical basis for a learner’s emotion to be a causal factor
of cognitive load, further empirical research is necessary to
confirm this hypothesis.

Motivation, Emotion and Objectively Measured
Cognitive Load
Most of the literature relating motivation and affect to cognitive
load is based on cognitive load reported from questionnaire
measurements. There is limited empirical research examining
whether objectively assessed cognitive load is also associated with
motivation and affect (typically measured by questionnaire-based
method). In an early experimental study, Kahneman and Peavler
(1969) demonstrated the potential effect of motivation by
showing that individuals performed better on the test items
associated with higher monetary values. Furthermore, while

working on task items with higher incentive, participants also
showed larger pupillary dilation - an objective indicator of mental
effort (Goldinger and Papesh, 2012). As discussed by Paas and
van Merriënboer (1994), a higher performance could indicate
higher mental effort, thus, the link between causal and assessment
factors is supported by an association between motivation
(prompt by monetary value) and cognitive load (illustrated by
performance). Kahneman and Peavler (1969)’s research showed
that there may be an association between motivation and
objectively measured cognitive load. Given the scarcity of the
existing research demonstrating the relationship between
motivation, affect and objectively measured cognitive load, the
present study aims to contribute to the literature by investigating
the relationship between interest, ASCA, stress and cognitive load
measures assessed both subjectively via questionnaire as well as
objectively through heart rate.

Aims of the Study, Research Questions and
Hypotheses
The aims of this study are to evaluate the convergence between
subjective (self-reports on mental load and mental effort) and
objective (heart rate measures LF/HF ratio, RMSSD and heart
rate) measures of cognitive load (Leppink et al., 2013; Solhjoo
et al., 2019) and to provide evidence for the assumed relationships
between assessment factors of cognitive load, that is mental effort
and mental load (Paas and van Merriënboer, 1994) and
conceptually related causal factors in terms of positive and
negative motivation and affect, that is self-concept, interest
and perceived stress (cf. Moreno, 2010; Minkley et al., 2014;
Minkley et al., 2018; Solhjoo et al., 2019).

Research Questions
(1) How do cognitive load measures converge via subjective and

objective measures?

H1: There is a linear relationship between subjective and
objective measures of cognitive load (positive for LF/HF ratio
and heart rate, negative for RMSSD), with still a medium to
large variance component specific to each measure, because
subjective and objective measures are likely to capture separate
aspects of cognitive load (Zheng and Cooke, 2012; Solhjoo
et al., 2019).

(2) How do subjective and objective measures of cognitive load
predict task performance?

H2: It is expected that (1) subjective (i.e., mental load and
mental effort) and (2) objective (i.e., RMSSD, LF/HF ratio, and
heart rate) measures of cognitive load contribute to predict
students’ task performance because (1) a higher level of
mental load indicates more challenging tasks (Krell, 2017)
whereas higher mental effort indicates a more intense
engagement with tasks (Paas et al., 2003). (2) Regarding
objective measures, RMSSD typically decreases, whereas the
LF/HF ratio and heart rate increase with increasing task
difficulty (e.g., Malik et al., 1996; Isowa et al., 2006).
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(3) How do students’ self-concept, interest and stress perception
predict their subjectively (mental effort, mental load) and
objectively measured cognitive load?

H3a: It is expected that students’ (1) self-concept and interest,
(2) but not their stress perception, predict their self-reported level
of mental effort, because (1) higher amounts of self-concept and
interest might elicit a more intense engagement with tasks
(Milyavskaya et al., 2018; Skuballa et al., 2019). (2) In contrast,
the effect of personal classification of perceived stress (as
challenge or threat) is less consistent and can lead to either
increased ambition or give up (Lazarus and Folkman, 1984).

H3b: It is expected that students’ (1) self-concept and interest
(2) and also their stress perception predict their self-reported level
of mental load, because (1) higher amounts of self-concept and
interest might elicit a perception of less complex tasks
(Milyavskaya et al., 2018; Skuballa et al., 2019) and (2)
demanding tasks, beyond what is manageable according to the
self-concept, should be perceived as threatening, leading to a
stress response (Dickerson and Kemeny, 2004) thus a higher
perceived mental load.

H3c: It is expected that students’ self-concept and interest, (2)
but not their stress perception, predict objective measures of
cognitive load (i.e., RMSSD, LF/HF ratio, and heart rate), because
(1) higher self-concept and interest contribute to perceive a task
as less challenging (Milyavskaya et al., 2018; Skuballa et al., 2019).
(2) In contrast, most previous studies did not find systematic
associations between stress perception and cognitive load
measures, assuming inter alia that both measures differ
between individuals and are affected by the time of
measurement in varying degrees (Campbell and Ehlert, 2012).

MATERIALS AND METHODS

Context and Design of the Studies
The data come from three earlier studies, one of which (study 1)
has been published elsewhere (Minkley et al., 2018), and which
are secondarily analyzed for the purpose of this study. In each of
the three studies, high school students participated in a one-day
out of school learning project about molecular biology techniques
with instructional and practical hands-on phases, aimed at
identifying genetically modified food in the teaching and
learning laboratory at Ruhr-Universität Bochum. The
procedure and design of the three studies were the same and
also the structure of the tasks’ and the measurements. The
differences between the three studies lie in the fact that the
content of the tasks differed in each study, although they all
dealt with topics in molecular biology (see sections “Procedure”
and “Tasks”).

Participants
The participants (N � 309, from three studies; Table 2) were
upper-level students with a mean age of 17.48 years (SD � 1.07;
Table 1), from 22 high schools in North Rhine-Westphalia,
Germany. Complete heart rate variability measurements were
obtained from 227 participants. Among the 82 participants

which were excluded from further analysis, some did not
complete the study tasks. For those who did complete the
task, there were technical errors; e.g., a lack of coupling
between the measurement sensor and the storage device,
which leads to the fact that the measurement data could not
be read out, or too many measurement artifacts. For the latter,
according to the procedure of Laborde et al. (2017), the
threshold value for data being considered as artifacts, was set
to 0.45 s (� very low) difference between a single heartbeat
interval from the local average. That is, participants with regular
fluctuations above a range of 0.45 s were excluded from the data
set. To avoid possible confounding effects, 18 participants with a
body mass index >30 kg/m2, serious medical conditions or
frequent smoking were excluded from all heart rate
variability analyses (Piestrzeniewicz et al., 2008; Thayer et al.,
2010). Thus, we examined heart rate variability parameters from
209 students.

Procedure
In all three studies the procedure was comparable in terms of
learning environment and tasks. After arrival, the students’,
respectively their parents’ written informed consent was
collected and the participants were informed about the
procedure of the following studies, which were conducted in
accordance with the Declaration of Helsinki and approved by the
Ethics Commission of the local medical school. Thereafter all
students participated in the same molecular biology project,
which was not associated with the present studies. The actual
study started after about one half of the molecular biology
project. Before the students worked on the test tasks, they
were equipped with a chest belt and moved to another room.
Then each of them was placed in front of a laptop, separated from
each other. The students also filled in a demographic
questionnaire (sex, age) including medical information
(weight, height, chronic diseases, medication intake), and two
scales measuring the ASCA and interest regarding biology
(Sparfeldt et al., 2004; Rost et al., 2007; Wilde et al., 2009;
Minkley et al., 2014). All participants were randomly seated in
front of a laptop, on which the test booklets were installed. The
laptops were separated from each other, so that the participants
could not see the tasks of their schoolmates. The students got 10
up to 20 min to work on the tasks (depending on the study). After

TABLE 1 | Demographic characteristics and measurement values.

M SD n

Demographic variables
Sex, % female 54.4 309
Age, years 17.48 1.07 309

Measured variables
Mental load 4.03 1.16 305
Mental effort 4.35 1.08 305
PS, mm 29.80 21.70 260
LF/HF, ratio 2.63 2.23 209
RMSSD, ms 51.05 35.52 209

PS, perceived stress; LF/HF ratio, ratio between low and high frequencies; RMSSD, root
mean square of successive differences.
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completion of the tasks, the students filled in a questionnaire to
self-report their mental load and mental effort during working on
the tasks (Krell, 2015, 2017) and indicated their perceived stress
on a Visual Analogue Scale (Luria, 1975; cf. Table 2). Heart rate
variability was measured continuously via a chest belt and a
storage device (Polar V800).

Tasks
In each of the three studies, participants completed several tasks that
had the same structure and differed only slightly in content, but all
related to molecular structures and phenomena covered in biology
classes (e.g., DNA structure, diffusion). In order to achieve a test
design that is as close to school reality as possible, we have checked the
tasks for alignment with the course content and the biology
curriculum in high school. In each task, there was a
representation of a molecular structure or process. The task
complexity was varied by considering different cognitive demands
in all three studies. In the simpler tasks (about one half) the
participants had to recognize and select the correct name or a
true statement about a depicted molecular structure or process
from several answering options (i.e., single-best answer format). In
the more complex tasks, the participants had to explain or compare
the depicted molecular structure or process in a short written text
(i.e., constructed response format). The tasks also differed regarding
the types of representation (one half of the tasks included purely
symbolic representations, the other half combined symbolic–textual
representations; Minkley et al., 2018). The distribution between
simple and complex tasks as well as the type of representation
was systematically distributed in all three studies. The tasks have
been discussed in several rounds by the first and the last author of this
article to evaluate their content validity. In the present study, however,
task complexity is not a focus, given the abundance of prior research.

Assessments
The instruments used in the present investigation are comparable
across the studies included. Table 2 lists the assessments in the
three studies. Further explanations are provided in the text below.
All assessed data have been z-standardized for further analyses.

Mental Load and Mental Effort
The StuMMBE-Q instrument was applied in the present study to
achieve indicators for the students’mental load and mental effort

(Krell, 2015, 2017). For both dimensions of cognitive load, that is
mental load (e.g., "The tasks were challenging.") and mental effort
(e.g., "I have tried hard to answer the tasks correctly."), six rating
scale items for self-reporting are included in the StuMMBE-Q.
For each item, a seven-point rating scale ranging from ‘not at all’
(�1) to ‘totally’ (�7) was provided. Measures for mental load and
mental effort have been computed by calculating the mean score
of the six respective items. For the total sample, mean scores are
MMental load � 4.09 (SD � 1.19) and MMental effort � 4.39 (SD �
1.09), respectively. The internal consistency of the questionnaire
is satisfying, with Cronbach’s alpha for mental load � 0.85 and for
mental effort � 0.81.

Academic Self-Concept of Ability (ASCA)
In order to assess students’ biology-specific ASCA in study 1 and
2, we used a modification (Minkley et al., 2014) of the DISC-Grid
(Rost et al., 2007). There, the participants have to rate eight items
(e.g., “For me it is easy to solve biology problems.” or “I have a
good feeling when thinking about my achievements concerning
biology.”) on a 6-point rating scale, ranging from 1 (“does not
apply to me at all”) to 6 (“fully applies to me”). Measures of ASCA
have been computed by calculating the sum score of the eight
items. The mean score isMASCA � 32.34 (SD � 9.74). The internal
consistency of the questionnaire is excellent, with Cronbach’s
alpha for ASCA � 0.92.

Interest
In study 1, the students’ interest regarding biology was assessed
by rating 8 items on a 6-point rating scale ranging from “does not
apply to me at all” (�1) to “fully applies to me” (�6) (e.g., “I am
interested in Biology.” or “I enjoy working on tasks in biology.”)
adapted from Sparfeldt et al. (2004). In study 2, three items with a
7-point rating scale ranging from “does not apply to me at all”
(�1) to “fully applies to me” (�7) have been used to assess the
same construct based onWilde et al. (2009) (e.g.,” Biology lessons
are interesting.” or “I enjoy biology lessons.”). Measures of
interest have been computed by calculating the mean score of
the items. For the total sample, mean scores are MInterest � 3.89
(SD � 1.04) for study 1 andMInterest � 5.29 (SD � 1.26) for study 2,
respectively. The internal consistency of the questionnaire is
excellent, with Cronbach’s alpha � 0.91 (for study 1) and �
0.91 (for study 2).

TABLE 2 | Assessments in the three studies.

Subjective measures of cognitive load Objective measures of cognitive load
(heart rate measures)

Measures of interest, stress perception and
self-concept

Study 1
(n � 93)

Mental load Heart rate Self-concept
Mental effort LF/HF ratio Interest

RMSSD Perceived stress
Study 2 (n � 145) Mental load – Self-concept

Mental effort LF/HF ratio Interest
RMSSD Perceived stress

Study 3 (n � 133) Mental load Heart rate –

Mental effort LF/HF ratio –

RMSSD Perceived stress

LF/HF ratio, ratio between low and high frequencies; RMSSD, root mean square of successive differences.
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Perceived Stress
The perceived stress was assessed using a Visual Analogue Scale
(Luria, 1975) in all three studies. The Visual Analogue Scale
consists of a 100mm-long line, with the label ‘no stress’ on the
left end and ‘maximum stress’ on the right end. The participants
placed a cross on this line at that point which expresses how
stressed they felt at that moment. Afterward the distance
between the left end of the line and the participants’ cross
was measured; therefore, the possible score range is from 0 to
100. For the total sample, the mean score isMStress � 29.84 (SD �
21.82).

Heart rate Variability Measures
The heart rate variability of the participants was measured
continuously via a chest belt with an integrated ECG-sensor
(V800, Polar). After the measurement, the data was
transmitted to a software (Kubios) to calculate time and
frequency domain measures. We calculated the root mean
square of successive differences (RMSSD) as a common time
domain measure of heart rate variability, reflecting vagal tone
(Laborde et al., 2017), or rather parasympathetic activity (Malik
et al., 1996; Hjortskov et al., 2004). Additionally, we calculated
LF/HF ratio as a frequency domain measure reflecting the ratio
between parasympathetic (high frequency components;
0.15–0.4 Hz) and sympathetic (low frequency components;
0.04–0.15 Hz) nervous system activity. For the total sample,
mean scores are MHeart rate � 90.28 (SD � 17.65), MRMSSD �
51.64 (SD � 36.11), and MLF/HF ratio � 2.63 (SD � 2.29),
respectively.

Task Performance
To assess task performance, performance expectations were
prepared for all tasks and points were awarded as follows.
For the tasks in single-best answer format, respondents
received a full score for the correct answer (�1) or no points
if they selected a wrong answering option. For the constructed
response items, scoring was done according to a predetermined
scoring scheme, which also allowed for partially correct
answers. This performance expectation was discussed and
revised in several rounds as part of the task development
(see section 2.4). To calculate a task performance score, the
percentage of achieved points relative to maximum points was
used; therefore, the possible score range is from 0 to 100. For the
total sample, the mean score is MPerformance � 41.83 (SD �
24.03).

Data Analysis
The Software IBM SPSS Statistics was Used for Data Analysis.

Measurements of almost all scales had skewness and kurtosis
statistics between -2 and 2 (except kurtosis of LF/HF ratio �
3.55 ± 0.32), indicating approximately normal distribution
(Gravetter and Wallnau, 2012).

For the analysis of the convergence of cognitive load
measures via subjective and objective measures (RQ 1),
correlational analyses were performed with mental load or
mental effort and the objective measures (heart rate, LF/HF
ratio, RMSSD).

For the analysis of how subjective and objective measures of
cognitive load predict task performance (RQ 2), first a basic
analysis of the correlations between mental load, mental effort,
objective measures, and task performance was carried out.
Subsequently, a joint test of the variables was performed in
the form of a regression analysis with objective and subjective
measures of cognitive load as predictor variables for task
performance.

For the analysis of how students’ self-concept, interest and
stress perception predict their subjectively and objectively
measured cognitive load (RQ 3), also basic analyses of the
correlations between subjective and objective measures of
cognitive load, self-concept, interest, and stress perception
were carried out. Subsequently, linear regression analyses were
performed with subjective and objective measures of cognitive
load as dependent variables and self-concept, interest, and
perceived stress as predictor variables.

For all linear regression analyses, no serious violations of
assumptions could be found; the Durban-Watson-statistic is in
the range of 1 and 3, indicating that there is no considerable
autocorrelation, and VIF is < 10 for all items, indicating no
serious multicollinearity (Field, 2009). (See regression tables for
the exact values.)

RESULTS

In the following, findings are presented for the total sample (N �
309). The separate findings for the three individual studies (n1 �
93, n2 � 145, n3 � 133; Table 2) can be found in the
Supplementary Material.

Related to our research question on how cognitive load
measures converge via subjective and objective measures
(RQ1), the findings (Table 3) show no statistically
significant correlation between self-reported mental load
and the objective measures; for mental effort, there are
statistically significant correlations between mental effort
and LF/HF (p <0.05) and mental effort and heart rate
(p <0.001). For RMSSD, the p-values indicate marginally

TABLE 3 | Pearson correlation coefficients r between objective and subjective
measures of cognitive load for the total sample.

Mental effort LF/HF ratio RMSSD Heart rate

Mental load r −0.05 0.03 −0.05 −0.04
p 0.38 0.67 0.42 0.63
n 367 224 223 134

Mental effort r 0.15 −0.11 −0.27
p 0.03 0.11 0.00
n 224 223 134

LF/HF ratio r −0.52 −0.04
p 0.00 0.62
n 226 135

RMSSD r 0.23
p 0.01
n 134

LF/HF ratio, ratio between low and high frequencies; RMSSD, root mean square of
successive differences; significant values are bold.
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significant correlations. However, even statistically significant
correlations are mostly small and indicate shared variance (R2)
of less than 10%.

Related to our research question on how subjective and
objective measures of cognitive load predict task
performance (RQ2), initial basic correlational analyses
findings show a significant negative correlation between
mental load and task performance and a significant
positive correlation between mental effort and task
performance; the correlation coefficients are small to
medium (Table 4). There is a positive correlation toward
LF/HF and a negative toward heart rate, both with small
correlation coefficients.

In the subsequent linear regression analysis with objective
and subjective measures of cognitive load as predictor
variables for task performance, both mental effort and
mental load contribute significantly to predict task
performance, while LF/HF contributes marginally
significantly (Table 5).

Related to our research question on how students’ self-
concept, interest and stress perception predict their
subjectively and objectively measured cognitive load (RQ3),
the initial basic correlational analyses show significant
correlations between mental load and mental effort and the
motivation variables (i.e., ASCA and interest). While mental
effort is positively related to ASCA (r � 0.23) and interest
(r � 0.20), the opposite could be found for mental load
(ASCA: r � −0.29; interest: r � −0.18). Perceived stress was
found to be not related to mental effort, but significantly
related to mental load (r � 0.14). The effect sizes are mostly
small (Table 6).

Subsequent linear regression analyses with mental effort
(Table 7), mental load (Table 8), LF/HF ratio (Table 9),
RMSSD (Table 10), and heart rate (Table 11) as dependent
variables and ASCA, interest and perceived stress as predictor
variables show more specific results. While mental effort is not
significantly explained by any of the three variables (H3a),
ASCA (negatively) and perceived stress (positively)
contribute to explain mental load (H3b). Related to the
objective cognitive load measures (H3c), the same two
variables contribute to explain LF/HF ratio (ASCA positively,
perceived stress negatively), while this is only the case for one of
these two predictor variables for RMSSD (perceived stress
contributes negatively) and heart rate (ASCA contributes
positively).

TABLE 4 | Pearson correlation coefficients r between objective and subjective
measures of cognitive load and task performance for the total sample.

Mental
load

Mental
effort

LF/HF
ratio

RMSSD Heart
rate

Task
performance

r −0.38 0.26 0.16 −0.04 −0.21
p 0.00 0.00 0.018 0.511 0.015
n 363 363 225 224 135

LF/HF ratio, ratio between low and high frequencies; RMSSD, root mean square of
successive differences; significant values are bold.

TABLE 5 | Linear regression analysis with objective and subjective measures of
cognitive load as predictor variables for task performance (for the total
sample).

Coefficient B SE(B) BETA p VIF

(Constant) 0.337 0.065 – <0.001 –

Mental load −0.305 0.070 −0.326 <0.001 1.015
Mental effort 0.268 0.068 0.309 <0.001 1.143
LF/HF ratio 0.140 0.071 0.174 0.051 1.435
RMSSD −0.064 0.067 −0.084 0.344 1.442
Heart rate −0.091 0.067 −0.107 0.177 1.144

LF/HF ratio, ratio between low and high frequencies; RMSSD, root mean square of
successive differences; adjusted R2 � 0.280; Durbin–Watson–Statistic � 1.466;
significant values are bold.

TABLE 6 | Pearson correlation coefficients r between ASCA, interest, perceived
stress, and subjective and objective measures of cognitive load for the total
sample.

Mental
load

Mental
effort

LF/HF
ratio

RMSSD Heart
rate

ASCA r −0.29 0.23 0.19 −0.07 −0.22
p 0.00 0.00 0.02 0.37 0.08
n 234 234 153 152 61

Interest r −0.18 0.20 0.01 0.08 0.12
p 0.01 0.00 0.91 0.32 0.35
n 234 234 153 153 61

Perceived
stress

r 0.14 0.05 −0.08 0.10 0.13
p 0.01 0.37 0.24 0.15 0.13
n 316 316 227 226 135

ASCA, Academic self-concept of ability; LF/HF ratio, ratio between low and high
frequencies; RMSSD, root mean square of successive differences; significant values
are bold.

TABLE 7 | Linear regression analysis with variables ASCA, interest and perceived
stress as predictor variables for mental effort (for the total sample).

Coefficient B SE(B) BETA p VIF

(Constant) −0.254 0.070 <0.001
ASCA 0.094 0.082 0.092 0.252 1.207
Interest 0.133 0.077 0.138 0.087 1.206
Perceived stress 0.114 0.074 0.114 0.124 1.011

ASCA, Academic self-concept of ability; adjustedR2 � 0.035; Durbin–Watson–Statistic �
1.664; significant values are bold.

TABLE 8 | Linear regression analysis with variables ASCA, interest and perceived
stress as predictor variables for mental load (for the total sample).

Coefficient B SE(B) BETA p VIF

(Constant) −0.198 0.060 0.001
ASCA −0.177 0.070 −0.199 0.012 1.207
Interest −0.049 0.066 −0.059 0.458 1.206
Perceived stress 0.149 0.063 0.170 0.020 1.011

ASCA, Academic self-concept of ability; adjustedR2 � 0.069; Durbin–Watson–Statistic �
1.807; significant values are bold.
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DISCUSSION

The aims of this study were to evaluate the convergence between
subjective (self-reports on mental load and mental effort) and
objective (heart ratemeasures: LF/HF ratio, RMSSD and heart rate)
measures of cognitive load and to provide evidence for the assumed
relationships between cognitive load and conceptually related
constructs of positive and negative motivation and affect (self-
concept, interest, and perceived stress). Related to the convergence
of cognitive load measures via subjective and objective measures
(RQ1), we only found significant correlations between self-
reported ME and two of the heart rate variability measures
(positive for LF/HF ratio and negative for heart rate) and no
correlation between self-reported mental load and any heart rate
measure. Hence, the assumption of a significant linear relationship
between subjective and objective measures of cognitive load
(positive for LF/HF ratio and heart rate, negative for RMSSD;
H1), can only be confirmed for the specific relationship between
mental effort and LF/HF ratio. Even for this relationship, the
shared variance is rather small. Therefore, the present findings
support the assumption that subjective and objective measures are

likely to capture separate aspects of cognitive load (Zheng and
Cooke, 2012; Solhjoo et al., 2019).

Related to the question how subjective and objective measures
of cognitive load predict task performance (RQ2), we found that
the subjective measures contributed significantly to explain
variance in students’ task performance and one of the objective
measures (LF/HF ratio) contributedmarginally significantly. Based
on these findings, the assumption of a contribution of subjective
and objective measures of cognitive load to predict students’ task
performance can be confirmed for mental effort and mental load
and also for LF/HF ratio. As suggested in prior research, higher
mental load indicates the perception of amore challenging task and
is, thus, associated with lower achievement, whereas higher mental
effort indicates students’ engagement (Krell, 2017). However, in the
basic correlational analysis the coefficients are rather small,
indicating that different relationships may also exist. For
example, for some students, high mental effort might also
indicate high load because of an overly demanding task (Paas
et al., 2003).

Regarding the question, how students’ self-concept, interest
and stress perception predict their subjectively and objectively
measured cognitive load (RQ3), the assumption of a positive
linear relationship between learner characteristics (self-concept
and interest) and self-reported level of mental effort has to be
rejected and the missing of a linear relationship between stress
perception and students’ self-reported level of mental effort (H3a)
can be confirmed, because none of the variables self-concept,
interest and perceived stress significantly explained self-reported
mental effort. Hence, unlike it was found in preceding studies
(Milyavskaya et al., 2018; Skuballa et al., 2019), the students’ self-
concept and interest did not elicit a more intense engagement
with the tasks. Related to mental load, a negative linear
relationship to measures of self-concept and interest can be
partly confirmed (for ASCA) and also a positive linear
relationship to students’ stress perception (H3b) can be
confirmed. This indicates that the students’ self-concept and
perceived stress significantly contributed to how cognitively
challenging the tasks were perceived. Hence, unlike originally
proposed by Paas and van Merriënboer (1994), the present
measures of mental load are not independent from person
characteristics: although it is possible to objectively define a
given task’s complexity (e.g., in terms of interacting elements
to be processed or level of cognitive demands; Krell, 2018;
Minkley et al., 2018), the perception of task complexity and
amount of cognitive resources, which are necessary to process it,
is intertwined with person characteristics, such as self-concept.

Finally, related to the objective measures and based on the
regression analyses, the assumption of a linear relationship
between objective measures of cognitive load and measures of
self-concept and interest and of no linear relationship to
perceived stress (H3c) can only be partly confirmed: ASCA
contributes to heart rate (positively) and LF/HF ratio
(positively), while perceived stress contributes to LF/HF ratio
(negatively) and RMSSD (negatively). The former refuses earlier
findings where higher ASCA values are associated with less stress
(Minkley et al., 2014), as we found higher LF/HF and heart rate
values in students with a higher self-concept compared to those

TABLE 11 | Linear regression analysis with variables ASCA, interest and perceived
stress as predictor variables for heart rate (for the total sample).

Coefficient B SE(B) BETA p VIF

(Constant) 0.400 0.150 0.010
ASCA −0.416 0.189 −0.297 0.032 1.128
Interest 0.231 0.150 0.214 0.127 1.185
Perceived stress 0.044 0.143 0.040 0.760 1.076

ASCA, Academic self-concept of ability; adjustedR2 � 0.046; Durbin–Watson–Statistic �
1.252; significant values are bold.

TABLE 9 | Linear regression analysis with variables ASCA, interest and perceived
stress as predictor variables for LF/HF ratio (for the total sample).

Coefficient B SE(B) BETA p VIF

(Constant) −0.183 0.065 0.006
ASCA 0.177 0.076 0.206 0.021 1.242
Interest −0.052 0.075 −0.061 0.492 1.258
Perceived stress −0.127 0.067 −0.153 0.058 1.019

ASCA, Academic self-concept of ability; adjustedR2 � 0.043; Durbin–Watson–Statistic �
1.495; significant values are bold.

TABLE 10 | Linear regression analysis with variables ASCA, interest and perceived
stress as predictor variables for RMSSD (for the total sample).

Coefficient B SE(B) BETA p VIF

(Constant) 0.069 0.082 0.398
ASCA −0.127 0.095 −0.119 0.185 1.242
Interest 0.117 0.094 0.113 0.214 1.258
Perceived stress 0.166 0.084 0.161 0.048 1.019

ASCA, Academic self-concept of ability; adjustedR2 � 0.027; Durbin–Watson–Statistic �
1.083; significant values are bold.
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with a lower self-concept. This contrasts with the Biopsychosocial
Model of Challenge and Threat (Blascovich and Mendes, 2000;
Blascovich, 2008), according to which threat and stress arises
when task demands exceed resources. For students with a high
self-concept—which corresponds to high resources—tasks
should be more a challenge than a threat, as they should
assess their own resources to exceed task demands. But
perhaps in our study the threat increases also for the students
with a high self-concept because they want to maintain their own
high ASCA and fear not to meet it in the test, which seems to be
quite difficult indicated by the relatively high mental load
reported by the participants and the rather low test performance.

The assumed and (at least partly) confirmed lack of a
relationship between objective stress measurements and
perceived stress might result from the differences between
physiological and psychological stress responses, which—like
mental load—corresponds with the complexity of a task (e.g.,
Kahneman and Peavler, 1969; Veltman and Gaillard, 1993;
Hjortskov et al., 2004; Minkley and Kirchner, 2012):
According to the transactional stress model of Lazarus and
Folkman (1984) and the Biopsychosocial Model of Challenge
and Threat (Blascovich and Mendes, 2000; Blascovich, 2008),
stress is the result of the interplay between situational demands
and individual resources. Thus, the perception of high demands
and low resources creates the feeling of being stressed and raises
various physiological responses (e.g., decreased heart rate
variability, increased cortisol secretion; Rensing et al., 2006)
which are often not related to the respondents’ perceived
stress (for a review see Campbell and Ehlert, 2012). Several
studies which already investigated the association between
physiological (primarily cortisol secretion) and psychological
(perceived stress or anxiety) stress responses reported
heterogeneous results (for a review see Campbell and Ehlert,
2012). In most studies, there was no systematic relationship
between these parameters (Buchanan et al., 1999; Weekes
et al., 2006; Campbell and Ehlert, 2012; Minkley et al., 2014;
Kärner et al., 2018; Ringeisen et al., 2019). Only a few studies
found low or moderate associations between increased cortisol
concentration and perceived stress (e.g., Spangler et al., 2002;
Lindahl et al., 2005). Campbell and Ehlert (2012) discuss various
factors as possible reasons for this disassociation (e.g., differing
assessment protocols, mediating factors and interindividual
differences in the degree of psychophysiological
correspondence). Beyond these formal reasons—which are
partly founded in the matter itself—it is also conceivable that
physiological and psychological stress responses represent
different aspects of a person’s reaction toward a stress situation.

Comparing the findings for the total sample presented above with
the findings for the three individual studies (Supplementary
Material), it becomes evident that - in most cases - there is the
same trend in the individual studies and the total sample. Caused by
the smaller sample sizes, several coefficients do not reach the 5%
p-level in the individual studies but then do in the total sample
analysis. For example, while there are four statistically significant
correlation coefficients in Table 4, only two (studies 1 and 2) or one
(study 3) of them reaches the 5% level in the individual studies
(Supplementary Material); however, there have been significant

results in some of the single studies that could not be detected in the
total sample. Most notably, related to the convergence of cognitive
load measures via subjective and objective measures (Table 3), no
significant association between LF/HF ratio and heart rate was found
for the total sample but for study 1 and study 3. Albeit not being
related to one of the research questions and hypotheses addressed
here, the opposed findings from two studies indicate the challenging
nature of assessing physiological measures of cognitive load. One
challenge here could be that our tests did not take place under real
conditions at school and therefore may only have had a low personal
relevance for the participants. This can lead to a generally low
physiological stress response, since the factor “personal relevance”,
which contributes to something becoming a stressor, is not or only
slightly pronounced. With these rather low stress responses, even
small differences (e.g., regarding the content of the tasks) could have
different effects on the different heart rate variability measures.

It has been suggested that comparison studies with
subjective and objective measures of cognitive load may
lead to new insights on what these two types of measures
are in fact measuring, hence advancing our understanding of
the construct of cognitive load in terms of its subjective and
objective measurement (Leppink et al., 2013). Other scholars
proposed such comparison studies as a source of validity
evidence for subjective measures (Solhjoo et al., 2019). As
several objective (i.e., physiological) measures of cognitive
load have been suggested (e.g., various heart rate or
pupillometric measures; Solhjoo et al., 2019; Zheng and
Cooke, 2012; cf. Sweller et al., 2011), it remains unclear as
to which objective measure can be validly interpreted as an
indicator for an individual’s cognitive load and in which
contexts. This is additionally highlighted in the present
study, with specific findings for the three heart rate
measures (e.g., Table 3). Nevertheless, taken that each
cognitive load measure may capture specific aspects of
cognitive load (Zheng and Cooke, 2012), a systematic
association between subjective and objective measures of
cognitive load, with still a medium to large variance
component specific to each measure, might be seen as
providing evidence for the measures in fact indicating
cognitive load. As this study revealed, objective heart rate
measures of cognitive load are significantly related to self-
reported mental effort but not to mental load. Such objective
measures might primarily be used in future studies to indicate
the person-relevant cognitive load dimension of mental effort
and not the task-relevant cognitive load dimension of mental
load (Paas and van Merriënboer, 1994). Similarly, the
relationships between subjective measures of mental load
and mental effort and further variables of task performance
and learner characteristics are generally in line with what has
been expected based on the framework presented in Figure 1.
This can be seen as further validity evidence based on relations
to other variables for the subjective measures of mental load
and mental effort (Krell, 2015, 2017). Opposed to this, the
findings related to the objective heart rate measures are less
clear. This further illustrates the challenges associated with
establishing objective cognitive load measures; for example,
“physiological measures have proved insufficiently sensitive
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to indicate the differences in cognitive load generated by the
instructional designs used by cognitive load theory” (Sweller
et al., 2011, p.81). In sum, as validity refers to the extent to
which evidence and theory support the intended
interpretation of test scores (Kane, 2013; AERA et al.,
2014), a clear theoretical framework of cognitive load
including the different objective measures would be needed
to derive clear hypotheses about the specific relationships
between measures of cognitive load and, hence, allow to
interpret related findings as validity evidence for single
measures. From this point of view, the present study rather
adds to our understanding of the construct of cognitive load in
terms of its subjective and objective measurement (Leppink
et al., 2013), than to provide strong validity evidence for
subjective measures (Solhjoo et al., 2019).

Limitations
Naturally, this study has several limitations. First, self-reported
measures are vulnerable to several biases (e.g., social desirability,
cultural background), especially in the case of measuring “interest”,
where we have used different instruments. Second, we assumed,
tested, and found linear relationships between some of the included
variables; however, for some variables, non-linear relationships
might be considered as well. For example, Paas et al. (2003) discuss
a non-linear relationship between task performance and ME.
Third, we did not systematically investigate the causal factors of
learning task and learning environment (Choi et al., 2014) and also
did not consider the two- and three-way-interactions proposed in
the framework for cognitive load (Figure 1). As a minor limitation,
one of the measurements (LF/HF ratio) shows kurtosis above 2,
which is outside normal distribution. This could be due to sample
fluctuation. Hence, future studies should investigate whether the
specific relationships between person characteristics and
dimensions of cognitive load, which were found in this study,
might be specific for the present tasks and environment (i.e., tasks
dealing with molecular structures and phenomena, presented

digitally on laptops, and solved during an out-of-school
experience). Also, future study could replicate the findings
through other objective measures such as pupillary measures
and skin conductance measures.
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The accurate measurement of the cognitive load a learner encounters in a given
task is critical to the understanding and application of Cognitive Load Theory (CLT).
However, as a covert psychological construct, cognitive load represents a challenging
measurement issue. To date, this challenge has been met mostly by subjective self-
reports of cognitive load experienced in a learning situation. In this paper, we find that
a valid and reliable index of cognitive load can be obtained through item response
modeling of student performance. Specifically, estimates derived from item response
modeling of relative difficulty (i.e., the difference between item difficulty and person
ability locations) can function as a linear measure that combines the key components of
cognitive load (i.e., mental load, mental effort, and performance). This index of cognitive
load (relative difficulty) was tested for criterion (concurrent) validity in Year 2 learners
(N = 91) performance on standardized educational numeracy and literacy assessments.
Learners’ working memory (WM) capacity significantly predicted our proposed cognitive
load (relative difficulty) index across both numeracy and literacy domains. That is, higher
levels of WM were related to lower levels of cognitive load (relative difficulty), in line with
fundamental predictions of CLT. These results illustrate the validity, utility and potential
of this objective item response modeling approach to capturing individual differences in
cognitive load across discrete learning tasks.

Keywords: cognitive load, item response theory, mental effort, working memory, standardized test

INTRODUCTION

The core goal of cognitive load theory (CLT) is the creation of learning environments that make
optimal use of learners’ cognitive resources and reduce any demands extraneous to learning
in order to optimize learning success (Paas et al., 2003, 2004). In addition to the inherent
complexity of information that is to be learned, the method of presenting information to
learners also affects the cognitive load learners experience when acquiring knowledge and skills.
However, the understanding and application of CLT requires methods to appraise cognitive load,
which could be expected to differ across tasks, contexts and learners. To-date, this has been
indexed mostly by subjective self-reports of cognitive load experienced in a learning situation.
In this study, we evaluated a more objective and sensitive approach to indexing cognitive load
experienced by learners.
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Cognitive Load: Definition, Sources and
Measurement
Cognitive load is considered to be a complex multidimensional
construct that consists of: (1) causal factors relating to the
task, the learner and their interactive components; and (2)
assessment factors such as mental load (ML), mental effort (ME),
and performance (e.g., Paas and van Merriënboer, 1994). The
cognitive resources needed for a certain task comprise ML, which
is a result of a task’s content, presentation, structure, complexity
and difficulty (Paas, 1992). On the other hand, the cognitive
resources that are devoted to a task comprise ME (Paas, 1992;
Paas et al., 2003). ME is intrinsic to the learner, and constitutes
the degree to which cognitive resources are mobilized to enable
processing and completion in complex tasks (Paas and van
Merriënboer, 1994). The causal factor of cognitive load relates
to aspects such as the novelty of the task and environmental
conditions, while factors relating to the learner involve aspects
like working memory (WM) capacity and expertise. These task
and learner factors interact to further influence performance
through their influence on, for example, motivation.

Cognitive load can be understood within three broad
categories – intrinsic, extraneous, and germane (Sweller et al.,
2019). Intrinsic cognitive load has to do with the complexity
of the information which is being processed and subsumes the
idea of “element interactivity” (Sweller et al., 2019). Element
interactivity depends on the nature of the information and
the prior knowledge of the learner processing the information.
For example, complex tasks which require the processing
of multiple interconnected elements are considered to have
high element interactivity. By contrast, extraneous cognitive
load has to do with how information is presented and the
instructional procedures involved in the task. Manipulations of
the presentation of instructional procedures can affect the level
of element interactivity. Finally, germane cognitive load refers
“[. . .] to the WM resources available to deal with the element
interactivity associated with intrinsic cognitive load” (Sweller,
2010, p. 126). Therefore, germane cognitive load is both linked to
intrinsic and extraneous cognitive load. Germane cognitive load
resources can only be utilized if extraneous cognitive load is not
depleting WM resources. Moreover, germane cognitive load can
redistribute WM resources to process complex tasks with high
element interactivity (Sweller et al., 2019).

As a covert psychological construct, which can be expected to
vary across tasks, contexts and learners, cognitive load constitutes
a serious challenge in terms of its accurate measurement. Without
precision in its capture, application of CLT is limited to the
identification of conditions under which learning is superior or
inferior, without the ability to accurately tailor these principles
to the specific tasks, conditions and learners involved in a
particular learning situation. For instance, the split attention
effect would suggest that when learners are novice, essential
information should be well integrated; however, this might not
be expected at higher levels of expertise. Application of this
principle to optimize learning outcomes amongst diverse tasks
(e.g., in reading, numeracy, and science), diverse learners (e.g., in
expertise and WM capacity), and in different contexts to which

the research was conducted, is complicated without the ability to
carefully appraise changes in cognitive load as conditions change.

When cognitive load is measured it is most often done through
the use of a subjective ranking using a Likert scale asking for
invested ME (e.g., Marcus et al., 1996; Tindall-Ford et al., 1997;
Salden et al., 2004; Halabi et al., 2005). A primary reason is that
this method is straightforward, simple to apply, shows evidence of
reliability, construct validity, and does not interfere with learning
(Paas et al., 1994; Sweller et al., 1998). For instance, Paas (1992)
used a one-dimensional 9-point symmetrical category rating scale
(Likert-type scale) for assessing learners’ ME in different phases
of learning and performance. The scale ranged from 1 (very low
mental effort) to 9 (very high mental effort), on which learners
rank their ME during a learning and performance task. Paas
et al. (1994) tested this subjective scale for its measurement
properties and found that it had good reliability (e.g., Cronbach
α = 0.82) and was sensitive to variation in small levels of
cognitive load. Such evidence is taken to suggest that learners are
capable of introspecting their cognitive processes and use this to
quantify their ME.

However, this scale has been interpreted by some cognitive
load researchers by substituting “mental effort” with “task
difficulty” (e.g., Ayres, 2006; Cierniak et al., 2009). By itself, asking
learners to rank difficulty of learning tasks as a measure of ME is
problematic. While ME and task difficulty are no doubt related,
as a consequence of factors such as prior knowledge, they are
not identical (van Gog and Paas, 2008). For instance, when tasks
are very difficult for learners, research shows they are often not
stimulated to put in the required ME (Wright, 1984; Wright
et al., 1986) and, as a result, may not be reflective of the task’s
cognitive load. Despite this, Sweller et al. (2011, p. 74) state that
the subjective ME scale has “[. . .] been shown to be the most
sensitive measure available to differentiate the cognitive load
imposed by different instructional procedures.”

From these scales, ME (cognitive load) is indexed through
a combination of the learning result and learners’ ME. That
is, a learning experience is considered more optimal if it has
a higher average performance than an alternative condition.
Yet when two instructional conditions record the same average
performance the learning condition that requires less ME
has higher instructional efficiency. Accordingly, the learning
condition that needs more ME is considered to be less efficient
than the one that requires learners to exert less ME. Using a
cognitive load framework, Paas and van Merriënboer (1993)
suggested a method for quantifying this instructional efficiency.
Their formula, E = (P−R)

√
2

, reconciles: (E), the relative efficiency
of the instructional condition; (P), the standardized z-scores for
test performance scores; and (R), the standardized z-scores for
the ratings of cognitive load related to the task. Based on this
formula, a learning condition would be more efficient when
lower subjective ratings of cognitive load correspond with higher
performance scores. These scores are calculated per learner
and per task, and interpreted relative to an ideal slope of 1,
where instructional efficiency = 0 (or performance is equal
to ME). Proximity above or below this slope denotes high or
low mental efficiency, respectively. This mental efficiency model
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has since been expanded to include factors such as motivation
(Hummel et al., 2004).

However, Hoffman and Schraw (2010) have pointed out
fundamental measurement concerns with Paas and van
Merriënboer’s (1993) cognitive load efficiency model beyond
the well-documented issues of using self-report measures,
such as measurement error arising from rater bias and over-
confidence (e.g., Stone, 2000; Burson et al., 2006). Hoffman
and Schraw note that task performance scores and ME scores
are not commensurable and do not share a common unit of
measurement. Calculations derived from incommensurable
variables are problematic for interpretative and computational
reasons (see Hoffman and Schraw, 2010).

Recently, studies have attempted to measure the different
aspects of cognitive load (e.g., Leppink et al., 2013; Klepsch et al.,
2017; Krell, 2017). For example, Krell (2017) developed a seven-
point Likert scale to measure self-reported levels of cognitive
load. In this study, Krell used an item response theory (IRT)
approach to test the linear functioning of the self-report scale.
This scale consists of 12 items, half of which measure ML (i.e.,
the cognitive capacity to process tasks) and the other half to
measure ME (the investment of cognitive capacity by persons to
process tasks). Krell tested the scale on a large sample of high
school students on the performance of a standardized science test.
Krell found evidence that ML and ME were different dimensions
and some evidence which suggest a causal role between ML and
performance but not ME and performance.

Whereas the majority of cognitive load researchers have
used subjective self-report, a range of objective cognitive load
measurement techniques have also been explored by cognitive
load researchers (for overviews see Paas et al., 2003; Paas et al.,
2008). Whereas subjective techniques are normally used to
get an estimate of overall cognitive load, that is, experienced
load based on the whole task procedure, continuous objective
techniques can be used to determine the dynamics of cognitive
load through fluctuations in cognitive load from the beginning
to the end of the task (Xie and Salvendy, 2000; Paas et al.,
2003). Such approaches include neuroscience (e.g., Antonenko
et al., 2010; Howard et al., 2015), physiological measurements
such as heart rate (e.g., Paas and van Merriënboer, 1994), pupil
dilation (van Gerven et al., 2004), and blood glucose levels
(e.g., Scholey et al., 2001).

Other objective cognitive load measurement techniques
involve the use of secondary tasks. Secondary-task techniques are
based on the assumption that performance on a secondary task
can be used to reflect the level of cognitive load imposed by a
primary task, and have been used successfully by several cognitive
load researchers (e.g., Chandler and Sweller, 1996; Marcus et al.,
1996). A recent and promising example of this technique is the
rhythm method (Park and Brünken, 2015; Korbach et al., 2018).
With this technique participants have to execute a previously
practiced rhythm continuously by foot tapping (secondary task)
while learning (primary task). Eye-tracking analysis is another
objective technique to measure cognitive load. These studies
investigate fixation time and number of fixations on visual stimuli
as indications of ME and cognitive load (see Korbach et al., 2017;
Krejtz et al., 2018).

In summary, cognitive load has been measured primarily
through the use of subjective self-report scales. Less common
objective measures of cognitive load have been attained through
brain imaging, the monitoring of physiological processes,
the use of secondary tasks, and eye tracking. While such
studies (e.g., neuroscientific (fMRI) approaches to cognitive
load measurement) have shown great potential (Whelan, 2007)
they are cumbersome, intrusive, require considerable technical
expertise beyond the capability of most CLT researchers, and are
unclear about which type of cognitive load is being measured.
Moreover, such measurement approaches lack ecological validity
and occur within laboratory settings outside of the typical
classroom learning environment. An ideal measure of cognitive
load would be objective, unobtrusive, and measurable within a
typical classroom environment.

A Measure of Cognitive Load Through
Rasch Modeling
Self-report Likert scale ratings do not constitute measures in so
far as, technically, they are observations and, as such, do not meet
the basic requirements of measurement (Wright, 1997). Likert
scale raw scores provide ordinal data, which means that: (1) the
scale is finite or limited to a small number of observations (e.g.,
5-, 7-, or 9-point); and (2) that differences between observations
(i.e., ratings) are not equidistant from each other, as in an interval
or ratio level scale. For a scale to qualify as a linear measure it
needs to be boundless, or not limited to a finite set of observations
and, critically, needs to consist of equally divisible units. Hence,
a serious problem of measurement error arises when Likert
scales are used as substitute measures in parametric analyses,
such as analyses of variance (ANOVA) (Wright, 1997). Ideally, a
behavioral measure of ME would be derived through an objective
procedure that fulfills the measurement principles of a linear
continuum with interval-level units. Item response modeling
presents such an opportunity, while using some of the same data
(e.g., performance) as CLT efficiency indices.

The Rasch Model
The Rasch (1960) model, or the one parameter logistic model
(1PL), is a commonly used model in IRT. The Rasch model is
a mathematical model of probability predicated on a hierarchy of
item difficulties. This hierarchy of item difficulty is determined
by conformity to a Guttman scalar pattern. The model depicts
the probability of getting an item correct/incorrect as a logistic
function of the distance between a person’s location (ability)
and an item’s location (difficulty). These location estimates
are situated on the same linear scale (i.e., logit scale). This
relationship is expressed below in mathematical form for
dichotomous data (e.g., correct/incorrect test answers):

P {Xni = x} =
ex

(βn− δi)

1+ e(βn− δi)

Where P = probability of X at person n for item i and where
x represents either a correct (x = 1) or an incorrect (x = 0)
response. Person locations are denoted as βn and item locations
as δi (Andrich et al., 2010).
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According to this model, an item’s difficulty is defined as being
equal to the level of ability at which 50% of persons respond
successfully to that item. When the difficulty of any given item
exceeds the ability of any given group of persons, a smaller
percentage of persons respond successfully. A major strength of
this model is that an analysis on raw data provide reliable and
valid independent (stand-alone) measures of a person’s ability
and the difficulty of items. These reliable person ability and item
difficulty parameters, attained through a person-item interaction,
potentiates an objective measure of cognitive load. That is, the
difference between item difficulty δ and person ability β or (δ
–β) provides an objective and performance-derived estimate of
relative difficulty (or cognitive load experiences by the learner as
a function of the learning task). The more the difficulty of an item
exceeds the ability of the person, the greater the relative difficulty
of that item for that person and, hence the greater cognitive load
involved in correctly solving the item.

This approach reflects the interaction between measurable
elements of cognitive load (i.e., ML, ME, and performance) and
calibrates them within a single scalable trait/dimension. ML is
captured through the transformation of raw performance data
into reliable estimates of item/task difficulty. ME is estimated
through the transformation of raw performance data into ability
measures (and degree to which variation occurs with respect to
difficulty estimates). This relative difficulty of items is analogous
to ME as a measure of the amount of cognitive load involved in
correctly responding to the task/item. This provides a summary
interval level measurement of cognitive load derived by an
objective mathematical procedure. It is important to note that
this proposed cognitive load measure involves intrinsic cognitive
load only and does not encompass extraneous cognitive load. The
proposed measure deals solely with the complexity of the tasks
and or difficulty of the test questions (element interactivity) and
the background knowledge of the learners (e.g., their numeracy
and literacy abilities).

By contrast with Paas and van Merriënboer’s (1993) efficiency
model, which stem from calculations involving incommensurable
variables, this IRT approach provides a psychometrically sound
alternative. For example, Paas and van Merriënboer’s (1993)
efficiency model uses two distinct scales to derive a measure of
cognitive efficiency/cognitive load and calculates the difference
between z score performance and z score effort as an
efficiency measure. By contrast, a probabilistic IRT analysis
transforms the raw data of a single performance measure
and derives item difficulty and person ability parameters
from this measurement scale (i.e., test or task scores). IRT
probabilistic transformation of raw performance scores into
these two parameter estimates are located on a single logit
scale in interval level units. Hence, the subtraction of the
ability estimates from the difficulty estimates per person item
interaction is psychometrically sound as these estimates share a
common logit scale.

The Present Study
We understand the concept of test validity as defined by
Kane (2013) who presents an argument-based approach. In
this approach “. . .to validate an interpretation or use of test
scores is to evaluate the plausibility of the claims based on

the test scores” (p. 1). This validity framework consists of
(1) stating the proposed interpretation and use of the test
scores and (2) evaluating the plausibility of such proposals
(Kane, 2013).

In the current study, and following from Kane’s (2013)
argument-based approach, we specifically propose that IRT
derived statistics from standardized numeracy and literacy test
scores can provide proxy measures to determine variance in
learners’ intrinsic cognitive load. In order to evaluate the
plausibility of this proposal we demonstrate two types of validity
evidence: construct validity and concurrent criterion validity.
Evidence of construct validity is demonstrated through an IRT
analysis on the National Assessment Program – Literacy and
Numeracy (NAPLAN) standardized test data (e.g., correct item
functioning, reliability testing, and fit to the Rasch model).
Moreover, we evaluate the plausibility of this proposal by
attaining concurrent criterion validity evidence. Our hypothesis
(H1) for criterion validity was that WM should inversely predict
the relative difficulty/cognitive load requirement of learners.
That is, concordant with CLT theory, higher WM capacity
would decrease the experience of cognitive load and give
preliminary support for the utility of this index to measure
learners’ cognitive load.

MATERIALS AND METHODS

Participants
Ninety-one primary school primary school-aged learners in
Grade 2 (aged 7–8 years) participated in this study. Learners were
recruited across three regional (n = 29) and two metropolitan
schools (n = 62), with a balanced gender ratio of boys (n = 42),
and girls (n = 49). All learners spoke English as their first language
and had no known developmental delay or disorder.

Measures
Learning Assessment
An out-of-circulation version of Australia’s National Assessment
Program – Literacy and Numeracy (NAPLAN) test was
administered as the learning task (ACARA, 2011). Specifically,
a numeracy test (35 multiple-choice questions) and a language
conventions test which consists of a spelling subtest (25 multiple-
choice questions) and a grammar subtest (25 multiple-choice
questions) of NAPLAN were selected to provide raw performance
data. These assessments were administered in a group setting
within the students’ classrooms, which followed the protocols of
the NAPLAN test.

Working Memory
Phonological and visual-spatial WM was measured by respective
“Not This” and “Mr Ant” tasks from the Early Years
Toolbox (EYT; Howard and Melhuish, 2017). These tasks are
administered via iPad to collect scores and timing measures.

Phonological WM
The iPad-based EYT “Not This” task (Howard and Melhuish,
2017) involves the presentation of an auditory instruction, against
a blank screen, to find a stimulus that does not have certain
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characteristics of color, shape, or size (or a combination of
these; e.g., ‘Point to a shape that is not red and not a circle).
After a brief retention interval, participants are then shown a
stimulus array from which to identify a stimulus that satisfies
the auditory instruction. The task increases in complexity from
level 1 (one feature to recall) to level eight (eight features to
recall). Each level consists of five trials and at least three successful
responses are required to proceed to the next level. The task
ends if participants fail to achieve three or more successful trials
within a level, or the completion of level eight. WM capacity is
estimated using a point score, calculated as: one point for each
successive level, starting at the first, in which at least three trials
are performed correctly and then 1/5 of a point for each successful
trial thereafter.

Visual-Spatial WM
The iPad-based EYT “Mr Ant” task (Howard and Melhuish,
2017) involves recall of an increasing number of stickers placed
on various locations of a cartoon ant. The task increases in
complexity from level one (recalling the placement of one sticker)
to level eight (recalling the placement of eight stickers). The task
consists of three trials per level and failure on all trials at a given
level (or completion of level eight) ends the task. In test trials,
a cartoon ant with sticker/s is presented for 5 s, followed by a
blank screen for 4 s, before the return of the cartoon ant without
any stickers. Participants respond by tapping on the location of
the missing sticker/s. WM capacity is estimated by a point score,
calculated as: 1 point for each successive level, starting at the first,
in which at least two trials are performed correctly and then 1/3
of a point for each successful trial thereafter.

Procedure
NAPAN tests were administered in two group sessions within
students’ classrooms, across 2 days, starting with language
conventions. This order and spacing is consistent with NAPLAN
administration (Board of Studies Teaching and Educational
Standards NSW (BOSTESNSW), 2015). Absent students
completed the missed test on the day of their return to school.
After completion of the NAPLAN assessments, the WM tasks
were administered in a single session individually and in a quiet
room. The tasks were administered in a fixed random order, as
follows: RSPM; Mr Ant; and Not This. The classroom teacher
was present throughout the testing phase and was on hand to
assist students who had questions.

RESULTS

Rasch Analyses
The proposed indices of cognitive load were derived from Rasch
modeling analyses of the NAPLAN test performances (numeracy
and language conventions). These data were analyzed using
the dichotomous Rasch model, run on Rasch Unidimensional
Measurement Modeling (RUMM) 2030 software (Andrich et al.,
2010; for a complete interpretation of Rasch analysis, see Tennant
and Conaghan, 2007). Overall fit of the data to the Rasch model
indicated good model fit for both tests (chi-square all p > 0.05)

(see Table 1 for summary of fit statistics). The Person Separation
Index (PSI), a reliability index on the transformed logistic data,
indicated very good reliability for all three tests (0.85–0.86), as
did the Cronbach alpha reliability indices (0.86–0.94).

The individual fit of items to the Rasch model are identified
by fit residuals outside the acceptable ranges (≤2.50 and >2.50).
Residuals constitute the difference between the observed values
and the theoretical Rasch estimates. Individual item misfit can
also be detected by significant chi-square and F statistics, where
an insignificant p value (>0.05) indicates good fit to the Rasch
model. Misfit can also be detected by examination of an item’s
item characteristic curve (ICC). ICCs plot the observed values
against the theoretical Rasch-derived estimates represented as an
s-shaped curve; the closer the proximity between the observed
values and the theoretical curve the better the fit and vice versa.

One item in the language conventions test (item 48) was
found to misfit the model (χ2 = 0.72, p < 0.001) at Bonferroni
adjusted alpha = 0.001 and was removed from the analysis. Also,
Item 25 in the language conventions test had an extreme score
(defined as all responses correct or incorrect) and was not used
in the analysis. Otherwise, individual item fit was acceptable
for all items of each test. Overall, all tests showed evidence
of good reliability and construct validity (as good fit to the
unidimensional Rasch model and correct functioning of items).
The spread of items relative to the ability of the learners in
the numeracy and language conventions tests are depicted in
Figures 1, 2, respectively.

The high reliability indices and well-functioning of items
according to the Rasch model constitutes significant evidence
of the precision of the test score data which we will use
to formulate our proposed intrinsic cognitive load measure.
Following Kane’s (2013) validity argument approach, such
evidence of the precision of our test score data will support the
plausibility and generalizability of our proposed measure.

Relative Difficulty/Cognitive Load Measures
Essentially, our proposed cognitive load index is a measure
of the relative difficulty of test items. This relative difficulty
measure was calculated from the subsequent IRT analysis on the
NAPLAN numeracy and language conventions test data. These
relative difficulty/cognitive load measures were calculated for
each test dimension by subtracting the IRT derived person ability
estimates from the item difficulty estimates for each person-item
interaction. The descriptives for these measures are depicted in
Table 2 as logits and depict the mean relative difficulty/cognitive
load for each person-item interaction across the two test domains.

TABLE 1 | Rasch analysis summary statistics of the NAPLAN numeracy and
language conventions tests.

Item trait Interaction PSI α

Test type Value (df) p

Numeracy 088.3 (70) 0.07 0.85 0.86

Language conventions 105.8 (96) 0.23 0.86 0.94

*ps < 0.05 are statistically significant. PSI, person separation index.
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FIGURE 1 | Wright map of the spread of learner ability and item difficulty on the NAPLAN numeracy test (in logits). Learner abilities (on the left) range from the least
able on the bottom to the most able on the top of the graph. Item difficulties (on the right) range from the least difficult on the bottom to the most difficult on the top.
The map indicates that the test was difficult with the majority of learners indicating their ability levels were lower than the difficulty of the majority of items.

Multiple Regression Analyses
The results of the multiple regression for Model 1 (numeracy
relative difficulty/cognitive load) indicated that the two WM
predictors significantly explained 20% of the variance [R2 = 0.20,

F(2,87) = 10.63, p< 0.001]. Phonological WM made the strongest
contribution to explaining numeracy relative difficulty/cognitive
load and accounted for 9% unique variance while visual-spatial
WM was found to contribute 6% unique variance. It was
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FIGURE 2 | Wright Map of the spread of learner ability and item difficulty on the NAPLAN language conventions test (in logits). Learner abilities (on the left) range
from the least able on the bottom to the most able on the top of the graph. Item difficulties (on the right) range from the least difficult on the bottom to the most
difficult on the top. The map indicates that the test was very difficult for 20 learners’ whose ability fell below the easiest item (item 26). Overall, the majority of items
fell above the ability of the majority of learners indicating a difficult test.

found that as phonological WM increased by one standard
deviation the relative difficulty/cognitive load index decreased
by 0.31 standard deviations (β = −0.31, p < 0.01), as did
visual spatial WM, which decreased by 0.26 standard deviations
(β = −0.26, p < 0.05). Model 2 (language conventions
relative difficulty/cognitive load) indicated that the predictors
explained 7% of the variance (R2 = 0.07, F(2,87) = 0 3.18,

p < 0.05). However, only phonological WM significantly
contributed to unique variance (6%). As phonological WM
increased by 1 standard deviation the relative difficulty/cognitive
load index decreased by 0.26 standard deviations (β = −0.26,
p < 0.05). Correlations of these variables are listed in Table 3
and results of the regression models are summarized in
Table 4.
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TABLE 2 | Descriptive statistics for item response derived measures of relative
difficulty/cognitive load for the numeracy and language conventions tests.

Relative difficulty Mean SD Skewness Kurtosis

Numeracy 3.31 1.29 0.20 (0.25) 0.54 (0.50)

Language conventions 4.20 2.11 0.33 (0.25) −1.23 (0.50)

These metrics are denoted in logit values and indicate the average amount
of cognitive load capacity utilized to complete the full tests (numeracy and
language conventions) per test taker. SD = standard deviation. Standard errors
are denoted in parentheses.

TABLE 3 | Summary of intercorrelations.

Measure 1 2 3 4

1. Numeracy (relative difficulty) – −0.539*** −0.369*** −0.338**

2. Language conventions (relative difficulty) – – −0.262* −0.095

3. Phonological working memory – – – −0.221*

4. Visual spatial working memory – – – –

*ps < 0.05; **ps < 0.01; ***ps < 0.001.

TABLE 4 | Multiple regression results for working memory predicting relative
difficulty/cognitive load measures.

B SE B β t

Model 1

Numeracy

Constant 5.846 0.573 10.201***

Phonological WM −0.529 0.169 −0.311 −03.130**

Visual spatial WM −0.289 0.111 −0.260 −02.609*

Model 2

Language conventions

Constant 6.426 1.009 6.372***

Phonological WM −0.707 0.297 −0.255 −2.375*

Visual spatial WM −0.058 0.195 −0.032 0.767

*ps < 0.05; **ps < 0.01; ***ps < 0.001 are statistically significant.

DISCUSSION

The aim of the current study was to evaluate the potential
of item response modeling to generate an objective measure
of intrinsic cognitive load. Results indicated that valid and
reliable indices of intrinsic cognitive load can be attained by
item response modeling of raw test data (or other series of
complex tasks/problems within a single domain) at an interval
scale level. The interaction of the two parameter estimates (item
difficulty and person ability) combine into a single scalable
measure, in logits, subsuming critical elements of the measurable
aspects of cognitive load: ML (i.e., task difficulty) and ME
(performance measures transposed into ability logits). In support
of our hypothesis (H1), resulting relative difficulty indices–that is,
subtraction of the person ability estimates from the item difficulty
estimates–were related to cognitive resources, in the expected
direction, functions as an estimate of cognitive load. This IRT
approach to estimating intrinsic cognitive load is superior to
subjective self-report measures as it meets the requirements of
objective measurement (Andrich, 2004).

Our findings provide clear validity evidence for the plausibility
of our interpretations and utility of our IRT-based measure
to indicate a learner’s intrinsic cognitive load capacity. This
evidence was demonstrated through a concurrent criterion
validity approach in that a learner’s WM capacity was found
to significantly predict our proposed cognitive load index
within both numeracy and literacy domains. We found
both phonological and visual spatial WM scores significantly
accounted for 20% of the variance of cognitive load in the
numeracy domain. This finding is consistent with prior research
which has found that phonological and visual spatial WM
are important predictors of numeracy processing (Alloway
and Alloway, 2010; Alloway and Passolunghi, 2011). While
phonological WM significantly captured 7% of the variance of
our novel cognitive load index in the language conventions
domain (combined spelling and grammar tasks), visual-spatial
WM played no significant role.

A possible explanation for these results, that is, the small
amount of variance captured by phonological WM and lack
of predictive role of visual-spatial WM on our cognitive load
measure may have to do with the nature of the language
convention spelling and grammar tasks. In the language
conventions sections of the NAPLAN tests, the spelling items
consist of identification of misspelt words. The mental resources
needed for this type of processing do not require deliberate
thought and essentially require retrieval from long-term memory
if the word is known and guessing in the case of an unknown
word (though in some cases the application of spelling rules
may apply). Similarly, in the grammatical section of the
language conventions test the format consists of short cloze
activities where a sentence is presented, and students choose
the correct missing grammatical form. Here, knowledge of
the correct conjugation or form of the verb or auxiliary
is all that is needed to successfully complete the task. The
degree to which deliberate thought is needed to control the
processing of information is minimal and hence the ME and
WM capacities on these tasks would not be optimal. According
to Paas and van Merriënboer’s (1994) cognitive load model, the
automatic processing of information bypasses the requirement of
drawing on ME resources and feeds directly into performance.
Hence, this type of automatic processing may have sufficiently
limited the cognitive capacity requirements in the language
conventions domain.

Our findings may also simply be reflective of the reduced
role of visual spatial WM in language processing. For example,
it is well established that visual spatial WM is important for
early numeracy processing (McKenzie et al., 2003; Bull et al.,
2008). Moreover, in the year three NAPLAN numeracy tests
many questions comprise visual “patterns” (or similar) and
consequently involve visual processing along the lines of what
was assessed by the visual spatial WM tasks. By contrast, such
item types requiring visual processing were not present in the
language conventions test used. Therefore, this may explain the
lesser role of visual spatial WM processing as a predictor of our
proposed cognitive load index.

Overall, however, our findings indicated that higher levels of
cognitive resources were related to lower levels of cognitive load
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requirements and vice versa. This is consistent with fundamental
underpinnings of CLT (Sweller et al., 2019), which suggest that:
cognitive load and WM capacity share an inverse relationship,
such that deficiency in one aspect can be rectified by reduction
in the other; and that a reduction in cognitive load can facilitate
learning and performance.

Our proposed IRT modeling approach to cognitive load
measurement provides a relatively simple and straightforward
procedure to attain reliable and valid estimates of intrinsic
cognitive load. While IRT modeling and Rasch analysis has been
available to social scientists and psychologists for many decades
now few have taken advantage of its superior measurement
capabilities. Moreover, the creative potential of IRT modeling
and its applications to cognitive load research, as well as
educational and psychological research in general, has yet
to be actualized.

As we have shown in this study, IRT modeling can
provide an objective measure of intrinsic cognitive load
outside of subjective self-report. This is particularly pertinent
given the difficulty in attaining reliable self-report measures
on cognitive processing of younger children (i.e., less than
7 years) (Conjin et al., 2020). The ability to ascertain reliable
and valid measures of intrinsic cognitive load through a
performance-based objective mathematical procedure is highly
beneficial, especially for cognitive load researchers interested
in measuring younger learners’ cognitive load. Moreover, this
objective IRT modeling approach has ecological validity in
that the performance data (i.e., tasks, problems, and questions)
are collected within the classroom learning environment
and are unobtrusive. The innovation of IRT and Rasch
modeling into the cognitive load research paradigm offers
exciting measurement opportunities beyond subjective self-
report approaches.

Limitations
We wish to acknowledge several limitations of this study. First,
while our study has demonstrated the utility and validity of
IRT modeling to quantify intrinsic cognitive load it is important
to note that IRT analysis requires large sample sizes. In the
case of the current study sample size was not such an issue
because we used standardized tests which have already been
validated with large (nationwide) samples using IRT analyses
(ACARA, 2020). Normally, a reliable IRT analysis requires
(N = 200) or so (Linacre, 1994). Hence, IRT analysis may be

beyond the scope of typical smaller experimental classroom-
based cognitive load investigations. Second, our sample of
learners were younger than the target age of the tests and this
was reflected somewhat in the IRT analysis, in that many learners
found the test difficult.

Future Directions
The current study has shown that our relative difficulty/cognitive
load index varies with WM in relation to intrinsic cognitive
load. Further validation of this measure would benefit from
evaluation of the index to determine whether it varies according
to the learner task following CLT principles (e.g., extraneous and
germane load) and through construct (i.e., convergent) validity
testing to establish the measure’s relationship with other cognitive
load scales (e.g., Paas, 1992; Leppink et al., 2013; Krell, 2017).
Such research is needed to show that our proposed cognitive
load index varies with theoretical variations in cognitive load.
Additionally, it would be desirable to investigate the performance
of our proposed cognitive load index with learners at varying
stages of age and development. Finally, our proposed cognitive
load index may be a useful measure for those undertaking
intervention research where the index can be used to assess
shifts in relative difficulty (cognitive load) scores across stages of
learner development.
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Making an Effort Versus Experiencing
Load
Melina Klepsch* and Tina Seufert

Department Learning and Instruction, Institute of Psychology and Education, Ulm University, Ulm, Germany

In cognitive load theory (CLT), the role of different types of cognitive load is still under
debate. Intrinsic cognitive load (ICL) and germane cognitive load (GCL) are assumed to be
highly interlinked but provide different perspectives. While ICL mirrors the externally given
task affordances which learners experience passively, germane resources are invested by
the learner actively. Extraneous affordances (ECL) are also experienced passively. The
distinction of passively experienced load and actively invested resources was inspired by
an investigation where we found differential effects of a learning strategy training, which in
fact resulted in reduced passive load and increased actively invested effort. This distinction
is also mirrored in the active and passive forms for effort in German language: “es war
anstrengend” (it has been strenuous) vs. “ich habe mich angestrengt” (I exerted myself). In
two studies, we analyzed whether we could distinguish between these active and passive
aspects of load by using these phrases and how this distinction relates to the three-partite
concept of CLT. In two instructional design studies, we included the active and passive
items into a differentiated cognitive load questionnaire. We found the factor structure to be
stable, with the passive item loading on the ICL factor and the active item loading on the
GCL factor. We conclude that it is possible to distinguish between active and passive
aspects of load and that further research on this topic could be constructive, especially for
learning tasks where learners act in a more self-regulated way and learner characteristics
are taken into account.

Keywords: cognitive load theory (CLT), differentiated measurement, self-regulated learning (SRL), assessing
cognitive load, active vs. passive cognitive load, measurement, validity

INTRODUCTION AND THEORETICAL BACKGROUND

During the last two decades, the concept of cognitive load has been widely discussed. The basic
assumption that cognitive processes of schema construction require mental resources is
noncontroversial. However, the aspects that contribute to these requirements while learning, and
particularly, the role of different types of load, are still under debate. In its original account, cognitive
load theory (CLT) differentiated between three different types of cognitive load (Sweller et al., 1998).
Two of them are widely acknowledged: 1) intrinsic cognitive load (ICL) represents the complexity of
the learning task itself, determined by the number of elements and their interrelations. Intrinsic load
can only be altered by either changing the learning task or when learners can use their prior
knowledge. Existing schemata would ease to relate the given elements and would thus reduce the
intrinsic affordances. 2) Extraneous cognitive load (ECL) arises from an inappropriate design and
poses load onto the learner, which is not task-relevant (e.g., search processes between different
representations). This type of load was addressed in a vast amount of studies on instructional design
(e.g., Paas et al., 2003). Particularly, in multimedia learning contexts, various design guidelines have
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been established which recommend design features which would
reduce the extraneous affordances of the learning environment
and thus reduce extraneous load (e.g., Mayer, 2014). The third
type, that is, 3) germane cognitive load (GCL), is controversial.
GCL arises when learners actively allocate resources to deal with
the task, for example, to build cognitive schemata. In other words,
learners use resources, which are germane while dealing with the
intrinsically given the requirements of the task. Germane load
therefore was also labeled as germane resources (Kalyuga, 2011).
This description makes it obvious that intrinsic load and germane
load are highly interlinked.

Nevertheless, if self-regulation is taken into account, that is,
learners actively regulate their learning processes, ICL and GCL
provide different perspectives. While ICL mirrors the externally
given task affordances which learners experience rather passively,
germane resources are invested by the learner actively (Seufert,
2018). The distinction of passively experienced load vs. actively
invested resources could be an interesting approach to better
understand the effects of how learners deal with or use their
effort. This idea of different perspectives on cognitive load is
actually not new and has already been reflected by Paas and van
Merriënboer (1994). Besides the causal effects which determine
cognitive load, they differentiate between different assessment
factors which mirror the experienced load for each individual
learner, namely, mental load, mental effort, and performance.
The first two factors match the abovementioned distinction of
actively vs. passively experienced load. While mental load reflects
the task-centered dimension, which is determined externally by
the task, mental effort is human-centered, and thus determined
internally and dependent on learner’s decisions and
characteristics. Not only the location of the determination is
crucial but also the possibility to control these aspects. While
mental load is not controllable and due to Paas and van
Merriënboer “constant for a given task in a given
environment,” mental effort is the “amount of controlled
processing the individual is engaged in” (1994). Scheiter et al.
(2020) referred to this distinction in their review on how to
measure cognitive load and link it to an analog distinction which
is made in the metacognitive literature. When learners rate their
mental effort while metacognitively monitoring their learning
process, they can also take these two perspectives as outlined by
Koriat et al. (2006). Whenmonitoring their effort, learners can on
the one hand take into account the effort which is intrinsic to the
task and thus externally triggered, which would be a data-driven
appraisal of the experienced load in accordance with the concept
of mental load. On the other hand, they could refer to their
deliberately invested engagement based on their own goals, which
is thus called a goal-driven appraisal of the experienced load in
accordance with the concept of mental effort.

Not only contemporary approaches of linking research on
cognitive load with research on self-regulation refer to the
distinction of invested effort vs. experienced load (see also
Schnaubert and Schneider, 2020) but also current research on
measurement issues of cognitive load. Krell (2017), for example,
developed a scale to measure mental effort and mental load. In a
recent study, it could be shown that the distinction between load
and effort could be even linked to objective measures of load, like

the heart rate, which was only related to self-reported mental
effort, but not to mental load (Minkley et al., 2021).

Experiencing Load Versus Investing Effort:
Passive and Active Load
In the context of metacognitive monitoring, it becomes obvious
that learners are in agency of their effort experience when it
comes to effort appraisals, while they are not with load appraisals.
This is what led us to the terms active and passive (or re-active as
the activation is triggered externally) load. The use of the terms
active and passive load—instead of mental effort and mental
load—is especially motivated by the passive and active use of the
word effort in German language: “es war anstrengend” (it has
been strenuous) vs. “ich habe mich angestrengt” (I exerted
myself). As there are already different items in use to measure
mental effort and mental load (see, e.g., Paas, 1992; Krell, 2017),
we refer to the name active and passive load as long as there is no
comparison with the given items. The passive and active phrases
of effort in the German language could be applied to measure the
active and passive aspects of cognitive load, which we did in a
study on the effects of learning strategies’ training for children
(Taxis et al., 2010). We compared a group with training to a
control group without training regarding their strategy use,
learning outcomes, and cognitive load. As children usually
have problems in understanding the item to measure
load—“My mental effort was. . .”—we used the
abovementioned German phrases in active and passive forms
for measuring load. The training comprised step-by-step
instructions on reading strategies and metacognitive strategies.
Besides the expected effects of the training on strategy use and
learning outcomes, we found evidence for differentiated effects of
the two load items. While the children experienced a reduced
passive load as the training provided explicit guidelines for
learning, they reported an increase in their actively invested
effort. This study provided a first hint that the activation of
cognitive processes can enhance and reduce different aspects of
cognitive load at the same time.

We started our discussion of different perspectives on
cognitive load with the classical three-partite description of
intrinsic, extraneous, and germane load. Thus, we now must
ask how the two-fold perspective of active and passive load would
align to these three load types. As argued above, ICL and GCL are
closely connected as they refer to the same affordances given by a
task. While ICL is data-driven, externally determined, and thus
passively experienced, GCL is goal-driven, internally determined,
and thus actively invested. But how about extraneous affordances
of a task (ECL), like intricate navigation in an online-learning
environment or other unnecessary, that is, task-irrelevant search
processes? As they are also determined externally and are usually
not under control of the learner, we would expect them to also
relate to passive aspects of cognitive load. However, it seems also
plausible that learners may also manage this kind of extraneous
load by adapting their strategies, and thus are no longer passive.
This self-management of load is described in an article of Eitel
et al. (2020), who also link the concept of cognitive load with self-
regulation in learning. They describe that learners can enhance
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their effort in selecting relevant aspects when confronted with
irrelevant seductive details.

How to Elicit and Validate Active and
Passive Load
Based on Kane’s (2013) argument-based approach for validity, we
formulate the following interpretation/use argument (IUA): We
plan to measure cognitive load after learning, using an item on
active as well as on passive load to assess learners’ perceived
invested effort and experienced load during learning: all for the
purposes of discerning the effects differences in learning settings
or through learner characteristics. This IUA results in different
inferences (scoring, generalization, and extrapolation) that are
described in the following paragraphs and will be discussed in
the end.

In order to analyze the relations between the classical three-
partite load types and active and passive load, we refer to well-
researched design principles or instructional design effects. With
their specific theoretical assumptions on how they would affect
cognitive load and performance, we can deduce specific
assumptions on the three classical types of cognitive load. This
leads to a scoring inference which will be operationalized as
hypotheses below: If active load is associated with GCL and
passive load with ICL and eventually also with ECL, then the
effects on all those measures should be in accordance. As we aim
at analyzing the active and passive aspects of load, we use
established variations of tasks, their design, and learners’
aptitudes to elicit ICL, ECL, and GCL as a starting point. If
we are using already established multimedia principles within
classical experimental designs—as typical for studies on cognitive
load—as well as often examined learner characteristics, then this
enables us to assume some generalization inference for the found
results. Given that if, for example, we can find an effect in one
worked-example study, then we are hopefully able to find it in
another, as there is already broad evidence for the worked-
example effect.

To elicit intrinsic load effects, one could alter the complexity
of the task (element interactivity, e.g., Sweller et al., 1998).
Alternatively, one could use the learner-based variation of
existing schemata, which would also affect the perceived
ICL. Learners with higher expertise would rate a complex
task less intrinsically loading than a learner with low
expertise (Artino, 2008). Therefore, a scoring inference is
as follows: Whenever ICL increases, the measure of passive
load should also increase. Moreover, if ICL increases in a
way that it exceeds learners’ working memory capacity, this
should also be indicated by a decrease in learning
performance.

For inducing effects on ECL, well-researched design
principles could be used, like the multimedia principle, the
modality principle, the split-attention principle, the worked-
example principle, or the redundance principle (for an
overview, see Mayer, 2014). The split-attention principle,
which is also called the spatial contiguity principle, states
that instructional material which needs to be integrated
should be placed nearby or even integrated, like words

printed into a picture instead of separately in a text (Ayres
and Sweller, 2014). Thus, learners do not need extraneous
resources for searching for corresponding elements, and with
the freed-up resources, learners can engage in mental
integration which would be germane to the task. The same
ECL-reducing effect can be assumed when implementing
worked examples (for an overview, see Renkl, 2014).
Learners are provided with a problem and an additional
example on how to solve this problem before starting to
solve the same or comparable problems on their own. With
the guidance of the worked-example, learners do not need to
spend extraneous resources on inadequate problem-solving
strategies (Van Gog et al., 2008) and improve their learning
outcomes. Van Gog et al. (2008) also argue that with the freed-
up resources, learners could then invest more mental effort
which would be germane to the task. Thus, worked examples
may trigger both, a decreased ECL and an increased GCL. Such
interdependences of the three load types have been also
examined by Park (2010) in her study program on the
additivity assumption of load. She could demonstrate that
the enhancing effects of different instructions for learning
or cognitive load cannot simply be added but that they
might interact. This complex interplay has also been
revealed by Wirzberger et al. (2016). So, the next scoring
assumption is as follows: If ECL decreases by matters of
design, then the score on the passive item should also decrease.

Regarding GCL, there are also several techniques proposed,
which intend to foster generative activities. Moreno and Mayer
(2010) analyzed the effects of personalization: guided activities
like prompts to elaborate on the learning content, feedback, or
self-explanation prompts. Their review provides strong evidence
for improved learning outcomes when these techniques were
used. But can these techniques enhance germane cognitive load?
In their review on the effects of journal writing for learning,
Nückles et al. (2020) provided evidence for a germane
load–enhancing effect but they also emphasized that such
an enhancing effect would depend on the learner’s ability to
apply the requested generative activity. This is also confirmed
in a study of Park et al. (2016), where prompting learners to
mentally animate a complex scenario only led to higher mental
effort when learners had the necessary spatial abilities to
perform these mental animations. Despite triggering
generative activities and thus germane load externally, one
could also analyze whether learners with task-specific abilities
and particularly with strategic skills would invest more
germane resources. Thus, the impulse to invest germane
resources would be elicited internally. However, none of
these studies used a specific measure for germane load but
only deduced their interpretation by combining measures of
mental effort with learning outcome measures. Only in two
studies reported by Klepsch and Seufert (2020), effects of
germane load–inducing instructions were revealed by using
the germane cognitive load scale of the differentiated
questionnaire by Klepsch et al. (2017). This leads to the
assumption that if GCL increases, then the scores on the
active load item should also increase, which gives us another
scoring inference.
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Overall, there are several instructional means with which the
different types of load can be elicited. Besides the theoretical
arguments, there are also empirical studies confirming these
effects, but only a few measured the effects with differentiated
measures of load (e.g., Klepsch and Seufert, 2020).

Present Studies
The goal of the present studies is to investigate the concept of
passive load, that is, experiencing load and active load, that is,
investing effort in relation to the classical three-partite types of
load based on CLT. From a theoretical point of view, one would
assume that the passively experienced load should be linked to
those aspects of load that come along with the task affordances
and its presentation, that is, ICL and ECL. The active load on the
other hand would link to the actively invested germane resources.
The purpose of the studies is to examine whether this
theoretically assumed mapping of active and passive load with
the concepts of intrinsic, extraneous, and germane load can be
substantiated empirically. In addition, we use a simple measure
for active and passive load by using the German active and passive
linguistic forms of experiencing load. With such an easy-to-
apply—and even for younger kids easy-to-
understand—measure, the concepts of active and passive load
could be investigated easily instead of or in addition to other
differentiated measures (e.g.,Leppink et al., 2013; Klepsch et al.,
2017; Krell, 2017). If the scores on the active and the passive load
item are given, then the scores of other cognitive load
measurements could be predicted, as well as learning outcome,
which would allow an extrapolation inference.

In two experimental studies, we address the following
questions: 1) Can we distinguish between these active and
passive aspects of load and 2) relates this distinction to the
three-partite concept of CLT. With classical instructional
design variations, we analyze 3) the prognostic validity of
these measures based on the abovementioned theories and
studies on how to elicit the different types of load.

In the first study, we used worked examples in comparison to
problem-solving as an external factor to elicit extraneous load and
combined it with self-explanation prompts as an external factor
to elicit germane load. In the second study, we used a split-source
format in comparison to an integrated format to externally elicit
extraneous load and learners’ cognitive style to either process
information in a holistic or serialistic way, which can elicit
germane processes internally. We did not vary ICL as a
between-subjects factor but considered learners’ prior
knowledge as an internal variation of ICL in both studies. In
both studies, learners must rate their perceived intrinsic,
extraneous, and germane load with the differentiated
questionnaire for cognitive load by Klepsch et al. (2017) and
their active and passive load with the additional items “ich habe
mich angestrengt” (I exerted myself) and “es war anstrengend” (it
was strenuous). With a factor analysis and additional
correlations, the structural interrelation between the two lines
of concepts is analyzed. Moreover, the expected main effects
and interactions for the instructional variations were analyzed
for validating the respective measures. Regarding the

abovementioned research questions, we have the following
hypotheses.

(H1)We expect that making an effort (active) in an explorative
factor analysis is loading on the GCL factor and that
experiencing load (passive) is loading either on the ICL or
ECL factor.
(H2) We expect to find correlations between making an effort
(active) and GCL and between experiencing load (passive) and
ICL and/or ECL.
(H3) In terms of a validation of both measures, we expect
making an effort (active) and germane cognitive load to
increase when generative learning activities are triggered by
the design (H3_active). We expect ECL to decrease when the
design is optimized regarding unnecessary processes, and we
expect no group differences for ICL, as we do not vary
complexity of the learning content in our studies.
Experiencing load (passive) should be either more in line
with ICL or ECL (H3_passive). Additionally, learning
outcome between groups will differ (H3_learning_outcome).

To examine these hypotheses, we conducted two studies,
where we analyzed in which way the concept of active and
passive load, measured by the active and passive German
forms of effort (Supplementary Appendix A), relates to the
three types of cognitive load measured by a differentiated
measurement instrument (Supplementary Appendix A;
Klepsch et al., 2017).

STUDY 1

In order to elicit different levels of different aspects of
cognitive load, study 1 used the worked-example effect and
the prompting principle. Learners had to deal with two
mathematical topics, that is, extremum problems and
Taylor polynomial tasks.

Based on theoretical assumptions and empirical findings, we
assume for study 1 effects of worked examples and prompts on
ICL, ECL, GCL, and the passive and the active item. While
worked examples are meant to reduce the perceived ECL,
prompts should enhance GCL. As we did not change the
content to be learned, there should not be any difference in
perceived ICL. The assumptions for the active and passive load
should correspond with the effects for either ICL and/or ECL
(passive) or for GCL (active). We additionally analyze the effects
on learning outcomes of both instructional variations.

TABLE 1 | Number of participants in each experimental group of study 1.

Experimental groups N

Problem solving * without prompt 20
Problem solving * with prompt 15
Worked examples * without prompt 20
Worked examples * with prompt 18
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Method
In Table 1, the experimental conditions of study 1 and number of
participants in these conditions are listed.

Participants
We collected data from 73 learners. Participants were at average
22.34 (SD � 4.27) years old, and 13.70% were male. They were
students from a German university.

Design
We conducted a 2 × 2 between-subject study with four
experimental conditions (Table 1). Independent variables are
based on the worked-example effect (problem-solving vs. worked
examples) and the prompting principle (no prompts vs. self-
explanation prompts). As dependent variables, we assessed
cognitive load in a differentiated way, the active and passive
parts of load and learning outcome. As control variables, age, sex,
and prior knowledge have been assessed.

Procedure
At the beginning, learners were informed about the procedure of
the study they participated in and signed an informed consent
form. All participants were aware that they could withdraw their
data at any point in the study without having any disadvantage.
Then, each participant was randomly assigned to one of the
experimental groups. As a next step, each participant filled out a
questionnaire asking for demographic data. Then, prior
knowledge was assessed (described in Material). Afterward,
participants had to deal with the learning material either with
or without worked examples (described in Material). If they were
in one of the experimental conditions with self-explanation
prompts, learners then were presented the prompts (described
in Material). After learning, the cognitive load questionnaire
(Supplementary Appendix A; Klepsch et al., 2017) had to be
answered, as well as the items to assess the active and passive parts
of load (Supplementary Appendix A). In the end, learning
outcome was measured; for each topic, two tasks which are
structurally similar to those in the learning material and one
transfer task with an unknown structure had to be solved.

Material
Each learner had to deal with two types of mathematical learning
material: 1) extremum problems and 2) Taylor polynomial tasks.
Prior knowledge was assessed after participants received an
example task for each type of material: in two questions, they
had to answer on a 7-point Likert-type scale, whether they were
familiar with such tasks, and in a second step, they had to write
down how they would solve the task. Afterward, the learning
phase started with a short introduction on the topic, followed by
two example tasks. To realize differences in ECL as an
independent variable, problem-solving or worked examples
were included. In the problem-solving group, the correct
solution was presented, but no information on how the
solution could be calculated was given. In the worked-example
group, the solution steps for calculating the correct answer for the
example tasks were provided. Participants had 5 min time for
each domain to learn the content and another 15 min to conduct

the post test. Performance was measured by a posttest for each
domain containing two analog tasks (similar in structure to the
example tasks in the learning material), and one complex transfer
task with an unknown problem structure. For each task, six points
could be reached, and therefore, as a maximum, 36 points could
be reached in the posttest. Task performance was calculated by
summing up points given for correct answers.

The self-explanation prompts were presented after working
through the learning material. We asked participants to reflect
what is new for them in the learning material. They should write
down in own words how they would solve problems like those
presented in the learning material and reflect if there is
something, they do not yet understand.

Cognitive load was assessed through a differentiated
questionnaire (Supplementary Appendix A; Klepsch et al.,
2017). For the active and passive aspects of load, two items
(Supplementary Appendix A) were used: “es war
anstrengend” (“It has been strenuous,” passive) vs. “ich habe
mich angestrengt” (“I exerted myself,” active).

Data Analysis
For all three scales of the differentiated questionnaire, reliability
was estimated by using McDonald’s ω. A principal component
analysis (PCA) was conducted to provide evidence that the items
are forming the intended factors. Then, the items on the active
and passive aspects of load were included into the factor analysis,
to show that the active items fit into the GCL factor and the
passive item fits into the ICL or ECL factor. Then, correlations
were conducted to again provide evidence if especially the passive
item correlates with load resulting from the material (ICL and/or
ECL), and the active item correlates with the GCL scale.

Additionally, we analyzed group differences regarding the
control variables, prior knowledge, and age to check for
differences despite the randomization. Also, correlations
between the control variables and the dependent variables
have been calculated. Whenever a significant difference
between groups or a significant correlation could be found, the
affected variable was included in the following analyses of
variance as a covariate. To identify group differences, AN(C)
OVAS were conducted with ICL, ECL, GCL, the active or the
passive item, or learning outcomes as dependent variables.

Results
Relation of Intrinsic, Extraneous, and Germane Load
With Active and Passive Load
We used McDonalds ω to assess the reliability of the three scales
of the differentiated cognitive load questionnaire. For ICL and
GCL, two items, and for ECL, three items were included, and we
could find sufficient levels of McDonalds ω (ICL: 0.80, ECL: 0.85,
and GCL: 0.77).

The principal component analysis (PCA) was conducted with
the items of the differentiated questionnaire with orthogonal
rotation (varimax). The Kaiser–Meyer–Olkin measure verified
the sampling adequacy for the analysis (KMO � 0.59). Barlett’s
test of sphericity (χ2 (21) � 206.34, p < 0.001) indicated that
correlations between items were sufficiently large for PCA. An
initial analysis was run to obtain eigenvalues for each component
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in the data. Three components had eigenvalues over Kaiser’s
criterion of 1 and in combination explained 81.76% of the
variance. Table 2 (a) shows the factor loadings after rotation.
The items that cluster on the same components suggest that
component 1 represents ECL, component 2 ICL, and component
3 GCL.

Including the active and passive items into the PCA
resulted in the following outcome: The
Kaiser–Meyer–Olkin measure verified the sampling
adequacy for the analysis (KMO � 0.64). Barlett’s test of
sphericity (χ2 (36) � 349.47, p < 0.001) indicated that
correlations between items were sufficiently large for PCA.
An initial analysis was run to obtain eigenvalues for each
component in the data. Three components had eigenvalues
over Kaiser’s criterion of 1 and in combination explained
78.48% of the variance. Table 2 (b) shows the factor loadings
after rotation. The items that cluster on the same components
suggest that component 1 represents ICL including the
passive item, component 2 ECL, and component 3 GCL
including the active item.

We found significant relationships between the active item
and the original two-item GCL scale (r � 0.77, p (one-tailed) <
0.001) as well as the original two-item ICL scale (r � 0.21, p
(one-tailed) � 0.03), and between the passive item and the
original two-item ICL scale (r � 0.63, p (one-tailed) <. 001) as
well as the original three-item ECL scale (r � 0.44, p (one-
tailed) < 0.001). All correlations can be found in
Supplementary Appendix B.

Validating the Measures Regarding the Implemented
Design
Concerning the control variables, we could not find any group
differences for the variables age (F < 1, n.s.) and prior knowledge
(F (1,69) � 2.47, p � 0.12, η2 � 0.04). Correlations between these
variables and dependent variables showed that age is significantly
correlated with learning outcome (r � −0.41, p < 0.001) and prior
knowledge is significantly correlated with learning outcome (r �
0.32, p < 0.01), ECL (r � −0.24, p � 0.04), and the passive item (r �
−0.29, p � 0.01), and were thus integrated as covariates in the
respective analyses. All correlations can be found in
Supplementary Appendix C.

All means and standard deviations of the dependent variables
can be found in Table 3, and effects are visualized in Figure 1.

For ICL, we found no significant main effect of worked
examples (F < 1, n.s.) or prompts (F < 1, n.s.), neither an
interaction (F (1,69) � 1.39, p � 0.24, η2 � 0.02): ICL was
reported to be equal in the experimental groups.

For ECL, we found a significant main effect of worked
examples (F (1,69) � 13.57, p < 0.001, η2 � 0.17), no main
effect of prompts (F > 1, n.s.), and no interaction (F > 1, n.s.): ECL
was reported to be lower in the groups with worked examples.

For GCL, we found no main effect of worked examples (F
(1,69) � 1.99, p � 0.16, η2 � 0.03), a significant main effect of
prompts (F (1,69) � 6.26, p � 0.02, η2 � 0.08), and no interaction
(F > 1, n.s.): GCL was reported to be higher in the groups without
prompts.

For the passive item, we found no main effect of worked
examples (F < 1, n.s.), no main effect of prompts (F (1,68) � 1.58,
p � 0.21, η2 � 0.02), but an interaction (F (1,68) � 4.49, p � 0.04, η2
� 0.06): Simple main effects show that in the worked-example
group, there is a significant difference if a learner gets prompts or
gets no prompts (F (1,68) � 6.25, p � 0.02, η2 � 0.08), with getting
a prompt resulting in higher passive load. Thus, this result pattern
does not fully correspond to those of either ICL or ECL.

For the active item, we found no significant main effect of
worked examples (F < 1, n.s.) or prompts (F < 1, n.s.), neither an
interaction (F < 1, n.s.): The active item was reported to be equal
in the experimental groups. Thus, this result pattern does also not
fully correspond to that of GCL.

For learning outcome, we found a significant main effect of
worked examples (F (1,67) � 10.137, p < 0.01, η2 � 0.13), no main
effect of prompts (F (1,67) � 1.38, p � 0.25, η2 � 0.02), and no

TABLE 2 | Rotated PCA (a) with items from Klepsch et al. (2017) and (b) including
the passive and active items for study 1.

(a) Component (b) Component

Item 1 2 3 Item 1 2 3
ICL 1 −0.015 0.918 0.088 ICL 1 0.842 −0.076 0.127
ICL 2 0.237 0.867 0.069 ICL 2 0.892 0.179 0.120
ECL 1 0.780 0.394 −0.067 ECL 1 0.450 0.750 −0.033
ECL 2 0.895 −0.115 0.209 ECL 2 −0.072 0.904 0.171
ECL 3 0.909 0.130 −0.118 ECL 3 0.173 0.896 −0.107
GCL 1 0.089 0.235 0.844 GCL 1 0.138 0.084 0.813
GCL 2 −0.067 −0.065 0.888 GCL 2 −0.107 −0.053 0.884

Passive 0.789 0.328 −0.032
Active 0.175 0.001 0.885

TABLE 3 | Means and standard deviation of all dependent variables in study 1.

Problem-solving
*without prompt

Problem-solving *with prompt Worked examples *without
prompt

Worked
examples *with prompt

M (SD) M (SD) M (SD) M (SD)
ICL 4.39 (0.93) 3.97 (0.82) 4.28 (1.41) 4.48 (1.22)
ECL1 3.78 (0.22) 3.63 (0.26) 2.72 (0.22) 2.99 (0.23)
GCL 5.53 (0.73) 5.02 (1.46) 5.28 (0.77) 4.59 (1.04)
Passive1 4.72 (0.26) 4.49 (0.29) 4.15 (0.25) 5.05 (0.26)
Active 4.98 (0.99) 4.90 (1.50) 4.93 (1.04) 4.89 (1.35)
Learning outcome1 15.64 (1.85) 21.12 (2.16) 24.84 (1.80) 24.03 (1.89)

1Corrected, if covariates are included.
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interaction (F (1,67) � 2.63, p � 0.11, η2 � 0.04): Learning
outcome was higher, when worked examples were given.

Discussion
Regarding the relation of the active and passive load measures
with the three classical types of cognitive load, the PCA revealed
that the active item is loading on the GCL factor and the passive
item is loading on the ICL factor (H1). We also found the
expected correlations between the active item and the original
two-item GCL scale and between the passive-item and the
original two-item ICL scale (H2). These results will be
discussed more in depth in the general discussion.

Regarding the validation of the different load measures in the
different instructional settings, we could not find any effects on
ICL, which we expected, as we did not change the learning
content between conditions. But we found a main effect of
worked examples on ECL. In H3, we assumed that the passive
item would correspond with either the ICL or the ECL scale, but
the passive item is not aligned with the patterns for either ICL or

ECL. Instead, we found a significant interaction effect, which is
defined by the difference of learners with or without prompts in
the worked-example group: Learners report higher passive load
when provided with a prompt. The combination of worked
examples and prompts seems to result in additional
affordances that are necessary to link the worked examples
with the prompts, which is in fact an alteration and increase
in task affordances, that is, more interactive elements to deal with.
The increase of passive load reported by this group thus indicates
in our view that the passive item would be more closely linked to
the concept of ICL than to ECL (H3_passive).

In this first study, we used prompts to elicit GCL, but the GCL
items and the active item did not reveal corresponding results:
We assumed a main effect of prompting on GCL and active load,
which we could only find on GCL but not on active load.
However, the main effect of prompts on GCL revealed
unexpected results with higher levels of GCL for learners
without prompts. This may be explained with the fact that
they deliberately invested more mental effort as a human-

FIGURE 1 | Effects on the dependent variables for study 1. Note: ps � problem-solving, we � worked examples; * (simple) main effect with p ≤ 0.05.
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centered dimension, as they have not been guided with hints.
Assuming that self-regulation also results in cognitive load
(Seufert, 2018), giving prompts might have reduced the
amount of needed self-regulation, and therefore can result in
lower GCL. These arguments would be in line with seeing the
missing prompts as a desirable difficulty (Bjork, 2017). However,
as the learning outcomes did not increase for learners without
prompts, we rather appraise missing prompts as a difficulty,
which the participants in our study were willing to
compensate with increased germane load. In the worked-
example condition where they were relieved from additional
load, this investment paid off, and learning outcomes were
comparable to those of learners with prompts. For the active
load measure, we could not find such effects.

To complete, we could find an effect of worked examples on
learning outcome, which was better when worked examples were
provided (H3_learning_outcome). For learning outcome, we could
neither find an effect of prompts nor an interaction of worked
examples and prompts, which was unexpected, but is in line with the
found results onGCL and the active load item, as alreadymentioned,
and will be discussed in the general discussion.

STUDY 2

As already mentioned, study 2 deals with the split-attention effect
and Pask’s learning styles (Pask, 1976). Learners had to deal with
a biological topic about the structure and functions of the human
kidney.

Based on theoretical assumptions and empirical findings, we
assume effects of split-attention and learning style on ICL, ECL,
GCL, and passive load and active load for study 2. While the
integrated format in contrast to the split format should reduce the
perceived ECL, learners’ style of processing learning material in
an either serialistic or holistic way should enhance GCL when it
matches the presentation format. Learners with a holistic learning
style tend to grasp the overall picture of the learning content and
to integrate the most relevant parts while serialistic learners focus
on specific details without trying to integrate them into an overall
picture (Pask, 1976). Thus, no main effect but an interaction
effect is hypothesized with more germane load for holistic
learners in the integrated format, which helps them to get an
overview, and for serialistic learners in the split format, which
helps them to concentrate on details. As we did not change the
learning content, there should not be any difference in perceived
ICL. The assumptions for the active and passive load should
correspond with the effects for either ICL and/or ECL (passive) or
for GCL (active). We again analyzed the effects on learning

outcomes: We assume that serialists reach higher levels of
learning outcome when provided with the split-source
material, whereas holists reach higher levels of learning
outcome when provided with the integrated material

Method
In Table 4, the experimental conditions of study 2 and the
number of participants in these conditions are listed.

Participants
We collected data from 72 learners. Participants were at average
22.99 (SD �3.98) years old, and 16.70 % were male. They were
students from a German university.

Design
We conducted a 2 × 2 between-subject aptitude–treatment interaction
study with four experimental conditions. Independent variables are
related to the split-attention principle (split-source format vs. integrated
format) and participants’ learning style (serialist vs. holist). As
dependent variables, we assessed cognitive load in a differentiated
way, the active and passive parts of load and learning outcome. As
control variables, age, sex, and prior knowledge have been assessed.

Procedure
As in study 1, at the beginning, learners were informed about the
procedure of the study they participated in and signed an informed
consent form. All participants were aware that they could withdraw
their data at any point in the study without having any disadvantage.
As a next step, each participant filled out a questionnaire asking for
demographic data. Then, they filled out the questionnaire for
assessing their learning type (described in Material). Also, in this
study, prior knowledgewas assessed (described inMaterial). Afterward,
participants had to deal with the learning material either with a split-
source format or an integrated format (described in Material), which
was randomly assigned. After learning, the cognitive load questionnaire
(Supplementary Appendix A; Klepsch et al., 2017) had to be
answered, as well as the items to assess the active and passive parts
of load (Supplementary Appendix A). In the end, the knowledge test
had to be answered (described in Material).

Material
Prior knowledge about the human kidney was assessed through
10 open questions, covering content of the following learning
material. The learning material itself was about the structure and
functions of the kidney. It consisted of four pictures and seven
corresponding texts. As a dependent variable, ECL was varied
through either split-source material or integrated material. In the
split-source material, the text was on the left side of the paper and
the four pictures on the right side. References connecting the
pictures with the text were included through corresponding
numbers in the text and the pictures. In the integrated format,
the connections between the four pictures were made clear by
integrating the four pictures into one overall picture, giving the
frame with the four detailed pictures like a zoom-in in different
parts of the kidney. In addition, each text was placed near the
corresponding part in the pictures. The aim of this approach was
to minimize search processes between text and pictures. Each

TABLE 4 | Number of participants in each experimental group of study 2.

Experimental groups n

Split-source format * serialist 20
Split-source format * holist 16
Integrated format * serialist 21
Integrated format * holist 15
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participant had 30 min to learn the content. To assess learning
performance, a posttest had to be filled in consisting of 13 tasks.
Altogether, 35 points could be reached.

Pask’s learning styles (Pask, 1976) were assessed with the
questionnaire of Ford (1985). Based on the calculated value,
learners were either categorized as serialists or holists.

Cognitive load was again assessed with a differentiated
questionnaire (Supplementary Appendix A; Klepsch et al.,
2017). For the active and passive aspects of load, the same two
items (Supplementary Appendix A) were used as in study 1,
namely, “es war anstrengend” (“It has been strenuous,” passive)
vs. “ich habe mich angestrengt” (“I exerted myself,” active).

Data Analysis
For all three scales of the differentiated questionnaire, reliability was
estimated by using McDonald’s ω. A principal component analysis
(PCA) was conducted to provide evidence that the items are forming
the intended factors. Then, the items on the active and passive
aspects of load were included into the factor analysis, to show that
the active items fit into the GCL factor and the passive item fits into
the ICL or ECL factor. Additionally, correlation analysis was
conducted to provide evidence again if especially the passive item
correlates with load resulting from the material (ICL and/or ECL),
and the active item correlates with the GCL scale.

Again, group differences were analyzed regarding the control
variables such as prior knowledge and age. Also, correlations
between these variables and the dependent variables have been
calculated. Whenever a significant difference between groups or a
significant correlation could be found, the affected variable was
included in the following analyses of variance as a covariate. To
identify group differences, AN(C)OVAS were conducted with ICL,
ECL, GCL, passive load or active load, and learning outcome as
dependent variables.

Results
Relation of Intrinsic, Extraneous, and Germane Load
With Active and Passive Load
WeusedMcDonaldsω to assess the reliability of the three scales of the
differentiated cognitive load questionnaire. For ICL and GCL, two
items, and for ECL, three items were included, and we could find
satisfying levels of McDonalds ω (ICL: 0.72, ECL: 0.75, and
GCL: 0.76).

The PCA was conducted with the items of the differentiated
questionnaire with orthogonal rotation (varimax). The
Kaiser–Meyer–Olkin measure verified the sampling adequacy
for the analysis (KMO � 0.63). Barlett’s test of sphericity (χ2
(21) � 157.54, p < 0.001) indicated that correlations between
items were sufficiently large for PCA. An initial analysis was run
to obtain eigenvalues for each component in the data. Three
components had eigenvalues over Kaiser’s criterion of 1 and in
combination explained 78.71% of the variance. Table 5 (a) shows
the factor loadings after rotation. The items that cluster on the
same components suggest that component 1 represents ECL,
component 2 GCL, and component 3 ICL.

Including the active and passive items into the PCA resulted in
the following outcome: The Kaiser–Meyer–Olkin measure
verified the sampling adequacy for the analysis (KMO � 0.70).
Barlett’s test of sphericity (χ2 (36) � 258.17, p < 0.001) indicated
that correlations between items were sufficiently large for PCA.
An initial analysis was run to obtain eigenvalues for each
component in the data. Three components had eigenvalues
over Kaiser’s criterion of 1 and in combination explained
75.21% of the variance. Table 5 shows the factor loadings
after rotation. The items that cluster on the same components
suggest that component 1 represents ECL, component 2 GCL
including the active item, and component 3 ICL including the
passive item.

We found significant relationships between the active item
and the original two-item GCL scale (r � 0.59, p (one-tailed) <
0.001) as well as the original two-item ICL scale (r � 0.23, p (one-
tailed) � 0.03), and between the passive item and the original two-
item ICL scale (r � 0.60, p (one-tailed) < 0.001) and the original
three-item ECL scale (r � 0.27, p (one-tailed) � 0.01). All
correlations can be found in Supplementary Appendix B.

Validating the Measures Regarding the Implemented
Design
Concerning the control variables, we could not find any group
differences for the variables such as age (F < 1, n.s.) and prior
knowledge (F (1,68) � 1.14, p � 0.29, η2 � 0.02). Correlations
between these variables and dependent variables showed that
prior knowledge was significantly correlated with learning
outcome (r � 0.40, p < 0.01), ICL (r � −0.26, p � 0.03) and
the passive item (r � −0.25, p � 0.04), and therefore included as a
covariate in the respective analyses. All correlations can be found
in Supplementary Appendix C.

All means and standard deviations of the dependent variables
can be found in Table 6, and effects are visualized in Figure 2.

For ICL, we found no main effect of learning style (F < 1, n.s.)
or material (F < 1, n.s.), neither an interaction (F < 1, n.s.): ICL
was reported to be equal in the experimental groups.

For ECL, we found no main effect of learning style (F < 1, n.s.),
a significant main effect of material (F (1,68) � 5.55, p � 0.02, η2 �
0.08), and no interaction (F > 1, n.s.): ECL was reported to be
higher with split-source material than integrated material.

For GCL, we found nomain effect of learning style (F < 1, n.s.),
or material (F (1,68) � 3.34, p � 0.07, η2 � 0.05), but a significant
interaction (F (1,68) � 5.82, p � 0.02, η2 � 0.05): Simple main
effects showed that with split-source material, serialists reported

TABLE 5 | Rotated PCA (a) with items from Klepsch et al. (2017) and (b) including
the passive and active items for study 2.

(a) Component (b) Component

Item 1 2 3 Item 1 2 3
ICL 1 −0.155 0.083 0.883 ICL 1 −0.231 0.028 0.837
ICL 2 0.207 −0.008 0.857 ICL 2 0.154 0.007 0.849
ECL 1 0.818 −0.077 0.153 ECL 1 0.799 −0.058 0.193
ECL 2 0.843 −0.164 −0.131 ECL 2 0.856 −0.116 −0.083
ECL 3 0.880 −0.074 0.027 ECL 3 0.867 −0.037 0.045
GCL 1 −0.021 0.926 −0.036 GCL 1 −0.097 0.878 −0.071
GCL 2 −0.239 0.870 0.122 GCL 2 −0.317 0.808 0.089

Passive 0.315 0.334 0.750
Active 0.148 0.813 0.278
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higher GCL than holists (F (1,68) � 4.28, p � 0.04, η2 � 0.06), and
holists reported higher GCL with integrated material than split-
source material (F (1,68) � 7.89, p < 0.01, η2 � 0.10).

For the passive item, we found no main effect of learning style
(F < 1, n.s.), material (F < 1, n.s.), or interaction (F (1,68) � 2.89,

p � 0.09, η2� 0.04): The responses to the passive item were equal
in the experimental groups. Thus, this result pattern corresponds
to that of ICL.

For the active item, we found nomain effect of learning style (F
(1,68) � 3.50, p � 0.07, η2 � 0.05), or material (F < 1, n.s.), but a

TABLE 6 | Means and standard deviation of all dependent variables in study 2.

Split-source material *
serialist

Split-source material *
holist

Integrated material *
serialist

Integrated
material * holist

M (SD) M (SD) M (SD) M (SD)
ICL1 5.57 (0.21) 5.51 (0.24) 5.44 (0.21) 5.82 (0.21)
ECL 4.74 (1.10) 4.78 (1.22) 4.25 (1.39) 3.92 (1.04)
GCL 5.40 (0.65) 4.59 (1.58) 5.24 (1.34) 5.77 (0.88)
Passive1 6.06 (0.27) 5.57 (0.26) 5.34 (0.30) 5.82 (0.32)
Active 6.03 (0.57) 4.94 (1.60) 5.64 (1.01) 5.73 (1.19)
Learning outcome1 15.40 (1.45) 10.22 (1.62) 12.44 (1.40) 14.06 (1.70)

1Corrected, if covariates are included.

FIGURE 2 | Effects on the dependent variables for study 2. Note: ssm � split-source material, im � integrated material; * (simple) main effect with p ≤ 0.05.

Frontiers in Education | www.frontiersin.org April 2021 | Volume 6 | Article 64528410

Klepsch and Seufert Active Versus Passive Load

57

https://www.frontiersin.org/journals/education
www.frontiersin.org
https://www.frontiersin.org/journals/education#articles


significant interaction (F (1,68) � 4.89, p � 0.03, η2 � 0.07): Simple
main effects showed that with split-source material, serialists reported
higher active investment than holists (F (1,68) � 8.39, p < 0.01, η2 �
0.11), and holists reported higher GCL with integrated material than
split-source material (F (1,68) � 3.91, p � 0.05, η2 � 0.05). Thus, this
result pattern corresponds to that of GCL.

For the overall learning outcome, we found no main effect of
learning style (F (1,67) � 1.34, p � 0.25, η2 � 0.02) or of material (F <
1, .s.), but the expected significant interaction (F (1,67) � 4.86, p �
0.03, η2 � 0.07): Simple main effects showed that with split-source
material, serialists reached higher levels of overall learning outcome
than holists (F (1,67) � 5.79, p � 0.02, η2 � 0.08).

Discussion
Also, for study 2 with the PCA, we could show that the active item
is loading on the GCL factor and the passive item is loading on the
ICL factor (H1). We also found the expected correlations between
the active item and the original two-item GCL scale and between
the passive item and the original two-item ICL scale (H2). These
results will be discussed more in depth in the general discussion.

The results of the second study show evidence for H3: We found
the same effects on GCL and active load, where we categorized
learners based on their learning style. A significant interaction of
learner’s aptitude and the treatment shows that learners with different
prerequisites benefit from different treatments. This effect could be
found for the GCL scale as well as for the active item (H3_active).

In line with our hypotheses, we could not find any effects,
neither of the independent variables or their interaction with ICL.
For the ECL measure, however, we were able to find a main effect
of split attention. For the passive item, we cloud not find anymain
effects and no interaction, which indicates that the passive item is
rather related to ICL and not to ECL (H3_passive).

GENERAL DISCUSSION

The goal of the present studies was to investigate the concept of
passive load, that is, experiencing load, and active load, that is,
investing effort, in relation to the classical three-partite types of load
based on CLT. Therefore, in a first step, we discuss the results of the
two studies based on hypotheses and address the question if reported
active and passive load can be connected to reported ICL, ECL, and
GCLmeasured with the differentiated questionnaire of Klepsch et al.
(2017). Next, strengths andweaknesses of the studies as well as of the
concept of active and passive load in general are discussed, and
further directions are addressed. Finally, we discuss the usefulness of
the concepts of active and passive load, especially the theoretical and
practical implications, and the need for further research. The stated
inferences (scoring, generalizations, and extrapolation) will also be
discussed to provide broader evidence for validity.

Active and Passive Aspects of Load and
Their Connection to ICL, ECL, and GCL
Based on our findings, we conclude that it is possible to
distinguish between active and passive aspects of load and that
the concept can be related to the three types of cognitive load,

ICL, ECL, and GCL measured with the differentiated
questionnaire by Klepsch et al. (2017).

We could find sufficient evidence to underline our first two
hypotheses (H1 and H2) and therefore also for the scoring
inference that active load is associated strongly with GCL and
passive load strongly with ICL and weakly with ECL. First, we
could show that in both studies, PCA of the items for the three
original load types results in the same factor structure as
reported by Klepsch et al. (2017). Thus, reliability of the
scales is given, which is a necessary but not sufficient
condition for validity. Including the active and passive
items into the PCA showed that the active item extends the
GCL scale and the passive item extends the ICL scale. This was
the case in both studies. In a second step, the correlation
analysis showed that in both studies, the active item has a
moderate-to-strong positive relationship with the GCL scale
and that the passive item has a moderate-to-strong positive
relationship with the ICL scale. Thus, we can state that these
links between the active item with GCL and the passive item
with ICL are rather stable and replicable in two independent
studies. However, the active item also correlated weakly with
ICL in both studies, which underpins the idea that ICL and
GCL might be highly interlinked (Kalyuga, 2011). But as the
strengths of the correlations highly differ—the active item is
much stronger related to GCL than to ICL—we can state that
active investment is more clearly linked to germane load.
However, learners can and must only invest additional
effort if the complexity of the task is sufficiently high, that
is, when ICL is high. The role of ECL is not that clearly linked
to the active–passive construct. We found a moderate
correlation of the passive item with ECL in both studies.
Thus, the extraneous affordances do play a role for learners’
appraisal of passive load, but in our studies, it was less
considerable than ICL. However, whether this would also be
the case in settings where ECL is remarkably higher overall and
would be thus more striking and disrupting, the impact of ECL
for passive load appraisals might increase in relation to ICL.

Overall, we can state that experienced load can be
differentiated with the two items for measuring active and
passive load. This distinction becomes important as soon as
learners act in a self-regulated way and decide to invest effort
in processing learning content.

Validating the Results in Instructional
Design Studies
In the third hypothesis, we assumed to find corresponding result
patterns for the active load item and GCL whenever generative
learning activities are triggered by the design (i.e., all measures
should increase) (H3_active), and also corresponding result
patterns for the passive load item with ICL or ECL (H3_passive).

In study 2, we could show that generative learning activities
result in differences in GCL and the active load item, but we could
not show the same pattern for study 1.

But why did learners rate the active load item in accordance with
the GCL items in the second study but not in the first? Perhaps
prompts, which aims at triggering germane load externally, and
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internally available task-specific abilities—like strategy skills to
process information in a holistic or serialistic way—have different
effects on perceived active investment. Applying internally available
abilities in learning settings that matches these abilities, for example,
providing holists with integrated material, is directly experienced as
active investment. Externally triggered investment, in our case
prompting, might not be experienced as one’s own active
investment. Whether this argument is generalizable has to be
proven in future studies with measures of active load
in situations with more successful triggers for generative activities.
Nevertheless, the role of learners’ aptitudes in interaction with
different instructional settings as an internal trigger of germane
investment seems to be promising and should be analyzed in a study
with a direct comparison to an externally triggered germane
investment. With reference to the postulated scoring inference on
GCL (H3_active; where we stated that if GCL increases, then also the
scores on the active load items should increase), we can state that we
could find evidence for that.

At least one of the stated scoring inferences on ICL and ECL
cannot be assured, as we could not find a stable link between ECL
and the passive item. In contrast, in both studies, we could show that
the passive item is more in line with ICL (H3_passive). But we are
not able to fully substantiate this, as our studies do not include
variations in ICL. Therefore, at the moment, we can only state that
we have found a promising link between ICL and the passive item
through PCA and the conducted correlation analyses. Based on the
given design of the studies, we are not able to provide evidence
whether rated passive load would increase if ICL of the task
increases. This should be investigated in further studies.

Overall, interesting to mention is that all the design effects,
which are reflected in ECL, cannot be found for either the passive
or active load measure. To complete the picture of the instructional
design effects, we found the expected effect of worked examples with
better learning outcomes when worked examples were provided.
Unfortunately, we could not confirm positive effects on learning
outcomes when prompts were provided. As we already discussed,
this might be due to the additional perceived passive load when
prompts and worked examples were given because learners might
have felt overwhelmed in self-explaining. For the split-attention
effect in the second study, we found the expected interaction with
learners’ style to deal with either holistic (integrated) or serially (split)
presented material. Overall, the implemented design effects can be
largely seen as validmeans to trigger the expected effects. Thus, these
results substantiate the validity of the result patterns of the load
measures and the correspondence of the passive load measure with
the ICL scale and the active load measure with the GCL scale.

Strengths and Weaknesses
Overall, we can state that both learning materials in the two
studies have been rather complex and difficult. This is also
reflected in learning outcome. In study 1, learners did hardly
reach two-thirds of the points, whereas in study 2, most learners
did not even reach half of the points in the posttest. In study 2, the
internal complexity is also reflected in reported high ICL and
passive load. In study 1, reported ICL and passive load are not
that pronounced, but still high. Also, important to mention, both
studies are classical experimental studies conducted with students

at a German university, and both include many more female than
male participants, which were fortunately randomized equal over
experimental groups. Thus, despite the evidence of the studies
which allows some generalization, the generalization inference is
not fully proven yet. Results should be replicated with broader
and more balanced samples. Moreover, the samples in both
studies have been rather small. We had at least 15 participants
in each experimental condition, but we are aware that this results
in power restrictions. Therefore, it would be of interest to conduct
studies with larger samples and in a more realistic learning
setting, for example, in school. Using a school setting would
additionally allow to analyze whether younger kids and teens
would be able to understand the items for active and passive load,
as we would assume, which would even provide more proof of
generalization.

The concept of active and passive load comes with some
positive but also some negative aspects that should be
considered. On the one hand, active and passive load in their
operationalization should be easy to understand even for younger
kids and teens. They can be answered rather quickly, and
therefore can be used for repeated online measures of
cognitive load during a learning phase, without interfering
with learning. On the other hand, we could not find any
evidence that design aspects in the learning material are
reflected in passive or active load. Therefore, these items seem
not to be useful if one is especially interested in differences in the
design effects of learning materials. However, as soon as learner
characteristics are considered, the concept of active and passive
load seems to become important, which is addressed in the next
section.

Future Directions of Research
As already mentioned, ICL mirrors the externally given task
affordances, and GCL can be seen as the actively invested
resources by the learner (Seufert, 2018). Our results show that
this can be linked to passive and active load. Passive load shows in
study 2 a similar pattern like ICL. In study 1, the overall pattern is
also similar, but we found a simple main effect of prompts in the
worked-example group. As the prompt was new for the learners,
it might have resulted in passive rather than active load—as
intended by us—because the prompt belongs to the task-centered
dimension (Paas and van Merriënboer, 1994) or can be seen as
data-driven (Scheiter et al., 2020). Further studies should have a
closer look at prompts and other active load–enhancing
techniques, like asking learners to use special learning
strategies. Based on the presented results, we would assume
that all these active load–enhancing techniques at the
beginning result in more passive load and over time—when
learners are used to the techniques and can use them more
automatically—the techniques should result in higher active
load instead of passive load (see also mathemathantic effect;
Clarck, 1990). Whether prompts for generative activities can
be fruitful for learners and are thus experienced as active and
germane rather than hindering and passive, highly depends on
learners’ prerequisite. Learners’ prior knowledge or their strategy
skills should be taken into account (see, e.g., Nückles et al., 2020;
Seufert, 2020). Study 2 also provides evidence that learner
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characteristics, which are internally given (even per se or through
training) in interaction with the instructional design, can result in
differences in active load. Only when the external affordances
match the internal abilities germane resources are invested, that
is, learners report germane load as well as active load investment.
In our case, in study 2, split-source material would fit more to
learners with a serialistic approach of learning, whereas integrated
material would fit more to learners with a more holistic approach
of learning. The fact that this fit is also crucial for being successful
with this engagement can be seen with the same effects mirrored
in learning outcomes. In future studies, the complex interplay of
learner characteristics, tasks affordances, and design aspects
should be addressed.

As already mentioned, the two items for active and passive
load can be easily used to assess load online, by asking learners
repeatedly during learning to rate their perceived active and
passive load. This would be particularly relevant when
intrinsic load is changing over time, for example, when
learning content gets more complex with each step, a learner
moves forward or when learners gain expertise. Especially an
observation over longer periods of time, when, for example, a
training on learning strategies is implemented, would be of
interest to provide evidence if the use of a new learning
strategy shifts from passively experienced load to active
investment as soon as the strategy is internalized and therefore
more easily used automatically.

Generally, the two items that measure for active and passive
load could be used to either substitute or extend other measures of
cognitive load. It would be particularly interesting to analyze the
items in combination with other differentiated measures of
cognitive load by Leppink et al. (2013) or by Krell (2017) to
substantiate its validity. Doing so would also help to provide more
evidence for the stated extrapolation inference to get evidence if
one measure can predict another and especially if learning
outcomes in further tasks could be predicted. In the two
studies, we analyzed the relations between the active and
passive items and the cognitive load questionnaire of Klepsch
et al. (2017). If measurement methods of cognitive load have
predictive validity, it would be of interest to have a closer look on
different methods of measurement and their mutual prediction of
each other. Also, the extrapolation of learning outcome should be
surveyed more closely. Using the items repeatedly during a study
could, for example, be used to predict if the next task will be
performed correctly or with errors.

CONCLUSION

We found interesting evidence for the concept of active and
passive load and its connection to the classic three-partite
concept of cognitive load. However, there is still research
needed to investigate active and passive load more in depth.
Based on the interplay between the two approaches, the
active–passive aspects and the original three load types,
further studies should be conducted and analyzed, to
discuss the concept of active and passive load on a
theoretical level. This is especially necessary when

considering learner’s active role in self-regulatory learning
(Seufert, 2018; Seufert, 2020) and trying to connect the
concept of active and passive load with analogous concepts
like the human- or task-centered dimension (Paas and van
Merriënboer, 1994) or the concept of data-driven and goal-
driven appraisals of cognitive load as discussed at the
crossroad between CLT and self-regulated learning research
(De Bruin et al., 2020).
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Cognitive load theory (CLT) posits the classic view that cognitive load (CL) has
three-components: intrinsic, extraneous and germane. Prior research has shown that
subjective ratings are valid measures of different CL subtypes. To a lesser degree, how
the validity of these subjective ratings depends on learner characteristics has not been
studied. In this research, we explored the extent to which the validity of a specific
set of subjective measures depends upon learners’ prior knowledge. Specifically, we
developed an eight-item survey to measure the three aforementioned subtypes of CL
perceived by participants in a testing environment. In the first experiment (N = 45)
participants categorized the eight items into different groups based on similarity of
themes. Most of the participants sorted the items consistent with a threefold construct
of the CLT. Interviews with a subgroup (N = 13) of participants provided verbal evidence
corroborating their understanding of the items that was consistent with the classic view
of the CLT. In the second experiment (N = 139) participants completed the survey twice
after taking a conceptual test in a pre/post setting. A principal component analysis (PCA)
revealed a two-component structure for the survey when the content knowledge level
of the participants was initially lower, but a three-component structure when the content
knowledge of the participants was improved to a higher level. The results seem to
suggest that low prior knowledge participants failed to differentiate the items targeting
the intrinsic load from those measuring the extraneous load. In the third experiment
(N = 40) participants completed the CL survey after taking a test consisting of problems
imposing different levels of intrinsic and extraneous load. The results reveals that how
participants rated on the CL survey was consistent with how each CL subtype was
manipulated. Thus, the CL survey developed is decently effective measuring different
types of CL. We suggest instructors to use this instrument after participants have
established certain level of relevant knowledge.

Keywords: cognitive load, subjective measure, validity, test, content knowledge

INTRODUCTION

Cognitive load theory (CLT) attends to the limited working memory capacity (Cowan, 2001) for
instruction and learning. It posits that optimal design of instruction and learning should not
overload learners’ working memory capacity (Sweller, 1988, 1994, 2010; Sweller et al., 1998). This
is because novel information and previously learned information from long-term memory need
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to be consciously processed in working memory. However,
working memory is limited in capacity and duration when
processing novel information, especially without deliberate
rehearsal (Baddeley, 1992; Cowan, 2001). This is in contrast to the
long-term memory, which is an unlimited, permanent repository
for organized knowledge that governs our cognitive processes
(Sweller, 2010).

Cognitive load is defined as the working memory load
experienced when performing a specific task (Kalyuga, 2011;
Sweller et al., 2011; van Merriënboer and Sweller, 2005).
This places a requirement on instruction to avoid overloading
the working memory during learning. Cognitive load is a
multifaceted construct. Historically, extraneous cognitive load
(ECL) was the first CL subtype introduced by Sweller (1988).
ECL refers to the working memory resources allocated to
unproductive cognitive processes. The level of ECL is related
to the presentation format (e.g., visual, audio, and text), spatial
and temporal organization of various information, etc. For
example, high ECL can be caused if the same information is
presented simultaneously in both text and audio modalities,
since the redundancy would cause cognitive resources to be
wasted which could potentially hinder learning. The second CL
subtype is the intrinsic cognitive load (ICL) which is related
to the working memory resources allocated to dealing with the
learning objectives (Sweller, 1994). Finally, a third kind of CL,
germane cognitive load (GCL), refers to the working memory
resources used for constructing, chunking and automating
schemas (Sweller et al., 1998). From a common theoretical
perspective, John Sweller suggested that all three subtypes of
CL can be defined in terms of the core concept of element
interactivity (Sweller, 2010). Under this theoretical formalism,
the load is extraneous if the element interactivity can be reduced
without altering the learning objective. The load is intrinsic if
reducing the element interactivity alters the learning objective.
Germane load simply refers to the working memory resources
used for processing the intrinsic load, such as through chunking,
schema generation and automation, and therefore is also tied to
element interactivity. Kalyuga (2011) also argues germane load
is not an independent load type, since there is no theoretical
argument for any difference between GCL and ICL. Thus, it has
been suggested that GCL can be readily incorporated into the
definition of ICL by redefining the cognitive processes involving
GCL as pertaining to the learning goals related to ICL. Thus,
there are only two independent components in CLT: ECL and
ICL, which are additive. Scientists would favor a two-component
model if a two-component construct of CL has equal or more
explanatory power than a three-component model. This comes
from Occam’s razor argument which says the simpler model is
usually the right one. Jiang and Kalyuga (2020) have provided
evidence supporting a two-component model over a three-
component model using subjectively rated CL surveys.

The aforementioned latest development in CLT suggests any
measurement of CL should focus on differentiating ICL and
ECL. Monitoring the levels of different types of CL perceived by
students could help maximize the learning outcomes. However,
Sweller (2010) has also argued that learners’ content knowledge
level could affect their ability in discerning ICL from ECL.

Learners with low content knowledge level may have difficulty
differentiating irrelevant information from relevant information,
or productive learning process from unproductive learning
process. Therefore, the knowledge level moderates students’
capability to discern ICL from ECL. This certainly places even
further challenges for educators since measuring different CL
subtypes is already an ongoing challenge in the CLT research
community (Kirschner et al., 2011). Thus, it begs researchers to
design appropriate measurement tools and identify the condition
for the appropriate use of the tools.

There are two widely used approaches toward measuring
CL: subjective (e.g., self-report) and objective (e.g., tests and
physiological measures). Subjective measures of Sweller’s three
subtypes of CL have been more extensively explored (Hart
and Staveland, 1988; Paas, 1992; Kalyuga et al., 1998; Gerjets
et al., 2004, 2006; Ayres, 2006; Leppink et al., 2013). Subjective
measures typically require participants to evaluate their own
cognitive processes during a learning task. Thus, they rely
on the participant’s ability to introspect on their learning
experience. A great deal of work has gone into developing such
Likert scale style subjective measures of CL. In these studies,
researchers generally manipulated ICL in terms of adjusting the
amount of information presented to students, such as modular
vs. molar solutions comparison (Gerjets et al., 2004, 2006),
changing the number of arithmetic operations (Ayres, 2006),
or adjusting the learning material complexity (Windell and
Wieber, 2007). These studies have shown that subjective measures
could discern different levels of ICL using a difficulty rating
(Windell and Wieber, 2007; Cierniak et al., 2009), a mental
effort rating (Ayres, 2006), sub-items of NASA-TLX, such as
stress, devoted effort, task demands (Gerjets et al., 2004, 2006),
and mental demands (Windell and Wieber, 2007). The authors
manipulated ECL in terms of a split-attention effect (Kalyuga
et al., 1998; Windell and Wieber, 2007), and a modality effect
(Windell and Wieber, 2007). They showed that ECL can be
measured using a weighted workload of NASA-TLX (Windell
and Wieber, 2007), a difficulty rating (Kalyuga et al., 1998), and
a rating of difficulty of interaction with the material (Cierniak
et al., 2009). According to Sweller (2010), GCL is affected
only by the learner’s motivation. Some researchers manipulated
GCL/motivation through, instructional format (Gerjets et al.,
2006). These studies showed GCL can be measured using,
sub-items of NASA-TLX, such as task demands, effort, and
navigational demands (Gerjets et al., 2006), or multiple survey
items evaluating learning performance (Leppink et al., 2013).

In this work, we developed and validated a subjective
survey for assessing the CL experienced by learners taking a
conceptual physics test. The survey was adapted from the CL
survey developed by Leppink et al. (2013). The motivation
for developing this survey is that the survey developed by
Leppink et al. (2013) and many previous subjective surveys were
designed to measure the CL during instructional activities. In
educational psychology, it has been suggested that quizzes and
tests can be used as learning practice for learners (Roediger and
Karpicke, 2006; Karpicke et al., 2014). This is contradictory to
the traditional view that tests can only be used as summative
evaluation of learner performance. Many different pedagogical
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methods require instructors to create problems of their own
(Mazur, 2013). Instructors need to create different testing tasks if
they want to use frequent testing as learning practice for students
to construct knowledge. Thus, it is important to make sure the
tasks on the test are optimally designed. For example, the task
should not use confusing language in the statements. On the
other hand, many different problem tasks purposefully provide
more information than needed to solve the problem, such as
context rich problem (Ogilvie, 2009). It is possible students will
process the unnecessary information if they do not have the
relevant knowledge, or they will report the statement of a problem
task is confusing even if the statement is perfectly clear to an
expert. A CL survey that can be used to measure the three types
of CL could inform instructors if the tasks created used clear
language and provide instructors feedback about how students
process unnecessary information.

In this study, we adopt an argument-based approach
to describe the validation of the CL survey we developed
(Kane, 2013). During the development and validation of
the CL survey, we payed attention to both reliability and
validity. Reliability refers to the consistency of the items
designed to measure the same theoretical attribute, and validity
refers to the appropriateness of interpreting the subjective
ratings on the survey.

We conducted three experiments to validate the CL survey.
Together these three experiments contributed to establishing the
validity of the CL survey and the condition under which it should
be administered. The studies involving human participants were
reviewed and approved by the IRB office at Purdue University.
The participants provided their written informed consent to
participate in this study.

EXPERIMENTS

Experiment One
Materials and Procedure
We adapted the first six items on the survey used by Leppink
et al. (2013), and adapted two other items targeting GCL based
on previous literature (Paas, 1992; Salomon, 1984; see Table 1).

TABLE 1 | A mapping between all items of the cognitive load survey and what
they are constructed to measure.

ICL 1. The topics covered on the physics test were very complex.

2. The physics test covered formulas that I perceived to be very
complex.

3. The test covered concepts and definitions that I perceived as very
complex.

ECL 4. The questions on the physics test had confusing language that was
not clear to me.

5. It was very hard to identify what information is relevant to answering
the questions on the physics test.

6. There was a lot of distracting information in the question statements
on the physics test.

GCL 7. I concentrated a lot as I answered the questions on the physics test.

8. I devoted a lot of mental effort in finding and applying the relevant
concepts needed to answer the questions on the physics test.

Each item was rated on a Likert scale from 1 (not at all the case)
to 9 (completely the case).

In experiment one our goal was to establish the construct
validity of the survey to verify whether the survey items indeed
measure the three different cognitive sub-loads that they were
intended to measure. We asked a different group of participants
(N = 45) to categorize the items on the CL survey into
three groups based on the common theme. A subgroup of the
participants (N = 13) were interviewed about how they perceived
the items on the survey. Follow-up questions were asked during
the interview process. Participants were asked to provide their
reasoning for the way in which they grouped the items and were
asked to express the similarities and differences among the items
grouped together.

Results of Experiment One
In experiment one, we asked N = 45 participants to sort the eight
items on the CL survey into three groups based on a common
theme. Participants were offered extra credit equal to 1% of
their total course grade for their participation. The items were
presented to the participants in a randomized order. Twenty-nine
of 45 participants (64%) sorted the items as expected (Group A:
items 1, 2, 3; Group B: items 4, 5, 6; Group C: items 7, 8). Nine of
45 participants (20%) misplaced one or two items different from
the expected grouping. Seven of 45 participants (16%) grouped
the items following no apparent pattern.

Thirteen of the 29 participants were randomly selected for
a follow-up interview after they completed the sorting task.
Each participant was asked to provide the similarities and
differences between the items of each group that they had created.
Participants’ responses were audio recorded and coded. Ten
(10) of the 13 participants grouped the survey statements in a
way that was consistent with the CLT model. These interviews
allowed us to detect participants’ perception of the meaning
of these statements. The discussion with participants’ and their
descriptions about each group are described below. The second
author (JM) conducted the interview for experiment one since he
was not associated with the course in any way at the time.

Discussion
Participants commonly responded that they grouped ICL items
together because they were dealing with complexity. When
confronted with questions about what makes a problem complex,
participants often responded that a problem with several different
elements was complex. One student remarked “circuit problems
incorporate a lot of different elements. There is an element
of knowing how bulbs in series function, but there also bulbs
in parallel, and there is also a switch.” It was also commonly
reported that not having a familiarity with the ideas contained in
a question makes it complex. To that end, one student said, “For
this question about the power delivered to these circuits you have
to know the definition of power and resistors and understand
how circuits work.” Here students’ argument clearly aligns well
with how CLT defines ICL in terms of element interactivity which
is reflected in the complexity (Sweller, 2010).

When participants were asked what differentiates these
statements in this group from each other, they often remarked
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that the statements spoke to differing levels of organization. One
student said “some of the items are about topics and the others
are about sub-topics.” Statement one referred to topics, while
statements two and three mentioned formulas and concepts,
respectively. Participants generally agreed that topics are more
general than concepts which is broader than formulas.

The common theme expressed by the participants about the
ECL items was confusion. “These statements have to do with
ambiguity, distraction, and confusion while taking a test and
those things go together.” Some participants also related these
items to the statement of the questions in the test, saying things
like “These statements deal with the language of the question
rather than the content,” while another said “These were within
the question itself. Like language and extra information, the
wording of the test.” Students’ understanding of the items seem
to be consistent with what CLT describes ECL in terms of its
detrimental impact for learning since they are mostly distracting
to learning (Sweller, 1988, 2010).

When participants were asked what differentiates the
statements in this group from each other, they replied that the
statements were talking about different ways in which things
can be confusing. For example, “These statements are different
because (5) is about finding the relevant information (6) is about
having too much information, and (4) is about the question
being asked in a confusing way.” Participants were asked what
makes confusing language different from distracting information.
To which one replied “confusing information is related to
things I don’t understand, where distracting information is
related to having more information than I need to solve the
problem,” while another observed “Language has a lot to do
with the words you are using, distracting information deals
with words and sentences that have no purpose.” Further
probing, many respondents were asked what makes a test
question confusing. Participants commented that questions they
didn’t know how to answer were confusing. For example,
“This question about electric field is confusing because I don’t
know much about electric field.” This last response seems to
indicate the possibility of conflating the reasons for grouping
items as ICL or ECL.

Participants grouped the GCL items on the survey as
thematically similar often reflected that they were related to one’s
subjective experience of the test instead of difficult content or
confusing language. One student stated, “These items covered
what you felt toward the exam, not objective difficulty but more
like your personal experience” while another indicated “These
items dealt less with the test itself and more with the test taker,
more about concentration and mental effort, having to put more
thought into answering the questions instead of difficult concepts
or the wording of questions.” Another participant said “Both
items had to do with thinking. This one (7) was concentrating
a lot, and this one (8) was exerting a lot of mental effort to figure
out what was needed.” Here what the students reported were
consistent with the definition of GCL as proposed by Sweller
that GCL has to do with the personal experience of students,
especially how much cognitive resources were devoted to learning
as reflected by the words: “concentration” and “mental effort”
(Salomon, 1984; Paas, 1992; Sweller, 2010).

When asked about what individuated these statements,
participants often designated the difference in the concepts
“mental effort” and “concentration.” In a series of subsequent
questions most participants were unable to definitively make
a distinction between the two constructs, with responses such
as, “Concentration is more like focus. Mental effort is more
like thinking about the information you already know to find
the answer.” In order to further probe their interpretation of
these statements the interviewer asked participants to reflect on
“concentration” and “mental effort” in terms of the steps to
for solving a physics problem. Participants generally stated that
reading and taking in the information of the problem statement
required concentration while building a model of the problem
and formulating a solution required mental effort.

In summary, results of experiment one indicate that
participants were remarkably astute not just in grouping the
statements, but also in articulating their criteria for the groupings.
Further they were able to describe with clarity how the various
statements within each group were similar to and different from
each other. These results support the face validity and construct
validity of the items on the survey.

Experiment Two
Materials
In experiment two, our goal was to determine whether the validity
of survey i.e., its alignment with the three-component model of
CLT was conditional to the level of content knowledge of the
participants. We know from literature that knowledge level can
influence the perceived CL since low knowledge learners may not
differentiate ICL from ECL, while high knowledge learners can
distinguish between these two constructs (Sweller, 1994, 2010).
Based on this, we hypothesize that the items used for assessing
the ICL and ECL will load to the same component when they
have low knowledge, and the items used for assessing ICL and
ECL will load to two separate components when they have high
knowledge level. We conducted a principal component analysis
to confirm if different items on the survey aligned with the three
different CL subtypes.

Procedure
N = 139 participants enrolled in a physics class for elementary
education majors participated in the study. In a pre/post-
test design, we asked participants to complete the DIRECT
(Determining and Interpreting Resistive Electric Circuit
Concepts Test) assessment at the beginning and at the end
of an instructional unit on DC electric circuits. DIRECT was
developed by Engelhardt and Beichner (2004) for assessing
conceptual understanding of circuits. DIRECT has 29 multiple
choice items on it. There is only one correct answer to each
item. It usually took students ∼30 min to complete. After
each test (pre- and post-test), we administered this CL survey
individually. Presumably, participants had low knowledge level
of the relevant concepts at the beginning of the instructional
unit (as confirmed by their performance on the test); and
they had higher knowledge level of the relevant material by
the end of the instructional unit (again, confirmed by their
performance on the test).
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To validate the CL survey that has three underlying
components, a principal component analysis (PCA) was
conducted for the two sets (pre and post) of data using IBM SPSS
version 24 software. PCA analysis was used since we are exploring
how many components the 8 items of the CL survey would load
on to. As such, PCA is a proper analysis. The results of the PCA
are shown in Table 2 and Table 3.

Results of Experiment Two
For the CL survey results collected after participants had
completed the DIRECT pre-test, there were no outliers or
extreme skewness or kurtosis, as well as sufficient inter-
item correlation; KMO (Kaiser-Meyer-Olkin test) = 0.839,
Bartlett’s χ2

(28) = 481.779, p < 0.001. A high value of
KMO indicates the data is suitable for a factor analysis;
Bartlett’s test of sphericity indicates the data is suitable for
a factor analysis when the test achieves significance level
(0.05). Both KMO and Bartlett tests indicated the data
collected were fit for a PCA analysis. KMO is measure of
sampling adequacy. Given the small sample size, a PCA was
conducted. Varimax rotation was performed to investigate the
correlational nature of the underlying components. When,

TABLE 2 | Means (SD), skewness, kurtosis, and components loadings for
study one (pre-test).

Item Mean (SD) Skewness Kurtosis Component loading

C1 C2

Component one

Item 1 5.67(1.77) –0.292 –0.507 0.755 0.288

Item 2 4.92(2.19) –0.153 –0.873 0.766 0.279

Item 3 5.79(1.88) –0.338 –0.789 0.804 0.275

Item 4 5.14(2.02) –0.172 –0.565 0.761 0.076

Item 5 4.89(2.16) –0.140 –0.901 0.786 0.120

Item 6 3.46(1.81) 0.477 –0.528 0.748 –0.149

Component two

Item 7 6.41(1.74) –0.567 –0.324 0.076 0.909

Item 8 5.50(1.96) –0.315 –0.644 0.182 0.856

TABLE 3 | Means (SD), skewness, kurtosis, and components loadings for study
one (post-test).

Item Mean (SD) Skewness Kurtosis Component loading

C1 C2 C3

Component one

Item 1 4.35(1.82) 0.176 –0.657 0.643 0.343 0.386

Item 2 3.45(1.70) 0.346 –0.776 0.842 0.282 0.041

Item 3 3.39(1.70) 0.772 0.206 0.874 0.037 0.125

Component two

Item 4 3.44(1.71) 0.849 0.478 0.514 0.541 0.148

Item 5 4.26(2.16) 0.405 –0.751 0.008 0.910 0.116

Item 6 3.40(1.96) 0.851 0.010 0.321 0.819 0.023

Component three

Item 7 5.98(1.89) –0.436 –0.777 –0.008 0.208 0.910

Item 8 4.82(2.07) –0.106 –1.117 0.497 –0.092 0.742

eigenvalue one was used as criteria for determining the
number of underlying components, a two-component model
emerged with 68% of the variation explained by the two
components. Items 1–6 are loaded to the first component
and items 7–8 are loaded to the second component. This
seems to support the idea that when participants do not
have high knowledge level, they could not differentiate ICL
from ECL as suggested by CLT (Sweller, 2010). Reliability
analysis for the six components loaded to the same construct
revealed Cronbach’s alpha values of 0.874 for Items 1, 2, 3,
4, 5, 6 (1, 2, 3 are expected to measure ICL; 4, 5, 6 are
expected to measure ECL); and 0.782 for Items 7, 8 (expected
to measure GCL).

For the CL survey results collected after participants had
completed the DIRECT post-test, there were no outliers or
extreme skewness or kurtosis, as well as sufficient inter-item
correlation; KMO = 0.708, Bartlett’s χ2

(28) = 496.201, p < 0.001.
Both KMO and Bartlett tests indicated the data collected were
fit for a PCA analysis. Given the small sample size, a PCA
was conducted. Varimax rotation was performed to investigate
the correlational nature of the underlying components. When,
eigenvalue 1 was used as criteria for determining the number
of underlying components, a three-component model emerged
with 77% of the variation explained by the three-components.
Items 1, 2, and 3 are loaded to the first component; items 4,
5, and 6 are loaded to the second component; items 7, and 8
are loaded to the third component. This provides evidence that
when participants have high knowledge level (as on the post-
test), they could differentiate ICL from ECL as suggested by
CLT (Sweller, 2010). Reliability analysis for the three-components
revealed Cronbach’s alpha values of 0.816 for Items 1, 2, 3 (1, 2, 3
are expected to measure ICL); and 0.763 for 4, 5, 6 (4, 5, 6 are
expected to measure ECL); and 0.687 for Items 7, 8 (expected
to measure GCL).

Discussion
In summary, results of experiment two indicate that, in a testing
environment, the CL survey we developed could capture the
three kinds of CL subtypes. Results confirmed that students’
capability of differentiating ICL from ECL depends on their
content knowledge level. Thus, when students have relatively low
content knowledge, they fail to differentiate ICL from ECL, which
suggests even information related to learning can be confusing
to students. This is consistent with what Sweller (2010) has
suggested that content knowledge level could moderate how
students self-perceive their CL. In addition, the items on our
CL survey seem to be able to capture GCL regardless of the
content knowledge level of students, which suggests students
could introspect their level of effort for making sense and
applying knowledge.

Experiment Three
Materials
In this experiment, we developed two pairs of tasks with clear
manipulations using a 2 (High/Low ECL) × 2 (High/Low ICL)
design (see Figure 1) based on Sweller (2010) and the redundancy
effect of multimedia learning theory (Mayer, 2014).
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FIGURE 1 | Problems solved and compared by participants and their respective ICL and ECL levels.

The ICL level is the same (low) for both problems A and C
because the underlying principle is series circuit law. Problem
C has a higher ECL compared to A since it also presents
redundant textual information. Problems B and D have higher
ICL compared to problems A and C, since the underlying physics
principle for both these problems (B and D) is a combination
of series and parallel circuit laws. Compared to problem B,
problem D has a higher ECL since it presents redundant textual
information as well.

Procedure
A group (different from Experiments 1 and 2) of N = 40
elementary education majors participated in this study. We
first asked participants to solve the four problem tasks on a
short physics quiz. After participants completed the quiz, they
were shown three pairs of problems, that they had just solved
juxtaposed with each other: Pair A–B, where both problems were
manipulated to impose low ECL but different ICL (A < B);
Pair A–C, where both problems were manipulated to impose
low ICL, but different ECL (A < C); and Pair A–D, where the
problems were manipulated to impose different ICL (A < D)
and ECL (A < D).

Although there were six potential problem pairs, we chose
these three pairs because they would allow us to probe the extent
to which participants were able to discern differences in both ICL
and ECL when only one of those two had been manipulated to be
different (as in pairs A–B and A–C), and one in which both had
been manipulated to be different (pair A–D).

Each of the eight items on our CL survey were presented to
the participants, and then they were asked to answer a question
like: “If you are asked to rate: “The topics covered on the physics

question were very complex” on a scale from 1 (Not at all the case)
to 9 (Completely the case)”, select from one of three options: (i) I
would rate A is higher than C on the scale; (ii) I would rate A is
the same as C on the scale; (iii) I would rate A is lower than C on
the scale”. An example is shown in Figure 2.

Results
We collapsed the answers to the items on the survey targeting
the same underlying construct and calculated the percentage of
participants selecting each of the three options. The results can
be found in Tables 4–6.

For problem pair (A, B) comparison, 56% of participants rated
A and B as having the same ICL. Eighty-six (86%) of participants
rate A and B have the same ECL, and 76% of participants rated
that they devoted the same total energy when solving A and B.
This means that participants did not perceive the combination
of series and parallel circuits (Problem B) as more complicated
than the simple series circuit (Problem A). They perceived no
distracting information for both A and B. They perceived the
same level of germane load for solving these two problems.
Notice the percentage for GCL is not close to the percentage of
ICL suggesting that GCL and ICL can be differentiated by the
measurement.

For problem pair (A, C) comparison, 54% of participants rated
A and C have the same ICL. 74% of participants rated A had
less ECL than B. Sixty-three (63%) of participants rated the same
level of germane load when solving A and C. This means that
participants did realize that the A and C are investigating the
same underlying principles. They also perceived more distracting
information for A than C. Again, the percentage for GCL is not
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FIGURE 2 | Example of questions participants had to respond to during the cognitive load survey rating session.

the close to the percentage of ICL suggesting that GCL and ICL
can be differentiated by measurement.

For problem pair (A,D) comparison, most (56%) of
participants rated A had lower ICL than D. Most (70%) of
participants rated A had lower ECL than D, and most (50%) of
participants rated the same germane load when solving A and
D. This means that participants did realize that combination

TABLE 4 | Percentage of each option selected by participants for each aspect of
cognitive load for (A,B) comparison.

% (ICL) % (ECL) % (GCL)

A is lower than B 39% 12% 21%

A is the same as B 56% 86% 76%

A is higher than B 5% 2% 3%

TABLE 5 | Percentage of each option selected by participants for each aspect of
cognitive load for (A,C) comparison.

% (ICL) % (ECL) % (GCL)

A is lower than C 44% 74% 37%

A is the same as C 54% 23% 63%

A is higher than C 2% 3% 0%

TABLE 6 | Percentage of each option selected by participants for each aspect of
cognitive load for (A,D) comparison.

% (ICL) % (ECL) % (GCL)

A is lower than D 56% 70% 42%

A is the same as D 39% 28% 50%

A is higher than D 5% 2% 8%

of series circuit and parallel law is more complicated than the
simple series circuit law. They also perceived more distracting
information for A than D. Again, the ratings for “A is the same
as D” is different for items corresponding to ICL than items
corresponding to GCL suggesting that ICL and GCL might be
differentiated on a subjective survey.

Discussion
In general, experiment three results are consistent the three-
component model of CLT (Sweller, 2010). Specifically, we found
that for all problem pair comparisons, participants rated the GCL
differently than the ICL, which is consistent with the notion that
GCL and ICL should be independent constructs, even though
GCL may not provide an independent source of CL as suggested
by Sweller (2010) and Kalyuga (2011). In problem pairs with the
same ECL level (e.g., A–B), indeed most participants (86%), as
expected rated the ECL of the two problems to be the same.
In problem pairs with different ECL levels (e.g., A–C and A–
D), most participants rated C (74%) and D (70%) as imposing
a higher ECL than A as expected. In problem pair (e.g., A–
B), where both problems were manipulated to impose low ECL
but different ICL levels (e.g., A < B), most participants (56%)
rated the ICL level of A and B to be the same. However, in
a problem pair (e.g., A–D) where problems were manipulated
to impose different ECL (A < D) as well as different ICL
(A < D), participants indeed rated A as imposing lower ICL than
D. This result demonstrates participants’ perceived differences
in ICL might depend on the levels of ECL. When ECL is
high, they might have confused ECL with ICL as in the A–D
comparison case. Given that these participants were students in
an introductory physics class for elementary education majors
and were unfamiliar with material before being exposed to it in
the class, we can assume that they were low prior knowledge
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students. Therefore, this result seems to be consistent with
the notion that participants may not be able to differentiate
ICL from ECL when they have low prior knowledge. This
result is consistent with the results for experiment two in this
study as well as the theoretical formalism from Sweller (2010),
and certainly calls for more research to further understand
low prior knowledge learners’ ability to distinguish between
changes in ICL and ECL.

GENERAL DISCUSSION

In this study, we developed an eight-item cognitive load
(CL) survey measuring intrinsic load, extraneous load, and
germane load of participants while taking a multiple-choice
conceptual physics test. We conducted three experiments to
validate the survey.

In the first experiment participants were asked to sort the
items into groups according to the common theme. A vast
majority of the participants sorted the items consistent with the
CLT formalism. Namely, participants grouped items relevant to
ICL together, items relevant to ECL together, and items relevant
to GCL together. In follow-up interviews we found evidence that
participants understand the items on the survey consistent with
how ICL, ECL, and GCL were theorized in CLT (Sweller, 2010).

In the second experiment, we administered the CL survey
both at the beginning and at the end of an instructional unit
on electric circuits in a conceptual physics class for elementary
education majors. A PCA revealed a two-component model when
knowledge level was low (beginning of the unit) confirming what
Sweller (2010) has proposed that low knowledge level participants
might not differentiate relevant information from irrelevant
information. All the items relevant to ICL and ECL loaded
onto one component and all the items relevant to GCL loaded
onto another component. A PCA revealed a three-component
model when knowledge level was high (end of the teaching unit)
confirming what Sweller (2010) has proposed that participants
can differentiate relevant and irrelevant information at a high
knowledge level. All the items relevant to ICL loaded onto one
component; all the items relevant to ECL were loaded onto a
second component; and all items relevant to GCL were loaded
onto yet another component. This seems to indicate that this
survey is better able to distinguish between ICL and ECL on a
post-test rather than on a pretest.

In the third experiment, we asked participants to solve four
physics problems of varying levels of ICL and ECL. Two of
the four problems had the same ICL (low level), the other
pair had the same ICL (high level). For each pair of problems
with same level of ICL, one had low ECL, and the other had
high ECL. After having solved the four problems, we asked
participants to compare how they would rate the eight items
on the CL survey differently when comparing selected pairs of
problems. The results showed that most participants selected
the option that they devoted the same amount of GCL to both
problems in each of the compared pairs of problems. However,
their ratings were not the same as on the items corresponding
to ICL suggesting GCL and ICL can be measured separately,

contrary to what the theoretical construct suggests (Kalyuga,
2011; Jiang and Kalyuga, 2020). When they were asked to
compare a problem of high ECL with a problem of low ECL,
they rated ECL as expected. When they were asked to compare
a pair of problems of the same ICL, they rated the ICL as
expected. When they were asked to compare two problems—
one of high ICL with one of low ICL—when both problems
had a low ECL, they rated the problems having the same ICL.
However, when asked to compare two problems—one of high
ICL and ECL with another of low ICL and ECL, they rated
the problems as having different levels of ICL (A < D) which
might indicate how participants perceive ICL depends on the
existence of ECL. When ECL is high, they might have confused
ECL with ICL. This seems to be consistent with the idea that
participants may not be able to differentiate ICL from ECL
when they have low prior knowledge as shown by experiment
one in this study as well as the theoretical formalism from
Sweller (2010). Overall, the results of the three experiments
taken together provide clear evidence supporting the classic
theoretical construct of CLT, i.e., a three-component construct
(Sweller, 2010). These results also provide clear validation of the
CL survey items.

Cognitive load theory proposes a multi-faceted construct of
CL. Given the significance of CL in learning and instruction,
the measurement of sub aspects of the load is important.
This work will be beneficial to assessment designers who are
interested in attending to the issues of CL in the design of
assessment instruments. Our work adds to the existing literature
by developing and adapting a subjective survey for measuring
three aspects of CL.

Prior studies have not looked at if their CL survey/items
were stable over the progression of students’ learning. This is
an overlooked area in the CLT community. This work offers
evidence supporting what Sweller (2010) has argued for a
long time that students’ capability of differentiating ICL from
ECL depends on their knowledge level. This is a challenge
for CLT community if we want to measure the three types of
CL reliably, we have to take the knowledge level of students
into consideration. As for the proper use of the CL survey
developed in this work, we suggest using it when students have
developed certain level of knowledge. In terms of instruction,
when instructors design questions, it usually happens post-
instruction when students have already constructed a certain level
of knowledge which is a good time for using the survey.
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Dual-task paradigms encompass a broad range of approaches to measure cognitive load 
in instructional settings. As a common characteristic, an additional task is implemented 
alongside a learning task to capture the individual’s unengaged cognitive capacities during 
the learning process. Measures to determine these capacities are, for instance, reaction 
times and interval errors on the additional task, while the performance on the learning 
task is to be maintained. Opposite to retrospectively applied subjective ratings, the 
continuous assessment within a dual-task paradigm allows to simultaneously monitor 
changes in the performance related to previously defined tasks. Following the Cognitive 
Load Theory, these changes in performance correspond to cognitive changes related to 
the establishment of permanently existing knowledge structures. Yet the current state of 
research indicates a clear lack of standardization of dual-task paradigms over study 
settings and task procedures. Typically, dual-task designs are adapted uniquely for each 
study, albeit with some similarities across different settings and task procedures. These 
similarities range from the type of modality to the frequency used for the additional task. 
This results in a lack of validity and comparability between studies due to arbitrarily chosen 
patterns of frequency without a sound scientific base, potentially confounding variables, 
or undecided adaptation potentials for future studies. In this paper, the lack of validity and 
comparability between dual-task settings will be presented, the current taxonomies 
compared and the future steps for a better standardization and implementation discussed.

Keywords: cognitive load, dual task, secondary task, measurement, validity, comparability, cognitive load 
measurement, taxonomy

INTRODUCTION

Empirical studies in educational research are often accompanied by the term cognitive load 
and its measurement. As a construct based on the Cognitive Load Theory (Sweller et  al., 
1998), it is depicted to reflect the utilization of mental resources, in particular the working 
memory of an individual, via their level of exhaustion. It is assumed to vary between a higher 
or lower state, depending on the tasks performed, for instance, writing an essay versus reciting 
simple vocabulary. By identifying the parameters exhausting the mental resources, instructional 
settings can be  adapted for a higher learning outcome. For this purpose, different methods 
to measure cognitive load have been developed over the years. Brünken et  al. (2003) classify 
these methods based on their objectivity and causal relationship into four categories: 
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subjective-direct, subjective-indirect, objective-direct, and 
objective-indirect methods.

Subjective measurements can be  summarized as self-reports 
like questionnaires (Leppink et al., 2013) to assess the perceived 
mental effort. It is not a method best used for continuous 
assessment as it is executed retrospectively (Brünken et  al., 
2003) and seems to be influenced in the sensitivity and accuracy 
of its results by the timing and frequency of its use (Chen 
et  al., 2011; van Gog et  al., 2012). Nonetheless, it is so far 
the only method to attempt to identify the cognitive load 
distinguished by its three dimensions intrinsic, extraneous, and 
germane load (Brünken et  al., 2010; Leppink et  al., 2013; 
Klepsch et al., 2017). In contrast, objective measurements assess 
the performance of the individual simultaneously to the task 
and vary from physiological methods like electroencephalography 
(Antonenko et  al., 2010) or fMRI (Whelan, 2007) to dual 
tasks (Park and Brünken, 2018). Chen et  al. (2011) found the 
objective measurements more lacking compared to subjective 
measurements, because of their lower sensitivity toward small 
changes in the cognitive load during a task. Brünken et  al. 
(2003), however, emphasized the difference in accuracy between 
indirect and direct measurements based on the causal relation 
of mental effort and experienced cognitive load. In that regard, 
indirect measurements tend to be unreliable in their interpretation 
as other factors might have influenced the reported responses 
(Brünken et  al., 2010). Objective-direct measurements like 
neuroimaging and dual tasks, however, relate directly to the 
experienced cognitive load (Brünken et  al., 2003). And while 
neuroimaging methods like fMRI seem promising, some 
limitations arise by the intrusiveness of the technical device. 
Dual tasks, often also referred to as secondary tasks, present 
an objective-direct measurement in which two tasks are to 
be  performed simultaneously to observe performance drops 
in either task. There are two ways to conduct dual tasks, either 
to induce or to assess cognitive load (Brünken et  al., 2002; 
Klepsch et  al., 2017). To induce cognitive load, the secondary 
task is designed to demand the mental resources needed for 
the primary task, for instance, by tapping or humming a melody 
(Park and Brünken 2015; Sun and Shea, 2016). Therefore, the 
performance of the primary task is affected. In contrast, the 
cognitive load can also be  assessed by simple decision-making 
tasks like mathematical tasks (Lee et  al., 2015; Tang et  al., 
2015), to observe the performance of the secondary task without 
influencing the primary task.

Due to these differences in objectivity and causal relation, 
dual tasks might be  seen as an adequate alternative to assess 
cognitive load as a simultaneous, objective-direct measurement. 
However, the current state of research showcases a broad 
variety and heterogeneity of dual-task methods that lack 
standardization and continuity in their implementation. This 
in turn hinders the validity and comparability between studies 
as well as an accurate depiction of the cognitive load throughout 
the learning process. To further expand on this discrepancy 
between intent and implementation of dual tasks, this paper 
will discern the underlying cause of the lack of validity and 
comparability and present the current state on the taxonomy 
of dual tasks.

THE LACK OF VALIDITY AND 
COMPARABILITY IN DUAL-TASK 
SETTINGS

For a better understanding of the proclaimed issues, the validation 
as formulated by Kane (2013) should be  consulted. He  states in 
his argument-based approach that two steps have to be  executed 
to ensure validity: specifying the proposed interpretation or use 
of the test and evaluating these claims based on appropriate 
evidence. The evidence is collected through four inferences that 
build up from a single observation in a test setting, for instance, 
a multiple-choice question, to the implementation of the target 
score as a reflection of the real-life performance. In the dual-task 
setting, it is comparable to question who and what the task is 
going to assess, which parameters encompass the proposed 
interpretation and use and if the determined parameters result 
in its successful accomplishment. However, aside a few exceptions, 
there is a lack of empirical investigation of secondary tasks, not 
only regarding their psychometric properties but also in relation 
to their respective dual-task settings (Watter et  al., 2001; Jaeggi 
et al., 2010). Contrary to the assumption of validity being universal 
for every setting of its respective test (Kane, 2013), validity has 
to be  examined for each new proposed interpretation and use. 
A similar sentiment can be  found in the study of Jaeggi et  al. 
(2010), where one of the more common secondary tasks, the 
n-back task, was examined on its validity. The mixed results showed 
not only difficulty in confirming its validity but also a further 
need for implementation and examination in different settings.

Another issue arises in the form of lacking comparability 
between the different dual-task studies. Currently, most dual tasks 
are custom-made for their specific instructional setting, without 
any reference to an evaluated and standardized method. Most 
often, the decision behind the choice of a dual-task method is 
not further discussed, which in turn might hinder future researchers 
in continuing or implementing these studies. The different types 
of dual task not only lack a framework by which a fitting task 
can be chosen but they also ignore natural limitations in combining 
different tasks, for instance, a primary motoric task of walking 
and a secondary task of typing on a phone. This setting would 
result in a reduced performance of the primary task as the 
secondary task is naturally intrusive by limiting the field of vision 
(Lamberg and Muratori, 2012). Nor do they focus as much on 
the aspect that experience in multitasking can increase the ability 
to dual task (Strobach et  al., 2015) or that dual tasks are great 
to measure progress in novices but not experts (Haji et al., 2015). 
Similarly, to the topic of experts, there can be confounding variables, 
for instance, response automatization (van Nuland and Rogers, 
2016) and age, in particular dementia, influencing the participants 
(Toosizadeh et  al., 2016; Sawami et  al., 2017).

THE CURRENT TAXONOMY  
OF DUAL TASKS

Despite the broad heterogeneity of dual-task methods in 
instructional settings, one common denominator can be found. 
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A dual-task setting consists of two tasks: the primary task 
that the researcher wants to observe and the secondary task 
that has no connection to it beyond its competitive nature. 
The participant has to perform both tasks concurrently. Apart 
from that, most attempts at creating a systematic approach 
toward the variety of dual-task methods have been few and 
far between and lacking a holistic view.

One of the earlier taxonomies by Brown (1978) postulated 
four design factors to determine differences between dual-task 
methods: the information processing demand, the prioritized 
task performance, the temporal structure and the locus of 
interference. The first design factor focused on the demand 
the chosen secondary task puts onto the information processing – 
either by stimuli with constant or variable demands, for example, 
changing between easy and complex tasks, or by continuously 
variable and continuously constant demands not bound to specific 
stimuli. Another role played the priority given to the secondary 
task, which could be  either primary, secondary, or of equal 
importance to the primary task. It could be  compared to the 
priorly mentioned ways of inducing or assessing cognitive load 
(Brünken et  al., 2002; Klepsch et  al., 2017). van Nuland and 
Rogers (2016) further recommended the task priority to 
be  explicitly stated in the participants’ instructions, as there 
otherwise might be  a task performance trade-off. The third 
design factor by Brown (1978) focused on the temporal structure 
of the secondary task, which was either force-paced by the 
experimental setting, self-paced by the participant or force-paced 
by the experimental setting within a specific time interval. Lastly, 
the locus of interference between both tasks could either be  at 
the sensory input or motor output, within the process of the 
tasks or a combination of all three. He  argued though that 
both sensory input and motor output should not be  used as 
a locus of interference as the dual-task method intends to focus 
on the mental resources and therefore needs to be  used during 
the process of the mental activity.

Another attempt at categorizing and standardizing dual tasks 
from a physician’s viewpoint has been made by McIsaac et  al. 
(2015). Three main categories were stated: tasks by action, task 
complexity, and task novelty. The category of tasks by action 
distinguishes between dual tasks consisting of both cognitive, both 
motor, and cognitive-motor or motor-cognitive primary and 
secondary task combinations. Therefore, the selection of the proper 
dual-task method does not only focus on finding a fitting secondary 
task contentwise but also on its execution in combination with 
the primary task. The second category, task complexity, is in 
general a relevant factor but not easy to standardize. The complexity 
of a task might be  felt differently for someone that has never 
done it versus an experienced user. In this case, task novelty also 
plays a role as the experience influences the complexity and 
therefore also the measurement results (Strobach et  al., 2015).

Lastly, the recent taxonomy by Wollesen et al. (2019) focused 
on the different task types. They distinguished between reaction 
time tasks, controlled processing tasks, visuospatial tasks, mental 
tracking tasks, working memory tasks, and discrimination 
tasks.  The reaction time tasks were defined as tasks that rely 
on the reaction time between the sensory stimulus and the 
behavioral  response, for example, pressing a button whenever 

a light goes on. The controlled processing task expands the 
reaction time task by the addition of a decision-making process, 
for example, pressing a button only when a specific symbol 
appears. The visuospatial task focuses on detecting or processing 
visual information, for example, finding a symbol in a rotated 
position. The mental tracking tasks require the memorization 
of information and are split into two subcategories: the arithmetic 
tests, for example, counting backward in 3  s (n-back tasks), 
and the verbal fluency, for example, naming words starting 
with the same letter. The working memory tasks are a simpler 
form of the mental tracking tasks as they only require holding 
information but not processing it, for example, memorizing a 
picture that has to be  found again afterward. Lastly, the 
discrimination tasks focus on the selective attention toward a 
specific stimulus, for example, the Go/NoGo tasks in which 
participants have to either provide or withhold a response 
depending on the stimulus (Verbruggen and Logan, 2008).

Expanding on the visuospatial tasks presented by Wollesen 
et  al. (2019), a few more modality-related classifications can 
be  found. The method of tapping or humming melodies (Park 
and Brünken 2015; Sun and Shea, 2016), mathematical tasks 
(Lee et  al., 2015; Tang et  al., 2015), and visual tasks like 
reading text or symbols (Scerbo et  al., 2017; Wirzberger et  al., 
2018) showcase that the modality between primary and secondary 
task can differ between auditory/vocally, visually, and motoric 
tasks. Furthermore, as mentioned by Brown (1978) and Wollesen 
et  al. (2019), there can be  differences in the frequency of the 
dual task, from event- or interval-based tasks that appear, for 
example, every 3, 5, or 7  s to continuous tasks that constantly 
request the participants’ attention. Yet, there is not really a 
study to be  found that uses dual tasks continuously. Most rely 
on either interval- or event-based frequency.

OUTLINING A HOLISTIC TAXONOMY

The three taxonomies presented lack a holistic view of the 
dual-task setting and tend to either simplify or strongly limit 
the classification. For instance, McIsaac et al. (2015) categorizes 
tasks by action into cognitive or motor tasks even though the 
description of detecting a cognitive action outside of an fMRI 
setting seems contradictory. The participant needs to either 
act motoric or verbally to respond. In contrast, the taxonomy 
of Wollesen et al. (2019) expands on the task action by displaying 
a broader variety of secondary tasks but stays limited to only 
this one parameter. Furthermore, simply the difference between 
the two dual-task types of inducing and assessing cognitive 
load needs to be  included in a taxonomy as it changes the 
intent and therefore the use of it. For this purpose, an attempt 
at a holistic taxonomy was made (Figure  1).

Parameters relevant to the design of the dual-task setting 
were included in a stepwise order, ultimately resulting in the 
selection of the secondary task based on the chosen path. Most 
of the options are not unique at that, for instance, middle 
complex tasks can be  event-based too. Following the yellow-
colored path as an example, after selecting to induce the cognitive 
load, the stimulus modality and task action modality of the 
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primary task have to be  regarded. For instance, choosing a 
verbal primary task would in turn either hinder a verbal secondary 
task or restrict the option of higher frequency types in the 
subsequent parameters. These selections are followed by the 
complexity of both tasks, and lastly the possible frequency types, 
frequency rate, and content of the secondary task. Lastly, the 
task action should show the possible options regarding the prior 
selections, in this case to either tap or push a button after the 
sound event, as the secondary task was intended to be  auditory 
in its stimulus but motoric in its action. However, it should 

be noted that the taxonomy needs to be standardized to be usable 
as a guide or framework in designing a dual-task setting. The 
variations of the parameters need to be  tested and validated, 
which, aside from a few exceptions, has yet to be  done.

DISCUSSION

So far, the classifications of the current dual-task paradigms 
show a mix of different factors without a theoretical framework. 

FIGURE 1 | Holistic taxonomy of dual-task settings with exemplary selection paths.
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Most studies lack a detailed explanation of the reasoning behind 
the implementation or adaptation of a secondary task, aside 
the general assumption of using a fitting cognitive load 
measurement. The presented taxonomies show a broad range 
of parameters but do not find a common ground. While McIsaac 
et  al. (2015) summarize the different tasks by their action of 
cognitive versus motoric tasks, the complexity and the novelty 
of the task, Wollesen et al. (2019) go a bit further and categorize 
dual tasks by their execution, but with no regards to other 
parameters. In addition, both taxonomies need to be  further 
specified for a profound framework, especially regarding the 
different modalities and frequency of dual tasks (Brown, 1978). 
According to the dual-coding theory (Paivio, 1971, 1991), both 
verbal information and nonverbal/visual information interact for 
a better recall, but their information is processed differently in 
their own channel. Therefore, there should be  a higher regard 
toward the selection of the task modalities and their influence 
on the cognitive load measurement. Using the same modalities 
in primary and secondary tasks might contribute to a higher 
cognitive load measurement because the information is not 
already distinguished simply by its sensory input. Further influences 
might be found in the different temporal structure of dual tasks, 
in particular the frequency in which the secondary task should 
be  used. So far, even empirical studies that describe their task 
as continuous, end up being high-interval tasks or tasks that 
cannot be  done over a longer time frame because of physical 
exhaustion, for instance, constant humming or tapping (Park 
and Brünken 2015; Sun and Shea, 2016). This bears the question 
on how to change the lack of continuous dual tasks as this 
particular ability makes it a noteworthy measurement for the 
cognitive load. Furthermore, it not only needs to be  usable 
over a longer period but also have more variations to be applicable 
in different settings. For this, it is advisable to look back at 
the modalities and the restrictions they contain as the physical 
strain and execution interfere with a continuous dual task. For 
example, humming a melody might influence an emotional 
reaction (Schellenberg et al., 2013), but also simply put a physical 

strain over a longer period. Visual dual tasks would be  hard 
to be  kept up in a continuous setting as it would be  hard to 
split the focus of the eyes toward two different tasks, see split-
attention effect (Ayres and Cierniak, 2012). A solution might 
be  the use of eye-tracking to adapt the secondary task into a 
less intrusive method, for example, by changing colors and 
symbols in the background of the instructional setting to observe 
the eye movement. In motoric tasks, primary tasks usually cannot 
be physical as it tends to disturb the secondary task and heightens 
the physical strain. An exception can be  created with physical 
tasks that work disconnected from each other, for example, 
tapping on a pedal while sitting and repairing machinery.

Conclusively, future research in relation to dual-task 
paradigms should take a step back in creating or expanding 
the different methods of dual tasks and firstly focus on 
creating a profound and universal taxonomy. Furthermore, 
the currently existing methods should be  evaluated and 
adapted to create a standardized and reliable use. This of 
course needs an extensive analysis of the instructional settings 
and the possibilities to implement dual tasks based on 
pre-defined variables so that in the future researchers can 
more easily choose the fitting dual-task paradigms. Dual 
tasks should furthermore work more toward creating truly 
continuous tasks to ensure the direct measurement of cognitive 
load that it proclaims to be  (Brünken et  al., 2003).
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To better understand instructional cognitive load, it is important to operationalize

and assess it in novel ways that can reveal how different students perceive

and experience this load as either challenging or threatening. The present study

administered a recently developed instruction assessment tool—the Load Reduction

Instruction Scale-Short (LRIS-S)—to N = 2,071 students in 188 high school science

classrooms. Multilevel latent profile analysis (LPA) was used to identify student and

classroom profiles based on students’ reports of instructional cognitive load (load

reduction instruction, LRI; using the LRIS-S) and their accompanying psychological

challenge orientations (self-efficacy and growth goals), and psychological threat

orientations (anxiety and failure avoidance goals). In phase 1 of analyses (investigating

students; Level 1), we identified 5 instructional-psychological student profiles that

represented different presentations of instructional load, challenge orientation, and threat

orientation, ranging from the most maladaptive profile (the Instructionally-Overburdened

& Psychologically-Resigned profile) to the most adaptive profile (Instructionally-Optimized

& Psychologically-Self-Assured profile). The derived profiles revealed that similar

levels of perceived instructional load can be accompanied by different levels of

perceived challenge and threat. For example, we identified two profiles that were

both instructionally-supported but who varied in their accompanying psychological

orientations. Findings also identified profiles where students were dually motivated by

both challenge and threat. In turn, these profiles (and their component scores) were

validated through their significant associations with persistence, disengagement, and

achievement. In phase 2 of analyses (investigating students and classrooms; Levels

1 and 2), we identified 3 instructional-psychological classroom profiles that varied

in instructional cognitive load, challenge orientations, and threat orientations: Striving

classrooms, Thriving classrooms, and Struggling classrooms. These three classroom
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profiles (and their component scores) were also validated through their

significant associations with classroom-average persistence, disengagement, and

achievement—with Struggling classrooms reflecting the most maladaptive outcomes

and Thriving classrooms reflecting the most adaptive outcomes. Taken together, findings

show that considering instructional cognitive load (and new approaches to empirically

assessing it) in the context of students’ accompanying psychological orientations

can reveal unique insights about students’ learning experiences and about important

differences between classrooms in terms of the instructional load that is present.

Keywords: cognitive load, load reduction instruction, cognitive appraisal, engagement, achievement, latent profile

analysis, multilevel, construct validity

INTRODUCTION

In this study, we propose that instructional cognitive load is
likely to be perceived and experienced in different ways by
different students. Following cognitive appraisal theory (e.g.,
Lazarus and Folkman, 1984; for reviews, see Roseman and
Smith, 2001; Moors et al., 2013), we suggest that some students
will perceive cognitive load in an approach- and challenge-
oriented way, while other students will perceive cognitive
load in an avoidant- and threat-oriented way. This being the
case, we suggest that we can better understand instructional
cognitive load when we consider it in the context of students’
accompanying psychological challenge and threat orientations.
The present study does so from a person-centered perspective
(using latent profile analysis; LPA) based on students’ reports
of instructional load (load reduction instruction, LRI; using
the Load Reduction Instruction Scale-Short, LRIS-S) and their
accompanying psychological challenge orientations (self-efficacy
and growth goals) and psychological threat orientations (anxiety
and failure avoidance goals).

In addressing these issues, we adopt a construct validation
approach. Researchers in educational psychology have long
emphasized the importance of evaluating instruments within
a construct validation framework (e.g., Marsh, 2002; Martin,
2007, 2009). Construct validation can be classified in terms
of within-network and between-network approaches. Within-
network approaches explore the internal structure of a construct
or network and between-network approaches typically seek to
establish a logical, theoretically meaningful pattern of relations
between constructs and networks. Both approaches tend to
employ variable-centered analyses such as reliability and factor
analysis (for within-network validity) and correlation and
regression (for between-network validity). Indeed, this study’s
central measurement tool (the Load Reduction Instruction
Scale; LRIS) has been validated using these variable-centered
within- and between-network approaches (Martin and Evans,
2018).

However, as discussed below, variable-centered approaches
to construct validation can mask important phenomena
among subpopulations of the wider population. Person-
centered approaches, on the other hand, are well-placed
for validation at a more granular subpopulation level.
Therefore, the present investigation applies a person-centered

approach to the assessment of within- and between-
network validity. Using multilevel LPA and integrating
and synthesizing cognitive load theory (Sweller, 2012) with
cognitive appraisal theory (Lazarus and Folkman, 1984),
we test within-network validity by identifying a network of
theoretically plausible student and classroom profiles that
are based on student reports of instructional load (via the
LRIS) and students’ accompanying psychological challenge
and threat orientations. We then test between-network
validity by exploring the links between the network of
student and classroom profiles and a theoretically plausible
network of outcome variables (persistence, disengagement,
achievement). In essence, then, the present study contributes
a novel multilevel construct validity approach to person-
centered analysis in a bid to understand the nomological
network of instructional cognitive load. Figure 1 shows the
hypothesized model.

This approach to construct validity draws on guidelines
advanced by methodologists in the measurement space—very
much inspired by the seminal work of Campbell and Fiske
(1959). Psychological research (including educational psychology
research) typically involves hypothetical constructs that are
unobservable, conceptual, or theoretical abstractions (Marsh
et al., 2006). Constructs are often inferred indirectly via
observable indicators. A vital question, then, is how well these
indicators represent the hypothetical construct, including the
extent to which the construct is: well-represented by derived
scores, is well-defined, and is related to variables to which it
should be theoretically connected (Marsh, 2002; Marsh et al.,
2006). In light of these critical questions, it is recommended
that construct validity research comprises multiple perspectives
based on multiple methods. According to Marsh et al. (2006),
this involves the use of “multiple indicators of each construct,
multiple constructs and tests of their a priori relations, multiple
outcome measures, multiple independent/manipulated variables,
multiple methodological approaches . . . the multiple perspectives
provide a foundation for evaluating construct validity based
on appropriate patterns of convergence and divergence and
for refining measurement instruments, hypotheses, theory, and
research agendas” (p. 442). Accordingly, the present construct
validation study includes latent factors (comprised of multiple
indicators), multiple factors and tests of their relations, numerous
outcome measures, and integration of two analytical methods
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FIGURE 1 | Hypothesized models tested in the study at the student- and classroom-level.

by way of LPA and multi-level modeling. In these ways,
we claim to provide a unique perspective on multilevel
construct validity.

COGNITIVE LOAD THEORY

Cognitive load theory has identified principles of instruction that
are aimed at easing the cognitive burden on students as they
learn (Sweller et al., 2011; Sweller, 2012). According to cognitive
load theory, there are two kinds of cognitive load that can be
imposed during instruction and that impede learning: intrinsic
and extraneous load (Sweller et al., 2011). Intrinsic cognitive load
is a function of the inherent complexity of instructional activity
and material, given the learner’s prior knowledge. Teachers
can manage intrinsic cognitive load by presenting instructional
material that is appropriate to the level of knowledge of students
(Sweller et al., 2011). Extraneous cognitive load emanates from
the way that instructional material is structured and presented
(Sweller et al., 2011). Teachers can manage this latter form of
load by presenting instructional material sequentially, clearly,
and explicitly to students; in doing so, students are guided
through learning in a structured and linear fashion, leading to
low extraneous load. However, extraneous load is high when
instructional material is presented such that students need to
figure out the informational structure, have to decide between
a range of potential solutions, and/or apply information about
which they have low prior knowledge (Sweller et al., 2011).
Extraneous cognitive load is identified as an unnecessary burden

on students as it does not contribute to learning (Sweller et al.,
2011).

To date, the bulk of research into cognitive load theory
has been experimental, with cognitive load induced through
presentation and manipulation of instructional/learning material
to elicit conditions of low or high cognitive load (see Sweller,
2012 for a review). There is significant research assessing
cognitive load through self-reports of cognitive burden (e.g.,
Leppink et al., 2013; Krell, 2017), and other approaches such
as through electrodermal activity, neurological activity, eye
tracking, blood flow, physical pressure exerted on a computer
mouse, etc. (e.g., Paas et al., 1994; Ikehara and Crosby, 2005;
Wang et al., 2014; Howard et al., 2015; Ghaderyan et al.,
2018). This research has assessed the presence of cognitive load,
as well as the instructional techniques aimed at managing or
reducing cognitive load. Much of this research has taken place
under experimental conditions. This experimental work has
significant internal validity and has been critical to rigorously
measuring cognitive load and identifying some major effects that
are now well-established in the cognitive load tradition (e.g.,
expertise reversal effect, modality effect, split attention effect,
etc.). Alongside this experimental work it is also important
to extend assessment to attend to other matters of validity—
such as conducting classroom-based assessment research that has
the potential to inform the ecological validity of cognitive load
assessment. As one significant step in this direction, recent work
has articulated a multi-factor instructional framework—load
reduction instruction (LRI)—aimed at (a) reducing instructional
cognitive load on learners, (b) developing a multi-factor survey
instrument to assess this instructional framework, and (c)
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administering and assessing this instrument in the classroom
context (Martin, 2016; Martin and Evans, 2018, 2019; Martin
et al., 2020a).

LOAD REDUCTION INSTRUCTION (LRI)
AND ITS MEASUREMENT

Harnessing key cognitive load theory principles, Martin (2016;
see also Martin and Evans, 2018, 2019) proposed LRI as an
instructional means to manage the cognitive burden students
can experience as they learn. According to cognitive load theory,
there is a need for instruction that accommodates the reality
of the limits of working memory and helps students transfer
knowledge between working and long-term memory (Paas et al.,
2003; Sweller, 2004). A key means by which this can occur is
by developing students’ fluency and automaticity in skill and
knowledge. This frees up working memory resources, reduces
cognitive burden, and better enables students to transfer novel
information into long-term memory (Rosenshine, 2009). Based
on the Martin (2016) LRI framework, fluency and automaticity
are developed through its first four principles: (principle #1)
reducing the difficulty of instruction in the initial stages of
learning, as appropriate to the learner’s level of prior knowledge
(see also Pollock et al., 2002;Mayer andMoreno, 2010); (principle
#2) providing appropriate support and scaffolding to learn the
relevant skill and knowledge (see also Renkl and Atkinson,
2010; Renkl, 2014); (principle #3) allowing sufficient opportunity
for practice (see also Purdie and Ellis, 2005; Rosenshine, 2009;
Nandagopal and Ericsson, 2012); and (principle #4) providing
appropriate feedback-feedforward (combination of corrective
information and specific improvement-oriented guidance) as
needed (see also Shute, 2008; Hattie, 2009; Mayer and Moreno,
2010). Through these four principles, students develop fluency
and automaticity and are then well-positioned to apply their skill
and knowledge more independently—including through novel
tasks, higher order reasoning and thinking, problem solving, and
guided discovery (Martin, 2016;Martin and Evans, 2019)—which
is important to guard against potential expertise reversal effects
(Kalyuga et al., 2012; Chen et al., 2017). This represents principle
#5: guided independent learning.

Having articulated the five key principles of LRI (Martin,
2016), Martin and Evans (2018) developed a novel tool, the Load
Reduction Instruction Scale (LRIS), to administer to students
to report on the instructional practices of their teacher. The
LRIS comprises five factors to assess the five LRI principles
(difficulty reduction, support and scaffolding, practice, feedback-
feedforward, guided independence). Each factor is composed of
five items (yielding a 25-item instrument). In the first empirical
study of the LRIS, students in 40 high school mathematics
classrooms completed the instrument (Martin and Evans, 2018).
Findings revealed the scores of each factor to be reliable, the
factor structure to be sound, and significant bivariate correlations
with intrinsic and extraneous cognitive load in predicted
directions. In a follow-up investigation that linked the Martin
and Evans (2018) data with a previous survey, results showed
that LRI was associated with gains in mathematics motivation,

engagement, and achievement (Evans and Martin, Submitted).
In another study, Martin et al. (2020a) introduced and explored
a brief form of the LRIS (the LRIS-Short; LRIS-S) that was
designed to capture a unidimensional latent factor in keeping
with the higher order LRIS factor in the Martin and Evans (2018)
research. Martin et al. (2020a) used this LRIS-S in a multilevel
study of more than 180 science classrooms, finding that the link
between LRI in science and science achievement (at student-
and classroom-levels) was mediated by class participation, future
aspirations, and enjoyment in science. However, all these studies
(including their construct validity aspects) have been variable-
centered. As is now discussed, to even better understand the
nomological network of LRI, a construct validity approach from
a multilevel person-centered perspective has much to offer.

PERSON-CENTERED AND MULTILEVEL
ASSESSMENT

Person-Centered Assessment
As noted above, the bulk of research assessing cognitive load
in students’ academic lives (including LRI research) has been
variable-centered. Variable-centered approaches aim to assess
relations between factors across individuals (Collie et al., 2020).
This has been important for conducting classic construct
validity work with cognitive load factors and for identifying
what cognitive load factors predict or are predicted by other
factors (e.g., Leppink et al., 2013; Klepsch and Seufert, 2020).
However, variable-centered approaches can mask important
phenomena among subpopulations of the wider population. In
contrast, person-centered research utilizes the factors in a study
to identify distinct subpopulations (or profiles) of individuals
(Bauer and Curran, 2004; Collie et al., 2015; Morin et al., 2017).
For example, different subpopulations of students may reflect
different patterns in how LRI manifests and relates to other
educational factors in their classroom and academic experience.
Thus, LRI may not function in a similar way for all students. To
the extent this is the case, it is important to assess LRI to capture
distinct subpopulations of students, if such subpopulations exist.
This will generate practical yields in identifying specific student
profiles that teachers can attend to in their pedagogy.

Person-centered analyses (in this investigation, latent profile
analysis—LPA) are ideal for addressing these issues. Specifically,
by revealing the way LRI co-occurs with other factors among
subpopulations of students, person-centered assessment helps
identify the different types of students that reside within the
classroom and the distinct ways LRI manifests in these students’
academic lives. As we describe below, we seek to further assess
the construct validity of LRI from a person-centered perspective
by including psychological challenge and threat orientation
measures alongside LRI measures to better understand the
nomological network of instructional-psychological profiles. LPA
enables us to see whether there might be subpopulations
of students with similar LRI levels, but who differ on
psychological factors (and vice versa). As we describe below,
it is theoretically plausible that students who have different
psychological challenge and threat orientations will experience
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instructional load in different ways and our person-centered
construct validity approach seeks to confirm this. The LPA
represents the within-network validity aspect of our study by
way of its assessment of a target network of instructional-
psychological profiles.

Multilevel Assessment
It is also the case that the bulk of cognitive load research
is almost exclusively conducted at the student-level, without
appropriate regard for the classrooms to which the students
belong (however, LRI research is an exception—described
below). There is now broad recognition of the importance of
analyzing hierarchical data in appropriate ways (Marsh et al.,
2012), especially when the variables of interest include references
to class-wide phenomena, such as instruction (as LRI does).
In single-level research designs there are statistical biases (e.g.,
within-group dependencies; confounding of variables within
and between groups) and multilevel analyses seek to resolve
biases like these (see Raudenbush and Bryk, 2002; Goldstein,
2003; Marsh et al., 2009). Multilevel analysts have identified
the reciprocity of group and individual dynamics: the group
can affect the individuals and individuals can affect the group
(Raudenbush and Bryk, 2002; Goldstein, 2003; Marsh et al.,
2009). To date, most LRI research has recognized this and
conducted multilevel analyses at student- and classroom-levels—
indeed, demonstrating the validity of LRI at student- and
classroom-levels (Martin and Evans, 2018, Evans and Martin,
Submitted; Martin et al., 2020a). But, as noted, these studies have
involved variable-centered analyses, which may mask differences
between subpopulations of students and classrooms. The present
study extends this research by conductingmultilevel LPA that not
only identifies student instructional-psychological profiles, but
also classroom instructional-psychological profiles. Given LRI
is about classroom instruction, its construct validity must be
reflected in theoretically logical classroom profiles.

LRI AND ACCOMPANYING
PSYCHOLOGICAL ORIENTATIONS

As described earlier, it is plausible that cognitive load will
be perceived and experienced by students in different ways.
Theories of cognitive appraisal (e.g., Lazarus and Folkman,
1984; for reviews, see Roseman and Smith, 2001; Moors et al.,
2013) suggest that when presented with a task, an individual
subjectively appraises its demands and their capacity to meet the
demands. The individual perceives challenge when they believe
they can meet the demands; the individual perceives threat when
they believe they cannot meet the demands (see also Putwain
and Symes, 2014, 2016, Uphill et al., 2019). Thus, when cognitive
load is unacceptably high there may be a greater likelihood
that anxiety and fear are present, and when cognitive load is
effectively managed, more positive appraisals occur. At the same
time, it is also the case that different students can appraise the
same stimuli in different ways. For example, following cognitive
appraisal theory (Lazarus and Folkman, 1984), some students will
perceive cognitive load in an approach- and challenge-oriented

way, while other students will perceive cognitive load in an
avoidant- and threat-oriented way. Indeed, recent reviews of
challenge and threat suggest that there may even be the dual
presence of both challenge and threat (Uphill et al., 2019; see
also Rogat and Linnenbrink-Garcia, 2019 for dual goals under
approach-avoidance goal frameworks)—for example, in the event
of cognitive load there may be students who perceive it as a
challenge and opportunity for learning, but who also fear failing
and see it as a potential threat. This idea had been previously
raised by Covington (2000) and Martin and Marsh (2003) in
the form of “overstrivers” who are students investing effort (in
a challenge-like way), but driven in large part by a fear of poor
performance. This brings into consideration the extent to which
there exist student profiles based on different combinations of
LRI and psychological challenge and threat orientations. LPA
is designed to explore such possibilities and thus represents an
important (and novel) means of assessing the study’s contended
network of instructional-psychological profiles (i.e., the within-
network validity aspect of the study).

Consistent with Martin et al. (2021), recent challenge-threat
frameworks (e.g., Putwain and Symes, 2014, 2016; Putwain et al.,
2015; Uphill et al., 2019), and the latest approach-avoidance
perspectives that have introduced growth goals (e.g., Elliot et al.,
2011, 2015), we propose psychological challenge orientation can
be inferred through students’ self-efficacy and growth goals. Self-
efficacy refers to a belief in one’s capacity to meet or exceed
a task demand or task challenge (Bandura, 1997; Schunk and
DiBenedetto, 2014). This being the case, self-efficacy has been
inferred as an analog of perceived challenge (Uphill et al., 2019)
and operationalized as an indicator of perceived challenge in
LPA (Martin et al., 2021). Perceived challenge has also been
linked to approach orientations in motivational psychology. For
example, Elliot defines approach motivation as the “energization
of behavior by, or the direction of behavior toward, positive
stimuli (objects, events, possibilities)” (2006, p. 112). According
to Elliot, goals are a major means by which individuals’ approach
(and avoidance) orientations are manifested. Recent research has
identified growth goals (i.e., self-improvement, or personal best
goals) as one example of an approach motivation orientation
(Martin and Liem, 2010; Elliot et al., 2011, 2015; Martin and
Elliot, 2016a,b; Burns et al., 2018, 2019, 2020b). We recognize
mastery goals are also approach-oriented, but it has previously
been argued that growth goals represent a particularly ambitious
and challenge-oriented goal striving (in keeping with our intent
to capture challenge orientation) and are shown to explain
variance in engagement beyond the effects of mastery goals
(Yu and Martin, 2014; Martin and Elliot, 2016a). Growth
goals are thus inferred as having an underlying psychological
challenge dimension to them, along the lines of Uphill et al.’s
(2019) review.

Also following Martin et al. (2021) and recent challenge-
threat and approach-avoidance frameworks (e.g., Elliot et al.,
2011, 2015; Putwain and Symes, 2014, 2016; Putwain et al., 2015;
Uphill et al., 2019), we propose psychological threat orientation
can be inferred through students’ anxiety and failure avoidance
goals. Anxiety reflects an individual’s perception that a task
demand exceeds their personal resources and capacity and poses
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a self-relevant threat to them in some way (Britton et al., 2011).
Anxiety has thus been associated with threat appraisals (e.g.,
see Putwain et al., 2015, 2017; see also Uphill et al., 2019)
and has been used as an indicator of perceived threat in LPA
(Martin et al., 2021). Perceived threat has also been linked to
avoidance orientations in motivational psychology. Elliot defines
avoidance motivation as the “energization of behavior by, or the
direction of behavior away from, negative stimuli (objects, events,
possibilities)” (2006, p. 112). In goal theory research, avoidance
goals are a salient example of avoidance motivation (Elliot, 2006;
Van Yperen et al., 2015). Avoidance goals are those where the
individual strives to avoid poor performance and failure or the
implications of poor performance (Covington, 2000; Elliot, 2006;
Martin, 2007, 2009), and being an element of an avoidance
orientation, are suggested as analogs of an inherent psychological
threat orientation, along the lines of Uphill et al.’s (2019) review.

To summarize, the present study assesses students’ self-
efficacy and growth goals (to infer challenge) and anxiety and
failure avoidance goals (to infer threat) as key psychological
orientations to include as indicators alongside LRI in LPA.
Importantly, however, although we conceptually categorize these
as challenge and threat indicators, they are modeled as separate
indicators so that these conceptual groupings can be tested
empirically. We also point out that this study is a multilevel one
that assesses these issues at the classroom-level. It is feasible that
psychological orientations of challenge and threat manifest at the
classroom-level such that some classrooms are relatively higher
or lower in these orientations. Indeed, motivation research has
suggested that classrooms can vary in the extent to which they
are challenge- and approach-oriented vs. threat- and avoidance-
oriented (Lau andNie, 2008). Furthermore, these classroom-level
psychological orientations may co-vary with different levels of
LRI in different ways. This being the case, the present study
assesses classroom-level psychological orientations alongside
classroom-level LRI to identify classroom-level instructional-
psychological profiles.

ASSESSING LINKS BETWEEN
INSTRUCTIONAL-PSYCHOLOGICAL
PROFILES AND ACADEMIC OUTCOMES

This research is conducted in the educational domain of
science. Science is a challenging subject for many students (Coe
et al., 2008) and there are worrying trends in students’ science
achievement and science participation (especially in “Western”
nations). For example, in the Programme for International
Student Assessment (PISA), the long-term change in the average
science performance of Australia (the site of the present study)
demonstrates one of the largest declines among participating
nations (OECD., 2020). There are also long-term declines
in science participation and enrolments among senior school
students (Office of the Chief Scientist, 2014) as well as declining
interest in science in high school (Tröbst et al., 2016). Inherent
in these trends are three major concerns. First, students do
not seem to be orienting toward science in a participatory
and persistent way—Martin et al. (2012) referred to this

as “switching on.” Second, there are unacceptable numbers
of students disengaging from science—Martin et al. (2012)
referred to this phenomenon as “switching off.” Third, science
achievement is in decline in many nations. This being the case, it
is important to: (a) initiate and foster more positive persistence
(“switching on”) in science, (b) arrest students’ disengagement
(“switching off”) in science, and (c) boost students’ science
achievement. Therefore, we sought to explore the association
between the derived network of student- and classroom-level
instructional-psychological profiles and a network of student-
and classroom-level outcomes in the form of science persistence,
disengagement, and achievement. From a construct validation
perspective (Marsh, 2002), this represents the between-network
validity aspect of our investigation.

In variable-centered research, Martin et al. (2012) found
that approach-oriented predictors such as self-efficacy were
positively associated with “switching on” in mathematics
(positive future intentions and engagement) and negatively
associated with “switching off” in mathematics (disengagement).
The inverse pattern of associations was found for avoidance-
oriented predictors such as anxiety. Also, in variable-centered
research, LRI is positively associated with achievement in
mathematics (Martin and Evans, 2018). In recent person-
centered research, Martin et al. (2021) found that approach
(challenge)-oriented students had higher science test scores,
while avoidance (threat)-oriented students had lower scores.
Interestingly, and in keeping with the potential dual presence
of challenge and threat (Uphill et al., 2019), Martin et al. (2021)
also identified a third profile reflecting both approach (challenge)
and avoidance (threat)—students in this profile scored midway
between the former two profiles on the science test. Taking these
recent student-level findings together, we tentatively suggest at
least three student-level profiles that will be associated with
our outcomes (persistence, disengagement, achievement) in a
descending adaptive pattern: high approach-low avoidance-high
LRI, high approach-high avoidance-high LRI, and low approach-
high avoidance-low LRI. From a construct validity perspective,
demonstrating associations in a predicted manner is important
(Marsh et al., 2006). Regarding classroom-level findings, we
believe there is not a sufficient evidence base to guide predictions
and so this is a more exploratory aspect of the study.

AIMS OF THE PRESENT STUDY

We argue that to fully understand instructional cognitive load,
it is important to operationalize and assess it in novel ways
that can provide unique validity insights into how different
students perceive and experience this load. We further suggest
it is important to consider these novel assessment approaches
using appropriate cutting-edge analytic models. Accordingly,
we adopted a within- and between-network construct validity
approach and used multilevel LPA to identify instructional-
psychological profiles among students and classrooms based
on students’ reports of instructional cognitive load (via
load reduction instruction; LRI) and their accompanying
psychological challenge orientations (self-efficacy, growth goals)
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and psychological threat orientations (anxiety, failure avoidance
goals). In phase 1 of analyses, we sought to identify a network
of instructional-psychological profiles among students (student-
level within-network validity). In phase 1, we also tested the
links between the derived profile network and a network of three
academic outcomes (persistence, disengagement, achievement)
(student-level between-network validity). In phase 2 of analysis,
we extended our examination to the classroom-level where
we sought to identify the network of classroom profiles based
on the relative frequency of student profiles identified in
phase 1 (classroom-level within-network validity). We also
tested whether the derived network of different classroom
profiles was associated with different levels of classroom-average
persistence, disengagement, and achievement (classroom-level
between-network validity). Figure 1 demonstrates the model and
parameters under investigation.

METHOD

Participants and Procedure
Participants comprised 2,0711 Australian high school students
from 188 science classrooms in eight schools. The schools were
independent (non-systemic) schools, in a major capital city on
the east coast of Australia. Four of these schools were single-
sex boys’ schools and four were single-sex girls’ schools. Just
over half (60%) the sample comprised girls. Participants were
in Year 7 (29%), Year 8 (22%), Year 9 (24%), and Year 10
(25%). The average age was 14.02 years (SD = 1.27 years).
Just under one in ten (8%) students spoke a language other
than English at home. Socioeconomic status (SES) varied (range
846–1,181, M = 1,138, SD = 41, on the Australian Bureau
of Statistics Index of Relative Socio-Economic Advantage and
Disadvantage classification), but in aggregate was a higher SES
than the Australian mean of 1,000. On average, classrooms had
about eleven students (adequate for group-level effect estimation
and not disproportionate to the ratio of staff to students in
the independent school sector when accounting for student
absences, non-participation, and students who have not received
participation consent from their parents; also see Australian
Bureau of Statistics, 2019). The lead researcher’s university
provided human ethics approval for the study. Approval was
then provided by school principals for their school to participate.
Then, participating students (and their parents/carers) provided
consent. The online survey (that also comprised an achievement
test) was administered during a regularly scheduled science
class in 2018. Students completed the instrument on their own.
Teachers were informed they could help students with procedural
aspects of the survey, but not provide assistance in answering
specific questions. The data in this investigation are shared with
Martin et al. (2020a), who conducted a variable-centered study
exploring the extent to which class participation, educational

1There were 2,199 students in the original sample, but we removed students who

did not identify their classroom (n = 90) as this information is necessary for

multi-level analyses. Also removed were classes with fewer than 3 students, as we

considered these class sizes too small to yield reliable estimates at the classroom

level (viz. 38 students from 25 classes; see McNeish, 2014).

aspirations, and enjoyment of school mediated the relationship
between LRI and achievement.

Materials
Indicators for the network of instructional-psychological profiles
were measured by way of instructional cognitive load (load
reduction instruction), psychological challenge orientation (self-
efficacy, growth goals), and psychological threat orientation
(anxiety, failure avoidance goals). These indicators were the
within-network validity variables for this study. The network
of outcome measures was assessed by way of persistence,
disengagement, and achievement. These were the between-
network validity variables for the study.

Instructional Cognitive Load via Load Reduction

Instruction Scale—Short (LRIS-S)
As described inMartin et al. (2020a), the LRIS-S was developed to
measure student perceptions of their teacher’s use of instructional
strategies known to reduce extraneous cognitive load (and
because of this, some intrinsic cognitive load). In the LRIS-S,
the five LRI factors are represented by a single item (the full
LRIS has 5 items for each of the 5 factors; Martin and Evans,
2018). As detailed in Martin et al. (2020a), the factors and items
(adapted to science) are: difficulty reduction (“Whenwe learn new
things in this science class, the teacher makes it easy at first”);
support (“In this science class, the teacher is available for help
when we need it”); practice (“In this science class, the teacher
makes sure we practice important things we learn”); feedback-
feedforward (“In this science class, the teacher provides frequent
feedback that helps us learn”); and independence (“Once we know
what we’re doing in this science class, the teacher gives us a
chance to work independently”). Responses were provided on a
seven-point scale (1 = strongly disagree to 7 = strongly agree).
Reliability for this scale was sound (see Table 1) and ICC = 0.16.
Because the LRIS has an emphasis on reduction of cognitive load,
Martin and Evans (2018) conducted analyses showing that the
scale was significantly negatively associated with intrinsic load
(load referring to task difficulty and complexity) and extraneous
load (load referring to difficulty and complexity of instruction;
Chandler and Sweller, 1991). They concluded that the LRIS
does assess aspects of instruction impacting distinct elements of
cognitive load. Martin et al. (2020a) showed that the reliability of
the LRIS-S at student- and classroom-levels was high and their
doubly-latent multi-level (student and classroom) factor analysis
demonstrated sound fit and yielded strong factor loadings. Thus,
we suggest that student-reported LRIS-S offers valid insights into
the instructional practices relevant to cognitive load.

Psychological Challenge Orientation
Psychological challenge orientation was assessed via self-efficacy
and growth goals. Self-efficacy (4 items; e.g., “If I try hard, I
believe I can do well in this science class”) was measured via
the domain-specific form of the Motivation and Engagement
Scale—High School (MES-HS; Martin, 2007, 2009), validated by
Green et al. (2007). Growth goals (4 items; e.g., “When I do my
science schoolwork I try to do it better than I’ve done before”)
were measured via the domain-specific form of the Personal Best
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TABLE 1 | Descriptive statistics.

Student-level (Level 1; L1) Classroom-level (Level 2; L2)

M SD ω–Coefficient omega M SD ω–Coefficient omega

Profile Network Indicators

LRI 5.284 1.123 0.85 5.298 0.626 0.96

Self-efficacy 5.790 1.025 0.83 5.778 0.529 0.93

Growth Goals 5.202 1.152 0.90 5.200 0.655 0.99

Anxiety 4.113 1.362 0.78 4.168 0.650 0.94

Failure Avoid Goals 3.194 1.396 0.83 3.250 0.665 0.98

Outcome Network

Persistence 5.146 1.105 0.83 5.137 0.614 0.97

Disengagement 2.387 1.332 0.87 2.401 0.765 0.98

Achievement 0.000 1.000 0.79 0.000 1.000 0.86

Achievement is standardized; LRI, load reduction instruction.

Goal Scale (Martin and Liem, 2010), for which Martin and Elliot
(2016a) provided evidence of validity. Responses were provided
on a seven-point scale (1 = strongly disagree to 7 = strongly
agree). Reliability for the scores of both scales was sound (see
Table 1) and ICCs = 0.08 and 0.12 for self-efficacy and growth
goals, respectively.

Psychological Threat Orientation
Psychological threat orientation was assessed via anxiety (4
items; e.g., “When exams and assignments are coming up
for this science class, I worry a lot”) and failure avoidance
goals (4 items; e.g., “Often the main reason I work in this
science class is because I don’t want people to think that
I’m dumb”). Both were from the domain-specific form of the
MES-HS (Martin, 2007, 2009), for which Green et al. (2007)
provided evidence of validity. Responses were provided on a
seven-point scale (1 = strongly disagree to 7 = strongly agree).
Reliability for the scores of both scales was sound (see Table 1)
and ICCs = 0.08 and 0.05 for anxiety and failure avoidance
goals, respectively.

Persistence and Disengagement
In line with Martin et al. (2012), engagement was assessed via the
dual dimensions of “switching on” and “switching off.” Switching
on was operationalized through persistence (4 items; e.g., “If I
can’t understand something in this science class at first, I keep
going over it until I do”). Switching off was operationalized
through disengagement (4 items; e.g., “Each week I’m trying less
and less in this science class”). Both were from the domain-
specific form of the MES-HS (Martin, 2007, 2009), validated by
Green et al. (2007). Responses were provided on a seven-point
scale (1 = strongly disagree to 7 = strongly agree). Reliability for
scores of both scales was sound (see Table 1) and ICCs = 0.12
and 0.17 for persistence and disengagement, respectively.

Achievement
Achievement was measured using 12 questions in an online test
(part of the online survey). Instrument piloting and development
are fully described in Martin et al. (2020a). The test aligned

with the science syllabus applicable to our sample; therefore,
two forms were developed, one based on the Stage 4 (years 7
and 8) state science syllabus and the other based on the Stage 5
(years 9 and 10) state science syllabus. Test questions were set
within the contexts of Physical World, Earth and Space, Living
World, and Chemical World and addressed the following skills:
questioning and predicting, planning investigations, conducting
investigations, processing and analyzing data and information,
and problem solving. Each question was grounded within one of
the abovementioned specific science contexts and there was an
∼30/70 ratio of content-focused to skill-focused questions, with
the easier questions focusing on content and the harder questions
focusing on skill application. All multiple-choice test responses
were recoded as dichotomous (0 = incorrect; 1 = correct).
The correct answers were summed to a total achievement score
(thus, a continuous scale), reflecting something of a formative
construct. Achievement scores were then standardized by year
level (M = 0; SD = 1). The test was reliable, as shown in Table 1

and ICC= 0.37.

DATA ANALYSIS

Analyses were conducted using Mplus 8.60 (Muthén and
Muthén, 2017). The robust maximum likelihood (MLR)
estimator was used in all models. Missing data were
addressed using Full Information Maximum Likelihood
(FIML; Arbuckle, 1996). Confirmatory factor analysis (CFA)
was run at the student-level (and corrected for nesting
within classrooms via the Mplus “COMPLEX” command)
using the standardized factor approach to identification
to obtain student-level factor scores for the five profile
indicators and the three outcomes. The CFA also comprised
background attributes as auxiliary variables—reported in
analyses in Supplementary Materials. Factor scores were
saved and used in the LPAs. The LPA analyses comprised
two phases: single-level LPA (phase 1) and multi-level
LPA (phase 2).
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Single-Level LPA
For the single-level LPA conducted at the student-level (Level
1; L1), we tested a range of solutions involving 1 through 9
profiles. Following Collie et al. (2020), variances and means
were free to differ across profiles and indicator variables;
models were estimated using at least 10,000 random start
values, with 100 iterations and 1,000 final stage optimizations;
and we confirmed that the best log-likelihood value was
replicated for each model. Numerous indices were used
to assess model fit: for the Consistent Akaike Information
Criteria (CAIC), Akaike Information Criteria (AIC), Bayesian
Information Criteria (BIC), and sample-size-adjusted Bayesian
Information Criteria (SSA-BIC), smaller values reflect better fit.
We created elbow plots of the CAIC, AIC, BIC, and SSA-BIC
indices. In these plots, the profile at which point the slope
noticeably flattens is another indicator of an appropriate solution
(Morin et al., 2016). The p-value of the adjusted Lo–Mendell–
Rubin Likelihood Ratio Test (pLMR) enabled comparison of
a k-profile model against a k-1 profile model to determine
if the former profile model yielded a better fit relative to
the latter profile model. We also provide entropy values in
Table 2 as an indicator of classification accuracy. In addition
to fit indices and where appropriate, we applied rules of
parsimony, conceptual relevance, and statistical adequacy to
further ascertain the optimal solution. After identifying the final
network of profiles (the student-level within-network validity
aspect), we then examined the network of academic outcomes
(persistence, disengagement, achievement) as a function of
profile membership (the student-level between-network validity
aspect), controlling for background attributes. Outcomes were
included using the direct approach and compared across profiles
using the Mplus “MODEL CONSTRAINT” option, which
relies on the multivariate delta method for tests of statistical
significance (e.g., Raykov andMarcoulides, 2004). As part of this,
the outcomes were also regressed on participants’ background
attributes, which acted as covariate controls (McLarnon and
O’Neill, 2018).

Multi-Level LPA
In phase 2, we extended the student-level (Level 1, L1) findings
to determine the extent to which classroom-level (Level 2; L2)
profiles could be identified; or, put another way, the extent
to which we could identify classroom profiles characterized by
distinct combinations of the different student profiles. Thus,
phase 2 identified classroom profiles based on the relative
frequency of the various L1 latent profiles. To maintain the
stability of the previously identified student-level profiles (L1),
we used the manual 3-step approach detailed by Litalien et al.
(2019; also see Vermunt, 2010; Morin and Litalien, 2017).
Multi-level LPA solutions (1–9 classroom-level profiles) were
assessed. Following Collie et al. (2020), each model was estimated
using at least 10,000 random start values, 100 iterations, and
1,000 final stage optimizations; replication of the best log-
likelihood value was sought for each model; and the best model
was selected using the same criteria as the single-level LPA
(phase 1), except the pLMR, which is not available for multi-
level LPA. After identifying the network of classroom-level

profiles (the classroom-level within-network validity aspect), we
then examined the network of L2 outcomes (classroom-average
persistence, disengagement, and achievement) as a function
of profile membership by adding classroom-average outcome
variables (using the Mplus cluster mean approach) to the final
best-fitting model (the classroom-level between-network validity
aspect). Outcomes were compared across profiles using theMplus
“MODELCONSTRAINT” option (e.g., Raykov andMarcoulides,
2004).

RESULTS

Preliminary Analyses
Table 1 shows reliability coefficients and descriptive statistics
for the profile indicators and the outcome variables in the
study. These data indicate acceptable reliability. The CFA used
to generate factor scores yielded an excellent fit to the data,
χ
2
= 1,321, df = 378, p < 0.001, CFI = 0.964, TLI = 0.958,

RMSEA = 0.035. Indeed, these preliminary variable-centered
analyses demonstrate sound within-network validity properties
(Marsh, 2002). The resulting correlation matrix is presented in
Supplementary Table 1. These factor scores were then used in
the subsequent LPAs.

Single-Level LPA
The fit statistics for the 1–9-profile solutions are shown in
Table 2 and the elbow plot is shown in Supplementary Figure 1.
In these it is evident that the CAIC, AIC, BIC, and SSA-
BIC decline with each additional profile. There appears to be
slight inflection points around 4, 5, and 6 profiles. Although
we do not rely on the pLMR, it is interesting to note it
supported the 6-profile solution, but it was significant at the p
< 0.01 level—whereas the 4–5-profile solutions were significant
at p < 0.001. In addition, although not relying on minimum
profile size as a decision criterion, we note that the 6-profile
solution had a minimum profile size of <2%, whereas the
5-profile solution had a size of 8%. Taken together, we felt
that additional profiles were theoretically useful and well-
differentiated up to 6 profiles, but the sixth profile presented
a shape that was qualitatively similar (even if it differed
quantitatively) to that of the 5-profile solution. We therefore
proceeded with the 5-profile solution. A graphical representation
of this 5-profile solution is presented in Figure 2. Students
corresponding to profile 1 (8% of students) reported very low
LRI, very low self-efficacy, very low growth goals, neutral anxiety,
and neutral failure avoidance goals. This profile was labeled
Instructionally-Overburdened & Psychologically-Resigned to
reflect very high instructional cognitive load and very low
challenge orientation, indeed somuch so they are not particularly
threatened, but rather resigned. Students corresponding to
profile 2 (30% of students) reported low LRI, low self-efficacy,
low growth goals, high anxiety, and high failure avoidance
goals. This profile was labeled Instructionally-Burdened &
Psychologically-Fearful to reflect modest instructional load, low
challenge orientation, and high threat orientation. Students
corresponding to profile 3 (31% of students) reported above
average LRI, above average self-efficacy and growth goals,
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TABLE 2 | Single-level LPA fit statistics.

1 Profile 2 Profiles 3 Profiles 4 Profiles 5 Profiles 6 Profiles 7 Profiles 8 Profiles 9 Profiles

N 2,071 2,071 2,071 2,071 2,071 2,071 2,071 2,071 2,071

Free Parameters 10 21 32 43 54 65 76 87 98

Log-likelihood −13,965 −12,628 −12,169 −11,871 −11,628 −11,439 −11,309 −11,167 −11,078

CAIC 28,016 25,437 24,614 24,113 23,722 23,439 23,274 23,085 23,002

Akaike (AIC) 27,951 25,298 24,402 23,828 23,365 23,008 22,771 22,509 22,353

Bayesian (BIC) 28,007 25,417 24,582 24,070 23,669 23,375 23,199 22,999 22,905

S-SA BIC 27,975 25,350 24,480 23,934 23,498 23,168 22,958 22,723 22,593

Entropy – 0.782 0.844 0.792 0.782 0.803 0.815 0.815 0.793

pLMR – <0.001 <0.001 <0.001 <0.001 0.002 0.041 0.521 0.341

N, sample size; AIC, Akaike Information Criteria; CAIC, Consistent Akaike Information Criteria; S-SA, Sample-Size Adjusted; BIC, Bayesian Information Criteria; pLMR, Lo–Mendell–Rubin

Likelihood Ratio Test.

and below average anxiety and failure avoidance goals. We
labeled this profile Instructionally-Supported & Psychologically-
Composed to reflect low instructional load, above average
challenge orientation, and below average threat orientation.
Students corresponding to profile 4 (9% of students) reported
very high LRI, very high self-efficacy, very high growth goals,
very low anxiety, and very low failure avoidance goals. We
labeled this profile Instructionally-Optimized & Psychologically-
Self-Assured to reflect the very low cognitive instructional
load, the very high challenge orientation, and the very low
threat orientation. Students corresponding to profile 5 (22% of
students) reported above average scores on each of LRI, self-
efficacy, growth goals, anxiety, and failure avoidance goals. We
labeled this profile Instructionally-Supported & Psychologically-
Pressured to reflect low instructional load as well as dual high
challenge and threat orientations.

We then assessed for differences between profiles
in persistence, disengagement, and achievement
(adjusted for background attribute covariates—see
Supplementary Tables 2A–E for the predictive relationships
between background attributes and the latent profiles). Mean
scores are shown in Table 3. For persistence, findings indicated

that each profile was significantly different from the other.
In ascending order of persistence were: Instructionally-

Overburdened & Psychologically-Resigned (lowest persistence;

M = −1.571), then Instructionally-Burdened & Psychologically-
Fearful (M = −0.375), then Instructionally-Supported &
Psychologically-Composed (M = 0.559), then Instructionally-
Supported & Psychologically-Pressured (M = 0.857), then
Instructionally-Optimized & Psychologically-Self-Assured
(highest persistence;M = 1.407).

For disengagement, findings indicated that with one exception
(Instructionally-Supported & Psychologically-Composed =

Instructionally-Supported & Psychologically-Pressured), each
profile was significantly different from the other. In descending
order of disengagement were: Instructionally-Overburdened
& Psychologically-Resigned (highest disengagement; M =

1.660), then Instructionally-Burdened & Psychologically-
Fearful (M = 0.436), then Instructionally-Supported &
Psychologically-Composed and also Instructionally-Supported

& Psychologically-Pressured (M = −0.683 and M =

−0.743, respectively), then Instructionally-Optimized
& Psychologically-Self-Assured (lowest disengagement;
M =−1.231).

For achievement, findings indicated that with one exception
(Instructionally-Overburdened & Psychologically-Resigned
= Instructionally-Burdened & Psychologically-Fearful),
each profile was significantly different from the other.
In ascending order of achievement were: Instructionally-
Overburdened & Psychologically-Resigned and also
Instructionally-Burdened & Psychologically-Fearful (lowest
achievement; M = −0.590 and M = −0.409, respectively),
then Instructionally-Supported & Psychologically-Pressured (M
= 0.054), then Instructionally-Supported & Psychologically-
Composed (M = 0.089), then Instructionally-Optimized &
Psychologically-Self-Assured (highest achievement; M = 0.430).

Multi-Level LPA
The fit statistics for the multi-level LPA solutions are reported
in Table 4 (the elbow plot is shown in Supplementary Figure 2).
Here 1–9-profile solutions are presented. The 2-profile solution
resulted in the consistently lowest value for the fit indices,
but there was some further flattening on other indices at the
third profile. Also, as described below, the 3-profile solution
yielded a group that separated classrooms in qualitatively
distinct ways that was beyond what was possible in a 2-
profile solution that (as it turned out, and is described
below) could not differentiate a Striving profile, from Thriving
and Struggling profiles. Moreover, this additional profile
constituted a sizeable subpopulation (22%). Morin et al.
(2017) emphasize the importance of ensuring that each profile
adds conceptually and practically meaningful information to
a solution. Thus, while recognizing aspects of fit suggest
a 2-profile solution, we concluded there was substantive
and practical yield in the additional profile. Accordingly, a
solution with 3 classroom-level profiles was selected as the
final solution.

A graphical representation of this final 3-profile solution is
presented in Figure 3. Examination of this 3-profile solution
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FIGURE 2 | Single-level LPA results: Instructional-psychological profile names, profile means, and % of sample.

TABLE 3 | Means (SEs and 95% CIs) on dependent variables for each instructional-psychological profile.

Persistence Disengagement Achievement

Mean SE 95% CI Mean SE 95% CI Mean SE 95% CI

Instructionally-Overburdened &

Psychologically-Resigned

−1.571a 0.097 −1.762 −1.381 1.660a 0.088 1.487 1.834 −0.590a 0.146 −0.876 −0.304

Instructionally-Burdened &

Psychologically-Fearful

−0.375b 0.076 −0.524 −0.227 0.436b 0.056 0.328 0.545 −0.409a 0.118 −0.640 −0.179

Instructionally-Supported &

Psychologically-Composed

0.559c 0.074 0.414 0.704 −0.683c 0.060 −0.800 −0.567 0.089b 0.115 −0.136 0.313

Instructionally-Optimized &

Psychologically-Self-Assured

1.407d 0.072 1.222 1.549 −1.231d 0.040 −1.335 −1.152 0.430c 0.119 0.123 0.664

Instructionally-Supported &

Psychologically-Pressured

0.857e 0.074 0.711 1.003 −0.743c 0.061 −0.862 −0.625 0.054d 0.116 −0.174 0.281

Different superscripts in a given column indicate a significant difference between means at p < 0.05; SE, standard error; CI, confidence interval.

suggested the presence of one Struggling classroom profile
(22% of the classrooms), one Striving classroom profile
(36% of the classrooms), and one Thriving classroom (42%
of classrooms). The Struggling classroom had the highest
proportion of students from the Instructionally-Overburdened
& Psychologically-Resigned (19%) and Instructionally-Burdened
& Psychologically-Fearful (49%) profiles. The Striving
classroom included a high proportion of students from the
Instructionally-Supported & Psychologically-Pressured (31%),
Instructionally-Burdened & Psychologically-Fearful (33%),
and Instructionally-Overburdened & Psychologically-Resigned
(10%) profiles. The Thriving classroom had the highest
proportion of students from the Instructionally-Optimized &
Psychologically-Self-Assured (29%) profile, along with a high
proportion of students from the Instructionally-Supported &

Psychologically-Composed (14%) and Instructionally-Supported
& Psychologically-Pressured (38%) profiles.

We then assessed for differences between classroom profiles in
classroom-average persistence, disengagement, and achievement.
Results are shown in Table 5. For classroom-average persistence,
each classroom profile was significantly different from the
other. In ascending order of classroom-average persistence
were: the Struggling classroom (lowest persistence; M =

−0.610), then the Striving classroom (M = −0.068), then
the Thriving classroom (highest persistence; M = 0.422).
For classroom-average disengagement, each classroom profile
was significantly different from the other. In descending
order of classroom-average disengagement were: the Struggling
classroom (highest disengagement; M = 0.705), then the
Striving classroom (M = 0.048), then the Thriving classroom
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TABLE 4 | Multi-level LPA fit statistics.

1 Profile 2 Profiles 3 Profiles 4 Profiles 5 Profiles 6 Profiles 7 Profiles 8 Profiles 9 Profiles

N 2,071 2,071 2,071 2,071 2,071 2,071 2,071 2,071 2,071

Free Parameters 4 9 14 19 24 29 34 39 44

Log-likelihood −3,061 −3,003 −2,994 −2,989 −2,987 −2,982 −2,981 −2,981 −2,982

CAIC 6,157 6,084 6,109 6,142 6,181 6,214 6,256 6,299 6,344

Akaike (AIC) 6,131 6,025 6,016 6,017 6,023 6,022 6,030 6,041 6,053

Bayesian (BIC) 6,153 6,075 6,095 6,124 6,158 6,185 6,222 6,261 6,301

S-SA BIC 6,141 6,047 6,050 6,064 6,082 6,093 6,114 6,137 6,161

Entropy 0.669 0.664 0.687 0.655 0.617 0.633 0.607 0.662 0.649

N, sample size; AIC, Akaike Information Criteria; CAIC, Consistent Akaike Information Criteria; S-SA, Sample-Size Adjusted; BIC, Bayesian Information Criteria.

FIGURE 3 | Multi-level LPA results showing the classroom-level instructional-psychological profiles.

(lowest disengagement; M = −0.427). For classroom-average
achievement, with one exception (Striving = Thriving), each
classroom profile was significantly different from the other.
In ascending order of classroom-average achievement were:
the Struggling classroom (lowest achievement; M = −0.498),
then the Striving classroom (M = −0.032), then the Thriving
classroom (highest achievement; M = 0.182)—but as noted, the
latter two classroom profiles were not significantly different from
each other in achievement (see Table 5).

DISCUSSION

To best understand instructional cognitive load, we have
emphasized the importance of assessing it in novel ways to
reveal how different students perceive and experience this
load. We have further emphasized the importance of utilizing
cutting-edge analytic approaches that are appropriate to assessing
these novel instrumentations. Integrating cognitive load theory
and cognitive appraisal theory, we hypothesized that some
students are likely to perceive cognitive load in an approach-
and challenge-oriented way, and other students are likely to

perceive cognitive load in an avoidant- and threat-oriented
way. To the extent this is the case, we suggested that to
further understand instructional cognitive load (by way of
load reduction instruction; LRI) it is important to do so by
also assessing students’ accompanying psychological challenge
and threat orientations. Adopting a novel person-centered
construct validity perspective, we used latent profile analysis
(LPA) to identify the network of instructional-psychological
profiles based on students’ reports of instructional load (LRI) and
their accompanying psychological challenge orientations (self-
efficacy and growth goals) and psychological threat orientations
(anxiety and failure avoidance goals)—student-level within-
network validity. Moreover, because students in our study
were nested within (science) classrooms, we expanded our
analyses to also conduct multilevel LPA to identify a network
of student- and classroom-level instructional-psychological
profiles—classroom-level within-network validity. We assessed
student- and classroom-level between-network validity by
investigating associations between the network of derived profiles
and the network of student- and classroom-level persistence,
disengagement, and achievement outcome variables.
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TABLE 5 | Means (and SEs and 95% CIs) on dependent variables for each instructional-psychological profile.

Persistence Disengagement Achievement

Mean SE 95% CI Mean SE 95% CI Mean SE 95% CI

Struggling Classrooms −0.610a 0.085 −0.776 −0.443 0.705a 0.101 0.506 0.903 −0.498a 0.067 −0.630 −0.367

Thriving Classrooms 0.422b 0.048 0.329 0.515 −0.427b 0.037 −0.500 −0.354 0.182b 0.072 0.042 0.322

Striving Classrooms −0.068c 0.074 −0.213 0.077 0.048c 0.086 −0.120 0.215 −0.032b 0.115 −0.257 0.194

Different superscripts in a given column indicate a significant difference between means at p < 0.05; SE, standard error; CI, confidence interval.

Summary of Findings
At the student-level, we identified five instructional-motivational
profiles that represented different presentations of instructional
cognitive load, challenge orientation, and threat orientation:
Instructionally-Overburdened & Psychologically-Resigned
students (8% of students), Instructionally-Burdened &
Psychologically-Fearful students (30%), Instructionally-
Supported & Psychologically-Composed students (31%),
Instructionally-Optimized & Psychologically-Self-Assured
students (9%), and Instructionally-Supported & Psychologically-
Pressured students (22%). As we describe below, these conform
to established theoretical perspectives and thus offer a student-
level within-network validation perspective on the nomological
network of instructional cognitive load in terms of underlying
instructional-psychological orientations. We also demonstrated
student-level between-network validity in that these profiles
were significantly different in persistence, disengagement, and
achievement (beyond the role of background attributes)—with
the Instructionally-Overburdened & Psychologically-Resigned
profile reflecting the most maladaptive outcomes and the
Instructionally-Optimized & Psychologically-Self-Assured
profile reflecting the most adaptive outcomes. In multilevel
LPAs, we identified three instructional-psychological profiles
among classrooms that varied in terms of instructional cognitive
load, challenge orientations, and threat orientations: Striving
classrooms (36% of the classrooms), Thriving classrooms (42%),
and Struggling classrooms (22%). In terms of classroom-level
between-network validity, we found that classroom profiles
were significantly different in their levels of persistence,
disengagement, and achievement—with Struggling classrooms
reflecting the most maladaptive outcomes and Thriving
classrooms reflecting the most adaptive outcomes, but, notably,
equal to the Striving classrooms in achievement.

Findings of Particular Note
In numerous ways this study offers novel contributions to
the assessment of instructional cognitive load, including: its
person-centered perspective elucidating theoretically plausible
student profiles based on their experience of cognitive load
and their psychological orientations, the multilevel validity
of the Load Reduction Instruction Scale-Short (LRIS-S) in
person-centered analyses, and the validity of the links between
profiles and academic outcomes. We suggest that findings hold
implications for better assessing and understanding students
and classrooms in terms of the cognitive load they experience
through instruction. Specifically, the results show that assessing

instructional load in the context of students’ accompanying
psychological orientations can reveal unique insights about
students’ learning experiences and about important differences
between classrooms in terms of the instructional load that
is present.

The findings supported one of the central premises of this
study—namely, that similar levels of perceived instructional load
can be accompanied by different levels of perceived challenge
and threat. For example, at the student-level we identified two
profiles that can be considered instructionally-supported but
who varied in their accompanying psychological orientations.
Specifically, the Instructionally-Supported & Psychologically-
Composed profile experienced moderate levels of LRI, moderate
challenge orientation and low threat orientation, whereas
the Instructionally-Supported & Psychologically-Pressured
profile experienced moderate LRI and challenge orientation
but also moderate levels of threat orientation. These two
profiles were also significantly different in persistence and
achievement outcomes (but not disengagement), with the
former profile scoring higher than the latter profile. This is
notable because it shows that students with similar levels of
instructional load can have different psychological experiences
(i.e., differing levels of challenge and threat) that yield significant
differences in academic outcomes. This underscores the yield of
assessing instructional load in the context of other potentially
influential accompanying factors. This requires assessment
and analytic approaches that can disentangle students who
perceive similar levels of instructional load but who vary
on other factors (in our study, psychological challenge and
threat orientations).

The Instructionally-Supported & Psychologically-Pressured
profile was further illuminating in that it confirmed the existence
of the contended dual challenge-threat orientation (or, approach-
avoidance motive). As noted earlier, recent reviews of challenge-
threat orientations have suggested the dual presence of both
challenge and threat among some individuals (Uphill et al.,
2019; see also Rogat and Linnenbrink-Garcia, 2019 for dual
goals under approach-avoidance goal frameworks). In the case
of our study, in the presence of instructional load there
were some students who also reported dual challenge and
threat orientations—that is, they believed they are up to the
challenge of task burden but are also fearful of failure or poor
performance, somewhat akin to the “overstrivers” described
earlier (Covington, 2000; Martin and Marsh, 2003). Essentially,
in the context of instructional load they perceive both an
opportunity to succeed and a risk they may fail. Accordingly,
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we identified these students as Psychologically-Pressured because
even though they reflected a challenge orientation, there
was an accompanying fear and avoidance (threat) inclination.
Moreover, despite their threat orientation, the presence of
a concomitant challenge orientation meant they experienced
higher academic outcomes relative to the Instructionally-
Overburdened & Psychologically-Resigned students and the
Instructionally-Burdened & Psychologically-Fearful students.
Nonetheless, the dual presence of challenge-threat orientations
experienced by the Psychologically-Pressured profile represented
a tension that we contend held them back from the more optimal
academic outcomes seen in the Psychologically-Composed and
Psychologically-Self-Assured profiles; this aligns with recent
research that similarly demonstrates that the benefits of challenge
orientation can be thwarted when there are similarly high rates of
threat (Burns et al., 2020a).

Another interesting finding was that the highest instructional
cognitive load (i.e., the lowest LRI scores) was not accompanied
by the highest levels of threat orientation. Specifically, the
Instructionally-Overburdened & Psychologically-Resigned
students reflected lower levels of anxiety and failure avoidance
goals than the Instructionally-Burdened & Psychologically-
Fearful students and the Instructionally-Supported &
Psychologically-Pressured students. It seems that in conditions
where the instructional load is most poorly managed (evidenced
by the lowest LRI scores), students may abandon any investment
in the lesson. According to self-worth theory (Covington, 2000),
when students abandon motivationally aversive conditions there
can be an alleviation of anxiety and fear as their competence
and academic self-worth are no longer “on the line” and under
threat. Importantly, however, as they abandon their investment
in cognitively burdensome instruction, their academic outcomes
also decline—as evidenced by their significantly lower levels of
persistence and significantly higher levels of disengagement.

Interestingly, the Instructionally-Overburdened &
Psychologically-Resigned students and the Instructionally-
Burdened & Psychologically-Fearful students were not
significantly different in achievement. Even though the
latter profile did not experience such depths of burdensome
instruction, this did not yield an achievement advantage
for them. Here we again point out the importance of
assessing accompanying challenge and threat orientations
to understand potentially counter-intuitive effects of instruction
on achievement: in this study, it unearthed the fact that
Instructionally-Overburdened students were not significantly
different in achievement than the Instructionally-Burdened
students. The former profile was Psychologically-Resigned
whereas the latter profile was Psychologically-Fearful. Again
drawing on self-worth theory (Covington, 2000), when students
abandon investment in a task demand there can be a concomitant
alleviation of anxiety and fear (discussed above) that may mean
their performance can be on a par with students who are still
invested in the task demand but who are highly anxious and
fearful. This is yet another example of how dually assessing
instructional cognitive load and psychological orientations
can help us better understand instructional effects—namely,
assessing concomitant challenge and threat orientations has

allowed us to understand why two profiles who differ in
instructional load are similar in achievement.

Another novel contribution by this study involved the
multilevel analyses that enabled us to identify distinct types
of classrooms differentiated in terms of how they varied
in instructional load (LRI) and accompanying challenge and
threat orientations. Here we unearthed three classroom profiles:
Struggling, Striving, and Thriving classrooms. The Struggling
classrooms were predominated by a majority of students
experiencing significant instructional cognitive (over)load and
psychological detachment or fear. In contrast, the Thriving
classrooms had almost no students who were cognitively
(over)loaded and a majority of students with adaptive challenge
orientations. These two classroom profiles may be considered
somewhat predictable from a binary perspective, but the
third classroom profile (the Striving classroom) was more
nuanced and represents both cautionary and aspirational
possibilities: cautionary in the sense that if not instructionally-
and psychologically-supported, these Striving classrooms risk
devolving to Struggling classrooms—but aspirational in that if
they are better instructionally- and psychologically-supported,
they can elevate to Thriving classrooms. Where the Striving
and Thriving classrooms seemed to differ most was in the
number of Psychologically-Self-Assured and Psychologically-
Composed students (43% of Thriving classrooms; 26% of Striving
classrooms)—the implication being that educators would do
well to shift students “up” from the Psychologically-Pressured
profile to the Psychologically-Self-Assured and Psychologically-
Composed profiles. How they can do this is now the focus
of discussion.

Implications for Instructional Assessment,
Evaluation, and Practice
The findings of this investigation hold implications for
instructional assessment, evaluation, and practice. For
instructional assessment and evaluation, the study has further
demonstrated the validity of instrumentation that enables
students to report on the extent to which instruction manages
the cognitive load on them as they learn. The Load Reduction
Instruction Scale (LRIS; and its brief form, Load Reduction
Instruction Scale-Short, LRIS-S) is a student reporting tool that
has been purposefully developed for in-class assessment of LRI.
To date the LRI has been usefully employed in variable-centered
research, and the present study has now revealed its utility in
person-centered analyses. Furthermore, because the LRIS is
completed in class, if enough classrooms are present in a study
(as there were in our study), it can be used in multilevel analyses
to gain a sense of LRI at the whole-class level. We therefore
encourage the use of tools that enable in-class assessment of
load-reducing instruction by students. Indeed, as Martin and
Evans (2018) suggested, the LRIS may also be adapted to have
teachers reflect on and attend to their own instructional practice.

Also on the matter of instructional assessment and evaluation,
person-centered analyses enabled insights into how different
subpopulations of students may be similar in LRI but differ
in their accompanying challenge-threat orientations—and how
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students may differ in LRI but be similar in challenge-threat
orientations. We therefore recommend that more studies assess
instructional cognitive load using person-centered approaches
in order to elucidate important (and sometimes quite nuanced)
subpopulations of students that would otherwise be masked
in variable-centered research. This will require administering
instrumentation that can assess accompanying aspects of the
learner. We did so via measures of inferred challenge orientation
(self-efficacy, growth goals) and threat orientation (anxiety,
failure avoidance goals). However, there are other indicators of
challenge and threat orientations, such as affective dimensions
reflecting perceived challenge-threat (e.g., enjoyment, hope,
frustration, depression, anger, boredom, etc.; Pekrun, 2006).

In terms of educational practice, because the LRIS is founded
on (and assesses) an instructional framework comprising five
key principles, educators can be quite specifically guided in
professional learning targeting these instructional principles.
Martin et al. (2020a; see also Martin, 2016; Martin and Evans,
2018, 2019) have described numerous pedagogical strategies
that follow from the five principles of LRI. For example, to
reduce difficulty in the initial stages of learning as appropriate
to the learner’s prior knowledge (principle #1), they suggest
pre-testing to gain a sense of where to pitch content, pre-
training, and segmenting (or, “chunking”) (Pollock et al., 2002;
Mayer and Moreno, 2010; Delahay and Lovett, 2019). For
support and scaffolding (principle #2), suggestions include
structured templates, worked examples, prompting, and advance
and graphic organizers (e.g., Renkl and Atkinson, 2010; Sweller,
2012; Berg and Wehby, 2013; Renkl, 2014; Hughes et al., 2019).
For sufficient practice (principle #3), deliberate practice and
mental rehearsal have been recommended (e.g., Ginns, 2005;
Purdie and Ellis, 2005; Nandagopal and Ericsson, 2012; Sweller,
2012). For feedback-feedforward (principle #4), corrective and
improvement-oriented information has been proposed (e.g.,
Basso and Belardinelli, 2006; Hattie and Timperley, 2007;
Shute, 2008; Hattie, 2009; Martin and Evans, 2018). For more
independent and self-directed learning (principle #5), guided
discovery learning has been suggested (e.g., Mayer, 2004).

There are also strategies that can foster students’ challenge
orientations and reduce their threat orientations. For the former,
self-efficacy and growth goals were the means through which we
inferred challenge orientation, and these have distinct practice
implications. For self-efficacy, educators might encourage
students to challenge any negative self-beliefs, especially when
they are faced with difficult academic tasks (Wigfield and Tonks,
2002). Reminding students of their strengths and reiterating
what they have already learned can also enhance self-efficacy
(Higgins et al., 2001; Martin et al., 2019). Regarding growth
goals, intervention research has demonstrated that encouraging
students to set self-improvement targets (personal best goals)
and teaching them how to strive to meet these targets are
successful strategies (e.g., Martin and Elliot, 2016b; Ginns et al.,
2018).

Anxiety and failure avoidance goals were the means through
which we inferred students’ threat orientation, and these also
have distinct practice implications. For anxiety, there are three
types of programs that tend to be offered in schools: universal

programs targeting all students, selective programs targeting
students at-risk of anxiety at clinical levels, and specific programs
targeting students who have clinical levels of anxiety (Martin
et al., 2021).Within each of these programs, cognitive–behavioral
approaches tend to be successful (Neil and Christensen, 2009);
here, students are specifically taught cognitive and behavioral
strategies for anxiety reduction, especially for times and
circumstances when anxiety is likely to strike. The use of
mindfulness techniques by educators with students is another
suggested strategy to reduce anxiety. In similar vein, growth
mindset intervention has been found to improve individuals’
stress and threat appraisals (Yeager et al., 2016). Mindfulness
intervention benefits for students with negative self-beliefs have
also been highlighted in several studies and reviews (Weare, 2013;
Sibinga et al., 2015; McKeering and Hwang, 2019). To address
students’ inclination to adopt failure avoidance goals, educators
are urged to reduce students’ fear of failure (Covington, 2000;
Martin and Marsh, 2003; Martin, 2007, 2009). Practical strategies
to do this include promoting the belief that effort underpins self-
improvement and does not imply a lack of ability or intelligence
and making it clear that mistakes can be important ingredients
for future success and do not reflect poorly on one’s self-worth
(Covington, 2000; Martin and Marsh, 2003).

Limitations and Future Directions
When interpreting findings there are some limitations worth
noting and which have implications for future research. First, this
study relied on student reports of LRI, via the LRIS. Although the
validity of this methodology has previously been demonstrated
(e.g., Martin and Evans, 2018) and the psychometrics in the
present study were acceptable, future research might include
additional indicators such as observer ratings or self-reports by
teachers to triangulate with student ratings. Second, we used
the short form of the LRIS, which meant we could not estimate
latent profiles on the basis of the 5 LRI principles considered
separately. Future research should consider this possibility and
also (using the long form) look to estimate classroom profiles
(L2) characterized by different levels on these 5 principles (rather
than reflecting different frequencies of the L1 profiles). For
example, starting from multilevel CFA models, L2 factor scores
(corrected for inter-rater disagreement) can be saved, enabling
more objective ratings of the classroom. Then the L1 and L2
factor scores from this model can be used to separately estimate
L1 and L2 profiles. Third, there may be instructional principles
that effectively manage cognitive load on learners, but which are
not in the LRI framework. To the extent additional principles are
identified and can be validly assessed, we recommend including
them in future research. Fourth, our data were cross-sectional
which means, for example, that we were unable to determine
causal ordering between the profiles and the outcomes, nor
whether student and classroom profile memberships change over
time. Longitudinal data and modeling (e.g., latent transition
analysis) will be an important avenue in future research (Collie
et al., 2020). Fifth, our study included self-efficacy and growth
goals to infer challenge orientation and anxiety and failure
avoidance goals to infer threat orientation. There is a need for
research that assesses other indicators of challenge and threat to
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test the generality of our findings. For example, testing affective
dimensions of perceived challenge-threat such as enjoyment,
frustration, anger, boredom, etc. (Pekrun, 2006) and other
challenge/approach-oriented goals such as mastery goals (Elliot,
2006) may be illuminating. There may also be potential gains in
harnessing bio-psychological measures of challenge and threat
in order to access real-time and more objective measures for
further triangulation (Uphill et al., 2019; Martin et al., 2021).
Neuro-psychological measures may additionally provide real-
time indicators of experienced cognitive load. These may have
the potential to deepen evaluation and understanding of LRI and
its associations with challenge and threat demonstrated in this
research (Berka et al., 2007; Anderson et al., 2011; Delahunty
et al., 2018). Sixth, our research took place in science which
is a challenging school subject (Coe et al., 2008) and one in
which many students can struggle (Office of the Chief Scientist,
2014). Threat orientation may be disproportionately salient in
such subjects. There is a need to explore the generalizability of
our findings to other school subjects. Indeed, there is a need for
research in non-science school subjects because it may be that
science is more (or less) amenable to LRI. Finally, when testing
for profiles in which accompanying indicators are hypothesized
to be present, future research might give greater attention to real-
time research methodologies. The in-situ dimensions of students’
science engagement have been emphasized by researchers (e.g.,
Schneider et al., 2016) and the empirical yields of real-time
engagement research has been demonstrated in other STEM
subjects such as mathematics (Martin et al., 2020b).

CONCLUSION

Instructional cognitive load is perceived and experienced in
different ways by different students. Some students perceive
cognitive load in an approach- and challenge-oriented way,
while other students perceive cognitive load in an avoidant- and
threat-oriented way. To better understand instructional cognitive
load, it is important to assess students’ experiences of this
load in the context of their accompanying psychological
challenge and threat orientations. The present study did so
using multilevel latent profile analysis and identified numerous
instructional-psychological profiles among students and also
salient instructional-psychological profiles among classrooms.
These profiles were further illuminated through their associations
with student- and classroom-level persistence, disengagement,
and achievement. The findings of this investigation have
demonstrated that assessing instructional cognitive load in the
context of students’ accompanying psychological orientations

can reveal unique insights about students’ learning experiences
and about important differences between classrooms in terms of
the instructional cognitive load that is present.
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Comparing Two Subjective Rating
Scales Assessing Cognitive Load
During Technology-Enhanced STEM
Laboratory Courses
Michael Thees1*, Sebastian Kapp1, Kristin Altmeyer2, Sarah Malone2, Roland Brünken2 and
Jochen Kuhn1

1Department of Physics, Physics Education Research Group, Technische Universität Kaiserslautern, Kaiserslautern, Germany,
2Department of Education, Saarland University, Saarbrücken, Germany

Cognitive load theory is considered universally applicable to all kinds of learning scenarios.
However, instead of a universal method for measuring cognitive load that suits different
learning contexts or target groups, there is a great variety of assessment approaches.
Particularly common are subjective rating scales, which even allow for measuring the three
assumed types of cognitive load in a differentiated way. Although these scales have been
proven to be effective for various learning tasks, they might not be an optimal fit for the
learning demands of specific complex environments such as technology-enhanced STEM
laboratory courses. The aim of this research was therefore to examine and compare the
existing rating scales in terms of validity for this learning context and to identify options for
adaptation, if necessary. For the present study, the two most common subjective rating
scales that are known to differentiate between load types (the cognitive load scale by
Leppink et al. and the naïve rating scale by Klepsch et al.) were slightly adapted to the
context of learning through structured hands-on experimentation where elements such as
measurement data, experimental setups, and experimental tasks affect knowledge
acquisition. N � 95 engineering students performed six experiments examining basic
electric circuits where they had to explore fundamental relationships between physical
quantities based on the observed data. Immediately after the experimentation, the
students answered both adapted scales. Various indicators of validity, which
considered the scales’ internal structure and their relation to variables such as group
allocation as participants were randomly assigned to two conditions with a contrasting
spatial arrangement of the measurement data, were analyzed. For the given dataset, the
intended three-factorial structure could not be confirmed, and most of the a priori-defined
subscales showed insufficient internal consistency. A multitrait–multimethod analysis
suggests convergent and discriminant evidence between the scales which could not
be confirmed sufficiently. The two contrasted experimental conditions were expected to
result in different ratings for the extraneous load, which was solely detected by one
adapted scale. As a further step, two new scales were assembled based on the overall
item pool and the given dataset. They revealed a three-factorial structure in accordance
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with the three types of load and seemed to be promising new tools, although their
subscales for extraneous load still suffer from low reliability scores.

Keywords: cognitive load, differential measurement, rating scale, validity, split-attention effect, STEM laboratories,
multitrait–multimethod analysis

INTRODUCTION

Experimentation in laboratory-like environments is an integral
aspect of higher science education (Trumper, 2003; Hofstein and
Lunetta, 2004; Lunetta et al., 2005). Guided by a predefined task,
learners manipulate experimental setups and observe scientific
phenomena in order to explore or verify functional relationships
between specific quantities in interaction with their theoretical
background (American Association of Physics Teachers, 2014;
Lazonder and Harmsen, 2016). Although this inquiry-based
format allows for unique hands-on learning experiences,
various empirical studies revealed contrary results concerning
the learning gain of laboratory courses (Volkwyn et al., 2008;
Zacharia and Olympiou, 2011; de Jong et al., 2013; Wilcox and
Lewandowski, 2017; Husnaini and Chen, 2019; Kapici et al.,
2019). In response, technology-based approaches are applied
to support students during experimentation and thereby
ensure essential learning and raise the effectiveness of
experimentation as a learning scenario (de Jong et al., 2013;
Zacharia and de Jong, 2014; de Jong, 2019; Becker et al., 2020).

The most common way to evaluate the effectiveness of new
approaches is to apply conceptual knowledge tests to measure
learning gains based on content-related knowledge (Etkina et al.,
2006; Vosniadou, 2008; de Jong, 2019). However, this procedure
does not account for learning as a complex cognitive process.
Since the focus of conceptual knowledge tests is merely on
learning outcomes, it remains unclear whether and how the
learning effects could be further increased and learning
processes made more efficient. This gap is closed by
considering cognitive load theory (CLT; Sweller et al., 1998,
2019; Sweller, 2020), which provides a useful framework to
describe learning in terms of information processing and
which respects human cognitive architecture as well as
learners’ prior knowledge and the demands of the instruction.
Hence, to evaluate the effects of a learning scenario, investigations
should not only solely consider the effectiveness in terms of
higher scores in knowledge tests but also the efficiency in terms of
an optimal level of cognitive demands. This integration of
cognitive processes as a key element of learning scenarios
requires sensitive and valid measurement instruments to
determine the cognitive load.

CLT outlines the working memory and the long-termmemory
as those entities that are central for processing information and
building up knowledge structures (Sweller et al., 1998, Sweller
et al., 2019) called schemata (Sweller et al., 1998). Already stored
knowledge can be retrieved from long-term memory to support
information processing in working memory. While the long-term
memory is considered permanent and unlimited in terms of
capacity, working memory is limited by the number of
information elements that can be processed simultaneously

(Baddeley, 1992; Sweller et al., 1998, Sweller et al., 2019;
Cowan, 2001). Consequently, learners cannot process
information with any desired complexity, which means that to
ensure successful learning, this limited capacity should be
respected. Any processing of information requires mental
processes that consume working memory capacity, which is
called cognitive load. CLT distinguishes three types of
cognitive load (Sweller, 2010; Sweller et al., 1998, Sweller et al.,
2019): intrinsic cognitive load (ICL), extraneous cognitive load
(ECL), and germane cognitive load (GCL). ICL is related to the
complexity of the learning content and depends on the learner’s
prior knowledge as already built-up schemata reduce the number
of elements that must be processed simultaneously in working
memory. ECL refers to processes that are not essential and
therefore hamper learning such as searching for relevant
information within the environment or maintaining pieces of
information in mind over a longer time (Mayer and Moreno,
2003). GCL represents the amount of cognitive resources devoted
to processing information into knowledge structures. The
amount of ECL imposed by a task affects the remaining
resources that can be devoted to germane processing. Current
theoretical considerations suggest that GCL cannot be essentially
distinguished from ICL as both are closely related to processes of
schema acquisition (Kalyuga, 2011; Jiang and Kalyuga, 2020). As
a consequence, a reinterpretation of CLT as a two-factor model
(ICL/ECL) is discussed. GCL is integrated into this model as a
function of working memory resources needed to deal with the
ICL of a task instead of representing an independent source of
working memory load (Sweller, 2010; Sweller et al., 2019).

One of the main goals of CLT is to derive design guidelines for
learning materials and environments that ensure that learning
processes can proceed efficiently and undisturbed by irrelevant
processing steps (Sweller et al., 2019). This can be achieved by
removing unnecessary and distracting information as well as by a
reasonable presentation format to avoid split-attention that
consumes cognitive capacities and impairs essential learning
(Mayer and Moreno, 1998; Ayres and Sweller, 2014).
Therefore, elements of information that need to be associated
with each other in learning should be presented without delay and
in spatial proximity as described by the multimedia design
principles of temporal and spatial contiguity (Mayer and
Fiorella, 2014). These principles are empirically proven to
reduce ECL and support learning in multimedia learning
scenarios (Schroeder and Cenkci, 2018).

Scientific experimentation in STEM laboratory courses is
assumed to be a highly complex learning scenario since
learners are confronted with numerous sources of information
such as experimental setups and measurement data which are
presented in various representational forms. Although most of
the given elements are typical features of the laboratory situation,
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not all of them are essential for the learning process. As CLT is
considered universal and applicable to various learning scenarios,
its framework can also be applied to laboratory courses (Thees
et al., 2020).

Since cognitive load has rarely been seen as a main variable to
investigate the impact of hands-on laboratory courses, there
existed no valid measurement instruments that 1) addressed
the aforementioned characteristics of scientific hands-on
experimentation including context-specific load-inducing
sources and 2) provided results that allowed for a
differentiated interpretation of the three load types. Former
investigations by Kester et al. (Kester et al., 2005; Kester et al.,
2010) used the one-item scale by Paas (1992) in the context of
virtual science experiments, i.e., screen-based electricity
simulations, to rate mental effort as a measure of cognitive
load. There, the authors revealed higher transfer performance
for learning with integrated rather than split-source formats.
However, no differences concerning mental effort were found,
which could be due to the limitations of the one-item cognitive
load measurement (Kester et al., 2010). We intended to address
this gap for real hands-on experiments by considering existing
instruments that are known to differentiate load types and
adapting them to fit the context of lab courses.

Even though current theoretical approaches integrate GCL in
a dual intrinsic-extraneous load typology of cognitive load,
Klepsch et al. (2017) argued that creating supportive learning
scenarios requires a comprehensive understanding of task-related
aspects of cognitive load (ICL/ECL) as well as of a learner’s
deliberately devoted germane resources (GCL) and their
interactions. On these grounds, a differentiated measurement
of cognitive load capturing its three-partite nature is still
considered expedient.

The search for adequate instruments to measure the three
types of cognitive load has a long history in cognitive load
research. The most common approaches use subjective rating
scales where participants rate their perceived cognitive load by
evaluating their agreement with predefined statements (Brünken
et al., 2003; Krell, 2017; Jiang and Kalyuga, 2020). There exist
essentially two different rating scales that are proven to
differentially measure the three types of load. These are the
cognitive load scale (CLS; 10-item questionnaire) developed by
Leppink et al. (2013) and the (second version of the) naïve rating
scale (NRS; 8-item questionnaire) by Klepsch et al. (2017). Both
scales were applied in various learning contexts (Leppink et al.,
2014; Altmeyer et al., 2020; Andersen and Makransky, 2021a;
Andersen and Makransky, 2021b; Becker et al., 2020; Kapp et al.,
2020; Klepsch and Seufert, 2020, Klepsch and Seufert, 2021;
Skulmowski and Rey, 2020; Thees et al., 2020), while the
reliability of the subscales and the valid measurement of the
three load types were confirmed multiple times (Klepsch et al.,
2017; Becker et al., 2020; Klepsch and Seufert, 2020; Thees et al.,
2020; Andersen and Makransky, 2021a; Andersen and
Makransky, 2021b). However, their application in different
contexts usually requires moderate adaptations.

With the objective of identifying an appropriate scale to
measure the three types of cognitive load in the complex
context of STEM laboratory courses, we adapted two existing

cognitive load scales. We based our work on the original scales as
presented in Leppink et al. (2013) and Klepsch et al. (2017) as well
as former adaptations of the CLS in the target context by Thees
et al. (2020). In this process, both scales were adapted regarding
terminology and partly extended to take various characteristics of
the laboratory environment into account. Although these
adaptations are highly plausible, they require empirical,
evidence-based validation of the resulting scales in the
intended learning context. Accordingly, the main research
question of the present study was whether the adapted scales
can be considered as valid measurement instruments of cognitive
load for the context of STEM laboratory courses.

Validity is defined as the appropriateness of interpreting test
scores in an intended manner (Kline, 2000; AERA et al., 2011;
Kane, 2013). The presented analyses followed the concepts given
by the Standards for Educational and Psychological Testing
(AERA et al., 2011) where the overall evidence for validity is
based on considering multiple sources of evidence such as
content, internal structure, relation to other variables, and
response processes. As mentioned before, the main emphases
of the application and interpretation of the scales are the
suitability for the special context and the differentiated
measurement of the three types of cognitive load. Based on
this, the following sources of evidence were considered and
evaluated during the presented analyses.

A prerequisite for interpreting test scores in the target context
of STEM laboratory courses is that the items adequately represent
the addressed constructs (ICL, ECL, and GCL) in terms of their
formulation. In this sense, adequate itemsmust match the sources
of cognitive load that are part of STEM experiments as a learning
environment. This evidence based on content (AERA et al., 2011)
was considered during the item development, i.e., the adaptation
of the original items toward the target context. In order to
successfully distinguish between the three types of cognitive
load, each adapted scale is expected to show a three-partite
internal structure that matches the structure inherited by the
original scales. This evidence based on internal structure (AERA
et al., 2011) was considered during the analysis of the presented
dataset. The simultaneous application of two adapted scales that
are intended to measure the same constructs allowed for
evaluating convergent and discriminant evidence to determine
whether the same constructs were addressed by the respective
subscale and whether different types of load could be clearly
distinguished. The evaluation of properly addressing the intended
constructs was further addressed by inducing group-specific
differences by an external factor. By varying the presentation
format of crucial information that was relevant to the learning
process, ECL was varied, and the analyses evaluated whether the
adapted scales could detect these induced differences. In addition,
the scales should not indicate any differences in ICL since the
complexity of the content and the experimental tasks as well as
the representational forms were equal for both groups.
Furthermore, a negative correlation between prior knowledge
and ICL was expected, which is intended to verify the reduction of
perceived content-related complexity due to the already built-up
knowledge structures. These aspects related to an outer criterion
and were considered evidence based on relations to other variables
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(AERA et al., 2011). As both scales are applied as rating
scales and the individual process of rating each item is not
considered part of the analyses, evidence based on response
processes (AERA et al., 2011) was not considered in the present
analyses.

In the present study, both adapted scales were applied after
learners had participated in a technology-enhanced laboratory
course unit examining hands-on experiments in the context of
electricity. The experimental tasks and the overall procedure
followed the study design of Altmeyer et al. (2020).
Participants had to explore basic physical quantities by setting
up several electric circuits and observing automatically provided
measurement data while manipulating fundamental parameters.
To induce differences in ECL by an external factor, two
experimental learning conditions were included to contrast the
spatial arrangement of the learning-relevant measurement data as
a between-subject factor. One group received a split-source
format where the data were anchored as virtual displays to
their corresponding component using augmented reality and
therefore spread across the learning environment. The other
group received an integrated format where the data were
grouped together on a single display. Former studies in the
context of hands-on electricity laboratory courses have
emphasized that measurement values, which have to be
compared and related to each other in order to learn
successfully, should be presented in spatial proximity
(Altmeyer et al., 2020; Kapp et al., 2020; Thees et al., 2020) to
avoid the well-known split-attention effect (Schroeder and
Cenkci, 2018). Hence, the split-source format was expected to
trigger unnecessary search processes, and the corresponding
group was expected to rate higher ECL than the group with
the integrated format. Both groups received the same
experimental tasks and equal representational forms of the
data to avoid differences in the complexity of the learning
material. In terms of the evaluation of validity sources, this
leads to the following hypotheses.

Hypothesis based on the internal structure is as follows:

(H1) Since both adapted scales are intended to differentiate the
three types of cognitive load, confirmatory factor analyses
are expected to prove their three-partite internal structure.

Hypotheses based on relation to other variables are as follows:

(H2) Since both adapted scales include subscales that are
intended to measure the same latent variable, high
correlations between corresponding subscales
(convergent evidence) and low correlations between
different subscales (discriminant evidence) are expected.

(H3) The integrated presentation of measurement data reduces
perceived ECL compared to the split-source format.

(H4) Since the complexity of the learning material was not
varied and participants were randomly assigned to the
conditions, equal ratings for ICL are expected.

(H5) Since ICL depends on learners’ prior knowledge, negative
correlations between prior knowledge scores and ICL
ratings are expected.

Furthermore, insufficient evidence for the internal structure
might cast doubt on the appropriateness of the respective
adaptations and challenge validity evidence based on content
or other variables. In reaction, the construction of a new scale
based on the overall item pool is considered a useful procedure to
contribute to scale development for the target context, leading to
the following research question:

(RQ) Is it possible to merge both scales into a new scale that fulfills
the intended three-partite structure as well as detects the
induced differences in ECL?

MATERIALS AND METHODS

Item Development
While the NRS was already available in German (Klepsch et al.,
2017), the CLS had to be translated to implement it in German
university courses. We translated the scale with an emphasis on
maintaining the meaning of the original items while applying
comprehensible and grammatically correct formulations. We
have already implemented the translated scale in previous
studies (Altmeyer et al., 2020; Thees et al., 2020), where it has
proven useful in principle, and we have further refined it for the
present study. As both scales were not originally intended to be
used in the context of STEM laboratory courses, all the items had
to be adapted. The most important aspect was to emphasize the
experiment itself consisting of the experimental tasks and
procedures as well as all the components of the experimental
setup and the learning environment, such as data displays and
instruments. The adaptation intended to point out that the scales
are referring to the cognitive load induced by the experimental
tasks and not any accompanying activities such as pre- or
posttests or preparation phases which are mandatory for
graded laboratory courses. Hence, any formulations referring
to general terms such as “lecture,” “lesson,” or “activity” were
replaced by “experiment” or “experimental task.” The results can
be found in Tables 1, 2.

Concerning the NRS (Table 1), the items of the ICL and GCL
subscales were adapted by replacing the term “activity” as
mentioned before. For the ECL subscale, the term
“information” was specified as “measurement data.” These
data are seen as the crucial information of the scientific
context and the basis for any learning process as the
information about the mutual dependencies between the
physical quantities of the behavior of experimental
components is solely represented by the data. The 7-point
Likert scale level was adopted from the original work by
Klepsch et al. (2017), including the labeling of the scale range
as “absolutely wrong” (left endpoint; German: “Stimme
überhaupt nicht zu”) and “absolutely right” (right endpoint;
German: “Stimme voll zu”).

Concerning the CLS (Table 2), the references within the items
were also adjusted to the “experiment.” Furthermore, for the ICL
and GCL subscales, the contents of the learning scenario
(formerly statistics and corresponding formulas) were replaced
by “measurement procedure,” “representations,” and “physical

Frontiers in Education | www.frontiersin.org July 2021 | Volume 6 | Article 7055514

Thees et al. Assessing Load During Laboratory Courses

99

https://www.frontiersin.org/journals/education
www.frontiersin.org
https://www.frontiersin.org/journals/education#articles


laws.” This resulted in one additional item for each subscale
(CLS-3 and CLS-12). Another item was added to the ICL subscale
referring to the complexity of the experimental setup (CLS-4). For
ECL, the term “instructions” was directed to the “experimental
task” and the “work booklet.” There, another item was added
concerning the operation of the experimental setup (CLS-7).
Hence, the original 10-item scale was expanded to a 14-item
scale in order to capture various facets of the context.
Furthermore, the scale range was adjusted to a six-point Likert
scale. Within this step, the term “very” was excluded from each
item. The labeling of the scale range was adopted from the
original work by Leppink et al. (2013), ranging from “not at
all” (left endpoint; German: “Trifft gar nicht zu”) to “completely
the case” (right endpoint; German: “Trifft voll und ganz zu”).

Participants
The sample originally consisted of N � 117 engineering students
from a medium-sized German university (approximately 14,000
students in total) who attended the same introductory physics
lecture. Six of them had to be excluded due to language problems,
and another 16 students had to be excluded due to missing values
in the overall dataset. The remaining N � 95 students constitute
the sample for all further analyses. Participants were randomly
assigned to group 1, receiving an integrated presentation format

(N � 48; 15% female, 81%male; age:M � 19.8, SD � 1.3; semester:
M � 1.9, SD � 1.3), and group 2 (N � 47; 15% female, 74% male;
age:M � 20.1, SD � 1.5; semester: M � 2.3, SD � 1.7), receiving a
split-source presentation format. The investigation was
conducted during the winter semester 2019. Participation was
reimbursed with a bonus percentage of 5% for the final
examination score.

Materials
During the intervention, participants performed structured
physics experiments for which they had to construct several
electrical circuits and analyze measurement data to derive
fundamental laws for voltage and current (well known as
Kirchhoff’s laws), which are based on a former study by
Altmeyer et al. (2020). This inquiry process was guided by
structured task descriptions in which six different circuits were
examined. Learners had to build up these circuits with typical
educational equipment (i.e., cables, a voltage source, and
resistors) based on a given circuit diagram and answered a set
of single-choice items concerning the relation of voltage or
amperage at all components based on the observed data. To
observe a variety of data in order to derive physical laws, learners
were encouraged to manipulate fundamental parameters of the
experiment, i.e., the source voltage (Figure 1). The data were

TABLE 1 | Original and adapted NRS, based on the work of Klepsch et al. (2017).

Type
of
load

Original scale Adapted scale #

Item—German Item—English Item—German Item—English

ICL Bei der Aufgabe musste man viele
Dinge gleichzeitig im Kopf bearbeiten

For this task, many things
needed to be kept in mind
simultaneously

Beim Experimentierenmusste man viele
Dinge gleichzeitig im Kopf bearbeiten

During experimentation, many
things needed to be kept in mind
simultaneously

NRS-1

Diese Aufgabe war sehr komplex This task was very complex Das Experimentieren war sehr komplex Experimentation was very
complex

NRS-2

ECL Bei dieser Aufgabe ist es mühsam, die
wichtigsten Informationen zu erkennen

During this task, it was
exhausting to find the
important information

Beim Experimentieren war es mühsam,
die wichtigsten Informationen zu
erkennen

During experimentation, it was
exhausting to find the important
information

NRS-3

Die Darstellung bei dieser Aufgabe ist
ungünstig, um wirklich etwas zu lernen

The design of this task was
very inconvenient for learning

Die Darstellung der Messwerte beim
Experimentieren war ungünstig um
wirklich etwas zu lernen

The presentation of
measurement data was very
inconvenient for learning

NRS-4

Bei dieser Aufgabe ist es schwer, die
zentralen Inhalte miteinander in
Verbindung zu bringen

During this task, it was
difficult to recognize and link
the crucial information

Beim Experimentieren war es schwierig,
die richtigen Messwerte und Bauteile
miteinander in Verbindung zu bringen

During experimentation, it was
difficult to link appropriate data
and components

NRS-5

GCL Ich habe mich angestrengt, mir nicht
nur einzelne Dinge zu merken, sondern
auch den Gesamtzusammenhang zu
verstehen

I made an effort, not only to
understand several details
but also to understand the
overall context

Beim Experimentieren habe ich mich
angestrengt, mir nicht nur einzelne
Dinge zu merken, sondern auch den
Gesamtzusammenhang zu verstehen

During experimentation, I made
an effort, not only to understand
several details but also to
understand the overall context

NRS-6

Es ging mir beim Bearbeiten der
Lerneinheit darum, alles richtig zu
verstehen

My point while dealing with
the task was to understand
everything correct

Es ging mir beim Experimentieren
darum, alles richtig zu verstehen

My point while experimenting
was to understand everything
correct

NRS-7

Die Lerneinheit enthielt Elemente, die
mich unterstützten, den Lernstoff
besser zu verstehen

The learning task consisted
of elements supporting my
comprehension of the task

Die Aufgaben, die ich während dem
Experimentieren bearbeiten musste,
haben mich dabei unterstützt, den
Lernstoff besser zu verstehen

The experimental task supported
my comprehension of the
content

NRS-8
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provided automatically via a technology-enhanced measuring
system and were visualized in real time. Hence, every
interaction with the experiment that led to a change in its
physical properties could be immediately observed as a change
in the displayed data. The experimental tasks were, in terms of the
complexity of the examined circuits and the required prior knowledge,
comparable to such experiments that are part of the corresponding
introductory physics laboratory courses which are mandatory for
university STEM programs. Hence, the learning content and the

complexity of the laboratory work instructions matched the
curriculum of university engineering students.

The learning environment consisted of the following: a work
booklet that detailed the experimental tasks and circuit diagrams
and the experimental components such as wires, a range of
resistors, a voltage source, and a device that virtually displayed
the automatically gathered measurement data (Figures 2, 3). For
group 1, the measurement data were presented in a clearly
arranged matrix on a tablet display (Figure 2). For group 2,

TABLE 2 | Original and adapted CLS, based on the work of Leppink et al. (2013).

Type
of load

Original scale Translated Adapted scale #

Item—English Item—German Item—English Item—German

ICL The topic/topics covered in
the activity was/were very
complex

Die während der Aktivität
behandelten Themen waren sehr
komplex

The experiment covered topics
that I perceived as complex

Die beim Experimentieren thematisierten
Inhalte empfinde ich als komplex

CLS-1

The activity covered formulas
that I perceived as very
complex

Die Aktivität behandelte Formeln,
welche ich als sehr komplex
empfand

I perceived the measurement
procedure as complex

Das Aufnehmen der Messwerte habe ich als
komplex empfunden

CLS-2

The experiment covered
representations that I perceived
as complex

Die beim Experimentieren verwendeten
Darstellungen habe ich als komplex
empfunden

CLS-3

I perceived the experimental
setup as complex

Die experimentellen Aufbauten habe ich
inhaltlich als komplex empfunden

CLS-4

The activity covered concepts
and definitions that I
perceived as very complex

Die Aktivität behandelte
Konzepte und Definitionen,
welche ich als sehr komplex
empfand

The experiment covered physical
laws that I perceived as complex

Die beim Experimentieren betrachteten
physikalischen Zusammenhänge habe ich als
komplex empfunden

CLS-5

ECL The instructions and/or
explanations during the
activity were very unclear

Die Arbeitsaufträge und/oder
Erklärungen zur Aktivität waren
sehr unklar

The instructions during the
experiment were unclear

Die Arbeitsaufträge zum Experimentieren
waren unklar

CLS-6

The operation of the experimental
setup was unclear

Das Bedienen des Experiments war unklar CLS-7

The instructions and/or
explanations were, in terms of
learning, very ineffective

Die Arbeitsaufträge und/oder
Erklärungen waren sehr
ungeeignet für den Lernfortschritt

The instruction during the
experiment was, in terms of
learning, ineffective

Die Arbeitsaufträge zum Experimentieren
waren für meinen persönlichen Lernfortschritt
ungeeignet.

CLS-8

The instructions and/or
explanations were full of
unclear language

Die Arbeitsaufträge und/oder
Erklärungen enthielten viele
sprachliche Unklarheiten

The work booklet was full of
unclear language

Die Experimentieranleitung enthielt viele
sprachliche Unklarheiten

CLS-9

GCL The activity really enhanced
my understanding of the
topic(s) covered

Die Aktivität hat mein Verständnis
zu den betrachteten Themen
wirklich gefördert

The experiment enhanced my
understanding of the topic
covered

Das Experimentieren heute hat mein
Verständnis zu dem betrachteten
Themengebiet gefördert

CLS-10

The activity really enhanced
my knowledge and
understanding of statistics

Die Aktivität hat mein Wissen und
Verständnis zu Statistik wirklich
gefördert

The experiment enhanced my
understanding of the
measurement procedures

Das Experimentieren heute hat mein
Verständnis zur Aufnahme von Messwerten
gefördert

CLS-11

The activity really enhanced
my understanding of the
formulas covered

Die Aktivität hat mein Verständnis
zu den betrachteten Formeln
wirklich gefördert

The experiment enhanced my
understanding of the physical
laws covered

Das Experimentieren heute hat mein Wissen
zu den betrachteten physikalischen
Zusammenhängen gefördert

CLS-12

The experiment enhanced my
understanding of the
representations covered

Das Experimentieren heute hat mein
Verständnis zu den verwendeten
Darstellungen gefördert

CLS-13

The activity really enhanced
my understanding of
concepts and definitions

Die Aktivität hat mein Verständnis
zu Konzepten und Definitionen
wirklich gefördert

The experiment enhanced my
general understanding of
physical concepts and definitions

Das Experimentieren heute hat mein
allgemeines Verständnis zu physikalischen
Konzepten und Definitionen gefördert

CLS-14
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smartglasses (Microsoft HoloLens, first-generation developer
edition) were used as a see-through head-mounted augmented
reality device, and the measurement values were presented as
virtual 3D components next to the corresponding real parts of the
electric circuits within the visual field of the smartglasses using
visual marker recognition (Figure 3). Both groups received equal
representational forms, i.e., numerical values and a virtual needle
deflection. Accordingly, the only difference between the two
groups was the spatial arrangement of the virtual real-time
measurement displays. Further information on the technical

implementation of the learning environment was described by
Altmeyer et al. (2020) and Kapp et al. (2020).

Both adapted subjective rating scales were applied as shown in
Tables 1, 2 in order to measure cognitive load in a differentiated way.

Prior knowledge was determined via conceptual knowledge
consisting of 10 single-choice items, which were also used in a
similar form by Altmeyer et al. (2020). These items were selected
from a conceptual knowledge test originally developed by Urban-
Woldron and Hopf (2012) and Burde (2018) based on their
compatibility with the physical concepts (i.e., voltage and current

FIGURE 1 | Example of the experimental task description (translated for this publication, corresponds to the circuits given in Figures 2, 3).

FIGURE 2 | The learning environment as experienced by group 1 (presentation of the measurement data via separate display on a tablet).
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in simple circuits, Kirchhoff’s laws) and the complexity of the
circuits (i.e., parallel and serial circuits with few components)
addressed during the experimentation phase. Five of the items
were directly related to circuits that were part of the experimental
tasks and were therefore considered “instruction-related” in
subsuming analyses. The items were already available in
German, but to match the formal representation of the
instructions from the experiment, we adapted the symbols of
the circuit diagrams (symbols for resistors, voltage source, etc.).
An example item can be found in Figure 4.

Furthermore, knowledge tests concerning concrete
measurement data and a usability questionnaire were applied,

but these were excluded from the presented analyses (Thees et al.,
in preparation). Eventually, students were asked for demographic
data on a voluntary basis.

Procedure
After receiving general information about the study and data
protection as well as providing written consent for participation,
the students completed the prior knowledge test (pretest). All the
items were presented consecutively on a computer screen, and
completion took approximately 10 min.

Afterward, participants were introduced to the actual learning
environment, i.e., the work booklet, the experimental

FIGURE 3 | (a) Representation of the AR view as seen through the smartglasses by participants. (b) Researcher wearing smartglasses.

FIGURE 4 | Example of the conceptual knowledge items as presented to the participants (Urban-Woldron and Hopf, 2012, translated for this publication).
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components, and the operation of the displaying device (tablet or
smartglasses). They were randomly assigned to one of the two
intervention groups. Students using the smartglasses were able to
wear their own glasses or contact lenses at the same time without
any limitation.

The introduction was followed by the experimentation
phase, in which students conducted the six experimental
tasks as presented in the work booklet. After setting up
each circuit, a supervisor checked and corrected the wiring
in order to ensure safe experimentation. Students did not
prepare for this experiment, and no further guidance or
support was provided. The experimentation phase lasted
approximately 30 min.

Subsequently, participants consecutively completed the
subjective cognitive load rating scales as paper–pencil tests,
starting with the adapted CLS. Each student received the same
order of items, but the items were presented in a randomized order
so that they were not grouped by their intended three-partite
structure. Answering both questionnaires took less than 10min.

Eventually, students answered questions concerning
demographic data on a voluntary basis in a paper–pencil format.

Data Analysis
For each subscale, the mean values were calculated as scores,
which were scaled to [0; 1] afterward.

To provide evidence based on the internal structure, the
reliability of each subscale for both scales was calculated as
internal consistency (Cronbach’s alpha; αc) with the conventional
threshold of αc � 0.70 for acceptable reliability (Kline, 2000). In
addition, confirmatory factor analyses (CFA) were conducted for both
scales, evaluating their intended three-factorial structure representing
the three types of cognitive load (addressing H1). There, correlations
between the factors (i.e., the subscales) were allowed.

To provide evidence based on relations to other variables, both
scales were compared following the procedure of a traditional
multitrait–multimethod analysis (Campbell and Fiske, 1959) in
order to search for convergent and discriminant evidence as each
method (scale) addresses each trait (type of load). There, the
correlations between the subscale scores for the two applied
methods as well as the reliability scores in terms of internal
consistency were considered and compared via a correlation table
called MTMM matrix (addressing H2). Although there are no clear
guidelines concerning thresholds, strong evidence is indicated if the
correlations between the same traits measured by different methods
are higher than the correlations between different traits measured by
different methods. The traditional evaluation of the correlation table
was complemented with a subsuming confirmatory MTMM, which
was calculated as a correlated trait–correlated method model via a
CFA, which allowed for correlations between all components (Eid,
2000). Furthermore, it was checked whether the scales could detect
differences in the subscales between the two intervention types
(grouping variable) during the study. Therefore, group-specific
ECL scores were compared using a two-sided independent sample
t-test (addressingH3). An equivalent t-test was conducted to compare
group-specific ICL scores (addressing H4). In addition, the
correlations between the ICL subscales and the score in the pretest
were included. There, a negative correlation was expected as higher

prior knowledge is assumed to reduce the complexity of the content
due to already existing knowledge schemata (addressing H5).

Going one step further, we intended to combine both scales in
order to merge them into a new scale with better model fit
concerning the tripartite structure (addressing RQ). This was
based on an exploratory factor analysis (EFA), which was
conducted using all items of both scales together. In this
instance, the Kaiser–Meyer–Olkin measure revealed a good
sampling adequacy with an overall KMO � 0.79. The
individual KMOj values were in the range of [0.65; 0.89].
Furthermore, Bartlett’s test of sphericity, χ2(231) � 1,006.4,
p < 0.001, revealed adequate item correlations. The scree plot
and a parallel analysis were taken into account to determine the
optimal number of factors, which was found to be three. Since the
factors to be extracted were allowed to correlate with each other,
an oblique factor rotation (“oblimin”) was applied. As the
intention was to find a short and concise scale, we limited the
number of items included for each subscale to three. Two new
models were developed based on the factor loadings and the
relation to the group variable in the presented study. Both scales
were evaluated by conducting a confirmatory factor analysis with
their intended three-factorial structure.

In general, the significance level for type I errors was considered
as α � 0.05. For each confirmatory analysis, the following indices
were applied with their corresponding cutoff values indicating
acceptable model fit: the comparative fit index (CFI) and the
Tucker–Lewis index (TLI), each ≥0.95, as well as the root mean
square error of approximation (RMSEA) and the standardized
root mean square residual (SRMR), each ≤ 0.08.

All the confirmatory analyses were conducted using the
lavaan package (version 0.6-6) in the R programming
language (version 3.6.0). For the EFA, the psych package
(version 1.8.12) was used.

RESULTS

Validity Evidence Based on Internal
Structure
The reliability analyses revealed insufficient values for the NRS,
αc(ICL) � 0.52, αc(ECL) � 0.53, and αc(GCL) � 0.62, and mixed

TABLE 3 | Correlation table for MTMM analysis (MTMM matrix; only correlations
with p < 0.05 are displayed).

Method A: NRS Method B: CLS

Trait ICL ECL GCL ICL ECL GCL

NRS ICL (0.55)
ECL 0.302 (0.53)
GCL 0.262 −0.242 (0.62)

CLS ICL 0.531 0.373 n.s3 (0.85)
ECL 0.203 0.551 −0.353 0.362 (0.43)
GCL n.s3 n.s3 0.481 0.222 −0.222 (0.89)

n.s. � not significant (p > 0.05).
( ) : reliability (Cronbach’s alpha).
1Monotrait–heteromethod coefficients.
2Heterotrait–monomethod coefficients.
3Heterotrait–heteromethod coefficients.
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results for the CLS, αc(ICL) � 0.86, αc(ECL) � 0.43, and αc(GCL)
� 0.90. Concerning the NRS, all the subscales did not reach the
common threshold of αc � 0.70. In contrast, the subscales of the
CLS for ICL and GCL showed satisfying results, but not for ECL.

The subsuming CFA also revealed no clear results.
Concerning the NRS, the model fit indices did not reach the
conventional thresholds, CFI � 0.83, TLI � 0.72, RMSEA � 0.11,
and SRMR � 0.09. Concerning the CLS, RMSEA � 0.07
indicated an acceptable model fit, while the other indices
narrowly missed the range for acceptable values, CFI � 0.94,
TLI � 0.93, and SRMR � 0.09. In sum, there was no consistent
indication of an acceptable model fit for both scales concerning
the assumed structure with three inherent factors, which
contradicts Hypothesis 1.

Validity Evidence Based on Relations to
Other Variables
In order to compare the behavior of both adapted scales in terms
of an MTMM approach, a correlation table based on Pearson’s
correlation was calculated (MTMM matrix; Table 3). Here, the
correlations between the two methods concerning each trait
(monotrait–heteromethod coefficients) became significant (p <
0.05) with a range of r � 0.48 to r � 0.55 (Cohen, 1988), indicating
convergent evidence between the two scales. These correlations
were higher than those significant correlations between different
traits measured by different methods (heterotrait–heteromethod
coefficients), emphasizing discriminant evidence. The same
results were found concerning the correlations between
different traits measured by the same method
(heterotrait–monomethod coefficients), which were also lower
than the monotrait–heteromethod coefficients. Furthermore, the
patterns (ranks and sign of correlations) of the
monomethod–heterotrait blocks were comparable for both
methods. In contrast, the reliability values (Cronbach’s αc)
showed high variance. In sum, based on the correlation table
(Table 3), these findings emphasized convergent and
discriminant evidence.

The subsuming confirmatory MTMM analysis revealed
acceptable values for RMSEA � 0.06 and SRMR � 0.08. In
contrast, CFI � 0.93 and TLI � 0.91 were slightly below the
range for acceptable model fit.

Table 4 shows the group-dependent scores for each subscale.
The results from the independent-sample t-test revealed for the
adapted NRS a significant difference in favor of group 1 (lower

ECL) in accordance with Hypothesis 3, while the CLS showed no
group-specific differences. However, both NRS and CLS indicate
no differences between groups concerning ICL in accordance
with Hypothesis 4. Details of the test statistics can be found in
Table 4.

Furthermore, there were no significant correlations between
the pretest results and the ICL-related subscales, both for the full
pretest scores, r � −0.12 and p � 0.25 for the NRS, r � −0.02 and
p � 0.82 for the CLS, and the intervention-related items, r � −0.07
and p � 0.51 for the NRS, r � 0.01 and p � 0.89 for the CLS. These
results contradict Hypothesis 5.

Evaluation of Combined Scales
All the items of both scales were taken into account to merge
them into a new scale. First, an exploratory factor analysis was
conducted to evaluate which items group together. Both the scree
plot and a parallel analysis indicate a three-factorial structure.
The items with the highest loading indicate conformity with the
types of load known from theory, although some items with lower
loadings are not grouped in accordance with their intended
position. Table 5 displays the extracted factor loadings.

For the first new model (referred to as model 1), the three
items with the highest (positive) loadings were included because
they represent their respective factor in a reliable manner. Hence,
the ICL consisted of the items CLS-2, CLS-3, and CLS-4, the ECL
subscale consisted of CLS-9, NRS-4, and CLS-6, and the GCL
subscale consisted of CLS-10, CLS-12, and CLS-13. The
subsuming CFA revealed adequate to good model fit, CFI �
0.98, TLI � 0.98, RMSEA � 0.05, and SRMR � 0.06.

In this way, model 1 corresponds directly to the structure
revealed by the EFA for the given dataset. In terms of validity, it
therefore meets the evidence source of the internal structure. The
second model (referred to as model 2) aimed to integrate another
source of evidence (evidence based on relation to other variables)
by including those items in the ECL subscale that had proven to
be sensitive toward the induced differences between the groups.
Hence, for model 2, the same items as in model 1 were used to
merge the ICL and GCL subscales because of their high loadings.
For the ECL subscale, we used the full subscale of the NRS (NRS-
3, NRS-4, and NRS-5) in order to incorporate the ability to detect
a significant difference in terms of ECL. A subsuming
confirmatory factor analysis also revealed adequate to good
model fit, CFI � 1.0, TLI � 1.0, RMSEA � 0.00, and SRMR � 0.06.

Since both new models shared the same items for ICL and
GCL, they reached the same (sufficient) level of reliability for

TABLE 4 | Group-specific results for both adapted scales.

Scale Subscale Group 1 (M(SD)) Group 2 (M(SD)) t-test

t df p

NRS ICL 0.25 (0.15) 0.25 (0.15) 0.00 93.0 1
ECL 0.14 (0.14) 0.21 (0.17) 2.17 89.3 0.03
GCL 0.72 (0.19) 0.71 (0.16) -0.43 91.7 0.67

CLS ICL 0.20 (0.14) 0.21 (0.14) 0.12 92.9 0.91
ECL 0.13 (0.09) 0.14 (0.11) 0.44 87.6 0.66
GCL 0.68 (0.19) 0.67 (0.21) -0.11 91.0 0.92
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these subscales, αc(ICL) � 0.79 and αc(GCL) � 0.90. They slightly
differed concerning the reliability of their ECL subscales, αc(ECL,
model 1) � 0.54 and αc(ECL, model 2) � 0.57 which are still below
the desired cutoff value αc � 0.70. Furthermore, the sensitivity
toward group-specific differences in ECL seemed to be inherited
as model 1 showed no significant difference, t(90.3) � −0.64 and
p � 0.52, while model 2 adopted the significant differences from
the full adapted NRS, t(89.3) � 2.17 and p � 0.033.

DISCUSSION

Validity Based on Content
Both scales had to be adapted, and the CLS had to be expanded to
fit the desired context. Since experimenting in STEM laboratory
courses has been commonly based on generating and interpreting
the measurement data, the measurement procedure and the
corresponding quantities as well as their functional
relationships and scientific laws are the main source of the
information that has to be processed in order to generate new
knowledge structures. Especially concerning the adapted and
expanded CLS, the item development included all those
relevant sources of content-related complexity in the subscales
dedicated to measure ICL as well as GCL, whereas the items of the
NRS merely consisted of general expressions. Hence, the adapted
CLS appears to be slightly advantageous as a higher number of
typical aspects from the learning scenario were directly addressed
within the items.

Following the concept of ECL as presented by CLT, processes
that do not contribute to essential learning originate from
irrelevant and distracting elements. These include language
issues and presentation formats that demand unnecessary

search processes and representational holding. While the CLS
originally included text comprehension as a source of ECL, the
adapted version was not expanded toward the presentation
formats (e.g., by addressing distracting search processes in the
items), though this was a specific part of the presented study. In
this case, the adapted CLS could be limited in its ability to cover
all relevant load-inducing aspects that learners face throughout
the experimental procedure. In contrast, the NRS already
addressed presentational aspects, which were retained for the
adapted version.

In sum, all subscales covered relevant aspects of the learning
environment, but each with a specific main emphasis toward
instructional design aspects. Based on the item formulation, the
adapted CLS seems to address more precisely ICL and GCL, while
the adapted NRS seems to address ECL in a more sensitive way
for the context of laboratory learning scenarios. Furthermore, this
emphasizes a general need for developing and validating specific
instruments that directly address the characteristics of learning
scenarios and include all crucial load-inducing elements. A
more general item formulation might be too abstract, which
could result in participants not being able to relate the items to
the given situation without being further introduced to the
intention and the meaning of the respective scale (e.g.,
Klepsch et al., 2017).

Validity Evidence Based on Internal
Structure
Concerning their internal consistency for the given dataset, the
subscales of the adapted NRS and adapted CLS cannot be seen as
sufficiently reliable. Moreover, these low indices are far below
those of the original work by Klepsch et al. (2017) and therefore

TABLE 5 | Results of the EFA for all items of both NRS and CLS.

Item Factor 1 interpreted as ICL Factor 2 interpreted as GCL Factor 3 interpreted as ECL

CLS-3 0.75 -0.04 0.03
CLS-2 0.74 -0.11 0.05
CLS-4 0.73 0.03 -0.01
NRS-2 0.72 -0.02 -0.16
CLS-5 0.66 0.13 0.14
NRS-1 0.53 -0.03 -0.16
CLS-1 0.48 0.36 0.25
NRS-3 0.40 -0.04 0.22
CLS-7 0.31 -0.06 0.27
CLS-10 -0.05 0.95 0.02
CLS-12 0.02 0.82 -0.11
CLS-13 -0.09 0.79 0.13
CLS-14 0.05 0.72 -0.01
CLS-11 0.10 0.62 -0.16
NRS-8 0.11 0.48 -0.21
CLS-9 0.10 0.11 0.60
NRS-6 0.27 0.22 -0.49*
NRS-7 -0.01 0.23 -0.48*
NRS-4 0.09 -0.12 0.47
CLS-6 0.31 -0.05 0.45
NRS-5 0.23 0.01 0.35

Highest item loadings are given in bold.
*Negative loadings were not considered for combined scales.
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challenge the benefits and appropriateness derived from the
content analysis (Validity Based on Content). It is probable
that the a priori specification of load-inducing content will not
fit the subjective impressions of the learners during the
experimentation phase. In contrast, the subscales for ICL and
GCL of the adapted CLS show a good internal consistency. Except
for ECL, the values are in the range of the original work by
Leppink et al. (2013) or former adaptions of the scale (Thees et al.,
2020; Andersen and Makransky, 2021a, Andersen and
Makransky, 2021b). Here again, the insufficient reliability for
ECL casts doubt on whether the items of this specific subscale are
appropriate to measure the intended type of cognitive load.
Especially in comparison with the findings of Thees et al.
(2020), who used a very similar formulation of the ECL items
in another scientific context (thermodynamics instead of
electricity), these results challenge a broad applicability of a
simple adaption of the original CLS and raise the question of
how to integrate context-specific sources of load while the overall
pedagogical approach remains comparable (e.g., inquiry-based
learning).

The results of the CFA also undermine the intended internal
structure of each scale as the model fit indices do not provide
sufficient formal evidence for the three assumed factors. Hence,
the confirmatory analysis strengthens criticisms of the
appropriateness of the three-factorial structure as intended
during the item development. This might be a consequence of
a rather small sample size because the conventional rule of thumb
that the number of participants should be more than 10 times the
number of items is only reached for the adapted NRS, but not for
the CLS. Another limiting factor might be the reduction of the
scale range from a 10-point to a six-point scale for the
adapted CLS.

In sum, these findings reveal that the intended internal
structure of the instruments is not fully represented in the
data, which constrains the interpretation of the single
subscales. We must therefore reject the first hypothesis and
question the appropriateness of the adapted scales to
differentiate between three different types of load in the
context of technology-enhanced laboratory courses. Although
the CFAs mostly narrowly missed the acceptable range for the fit
indices, which can be interpreted as a case of a too small sample
size, the low indices for internal consistency as the reliability
measure for four out of six subscales remain the main issue for the
internal structure.

Validity Based on Relations to Other
Variables
Assuming the three-factorial structure of the scales as validated in
various former studies, a traditional MTMM matrix based on a
correlation table was analyzed. Although the reliability of all the
subscales adapted from the NRS and for EL adapted from the CLS
was not sufficient, significant correlations and repeating patterns
indicate convergent and discriminant validity between the two
scales. This means that the corresponding subscales in both
approaches have meaningful coincidence and that each
subscale can be distinguished from the others according to

their interpretation as different types of cognitive load. These
findings preliminarily emphasize the scales’ appropriateness as
load-measuring instruments. However, the strength of evidence is
limited due to missing cutoff values for the traditional
interpretation of correlation patterns. Furthermore, the results
could not be sufficiently reproduced by a confirmatory MTMM
approach as not all indices indicate an acceptable model fit.
Hence, although there are promising findings based on the
traditional comparison of correlation patterns, we cannot
provide sufficient formal evidence for convergent and
discriminant validity, which means that the second hypothesis
is not clearly supported by the data of the present study. Thus, the
MTMM analysis does not support the internal structure of both
scales as being directed to the same three different latent variables.

Concerning the contrasted presentation formats, a sensitive
scale was expected to reflect group-specific differences in ECL in
favor of group 1. For the given dataset, only the adapted NRS
revealed a significant difference between the two intervention
groups. As expected, group 1 reported lower scores for ECL.
Hence, the findings support the third hypothesis for the adapted
NRS and emphasize it as the more sensitive scale toward the
contrasted presentation formats and the accompanying load
sources, i.e., the spatial split of related information elements.
The missing sensitivity of the adapted CLS toward differences in
ECL might be the consequence of a biased focus on language
issues and an insufficient adaptation toward other load-inducing
sources for this specific subscale. However, these findings are in
accordance with a study conducted by Skulmowski and Rey
(2020), who also revealed that the NRS is more likely to detect
differences in ECL than the CLS. In their research, the authors
also argued that the original items of the CLS might focus too
much on the verbal aspects of the learning scenario, while the
NRS addresses information processing in a more generalized way.

Both adapted scales did not show significant differences
concerning ICL scores, which is in accordance with the
intention to provide both groups with equal content,
experimental setups, and representational forms of the
measurement data. Hence, the fourth hypothesis is supported
for both scales. However, there is no significant correlation
between the scores of both ICL subscales and the specific or
full prior knowledge scores, which contradicts the theory-based
expectation that learners with lower prior knowledge will perceive
a higher ICL. Eventually, a missing correlationmight indicate that
learners’ prior knowledge was sufficient as a conceptual
prerequisite to successfully conduct the experimental tasks.
However, this leads to a rejection of the fifth hypothesis
because this result does not support the compliance of the ICL
subscale with the theoretical concept of ICL in terms of the CLT.

In sum, the direct comparison between the two adapted scales
via theMTMMmatrix emphasizes but does not prove convergent
and discriminant evidence due to insufficient support by the
confirmatory model fit. The relation to the grouping variable for
the given study emphasizes the adapted NRS as more sensitive
toward differences in ECL, which is in accordance with previous
findings. As expected, both scales reveal equal ICL ratings for
both groups. However, the relation between ICL and prior
knowledge could not be verified. Eventually, the relation to
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other variables revealed mixed to rather unfavorable results as
most of the underlying hypotheses had to be rejected.

Combined Scales
As the internal structure of each adapted scale remains challenged
after considering evidence based on the reliability scores as well as
after the CFAs and the MTMM approaches, we decided to
construct a combined instrument based on the given item
pool of both scales. As the first step, the EFA revealed a three-
factorial structure for the combined dataset. In addition, the items
with the highest factor loadings indicate accordance with the
expected underlying latent variable so that the three factors can be
interpreted as related to the three types of cognitive load
(Table 5). Given the self-imposed restriction of using only
three items per factor to obtain a concise scale, two models
were derived that considered those items with the highest positive
factor loadings and findings from validity evidence based on the
relation to the grouping variable.

Both models showed acceptable to good model fit in
subsuming CFAs concerning their three-factorial internal
structure, emphasizing their capability to differentiate between
the three types of load. While the subscales for ICL and GCL are
equal in both models and consist of items from the adapted CLS,
the models differ concerning the ECL subscale. While model 1
follows the ranking of factor loadings from the EFA, resulting in a
mix of items from both adapted NRS and CLS, model 2 inherits
the full ECL subscale from the adapted NRS. This step is not
based on the findings from the EFA, but respects the fact that this
particular subscale was able to detect group-specific differences in
ECL which are likely to exist in studies that contrast presentation
formats to address well-known multimedia effects such as split-
attention (Schroeder and Cenkci, 2018). Hence, model 2
constitutes a further development as it integrates validity
evidence based on the relation to other variables.

However, both models still suffer from low internal
consistency concerning ECL, which reduces the reliability of
the acceptable model fits. This issue might result from the fact
that the items dedicated to measuring ECL cover different load-
inducing elements such as data presentation or verbal
components. Hence, they cannot be expected to equally
contribute to the score, and so, reaching a high internal
consistency remains difficult. Andersen and Makransky
(2021b) even considered ECL as a multidimensional variable,
which presents a plausible reason for our low internal consistency
findings. Eventually, we follow the results of the presuming EFA
by considering ECL as an unidimensional factor which addresses
multiple learning-irrelevant elements.

In sum, model 2 is considered the best scale based on the
given item pool and the given dataset. Concerning the content
of the new subscales for ICL and ECL, the items refer to
concrete aspects of the experimental tasks, i.e., those
components that are a priori determined the basis of the
learning process. Hence, the combination of both NRS and
CLS showed that the most valuable items for the given dataset
were taken from the CLS, but the NRS provided a meaningful
supplement. Furthermore, the restriction to three items per
subscale emphasizes the need to focus on those elements of the

learning environment that are mandatory to deal with during
the learning process.

Future Work
To address a wider range of technology-based learning scenarios,
our adapted versions could be enhanced by integrating items
from other adaptations. For example, Andersen and Makransky
(2021a) included the term “information display format” as a
source of load in their ECL subscale, which was based on the
original CLS. This term would directly address the contrasted
presentation formats in our study without any bias toward a
certain technology. On the contrary, such general formulations
require a clarification as to what they are referring to, such as by a
short introduction prior to the subjective rating, where the term is
specified for each intervention group.

As most of the samples used in comparable studies consist of
university students, studies validating the application of the
considered scales in school contexts are missing. At the school
level, learners are expected to have a different amount of prior
knowledge and metacognitive skills. Hence, the measurement of
cognitive load based on subjective experiences could be much
more challenging (Brünken et al., 2003; Klepsch et al., 2017).
Therefore, the scales have to be adapted concerning the item
formulation as well as the scale levels and the endpoint labeling.
In addition, items on passive load (mental load) and active load
(mental effort), developed by Klepsch and Seufert (2021), could
be added. The authors could show that the item on passive load
related to the ICL factor of their scale and the item on active load
related to the GCL factor. Klepsch and Seufert recommended the
use of these additional items with children and tasks that require
learners’ self-regulation (e.g., laboratory work). Such adaptation
might demand further investigations toward validity evidence.
Future work might consider expert ratings for the item content to
strengthen the explanatory power of the content-related evidence
(Brünken et al., 2003; Klepsch et al., 2017). Furthermore, it will be
essential to validate the new and further developed scales on a
large sample as well as to consider that further (back-)
translations of the presented (German) scales might affect
validity aspects.

In the present study, only some of all possible sources
providing evidence for the validation of the cognitive load
scales were examined. Future studies should not only
experimentally manipulate the ECL but also systematically
manipulate all three types of cognitive load and verify whether
the developed scales can also reflect variations in the ICL and
GCL. Manipulation of ICL could be achieved by contrasting
laboratory tasks with different levels of complexity or by
contrasting groups with different levels of prior knowledge
(evidence based on the relation to other variables). However,
previous research suggesting that a subject’s ability to reliably
differentiate between ICL and ECL depends on a sufficient level of
prior knowledge (Zu et al., 2021) should also be considered. GCL
could be manipulated by providing or not providing self-
regulation prompts during student experimentation.

Another option for analyzing validity evidence based on the
relation to other variables could be a direct comparison between
subjective ratings and objectives measures such as eye-tracking
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data. Recent developments of mobile eye-tracking devices allow
for collecting data in dynamic situations such as laboratory
courses and might even be applied to augmented reality-based
learning scenarios (Kapp et al., 2021) so that various approaches
of technology-enhanced learning scenarios can be accompanied
by both the subjective rating scales and the objective gaze-based
measures. Nevertheless, the interpretation should consider prior
research indicating that there might be no linear relationship
between objective and subjective measures but that they rather
cover different facets of cognitive load (Minkley et al., 2021).

Conclusion
In this article, we present supporting and critical points regarding
the validity of two popular subjective cognitive load-rating scales
in the context of technology-enhanced science experiments.
Although the content of the adapted items seemed to be
promising in terms of addressing various facets of the learning
environment, the low internal consistency and the insufficient
evidence for the intended three-factorial structure negate the
appropriateness of the adapted scales. However, based on the
correlations between the subscales, there are various indications
that the addressed latent variables (i.e., ICL, ECL, and GCL) are
comparable in both scales and can be distinguished from each
other. Again, these assumptions cannot be formally confirmed
based on the given dataset. In sum, three of five deduced
hypotheses toward different sources of evidence in terms of
validity had to be rejected due to insufficient formal evidence.
Hence, there are no sufficient results that favor either the adapted
NRS or the adapted CLS, although they seem to be convincing
regarding their content.

The interpretation of this conflict is twofold. First, for the
learning context under investigation, we question the current
state of the adapted scales as they are not appropriate to measure
different types of cognitive load. This would explain the
insufficient reliability and the insufficient model fits
concerning the assumed internal structure. In contrast, one
could assume that the items of both scales are capable of
representing the real load-inducing elements, but each scale
addresses some but not all facets of the learning environment.
Hence, solely by combining both item pools, it was possible to
reach an adequate scale (model 2). At this point, the advantages of
both adapted scales were combined to form a promising new scale
for the context of complex science learning scenarios (although
this scale is not without its flaws). The internal consistency of the
ECL subscales is not acceptable but can be made plausible via the
inherent multiple aspects covered by the items.

The presented study is an example of applying known and
empirically validated scales to an essential and realistic learning
scenario from STEM education. Since inquiry-based learning
scenarios contain multiple information sources, researchers must
develop new instruments to be able to correctly measure cognitive
load. Moreover, the issues raised in the analyses show that it is
necessary to seek for validity based on different sources such as
content, internal structure, and relation to other variables. In this
sense, we want to encourage the community to contribute to the
question of how to create valid and suitable questionnaires to
determine cognitive load in specific complex learning scenarios.
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Subject-method barriers and cognitive load (CL) of students have a particular importance 
in the complex learning process of scientific inquiry. In this work, we investigate the valid 
measurement of CL as well as different scaffolds to reduce it during experimentation. 
Specifically, we examine the validity of a subjective measurement instrument to assess 
CL [in extraneous cognitive load (ECL), intrinsic cognitive load, and germane cognitive 
load (GCL)] during the use of multimedia scaffolds in the planning phase of the scientific 
inquiry process based on a theoretical framework of the CL theory. The validity is analyzed 
by investigating possible relationships between causal (e.g., cognitive abilities) and 
assessment (e.g., eye-tracking metrics) factors in relation to the obtained test scores of 
the adapted subjective measurement instrument. The study aims to elucidate possible 
relationships of causal factors that have not yet been adequately investigated in relation 
to CL. Furthermore, a possible, still inconclusive convergence between subjective test 
scores on CL and objectively measured indicators will be tested using different eye-tracking 
metrics. In two studies (n = 250), 9th and 11th grade students experimentally investigated 
a biological phenomenon. At the beginning of the planning phase, students selected one 
of four multimedia scaffolds using a tablet (Study I: n = 181) or a computer with a stationary 
eye-tracking device (Study II: n = 69). The subjective cognitive load was measured via 
self-reports using a standardized questionnaire. Additionally, we recorded students’ gaze 
data during learning with the scaffolds as objective measurements. Besides the causal 
factors of cognitive-visual and verbal abilities, reading skills and spatial abilities were 
quantified using established test instruments and the learners indicated their representation 
preference by selecting the scaffolds. The results show that CL decreases substantially 
with higher grade level. Regarding the causal factors, we observed that cognitive-visual 
and verbal abilities have a significant influence on the ECL and GCL in contrast to reading 
skills. Additionally, there is a correlation between the representation preference and different 
types of CL. Concerning the objective measurement data, we found that the absolute 
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fixation number is predictive for the ECL. The results are discussed in the context of the 
overall methodological research goal and the theoretical framework of CL.

Keywords: cognitive load, cognitive abilities, representation preference, scaffolding, eye tracking, scientific 
inquiry

INTRODUCTION

Cognitive load (CL) is a theoretical, psychological construct 
that describes the individual loads of learners during the 
processing, construction, and memorizing of (new) information 
(Sweller et al., 2019). Within the Cognitive Load Theory (CLT), 
one of many basic assumptions is that only a limited number 
of information elements can be  processed simultaneously due 
to the limited working memory capacity (Paas et  al., 2010). 
Therefore, the processing of information that is relevant to 
learning should be  optimized and loads irrelevant to learning 
are to be  minimized (among others van Merriënboer et  al., 
2006; Paas and van Merriënboer, 2020). Another assumption 
claims the processing of information in two different channels 
– the verbal and the visual channel (dual channel assumption; 
Skuballa et  al., 2019; Sweller et  al., 2019; Scheiter et  al., 2020). 
Furthermore, it is assumed that CL is composed of three 
distinct categories – intrinsic (ICL), extraneous (ECL), and 
germane cognitive load (GCL; among others Sweller, 1994; Zu 
et  al., 2020). ICL is the cognitive load associated with high 
or low element interactivity during the processing of information/
learning material (Sweller et  al., 2011, 2019). Accordingly, the 
degree of interactivity between essential information elements 
required for learning determines the ICL. If the element 
interactivity is low, only a few elements are processed by the 
learner in working memory at the same time. If the element 
interactivity increases, the load on working memory also rises 
(Sweller et  al., 2011). In contrast, ECL includes the cognitive 
load generated by suboptimal instructional design. Consequently, 
the learner needs to spend more cognitive resources on irrelevant 
or poorly constructed information during task performance 
or information processing than on the actual task solution 
(Sweller et  al., 2019). The ECL and ICL together determine 
the total CL in the working memory by the learner. They are 
additively related because the resources for processing come 
from the same working memory pool (Sweller et  al., 2011). 
The third category of cognitive load is GCL. This is expended 
by the learner to construct schemas and form mental models 
(Paas et  al., 2003; Sweller et  al., 2019), and it is therefore 
often described as the load that generates learning. In recent 
years, the study of CL has become increasingly important. To 
test and consequently optimize instructional designs or as a 
control variable for, e.g., self-regulated learning processes, such 
as inquiry-based learning (see “Environment (E) & Task (T) 
as causal factor – scaffolding & inquiry learning”; Kaiser et  al., 
2018), the valid measurement of CL represents a central goal 
of educational and psychological research (among others 
Kirschner et  al., 2006; Minkley et  al., 2018; Sweller et  al., 
2019). Using subjective self-assessments (Cierniak et al., 2009b; 
Leppink et  al., 2013; Klepsch et  al., 2017; Krell, 2017) or 

objective measures as indicators of CL, such as heart rate 
(Paas and van Merriënboer, 1994; Minkley et  al., 2021), pupil 
dilation (Chen and Epps, 2014; Huh et  al., 2019), blink rate 
(Chen and Epps, 2014), or gaze behavior (Korbach et al., 2018; 
Zu et  al., 2020), different approaches to measuring CL have 
been investigated. Possible relationships and convergences 
between subjective and objective measurement tools for 
identifying CL are also coming more into the focus of research 
(among others Minkley et  al., 2021). However, the use of 
subjective measurement instruments by self-assessment is still 
an established way to assess CL based on a learning task or 
instructional learning approach (Cierniak et al., 2009b; Leppink 
et  al., 2013; Klepsch et  al., 2017; Krell, 2017; Zu et  al., 2020; 
Thees et  al., 2021). Although the subjective measurement 
approach is controversial in research regarding valid measurement 
of CL (de Jong, 2010; Kirschner et  al., 2011; Sweller et  al., 
2011), studies, such as the one by Klepsch et  al. (2017), 
demonstrate a proven measurement accuracy. Other studies 
also reveal that measuring the three types of CL can pose 
different difficulties (DeLeeuw and Mayer, 2008; Ayres, 2018). 
First, it is unclear how, for example, the different CLs (ICL, 
GCL, and ECL) can be  affected by the wording of items, since 
variations of the items lead to different results in performance 
and CL (Sweller et al., 2011; Klepsch and Seufert, 2021). Second, 
besides the wording, it is uncertain whether learners are able 
to assess their competences in relation to the differentiated 
items (ICL; GCL; and ECL; Sweller et  al., 2011). Nevertheless, 
approaches to measure the three types of CL via self-assessments, 
e.g., via the design of controlled conditions (among others 
Sweller et  al., 2011; Klepsch and Seufert, 2021), suggest that 
a categorical differentiation and measurement of the individual 
CLs are possible. However, Thees et  al. (2021) also showed 
that relying on established subjective instruments to measure 
CL may lead to various difficulties. Composing a subjective 
measurement instrument from established items could lead to 
a more valid measurement of the three types of cognitive load 
(ECL, GCL, and ICL). However, these established self-assessments 
have mostly been used with university students, whereas research 
on subjective instruments measuring the different types of CL 
for middle-school students in instructional teaching-learning 
settings has been scarce (e.g., van de Weijer-Bergsma and van 
der Ven, 2021). Therefore, the focus of this research is to 
design and test a self-assessment questionnaire to measure the 
three types of CL for 9th and 11th grade students. To examine 
a possible valid measurement in combination with a convergence 
between subjective and objective measurement instruments of 
CL, various methods from validity research can be  used. 
Consistent with the Standards for Educational and Psychological 
Testing (AERA et  al., 2014), more recent validity approaches 
open possible opportunities for proving evidence and convergence 
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via argumentative, theory-based test score interpretations 
(Messick, 1995; Kane, 2006, 2013). According to Kane (2013, 
p.  13), validity is “an integrated evaluation judgment of the 
degree to which empirical evidence and theoretical rationales 
support the adequacy and appropriateness of inferences and 
actions based on test scores or other modes of assessment”. 
Based on the validation framework of Cronbach and Meehl 
(1955), the Argument-Based Approach to Validation follows 
the examination of test score interpretation. This consists of 
making different validity assumptions from an interpretation-
usage argument and testing them using different methods as 
well as relating them back to the existing theories (Kane, 2013). 
Hence, validity investigations do not represent a mere testing 
of formalized theories. They rather show the establishment 
and testing of coherent and plausible chains of reasoning that 
examine and explain the results of a measurement instrument 
in a theory- and evidence-based manner. Within these chains 
of reasoning, other validity criteria should be  integrated and 
the test score should be  examined from different perspectives 
(Messick, 1995; Kane, 2013). Regarding the validity testing of 
a subjective instrument to measure the three types of CL in 
this study (ICL, ECL, and GCL), the theory-based analysis of 
possible influences on CL and interactions within the learning 
environment needs to be  investigated (causal factors: 
environment, task, and learner). The identification of possible 
relationships between these causal factors and the occurring 
ICL, ECL, and GCL (assessment factors) when using multimedia 
scaffolds is therefore required first. Then, a possible convergence 
between the results of the subjective instrument and objective 
indicators of CL will be  examined in more detail. Therefore, 
the theoretical assumptions between the causal and the assessment 
factors will be  presented first in order to deduct assumptions 
with regard to the validation of the measurement instrument 
that will be  tested within the performed studies.

CONSTRUCT OF COGNITIVE LOAD 
WITH CAUSAL AND ASSESSMENT 
FACTORS

The distinction between causal and assessment factors in relation 
to CL was described by Paas and van Merriënboer (1994) 
based on study results in the context of problem solving. Choi 
et  al. (2014) extended this theory-based construct of CL 
(Figure  1). In addition to the influencing factors of the task 
(task: e.g., complexity and format) and learner-specific 
characteristics (learner: e.g., cognitive abilities or prior 
knowledge), the model was extended by the factor of learning 
environment. Like the task as well as the learner characteristics, 
the environment can influence the load that occurs, e.g., physical 
conditions. The causal factors are in close interaction with 
each other which can significantly influence the expression of 
individual CL (Choi et  al., 2014; Paas and van Merriënboer, 
2020). The interaction between the causal factors can be  seen, 
for example, between the task and the characteristics of the 
learner. Thus, different studies show the close interaction among 

prior knowledge and task complexity or task success (expertise-
reversal effect: Cierniak et  al., 2009a; Kalyuga, 2013).

Mental load, mental effort, and task performance are the 
assessment factors by which individual CL can be  judged in 
relation to, for example, mastering a task or instruction. Both 
mental load and mental effort generally describe the CL that 
must be exerted by the learner to complete a given task. Mental 
load is the term used to summarize the subject-independent 
CL that relates solely to the characteristics of the task (Paas 
and van Merriënboer, 1994; Choi et al., 2014). Therefore, mental 
load is equivalent to the construct of ICL (e.g., Minkley et  al., 
2021). In contrast, mental effort describes the loads “which 
refers to the amount of capacity or resources that is actually 
allocated by the learner to accommodate the task demands” 
(Choi et  al., 2014, p.  228). Mental effort therefore refers to 
the cognitive resources that are used during the specific problem 
solving/task and can accordingly be  equated with GCL and 
ECL (e.g., Paas and van Merriënboer, 1994; Choi et  al., 2014; 
Krell, 2017). Regardless of the classification of the individual 
types of CL, these are related to the causal factors that can 
influence both task performance and the CL of the learner. 
The level of prior knowledge (L), for example, has an influence 
on the expression of the ICL (see “Prior Knowledge”), whereas 
the ECL is considered to be mainly dependent on the instructional 
design (T). Both types of loads are perceived by the learner 
as rather passive (Klepsch and Seufert, 2021). The GCL, on 
the other hand, represents the perceived by the learner as 
rather active load (Seufert, 2018). The assessment factors can 
be  measured by subjective (self-assessment) and objective (for 
example, heart rate) instruments as an indicator for CL (see 
“Introduction” and Figure  1). Subjective instruments, such as 
the ones of Zu et al. (2020); Klepsch et al. (2017); Krell (2017); 
or Leppink et al. (2013), have the benefit that they can be easily 
used via paper-pencil questionnaires within the intervention. 
However, contrary to objective measures, such as Heart Rate 
or Gaze Behavior, they depend on the self-assessment 
competences of learners/participants who assess and report 
their own load based on the item formulations (see 
“Introduction”). The objective instruments provide another way 
to measure CL. Although they are technical and costly, objective 
measurement methods are increasingly used. Although a valid 
measurement of CL cannot yet be  granted, various studies 
show close correlations between subjective and objective 
measurement of CL categories (Korbach et  al., 2018; Solhjoo 
et al., 2019; Minkley et al., 2021). Eye-movement measurements 
represent one research approach to investigate CL during 
learning with visual (and auditory) material or problem solving. 
Thus, different metrics, such as fixations duration (Zu et  al., 
2020) or transitions (Korbach et  al., 2018), are used to derive 
learners’ CL. Previous work on the relationship of students’ 
gaze data and their subjective CL ratings demonstrated that 
certain eye-tracking metrics discriminated between the three 
types of CL (Zu et  al., 2020). Zu et  al. (2020) found that 
there is a significant relation of the mean fixation duration 
of students with low prior knowledge in a physics context 
and the ECL. Whereas the ICL significantly relates to the 
transitions between an animation and a text, the GCL is linked 
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to the dwell time on an animation. These results in the context 
of electric motors were observed for students with low prior 
knowledge and they were independent on the working 
memory capacity.

Environment (E) & Task (T) as Causal 
Factor – Scaffolding & Inquiry Learning
As shown in Figure  1, the learning environment and task are 
causal factors affecting CL. As Choi et  al. (2014) noted, these 
two factors usually cannot be  clearly separated in (terms of) 
practical implementation which also becomes clear by looking 
at the learning environment and the task in our study. In 
science education, inquiry-based learning is an approach to 
promote scientific reasoning as an integral part of science 
education (e.g., OECD, 2007). Within inquiry-based learning, 
learners are asked to actively apply different facets of knowledge 
to investigate a scientific phenomenon along the different phases 
of the scientific knowledge process (Kind and Osborne, 2017; 
de Jong, 2019). Through the generation of a research question 
and testable hypotheses, the planning of a scientific investigation 
to the execution and interpretation of the experimentally 
obtained results, learners actively use their content-related 
knowledge as well as their methodological skills (inquiry skills/
scientific reasoning skills) to investigate the phenomenon/
problem. Studies show that this problem-solving process (open 

inquiry learning: Bell et al., 2005), which is usually self-regulated 
and cooperative, has higher learning effects and can contribute 
better to long-term learning of scientific skills than direct forms 
of instruction (Alfieri et al., 2011; Furtak et al., 2012). However, 
other studies also suggest that learning along the scientific 
inquiry process can cause student-specific problems, as the 
complexity and openness of the learning process exceed the 
individual capacity of working memory (Leutner et  al., 2005; 
Kirschner et  al., 2006). As a result, supporting methods, such 
as protocol sheets provided with tasks, or the use of scaffolds, 
such as prompts and feedback, can minimize these occurring 
loads (Hmelo-Silver et  al., 2007) and support the learner in 
his or her inquiry-based learning process (guided inquiry 
learning: Bell et  al., 2005). Studies show, among other things, 
that short, direct prompts do not hinder the constructivist 
learning method of inquiry-based learning. However, depending 
on the design and the use, they can minimize individual CLs 
(e.g., Kirschner et al., 2006). Based on this, different approaches 
to scaffolding have been explored empirically (e.g., Arnold 
et al., 2014; Kaiser and Mayer, 2019; Meier and Kastaun, 2021). 
Using digital media, scaffolds can enable individual learning 
in a variety of forms.

In addition to prior knowledge and motivational factors, 
learners bring in further characteristics that offer starting points 
for differentiation. Especially when dealing with multimedia-
based representation combinations (e.g., video or animation), 

FIGURE 1 | Construct of cognitive load with for the study-specific causal and assessment factors (adapted from Choi et al., 2014).
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cognitive characteristics, such as learning preferences for visual 
or verbal learning material (representation preference; Mayer 
and Massa, 2003), spatial ability (Höffler and Leutner, 2011), 
or cognitive style (Höffler and Schwartz, 2011; Koć-Januchta 
et  al., 2019), can have an impact on the learning process. 
Regarding the construction of multimedia scaffolds, these may 
not only be composed of descriptive and depictive representations 
(Ainsworth, 2006), but also of verbal audio tracks or symbolic 
texts in combination with static and dynamic images (among 
others Nitz et  al., 2014). For a targeted, effective as well as 
preferably individualized use of technology-enhanced scaffolds, 
multimedia design principles based on CLT and the theory 
of multimedia learning (Mayer, 2014) should be  resorted to 
minimize ECL and create free capacities in the working memory. 
Therefore, the use of multimedia scaffolds in the complex 
problem-solving process of inquiry-based learning (Figure  1: 
E + T) along with learner characteristics as causal factors of 
CL should be  elicited.

Learners’ (L) Characteristics as Causal 
Factor
Learner-specific characteristics are elementary in the context 
of CL (Figure 1) and thus also in the long-term memorization 
of new knowledge elements (among others Choi et  al., 2014). 
Besides motivational and affective factors, interest (Baars et al., 
2017) or fun (van de Weijer-Bergsma and van der Ven, 2021), 
the influence of cognitive characteristics, such as prior knowledge 
(Kalyuga et  al., 2003; Cierniak et  al., 2009a; Kalyuga, 2013), 
in relation to CL has been widely investigated. Interactions 
with the theory of multimedia learning as well as distinction 
of further cognitive characteristics aiming at cognitive abilities 
in relation to representation-based information processes, such 
as the development of reading skills, spatial ability, or cognitive-
verbal and visual abilities, were examined so far only little in 
relation to CL or with unclear results (among others Ho et  al., 
2014; Chen et al., 2018; Lehmann and Seufert, 2020). However, 
based on theoretical frameworks of multimedia learning (Moreno, 
2010; Mayer, 2014), human cognitive architecture (Paas and 
van Merriënboer, 2020), and empirical studies of individual 
cognitive abilities, assumptions can be  made that identify a 
relationship between specific cognitive, representation-based, 
abilities, the learning material, and the resulting CL. In the 
following, specific (cognitive) characteristics are identified and 
elicited in terms of a possible causal factor in connection with 
CL and their possible of measurement within the present study.

Prior Knowledge
Studies investigating prior knowledge have shown that it 
significantly influences learning performance (Kalyuga, 2013; 
Chen et  al., 2018; Richter et  al., 2018; Seufert, 2019). Based 
on the cognitive architecture of knowledge processing and 
memorization, increased prior knowledge contributes to chunking 
(new) information and minimizing element interaction in the 
working memory (Pollock et al., 2002; Kalyuga, 2011). However, 
this is only correct up to a certain level of prior knowledge 
and dependent on the design of learning materials. For example, 

very detailed worked-out examples can minimize the learning 
outcome for students with a high level of prior knowledge, 
as their own individual knowledge construction is inhibited 
by the content specifications, whereas learners with a low level 
of prior knowledge can particularly benefit from these scaffolds 
(expertise-reversal effect: Kalyuga, 2013; Chen et  al., 2016). In 
the context of inquiry-based learning, studies show that novices 
benefit less from individual knowledge construction than experts 
because they are missing prior experience or concrete information 
about the individual knowledge facets (e.g., Shrager and Siegler, 
1998; Siegler, 2005; Kendeou and van den Broek, 2007). Reasons 
for this could be  associated with high levels of CL and a 
consequent reduction of GCL, because the resources of the 
working memory for processing the learning content are exceeded 
(element interactivity, see “Introduction”). If the complexity of 
the learning task increases, explicit instruction is beneficial 
for long-term retention (Chen et  al., 2016, 2018).

Cognitive Abilities
Along with the investigation of instructional forms and its 
pros and cons for specific learners, different correlations 
regarding CL can also be  identified (e.g., Mayer and Massa, 
2003). In addition to prior knowledge, spatial ability is 
increasingly a focus of investigation (e.g., Quaiser-Pohl et al., 
2001). Basically, a positive correlation can be  found between 
the expression of spatial ability and learning performance 
(Höffler, 2010). Regarding dynamic and static representations, 
such as animations or static images, spatial ability can act 
like a compensator according to the ability-as-compensator 
hypothesis (e.g., Höffler, 2010; Münzer, 2012; Sanchez and 
Wiley, 2014), but only if this ability is also actively needed 
for processing the learning task (Höffler and Leutner, 2011). 
Hence, it can be  assumed that the higher spatial ability the 
better the learning performance when dealing with static 
images, whereas when learning with animated images, lower 
spatial ability may contribute to deeper understanding (e.g., 
Huk, 2006). Further determinants of how individual learning 
abilities are influenced can be  identified using Jäger’s (1984) 
intelligence model. The recognition of patterns, the agreement 
of similarities, or other linguistic as well as visual contexts 
allow conclusions to be  drawn about logical comprehension 
as well as verbal and visual thinking skills. A few studies 
show that here, the expression is also related to learning 
performance (Kuhn et  al., 1988; Kaiser and Mayer, 2019). 
Along with verbal reasoning skills, reading skills can have 
an impact on individual learning performance, especially for 
text-based instructional materials (Plass and Homer, 2002; 
Plass et  al., 2003; Jäger et  al., 2017). In connection with 
the preference for specific, material-related instructional 
formats (see “Learning preference/Representation Preference”), 
reading skills can also have an influence on the processing 
of the task or the provided material (Peterson et  al., 2015; 
Lehmann and Seufert, 2020). On the one hand, reading skills 
are also closely related to cognitive (verbal) skills. On the 
other hand, the expression of reading skills can have an 
influence on information processing especially when learning 
with text-based (monomodal) materials (Schneider et al., 2017).
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Learning Preference/Representation Preference
Preferences with respect to a specific instructional material, modality, 
or representation fundamentally describe a person’s preferences 
to do or use something in a certain way than in another way 
(Kürschner et al., 2005; Lehmann and Seufert, 2020). The optional, 
student-specific selection of a learning material according to an 
individual’s preference, may result in positive effects in terms of, 
for example, motivation to complete the task (in reference to the 
self-regulation: Rheinberg et  al., 2000; Baars et  al., 2017). Mayer 
and Massa (2003) describe learning preference in (multimedia) 
learning situations as, e.g., visual or verbal learners showing a 
preference for a certain multimedia representation/instruction 
(representation preference). So, in specific learning situations, 
learners often prefer one multimedia representation for learning 
instruction (e.g., image and audio vs. image-text) over others 
(Mayer and Massa, 2003; Choi and Sadar, 2011). In the study 
of Lehmann and Seufert (2020), it was investigated whether the 
preference of a modality has an influence on learning performance 
and CL. Although this study did not examine multimedia learning 
materials, but only used monomodal text as visual or auditory 
stimuli, the results suggest a possible relationship between learning 
preference and CL. Their findings provide insights into the 
relationships between the (learning-) preference, the use of the 
respective instructional material (only modality), and the expression 
of CL. Thus, learners who associated their preferred modality 
with visual texts benefited and reported a lower ECL than those 
who did not use a modality matching their indicated preference 
(Lehmann and Seufert, 2020).

Aims of the Study, Research Question, 
Assumptions, & Hypotheses
The aim of this work is to validate, along the Argument-Based 
Approach to Validation by Kane (2013) and Standards for 
Educational and Psychological Testing (AERA et  al., 2014), a 
subjective instrument for students of the 9th and 11th grade for 
measuring the three different types of CL (ECL, ICL, and GCL):

(a) Based on the theoretical construct according to Choi et  al. 
(2014), relationships between causal and assessment factors can 
be  identified, which need to be  tested in order to validate a 
subjective measurement instrument for the three different types 
of CL (Figure  1). In particular, the assessment of cognitive load 
resulting from instructional design (ECL; multimedia scaffolds) 
and its interactions/relationships with causal factors (representation 
preference; cognitive abilities) is of great interest for the present study.

(b) A possible convergence between the subjective 
measurement of CL with an objective instrument (eye-tracking 
metrics) will be  checked. Both measures the load during the 
use of multimedia scaffolds and the related task for the 
planning phase of the inquiry process. Furthermore, a deeper 
investigation of possible correlations and influences of causal 
factors (cognitive-verbal and visual abilities, reading skills, 
and representation preference) through different analysis steps 
will be  proofed.

According to this, the following overall, methodical research 
question will be  investigated: Do subjective ratings of cognitive 
load (ECL, ICL, and GCL) correlate with other measures or 

indicators of CL? To investigate the research question, we made 
different validation assumptions that are differentiated via 
hypotheses and empirically tested in two studies. However, 
only assumptions and hypotheses are listed where we  expect 
significant correlations, influences, and effects in respect to 
the CL derived from the theory.

Assumption 1) The subjective measurement has an internal consistency 
and separates the relevant subscales – ECL, GCL, and ICL.

H1.1: By adapting the items from previously tested instruments 
of CL (Cierniak et  al., 2009b; Leppink et  al., 2013; Klepsch 
et  al., 2017), the three subscales ECL, GCL, and ICL can 
be  identified both verbally and by statistical characteristics 
(internal structure and internal consistency).

H1.2: The CL subscales show positive and negative correlations 
to each other. The ECL scale correlates negatively with the 
GCL; the ICL scale correlates positively with the GCL (Leppink 
et  al., 2013; Klepsch et  al., 2017).

Assumption 2) The subjective instrument leads to different cognitive 
load levels for the respective students in grades 9 and 11.

H2.1: Higher prior knowledge, which students should have 
in grade 11, should result in lower CL than that of grade 9 
students (Kalyuga, 2013; Chen et al., 2018; Richter et  al., 2018; 
Seufert, 2019).

Assumption 3) Students’ specific scores in the causal factors – 
cognitive-verbal and visual abilities, reading skills, spatial ability, 
and representation preference affect the individual CL (ECL, 
GCL, and ICL).

H3.1: There is a correlation between cognitive-verbal ability 
scales and CL, especially for text-based (monomodal) scaffolds 
(Kuhn et  al., 1988; Mayer and Massa, 2003; Lehmann and 
Seufert, 2020).

H3.2: Cognitive-visual ability correlates negatively with ECL 
and positively with GCL (Jäger, 1984; Jäger et  al., 2017).

H3.3: For the selected text-based (monomodal) scaffolds, 
reading-skill scores correlate negatively with ECL scores and 
positively with GCL scores (Plass et  al., 2003; Lehmann and 
Seufert, 2020).

H3.4: Spatial ability may have an impact on CL when using 
static scaffolds (static image). It is possible that a high spatial 
ability minimizes the ECL and contributes to the increase of 
the GCL (ability-as-compensator hypothesis; Höffler, 2010; 
Münzer, 2012).

H3.5: The individual representation preference will condition 
the choice of a multimedia digital scaffold. The choice and 
the resulting possible fit between representation preference and 
use of the scaffold will be  reflected in a low average ECL 
(Kürschner et  al., 2005; Lehmann and Seufert, 2020).

Assumption 4) As an objective instrument, visual attention in terms 
of specific eye-tracking metrics (total fixation count; mean fixation 
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duration; and total fixation count) shows a high convergence with 
the levels of subjectively measured cognitive load (ECL, ICL, and GCL).

H4.1: There is a significant correlation between the total 
fixation count and the level of CL. The total fixation count 
predicts the ECL (Zu et  al., 2020).

H4.2: The mean fixation duration and total fixation duration 
are significantly related to the level of CL. The mean fixation 
duration and total fixation duration predict the ECL (Zu et al., 2020).

MATERIALS AND METHODS

General Design of the Study I and II
To test the subjective measurement of CL, two studies were 
conducted within FLOX, a teaching-learning laboratory of the 
University of Kassel. In both studies, the intervention, 
measurement times, and tasks were identical. Thus, students 
experimented in small groups (three students) along the scientific 
inquiry process on a selected topic of metabolic physiology 
(see “Environment (E) & Task (T) as causal factor – scaffolding 
& inquiry learning”; “Procedure”). The experiment as well as 
the experimental components, the scaffolds, the instructional 
material, and group size did not differ in both sub-studies. 
However, the difference was in the playback device of the 
scaffolds and in the time duration of the experiment (see 
“Procedure”; “Scaffolds & Task”). Whereas in study I, the 
scaffolds were provided to the participants via a tablet, in 
study II, the students watched their scaffold on a computer. 
In contrast to study I, which was performed with an entire 
class (environment), study II could only be  conducted with 
three students at a time (in a similar total duration of the 
laboratory day in study I), and therefore, the experiment 
designed by the students was not performed in study II. The 
total duration of the laboratory day was 3–4 h.

Participants
Participants in both studies (n = 250, 53.2% female) were 9th (n = 142) 
and 11th (n = 108) grade students from schools in Kassel, Germany 
(see Table  1 for details). Divided into the two sub-studies, study 
I  involved 181 students (9th grade: n = 111; 11th grade: n = 70), 
whereas the second study employed a total of 69 students (9th 
grade: n = 31; 11th grade: n = 38). Both student groups and their 
legal guardians were given written and verbal information about 
the study. Based on this, both parties had to give their written 
consent to participate in the study. This was voluntary and all 
student data during the intervention were recorded anonymously.

Procedure
One week before each experimental-laboratory day, a 
pre-instruction including a pre-assessment was conducted within 
regular school hours. At this first measurement point, the 
students’ demographic data, their cognitive abilities (Cognitive 
Ability Test: Heller and Perleth, 2000), and reading skills (Reading 
Speed and Reading Comprehension: Schneider et  al., 2017) 
were assessed in a written form (Table  2). On the laboratory 

day, small groups of three students were first randomly assigned. 
Following this, the general procedure of the laboratory day 
was explained with the participants. In addition, the individual 
scaffolds (static image-text = image-text; static image-
audio = image-audio, moving image-text = animation; and moving 
image-audio = video) were introduced by content-remote examples 
since the subsequent selection of the preferred scaffold was 
made independently by the students. After examining the 
phenomena “A mushroom in the pizza dough” in a video jointly 
in the classroom/laboratory (study 1) or in groups (study 2), 
the independent, experimental work along the inquiry-based 
learning process within the small groups followed. After observing 
the phenomenon, the students were first invited to independently 
pose a research question (for example: What influence does 
temperature have on the activity of yeast?). Afterward, the groups 
formulated two well-founded hypotheses in line with the research 
question, which they would like to test in their experiment. 
The hypothesis formulation was followed by the planning phase 
of the experiment, which is also the intervention phase. At 
the beginning of the intervention, the students were initially 
asked to continue working individually. Along their protocol, 
in which the students documented all results of the 
experimentation phases, they were first instructed to individually 
select one of the four provided scaffolds. In study I, they viewed 
them on a tablet. In study 2, they used a computer with a 
stationary eye-tracking system (Tobii-Pro X3-120; 120 HZ; <0.4°; 
22-inch screen). Before each eye-tracking recording, a short 
technical briefing and an individual 9-point calibration were 
performed. To optimize the eye-tracking recording and to 
minimize any unnecessary distractions of the participants, some 
preparations were made, such as the light controlling of the 
eye-tracking areas and the separation of working areas (Kastaun 
et  al., 2020; Kastaun and Meier, 2021). Directly after using the 
multimedia scaffolds, a subjective measurement of individual 
CL was integrated into their protocol. After completing the 
CL test, students had the task to operationalize the variables 
for their experiment before going into the group work again. 
Then, they developed a complete plan in the group to test one 
of their hypotheses. Afterward, the groups conducted their 
experiment together (study I) or used their planning anticipated 
videos that showed the experimental implementation and 
matching value tables (study II). After that, the students interpreted 
the results in reference to the research question and hypotheses.

Scaffolds & Task
In both studies, the students were required to choose one option 
from the same list of multimedia scaffolds (Figure  2). These 
differed in the combination and modality of their respective 
individual representations. Image-text and animation represent 
the monomodal scaffolds, whereas image-audio and video can 
be  summarized as multimodal scaffolds with spoken text. The 
design of the graphics and the content of all scaffolds are 
identical and comparable according to cognitive-psychological 
principles (among others Mayer, 2014). The scaffolds have about 
the same time duration. The length is between 2.5 and 3 min. 
The content consisted of written and spoken text as well as 
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graphical representations to summarize the methodological skills/
knowledge for the planning phase. Especially, the concept of 
variable operationalization and the creation of measurement 
series and associated measurement concept are focused without 
reference to any specific domain content (Meier and Kastaun, 
2021). After the use of a scaffold and the cognitive load 
measurement, the students were asked to identify the dependent 
and independent variables (see “Environment (E) & Task (T) 
as causal factor – scaffolding & inquiry learning”). To do so, 
the students needed to use their prior knowledge as well as 
the information provided in the scaffold and transfer it to the 
specific subject context of the experiment. The use of the scaffold 
as well as the identification of the dependent and independent 
variables constitutes the task of the environment (Figure  1).

Instruments & Methods
Different instruments and evaluation procedures were used to 
test the validation hypotheses. Table  2 lists the individual test 
instruments and associated scales.

Cognitive Load
The subjective instrument for measuring individual CL was 
adapted and composed of different items from validated test 
instruments (Cierniak et al., 2009b; Leppink et al., 2013; Klepsch 

et  al., 2017; see Supplementary Table A). With the aim to 
measure the different load categories, ECL, GCL, and ICL, 
during learning with multimedia scaffolds, the paper-based 
questionnaire initially consisted of 15 different items (ECL = 7 
items; GCL = 4 items; and ICL = 4 items). These items were 
composed and adapted in such a way that they can 
be  independently reflected upon and assessed by 9th and 11th 
grade students and have a primary relationship to the scaffolds. 
In addition, the subjective instrument is primarily intended 
to assess the CL based on the multimedia scaffolds. Therefore, 
the items were linguistically adapted and composed in this 
manner. Using a 6-point Likert scale from strongly disagree 
(1) to strongly agree (6), the students’ self-reports were recorded 
in relation to the respective items. After the survey, we performed 
a Principal Component Analysis of the obtained datasets (using 
Varimax rotation) and the CL scales were formed by merging 
discrimination indices. The Cronbach’s α-values were determined 
to verify the internal consistency.

Reading Speed and Reading Comprehension Test
The Reading Speed and Reading Comprehension Test (Schneider 
et  al., 2017) is an established test instrument in school 
diagnostics and is used for the differentiated determination 
of reading speed, reading accuracy, and reading comprehension 

TABLE 1 | Demographic data from the studies.

Total sample (Study I + II) Study I Study II

M SD n M SD n M SD n

Age, years 15.82 1.10 250 15.77 1.13 181 15.95 1.05 69
Sex, % female 53.2 250 48.1 181 66.7 69
Grade 9th 142 111 31

11th 108 70 38

TABLE 2 | Descriptive data of used measurement of assessment and causal factors for the total sample.

M SD Cronbachs α Items per Scale References

ASSESSMENT FACTORS
Extraneous cognitive load 
(ECL) 2.17 1.01 0.891 5

 
Klepsch et al., 2017; 
 
Cierniak et al., 2009b; 

Leppink et al., 2013

Germane cognitive load 
(GCL)

4.04 1.06 0.814 3

Intrinsic cognitive load 
(ICL) 3.50 1.34 0.696 2

CAUSAL FACTORS 
Cognitive abilities

Heller and Perleth, 2000Cognitive-visual ability 
(Figure classification, N01)

13.93 8.88 0.895 24

Cognitive-visual ability 
(Figure Analogy, N02)

12.92 4.22 0.830 24

Spatial ability (Paper 
Folding, N03)

7.37 3.31 0.790 14

Cognitive-verbal ability 
(Word Analogy, V03)

7.5 2.6 0.700 19

Reading skills
Reading comprehension 46.75 26.26 0.82 47

Schneider et al., 2017Reading speed 41.62 28.36 0.80
Reading accuracy 64.72 25.32 0.82 47
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from grades 5 to 12. It is a speed-power test in which a 
given text must be  read as quickly and accurately as possible 
within a fixed time (6 min). In the text, items are integrated 
at individual points, which must be  used to complete the 
sentence by selecting the correct word. By analyzing the 
correctly crossed words, the reading accuracy across the text 
as well as the reading comprehension can be  evaluated by 
a point system. To record reading speed, the number of all 
words read within the prescribed time was counted and 
evaluated using an evaluation scale.

Cognitive Ability Test
The Cognitive Ability Test (Heller and Perleth, 2000) is also 
an established test instrument in school diagnostics. It is used 
for the differential measurement of cognitive ability dimensions 
that are particularly relevant for learning at school. Scales of 
cognitive-verbal (V03) and visual abilities (N01, N02) as well 
as spatial ability (N03) were used from this. The individual 
instruments primarily aim to measure differential content-based, 
processing capacity. The Cognitive Ability Test is also a speed-
power test. Within a prescribed time (8 min), participants had 
to solve the individual test items of the respective scales. The 
visual, series tasks (N01), visual, and verbal relation tasks (N02 
& V03) as well as paper-folding tasks measuring the spatial 
ability (N03: paper-folding test) were analyzed by an evaluation 
scale (correct/wrong), and the expressions of the individual 
constructs were identified by the formation of total scores.

Representation Preference
Representation preference was generated by an independent 
and free choice of the scaffold. The evaluation is generated 
via a frequency analyses of the individual usage behavior.

Gaze Behavior
Within study II (n = 69), students’ gaze data were recorded 
using a stationary eye-tracking system. Using the software 
Tobii-Pro Studio, all students with a poor calibration were 
eliminated from the sample. In this work, we  analyzed the 
learning stimuli as a whole, i.e., there was a single AOI 
that covered all information provided in the learning material. 
Afterward, the total fixation count, mean fixation  
duration, and total fixation duration were extracted using 
the software. Since the scaffolds have different characteristics 
in information retrieval and processing, the data were first 
z-standardized.

Data Analysis
In the following analysis, we  excluded datasets that showed 
missing values or too large measurement inaccuracies (outliers 
and dropout: n = 23) or calibration errors (eye-tracking 
datasets, n = 4; Gaze Sample under 65%) in the main 
intervention. Measurement data from the Reading Speed 
and Reading Comprehension Test and the Cognitive Ability 
Test may have different samples to the overall or sub-study 

FIGURE 2 | Image sections of the scaffolds in the different multimedia representation combinations.
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TABLE 4 | Differences between 9th and 11th grade in cognitive load (t-test, n = 250).

Grade 9th (n = 142) Grade 11th (n = 108)

M SD M SD

ECL 2.41 1.06 1.87 0.87 (95% − CI[0.29, 
0.78])/t(248) = 4.26, 
p < 0.001, d = 0.552, 
r = 0.26

GCL 3.90 1.07 4.22 1.03 (95% − CI[−0.57, 
−0.04])/t(248) = −2.27, 
p = 0.024, d = −0.295, 
r = 0.14

ICL 3.94 1.27 2.92 1.22 (95% − CI[0.70, 
1.33])/t(248) = 6.36, 
p < 0.001, d = 0.822, 
r = 0.38

as these datasets are partially incomplete. Nevertheless, these 
subjects were included in the main analysis regarding 
representation preference and CL since the complete datasets 
were available. The IBM SPSS Statistic 27 software was used 
for the statistical analyses.

To investigate the validity assumptions and research 
hypotheses, correlation and regression analyses as well as 
methods of inferential statistics (t-test and ANOVA) were 
applied for both studies. First, the internal consistency was 
examined in more detail by factor analytic procedures and 
correlation analyses of the individual scales of the CL test 
(validity assumption 1). To test the second validity assumption, 
different t-tests were conducted to analyze the assumed differences 
in the types of cognitive load (ECL; GCL; and ICL) between 
the two grade levels (9th and 11th grade). In addition, group 
differences (ANOVA) between the selected scaffolds 
(representation preference) and the expressions of the ECLs, 
GCLs, and ICLs were analyzed for each grade in order to 
exclude possible variance due to the different multimedia 
representations. Along the third validity assumption, correlations 
with the individual scales of the Reading Speed and Reading 
Comprehension Test as well as the Cognitive Ability Test in 
relation to the individual expressions of CL were conducted. 
Multiple regression analyses were used to further examine these 
correlations to identify predictors of CL during the use of the 
various scaffolds. No violations of the predictors were identified 
for any of the regressions. The Durbin-Watson statistics for 
all regressions ranged from 1 to 3 and no autocorrelations 
between variables were present (VIF < 10). Furthermore, possible 
correlations (multiple regressions with categorical variables) 

and differences (t-test) between representation preference and 
the expression of representation preference were investigated. 
The quantitative data from the second study were used to test 
the fourth validity assumption. For this purpose, the 
z-standardized eye-tracking metrics (total fixation count; mean 
fixation duration; and total fixation count) were correlated with 
the individual expressions of CL.

RESULTS

Validity Assumption I
We performed a Principal Component Analysis (Varimax 
rotation) to extract the most important independent factors 
(KMO = 0.751; the Bartlett Test was highly significant; p < 0.001). 
Kaiser’s criteria and the scree-plot yielded empirical justification 
for retaining three components (value ≥1) which accounted 
for 65.76% of the total variances. From these dimension-related 
items, the individual scales of CL were composed and reduced 
from an initial set of 15 items to 10 (ECL = 5 items, GCL =3 
items, and ICL = 2 items; see Supplementary Table A). Items 
were excluded that either had too low factor loadings (<0.3) 
or loaded too high on another factor that was not integrated 
in the construct. These resulting 10 items and three scales 
were checked for internal consistency using Cronbach’s α 
(Table  2) and correlation analyses of the individual subscales 
(Table  3). The examination of the internal consistency by the 
Cronbach’s α-values of the individual subscales and the total 
scale for the CL shows satisfactory characteristic values (Table 2). 
As expected, statistically significant correlations between the 
ECL and GCL (p < 0.001) and ECL and ICL (p < 0.001) were 
found. However, the scales of the GCL and ICL did not show 
a statistically significant relationship (p = 0.61; Table  3).

Validity Assumption II
To test the second validity assumption stating that CL decreases 
in progressive, school-based education due to an increase in 
methodological skills, group comparisons (n = 250) were made 
regarding the CL between 9th and 11th grade students. 

TABLE 3 | Parallel-test reliability via Pearson-correlations (n = 250).

GCL ICL

ECL r −0.38 0.23
p 0.00 0.00

GCL r 0.03
p 0.61

p < 0.05.
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The  groups differed statistically significantly in all scales of 
CL (Table  4). A large effect was shown according to Cohen 
(1988) regarding the ICLs (d = 0.822). The 11th grade students 
rated their intrinsic CL about one value lower than the 9th 
grade students. Medium effects were identified in the ECLs 
(d = 0.552). Regarding GCL, the groups differed statistically 
significantly but only with a small effect size (d = 0.295). Thus, 
the GCL conducive to learning increases as expected in the 
higher grade level by a value of 0.3. To support the results 
and to strengthen the link to prior knowledge as an influencing 
variable, single factor ANOVAs with Bonferroni-correction were 
conducted on the expression of the individual types of CL 

and the representation preference (choice of scaffold). The 
results show that only the ECL (F(3,3) = 3.359, p = 0.021, 
hp
2  = 0.068) in the 9th grade differed significantly between the 

learners who chose an image-text combination (n = 37; M = 2.82; 
SD = 1.08) and those who, in contrast, chose a video as a 
scaffold (n = 56; M = 2.13; SD = 1.04). Furthermore, there were 
significant differences within the 11th grade with respect to 
the GCL (F(3,3) = 3.187, p = 0.027, hp

2  = 0.085) between the 
groups of animations (n = 29; M = 4.56; SD = 0.86) and picture 
text (n = 38; M = 3.86; SD = 0.97). For the ICL and between the 
other groups regarding the ECL and GCL, no significant 
differences could be  identified (see Supplementary Material).

Validity Assumption III
To test the third validity assumption, correlation and regression 
analyses were conducted and evaluated for the total sample 
(n = 250; Tables 5–11) and the subsamples (study I: n = 181; 
study II: n = 69; see Supplementary Material). Negative 
correlations between cognitive-verbal abilities (V03) and the 
expressions of the ECL (r = 0.17; Table  5) as well as positive 
ones with the GCL (r = 0.14, Table  5) were found. Moreover, 
showing a small correlation coefficient, the expressions of reading 
speed (r = 0.19) and reading comprehension (r = 0.16) are positively 
related to the scale of the GCL’s. Regarding the cognitive-visual 
and spatial scales (N01, N02, and N03) as well as the reading 
accuracy scale, no other statistically significant correlations could 
be  identified (Table  5). Correlation analyses within the sample 
of the first study (n = 181, see Supplementary Material) further 
revealed statistically significant correlations between the ICL 
and the expression of reading comprehension (r = 0.21). Moreover, 
significant correlations between reading speed (r = 0.21) and 
cognitive-visual ability (N01; r = 0.16) and the expression of 
the GCL were identified. However, for the second study (n = 69, 
see Supplementary Material), only one significant correlation 
could be  found. Cognitive-visual ability (N02) correlated 
significantly negatively with the ICL scale (r = 0.29). Apart from 
that, multiple linear regressions were used to examine the 
cognitive abilities (N01, N02, N03, and V03) and reading skill 
scales as possible predictor variables for CL in the use of 
multimedia scaffolds. Regarding the reading-skill scales for 
reading comprehension, reading accuracy and reading speed 
have no influence on the individual CL (see 
Supplementary Material). In contrast, the cognitive-verbal and 
visual abilities (V03, N01, and N02) scales showed a significant 

TABLE 6 | Multiple regression with ECL and cognitive abilities (n = 222).

Coefficient B SE(B) BETA P VIF

(Constant) 2.460 0.300
V03 −0.068 0.028 −0.172 0.016 1.155
N03 −0.007 0.025 −0.024 0.765 1.446
N02 −0.020 0.020 −0.083 0.310 1.515
N01 0.040 0.020 0.152 0.046 1.315

R2 = 0.047, Durbin-Watson-Statistic = 1.870. p < 0.05.

TABLE 5 | Pearson correlation between causal and assessment factors for the total sample.

Cognitive-verbal 
ability (V03)

Cognitive-visual abilities 
(N01/02)

Spatial ability 
(N03)

Reading 
comprehension

Reading speed Reading 
accuracy

ECL r −0.167 0.066 −0.085 −0.055 −0.112 −0.111 0.023
p 0.013 0.323 0.202 0.409 0.143 0.148 0.766

GCL r 0.143 −0.111 −0.001 0.067 0.163 0.190 0.044
p 0.034 0.095 0.985 0.320 0.034 0.013 0.571

ICL r −0.062 0.118 −0.125 −0.082 −0.107 −0.125 −0.025
p 0.359 0.079 0.063 0.226 0.164 0.102 0.744

p < 0.05.

TABLE 7 | Multiple regression with GCL and cognitive abilities (n = 222).

Coefficient B SE(B) BETA P VIF

(Constant) 4.081 0.314
V03 0.069 0.029 0.168 0.019 1.155
N03 0.033 0.026 0.101 0.203 1.446
N02 −0.005 0.021 −0.021 0.798 1.515
N01 −0.052 0.021 −0.189 0.013 1.315

R2 = 0.052, Durbin-Watson-Statistic = 1.677. p < 0.05.

TABLE 8 | Multiple regression with ICL und cognitive abilities (n = 222).

Coefficient B SE(B) BETA P VIF

(Constant) 3.471 0.397
V03 −0.024 0.037 −0.046 0.516 1.144
N03 −0.033 0.032 −0.080 0.314 1.435
N02 −0.052 0.026 −0.162 0.048 1.509
N01 0.079 0.026 0.228 0.003 1.310

R2 = 0.055, Durbin-Watson-Statistic = 2.133. p < 0.05.
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TABLE 10 | Multiple regression between ECL and representation preference 
(n = 250).

Coefficient B SE(B) BETA P VIF

(Constant) 1.951 0.105
image-text 0.416 0.156 0.188 0.008 1.268
image-audio 0.449 0.248 0.120 0.072 1.120
animation 0.416 0.165 0.165 0.138 1.257

R2 = 0.033, Durbin-Watson-Statistic = 1.939. p < 0.05.

TABLE 12 | Pearson correlation with eye-tracking metrics and cognitive load 
scales (n = 69).

Total fixation 
count

Mean 
fixation 
duration

Total fixation 
duration

ECL r 0.247 −0.233 0.065
p 0.041 0.055 0.596

GCL r −0.079 0.169 0.089
p 0.517 0.165 0.467

ICL r −0.020 0.140 0.056
p 0.871 0.252 0.646

p < 0.05.

influence on the ECL (Table  6), GCL (Table  7), and ICL 
(Table  8) within the total sample. Multiple linear regressions 
with categorical variables were performed to investigate the 
influence of representation preference on the different types of 
CL. The results show a significant difference regarding the 
expression of the ECL and GCL between the learners who 
used scaffolds with static image and text and those who learned 
with the video (Tables 10, 11). The ECL of students who learned 
with static images and text was significantly higher than for 
the video users (p = 0.008), whereas GCL decreased significantly 
(p = 0.037). As expected from the validity assumption III, the 
representation preference that is equivalent to the voluntary 
choice of the scaffold had no further significant influence on 
the expression of CL (see Supplementary Material and Tables 10, 
11). For an in-depth analysis of possible correlations or differences 
between representation preference and the expression of reading 
skills, cognitive abilities and CL, group differences between 
those who used multimodal and those who used monomodal 
scaffolds in the planning phase were examined. Differences were 
found with respect to the expression of reading speed 

(95%-CI[0.31, 17.59]/t(167) = 2.05, p = 0.042, d = 0.318) and ECL 
(95%-CI[0.01, 0.51]/t(247) = 2.01, p = 0.046, d = 0.256, r = 0.132). 
Accordingly, users of a monomodal scaffolds exhibited significantly 
higher reading speed as well as ECL than those who selected 
and used a multimedia one. Furthermore, no statistically 
significant differences between the multimedia and monomodal 
users could be  identified (see Supplementary Material). In 
addition, group differences between good and poor readers 
were analyzed regarding the GCL, ECL, and ICL scores for 
the text-based (monomodal) scaffolds. Again, no significant 
differences between the individual groups and the expression 
of cognitive load were found (see Supplementary Material).

Validity Assumption IV
To test the fourth validity assumption, correlations (Table  12) 
were first calculated between the z-standardized eye-tracking 
metrics and the expressions of CL. Within the sample (n = 69), 
a significant correlation between the total fixation count and 
the expression of ECL was found (r = 0.247). Although no other 
significant correlations were evident, the correlation coefficient 
between the mean fixation duration and the expression of 
ECL, which is just above the significance level, also indicated 
a possible relationship. An examination of the total fixation 
count as a predictor for the individual CL revealed no significant 
results for GCL and ICL. In contrast, the total fixation count 
showed a significant effect on ECL (Table  13).

DISCUSSION

The aim of the study was to test a subjective instrument for 
measuring differential CL for 9th and 11th grade students across 
different validity assumptions. Hereby, possible relationships between 
causal factors (learner characteristics: e.g., cognitive, verbal and 
visual abilities, reading skills, and representation preference) and 

TABLE 11 | Multiple regression between GCL and representation preference 
(n = 250).

Coefficient B SE(B) BETA P VIF

(Constant) 4.170 0.110
image-text −0.346 0.165 −0.149 0.037 1.268
image-audio −0.270 0.261 −0.069 0.302 1.120
animation −0.009 0.174 −0.004 0.959 1.257

R2 = 0.023, Durbin-Watson-Statistic = 1.873. p < 0.05.

TABLE 9 | Selection frequencies of scaffolds.

Scaffolds Selection frequencies

Total sample 
(n = 249)

study I (n = 180) study II (n = 69)

nj hj nj hj nj hj

image-text 75 30.1 53 29.4 22 31.9
image-
audio

20 8.0 15 8.3 5 7.2

animation 62 24.9 46 25.6 16 23.2
video 92 36.9 66 36.7 26 37.7

nj = absolute frequency = sum of used scaffolds in the respective format; hj = relative 
frequency (in percent) = relative share of the selected scaffolds in relation to the total 
number of scaffolds used.

TABLE 13 | Linear regression between ECL and total fixation count (n = 69)

Coefficient B SE(B) BETA P VIF

(Constant) −0.118 0.103
Total fixation count 0.216 0.04 0.247 0.041 1.000

R2 = 0.061, Durbin-Watson-Statistic = 2.220. p < 0.05.
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assessment factors of CL were investigated (Figure 1). Furthermore, 
an objective measurement method (eye-tracking: total fixation 
count, fixation duration, fixation, and mean fixation duration) 
was used. With the constant inclusion of the overarching 
methodological research question (see “Introduction”), different 
analyses were carried out for the respective assumptions (see 
“Aims of the Study, Research Question, Assumptions & Hypotheses”). 
In the following, the individual validity assumptions will be discussed 
and combined in a final concluding discussion in relation to the 
research question.

Discussion of Validation Assumptions I–IV
The first assumption targets the internal consistency as well 
as significant correlations between the expected scales of the 
ECL, ICL, and GCL for validity testing. The constructed 
subjective measurement instrument is closely based on existing 
test items (Cierniak et al., 2009b; Leppink et al., 2013; Klepsch 
et  al., 2017). Even with language and content adaptation, the 
evidence-based structure to the CL is confirmed in the dimensions 
of the ECLs, ICLs, and GCLs (H1.1). The examination of 
internal consistency shows satisfactory to very excellent 
Cronbachs-alpha values (see “Validity Assumption I”) and, 
except for the values from the ICL, coincides with the results 
from other studies (Klepsch et  al., 2017). In this context, 
possible reasons can be  identified in the linguistic construction 
as these items of the ICL (for example: “I found the identification 
of the dependent and independent variables to be  difficult.,” see 
Supplementary Table A) did not directly refer to the use of 
scaffold but to the definition of the individual variables, and 
thus, to the complexity of variable operationalization (Leppink 
et  al., 2013; Klepsch et  al., 2017; Klepsch and Seufert, 2021). 
In contrast, the GCL and ECL items refer almost exclusively 
to the scaffolds and less to the task within the planning phase 
of the experiment (see Supplementary Table A). This might 
be one reason why the GCL and ECL scales are not significantly 
correlated with each other, in contrast to the ECL and ICL 
scales (Leppink et  al., 2013; see “Introduction”). Furthermore, 
the results confirm the additive relationship between the ICL 
and ECL (see “Introduction”; Sweller et  al., 2011).

An examination of possible differences between the two grades 
9th and 11th regarding the expression of CL comprises the second 
validity assumption. The group comparisons show results in line 
with expectations that the expression of CL and its categories 
ECL, GCL, and ICL is less pronounced in 11th grade students 
than in 9th grade. This can be  attributed to differently developed 
prior knowledge regarding the content, and it is likely to constitute 
a consolidation of the more developed self-regulation of the learners 
from 11th grade (among others Richter et  al., 2018; Eitel et  al., 
2020; H2.1). Considering the group differences in the respective 
grade level regarding the used scaffold and the expression of the 
ECL, ICL, and GCL, the results do not only indicate a difference 
in subject-related knowledge. In contrast to the older 11th grade 
students, who did not differ significantly in ECL, significant 
differences appear among the younger students between those 
who used an image-text combination and those who chose a 
video (see “Validity Assumption II”). This suggests that either 

the instructions from the video-based scaffold were easier to relate 
to each other due to their auditory and visual layout (Paivio, 
2006; Mayer, 2014) or that the learners tended to overestimate 
their own abilities in dealing with the image-text representation 
combination. The last is of course also strongly related to the 
subject-specific complexity as well as the formulation of the  
ECL items, since, for example, “unclear language” (see 
Supplementary Table A) can be  understood ambiguously. 
Furthermore, the significant difference in grade 11  in relation to 
the GCL among the learners who chose an image-text combination 
or an animation can be interpreted in such a way that the students 
encountered a hurdle during the linking and extraction of the 
content from the scaffolds (see “Validity Assumption II”). The 
dynamic presentation of text and images in the animations may 
have minimized the mental interconnection of the information. 
Another explanation could be  that the image-text combination 
supports repetitive reading and self-regulated comprehension due 
to the static presentation (Kastaun and Meier, 2021).

Regarding the third validity assumption that the individual 
expression of the cognitive-visual and verbal abilities, reading 
skills, spatial ability, and representation preference (causal 
factors) is related to the CL, a differential overall assessment 
emerges. In comparison with the results of the spatial ability, 
there are correlations to the other causal factors from which 
different explanatory approaches can be  derived in relation to 
the overarching question regarding the validity test of the 
subjective test instrument (H3.4). Cognitive-verbal and visual 
abilities (N01, N02, and V03) as well as reading skills are 
included as variables in some studies on CL but are not further 
investigated in a differentiated analysis of CL (e.g., Cierniak 
et  al., 2009b). Furthermore, different test instruments exist 
and can be  used to measure this, which makes it difficult to 
transfer the results in respect to the measured construct (e.g., 
verbal reasoning ability; e.g., van de Weijer-Bergsma and van 
der Ven, 2021). Thus, it is currently not clear how cognitive 
abilities relate to the individual scales of CL. In the present 
study, relationships and influences of cognitive-verbal and visual 
abilities as well as influences on CL and its differentiated 
categories could be  identified (Tables 5–11; H3.1; H3.2; and 
H3.3). Possible explanations can be  found, among others, in 
the construction of the items and the item structure (see 
“Cognitive Ability Test,” relationship and series tasks) of the 
individual scales of the cognitive ability test used in this study 
(Heller and Perleth, 2000). These scales (N01, N02, and V03) 
measure content-based skills by determining logical thinking 
using content-based, here, visual and verbal examples via series/
classification (N01) and ratio/analogy tasks (N02 & V03). 
According to Jäger et  al.’s (2006) intelligence model, in which 
the scales measure verbal and visual abilities under a constant 
reference to the individual thinking ability, content-based 
cognitive abilities contribute to a person’s general intelligence. 
In terms of CL, this means that the correlations are not only 
due to students’ verbal or visual level, but also due to the 
ability to easily recognize links between different information. 
Furthermore, the results can also be explained by the construction 
of the scaffolds. The primary information carriers of the 
multimedia scaffolds are the verbal or textual representations, 
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i.e., the visual representations also contribute to content 
development but without the verbal or text-based elements 
they do not explain the main content.

Considering the multimedia learning theory (Moreno, 2010; 
Mayer, 2014), which states that verbal and text-based information 
can be reorganized in working memory via images and sounds, 
high verbal cognitive reasoning ability can help minimize ECL 
and increase GCL. This is also evident from a closer look at 
the subsamples (see “Validity assumption III” and 
Supplementary Material). The explanatory approach, which 
implies that those with a higher expression of cognitive-verbal 
abilities benefit more than those who show an increased visual 
ability due to the design characteristics (among others Choi 
and Sadar, 2011), is supported by the significant negative 
correlations present in study I and II (see “Validity assumption 
III”) as well as by the findings of the multiple regression 
analyses. These show a strong to moderate effect of cognitive 
abilities on the individual load categories. In respect to the 
scaffolds used, cognitive-verbal abilities predicted low ECL and 
higher GCL, whereas cognitive-visual abilities scales did not 
predict any of the CL categories (see “Validity assumption III”).

Concerning the study of reading skills as a causal factor to 
CL, the results show that positive relationships exist between 
reading comprehension as well as reading speed and GCL. On 
the one hand, this can be  attributed to the fact that cognitive-
verbal reasoning skills are closely and positively related to the 
individual reading skills (Schneider et  al., 2017). On the other 
hand, it shows that the reading process is an active construction 
activity (Artelt et  al., 2007; Scheerer-Neumann, 2018). Thus, the 
significant correlations may result from the higher load based 
on the selected scaffold (monomodal) but also from the text-
based self-assessment of the CL. Accordingly, the text-based test 
itself may have elicited a correlation between the GCL and 
reading comprehension or reading speed. Contrary to the identified 
correlations, the results of the multiple regression analyses do 
not show any significant influences of the reading skills on the 
three types of CL (see Supplementary Material). Further analyses 
between the use of the monomodal/multimodal scaffolds and 
the expression of cognitive load in relation to the reading skills 
also showed differentiated results. It is possible that the reading 
skills do not have a significant influence on the decision of the 
selected scaffold but still show advantages in the processing of 
the information (based on the modality) about the load.

The relationship between spatial ability and CL (H3.4), which 
has been supported and assumed by many studies (e.g., Höffler, 
2010; Anvari et  al., 2013), is not evident in the present study. 
As already stated by Höffler and Leutner (2011), among others, 
it also becomes clear with the present results that the spatial 
ability only has a significant influence on task performance if 
the task itself requires it. Consequently, it can be  concluded 
that spatial awareness is not required for processing the 
information of the scaffolds used here.

Finally, the assumed correlations between the causal factor 
of representation preference and CL can be  partially confirmed 
(H3.5). Independent of the selected scaffold, the ECL shows a 
very low expression (see “Procedure”). Multiple regression analyses 
confirm that the representation preference, i.e., the choice of 

scaffold, influences ECL and GCL. Thus, those students who 
show a preference for the image-text representation combination 
are more likely to experience significantly higher ECL than those 
who use the video. This is also evident in the GCL, which 
negatively predicts preference for image-text compared to video 
users. This can be  attributed to the level of complexity of the 
text-based or auditory text (Leahy and Sweller, 2011; Lehmann 
and Seufert, 2020) and/or to the multimedia presentation mode 
of the verbal text in terms of simultaneous, dynamic visualizations 
(Moreno, 2010; Mayer, 2014) or due to the students’ failure to 
assess what kind of multimedia representation they could best 
handle in the situation (instruction).

The examination of a possible convergence between the 
subjective and objective instruments for CL (validity assumption 
IV) showed results partially confirming to expectations. The 
positive correlation (Table  12) and the significant influence 
(Table  13) of the absolute fixation count support the assumed 
convergence (H4.1; Zu et  al., 2020). Zu et  al. (2020) found a 
moderate negative correlation between the ECL and the mean 
fixation duration and a weak correlation between the total visit 
duration on an animation and the GCL. In our work, we  found 
a weak negative correlation between the ECL and the mean 
fixation duration that was just above the significance level (p = 0.55) 
and a significant positive correlation between total fixation count 
and the ECL. This implies that previously reported relationships 
between eye-tracking measures and cognitive load do not translate 
to our setting. The examination of other eye-tracking metrics, 
such as transitions between the AOIs, was not possible based 
on the material used here since possible selection and integration 
processes cannot be investigated unambiguously via visual attention 
when including auditory scaffolds.

Limitations and Implications for Future 
Work
Along the individual validity assumptions based on the theoretical 
interpretation-use argumentation (Kane, 2013), arguments for a 
possible valid measurement via the test scores of the measurement 
instruments are used (causal & assessment factors; objective 
instruments), and their relationships to each other are identified. 
The central goal of validating a subjective measurement instrument 
for 9th and 11th grade students was partially achieved by 
confirming individual validity assumptions under study-specific 
conditions. The results support a valid measurement but also 
indicate that a validity test of a subjective measurement instrument 
for CL is associated with different difficulties. On the one hand, 
CL can be  influenced by diverse causal factors in different ways 
(Figure  1; Choi et  al., 2014), which is particularly related to 
the construction of the task and/or environment as well as its 
interaction with CL. On the other hand, a difficulty arises from 
the fact that there are no comprehensive, tested relationships 
between the individual subjective and objective measurement 
instruments for CL (assessment factors) in an evidence-based 
manner yet. Particularly regarding the cognitive abilities for 
visual and verbal reasoning, more detailed investigation is needed 
to determine whether these factors influence CL in a similar 
way as prior knowledge (expertise-reversal effect: Cierniak et al., 

125

https://www.frontiersin.org/journals/psychology
www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Kastaun et al. Cognitive Load in Scientific Inquiry

Frontiers in Psychology | www.frontiersin.org 15 August 2021 | Volume 12 | Article 703857

2009a; Kalyuga, 2013). Another limitation of our study is the 
missing inclusion of learning performance. Since the CLT assumes 
that CL also influences learning performance (see Figure  1), it 
would have been appropriate to include this in relation to the 
manifestations of cognitive load in relation to the causal factors. 
Due to our aims and the corroborating, temporally extensive 
design of the study, we  were not able to consider learning 
performance. The focus was on the design of the scaffolds and 
the resulting cognitive load. In the future, this should be captured 
by valid instruments for the methodological skills/knowledge 
for the planning (content of scaffolds) to extend the analyzed 
relationships between causal and assessment factors. However, 
the results of this study demonstrate that performance-based 
(cognitive abilities and reading skills) and objective (eye-tracking 
metrics) instruments are linked to the subjectively obtained test 
scores on individual CL. Therefore, further analyses are needed 
in the future to examine the relationships between the individual 
causal factors in relation to different tasks and the resulting 
CL. However, not only the findings between the causal and 
assessment factors show further approaches of investigation, but 
also the subjective measurement instrument from its linguistic 
composition by itself. Thus, the results indicate that especially 
the linguistic construction of the items has a great influence 
on the actual measurability of the individual constructs. On 
the one hand, there is the difficulty of phrasing the items 
(especially GCL and ICL) in such a way that they reflect the 
construct to be  measured (Wording, see “Introduction”). Above 
all, the measurement of the GCL must be  considered with 
reservations. In addition to the term “knowledge,” the word 
“understanding” is used in the items. It is questionable whether 
students’ understanding and comprehension can actually 
be equated with GCL (Ayres, 2018), and how the corresponding 
items can be  worded differently to express quantify GCL. On 
the other hand, there is the challenge of adapting the linguistic 
level to the learners in such a way that they can understand 
and assess it independently (Sweller et  al., 2011; Klepsch and 
Seufert, 2021). In conjunction with the validation approach 
according to Kane (2013), which considers the generalizability 
of the test instrument as an elementary part of validity, the 
existing subjective test instruments should be  examined in the 
future regarding a possible standardization with tested adaptation 
possibilities that fit the investigated setting (self-regulated learning 
or problem-based learning).
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A sample of 33 experiments was extracted from the Web-of-Science database over a 5-
year period (2016–2020) that used physiological measures to measure intrinsic cognitive
load. Only studies that required participants to solve tasks of varying complexities using
a within-subjects design were included. The sample identified a number of different
physiological measures obtained by recording signals from four main body categories
(heart and lungs, eyes, skin, and brain), as well as subjective measures. The overall
validity of the measures was assessed by examining construct validity and sensitivity. It
was found that the vast majority of physiological measures had some level of validity,
but varied considerably in sensitivity to detect subtle changes in intrinsic cognitive load.
Validity was also influenced by the type of task. Eye-measures were found to be the most
sensitive followed by the heart and lungs, skin, and brain. However, subjective measures
had the highest levels of validity. It is concluded that a combination of physiological and
subjective measures is most effective in detecting changes in intrinsic cognitive load.

Keywords: intrinsic cognitive load, physiological measures, validity, working-memory load, workload, cognitive
load theory

INTRODUCTION

The main aim of this study was to examine the validity of using physiological techniques to measure
cognitive load by examining construct validity (see Gravetter and Forzano, 2018) and sensitivity
(see Longo and Orru, 2018). More specifically to investigate the ability of physiological measures
to detect differences in intrinsic cognitive load caused by tasks of varying complexity. To meet this
aim we examined the findings from a number of studies drawn from a 5-year sample that measured
cognitive load using physiological techniques. In particular, we were interested in examining a
sample of contemporary studies that had access to the most up-to-date technology.

Researchers across many fields have been interested in the amount of mental resources invested
in attempting a task. One such field is human factors, where studies have focused on everyday
tasks such as driving a motor vehicle. In particular, of much interest has been the mental resources
required to not only drive the car but deal with other requirements or distractors. Measurement
of these mental resources has received much attention, for example, Wickens (2002) developed a
model based on multiple resource theory that predicted dual-task interference.
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A number of descriptors have been used to represent
these types of mental investments such as working memory
load, mental workload, and cognitive load, according to the
context used and/or the theoretical influences of the researchers.
Although such labels are often used interchangeably and have
similar meanings, we will use the term cognitive load because
of its close association with cognitive load theory (CLT) and the
identification of different types of cognitive load (see Sweller et al.,
2011), which is an important consideration in the current paper.

Cognitive load theory emerged in the 1980s as a theory that
made predictions about learning and problem solving based
on the amount of mental resources and effort (cognitive load)
invested in the tasks. An integral part of CLT (see Sweller
et al., 2011; Sweller et al., 2019) has therefore been to find
instruments that measure cognitive load in order to provide
direct evidence for the assumptions made and to advance the
theory further. Up until now a number of self-rating subjective
measures (see Paas, 1992; van Gog and Paas, 2008; Ayres,
2018) have been developed as the preferred methods. However,
despite their widescale use, many researchers have argued for
more objective alternatives such as working memory dual-
tasks (see Park and Brünken, 2015) or physiological measures
(see Antonenko and Niederhauser, 2010).

In more recent times, helped by advances and the availability
of new technologies, physiological measures have become more
popular in CLT research (see Ayres, 2020). Many physiological
measures have already been used based on theoretical arguments
and experimental data to confirm individual validity (see Kane,
2013). However, our study was a broader investigation to gain a
more global overview of physiological measures in order to gain
an up-to-date picture of their validity.

Cognitive load theory has identified three types of cognitive
load: intrinsic, extraneous, and germane (see Sweller et al.,
2019). According to CLT intrinsic cognitive load is generated
by the element interactivity (elements that need to be processed
simultaneously) of the task (Sweller et al., 2011); whereas in
instructional settings, cognitive load can also be generated
by learners dealing with the instructional designs (extraneous
cognitive load) and the actual learning processes generated
(germane cognitive load). Complex tasks typically have many
interacting elements creating high levels of intrinsic cognitive
load. The intrinsic cognitive load generated by any task is not
fixed per se as it is dependent upon the expertise of the problem-
solver or learner. Learners with high levels of expertise possess
knowledge structures (schemas) that enable them to chunk
together many elements (see Chi et al., 1982; Sweller et al.,
2011) thus reducing intrinsic cognitive load. It should be noted
that CLT emphasizes the importance of interacting elements
for creating complexity in learning settings; however, increased
cognitive load does not always depend on interactivity for other
non-learning types of tasks. For example, trying to recall 12
random numbers after a brief observation requires more mental
effort than recalling five numbers. Nevertheless, interactivity
between elements can be a major cause of intrinsic cognitive load.

Subjective measures have been reasonably successful by
requiring learners to rate different aspects of the learning process
using multi-item scales (see Leppink et al., 2013), although it is

debatable whether learners are able to identify different forms
of cognitive load when many cognitive processes are interacting.
In contrast, as far as we know no physiological measures have
been developed to distinguish the types of cognitive load due to a
number of confounding factors such as interactions between task
complexity and learning or stress. To make a consistent analysis
by controlling for possible confounding factors, the present
study focused on studies that generated changes in intrinsic
cognitive load caused by variations in problem complexity rather
than by additional learning factors. By focusing on studies that
require participants to solve tasks without instruction, and no
requirement for learning, cognitive load can be narrowed down
to one source (task complexity). Under these conditions we
assume total cognitive load to be equivalent to intrinsic cognitive
load as no instruction or learning, or other interacting factors
are directly involved (see Ayres, 2006). Hence for our sample of
studies, we expected the various physiological techniques used
to measure only intrinsic load as no other types of cognitive
load were present.

Mental arithmetic tasks provide a good example of tasks
that vary in complexity and generate different levels of intrinsic
cognitive load. They require the simultaneous storage and
processing of information, which generates working memory
load (cognitive load). Because completing a task serves as
a different function to learning about the task, the source
of cognitive load is intrinsic and dependent upon element
interactivity only, as no instructional steps are included. Consider
the following two problems: (a) calculate 3∗4 + 7; and (b)
12∗8 + 14 + 11∗2. The first problem is fairly straightforward
with only two simple calculations involved; whereas the latter has
four more difficult calculations with greater element interactivity.
The second problem requires more working memory resources to
overcome the intrinsic cognitive load generated.

From a validity perspective, Borsboom et al. (2004) argue that
“A test is valid for measuring an attribute if: (a) the attribute
exists; and (b) variations in the attribute causally produce
variation in the measurement outcomes” (p. 1061). Clearly,
cognitive load exists for mental arithmetic tasks (and all tasks
that require working memory load), so any instrument that
purports to measure cognitive load should find differences in
cognitive load between the two problems described above. Based
on cognitive load theory we hypothesize that within-participants
comparisons of tasks with different levels of complexity reveal
differences in intrinsic load that should become visible in
physiological measures. The more studies support this hypothesis
for a specific physiological measure, the higher the construct
validity of this measure (Gravetter and Forzano, 2018).

Borsboom et al. (2004) also suggest that detecting changes
in the attribute is integral to validity. Using Messick’s argument
that validity (see Messick, 1989) does not simply have black
or white outcomes, Borsboom et al. (2004) suggest that there
can be different levels of validity dependent upon how sensitive
the measure is to detecting changes. Longo and Orru (2018)
refer to an ability to detect changes as sensitivity. Hence, we
consider sensitivity as a second important feature in establishing
the validity of a physiological measure. Note that the concept of
validity can encompass the concept of sensitivity, since validity
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in general is a broader concept. Thus, we treat both construct
validity and sensitivity as aspects of validity.

As previously mentioned many studies have used
physiological techniques to measure cognitive load. Four
main categories have been identified that correspond with
major body organs: the heart (i.e., cardiovascular) and lungs
(i.e., respiratory), eyes, skin (i.e., electrodermal), and brain.
The following sections summarize some of the key ways
that data has been extracted from these four categories to
measure cognitive load.

CARDIOVASCULAR AND RESPIRATORY
MEASURES OF COGNITIVE LOAD

Heart Rate
Cardiovascular measures or heart rate (HR) parameters have
a long history as psychophysiological indices of cognitive load
(Paas et al., 2003). However, HR data can be problematic because
it is affected by many psychological and physiological factors,
such as emotions and physical activities (Jorna, 1992). The
challenge has been to disentangle these factors to isolate the
factors that can be indicative of cognitive load or use well-
controlled experimental designs. An example of a well-controlled
design can be found in the study by Mehler et al. (2012), who
showed that HR is a highly sensitive physiological measure for
detecting systematic variations in cognitive load.

Heart Rate Variability
Blitz et al. (1970) showed that heart rate variability (HRV)
can be used to differentiate between different levels of
cognitive load. HRV can be assessed through measurement of
the electrical activity of the heart, which can be visualized
in an electrocardiogram (Mulder, 1992), or measurement
of blood volume changes in the microvascular bed tissue
using a light-based technology called photoplethysmography
(Challoner, 1979).

According to the Task Force of the European Society
of Cardiology and the North American Society of Pacing
Electrophysiology (1996), HRV can be described as the oscillation
in the interval between consecutive heartbeats as well as
the oscillations between consecutive instantaneous HRs (i.e.,
variability in time between the successive R-tops of the
cardiogram). In a study on the usefulness of HRV as an index
of operator effort, Aasman et al. (1987; see also Mulder, 1992)
further specified the HRV measure based on the knowledge
that the time between successive heartbeats is determined by
three different feedback mechanisms, connected with respiration,
blood pressure (BP), and body temperature regulation. Using
a special mathematical technique (i.e., spectral analysis) to
investigate periodical components of the HRV, Aasman et al.
(1987) were able to show that cognitive load is specifically related
to the short-term regulation of arterial BP. The relationship
between cognitive load and HRV is indirect (Solhjoo et al., 2019),
because an increase in cognitive load will lead to an increase
in BP, which will lead to a decrease in HRV. A similar indirect
relationship has also been identified for respiratory activity with

increasing cognitive load increasing the respiratory frequency
(e.g., Grassmann et al., 2016b), which will lead to a decrease
in HRV (e.g., Song and Lehrer, 2003). The spectral analysis
technique can be used to separate the effects of respiratory rate
(high frequency band, 0.15–0.40 Hz) and thermoregulation (low-
frequency band, 0.02–0.06 Hz) from the mid-frequency band
(0.07–0.14 Hz), which is determined by the arterial BP regulation
and related to cognitive load.

The HRV measure is generally accepted as a measure of
cognitive load (e.g., Finsen et al., 2001; De Rivecourt et al., 2008;
Thayer et al., 2012). However, Paas et al. (1994) have argued that it
has mainly been used successfully with short-duration basic task
(e.g., binary decision tasks) under well-controlled conditions.
Paas et al. (1994) showed that with longer-lasting learning tasks
typically used in educational research, the validity and sensitivity
of the spectral analysis technique of the HRV was low. The
technique was only sensitive to relatively large differences in
cognitive load, i.e., differences between mentally inactive and
mentally active periods. According to Aasman et al. (1987) the
high intrinsic variability in the HR signal is one of the sources of
its low reliability and relative insensitivity to small differences in
processing load between tasks. The studies that Paas et al. (1994)
analyzed to determine the sensitivity of the HRV technique
used relatively long duration learning tasks. In contrast to basic
tasks, which mainly consist of mentally active periods, such tasks
naturally contain both mentally active and inactive periods, and
consequently create a rather noisy signal. In addition, although
spectral analysis of HRV allows cognitive load to be measured at
a higher rate than subjective measures, it cannot be considered a
real-time measure, because it needs time to process. From this
real-time measurement perspective, HR can also be argued to
have an advantage over HRV, because HR changes can be detected
in a much shorter period than changes in HRV.

Respiratory Measures
In contrast to cardiovascular measures, the use of respiratory
measures has received much less research attention (for a review,
see Grassmann et al., 2016a). Similar to the cardiovascular
measures, respiratory measures are also influenced by and
reflective for metabolic, psychological, and behavioral processes
(Wientjes et al., 1998). Grassmann et al. (2016a) reviewed studies
that used respiratory indices of cognitive load as a function of task
difficulty, task duration, and concurrent performance feedback.

Research into the relationship between respiratory measures
and cognitive load has used measures based on time (e.g.,
number of breaths per minute, i.e., respiration rate), volume
(amount of air inhaled during one respiratory cycle, i.e., tidal
volume), gas exchange (e.g., proportion of released CO2 to
inhaled O2, i.e., respiratory exchange ratio), and variability
parameters of these measures. In their review, Grassmann
et al. (2016a) found that those respiratory parameters can
be measured with breathing monitors, respiratory inductive
plethysmography, strain gauges, impedance-based methods,
capnography, and metabolic analyzers. Results of this study
revealed that cognitive load was positively related to respiration
rate (e.g., Backs and Seljos, 1994), and frequency of sighing (e.g.,
Vlemincx et al., 2011). In addition, negative relationships with
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cognitive load were found for both inspiratory and expiratory
time (e.g., Pattyn et al., 2010) and partial pressure of end-
tidal carbon dioxide (petCO2; Grassmann et al., 2016a). For the
respiratory measures it is important to note that they can be
disrupted by verbal activities, such as effects of talking on the
breathing pattern, which can be a confound when using breathing
pattern as an index of cognitive load (e.g., Tininenko et al., 2012).

EYE ACTIVITY MEASURES OF
COGNITIVE LOAD

For decades, eye-tracking indices have been used to measure
cognitive load in various fields (Rosch and Vogel-Walcutt, 2013;
Glaholt, 2014; Wilbanks and McMullan, 2018). Thanks to its
portability and unobtrusiveness, eye tracking supports more
natural task environments (Eckstein et al., 2017). Moreover,
its indices correspond to not only autonomic responses (e.g.,
pupil dilation, blinks) but also consciously modulated processes
(e.g., eye fixation), facilitating the investigation of diverse
indicators of cognitive load. The following sections describe
some key measures of cognitive load drawn from eye data and
important conditions.

Pupil Dilation
Pupil dilation reflects noradrenergic activity of the autonomous
nervous system that regulates arousal and mental activity
(Eckstein et al., 2017). A large number of studies have shown
that pupil dilation is positively correlated with cognitive demands
imposed by the tasks (Hess and Polt, 1964; Kahneman and
Beatty, 1966; Hyönä et al., 1995; Van Orden et al., 2001).
Most modern image-based eye-trackers can readily collect pupil
data. However, multiple factors (e.g., light reflex, gaze position,
pupil dilation latency) can affect this data, which challenges
proper measurement of the cognitive effects on pupil size.
Thus, researchers must take extra precautions to establish well-
controlled experimental setups, for instance, maintaining a
constant luminance of stimuli, using baseline data, or employing
computational correction methods (Hayes and Petrov, 2016;
Chen et al., 2017).

Blink Rate
The frequency of spontaneous blinks, or blink rate, is modulated
by dopaminergic activity in the central nervous system that
involves goal-oriented behavior and reward processing (Eckstein
et al., 2017). Studies have shown that blink rate significantly
increases as a function of time on task, fatigue, and workload
(Stern et al., 1994; Tsai et al., 2007). However, this measure for
assessing cognitive load is task-specific. When the task requires
intensive visual processing (e.g., reading, air traffic control),
blink rate is rather inhibited, resulting in a decreased rate (Van
Orden et al., 2001; Recarte et al., 2008). Blinks can be easily
detected by eye trackers, while several artifacts (e.g., reflections
in glasses, participant motion) must be regulated (Holmqvist
and Andersson, 2017, Chapter 15). Moreover, blink data is not
continuous and its distribution is often non-Gaussian, requiring
auxiliary calculation methods (Siegle et al., 2008).

Fixation
Eye fixation is a more consciously modulated behavior compared
to pupil dilation and blinks. Three types of fixation measures
have been frequently used for assessing cognitive load, reflecting
different aspects of visual information processing: fixation rate
(the number of fixations divided by a given time), fixation
duration (time span when the eye is relatively still), and transition
rate (the number of gaze shifts per second from one area of
interest to another). Note that the first two, fixation rate and
duration, are inversely correlated given the same trial duration,
which makes the interpretation of the results highly task-specific.
For instance, if the task requires frequent searching of different
locations (e.g., scene perception, surveillance), increased fixation
rate is associated with high cognitive load, accompanying short
fixation duration (Van Orden et al., 2001; Chen et al., 2018). If
the task includes deep and effortful processing of particular visual
targets, long fixation duration would indicate high cognitive load
(Callan, 1998; Henderson, 2011; Reingold and Glaholt, 2014).

When the task involves integration of information between
different areas of interest (AOIs), transition rate can be a
suitable measure (Schmidt-Weigand et al., 2010). Studies have
shown that high cognitive load increases transition rate in static
task environments, while it decreases the rate in dynamic task
environments (van Meeuwen et al., 2014; Lee et al., 2019).
For fixation data analysis, data quality and AOI definition
are critical. Valid fixations should be detected after assuring
data quality in terms of accuracy, precision, and tracking loss
(Orquin and Holmqvist, 2018). Researchers should then carefully
define AOIs relevant to sources of cognitive load, and select
the measures pertinent to given task characteristics through task
analysis and piloting.

Other Eye Measures
More eye-tracking and ocular indices have been explored in
various research contexts. Variability in horizontal gaze position
reduced as cognitive load increased in driving simulation tasks
(He et al., 2019). In a simulated surgical task, intraocular pressure
(i.e., fluid pressure inside the eye) was positively correlated with
cognitive load (Vera et al., 2019). Ocular astigmatism aberration
(i.e., deviation of optic elements of the eye), mediated by the
intraocular pressure, was also shown to increase as a function
of cognitive load (Jiménez et al., 2018). Since different measures
can demonstrate different aspects of cognitive load, combining
multiple eye measures may provide a higher construct validity
and sensitivity as a cognitive load measure (Van Orden et al.,
2000; Ryu and Myung, 2005; Mehler et al., 2009).

ELECTRODERMAL MEASURES OF
COGNITIVE LOAD

Electrodermal measures have a long history as
psychophysiological measures of emotional or cognitive
stress and arousal (for a review see Posada-Quintero and Chon,
2020). The basis of the measurement of electrodermal activity
(EDA) is the change in electrical activity in the eccrine sweat
glands on the plantar and palmar sides of the hand, which are
particularly responsive to psychological stimuli imposing stress.
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Increased stress leads to increased sweating, which lowers the
resistance and augments the electrical conductance of the skin
(Dawson et al., 2000).

Within the EDA signal, two components can be distinguished.
Firstly, a tonic skin conductance component (i.e., skin
conductance level) that changes slowly over time. This
component is considered a measure of psychophysiological
activation. Secondly, a phasic skin conductance component (i.e.,
skin conductance response) that changes abruptly. These fast
changes are reflected in the peaks in the electrodermal signal
and are also called the galvanic skin response (Braithwaite et al.,
2013). This component is impacted by stress and arousal (e.g.,
Hoogerheide et al., 2019).

Based on the knowledge that cognitive load is one of the
cognitive states that causes people to experience stress it is
assumed that changes in cognitive load affect the galvanic skin
response through changes in skin conductance, with increases in
cognitive load leading to increases in the galvanic skin response.
Several studies have confirmed the positive relation between
cognitive load and the galvanic skin response (e.g., Setz et al.,
2009; Nourbakhsh et al., 2012; Larmuseau et al., 2019). Mehler
et al. (2012), who investigated the sensitivity of skin conductance
level to cognitive load, studied three age groups (20–29, 40–49,
60–69) working on a working memory task at three levels of
cognitive load. They found a significant pattern of incremental
increase of skin conductance level as a function of increasing
cognitive load, thereby confirming the sensitivity of the measure
of skin conductance level.

Vanneste et al. (2020) recently argued that the usability of
EDA measures (i.e., skin conductance response rate and skin
conductance response duration) as measurement instrument
for cognitive load is limited, because it could only explain a
limited proportion of the variance in cognitive load (approx.
22%). Charles and Nixon (2019) have suggested that EDA may
be sensitive to sudden, but not gradual changes in cognitive
load. However, this is only seems to apply to skin conductance
response measures, because skin conductance level measures
have been shown to increase with a gradual changes in cognitive
load (e.g., Mehler et al., 2012).

Skin conductance response activity is commonly measured
by the frequency of the peaks (i.e., skin conductance response
rate), the duration of the peaks (skin conductance response
duration), and the magnitude of the peaks (i.e., skin conductance
magnitude) in the signal. Recently, Posada-Quintero et al. (2016)
have introduced the spectral analysis technique to process skin
conductance response activity data. This analysis method is
commonly used to investigate periodical components of the HRV
signal (e.g., Aasman et al., 1987). The newly developed index,
incorporating the components between 0.08 and 0.24 Hz, was
found to be highly sensitive to cognitive stress.

BRAIN ACTIVITY MEASURES OF
COGNITIVE LOAD

In the past, measures of activity of the brain have mainly been
used to assess cognitive load in controlled laboratory settings
because they required advanced, unportable equipment for

electroencephalography (EEG) or functional magnetic resonance
imaging (fMRI). But nowadays, the use of brain measures is
becoming more popular because new apparatus, such as wireless
EEG caps and portable fNIRS devices (functional near infrared
spectroscopy) are mobile, easy to use, and less obtrusive.

Electroencephalography
Electroencephalography records electrical activity of the brain.
Multiple electrodes are placed on the scalp (typically using the
10/20 system; Jasper, 1958) and measure voltage fluctuations
resulting from ionic current within the neurons of the brain.
Assessments typically focus on the type of neural oscillations
(‘brain waves’) that can be observed in EEG signals in
the frequency domain. Spectral analysis gives insight into
information contained in the frequency domain, distinguishing
waveforms such as gamma (>35 Hz), beta (12–35 Hz), alpha
(8–12 Hz), theta (4–8 Hz), and delta (0.5–4 Hz). Electrodes
are placed on different locations of the scalp so that they read
from different lobes or regions of the brain: Pre-frontal, frontal,
temporal, parietal, occipital, and central. Cognitive load has
mainly been found to be correlated with an increase in the
parietal alpha band power and frontal-midline theta band power
(Antonenko et al., 2010).

Functional Magnetic Resonance Imaging
Functional magnetic resonance imaging measures brain activity
by detecting changes associated with cerebral blood flow, which
is directly coupled to neuronal activation. Typically, it uses the
blood oxygen level dependent (BOLD) contrast, which images
the changes in blood flow related to energy use of brain cells.
Statistical procedures are necessary to extract the underlying
signal because it is frequently corrupted by noise from various
sources. The level of brain activation in the whole brain or its
specific regions can be graphically represented by color-coding
its strength (e.g., showing fMRI BOLD signal increases in red
and decreases in blue). Cognitive load has been found to be
correlated with increased activation of neural regions associated
with working memory, such as the fronto-parietal attention
network (e.g., Tan et al., 2016; Mäki-Marttunen et al., 2019).

Functional Near Infrared Spectroscopy
Functional near infrared spectroscopy is an optical brain
monitoring technique which uses near-infrared spectroscopy
to measure brain activity by estimating cortical hemodynamic
activity which occurs in response to neural activity. The
signal can be compared with the BOLD signal measured by
fMRI and is capable of measuring changes both in oxy- and
deoxyhemoglobin concentration from regions near the cortical
surface; local increases of oxyhemoglobin as well as decreases
in deoxyhemoglobin are indicators of cortical activity. A typical
system contains pairs of optical source and detector probes that
are placed on the scalp with a lightweight headband typically
using the same locations as EEG electrodes (i.e., the 10/20
system). As for fMRI, cognitive load is correlated with increased
activation of the fronto-parietal network (Hosseini et al., 2017).
In addition, using a combination of EEG and fNIRS signals
has been shown to improve the sensitivity of cognitive load
measurements (Aghajani et al., 2017).
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RESEARCH QUESTIONS

Our aim was to gain an overview of the validity of physiological
measures of intrinsic cognitive load from a collection of
contemporary studies by examining construct validity and
sensitivity. In particular, we were interested in identifying the
different types of measures in use in such studies within
the four main categories identified above: namely the heart
and lungs, eyes, skin, and brain. The more studies that
find the expected effects for a specific physiological measure,
the stronger the support for its construct validity. Also by
comparing the various measures with each other we aimed
to identify any variations in levels of sensitivity. Furthermore,
as we assumed that such variations could be influenced by
specific tasks, we also investigated how validity was influenced
by the types of tasks used. Our main research questions
were:

RQ1: Do the physiological measures have construct validity in
detecting changes in intrinsic cognitive load across tasks?

RQ2: How sensitive are the physiological measures to
detecting changes in intrinsic cognitive load?

RQ3: Does the type of task impact on overall validity?

MATERIALS AND METHODS

In the present study we included only experiments that had
within-subject designs (Criterion 1) comparing tasks with
different levels of complexity (Criterion 2). Criterion 1 ensures
that potential moderating factors such as prior knowledge that
can impact on intrinsic cognitive load were limited. Criterion
2 ensured that intrinsic cognitive load would vary across
tasks and thus could be detected by a valid physiological
measure. Consistent with the main focus of this study we
only included experiments that actually measured cognitive load
using physiological measures (Criterion 3). In order to have
a sufficiently large sample based on contemporary studies we
examined data from the last 5 years. Although there are many
databases, we chose the Web-of-Science as it is one of the
most prestigious and authentic, and provided a sufficient enough
sample to fulfill our aims.

Selecting the Sample of Studies
Step 1
To find an up-to-date sample of studies that featured
physiological measures of cognitive load, a search was conducted
in the Web of Science using the keywords “Physiological measures
cognitive load” for the previous 5 years up until 30 November
2020. This search included articles, book chapters, and books.
Some slight variations of the keywords were used such as working
memory load, which produced little if any differences. In total
208 studies were initially identified.

Step 2
The abstract of each source was read to filter out any study
that clearly did not meet our essential criteria of physiological

measures of cognitive load (Criterion 3), within-subject designs
(Criterion 1) with problems of varying complexity (Criterion 2).
This analysis narrowed down the sample to 98 studies.

Step 3
From Step 2 it was possible to eliminate many studies that
clearly did not meet Criterion 1–3, but many abstracts did
not have sufficient information to make a definitive decision.
Hence, a more thorough reading and analysis of each study was
conducted to ensure each condition was satisfied. In particular
to satisfy Criterion 2 it was necessary to include only studies
that found significant differences on performance scores across
the tasks. Using the example given above, recalling 12 random
numbers after a brief observation is more mentally demanding
than recalling five numbers. It is expected that more errors
would be made recalling the 12-number task than the 5-number
task, and this difference in errors would be caused by variations
in cognitive load generated by complexity rather than prior
knowledge about the domain. Hence, studies that did not report
such significant differences between tasks were excluded.

A small number of studies were included that did not
report score differences because this information was provided
in previous studies or based on expert opinion (N = 3), or
time to completion (N = 1). Studies that manipulated factors
such as anxiety, stress, and other confounding factors were
also eliminated (N = 4) as these factors are known to impact
on working memory. For example, pupil dilation can indicate
emotional arousal and therefore indicate extraneous cognitive
load caused through distraction if the emotion is not part of the
task (Lee et al., 2020).

These processes led to a final sample of 28 studies with 33
experiments (note: these studies are starred in the reference
section). The mean participant size per experiment was 29.2
(SD = 14.8) with 53% males; 26 of the experiments consisted of
adults with a mean age between 20 and 30, five included adults
with no recorded mean statistics, and two studies focused on
older adults (mean ages of 58 and 70).

Data Analysis
For each study a record was made of: (a) what cognitive load
measures were used; (b) the type of tasks used; (c) the number
of within-subject tasks; and (d) how many significant differences
were found on performance tasks and cognitive load measures,
and if these differences matched each other. It was notable
that nearly all studies included a number of different measures
of cognitive load.

Physiological Measures of Cognitive Load
The physiological measures as expected could be grouped into
four categories consistent with the major organs of the body: the
heart and lungs, eyes, skin, and brain. It was notable that 62.5%
of all studies used measures from one category, 28.1% from two
categories, 6.3% from three categories, and 3.1% from all four
categories, indicating a battery of tests were utilized. In each of
the four categories different types of measures were used, often in
the same study. For example, a study might record both HR and
HRV. Results for each category are described next.
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Heart and Respiration Measures
Information (see Table 1) was collected from ECGs (N = 5),
HR monitors (N = 3), a fNIRS (N = 1), a BP monitor
(N = 1), a plethysmograph (N = 1), breathing monitors (N = 2),
and a multi-purpose Shimmer GSR + device (N = 1). The
main heart measures used were HR and HRV. There was
also vascular response index measure used by calculating the
ratio of specific amplitudes of the signals. Respiration rates
and BP were also used. Eleven studies included heart and
respiration measures, eight of which recorded different types of
measurement within this category.

Eye Measures
Information (see Table 2) was collected from eye-tracking devices
(N = 11), EEG (N = 1), EOG (N = 1), a web-camera (N = 1),
and from tonometry (N = 1). The two most frequent measures in
this category were pupil diameter and blink rates. The former is
based on increased size of pupil averaged over time and the latter
the number of blinks per time period. There were also measures
of gaze fixations, saccades (gaze transitions), astigmatism, and
ocular pressure. Fifteen studies included eye measures, five
of which recorded different types of measurement connected
to this category.

Skin Measures
Eight studies (see Table 3) collected GSR data measuring EDA
from sensors attached to the foot (N = 1), hand (N = 4), fingers
(N = 2), or wrist (N = 1). This data was difficult to divide into
sub-categories because studies often did not provide sufficient
information or used a variety of different signal features. For
example, the majority of studies did not indicate which of the
EDA signal components (phasic and tonic; see Vanneste et al.,
2020) were measured. Although, it could be assumed that the
phasic data was most likely used because of the shorter time
intervals involved. Furthermore, several studies reported mean
and accumulation GSR statistics based on different features such
as amplitudes, total power, gradients, peak numbers, spectral
density, and wave rises. Even though they had some common
labels such as GSR-mean, it was not necessarily means of the
same data. Some studies also transformed their data using Fourier
analysis techniques. Hence, it was not possible to form consistent
subgroups and therefore all GSR data was grouped together
under the heading Skin-GSR.

In two studies skin temperature was recorded. Although we
note that changes in temperature due to stress or arousal can
be caused by vasoconstrictions (see Vanneste et al., 2020) and
therefore could be considered under the Heart and Respiration
category, we reported this measure here in the Skin category
because of the direct reference to, and measurement of, this part
of the body. We did not include this measure in the skin category
summary because it did fit easily with the other measures, which
all were based on GSR signals. Its exclusion provides a more
meaningful grouping for further analysis.

Brain Measures
Thirteen studies (see Table 4) reported measures based on the
five sub-bands (alpha, beta, gamma, delta, and theta) of brain
electrical activity obtained from EEGs (N = 10), fMRIs (N = 2),
and an fNIRS (N = 1) data and was recorded according to the

five sub-bands (see Table 4). Typically, band power or amplitude
was recorded following power spectrum density analysis. Eleven
studies recorded more than one sub-band of data. In some studies
information was collected on various lobes of the brain such as
the frontal, occipital, and parietal lobes. In these cases, data was
classified according to the sub-bands (e.g., alpha). In some limited
studies, signal data were combined or transformed (e.g., alpha
and theta data were combined) and this was recorded under the
category ‘Other.’

Subjective Measures of Cognitive Load
Even though our main aim was to investigate physiological
measures of cognitive load, many studies in the sample also
included subjective measures. In particular, the NASA-TLX scale
(see Hart and Staveland, 1988) was often used as a comparative
tool as it was considered the gold standard in measuring
workload in human–computer interaction studies. This scale
requires task participants to subjectively rate: mental demand,
physical demand, temporal demand, performance, effort, and
frustration. All studies (N = 12) that used this instrument
aggregated the six items to get an overall mental workload rating,
which we documented. Many studies also recorded and analyzed
the six sub-scales separately. In these cases, we also recorded
the data for mental demand and effort, as they more closely
resembled the single-item rating scales used in cognitive load
theory. Further, some studies (N = 8) also used single-item
measures of effort, difficulty, and demand, that were not part
of the NASA-TLX survey, and more consistent with the scale
devised by Paas (1992). This data was also recorded and included
in Table 5 under the heading Single item. Although one exception
to this was an aggregated measure of intrinsic cognitive load
using 3 items based on the survey developed by Leppink et al.
(2013).

Types of Tasks
For each type of cognitive load measure, a record was made of
the type of tasks used in the study. These could be categorized
into arithmetic, working memory, simulations, object-shape
manipulations and word tasks. Individual analysis of task
types was recorded in Tables 1–5. Arithmetic tasks were
constructed from mental arithmetic problems; simulations used
specialized equipment to mimic (simulate) real-life tasks that
involved motorcar driving, engineering skills, military exercises
and surgery; memory tasks included n-back and digit-span
tasks; object/shapes included visual object tracking and shape
construction tasks; and word tasks were based on both reading
and writing tasks.

Assessing Validity
The following steps were conducted to assess the validity of the
identified measures. The first step was to confirm whether the
various physiological measures were capable of detecting any
significant differences in cognitive load across the different tasks
in each study. Based on cognitive load theory, it is predicted
that higher complexity tasks yield higher intrinsic load that
should thus be reflected in the physiological measure; the more
studies provide evidence for that prediction, the higher the
construct validity of the measure. Therefore, for each use of a
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physiological measure, a record was made of whether a significant
difference was found across the tasks. This information was
recorded in Column-4 (labeled At least 1 significant difference) for
Tables 1–5. For example, Column-4 in Table 1 for HR measures
collected during simulation tasks, indicates that significant
differences between tasks in HR were found in four of the four
experiments (100%).

The next step was to document to what extent the cognitive
load measures matched the performance test scores, providing
information on levels of construct validity and sensitivity.
In studies that feature tasks of different complexities, it is
assumed that performance scores will vary in accordance
with cognitive load. As more demand is made on working
memory, less correct answers would be expected (see Ayres
and Sweller, 1990). For example, if a study used 3 tasks (T1,
T2, and T3) there are three possible pair-wise comparisons
(T1–T2, T1–T3, T2–T3). If the three tasks had significantly
different levels of complexity then it would be expected that
test scores would give three significant differences in pair-wise
comparisons. It would then be expected that the measures of
cognitive load would also detect three significant differences,
consistent with the nature of the physiological measure (e.g., as
task complexity increases and scores decrease, HR increases).

TABLE 1 | Heart and respiration measures.

Tasks Type of
measure

No. of
experiments

At least 1
significant
difference

Matches
with task

performance

Pair-wise
deviations

Arithmetic

HR 1 1 (100%) 1 (100%) 0

HRV 1 1 (100%) 1 (100%) 0

Vasc.
Response

2 2 (100%) 2 (100%) 0

BP 1 0 (0%) 0 (0%) 1.00

Total 5 4 (80%) 4 (80%) 0.20

Simulations

HR 4 4 (100%) 3 (75%) –0.25

HRV 3 0 (0%) 0 (0%) –1.67

Respiration 3 2 (67%) 2 (67%) –0.33

Total 10 6 (60%) 5 (40%) –0.70

Memory

HR 1 1 (100%) 1 (100%) 0

HRV 3 3 (100%) 3 (100%) 0

Respiration 1 1 (100%) 1 (100%) 0

Total 5 5 (100%) 5 (100%) 0

Word tasks

HR 1 0 (0%) 0 (0%) –3.00

HRV 1 0 (0%) 0 (0%) –3.00

Total 2 0 (0%) 0 (0%) –3.00

All

HR 7 6 (86%) 5 (71%) –0.57

HRV 8 4 (50%) 4 (50%) –1.00

Vasc.
response

2 2 (100%) 2 (100%) 0

Respiration 4 3 (75%) 3 (75%) –0.25

BP 1 0 (0%) 0 (0%) –1.00

Totals 22 15 (68%) 14 (64%) –0.64

In the case of three significant test differences and three
corresponding cognitive load differences in an experiment,
a match was recorded. If the cognitive load measure only
found two significant differences this was considered a non-
match. This information was recorded in Column-5 (labeled
Matches with task performance) for Tables 1–5. For the
simulation-HR example in Table 1 (Column-5), cognitive
load measures matched test scores in three of the four
studies (75% matches), indicating that for the other study
cognitive load measures failed to find as many differences as
the test scores.

It should be noted that in two studies in the sample no
pair-wise comparisons were made, only an overall ANOVA was

TABLE 2 | Eyes.

Tasks Type of
measure

No. of
experiments

At least 1
significant
difference

Matches
with task

performance

Pair-wise
deviations

Arithmetic
Simulations

– – – – –

Pupil diam. 6 3 (50%) 3 (50%) –0.80

Blink rate 4 4 (100%) 4 (100%) 0

Fixations 3 3 (100%) 3 (100%) +0.33

Ocular
press.

1 1 (100%) 1 (100%) 0

Total 14 11 (79%) 11 (79%) –0.29

Memory – – – – –

Pupil diam. 1 1 (100%) 1 (100%) 0

Astigmatism 1 1 (100%) 1 (100%) 0

Saccades 1 1 (100%) 1 (100%) 0

Total 3 3 (100%) 3 (100%) 0

Objects/
shapes

Pupil diam. 3 3 (100%) 2 (67%) –0.67

Blink rate 1 1 (100%) 1 (100%) 0

Total 4 4 (100%) 3 (75%) –0.50

Word tasks – – – – –

Pupil diam. 1 1 (100%) 1 (100%) 0

Blink rate 1 1 (100%) 0 (0%) 1

Total 2 2 (100%) 1 (50%) –0.50

All – – – – –

Pupil diam. 11 8 (73%) 7 (64%) –0.60

Blink rate 6 6 (100%) 5 (83%) –0.17

Other 6 6 (100%) 6 (100%) 0

Totals 23 20 (87%) 18 (78%) –0.30

TABLE 3 | Skin measures.

Tasks Type of
measure

No. of
experiments

At least 1
significant
difference

Matches
with task

performance

Pair-wise
deviations

Arithmetic GSR 6 6 (100%) 3 (50%) –1

Simulation GSR 1 1 (100%) 1 (100%) +1

Memory GSR 2 1 (50%) 1 (50%) –0.50

Objects/
shapes

GSR 2 1 (50%) 1 (50%) –0.50

Written GSR 2 2 (100%) 2 (100%) 0

Totals 13 11 (85%) 8 (62%) –0.54
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conducted. In these cases, only one overall comparison could
be made. On some rare occasions, the cognitive load measure
found more significant differences than the test performance
scores suggesting a more sensitive measure, so these were
also considered a match because they found at least the same
number of differences.

To measure the variations between the test scores and
the cognitive load scores, the differences between them were
recorded. For example, if the test scores indicated three
significant pairwise comparisons, but the cognitive load measure
only found one, the variation was recorded as –2. For
each sub-category of measure, this information was averaged
and recorded in Column-6 (labeled Pair-wise deviations)
for each table. For example, –1.67 is recorded for HRV
for simulations in Table 1. Over the three studies (each
individual experiment counted separately if studies contained
multiple experiments) total variations short of what was
expected summed to five giving an average of –1.67. On
the rare occasions that the cognitive load measure found
more significant differences than the test scores, it was
possible to have a positive (+) average (see Table 2: fixations
for simulations).

The data reported in columns 4–6 enabled differences between
the sensitivity of the various measures to be compared. For
example, if for three different cognitive tasks measure-A records

TABLE 4 | Brain measures.

Tasks Type of
measure

No. of
experiments

At least 1
significant
difference

Matches
with task

performance

Pair-wise
deviations

Arithmetic Alpha 1 1 (100%) 1 (100%) 0

Beta 1 1 (100%) 0 (0%) –2.00

Theta 1 1 (100%) 0 (0%) –1.0

Total 3 3 (100%) 1 (33%) 1.00

Simulations Alpha 5 4 (80%) 2 (40%) –0.80

Beta 5 3 (60%) 0 (0%) –1.20

Gamma 3 2 (67%) 1 (33%) –1.33

Delta 3 2 (67%) 1 (33%) –1.33

Theta 4 2 (50%) 1 (25%) –1.25

Other 2 0 (0%) 0 (0%) –2.00

Total 22 13 (59%) 5 (23%) –1.36

Memory Alpha 2 2 (100%) 2 (100%) 0

Gamma 1 1 (100%) 1 (100%) 0

Theta 1 0 (0%) 0 (0%) –3.00

Other 1 1 (100%) 1(100%) 0

Total 5 4 (80%) 4 (80%) –0.60

Objects/
shapes

Alpha 1 0 (0%) 0 (0%) –3.00

Beta 1 1 (100%) 0 (0%) –2.00

Other 2 2 (100%) 1 (50%) –1.00

Total 4 3 (75%) 1 (25%) –1.50

All Alpha 9 7 (78%) 5 (56%) –0.78

Beta 7 5 (71%) 0 (0%) –1.43

Gamma 4 3 (75%) 2 (50%) –1.00

Delta 3 2 (67%) 1 (33%) –1.33

Theta 6 3 (50%) 1 (17%) –1.50

Other 5 3 (60%) 2 (40%) –1.00

Totals 34 23 (68%) 11 (32%) –1.15

no cognitive load differences, then scores in columns 4–6 would
be recorded as (0, 0, –3). Whereas if a more sensitive measure-B
records two cognitive load differences then it would be recorded
as (1, 0, –1). B is clearly more sensitive than A which is reflected
in this scoring rubric. Note a perfect match of three significant
differences in cognitive load would be recorded as (1, 1, 0).

Finally, to make some comparisons between the different
measures, overall summaries are reported in Table 6.

RESULTS

Analysis of Individual Measures
Heart and Respiration Measures
Heart and respiration measures were recorded in 11 experiments
(see Rendon-Velez et al., 2016; Wong and Epps, 2016;
Reinerman-Jones et al., 2017; Wu et al., 2017; Lyu et al., 2018;
Alrefaie et al., 2019; He et al., 2019; Jaiswal et al., 2019; Ahmad
et al., 2020; Digiesi et al., 2020; Gupta et al., 2020; Zakeri et al.,
2020). For this category (see Table 1), the most common
forms of measures were HR and HRV. Respiration rates and
blood pressure (BP) were also measured along with some novel
indices, such as the Vascular response index, calculated from the
ratio of different amplitudes taken from a photoplethysmogram
waveform (see Lyu et al., 2018). For 8 of the 11 studies, more than
one sub-category of measures were collected. With such a small

TABLE 5 | Subjective measures.

Tasks Type of
measure

No. of
experiments

At least 1
significant
difference

Matches
with task

performance

Pair-wise
deviations

Arithmetic Single item 3 3 (100%) 3 (100%) 0

Simulations NASA-
overall

8 7 (88%) 5 (63%) –0.38

NASA-
effort

6 5 (83%) 3 (50%) –0.50

NASA-
demand

5 5 (100%) 4 (100%) 0

Total 19 17 (89%) 12 (63%) –0.32

Memory NASA-
overall

2 2 (100%) 2 (100%) 0

NASA-
effort

1 1 (100%) 1 (100%) 0

NASA-
demand

2 2 (100%) 2 (100%) 0

Single item 1 1 (100%) 1 (100%) 0

Total 6 6 (100%) 6 (100%) 0

Objects/
shapes

Single item 4 4 (100%) 4 (100%) 0

All NASA-
overall

10 9 (90%) 7 (70%) –0.30

NASA-
effort

7 6 (86%) 4 (57%) –0.43

NASA-
demand

7 7 (100%) 6 (86%) 0

Single item 8 8 (100%) 8 (100%) 0

Totals 32 30 (94%) 25 (78%) –0.19
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sample size it was not possible to conduct meaningful statistical
tests between individual measures; however, some observations
could be made. Firstly, HR, the vascular response index and
respiration rates produced high levels of consistency with test
results (indicating more sensitivity), even though the two latter
cases involved a small number of cases. Secondly HR measures
were more sensitive than HRV measures, the latter being totally
ineffective on simulation tasks. From the perspective of task
type, memory and arithmetic tasks produced high levels of
consistency, whereas the more complex simulations did not. The
two studies with word tasks produced no significant cognitive
load measures for HR or HRV. Combined across the different
tasks, the heart measures were capable of finding at least one
significant difference in cognitive load in 68% of studies, with
exact matches of 64%.

TABLE 6 | Summaries.

Tasks Type of
measure

No. of
collections

At least 1
significant
difference

Matches
with task

performance

Pair-wise
deviations

Arithmetic Subjective 3 3 (100%) 3 (100%) 0

Skin-GSR 6 6 (100%) 3 (50%) –1.00

Brain 3 3 (100%) 1 (33%) –1.00

Heart 5 4 (80%) 4 (80%) 0.20

Eyes – – – –

All 17 16 (94%) 11 (65%) –0.59

Simulations Skin-GSR 1 1 (100%) 1 (100%) +1.00

Subjective 19 17 (89%) 12 (63%) –0.32

Eyes 14 11 (79%) 11 (79%) –0.29

Heart 10 6 (60%) 5 (40%) –0.70

Brain 22 13 (59%) 5 (23%) –1.36

All 66 48 (73%) 34 (52%) –0.70

Memory Subjective 6 6 (100%) 6 (100%) 0

Heart 5 5 (100%) 5 (100%) 0

Eyes 3 3 (100%) 3 (100%) 0

Brain 5 4 (80%) 4 (80%) –0.60

Skin-GSR 2 1 (50%) 1 (50%) –0.50

All 20 18 (90%) 18 (90%) –0.20

Objects/
shapes

Subjective 4 4 (100%) 4 (100%) 0

Eyes 4 3 (75%) 3 (75%) –0.50

Brain 4 3 (75%) 1 (25%) –1.50

Skin-GSR 4 1 (25%) 1 (25%) –1.25

Heart – – – –

All 16 11 (69%) 9 (56%) –0.81

Word Skin-GSR 2 2 (100%) 2 (100%) 0

Eyes 2 2 (100%) 1 (50%) –0.50

Heart 2 0 (0%) 0 (0%) –3.00

Subjective – – – –

Brain – – – –

All 6 4 (67%) 3 (50%) –1.17

All Subjective 32 30 (94%) 25 (78%) –0.19

Eyes 23 20 (87%) 18 (78%) –0.30

Skin-GSR 13 11 (85%) 8 (62%) –0.54

Heart 22 15 (68%) 14 (64%) –0.64

Brain 34 23 (68%) 11 (32%) –1.05

Eye Measures
Eye measures were recorded in 15 experiments (see Mazur et al.,
2016; Rendon-Velez et al., 2016; Wong and Epps, 2016; Hosseini
et al., 2017; Yan et al., 2017; Jiménez et al., 2018; Alrefaie et al.,
2019; He et al., 2019; Hossain et al., 2019; Vera et al., 2019;
Ahmad et al., 2020; Maki-Marttunen et al., 2020; van Acker et al.,
2020; Vanneste et al., 2020; Zakeri et al., 2020). The two most
popular measures were pupil diameter and blink rates. Measuring
the number of saccades, astigmatism, gaze positions, and ocular
pressure were also used in a small number of experiments. For
five of the 15 studies, more than one sub-category of eye measures
were collected. Overall, blink rates had a very high level of
being able to detect changes in cognitive load indicating greater
sensitivity; whereas pupil diameter was less successful, especially
on simulation tasks compared with other measures. Combined
across the different tasks, the eye measures were capable of
finding at least one significant difference in cognitive load in 87%
of studies, with exact matches of 78%.

Skin Measures
Skin measures were reported in 10 experiments (see Nourbakhsh
et al., 2017; Ghaderyan et al., 2018; Lyu et al., 2018; He et al., 2019;
Hossain et al., 2019; Larmuseau et al., 2019; Gupta et al., 2020;
Vanneste et al., 2020). Six of the 10 studies used multiple skin
measures. The two most frequent forms of GSR-accumulation
measure and GSR-other were able to detect differences in
cognitive load at the 100% level. In contrast, GSR-average
found cognitive load differences in only 50% of the time. In
terms of exact matches, GSR-other had a success rate of 83%
suggesting a high level of sensitivity, compared with 50% (GSR-
average) and 33% (GSR-accumulation). The two cases where skin
temperature was recorded found no cognitive load differences.
Overall, the more infrequent measures of signal data (e.g., wave
rises) produced the best results.

Brain Measures
Brain measures were reported in 13 experiments (see Mazur et al.,
2016; Tan et al., 2016; Wang et al., 2016; Hosseini et al., 2017;
Reinerman-Jones et al., 2017; Wu et al., 2017; Katahira et al., 2018;
He et al., 2019; Abd Rahman et al., 2020; Gupta et al., 2020; Maki-
Marttunen et al., 2020; Vanneste et al., 2020). Eleven of the 13
studies recorded multiple types of signals (e.g., alpha, beta, and
gamma) that were often taken from different parts of the brain. As
can be seen from Table 4, the overall brain signal measures were
only able to detect differences in cognitive load at the 68% level
and could only match performance differences at 32%. Measures
of alpha and gamma waves were the most promising. Beta waves
were able to detect differences at the 71% level but had zero
matches with test scores. Delta and theta waves generally had low
levels of sensitivity.

Subjective Measures
Subjective measures were recorded in 18 studies (see Rendon-
Velez et al., 2016; Nourbakhsh et al., 2017; Reinerman-Jones
et al., 2017; Yan et al., 2017; Wu et al., 2017; Ghaderyan et al.,
2018; Jiménez et al., 2018; He et al., 2019; Jaiswal et al., 2019;
Larmuseau et al., 2019; Vera et al., 2019; Abd Rahman et al., 2020;
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Digiesi et al., 2020; Gupta et al., 2020; van Acker et al., 2020;
Zakeri et al., 2020). As can be seen from Table 5, subjective
measures were very successful in identifying differences in
cognitive load. In terms of identifying any changes in cognitive
load, accuracy scores ranged from 86–100%. In terms of exact
matches with test scores, single-item measures scored at 100%
accuracy. The NASA-demand score was high at 86%, followed by
the overall NASA at 70% and the NASA-effort at 57%.

Comparison of the Different Categories
By combining the data for each category of measure (see Table 6)
sample sizes became sufficiently large to make meaningful
statistical comparisons. Because the data did not fit normal
distributions non-parametric tests were completed. For the three
data sets summarized in columns 4–6, Kruskal–Wallis tests were
completed for the five categories.

At Least 1-Significant Difference in Cognitive Load
Detected
Comparing the five measures for this data there was an overall
significant difference between the five categories (Kruskal–Wallis
χ2 = 9.67, df = 4, p = 0.046). Post hoc tests using the Benjamini
and Hochberg (1995) correction method indicated no significant
pairwise differences. However, it is worth noting that subjective
measures had an accuracy rate of 94% compared with Heart and
Brain measures that were below 70%.

Matches With Task Performance
For this data there was a significant between-group difference
(Kruskal–Wallis χ2 = 18.52, df = 4, p < 0.001). Post hoc tests
indicated that both the subjective measures (M = 0.78, SD = 0.42,
p = 0.002) and the eye measures (M = 0.78, SD = 0.42, p = 0.004)
had significantly more matches with task performance than the
brain measures (M = 0.32, SD = 0.47).

Matching Deviations
For this data there was a significant between-group difference
(Kruskal–Wallis χ2 = 19.44, df = 4, p < 0.001). Post hoc tests
indicated that both the subjective measures (M = 0.19, SD = 0.82,
p < 0.001) and eye measures (M = 0.30, SD = 0.76, p = 0.006) had
significantly less deviations from the task performances than the
brain measures (M = 1.15, SD = 1.05).

In summary, the analyses provided in this section suggest that
overall the subjective and eye measures were the most sensitive
indicators of cognitive load differences across tasks. Clearly the
least effective were brain measures. Measures associated with
the skin and heart were located between the other indicators.
Nevertheless, all subcategories of measures were able to detect
some differences in cognitive loads, and also some matches with
test scores. Only the heart measures on word problems failed to
detect any significant differences or matches.

Task Comparisons
The data in Table 6 were examined in terms of task differences.
The memory and arithmetic tasks recorded the best results.
For both tasks, the combined measures were able to detect
at least one cognitive load difference at the 90% level. For

matches with performance, memory tasks achieved a 90% match,
whereas arithmetic tasks had lower match rates at the 65% level.
Simulations, object/shape manipulations and word tasks were
overall at a lower level of accuracy, although overall matches
were at least 50%.

Individual Measure Comparisons
The previous analysis in this section was on aggregated data.
A closer look at individual measures was achieved by examining
those specific measures (no other/combined categories were
included) that had been used at least six times over the sample.
By averaging the % scores for the data in columns 4 (at least
one significant cognitive load difference) and 5 (matches with
test performance) of Tables 1–5 the following ranking was found:
single-item subjective measures (100%), NASA-demand (93%),
Blink-rates (91.5%), NASA-overall (80%), HR (78.5%), GSR
(73.5%), NASA-effort (71.5%), Pupil-diameter (68.5%), Alpha
waves (67%), and HRV (50%). Each of these measures, across all
five general categories scored at least at the 50% accuracy level.
There were four scores above 90% indicating very high levels of
accuracy at detecting cognitive load differences, but three of those
four scores were subjective rather than physiological measures.

Battery of Tests
As reported above nearly all studies (N = 30) included a battery
of tests from within and/or between the categories (including
subjective measures) to measure cognitive load. Examination of
this data revealed that in all but three cases, at least one of the
tests had an exact match with the expected number of cognitive
load differences.

DISCUSSION

There is considerable evidence that supports the argument that
changes in cognitive load can be detected by physiological
measures that utilizes data signals collected from the heart and
lungs, eyes, skin, and brain. Between and within these four
categories, signals react differently according to the measure. For
example, as cognitive load increases, pupil dilation is expected to
increase, but HRV to decrease. From the perspective of a validity
study, results should be consistent with the predictions made for
each individual measure. The more studies find evidence for this
prediction, the higher the construct validity of the measure. The
data analyzed here indicate that physiological measures taken
from all four parts of the body are capable of detecting changes
in cognitive load generated by differences in task complexity.
Of all the measures cataloged in Tables 1–4 only BP and skin
temperature failed to find a significant difference. However, these
measures were only reported in three studies and therefore these
non-effects cannot be generalized. Overall measures associated
with the heart and lungs, eyes, skin, and brain measures were
all capable of finding significant cognitive load differences across
tasks, providing a level of construct validity (see Borsboom et al.,
2004). Therefore, in answer to RQ1 (Do the physiological measures
have construct validity in detecting changes in intrinsic cognitive
load across tasks?), we conclude that nearly all the measures
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identified in this sample have some level of construct validity
because of their capacity to detect changes frequently.

The information reported in Tables 1–4, 6 indicated that
some physiological measures were more sensitive than others to
finding cognitive load differences across tasks. The most sensitive
physiological measures were blink rates, HR, pupil dilations, and
alpha waves. Therefore, in answer to RQ2 (How sensitive are the
physiological measures in detecting changes in intrinsic cognitive
load?), we conclude that the different measures were sensitive
enough to identify differences in cognitive load but the levels of
sensitivity varied significantly between measures.

By examining the different types of tasks used in these studies
we found that memory and mental arithmetic tasks led to
higher degrees of sensitivity for the cognitive load measures
than simulations and object/shape manipulations. The former
are short tasks relying completely on working memory capacity;
whereas the latter are more authentic and specialized tasks that
may depend more on long-term memory (e.g., knowledge of
medical functions and procedures). Although no studies were
included that manipulated stress and anxiety, these affective
influences may have been generated by more authentic high-
stakes tasks (e.g., surgery simulations) leading to confounding
factors. Nevertheless, our evidence found that eye measures
were more sensitive than other physiological tests for the more
specialized tasks, perhaps due to the importance of information
received visually. Clearly the type of task does impact on the
different levels of sensitivity across the physiological measures
and therefore overall validity (RQ3 – Does the type of task impact
on overall validity?).

Although not the main aim of our study the sample provided
data on subjective measures of cognitive load, which also
showed validity. We found that compared with most of the
physiological measures included in our sample, the subjective
measures had a higher level of sensitivity. As reported above,
single-item measures of cognitive load such as asking to rate
the amount of effort, difficulty or demand experienced, were
found to have the highest sensitivity. Only blink-rate data was
at the same level. The favorable finding for subjective measures
is interesting as in more recent time, CLT researchers have
started to use more physiological tests for measuring cognitive
load (Ayres, 2020). Many commentators have expressed concern
over the high use of subjective measures suggesting more
objective methods are required (see Schnotz and Kürschner,
2007; Kirschner et al., 2011).

Our data suggests that it may be premature to abandon
subjective methods, but the question arises should we be more
circumspect in using physiological measures? They are objective,
but in our sample evidence emerged that many are not as sensitive
as subjective measures. In only one study in the sample did a
physiological measure (alpha signals) identify more variations
in cognitive load than the subjective measure (overall NASA-
TLX). It is also notable that nearly 30 years ago Paas and van
Merriënboer (1994; see also Paas et al., 1994) found a self-
rating measure of mental effort to be superior to HR data, which
led to wide-scale adoption of subjective measures of effort and
difficulty (see van Gog and Paas, 2008; Ayres, 2018). However,
there are cases in the literature where subjective measures have

also been found to lack sensitivity. For example, Lee et al.
(2020) found pupil dilation can be more sensitive than self-
rating measures. This was the case when the task included the
management of emotions, and the confounding factors were
well-controlled. Hence, the picture is not definitive and more
examination of the influences on physiological measures is
required, as reported next.

Clearly some of the physiological measures in this sample
lacked sensitivity especially with specific types of tasks. However,
this can be because these physiological measures did not
optimally match with the type of task. The choice of the measure
types is important for the question of sensitivity: some measures
are more sensitive than others for specific tasks, even within the
same category of physiological measures. For instance, in driving
tasks, horizontal gaze dispersion showed a larger effect size
than other eye-tracking measures (Wang et al., 2014). Another
explanation described in the introduction is that there are a
number of other conditions that can have a negative impact
on physiological measures. For example, HR and eye measures
can be influenced by participant motion (e.g., driving a car,
see Lohani et al., 2019) EDA may be more sensitive to sudden
rather than gradual changes, and some areas of the brain (e.g.,
the fronto-parietal attention network) are more conducive to
measuring cognitive load than other areas. It is possible that some
studies may have been influenced by such factors, and therefore
some caution should be shown in interpreting the results
unconditionally. In a review into using physiological measures
of more wide-ranging causes of mental workload, Charles and
Nixon (2019) concluded that there was no single preferred
measure that could be used across all tasks and domains, but
more evidence was emerging in how best to utilize each type. Our
study to some extent supports this finding; however, we suggest
further that until more research is completed, the best outcomes
may be found in a well-chosen combination of tests.

In conclusion, we believe there is a solid case for including
both physiological and subjective methods to measure cognitive
load. Like other studies (see Johannessen et al., 2020) using a
battery of different tests was found to be effective as in most cases
at least one of the tests identified all the changes in cognitive
load. Consequently, we suggest two points to take into account in
using physiological measure to measure cognitive load: (1) select
a measure based on the understanding of the given task; and
(2) triangulate by combining different physiological measures as
well as subjective measures. As our study showed, physiological
measures can be valid in some setups (shown by results for
RQ1), but also the sensitivity can vary across different measures
depending on the task types (RQ2 and RQ3). Thus, careful
selection of the right measures for the given task is essential.
A thorough task analysis (e.g., cognitive task analysis) could be
helpful in achieving this aim.

Triangulation is an effective research method to gain a
comprehensive perspective and validation of data (Patton, 1999).
Studies have shown that combining multiple physiological
measures may present a higher sensitivity in measuring cognitive
load than using a single measure (Van Orden et al., 2000;
Aghajani et al., 2017). Combining physiological measures with
subjective measures may show either positive convergence
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(Aldekhyl et al., 2018) or diverging sensitivity as aforementioned.
However, such inconsistency does not necessarily represent an
incredibility of data, but rather provides a deeper insight into the
results (Patton, 1999).

We also found in this study that the nomenclature used by
some authors was not always consistent with other authors. In
a small number of studies, insufficient detail was provided in
the method to make a definitive judgment on what exactly was
used for the basis of the data calculations. Most notably this
inconsistency was sometimes found in the GSR measures. For
example, an ‘average’ GSR value would be reported without a
clear indication of what part of the signal the average referred
to. Although this did not impact on our overall findings, future
studies should ensure that all necessary information is reported,
and conform to a standardization of labels such as previously
suggested by Fowles et al. (1981).

The sole focus of this study was on tasks that generated
intrinsic cognitive load only. No attempt was made to include
learning studies that would generate other types of cognitive load.
Detecting changes in intrinsic load is important to CLT but so
is extraneous cognitive load as CLT is predominantly interested
in the impact of all types of cognitive load on learning. Hence,
further research is required of this nature to explore validity
during learning experiments that also featured between-subject
experiments. As well as task complexity changes in cognitive
load caused by other factors such as distractors (e.g., noise), and
affective factors (e.g., emotion) should also be researched.

In addition, the studies in this sample were predominantly
completed by young adults whose mean ages ranged from 20 to
30. However, two studies (see Tan et al., 2016; Abd Rahman et al.,
2020) focused on elderly adults. Although these studies did not
report any data that was inconsistent with the other studies in
the sample, it is known that aging adults experience cognitive
decline and are more susceptible to cognitive load variations (see
van Gerven et al., 2000; Klencklen et al., 2017). Similarly, the
sample did not include any young children. Subsequently, we
cannot generalize our results to other age groups and therefore
more research is needed in both older and younger populations
to explore potential differences.

Our main focus was to examine the validity of using
physiological measures of cognitive load. We conducted the study
from a measurement and theoretical perspective especially that
of cognitive load theory. It is worth mentioning, however, that
there are real-world applications of measuring total cognitive
load; often referred to as mental workload. For example, how
to manage cognitive load during medical training and real-
life practice (see Fraser et al., 2015; Johannessen et al., 2020;

Szulewski et al., 2020) is critical. Similarly, in driving a car it
can be advantageous from a safety perspective to be able to
monitor the driver’s cognitive states and implement interventions
accordingly (see Lohani et al., 2019; Meteier et al., 2021). When
driving, real-time continuous data is required which can be
collected through physiological measures, but using subjective
measures is impossible. From this important perspective,
physiological measures have a clear edge.

By analyzing a snapshot of studies taken from a recent 5-
year period we have clearly not included some of the key studies
from the period before this time. Although we cite a number of
significant studies in our introduction, it was never our intention
to go beyond our specified period. We wanted to investigate
exactly what a contemporary collection of studies would reveal
about measuring cognitive load. Our sample, like previous studies
confirmed that different types of physiological measures are
capable of measuring cognitive load.

There were a number of novel aspects to the study. Firstly,
we included only studies that investigated the capacity of
physiological measures to identify changes in intrinsic cognitive
load by manipulating task complexity. Most studies in measuring
cognitive load using physiological methods have not made this
distinction. Secondly, by taking a broad sample we were able to
compare a wide variety of physiological measures from four main
categories, and to compare them with each other from both a
construct validity and sensitivity perspective. An added bonus
was that we were also able to benchmark them against a number
of subjective rating scales. Thirdly, by examining the influence of
task types, and the highlighting of technological precautions and
other influences outlined in the literature review, we were able to
identify some major factors that impact cognitive load measures.

In conclusion, we found that nearly all the physiological
measures identified in this sample had some level of validity.
However, there were wide variations in sensitivity to detect
changes in intrinsic cognitive load, which was impacted by
task specificity. In contrast, subjective measures generally had
high levels of validity. We recommend that a battery of tests
(physiological and/or subjective) are required to obtain the best
indicators of changes in intrinsic cognitive load.
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Measuring Cognitive Load: Are There
More Valid Alternatives to Likert
Rating Scales?
Kim Ouwehand1*, Avalon van der Kroef1, Jacqueline Wong2 and Fred Paas1,2

1Department of Psychology, Education, and Child Studies, Erasmus University Rotterdam, Rotterdam, Netherlands, 2Delft
Institute of Applied Mathematics, Delft University of Technology, Delft, Netherlands, 3School of Education/Early Start, University of
Wollongong, Wollongong, NSW, Australia

Cognitive load researchers have used varying subjective techniques based on rating
scales to quantify experienced cognitive load. Although it is generally assumed that
subjects can introspect on their cognitive processes and have no difficulty in assigning
numerical values to the imposed cognitive load, little is known about how visual
characteristics of the rating scales influence the validity of the cognitive load measure.
In this study we look at validity of four subjective rating scales (within groups) differing in
visual appearance by participants rating perceived difficulty and invested mental effort in
response to working on simple and complex weekday problems. We used two numerical
scales (the nine-point Likert scale most often used in Cognitive load theory research and a
Visual Analogue Scale ranging between 0–100%) and two pictorial scales (a scale
consisting of emoticons ranging from a relaxed blue-colored face to a stressed red-
colored face and an “embodied” scale picturing nine depicted weights from 1–9 kg).
Results suggest that numerical scales better reflect cognitive processes underlying
complex problem solving while pictorial scales Underlying simple problem solving. This
study adds to the discussion on the challenges to quantify cognitive load through various
measurement methods and whether subtleties in measurements could influence research
findings.

Keywords: cognitive load, measurement methodology, subjective rating scales, visualization, problem solving

INTRODUCTION

Cognitive load theory (CLT) centralizes the characteristics of human cognitive architecture, and
especially the limitations of working memory in time and capacity (Baddeley, 1992, 2000), as a
prerequisite for the optimization of learning. Cognitive-load researchers focus on instructional
methods that can be used to manage working memory load (i.e., cognitive load). Cognitive load has
been conceptualized as a multidimensional construct consisting of three types of cognitive load (e.g.
Sweller, 2010), namely 1) intrinsic load that is imposed by the learning task itself, 2) extraneous load
that is imposed by the design of the instruction, and 3) germane load that is related to the amount of
cognitive resources that learners have available for learning. All three types of load have been
proposed to be influenced by element interactivity (Sweller 2010); how many separate parts of
information need to be integrated for learning to occur. During learning, initially separate
information elements are categorized, organized and chunked into schemata in long-term
memory, which after construction can be treated as one information element in working
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memory (Sweller, et al., 1998, 2019; van Merriënboer & Sweller,
2005). This process is called schematization and is a core
mechanism underlying successful learning in CLT. When
trying to successfully learn materials with high element
interactivity, it is proposed that more mental effort needs to
be invested by the learner than for materials with low element
interactivity. Therefore, having a valid indication of cognitive
load experienced/spent during a specific task or activity could
provide crucial information on the development of a learning
process and quality of an instruction.

Themost widely usedmeasures of cognitive load are subjective
measures based on ratings of perceived mental effort and task
difficulty (Paas, et al., 2003; Sweller, et al., 2019). There are two
main assumptions underlying subjective measures of cognitive
load. Firstly, it is assumed that all learners have similar clear
understanding of what is meant by “invested mental effort” and
“difficulty of a task”. Secondly, all learners are assumed to possess
the metacognitive ability to monitor howmuch mental effort they
have invested. Based on these assumptions, this common
understanding or knowledge of the terms “invested mental
effort” and “task difficulty” as well as the accuracy of
individuals’ monitoring skills are not tested or controlled for
when using the rating scales. Therefore, the reliability and validity
of such subjective measures are debatable (e.g., Ayres, 2018). One
of the issues that can arise with the cognitive-load rating scale
concerns the way the scale is represented. We suggest that
whether the scale represents symbols or numbers might affect
the mental effort and task difficulty ratings, for examplr by
imposing additional (extraneous) cognitive load. To investigate
the effect of the symbolic/numerical representation of cognitive
load in the rating scales on ratings of mental effort and task
difficulty, we identified three alternatives to the original 9-point
Likert rating classic 9-point scale in. One of these alternatives is
also a symbolic representation, the second is a more affective one,
representing the emotional aspect of effort and task difficulty, and
the third is a more embodied one representing effort and task
difficulty as weight. The central focus in the study is on construct
validity; do the ratings (i.e., scores) on the measurement scale
reflect the construct we intend to measure and are there
differences between the scales?

One of the first subjective measures of cognitive load was
developed by Paas (1992). In this study, learners were asked to
indicate on a 9-point Likert scale “how much mental effort they
have invested in a task”, ranging from 1 (very, very low mental
effort) to 9 (very, very high mental effort). Subjective measures
are advantageous for cognitive load research since they do not
require a complicated experimental set-up and can be easily
implemented and used multiple times in most research
designs (Sweller and Paas, 2017). However, subjective
measures of cognitive load have faced criticism, mainly for
being implemented in research in an inconsistent way (Sweller
et al., 2011). One of the inconsistencies concerns the verbal labels
used to assess cognitive load. For example, instead of mental
effort, learners were asked to rate the difficulty of the task by
indicating on a 7- or 9-point scale “how difficult or easy the
learning task was for them”, ranging from 1 (very, very easy) to 7
or 9 (very, very difficult). Studies have shown that subjective task

difficulty ratings, like mental effort ratings, varied according to
the level of element interactivity of a task (e.g., Ayres, 2006;
Ouwehand et al., 2014). However, research suggested that the two
verbal labels (i.e., mental effort and task difficulty) measure
different aspects of the cognitive load De Leeuw and Mayer
(2008). More specifically, (De Leeuw and Mayer, 2008), found
that task difficulty ratings were related to intrinsic load and
perceived mental effort to germane load, indicating the way
verbal labels are being phrased in the rating scales can
influence the measurement of cognitive load. Another
inconsistency is the timing and frequency of measurement.
Research showed that perceived mental effort and task
difficulty were significantly higher when measured at the end
of the learning phase (i.e., delayed) than when taking the average
of the ratings obtained after each learning task (i.e., immediate)
(van Gog et al., 2012; Schmeck et al., 2015).

Despite the variations in the way cognitive load has been
subjectively measured in research (i.e., verbal labels and timing
of measurement), both mental effort and task difficulty have been
found to reliably reflect differences in the complexity of the
instructional design in numerous studies (e.g., Hadie and
Yusoff, 2016; Ouwehand et al., 2014; for an overview see; Paas
et al., 2003). While previous research has focused on the type of
measurement (e.g. physiological measurement and self-reports)
and differences in the timing and verbal labels, little is known about
whether the way in which the Likert scales are formatted influences
the measurement of cognitive load. Sung and Wu (2018) argued
that there are several issues inherent to the design of Likert scales,
particularly the ambiguous numbers of the response categories and
the response style underlying the ordinal measurement of data.
Therefore, the aim of the current study was to explore the validity
of alternative representations of Likert rating scales to measure
subjective cognitive load.

The measurement validity was examined by the relationship
between the subjective measures (i.e., mental effort and perceived
difficulty) and the performance measures (i.e., accuracy and time
on task) for simple and complex problems. Three alternative
representation formats (i.e., Visual Analogue Scale, affective, and
embodied) were investigated and compared with the original 9-
point Likert scale for measuring cognitive load (Paas, 1992).

The first type of visual representation employed in this study
was a Visual Analogue Scale (VAS). The VAS presents the
numbers on a line continuum and participants can move a
bar (or pin a point) between 0 and 100% to determine their
level of cognitive load. Therefore, a VAS transforms ordinal-level
measurement data from the discrete response categories in a
Likert scale to continuous and interval-level measurement data
(Sung andWu, 2018). Research indicated that the VAS has a high
test-retest reliability and a small measurement error (e.g.,
Alghadir et al., 2018). In addition, the VAS is a well-known
measurement scale in the domain of judgments of learning (JoL)
in which learners have to predict their future performance by
indicating on a VAS how likely they think they will remember a
just learned item on a future test (e.g., Rhodes, 2016). Recent
research in the field of educational psychology called for an
integration between cognitive load and self-regulated learning
theories to better understand the dynamic relations between
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cognitive resources available for managing one’s own learning
process and for the learning process itself. One of the challenges
to the integration of theories of cognitive load and self-regulated
learning is in measurement (Sweller and Paas, 2017). Therefore,
findings from the current study can potentially pave the way for
future research to determine whether VAS can be used as a
common scale to measure concepts in cognitive load (i.e., mental
effort and task difficulty) and self-regulated learning (i.e., JoL).

Besides the well-known and widely used original cognitive load
scale and the VAS, we were interested in examining visual
characteristics that display internal processes (i.e., mental and
affective states). Numerical representations, which are
characteristic of the original scale and the VAS, are a rather
abstract reflection of internal processes. Given that grounding
mental representations can support understanding (Barsalou,
2008, 2016), it is possible that a scale that reflects internal
processes used when working on a task will improve the validity
of the scale. Therefore, the first question of interest is whether a
better reflection of internal processes could increase the validity of
the rating scale. To this end, we designed two pictorial scales as a
reflection of internal processes: an affective scale with icons to
represent a range of emotions (i.e., emoticons) and an embodied
scale with pictures of weights to represent a range of physical load.

Although scales with affective stimuli are frequently used in the
media and medical practice (e.g., satisfaction reviews on products or
services or pain rating scales), literature on the affect in learning and
subjective rating in CLT research seems scarce. Interestingly, in one
of the earliest lines of research on learning, using operant
conditioning (e.g. Skinner, 1963), affect plays a central role in the
learning process. According to the operant conditioning theory we
(humans, but also other animals) learn from pleasant or unpleasant
consequences of our actions. Put simply, actions with pleasant
outcomes tend to be repeated and actions with unpleasant
outcomes avoided. Since then, a lot of support for the operant
learning theory has been gathered (for reviews see, Gordan and
Amutan, 2014; Staddon and Cerutti, 2003). Mechanisms for the role
of affect in learning has been extended by neuropsychological
evidence of a reward circuit in the brain in which more primitive
brain areas dealing with emotions highly interact with more recent
brain areas more involved in higher-order cognitive processes such
as executive processing (for a review, see O’Doherty et al., 2017). In a
recent review by Shenhav et al. (2017), cognitive load (which these
authors refer to as mental effort) is approached from an affective
perspective by looking at a costs/benefits ratio of invested cognitive
load. Because humans are limited in their resource capacity, they
need to be efficient in their allocation of cognitive resources. In their
review, these authors argue that investing (high) mental effort is a
negative experience in terms of affect. As a consequence, a task
requiring high mental effort would be experienced with more
negative affect than a task requiring low mental effort. Following
this perspective, affect can be a direct reflection of cognitive load. In
line with this view, Sitzmann et al. (2010) showed that people are
better at self-assessing affective processes (i.e., motivation and
satisfaction) than purely cognitive processes. This suggests that
human learners are more capable of defining emotional processes
than purely cognitive processes. Based on these reasonings, we
propose that a subjective rating scale depicting affect from

negative (i.e. aversive) to positive, might represent the experience
of mental effort of learners better than a more abstract numerical
scale, and therefore, might be a more valid manner to measure
invested mental effort and perceived task difficulty.

A second aspect we would like to explore is inspired by the
embodied cognition theory. This theory states that cognition is
grounded in perception and action (for a recent theoretical
overview, see Barsalou, 2016). In other words, this theory claims
that our cognitive processes and functions are shaped by the way we
interact with our surroundings. Since the nineties a lot of evidence
has been gathered, suggesting that for a substantial part, our
cognition is tightly bound to how we perceive and interact in
the world (Barsalou, 2008). However, there is an ongoing debate on
whether embodied cognition only applies to the lower level
cognitive abilities (i.e. procedural, motor learning) or also to
more higher level cognitive abilities (i.e. conceptual learning) (for
a critical review, see Caramazza et al., 2014). For the present
research, the embodied view is still interesting, because the term
mental or cognitive load, metaphorically indicates that a certain
weight is related to the task (i.e., how “heavy” or “burdensome” a
task is). Indeed the analogy of physical weight for mental effort is
also used by Shenhav et al. (2017), to explain how effort mediates
between capacity and performance. Interestingly, abstract
metaphors such as the ‘heaviness’ of a task in our study are also
empirically found to be connected to embodied cognition. For
example, Zanolie et al. (2012) found an attentional bias for abstract
concepts such as “power” on a vertical axis. In their experiment,
participants were presented with a power-related word (either
related to high or low power) after which they had to identify
objects either presented on the top or bottom of a computer screen.
It was found that target identification was faster for items that were
presented on a semantically congruent location compared to an
incongruent location. This result was explained by the process of
mental simulation: humans tend to imagine perceptual andmotoric
features evoked by a stimulus in such a way that a single stimulus
can elicit a rich image and or action plan for a situation in which the
stimulus is normally encountered. Drawing further on these
findings that metaphors can also facilitate cognitive processing,
we added a scale depicting nine weights ranging from light (small
1 kg) to heavy (large 9 kg). In this way, we expressed the idea of
mental “load” in a more concrete manner. For instance, a heavy
problem or task (load) would correspond to a heavier weight. This
might fit the experiences of mental effort and task difficulty
(i.e., load on cognition) better than a more abstract numeric scale.

To investigate the construct validity of the different scales, we
adopted the dominant approach used in cognitive load research;
we used the relation between performance/learning and cognitive
load ratings (for a meta-analysis see, Naismith and Cavalcanti,
2015). More specifically, we inspected correlation analyses
between cognitive load ratings measured by the mental effort
and task difficulty ratings on each of the four different scales (the
original nine-point Likert scale, the VAS, an affective scale
illustrated with emoticons, and an embodied scale illustrated
with weights) with performance measured by accuracy of
problem-solving and time on task for simple and complex
problems. Although the current research is exploratory in
nature, we would like to put forward some hypotheses.
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First, based on cognitive load studies that showed that
subjective measures are a valid way of measuring cognitive
load, we hypothesized that perceived mental effort and
difficulty would be rated higher for the complex problems
than for the simple problem across all four measurement
scales. Secondly, we explored whether there are differences
between the different scales in differentiating effort and
difficulty between simple and complex problem solving.
Building on literature stating that affect is tightly related to the
learning process (Shenhav et al., 2017), we suggest that
emoticons, representing affect might reflect the perceived
mental effort and difficulty better than a numeric scale and
therefore correlate higher and more significantly to
performance. Also, the relation is expected to be stronger for
the complex problems, since these might be more arousing and
frustrating. In support of the embodied cognition theory (e.g.,
Barsalou, 2008), we expect that pictures of increasing weights
might represent a more concrete picture of “load” and therefore
might represent perceived mental effort and difficulty better than
a numeric scale. Following the argument that embodied cognition
might be more related to more lower level cognitive abilities, it is
expected that ratings on this scale correlate higher and (more)
significantly with the performance on the simple problems.
Finally, to gather insight into participants’ experience when
using the different scales to rate their cognitive load,
participants were asked to vote for their most and least
favorite scale and give some reasoning on their (dis)likes.

MATERIALS AND METHODS

The present study was conducted in accordance with the guidelines
of the ethical committee of the host University. Below we describe
our sample, design, materials, procedure and analysis plan.

Participants
Participants were 46 healthy young adults (Psychology students,
39 women;Mage � 22.4 years, SD � 2.45) who participated in this
study as part of a course requirement. All participants gave
written consent before participation. A power test using
G*power3.1 software (Faul et al., 2009) showed that for the 2
(complexity) x 4 (scale type) within-subject design we use when
aiming for an effect size of f � 0.25, power � 0.95 and α � 0.05, a
sample with minimal 23 participants is required.

Design
In a 2 (Complexity: simple and complex questions) x 4 (Scale
Type: original nine point, visual analogue, affect, and embodied)
within-subjects design, participants were presented with simple
and complex problems that they had to solve. Four types of rating
scales were used tomeasure perceived difficulty andmental effort.

MATERIALS

Problem-solving task. Sixteen weekday problems were used
(Sweller, 1993; see also; van Gog et al., 2012) of which eight

were low in element interactivity (simple problems) and eight
high (complex problems). Table 1 shows an example of a simple
and a complex problem in the problem-solving task. The simple
problems consisted of two elements that students needed to
consider when solving the problem while the complex
problems consisted of five elements (i.e., elements are
underlined in Table 1). The complex problems would be
harder to solve than the simple problems because of the
higher element interactivity.

Rating scales. Cognitive load was measured by two self-report
items, one item was to assess perceived difficulty “Indicate on this
scale how difficult you found the problem” and the other was to
assess invested mental effort “Indicate on this scale how much
mental effort it cost you to solve the problem? Four types of rating
scales were investigated in this study. The first type of rating scale
was the original 9-point Likert rating scale of Paas (1992) ranging
from 1 (very, very easy) to 9 (very, very difficult). The second type
of rating scale was a Visual Analogue Scale (VAS) in which
participants could move a bar on a line representing a 0–100%
continuum. The third type of rating scale, also termed as the
affective scale, was a self-designed 9-point scale made up of
emoticons ranging from a blue emoticon depicting a relaxed
expression to a red emoticon depicting a stressed/aroused
expression. The fourth type of rating scale, also termed as the
embodied scale, was a self-designed 9-point scale presenting
pictures of increasing weights ranging from 1–9 kg Figure 1
illustrates the four types of rating scales.

Procedure
The experiment was constructed using an online survey platform,
Qualtrics (https://www.qualtrics.com/). A link to access the
experiment was shared with the participants. Figure 2
illustrates the procedure of the experiment. At the start of the
experiment, participants were instructed to not use paper and
pencil or other external tools for the problem-solving task. They
were also informed that there was a time limit to solve the
problems. After this instruction, they were given a practice
problem to gain familiarity with the task before proceeding to
the first block of questions.

Altogether, participants had to solve four blocks of questions.
In each block, participants had to solve four problems comprising
two simple and two complex problems. After each problem,
participants had to rate their rate mental effort and perceived
difficulty (i.e., 16 times in total). The rating scale presented to the
participants varied in each block (original 9-point Likert scale,
VAS, emoticon, weights). The four blocks were counterbalanced
so that the order in which the different type of rating scales that
were presented to the participants were not the same. At the end
of the experiment, participants were asked to indicate the rating
scale that they liked best and the one that they liked the least out
of the four types of rating scales.

Scoring of the dependent variables
Performance. Performance was measured by accuracy scores and
time on task. For each correctly solved problem, one point was
assigned. The mean accuracy was determined for each difficulty
level (simple and complex) within each scale type (original 9-point
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rating scale, VAS, emoticons and depicted weights), resulting in
two mean accuracy scores for each rating scale type (i.e., one for
complex problems and one for simple problems). Altogether, eight
mean accuracy scores were calculated for each participant. Time on
task was determined by the duration (in seconds) participants took
to submit their response.

Rating (invested mental effort and perceived difficulty). To
make all rating scores comparable, proportion scores were
calculated by dividing the obtained scores by the maximum
scores: For the original 9-point rating scale, the emoticons and
depicted weights (which also had nine alternatives), proportion
scores were calculated by dividing the mean ratings per scale

TABLE 1 | Example of a simple and complex problem used in the problem-solving task.

Problem type Question

Simple If today is Friday, which day of the week is it in 2 days?a

Complex What day is 2 days after the day after tomorrow if the day before yesterday was 7 days after Wednesday?a

aNote Number of elements needed to solve the problems are underlined.

FIGURE 1 | Subjective Rating Scale Types used in the Present Study.
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category and complexity level by 9. For the VAS, the mean
percentage score was divided by 100. In this way all scores
had a range between 0 and 1.

Data Analysis
Quantitative Data
Firstly, 2 (complexity; simple vs complex) x 4 (scale type; original,
VAS, Emoticons, Weights) repeated measures ANOVAs were
conducted for accuracy, time on task, perceived difficulty and
perceived invested mental effort within subjects. Secondly,
correlations were calculated between performance measures
(accuracy and time on task) and the subjective ratings
(perceived difficulty and mental effort) for each type of scale.
To inspect validity, we tested whether significant correlations
between performance measures (accuracy and time on task) and
subjective ratings (perceived difficulty and mental effort) were
stronger for some scales than others, significant correlations were
compared by a calculation tool called cocor (Diedenhofen &
Musch, 2015). This tool was also used to compare significant
correlations for simple problems or complex problems per scale,
to find out whether ratings on a specific type of scale was more
representative of cognitive load during simple or complex
problem solving. A significance level of 0.05 was used for the
main analyses. On follow-up analyses a Bonferroni correction
was applied. Partial eta-squared (ηp2) was calculated as a measure
of effect size for F-values, with values of 0.01, 0.06, and 0.14,
characterizing small, medium, and large effect sizes, respectively
(Cohen, 1988). Cohen’s d was calculated as a measure of effect
size for t-values, with values of 0.20, 0.50, and 0.80, characterizing
small, medium, and large effect sizes, respectively (Cohen, 1988).

Qualitative Data
Finally, participants’ indication of the type of rating scale that
they liked and disliked the most was analyzed. As we had no clear
expectations of the qualitative data and we wanted to explore the

open-ended responses to find reasoning behind preferences for
the scales, an inductive approach was taken to code these
responses. This approach is appropriate for exploratory
purposes in the absence of clear theory-driven hypotheses on
how the data would look like (Linneberg & Korsgaard, 2019).
Inductive coding is data-driven in that the responses are
categorized based on the content of the responses.

Two raters independently rated and categorized the
participants’ responses freely (no categories were outlined
before). Initially, the first rater decided on four categories
(clarity, relatability, appearance, and nuance) but the second
rater categorized the data in three categories (clarity, relatability,
appearance). After inspection of the ratings, it seemed that the
second rater initially did not distinguish between clarity and
nuance. After discussion, both raters one agreed on using the
four categories specified by the first rater. These answering
categories were found by summarizing each given answer into
keywords. The keywords were then compared to one another, and
analogous keywords were combined into one category. The
category “clarity” related to comments on the comprehensibility
of the answering options; how unambiguous the answering options
were and how easy the scale was found to be. An example of an
argument classified as a remark on clarity is: ‘It is most clear as to
what each answer means’. The relatability category encompassed
comments on how well the participants were able to relate their
feelings to the scale that was used. It could also be said that this
category scored answers on how intuitive the scale was found to be.
A comment marked as relatable, for example, would be: ‘Because it
was a better illustration of how I felt’. In addition, especially the
dislike comments contained a lot of remarks on how well a scale
related to the questions. For example: ‘Incongruent with what the
scale is asking’. These kinds of comments were also scored under
relatability. The third category, appearance, was a recurring aspect
for a lot of the scales. Comments in this category related to the
aesthetic qualities of each scale. For example: ‘This scale was most

FIGURE 2 | Overview of the procedure of the experiment.
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visually pleasing’. Nuance, the final category, could be seen as the
opposite of clarity, the first category. However, both were
mentioned quite often as either a good or a bad quality of the
scale. In addition, for both clarity and nuance a lot of arguments
were given on why exactly this was a good quality of the scale.
Whereas some participants praised a scale for its clearly defined
and unambiguous answering options, other participants
appreciated a scale for its grey areas and less well-defined
answering options. An example of a nuance-category comment
was: ‘Because the rating is not fixed, it can give flexibility to how
one perceives the task’. Subsequently, every comment was classified
under one of those four categories. Some elaborations were scored
under more than one category, so one elaboration could be scored
more than once. For example: ‘It is very ugly and not very
meaningful’, was scored under appearance as well as relatability.

Supplementary Appendix A shows all responses given for the
scales participants indicated to like best and B for those they
indicated to like least. In the final columns it is shown how all
comments were categorized by the raters and Table 2 shows the
final categorization the raters agreed upon. In addition, this table
shows howmany of those comments related to a scale preference,
and how many related to a disliking of the scale.

RESULTS

For accuracy, results showed amain effect of complexity, F (45, 1)�
218.75, p < 0.001, ηp2 �0 .83, but not for scale, F (45, 1) � 2.2, p �
0.091, ηp2 �0 .05, and an interaction effect, F (135, 3) � 5.41, p �
0.002, ηp2 �0 .83. For time on task, results showed a main effect of
complexity, F (45, 1) � 356.34, p < 0.001, ηp2 �0 .89, and scale, F
(45, 1) � 13.81, p < 0.001, ηp2 �0 .24, and an interaction effect, F
(135, 3) � 13.06, p < 0.001, ηp2 �0 .23. For perceived difficulty,
results showed amain effect of complexity, F (45, 1) � 1,306.63, p <
0.001, ηp2 �0 .97, and scale, F (45, 1) � 36.45, p < 0.001, ηp2 �0 .45,
and an interaction effect, F (135, 3) � 13.64, p < 0.001, ηp2 �0 .23.
Finally, for perceived mental effort, results showed a main effect of
complexity, F (45, 1) � 1,097.30, p < 0.001, ηp2 � 0.96, and scale, F
(45, 1) � 30.97, p < 0.001, ηp2 � 0.41, and an interaction effect, F
(135, 3) � 9.50, p < 0.001, ηp2 � 0.17. All means and standard
deviations of the accuracy, time on task, effort and difficulty ratings
are presented in Table 3.

Following up on the interaction effects between complexity and
scale that was found for all dependent variables, we compared

difference scores, i.e. instead of using a repeated measure for the
performance and ratings on the simple and complex problems, we
looked atΔ simple - complex. By subtracting the complex performance
(accuracy and time) and rating (perceived mental effort and difficulty)
scores from the simple ones, we obtained one variable for the size of the
effect (instead of two) which allows for a direct comparison between
effect sizes. Six paired t-tests were done on these difference scores
between Original and VAS (pair 1), Original-Emoticons (pair 2),
Original-Weights (pair 3), VAS-Emoticons (pair 4), VAS-Weights
(pair 5), and Emoticons-Weights (pair 6). Bonferroni correction
was applied by adjusting the significance level to 0.05/6 � 0.008.

For readability of the text we put all statistics in Table 4 and
report only the significant results in text. It was found that for
accuracy the complexity effect was smaller for problems rated with
the original scale than those with the weight scale, and smaller for
problems rated with the emoticons than the weights scale. For time
on task similar results were found with an additional finding that the
effect of complexity was smaller for problems rated with the VAS
than those with the Weight scale. For both perceived difficulty and
perceived mental effort; the effect of complexity was significantly
smaller using the original scale compared to the VAS or the original
scale compared to the Weights scale. Also the effect of complexity
was smaller when using the Emoticons compared to the Weights.

Next, correlations were calculated between performance
measures (accuracy and time on task) and the ratings
(difficulty and mental effort) for each scale type to examine
validity of the four rating scales. For readability purposes, we
present all correlations (values and significance levels) for the
correlational analyses inTable 5 and report the significant ones in
text. First, for all four scale types and problem complexity levels,
mental effort and perceived difficulty effort were positively
correlated. For analysis on the original 9-point scale, it was
found that for the complex problems (but not for the simple
problems), accuracy was negatively correlated with perceived
mental effort and perceived difficulty and time on task was
positively correlated with perceived difficulty and invested
mental effort. The analysis on the VAS showed that for
complex problems, accuracy was negatively correlated with
perceived mental effort and time on task was positively
correlated with perceived mental effort and perceived
difficulty. For the simple problems, accuracy was negatively
correlated with time on task. For the emoticon scale a positive
correlation between time on task and perceived difficulty was
found that for the complex problems. For the simple problems,

TABLE 2 | Overview of Participants’ best and least Preference and Coded Explanations for the Four Types of Rating Scales.

Scales No likes Coded explanations for the likes No dislikes Coded explanations fort he
dislikes

Total of the
code counts

C R A N C R A N + −

original scale 16 13 2 1 1 9 6 2 — 1 17 9
VAS 14 6 4 — 9 8 5 2 — 1 19 8
Emoticons 13 4 7 5 — 3 4 2 1 — 16 7
Weights 3 1 2 — — 26 7 17 5 2 3 31

Note. No stands for the number of participants that chose a particular scale they liked best and least. Explanations are coded under C � Clarity, R � Relatability, A � Appearance and N �
Nuance. The total of the code counts represents the total number of positive and negative remarks per scale type. An explanation could fall under more than one code, therefore the No
does not have to correspond to the total of code counts.
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time on task was positively correlated with perceived mental
effort and perceived difficulty. The depicted weights scale only
revealed negative correlations for simple problems between
accuracy and mental effort and perceived difficulty.

Because the size of the correlation was already calculated and
the values of the correlations were known, the correlational
differences were tested one-sided, just as a confirmative test
whether the larger (or smaller) correlation was significantly
larger (or smaller). For efficiency and clarity reasons, we only

report significant results here in text and present all statistics in
Table 6 and 7.

Correlational comparisons between scale conditions showed
that for the simple problems, Weight scale ratings of perceived
difficulty had a significant stronger negative relation to accuracy
than any other scale. Weight scale ratings of perceived mental
effort during simple problem solving were also more strongly
(negatively) related to accuracy compared to the ratings using the
Original and Emoticon scales. For the complex problems it was

TABLE 3 | Proportion mean scores and standard deviations of the four rating scales for accuracy, time on task, and perceived difficulty and invested mental effort.

Accuracy (proportion) Time on task (sec) Perceived difficulty Mental effort

Simple M (SD) Complex M (SD) Simple M (SD) Complex M (SD) Simple M (SD) Complex M (SD) Simple M (SD) Complex M (SD)

Original 9 0.95 (0.16) 0.51 (0.41) 9.30 (3.93) 48.94 (19.04) 0.19 (0.09) 0.72 (0.15) 0.21 (0.12) 0.73 (0.14)
VAS 0.99 (0.07) 0.39 (0.41) 8.55 (2.86) 43.84 (17.98) 0.05 (0.05) 0.68 (0.19) 0.07 (0.06) 0.68 (0.19)
Emoticons 0.96 (0.14) 0.43 (0.37) 10.81 (3.88) 53.15 (23.48) 0.19 (0.07) 0.77 (0.16) 0.21 (0.10) 0.77 (0.16)
Weights 0.99 (0.07) 0.28 (0.33) 9.69 (3.47) 70.77 (36.41) 0.16 (0.07) 0.87 (0.14) 0.18 (0.10) 0.85 (0.13)

TABLE 4 | Statistics of the Paired t-tests Comparing Differences in Accuracy, Time on Task, Perceived Difficulty and Mental Effort Between Complex and Simple Problems
Across the Four Types of Rating Scales.

Pairs Accuracy Time on task Perceived difficulty Mental effort

t p d t p d t p d t p d

1: O vs V −2.40 0.020 0.46 1.29 0.205 0.23 −3.29a 0.002a 0.20a −2.82a 0.007a 0.21a

2: O vs E −1.05 0.299 0.56 −0.93 0.355 0.20 −1.36 0.182 0.16 −1.57 0.123 0.16
3: O vs W −3.67a 0.001a 0.50a −3.86a 0.000a 0.38a −6.64a 0.000a 0.18a −5.44a 0.000a 0.19a

4: V vs E 1.12 0.267 0.46 −2.11 0.041 0.23 2.07 0.044 0.22 1.47 0.149 0.23
5: V vs W −1.75 0.086 0.42 −5.20 0.000 0.34 −2.37 0.022 0.22 −1.77 0.083 0.26
6: E. vs W -2.85a 0.007a 0.44a −3.29a 0.002a 0.39a −5.00a < 0.001a 0.20a −4.33a <0.001a 0.19a

Note.
O � Original nine point Likert Scale, V � VAS, E � Emoticons, W � Weights.
Bonferroni correction was applied by adjusting the significance level to 0.05/6 � 0.008.
ap < .05 are printed boldly.

TABLE 5 |Correlation table of the performance (accuracy and time on task) and subjective ratings (perceived difficulty andmental effort) of the simple and complex problems.

N = 46 Simple Problems Complex Problems Average
All

Problems

Difficulty Mental
Effort

Time Difficulty Mental
Effort

Time Difficulty Mental
Effort

Time

Accuracy Original −0.06 0.01 0.06 −0.13 −0.37* −0.30* −0.17 −0.34* −0.26
VAS −0.45** 0.06 −0.17 −0.12 −0.20 −0.31* −0.15 −0.21 −0.31*
Emoticons −0.01 −0.03 <0.01 −0.14 −0.28 −0.20 −0.09 −0.29 −0.26
Weights −0.14 −0.57** −0.42** 0.05 0.18 0.10 0.05 0.06 −0.05

Time Original 0.23 0.10 0.35* 0.29* 0.30* 0.19
VAS 0.02 0.24 0.35* 0.37* 0.32* 0.33*
Emoticons 0.31* 0.35* 0.42** 0.29 0.48** 0.42**
Weights 0.17 0.25 0.22 0.28 0.15 0.17

Difficulty Original 0.84** 0.95** 0.92**
VAS 0.81** 0.95** 0.94**
Emoticons 0.85** 0.84** 0.87**
Weights 0.69** 0.92** 0.81*

*p < .05.
**p < .01.
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found that ratings using the original scale for both perceived
difficulty and perceived mental effort correlated stronger
(negatively) with accuracy than using the Weight scale.
Ratings on the the Emoticon scale for perceived difficulty on

the easy problems showed a stronger (positive) correlation with
time on task than the VAS scale.

Noticeable from these results is that the numeric scales
(original scale and VAS) seem to better reflect effort and
difficulty for the complex problems (as inferred by the
correlations with accuracy), while the pictorial scales
(emoticons and weights) seem to better reflect effort and
difficulty in for the simple problems. To test whether
correlations differed depending on complexity level within
scales, each significant correlation was compared to its simple
or complex counterpart one-sided. For example, for the original
scale, accuracy of complex, but not simple problems was
significantly correlated to perceived difficulty.

In this manner, 12 correlational pairs were tested (see
Table 7). All comparisons not described in text had
significance levels of p > 0.16 The significant comparisons
showed that for the original scale, the relation between
accuracy and perceived difficulty, z � 1.98, p � 0.024, and
accuracy and perceived mental effort, z � 1.83, p � 0.034, was
stronger for the complex than simple problems. For the VAS, it
was found that the relation between time on task and perceived
mental effort was stronger for the complex than the simple
problems, z � -1.70, p � 0.044. For the Weights, it was found

TABLE 6 | Comparisons of Correlations between the Scale types.

r Original VAS Emoticons Weights z p

Accuracy -PD easy x x −3.22a 0.001a

x x −3.52a <0.001a

x x −2.99a 0.001a

hard x x −0.98 0.164
x x −0.49 0.313
x x −3.02a 0.001a

Time PD easy x x 0.47 0.321
x x 1.75a 0.040a

x x 0.78 0.217
hard x x <0.01 0.500

x x −0.46 0.322
x x 0.70 0.242

x x −0.44 0.331
x x 0.70 0.241

x x 1.10 0.136
Accuracy -ME easy x x −2.51a 0.006a

x x −1.33 0.091
x x −2.18a 0.015a

hard x x 0.05 0.479
x x −0.51 0.307
x x −2.03a 0.021a

x x −0.61 0.273
x x 1.06 0.144

Time ME easy x x 1.40 0.081
x x 0.64 0.262

x x 0.58 0.280
hard x x −0.48 0.317

x x <0.01 1.000
x x 0.05 0.479

x x 0.47 0.320
x x 0.50 0.310

Note.Example; the first correlational comparison, contrasted the correlations between Accuracy and Perceived Difficulty of the problems presented with the Original rating scale with those
presented with the Weights Scale.
ap < .05 are printed boldly.

TABLE 7 | Comparisons of Correlations between the Simple and Complex
Problem Solving conditions.

R1 simple vs R2 = complex z p

Original Accuracy -PD 1.98 0.024
Accuracy - ME 1.84 0.034
Time - PD −0.65 0.257
Time - ME −0.99 0.161

VAS Accuracy - ME 0.71 0.239
time - PD −1.70 0.044
Time - ME −0.71 0.240

Emoticons time - PD −0.64 0.261
Time - ME 0.35 0.365

Weights Accuracy - PD −4.21 <0.001
Accuracy - ME −2.79 0.003

Note. Example; the first correlational comparison, contrasted the correlations between
Accuracy and Perceived Difficulty in the simple problem solving condition with those of
the complex problem solving condition.
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that the relation between accuracy and perceived difficulty, z �
−4.21, p < 0.001, and accuracy and perceived mental effort, z �
−2.79, p � 0.003 was stronger for the simple than the complex
problems.

Scale (dis)liking. Of the 46 participants, 16 participants
preferred the original 9-point scale over the others, followed
closely by the VAS with 14 votes, the emoticons with 13 votes and
the weights with three votes. In response to the reversed question
(which scale they disliked the most), 26 participants voted for the
weights, nine participants for the original 9-point Likert scale,
eight for the VAS and three for the emoticons. Table 2 shows an
overview of the best and least preference and coded explanations
for the four types of rating scales.

The original 9-point scale was preferred by 16 participants,
mainly for the clarity of every answering option. As one
participant stated: ‘There is little room for misinterpretation’.
Interestingly, this clarity was exactly what nine dislikers criticized
about the scale. They found that the scale contained too much
text, which also made the answering options confusing. In
addition, they stated that nine answering options did not leave
enough room for nuance.

The 14 participants who favored the VAS reasoned that it was
the most nuanced scale, leaving ‘more opportunity for grey areas’.
Eight participants liked the VAS the least, mainly because the
scale was too unclear and could leave too much room for
misinterpretation. The 13 participants who favored the
emoticons scale indicated that this was because the emoticons
were relatable to perceived difficulty and effort and, making the
scale easiest to interpret and use. Also, the scale was found to be
visually the most appealing. It was liked least by three participants
who indicated that it was unclear what every option represents
and because it was ‘annoying’. Finally, the three participants who
liked the weights-scale most indicated that this was because the
weights were ‘not as abstract as the other scales’ and the
differences between the answering options were most
apparent. However, with 26 dislikes, this scale was disliked by
the most participants out of all the scales predominantly because
the weights were perceived as unrelated to the questions and it
was ‘difficult to estimate the value of the weights in relation to the
answer to the question’. Also, the differences between the weights
were too small. Furthermore, five participants found the scale
visually unpleasant and annoying to use.

DISCUSSION

The aim of the present study was to investigate the validity of
subjective rating scales measuring perceived difficulty and mental
effort. More specifically, our research question was whether
certain visual characteristics of a subjective rating scale
intended to measure cognitive load, matter for validity (i.e.
does one type of visualization elicits more valid responses than
others?). By alternating the visual presentation of the scales, we
compared four different types of subjective rating scales
measuring perceived cognitive load (i.e., mental effort and
difficulty) regarding their relation to performance
(i.e., accuracy and time on task). Four scales were compared;

two well-known ones, the original 9-point rating scale (Paas,
1992) and the VAS, and two specially designed for this study,
using either emoticons or pictures of weights. Validity of the
mental effort and difficulty ratings was estimated by correlations
with performance (i.e., accuracy and time on task) and comparing
correlations between difficulty levels and scale types. Also
personal preference of the scales was investigated.

The results supported our first hypothesis that all scales would
be able to distinguish between complexity levels of the problems
for perceived difficulty and mental effort. Complex problems
were rated higher than the simple ones regardless of the scale
used. The second hypothesis stating that the pictorial scales might
reflect cognitive load better, was partially supported. The pattern
of the results of the correlations is the most striking; while
numeric scales (original scale and VAS) seem to better reflect
effort and difficulty for the complex problems, the pictorial scale
(emoticons and weights) seems to better reflect effort and
difficulty for the simple problems. More specifically, for
complex problems, perceived cognitive load and difficulty as
measured by the more abstract numeric scales (i.e., the
original nine point Likert rating scale and the VAS) were
negatively related to performance. In contrast for the simple
problems, perceived cognitive load and difficulty as measured by
the pictorial scales (i.e., weights and emoticons) were negatively
related to performance (i.e., accuracy and time on task). This
seems to suggest that for the simple problems, the pictorial scales
appeared to represent experienced cognitive load better than for
complex problems. Ironically, some students indicated that the
differences between the weights were too small to represent the
differences in difficulty they experienced. Perhaps if bigger weight
increments (larger intervals, instead of 1, 2, 3 etc. 10, 20, 30 etc.)
were used, the scale would be better applicable to the difficult
problems. The ratings of mental effort and perceived difficulty on
the affective scale were positively related with the time on task
needed for the simple problems in that higher ratings were related
to more time on task needed. For the complex problems, the
original 9-point Likert scale was related to both the accuracy and
time on task in that higher ratings were related to lower accuracy
and more time on task. The VAS showed the same results as the
original 9-point Likert scale, except that perceived difficulty was
not (significantly) related to solution accuracy.

Therefore, it appears that the 9-point rating scale is more
sensitive than the VAS scale in detecting the correlation
between perceived difficulty and solution accuracy as the level
of complexity in problem-solving task increases. A rating scale that
ismore sensitive in detecting perceived difficulty holds potential for
enhancing cognitive analytics and the development of self-adaptive
systems that links interaction between human and computer
systems (Radanliev, et al., 2020). When comparisons between
correlations was done, it was found that for the easy problems,
theWeight scale provided a better reflection of perceived difficulty.
However for the complex problems, the original 9-point rating
scale did best.

On scale preference, it was found that the original scale was
preferred most (with the VAS and emoticons closely following)
and the least liked were the weights. However, likability was not a
predictor for validity in terms of the association with the ratings on
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the scales and performance. A point for discussion might be that
students were asked about their preference for a scale after a block
of four problems in the order of simple-simple -complex -complex.
Having made the complex problems just before being asked about
scale preference might have induced a recency effect, in that the
responses recorded reflect the experience of rating mental effort
and difficulty on the complex problems more than that of the
simple problems. In a future studie it would be interesting to ask for
participants’ preference directly after they completed the simple
problems and again after the complex problems.

One limitation of the present study is that the picture of the
weights in the embodied scale did not fully fit onto the screen for
three of the participants. Therefore, the participants had to scroll
sideways to view the full length of the scale. These technical issues
might have confounded the disliking of the weight scale
compared to the other scales. A more theoretical limitation is
that although the results showed a difference in effort and
difficulty ratings for the pictorial versus numerical scales for
simple versus complex problems, another factor besides the
embodied cognition account may play a role in explaining
these differences. In a study by Schmeck et al. (2015) that
used similar week day problems, timing and topic of the
ratings seemed to matter for the outcomes. Delaying effort
and difficulty rating after a series or problems seemed to elicit
higher scores than the average of ratings given immediately after
each separate problem. The delayed ratings seemed to be better
predictors of the performance on the complex problems.
However, for affective components such as interest and
motivation, this difference was not found. We suggest that it
would be interesting to replicate the study of Schmeck et al.
(2015) with the four types of scales used in this study for two
reasons. First, it would be interesting to find out how the response
to the affective items would differ between numeric and pictorial
scales. It might be the case that the numeric scales are less
sensitive to affective questions than pictorial scales and that
this is the reason that these ratings were not sensitive to the
timing or complexity of the problems. Second, we might find a
differentiating effect depending on the timing and complexity of
the problems for the affective items, using the pictorial scales.

CONCLUSION

In summary, it seems that the pictorial scales (i.e., emoticons and
weights) seem to provide a more valid indication of mental effort
and difficulty for simple tasks and the original 9-point Likert scale
and the VAS more for complex tasks. This can be explained from
the perspective of recent critics on the embodied cognition theory
in that for lower-level abilities and functions, cognition may be
well-grounded in sensory-motor processes, but that this may not
(or to a lesser extent) be the case for higher order cognitive
processes (i.e., Caramazza et al., 2014). On the other hand, it
seems that numerical scales might be less suitable to reflect
perceived mental effort and difficulty on simple problems.
Practical implications from this finding would be to use more
pictorial rating scales when assessing mental effort and perceived
difficulty for simple tasks and more abstract numeric scales for

more complex tasks. However, we strongly recommend future
studies to replicate this setup, purely to see whether the similar
results are found and to find out whether the results are reliable
for other populations (i.e., other age group) and for other tasks.
Note that we used university students for the present study. From
the educational level and age of this rather homogeneous sample,
we can expect that the learning capacity and working memory
functioning are optimal compared to other populations such as
older adults. For the present study, we manipulated task difficulty
by increasing element interactivity and thereby intrinsic load
(cognitive load elicited by task characteristics). However,
populations with suboptimal cognitive functioning, such as
older adults, might have more difficulty in general with the
task because of an age-related decrease in working memory
functioning and cognitive aging in general (e.g., Braver, &
West, 2011), resulting in decreased germane cognitive load. In
addition, in children, a population in which cognitive functioning
and working memory are still developing, it has already been
shown that use of pictures work well for clinical ratings such as
pain (e.g. Keck, et al., 1996), nausea (Baxter, et al., 2011). In
addition, promising results with children are also found for
occupational self-assessment (e.g. Kramer, et al., 2010).
Therefore, it would be interesting to replicate this study with a
sample from a different age population.

In conclusion, in the present study, we made a start in the
exploration of different types of subjective rating scales to self-assess
invested mental effort and task difficulty. The main finding was that
numerical type scales seem to better reflect cognitive processes for
complex problem solving while the pictorial type scales for simple
problem solving. Whether this finding applies to other forms of
simple versus complex tasks, needs to be explored in the future.
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Cognitive load theory assumes effort may only lead to comprehension if the material-
induced load leaves enough resources for learning processes. Therefore, multimedia
materials should induce as little non-relevant load as possible. Metacognition research
assumes that learners tap into their memory processes to generate a mental
representation of their comprehension to regulate learning. However, when judging
their comprehension, learners need to make inferences about actual understanding
using cues such as their experienced mental load and effort during learning.
Theoretical assumptions would assume both to affect understanding and its
metacognitive representation (metacomprehension). However, the question remains
how perceived effort and load are related to metacomprehension judgments while
learning with multimedia learning material. Additionally, it remains unclear if this varies
under different conditions of multimedia design. To better understand the relationship
between perceived mental load and effort and comprehension and metacomprehension
under different design conditions of multimedia material, we conducted a randomised
between-subjects study (N � 156) varying the design of the learning material (text-picture
integrated, split attention, active integration). Mediation analyses testing for both direct and
indirect effects of mental load and effort on metacomprehension judgments showed
various effects. Beyond indirect effects via comprehension, both mental load and effort
were directly related to metacomprehension, however, this seems to vary under different
conditions of multimedia design, at least for mental effort. As the direction of effect can only
be theoretically assumed, but was not empirically tested, follow-up research needs to
identify ways to manipulate effort and load perceptions without tinkering with
metacognitive processes directly. Despite the limitations due to the correlative design,
this research has implications for our understanding of cognitive and metacognitive
processes during learning with multimedia.
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1 INTRODUCTION

Research on multimedia learning aims at examining the influence
of differences in the design of learning materials on learning
outcomes (for an overview, see Li et al., 2019). For example, the
inclusion of signaling cues (i.e., the highlighting of learning-
relevant information or the structure of a learning material;
Schneider et al., 2018) or the segmentation of learning
materials into meaning-related sections (Rey et al., 2019) were
found to foster learning by highlighting relevant and coherent
concepts of a learning material. However, not all materials are
well designed or activate learners to build a coherent mental
model leading to huge learning differences. One major
explanation for learning differences is based on the cognitive
load theory (Sweller, 1994; Sweller et al., 2011). According to this
theory, learners experience a cognitive load when processing the
information presented in a multimedia learning material.
Cognitive load, also often referred to as mental load is, thus,
said to be task-related and reflects the cognitive resources needed
to cope with the complexity of the learning material.

Cognitive load can be distinguished into two groups of
processes: learning-relevant (productive) and learning-
irrelevant (unproductive) cognitive load processes (Kalyuga
and Singh, 2016). While productive cognitive load refers to all
cognitive processes that are needed to reach a learning goal,
unproductive cognitive load refers to all cognitive processes that
occur due to design-induced information search processes. For
example, decorative (learning-irrelevant) pictures integrated into
multimedia learning material may distract learners’ attention
away from learning-relevant information (for an overview, see
Schneider et al., 2016). When both textual and pictorial
information are learning relevant and relate to each other,
their spatial distance is of major importance for the amount of
cognitive load since spatially distant representation lead to a
learning-hindering split-attention effect (for an overview, see
Schroeder and Cenkci, 2018). In this case, the integration of
textual information into the pictorial information source is found
to enhance complex learning (i.e., the spatial contiguity principle;
Mayer and Moreno, 2003; for an overview, see Schroeder and
Cenkci, 2018) by a reduction of unproductive cognitive load
(Schroeder and Cenkci, 2020). Another possibility to foster
learning is not to reduce learning-irrelevant processes, but to
induce learning-relevant processes. Similar to a generation effect
(see Bertsch et al., 2007), asking learners to actively integrate
pictorial and symbolic sources of information in multimedia
learning material seems to support them in building coherent
mental representations and fosters learning (Bodemer et al., 2004;
Bodemer et al., 2005). Thus, within such an active-integration
procedure, learners are asked to integrate disintegrated material
assuming the load induced by the split attention is gradually
reduced by actively integrating the material. During this process it
gets gradually replaced by the additional productive cognitive
load that supports building coherent mental models. Thus,
while the load imposed is supposed to be quite high, such
“desirable difficulties” (see Bjork and Bjork, 2011) should
ultimately be beneficial for learning as has been found for
other instructions designed to induce germane cognitive

processes, for example self-explanation prompts (e.g.,
Berthold and Renkl, 2009; Renkl et al., 2009).

While the terms “mental load” and “cognitive load” are
sometimes used interchangeably, other conceptualizations
differentiate the concept. In these, cognitive load is not seen as
a unidimensional construct based on task-induced affordances,
but also includes the effort learners assign to task-processing
(Paas and van Merriënboer, 1994). As described with the above
examples, cognitive load is imposed by the demands from the
learning environment to perform a certain learning task.
However, not all learners will achieve the same learning under
the same task conditions. Learners allocate a different amount of
cognitive resources for a given task demand (i.e., their cognitive
engagement in the task). This allocation of cognitive resources is
known as mental effort (Orru and Longo, 2019). Mental effort
reflects a second dimension of possible assessment factors besides
the measurement of (task-driven) mental load and the actual
learning performance and can be described as a second indicator
for possible learning differences by addressing the human-
centered dimension of cognitive load (Scheiter et al., 2020).
Thus, mental effort refers to learners’ actually invested
cognitive resources while processing information of a learning
material (Paas and van Merriënboer, 1994).

The relationship between mental load and mental effort and
their relation to learning processes has been examined to a minor
degree. Some studies propose that mental effort and mental load
are different concepts with unique consequences for the
measurement of learning processes (e.g., Ayres and Youssef,
2008; Schmeck et al., 2015). The experienced mental load and
invested mental effort are most often measured with subjective
rating scales (e.g., Naismith et al., 2015; Anmarkrud et al., 2019).
When using such a subjective measurement, researchers assume
that learners are able to access and assess their own invested
cognitive resources and load imposed by a learning task (Paas
et al., 2008).

If insights into mental processes and resources like mental
load and mental effort are available to learners, we must assume
that these learners are also able to use this information for
metacognitive regulation purposes. While there clearly is more
to (successful) regulation than metacognitive monitoring (e.g.,
using monitoring outcomes to control learning; Schnaubert and
Bodemer, 2017), from a learner’s perspective, internal
experiences may be used to guide regulation attempts
(independent of their successfulness). Metacognitive processes
are deemed vital for understanding how learners approach and
process learning material (Schraw et al., 2006). While this may
apply for memory processes like word-pair or vocabulary
learning, this also extends to comprehending complex
expository material (Wiley et al., 2005). Not only do learners
need to plan what to study, but also divert attention towards
relevant sources and invest effort in processing and integrating
the content, for example when integrating texts and graphics
during multimedia learning (e.g., Burkett and Azevedo, 2012). To
do so, according tometacognition theories, learners monitor their
learning-related cognitive processes and outcomes (e.g., their
comprehension) and—by comparing it to standards—evaluate
the need for further studying or a change of tactics or strategies
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(e.g., Nelson and Narens, 1990; Winne and Hadwin, 1998) and
may thus actively steer their learning processes to successfully
foster learning (e.g., Thiede, 1999; Metcalfe, 2009).

Thus, monitoring learning and comprehension is a crucial
part of learning. To support learners in doing so, it is critical to
understand what affects their metacognitive monitoring
judgments, which is the evaluation of own learning, memory
and comprehension. It is widely assumed that learners have no
direct access to their memory or comprehension strength, but
that metacognitive judgments rely on cues and are inferential in
nature. Cue utilization theory (Koriat, 1997) assumes that
learners use a number of relevant cues to judge their learning
and comprehension. A crucial part of these are mnemonic cues,
that is cues relating to perceiving memory processes such as the
ease with which information is processed, encoded or retrieved
from memory (e.g., Begg et al., 1989; Benjamin et al., 1998). Such
experience-based cues inform metacognitive judgments and are
in turn influenced by intrinsic and extrinsic factors, for example,
material complexity or prior exposure (Koriat, 1997; Koriat et al.,
2008). However, as not all cues are equally diagnostic to learning
in all circumstances, their usage may result in low monitoring
accuracy (i.e., the relationship between actual comprehension and
metacomprehension), which is often found to be quite poor for
metacomprehension (Dunlosky et al., 2005; Dunlosky and Lipko,
2007). While there are various aspects of memory and cognition
learners may monitor, our research is focused on the monitoring
of own levels of comprehension. In this context,
metacomprehension is defined as the metacognitive
representation of own comprehension as a result of
metacognitive monitoring (Maki and Berry, 1984; Wiley et al.,
2005) rather than a valid understanding of own comprehension
(metacomprehension accuracy). Thus, while a lot of multimedia-
focused research focusses rather on the accuracy of metacognitive
judgments, this is a rather instructional design perspective (as it
relates it to learning outcomes from an outside perspective). From
a metacognition perspective, it is of equal importance to
understand what affects a learner’s judgment itself as this
forms the basis for self-regulatory processes (e.g., Koriat,
1997). The subjective experience and evaluation of own
learning (not their accuracy) is key in regulating behavior and
form the basis of control decisions (Nelson and Narens, 1990; Son
and Schwartz, 2002), for example regarding study time allocation
(e.g., Son and Metcalfe, 2000). While both the subjective
monitoring judgments and their accuracy ultimately contribute
to learning and are worthwhile studying, the learner-centred view
aims at understanding the learners’ experience. This is the
perspective taken within this study. From a metacognitive self-
regulation perspective, it is of vital importance to understand how
learners judge their comprehension and form
metacomprehension judgments and how this relates to
cognitive processing. From a multimedia-learning perspective,
it is important to understand how this is affected by the design of
(multimedia) learning material.

De Bruin and van Merriënboer (2017) made a first explicit
attempt to connect self-regulated learning and cognitive load
theory. While they focused on differences and similarities
between the theories, concepts and measurement rather than

the actual relationship between the specific cognitive and
metacognitive constructs in question, within their special issue,
there are some studies relating cognitive load and metacognitive
judgments empirically. For example, Schleinschok and colleagues
(2017) found a strong negative correlation between prospective
judgments-of-learning (JOLs) and cognitive load. They further
performed regression analyses finding cognitive load not
contributing to explaining test performance when JOLs were
included in the analyses. Baars and colleagues (2017), on the
other hand, assume that under various task conditions varying in
cognitive load, learners may use their invested mental effort as
cue for forming metacognitive judgments. While this hypothesis
needs empirical validation, the authors previously found strong
correlations between mental effort and metacognitive judgments,
although the impact of actual learning was not included in these
calculations (Baars et al., 2013). A current meta-analysis found a
substantial negative overall relationship between perceived
mental effort and monitoring judgments (Baars et al., 2020).
This negative relationship, however, defused for self-agent ratings
(i.e., ratings stressing the effort put willingly into learning rather
than the effort necessary to solve a task; Koriat, 2018). Thus, it can
be assumed that mental effort only negatively relates to
monitoring judgments, when it reflects a need rather than a
choice to invest effort. Our study relates to the latter
conceptualisation, as it distinguishes task-induced load and
effort invested willingly.

While cue utilization has been researched extensively within
metacognition research, multimedia research provides insights
into cognitive processes relevant for processing complex learning
material. Within cognitive load research, it is commonly assumed
that learners are able to access information about and thus validly
judge their mental load and effort (Paas et al., 2008). However,
judging own mental effort may also be viewed from a
metacognitive perspective as it entails monitoring own
cognitive processes (Scheiter et al., 2020). Thus, it seems
logical that learners may use these insights into their cognitive
processes as cues to form metacognitive judgments about their
learning; perceived mental load and effort may therefore affect
metacognitive judgments (Baars et al., 2017). Consequently, in
our study, we want to investigate if learners’ mental effort and
mental load are related tometacomprehension judgments beyond
their effect on the learner’s actual level of comprehension.

De Bruin and colleagues related cues, monitoring judgments,
and learning by cue utilization, diagnosticity of the cues for
learning, and monitoring accuracy (de Bruin et al., 2017).
Their (metacognitive) model resembles a mediation model
predicting learning or performance based on monitoring
judgments. This is in line with other studies, for example,
Schleinschok and colleagues (2017), who regressed JOLs and
cognitive load on test performance. While we understand the
reasons for predicting performance based on prospective JOLs,
when directly targeting metacomprehension, i.e., learners’mental
representation of their comprehension, learners judge their
current state of learning not their later task performance. Such
presumably subtle difference in assessment may have severe
impact on the outcome of a metacognitive judgment
(Kelemen, 2000). Thus, in our model, metacomprehension is
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following comprehension not preceding it (although it may
precede its assessment if it can be assumed that
comprehension is relatively stable and not affected by the
process of judging one’s comprehension on a
metacomprehension scale; see Section 2.3). We additionally
argue that while the value of mental load and mental effort for
predicting learning and resulting comprehension may diminish
when metacognitive judgments are involved, that does not mean
that they are not affecting the judgments themselves and the
strong intercorrelation found in Schleinschok and colleagues’
study (2017) indicates there might be more to this relationship.
To sum it up, while we are aware of the different approaches to
these relationships, we assume mental processes are not only
predictive for actual comprehension, but learners’ awareness of
these processes may be used as mnemonic cues for metacognitive
judgments as well. Thus, we assume that learning and
comprehension precedes monitoring said comprehension and
consequently, in our model, comprehension is the mediator while
metacomprehension is the criterion with (perceived) mental load
and mental effort as predictors (Figure 1).

Based on multimedia research, we assume high diagnosticity
for perceived mental effort (positive) and perceived mental load
(negative) for predicting comprehension (a paths). Additionally,
based on metacognition research, we assume a high positive
relationship between comprehension and metacomprehension
judgments (b path). While this relationship is termed
“monitoring accuracy” and can theoretically be modelled as
such, please note that within the statistical model used in our
empirical study (see Section 2), a between-subject relationship
between comprehension and metacomprehension judgments
does not reflect monitoring accuracy as it does not reflect how
individual learners monitor their cognitions and differentiate
between high or low comprehension (see Schraw, 2009 and

Schraw et al., 2013 for measures of monitoring accuracy). It
remains unclear, whether perceivedmental load andmental effort
are predictive for metacomprehension judgments (c paths) and
especially whether they thus affect metacomprehension
judgments beyond their actual effects on comprehension (c’
paths). Based on de Bruin’s model (de Bruin et al., 2017),
these paths are termed “cue utilization” describing a
theoretical relationship between those concepts. Considering
the above discussed literature (e.g., Koriat, 2018; Baars et al.,
2020) as well as the above assumed relationships (a and b paths),
we assume (perceived) mental effort to be rather positively and
(perceived) mental load to be negatively related to
metacomprehension judgments. The positive relationship of
mental effort hereby refers to a conceptualization of effort that
includes elements of self-agency and thus a choice to invest effort
rather than a need to invest.

We know from multimedia and cognitive load theory and
research that while load and effort contribute to comprehension,
their value for judging comprehension depends strongly on the
target processes involved and if they ultimately are relevant or not
relevant for learning and comprehension. As described above,
within multimedia learning, this may strongly depend on the
design of the learning material. For example, learning-irrelevant
load may be induced by a split attention format whereby an active
integration format may induce load positively related to learning.
This begs the question if learners—who may use mnemonic cues
like the perceived mental load put upon them by the learning
material and the effort applied to process the content to judge
their comprehension (Baars et al., 2017)—are aware whether the
processes conducted are directly related to learning or not. Thus,
we further want to know if these mechanisms apply to different
design versions of multimedia material similarly or if designs that
evoke unproductive load (like a split attention format) or

FIGURE 1 | Assumed mediation model.
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additional productive learning processes (like active integration)
or reduce load (like an integrated material) have differential
effects. For example, the ease with which integrated material
may be processed may lead to learners judging their
comprehension to be quite high while processing that requires
more effort may be judged as less understood (ease-of-processing
hypothesis; Undorf and Erdfelder, 2011). While this may be
reasonable when the load imposed is based on unfortunate
design of the multimedia material (e.g., split attention format),
this may not hold true while actively integrating material, which
may induce a high load, but may ultimately be rewarding
(comparable to desirable difficulties, Bjork and Bjork, 2011).
Thus, the actual diagnosticity of (perceived) mental load and
effort for comprehension may vary under various load-inducing
conditions and it remains unclear, if cue utilization differs
accordingly. Thus, we will use a variety of different design
mechanisms to find out if the relationship between mental
load or effort and metacomprehension differs for these
conditions and if—by affecting diagnosticity—they may
hamper the relationship between comprehension and
metacomprehension judgments. Thus, although effects on
mental load and mental effort caused by the multimedia
design are assumed, the main target of the paper is not to
assess the effect of multimedia design on mental load or effort
as this has been done extensively in the past (e.g., Xie et al., 2017;
Mutle-Bayraktar et al., 2019), but to investigate if the multimedia
design and its potential effects on the relationship between load,
effort and learning effectiveness (i.e., comprehension) affect
metacomprehension judgments and their relationship with
mental load or effort as well. Consequently, the study aims to
investigate if a potential direct and indirect relationship between
perceived load and effort and metacomprehension judgments
differs between conditions of multimedia design.

Taken together, we assume that overall, (perceived) mental
effort is positively related to metacomprehension judgments
(hypothesis 1) while (perceived) mental load is negatively
related to metacomprehension judgments (hypothesis 2). With
regard to the precise relationship and also the effect of
multimedia design, our research questions are: 1) Is learners’
perceived mental effort and load related to learners’ judgments of
comprehension (beyond actual effects on comprehension), and 2)
does this vary under different load-imposing multimedia
conditions (i.e., split attention, integrated, active integration
condition)? While in line with Baars and colleagues (2017) we
assume learners to use mental effort and load as cues for their
metacognitive judgments, please be advised that intentional cue
usage is not in the focus of our research, but the relationship
between the constructs.

While the research basis with regard to the effect of the
multimedia design on metacomprehension judgments (vs.
metacomprehension accuracy) is too scarce to form explicit
hypotheses and we thus chose a more exploratory approach to
that respect, some effects seem more likely than others. For
example, based on research on generative activities and its
relation to monitoring accuracy (e.g., Prinz et al., 2020; van
Gog et al., 2020), it may be assumed that effort and load
within active integration affect metacomprehension judgments

rather indirectly via comprehension rather than directly (without
relating to comprehension). With regard to split attention, one
may assume that a possible effort-metacomprehension-
relationship may not be mediated by comprehension as the
effort-comprehension relationship may be hampered by
investing effort in overcoming the split-attention rather than
germane learning activities (e.g., Beege and Colleagues, 2019).
However, as the research basis for these assumptions is not yet
solid enough to form distinct hypotheses (apart from the
direction of the general relationship between perceived mental
load or effort and metacomprehension judgments), we chose a
more exploratory approach to take a first step towards
understanding how (perceived) mental load and mental effort
are related to metacognitive monitoring of learning under varying
conditions of multimedia design.

While our study focusses on assumptions about the
relationship between mental effort, mental load,
comprehension, and metacomprehension under varying
conditions of multimedia design, we further assume to
replicate effects frequently found in multimedia research.
Based on the literature on multimedia learning, we assume the
multimedia design to affect comprehension with a split attention
format rather hampering learning (unnecessary effort needs to be
invested into integrating text and graphics; e.g., Schroeder and
Cenkci, 2018) and active integration rather fostering learning
(generative activity; e.g., Bodemer et al., 2004). Further, we
assume multimedia design to affect especially mental load,
with the potentially load inducing conditions (split attention
and active integration) resulting in higher perceived mental
load (e.g., Schroeder and Cenkci, 2020). However, as these
issues are not in the focus of the study, we did not include
them in the formal hypotheses.

2 MATERIALS AND METHODS

The study (study-ID: psychmeth_2019_MMMC_66) was
conducted November 2019 to December 2019 at the
University of Duisburg-Essen and approved by the local ethics
committee (ethics votum-ID: 1910PFYE114). It was not officially
pre-registered.

2.1 Sample
The sample consisted of 156 university students, most of them
(145) studying applied cognitive and media science or loosely
related subjects (seven psychology, one applied informatics, one
engineering, one applied language science, one did not provide a
course of study). They had a mean age of 21.00 years (SD � 3.35).
Most of them (121) identified as female, 34 as male, and one as
non-binary. Altogether, the sample can be described as quite
homogeneous: predominantly females in their early 20 s studying
applied cognitive and media science at a German university. The
participants were randomly assigned to one of three conditions
with a different multimedia design (see Section 2.2): integrated
format (n � 51), split attention format (n � 52) and active
integration format (n � 53). Due to an assignment error, not
all pre-test data to describe sample characteristics could be
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confidently traced back, but a rigorously cleaned minimal dataset
with 137 participants showed a medium interest in the topic of
information transmission within the nervous system (M � 4.09,
SD � 1.59 on a scale from 1 � “very low” to 7 � “very high”) and
rather low self-assessed prior knowledge on the nervous system
(M � 3.09, SD � 1.37 on a scale from 1 � “very poor” to 7 � “very
well”) and ability to explain the difference between a excited und
inhibited synapse (M � 2.47, SD � 1.52 on a scale from 1 � “very
poor” to 7 � “very well”).

2.2 Design
Within this study, we assessed all variables (predictors, mediator,
criterion) throughout the sample. Additionally, we randomly
assigned each participant to one of three multimedia design
conditions. The experimentally varied factor (design of the
multimedia learning material) thus had three factor levels
varying the design of the learning material to induce various
types of cognitive load. On level one (integrated format), the
material, consisting of text and picture, was presented in an
integrated format with textual annotations attached to the
pictorial content to decrease cognitive load. On level two, the
text was presented below the picture with numerical indicators of
what each text described (split attention format) to induce search
processes irrelevant for learning. On level three, the text and
picture were presented like in level two, but without the numbers
indicating where each text belonged and learners could drag and
drop the text blocks into blanks within the picture, thereby
actively generating an integrated format (active integration
format). For more details see Section 2.4.

2.3 Procedure
The study took place in research laboratories that seated up to
three participants simultaneously. After welcoming, participants
were seated on a computer screen each with a 24″ monitor. The
setup was identical for all participants. After an introduction into
the study and giving informed consent, participants received a
short pre-study questionnaire assessing rough indicators of self-
assessed prior knowledge and topic-specific interest (see
Section 2.1).

Afterwards, participants received multimedia learning
material on stimulus transduction at a synapse (text and
graphic) from Florax and Plötzner (2010). It was presented in
an integrated format and explained basic functions and processes
of synaptic transduction (see Section 2.4). Participants had
4 minutes to familiarise themselves with the process.
Afterwards they were redirected to their respective learning

material according to condition. The learning material was
identical except for the integration of the material (see Section
2.4) and consisted of a multimedia representation of an inactive,
excited and inhibited synapse. Learners had 7 minutes to study
the information before they were redirected to another
questionnaire page.

For questionnaires, they first filled out a short motivational
questionnaire based on Wilde and colleagues et al. (2009)
assessing interest/enjoyment, perceived competence and
pressure/tension. As the information is not relevant for the
purpose of this study, results are reported in Table 1 but not
discussed further. Afterwards, learners were asked to provide
various metacognitive judgments. They were asked how many
items they expected to answer correctly on a 30-item test. This is
consistent with a judgment-of-learning as used by Wiley and
colleagues (Wiley et al., 2008). Further and on the same
questionnaire page, they were asked to provide
metacomprehension judgments (comparable to Thiede et al.,
2003), first on the overall topic (information transmission
within the nervous system) and then separately for processes
regarding an inactive, an excited and an inhibited synapse. The
last three were later combined to assess metacomprehension (see
Section 2.5.2). As we were interested in how the learners judged
their current level of comprehension of the material rather than
how they predicted their future performance, we used the
metacomprehension judgments for our analyses. Both
measures (judgment-of-learning and metacomprehension
judgments) were highly interrelated (ρ � 0.716, p < 0.001).
Data on the judgments-of-learning are included in Table 2 for
reference, but please note that the measures (including
monitoring accuracy) only provide very rough indicators as
they are based on one prediction of a performance in an
unknown test. Thus, this data may provide background
information, but will not be considered for further analyses.
After providing metacomprehension ratings, participants were
asked to fill out the StuMMBE-Q by Krell (2015), a 12-item
instrument to assess mental effort and mental load (see Section
2.5.1). Learners were then asked to conduct a 30-item
comprehension test adapted from Beege and Colleagues
(2019). Finally, learners filled out a demographic’s
questionnaire, assessing age, gender and course of study.
Afterwards, they were thanked and were able to receive course
credit for participation. The procedure is depicted in Figure 2.

While at first glance, the procedure may seem inappropriate
for the assumed mediation model as it is widely agreed upon (and
usually a good strategy) that in mediation and regression

TABLE 1 | Motivational questionnaire: descriptive data and group differences.

Variable Active
integration

Split attention Integrated Cronbach Welch test

(n = 53) (n = 52) (n = 51) α F df1/df2 p

M SD M SD M SD

Interest/Enjoyment 3.92 1.36 3.79 1.46 3.46 1.53 0.910 1.34 2/101.45 0.266
Perceived competence 3.60 1.35 3.49 1.40 3.77 1.32 0.917 0.57 2/101.93 0.566
Pressure/Tension 3.77 1.50 4.05 1.53 3.89 1.49 0.802 0.46 2/101.95 0.633
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analyses, predictors should be assessed prior to mediators and
criterion variables, we chose to change the order of assessment.
This has various reasons. First, the order of assessment is rather
less relevant to theoretical assumptions as overtly sometimes
implied, but it is the actual order of occurrence of the true
processes that matter. While assessing predictors before a
criterion (or mediator) ensures the order of assessment
matches the order of occurrence, more stable predictors not
fazed by timely changes do not need to be assessed prior to a
criterion variable if it can be validly argued that they preceded the
criterion. While we not necessarily expect comprehension or
(self-assessed) mental load or effort to be stable over a longer
period of time, no relevant learning and rehearsal processes will
take place after the learning phase and especially comprehension
should thus be relatively stable for the short amount of time it
takes to fill out a few short metacomprehension questions.
Second, some variables are much more susceptible to influence
than others and the order of assessment may severely affect
results and mask true relationships between constructs. While
asking for metacognitive judgments may act as metacognitive
prompts during or before learning (e.g., Schnaubert and
Bodemer, 2017), these are unlikely to affect either mental load
or mental effort (or their assessment) or comprehension when
there is no further study phase. On the other hand,
metacomprehension judgments are assumed to be highly
susceptible to assessing other variables. For example, testing

for comprehension may severely alter metacognitive judgments
as learners may use their experience during testing as indicators
for their actual comprehension (e.g., Maki, 1998). If testing is just
a means to an end (to assess comprehension) rather than part of
the studied scenario, assessing metacomprehension after
conducting a comprehension test would have blurred all prior
existing connections. Similarly, the assessment of mental effort or
mental load may impact metacognitive judgments. As we assume
those to be used as indicators during learning, assessing them
before metacomprehension might act as a self-fulfilling prophecy
with no meaning for real-life processes. Thus, we opted to assess
the criterion before the predictors and mediator.

2.4 Learning Material and Independent
Variable
The learning material consisted of two webpages. On the first
webpage, an introduction to the learning topic “Functioning of a
synapse” was given. This introduction consisted of definitions
and explanations of the nervous system and its components
obtained from Florax and Plötzner (2010). The second
webpage included a graphic of a synapse with three segments.
This graphic was also obtained from Florax and Plötzner (2010).
The second webpage was prepared with three different versions of
the graphic. The first version of the graphic showed a synapse that
explained the processes at a non-active synapse, the processes at

TABLE 2 | Judgments-of-learning: descriptive data and group differences.

Variable Active integration Split attention Integrated Welch test

(n = 51a) (n = 48a) (n = 46a) F df1/df2 p

M SD M SD M SD

Judgment of learning 11.8 6.29 13.5 6.13 14.7 7.03 2.39 2/93.5 0.097
absolute accuracyb 4.55 3.43 3.89 3.69 4.76 3.43 0.76 2/94.1 0.470
biasc 1.14 5.62 1.41 5.19 1.37 5.75 0.03 2/94.0 0.966

an differs due to missing or illogical answers (i.e., answers > 30).
bAbsolute distance between judgment and test performance.
cPositive values indicate overestimation of performance (negative values underestimation).

FIGURE 2 | Procedure.
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an excited synapse, and the processes at an inhibited synapse.
Overall, 21 synaptic sub-processes were displayed within the
graphic, and every subprocess had an associated text label. In
this version of the graphic, all verbal explanations of processes
were displayed in rectangular boxes close to the place that stands
for the process in the graphic. This version of the graphic is
further called “Integrated format”. A second version of the
graphic showed the same graphic but the verbal explanations
were exchanged by numbers. Then, under the graphic, all the
(numbered) explanations were listed one by one. This version is
further called “Split-Attention format”. The third version of the
graphic was designed similar to the graphic in the first version. In
contrast, the verbal explanation boxes did not contain any
information but a white box. Similar to the second version,
under the graphic, all the explanations were listed one by one.
In contrast to the second version, learners were able to drag the
verbal explanations to the appropriate boxes. All boxes were
programmed to accept the placement of correct explanations only
so that learners did not combine an explanation box with a false
box place. When learners dragged an explanation onto an
incorrect place, the explanation automatically returned to the
list under the graphic. This third interactive version of the graphic
is further called “Active Integration format”. In all versions of the
second webpage, a timer was integrated. This timer was set to
7 minutes in order to regulate the learning time of students. After
this timer expired, learners were directed to the next webpage.

2.5 Dependent Variables
2.5.1 Mental Load and Mental Effort
Mental load and mental effort were measured with the
StuMMBE-Q, a questionnaire developed by Krell (2015), Krell
(2017). The questionnaire consists of 12 items. Six items assessed
mental load (Cronbach’s α � 0.839; e.g., “The contents of the tasks
were complicated”). Another six items assessed mental effort
(Cronbach’s α � 0.780; e.g., “I have given my best to complete the
tasks”). Please note that the items for mental effort include asking
participants to judge whether they tried hard to solve the task, and
the measure thus contains elements of self-agency which is a
somewhat different conceptualization than the one-item scale by
Paas (1992). Students had to rate these items using a 7-point
equidistant response format as within the original
conceptualization ranging from “not at all” to “totally”. While
we are aware of the research indicating a 3-point format may ease
distinction between categories (Krell, 2015), for the models
assumed we feared a 3-point scale may not be adequately used
to assume more than ordinal level of information (Leppink, et al.,
2013). We used mean answers as estimates for (perceived) mental
load and mental effort. Intercorrelation between both scales was
low and non-significant (r � −0.028, p � 0.730).

2.5.2 Metacomprehension
In line with a method used by Thiede and colleagues (e.g., Thiede
et al., 2003) and based on previous work by Glenberg and Epstein
(1985), metacomprehension was measured by asking learners to
rate their understanding of the learning content using a 7-point
equidistant response format from “very poorly” (1) to “very well”
(7). We asked them separately for their understanding with

regard to the processes on an inactive, an excited and an
inhibited synapse and used their mean
metacomprehensionrating as indicator for the level of
metacomprehension. Cronbach’s α was at 0.909.

2.5.3 Comprehension
Comprehension was measured with 30 multiple-choice questions
(Cronbach’s α � 0.739) adapted from Beege and Colleagues
(2019). These questions were 5-answer single-choice questions
with “I don’t know” as one option. Some questions contained
verbal answer options, some graphical answer options, some a
combination of both. In order to answer these questions,
participants needed to remember and understand the verbal
explanations and the processes displayed in the graphic. If
participants marked the correct answer of one question, one
point was given. We used the number of correctly answered
questions as estimator for comprehension. Overall, learners could
achieve a maximum of 30 points.

2.6 Statistical Models
To answer our research questions, we conducted a number of
mediation models with (perceived) mental load and mental effort
as predictors, comprehension as the mediator and
metacomprehension as criterion (all standardised; Figure 1).
We used the jamovi 1.1.9.0 JAMM package and 10,000
percentile bootstrapping and 95% CI to estimate beta. We first
used all data for an overall model and then computed one model
for each multimedia condition. α was set at 5%.

3 RESULTS

Before we report the model results, we report relevant descriptive
statistics and the results of testing for differences in the variables
between the conditions.

3.1 Descriptive Statistics and Group
Differences
Table 3 shows the descriptive statistics for the relevant variables
by condition. We can see that—in contrast to prior assumptions
assuming active integration fosters comprehension—students in
the active integration condition performed worst at the
comprehension test and accordingly also judged their
comprehension lowest.

We conducted Welch’s ANOVA to test for differences
between the groups in terms of (perceived) mental effort,
(perceived) mental load, comprehension or
metacomprehension (cf. Table 3). We found mental effort and
mental load not to differ significantly. Thus, although the
conditions were meant to induce various levels of cognitive
load, the overall level did not differ. However, this was not the
case for comprehension [F (2,101) � 5.75, p � 0.004] or
metacomprehension [F (2,101) � 3.19, p � 0.045]. Games
Howell post-hoc test confirmed a difference between the
learners working with the active integration material and those
using integrated material [t (98.1) � 3.24, p � 0.005] for
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comprehension with learners with the active integration material
scoring significantly worse in the comprehension test, but not
between learners working with the active integration material and
those learning with split-attention material or between those with
split-attention and integrated material. For metacomprehension,
the picture was similar. Again, learners with the active integration
material had significantly lower ratings than learners with
integrated material [t (99.7) � 2.53, p � 0.034], but not than
learners with split attentionmaterial and the latter groups did also
not differ. See Table 4 for the full results of the post-hoc tests.

We further conducted correlation analyses (cf. Table 5 for full
results). As expected, comprehension and metacomprehension
showed a rather high correlation (r � 0.571). Mental effort (r �
0.260) and mental load (r � −0.291) rather weakly correlated with
comprehension. They did not correlate with each other
significantly (r � −0.028). Metacomprehension, however,
showed a rather weak correlation with mental effort (r �
0.267) but a considerably stronger, albeit negative, association
with mental load (r � −0.512).

As the active integration condition was not informationally
equivalent to the other conditions due to the missing link between
text boxes and correct placements, we additionally checked how
many of the students managed to correctly connect textual and
pictorial information. Results showed that by the end of the
learning phase, 39 (74%) participants had correctly placed at least

20 text boxes in the respective fields (meaning all assignments
were ascertained), 11 (21%) had not, and 3 (6%) could not be
confidently analysed due to a logging failure.

3.2 Mediation Analyses
The mediation analyses were conducted using jamovi’s JAMM
package. We used z-standardised variables and used 10,000
percentile bootstrapping to estimate beta-coefficients.

3.2.1 Mediation Model (all Conditions)
To assess if and how perceived mental effort and load affected
metacomprehension judgments (beyond their actual effects
on comprehension), we first computed one mediation model
over all conditions, disregarding possible differences. We
found all paths to be highly significant and both direct and
indirect effects of mental effort (positive) and mental load
(negative) on metacomprehension (Table 6 and Figure 3).
While the indirect effects of effort and load seem to be
comparable in size (although not direction) due to the
comparable effects of load and effort on comprehension,
the direct effect of load seems considerably larger than the
effect of effort, indicating that learners’ metacognitive
judgments seem to be more sensitive to (perceiving)
mental load than mental effort. In general, perceived
mental effort affected metacomprehension positively (β �

TABLE 3 | Descriptive statistics by experimental condition and group differences.

Variable Active integration Split attention Integrated Group differences

(n = 53) (n = 52) (n = 51) F (2,101) p

M SD M SD M SD

Comprehension 10.47 4.07 12.50 5.06 13.29 4.79 5.75 0.004
Metacomprehension 3.82 1.27 4.09 1.27 4.50 1.43 3.19 0.045
Mental effort 4.81 1.01 5.01 0.85 4.94 0.88 0.62 0.541
Mental load 4.21 1.17 4.10 1.02 4.15 0.83 0.12 0.885

TABLE 4 | Games Howell post-hoc test for group differences.

Group comparison Comprehension Metacomprehension

t df p t df p

Active integration vs. Integrated 3.24 98.1 0.005 2.53 99.7 0.034
Active integration vs. Split attention 2.26 97.7 0.066 1.07 103.0 0.535
Integrated vs. Split attention 0.82 100.9 0.693 1.53 99.2 0.283

TABLE 5 | Intercorrelations between variables.

Comprehension Metacomprehension Mental effort

r 95% CI p r 95% CI p r 95% CI p

C — — — — — — — — —

MC 0.571 (0.455, 0.668) <0.001 — — — — — —

ME 0.260 (0.107, 0.401) 0.001 0.267 (0.114, 0.407) <0.001 — — —

ML −0.291 (−0.428, −0.140) <0.001 -0.512 (−0.620, −0.386) <0.001 −0.028 (−0.184, 0.139) 0.730

C � Comprehension; MC � Metacomprehension; ME � Mental effort; ML � Mental load.
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0.25, p < 0.001) and perceived mental load negatively (β �
−0.51, p < 0.001), thus confirming hypotheses 1 and 2.

3.2.2 Mediation Models per Condition
To see if the effects vary under different load-imposing
multimedia conditions, we then computed mediation
models for each condition separately. An overview of the
results can be seen in Figure 4 (active integration format),
Figure 5 (split attention format), and Figure 6 (integrated
format), the full results in Table 7. As can be seen, within all
conditions, there was a clear effect of comprehension on
metacomprehension (b) and although not exactly equal,
the size of the effect is roughly comparable, albeit
descriptively a bit larger for learners using integrated
material. There was also a direct negative effect of mental
load on metacomprehension (c1), descriptively larger for
learners using active integration material, even when

indirect effects were eliminated (c1’; cue utilization).
However, as mental load seems to not be very indicative of
comprehension for learners with the split attention and
integrated format (a1; diagnosticity), indirect effects of
mental load on metacomprehension via comprehension
were only confirmed for learners within the active
integration condition (partial mediation).

For mental effort, this looked somewhat different. Here,
mental effort only seems to be indicative of comprehension for
learners provided with the integrated material (a2) and thus,
the indirect effect was statistically significant only for those.
However, while the indirect effect fully explained the effect of
mental effort on metacomprehension for learners with
integrated material, learners with split attention material
showed a significant direct effect of mental effort on
metacomprehension not explained by comprehension (c2’).
Thus, even lacking diagnosticity for the latter, for learners with

TABLE 6 | Full mediation model (all conditions).

Effectsb β SE 95% CIa z p

Lower bound Upper bound

Indirect ME → C → MC (a2*b) 0.106 0.036 0.040 0.181 2.96 0.003
ML → C → MC (a1*b) −0.119 0.034 −0.189 −0.056 −3.51 <0.001

Component ME → C (path a2) 0.252 0.079 0.096 0.406 3.19 0.001
C → MC (path b) 0.421 0.064 0.296 0.546 6.59 <0.001
ML → C (path a1) −0.284 0.071 −0.416 −0.137 −3.98 <0.001

Direct ME → MC (path c2’) 0.147 0.058 0.038 0.266 2.54 0.011
ML → MC (path c1’) −0.386 0.061 −0.509 −0.267 −6.29 <0.001

Total ME → MC (path c2) 0.253 0.066 0.123 0.382 3.83 <0.001
ML → MC (path c1) −0.505 0.066 −0.635 −0.376 −7.66 <0.001

aCIs based on 10,000 percentile bootstrapping samples.
bME � (perceived) Mental Effort; ML � (perceived) Mental Load; C � Comprehension; MC � Metacomprehension.

FIGURE 3 | Mediation model full dataset (statistically significant effects in bold font).
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split attention material mental effort seems to be a relevant
factor for metacomprehension judgments. For learners with
active integration material, mental effort seems to be less
relevant.

As statistically securing smaller effects may have been
hampered by the lower power of the separate mediation
models and the described differences may not be generalised
beyond the sample, we conducted further post-hoc analyses (see
Section 3.2.3).

3.2.3 Post-Hoc Comparisons of the Models
To test if the (direct) effects between mental load and effort on
metacomprehension differed significantly between the
conditions, we integrated condition as a moderator on the c’
path using 10,000 percentile bootstrapping. We contrasted all
conditions separately and used bonferroni corrected alpha-levels
(0.017) to adjust for alpha-error inflation. Results for the
moderations showed a significant moderation effect only for
the split attention versus active integration contrast (for full

FIGURE 4 | Mediation model active integration format (statistically significant effects in bold font).

FIGURE 5 | Mediation model split attention format (statistically significant effects in bold font).
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FIGURE 6 | Mediation model integrated format (statistically significant effects in bold font).

TABLE 7 | Mediation model by experimental condition.

Effectsb β SE 95% CIa z p

Lower bound Upper bound

Active integration format
Indirect ME → C → MC (a2*b) 0.110 0.070 0.010 0.279 1.56 0.119

ML → C → MC (a1*b) −0.164 0.068 −0.311 −0.043 −2.40 0.016
Component ME → C (path a2) 0.292 0.151 0.047 0.623 1.94 0.053

C → MC (path b) 0.376 0.115 0.125 0.573 3.27 0.001
ML → C (path a1) −0.436 0.114 −0.658 −0.206 −3.83 <0.001

Direct ME → MC (path c2’) 0.017 0.084 −0.176 0.162 0.20 0.842
ML → MC (path c1’) −0.457 0.132 −0.705 −0.190 −3.47 <0.001

Total ME → MC (path c2) 0.126 0.106 −0.082 0.335 1.19 0.235
ML → MC (path c1) −0.621 0.106 −0.830 −0.413 −5.84 <0.001

Split attention format
Indirect ME → C → MC (a2*b) 0.042 0.061 −0.095 0.148 0.69 0.488

ML → C → MC (a1*b) −0.100 0.056 −0.202 0.023 −1.80 0.072
Component ME → C (path a2) 0.112 0.160 −0.228 0.397 0.70 0.486

C → MC (path b) 0.376 0.090 0.191 0.549 4.19 <0.001
ML → C (path a1) −0.266 0.139 −0.488 0.058 −1.92 0.055

Direct ME → MC (path c2’) 0.379 0.092 0.212 0.576 4.12 <0.001
ML → MC (path c1’) −0.357 0.097 −0.567 −0.188 −3.69 <0.001

Total ME → MC (path c2) 0.421 0.109 0.209 0.634 3.88 <0.001
ML → MC (path c1) −0.457 0.109 −0.670 −0.244 −4.21 <0.001

Integrated format
Indirect ME → C → MC (a2*b) 0.155 0.077 0.007 0.307 2.03 0.043

ML → C → MC (a1*b) −0.081 0.070 −0.240 0.038 −1.15 0.250
Component ME → C (path a2) 0.327 0.138 0.019 0.565 2.36 0.018

C → MC (path b) 0.476 0.136 0.195 0.733 3.50 <0.001
ML → C (path a1) −0.169 0.137 −0.457 0.080 −1.24 0.214

Direct ME → MC (path c2’) 0.094 0.120 −0.122 0.348 0.78 0.437
ML → MC (path c1’) −0.408 0.096 −0.608 −0.228 −4.25 <0.001

Total ME → MC (path c2) 0.250 0.122 0.010 0.487 2.05 0.041
ML → MC (path c1) −0.488 0.122 −0.726 −0.250 −4.01 <0.001

aCIs based on 10,000 percentile bootstrapping samples.
bME � (perceived) Mental Effort; (perceived) ML � Mental load; C � Comprehension; MC � Metacomprehension.
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results Table 8) with the direct effect of mental effort on
metacomprehension being highly significant within the split
attention condition and substantially smaller and non-
significant within the active integration condition (moderation
effect: β � 0.19, z � 3.04, p � 0.002). While the integrated
conditions’ effect descriptively ranged somewhere in between
(Table 7), the difference was not statistically significant between
the integrated and any of the other conditions. There were no
significant moderation effects on the c’ path between mental load
and metacomprehension.

Please note that even thoughmental load andmental effort did
not differ significantly between our experimental conditions in
the study and the predictors showed no sign of multicollinearity,
possible influences of the conditions (moderator) on the
predictors cannot be completely discarded and the results of
the moderation models thus need to be treated with caution and
may only provide a first indicator on possible moderation effects.

4 DISCUSSION

4.1 Effects on Comprehension
In general, as expected, we found the relationships between
(perceived) mental effort or mental load and
metacomprehension to be positive for the former and negative
for the latter (hypotheses 1 and 2) and a positive relationship
between comprehension and metacomprehension. Comparable
to other research, mental effort and load were not related (e.g.,
Minkley et al., 2021). Although the effects of mental load and
mental effort on comprehension were not large, the relationship
for both but especially for mental load seems to be comparable to
findings in the literature (e.g., Krell, 2017; Minkley et al., 2021).
This confirms basic research on cognitive load and multimedia
learning, but also highlights the relevance of mental effort exerted
by learners as a distinct construct apart from mental load (e.g.,
Paas and van Merriënboer, 1994). Thus, it is important to
separately measure and include both when studying
(multimedia) learning. While this did not hold true for each
experimental condition separately and thus may vary under
various load-inducing designs of learning material, a lack of
statistical power may have contributed to these observed
differences.

In the two load-inducing conditions (split attention and active
integration), mental effort seems to have less effect on
comprehension (less diagnosticity) and although smaller
effects might have been statistically secured with more power
to the analyses, especially for the split attention condition, effort

seems to be rather futile. This is especially interesting as the level
of mental effort and mental load did not differ between the
condition, so all groups reported to have exerted similar effort,
but to different avail. It seems that if learning material is designed
to reduce cognitive load, the effort learners put into the learning
process shows the greatest effect, while it is less effective when
learners are asked to actively integrate the information and least
effective under a split attention format, presumably because most
of the effort exerted is wasted on processes not directly relevant
for learning (unproductive).

For mental load, the picture was different. Here, (negative)
effects on comprehension were especially strong within the active
integration condition and were smaller with the split attention
format and smallest in the integrated format. It seems that if
actively integrating text and graphics put extra load on the
learner, comprehension suffered. This is interesting, as it was
assumed that actively integrating information would rather
induce productive learning processes and successful
conduction would thus foster comprehension (cf. Bodemer
et al., 2004; Bodemer et al., 2005). However, the active
integration condition showed lower comprehension after the
learning phase (a descriptive difference which was also
statistically confirmed in comparison with the integrated
format) and it is thus possible, that due to the complexity of
the material, they never overcame the split attention format
(without proper assignment) and just did not manage to
benefit from the design. Although most participants managed
to integrate the information (at least physically), a considerable
percentage did not manage to integrate the information within
the given timeframe. This gave these learners a further
disadvantage as without correct assignments, the conditions
were not informationally equivalent.

4.2 Effects on Metacognition
As for metacomprehension, we did confirm effects of
comprehension on metacomprehension and although
somewhat stronger in the integrated format, the relationship
between comprehension and metacomprehension was in
general consistent with effects found in metacognition research
(e.g., Schleinschok et al., 2017).

However, apart from comprehension, other factors contribute
to explaining metacomprehension variance, for example mental
effort. The first important observation is that the relationship
between mental effort and metacomprehension is positive. This
would be expected assuming learners are aware of the positive
influence invested mental effort has on comprehension and
learning. However, Baars and colleagues (2013) found (strong)

TABLE 8 | Post-hoc moderation effects on direct effect (c’) on metacomprehension.

Contrast IV: Mental load IV: Mental effort

β z pa β z pa

Active integration vs. Integrated −0.085 −1.14 0.255 0.056 0.77 0.444
Integrated vs. Split attention −0.103 −1.42 0.155 −0.114 −1.58 0.114
Active integration vs. Split attention 0.037 0.50 0.616 0.190 3.04 0.002

ap is not corrected, we used adjusted alpha-levels of .017 to account for alpha-error inflation.
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negative correlations between judgments of learning and mental
effort using the one-item scale by Paas (1992). Explicitly
differentiating between mental load imposed and mental effort
invested by using the instrument by Krell (2015) may have led to a
more refined picture, shifting the focus more clearly on effort as a
voluntary activity [“I have givenmy best (. . .)”] as opposed to task
difficulty [“The tasks were easy (. . .)”]. However, this also means
that a differential view is necessary to understand how learners
form metacognitive judgments. A recent meta-analysis by Baars
et al. (2020) comes to a similar conclusion: They find that the
usually found negative relationship between metacognitive
judgment and effort vanished when considering rating scales
promoting self-agency. Thus, when effort regulation is goal-
driven, said effort may be interpreted positive, while this may
revert when it is data-driven (Koriat, 2018; de Bruin et al., 2020).
The scale by Krell (2015) used in our study arguably conceptually
aligns with a self-agent view and thus, the found relationship
seems to align with findings in literature.

Learners in the integrated format condition seem to have
(rightfully) used their mental effort as an indicator for
comprehension. While our research design did not allow to
ascertain cue usage in an intentional way, the effect of mental
effort on metacomprehension is mediated by actual
comprehension. However, for learners learning with material
in a split attention format effort also seems to influence
metacomprehension, although it does seem less diagnostic for
comprehension. Thus, while these learners judge their
comprehension higher when exerting more effort, actual
comprehension was rather unfazed. Such mechanisms could
potentially lead to misjudgments and lower monitoring
accuracy, which may severely hamper self-regulated learning
attempts when making study decisions (Thiede et al., 2003;
Schnaubert and Bodemer, 2017). For learners using an active
integration format, mental effort was not significantly related to
metacomprehension. Due to the design providing feedback
during learning (explanation did only stick to correct places),
learners may have experienced their efforts being more or less
fruitful during the learning process. While this warrants further
investigation, feedback has previously been found to not only
correct faulty assumptions, but also metacognitive errors (e.g.,
Butler et al., 2008). The difference between the split attention and
active integration condition with regard to the effect of mental
effort was also confirmed by the post-hoc moderation analyses
which showed a significant effect of condition on the direct
relationship between mental effort and metacomprehension
(when the mediation effect was excluded). While these results
have to be treated with caution, it seems that multimedia design
may affect the relationship between mental effort invested and
metacomprehension reported.

Mental load is strongly connected to metacomprehension
under all conditions of learning material provided, and this
relationship is even higher than the one between
comprehension and metacomprehension. This may be an
indicator for learners using mental load as a cue for judging
their comprehension. While at least for active integration, a
significant part of this is mediated by comprehension, a large
portion of (negative) effect is unwarranted. Learners may

overestimate the negative effect of load on comprehension,
especially when learning with integrated, theoretically less
load-inducing multimedia learning material. Again, this
could lead to severe misjudgments and hamper self-regulated
learning.

4.3 Mental Load, Mental Effort and
Metacognition
Overall, these results show that mental load and mental effort are
distinct concepts related differently to metacomprehension and
should be studied in line with other cognitive experiences
regarded as cues for metacognitive judgments like ease-of-
processing or ease-of-retrieval (e.g., Benjamin and Bjork, 2014
see also Koriat and Ma’ayan, 2005). While the causal relationship
cautiously assumed in our models are based on theoretical
assumptions rather than experimental design, there is merit in
combining research on metacognition with the vast amount of
research regarding cognitive load and multimedia learning.
However, there are some conceptual issues that may need
specific attention when doing so (e.g., Sweller and Paas, 2017).
One of these is the perspective taken on the constructs involved.
Cognitive load research is mostly concerned with (working)
memory processes and resources. Thereby, cued self-report is
a means to gather information about cognitive processes
assuming these are not only accessible, but also transformable
to a given scale (for more detail, see Paas et al., 2008). This is
inherently different for metacognition research. Here, the
subjective view on cognitive constructs (like comprehension) is
not a measurement issue, but inherent in the concept (Nelson and
Narens, 1990; Nelson and Narens, 1994). Within metacognition
research, metacomprehension scales are not meant to measure
comprehension but an individual’s unique perception of their
own comprehension. What would a metacognitive view on
cognitive load look like? If we assume mental load and mental
effort to be directly accessible for learners (as assumed when using
self-report to measure it), is awareness of this as a metacognitive
construct just an epiphenomenon with no impact or does it
actually affect learning processes? Our research as well as other
current approaches viewing mental effort through a
metacognitive lens (e.g., Scheiter et al., 2020) suggest that
monitoring mental load and mental effort is more than just a
fall-out, but may actually be relevant for forming metacognitive
judgments. Although requiring further empirical research, in line
with the cyclic model of metacognitive regulation assumed in
metacognition theory (e.g., Nelson and Narens, 1990), this means
that learners may use this information to regulate their learning
processes, for example by exerting effort, allocating study time
and diverting attention. This brings us to another understudied
yet highly discussed question of how learners regulate mental
effort itself and how this may depend on their perception of
cognitive load (de Bruin and van Merriënboer, 2017; see also de
Bruin et al., 2020). Including multimedia research and building
on well-established multimedia design effects may help to
strategically design further studies to investigate not only how
perceived mental load and effort affect metacognitive judgments,
but how sensitive these relationships are to differences in
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diagnosticity of perceived mental load and effort for actual
learning gains.

While our research showed first connections between
perceived mental load, perceived mental effort, comprehension
and metacomprehension under various load-inducing design
conditions of multimedia learning material, there are several
open questions that need further discussion. First, while the
various effects under specific design conditions all need
replications with different material and substantial statistical
power to validly generalise the effects for more or less
demanding content, especially the results of active integration
seem puzzling. While the lack of beneficial effects of active
integration may have been due to learners not performing
mental activities while behaviorally integrating the material,
active integration as a means to induce productive learning
processes may also be more or less effective under various
conditions relating to the content or the learners. Although
within our sample, learners did not provide ratings indicative
of “overload”, it should be taken into consideration that these
productive learning processes that were attempted to be triggered
did not take place or were even hindered due to the complexity of
the task or low prior knowledge (prior knowledge was rated quite
low within our sample, see Section 2.1). As with other
multimedia effects (e.g., imagination effect; Lin et al., 2017),
there could be reversed effects depending on prior knowledge
(i.e., expertise reversal; Kalyuga, 2007) and thus, prior knowledge
should be taken into consideration in further studies. Second,
other interindividual differences may need to be considered as
well. Cue utilization theory does not make specific assumptions
about interindividual differences, but research has found that not
all learners use the same cues. Although self-reported cue use
needs to be viewed with caution, Thiede and colleagues (2010),
for example, found especially high-risk readers reported using
more surface level cues (i.e., relating to surface properties of a
text) than typical readers. This strengthens the notion that not
only do learners vary in their cue use, but also that this may be
trainable (Wiley et al., 2016). A current meta-analysis found that
interventions supporting learners’ use of situation-model cues
(i.e., cues relating to the learners’ situation model constructed
during text comprehension; cf. Kintsch, 1994) positively and
considerably affect metacomprehension accuracy (Prinz et al.,
2020). While we were rather interested in how perceived mental
load and effort affected metacomprehension judgments under
various load-inducing conditions, a next step would be to assess
how this affects metacomprehension accuracy within students.

4.4 Limitations
As with all research, there are limitations to this study. First of all,
our sample size especially for the single mediation models was too
small to confirm smaller effects. While we can draw some
conclusions about the processes involved, a final verdict needs
careful replications of the found differences between the
conditions to confirm and potentially generalise the effects.
Additionally, we could not confirm differences in (perceived)
mental effort or mental load between conditions, which could be
due to incorrect assumptions about the relationship between
treatment and cognitive load (which is improbable for split

attention and the integrated format, but may hold true for the
less studied active integration format). However, it could also be
due to the assessment of load and effort, which may have been
invariant to more subtle changes, especially since it was measured
with a delay. However, the instrument had shown sensitivity to
instructional variations before (Krell, 2017) and we did find
expected (albeit rather small) relationships with
comprehension giving at least small indications of valid
assessment. Additionally, differences in how learners’ effort
and load was related to metacomprehension between
conditions indicate some sensitivity of the (perceived) mental
load and mental effort measurement to changes. While there are
other measures of cognitive load, we opted for the questionnaire
by Krell (2015), as it differentiates between mental load imposed
and effort deliberately invested, which are both central when
studying self-regulatory processes in multimedia learning. Due to
the intricate relationship between the requirements of a task and
regulatory processes by the learner, the relationship between
cognitive load and metacognition is a source for some debate
(e.g., de Bruin and vanMerriënboer, 2017; Seufert, 2020). Thus, it
seems vital to differentiate between material-induced mental load
and invested mental effort (see also Seufert, 2020) as the latter
may be regulated by learners (de Bruin et al., 2020) while the
former much more relies on the instructional design (although
both may affect each other). Further studies may put more focus
on the type of load imposed by the material and the reasons for
investing mental effort in the learning task to distinguish more or
less beneficial load conditions [see also discussion by Seufert
(2020)], possibly linking more active (effort) and more passive
(load) aspects of cognitive load to the assumed tripartite nature of
the cognitive load concept (see Klepsch and Seufert, 2021). As the
assessment (and structure) of cognitive load is subject to an
ongoing debate (see for example Kirschner et al., 2011), a
combination of multiple measures may prove useful, and while
objective measures may provide reliable information for
instructional design and multimedia research (e.g., Korbach
et al., 2017), subjective measures additionally provide insights
about subjective judgments of effort or load (Scheiter et al., 2020)
that are relevant when the aim is to understand how learners
themselves view their learning process and regulate their
behaviour. Additionally, various subjective measures focus on
different aspects of load and effort that may lead to very different
empirical results (e.g., elements of self-agency, Baars et al., 2020).

Rather than a limitation, a further open question concerns the
role of restricting study time on the results found. It is not
uncommon that multimedia effects are more pronounced
under conditions of system-paced time pressure (e.g., Rey
et al., 2019). While a defined time frame allowed us to
minimise effects of self-regulatory processes (i.e., study time
decisions) to affect comprehension and thus fostered
experimental scrutiny within our setup, Baars and colleagues’
(2020) meta-analysis found the (negative) relationship between
mental effort and monitoring judgments to diffuse under time
pressure. Following de Bruin and colleagues (2020)
argumentation, our setup could have reinforced a positive
interpretation of effort by fostering a more goal-driven
approach. Coupled with our use of a mental effort scale
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including elements of self-agency (see above), this may have
reinforced the positive association and may not be generalisable
to settings allowing for self-paced study.

Another limitation to be discussed are the potentially
incorrect assumptions about the use of the active integration
format. While we did assume learners to actively integrate the
material, which had previously been shown to be beneficial for
learning (e.g., Bodemer et al., 2004) and roughly 3/4 of learners
did manage to correctly assign the boxes, learners may have just
actively dragged and dropped the boxes without mentally
integrating the content (trial and error). Such mere
behavioural activity however (correctly placing the boxes) is
not in itself conducive to learning, but has to be accompanied by
cognitive activity (mentally connecting concepts and building
coherent mental representations) to show the assumed positive
effects (Mayer, 2001). Thus, apart from participants simply not
managing to integrate the information (See Section 4.1),
participants focussing on behavioural (versus cognitive)
activities may have contributed to the findings in our study
and explain why test performance was worst for the active
integration condition.

One further and central limitation of the study is that we
cannot rule out that further variables affect the found
relationships or that the direction of effect may be different
than assumed. While we based our model on theoretical
assumptions about (causal) processes, our empirical model
can only confirm the relationship rather than the
mechanisms involved. While we randomised participants’
allocation to experimental conditions and found differences
between metacomprehension ratings as a result, that does not
exclude the possibility that learners perceiving themselves as
more potent and therefore provide higher metacomprehension
ratings may have exerted more mental effort during learning
rather than using effort as a cue to judge their comprehension.
Further, additional variables may affect the found results. For
example, Zu and colleagues found that prior knowledge may
influence how learners respond to cognitive load items affecting
the factor structure (Zu et al., 2021), which may simultaneously
affect metacomprehension. Although the authors used a
different survey that was designed to measure the tripartite
nature of cognitive load, prior knowledge may have affected our
measures of cognitive and metacognitive processes as well.
While load imposed by the design of learning material may
be manipulated in experimental settings, disentangling
metacognitive monitoring and invested effort is harder to
accomplish as it is assumed learners actively regulate their
mental effort during learning (de Bruin and van
Merriënboer, 2017), but would give further insights into the
relationship between cognitive processes during multimedia
learning and metacognitive regulation. Directly manipulating
mental load and effort without running the risk of the
intervention affecting metacomprehension simultaneously
may be a hard to accomplish goal, but would be pertinent to
ascertain causality as implied by the theoretical model
assumptions underlying the cue utilization model proposed.
Additionally, while we decided upon the order of assessing our
variables with possible sequence effects in mind, we cannot fully

exclude possible interferences. For example, the motivational
questionnaire may have had unexpected effects when learners
judge their perceived competence or interest. Allowing for more
scrutiny, follow-up research may use within-subject variations
of multimedia-material, on-time measurements of effort and
load and additional metacognitive measures and explicitly test
for sequence effects or randomise the order of assessment to
provide further insights into how learners take variations of
multimedia design into account when monitoring their
comprehension during multimedia learning.

5 CONCLUSION

Our research suggests that the subjective perceptions of
mental load and mental effort are not epiphenomenons
only to be considered for assessment purposes, but that
these perceptions may impact learners’ self-regulatory
processes. Although it would be inappropriate to conclude
an intentional cue usage from the data collected in this study,
independent of the validity of the subjective measures
(i.e., their relation to actual mental load and mental effort),
experiences of mental load and invested effort may inform
learners and may be used as cues when making monitoring
judgments. As put by Nelson and Narens (1990, p .128): “A
system that monitors itself (even imperfectly) may use its own
introspections as input to alter the system’s behavior”. We
argue that while the validity of subjective measures may be a
major concern for research on cognitive load, the value of
information about the subjective experience of those
processes is underrated and warrants further empirical
(and possibly experimental) research. Thus, with validity of
assessments referring to interpretations and usage of scores
(Kane, 2013), a metacognitive perspective on cognitive load
shifts the focus from assessing cognitive processes to assessing
their subjective experience by learners (please note that the
term “experience” in this context refers to conscious
perceptions, but is also being used to differentiate passive
and active forms of load; e.g., Klepsch and Seufert, 2021). The
found relationships between perceived mental load, perceived
mental effort and metacomprehension indicate not only that
perceived mental load and effort are distinct concepts, but
that they may play an additional role for learning which
hinges on their subjective experience by learners. Although
the direction of effect cannot conclusively be established
within this study, a metacognitive view on cognitive load
has implications for the interpretation of subjective
measures of cognitive load. While studying the relationship
between subjective and objective measures of cognitive load
may be a matter of validating assessment strategies (e.g.,
Minkley et al., 2021), it also establishes a relationship
between cognitive processes and their idiosyncratic
experience. Applying Nelson and Narens’ view on
metacognition (Nelson and Narens, 1994), misalignment
between the two is a distortion providing insights into how
learners perceive their mental processes and may thus be
studied in terms of metacognitive accuracy. Thus, validly
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interpreting subjective measures needs to consider their
subjectivity explicitly while studying possible distortions.
Validity hinges on the interpretation of a score rather than
the score itself (e.g., Kane, 2013). Consequently, when
studying self-regulatory processes during (multimedia)
learning, carefully implementing subjective rating scales
may be more appropriate to capture the subjective
experience than physiological measures. While this does
not mean subjective rating scales may validly assess
experiences of effort and load per se and for example scale
characteristics (Ouwehand et al., 2021) or the framing with
regard to self-agency (Koriat, 2018) may influence results, it
stresses the need to differentiate between cognitive load and
their impact on learning processes and its subjective
experience, which may impact metacognitive regulation.
Our study provided some indications for the relevance of
experiences of mental load and effort for learning and thus
calls for a conceptual rather than methodological
differentiation between cognitive processing and their
idiosyncratic experience when research targets learning
regulation rather than working memory capacity.
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