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Editorial on the Research Topic

Active Vision and Perception in Human-Robot Collaboration

1. APPLYING PRINCIPLES OF ACTIVE VISION AND PERCEPTION

TO ROBOTICS

Finding the underlying design principles which allow humans to adaptively find and select relevant
information (Tistarelli and Sandini, 1993; Findlay and Gilchrist, 2003; Krause and Guestrin, 2007;
Friston et al., 2015; Ognibene and Baldassare, 2015; Bajcsy et al., 2017; Jayaraman and Grauman,
2018; Ballard and Zhang, 2021) is important for Robotics and related fields (Shimoda et al.,
2021; Straub and Rothkopf, 2021). Active inference, which has recently become influential in
computational neuroscience, is a normative framework proposing one such principle: action,
perception, and learning are the result of minimization of variational free energy, a form of
prediction error. Active vision and visual attention must involve balancing long and short-term
predictability and have been the focus of several previous modeling efforts (Friston et al., 2012,
2015; Mirza et al., 2016). Parr et al. review several probabilistic models which are needed for
different aspects of biological active vision. They propose a mapping between the involved
operations and particular brain structures.

Van de Maele et al. use deep neural networks to implement an active inference model of
active perception, working in a rendered 3D environment similar to a robotics setting. Their
network learns the necessary generative model of visual data and when tested shows interesting
exploratory behavior. However, they also highlight the many computational challenges that must
be solved before such a system can be tested on real robots with tasks to perform and humans to
interact with.

Due to this high computational complexity, in practice, robotics scenarios often substitute
optimal active perception strategies with flexible architectures that allow the development of
behaviors for different tasks. Martin et al. introduce a scalable framework for service robots that
efficiently encodes precompiled perceptual needs in a distributed knowledge graph.
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2. THE CHALLENGE OF SOCIAL

INTERACTIONS

Social interactions involve non trivial tasks, such as intention
prediction (Sebanz and Knoblich, 2009; Ognibene and Demiris,
2013; Donnarumma et al., 2017a), activity recognition (Ansuini
et al., 2015; Lee et al., 2015; Sanzari et al., 2019) or even
simple gesture recognition (e.g., pointing at a target), which
may require perceptual policies that are difficult to precompile.
This is because they are contingent on previous observations,
hierarchically organized (Proietti et al., 2021), and must extend
over time, space and scene elements which may not be always
visible (Ognibene et al., 2013). While some active recognition
systems and normative models for action and social interactions
have already been proposed (Ognibene and Demiris, 2013; Lee
et al., 2015; Donnarumma et al., 2017a; Ognibene et al., 2019b),
it is not completely clear what strategy humans adopt in such
tasks, not least because of the heterogeneity of the stimuli.
Salatiello et al. introduce a validated generative model of social
interactions that can generate highly-controlled stimuli useful for
conducting behavioral and neuroimaging studies, but also for the
development and validation of computational models.

An alternative approach is to simplify the challenges posed by
social interactions by adopting a strict signaling and interaction
protocol. Papanagiotou et al. investigate a collaborative human-
robot industrial assembly task powered by an egocentric
perspective (where the camera shares the user’s viewpoint) and
where the system must recognize gestures.

3. TRANSPOSING ACTIVE PERCEPTION

STRATEGIES FROM ECOLOGICAL

INTERACTIONS TO HUMAN ROBOT

COLLABORATION

However, a better understanding of active vision and eye
movements during social interaction may lead to more natural
interfaces. Of course one of the most important ways in which
humans interact is through speech. While there is a long
tradition of studying the relationship between speech and gaze for
behavior analysis, there is much less investigation with modern
computational tools. Aydin et al. take a step in this direction
by providing a multimodal analysis and predictors of eye
contact data. This analysis reveals patterns in real conversation
- such as the tendency for speakers to look away from their
partner (Ho et al., 2015). In a similar context, D’Amelio and
Boccignone introduce a novel computational model replicating
visual attention behaviors while observing groups speaking on
video. The model is based on a foraging framework where
individuals must seek out socially relevant information. Testing
these models with social robots would enable principled and
natural conversational interaction but also determine if humans
would find it effective (Palinko et al., 2016).

In ecological conditions where participants act in the world,
gaze dynamics can also be highly informative about intentions
(Land, 2006; Tatler et al., 2011; Borji and Itti, 2014; Ballard
and Zhang, 2021). Wang et al. verify this hypothesis in a

manipulation and assembly task to create a gaze-based intentions
predictor covering multiple levels of the action hierarchy (action
primitives, actions, activities) and study the factors that affect
response time and generalization over different layouts.

4. SPECIFICITY OF GAZE BEHAVIORS

DURING HUMAN ROBOT INTERACTION

When Fuchs and Belardinelli studied the impact of a similar
ecological approach to perform an actual teleoperation task,
they found that gaze dynamics are still informative and usable.
Interestingly, the patterns observed might partially differ from
those in natural eye-hand coordination, probably due to limited
confidence in robot behavior. While they expect that users would
eventually learn an effective strategy, they suggest that more
adaptive and personalized models of the effect of robot behavior
on user gaze would further improve the interaction.

Eldardeer et al. developed a biologically inspired multimodal
framework for emergent synchronization and joint attention in
human-humanoid-robot interaction. The resulting interaction
was robust and close to natural, but the robot showed slower
audio localization due to ambient noise. While specific audio
processing methods (Marchegiani and Newman, 2018; Tse et al.,
2019) may ameliorate this issue, it highlights the importance
of a detailed understanding of the temporal aspects of active
perception and attention resulting from the interplay between
exploration and communication demands in the human robot
collaboration context (Donnarumma et al., 2017b; Ognibene
et al., 2019a).

As these works show, human attentional and active perception
strategies while interacting with a robot are interesting in their
own right (Rich et al., 2010; Moon et al., 2014; Admoni and
Scassellati, 2017). In ecological conditions, behavior with a
robot will be different from performing the task alone (free
manipulation), using a tool and even from collaborating with a
human partner. At the same time, aspects of each situation will
be reproduced, since robots can be perceived as body extensions,
tools or companions. Following Fuchs and Belardinelli, we
should expect the balance between these factors to shift after
experience with a particular design of robot (Sailer et al., 2005).

To understand how humans and robots interact (and how
they can interact better), a sensible place to start is by comparing
this to how humans interact with each other. Czeszumski et al.
report differences in the way that participants respond to errors
in a collaborative task, depending on whether they are interacting
with a robot or another person. Moreover, there were differences
in neural activity in the two situations. This is an example of
how researchers can begin to understand communication
between humans and robots, while also highlighting
potential brain based interfaces which could improve
this communication.

5. CONCLUSIONS

Ultimately this collection of articles highlights the potential
benefits of deepening our understanding of active perception
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and the resulting egocentric behavior in the context of human
robot collaboration. Some of the challenges for future research
are to:

1. Scale normative frameworks to deal with realistic tasks and
environments (see Van de Maele et al. and Ognibene and
Demiris, 2013; Lee et al., 2015; Donnarumma et al., 2017a;
Ognibene et al., 2019b).

2. Enable scalable frameworks to deal with the uncertain,
multimodal, distributed, and dynamic nature of social
interactions (see Eldardeer et al., Martin et al., and Ognibene
et al., 2013; Schillaci et al., 2013).

3. Deepen the integration of user state, e.g., beliefs (Bianco and
Ognibene, 2019; Perez-Osorio et al., 2021), inference, into
predictive models.

4. Improve egocentric perception (Grauman et al., 2021) and
interfaces (see Papanagiotou et al.) to build advanced wearable
assistant and to balance usability and robustness.

5. Understand and exploit the peculiarities of Human AI
interactions (see Fuchs and Belardinelli, Czeszumski et al., and
Paletta et al., 2019).

6. Provide new benchmarks and datasets (see Salatiello et al. and
Ammirato et al., 2017; Damen et al., 2018; Calafiore et al.,
2021).
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Xiaoyu Wang, Alireza Haji Fathaliyan and Veronica J. Santos*

Biomechatronics Laboratory, Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, CA,

United States

The functional independence of individuals with upper limb impairment could be

enhanced by teleoperated robots that can assist with activities of daily living. However,

robot control is not always intuitive for the operator. In this work, eye gaze was leveraged

as a natural way to infer human intent and advance action recognition for shared

autonomy control schemes. We introduced a classifier structure for recognizing low-level

action primitives that incorporates novel three-dimensional gaze-related features. We

defined an action primitive as a triplet comprised of a verb, target object, and hand

object. A recurrent neural network was trained to recognize a verb and target object,

and was tested on three different activities. For a representative activity (making a

powdered drink), the average recognition accuracy was 77% for the verb and 83% for

the target object. Using a non-specific approach to classifying and indexing objects in the

workspace, we observed a modest level of generalizability of the action primitive classifier

across activities, including those for which the classifier was not trained. The novel input

features of gaze object angle and its rate of change were especially useful for accurately

recognizing action primitives and reducing the observational latency of the classifier.

Keywords: action primitive recognition, activities of daily living, eye gaze, gaze-object angle, human-robot

systems, recurrent neural network, shared autonomy

INTRODUCTION

Activities of daily living (ADLs) can be challenging for individuals with upper limb impairment.
The use of assistive robotic arms is an active area of research, with the aim of increasing an
individual’s functional independence (Groothuis et al., 2013). However, current assistive robotic
arms, such as the Kinova arm and Manus arm, are controlled by joysticks that require operators to
frequently switch between several modes for the gripper, including a position mode, an orientation
mode, and an open/close mode (Driessen et al., 2001; Maheu et al., 2011). Users need to operate
the arm from the gripper’s perspective, in an unintuitive Cartesian coordinate space. Operators
would greatly benefit from a control interface with a lower cognitive burden that can accurately
and robustly inference human intent.

The long-term objective of this work is to advance shared autonomy control schemes so that
individuals with upper limb impairment canmore naturally control robots that assist with activities
of daily living. Toward this end, the short-term goal of this study is to advance the use of eye gaze for
action recognition. Our approach is to develop a neural-network based algorithm that exploits eye
gaze-based information to recognize action primitives that could be used as modular, generalizable
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building blocks formore complex behaviors.We define new gaze-
based features and show that they increase recognition accuracy
and decrease the observational latency (Ellis et al., 2013) of
the classifier.

This article is organized as follows. Section Related Work
outlines related work with respect to user interfaces for assistive
robot arms and action recognition methods. Section Materials
andMethods introduces the experimental protocol and proposed
structure of an action primitive recognition model, whose
performance is detailed in section Results. Section Discussion
addresses the effects of input features on classifier performance
and considerations for future real-time implementation.
Contributions are summarized in section Conclusion.

RELATED WORK

User Interfaces for Assistive Robot Arms
Many types of non-verbal user interfaces have been developed
for controlling assistive robot arms that rely on a variety of
input signals, such as electrocorticographic (ECoG) (Hochberg
et al., 2012), gestures (Rogalla et al., 2002), electromyography
(EMG) (Bi et al., 2019), and electroencephalography (EEG) (Bi
et al., 2013; Salazar-Gomez et al., 2017). Although ECoG has
been mapped to continuous, high-DOF hand and arm motion
(Chao et al., 2010; Wang et al., 2013), a disadvantage is that an
invasive surgical procedure is required. Gesture-based interfaces
often require that operators memorize mappings from specific
hand postures to robot behaviors (Rogalla et al., 2002; Ghobadi
et al., 2008; Raheja et al., 2010), which is not natural. EMG
and EEG-based interfaces, although non-invasive and intuitive,
require users to don and doff EMG electrodes or an EEG cap,
which may be inconvenient and require a daily recalibration.

In this work, we consider eye gaze-based interfaces, which
offer a number of advantages. Eye gaze is relatively easy to
measure and can be incorporated into a user interface that is non-
verbal, non-invasive, and intuitive. In addition, with this type of
interface, it may be possible to recognize an operator’s intent in
advance, as gaze typically precedes hand motions (Hayhoe et al.,
2003).

Numerous studies have reported on the use of eye gaze for
robot control. In the early 2000’s, the eyetracker was used as a
direct substitute for a handheld mouse such that the gaze point
on a computer display designates the cursor’s position, and blinks
function as button clicks (Lin et al., 2006; Gajwani and Chhabria,
2010). Since 2015, eye gaze has been used to communicate a
3D target position (Li et al., 2015a, 2017; Dziemian et al., 2016;
Li and Zhang, 2017; Wang et al., 2018; Zeng et al., 2020) for
directing the movement of the robotic end effector. No action
recognition was required, as these methods assumed specific
actions in advance, such as reach and grasp (Li et al., 2017), write
and draw (Dziemian et al., 2016), and pick and place (Wang
et al., 2018). Recently, eye gaze has been used to recognize an
action from an a priori list. For instance, Shafti et al. developed an
assistive robotic system that recognized subjects’ intended actions
(including reach to grasp, reach to drop, and reach to pour) using
a finite state machine (Shafti et al., 2019).

In this work, we advance the use of eye gaze for action
recognition. We believe that eye gaze control of robots is
promising due to the non-verbal nature of the interface, the
rich information that can be extracted from eye gaze, and the
low cognitive burden on the operator during tracking of natural
eye movements.

Action Representation and Recognition
Moeslund et al. described human behaviors as a composition of
three hierarchical levels: (i) activities, (ii) actions, and (iii) action
primitives (Moeslund et al., 2006). At the highest level, activities
involve a number of actions and interactions with objects. In
turn, each action is comprised of a set of action primitives. For
example, the activity “making a cup of tea” is comprised of a
series of actions, such as “move the kettle to the stove.” This
specific action can be further divided into three action primitives:
“dominant hand reaches for the kettle,” “dominant hand moves
the kettle to the stove,” and “dominant hand sets down the kettle
onto the stove.”

A great body of computer vision-based studies has already
contributed to the recognition of activities of daily living such
as walk, run, wave, eat, and drink (Lv and Nevatia, 2006; Wang
et al., 2012; Vemulapalli et al., 2014; Du et al., 2015). These studies
detected joint locations and joint angles as input features from
external RGB-D cameras and classified ADLs using algorithms
such as hidden Markov models (HMMs) and recurrent neural
networks (RNNs).

Other studies leveraged egocentric videos taken by head-
mounted cameras or eyetrackers (Yu and Ballard, 2002; Yi and
Ballard, 2009; Fathi et al., 2011, 2012; Behera et al., 2012; Fathi
and Rehg, 2013; Matsuo et al., 2014; Li et al., 2015b; Ma et al.,
2016). Video preprocessingmethods necessitated first subtracting
the foreground and then detecting human hands and activity-
relevant objects. Multiple features related to hands, objects, and
gaze were then used as inputs for the action recognition using
approaches such as HMMs, neural networks, and support vector
machines (SVMs). Hand-related features included hand pose,
hand location, relationship between left and right hand, and the
optical flow field associated with the hand (Fathi et al., 2011;
Ma et al., 2016). Object-related features included pairwise spatial
relationships between objects (Behera et al., 2012), state changes
of an object (open vs. closed) (Fathi and Rehg, 2013), and the
optical flow field associated with objects (Fathi et al., 2011). The
“visually regarded object,” defined by Yi and Ballard (2009) as
the object being fixated by the eyes, was widely used as the
gaze-related feature (Yu and Ballard, 2002; Yi and Ballard, 2009;
Matsuo et al., 2014). Some studies additionally extracted features
such as color and texture near the visually regarded object (Fathi
et al., 2012; Li et al., 2015b).

Due to several limitations, state-of-the-art action recognition
methods cannot be directly applied to the intuitive control
of an assistive robot via eye gaze. First, computer vision-
based approaches to the automated recognition of ADLs have
focused on the activity and action levels according to Moeslund’s
description of action hierarchy (Moeslund et al., 2006). Yet, state-
of-the-art robots are not sophisticated enough to autonomously
plan and perform these high-level behaviors. Second, eye
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movements are traditionally used to estimate gaze point or gaze
object alone (Yu and Ballard, 2002; Yi and Ballard, 2009; Matsuo
et al., 2014). More work could be done to extract other useful
features from spatiotemporal eye gaze data, such as time histories
of gaze object angle and gaze object angular speed, which are
further described in section Gaze-Related Quantities.

MATERIALS AND METHODS

Experimental Set-Up
This study was approved by the UCLA Institutional Review
Board. The experimental setup and protocol were previously
reported in our prior paper (Haji Fathaliyan et al., 2018). Data
from 10 subjects are reported [nine males, one female; aged 18–
28 years; two pure right-handers, six mixed right-handers, two
neutral, per a handedness assessment (Zhang, 2012) based on
the Edinburgh Handedness Inventory (Oldfield, 1971)]. Subjects
were instructed to perform three bimanual activities involving
everyday objects and actions: make instant coffee, make a
powdered drink, and prepare a cleaning sponge (Figure 1). The
objects involved in these three activities were selected from the
benchmark Yale-CMU-Berkeley (YCB) Object Set (Calli et al.,
2015). We refer to these objects as activity-relevant objects since
they would be grasped and manipulated as subjects performed
specific activities.

For Activity 1, subjects removed a pitcher lid, stirred the water
in the pitcher, and transferred the water to a mug using two
different methods (scooping with a spoon and pouring). For
Activity 2, subjects were instructed to remove a coffee can lid,
scoop instant coffee mix into a mug, and pour water from a
pitcher into the mug. For Activity 3, subjects unscrewed a spray
bottle cap, poured water from the bottle into a mug, sprayed the
water onto a sponge, and screwed the cap back onto the bottle.
In order to standardize the instructions provided to subjects, the
experimental procedures were demonstrated via a prerecorded
video. Each activity was repeated by the subject four times; the
experimental setup was reset prior to each new trial.

A head-mounted eyetracker (ETL-500, ISCAN, Inc., Woburn,
MA, USA) was used to track the subject’s gaze point at 60Hz with
respect to a built-in egocentric scene camera. Per calibration data,
the accuracy and precision of the eyetracker were ∼1.4 deg and
0.1 deg, respectively. The motion of the YCB objects, eyetracker,
and each subject’s upper limb were tracked at 100Hz by six
motion capture cameras (T-Series, Vicon, Culver City, CA, USA).
A blackout curtain surrounded the subject’s field of view in order
to minimize visual distractions. A representative experimental
trial is shown in Supplementary Video 1.

Gaze-Related Quantities
We extract four types of gaze-related quantities from natural eye
movements as subjects performed Activities 1–3. The quantities
include the gaze object (GO) (Yu and Ballard, 2002; Yi and
Ballard, 2009;Matsuo et al., 2014) and gaze object sequence (GOS)
(Haji Fathaliyan et al., 2018). This section describes how these
quantities are defined and constructed. As described in section
Input Features for the Action Primitive RecognitionModel, these
gaze-related quantities are used as inputs to a long-short term

FIGURE 1 | (A) A subject prepares to perform Activity 2 (make instant coffee)

while eye gaze and kinematics are tracked with a head-mounted eyetracker

and motion capture system (not shown). Activity 2 involves a coffee can,

spoon and mug. (B) Activity 1 (make a powdered drink) involves a coffee can,

spoon and mug. (C) Activity 3 (prepare a cleaning sponge) involves a spray

bottle and cap, sponge, and mug. The subject shown in panel (A) has

approved of the publication of this image.

memory (LSTM) recurrent neural network in order to recognize
action primitives.

The raw data we obtain from the eyetracker is a set of
2D pixel coordinates. The coordinates represent the perspective
projection of a subject’s gaze point onto the image plane of the
eyetracker’s egocentric scene camera. In order to convert the 2D
pixel coordinate into a 3D gaze vector, we use camera calibration
parameters determined using a traditional chessboard calibration
procedure (Heikkila and Silven, 1997) and the MATLAB Camera
Calibration Toolbox (Bouguet, 2015). The 3D gaze vector is
constructed by connecting the origin of the egocentric camera
frame with the gaze point location in the 2D image plane that is
now expressed in the 3D global reference frame.

The gaze object (GO) is defined as the first object to be
intersected by the 3D gaze vector, as the gaze vector emanates
from the subject. Thus, if the gaze vector pierces numerous
objects, then the object that is closest to the origin of the 3D
gaze vector (within the head-mounted eyetracker) is labeled as
the gaze object.

As defined in our prior paper, the gaze object sequence (GOS)
refers to the identity of the gaze objects in concert with the
sequence in which the gaze objects are visually regarded (Haji
Fathaliyan et al., 2018). Specifically, the gaze object sequence
time history GOS(ti) is comprised of a sequence of gaze objects
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FIGURE 2 | (A) The gaze object sequence time history GOS(ti) within a

window of time W(ti) (green bracket) is shown for Activity 1 (make a powdered

drink). (B) To predict the action primitive at time step ti, input feature vectors

(shown as 5 × 5 matrices for clarity) are created for each of the times from ti−w

to ti−1. Activity-relevant objects are sorted according to their frequency of

occurrence in the GOS(ti).

FIGURE 3 | Gaze object angle is defined as the angle between the gaze

vector and the eye-object vector (ending at the object’s center of mass).

sampled at 60Hz within a given window of timeW(ti) (Figure 2).
The time windowW(ti) contains w time steps from ti−w to ti−1.

In this work, we use a value of w= 75 time steps, equivalent to
1.25 s. This time window size was determined from a pilot study
whose results are presented in section Effect of Time Window
Size on Recognition Accuracy. The pilot study was motivated by
the work of Haseeb et al. in which the accuracy of an LSTM RNN
was affected by time window size (Haseeb and Parasuraman,
2017).

The gaze object angle (GOA) describes the spatial relationship
between the gaze vector and each gaze object. The GOA is

defined as the angle between the gaze vector and the eye-
object vector (Figure 3). The eye-object vector shares the same
origin as the gaze vector but ends at an object’s center of
mass. Each object’s center of mass was estimated by averaging
the 3D coordinates of the points in the object’s point cloud.
Each object’s point cloud was scanned with a structured-
light 3D scanner (Structure Sensor, Occipital, Inc., CA, USA)
and custom turntable apparatus. Containers, such as the
pitcher and mug, are assumed to be empty for center of
mass estimation.

The gaze object angular speed (GOAS) is calculated by taking
the time derivative of the GOA. We use the GOAS to measure
how the gaze vector moves with respect to other activity-relevant
objects. Previously, the gaze object and gaze object sequence have
been used to recognize actions (Yi and Ballard, 2009; Matsuo
et al., 2014). To our knowledge, this is the first work to leverage
the gaze object angle and gaze object angular speed for action
primitive recognition.

Action Primitive Recognition Model
Action Primitive Representation
We represent each action primitive as a triplet comprised
of a verb, target object (TO), and hand object (HO). Each
action primitive can be performed by either the dominant
hand or non-dominant hand. When both hands are active
at the same time, hand-specific action primitives can
occur concurrently.

The verb can be one of four classes: Reach, Move, Set down,
or Manipulate. The classes Reach, Move, and Set down describe
hand movements toward an object or support surface, with or
without an object in the hand. Notably, these verbs are not
related to or dependent upon object identity. In contrast, the
class Manipulate includes a list of verbs that are highly related
to object-specific affordances (Gibson, 1977). For instance, in
Activity 1, the verb “scoop” and “stir” are closely associated
with the object “spoon” (Table 1). We refer to these verbs as
manipulate-type verbs.

In addition to a verb, the action primitive triplet includes the
identity of two objects. The target object TO refers to the object
that will be directly affected by verbs such as Reach, Move, Set
down, and Manipulate. The hand object HO refers to the object
that is currently grasped. For instance, when the dominant hand
grasps a spoon and stirs inside a mug, the triplet of the action
primitive for the dominant hand is: manipulate (verb), mug
(TO), and spoon (HO). A hierarchical description of activities,
actions, and action primitives for Activities 1–3 are presented in
Table 1.

In order to develop a supervised machine learning model
for action primitive recognition, we manually label each time
step with the action primitive triplet for either the dominant
or non-dominant hand. The label is annotated using video
recorded by an egocentric scene camera mounted on the head-
worn eyetracker. We annotate each time step with the triplet
of a subject’s dominant hand as it is more likely the target of
the subject’s attention. For instance, when the dominant hand
(holding a spoon) and the non-dominant hand (holding a mug)
move toward each other simultaneously, we label the action
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TABLE 1 | Each of three activities is divided into actions that are further

decomposed into action primitives. Each action primitive is defined as a triplet

comprised of a verb, target object (TO), and hand object (HO).

A
c
ti
v
it
ie
s Activity 1: make a

powdered drink

Activity 2: make

instant coffee

Activity 3: prepare

a cleaning sponge

A
c
ti
o
n
s

Remove pitcher lid

Stir liquid inside pitcher

Scoop liquid into mug

Close pitcher lid

Pour liquid into mug

Remove coffee can lid

Scoop coffee insider

can

Transfer coffee into

mug

Stir liquid inside mug

Close coffee can lid

Remove spray bottle

cap

Transfer cleanser

into mug

Close spray bottle

cap

Spray cleanser

onto sponge

A
c
ti
o
n
p
ri
m
it
iv
e
s V
e
rb

Reach, Move, Set

down,

Manipulate (open,

close, stir, scoop,

drop, pour)

Reach, Move, Set

down, Manipulate

(open, close, stir,

scoop, drop, pour)

Reach, Move, Set

down, Manipulate

(screw, unscrew, lift,

pour, insert, spray)

T
O Pitcher, pitcher lid,

mug, spoon, table

Coffee can, coffee lid,

mug, spoon, table

Spray bottle, spray

cap, mug, sponge,

table

H
O Pitcher, pitcher lid,

mug, spoon

Coffee can, coffee lid,

mug, spoon

Spray bottle, spray

cap, mug, sponge

primitive as “move the spoon to the mug,” where the verb
is “move” and the target object is “mug.” However, when the
dominant hand is not performing any action primitive, we refer
to the non-dominant hand instead. If neither hand is moving or
manipulating an object, we exclude that time step from the RNN
training process.

Input Features for the Action Primitive Recognition

Model
Given that the identity of gaze objects will vary across activities,
we substitute the specific identities of gaze objects with numerical
indices. This is intended to improve the generalizability of our
action primitive recognition algorithm across different activities.
For each time step ti, the n activity-relevant objects are sorted
in descending order according to their frequency of occurrence
in GOS(ti). Once sorted, the objects are indexed as Object 1 to
Object n, such that Object 1 is the object that most frequently
appears in the gaze object sequence at ti. If two or more objects
appear in the gaze object sequence with the same frequency, the
object with the smaller gaze object angle is assigned the smaller
numerical index, as it is aligned most closely to the gaze vector
and will be treated preferentially.

Figure 2 exemplifies how activity-relevant objects in a gaze
object sequence would be assigned indices at a specific time
step ti. The activity-relevant objects (n = 4) in Activity 1 were
sorted according to their frequency of occurrence in GOS(ti),
which is underlined by a green bracket in Figure 2A. Based
on frequency of occurrence, the activity-relevant objects were
indexed as follows: pitcher (Object 1), pitcher lid (Object 2), mug
(Object 3), and spoon (Object 4).

We introduce here the idea of a “support surface,” which
could be a table, cupboard shelf, etc. In this work, we do not

consider the support surface (experiment table) as an activity-
relevant object, as it cannot be moved or manipulated and does
not directly affect the performance of the activity. Nonetheless,
the support surface still plays a key role in the action primitive
recognition algorithm due to the strong connection with the verb
Set down. In addition, the support surface frequently appears in
the GOS.

To predict the action primitive at time step ti, input feature
vectors are created for each of the time steps from time ti−w to
ti−1, as shown in Figure 2B. For Activity 1, each input feature
vector consists of five features for each of four activity-relevant
objects and a support surface. For clarity, each resulting 25 × 1
feature vector is shown as a five-by-fivematrix in Figure 2B. Gaze
object, left-hand object, and right-hand object are encoded in the
form of one-hot vectors while gaze object angle and angular speed
are scalar values.

Gaze object identity was included as an input feature because
it supported action recognition in prior studies (Yu and Ballard,
2002; Yi and Ballard, 2009; Matsuo et al., 2014). We included the
hand object as an input feature although it is a component of
the action primitive triplet that we seek to recognize. Considering
the application of controlling a robotic arm through eye gaze, we
expect the robotic system to determine an object’s identity before
it plans any movements with respect to the object. As a result,
we assume that the hand object’s identity is always accessible to
the classification algorithm. We included the GOA and GOAS
as input features because we hypothesized that spatiotemporal
relationships between eye gaze and objects would be useful for
action primitive recognition. The preprocessing pipeline for the
input features is shown in Supplementary Video 1.

Action Primitive Recognition Model Architecture
We train a long short-term memory (LSTM) recurrent neural
network to recognize the verb and the target object TO for each
time step ti. With this supervised learning method, we take as
inputs the feature vectors described in section Input Features for
the Action Primitive Recognition Model. For the RNN output,
we label each time step ti with a pair of elements from a discrete
set of verbs and generic, indexed target objects:

Verb (ti)∈ V =
{

Reach, Move, Set down, Manipulate
}

(1)

TO (ti)∈ O =
{

Object1, Object2,Object3, Support surface
}

(2)

The target object class Object 4 was excluded from the model
output since its usage accounted for <1% of the entire dataset.
The four verb labels and four TO labels are combined as 16
distinct verb-TO pairs, which are then taken as output classes
when we train the RNN.

(

Verb (ti) ,TO (ti)
)

∈ O×V

=
{ (

Reach,Object1
)

, . . . ,
(

Manipulate, Support surface
) }

(3)

As a result, verb-TO pairs that never occur during the
training process, such as (Manipulate, Support surface), can be
easily eliminated.

In order to evaluate the RNN’s performance on the verb
and target object individually, we split the verb-TO pairs after
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recognition. A softmax layer was used as the final layer of
the RNN.

Verb (ti) = argmaxv∈V

(

∑

o∈O

softmax
((

Verb (ti) = v,TO (ti) = o

))

)

(4)

TO (ti) = argmaxo∈O

(

∑

v∈V

softmax
((

Verb (ti) = v,TO (ti) = o

))

)

(5)

The RNN was comprised of one LSTM layer, three dense layers,
and one softmax layer. The LSTM contained 64 neurons and each
of the three dense layers contained 30 neurons. The RNN was
trained with an Adaptive Momentum Estimation Optimization
(Adam), which was used to adapt the parameter learning rate
(Kingma and Ba, 2015). A dropout rate of 0.3 was applied in order
to reduce overfitting and improve model performance. The batch
size and epoch number were set as 128 and 20, respectively. The
RNN was built using the Keras API in Python with a TensorFlow
(version 1.14) backend, and in the development environment of
Jupyter Notebook.

Class imbalance is a well-known problem that can result
in a classification bias toward the majority class (Japkowicz,
2000). Since our dataset was drawn from participants naturally
performing activities, the training set of samples was not balanced
among various verb and TO classes (see sample sizes in Figure 5).
An imbalance in TO classes might also result from sorting and
indexing the objects as described in section Input Features for
the Action Primitive Recognition Model. For instance, Object 1
occurs most frequently in the GOS by definition. Thus, Object
1 is more likely to be the target object than Objects 2 or 3.
In order to compensate for the class imbalance, each class’
contribution in the cross-entropy loss function was weighted by
its corresponding number of samples (Aurelio et al., 2019).

The temporal sequence of the target object and verb
recognized by the RNN can contain abrupt changes, as shown
in the top rows of Figures 5A,B. These abrupt changes occur
for limited time instances and make the continuous model
prediction unsmooth. Such unstable classifier results might
cause an assistive robot to respond unexpectedly. Thus, we
implemented a one-dimensional mode filter with an order of m
(in our work, m = 12 time steps, equivalent to 0.2 s) to smooth
out these sequences (Wells, 1979):

verb (ti) = mode

(

{

verb (ti−m) , verb (ti−m+1) , . . . , verb (ti−1)
}

)

(6)

TO (ti) = mode

(

{TO (ti−m) ,TO (ti−m+1) , . . . ,TO (ti−1)}

)

(7)

The sequences after filtering are shown in the middle rows of
Figures 5A,B.

Considering that 10 subjects participated in our study, we
adopted a leave-one-out cross-validation method. That is, when
one subject’s data were reserved for testing, the other nine
subjects’ data were used for training.

Performance Metrics for Action
Recognition
In order to evaluate the performance of the action primitive
classification, we assessed overall accuracy, precision, recall,
and the F1-score. Overall accuracy is the number of correctly
classified samples divided by the total size of the dataset. For each
class of verb or target object, precision represents the fraction
of correctly recognized time steps that actually belong to the
given class, and recall represents the fraction of the class that are
successfully recognized. We use TP, TN, and FP to represent the
number of true positives, true negatives, and false positives when
classifying a verb or target object class.

overall accuracy =

∑

TP

total size of dataset
(8)

precision =
TP

TP + FP
(9)

recall =
TP

TP + TN
(10)

The F1-score is the harmonic mean of precision and recall.

F1 =
2 · precision · recall

precision+ recall
(11)

We also used performance metrics that were related to the
temporal nature of the data. In order to evaluate how early an
action primitive was successfully recognized, we adopted the
terminology “observational latency,” as defined in Ellis et al.
(2013). The term was defined as “the difference between the time
a subject begins the action and the time the classifier classifies
the action,” which translates to the amount of time that a correct
prediction lags behind the start of an action primitive. It should
be noted that the observational latency does not include the
computation time that the recognition algorithm requires to
preprocess the input data and recognize the actions by the model.

We conservatively judged the success of an action primitive’s
classification by checking whether more than 75% of its
time period was predicted correctly. Summary statistics for
observational latency are reported for action primitives that were
deemed correct according to this 75% threshold. Observational
latency is negative if the action primitive is predicted before it
actually begins.

RESULTS

Recall our aim of specifying the three components of the action
primitive triplet: verb, target object, and hand object. Given
that the hand object is already known, as described in section
Input Features for the Action Primitive Recognition Model, we
report on the ability of the RNN to recognize the verb and
target object. A demonstration of the trained RNN is included
in Supplementary Video 1.
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FIGURE 4 | The effect of time window size (ranging from 83ms to 2 s) on

recognition performance is shown for Activity 1. The overall recognition

accuracy for verb and target object are shown in (A). F1-scores for the verb

and target object classes are shown in (B,C), respectively.

Effect of Time Window Size on Recognition
Accuracy
In order to set the time window size, we conducted a pilot study
inspired by Haseeb and Parasuraman (2017). We tested how the
F1-scores of the verb and TO classes varied as the time window
size was increased from five time steps (equivalent to 83ms) to
2 s in increments of five time steps (Figure 4). Considering the
average duration of an action primitive was only 1.2 s, we did not
consider time window sizes beyond 2 s.

As seen in Figure 4A, time window size had a more
substantial effect on the recognition of TO than that of
verb. This is due to the fact that time window size can
greatly affect the data sample distributions among target object
classes as a result of sorting and indexing the activity-relevant
objects. Figure 4C shows that the TO class Object 3 was
especially sensitive to the window size. The corresponding F1-
score continuously increased from ∼30% to 80% until the
window size reached 1.8 s. Recognition performance of the
other three TO classes Object 1, Object 2, and Support surface
were also improved as the time-window size was increased
from 80ms to 1.25 s. The increased F1-scores of the TO
classes can be partly attributed to alleviated class imbalance
problem as the time window was lengthened, especially for
the class Object 3. The number of data samples of Object 3
greatly increased due to the nature of sorting and indexing
objects according to their frequency of occurrence in gaze
object sequence.

As seen in Figure 4B, the F1-scores of the verb classes
Reach, Move, and Manipulate increased as the time-window size
increased from 80ms to 0.5 s. Little improvement in the F1-scores
was observed for time window sizes > 0.5 s, except for Set down.
This suggested that a memory buffer of 0.5 s might be sufficient
for predicting the verb class based on eye gaze. Gaze-related
information collected long before the start of an action primitive
was very likely to be irrelevant to the verb.

Considering the effect of the time window size on the
classification accuracy of both the verb and target object

FIGURE 5 | Intra-activity recognition results for Activity 1 are shown in

confusion matrix form for (A) verb and (B) target object. Inter-activity

recognition results for an RNN trained on Activity 2 and tested on Activity 1 are

shown for (C) verb and (D) target object. Integers in the confusion matrices

represent numbers of samples. The confusion matrices are augmented with

precision, recall, and accuracy results (green).

(Figure 4), we decided to use a time window size of 1.25 s. A time
window longer than 1.25 s might slightly improve recognition
performance, but with additional computational cost.

Intra-Activity Recognition
We report results for intra-activity recognition, in which we
trained and tested the recurrent neural network on the same
activity. These results describe how well the RNN recognized
novel instances of each activity despite variability inherent to
activity repetition. Intra-activity recognition results for Activity
1 are shown in Figure 5 in the traditional form of confusion
matrices. The rows correspond to the true class and the columns
correspond to the predicted class. For brevity, intra-activity
recognition results for Activities 1 and 2 are also shown inTable 2
in the form of F1-scores. The weighted averages of F1-scores for
verb and target object were each calculated by taking into account
the number of data samples for each class. The RNN was not
trained on Activity 3 due to its smaller dataset as compared to
Activities 1 and 2. Thus, no intra-activity recognition results were
reported for Activity 3.

We augmented the traditional confusionmatrix used to report
results according to true and predicted classes with additional
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TABLE 2 | The RNN performance for intra- and inter-activity recognition is

reported via F1-scores (%). Weighted averages of F1-scores that account for the

number of data samples in each class are reported for both verb and target

object (TO).

Intra- or Inter-activity recognition Intra Inter Inter Intra Inter Inter

Activity # (training) 1 1 1 2 2 2

Activity # (testing) 1 2 3 2 1 3

F1-scores for verb recognition (%)

Reach 74.8 52.9 54.8 56.5 40.9 55.6

Move 66.8 36.6 61.1 59.5 48.0 60.5

Set down 72.1 49.3 45.3 59.6 39.5 44.4

Manipulate 82.7 73.7 72.7 81.4 73.9 71.8

Verb Average 77.4 60.3 63.6 68.6 59.9 63.1

F1-scores for target object recognition (%)

Object 1 86.3 72.1 78.0 80.2 81.3 77.4

Object 2 85.8 80.7 83.6 87.2 76.0 80.8

Object 3 70.1 41.7 52.5 55.2 56.6 56.8

Support surface 72.2 56.9 49.8 69.3 48.0 46.6

TO Average 82.8 73.0 74.9 81.1 72.8 73.4

metrics of precision and recall (Figure 5). Precision and recall
were reported as percentages (in green) in the far right column
and bottom-most row, respectively. The cell in the lower-right
corner represented the overall recognition accuracy.

The data samples were not balanced among various verb
and TO classes since our dataset was drawn from participants
naturally performing activities. The proportion of each verb and
TO class in Activity 1 was the sum of the corresponding row in
Figures 5A,B divided by the total size of the dataset (77,774 time
step samples). The proportions for the verb classes were 15% for
Reach, 17% forMove, 13% for Set down, and 55% forManipulate.
The proportions for the target object classes were 44% for Object
1, 34% for Object 2, 9% for Object 3, and 13% for Support surface.

The RNN achieved a good performance in recognizing the
majority verb class Manipulate (precision: 90%, recall: 77%) and
the TO class Object 1 (precision: 86%, recall: 86%), which laid a
solid foundation for its overall accuracy (verb: 77%, TO: 83%).

Inter-activity Recognition
We report results for inter-activity recognition, in which we
trained and tested the recurrent neural network on different
activities. These results describe how well the RNN can
recognize verbs and target objects despite variability across
different activities. To evaluate the algorithm’s cross-activity
generalizability, an RNN trained on Activity 2 (make instant
coffee) was tested on Activity 1 (make a powdered drink), and
vice versa. RNNs trained on Activity 1 and Activity 2 were
additionally tested on Activity 3 (prepare a cleaning sponge).
The confusion matrices of an RNN trained on Activity 2 and
tested on Activity 1 are shown in Figures 5C,D for verb and
target object estimation, respectively. For brevity, additional
inter-activity recognition results are presented in Table 2 in the
form of F1 scores.

FIGURE 6 | For Activity 1, RNN performance is reported by F1-scores for

different combinations of input features (HO, GO, GOA, GOAS) using a radar

chart. Axes represent the verb (bold) and target object classes. F1-score

gridlines are offset by 22%. Each of the polygons corresponds to one

combination of input features. The combined use of HO, GO, GOA, and GOAS

features resulted in the best performance; HO alone performed the worst.

We also compared intra-activity and inter-activity
performance of RNNmodels tested on the same activity. For this,
we subtracted the average F1-scores for inter-activity recognition
from those of the appropriate intra-activity recognition for
RNNs tested on Activity 1 and Activity 2. As expected, when
testing with an activity that differed from the activity on which
the RNN was trained, the classification performance decreased.
The average F1-scores of verb and target object each dropped
by 8% when the RNN was trained on Activity 1 and tested
on Activity 2. The average F1-scores of verb and target object
dropped by 18 and 10%, respectively, when the RNN was trained
on Activity 2 and tested on Activity 1. The average F1-score
decreases were no larger than 20%, which suggested that the
classification algorithm was able to generalize across activities
to some degree. In addition, despite the fact that Activity 3
shared only one common activity-relevant object (mug) with
the other two activities, the average F1-scores of verb and TO
achieved for Activity 3 were slightly higher than those of the
other inter-activity recognition tests (Table 2).

Effect of Input Features on Recognition
Accuracy
In order to evaluate feature importance, we compared the
classification performance achieved in Activity 1 with various
combinations of input features using a radar chart (Figure 6).
Axes represented the verb and target object classes. Gridlines
marked F1-scores in increments of 22%. Classification using HO
alone was poor, with F1-scores for “Set down” and “Object 3”
being < 10%. Only slightly better, classification using GO alone
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was still not effective, with F1-scores of the “Set down,” “Object 3,”
and “Support surface” only reaching values near 22%. In contrast,
GOA-based features (GOA, GOAS) alone outperformed both
HO and GO on their own in every verb and target object class.
With the exception of “Reach,” GOA-based features alone also
outperformed the use of HO and GO together.

Although the feature HO alone did not provide good
recognition result, it could substantially improve the
classification performance when used in concert with GOA-
based features. For every class, the F1-scores achieved with the
combination of GOA-based feature and HO were equal to or
higher than with the GOA-based feature alone.

Effect of Input Features on Observational
Latency
The time histories of the verb and target object recognition for a
representative Activity 1 trial are shown in Figures 7A,B. In each
of Figures 7A,B, the top colorbar represents a time history of raw
prediction results. The middle colorbar shows the output of the
mode filter that smooths the raw prediction results. The bottom
colorbar represents the ground truth. White gaps in the ground
truth correspond to instances when neither hand was moving or
manipulating an object. The observational latency is obtained by
comparing the middle and bottom colorbars.

While Figure 7 shows the observational latency for a single
representative trial, the observational latencies for all trials and
participants are presented in Figure 8. Specifically, Figures 8A,B,
summarize results for the recognition of verb and target object,
respectively, for an RNN trained and tested on Activity 1.
Figure 8 illustrates the effect of input features on observational
latency by comparing the results of an RNN that only used GO

and HO as input features to those of an RNN that additionally
used GOA, and GOAS as input features.

We hypothesized that the incorporation of GOA-based input
features could significantly decrease observational latency. To
test this, we conducted a Wilcoxon signed-rank test (following a
Lilliefors test for normality) with a total of 714 action primitives.
The one-tailed p-values for the verbs and target objects were all
less than the α level of 0.05 except for the target object of pitcher
lid. Thus, we concluded that the use of GOA and GOAS as input
features in addition to GO and HO resulted in a reduction in
observational latency (Figure 8).

DISCUSSION

Features Based on Gaze Object Angle
Improve Action Primitive Recognition
Accuracy
The long-term objective of this work is to advance shared
autonomy control schemes so that individuals with upper limb
impairment can more naturally control robots that assist with
activities of daily living. One embodiment of such a teleoperated
system could include both a joystick and eyetracker as user input
devices. The short-term goal of this study was to improve action
primitive recognition accuracy and observational latency. We
pursued this goal by (i) focusing on the recognition of low-level
action primitives, and (ii) defining eye gaze-based input features
that improve action primitive recognition.

Previous studies leveraged egocentric videos to recognize
actions when a subject was naturally performing ADLs. The
features reported in these studies can be divided into three
categories: features based on human hands, objects, or human
gaze. Examples of hand-based features include hand location,

FIGURE 7 | For a representative trial of Activity 1, temporal sequences of recognition results and ground truth are presented for (A) verb and (B) target object. In both

(A,B), the top, middle, and bottom color bars represent the raw RNN output, RNN output smoothed by a mode filter, and hand-labeled ground truth, respectively. The

total duration of this trial is 36 s.
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FIGURE 8 | For Activity 1, the observational latency for recognition of (A) verb

and (B) target object are shown using box and whisker plots. A negative

latency value indicates that a verb or target object is identified before the start

of the action primitive. For each boxplot pair, the observational latency without

using GOA and GOAS (thin lines) is compared with that using GOA and GOAS

(thick lines). Each boxplot indicates the 25, 50, and 75th percentiles. The

whiskers extend to the most extreme data points that are not considered

outliers (“+”) having values of more than 1.5 times the interquartile range from

the top or bottom of the box. Asterisks indicate p < α = 0.05.

hand pose, and relative location between left and right hands
(Fathi et al., 2011; Ma et al., 2016). Fathi et al. relied on changes
in the state of objects, such as the state of the “coffee jar”
(open vs. closed) (Fathi and Rehg, 2013), to recognize actions.
Behera et al. used spatiotemporal relationships between objects as
classifier inputs (Behera et al., 2012). Features related to human
gaze included the gaze-object, which was widely used to classify
actions (Yi and Ballard, 2009; Matsuo et al., 2014). The use
of object appearance (histogram of color and texture) in the
neighborhood of the gaze point was also effective in improving
recognition accuracy (Fathi et al., 2012; Li et al., 2015b).

Considering the long-term objective of this work, we elected
not to rely solely on features based on human hands or objects for
action primitive recognition. Features based on human hands are
only available when subjects use their own hands to directly grasp
and manipulate objects. For the assistive robot application we
envision, features of human hands such as hand location, hand
pose, and relative location between left and right hands (Fathi
et al., 2011; Ma et al., 2016) will not be available. Features based
on objects are consequence of hand motions, such as changes
in the states of objects or spatiotemporal relationships between
objects. Such object-based features would only be available in
hindsight and cannot be collected early enough to be useful for
the proposed assistive robot application.

We aim to exploit observations that gaze behavior is a critical
component of sighted grasp and manipulation activities, and that
eye movements precede handmovements (Johansson et al., 2001;
Land, 2006). In particular, it has been reported that eye gaze often
shifts to a target object before any hand movement is observed
(Land and Hayhoe, 2001). As such, we adopted the gaze-based
feature GO from the literature (e.g., Yi and Ballard, 2009) and
supplemented it with two new features that we defined: GOA
and GOAS.

As reported in section Effect of Input Features on Recognition
Accuracy, models that included GOA and GOAS as input
features outperformedmodels that relied primarily on GO or HO
for every verb and target object class. The addition of GOA and
GOAS substantially improved the average F1-score from 64% to
77% for verb and from 71 to 83% for target object (Figure 6).

The advantages of using features based on gaze object angle
for action primitive recognition are 2-fold. First, the gaze object
angle quantifies the spatiotemporal relationship between the gaze
vector and every object in the workspace, including objects upon
which the subject is not currently gazing. In contrast, the gaze
object only captures the identity of the object upon which the
subject is gazing at that particular instant. Considering that daily
activities generally involve a variety of objects, it is vital for
the classifier to collect sufficient information related to gaze-
object interactions. The feature GOA could indirectly provide
information similar to that of GO. For example, a GOA value
that is close to zero would result if the gaze vector is essentially
pointing at the gaze object. When GOA, GOAS, and HO have
already been included as input features, the addition of GO as
an input feature has little to no impact on classification accuracy
(Figure 6). Also, classifier performance improves when using
GOA and GOAS as input features as compared to using GO, HO,
or their combination (Figure 6).

Second, the input feature GOAS contains GOA rate
information. To some extent, GOAS also captures directional
information, as positive and negative GOAS values reflect
whether the gaze vector is approaching or departing from
each object in the workspace, respectively. We believe that
approach/departure information can be leveraged to predict the
target object for a given action primitive because gaze is used to
gather visual information for planning before and during manual
activities (Land, 2006). An object being approached by the gaze
vector is not necessarily the target object, as the object could
simply be in the path of the gaze vector during its movement.
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However, objects are less likely to be labeled as the “target object”
when the gaze vector moves away from them.

Features Based on Gaze Object Angle
Improve Observational Latency
While recognition accuracy is important, human-robot systems
also require low observational latency (Ellis et al., 2013). Even an
action primitive that is correctly recognized 100% of the time will
cease to be useful if the delay in recognition prohibits an effective
response or adds to the cognitive burden of the operator. The
earlier that a robotic system can infer the intent of the human
operator or collaborator, the more time will be available for
computation and the planning of appropriate robot movements.

Previous studies have focused on classifying actions in videos
that have already been segmented in time (e.g., Fathi et al., 2012).
However, these methods that were designed to recognize actions
in hindsight would be less effective for real-time use. We desire
the intended action primitive to be predicted in advance of robot
movement and with as low an observational latency as possible.

Hoffman proposed several metrics to evaluate fluency in
human-robot collaborative tasks. For instance, the robot’s
functional delay was defined as the amount of time that the
human spent waiting for the robot (Hoffman, 2019). This concept
of fluency reflects how promptly a robot can respond correctly
to an operator’s commands. A high observational latency will
degrade the fluency of a human-robot system and increase the
operator’s cognitive burden, effort, and frustration levels. A user
interface that requires operators to intentionally gaze at specific
objects or regions for a fixed period of time may be less natural
and have lower fluency than a user interface that leverages natural
eye gaze behaviors (Li et al., 2017; Wang et al., 2018).

In this work, the use of gaze-related features enabled the
recognition of action primitives at an early stage. The average
observational latency for verb recognition was 120ms, ∼10% of
the average duration of an action primitive (1.2 s). The average
observational latency for target object was −50ms; the negative
latency value indicates that the target object was sometimes
identified before the start of the action primitive. Unfortunately,
pooled across all classes, the observational latency for the target
object was not statistically significantly less than zero (p =

0.075; α = 0.05). Nonetheless, the fact that some of the trials
resulted in negative observational latency values was surprising
and encouraging.

Among gaze-related input features, the use of GOA andGOAS
decreased the observational latency as compared with using GO
alone (Figure 8). Per a Wilcoxon signed rank test, observational
latency was statistically significantly smaller when GOA and
GOAS were used as input features than when they were excluded
(p < α = 0.05). This was true for all verb classes and all target
object classes, with the exception of lid. For the verb and target
object, the observational latency dropped by an average of 108
and 112ms, respectively. One reason for this could be that GOA-
based features may encode the tendency of the gaze vector to
approach an object once the eyes start to move. In contrast, the
GO feature does not capture the identity of any object until the
gaze vector reaches the object.

The sub-second observational latency values that we report
likely resulted from the fact that eye movement generally
precedes hand movement for manual activities (Johansson et al.,
2001; Land, 2006). Land et al. reported that the gaze vector
typically reached the next target object before any visible signs
of hand movement during the activity of making tea (Land
and Hayhoe, 2001). The small observational latency values may
also result from the fact that our classifier was designed to
recognize action primitives, which are much simpler than actions
or activities (Moeslund et al., 2006). Action primitives often
involve a single object, a single hand, and occur over a shorter
period of time than actions and activities. The recognition of
actions and activities for ADLs would require observations over
a longer period of time and would necessarily involve more
complex eye behaviors, more complex body movements, and
gaze interactions with multiple objects.

Ryoo predicted activities of daily living and defined the
“observation ratio” as the ratio between the observational latency
and the activity duration (Ryoo, 2011). Ryoo reported that a
minimum observation ratio of ∼45% was needed to classify
activities with at least 60% accuracy. In this work, we found
that minimum observation ratios of 18 and 5% were needed to
achieve an accuracy of 60% for each the verb and the target object,
respectively. This suggests that recognition of low-level action
primitives can be achieved at lower observation ratios and within
shorter time periods than high-level activities, which require the
passage of more time and collection of more information for
similar levels of accuracy.

One limitation of this work is that the action primitive
recognition algorithm has not yet been tested in real-time.
This is an area of future work and considerations for real-time
implementation are discussed in section Comparisons to State-
of-the-Art Recognition Algorithms. Based on our experience, we
expect that the overall latency will be dominated by observational
latency and less affected by computational latency. This is
due to the relatively simple structure of the proposed RNN
architecture and the fact that the RNN model would be trained
offline a priori.

Segmenting Objects Into Regions
According to Affordance Could Improve
Recognition Performance
The distribution of gaze fixations can be concentrated on certain
regions of an object, such as those associated with “object
affordances.” An object affordance describes actions that could be
performed on an object (Gibson, 1977). For example, Belardinelli
et al. showed human subjects a 2D image of a teapot and
instructed them to consider lifting, opening, or classifying the
teapot as an object that could or could not hold fluid (Belardinelli
et al., 2015). It was observed that subjects’ gaze fixations were
focused on the teapot handle, lid, and spout for lifting, opening,
and classifying, respectively. In addition, in a prior study, we
reported 3D gaze heat maps for the activity “make a powdered
drink” (Haji Fathaliyan et al., 2018). We observed that gaze
fixations were focused on the top and bottom of pitcher during
the action unit “reach for pitcher” and “set down pitcher.”
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Inspired by these findings, we hypothesized that information
about the action primitive can, in theory, be encoded by gaze
behavior with respect to specific regions of objects. This would
provide a classification algorithm with information at a finer
spatial resolution than when considering each object as a whole.
In a post hoc study, we segmented the point clouds of each of
the four activity-relevant objects in Activity 1 (make a powdered
drink) into several regions according to object affordances
(Figure 9). For instance, the spoon was segmented into the upper
and bottom faces for the bowl, the handle, and the tip of the
handle. Notably, the inner and outer wall of containers (pitcher
and mug) were treated as different regions since the inner and
outer walls were often fixated upon differently depending on the
action primitive.

After the segmentation, we augmented the gaze-related
features (GO, GOA, GOAS) by treating each region as an
independent object while keeping the features left-hand object
and right-hand object unchanged. We then retrained the RNN
with the new augmented features. The recognition accuracy for
verb increased slightly from 77 to 79% and accuracy for the
target object increased from 83 to 86%. By increasing the total
number of object regions from 4 to 20, the time taken for the
trained RNN to produce one classifier output increased by 26%.
Depending on the consequences of an incorrect classification
and the minimum acceptable accuracy level, one could decide
which objects to segment and how finely the objects should
be segmented. For instance, one may still be able to improve
recognition performance if the mug were segmented into inner
wall, outer wall, and handle, as opposed to the five segments that
we tested.

Comparisons to State-of-the-Art
Recognition Algorithms
In the evaluation of our proposed gaze-based action primitive
recognition method, we were unable to identify suitable
benchmarks for a direct quantitative comparison. First, our
approach is designed to recognize low-level action primitives
that could be used as modular, generalizable building blocks for
more complex levels of the action hierarchy (Moeslund et al.,
2006). The literature on action recognition provides methods
for recognition at the level of actions and activities, but not at
the level of action primitives that are investigated in our work.
For instance, the public dataset “GTEA+” and “EGTEA Gaze+”
provided by Fathi et al. (2012) Li et al. (2018) involve actions
such as “take bread.” This action would need to be split into
two separate action primitives: “reach bread,” and “set down
bread onto table.” Likewise, the public dataset “CMU-MMAC”
provided by De la Torre et al. (2009) involves actions such as
“stir egg.” This action would need to be split into three action
primitives: “reach fork,” “move fork into bowl,” and “stir egg in
the bowl using fork.” Many state-of-the-art recognition methods
for ADLs (whether leveraging gaze behavior or not) are based on
these publicly available datasets at the action level.

Second, action recognition models in the literature rely on
computer-vision based approaches to analyze 2D videos recorded
by an egocentric camera, e.g., (Fathi et al., 2011, 2012; Fathi and

FIGURE 9 | Point clouds of the four activity-relevant objects involved in

Activity 1 were segmented into multiple regions for finer spatial resolution: (A)

pitcher, (B) pitcher lid, (C) spoon, and (D) mug.

Rehg, 2013; Matsuo et al., 2014; Soran et al., 2015; Ma et al.,
2016; Li et al., 2018; Furnari and Farinella, 2019; Sudhakaran
et al., 2019; Liu et al., 2020). Whether using hand-crafted features
(Fathi et al., 2011, 2012; Fathi and Rehg, 2013; Matsuo et al., 2014;
Soran et al., 2015; Ma et al., 2016; Furnari and Farinella, 2019)
or learning end-to-end models (Li et al., 2018; Sudhakaran et al.,
2019; Liu et al., 2020), the computer vision-based approaches to
action recognition must also address the challenges of identifying
and tracking activity-relevant objects. In contrast, we bypassed
the challenges inherent in 2D image analysis by combining an
eyetracker with a marker-based motion capture system. This
experimental set-up enabled the direct collection of 3D gaze-
based features and object identity and pose information so
that we could focus on the utility of 3D gaze features, which
are unattainable from 2D camera images. Our method could
be introduced into non-lab environments by combining an
eyetracker with 2D cameras and ArUco markers, for example, in
place of a marker-based motion capture system.

Considerations for Real-Time
Implementation of an Action Primitive
Recognition Algorithm in Human-Robot
Systems
As an example of how our action primitive recognition model
could be applied in a human-robot shared autonomy scenario,
consider the action “stir contents inside a mug.” First, as a
subject’s eye gaze vector moves toward the spoon, the probability
of the potential action primitive “reach spoon” increases until it
exceeds a custom threshold. The crossing of the threshold triggers
the robotic end effector to move autonomously toward the spoon
handle in order to grasp the spoon. The robot would use its real-
time 3D model of the scene to plan its low-level movements in
order to reduce the cognitive burden on the human operator.
Second, as the subject’s eye gaze switches to the mug after a
successful grasp of the spoon, the model would recognize the
highest probability action primitive as “move spoon to mug.”
Again the crossing of a probability threshold, or confidence level,
would trigger the autonomous placement of the grasped spoon
within the mug for a subsequent, allowable manipulate-type
action primitive, which would be limited to a set of allowable
manipulate-type action primitives based on the gaze object and
hand object. Third, as the subject fixates their gaze on the
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mug, the model would recognize the highest probability action
primitive as “stir inside mug” and autonomous stirring would
begin. The stirring trajectory could be generated using parametric
dynamic motion primitives (Schaal, 2006), for example. Lastly,
as the subject’s gaze saccades to a support surface and the action
primitive is recognized as “set down spoon,” the system would
proceed to determine a location on the table at which to place the
spoon. This exact location could be extracted from filtered eye
gaze signals as introduced in Li et al. (2015a).

As described in the above example, we envision that our
model could be used to recognize subjects’ intended action
primitives through their natural eye gaze movements while the
robot handles the planning and control details necessary for
implementation. In contrast to some state-of-the-art approaches
to commanding robot movements (Li and Zhang, 2017; Wang
et al., 2018; Shafti et al., 2019; Zeng et al., 2020), subjects would
not be forced to unnaturally, intentionally fixate their gaze at
target objects in order to trigger pre-programmed actions. Of
course, much work is necessary to implement the proposed
shared autonomy control scheme and this is the subject of
future work.

Concerning the practical implementation of the proposed
action primitive recognition method, several limitations must
be addressed.

Specificity of the Action Primitive
The proposed recognition method is intended to assign
generalized labels to each time step as one of the four verb
classes (reach, move, set down, and manipulate). The current
method does not distinguish between subclasses of manipulate-
type verbs, such as “pour” and “stir.” Recognition of subclasses of
a verb could enable assistive robots to provide even more specific
assistance than that demonstrated in this work.

Recognition specificity could be advanced by incorporating
additional steps. One idea is to create a lookup table based
on the affordances of the objects involved in the activities. For
example, the action primitive triplet of (verb=manipulate, TO=

mug, HO = pitcher) is associated with the verb subclass “pour.”
However, the triplet (verb = manipulate, TO = pitcher, HO =

spoon) is associated with both verb subclasses “stir” and “scoop.”
As an alternative, we suggest the use of gaze heatmaps to facilitate
the classification of verb subclasses since action primitives are
activity-driven and the distribution of gaze fixations can be
considerably affected by object affordance (Belardinelli et al.,
2015; Haji Fathaliyan et al., 2018).

Distracted or Idle Eye Gaze States
The proposed recognition method does not recognize human
subjects’ distracted or idle states. For example, a subject’s visual
attention can be distracted by environmental stimuli. In this
study, we minimized visual distractions through the use of
black curtains and by limiting the objects in the workspace
to those required for the instructed activity. The incorporation
of distractions (audio, visual, cognitive, etc.) is beyond the
scope of this work, but would need to be addressed before
transitioning the proposed recognition method to natural,
unstructured environments.

Idle states are not currently addressed in this work. Hands are
not used for every activity and subjects may also wish to rest.
If the gaze vector of a daydreaming or resting subject happens
to intersect with an activity-relevant object, an assistive robot
may incorrectly recognize an unintended action primitive and
perform unintended movements. This is similar to the “Midas
touch” problem in the field of human-computer interaction,
which faces a similar challenge of “how to differentiate ‘attentive’
saccades with intended goal of communication from the lower
level eye movements that are just random” (Velichkovsky
et al., 1997). This problem can be addressed by incorporating
additional human input mechanisms, such as a joystick, which
can be programmed to reflect the operator’s agreement or
disagreement with the robot’s movements. The inclusion of
“distracted” and “idle” verb classes would be an interesting area
for future advancement.

Integration With Active Perception Approaches
The proposed recognitionmethod could be combined with active
perception approaches that could benefit a closed-loop human-
robot system that leverages the active gaze of both humans and
robots. In this work, the 3rd person cameras comprising the
motion capture system passively observed the scene. However, by
leveraging the concept of “joint attention” (Huang and Thomaz,
2010), one could use an external and/or robot-mounted camera
set-up to actively explore a scene and track objects of interest,
which could be used to improve the control of a robot in a
human-robot system.

As discussed in section Comparisons to State-of-the-Art
Recognition Algorithms, for the purposes of this work, we
bypassed the process of identifying and locating activity-relevant
objects by implementing a marker-based motion capture system
in our experiment. Nonetheless, the perception of activity-
relevant objects in non-laboratory environments remains a
challenge due to object occlusions and limited field of view.
Active perception-based approaches could be leveraged in such
situations. In multi-object settings, such as a kitchen table
cluttered with numerous objects, physical camera configurations
could be actively controlled to change 3rd person perspectives
and more accurately identify objects and estimate their poses
(Eidenberger and Scharinger, 2010). Once multiple objects’ poses
are determined, a camera’s viewpoint could then be guided by
a human subject’s gaze vector to reflect the subject’s localized
visual attention. Since humans tend to align visual targets with
the centers of their visual fields (Kim et al., 2004), one could
use natural human gaze behaviors to control camera perspectives
(external or robot-mounted) in order to keep a target object,
such as one recognized by our proposed recognition method,
in the center of the image plane for more stable computer
vision-based analysis and robotic intervention (Li et al., 2015a).
When realized by a visible robot-mounted camera, the resulting
bio-inspired centering of a target object may also serve as
an implicit communication channel that provides feedback to
a human collaborator. Going further, the camera’s perspective
could be controlled actively and autonomously to focus on the
affordances of a target object after a verb-TO pair is identified
using our proposed recognition method. Rather than changing
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the physical configuration of a camera to center an affordance
in the image plane, one could instead focus a robot’s attention
on an affordance at the image processing stage (Ognibene
and Baldassare, 2015). For instance, the camera’s foveal vision
could be moved to a pitcher’s handle in order to guide a
robot’s reach-to-grasp movement. Such focused robot attention,
whether via physical changes in camera configuration or via
digital image processing methods, could be an effective way
to maximize limited computational resources. The resulting
enhanced autonomy of the robot could help to reduce the
cognitive burden on the human in a shared autonomy system.

Considering the goal of our work to infer human intent
and advance action recognition for shared autonomy control
schemes, one could also integrate our proposed methods with
the concept of “active event recognition,” which uses active
camera configurations to simultaneously explore a scene and
infer human intent (Ognibene and Demiris, 2013). Ognibene
and Demiris developed a simulated humanoid robot that actively
controlled its gaze to identify human intent while observing
a human executing a goal-oriented reaching action. Using an
optimization-based camera control policy, the robot adjusted
its gaze in order to minimize the expected uncertainty over
numerous prospective target objects. It was observed that the
resulting robot gaze gradually transitioned from the human
subject’s hand to the true target object before the subject’s hand
reached the object. As future work, it would be interesting
to investigate whether and how the integration of 1st person
human gaze information, such as that collected from an
ego-centric camera, could enhance the control of robot gaze for
action recognition. For instance, the outputs of our proposed
action primitive recognition method (verb-TO pairs) could
be used as additional inputs to an active event recognition
scheme in order to improve recognition accuracy and reduce
observational latency.

Effects of the Actor on Eye Gaze Behavior
The proposed recognition model was trained using data in
which non-disabled subjects were performing activities with
their own hands instead of subjects with upper-limb impairment
who were observing a robot that was performing activities.
In our envisioned human-robot system, we seek to identify
operator intent via their natural gaze behaviors before any robotic
movements occur. It is known that gaze behaviors precede
and guide hand motions during natural hand-eye coordination
(Hayhoe et al., 2003). In contrast, we hypothesize that the eye
gaze behaviors of subjects observing robots may be reactive in
nature. Aronsen et al. have shown that subjects’ gaze behaviors
are different in human-only manipulation tasks and human-
robot shared manipulation tasks (Aronson et al., 2018). The
further investigation of the effect of a robot on human eye gaze
is warranted, but is beyond the scope of this work. We propose
that the eye gaze behaviors reported in this work could be used as
a benchmark for future studies of human-robot systems that seek
to recreate the seamlessness of human behaviors.

The direct translation of the model to a human-robot system
may not be possible. For one, the robot itself would need to be
considered as an object in the shared workspace, as it is likely

to receive some of the operator’s visual attention. Fortunately,
as suggested by Dragan and Srinivasa in Dragan and Srinivasa
(2013), the action primitive prediction does not need to be perfect
since the recognition model can be implemented with a human
in the loop. The robotic system could be designed to wait until
a specific confidence level for its prediction of human intent has
been achieved before moving.

Another important consideration is that the recognition
of action primitives via human eye gaze will necessarily be
affected by how the robot is programmed to perform activities.
For example, eye gaze behaviors will depend on experimental
variables such as manual teleoperation vs. preprogrammed
movements, lag in the robot control system and processing
for semi-autonomous behaviors (e.g., object recognition), etc.
Recognizing that there are innumerable ways in which shared
autonomy could be implemented in a human-robot system,
we purposely elected to eliminate the confounding factor of
robot control from this foundational work on human eye-
hand coordination.

Integration of Low-Level Action Primitive Recognition

Models With Higher Level Recognition Models
This work focused on the recognition of low-level action
primitives. However, the envisioned application to assistive
robots in a shared autonomy schema would require recognition
at all three hierarchical levels of human behavior (action
primitives, actions, activities) (Moeslund et al., 2006) in order to
customize the degree of autonomy to the operator (Kim et al.,
2012; Gopinath et al., 2017). For instance, the outputs of the
low-level action primitive recognition models (such as in this
work) could be used as input features for the mid-level action
recognition models (e.g., Haji Fathaliyan et al., 2018), that would
then feed into the high-level activity recognition models (Yi
and Ballard, 2009). Simultaneously, knowledge of the activity or
action can be leveraged to predict lower level actions or action
primitives, respectively.

CONCLUSION

The long-term objective of this work is to advance shared
autonomy by developing a user-interface that can recognize
operator intent during activities of daily living via natural eye
movements. To this end, we introduced a classifier structure for
recognizing low-level action primitives that incorporates novel
gaze-related features. We defined an action primitive as a triplet
comprised of a verb, target object, and hand object. Using a
non-specific approach to classifying and indexing objects, we
observed a modest level of generalizability of the action primitive
classifier across activities, including those for which the classifier
was not trained. We found that the gaze object angle and its
rate of change were especially useful for accurately recognizing
action primitives and reducing the observational latency of the
classifier. In summary, we provide a gaze-based approach for
recognizing action primitives that can be used to infer the intent
of a human operator for intuitive control of a robotic system. The
method can be further advanced by combining classifiers across
multiple levels of the action hierarchy (action primitives, actions,
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activities) (Moeslund et al., 2006) and finessing the approach
for real-time use. We highlighted the application of assistive
robots to motivate and design this study. However, our methods
could be applied to other human-robot applications, such as
collaborative manufacturing.
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Gaze and language are major pillars in multimodal communication. Gaze is a non-verbal

mechanism that conveys crucial social signals in face-to-face conversation. However,

compared to language, gaze has been less studied as a communication modality. The

purpose of the present study is 2-fold: (i) to investigate gaze direction (i.e., aversion and

face gaze) and its relation to speech in a face-to-face interaction; and (ii) to propose

a computational model for multimodal communication, which predicts gaze direction

using high-level speech features. Twenty-eight pairs of participants participated in data

collection. The experimental setting was a mock job interview. The eye movements

were recorded for both participants. The speech data were annotated by ISO 24617-2

Standard for Dialogue Act Annotation, as well as manual tags based on previous social

gaze studies. A comparative analysis was conducted by Convolutional Neural Network

(CNN) models that employed specific architectures, namely, VGGNet and ResNet. The

results showed that the frequency and the duration of gaze differ significantly depending

on the role of participant. Moreover, the ResNet models achieve higher than 70%

accuracy in predicting gaze direction.

Keywords: face-to-face interaction, gaze analysis, deep learning, speech annotation, multimodal communication

INTRODUCTION

Our skills of conversation by means of language, along with the accompanying non-verbal
signals, set us apart from other species. Hence, conversation is considered to be one of the
important indicators of humanness and human interaction. Recently, Embodied Conversational
Agents (ECAs) that allow face-to-face communication are becoming more common. Face-to-
face communication implies that interaction should be characterized as an inherently multimodal
phenomenon, instead of speech in isolation (e.g., Levinson and Holler, 2014; Kendon, 2015;
Mondada, 2016). This is because humans have an ability to send and receive information by means
of non-verbal cues such as facial expressions, gestures, gaze, and posture, during a face-to-face
conversation. In particular domains, they even correspond to 50–70% of the entire messages that
the speaker conveyed (Holler and Beattie, 2003; Gerwing and Allison, 2009).

Gaze is an important non-verbal cue that conveys crucial social signals in face-to-face
communication. Although its characteristics depend on individuals and cultural backgrounds,
we usually make eye contact with the interlocutor, which, for instance, facilitates joint and
shared attention. Even though we have such a tendency, face-to-face conversation is not just an
interactive communication where partners constantly sustain eye contact; instead, it involves a
sort of transition between gazing toward and away from the communication partner(s). Compared
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to non-human primates, the specialized morphology of the
human eyes, which have a sharp contrast between the white
sclera and darker pupil, indicates the special role of revealing
gaze direction by the sender and, thus, enables those around the
sender to acknowledge about the direction of his gaze. These
findings have been well-recognized since the past several decades
(e.g., Kobayashi and Kohshima, 1997). We have the ability to
make a distinction between directed and averted gaze from a
very young age. Even an infant can make such a distinction
in the first days of his life (Farroni et al., 2002). The present
study focuses on gaze within language context, thus proposing
a multimodal approach to computational analysis of face-to-face
conversation. In the following section, we present the related
work and technical background for the rest of the paper.

Related Work
Gaze in Social Interaction Settings
There exist various functions that the gaze fulfills in social
interaction. Expressing emotions is one of the well-known
function of gaze (Izard, 1991). An individual should perform
eye movements in an appropriate way for the aim of conveying
emotional states to an addressee successfully (Fukayama et al.,
2002). In addition, gaze takes part in regulation of conversation,
transmitting the intention, coordination of turn taking, asserting
uncertainty or dissatisfaction, regulation of intimacy, and
signaling the dominance and conversational roles (Kendon, 1967;
Duncan, 1972; Argyle et al., 1974; Ho et al., 2015).

In recent decades, the development of eye-tracking
technologies has enabled robust measurements and novel
experimental designs in this field (Gredebäck et al., 2010).
However, most of the studies have been performed in laboratory
settings by adopting static eye-tracking methods (Pfeiffer
et al., 2013), in which participants often monitor the stimulus
presented on a computer screen. Although such experimental
designs are advantageous in allowing one to provide a controlled
procedure, the findings lack generalizability. Eye movements
in the field might be different from those in studies conducted
with static stimuli in a highly controlled laboratory environment
(Risko et al., 2016). This difference can be explained by the
two-way function of gaze in social communication. While gaze
sends messages about, for instance, floor management or the
desire to work together, we also gather information on emotions,
intention, or attentional states of others by gazing on them.

Advances in mobile eye-tracking technology have opened the
door to researchers who study social interaction in daily-life
settings. Broz et al. (2012) studied mutual gaze in a face-to-
face conversation with participants wearing mobile eye-tracking
devices. They observed a mutual face gaze occurring for about
46% of a conversation. Rogers et al. (2018) also conducted
a dual eye-tracking study and reported that the mutual face
gaze comprised 60% of the conversation with 2.2 s duration
on average.

An important characteristic of gaze in communication is that
it is closely connected to speech acts. Accordingly, an analysis
of communication in daily settings has to address speech in
relation to gaze. In the following section, we introduce systematic
approaches to study speech in communication.

Speech Annotation
The studies of Natural Language Processing (NLP) involving text
mining, automated question answering, and machine translation
have gained momentum as a reflection of the developments
in Machine Learning (ML) technology (Meyer and Popescu-
Belis, 2012; Sharp et al., 2015; Popescu-Belis, 2016). Hence,
researchers’ attention to discourse analysis has increased in
parallel. In the last few decades, a variety of discourse annotation
schemas were proposed involving RST (Rhetorical Structure
Theory), RST Treebank (Carlson et al., 2001), SDRT, ANN-
ODIS, and PDTB (Penn Discourse Treebank) (Prasad et al.,
2008). Although there were some common communicative
functions in those schemes, there were also inconsistencies
between. In order to overcome mapping difficulty between
proposed schemes, in the late 1990s, a domain-independent and
multi-layered scheme, DAMSL1 (Dialogue Act Markup using
Several Layers) was proposed. Subsequently, many studies were
carried out until the establishment of ISO standard for dialogue
act annotation. Eventually, ISO standard 24617-2 “Semantic
annotation framework (SemAF)—Part 2: Dialogue acts” was
developed (ISO 24617-2, 2012).

The dialogue act is the act that the speaker is performing
during a dialogue. In a simplified sense, it is a speech act used in
a conversation. A dialogue act has a particular semantic content
that specifies the objects, events, and their relations. Furthermore,
it maintains a communicative function intended to change the
state of mind of an addressee by means of its semantic content.
In practice, dialogue act annotation generally depends on the
communicative function. A turn represents the duration that the
speaker is talking, and it is an important organizational tool in
spoken discourse. Turns can be rather long and complex; in this
case, they cannot be taken as units to determine communicative
functions. They need to be cut into smaller parts called functional
segments. Functional segments supply information to determine
both the semantic content, namely, “dimensions” (see Table 1),
and communicative functions of a dialogue act; for detailed
information, see ISO 24617-2 (2012) and Bunt et al. (2017a), and
for sample annotations, see DialogBank2 (Bunt et al., 2019).

Dialogue act annotation can be achieved in three main
steps: (i) the dialogue is divided into two or more functional
segments, (ii) every single functional segment is associated
with one or more dialogue acts, and lastly (iii) annotation
components are assigned to dialogue acts (see Table 2 for the
related components). Although ISO 24617-2 does not provide
any specific set for Rhetorical Relations (RRs), for this purpose,
it suggests a specific standard, namely, Semantic Relations in
discourse, core annotation schema (DR-Core) (ISO 24617-8,
2016).

A multimodal analysis of gaze and speech allows an
intuitive understanding of their accompanying role in face-to-
face conversation. However, a systematic analysis requires the
specification of the relationship between gaze and speech in

1For Draft of DAMSL: Dialog Act Markup in Several Layers, see https://www.cs.

rochester.edu/research/speech/damsl/RevisedManual/.
2You can find a collection of dialogues annotated according to international

standard ISO 24617-2 under https://dialogbank.uvt.nl/.
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TABLE 1 | Dimensions and communicative functions defined in ISO 24617-2.

Dimension Communicative functions

Task Category of dialogue acts that helps to carry out the tasks or

activities that inspire the dialogue

General Purpose Functions (GPFs)

Auto-feedback Category of dialogue acts that take place, in which the sender

addresses his processing of past dialogue

AutoPositive, AutoNegative, GPFs

Allo-feedback Category of dialogue acts that take place, in which the sender

argues about the addressee’s processing of past dialogue

AlloPositive, AlloNegative,

FeedbackElicitation, GPFs

Turn management Category of dialogue acts that are intended to coordinate the role

of the speaker

TurnAccept,

TurnAssign,

TurnGrab,

TurnKeep,

TurnRelease,

TurnTake, GPFs

Time management Category of dialogue acts that deal with the allocation of time

during the speech

Stalling,

Pausing, GPFs

Own communication management Category of dialogue acts where in the ongoing turn the speaker

alters his own speech

SelfCorrection,

SelfError,

Retraction, GPFs

Partner communication management Category of dialogue acts where in the ongoing turn the speaker

alters the speech of the previous speaker

Completion,

CorrectMisspeaking, GPFs

Discourse structuring Category of dialogue acts that organize the dialogue directly InteractionStructuring,

Opening, GPFs

Social obligations management Category of dialogue acts carried out to meet social

responsibilities such as welcoming, thanking, and apologizing

InitialGreeting,

ReturnGreeting,

InitialSelfIntroduction,

ReturnSelfIntroduction,

Apology,

AcceptApology,

Thanking,

AcceptThanking,

InitialGoodbye,

ReturnGoodbye, GPFs

TABLE 2 | Annotation components.

Component Number

Dimension 1..1

Communicative function 1..1

Qualifier 0..N

Rhetorical relation* 0..N

Participant

Sender 1..1

Addressee 1..1

Other 0..N

Dependence relation

Feedback** 0..N

Functional* 0..N

One and only one-dimension, communicative function, sender, and addressee should be

attached to a single dialogue act. On the other hand, there might be zero, one, or more

qualifiers, rhetorical relations, dependence relations, and participants other than sender

and addressee. *Relation is between dialogue acts. **Relation is between either dialogue

acts or a dialogue act and a functional segment.

terms of the identification of specific patterns, which would
allow making certain predictions about the interplay of gaze

and speech in dialogue. This requires the development of
computationalmodels that characterize gaze-speech patterns that
emerge during the course of communication. In the following
section, we introduce the concept of computational modeling
that we employed in the present study.

Computational Model
The deep learning approach has greatly improved many artificial
intelligence tasks includingmachine translation, object detection,
and speech recognition. In addition to classical AI tasks,
researchers have adapted deep learning to various areas. Wang
et al. (2017) performed sentiment analysis with data from
multiple modalities; Gatys et al. (2016) utilized neural models
to produce images in different styles; and Osako et al. (2015)
eliminated noise from speech signals.

Convolution Neural Networks (CNNs) are localized versions
of fully connected networks (LeCun et al., 1998; Goodfellow
et al., 2016). It is based on an important operation, namely,
convolution, which integrates the product of two functions.
Convolution is useful for calculating change in signals, finding
patterns, detecting edges, applying blurs, etc. CNN models that
essentially learn the right convolution operations for the task at
hand can produce high-accuracy results, especially in the areas of
image classification and recognition. A basic CNN architecture
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FIGURE 1 | A simple CNN model, composed of convolution, non-linearity (ReLU), pooling, and fully connected layers. The final output is one of the four flowers.

Drawing adapted from LeCun et al. (1998).

includes four fundamental operations: (i) convolution, (ii) non-
linearity (e.g., ReLU), (iii) pooling or subsampling, and (iv)
classification (Fully Connected), see Figure 1.

Although CNN models are mostly used for image processing,
they can be used in the same manner for time series (Fawaz et al.,
2019). In this study, we collected the gaze data in the form of a
time series and trained 1D CNN networks.

The Present Study
As reviewed in other articles (e.g., Admoni and Scassellati, 2017;
Stefanov et al., 2019), research on the relationship between gaze
and speech revealed their close coupling in communication
settings (Prasov and Chai, 2008; Qu and Chai, 2009; Andrist et al.,
2014). In the present study, we investigated the relation between
speech (particularly high-level features of it) and gaze direction
(i.e., face gaze or aversion) in a dyadic conversation.

The research into how speech and eye gaze are linked lead to
a better understanding of the underlying cognitive mechanisms,
but also this relation has been studied for practical applications
in Educational Science (e.g., Jarodzka et al., 2017), human robot
interaction (e.g., Chidambaram et al., 2012; Ham et al., 2015),
web-based conferencing (e.g., Ward et al., 2016), and virtual
reality (VR) systems (e.g., Garau et al., 2003; Batrinca et al.,
2013). Some of those studies hold under operational assumptions
such as simulating gaze aversion through head movements alone,
conducting research under highly controlled conditions, which
does not reflect real-life settings, or encoding just the presence of
human speech rather than exhaustive speech analysis.

The main motivation of the present study is to explore eye
gaze and speech relation in a more nuanced and comprehensive
manner through employing state-of-the-art technologies and by
taking into account the limitations of the previous studies in the
field. Moreover, by using the data gathered experimentally, we
trained the simplified versions of two deep networks, the ResNets
(He et al., 2016) and VGGNet (Simonyan and Zisserman, 2015)
that predict gaze direction based on high-level speech features.

Stefanov et al. (2019) showed that listener’s gaze direction
could be modeled from low-level speech features without
considering semantic information, and they concluded that
different methods are required for modeling speaker’s gaze
direction. In successful communication, the listener understands

what the speaker says the way the speaker desires. In doing
so, the listener takes into account the basic characteristics of
the speaker’s utterances, as well as the motivation behind the
initiation and the history of the dialogue, and even his/her
assumptions about the opinions and goals of the interlocutor.
We cannot derive the communicative function of a dialogue
by considering only the surface form of utterances since the
same utterance forms can have different meanings in different
conversations between different people. In the present study, to
model states of both listening and speaking, we used high-level
speech features.

It has been reported that (e.g., Dbabis et al., 2015; Bunt
et al., 2017b) as high-level speech features, the dimensions and
dialogue acts of ISO 24617-2 standard could be automatically
recognized with fairly high accuracy. Therefore, even in case of
a fully automated analysis, which can be conducted as a further
study, ISO 24617-2 standard is a good candidate for extracting
high-level speech features. The analysis of gaze and its ties to
co-occurring speech is not a new topic of inquiry (e.g., Ekman,
1979; Zoric et al., 2011; Ho et al., 2015); however, as mentioned
above, speech analysis was performed based on syntactic features
or just for specific communicative function(s) such as turn
taking, instead of adopting comprehensive semantic annotation
frameworks. To the best of our knowledge, ISO 24617-2 standard
has not been adopted in predicting gaze direction, so far.

In the present study, the speech annotation was handled
in two ways: (i) ISO 24617-2 and ISO 24617-8 for annotating
discourse and rhetorical relations, respectively, and (ii) an
alternative set of speech tags that we proposed based on the roles
attributed specifically to the gaze in social communication. The
reason of annotating speech with two different methods is to
investigate which characteristics of speech will produce better
performance in modeling social gaze. In the following section,
we present experimental investigation with analysis results.

EXPERIMENTAL INVESTIGATION

Materials and Design
Participants
Twenty-eight pairs involved seven professional interviewers, 4
females (mean age = 33.8, SD = 4.72) and 3 males (mean age
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= 35.7, SD = 0.58), with the mean age of 34.6 (SD = 3.51); and
28 interviewees, 14 females (mean age = 25.1, SD = 2.57), and
14 males (mean age = 25.4, SD = 2.68), with the mean age of
25.3 (SD= 2.58) took part in the study. Interviewers took part in
multiple interviews (M = 4, SD= 0.93). Participants in each pair
did not know each other beforehand. All the participants were
native speakers and had a normal or corrected-to-normal vision.

Apparatus
Both participants in a pair wore monocular Tobii eye-tracking
glasses, which had a sampling rate of 30Hz with a 56◦ × 40◦

recording visual angle capacity for the visual scene. The glasses
recorded the video of the scene camera and the sound, in addition
to gaze data. Interviewers read the questions and evaluated the
interviewee’s response on a Wacom PL-1600 15.6 Inch Tablet,
which enables users to interact with the screen by using a
digital pen.

Procedures
The task was a mock job interview. It is adopted from the
previous studies (i.e., Andrist et al., 2013, 2014). Eight common
job interview questions, adopted from Villani et al. (2012),
were translated into Turkish and presented to interviewers
beforehand. The interviewer was instructed to ask given
questions and also to evaluate the interviewee for each question
right after the response. A beeping sound was generated to
indicate the beginning of a session. The participants stayed alone
in the room throughout the sessions.

Data and Analysis
Data analysis consists of three main steps. In the first one, we
extracted gaze directions of each participant. As the next step,
we analyzed audio data for extracting high-level speech features.
In the final step, we synchronized gaze direction data with
speech annotations.

We have developed an open source application that provides
an environment for researchers working in the field without
requiring a technical background (Arslan Aydin et al., 2018).
It is capable of detecting and tracking conversation partner’s
face automatically, overlaying gaze data on top of the face
video, and incorporating speech through speech tag annotation.
It automatically detects whether the extracted raw gaze data
is face gaze of an interlocutor or an aversion. In addition, it
provides interfaces for speech analysis involving segmentation,
synchronization of pair recordings, and annotation of segments.
It significantly reduces the time and effort required for manual
annotation of eye and audio recording data. Manual annotation
is vulnerable to human-related errors, and in addition, automatic
annotation with the state-of-the-art methods provide further
information that may not be extractedmanually such as detecting
the coordinates of facial landmarks, taking into account the error
margins while annotating the gaze direction or segmentation of
the speech at milliseconds precision. The application employs
OpenFace (Baltrusaitis et al., 2016) for gaze direction analysis,

CMUSphinx3 for audio recording analysis, and dlib4 for training
custom face detector. We generally used interfaces of the
developed application in the gaze and the speech tag set analysis.

Speech Analysis
Audio stream from each participant’s recordings was extracted
before performing the speech analysis. The mean duration of the
recordings was 09:41.543 (SD= 04:05.418) (inmm:ss.ms format).
We performed speech analysis with two methods both including
segmentation and annotation sub-steps. As the first step of speech
tag set analysis, the audio files of sessions were segmented into
smaller chunks including sub-words and pauses. The number
of segments (M = 737.4, SD = 414.1) varied depending on
the length and the content of the audio. Since the developed
application called Sphinx4 libraries for the segmentation of audio
files, each segment had amaximum temporal resolution of 10 ms.

Then, in order to determine session intervals and provide
synchronization between the pair recordings, we listened to audio
segments and identified the ones containing beeping sound.
The time offset between the pair’s recordings was calculated
by using the application interface. Lastly, for improving
segmentation quality, the synchronized pair recordings were re-
segmented via merging the time interval information of both
participants’ segments (see resources5 for an example and usage
of developed application).

At the annotation stage of speech tag set analysis, segments
were annotated with the predefined speech labels that we decided
to use by benefiting from the founding of previous social gaze
studies (e.g., Kendon, 1967; Emery, 2000; Rogers et al., 2018) and
also by examining the data we have collected. We considered the
following factors while creating the tag set including 14 labels:

• Separate labels were identified for Speech, Asking a Question,
and Confirmation.

• We classified pauses by their duration as proposed by Heldner
and Edlund (2010) (Pre-Speech, Speech Pause, Micro Pause).

• In parallel with the turn management role of speech, we
defined separate label for Signaling End of Speech.

• We named the conversation segment as Thinking when it
included filler sounds, such as uh, er, um, eee, and drawls.

• As the interviewer reads the questions from the screen, the
interviewer’s gaze would evidently be directed toward the
screen, so we tagged this case separately (Read Question).

• A separate label for repeating the question was identified
(Repetition of the Question).

• We assumed that gaze direction would be affected by laughter
(Laugh, Speech While Laughing).

• We handled Greeting apart from Speech, because we assumed
that the sender would aim to signal intimacy while greeting
and this might have an effect on gaze direction.

3The Sphinx4 is a speech recognition system jointly designed by Carnegie Mellon

University, Sun Microsystems Laboratories, Mitsubishi Electric Research Labs,

and Hewlett-Packard’s Cambridge Research Lab. The Official website is: http://

cmusphinx.sourceforge.net/.
4It is a C++ Library, http://dlib.net/ (accessed on April 15, 2017).
5See the MAGiC App Channel under YouTube, https://www.youtube.com/

channel/UC2gvq0OluwpdjVKGSGg-vaQ, and MAGiC App Wiki Page under

Github, https://github.com/ulkursln/MAGiC/wiki.
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• The interviewers evaluated the interviewee’s answer before
proceeding to the next question. This evaluation process was
performed by looking at the screen. If it did notmeet one of the
above conditions, the interval from the end of the interviewee’s
answer to the beginning of the new question was labeled as
Questionnaire Filling.

The second method is dialogue act analysis using the ISO 24617-
2 standard. The closer the microphone was to the participant,
the cleaner and the better the gathered audio recording was.
Therefore, in order to not miss any data, we transcribed the
conversations by listening to the audio streams of both the
interviewer and the interviewee in a pair separately. We first
opened a Google Document and enabled speech to text feature,
then started to articulate audio while listening to the interviewee’s
audio stream. After that, we listened to the same recording once
more to add non-verbal vocalizations to the transcribed texts,
such as Unfinished Word, Filler Sound, Laugh, Drawl, Warm-
up, and so on. Adding non-verbal vocalizations is recommended
by the ISO 24617-2 standard depending on their effect on the
choice of communicative function, or qualifiers (ISO 24617-
2, 2012; Bunt et al., 2017a). Then, while we were listening to
the interviewer’s audio stream for the same pair, we completed
missing words in the transcription text file of a session. Thus, we
reviewed the transcription of a session twice in this phase. Lastly,
we divided the transcription text file into two separate files based
on the source. As a result, at the end of the Transcription phase,
two files per session were created in total, one for the interviewer’s
transcription and other for the interviewee’s.

Secondly, by using the Praat6 program, three students marked
the time interval of a total of 16,716 words in 15 out of
25 sessions. When selecting these 15 sessions, we have given
priority to long sessions in which dialogue act and RR tagging
might be more frequent. Praat is a free application for speech
analysis in phonetics. We employed only the “Transcribing
speech with Praat function.” As we have already transcribed
audio stream, the word or non-word vocalization was copied
from the transcription file and pasted into the related area in
an interface. Then, the time interval of a word was specified by
marking the beginning and the end. Even though we reviewed
the transcript text twice in the previous phase, there would still
be some missed words or non-word vocalizations. In such cases,
the transcription file was updated with the missing word and/or
non-word vocalization. In addition to that, after each word was
processed, a controller checked if it was necessary to update
the time intervals of words and transcribed texts. Thus, the
transcribed text file was reviewed four times in total since its
creation and word intervals were checked twice. As a result, at the
end of this phase, we are left with a single transcription file and
two files storing time intervals of words, one for the interviewer’s
transcription and the other for the interviewee’s.

We segmented speech utterances into dialogue act units. As
proposed by Prasad and Bunt (2015), dialogue act units were
determined based on the meaning rather than the syntactic
features. Dialogue act represents the communicative function

6For detailed information, see the website: http://www.fon.hum.uva.nl/praat/.

that serves in a dialogue to change the state of mind of an
addressee by means of its semantic content.

Since we were investigating the relation between dialogue
act units and gaze direction, which was able to change quite
fast, we specified dialogue act units in smaller intervals that
differed from the previous and the subsequent dialogue act units
in terms of communicative function, qualifiers, and RRs. Even
though ISO 24617-2 supports RR annotation, it does not specify
any particular set for RR. Thus, we employed another standard
recommended by ISO 24617-2 for the annotation of discourse
relation. ISO 24617-8, also known as ISODR-Core, was proposed
as an international standard for the annotation of discourse
relations (Prasad and Bunt, 2015; Bunt and Prasad, 2016; ISO
24617-8, 2016). To understand the discourse as a whole, the
relation between the sentences or clauses in the discourse (i.e.,
Rhetorical Relations) should be considered.

Lastly, dialogue act units were annotated on the human-
friendly excel file in DiAML-MultiTab format; the workflow
is presented in Figure 2. According to DiAML-Multitab
representation, an annotator has to assign the unique ID to
each dialogue act. Moreover, if there is a functional or feedback
dependence between two dialogue acts, intending to represent
this relation, the ID of the preceding dialogue act should be
referenced by the succeeding one. We developed an excel macro7

to automatize the process of assigning unique ID’s and updating
references. As suggested in the annotation guideline, whatever
the way the speaker expressed himself, the following questions
were considered during annotation: (i) why the speaker said it,
(ii) what the purpose of the speaker in using this utterance is,
and (iii) what the speaker’s assumptions about the person he was
addressing are. ISO 24617-2 indicates that labeling should be
based on the speaker’s intention, instead of what he or she says
literally. Therefore, this standard proposes to think functionally
rather than relying on linguistic cues, which are useful but
focusing only on them couldmake usmiss what the speaker really
wants to say and that would cause false labeling8.

ISO 24617-2 proposed nine dimensions based on the type of
semantic content: Task, Turn Management, Time Management,
Auto Feedback, Own Communication Management, Discourse
Structuring, Social Obligation Management, Allo Feedback,
Partner Communication Management, and 56 communicative
functions. In the present study, we encountered 43 out of 56
communicative functions, except the following ones: Correction,
Accept Offer, Decline Offer, Decline Request, Decline Suggestion,
Auto Negative, Allo Negative, Feedback Elicitation, Return
Self Introduction, Question, Address Offer, Address Request,
and Address Suggest. Moreover, ISO DR-Core recommends 18
labels for RR annotation. In the present study, all 18 labels
were included.

We calculated the intra-annotator agreement via Cohen’s
Kappa score to measure annotation (or annotator) reliability.
More than 6 months after the first annotation, the same

7It is available under https://gist.github.com/ulkursln.
8A binary decision tree that can be used while determining the communicative

functions and the dimensions is available for annotation of Turkish dialogues,

under https://github.com/ulkursln/Dialogue-Act-Annotation.
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FIGURE 2 | The workflow of segmentation and annotation.

annotator annotated ∼25% of the data (corresponding to six
sessions out of 25 sessions for annotations with speech tag set
and four sessions out of 15 sessions for annotations with ISO
24617-2 standard). The Cohen’s Kappa scores were observed to
be equal to 0.85, 0.80, and 0.89 for dimensions of ISO 24617-
2, communicative functions of ISO 24617-2 and speech tags,
respectively (p < 0.0001).

Gaze Analysis
We performed gaze analysis by using the related interfaces of
developed application (Arslan Aydin et al., 2018). Firstly, we
exported raw data of eye movements as an output file storing x
and y positions of the right eye at a resolution of 33.3 ms.

Then, in order to interpolate missing gaze data, first the
scaling factor was calculated via Equation 1 (where t represents
timestamp), and then the location of the first sample after gap was
multiplied by the scaling factor, and lastly the result was added
to the location of the last sample before the gap. The max gap
length that would be filled with interpolation was chosen to be
shorter than a normal blink, which was 75ms as proposed by
previous studies (e.g., Ingre et al., 2006; Komogortsev et al., 2010;

FIGURE 3 | The set of facial landmarks are presented around the face of the

interviewer with pink circles. The green dot represents the gaze location of the

conversation partner. Color should be used in print.

Benedetto et al., 2011).

sscaling factor =
tsample to be replaced − tfirst sample after gap

tlast sample before gap − tfirst sample after gap
, (1)

[taken from Olsen, 2012]
Secondly, we extracted face boundaries with the default

detector proposed by the developed application. Video
recordings of 28 pairs consisting of a total of 828,618 frame
images were processed for gaze analysis. The face boundaries
over 68 2D facial landmarks were automatically detected and
stored under text files as an outcome of face-tracking process.
Thirdly, we extracted Area of Interest (AOI) labels corresponding
to the frame image, along with the input parameters: (i) 2D
landmarks of faces; and (ii) linearly interpolated raw gaze data.
AOIs provided information of whether, at a particular time, a
participant was looking at the interlocutor’s face, i.e., face gaze, or
looking away from it, i.e., aversion. Also, the relative positions of
gaze data with respect to the face on each particular frame image
were stored. If the gaze position was outside the face boundary,
one of eight character values, a, b, c, d, f, g, h, and i, was assigned
in order to denote gaze aversion; otherwise, an e character was
assigned as an AOI label to denote face gaze (see Figure 3).

Fourthly, we monitored the efficiency of face detection by
looking at the number and percentage of extracted AOI labels
in frame images. The detection of AOI labels failed due to
undetected faces and/or the missing gaze data. Fifthly, we trained
a custom face detector via training interface of the developed
application for the video streams in case more than 30% of
frame images could not be assigned to an AOI label. Then,
we extracted face boundaries with the custom detector and,
after that, monitored the performance. The detection percentage
of AOIs that were extracted by employing either default or
custom face detector were compared, and we continued the
analysis with the AOIs that got the higher detection ratio.
We carried on analysis for 11 records of interviewees and
a single record of interviewers with AOI labels extracted by
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FIGURE 4 | Process flow for fixation detection of gaze directions.

employing trained detectors. For all remaining recordings, the
ones extracted by employing default detectors were adopted.
Sixthly, we assigned AOI labels to the frame images manually for
the following cases:

• The face of the interlocutor was on frame image, yet it could
not be detected automatically.

• The face of the interlocutor was on frame image, but it was not
detected correctly.

• The face of the interlocutor did not exist for that particular
frame image. This happens especially when an interviewer
was looking at the monitor while evaluating the response or
reading the question. In such cases with respect to the location
of monitor, we easily inferred AOI label.

After reviewing and updating the extracted AOI labels manually,
we re-monitored the performance and eliminated three pairs in
which the amount of assigned AOI labels correspond to <70% of
interviewers’ and/or interviewees’ recordings in a pair. Hence, we
continued analysis with the remaining 25 pairs.

Lastly, in order to get rid of noise, saccadic movements, or
blinks in the data, fixations were extracted in order to group the
raw gaze data. In line with the literature (e.g., Manor andGordon,
2003; Camilli et al., 2008; Komogortsev et al., 2010; Benedetto
et al., 2011), we followed the consequent steps, as illustrated in
Figure 4.

Multimodal Data
For each speech annotation method, the data obtained in speech
and gaze analyses were merged into a single summary file. As a

result, we obtained a series of gaze direction and related features
taken at successive intervals of 33.3 ms.

Gaze and Speech Tag Set
The columns of the summary file were the speech tag, sender,
gaze direction of sender, and of an interlocutor on the particular
frame image.

Gaze and Dialogue Act
We first found the time interval of a particular dialogue
unit by concatenating the time intervals of each word
that produced a dialogue unit together. In the summary
file, each line represented the gaze direction of a sender
and of an interlocutor on the particular frame with the
corresponding communicative function(s), dimension(s), sender
information, and, if exist, RR(s), functional dependence(s),
feedback dependence(s), certainty, and sentiment qualifier.

ANALYSIS RESULTS

All statistical analyses were carried out in R programming
language (R Core Team, 2016) and publicly available9. We first
screened data and removed outliers. After that, we checked the
assumptions of analysis and consequently decided whether we
should transform data and run the parametric test or the non-
parametric one. We handled individual differences by employing
mixed models.

Frequency
We calculated the normalized frequency by dividing the count
of extracted AOIs of a particular session by the duration of that
session. The paired sample t-test was performed to compare
the frequencies of face gaze and aversion per role. The analysis
revealed that there was no significant difference between the
frequencies of gaze aversion (M = 20.8, SE = 2.62) and face
contact (M = 23.2, SE = 1.86) for interviewers, t(22) = −1.82, p
= 0.08. On the other hand, interviewees’ gaze aversion frequency
(M = 44.7, SE = 3.6) was significantly higher than their face
contact frequency (M = 35, SE = 3.13), t(24) = 2.49, p =

0.02. Moreover, interviewees performed aversion (M = 44.7, SE
= 3.60) and face gaze (M = 35, SE = 3.13) more frequently
compared to the interviewers (aversion:M= 20.8, SE= 2.62; face
gaze: M = 23.2, SE = 1.86) and the differences were significant
for both aversion, t(23) = −5.03, p < 0.000, and face gaze, t(22) =
−3.28, p= 0.003 (see Figure 5). It is possible for an interviewer to
perform higher frequency in both gaze directions. Because there
was also significant difference in the duration of gaze directions
between roles, see section Duration.

We conducted analysis with the fixations instead of raw gaze
data. Raw gaze data include noise and saccadic movements,
which are rapid and designed to direct the fovea to the vision
of interest. Saccadic behavior might be important for particular
research questions like searching for visual targets, but in the
present study, since we focused on maintaining gaze on the

9Please see https://github.com/ulkursln/R-scripts for R scripts.
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FIGURE 5 | The frequency of gaze directions per roles in a minute.

interlocutor’s face or out of the face, we should eliminate jumping
behaviors as well as noise from the data.

In this study, if we had worked with raw gaze data instead of
fixations, we could not observe a significant effect of the role on
the frequency of gaze directions. The average frequency of face
gaze comprised 53% of the sessions for interviewers, whereas it
was 58% for interviewees. We also examined the frequency and
duration of when two participants look at each other’s face at the
same time, i.e., mutual face gaze. The mutual face gaze averagely
comprised 27.7% (SE= 4.51) of the entire session, and its average
duration was 517.7ms (SE= 0.23).

Duration
We first screened data and removed outliers, and then tested the
assumptions of the linear mixed model. Since the data were non-
normal and violated the homogeneity assumption, we performed
penalized quasi-likelihood (PQL) instead of linearity test. PQL is
a flexible model that can deal with unbalanced design, non-linear
data, and random effects.

We compared the potential models by ANOVA test to find
out which one fits best. The statistical model for the duration
of gaze aversion is given in Equation 2 below. Fixed effects were
Gender, Partner Gender, Role, and their two-way and three-way
interactions. In addition to that, the mixed effect term was added
for varying intercepts by interviewers, and by interviewees that
are nested within interviewers’ groups. Lastly, we considered
varying the slope of the interaction between Gender and Partner
Gender differing across interviewers’ groups.

Fixedeffects = Role× Gender× PartnerGender,

Randomeffects = 1+ Gender×PartnerGender

|InterviewerID/IntervieweeID. (2)

The statistical model for the duration of face gaze is given in
Equation 3. We compared the potential models by ANOVA test
to find out which one fits best. Fixed effects were Gender, Partner
Gender,Role, and their interactions. In addition to that, themixed
effect term was added for varying intercepts by interviewers, and

FIGURE 6 | The average duration of gaze directions in ms.

by interviewees that are nested within interviewers’ groups.

Fixed effects = Role × Gender × PartnerGender,

Random effects = 1| InterviewerID /IntervieweeID. (3)

The interviewer’s face gaze duration (M = 648.9ms, SE = 7.06)
was significantly higher than the interviewee’s face gaze duration
(M = 585.8ms, SE = 6.06), t(10,434) = – 1.977, p = 0.048. There
was a significant effect of the role, i.e., being an interviewer or an
interviewee, on the duration of gaze aversion (see Figure 6). The
post-hoc tests revealed that a significant difference between the
aversion durations of interviewers (M = 258.2ms, SE=5.25) and
interviewees (M = 313.2ms, SE = 3.43) was observed when the
partner gender was female, t(9,760) = 5.75, p < 0.0001.

Multimodal Analysis of Gaze and Speech
In multimodal analysis, we examined the relation of gaze
direction with either speech tags or communicative functions.
The statistical analyses were conducted on the top five labels for
both annotation schemes. In this section, we will describe the
analysis steps via speech tag set. Similar calculations were also
performed for dialogue act analysis.

Primarily, we extracted the ratio of gaze behavior observed
during an instance of speech tag set. Each instance of speech tag
set might be assigned several times during a session. In Equation
4, let B be a set including percentages of aversion (A) and face
gaze (FG) during occurrences of speech tags, for session x and
participant p, where i is the element of F, which is a set of
frame IDs labeled with particular speech tag. D function gets
the frame IDs and type of gaze direction, namely, A or FG, as
input parameters and returns the durations of that specified gaze
direction among those frames.

Bx,p (S,A) =

{

i ǫ Fs :
D (i,A)

D (i,A) + D (i, FG)

}

, (4)

The process details are given in Table 3. A sample
implementation of Equation 4 for Table 3 would be as follows:

Frame Set:
Fs1 ={[1–9], [46–95]}
Gaze Directions:
D ([1− 9] ,A) ={6}; D ([46− 95] ,A) ={25, 14}
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TABLE 3 | Illustration of calculating the ratio of gaze direction (GD) to the

particular speech-tags, S1,#index and S2,#index.

Frame no. Speech-

Tag(S)

(id,#index)

GD Ratio of GD duration

1 S1,1 A |A| / |S1,1 |= 6/9

2 A

3 A

4 A

5 A

6 A

7 FG |FG| / |S1,1 | = 3/9

8 FG

9 FG

26 S2,1 FG |FG| / |S2,1 |= 10/20

27 FG

28–35 FG

36–44 A |A| / |S2,1 |= 10/20

45 A

46 S1,2 A |A| / |S1,2 | = 25/50

47 A

48–70 A

71 FG |FG| / |S1,2 | = 11/50

72–81 FG

82 A |A| / |S1,2 |= 14/50

83–95 A

Only the interviewer’s gaze behavior is considered. A similar calculation is also performed

for interviewees. We intentionally skipped the frames between 10 and 25 to simulate

realistic data. During the analysis, we excluded the frames in which there was no extracted

gaze direction for the interviewer or interviewee.

D ([1− 9] , FG) ={3}; D ([46− 95] , FG) ={11}
Set of Aversion Percentages, during S1:

B1,interviewer (S1,A) ={i ǫ {[1–9], [46–95]}: D(i,A)

(D(i,A)+D(i,FG))
}

B1,interviewer (S1,A) = {6/9, 25/50, 14/50}
Set of Face Gaze Percentages, during S1:

B1,interviewer (S1, FG) ={i ǫ {[1–9], [46–95]}: D(i,FG)

(D(i,A)+D(i,FG))
}

B1,interviewer (S1, FG) = {3/9, 11/50}
As well as the duration, we also calculated the frequency of
gaze directions during a particular speech tag. This time, we
just consider the fixation counts of related gaze direction. For
instance, in Table 3, the frequency of face gaze was one for S1,2,
whereas the frequency of aversion was two. Thus, the percentages
were 1/3 and 2/3, respectively.

Speech Tag Set Annotation
The data were non-normal and violated the homogeneity
assumption; thus, we performed PQL. The statistical model is
described by Equation 5. Fixed effects were Role, Speech tag, their
mutual interaction, Interviewer’s Gender, Interviewee’s Gender,
and their mutual interaction. Besides, the mixed effect term was
added for varying intercepts by interviewers and by interviewees
that are nested within interviewers’ groups. Lastly, we added the
Speech tag ID, which was a unique identifier for each occurrence

of speech tag, as a mixed effect term.

Fixed effects = Role × SpeechTag + Interviewer′s Gender

× Interviewee′s Gender,

Random effects = 1 | InterviewerID/IntervieweeID + 1|

Speech tag ID. (5)

There was a significant difference in the frequency of gaze
direction ratios between the interviewers and interviewees when
the speech tag was Thinking [t(6,840) = 13, p < 0.0001], Speech
[t(6,840) = 12.9, p < 0.0001], Speech Pause [t(6,840) = 10.8, p
< 0.0001], or Micro Pause [t(6,840) = 7.23, p < 0.0001] (see
Figure 7).

We also examined the difference in duration of gaze direction
between the interviewers and interviewees. Similarly, results
revealed that when the speech tag was Thinking [t(6,840) = 13.3,
p < 0.0001], Speech [t(6,840) = 12.9, p < 0.0001], Speech Pause
[t(6,840) = 10.7, p < 0.0001], or Micro Pause [t(6,840) = 7.8, p
< 0.0001], interviewee’s gaze aversion duration was significantly
longer than the interviewer’s.

Dialogue Act Annotation
The data were non-normal and violated the homogeneity
assumption; thus, we performed PQL. The statistical model is
described by Equation 6. Fixed effects were Role, Communicative
Function, their mutual interaction, Interviewer’s Gender,
Interviewee’s Gender, and their mutual interaction. In addition,
the mixed effect term was added for varying intercepts by
interviewers and by interviewees that are nested within
interviewers’ groups. Lastly, we also added the Communicative
Function ID, which was a unique identifier for each occurrence
of communicative functions, as a mixed effect term.

Fixed effects = Role × Communicative Function

+ Interviewer′s Gender × Interviewee′s Gender

Random effects = 1 | InterviewerID/IntervieweeID + 1|

Communicative Function ID. (6)

There was a significant difference in the frequency of gaze
direction ratios between the interviewers and interviewees when
the communicative function was Answer [t(5,334) = 13.1, p <

0.0001], Stalling [t(5,334) = 19.9, p< 0.0001], or Turn Take [t(5,334)
= 5.69, p < 0.0001] (see Figure 8).

We also examined the difference in the duration of gaze
direction between the interviewers and interviewees. Similarly,
results revealed that when the communicative function was
Answer [t(5,334) = 14.2, p < 0.0001], Stalling [t(5,334) = 19.8,
p < 0.0001], or Turn Take [t(5,334) = 5.58, p < 0.0001],
interviewee’s gaze aversion duration was significantly longer than
the interviewer’s.

A DEEP COMPUTATIONAL MODEL

For computational modeling, we use CNNs. CNNs are
specialized versions of fully connected networks with localized
receptive fields. In the present study, we adapted simplified
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FIGURE 7 | Frequency of gaze direction ratios for the top five speech tags observed in the collected data. Since the gaze direction can be either face gaze or

aversion, a total ratio for all bars are 1. Significant differences are presented with * character.

FIGURE 8 | Frequency of gaze direction ratios for the top five communicative functions observed in the collected data. Since the gaze direction can be either face

gaze or aversion, a total ratio for all bars are 1. Significant differences are presented with * character.

versions of two state-of-the-art CNN architectures, namely,
ResNet (He et al., 2016) and VGGNet (Simonyan and Zisserman,
2015).

We collected gaze data in the form of a time series and trained
two 1D CNN networks. In 1D CNNs, data points in time series
are generally introduced to the network as a window of instances.
The window is slid in time by a number of time steps, which is
called stride. For instance, for a two-channel signal consisting of
eight time steps, a window size of four and stride of two would
yield three input samples with a size of 4× 2 (see Figure 9).

We adapt two CNN architectures (VGGNet and ResNet) and
called them gazeVGG and gazeResNet (see Figure 10). Batch
normalization, pooling, weight regularization, and dropout were
applied to both networks for handling overfitting.

Data Presentation Details
In the present study, we obtained a series of gaze direction
and related features at successive intervals of 33.3ms. According
to the data obtained from the human–human experiment (see
section Experimental Investigation), the average gaze aversion
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FIGURE 9 | The time-series data and how they are prepared before processing with the deep networks. On the left, the input has a size of 8 × 2 where the number of

time steps is eight and the number of channels is two. On the right-hand side, the shape has changed to 3 × 4 × 2 where the window size is four and the stride is two.

FIGURE 10 | (A) GazeVGG architecture with batch normalization, regularization, and pooling. (B) GazeResNet architecture with batch normalization, regularization,

and pooling. There is convolution between blocks and a residual connection between the last item of the previous block and the current one. *L2 weight and bias

regularizers were applied. **L2 weight regularizer was applied.

duration was ∼300 ms. Therefore, we used nine as the window
size as single frame took 33.3ms, and since the minimum fixation
duration was 100ms, we set stride to three.

In our experimental design, while the interviewees
participated in a single session, interviewers took part in

multiple interviews. We designed our computational models
for predicting gaze direction of interviewers. At first, we
applied One-Hot-Encoding to convert categorical data into
numbers. For the input data including speech annotation with
the speech tag set, we used a total of 20 features including
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Sender, Speech Instance, Gender, Is the Same Person, and
Interviewee’s Gaze direction. On the other hand, a total of
137 channels involving Sender, Gender, Is the Same Person,
Interviewee’s Gaze direction, Communicative Function,
Dimension, Certainty, Sentiment, Functional Dependence,
Feedback Dependence, Rhetorical Relation, and Argument
Number of Rhetorical Relations were utilized for the dialogue
act models. Therefore, for a window of size nine, a single input
to a CNN had 180 dimensions for data annotated with the
speech tag set and 1,233 dimensions for data annotated with ISO
24617-2 standard.

Training and Implementation Details
For both CNNs, binary-cross entropy was used as the
objective function, which was minimized using Adam optimizer.
Moreover, we used dropout with a value of 0.2 and L2
regularization with a value of 0.001. We trained gazeResNet
models for 100 epochs with a batch size of 64. Similarly, we
trained gazeVGG models for 100 epochs with a batch size
of 64 and pool sizes of 2. We have empirically changed and
evaluated the different settings for L1, L2, epoch count, window
size, stride, etc., and we have provided the best settings. In
the hyper-parameter tuning phase, we used backtesting that is
specific to the time series as a cross-validation method. We
trained gazeVGG and gazeResNet models with 16 or 32 filters
in the first block and, taking input data, annotated either with
an ISO 24617-2 standard (i.e., dialogue acts) or speech tag set.
For the data annotated with dialogue acts with 32 filters in
ResNet and 16 filters in VGG, and for the data annotated with
a speech tag set, 32 filters in both VGG and ResNet achieved
better accuracies.

In the n-fold back-testing, the ratio of data provided for the
training and validation is different at each split. It is five for
the fifth split and one for the first split. When the training
data are not big enough, the network might not quite learn
about the underlying trend of the data. For instance, in the
present study, the second and the third interviewer had a greater
tendency to aversion whereas the sixth one had a tendency in
the opposite direction. Hence, especially for the second and the
fourth splits, the distribution of data for training and testing
was different, which resulted in validation fluctuations. Particular
orders of interviewers in the input data result in specific orders
of interviewers in splits used for training and validation. This
might cause testing the network with a different distribution than
the one used in training. The classical cross-validation method
enables one to handle such distribution issues by randomly
dividing the set of input data into training and test sets.
However, time-series data have temporal relations that prevent
randomized division. In order to overcome this issue, we trained
and evaluated themodels by building 5-fold cross-validation with
data sets created by shuffling the orders of interviewers in the
input data while preserving temporal order within each session.

Training was performed on Google Colab, which is a free
Jupyter notebook environment provided by Google. Colab offers
Tesla K80 GPU. The training codes were implemented in Python
3.0 by Keras libraries with Tensorflow backend.

Results
We analyzed the gaze prediction performances of the two CNN
architectures. Table 4 lists the performances with both dialogue
act and speech tag inputs. We see that models running on the
data annotated with speech tags generally perform better than the
ones running on the data annotated with dialogue acts.

In order to examine the quantitative differences between
classification accuracy of the models, we also analyzed confusion
matrices in Table 5, which contain the percentages of false and
correct estimations. We notice that models with both speech
tag and dialogue act could predict the direction of face gaze
with similar and relatively high accuracies (i.e., speech tag set
model achieved 85.1% accuracy and dialogue act model achieved
94.8% accuracy), whereas there was a difference in the prediction
accuracies of aversion between the models. Speech tag set model
could predict aversions better than Dialogue act model.

The performances of GazeResNet models were also assessed
via calculating the recall, precision, and F scores. In predicting
aversions, a precision of 0.69, a recall of 0.63, and an F score
of 0.65 were obtained for the data annotated with speech tag
scheme, while dialogue act scheme yielded a precision value of
0.65, a recall of 0.22, and an F score of 0.33.

DISCUSSION

Face-to-face communication is inherently multimodal. Gaze
provides an effective way to receive and send information in a
face-to-face interaction as a non-verbal communication channel
accompanying speech. When studying gaze and speech, it is
necessary to decide from which level both models will be
addressed. Low-level eye movements, anatomic features of the
eye, and kinematics of eye movements have been extensively
studied by physiologists. However, although there exist studies
in the related fields, eye movements have some other high-
level characteristics that are still waiting to be resolved, like
when they occur, how long they last, and what their roles
are in communication (Ruhland et al., 2015). As in the gaze
studies, researchers have dealt with the speech at different levels
for modeling non-verbal communication components driven by
speech (Cassell et al., 1999; Zoric et al., 2011;Marsella et al., 2013).

Experimental Analysis
In the present study, we investigated the roles of the high-level
characteristic of eye movements driven by high-level features
of speech in a face-to-face interaction. The two major research
questions of the study were: “What are the underlying features
of gaze direction among humans” and “What is the relation
between gaze and speech to achieve conversational goals in a
specified face-to-face interaction?” To examine these questions,
we conducted a mock job interview task. Twenty-eight pairs
consisted of seven professional interviewers and 28 interviewees
took part in the study. They wore Tobii glasses throughout
the study.

We automated the analysis mostly by utilizing the state
of the art methods. That way, we aimed to overcome some
methodological problems and reduce the amount of human-
related errors and the time necessary for annotation. We

Frontiers in Neurorobotics | www.frontiersin.org 13 March 2021 | Volume 15 | Article 59889537

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Arslan Aydin et al. Speech Driven Gaze

TABLE 4 | Performances of computational models with 5-fold cross-validation.

Tagging

scheme

CNN

architecture

Avg. training

accuracy

(%)

Test accuracy of

folds

(%)

Avg. test accuracy

(%)

Dialogue act VGG 83.2 (SD: 1.20) 89.5, 76.7, 70.6, 60.3,

57.1

69.6 (SD: 11.3)

ResNet 83.1 (SD: 0.88) 87.7, 77.1, 70.8, 59.8,

58

70.7 (SD: 12.3)

Speech tag

set

VGG 81.1 (SD: 0.18) 83.2, 68.6, 81.5, 76.9,

74.6

76.9 (SD: 5.82)

ResNet 81.1 (SD: 0.14) 84.6, 69.6, 81.4, 82,

76.2

78.8 (SD: 5.94)

The highest test accuracy was obtained with the GazeResNet model when applied on data annotated with the speech tags. Those accuracy values are presented in bold.

TABLE 5 | Confusion matrix of the GazeResNet models with the highest

performances for each tagging scheme.

Predicted class

Speech tag set/Dialogue act (%)

Face gaze Aversion

Actual class Face gaze 85.1/94.8 14.9/5.2

Aversion 23.7/46.0 76.3/54.0

It represents the percentages of true and false predictions made on actual classes, i.e.,

aversion and face gaze. The percentage of true aversion predictions is 76.3% for the

Speech tag set model, while it is 54% for the dialogue act model.

used an open source project (Arslan Aydin et al., 2018) that
provided interfaces for the analysis of gaze involving face
detection and identification of gaze direction. Moreover, it
enabled speech analysis including segmentation, annotation, and
synchronization of pair’s recordings.

Gaze direction was identified as either face gaze or gaze
aversion based on the decision whether the participant was
looking at the other person’s face or not. The gaze analysis was
carried out in three steps: (i) determining the boundaries of the
face, i.e., face detection; (ii) deciding whether the partner’s gaze
was within those boundaries, i.e., identification of gaze direction;
and (iii) fixation detection.

We monitored the ratio of unidentified gaze direction
on frame images of recordings. We observed that the AOI
identification rate on the frame images of the 11 interviewees’
recordings and two interviewers’ recordings was <70%. By
visualizing the recordings frame by frame, we realized that
even there exist gaze raw data of interviewees, the interlocutors’
(i.e., interviewers’) face might not be detected while they were
reading a question or evaluating the responses of an interviewee
by turning their head and accordingly face to the screen. For
such cases, we trained a custom face detector instead of using
Haar-Cascade classifiers, which were provided by the OpenFace
software, as the default detector. Moreover, in order to minimize
data loss, we manually determined the gaze direction on frame
images if they could not be detected automatically, but it was

possible to identify their AOI labels, like in the cases when the
face of the interlocutor was on frame image but could not be
tracked automatically.

We observed that interviewees performed face gaze and
aversion significantly more frequently when compared
to interviewers. Moreover, the gaze aversion durations of
interviewers were significantly longer than those of interviewees.
On the other hand, face gaze durations of interviewees were
significantly longer than that of interviewers. When we examined
gaze direction per role, we found that there was no difference
between the frequencies of gaze aversion and face gaze for
interviewers, while a significant difference was observed for
interviewees. Interviewees avert their gaze more frequently
compared to performing face gaze. These findings are in line
with the conclusions summarized by Kendon (1967) in his
detailed study investigating the function of gaze in a face-to-face
conversation. Kendon (1967) stated that individuals tend to look
at others more frequently when listening compared to speaking
and the glances of speakers would be shorter than the listeners.
He had grouped the roles in the conversation as speakers and
listeners. In the present study, due to the role of interviewees,
they spoke more frequently than the interviewers. Comparing
interviewers and interviewees, the gaze direction of the latter
was more similar to that of the speakers mentioned in Kendon
(1967).

Broz et al. (2012) studied mutual gaze in a face-to-face
conversation with participants wearing eye-tracking devices.
They observed a mutual face gaze occurring for about 46% of
a conversation. Rogers et al. (2018) also conducted a dual eye-
tracking study and reported that the mutual face gaze comprised
60% of the conversation with 2.2 s duration on average. On the
other hand, when cumulative data of all sessions are taken into
account, we found a lower ratio in the present study, which was
27.7% (SE = 4.51), and the average duration was 517.7ms (SE =

0.23), possibly due to differences in data collection settings and
analysis methods as reviewed below.

There are two crucial steps in determining mutual face gaze:
(i) deciding whether the gaze of an individual was inside the
face boundaries of an interlocutor, and (ii) synchronization
of recordings exported from eye-trackers. Broz et al. (2012)
and Rogers et al. (2018) manually annotated gaze direction
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in each frame. However, in the present study, interlocutor’s
face boundaries were detected based on 68 facial landmark
points and gaze direction was generally decided automatically.
Manual coding of gaze direction might be open to human-related
errors. Compared to the previous studies, we employed state-
of-the-art technologies for face boundary detection. Moreover,
because of the hardware or operational constraints, eye-tracking
devicesmight estimate gaze positions with deviations. Eye tracker
manufacturers provide the estimated error that is specific to
device in degrees for the visual angle. In the present study, we
utilized the developed application (Arslan Aydin et al., 2018),
which automatically considers such error margins to estimate
gaze direction, to visualize gaze and face boundaries overlaid
on a frame image. It is not possible to take exact error margin
into account just by visualizing data without benefiting from
proper scripts. For instance, Rogers et al. (2018) used 15 pixels
for the size of the circle that represents the gaze position.
They decided on a size of 15 pixels to achieve a balance
between comfort in the manual coding process while providing
distinguishable regions. In addition, using fixations instead of
raw gaze data and the methods adapted for fixation extraction
and synchronization of pair recordings might also affect the
findings. Also, differences in eye-tracking equipment, cultures,
spoken language, and experimental procedures might have an
impact on the variety of the reported ratio of mutual face
gaze and its duration. For instance, we performed a mock job
interview task; on the other hand, the ratio of gaze directions
of participants might be different in conversations without a
predetermined topic.

We handled speech analysis by employing two annotation
methods. In the first one, discourse and rhetorical relations
were annotated with standards of ISO 24617-2 and ISO 24617-
8, respectively. As a second method, we used an alternative
set of speech tags that we produce based on studies in the
role of eye movements in social communication and also based
on our observations on the data that we collected. Our aim
of annotating speech with the produced speech tag set is not
to propose an alternative scheme for speech annotation but
instead to investigate the characteristics of speech that produce
better performance in modeling social gaze. Then we conducted
analysis, to see the relation between gaze and speech. There
was a significant difference in the frequency of gaze directions
between the interviewers and interviewees when the speech
tag was Thinking, Speech, Speech Pause, and Micro Pause.
Interviewees’ gaze aversion frequency was higher for all those
cases. We performed similar analysis for dialogue acts. This time,
we found that, there was a significant difference between the
interviewer and interviewee when the communicative functions
wereAnswer, Stalling, and Turn Take. Similarly, for all these three
communicative functions, gaze aversion frequency was higher for
interviewees compared to interviewers.

Computational Models
The present study investigated further research questions
to improve the methodology of multimodal analysis of
communication, as follows: “How can we computationally model
gaze direction with the high-level features of speech” and “How

appropriate is employing discourse analysis scheme, namely,
ISO 24617-2 standard, in a computational model of gaze
direction?” To this aim, we trained two common Convolutional
Neural Network (CNN) architectures, namely, VGGNet and
ResNet. According to the experimental design, each interviewee
took part in a single session whereas an interviewer attended
more than one session. Therefore, we collected more data for
each individual interviewer compared to an interviewee. We
trained computational models to predict the gaze direction
of interviewers.

We trained GazeVGG and GazeResNet models with 16 or 32
filters in the first block and, taking input data, annotated with
either ISO 24617-2 standard or speech tag set. We observed
that GazeResNet models achieved better accuracies for both
annotation methods due to VGG bottleneck, which causes loss
of generalization capability after some depth whereas ResNet
handles this vanishing gradient problem by using residual
connections. Moreover, we found that the speech tag set
gave rise to better performances compared to dialogue act
annotations. Although both GazeResNet models predicted face
gaze with higher accuracies, ISO 24617-2 standard was not
good at predicting aversions. Compared to data annotated
with dialogue acts, Speech tags are more constant over time.
Therefore, attributing the difference in the accuracy of models
to that would not be a correct interpretation. The probable
reasons might be the differences in the number of features
and the number of input data. In addition, speech tag
set involves Pre-Speech, Speech Pause, and Micro Pause for
annotation of pauses whereas ISO 24617-2 standard does not
handle pauses.

We obtained a series of gaze direction and related features at
successive intervals of 33.3ms in the present study. According
to the human–human experiment data (section Experimental
Investigation) the average gaze aversion duration was ∼300
ms. Therefore, we used nine as the window size since a single
frame took 33.3ms. However, different values of window-size
and stride may lead to differences in the success ratio of the
models. Moreover, we just used the previous features in the
training. For instance, to predict the gaze direction at ti, the
features between ti−8 and ti were presented to the network.
However, we could get information from the subsequent frames
since we conducted an offline analysis. For instance, it might
be necessary to evaluate the entire speech up to ti+10 to decide
whether the speech label at ti was a Question. This constraint
should be addressed in an online system. We think that one way
to address this concern is as follows: Based on available data at the
time of a prediction, confidence values might be assigned to all
potential labels.

As presented in Table 4, even though we applied pooling,
weight, and dropout regularizations, there was still a difference
of around 10% between training and test accuracy performances
of the models that receive the data annotated by ISO 24617-2
standard. To get a more robust estimation about how accurately
models make predictions on unseen data, we then performed
10-fold cross-validation on those data by splitting the last 10%
of data for testing in each iteration. We obtained accuracy
performances similar to the 5-fold validation. Early stopping
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and increasing the size of input data might improve the model’s
generalization capability.

CONCLUSION

We investigated gaze accompanying speech in a face-to-face
interaction. Firstly, we studied the characteristics of gaze and its
relations with speech with an experimental research conducted
via mobile eye-tracking devices. The results indicate that the
frequency and duration of gaze differ significantly depending
on the role. We showed that these differences could not be
observed in the analysis performed with raw gaze data instead
of detected fixations. As in some of the previous studies,
performing gaze analysis with raw gaze data or with detected
fixations by using black box solutions is inadequate to obtain
comparable results. Moreover, in multimodal analysis, it is
important to automate annotations with the state-of-the-art
methods. Manual annotation is vulnerable to human-related
errors, and in addition, automatic annotation with the state-
of-the-art methods provide further information that may not
be extracted manually, such as detecting the coordinates of
facial landmarks, taking into account the error margins while
annotating the gaze direction or segmentation of the speech at
milliseconds precision. In the multimodal analysis, we find the
significant effect of speech tag set instances and communicative
functions, those related with time and turn management, in the
gaze directions.

Secondly, we developed CNN models of gaze direction in a
face-to-face interaction. At the computational model of gaze,
we observed that annotation with a simple tag set leads to a
better performance despite the higher effort spent for making
the dialogue act annotation on the same data. It might be
due to the differences in the number of features and input
data, but also a specific difference between the two annotation
methods is whether Pauses are addressed. The speech tag set
involves Pre-Speech (i.e., warming up the voice), Micro Pause
(i.e., gaps up to 200ms, as proposed by Heldner and Edlund,
2010), and Speech Pause (i.e., pauses that are not included in
the other two categories) for annotation of pauses. However, the
dialogue act annotation does not handle pauses. This suggests
that multimodality should be taken into account when proposing
automatic speech annotation schemes. Even though there was
no verbal communication, Pauses during a conversation had
an impact on non-verbal signals and, thus, on the interaction.
This finding may be justified by the fact that in natural settings,
listeners comprehend the speakers’ messages by integrating both
non-verbal and verbal channels in multiple channels (Kelly et al.,
2015). In addition, results showed that CNN, especially ResNet

models, allows us to predict high-level features of eye movement
with high-level features of speech.

As future work, other non-verbal cues accompanying
speech might be experimentally investigated to examine their
characteristics, roles, and relations in social communication. In
addition, the effect of language, culture, and personal differences
might be investigated to assess the generalizability of the result.
Moreover, neural network models mimic humanly cognitive
faculty at the behavioral level. Thus, suchmodels do not represent
the process that take place in the brain. There exist articles
discussing the capabilities of DNNs (e.g., Cichy and Kaiser,
2019). Despite the advances and rapid adaptation of deep neural
networks in various fields, their lack of interpretability remains
a problem. In particular, the visualization of 1D-CNN models
that take the input data as 1D vector is relatively new; however,
considering its explanatory power, future studies can be done to
explore the effect of input features.
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Occlusions, restricted field of view and limited resolution all constrain a robot’s ability to

sense its environment from a single observation. In these cases, the robot first needs to

actively query multiple observations and accumulate information before it can complete

a task. In this paper, we cast this problem of active vision as active inference, which

states that an intelligent agent maintains a generative model of its environment and acts

in order to minimize its surprise, or expected free energy according to this model. We

apply this to an object-reaching task for a 7-DOF robotic manipulator with an in-hand

camera to scan the workspace. A novel generative model using deep neural networks is

proposed that is able to fuse multiple views into an abstract representation and is trained

from data by minimizing variational free energy. We validate our approach experimentally

for a reaching task in simulation in which a robotic agent starts without any knowledge

about its workspace. Each step, the next view pose is chosen by evaluating the expected

free energy. We find that by minimizing the expected free energy, exploratory behavior

emerges when the target object to reach is not in view, and the end effector is moved

to the correct reach position once the target is located. Similar to an owl scavenging

for prey, the robot naturally prefers higher ground for exploring, approaching its target

once located.

Keywords: active vision, active inference, deep learning, generative modeling, robotics

1. INTRODUCTION

Despite recent advances in machine learning and robotics, robot manipulation is still an
open problem, especially when working with or around people, in dynamic or cluttered
environments (Billard and Kragic, 2019). One important challenge for the robot is building a good
representation of the workspace it operates in. In many cases, a single sensory observation is not
sufficient to capture the whole workspace, due to restricted field of view, limited sensor resolution
or occlusions caused by clutter, human co-workers, or other objects. Humans on the other hand
tackle this issue by actively sampling the world and integrating this information through saccadic
eye movements (Srihasam and Bullock, 2008). Moreover, they learn a repertoire of prior knowledge
of typical shapes and objects, allowing them to imagine “what something would look like” from
a different point of view. For example, when seeing a coffee mug, we immediately reach for the
handle, even though the handle might not be directly in sight. Recent work suggests that active
vision and scene construction in which an agent uses its prior knowledge about the scene and the
world can be cast as a form of active inference (Mirza et al., 2016; Conor et al., 2020), i.e., that
actions are selected that minimize surprise.
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Active inference is a corollary of the free energy principle,
which casts action selection as a minimization problem of
expected free energy or surprise (Friston et al., 2016). The
paradigm states that intelligent agents entail a generative model
of the world they operate in (Friston, 2013). The expected
free energy naturally unpacks as the sum of an information-
seeking (epistemic) and an utility-driven (instrumental) term,
which matches human behavior of visual search and “epistemic
foraging” (Mirza et al., 2018). Furthermore it is also hypothesized
that active inference might underpin the neurobiology of the
visual perception system in the human brain (Parr and Friston,
2017).

Recent work has illustrated how active vision emerges from
active inference in a number of simulations (Mirza et al., 2016;
Daucé, 2018; Conor et al., 2020). However, these approaches
typically define the agent’s generative model upfront, in terms of
small, often discrete state and observation spaces. Most similar is
the work by Matsumoto and Tani (2020), which also considers
a robot manipulator that must grasp and move an object by
minimizing its free energy. Their approach differs from ours
in the sense that they use an explicitly defined state space,
containing both the robot state and the object locations. In
order to be applicable for real-world robot manipulation, the
generative model should work with realistic sensory observations
such as camera inputs. Therefore, in this paper, we explore the use
of deep neural networks to learn expressive generative models,
and evaluate to what extent these can drive active vision using
the principles from active inference. We consider the active
vision problem of finding and reaching a certain object in a
robotic workspace.

While a lot of research on learning generative models of
the environment has been performed, most of them only
consider individual objects (Sitzmann et al., 2019b; Häni et al.,
2020), consider scenes with a fixed camera viewpoint (Kosiorek
et al., 2018; Kulkarni et al., 2019; Lin et al., 2020) or train
a separate neural network for each novel scene (Mildenhall
et al., 2020; Sitzmann et al., 2020). We tackle the problem
of an active agent that can control the extrinsic parameters
of an RGB camera as an active vision system. Both camera
viewpoint and its RGB observation are therefore available for
our approach. To leverage the available information, our learned
generative model is based on the Generative Query Network
(GQN) (Eslami et al., 2018). This is a variational auto-encoder
that learns a latent space distribution to encode the appearance
of the environment through multiple observations from various
viewpoints. Whereas, Eslami et al. (2018) integrates information
of these different viewpoints by simply adding feature vectors,
we show that this does not scale well for many observations, and
propose a novel Bayesian aggregation scheme. The approximate
posterior is computed through Gaussian multiplication and
results in a variance that properly encodes uncertainty.

We evaluate our approach on three specific scenarios. First,
we validate our generative model and Bayesian latent aggregation
strategy on plane models of the ShapeNet v2 dataset (Chang
et al., 2015). In addition, we provide an ablation study on the
different aspects of our model architecture and compare different
aggregation methods. Second, we evaluate action selection

through active inference on observations of 3D coffee cups
with and without handles. We evaluate the interpretation of
the uncertainty about the cup from the variance of the latent
distributions. Finally, we consider a robotic manipulator in a
simulated workspace. The robot can observe its workspace by an
RGB camera that is mounted to its gripper and is tasked to find
and reach an object in the workspace. In order to solve the reach
task, the robot must first locate the object and then move toward
it. We show that exploratory behavior emerges naturally when
the robot is equipped with our generative model and its actions
are driven through active inference.

To summarize, the contributions of this paper are
three-fold:

• We develop a deep neural network architecture and training
method to learn a generative model from pixel data consistent
with the free energy principle, based on Generative Query
Networks (GQN).

• We propose a novel Bayesian aggregation strategy for GQN-
based generative models which leverages the probabilistic
nature of the latent distribution.

• We show that we can use a learned generativemodel to partake
in active inference and that natural behavior emerges, first
searching before attempting to reach it.

This paper is structured as follows: the proposed method is
explained in section 2, where the generative model (section 2.1)
and the active inference framework (section 2.2) are introduced
first. Section 2.3.1 then explains how the approximation of
the expected free energy can be achieved using the learned
distributions. Section 2.3.2 finally elaborates on how these
distributions are learned using deep neural networks through
pixel-based data. Section 3 considers the results from applying
the proposed method on numerous scenes of increasing
complexity. First, the proposed model architecture is evaluated
on a subset of the ShapeNet dataset (section 3.1). Next, the
learned distributions are evaluated on whether they can be used
within the active inference framework on the use case three
dimensional cup (section 3.2). Finally the robot manipulator
in simulation is used for the reaching problem (section 3.3).
A discussion on the results, related work and possible future
prospects is provided in section 4. A conclusion is provided in
section 5.

2. METHOD

In this section we first discuss how the artificial agent interacts
with the world through a Markov blanket, and that its internal
generative model can be described by a Bayesian network. Next,
we further unpack the generative model and describe how the
internal belief over the state is updated. In the second section
the theoretical framework of active vision and how this relates
to an agent choosing its actions is elaborated on. Finally, we
show how a learned generative model can be used to compute
the expected free energy to drive the action-perception system
known as active inference. We also go into the details of the
neural network architecture and how it is learned exclusively
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FIGURE 1 | The internal generative model of the artificial agent is represented

as a Bayesian network. The environment is considered unchanging and is

described by a latent variable s. The observations ok depend on both the

environment described by s and the agent’s viewpoint denoted by vk. The first

i viewpoints have been visited and are used to infer a belief over the joint

distribution. Future viewpoint vi+1 has not been visited or observed yet.

Observed variables are shown in blue, while unobserved variables are shown

in white.

from pixel-based observations by minimizing the variational
free energy.

2.1. The Generative Model
We model the agent as separated from the true world state
through a Markov blanket, which means that the agent can only
update its internal belief about the world by interacting with
the world through its chosen actions and its observed sensory
information (Friston et al., 2016). In the case of active vision,
the actions the agent can perform consist of moving toward a
new viewpoint to observe its environment. We thus define the
action space as the set of potential viewpoints the agent can
move to. The sensory inputs of the agents in this paper are a
simple RGB camera and the observations are therefore pixel-
based. In this paper, we limit ourselves to an agent observing and
reaching toward objects in the environment, but not interacting
with them. Hence, we assume the environment is static and its
dynamics should not be modeled in our generative model as we
do not expect an object on the table to suddenly change color,
shape, or move around without external interaction. However,
one might extend the generative model depicted here to also
include dynamics, similar to Çatal et al. (2020).

More formally, we consider the generative model to take the
shape of a Bayesian network (Figure 1) in which the agent can
not observe the world state directly, but has to infer an internal
belief through sensory observations ok and chosen viewpoints vk.
The environment or world which can be observed from different
viewpoints is described by the latent factor s. When a viewpoint
vk is visited, an observation ok is acquired which depends on the
chosen viewpoint and environment state s. The agent uses the
sequence of observations to infer a belief about the world through
the latent distribution s.

The generative model describes a factorization of the joint
probability P(o0 : i, s, v0 : i) over a sequence of observations o0 : i,
states s and viewpoints v0 : i. In the remainder of this paper,
the colon notation 0 : i is used to represent a sequence going

from element 0 until the ith element. The generative model is
factorized as:

P(o0 : i, s, v0 : i) = P(s)

i
∏

k=1

P(ok|vk, s)P(vk) (1)

As the artificial agent can only interact with the world through
its Markov blanket, the agent has to infer the posterior belief
P(s|o0 : i, v0 : i). For high dimensional state spaces, computing
this probability becomes intractable and approximate inference
methods are used (Beal, 2003). The approximate posterior Q is
introduced, which is to be optimized to approximate the true
posterior distribution. The approximate posterior is factorized as:

Q(s|o0 : i, v0 : i) =

i
∏

k=0

Q(s|ok, vk), (2)

This approximate posterior corresponds to the internal model
that the agent uses to reason about the world. In the next
section, we will discuss how variational methods can be used
to optimize the approximate posterior by minimizing the
variational free energy.

2.2. The Free Energy Principle
According to the free energy principle, agents minimize their
variational free energy (Friston, 2010). This quantity describes
the difference between the approximate posterior and the true
distribution or equivalently, the surprise. The free energy F for
the graphical model described in Figure 1 can be formalized as:

F = EQ(s|o0 : i ,v0 : i)[logQ(s|o0 : i, v0 : i)− log P(o0 : i, s, v0 : i)]

= − log P(o0 : i, v0 : i)
︸ ︷︷ ︸

Evidence

+DKL[Q(s|o0 : i, v0 : i)||P(s|o0 : i, v0 : i)]
︸ ︷︷ ︸

Approximate vs true posterior

= EQ(s|o0 : i ,v0 : i)[− log P(o0 : i|v0 : i, s)]
︸ ︷︷ ︸

Accuracy

+ DKL[Q(s|o0 : i, v0 : i)||P(s)]
︸ ︷︷ ︸

Complexity

= EQ(s|o0 : i ,v0 : i)

[

−

i
∑

k=0

log P(ok|vk, s)

]

+ DKL[Q(s|o0 : i, v0 : i)||P(s)] (3)

This formalization can be unpacked as the sum of the Kullback-
Leibler divergence between the approximate posterior and the
true belief over s, and the expected negative log likelihood over
the observed views o0 : i given their viewpoints v0 : i. It is clear
that if both distributions are equal, the KL-term will evaluate to
zero and the variational free energy F equals the log likelihood.
Minimizing the free energy therefore maximizes the evidence.

We can further interpret Equation (3) as an accuracy term,
encouraging better predictions for an observation ok given a
viewpoint vk and the state s, and a complexity term promoting
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“simpler” explanations, i.e., closer to the prior belief over s. The
approximate posterior can then be acquired by:

Q(s|o0 : i, v0 : i) = argmin
Q(s|o0 : i ,v0 : i)

F ≈ P(s|o0 : i, v0 : i), (4)

However, the agent does not only want to minimize its surprise
for past observations, but also for the future. Minimizing the free
energy with respect to the future viewpoints will drive the agent to
observe the scene in order to further maximize its evidence, and
can therefore be used as a natural approach to exploration. The
next viewpoints to visit can hence be selected by evaluating their
free energy. However, it is impossible to compute this free energy,
as observations from the future are not yet available. Instead,
similar to Conor et al. (2020), the expected free energy G can be
computed for the next viewpoint vi+1. This quantity is defined as
the free energy expected to encounter in the future when moving
to a potential viewpoint vi+1. The probability distribution over
the considered future viewpoints can be computed with respect
to G as:

P(vi+1) = σ (−G(vi+1)), (5)

Where G(vi+1) is the expected free energy for the future visited
viewpoint, σ is the softmax operation which transforms the
expected free energyG for every considered viewpoint vi+1 into a
categorical distribution over these viewpoints. The expected free
energy is then obtained by computing the free energy for future
viewpoint vi+1:

G(vi+1)

= EQ(s,oi+1|o0 : i ,v0 : i+1)
[logQ(s|o0 : i, v0 : i+1)− log P(o0 : i+1, s|v0 : i+1)]

= EQ(s,oi+1|o0 : i ,v0 : i+1)
[logQ(s|o0 : i, v0 : i+1)− log P(s|o0 : i+1, v0 : i+1)

− log P(o0 : i+1|v0 : i+1)]

≈ −EQ(oi+1|o0 : i ,v0 : i+1)

[

DKL[Q(s|o0 : i+1, v0 : i+1)||Q(s|o0 : i, v0 : i)]
]

︸ ︷︷ ︸

Epistemic value

− EQ(oi+1|o0 : i ,v0 : i+1)
[logP(o0 : i+1)]

︸ ︷︷ ︸

Instrumental value

(6)

This expected free energy can be reformulated as the sum of an
instrumental and an epistemic term. The epistemic value is the
KL-divergence between the posterior belief over s after observing
the future viewpoint, and before visiting this viewpoint. As the
true posterior is not available, we approximate P(s|o0 : i+1, v0 : i+1)
using the approximate posterior distribution Q(s|o0 : i+1, v0 : i+1).
Please note that in the final step, the condition on the viewpoints
in the instrumental value can be omitted. Which can be
interpreted as an intelligent agent creating a preferred prior in
advance that is not dependent on the corresponding viewpoints.
Intuitively, this KL-term represents how much the posterior
belief over s will change given the new observation. An agent
that minimizes free energy will thus prefer viewpoints that
change the belief over s, or equivalently, to learn more about

its environment. The instrumental value represents the prior
likelihood of the future observation. This can be interpreted as
a goal that the agent wants to achieve. For example in a reaching
task, the agent expects to see the target object in its observation.

2.3. Active Vision and Deep Neural
Networks
To apply active inference in practice, a generative model
that describes the relation between different variables in the
environment, i.e., actions, observations, and the global state, is
required. When using this paradigm for complex tasks, such as
reaching an object with a robot manipulator, it is often difficult
to define the distributions over these variables upfront. In this
paper, we learn the mapping of observations and viewpoints
to a posterior belief directly from data using deep neural
networks. We model the approximate posterior Q(s|o0 : i, v0 : i)
and likelihood P(ok|s, vk) as separate neural networks that
are optimized simultaneously, similar to the variational auto-
encoder approach (Kingma and Welling, 2014; Rezende et al.,
2014).

The approximate posterior Q(s|o0 : i, v0 : i) is modeled through
a factorization of the posteriors after each observation. The belief
over s can then be acquired by multiplying the posterior beliefs
over s for every observation.We learn an encoder neural network
with parameters φ to learn the posterior qφ(s|ok, vk) over s given
a single observation and viewpoint pair (ok, sk). The posterior
distributions over s given each observation and viewpoint pair
are combined through a Gaussian multiplication. We acquire the
posterior distribution as a Normal distribution proportional to
the product of the posteriors:

Qφ(s|o0 : i, v0 : i) ∝

i
∏

k=0

qφ(s|ok, vk). (7)

Secondly, we create a neural network with parameters ψ that
estimates the pixel values of an observation ôk, given the selected
viewpoint vk and a state vector s. The likelihood over the
observation pψ (ôk|vk, s) is modeled as an image where every
pixel is an independent Gaussian distribution with the pixel value
being the mean and a fixed variance.

We jointly train these models using a dataset of tuples
{(ok, vk)}

k=i
k=0

for a number of environments by minimizing the
free energy loss function:

L =

i
∑

k=0

||ôk − ok||2 + DKL[Qφ(s|o0 : i, v0 : i)||N (0, I)] (8)

This loss function is reformulated as a trade-off between
a reconstruction term and a regularization term. The
reconstruction term computes the summed mean squared
error between the reconstructed observations ô0 : i and ground-
truth observations o0 : i. This term corresponds with the accuracy
term of Equation (3), as minimization of the mean squared error
is equivalent to minimizing log likelihood when the likelihood is
a Gaussian distribution with a fixed variance. The regularization
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term is identical to the complexity term of Equation (3) and
computes the KL-divergence between the belief over the state s
and a chosen prior, which we choose to be an isotropic Gaussian
with unit variance.

2.3.1. Approximating the Expected Free Energy for

Active Vision
Under active inference, the agent chooses the next viewpoint to
visit in order to minimize its expected free energy as described
in section 2.2. The agent selects the viewpoint by sampling from
the categorical distribution P(vi+1). As described by Equation (5),
this categorical distribution is acquired by computing the
expected free energy G for every potential viewpoint vi+1, and
applying the softmax function on the output. The expected
free energy is computed by separately evaluating the epistemic
and instrumental term from Equation 6. Calculating these
expectations for every possible viewpoint is intractable, hence we
resort to Monte Carlo methods to approximate the expected free
energy through sampling.

A schematic overview of our method is shown in Figure 2.
For a target viewpoint vi+1, the epistemic term is the expected
value of the KL divergence between the belief over state s

after observing oi+1 (i.e., Q(s|o0 : i+1, v0 : i+1)) and prior to
observing oi+1 (i.e., Q(s|v0 : i, o0 : i)). The latter distribution is
the output after feeding all previous observations o0 : i and
their corresponding viewpoints v0 : i through the neural network
qφ(s|o0 : i, v0 : i). This is shown on the left of Figure 2 and provides
the agent with the current belief over s. To estimate the posterior
distribution Q(s|o0 : i+1, v0 : i+1), an imagined observation ôi+1

must be sampled. The likelihood model is used to do this,
conditioned on the potential viewpoint vi+1 and a sampled
state vector from Q(s|o0 : i, v0 : i), an estimate of the observed
view ô is made. Together with the initial observations o0 : i
and viewpoints v0 : i, the imagined view is encoded through
the posterior model to approximate Q(s|o0 : i+1, v0 : i+1) as
shown on the right of Figure 2. As both prior and posterior
distributions are approximated by a Multivariate Gaussian
with a diagonal covariance matrix, the KL divergence can be
computed analytically. To approximate the expected value over
Q(s|o0 : i, v0 : i), we repeat this process for multiple state samples
and average the obtained values.

The instrumental term, as described in Equation 6, is the
expected negative log likelihood of the observed view oi+1 for
the future viewpoint vi+1. Again, we approximate this value
by sampling from the state distribution, and forwarding this
through the likelihood model. We calculate the negative log
likelihood of each imagined observation ôi+1 according to a
prior distribution over this observation. This process is repeated
for numerous samples from Q(s|o0 : i, v0 : i), and the computed
log likelihood is averaged to calculate the instrumental term.
In the case of a robotic reaching task, this prior distribution
takes the form of a desired goal observation, and computing log
likelihood reduces to computing the mean squared error between
an imagined observation ôi+1 and a reference goal observation.

2.3.2. Model and Training Details
Both neural networks are directly optimized end-to-end through
pixel data, using a dataset consisting of different scenes. We
define a scene as a static environment or object in or around
which the agent’s camera can move to different viewpoints. The
agent has observed the set of i observations and viewpoints from
a scene S = {(ok, vk)}

k=i
k=0

. The view ok is an RGB image scaled
down to a resolution of 64 × 64 pixels and the viewpoint vk is
represented by a seven dimensional vector that consists of both
the position coordinates and the orientation quaternion.

The generative model we consider belongs to the family of
variational auto-encoders (Kingma and Welling, 2014; Rezende
et al., 2014). It most resembles the Generative Query Network
(GQN) (Eslami et al., 2018). This variational auto-encoder
variant encodes information for each observation separately and
aggregates the acquired latent codes. Similarly to the GQN,
our encoder generates a latent distribution for each observation
separately and combines them to form the current scene
representation. From this scene representation, the decoder has
to render the expected observations given a target viewpoint.

We deviate from the GQN presented by Eslami et al. (2018)
in two ways. First, whereas GQNs concatenate the viewpoint
parameters somewhere in the encoder and use an auto-regressive
decoder architecture, we use convolutional neural networks for
both encoding and decoding, and use FiLM layers (Perez et al.,
2018) for conditioning. The encoder is conditioned on the
viewpoint parameters and the decoder is conditioned on both
the query viewpoint vi+1 and the scene representation vector.
Secondly, whereas GQNs aggregate the extracted representations
from the encoder by mere addition, we use a Bayesian inspired
aggregation scheme. We consider the distributions from the
model described in section 2.1. Instead of the addition used in
the GQN, we use a factorization of the posterior Q(s|v0 : i, o0 : i)
to aggregate the acquired representations through Gaussian
multiplication. When a new observation oi is available, the
current belief distribution N (µcur , σ

2
curI) is updated with the

output of the encoder network qφ(oi|vi), a Normal distribution
N (µobs, σ

2
obs

I), using Gaussian multiplication:

µ =
σ
2
cur · µobs + σ

2
obs

· µcur

σ 2
cur + σ

2
obs

, (9)

1

σ 2
=

1

σ 2
cur

+
1

σ
2
obs

(10)

This way of refining belief of the acquired representations is
equivalent to the update step found in Bayesian filtering systems
such as the Kalman filter (Kalman, 1960). As the variance in
each dimension reflects the spread over that state vector, it
can be interpreted as the confidence of the model. The belief
over the state is therefore updated based on their uncertainty
in each dimension. Additionally, using this type of aggregation
has the benefit that the operation is magnitude-preserving. This
results in a robust system that is invariant to the amount of
received observations, unlike an addition-based system. For
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FIGURE 2 | The flow followed when evaluating the expected free energy using deep neural networks for a given potential new viewpoint vi+1. Starting on the left of

the figure, the encoder neural network that approximates the posterior qφ (s|o0 : i , v0 : i ) encodes the observations o0 : i and corresponding viewpoints v0 : i until now into

a belief over the state s. From this belief, a state vector is sampled and is used together with viewpoint vi+1 to predict the imagined view from this viewpoint. The

instrumental value is computed as the log likelihood that the target image is generated from the distribution over the predicted image. This is marked by the red arrow.

This imagined view ôi+1 is passed through the approximate posterior model to acquire the expected belief over s after selecting viewpoint vi+1. The epistemic value is

computed as the KL divergence between the approximate posterior before observing the imagined view ôi+1 and after. This is marked by the blue arrow. Finally, the

expected free energy is approximated by averaging over a number of samples.

stability reasons, we clip the variance of the resulting distribution
to a value of 0.25.

We parameterize our model as follows. The inputs are
first expanded by using a 1 × 1 convolution that maps
the RGB channels to a higher dimensional space of 64
channels. The encoder consists of four convolutional layers
with a stride of 2, a kernel size of 3 × 3 and feature maps
that increase with a factor 2 every layer (16, 32, 64, 128).
They are interleaved with FiLM layers (Perez et al., 2018)
that learn a transform for the extracted features based on
the viewpoint pose. The extracted feature representation is
then transformed in two feature vectors that represent the
mean and variance of the latent state s. In each considered
experiment this latent size is different. The decoder mirrors
this architecture with four convolution blocks, each convolution
block first applies a convolution that halves the amount of feature
maps, after which a convolution is applied which preserves
the amount of feature channels (128, 128, 64, 64, 32, 32).
Here, the FiLM layers are conditioned on the concatenated
latent code and query pose. Between every convolution block
in the decoder, the image is linearly upsampled. LeakyReLU
activations are used after every convolutional layer. The output
of the decoder is finally processed using a 1x1 convolution
that maps the 64 channels back to RGB channels. For the
specifics of the neural network, the reader is referred to
Supplementary Material.

This model is optimized end-to-end by minimizing the
free energy loss with respect to the model parameters,
as described in Equation (8) using Adam (Kingma and
Ba, 2015), a gradient-based optimizer. Additionally, we
use the constraint-based GECO algorithm (Rezende
and Viola, 2018) that balances the reconstruction and
regularization term by optimizing Lagrangian multipliers
using a min-max scheme.

3. RESULTS

Three experiments were designed to evaluate both our model
and the proposed active vision system. In a first experiment, we
consider a subset of the ShapeNet dataset (Chang et al., 2015) to
evaluate model performance. We conduct an ablation study on
different aggregation methods for the state encodings produced
by the generative model. We show that our model exhibits
performance similar to other aggregation strategies, while being
more resistant to the number of observations and better
leveraging the Bayesian character of the extracted distributions.
In a second experiment, we consider scenes consisting of a
3D coffee cup that potentially has a handle. We investigate the
learned approximate posterior distribution and its behavior when
observing different views. We analyze the behavior that emerges
in our artificial agent when driving viewpoints selection using the
epistemic term. In the final experiment, we consider a realistic
robotic workspace in CoppeliaSim (Rohmer et al., 2013). Scenes
are created with an arbitrary amount of random toy objects with
random colors. A task is designed in which the robot manipulator
must find and reach a target object. First, we investigate the
exploratory behavior when no preferred state is provided and
see that the agent explores the workspace. We then provide
the agent with a goal by specifying a preferred observation and
computing the full value ofG. We observe that the agent explores
the workspace until it has found and reached its target.

3.1. ShapeNet
In the first experiment we want to evaluate the proposed neural
network architecture on a subset of the ShapeNet dataset (Chang
et al., 2015). We focus on whether the neural architecture is
capable of learning to implicitly encode the three dimensional
structure of a scene from purely pixel-based observations by
minimization of the free energy loss function. Additionally,

Frontiers in Neurorobotics | www.frontiersin.org 6 March 2021 | Volume 15 | Article 64278048

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Van de Maele et al. Active Vision for Robot Manipulators

we want to validate our novel aggregation strategy which
uses a factorization of the approximate posterior to combine
the extracted representations for all observations. The novel
aggregation method ensures that the resulting distribution will
always be in the same order of magnitude, independently of the
number of observations, in contrast to the addition method from
the original work by Eslami et al. (2018).We expect to see that our
approach outperforms the GQN baseline when provided with a
large amount of observations.

To separate the influence of the overall network architecture
from the used aggregation method to combine extracted latent
distributions from all separate observations into a belief over
the state s, we perform an ablation study. Besides the proposed
approach, we also introduce three variants to combine latent
distributions, while using the same encoder-decoder architecture
with a latent size of 64 dimensions. We compare our approach
to the addition method from the original GQN paper (Eslami
et al., 2018), a mean operation (Garnelo et al., 2018), or a max-
pooling (Su et al., 2015) operation. As these ablations do not
propose a method to integrate the variance of the individual
reconstructions, the variance of the new observation is set to a
fixed value of 1 for every dimension. We also compare the results
with the original GQN architecture.

All models in this experiment are trained on the same data
using the free energy loss function from Equation (8). The
observations are RGB images with a resolution of 64 × 64.
The viewpoints are a 7-dimensional vector, that correspond to
the position in Euclidean coordinates and the orientation in
quaternion representation. Themodel is optimized end-to-end as
described in section 2.3.2. A batch size of 100 sequences per mini-
batch is used. Similar to the approach used by the GQN, between
3 and 10 observations are randomly provided during training to
enforce independence on the amount of observed data. These
models are then trained until convergence. The GQN baseline
is optimized using the traditional ELBO loss as described in the
original paper by Eslami et al. (2018).

Table 1 shows the average mean squared error (MSE) of novel
views generated for all objects in the test set for a varying number
of observations. We observe that our model outperforms the
others for 30 and 60 observations, whereas GQN has similar
performance on 10 observations. Also note that our model has an
order of magnitude fewer parameters than the GQNmodel. From
the ablation study, we can indeed note that the GQN suffers from
the addition aggregation method. Max-pooling seems to perform
better with more than ten observations, but has an overall higher
MSE compared to our approach. The same is true for the mean-
pool ablation, which improves as more observations are added.
This improvement can be attributed to the reduction of noise on
the representation vector by having more observations.

Examples of the reconstructions generated from the
aggregated latent space are shown in Figure 3. Clearly the GQN
achieves the best performance when operating in the trained
range, but when more observations are added the quality of
the decoded image decays rapidly and the object is no longer
recognizable. The same behavior can be noticed for the addition
ablation. Our model yields comparable reconstructions as the
GQN for 10 observations, but achieves to uphold this quality

TABLE 1 | Average MSE over all objects in the selected test set of ShapeNet

planes data.

Model # param MSE (10 obs) MSE (30 obs) MSE (60 obs)

GQN 49.5M 0.0143 ± 0.0110 0.0354 ± 0.0228 0.0438 ± 0.0275

Ours 3.6M 0.0151 ± 0.0138 0.0148 ± 0.0133 0.0147 ± 0.0133

Addition

ablation

3.6M 0.0169 ± 0.0122 0.1222 ± 0.1102 0.2409 ± 0.1599

Max-pool

ablation

3.6M 0.0175 ± 0.0112 0.0170 ± 0.0110 0.0176 ± 0.0101

Mean-pool

ablation

3.6M 0.0182 ± 0.0110 0.0175 ± 0.0103 0.0175 ± 0.0094

The bold value indicates the lowest MSE for every column.

level as well after 60 observations, and is even able to improve
its reconstruction. Both the max-pool and the mean-pool
ablation are less affected after 60 observations, but the overall
reconstructions are less detailed.

3.2. The Cup
In active inference, viewpoints are selected by minimizing the
agent’s expected free energy. It is essential that the predicted
distributions through our learned generative model are well-
behaved and thus are able to properly represent ambiguity
when it has no, or incomplete, information about the scene. In
this experiment, we evaluate the distributions produced by the
learned generative model and analyze whether they are able to
capture the ambiguity provided by the scene. We expect to see
dubiety in both the reconstructed imagined views of the cup,
as well as in the variance of the produced distributions. We
also investigate the behavior that emerges when viewpoints are
selected by minimizing the epistemic term of the expected free
energy and expect exploratory behavior to surface.

We consider simple scenes that consist of a 3D model of a
coffee cup that can vary in size and orientation. It can potentially
be equipped with a handle. For each created scene, 50 views of
64 × 64 pixels are randomly sampled from viewpoints around
the object. A dataset of 2,000 different scenes containing a cup
were created in Blender (Blender Online Community, 2018),
of which half are equipped with a handle. One thousand eight
hundred of these scenes were used to train the generative model.
The parameters of the neural network are optimized in advance
using this prerecorded dataset byminimizing the free energy over
the acquired observations as explained in section 2.3. For each
scene, between 3 and 5 images are provided to the model during
training. The model for this experiment is the same as described
in section 2.3, but with a latent dimension size of 9. The following
experiments were conducted on scenes of cups in the validation
set that were not seen during training.

To evaluate whether the generative model is able to capture
the ambiguity of a cup when not all information is gathered
through observations yet, we consider two nearly identical cups,
both positioned in the same orientation and scaled with the
same factor. The only difference between these cups is that one
has a handle, while the other one does not. We provide our
learned model with a single observation that does not resolve the
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FIGURE 3 | Evolution of imagined observations for different models on an unseen ShapeNet example when 10, 30, or 60 observations are provided. Our Observer

model maintains a good reconstruction quality even if more observations are considered than during training.

FIGURE 4 | Generated observations are shown in this figure. (A) An ambiguous observation is provided to the generative model, and this is reflected in ambiguous

reconstructions after observing the cup from the other side. (B) The model is provided with an additional unambiguous observation of a handle. (C) The model is

provided with an additional observation of the cup from the other side which does not contain a handle.

ambiguity about the location and does not reveal the presence of
a handle. We now use the likelihood model over the observation
ok+1 to generate the expected observation, which is shown in
Figure 4A. When looking at these generated cups, it shows both
cups with and without handle, with the handle at a random
position. This can be attributed to the fact that the orientation of
the cup is not known, and the model therefore does not know at
what position to draw a handle. This ambiguity is also reflected
in the high variance shown in the extracted latent distribution
(Figure 5A).

When a new observation from a different viewpoint around
the cup is added to the model, the ambiguity can be noticed
to clearly drop. Figure 4B shows the reconstructed cups in
case the handle is observed. These reconstructions are sharp
and draw the handle consistently at the same position. This
consistency is also reflected by the lower variance of its latent
distribution shown in Figure 5B. The same observation without
a handle was provided as a second observation for the cup
without a handle. The generated cups of this scene are shown
in Figure 4C. In Figure 5C, a lower variance compared to the
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FIGURE 5 | This figure is a representation of the distributions over the approximate posterior with a latent state of nine dimensions. As the approximate posterior is

represented by a multivariate Gaussian distribution with a diagonal covariance matrix, each dimension can be considered independently. (A) The distribution after an

ambiguous observation is represented. (B) The approximate distribution for an unambiguous observations of a handle is represented. The variance is on average 9.08

times lower in each dimension than prior to observation in (A). (C) The same unambiguous observations without a handle is provided. In this case, the variance is on

average 2.83 times smaller in each dimension than in (A).

FIGURE 6 | The epistemic values are shown for all potential viewpoints. This value is computed as the KL divergence between the belief over latent state s with the

observations marked by a red observer and the expected posterior belief when choosing the next viewpoint vi+1. The epistemic values are normalized by the softmax

operation with a temperature of 1, as described in section 2. The red color marks the observation viewpoint that has been observed. The color of the camera

represents the likelihood that this viewpoint is selected next. (A–C) shown for three scenarios with a different initial viewpoint in (A) through (C).

one shown in Figure 5A can again be noticed. We thus conclude
that optimizing the generative model through a minimization of
expected free energy results in well-behaved latent distributions.

Additionally, we want to evaluate whether using the expected
free energy as a viewpoint selection policy is a valid approach
for active vision. We hypothesize that if the agent observes the
cup from one viewpoint, it will prefer policies that move the
agent to observe the cup from the other side, to gain as much
information as possible in the least amount of observations. The
potential viewpoints are uniformly spaced in a circle around the
cup at a fixed height, and with an orientation toward the cup.
Figure 6 shows the probability distribution over the potential
viewpoints P(vi+1) for three different initial observations. It is
clear that in general, the agent will choose a viewpoint far away
from the current observation to maximize the information gain
with respect to the cup.

3.3. Robot Manipulator
In the final experiment, a robotic environment in
CoppeliaSim (Rohmer et al., 2013) is considered. The workspace
is equipped with a robot manipulator on a fixed table, which
has an RGB camera mounted to its gripper. Some toy objects

are placed on the table within reach of the manipulator. These
objects are randomly chosen and can take the shape of a cube,
a sphere, a cylinder or a bar that could either be standing
up or laying down. These objects have a Lambertian surface
with a uniform color. An example of such a scene is shown in
Figure 7. The agent is able to manipulate the extrinsic camera
parameters through robotic actuation of the gripper. It can then
observe different areas of the workspace. Similar to the previous
experiment, we first learn the neural network parameters from a
prerecorded dataset, which is then used in the proposed active
vision scheme for viewpoint selection. The model architecture is
identical to the one in the previous experiments, but with 256
latent state space dimensions.

In order to learn the model parameters, a prerecorded
dataset was created using the same environment in CoppeliaSim.
Up to five randomly selected toy objects are spawned in the
workspace. The orientation and position of the objects within
the workspace are determined randomly by sampling from a
uniform distribution. A dataset of 8,000 such scenes is created,
in which the robot end-effector is moved along a trajectory that
covers the entire workspace at different heights. We constrain the
end-effector to look in a downwards orientation. This facilitates
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FIGURE 7 | An example scene of the robotic workspace in CoppeliaSim.

Three random objects are spawned at arbitrary positions and rotations. This

scene is used for the experiments in section 3.3.

the training process and does not limit performance on this
use case, as the robot is still able to observe all objects placed
on the workspace from a top view. During training, these
observations are shuffled randomly, and a subset between 3 and
10 observations are selected and used as model inputs.

We design two cases for the active vision experiments in
the robotic workspace. In the first case, we put an additional
constraint on the height of the agent and only allow the agent
to move in the x and y direction of the workspace, i.e. parallel
with the table. We choose this to limit the potential viewpoints
of the agent to observe the epistemic and instrumental behavior
in more detail, with respect to the imagined views. In the second
case, we allow the agent to also move along the z-axis. We can
now evaluate the global behavior of the agent and observe that
when it explores a new area, it will first prefer viewpoints from
higher vantage points in which it can observe a large piece of
the workspace, after which it will move down to acquire more
detailed observations.

3.3.1. Active Vision With 2 Degrees of Freedom
This experiment considers the case where the artificial agent is
limited to 2 degrees of freedom. We limit the degrees of freedom
to make the analysis of the behavior more interpretable. The
results of this experiment are shown in Figure 8.

Even though the generative model is capable of inferring
the state and generating an imagined view for any viewpoint
in a continuous space of the robotic working area, it would be
computationally expensive to compute the expected free energy
for all potential viewpoints. Instead, we sample a uniform grid
of potential future viewpoints over the robotic workspace, and
evaluate the expected epistemic value for these samples using the
method described in section 2.

First, only the epistemic value is considered. We look at the
behavior for an active vision agent for the scene visualized in
Figure 7. For results on additional scenes, the reader is referred to
Supplementary Material. The agent starts in an initial position
in which it can not observe any of the objects that are lying on
the table. Its current observation is shown in the first image of
Figure 8C. The agent imagines the entire workspace to be empty
without objects, this can be seen in the imagined observations

for the potential viewpoints, shown in Figure 8B. The epistemic
value is computed for all potential viewpoints, and is shown
in Figure 8A. The largest epistemic values are located in the
center of the table, as the agent believes that observations from
these locations will allow it to learn more. After moving to the
viewpoint with the highest epistemic value, the agent observes the
yellow cube and the red ball. The generative model is then able
to reconstruct these objects correctly at the potential viewpoints,
which can be observed in the second plot of Figure 8B. We
notice, that after observing these objects, the agent still prefers
to look at these positions for a number of steps. The internal
model of the environment is still being updated, which we can
see in the sharper reconstructions in the first and second row of
Figure 8. This can be attributed to the aggregation strategy for
the approximate posterior. A single observation of the objects
will not transform the distribution entirely, but a weighted mean
and variance is computed. This results in a slower process for
updating the state distribution, and it can result in the agent
trying to observe the same area for a number of steps. Similar
to the experiment in section 3.1, the observations can be seen to
improve as the latent distribution improves. After a few steps, this
distribution converges to a fixed value as can also be noted by the
decreasing epistemic values shown in Figure 8A. Additionally, as
the agent imagines no new objects at the other viewpoints, it does
not believe they will influence its belief over s. After the agent has
refined its internal model, in step 7, the viewpoints it has not yet
observed result in a higher epistemic value, after which the agent
moves to this location. It finally observes the blue cube in the top
which is then also reconstructed in the imagined views.

In a second experiment, we evaluate the behavior that
emerges when the full expected free energy is used to drive
viewpoint selection. Both the epistemic and instrumental values
are computed and used to acquire the expected free energy for
every potential viewpoint. The instrumental value is computed
as the log likelihood of the expected observation under a
desired goal prior distribution. We choose the distribution of
this preferred observation as a multivariate Gaussian in which
each pixel is an independent Gaussian with as mean value
the target goal observation and a fixed variance of 0.65. We
empirically determined this value for the goal variance which
yields a good trade-off between the epistemic and instrumental
behavior. In this case we use an observation of the blue cube as
goal observation, namely the final observation from the epistemic
exploration, and shown in Figure 8C. Please note that any
observation could be used as a goal.

When we look at the behavior that emerges in Figure 9, we
notice that initially the agent has no idea where it can observe
it’s preferred observation. This can be observed by the uniform
instrumental value shown in Figure 9B at step 0. The epistemic
value takes the upper hand, and the chosen viewpoint is again
in the center of the table, similar as in the case when only
the epistemic value was considered. At this new viewpoint, the
agent observes the yellow cube and the red ball. Notice how
the instrumental value becomes lower at these viewpoints in
Figure 9B. The agent realizes that these viewpoints will not aid in
the task to reach the blue object. However, as the epistemic value
at this time step is larger than the range of the instrumental value
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FIGURE 8 | A sequence of steps performed by an artificial agent driven through minimization of the epistemic term from the expected free energy.

Information-seeking behavior can be observed. (A) A representation of the epistemic value for different potential future viewpoints in different steps of the sequence.

The legend is provided on the right, darker values mean higher epistemic values, and are thus more likely to be chosen by the agent. (B) The imagined observations

for the potential viewpoints at different steps in a sequence executed by an agent driven according to the active inference paradigm. (C) The last observation the

agent has acquired from the previous step. The black squares in the bottom of each frame are the gripper handles.

at this viewpoint, they contradict each other and the epistemic
value is still dominant. Please note that while the absolute value
of the instrumental term is much higher than the epistemic term,
these are relative to each other. The range of the instrumental
term is in the same range as the epistemic value. After observing
a few observations, the instrumental term finally takes the upper
hand and the agent is driven away to further explore the area.
It finally finds the blue cube in the top right in the 7th step. As
the instrumental value is very high for this observation, it now
takes the upper hand and the agent will naturally remain at this
location. Notice how the agent has found the object in less steps
than when it was only driven through epistemic value. Because
the agent now prefers to search and reach its goal observation,
it will avoid getting stuck at a specific location as long as this is
not the preferred observation. It is therefore better at finding the
target to reach, however it will not necessarily explore the entire
workspace, as it would when only considering the epistemic term
given enough steps. It is important to note that the instrumental
value to the right of the target value is low in magnitude. The
model believes it is unlikely that it will find the target observation
here. This can be attributed to the pixel-wise log likelihood that
is computed, even though the object is in view, because it is at
different pixel locations, this will be a less likely observation than
an area of the table that does not contain objects. To combat this
characteristic, we sample the grid of potential viewpoints with a
lot of overlap between the neighboring views.

3.3.2. Extending to Three Degrees of Freedom
Finally, we no longer constrain the movement along the z-axis
for the robot manipulator. The orientation is still in a fixed
downwards position. We still consider the same scene as in the
previous experiments and start the robot gripper in the same
initial position without any observations. We evaluate whether
this third degree of freedom improves the speed at which the area
can be uncovered, and whether the chosen actions matches the
biological behavior encountered in for example an owl. The owl

will fly to a high vantage point to search for its prey, and move
down when it has localized it (Friston et al., 2016).

We task the robot to find the blue cube from the final
observation in Figure 8 again. The different achieved robot poses
and their corresponding observations are shown in Figure 10.
In the executed trajectory, we notice that the owl-like behavior
emerges through the minimization of expected free energy.
Initially, the agent has no knowledge about the workspace and
moves its gripper and corresponding camera toward a higher
vantage point from which it can observe the workspace. Initially,
the agent only observes a red and a yellow object, after which it
moves closer to inspect these objects. It has updated its internal
model by observing the object from up close, and it is clear
through the instrumental value that the desired observation is
not at this location. In a similar manner as explained in the
experiment with two degrees of freedom, the agent again moves
to a higher vantage point, but more to the center of the table. It is
now able to observe both the blue cuboid and the edges of the red
and yellow objects. It has localized the target and moves toward
its preferred state. The agent does not move in the subsequent
steps, showing that it has reached the point that provides it with
the lowest expected free energy. We also notice that the agent
has found the object faster than in the previous experiment. The
additional degree of freedom is immediately exploited by the free
energy principle. For the acquired results on additional scenes,
the reader is referred to Supplementary Material.

4. DISCUSSION

In the above experiments, we have shown that it is possible
to use the active inference paradigm as a natural solution for
active vision on complex tasks in which the distribution over
the environment is not defined upfront. Similar to prior work
on learning state space models for active inference (Çatal et al.,
2020), we learn our generative model directly from data.
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FIGURE 9 | This figure represents a sequence of movement when driving viewpoint selection through minimization of the expected free energy. The agent is now

equipped with a preferred state. As a preferred state, we set the final observation from the epistemic exploration shown in Figure 8C, but in principle, any observation

could be used. (A) A representation of the epistemic value for different potential future viewpoints in different steps of the sequence. The legend is provided on the

right, darker values mean higher epistemic values, and are thus more likely to be chosen by the agent. (B) A representation of the instrumental value for different

potential future viewpoints in different steps of a sequence. The legend is provided on the right, darker values mean higher instrumental values and are thus more likely

to be chosen by the agent. (C) The chosen viewpoint at this step is shown by a black square. This is done by applying the softmax operation to the full expected free

energy. (D) The imagined observations for the potential viewpoints for different steps in a sequence executed by an active inference driven agent. (E) The last

observation the agent has acquired from the previous step. The black squares in the bottom of each frame are the gripper handles.

FIGURE 10 | The chosen trajectory for an artificial agent when viewpoints are chosen by the minimization of expected free energy. The preferred state is chosen

randomly as the final observation from the epistemic exploration shown in Figure 8C. (A) Shows the pose of the robot at each step. Step 1 represents the initial state.

(B) The corresponding observation from the gripper at that step.

We have observed that a sheer epistemic agent will explore
the environment by moving to different viewpoints in the world.
When we use the full expected free energy to drive viewpoint
selection, we observe that epistemic foraging behavior emerges,
and the agent will explore the environment with random saccades

and will move toward a higher vantage point to observe a larger
area at one time, similar to the behavior of an owl scavenging
for prey.

For robots to solve complex tasks, one of the first steps is to
perceive the world and understand the current situation. This
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work shows that the learned generative model is capable of being
used in a neurologically inspired solution for perception of the
world. As this theoretical framework of active inference is already
equipped to deal with actions that perturb the world, this solution
can be extended with a more complex generative model that
is able to estimate the changes the agent, or other autonomous
beings can make in the world.

While our approach allows to learn the generative model
purely from pixel data, this also has a couple of drawbacks.
In our case for instance, the model is trained using a large
amount of data in a simulation environment with a restricted
number of object shapes and colors. To be applicable for real-
world scenarios, probably an even larger model and dataset
are required. Also, it is clear that the reconstructions are not
sharp, and blurry objects are reconstructed. This is typical for
a variational auto-encoder, and while many approaches exist to
create sharper reconstructions (Makhzani et al., 2015; Heljakka
et al., 2018, 2020; Huang et al., 2018), we argue that this is not
necessary for our case. As long as the generated observations
are spatially correlated and the object properties such as size
and color are correctly reconstructed, the generative model will
be capable of working within the active inference framework.
This can be compared to someone trying to remember the fine
details of a recently visited building. A person is able to draw
the general structure of the building, but will find difficulty to
draw each stone correctly with the correct shade. However, this is
not necessary to find the door and navigate through the building.
Nevertheless, by using the mean squared error in pixel space to
train the likelihood model, small-sized objects will generate a
small gradient signal, and will be difficult for themodel to encode.
To mitigate this, one could look at different loss functions, for
example perceptual loss (Johnson et al., 2016) or contrastive
loss (Hadsell et al., 2006).

Our approach evaluates the expected free energy for a
number of considered potential viewpoints. The computational
complexity of this algorithm scales linearly with the number of
considered viewpoints. However, given enough GPU memory,
this algorithm can easily be modified to compute the expected
free energy for all potential viewpoints in parallel, making it
an algorithm with constant time complexity. Provided that the
neural network can be run on a GPU, it can be used for real-time
control of physical robot manipulators.

In future work, we want to investigate more efficient methods
for evaluating the free energy and planning in a complex state
space. In this case, it was feasible to evaluate the expected
free energy for each viewpoint as we sampled a limited grid
of future viewpoints and only looked at one step in the
future. The amount of expected free energy values to compute
would increase exponentially, as more time steps ahead are
considered. Additionally, in future work we would like to add
object interaction, i.e., allowing the robot to move objects in
a specific desired configuration. Moreover, this approach will
be increasingly important in collaboratory settings. The robotic
agent can encounter occlusions and limited field of view for
multiple reasons such as other humans obstructing objects or
placing things in front of the target object. It is in these situations
essential to be able to reason about the scene and choosing

the optimal next viewpoint. In follow-up work, the actions of
human collaborators can be modeled through their own free
energy minimization scheme and can be integrated in the active
inference framework to select the next best view. Finally, the goal
is to evaluate this method on a real-life robot.

Related Work
The related work falls in two categories, i.e., scene representation
learning and related work in the area of active vision. There is a
lot of research that considers the problem of scene representation
learning and proposes different neural network architectures to
aid the process of learning proper representation models of our
neural network architecture. In the second part we consider the
domain in active vision, this is an active research domain in
traditional computer vision problems, but has also been applied
to many reinforcement learning tasks.

Scene representation learning is a research field in which
the goal is to learn a good representation of the environment.
A vast amount of work exists that considers representation
learning for separate objects. Multi-View CNN (MVCNN) uses
views from multiple viewpoints to learn a representation for
classification and segmentation (Su et al., 2015). DeepVoxels uses
a geometric representation of the object, in which each voxel has
a separate feature vector, which is then rendered through a neural
renderer (Sitzmann et al., 2019a). In their follow-up work on
Scene Representation Networks, this was extend to replace the
voxelized representation by a neural network, estimated through
a hypernetwork, that predicts a feature vector for any point in
3D space. These features are then rendered through a neural
renderer (Sitzmann et al., 2019b).

Object-centric models have also gained a lot of attention
lately. These models stem from the seminal work on Attend
Infer Repeat (Eslami et al., 2016) in which a distinct latent code,
which separately encodes the position and the type of object,
is predicted per object in the scene. This is done through a
recurrent neural network that is capable of estimating when all
objects are found. In SQ-AIR, this work is extended to sequences
of images, and a discovery and propagation mechanism was
introduced to track objects through different frames (Kosiorek
et al., 2018). These have been extended to better handle physical
interactions (Kossen et al., 2020) or be more scalable (Crawford
and Pineau, 2020; Jiang et al., 2020). These extensions have
also been combined by Lin et al. (2020). 3D-RelNet is also an
object-centric model that predicts a pose for each object and
their relation to the other objects in the scene (Kulkarni et al.,
2019). While these approaches seem promising, in their current
implementation they only consider video data from a fixed
camera viewpoint. These models do not lend themselves to an
active vision system.

Implicit representation models learn the three dimensional
properties of the world directly from observations with no
intermediate representation. A single neural network is then
created for each scene. Neural Radiance Fields (NeRF) learn to
infer the color values for each three dimensional point through
a differentiable ray tracer from a set of observations (Mildenhall
et al., 2020). The follow-up work by Park et al. (2020) adapts the
algorithm for a more robust optimization and the work by Xian
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et al. (2020) extends this to deal with video sequences. SIRENs
also belong to this category, however, this network is optimized
directly from the three dimensional point cloud (Sitzmann
et al., 2020). While these works often result in very sharp
reconstructions with a large amount of detail present in the
scenes, they are difficult to optimize due to the large training
times and do not allow for new observations to be added on
the fly.

The last category of methods encodes the scene in a latent
vector that describes the scene in a black box approach. The latent
vector does not enforce geometric constraints. The Generative
Query Network does this by encoding all observations separately
into a latent vector, which is then summed to acquire a global
representation of the scene (Eslami et al., 2018). This latent
vector can be sampled and decoded through an autoregressive
decoder (Gregor et al., 2015), which is then optimized in an
end-to-end fashion. This work considers full scenes in which
the observer can navigate. This has also been extended with
an attention mechanism to separately encode parts of each
observation, in order to better capture the information (Burgess
et al., 2019). Our model most resembles this GQN architecture,
as this is a straightforward implementation that allows for
arbitrary viewpoints and which could easily be extended with our
Bayesian aggregation strategy. Other approaches result in sharper
reconstructions, however they either optimize a neural network
per scene, work with a fixed observer viewpoint, or only consider
separate objects.

Active vision systems are called active since they can change
the camera extrinsic parameters to improve the quality of
the perception (Aloimonos et al., 1988). In most active vision
research, the next best viewpoints are selected to improve the
amount of observations need to scan an area, for exploration and
mapping or for reconstruction of the world.

Most traditional methods use a frontier-based approach to
select the next viewpoint (Yamauchi, 1997; Chen et al., 2011;
Fraundorfer et al., 2012; Forster et al., 2014; Kriegel et al., 2015;
Hepp et al., 2018). The frontier is defined as the boundary
between the observed area and the unobserved area, and thus
these models require an explicit geometric representation of the
world. Typically these methods use a discretized map of the
world, an occupancy grid in 2D (Yamauchi, 1997) or a voxelized
rasterization in 3D (Fraundorfer et al., 2012). The points on
the frontier are then evaluated through a utility function that
scores the amount of information that will be gained. These
utility functions are often hand-crafted and uncertainty or
reconstruction based (Wenhardt et al., 2007; Dunn and Frahm,
2009; Forster et al., 2014; Kriegel et al., 2015; Isler et al., 2016;
Delmerico et al., 2018; Hepp et al., 2018).

With the rise of deep learning, active vision problems has also
been tackled through learning-based approaches. The problem
has been cast as a set covering optimization problem in which
a reinforcement learning agent has to select the least amount
of views to observe the area (Devrim Kaba et al., 2017). This
approach assumes that the area is known in advance, and
that an agent can be trained on this. It does not allow for
unseen environments. Other deep learning techniques have
also been proposed. Hepp et al. (2018) learn a utility function

using a data-driven approach that predicts the amount of new
information gained from a given viewpoint. They learn this
directly using supervision with oracle data. Instead of learning
a utility function, deep neural networks that directly predict the
next-best viewpoint have also been researched (Doumanoglou
et al., 2016; Mendoza et al., 2020). These methods require a
ground-truth “best” view, for which a dataset is created using the
full scene or object information.

Biology has inspired work on active vision and perception
as well. An active vision system for robotic manipulators was
proposed that is inspired by the way primates deal with their
visual inputs (Ognibene and Baldassare, 2014). Rasouli et al.
(2019) propose a probabilistic bio-inspired attention-based visual
search system for mobile robotics. Similar to our work, active
inference has already been applied to different active vision
settings. Mirza et al. (2016) show that the free energy principle
can be used for visual foraging. They define a classification task,
where the agent must acquire visual cues to correctly classify the
scenario it is in. Follow-up work (Conor et al., 2020) considers a
hierarchical scene in which decisions are made at multiple levels.
Fovea-based attention to improve perception and recognition
on image data has been performed through the free energy
principle (Daucé, 2018). While these approaches show promising
results, they all consider designed scenarios for which the state
space can be carefully crafted in advance.

Our approach closely connects to traditional active vision
systems in which a utility function is evaluated. The expected
free energy formulation is used as a utility function in our
work. However, in contrast to these traditional approaches,
we use a deep neural network to encode the representation
of the environment instead of using geometric representations
or hand-crafting the distributions that are acquired. While
active vision techniques that use neural networks typically use
these models to predict the next best viewpoint directly, or
predict a learned utility function. We reason that the expected
free energy is a natural solution to this problem, as this
is the utility function that determine the actions of living
organisms (Friston, 2013). We use our neural networks to
imagine future states, belief about the environment and, similar
to the work Finn and Levine (2017), use these to plan the
agent’s actions.

5. CONCLUSION

In this paper we investigated whether the active inference
paradigm could be used for a robotic searching and reaching
task. As it is impossible for real-world scenarios to define
the generative model upfront, we investigated the ability to
use a learned generative model to this end. We showed
that we were able to approximate a generative model using
deep neural networks and that this can be learned directly
from pixel observations by means free energy minimization.
To this end we expanded the Generative Query Network
by aggregating the latent distributions from each observation
through a Gaussian multiplication. We conducted an ablation
study and showed that this model had similar performance
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as other aggregation methods when operating in the training
range, and that the model outperformed other techniques when
multiple observations were considered. In a second experiment
we evaluated whether this model was capable of inferring
information about a cup, namely its orientation and whether
or not it has a handle. We showed that the agent actively
samples the world from viewpoints that allow itself to reduce
the uncertainty on its belief state distributions. In the third
case, we show that an artificial agent with a robotic manipulator
explores the environment until it has observed all objects in
the workspace. We showed that if the viewpoints are chosen
by minimization of the expected free energy when provided
with a target goal, the agent explores the area in a biologically-
inspired manner and navigates toward the goal viewpoint
once it has acquired enough information to determine this
specific viewpoint.
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APPENDIX

TABLE A1 | Neural network architecture.

Layer Neurons/filters

Convolutional (1 × 1) 64

Convolutional (3 × 3) 16

LeakyReLU

FiLM (conditioned on vk ) 16

Convolutional (3 × 3) 32

Posterior (φ) LeakyReLU

FiLM (conditioned on vk ) 32

Convolutional (3 × 3) 64

LeakyReLU

FiLM (conditioned on vk ) 64

Convolutional (3 × 3) 128

LeakyReLU

FiLM (conditioned on vk ) 128

Linear 2 × latent size

The posterior model describes the encoder used in the neural network. The latent size

varies from experiment to experiment. In the ShapeNet experiment, the latent size is 64,

in the experiment of the cup, the latent size is 9. In the final case, for the robotic workspace,

the latent size is 256. In the posterior model, each 3 × 3 convolution uses a stride of 2 to

reduce the spatial resolution of the data. The 1 × 1 convolutions use a stride of 1.

TABLE A2 | Neural network architecture of the likelihood model.

Layer Neurons/filters

Linear 4 × 4 × 3

LeakyReLU

Convolutional (3 × 3) 128

LeakyReLU

Convolutional (3 × 3) 128

LeakyReLU

FiLM (conditioned on vk and s) 128

Convolutional (3 × 3) 64

LeakyReLU

Convolutional (3 × 3) 64

LeakyReLU

Likelihood (ψ ) FiLM (conditioned on vk and s) 64

Convolutional (3 × 3) 32

LeakyReLU

Convolutional (3 × 3) 32

LeakyReLU

FiLM (conditioned on vk and s) 32

Convolutional (3 × 3) 16

LeakyReLU

Convolutional (3 × 3) 16

LeakyReLU

FiLM (conditioned on vk and s) 16

Convolutional (1 × 1) 3

This model estimates the pixel values of a potential viewpoint. Each 3 × 3 convolution

is preceded by a linearly upsample step that doubles the image resolution. The 1 × 1

convolutions use a stride of 1.
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Finding the underlying principles of social attention in humans seems to be essential for

the design of the interaction between natural and artificial agents. Here, we focus on

the computational modeling of gaze dynamics as exhibited by humans when perceiving

socially relevant multimodal information. The audio-visual landscape of social interactions

is distilled into a number of multimodal patches that convey different social value,

and we work under the general frame of foraging as a tradeoff between local patch

exploitation and landscape exploration. We show that the spatio-temporal dynamics of

gaze shifts can be parsimoniously described by Langevin-type stochastic differential

equations triggering a decision equation over time. In particular, value-based patch

choice and handling is reduced to a simple multi-alternative perceptual decision making

that relies on a race-to-threshold between independent continuous-time perceptual

evidence integrators, each integrator being associated with a patch.

Keywords: audio-visual attention, gaze models, social interaction, multimodal perception, drift-diffusion model,

decision theory, perceptual decisions

1. INTRODUCTION

The main concern of this work is modeling gaze dynamics as exhibited by humans when
perceiving socially relevant multimodal information. Such dynamics accounts for gaze deployment
as unfolding in time, depending on where observers look, how long and when. It is known that
under certain circumstances humans spend themajority of time scrutinizing people, markedly their
eyes and faces, and spotting persons that are talking (cfr., Foulsham et al., 2010, for framing this
study, but see Hessels, 2020 for an in-depth discussion under general conditions and an up-to-date
review). This is not surprising since social gazing abilities are likely to have played a significant role
very early in the primate lineage (Shepherd and Platt, 2007).

Gaze, the act of directing the eyes toward a location in the visual world, is considered a
good measure of overt attention (Kustov and Robinson, 1996). This makes the research problem
addressed here relevant for many aspects, with promising applications in different fields, such as
social robotics, social gaze analysis, and clinical studies (Hessels, 2020). Endowing artificial agents
with the ability to gaze at social cues—a building block for many dyadic, triadic, and multiparty
interactions (Hessels, 2020)- has been deemed essential since early attempts to build socially
competent robots (Admoni and Scassellati, 2017; Wiese et al., 2017). A growing body of research is
devoted to quantitatively assess how humans gather social information through gaze so to infer
other persons’ intentions, feelings, traits, expertise, or even expectations and to analyse group
dynamics (Staab, 2014; Rubo andGamer, 2018; Grossman et al., 2019; Guy et al., 2019; Jording et al.,
2019). Over the years, a broad research spectrum has been established from traditional laboratory
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studies of social attention or social gaze to interactive settings,
unveiling the complexity of the problem (but see Hessels,
2020 for an enlightening and in-depth discussion). The
conversational videos we are exploiting have the virtue of
displaying real people embedded in a dynamic situation while
being relatively controlled stimuli (Foulsham et al., 2010). In
clinical research gaze is central to the investigation of attention
mechanisms in groups of patients with atypical development
in the appraisal of social cues, e.g., social anxiety disorder,
autism spectrum disorder, schizophrenia (Klein et al., 2019).
To such end, the analysis of social perception by employing
contextually rich video stimuli poses little cognitive demands
to the participants (Rubo and Gamer, 2018). Meanwhile,
modeling gaze as a dynamical stochastic process that unfolds
in space and time is gaining currency in clinical studies (e.g.,
Korda et al., 2016; Ioannou et al., 2020).

Surprisingly, limited research has addressed the
computational modeling of eye guidance in a multimodal
setting; only a handful of works have considered social cues in
such setting (cfr. Tavakoli et al., 2020, and Boccignone et al.,
2020, for a review). Yet, even when limiting to the unimodal case
of visual stimuli, gaze dynamics has been by and large overlooked
in computer vision in spite of the pioneering work of Aloimonos
et al. (1988), Ballard (1991), and Bajcsy and Campos (1992). The
current state of affairs is that effort is mostly spent to model
salience (Borji and Itti, 2013; Borji, 2021) as a tool for predicting
where/what to look at (for a critical discussion, see Tatler et al.,
2011; Le Meur and Liu, 2015; Foulsham, 2019; Boccignone et al.,
2020; Zhang et al., 2020).

Here we take a different stance and we focus on modeling gaze
dynamics. To such end we build on foraging theory. Foraging
is a general term that includes where animals search for food
and which sorts of food they eat (Stephens, 1986; Bartumeus and
Catalan, 2009). In brief, the animal strives for maximizing his
intake of food in a “patchy” landscape: moment by moment it
selects the most convenient patch, moves to the patch and starts
foraging in that location. While exploiting the patch, the animal
gains energy at a rate that decreases as the food becomes depleted:
thus, at any time, he has to make a decision whether to stay or
leave for the next patch (MacArthur and Pianka, 1966).

Foraging is an appealing and principled framework for dealing
with gaze. The idea is simple: gaze deployment is the result of
the foraging behavior of the observer. Consider Figure 1. The
top-left image displays a video frame of a conversational clip
overlaid with a number of computed audio-visual patches. The
gaze trajectory of a perceiver, who is viewing and listening to the
clip, unfolds such that local, within-patch exploitation alternates
with long between-patch relocations (cfr. Figure 1, bottom-right
image). Indeed, much like the foraging animal, the perceiver
contends with two problems: What defines a patch as valuable
to gaze at? How is gaze guided within and between patches?

The idea of exploiting the foraging framework has gained
currency in the visual attention field and human cognition
theories (e.g., Hills, 2006; Pirolli, 2007; Cain et al., 2012; Wolfe,
2013; Ehinger and Wolfe, 2016; Mirza et al., 2016), and it is
deemed more than an informing metaphor (Wolfe, 2013). It has
been argued that what was once foraging for tangible resources

in a physical space became, over evolutionary time, foraging for
information in cognitive space (Hills, 2006).

In this perspective, the selection of individual patches is not
the most relevant issue (Wolfe, 2013; Ehinger and Wolfe, 2016).
Of more interest is when does a forager leave one patch for
the next one. Namely, the primary metric of concern in animal
ecology studies is the patch giving-up time (GUT). The most
influential account of average patch leaving behavior is Charnov’s
Marginal Value Theorem (MVT, Charnov, 1976). The MVT
states that it is time tomove when the rate of energy gain from the
currently visited patch drops below the average rate. The latter,
in turn, depends on the rate at which resources can be extracted
from patches and on the time for relocating to the next patch.
Accordingly, a poor patch yielding a low energy gain should be
abandoned earlier.

Recently, a model has been proposed (Boccignone et al.,
2020) that takes into account the above questions in order
to reframe gaze deployment as the behavior of a stochastic
forager while visiting audio-visual patches that convey different
social value. Most relevant, the patch leaving time was obtained
via the stochastic version of the MVT (McNamara, 1982).
However, the advantage of having a general solution derived from
first principles in the framework of optimal Bayesian foraging
(Bartumeus and Catalan, 2009) is mitigated by a computational
cost that might impact on possible application, such as social
robotics (cfr., Supplementary Figures 2, 3).

In this brief research report we investigate a patch handling
model, which is alternative to that proposed in Boccignone et al.
(2020). Here, the decision of relocating gaze from one patch to
the other relies on simple multi-alternative perceptual decision
making that embeds both patch leaving and choice. The latter
takes stock of recent work that spells out animal foraging in terms
of an evidence accumulation process (Davidson and El Hady,
2019). In our case evidence denotes the estimate of the relative
value of scrutinizing a patch with respect to the others. We
consider an integration-to-threshold mechanism, namely a race-
to-threshold between continuous-time independent evidence
integrators, each being associated with a patch. A snapshot
of the process is displayed in the top-right panel of Figure 1,
which shows the stochastic evolution of patch-related evidence.
Meanwhile, in the same vein of Boccignone et al. (2020), the
spatial displacement of gaze within and between patches is
obtained via an Ornstein-Uhlenbeck (O-U) process that operates
at two different spatial scales, local and global (bottom panels of
Figure 1).

As a result, the gaze deployment problem can be
parsimoniously formalized, both in time and in space,
through the evolution of a set of Langevin-type stochastic
differential equations. Then the question arises whether the
model presented here retains the same basic response features
obtained by Boccignone et al. (2020) while being computationally
more efficient.

In the Methods section, the model is presented to bare
essentials together with the experimental setup and the
evaluation protocol. In the Results section the outcomes of the
model are juxtaposed with those from the method introduced
in Boccignone et al. (2020); comparison with other methods is
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FIGURE 1 | Overall view of the patch cycle at the basis of the proposed model. (Top left) At any time t the perceiver captures the multimodal landscape of social

interactions as a set of audio-visual patches that convey different social value (speakers, faces, gestures, etc.); patches are shown as colored Gaussian blobs that

overlay the original video frame. (Bottom left) The simulated 2D spatial random walk (O-U process) is displayed starting from the frame center up to current gaze

location within the red patch (speaker’s face). (Top right) The decision making dynamics instantiated as the stochastic evolution (1D random walk with drift) of

independent racers, one for each patch (patches and racers are coded by corresponding colors); the current patch (red blob) is scrutinized until one of the racers

(winner) hits the threshold; the winner sets the next gaze attractor on the corresponding patch; in this case the light blue patch is the winner (non-speaking face);

(Bottom right) The simulated gaze trajectory within the new chosen patch after between-patch relocation has been performed. See text for details.

available in the Supplementary Material section, too. It is shown
that the simulated scan paths exhibit features that are statistically
similar to those of eye movements of human observers that were
eye tracked while watching and listening to conversational clips
in a free-viewing condition. Notably, the performance attained
is comparable, albeit relying on a simpler mechanism, and at a
low computational cost. Eventually, we discuss the results so far
achieved, highlighting the novelties of the method and its pitfalls,
while addressing its implications in perspective.

2. METHODS

2.1. The Model
The input to the model at time t is the multimodal landscape,
which we define as the time-varying ensemble of audio-

visual patches W(t) = {Pp(t)}
NP
p=1. These serve as regions

of gaze attraction. Each patch is shaped as a 2-D Gaussian
with localization parameter (mean) µp and shape parameter
(covariance matrix) 6p. One example is provided in the top-
left image of Figure 1 displaying the set of computed patches
W(t) as Gaussian blobs that overlay the original video frame; the
patches correspond to the current speaker’s face, the faces of the
listeners, the speaker’s hand gesture, and a center-bias patch. It is

worth noting that the model needs not to rely upon any specific
technique for deriving the pre-attentive representation W(t), as
long as it captures relevant social multimodal information within
the scene (persons, speakers, gestures, etc.).

Moment by moment, the perceiver, who is viewing and
listening to the audio-visual clip, will (1) select one patch to gaze
at, most likely the speaking face, (2) scrutinize it for a certain
time, (3) move to a different patch, and so forth. Denote rF(t) =
(xF(t), yF(t)) the vector of the spatial coordinates of gaze at time t.

The evolution over time of rF(t) defines a trajectory, that
is the spatiotemporal dynamics of gaze. Such trajectories are

best described as the unfolding of local displacements within

a patch followed by larger relocations between patches. Gaze
allocation to one patch depends on the time-varying context of
the scene and on the value Vp that each patch p is assigned
within such context (e.g., the value of a patch including a face of
a speaking person changes when the person becomes silent). In
our setting, no specific external task or goal is given (free-viewing
condition). Then, if the ultimate objective of an active perceiver
is total reward maximization (Zhang et al., 2020), reward can
be related to the “internal” value (Berridge and Robinson,
2003). The latter has different psychological facets including
affect (implicit “liking” and conscious pleasure) and motivation
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(implicit incentive salience, “wanting”). Indeed, social signals
are expected to induce responses as other reward stimuli do,
i.e., motivational approach as well as hedonic response (Vernetti
et al., 2018).

Under such circumstances, the behavior of the perceiver can
be formalized as that of a forager, gaze being the means to
gather valuable information within the scene. At any time t,
the forager is engaged either in local patch exploitation or in
landscape exploration across patches. This entails solving the
decision making problems of patch choice and patch giving up,
together with setting the appropriate spatial dynamics for visiting
the currently handled patch or relocating to a new one.

As to the decision problem, here, rather than resorting to
optimal Bayesian foraging (Boccignone et al., 2020), we frame it
in the physics of optimal decision making (Bogacz et al., 2006;
Gold and Shadlen, 2007). Decision making depends upon the
forager’s estimate of the relative value of scrutinizing a patch
with respect to the others, namely the evidence qp(t) assigned to
patch p at time t (Bogacz et al., 2006; Gold and Shadlen, 2007).
In turn, the evidence depends on both the patch value Vp and
the overall dynamics of the patch ensemble (cfr. section 2.1.1
below). Evidence accumulation is computed by integrating a 1D
Markov Gaussian process in the form of a Langevin-type drift-
diffusion model. The decision making process is summarized via
the evolution of state variables st and p∗t . Both depend upon
the evidence qp(t): the first one is a binary random variable
accounting for the switching from within-patch exploitation
(st = 0) to between-patch relocation (st = 1); the second
variable indexes the patch chosen to be handled at time t, thus
p∗t ∈ {1, · · · ,NP}.

Eventually, based on the forager’s decisions, the stochastic
evolution of gaze deployment, namely the spatiotemporal
trajectory rF(t), is generated by a 2D Markov Gaussian process.
Precisely the latter is a 2D Ornstein-Uhlenbeck (O-U) process,
which operates at two different spatial scales, within-patch and
between patches, respectively. The O-U process is a mean
reverting process where patches serve as trajectory attractors (cfr.
section 2.1.2); the typical outcome of the O-U process is displayed
in the bottom panels of Figure 1.

The model can be succinctly formalized as follows:

2.1.1. Decision Making Dynamics
We represent the perceptual decision making problem as a
continuous-time race model in a multi-choice setting (Bogacz
et al., 2006; Krajbich and Rangel, 2011), where the NP patches
compete one against the other to attract gaze. The response at
time t is obtained by evolving over time, for each patch, the
evidence accumulation process until a choice is made (top-right
panel of Figure 1). Evidence in favor of each patch is accumulated
at different rates depending on the patch value and on whether it
is being gazed. For each patch p, the process has the form of the
following stochastic differential equation (SDE):

dqp(t) = Ip(t)dt + cdW(t), p = 1, · · · ,NP. (1)

The drift term Ip(t) denotes the mean rate of incoming evidence;
the second term cdW (W being a Wiener process) represents

white noise, which is Gaussian distributed with mean 0 and
variance c2dt.

Equation (1) can be numerically integrated between 0 and t
with initial condition qp(t) = 0: (Lemons, 2002; Kloeden and
Platen, 2013):

qp(t
′) = qp(t)+ Ip(t)δt + c

√
δtz(t), p = 1, · · · ,NP, (2)

with z(t) ∼ N (0, 1) and δt being the time increment t′ = t + δt.
We set c = 1; drift Ip(t) is computed as follows:

Assume that the value Vp is available for each patch p on the
basis of the patch type; this can be derived, for instance, from
eye tracking data as the prior probability of gazing at speaking
persons, non-speakers, etc., within the social scene. The drift rate
Ip(t) associated to the racer of the p-th patch at time t depends on
whether or not patch p is being currently exploited, i.e., p = p∗

and p 6= p∗, respectively, and on the relative patch value νp:

Ip(t) = 9(p, p∗)νp. (3)

Define the gazing function 9 as

9(p, p∗) =

{

e
−

φ
Vp

t
p = p∗

1 otherwise
, (4)

φ being a positive constant; the relative value νp is

νp = η
Vp

Vp∗
e
−κ

∥

∥

∥
µp−µp∗

∥

∥

∥

(5)

In Equation (5) the negative exponential e
−κ

∥

∥

∥
µp−µp∗

∥

∥

∥

, κ > 0
accounts for the visibility of the patch p from the current patch

p∗. The visibility is weighted by the η
Vp

Vp∗
term, η > 0, in order to

scale the drift rates of all patches as a function of the prior value
of the current one. As a consequence, the average accumulation
rate is reduced when visiting valuable patches (hence producing
higher residence times); it is increased when visiting poorer
ones that will be given up earlier. Clearly, the exponential term
implies higher drift rates for the currently visited patches since
promoting the nearest sites, including the current one. This
entails high probability for the current patch to be chosen again.
Meanwhile, in order to avoid the process being stuck to the
current patch, the function 9 (Equation 4) decreases the drift
rate of the visited patch exponentially in time. The drift rates of
most valuable patches will be affected by a slower decrease, thus
allowing for longer patch exploration.

Coming back to Equation (1), qp(t) grows at the rate Ip(t) on
average, but also diffuses due to the accumulation of noise. A
decision is made as soon as the random walk of one among the
qp(t) variables crosses a barrier a. This is accounted for by the
decision equation

sp,t = H(qp(t)− a), p = 1, · · · ,NP, (6)

where H is the Heaviside function and sp,t denotes the response
function related to patch p, clearly, a piece-wise constant function
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admitting only the values 0 and 1. Race termination occurs as
any qp(t) reaches the decision criterion, that is sp,t = 1. Then,
the choice of the motion regime or scale (i.e., local vs. global)
accounted for by st , and that of the attractor indexed by p∗t can
be written

st = sp,t , p∗t = p. (7)

When p∗t 6= p∗t−1, that is the chosen patch is different from the
previous one, a between-patch relocation occurs, and st = 1 until
the new patch is reached (bottom panels of Figure 1); otherwise,
(p∗t = p∗t−1), st is set to 0 and the exploration of the current patch
is resumed.

2.1.2. Spatial Dynamics
Given the state (st , p

∗
t ), and following Boccignone et al. (2020),

the spatial dynamics of gaze is obtained by evolving the FOA
position rF(t) over time through the state-dependent stochastic
differential equation that defines the 2D O-U process

drF(t) = B
(st)
p∗ [µ

(st)
p∗ − rF(t)]dt +D

(st)
p∗ (rF(t))dW

(st)(t). (8)

This generates a mean reverting trajectory, µ
(st)
p∗ being the

attractor location (center of mass of the selected patch). Clearly,
when st = 1 the attractor serves as the target of a large scale
gaze relocation; when st = 0, the attractor constrains local patch
exploitation. Examples of the O-U outcome are displayed in the
bottom panels of Figure 1.

In Equation (8), the 2 × 2 matrix B
(st)
p∗ controls the strength

of attraction (drift) of rF toward the location µ; D
(st)
p∗ is a 2 × 2

matrix representing the diffusion parameter of the 2D Brownian
motionW(t). Precisely, for the 2D mean-reverting O-U process,

B
(st)
p∗ = (b

(st)
x,p∗ , b

(st)
y,p∗ )

T , D
(st)
p∗ = (σ (st))2I, with W = (Wx,Wy)

T

denoting independent Brownian processes. Equation (8) can be
integrated so that the evolution in time of rF(t) = (xF(t), yF(t))
between 0 and t is computed by numerically advancing the gaze
position through the update equation from t to t′ = t+ δt, i.e., δt
time units later, and initial condition x0 = xF(t):

xF(t
′) = xF(t)e

−b
(st )

x,p∗
δt
+ µx(1− e

−b
(st )

x,p∗
δt
)

+

√

γx(1− e
−2b

(st )

x,p∗
δt
)z(t)

yF(t
′) = yF(t)e

−b
(st )

y,p∗
δt
+ µy(1− e

−b
(st )

y,p∗
δt
)

+

√

γy(1− e
−2b

(st )

y,p∗
δt
)z(t) (9)

with z ∼ N (0, 1). As to the O-U parameters, the drift terms b
(st)
x,p

and b
(st)
y,p are set proportional to the width of the patch p if st = 0,

or proportional to the distance from the target patch, otherwise.

The diffusion terms are γ
(st)
x = σ (st )

b
(st )

x,p∗

, γ
(st)
y = σ (st )

b
(st )

y,p∗

with σ (st)

proportional to the average distance between patches if st = 1;
equal to 1, otherwise.

2.2. Experimental Set-Up
Our experimental set-up can be recapped as follows:

As to stimuli and eye tracking data we use a large publicly
available dataset (Xu et al., 2018), which is influential in current
research on computational modeling of attention (Borji, 2021).
We evaluate the proposed model (from now on, Proposed)
by straightforward comparison to the GazeDeploy
model (Boccignone et al., 2020). The main goal is the assessment
of the effectiveness and the computational efficiency of the novel
decision making procedure. For what concerns confronting
with other models, only a few have been proposed that are
experimentally at the ready for actual simulation of gaze
deployment, i.e., with the capability of handling time-varying
scenes and the availability of a software implementation (e.g.,
Boccignone and Ferraro, 2014; Zanca et al., 2020). For the sake
of completeness, full evaluation with respect to these models
and their variants is reported in the Supplementary Table 1 and
Supplementary Figure 7.

The evaluation protocol involves the simulation of
both models to generate gaze trajectories. These are then
quantitatively compared with data from human observers via the
ScanMatch (Cristino et al., 2010) and the MultiMatch (Jarodzka
et al., 2010; Dewhurst et al., 2012) metrics. Details are given in
the sections below.

2.2.1. Stimuli and Eye Tracking Data
The adopted dataset (Xu et al., 2018) consists of 65 one-shot
conversation scenes from YouTube and Youku, involving 1–27
different faces for each scene. The duration of the videos is cut
down to be around 20 s, with a resolution of 1, 280 × 720 pixels.
The dataset includes eye tracking recordings from 39 different
participants (26 males and 13 females, aging from 20 to 49, with
either corrected or uncorrected normal eyesight), who were not
aware of the purpose of the experiment. A 23-inch LCD screen
was used to display the test videos at their original resolution.
Eye tracking was carried out using a Tobii X2-60 eye tracker at
60 Hz. All subjects were required to sit on a comfortable chair
with a viewing distance of about 60 cm from the LCD screen;
no chin rest was used. Before viewing videos, each subject was
required to perform a 9-point calibration for the eye tracker.
The subjects were asked to free-view videos displayed at random
order. The 65 test videos were divided into three sessions, and
there was a 5-min rest after viewing each session to avoid eye
fatigue. Moreover, a 10-s blank period with black screen was
inserted between two successive videos for a short rest. Event
classification into saccades and fixations with relative duration
was performed via eye tracker embedded algorithms with default
settings. Eventually, 1, 011, 647 fixations in total were retained.

A caveat concerns the lack of full data quality reporting
compliant with the criteria discussed by Holmqvist et al. (2012),
considering the high level of noise (low precision) of the
Tobii X2-60 eye tracker. On the other hand, this issue is in
our case mitigated by the fact that when performing within-
patch analysis, we are mostly interested in a phenomenological
description of local gaze dynamics. Clearly, this would have
been a serious impediment, if we had recursively applied our
method to scrutinize specific items within the patch (e.g., the
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eyes for gauging gaze direction, or other facial cues for expression
recognition). In foraging terms (Stephens, 1986), such recursion
would account for prey choice and handling. However, this goal
was out of the scope of the present investigation.

2.2.2. Evaluation Protocol
We compare the scan paths simulated from a number of model-
based, “artificial” observers with those recorded from human
observers (the Real model). The rationale is to assess whether
simulated behaviors are characterized by statistical properties
that are significantly close to those featured by human subjects
eye tracked while watching conversational videos. Put simply,
any model can be considered adequate if model-generated scan
paths mimic those generated by human observers (which we
regard as samples of the Real model) while gazing at the same
audio-visual stimuli.

As to the evaluation metrics, we adopt the ScanMatch
(Cristino et al., 2010) and the MultiMatch (Jarodzka et al., 2010;
Dewhurst et al., 2012)methods. ScanMatch (SM) is apt to provide
an overall performance summary, whilst MultiMatch (MM)
specifically addresses the many dimensions of gaze dynamics.
The SM and MM metrics are computed on scan paths, that
is a sequence of fixations and saccades. The Proposed and
the GazeDeploy models generate continuous gaze trajectories
that can be assimilated to raw data produced by eye trackers.
Yet, the exploration and exploitation dynamics can be thought
of as following a “saccade and fixate” strategy (Land, 2006).
Further, the conversational stimuli we are using result in limited
motion of patches, mostly due to head turning and hand
gestures. Then, to classify fixation and saccade events in model
generated trajectories we adopt, from a data analysis perspective,
a functional definition of such events (Hessels et al., 2018). We
consider a fixation as a period of time during which a static or
a moderately displacing part of the visual stimulus (the patch)
on the screen is gazed at and that in a human observer would
be projected to a relatively constant location on the retina.
This corresponds to local dynamics in the exploitation stage.
Accordingly, saccades are the gaze shifts for redirecting the line
of sight to a new patch of interest, as performed along the
exploration stage. This is operationalized using the NSLR-HMM
algorithm (Pekkanen and Lappi, 2017) with default settings;
the original implementation is available from online repository
(cfr., Supplementary Material, Computer Code). The algorithm
classifies fixations, saccades, smooth pursuits, and post-saccadic
oscillations. To serve our purposes, smooth pursuits were
retained as fixations.

In detail, SM divides a scan path spatially and temporally
into several bins and then codes it to form a sequence of
letters. The frame width was divided into 14 bins, while the
height was split in eight bins; the temporal bin size was set to
50 ms. Two scan paths are thus encoded to two strings that
are compared by maximizing the similarity score. This metric
indicates the joint spatial, temporal and sequential similarity
between two scan paths, higher SM score denoting a better
matching. Complementary, the MM metrics computes five
distinct measures that capture the different scan path features:
shape, direction, length, position, and duration. Higher score

of each metric means better matching. The MM algorithm
allows for scan paths sequences to be simplified in order
to reduce their complexity. This is carried out by grouping
together saccades of angular or amplitude differences below some
predefined thresholds. Likewise, fixations are grouped if their
duration is shorter than a duration threshold. In the adopted
evaluation protocol no simplification was performed (i.e., no use
of the direction, length, and duration thresholds), as even small
differences in scan paths performed on a dynamic stimuli can
correspond to major differences in the attended scene.

The evaluation protocol runs as follows: assume a number
Nobs of human observers. Then, for each video in the test set:
(1) compute SM and MM similarity scores for each possible
pair of the Nobs observers (Real vs. Real); (2) for each model:
(2.a) generate gaze trajectories from artificial observers; (2.b)
parse/classify trajectories into scan paths (saccades and fixations
with the relative duration) via the NSLR-HMM algorithm
(Pekkanen and Lappi, 2017); (2.c) compute SM and MM scores
for each possible pair of real and Nobs artificial scan paths (Real
vs. Model). Eventually, (3) return the average SM and MM
scores for Real vs. Real and Real vs. Model comparisons.

In what follows we consider each MM dimension to be a
stand-alone score. Thus, the analysis uses six different scores:
the five obtained from the MM dimensions of shape (MMShape),
direction (MMDir), length (MMLen), position (MMPos), and
duration (MMDur), plus the SM score SM.

2.2.3. Simulation Details
The rationale of the simulations was to focus on the performance
of the different gaze control strategies of the Proposed
and of the GazeDeploy models. The input provided to
either model was the same, namely the patch representation
recapped in the Supplementary Material, Patch computation.
The bottom layers of patch computation (face detection, speaker
detection) rely on deep neural network modules that were
independently optimized on a different dataset (Boccignone et al.,
2019).

In addition, a baseline Random model was adopted. This
simply generates random gaze shifts by sampling (x, y) fixation
coordinates from an isotropic Gaussian distribution located at
the center of the scene (center-bias). The Gaussian standard
deviation is set proportional to the height of the video frames.
The fixation duration is sampled from a uniform distribution
ranging from 67 to 1, 699 ms corresponding to the 0.01 and 0.99
quantiles of the empirical distribution of real fixations duration.

To optimize onmodel parameters, ten subjects were randomly
sampled out of the 39 participants and their scan paths used
to determine the free parameters of the proposed model via a
grid search maximizing metric scores according to the procedure
described in section 2.2.2. This yielded the optimal values φ =

0.18, η = 5, κ = 15, and a = 1.7. The same procedure
was performed to optimize GazeDeploy free parameters, as
described in (Boccignone et al., 2020). The remaining 29 subjects
were used for evaluation.

The code for the simulation of all models is available in online
repositories (cfr., Supplementary Material, Computer Code).
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3. RESULTS

A demonstration of the output obtained from model simulation
is included in the Supplementary Video 1. The result is by and
large representative of those obtained on the whole dataset.

Overall, the simulated model generates scan paths that
mimic human scan paths in terms of spatiotemporal statistics
(but see Supplementary Figure 5 for a concrete example on
a single video): the saccade amplitude distributions exhibit a
multimodal shape, with short saccades preferred to long ones;
fixation duration distributions from both real and simulated
data reveal a right-skewed and heavy-tailed shape; prima facie,
a high similarity can also be noticed between saccade direction
distributions of real and simulated data. The same conclusions
can be drawn by observing Supplementary Figure 6, which
reports the same statistics and comparison on the whole dataset.

For visualization purposes, Figure 2 depicts at a glance the
estimated empirical densities of the similarity scores achieved by
using the protocol introduced in section 2.2.2. Scores obtained
from the Real vs. Real comparison represent the gold
standard. A preliminary, qualitative inspection shows that the
Proposed model, much like the GazeDeploy model, gives
rise to empirical densities that are close to those yielded by real
subjects. This holds for all dimensions, with the exception of the
direction scoreMMDir .

For what concerns the efficiency of the two methods, all
things being equal as regards the input provided (the ensemble
of audio-visual patches W(t) and the O-U spatial dynamics),
the computational cost of the decision making procedures of
Proposed and GazeDeploy amounts to the 0.2 and the
44.6%, on average, of the total computation time, respectively,
at frame rate. A summary of the cost profiling is reported in
Supplementary Figure 4.

As to the quantitative evaluation of the effectiveness of
the methods, in the following we adopt well-established
statistical tests in order to assess whether or not each model
generates scan paths that significantly differ from those of
human observers and to gauge the size of such difference
(effect size).

3.1. Statistical Analyses
In a nutshell, we are interested in performing a statistical
comparison of the performance between multiple models over
each video of the adopted dataset. This is the typical repeated
measure analysis between multiple groups, for which standard
ANOVA is usually performed. The ANOVA test requires
populations distributions to be normal and homoscedastic (with
the same finite variance). If either normality or homoscedasticity
cannot be ensured, non-parametric statistical tests (like the
Friedman test) should be employed. In the analyses that follow,
the SM metric and each dimension of the MMmetric are treated
as separate scores. Significance level of all statistical tests is
α = 0.05.

As to scores MMShape and MMLen, the Shapiro-Wilk test with
Bonferroni correction rejected the null hypothesis of normality
as opposed to the SM,MMDir ,MMPos, andMMDur scores.

For all scores the null hypothesis of homoscedasticity of
distributions was rejected by either Bartlett (in case of normality
of distributions) or Levene (non-Gaussian distributions) tests.
Hence, the Friedman test with Nemenyi post-hoc analysis was
performed. The results for each score are depicted in Figure 3

via the corresponding Critical Difference (CD) diagrams. These
provide quantitative support for the preliminary observations
offered by the empirical densities in Figure 2.

Notably, according to the SM metric and the adopted
assessment strategy, the scan paths simulated from the
GazeDeploy and Proposed procedures cannot be
distinguished from those of Real subjects (this is further
demonstrated by the fact that these two models achieve small or
negligible effect sizes, as reported in Supplementary Table 1).

The SM score can be conceived as an overall summary of
the performance of the considered models. A deeper analysis
can be performed by inspecting the individual dimensions
provided by the MM metric. One important result is delivered
by theMMDur dimension, summarizing the similarity of fixation
duration between aligned scan paths: again, the Proposed and
GazeDeploy models cannot be distinguished from the gold
standard (Real), exhibiting negligible and small effect sizes,
respectively (see Supplementary Table 1).

A similar conduct is exhibited by the MMShape, MMLen, and
MMPos scores.

The MMDir score is worthy of mention: in this case,
GazeDeploy and the Proposed procedures perform
comparably with the Random model. This is probably due to
the fact that saccade direction modeling is not addressed by both
models, but just absorbed into the gaze shift policy at hand.

4. DISCUSSION

We set out to investigate the modeling of gaze dynamics
as exhibited by a perceiver who scrutinizes socially relevant
multimodal information. This effort was developed under the
framework of foraging behavior.

The work presented here builds upon previous
one (Boccignone et al., 2020). However, in that case the
cogent problems of patch choice and leave were framed within
an optimal Bayesian setting (Bartumeus and Catalan, 2009).
Here, in a different vein, we considered a simple multi-alternative
perceptual decision making approach. This relies on a race-to-
threshold between independent integrators, each integrator
being associated with a patch (Bogacz et al., 2006; Ditterich,
2010; Krajbich and Rangel, 2011). In consequence, the eye
guidance problem can be parsimoniously formalized in terms of
the evolution of the stochastic differential equations (1) and (8)
together with the decision equation (6).

The gain in simplicity and computational efficiency does
not come to the cost of performance as it might have been
expected. The results so far achieved, when inspected under
the lens of statistics, show that the proposed method is
comparable to the GazeDeploy method in terms of either
the overall performance, as measured by the SM score, and the
specific scores gauged by MM. In particular, the remarkable
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FIGURE 2 | The estimated empirical densities f (score) for the considered models (via Kernel Density estimation). (A) Shows the distributions for the ScanMatch score;

(B–F) show the distributions related to the five MultiMatch dimensions.

result obtained by GazeDeploy for what concerns fixation
duration—which in that case was related to the MVT modeling
of the giving-up—is also replicated by this simpler method. Thus,
a question arises in regard to the relations, if any, between the two
models. A thorough discussion of this point would carry us deep
into establishing formal connections between themethods, that is
out of the scope of this brief research report. A few considerations
must here suffice.

Optimal foraging theory, markedly theMVT and its stochastic
extension, provides general rules for when an animal should leave
a patch. This lays the theoretical foundation for assessing optimal
decision-making, though lacking mechanistic explanation. It
has been shown under appropriate conditions (Davidson and

El Hady, 2019) that optimal foraging relying on patch-leaving
decisions can be connected to a stochastic evidence accumulation
model of foraging, namely a drift-diffusion model (DDM, Ratcliff
et al., 2016). This describes the process through which an
animal gathers information to make decisions. The DDM can
be solved for conditions where foraging decisions are optimal
and equivalent to the MVT (Davidson and El Hady, 2019).
Notably, the DDM can be extended to a multi-alternative DDM
(Bogacz et al., 2006). The latter, for instance, has been applied
to eye tracking experiments involving multiple choice in value-
based decision (Krajbich and Rangel, 2011). The continuous-
time independent race integrators that we used here, should
be considered as a theoretically sub-optimal solution; yet,
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FIGURE 3 | Critical Difference (CD) diagrams of the post-hoc Nemenyi test (α = 0.05) for the ScanMatch (A) and MultiMatch scores (B–F) when comparing the

proposed model with the GazeDeploy procedure, the gold standard and a baseline random model. Diagrams can be read as follows: the difference between two

models is significant if the difference in their ranks is larger than the CD. Models that are not significantly different from one another are connected by a black CD line.

Friedman’s test statistic (t) and p-value (p) are reported in brackets.

according to results we gathered so far, it qualifies as a viable
solution for trading down complexity of the full MVT approach.
Overall, differently from optimal foraging theory, DDMs and
generalizations (Bogacz et al., 2006; Ratcliff et al., 2016) provide a
mechanistic framework suitable to unravel behavioral and neural
underpinnings of value-based decision making. Interestingly
enough, stochastic race accumulator have been proposed to
model neural activity for action selection in the pre-motor
areas (Ognibene et al., 2006). Also, from a neurobiological
standpoint, a body of evidence suggests the firing properties
of neurons that are likely to drive decisions in the LIP and
the FEF are well-described by stochastic accumulator models
(Gold and Shadlen, 2007).

The Langevin-type equation formalizing evidence
accumulation is entangled with the 2D spatial Langevin-
type equation (O-U process) accounting for the two different
scales of landscape exploration and of local patch exploitation.
On the one hand this succinctly permits the use of one and
only dynamics of oculomotor behavior in the vein of current
literature suggesting that visual fixation is functionally equivalent
to visual exploration on a spatially focused scale (the functional
continuum hypothesis, Otero-Millan et al., 2013). On the other
hand, the strict interplay between the evidence accumulation
equation and the 2-D multiscale gaze shift equation puts
forward the present study for having a special bearing on
current proposals in computational models that address the
focal and ambient dichotomy and the relation between saccade
amplitude and fixation duration (Le Meur and Fons, 2020).
This issue was well-known in the eye tracking literature (Unema
et al., 2007) but overlooked in the computational modeling of
visual attention.

Beyond the merit of the above theoretical aspects, the model
bears on potential applications for researchers interested in social
gaze. Our approach allows for operationalizing the effect of
social information on gaze allocation in terms of both decision
making and value attributed to different kinds of gaze attractors.
Meanwhile, it takes into account spatial tendencies in the
unfolding of gaze trajectories. The basic foraging dimensions of
value-based patch selection and patch handling over time pave
the way for analysing in a principled framework social gaze
as related to persons’ intentions, feelings, traits, and expertise
by exploiting semantically rich multimodal dynamic scenes.
Video stimuli are clearly advantageous when investigating social
attention compared to static stimuli (Risko et al., 2012). Complex,
dynamic and contextually rich video clips elicit more natural and
representative viewing behavior in participants, even though it
might deviate from that found in everyday situations (Risko et al.,
2012; Hessels, 2020). In a sense, this experimental arrangement
should provide a better approximation to a “real world”
social dynamic context, thus bearing higher ecological validity.
However, the latter is a problematic claim (one good place to look
for further reflection on these matters is Holleman et al., 2020).
In what follows, we shall limit our discussion to particular
contexts of social robotics. Yet, in general, our model and set-
up can be useful for investigating social attention under a variety
of circumstances, such as in clinical populations as discussed in
the Introduction.

The computational efficiency of the method shows promise
for application in robotics, markedly in social robotics, where
active vision plays an important role and where social robot’s
sensitivity to environmental information and the ability to
localize the people around itself is crucial (Admoni and

Frontiers in Neurorobotics | www.frontiersin.org 9 March 2021 | Volume 15 | Article 63999969

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


D’Amelio and Boccignone Gazing at Social Interactions

Scassellati, 2017; Wiese et al., 2017; Zhang et al., 2020). Social
robots need to gather information about their human fellows
to facilitate mutual understanding and coordination (Zhang
et al., 2020). Designing robot gaze itself is challenging and
difficult to standardize due to the variations in physical robots
and human participants, while burdened with architectural
constraints. Early research efforts (Breazeal et al., 2001) relied
on simple saliency-based schemes (Itti et al., 1998) inherited
from computer vision (Shic and Scassellati, 2007; Ferreira
and Dias, 2014); in the last decade these have been reshaped
in the form of deep neural nets, such as convolutional
networks (Zhang et al., 2020). Yet, the aptness of accounting
for task, value and context in the visuo-motor loop is
crucial. In this perspective, it is acknowledged that socially
interactive robots would greatly benefit from the development
of probabilistic real-time frameworks that implement automatic
attention mechanisms (Ferreira and Dias, 2014). For instance,
in a recent work (Rasouli et al., 2020), active visual behavior
has been grounded in the probability of gazing at a location
that accounts for an empirical exploitation/exploration trade-
off; here, the same issue is set but in a principled framework.
Also, the stochasticity, which is inherent to our approach, has
proved to be strategic. It has been reported (Martinez et al.,
2008) that a stochastic gaze control mechanism enables the
i-Cub robot to explore its environment up to three times
faster compared to the standard winner-take-all mechanism (Itti
et al., 1998). Indeed, stochasticity makes the robot sensitive
to new signals and flexibly change its attention. This, in
turn, enables efficient exploration of the environment as
the basis for action learning along interactive tasks (Nagai,
2009a,b). Further, the proposed method is suitable to be
implemented in both overt and covert gaze action selection
and generation (Rea et al., 2014). Results achieved here in a
multimodal conversational setting are likely to be relevant in
everyday multimodal settings where the robot is requested to
gaze at people around (Zibafar et al., 2019). Clearly, in a real
world context the bottom layer of patch computation should
efficiently embed suitable methods that have been applied for
speaker localization in the field of humanoid robotics (e.g.,
Zibafar et al., 2019; Rea et al., 2020).

This study has several caveats. For instance, statistical
analyses have highlighted problems in gaze direction modeling.
This is a difficult hurdle to face. Some contextual rules have
been proposed in the computer vision field (Torralba et al.,
2006) and in the psychological literature (Tatler and Vincent,
2008). However, these might be put into question out of
the lab and in dynamic environments. One solution could
be that of a data-driven strategy (Le Meur and Coutrot,
2016; Hu et al., 2020), albeit raising in turn the problem
of generalizability. Further, the accumulator model lacks of
a detailed account for the actual handling of within-patch
items (i.e., what would be considered “prey handling” in
the animal ecology field). One example is the processing of
components of facial expression and gaze of people involved
in the interaction. Here, the bare phenomenological account
that we have presented forgoes processing details. Nevertheless,
different policies of deploying gaze to specific items in facial

expressions might also affect emotional responses (Schomaker
et al., 2017; Rubo and Gamer, 2018). These aspects need to be
further investigated.
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Supplementary Video 1 | The supplementary video shows a simulation of the

proposed model on a video clip. A visual demonstration of both the decision

making dynamics and spatial dynamics is provided.

Supplementary Table 1 | Central tendencies for each score and model

computed as mean (M) or median (MED) with associated dispersion metrics

(standard deviation, SD or median absolute deviation, MAD. Effect sizes are

computed as the Cohen’s d or the Cliff’s between the given model and

real subjects.

Supplementary Figure 1 | A sketch of the patch computation procedure from

the audio/visual input.

Supplementary Figure 2 | The prediction by MVT is that a poor patch should be

abandoned earlier than a rich patch. The time axis starts with a travel time with no

energy gain after which the forager finds a patch. The shapes of the red and black

gain curves, arising from resource exploitation, represent the cumulative rewards

of a “rich” and a “poor” patch, respectively. For each curve, the osculation point of

the tangent defines the optimal patch residence time (adapted from Boccignone

et al., 2020).

Supplementary Figure 3 | Overall description of the switching behavior. The first

block depicts the typical trend of the instantaneous reward rate for two types of

patches (rich and poor). These can be conceived as Giving Up Time (GUT)

functions; as time goes by, the GUT function approaches the quality threshold Q,

the run being faster for poorer patches. At any time step the decision stay/go is

taken by sampling a Bernoulli RV (third block) whose parameter is given by the

distance between the GUT function and the quality threshold at that time

(opportunely scaled by a logistic function, c.f.r. second block).
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Supplementary Figure 4 | Time profiling. (a) Time required (seconds) by the

modules composing the Proposed and GazeDeploy method for the analysis and

simulation on a single video frame (results reported on a logarithmic scale). (b)

Percentage of computation time required by Pre-attentive modules (Face/Speaker

Detection, Spatio-Temporal Saliency and patch computation) and actual Gaze

Deployment (Decision Making and Spatial Dynamics) for the GazeDeploy

procedure. (c) Comparison of time requirements between the GazeDeploy and

Proposed procedures in relation to those of the Pre-attentive modules. (d)

Percentage of computation time required by Pre-attentive modules (Face/Speaker

Detection, Spatio- Temporal Saliency and patch computation) and actual Gaze

Deployment (Decision Making and Spatial Dynamics) for the Proposed procedure.

Supplementary Figure 5 | (a) Frame of video 008 with overlaid heatmap of real

fixations. (b) Frame of video 008 with overlaid heatmap of generated fixations. (c)

Real (red) and Generated (blue) saccades amplitude distribution. (d) Real (red) and

Generated (blue) fixations duration distribution. (e) Real saccades direction

distribution. (f) Generated saccades direction distribution.

Supplementary Figure 6 | (a) Heatmap of real fixations on the whole dataset (b)

Heatmap of generated fixations on the whole dataset (c) Saccades amplitude

distribution on the whole dataset for Real (red) and Generated (blue) scanpaths (d)

Fixations duration distribution on the whole dataset for Real (red) and Generated

(blue) scanpaths (e) Real saccades direction distribution on the whole dataset (f)

Generated saccades direction distribution on the whole dataset.

Supplementary Figure 7 | Critical Difference (CD) diagrams of the post-hoc

Nemenyi test (α = 0:05) for the ScanMatch and MultiMatch scores when

comparing different models proposed in literature plus the gold standard and a

baseline random model. Friedman’s test statistic (t) and p-value (p) are reported

in brackets.
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The active visual system comprises the visual cortices, cerebral attention networks, and

oculomotor system. While fascinating in its own right, it is also an important model

for sensorimotor networks in general. A prominent approach to studying this system

is active inference—which assumes the brain makes use of an internal (generative)

model to predict proprioceptive and visual input. This approach treats action as ensuring

sensations conform to predictions (i.e., by moving the eyes) and posits that visual

percepts are the consequence of updating predictions to conform to sensations. Under

active inference, the challenge is to identify the form of the generative model that makes

these predictions—and thus directs behavior. In this paper, we provide an overview of

the generative models that the brain must employ to engage in active vision. This means

specifying the processes that explain retinal cell activity and proprioceptive information

from oculomotor muscle fibers. In addition to the mechanics of the eyes and retina, these

processes include our choices about where to move our eyes. These decisions rest upon

beliefs about salient locations, or the potential for information gain and belief-updating.

A key theme of this paper is the relationship between “looking” and “seeing” under the

brain’s implicit generative model of the visual world.

Keywords: active vision, generative model, inference, Bayesian, oculomotion, attention

INTRODUCTION

This paper reviews visual perception, but in the opposite direction to most accounts. Normally,
accounts of vision start from photons hitting the retina and follow a sequence of neurons from
photoreceptor to visual cortex (and beyond) (Goodale and Milner, 1992; Wallis and Rolls, 1997;
Riesenhuber and Poggio, 1999; Serre et al., 2007; DiCarlo et al., 2012). At each step, we are told
about the successive transformation of these data to detect edges, contours, objects, and so on,
starting from a 2-dimensional retinal image and ending with a representation of the outside world
(Marr, 1982/2010; Perrett and Oram, 1993; Carandini et al., 2005). In this paper, we reverse this
account and ask what we would need to know to generate a retinal image. Our aim is to formalize
the inference problem the brain must solve to explain visual data. By framing perceptual inference
or synthesis in terms of a forward or generative model, we arrive at the space of hypothetical
explanations the brain could call upon to account for what is happening on the retina (Helmholtz,
1878 (1971); MacKay, 1956; Neisser, 1967; Gregory, 1968, 1980; Yuille and Kersten, 2006).

The motivation for this perspective comes from formalisations of brain function in terms of
(active) inference (Friston et al., 2017; Da Costa et al., 2020). The idea is that the brain makes
use of an implicit model of how sensory data are generated. Perception is then the inversion of this
model to find the causes of our sensations (VonHelmholtz, 1867; Gregory, 1980; Doya, 2007). Here,
the term ‘inversion’ refers to the use of (approximate) Bayesian inference to compute posterior
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probabilities that represent (Bayesian) beliefs about the world.
This is an inversion in the sense that we start with a model of
how the world generates sensations and ask what the sensations
we obtain tell us about the world. Central to this is the
bidirectionality inherent in inference. It is this bidirectionality
that manifests in neurobiology (Friston et al., 2017a; Parr and
Friston, 2018b), where messages are passed reciprocally between
neural populations

In a sense, everything we have said so far only brings us to
the point that vision is not just ‘bottom-up’ but that it has an
important “top-down” element to it—which is uncontroversial
(Zeki and Shipp, 1988; Lee and Mumford, 2003; Spratling, 2017).
However, we take this one step further and argue that if the
messages passed up visual hierarchies are the inversion of a (top-
down) generative model, then all we need to do is understand
this model, and the ascending pathways should emerge naturally,
under some neuronally plausible message passing scheme. For
this reason, we will focus upon the problem that the visual brain
must solve and will not concern ourselves with the details of its
solution, reserving this for a future paper.

Perceptual inference is just one part of the story (Ferro et al.,
2010; Andreopoulos and Tsotsos, 2013; Zimmermann and Lappe,
2016; Pezzulo et al., 2017). We only sample a small portion of
our sensory environment at any one time. In the context of
vision, this depends upon where our retina is pointing. This tells
us that, to generate a retinal image, we need to take account
of how we choose where to look (Ognibene and Baldassarre,
2014). The problem of deciding where to look, and of influencing
the biophysical processes required to implement these decisions,
are also inference problems. The first relies upon the notion
of planning as inference (Botvinick and Toussaint, 2012). Here,
we treat alternative action sequences as a set of hypotheses. To
select among these, we must weigh prior beliefs about the best
course of action against the evidence sensory data afford to each
plan. Under active inference, the priors are assumed to favor
those plans for which there is a high expected information gain
(Lindley, 1956; Itti and Koch, 2000; Itti and Baldi, 2006; Friston
et al., 2015; Yang et al., 2016). In short, we have to plan our visual
palpation of the world in a way that allows us to construct a scene
in our heads that best predicts “what would happen if I looked
over there” (Hassabis and Maguire, 2007; Schmidhuber, 2010;
Zeidman et al., 2015; Mirza et al., 2016).

The process of implementing these plans is also an inference
problem but cast in a slightly different way. In its variational
form, approximate Bayesian inference can be framed as
optimisation. The inference is deemed optimal when a lower
bound on the Bayesian model evidence—the probability of data
given a model—is maximized (Beal, 2003; Winn and Bishop,
2005; Dauwels, 2007). While this lower bound can be maximized
by closing the gap between the bound and the evidence, it
can also be maximized by selecting data that cohere with
the model, increasing the evidence itself (c.f., self-evidencing
(Hohwy, 2016)). The implication is that we can use action to
change the data generating process to fit the world to the model,
in addition to fitting the model to the world. For active vision
(Wurtz et al., 2011), this means predicting the proprioceptive
data we might expect from the oculomotor muscles if a given

eye movement is made. Maximizing the evidence then means
changing—through contraction or relaxation—muscle lengths
until the predicted input is achieved. This can be regarded as
a formalization of the equilibrium point hypothesis for motor
control (Feldman and Levin, 2009), which posits that all we need
do is specify some desired setpoint that can be fulfilled through
brainstem (or spinal) reflexes.

To address these issues, we divide this paper into two main
sections. First, we deal with the ‘seeing’ problem. Here, we start
from a given environment (e.g., a room we might find ourselves
in) and our location in it and ask what pattern of retinal cell
activity we would predict. This depends upon the contents of that
environment (e.g., the furniture in the room) and the location
and geometry of those contents. In addition, it depends upon
where we are in the environment, which way we are facing,
and the orientation of our eyes relative to our head. We then
turn to the ‘looking’ problem, and its constituents: where to
look and how to look there. By formulating looking and seeing
as generative models, we reduce the problems to a series of
conditional dependencies. As our interest here is in active vision
as implemented by the brain, we keep in mind the anatomical
manifestations of these conditional dependencies as connections
between neural populations.

SEEING

In this section, our aim is to generate a retinal image. Figure 1
provides an overview of the generative model in (Forney) factor
graph format (Loeliger, 2004; Loeliger et al., 2007; Forney and
Vontobel, 2011; Laar and Vries, 2016; de Vries and Friston,
2017; van de Laar and de Vries, 2019). As we will appeal to this
formalism throughout, we will briefly describe the conventions.
As the name suggests, this graphical notation depends upon
factorizing the problem into a series of smaller problems. If we
assume a set of latent (or hidden) variables x that generate our
retinal image y, we can write down a probability distribution that
can be decomposed according to the conditional dependencies in
the generative model. For example:

P
(

y, x1, x2, x3, . . .
)

= P
(

y|x1
)

P
(

x1|x2, x3
)

P
(

x2|x4
)

. . . (1)

To construct a factor graph of Equation (1), we would take
each factor on the right-hand side and draw a square. We then
draw a line coming out of this square for every variable that
appears inside the factor. If that variable appears in another
factor, we connect the line to the square representing the other
factor. For those used to looking at Bayesian networks—where
edges denote factors—it is worth emphasizing that edges in a
factor graph denote random variables. This may seem a little
abstract. However, we will go through the components of the
factor graph in Figure 1 in detail over the next few sections. The
important thing to begin with is that the upper left of the factor
graph relates to scene and object identity. In contrast, the upper
right deals with locations and directions. The separation of these
explanatory variables offers our first point of connection with
neuroanatomy, as this closely resembles the “what” (ventral) and
“where” (dorsal) visual streams that support object and spatial
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FIGURE 1 | A generative model for seeing. This figure offers a summary of a model that generates a retinal image. Starting from the scene in which we find ourselves,

we can predict the objects we expect to encounter. These objects may be recursively defined, through identifying their constituent parts and performing a series of

geometric (affine) transformations that result in the configuration of parts, the scaling and rotation of this overall configuration, and the placement of these objects in an

allocentric reference frame. The nested parts of the graphical structure (on left hand side) indicate this recursive aspect, e.g., an object is defined by an identity, and

scaling, rotation and translation parameters; furthermore, it may be composed of various sub-objects each of which has these attributes. To render a retinal image, we

also need to know where the retina is and which way it is pointing (i.e., the line of sight available to it). This depends upon where we are in the environment, our

heading direction, and where we choose to look. Subsequent figures unpack the parts of this model in greater detail.

vision, respectively (Mishkin et al., 1983). The sections on The
Ventral Stream and The (Extended) Dorsal Stream deal with
these pathways, and the section on The Retinocortical Pathway
deals with their convergence.

The Ventral Stream
This section focuses upon the identity and shape of the
things causing our visual sensations. From a neurobiological
perspective, the structures involved in object and scene
identification are distributed between the occipital and temporal
lobes (Kravitz et al., 2013). The occipitotemporal visual areas are
referred to as the ‘what’ pathway or the ventral visual stream.
The occipital portion of the pathway includes cells with receptive
fields responsive to concentric circles (Hubel and Wiesel, 1959)
and gratings (Hegdé and Van Essen, 2007). The temporal portion
contains cells with more abstract response properties, relying
upon more specific feature configurations that are invariant to
size, view, or location (Deco and Rolls, 2004; DiCarlo et al.,
2012). We will start from the more abstract (temporal) end of

this pathway and work our way toward the simpler features at
the occipital end.

The first thing we need to know, to generate an image,
is the environment in which we find ourselves. A schematic
of a simple environment is shown in Figure 2, which shows
three possible rooms—each of which contains two objects that
can appear in different locations. If we knew which of these
rooms we were in, we could predict which objects were present.
This is approximately the same structure as used in previous
accounts of scene construction in a 2-dimensional world (Mirza
et al., 2016). It has neurobiological validity as evidenced by the
proximity of the inferotemporal cortex, associated with object
recognition (Logothetis and Sheinberg, 1996; Tanaka, 1996), to
the parahippocampal gyrus, associated with recognition of places
(Epstein et al., 1999), hinting at how the brain might represent
dependencies between scenes and their constituent objects.

Once we know which objects we expect to be present,
we can associate them with their 3-dimensional geometry. To
generate these objects, we assume they are constructed from
simpler structures—for the purposes of illustration, spheres.
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FIGURE 2 | The “what” pathway. This figure focuses upon part of the factor graph in Figure 1. In the upper right, this factor graph is reproduced as it might be

implemented neuroanatomically. Here, the factors are arranged along the occipitotemporal “what” pathway, which loosely follows those cortical areas superficial to a

white matter tract called the inferior longitudinal fasciculus. The panels on the left show the sequence of steps implemented by these factors. Factor a is the

distribution over alternative rooms (or scenes) we could find ourselves in. This implies a categorical distribution assigning a probability to each of the rooms provided in

the example graphics. Conditioned upon being in a room, we may be able to predict which objects are present. Two example objects are shown (from three

orthogonal views). The conditional probability distribution for the geometry of the objects given the room is given by the m factor, which is here broken down into

several constituent factors. First, we need to know the identity of the objects in the room (f), which we operationalise in terms of the configuration of the parts of that

object. Specifically, we decompose f into a series of transformations (k-l) applied to a set of spheres, which represent the constituents of the object. In principle, we

could have used other objects in place of spheres, or could have applied this procedure recursively, such that the constituents of an object can themselves be

decomposed into their constituents. Once we have our object, we can apply the same transformations (k-l) to the whole to position it our room. We do this for each

object in the room, eventually coming to a representation of all the surfaces in the scene (r), shown in the lower right panel.

Figure 1 illustrates the recursive aspect to this, where the object
factor (m) is decomposed into a series of geometric (affine)
transformations applied to a structure as identified by the object
identity factor (f), which itself can be decomposed into a series
of transformations of simpler features. In other words, an object’s
geometry depends upon the configuration of its features (e.g., the
legs and surface of a table), but these features can themselves
depend upon configurations of simpler features (Biederman,
1987). Implicit in this perspective is that the scene itself is simply
the highest level of the recursion, comprising features (objects)
that themselves comprise simpler features. Figure 2 illustrates
this idea graphically.

Taking a step back, we need to be able to represent the shape
of a feature before we can start applying transformations to it.
One way of doing this is to construct a mesh. Meshes specify
the vertices of the surfaces that comprise an object (Baumgart,
1975), effectively setting out where we would expect to find
surfaces. This is the form shown in the graphics of Figure 2—
where we have omitted occluded surfaces for visual clarity. Note
that we have taken a subtle but important step here. We have
moved from discussing categorical variables like scene or object
identity and have started working in a continuous domain. At
this point, we can apply geometric transforms to our objects.
The first is the scaling of an object (factor j), which is a simple
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linear transform using a matrix (S) whose diagonal elements are
positive scaling coefficients along each dimension. This is applied
to each coordinate vector of our mesh. Expressing this as a factor
of a probability distribution, we have:

P
(

xj|xf , xg
)

= δ

(

S(xg)xf − xj
)

S ([α,β , γ ]) =





eα

eβ

eγ



 (2)

The x variables represent the edges in the graph of Figure 1. The
superscripts indicate the factor from which the edge originates
(i.e., the square node above the edge). The xf variable includes
the coordinates of the vertices of each surface of the object. This
is transformed based upon the scaling in each dimension (in
the xg variable) to give the scaled coordinates xj. The scaling
variables are treated as log scale parameters. This means we can
specify factor g to be a Gaussian distribution without fear of
negative scaling. However, we could relax this constraint and
allow for negative scaling (i.e., reflection). In addition, we could
include off-diagonal elements to account for shear transforms.
In Equation (2), δ is the Dirac delta function—a limiting case
of the (zero-centered) normal distribution when variance tends
to zero. It ensures there is non-zero probability density only
when its argument is zero. This is a way of expressing an
equality as a probability density. We could have used a normal
distribution here, but for very large objects, with many surfaces,
the associated covariance matrices could become unwieldy. It is
simpler to absorb the uncertainty into the priors over the (log)
scaling parameters.

Our next step is to apply rotations to the object. Here, we use
a rotation matrix (R) that has the form:

P
(

xk|xj, xh
)

= δ

(

R(xh)xj − xk
)

R([θ ,φ,ϕ]) =





cos(φ) cos(ϕ) − cos(φ) cos(ϕ) sin (φ)

cos(θ) sin(ϕ)+ sin (θ) sin (φ) cos (ϕ) cos(θ) sin(ϕ)− sin (θ) sin (φ) sin (ϕ) − sin (θ) cos (φ)

sin(θ) sin(ϕ)− cos(θ) sin (φ) cos (ϕ) sin(θ) cos(ϕ)+ cos(θ) sin (φ) sin (ϕ) cos (θ) cos (φ)



 (3)

As in Equation (2), we use the Dirac delta distribution such
that the rotated coordinates can only plausibly be the original
coordinates, rotated. This defines the k factor.

Finally, we translate the objects (factor l). This is simply a
matter of adding the same vector to all vertices of the mesh and
centring a Dirac delta distribution for xl on this value. Figure 2
shows two applications of these three operations that give us the
components of object 1 (lower left panel) and that place object 1
in a particular place in our scene (lower middle panel). The factor
r simply concatenates the surfaces from all objects such that xr is
simply a list of surfaces.

Is there any validity to the idea that the brain might generate
objects with a series of geometrical transforms of this sort?
Evidence in favor of this comes from two lines of research.
One is in psychological experiments which show that, during
object recognition, reaction times scale with the angle of rotation
that would have to be performed to bring that object into a
familiar configuration (Cooper and Shepard, 1973; Tarr and

Pinker, 1989)—suggesting a form of implicit mental rotation.
This is consistent with the idea that the brain optimizes its model
through updating beliefs about the degree of rotation until it best
fits the data at hand.

The second line of evidence is from neurophysiological studies
into invariance of neural responses to different properties. To
understand the relevance of invariant representations, note that
the transforms we have described do not commute with one
another. To see this, consider what would happen if we were
to rotate the sphere before rescaling it. The implication is that,
if there are objects whose identity is preserved with changes
in its geometry, we should expect to see different sorts of
invariance emerge at different stages along the visual hierarchy.
At the highest levels, we might expect neural responses to be
consistent for an object, no matter how it is oriented, scaled,
or translated. As we descend toward the occipital lobe, we
might anticipate these invariances being lost, in sequence. This
is exactly what happens (Rust and DiCarlo, 2010; Grill-Spector
and Weiner, 2014; Tacchetti et al., 2018), with inferotemporal
cortical cells responding to specific objects, regardless of their
size, position (Ito et al., 1995), or the angle from which they
are viewed (Ratan Murty and Arun, 2015). As we move toward
the occipital cortex, neurons become more sensitive to the
rotation of an object (Gauthier et al., 2002; Andresen et al.,
2009). On reaching areas V2-V4 of the early visual cortex, the
receptive fields of neurons are many times smaller than those
in inferotemporal cortex (Kravitz et al., 2013). This means they
respond only when a stimulus is in a specific region of space,
implying loss of translation invariance. Evidence that the brain
inverts a model of this sort comes from studies illustrating
that the activity of (feedforward) convolutional neural networks
trained on visual data—which implicitly account for the requisite

transforms—aligns with gamma-band activity in visual cortices
(Kuzovkin et al., 2018). This frequency band is crucial in
ascending neural message passing (Bastos et al., 2015) associated
with model inversion (Friston, 2019).

While we chose affine transforms for simplicity, it is worth
emphasizing that the generative model is highly non-linear.
This is most striking for the recursive part of the ventral
stream model, which alternates between linear operations
(affine transformations of the shapes) and non-linear operations
(selection between shapes). To invert this kind of model,
one would employ a linear operation to undo the affine
transformations for each component of an object. On finding
the log likelihood of the inverted shape for each component,
one could compute a posterior by adding the log prior for each
component and taking a non-linear softmax transform. This
is then repeated for the next level of the recursion, eventually
returning a categorical distribution over plausible objects that
could be causing visual data. The alternation between linear
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and non-linear operations—in the inversion of this model—
could explain why deep learning architectures, that alternate
in this way, have been so successful in machine vision. Non-
affine transformations could be incorporated through using a
spatial basis set to deform the objects or their components—
analogous to the models employed for spatial normalization
in image analysis (Arad et al., 1994; Ashburner and Friston,
1999; Shusharina and Sharp, 2012). This would involve adding
additional factors into the ventral stream model that represent
these deformations but would not change the overall anatomy of
the model.

In summary, we have gone from prior beliefs about the room
we occupy to beliefs about the objects in that room. These
are decomposed into their constituent parts, and the surfaces
that define these parts. At the occipital end of the pathway, we
have a set of surfaces. Taken individually, these surfaces could
belong to any object. Each occupies a smaller portion of space
than the complete objects. This means that, in the process of
generating the geometric structures we will need for vision, we
have traversed the ventral visual pathway from the large, abstract
receptive fields of the inferior temporal cortices to the smaller,
simpler receptive fields of the occipital lobe.

A final consideration for this section is the consequence of
damage to the brain structures implementing this generative
model. Ventral visual stream lesions give rise to an interesting
category of neuropsychological syndromes, broadly referred to
as agnosia (Adler, 1944; Benson and Greenberg, 1969; Greene,
2005). There are many variants of agnosia, but common to
all is a failure to recognize something. Visual agnosia is an
inability to recognize objects, sometimes restricted to specific
categories. For example, prosopagnosia is a form of visual agnosia
specific to faces (Sacks, 2014). Generativemodeling offers a useful
perspective on agnosia, as any lesions to the ventral stream impair
the capacity of a model to predict the visual data that would be
anticipated if a given object were present. If we assumed that a
given lesion removed all neurons involved in representing object
1 from Figure 2 or cut the connections that predicted the surfaces
anticipated when object 1 is present, we could generate as many
images as we wanted by sampling from the generative model
without ever generating one characteristic of object 1. Without
this hypothesis available to the brain, it is unable to invert the
data-generating process to arrive at the conclusion that object 1
is present. Despite this, it might still be possible to identify its
constituent parts, particularly if these parts are like those found
in other objects.

The (Extended) Dorsal Stream
Now that we know the positions and orientations of the surfaces
in our scene, we need to know the same for our retina. To know
where our retina is, the first thing we need to know is where
our head is in allocentric space. In other words, where we are
in our environment. The part of the brain most associated with
this is outside of the classical visual brain. It is the hippocampal
formation that famously contains place (and grid) cells, which
increase their firing rate when an animal is in specific places (or
at repeating intervals) in an environment (Moser et al., 2008).

FIGURE 3 | The “where” pathway. This figure shows the factors that conspire

to generate a field of view. This shows how the allocentric head and egocentric

eye-directions (factors d and e) can be combined to compute an allocentric

eye-direction (factor p). When this vector is placed so that it originates from the

place (factor c) we find ourselves in, we have our field of view (factor q). The

graphic in the lower part of this figure maps the associated factors onto the

brain structures thought to be involved in representing these variables. The

frontal eye-fields (factor e) and the retrosplenial cortex (factor d), both project

to the parietal cortex (factor p), which includes regions sensitive to allocentric

eye-directions. This communicates with temporoparietal regions (factor q),

which are also accessible to hippocampal outputs (factor c) via a pathway

comprising the fornix, mammillothalamic, and cingular white matter tracts.

Figure 3 illustrates this by placing factor c—prior beliefs about
place—in the medial temporal lobe.

We needmore than the location of the head to be able to locate
the retina. First, we need to know which way the head is facing.
Head-direction cells, which fire maximally when an animal is
oriented along a given direction in its environment, are found
distributed throughout the brain (Taube et al., 1990; Taube, 1995;
Blair et al., 1998). Specifically, they are found in the constituents
of the Papez circuit (Papez, 1995), originally thought to mediate
emotional responses. Together, the place and head-direction tell
us where the eyes are, but they do not pinpoint the retinal
location. For this, we also need to know the direction in which
the eyes are pointing. Combining the head-direction (factor d)
with the egocentric eye-direction (factor e), we can compute
the allocentric eye-direction (factor p). With information about
place, this gives us our field of view (factor q).
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Expressed as a probability distribution, factor p is:

P
(

xp|xd, xe
)

= δ

(

xd + xe − xp
)

(3)

This ensures the allocentric eye-direction is given by the angle
of the head plus the angle of the eyes relative to the head. We
can augment this for each eye, to allow for their convergence—
i.e., that the directions of the left and right eye are not parallel
to one another. Factor q is a little more complicated but involves
constructing arrays representing locations of retinal cells or, more
simply, locations in front of the lens that, if light were to pass
through the location and reach the lens, would refract to a given
retinal photoreceptor (or group of photoreceptors). We generate
one array for each eye. We make a simplification here in that we
assume we are dealing with a small foveal area such that we can
ignore the global topography of the retina. As such, we treat the
array of cells as uniformly spaced. Amore complete retinal model
would take account of the log-polar organization (Javier Traver
and Bernardino, 2010), in which the density of photoreceptors
decreases with retinal eccentricity—i.e., distance from the fovea.
This array, along with the location of the lens, gives us our field
of view. Taking the outermost cells from each array, we simply
project from the lens, through that location. This generates the
blue and red lines in the q panel of Figure 3. The xq variables
are tuples, for each element of the retinal array, containing
the location and a unit vector representing its preferred angle
of incidence.

The classical ‘where’ pathway involves the occipitoparietal
cortices. Figure 3 shows how the factors needed to compute a
field of view could converge upon the parietal lobe, assuming
we assign factor q to the temporoparietal cortices. Interestingly,
these regions have been associated with the ability to take another
point of view in several different senses. Electrical stimulation of
these regions on the right side of the brain can induce out of body
experiences (Blanke et al., 2002), where people feel as if they are
observing the world from a vantage point outside of their body.
We also talk informally about seeing things from another person’s
point of view. This relates to theory of mind, and the ability
to infer another’s perspective at a more abstract level. These
functions are also associated with the temporoparietal cortices
(Abu-Akel and Shamay-Tsoory, 2011; Santiesteban et al., 2012).
The implication is that the same machinery may be involved
in taking a viewpoint, both in the literal and metaphorical
sense, and that this machinery is housed in the temporoparietal
region. Some have argued that this representation of viewpoint is
central to the first-person perspective that underwrites conscious
experience (Seth, 2009; Williford et al., 2018).

The retrosplenial cortex is a good candidate for factor d,
given its role in relating visual ‘where’ data with head-direction
(Marchette et al., 2014; Shine et al., 2016). Specifically, it is
responsive to where we have to look to find stable, unambiguous,
landmarks (Auger et al., 2012). Lesions to this region impair
the representation of head-direction in other parts of the
brain—notably the anterior thalamus—even in the presence of
clear visual landmarks (Clark et al., 2010). Neuropsychological
evidence supports this assignment, as lesions to the retrosplenial
cortex can cause a form of topographical disorientation, where

patients lose their sense of direction (Aguirre and D’Esposito,
1999).

The translation from head-centered eye-direction to a world-
centered reference frame (i.e., factors e and p) is consistent
with the connections from the frontal eye fields to the parietal
lobe. These connections are underwritten by a white matter
tract known as the superior longitudinal fasciculus (Makris
et al., 2005; Thiebaut de Schotten et al., 2011). The parts of the
brain connected by this tract are referred to as the attention
networks (Corbetta and Shulman, 2002; Szczepanski et al.,
2013)—identified through their recruitment in attentional tasks
during neuroimaging studies. The frontal eye fields (Bruce et al.,
1985) and intraparietal sulcus (Pertzov et al., 2011) both contain
neurons sensitive to eye position, in different coordinate systems.

In summary, the generation of a line of sight depends upon the
head location and direction, and the position of the eyes relative
to the head. These are represented in the medial temporal lobe,
the frontal lobe, and medial parietal structures. The convergence
of axonal projections from these regions to the lateral parietal
lobe provides the dorsal visual stream with key information,
which can be reciprocally exchanged with the occipital cortices.
While we have adopted the rhetoric of “what” and “where”
streams, it is interesting to note that the controllable aspects of the
generative model all relate to the “where” stream. This provides
a useful point of connection to a complementary framing of the
two visual streams. Under this alternative perspective (Goodale
and Milner, 1992), the ventral stream is thought to support
perception, while the primary role of the dorsal stream is to
inform action. This view is informed by neuropsychological
findings (Goodale et al., 1991), including the ability of those with
dorsal stream lesions to see objects they cannot grasp, and the
ability of those with lesions to other parts of the visual cortices
grasp objects they could not see.

The Retinocortical Pathway
So far, we have generated a set of surfaces, and a field of
view. The final challenge of our ‘seeing’ generative model is
to convert these to a pair of retinal images. This is analogous
to the process of rendering in computer graphics (Shum and
Kang, 2000). There are many ways to implement sophisticated
rendering schemes, and a review of these is outside the scope of
this paper. We will outline one way in which a simple form of
rendering may be implemented and consider whether this has
neurobiological correlates.

For any given retinal photoreceptor, we can trace an imaginary
line out through the lens of the eye and ask which surface it
will first encounter. If it does not pass through any surface, this
means there is nothing that can reflect light in the direction of
that cell, and the receptor will not be activated. However, if it does
encounter a surface, we must determine the intensity of light that
surface reflects in the direction opposite to our imaginary line.
This is similar to the ray tracing method in computer graphics
(Whitted, 1980), and depends upon the rendering equation
(Kajiya, 1986):

P
(

xs|xr , xq, xb
)

= δ

(

3

(

xq, xr , xb
)

− xs
)
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3(u, v, z) = η (u, v) ×





α(u, v)
︸ ︷︷ ︸

Ambient

+

∫

S
3(v,w, z) β (u, v,w) dw
︸ ︷︷ ︸

Reflected






(4)

The variables in the conditioning set are the light direction
(xb), as a unit vector, and tuples containing information about
the surfaces of objects (xr) and the retinal cells (xq). The η

function acts as an indicator as to whether a line passing through
the lens, that would refract light to a specific retinal cell (u),
intersects with a point on a surface (v) before reaching any other
surface. It is one if so, and zero otherwise. The α function plays
the role of ambient lighting, and we assume this is a constant
for all surfaces, for simplicity. The β function determines the
proportion of light reaching a surface from other sources (w)—
e.g., reflected off other surfaces (S)—that is reflected toward u.
The recursive structure of the integral part of this expression
resembles the recursive marginalization that underwrites belief-
propagation schemes (Frey and MacKay, 1998; Yedidia et al.,
2005). Recursive expressions of this sort can usually be solved
either analytically—e.g., through re-expression in terms of an
underlying differential equation—or numerically. In principle,
we could construct a factor graph like that of Figure 1, using the β

functions as our factors, determining the dependencies between
the level of illumination of each surface. The integral includes
all surfaces S that could reflect light to surface v. To simplify,
we ignore the dependencies between surfaces, and assume a
single level of recursion (i.e., surfaces reflect light to the retina,
but the light incident on a surface originates directly from the
light source). This means we choose S = z, so that Equation (4)
simplifies to:

3(u, v, z) = η (u, v)
(

α(u, v)+ η (v, z) α (v, z) β (u, v, z)
)

(5)

The key differences between different approaches to generating
images rest upon the choice of β . We follow the approach
outlined in (Blinn, 1977):

β (u, v, z) = c1max (0, vn · z)
︸ ︷︷ ︸

Diffuse

+ c2

(

vn ·
un+z

√
(un+z)·(un+z)

)c3

︸ ︷︷ ︸

Specular

(6)

Equation (6) uses the subscript n to indicate (normalized) unit
vectors drawn from the u and v tuples (which also include the
coordinates of the origins of these vectors). For un, this vector
is parallel to the line from the lens outwards—in the opposite
direction to the light that would be refracted to a specific group
of cells on the retina. For vn it is the normal unit vector to
the surface in question1. Equation (6) includes a diffuse term,
which allows for light to be reflected equally in all directions,
where the amount reflected depends upon the angle of incidence.
In Figure 4, we see how this lighting component catches some
surfaces but not others, and the way in which it induces

1If v contains the four vectors corresponding to the vertices of a quadrilateral

surface, then vn is obtained (with appropriate normalization) as vn ∝ (v1 − v2)×

(v4 − v2).

shadows (via multiplication with the η function). The specular
component accounts for the relationship between the angle of
incidence and the angle of reflectance from a surface (Phong,
1975). To gain some intuition for this term, imagine shining
a torch into a mirror. The reflection will appear maximally
bright when the angle between the torch and the normal to the
mirror is equal to the angle between your eye and the normal
to the mirror and will rapidly decay on moving either eye
or torch.

A simplification made in the above is to treat the lens as a
point, neglecting the fact that there are a range of angles of light
that could be focused upon a given cell in the retina. In reality,
neighboring photoreceptors may encounter photons reflected
from the same point on a surface. To account for the artificial
high frequency components introduced during this discretisation
of space, we apply a blurring effect (factor t) This is based upon
a discrete cosine transform followed by attenuation of those
coefficients corresponding to these high frequencies followed by
the inverse transform. Specifically, we multiply the coefficients by
a Gaussian function centered on the low frequency components.
An interesting consequence of this relates to the inversion of
this model. Undoing this process would mean replacing the
high frequency components. This enhancement might give the
appearance of edge detection—a common role afforded to cells
in the early visual pathway with center-surround receptive fields
(Crick et al., 1980; Marr et al., 1980). In addition, it could
account for the sensitivity of early visual neurons to specific
spatial frequencies, and the widespread use of grating stimuli and
Gabor patches in experiments designed to interrogate these cells
(Mahon and De Valois, 2001).

An important feature of this generative model is the fact
that surfaces on the left of the head (in egocentric space)
are projected to the right side of both retinas. Similarly,
surfaces on the right of the head are projected to the left
side of both retinas. This is interesting in the sense that there
are two sorts of deficit we could induce. As shown on the
left of Figure 4, we could disconnect one retina, precluding
surfaces from either side of space from generating an image
on this side. This generates images consistent with monocular
blindness. Alternatively, by precluding any surface on one
side of space from causing retinal cell activation, we lose
activity on the same side of both retinas—i.e., a homonymous
hemianopia. This maps to the deficits found on lesions to
the retinocortical pathway before and after the optic chiasm,
respectively (Lueck, 2010;Wong and Plant, 2015). This highlights
the inevitability of these visual field defects following lesions to
the visual pathway, under the assumption that the brain uses
a model that represents the same surfaces as causes of data on
both retinas.

The generative model ultimately must generate the data it
seeks to explain. For our purposes, these data are the signals sent
from the retina to the visual cortex. However, it is possible to take
this further and to specify the kinds of generative model used
within the retina itself. Attempts to do this have focused upon
a prior belief about the smoothness of input across the retina and
have provided useful accounts of efficient retinal processing as
predictive coding (Srinivasan et al., 1982; Hosoya et al., 2005).
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FIGURE 4 | The retinocortical pathway. This figure takes the results from Figures 2, 3 and combines these to arrive at images in each retina. From factors r and q we

have our field of view and the surfaces it captures. We can then project from each retinal cell (shown as pixels in the retinal images) to see whether any surface is

encountered. For the first surface we reach, we combine the ambient, diffuse, and specular lighting components (factor s). This depends upon factor b from Figure 1,

which provides a lighting direction. Once we have the sum of these lighting components, we apply a blurring (factor t) to the image to compensate for the artificial high

frequency components introduced by our simplifications. Practically, this is implemented by finding the coefficients of a 2-dimensional discrete cosine transform,

multiplying this by a Gaussian function centered on the low frequency coefficients, and then performing the inverse transform. Note that the final image is inverted

across the horizontal and vertical planes. This is due to the light reflecting off surfaces on the temporal visual fields being propagated to the retina on the nasal side,

and vice versa (with the same inversion in the superior and inferior axis). The fact that the same surface can cause activation of both the right and left retina implies a

divergence in the predictions made by parts of the brain dealing in surfaces (e.g., striate cortices) about retinal input. The graphic on the left illustrates the two sorts of

visual field defect resulting from this divergence—either interrupting the influence of any surface on one retina (upper image) or interrupting the influence of a subset

(e.g., the right half) of all surfaces on either retina (lower image).

LOOKING

As alluded to above, retinal data depends not just upon what
is “out there” in our environment, but upon where we direct
our gaze. Figure 5 takes factors d and e from Figure 1, and
conditions these upon a policy variable. This accounts for the
fact that our choices determine where our eyes and our head
are facing. In addition, Figure 5 shows some of the non-visual
sensory modalities that result from these explanatory variables.
These depend upon dynamical systems, as the motion of the
head and eyes cause changes in vestibular and proprioceptive
modalities. This is of particular importance when thinking
about movement as the solution to an inference problem.
When acting so as to minimize any discrepancy between
predicted and realized sensations, thereby maximizing the
evidence for a model, the predicted consequences of action

become central to the performance of that action. The section
on The Brainstem unpacks the generation of proprioceptive
data from the oculomotor muscles and the relationship to the
oculomotor brainstem. The section on The Basal Ganglia then
focuses upon formulation of prior beliefs about the policy—
and its neurobiological manifestation in the oculomotor loops
of the basal ganglia. Together, these can be seen in the spirit of
agenda-driven perspectives (Ballard and Zhang, 2020) on action,
where we unpack a selected policy into the set of processes that
must be initiated at lower levels of a model to execute or realize
that policy.

The Brainstem
This section focuses upon the biophysics of oculomotion
that underwrites implementations of saccadic eye movements.
Modeling the eyes is relatively straightforward. They tend to
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FIGURE 5 | A generative model for looking. This figure builds upon part of the model shown in Figure 1. Specifically, it unpacks some of the other sources of data

resulting from the eye and head-direction factors and includes a policy variable that determines priors over these variables. These depend upon dynamical systems.

This means predicting an equilibrium point (or attractor) that the eyes or head are drawn toward. These dynamics may be divided into changes in the elevation or

heading angles. For head movements, the velocity of the head causes changes in the semi-circular canals in the inner ear, communicated to the brain by cranial nerve

(CN) VIII. For eye movements, the position and velocity of the eyes give rise to proprioceptive signals due to stretch of the oculomotor muscle tendons, communicated

to the brain by CN III, IV, and VI.

move together2 and can be described using Newton’s second law
applied to rotational forces (McSpadden, 1998). This describes
the relationship between a torque τ applied at radius r to a point
massm and an angle θ :

τ = mr2θ̈

⇒

∫ ∞

0
τ (r)dr = θ̈

∫ ∞

0
m(r)r2dr (7)

The second line of this equation relates the first to a solid object,
where the torque and the density (m(r)) of the object can vary
with the radius. The oculomotor muscles that generate torques
insert into the surface of the eyeballs, meaning we can simplify
Equation (7) as follows:

τ (r) = τδ(r − rmax) ⇒

τ = Jθ̈

2Unless you are a chameleon: Katz et al. (2015).

J ,

∫ ∞

0
m(r)r2dr (8)

The term J in the final line is a constant known as the “moment of
inertia.” Equation (8) implies the following equations of motion:

θ ,

[

θ

θ̇

]

θ̇ = f (φ, θ) ,

[

θ̇

J−1τ (φ)

] (9)

All that is left is to provide a functional form for the torque. We
can choose this such that the eyes come to rest at an angle φ:

τ (φ, θ , θ̇) = φ − θ − κθ̇ (10)

This is analogous to the torque associated with a swinging
pendulum. The constant κ determines the damping, which
precludes large oscillations around φ. We can interpret φ as a
target or setpoint, in the spirit of the equilibrium point hypothesis
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of motor control (Feldman and Levin, 2009). Now that we have
the equations of motion of the eye—noting that we have a
single equation for both eyes to enforce conjugacy3. (Parr and
Friston, 2018a)—we must detail the sensory consequences of
these movements. These are given as follows:

g(θ,ω) ,









θ − 1
2ω

θ̇

θ + 1
2ω

θ̇









(11)

Here, ω represents the convergence of the eyes, accommodating
the fact that the angle between the two can vary. The first two
rows relate to the left eye, and the last two to the right. Equation
(11) assumes a direct mapping from the angular positions and
velocities of each eye to the proprioceptive input from the
oculomotor muscles, consistent with the role of II and Ia sensory
afferents (Cooper and Daniel, 1949; Cooper et al., 1951; Ruskell,
1989; Lukas et al., 1994), respectively.

Converting Equations (9–11) to factors of a probability
distribution, we have:

P (ẋv|xv, xe) = N
(

f (xv, xe) ,5f

)

P
(

yy, yz|xv
)

= N
(

g (xv,ω) ,5g

) (12)

The superscripts here refer to the factors determining the prior
densities of each variable in the graph of Figure 5. The precision
matrices 5 stand for inverse covariances. Each of these factors
can itself be factorized (assuming diagonal precision matrices)
into elevation and heading angles and into left and right eyes. The
oculomotor brainstem is well-suited to implementing this part of
the forward model (and its inversion). The superior colliculus4

projects to the raphe interpositus nucleus (Gandhi and Keller,
1997; Yoshida et al., 2001), and via this structure to two nuclei
that represent the first (elevation and heading) factorization.
The paramedian pontine reticular formation mediates horizontal
saccades (Strassman et al., 1986), while the rostral interstitial
nucleus of the medial longitudinal fasciculus mediates vertical
saccades (Büttner-Ennever and Büttner, 1978). These nuclei then
project to the cranial nerve nuclei that communicate directly
with oculomotor muscles. The cranial nerve nuclei on the right
of the midbrain connect to the muscles of the right eye, and
those on the left connect to the left eye. This represents the
second factorization into left and right eyes. Figure 6 shows
how this factorization may manifest anatomically and illustrates

3This assumption of conjugacy may underwrite internuclear ophthalmoplegia.

This is a syndrome—caused by brainstem demyelination or stroke—in which

the predictions required for one eye to move towards the nose (while the other

moves away from it) are interrupted. This violation of the conjugacy assumption

has consequences for the contralateral eye, which exhibits a pathological

oscillatory nystagmus.
4The superior colliculus exhibits a log-polar retinotopy which implies the xv

variable might be represented in this coordinate system. The functional relevance

of this is that the probability density for xv , when translated into polar or Cartesian

coordinates, will assign higher variance to more eccentric values. This has been

proposed as an explanation for the increased variance of saccadic endpoints for

more eccentric locations in a Cartesian frame, despite unform variance in log-polar

reference frames (Daucé and Perrinet, 2020).

the proprioceptive data we would anticipate on simulating the
dynamics outlined above.

This just leaves the question as to where the equilibrium point
(xv) comes from. As we have said, the superior colliculus—a
midbrain structure—is an important junction in the descending
pathway to the oculomotor brainstem. Via factor v, the dynamics
depend upon factor e, which is the same variable that appears
in our frontal eye fields in Figure 3. The frontal eye fields
project to the superior colliculus (Künzle and Akert, 1977;
Hanes and Wurtz, 2001), as shown in Figure 6. However,
factor e is conditioned upon the policy, implying we may
have several alternative equilibrium points available to the
superior colliculus. To adjudicate between these, we need
another input to the colliculus that selects between policies.
We have previously argued that the output nuclei of the basal
ganglia could fulfill this role (Parr and Friston, 2018c). This
is consistent with the projections from the substantia nigra
pars reticulata to the superior colliculus (Hikosaka and Wurtz,
1983). The selection between alternative policies is the focus
of section The basal ganglia. A similar analysis could be made
of head movements and the vestibular data they generate. We
omit this here to avoid duplication of the concepts outlined
above. More generally, selecting a series of attracting points,
as we have for saccadic eye movements, offers a useful way of
representing environmental dynamics, including those that are
out of our control. For instance, by replacing the static prior
over object location with a series of transition probabilities,
we could predict the next location given the current location.
This converts the static elements of the model into a hidden
Markov model. By associating each possible location with an
attracting point, we can predict the continuous trajectories
of the object as it is drawn from one location to the next
(Huerta and Rabinovich, 2004; Friston et al., 2011). This style
of dynamical modeling for active inference has been exploited
in the context of a 2-dimensional visual search task (Friston
et al., 2017a), and in control of arm movements in 3-dimensions
(Parr et al., 2021).

The Basal Ganglia
In thinking about the problem of where to look, wemust consider
a set of subcortical nuclei known to play an important role
in planning (Jahanshahi et al., 2015). The basal ganglia receive
input from much of the cerebral cortex and provide output to
the superior colliculus, among other structures. This means they
are well-positioned to evaluate alternative action plans based
upon the beliefs represented by the cortex, and to modulate the
cortical projections to the colliculus to bring about the most
likely eye movements. As such, these nuclei have frequently
been associated with inferences about what to do in the process
theories associated with active inference (Friston et al., 2017a,b;
Parr and Friston, 2018b).

What makes one eye-movement better than another? One
way to think about this is to frame the problem as one
of experimental design (Itti and Koch, 2000; Friston et al.,
2012). The best experiments (or eye movements) are those
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FIGURE 6 | Oculomotion. The plots on the left of this figure show an example of the kinds of dynamics that result from Equations (9–12). These illustrate a single

saccade toward some equilibrium point determined by factor v. The first two plots detail the hidden states, comprising the heading angle of the eyes, their elevation,

and the rates of change of each of these. In addition, the third plot illustrates the proprioceptive data we might expect these dynamics to generate. These are divided

into sensory neurons that report instantaneous muscle tendon stretch (II afferents) and those that report changes in this (Ia afferents) for the right and left eye. Note

that these differ only in the heading angle—as eye movements are congruent. The constant discrepancy in the heading angle results from the angle of convergence of

the eyes. On the right, the factors are arranged to be consistent with the brainstem structures that deal with saccades in the vertical (factor z) and horizontal (factor y)

directions. The proprioceptive signal is expressed in arbitrary units (a.u.) which could be converted to firing rates with the appropriate (e.g., sigmoidal) transforms.

that maximize expected information gain5—i.e., the mutual
information (Lindley, 1956) between data (y) and hypotheses or
causes (x) under some design or policy (π):

I [X,Y|π] = DKL

[

P(x, y|π)||P(x|π)P(y|π)
]

= EP(y|π)

[

DKL

[

P(x|y,π)||P(x|π)
]]

︸ ︷︷ ︸

Information gain

= H
[

P(y|π)
]

︸ ︷︷ ︸

Predictive Entropy

−EP(x|π)

[

H
[

P(y|x,π)
]]

︸ ︷︷ ︸

Expected Ambiguity

(13)

Equation (13) shows three different expressions of the mutual
information, incorporating KL-Divergences—quantifying how
different two distributions are from one another—and entropies.

5From the perspective of active inference, this is normally augmented with an

additional distribution that ascribes greater probability to preferred datapoints,

turning the mutual information into an expected free energy. However, we focus

upon information seeking specifically, under the assumption that eye movements

are primarily exploratory (i.e., preferences over visual data are uniform). This is a

special case of an expected free energy.

An entropy (H) is a measure of the dispersion or uncertainty
associated with a probability distribution. The first line says
that the expected information gain is greatest when the joint
distribution of data and their causes, under a given policy, is
very different from the product of the twomarginal distributions.
The second line expresses this in terms of the expected update
from prior to posterior—i.e., the information gain. The third
line breaks this down into two components. These are easiest to
understand when thinking about what makes a good experiment.
The first thing is that it should tell us something we do
not already know. An experiment for which we can already
confidently predict our measurements is a poor experiment. Such
experiments are penalized by the predictive entropy term, which
favors those experiments for which the predicted measurements
are maximally uncertain, i.e., not known beforehand.

Figure 7 illustrates the relevance of the predictive entropy
in adjudicating between alternative fields of view. This shows
two (of many) possible head-directions and the visual input this
generates in each of the three rooms shown in Figure 2. Imagine
we are uncertain about the room we occupy, but relatively
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FIGURE 7 | Expected information gain. This figure highlights the role of predictive entropies in adjudicating between salient actions. This shows two alternative fields

of view we could choose between, through making eye or head movements. If we were not sure which room we were in, view 1 (toward the southeast corner) would

be associated with a high predictive entropy, and is consequently useful in resolving uncertainty. In contrast, view 2 (toward the northeast corner) has zero predictive

entropy, and does not help distinguish between rooms.

confident about everything else. View 1 could give rise to a view
with no object, or with object 1. We can be confident that view 2
will always lead to a view with no object, as none of the three
rooms have an object in this location. Any actions leading to
view 1 (by moving eyes or head) will be associated with a higher
predictive entropy than actions leading to view 2 (zero entropy).
Intuitively this is sensible, as we will be able to tell from the
consequences of view 1 whether we are in room 1, or in room
2 or 3. We will gain no information about the room from view 2.
Once we have seen object 1 in view 1, we know we are in room 2
or 3, and there is no added information available in this view. We
would always anticipate seeing the same thing here. At this point,
the southwest or northwest corners of the room may become
more salient, allowing disambiguation between the rooms that
are still plausible.

The expected ambiguity term in Equation (13) expresses
the fact that, even if sensory input is unpredictable, it is
not necessarily useful. Everything else being equal, expected
ambiguity underwrites the imperative to sample precise and
unambiguous visual sensations. Perhaps the simplest example is
keeping our eyes open.When our eyes are closed (or the lights are
off), the probability of every retinal cell firing is roughly the same,
which corresponds to a maximally ambiguous state of affairs.

The basal ganglia appear to be key in quantifying information
gain (Sheth et al., 2011; White et al., 2019). However, they are
part of a broader network of regions involved in making these
decisions. This is important, in the sense that information gain is
a functional (function of a function) of beliefs. As such, the broad

range of inputs to the basal ganglia from the cortex and elsewhere
may give them access to these beliefs across different modalities.
This is evidenced by disorders of salience attribution, like sensory
neglect syndromes (Husain et al., 2001; Fruhmann Berger et al.,
2008; Parr and Friston, 2017a)—which occur with lesions to the
superior longitudinal fasciculus (c.f., Figure 3) (Bartolomeo et al.,
2007, 2012) in addition to basal ganglia structures (Karnath et al.,
2002). In the context of active vision, at least, the basal ganglia
appear to be the point at which the most epistemically valuable
saccadic movements are determined, given the direct influence
of this subcortical network over the superior colliculus (Hikosaka
and Wurtz, 1983).

RELATED WORK

While we have focused upon the sort of generative model
the brain could employ, we have neglected the question as
to how a model of this sort might develop in the first
place. Prominent approaches to learning of such models from
machine vision include capsule networks (Sabour et al., 2017)
and the Generative Query Network (GQN) (Eslami et al.,
2018). The former is a supervised learning technique in which
capsules, groups of neurons representing attributes of an entity
causing visual data, optimize their connections between multiple
convolutional layers to associate images with their labels. The
latter is an unsupervised learning approach—reminiscent of a
variational autoencoder (Kingma and Welling, 2013; An and
Cho, 2015)—that learns two functions. The first is a function

Frontiers in Neurorobotics | www.frontiersin.org 13 April 2021 | Volume 15 | Article 65143286

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Parr et al. Active Vision

from observations to a representation of a scene and the second is
a generative function that predicts observations, in a viewpoint-
dependent manner, under the current scene representation. The
two are jointly optimized based upon the fidelity with which
observations are predicted given the scene representation. While
unsupervised in the sense that no labeled training data are
used, this approach could be viewed as supervised learning of a
function from viewpoint to visual data.

There are important shared features between the generative
model presented in this paper and those that emerge from
training capsule networks or the GQN. Perhaps the most
striking is the importance of factorization. In capsule networks,
factors are an integral part of the network. Each neuron
within a capsule represents distinct features in relation to other
neurons. This allows a capsule—representing a given object—to
represent that object in multiple orientations, or colors. In the
GQN, factorization emerges from training on environments in
which different attributes can vary independently. For instance,
training on views of red cubes, red triangles, and blue spheres
enables reconstruction of, previously unobserved, red spheres.
In this paper, we have highlighted the factorization of different
explanatory variables (i.e., latent causes) that manifest in different
visual streams—for instance, changing our viewpoint does not
change object identity, and vice versa.

A second shared feature is the increase in the spatial scale
of receptive fields, as we move from observations to their
causes. In capsule networks, this arises from their convolutional
architecture. In our generative model, the convergence of high
dimensional pixel spaces through to hidden layers with fewer
and fewer units is represented, in reverse, by the generation of
objects from scenes, surfaces from objects, and pixel intensities
from surfaces.

Given that there are successful machine learning approaches
available—that effectively learn the structure of a generative
model for visual rendering—it would be reasonable to ask
what is added by the approach pursued here. In short, the
benefit is transparency, in the sense of both explainability and
interpretability (Marcinkevičs and Vogt, 2020). The benefits of
approaches based upon deep learning are that they scale well,
and that the models they learn emerge from the statistical
regularities in the data on which they are trained. However,
the interpretability of the resulting models is not always
straightforward. In contrast, specifying an explicit generative
model affords an explicit interpretation of the ensuing inferences.
This may not matter when developing new approaches to visual
rendering but is crucial in advancing hypotheses as to how the
brain (and other sentient artifacts) solves active vision problems.
The account advanced in this paper is not designed to replace
machine learning but offers an example of the kind of generative
model they might implicitly learn.

DISCUSSION

In this paper, we set out a generative model capable of
generating simple retinal images. Our aim was to determine
the set of explanatory variables the brain could call upon
to explain these visual data, the dependencies between these
variables, and the anatomical connectivity that could support the

requisite neuronal message passing. In other words, we sought
to identify the problem the visual brain must solve. From a
neurobiological perspective, one conclusion we could draw from
this analysis is that few parts of the brain are not involved in
active vision.

We have seen how beliefs about scenes, and the objects in
those scenes, thought to be represented in the temporal lobe,
are combined with beliefs about the retinal location. The latter
depend upon the parietal cortices and their relationship with
medial temporal and frontal lobe structures. If we know the
retinal location and the set of surfaces in a scene, we can compute
which surfaces lie within our field of view and determine (for
a given light source) the influence of those surfaces on retinal
cells. This is the retinocortical pathway in reverse. Explanations
of visual data afforded by a model of this sort are highly sensitive
to where the retina is. This means part of the explanation must
always include our choices about where we position our retina.
Central to this is the computation of expected information gain,
which implicates the oculomotor loops of the basal ganglia. In
addition, the process of acting to change our eye (or head)
position—when viewed as an inference problem—requires that
we predict all of the sensory consequences of the action we
hope to execute. We detailed how this could play out in the
oculomotor brainstem, predicting the proprioceptive data we
hope to realize.

Clearly, there are limitations to the model presented here, and
many aspects of vision that are not accounted for. It is useful
to consider how these could be incorporated in this generative
model. First, there are other ways, in addition tomoving our eyes,
in which we can influence our visual environment. For instance,
we could move our hands in our field of view (Limanowski
and Friston, 2020). We could go further and move objects
around in the environment or assume that other agents can
do so. This means unfolding the prior beliefs from Figure 1 in
time, such that they factorize into a series of policy-dependent
transition probabilities. Time-dependence adds an interesting
twist to the expected information gain, as it means that the
posterior predictive entropy grows over time for unobserved
locations. The reason for this is simple. The longer the time
since looking in each location, the greater the probability that
something has changed. This is consistent with Jaynes’ maximum
entropy principle (Jaynes, 1957). The result is a form of inhibition
of return (Posner et al., 1985), the duration of which varies with
the precision of probabilistic transitions over time (Parr and
Friston, 2017b). The duration of this inhibition of return is one of
the crucial differences between static and dynamic environments:
reflecting the possibility that things have changed since each
location was last fixated. This engenders loss of confidence about
state of affairs at that location—and an epistemic affordance
of return that increases with time. This relates to other visual
phenomena, even in the absence of overt eye movements.
Periodic redirection of covert attention—a form of mental action
(Rizzolatti et al., 1987; Hohwy, 2012; Limanowski and Friston,
2018)—based upon the accumulated uncertainty of unattended
features reproduces binocular rivalry phenomena (Parr et al.,
2019), in which perception alternates between different images
presented to each eye (Leopold and Logothetis, 1999; Hohwy
et al., 2008).
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We have omitted interesting questions about texture and color
vision. Textured surfaces could be modeled through varying the
constants (c1, c2, c3) from Equation (6) and the ambient lighting
(α) as functions of their location on a surface. Color vision could
be incorporated simply by repeating section The Retinocortical
Pathway for several different wavelengths of light—specifically,
the red, green, and blue wavelengths detected by different
cone photoreceptors (Nathans et al., 1986). This would aid in
disambiguating the roles of magnocellular and parvocellular
streams, involved in dissociable aspects of trichromatic and
monochromatic vision (Masri et al., 2020). The magnocellular
stream also seems to have a key role in detectingmotion (Merigan
et al., 1991) – something that is highly relevant in the context of
active event recognition (Ognibene and Demiris, 2013).

From a computational perspective, there are important
outstanding questions about the role of precision (i.e.,
neuromodulation) which may involve second order thalamic
nuclei, like the pulvinar (Kanai et al., 2015), and the cholinergic
basal nucleus of Meynert (Moran et al., 2013). These could be
accommodated in this model through including prior beliefs
about the precision or variance associated with regions of the
visual field. This may be particularly relevant in understanding
how subcortical structures participate in visual perception. For
instance, the role of the amygdala in enhancing the perception
of fearful faces (Pessoa et al., 2006; Adolphs, 2008) could
be formulated as inferences about the precision of visual
features consistent with this emotional state. Another important
computational feature was omitted in our discussion of models
of oculomotion. We neglected to mention the role of generalized
coordinates of motion (acceleration, jerk and higher order
temporal derivatives) (Friston et al., 2010), which offer a
local approximation to the trajectory of dynamical variables,
as opposed to an instantaneous value. This has important
implications for things like sensorimotor delays (Perrinet
et al., 2014), accounting for small discrepancies in the time the
brainstem receives a proprioceptive signal compared to the time
an oculomotor muscle contracted. In brief, representations of
the local trajectory enable projections into the immediate past
or future. To see how generalized coordinates of motion can be
incorporated into a factor graph, see (Friston et al., 2017a).

Why is it useful to formulate a generative model of active
vision? There are several answers to this question. The first is
that having a forward model is the first step in designing an
inference scheme that inverts the model. This is a matter of
undoing everything that was done to generate visual data, so that
their causes can be revealed. There have been promising advances
in practical, scalable, model inversion for active vision from a
robotics perspective, that use deep neural networks to learn a
generative model that predicts camera images (Çatal et al., 2020),
leading to Bayes optimal behavior in a real environment. Similar
approaches have been developed both in the visual domain
(Fountas et al., 2020; van der Himst and Lanillos, 2020), and
in a generic (non-visual) control setting, which may also have
applications for high-dimensional visual data (Tschantz et al.,
2020). By treating vision as active, we can design agents that
actively sample the environment to resolve their uncertainty, in
high-dimensional, incongruent settings. This takes us beyond

static deep learning models which, although apt at simple
classification tasks (LeCun and Bengio, 1995; Jin et al., 2017), are
unable to handle the complexity involved in human active vision.

The second is that this model generates behavior (i.e.,
saccades). As we highlighted in section The Basal Ganglia,
the saccades performed depend upon prior beliefs. This means
measured eye movements could be used to draw inferences
about the parameters of prior beliefs in the model used by
an experimental participant, or clinical patient (Mirza et al.,
2018; Cullen et al., 2020). Virtual reality technologies offer a
useful way to investigate this, with tight control over the visual
environment combined with eye-tracking (Limanowski et al.,
2017; Harris et al., 2020a,b). In principle, we could present visual
data consistent with the generative model set out here and use
this to test hypotheses about the structure of the generative model
used by the brain, or about the parameters of each factor. One
such hypothesis as to the anatomical implementation has been
set out in the figures. However, it is important to recognize that
this is one of many hypotheses that could have been advanced.
Crucially, a generative model for visual data allows us to generate
stimuli that vary according to specific hidden causes. This would
allow for alternative anatomical hypotheses to be evaluated
through neuroimaging, as we would anticipate variation in a
given hidden state should lead to variation in beliefs about this
state, and changes in neural activity—i.e., belief updating—in
those regions representing these beliefs.

The third utility of forward models of this sort is that
understanding the conditional dependencies in a model, and
by implication the structure of the neuronal message passing
that solves the model, we have an opportunity to frame
questions about classical disconnection syndromes (Geschwind,
1965a,b) in functional (computational) terms (Sajid et al., 2020).
We have briefly touched upon some of these syndromes,
including visual field defects, agnosia, and neglect. Generative
models of active vision let us express the mechanisms that
underwrite these syndromes in the same formal language—that
of aberrant prior beliefs. This approach is commonly used to
characterize inferential pathologies in computational psychiatry
(Adams et al., 2015).

CONCLUSION

Under modern approaches to theoretical neurobiology—
including active inference—brain function is understood in
terms of the problems it solves. Its biology recapitulates the
structure of this problem. In this paper, we have attempted to
define the problem faced by the active visual system. This is
framed as explaining visual input, where good explanations
involve not just the external environment, but how we choose
to position our sensors (i.e., retinas) in that environment. This
explanation takes the form of a predictive model comprising
factors that determine the geometry of objects expected in a
given room, the placement of the retina in that room, and the
combination of these variables in generating a retinal image.
The factors involved in determining the placement of the retina
can be further unpacked in terms of their causes—i.e., the most
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epistemically rich saccades—and their consequences for the
dynamics of, and proprioceptive inputs from, the eyes. We hope
that this paper provides a useful reference that brings together
the probabilistic models required for aspects of biological
active vision.
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Shared autonomy aims at combining robotic and human control in the execution of

remote, teleoperated tasks. This cooperative interaction cannot be brought about without

the robot first recognizing the current human intention in a fast and reliable way so

that a suitable assisting plan can be quickly instantiated and executed. Eye movements

have long been known to be highly predictive of the cognitive agenda unfolding during

manual tasks and constitute, hence, the earliest and most reliable behavioral cues

for intention estimation. In this study, we present an experiment aimed at analyzing

human behavior in simple teleoperated pick-and-place tasks in a simulated scenario

and at devising a suitable model for early estimation of the current proximal intention.

We show that scan paths are, as expected, heavily shaped by the current intention

and that two types of Gaussian Hidden Markov Models, one more scene-specific

and one more action-specific, achieve a very good prediction performance, while also

generalizing to new users and spatial arrangements. We finally discuss how behavioral

and model results suggest that eye movements reflect to some extent the invariance and

generality of higher-level planning across object configurations, which can be leveraged

by cooperative robotic systems.

Keywords: intention recognition, shared autonomy, eye tracking, teleoperation, eye-hand coordination, Hidden

Markov Models, human-robot interaction

1. INTRODUCTION

Shared autonomy has recently emerged as an ideal trade-off between full autonomy and complete
teleoperation in the execution of remote tasks. The benefits of this approach rely on assigning to
each party the aspects of the task for which they are better suited. The lower kinematic aspects of
action execution are usually left to the robot while higher-level cognitive skills, like task planning
and handling unexpected events, are typically concurrently exercised by the human, in a blend
that can entail different degrees of autonomy for the robotic part (Goodrich et al., 2013; Beer
et al., 2014; Schilling et al., 2016). Considering the often large asymmetry in terms of degrees
of freedom or kinematic capabilities between the user input controller (e.g., joysticks) and the
robotic effector, shared autonomy eases the operator cognitive load and speeds up execution
improving motion fluency and precision. Since the user is setting the goals and the ways to achieve
them, this collaborative effort relies on the robotic partner to first recognize the current human
intention (intent recognition) and only afterwards to decide how much to assist with the execution
(arbitration). Intention recognition should thus happen as early and as naturally as possible for the
user to be relieved of explicitly directing the robot and for the robot to timely initiate the assisting
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action. To this end, although several approaches have been
proposed that rely on intent recognition from the user control
input driving the robotic movement (Yu et al., 2005; Aarno and
Kragic, 2008; Hauser, 2013; Javdani et al., 2015; Tanwani and
Calinon, 2017; Yang et al., 2017), the most natural and timely
way to predict intention both in assistive technologies and remote
manipulation is certainly to use gaze cues, as reviewed in the
next section. In light of the need to cope with sensorimotor
delays (Miall and Reckess, 2002), gaze control itself in
task-based scenarios can be considered as inherently predictive of
a number of action-relevant aspects. Indeed, in moving our eyes
we make use of knowledge- and sensorimotor-based experience
(Belardinelli et al., 2016; Hayhoe, 2017; Henderson, 2017; Fiehler
et al., 2019) to quickly retrieve the information needed to plan
limb motion.

In this study, we focus on gaze-based intention prediction
in teleoperating a robotic gripper in a simulated scenario, to
investigate human eye-hand coordination under these conditions
and to devise an intention estimation model to be later
transferred to a real-world shared autonomy scenario. As a
first setup for object manipulation, we concentrate on basic
pick-and-place tasks as common in this kind of architectures
(Javdani et al., 2015; Li et al., 2017; Jain and Argall, 2018, 2019;
Shafti et al., 2019). Presented contributions are a behavioral
assessment of eye-hand coordination in such scenarios and the
design of two Gaussian Hidden Markov Model schemes trained
on collected data, showing good generalizability across users and
task configurations.

In the next sections, related work on gaze-based intention
recognition is first reviewed; the experimental methods used
in our setup and the devised models are further presented,
followed by results obtained from behavioral analysis and model
testing. We conclude by discussing emerged implications and
future perspectives.

2. RELATED WORK

That the task shapes the way we look at the world has long
been known, as shown by Yarbus (1967). In that study, it was
shown that depending on the question the viewer was trying
to answer different scanning patterns were produced on the
very same image. A number of studies have replicated and
confirmed Yarbus’ experiment and managed to invert the process
and estimate the task from eye data above chance level (e.g.,
Borji and Itti, 2014; Haji-Abolhassani and Clark, 2014; Kanan
et al., 2014). The most popular and effective techniques to
compute the probability of a given task given eye movements
and possibly their sequence entail Naive Bayes classifier, Hidden
MarkovModels, SVM, multivariate pattern analysis, and random
forests (see Boisvert and Bruce, 2016, for a more complete
review). The largely increased diffusion of wearable cameras and
eye-trackers in recent years has triggered research on daily
activities recognition as observed from an egocentric perspective
(Yi and Ballard, 2009; Fathi et al., 2012; Ogaki et al., 2012), hence
relying on eye, hand, head, and possibly body coordination (see
Nguyen et al., 2016, for a full review).

Yet the approaches above are concerned either with passive
information-seeking or with general activity recognition rather
than with simple action or proximal intention recognition.
Indeed, two basic types of intention have been postulated
(Bratman, 1987): a mental state concerning intention for the
future (distal intention), not necessarily situated in a specific
spatial and temporal context, and intentionality for an immediate
action (proximal intention). From a temporal perspective, a
proximal intention is very close to the executed action. Thus,
the boundary between proximal intention recognition and
action recognition is at times rather blurry. The later an
intention is recognized the more advanced the execution of the
corresponding action might be.

In a recent study considering object aligning tasks in Virtual
Reality (Keshava et al., 2020), it was shown how already simple
features, such as the proportion of Points-Of-Regard (POR)
on distinct Areas-of-Interest (AoIs) within the objects could
constitute a sufficient oculomotor signature to discriminate
between four different tasks, which could be classified well above
chance. In human-robot collaboration often the robot partner
is aware of the activity context and for effective cooperation, it
just needs to detect the current action intention of the human
partner to help them with it. Huang and Mutlu (2016) have
proposed a method for anticipatory control which allows a robot
to predict the intent of the human user and plan ahead of
the explicit command. In the task considered, a robotic arm
prepares a smoothie by picking the ingredients selected vocally
by a human user looking at an illustrated list. By means of eye
tracking the robot infers the user intention before they utter it
and anticipates picking the intended ingredient: an SVM was fed
a feature vector of gaze features for each ingredient, such as the
number of glances, duration of the first glance, total duration and
whether it was the most recently glanced item as predictors of
the currently intended ingredient. Although such an approach
seems simple and effective in this case the human user was
carrying out no parallel visuomotor control task that could yield
spurious fixations.

Within shared autonomy approaches, as a first attempt at
integrating gaze input from the user, Admoni and Srinivasa
(2016) put forward a proposal relying on Javdani’s framework
(Javdani et al., 2015), where the probability distribution over the
goals (hidden states) is updated by considering both user’s eye
movements and joystick commands as observations in a Partially
Observable Markov Decision Process (POMDP), using hindsight
optimization to solve it in real-time.

In a further study (Aronson et al., 2018), the authors present
an eye tracking experiment aimed at comparing user behavior
within-subjects in different teleoperationmodalities, namely with
more or less autonomy. In the scenario of an assistive robot
arm spearing food bits from a plate to feed an impaired user,
by looking at partly manually annotated gaze behavior, two
patterns of fixations emerged: monitoring glances, meant to
check the translational behavior of the arm approaching the
intended food morsel, and planning glances, which select the
target morsel before starting the arm actuation, as in natural
eye-hand coordination (Johansson et al., 2001; Hayhoe et al.,
2003). Haji Fathaliyan et al. (2018) proposed a method to
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FIGURE 1 | The experiment was carried out in a simulated scenario. The Gazebo simulator features physics and a virtual sensor, with its measurements rendered on

the screen. The user controls the Pick-and-Place-Task with a HTC Vive controller, tracked by the Vive Lighthouse system. At the same time, the Vive controller and a

Pupil Labs eye-tracking system are used to estimate the human sensorimotor state.

localize gaze on 3D objects by projecting the gaze vector on
point cloud representations of the objects manipulated by a
person preparing a powdered drink. Using Dynamic Time
Warping barycentric averaging, sequences of gazed objects
were obtained encapsulating the typical temporal patterns of
object interaction that could be used for action recognition.
Very recently, the same group used features extracted by this
method to recognize action primitives in different activities
(Wang et al., 2020). However, data were collected using
natural eye-hand coordination, with participants executing the
task themselves, which represents a different situation from
a teleoperation scenario both on a perceptual and action
control level. In the context of assistive robotics, a number of
other studies have also considered gaze information (at times
combined with multimodal interfaces, such as BCI and haptic
feedback) to operate robotic limbs and wheelchairs (Schettino
and Demiris, 2019; Zeng et al., 2020). Often in these cases,
the gaze is used to implicitly but actively point the system
to the object the impaired user wants the robot to interact
with (Li and Zhang, 2017; Wang et al., 2018; Shafti et al.,
2019).

Our study follows similar motivations as Aronson et al. (2018)
and Wang et al. (2020) and complements those results, while
not being aimed specifically at assistive applications, but rather
trying to leverage human dexterity and eye-hand coordination
to improve performance in teleoperated manipulation tasks. To
investigate human oculomotor behavior during teleoperation
in a more controlled scenario and with a more natural input

interface, we designed an experiment in simulation, where the
participant would control the remote robot arm by means of
their own arm movements via motion tracking. We reasoned
that this would produce more natural scanpaths and reaching
behavior, without the cognitive overload of a controller with few
DOFs, but still showing how the user copes on a sensorimotor
level with the task of controlling a remote arm. These behavioral
cues were further collected to train a proof-of-concept model
able to predict the current intention in pick-and-place tasks
in similar teleoperated scenarios, to be later deployed in a
real-world setup1. Since many teleoperation scenarios relay
visual input through a camera, we displayed the scene on a
screen and used eye tracking glasses to retrieve the (POR)
on the 2D display.

In our approach, we plan to work with multiple objects and
to recognize different sequential sub-tasks, hence we chose to
model scanpaths via Hidden Markov Models (HMM), which
present the benefit of considering the temporal dimension of the
gaze shifts and can better deal with spurious fixations and gaze
samples and varying eye tracking frequency (Belardinelli et al.,
2007; Coutrot et al., 2018; Boccignone, 2019). Our experimental
setting and the intention estimation model are detailed in the
next sections.

1To avoid confusion with terms sometimes used interchangeably, sometimes

meaning different things, we here refer to task as the overarching ongoing activity,

e.g., pick and place, while intention implies the commitment to perform the

current proximal action/sub-task, e.g., reaching to grasp.
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3. BEHAVIORAL EXPERIMENT METHODS

AND ANALYSIS

3.1. Participants
This study has been conducted after the outbreak of the
COVID-19 pandemic. Hence, a number of participants suitable
for this kind of study could not be recruited and to minimize
infection risks only associates of the Honda Research Institute
participating in this project were asked to take part in data
collection on a voluntary basis (N = 4, including the authors).
We complied with the measures of the Occupational Safety and
Health Standard emanated by the German Federal Ministry of
Labour and Social Affairs by keeping a safe distance and wearing
face masks. The study was approved by the Bioethics Committee
of Honda.

Participants had normal or corrected-to-normal vision, were
all right-handed, and gave informed consent to participate in
the study.

3.2. Experimental Setup and Procedure
The experiment was carried out in a simulated scenario created
with the Gazebo Simulator2 (see Figure 1). The scene was
captured with a virtual sensor and displayed on a widescreen
(1.21 × 0.68 m) with HD resolution in front of the participant,
who was standing at a distance of about 1.5 m. Participants
wore a binocular Pupil Core eye-tracker by Pupil Labs, working
at 100 Hz with a reported accuracy of 0.6◦. They also held in
the right hand the HTC Vive controller, tracked by the Vive
Lighthouse system for input control in the teleoperation task. All
physical devices and surfaces were sanitized after each use. After
instructions, participants were required to wear the eye tracking
glasses, to adjust the eye and scene cameras according to the
experimenter’s directions, and to perform a 5-point calibration.

The experimental stimuli consisted of three cylinders
presented in two configurations (in different blocks): either
aligned on the left side of a table (numbered as follows: 0 for
the top, 1 for the middle, 2 for the bottom of the table) or at the
vertices of a virtual triangle (0 for the top vertex, 1 for the bottom
right, 2 for the bottom left; see Figure 2). Colors were permuted
anew in each trial. Along with the cylinders, a disk would appear
on the right side of the table, at one of three positions (denoted
as: 0 top, 1 middle, 2 bottom). The disk specified the current pick-
and-place task: the color indicated which cylinder to pick up and
the position of the disk where the cylinder had to be placed down
on the table. The task would be executed by a robotic gripper
in the virtual scene, operated by the participant’s movements.
The position and orientation of the Vive controller grasped by
a user’s hand were tracked and mapped onto the gripper. Just the
robot hand was visible and could be controlled by the participant
as the own hand. No robotic arm kinematics was simulated in
the mapping of the movement. Participants were required to
reach with the controller in their hand toward the target and to
grab it by pressing the button on the controller under the index
finger. They had then to move the cylinder to the other side and
release it on the place position, in so ending the trial. Between

2http://gazebosim.org/

trials, a resting time of 5 s was given, followed by a fixation cross
and indications on how to move the controller back to the rest
position. As soon as the controller reached the starting position,
the next trial started.

The cylinders were 20 cm high and with a radius of 5 cm. In
the lined-up configuration, they were placed 30 cm apart, while
in the triangular configuration cylinder 1 and 2 were about 21 cm
apart and both were 22.6 cm apart from the cylinder in position
0. The robotic gripper was about 16 cm long from the wrist to the
midpoint between the fingers.

3.3. Design and Data Processing
We designed two different arrangements of the cylinders since
we hypothesized that the positions of the objects would require
different movement trajectories and oculomotor strategies. In
this way, we could investigate the impact of the spatial
arrangement of the items on the gaze behavior.

Each trial consisted of a reach-and-grasp phase and a
transport-to-place phase to the placing target position. The two
phases are separated by the gripper grasping the picking target.
In this sense, in the following, picking times are considered as
the time from the start of the trial to the grasp event detected via
button press. The transport phase spans the time from the grasp
event to the end of the trial, i.e., when the gripper button was
released and the cylinder in hand was within 10 cm of the placing
disk. The tasks are defined by the positions of the respective
targets, e.g., pick_0 for picking at the pick position 0 or place_1
for placing at the place position 1. In each trial the target pick
and place positions were randomly generated. This has led to
an uneven number of pick-place target combinations for each
participant. Lined-up and triangle arrangements were probed
in separate blocks. Specifically, the final dataset consisted of
sequences containing for the lined-up configuration 63 examples
of pick_0 and pick_1, 54 of pick_2, 60 of place_0, 55 of place_1
and 65 of place_2. For the triangular configuration the dataset
contained 35 examples of pick_0 and pick_1, 27 of pick_2, 26 of
place_0, 30 of place_1, and 41 of place_2.

Instead of working with relative eye coordinates, we used the
fiducial markers and the scene camera of the Pupil Labs device
to localize the eye-tracking-glasses in the scene w.r.t. the world
and screen, respectively. Fixations represent a very popular cue in
eye-movement data analysis and might seem an obvious choice
in this intention estimation application. The parameterization
of a fixation identification method, however, might be very
arbitrary. Usually, thresholds are chosen to determine when
exactly fixations start and when they end. Thus, the parameters
of a fixation identification algorithm can have a dramatic impact
on our higher-level analyses (Salvucci and Goldberg, 2000).
Further, the systemwill be required to work online eventually and
online fixation recognition is not always accurate while further
increasing the computational load. The temporal information
related to dwelling time in the AoIs (the objects of interest in
the scene) during fixations is still learned and considered by the
HMM all along.

For these reasons, we decided to work with gaze samples that
were mapped on the scene according to the following approach
(depicted in Figure 3). A heatmap with a discrete resolution
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FIGURE 2 | Example of scenes used in each trial. The objects to pick up were displayed lined up on the left side (or in a triangular arrangement) in three different

colors while the disc on the right could similarly appear at each of three positions on the right side. The color of the disk signified which cylinder was to pick up, the

position of the disk denoted the position for the placing down. The white disks are just shown here to label the picking and placing positions. (A) Lined-up

arrangement. (B) Triangular arrangement.

FIGURE 3 | The user’s field-of-view is approximated by a hemispherical heatmap. The density of a 2d normal distribution centered on the point-of-regard represents

the gaze and its uncertainty. The surface integral over the triangles of a certain object is the likelihood of this AoI.

represents the hemispherical field-of-view of the participant. In
this case a sampling of 1◦ is used and the heatmap comes with a
resolution of 180 by 90 px. The user’s eye gaze g is represented by
a two-dimensional normal distribution and the density is plotted
onto the heatmap with gaze uncertainty σ and location centered
on µ3. The choice of the size of σ might depend on the accuracy
and precision of the eye tracking measurements. Here, we set
σ = 2 ◦ which is in accordance with the size of the human fovea.
All potential scene objects are represented as trianglemeshes with
a bounding box made of at least 12 triangles. The pose of the
objects is delivered by a scene understanding module and given
the localization of the eye tracking glasses, the object poses can
be transformed into the head coordinate system. Mesh triangles,
that are visible to the user (i.e., normal of triangle directed toward
the user), are plotted onto the heatmap. The surface integral of
the density function over these triangles represents the likelihood

3The gaze was mapped in this way since in a later stage we plan to move the

simulation into a virtual reality headset with embedded eye tracking and the gaze

mapping on the scene can stay unaltered.

that this area is regarded by the user. The complete likelihood (of
each object to be regarded by the user) is the sum of all visible
triangles the object is made of. In order to not overemphasize
large objects, all likelihoods are normalized by their visible areas.
For each object an Area-of-Interest was defined, for a total of
seven AoIs: for the picking objects the areas {a0, a1, a2}, for the
placing positions the areas {b0, b1, b2}, plus an area R for the
robotic gripper.

As a result, this so-calledArea-of-Interest-analysis provides for
every gaze sample g a feature vector F entailing the likelihood
computed for each of these AoIs:

Ft = {P(AoI = a0|gt), P(AoI = a1|gt), ..., P(AoI = R|gt)} .
(1)

These were logged along with the current hand position and
robot gripper position and with the current grasping state
(defined as the binary state of the grasping button). Trial samples
were further labeled with a Boolean feature to state if the trial
was successful. Indeed, if the grasp failed for any reason multiple
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grasp attempts could be observed or none at all if the cylinder was
toppled down and fell off the table.

3.4. Behavioral Analysis
To get a better picture of the gaze behavior during the
presented task, we looked at some behavioral measures, seeking
confirmation of some of the patterns described in Aronson et al.
(2018). Due to the low number of participants thus far, we
could not perform an inferential statistics analysis within subjects
to test any hypothesis, hence for the most part we report a
descriptive analysis computed over the whole dataset depending
on the different tasks.

Two exemplary trajectories for different pick-and-place tasks
and object configurations are depicted in Figure 4. At any time,
the AoI collecting the highest likelihood is considered the one
currently looked at. Uponmotion onset the AoI corresponding to
the place target (whose color determines also the picking target)
is glanced. This is a planning glance, as defined in Aronson et al.
(2018). Right afterward the gaze moves to the picking target. It
must be noted that this glance at the place location is due to
the way the task is designed. Possibly, it would not be observed
if the picking target was communicated to the user in another
way, e.g., verbally, with the placing target displayed as a gray
disk, for instance. During the transport phase, the gaze targets
the placing target. During both the reach-to-grasp phase and the
transport-to-place phase the robot AoI (gray) is checked in a
monitoring pattern, to make sure the gripper is moving in the
intended direction.

For each trial, we consider two intentions/(sub)tasks, one
picking and one placing intention, separated by the keypress
triggering the grasping. To get a more complete overview of the
time the gaze spent in different AoIs across tasks, the relative
time distribution of gaze on each AoI was computed and is
presented in Figure 5. To make the picture easier to interpret,
we considered that for each intention there are actually just five
semantic entities that are relevant to describe the gaze behavior,
namely: the pick target (e.g., a0 for pick_0), the pick distractors
(e.g., a1, a2 for pick_0), the place target (e.g., any of the bi AoIs
depending on the current task), the place distractors (e.g., any
of the bi AoIs that are not the target) and the robot hand.
Analogously for the place intention, the place target would be the
specific AoI related to that task, while the pick target could be any
of the picking positions and the distractors are the pick and place
AoIs that are not the current pick nor place target of the trial.

As can be noted from Figure 5, for either task of pick or place,
the distributions of the gaze time share a common pattern on a
semantic level, i.e., the target of the task is longer dwelled on.
Thus, these tasks can be distinguished as each task corresponds
to a different semantic target (picking or placing objects). Yet
the distributions are also distinctive within each task, considering
that each action target is the AoIs related to the task target, i.e., the
corresponding ai position in the pick tasks and the corresponding
bi position in the place tasks. In the pick tasks the place target
is briefly looked at to learn the pick target, while in the place
tasks the pick target receives also some attention since, after
pressing the button for the grasp and in absence of any haptic
feedback, the gaze checks that the object is correctly grasped. This

evolution in time can indeed be appreciated better in Figure 6,
where trials across intentions were averaged on a normalized time
axis between the start of the trial and the grasp for the pick trials
and between the grasp event and the end of the trial for the place
trials. In these latter, independently of the place target, it can
be noted how for about the initial 30% of the placing task the
pick target is still looked at, to visually check whether the object
is lifted up with the gripper, hence confirming the grasp was
successful. Interestingly, in both configurations and tasks also the
robot effector receives a discrete amount of gaze time and in the
pick trials shares a lot of gaze distribution with the pick target. Of
course toward the end of the pick and place trials the gripper is
close to the pick/place targets and the gaze can have both within
the fovea or in the parafoveal space andmonitor them at the same
time. Still, in natural eye-hand coordination, the hand instead is
rarely looked at (Johansson et al., 2001) because proprioceptive
information and peripheral vision usually suffice to monitor it.
This suggests that in this teleoperation scenario the unusual
sensorimotor mapping from the arm and controller to the three-
fingered robotic gripper, especially considering the grasp pose,
and possibly some delay in the tracking makes the user uncertain
about the effector movements and current pose. Participants,
thus, produced multiple monitoring glances (Aronson et al.,
2018) during the movements to visually adjust the effector
trajectory and pose. However, in general, the distributions looked
rather distinctive across tasks, suggesting that it could be possible
to reliably discriminate among them, while they looked rather
similar across picking configurations, hinting to the possibility
to generalize from one to the other. The pick distractors are
looked at especially during picking, since the gaze checks the
neighboring cylinders in order to decide the best grasp and in
order not to collide with them. This is especially the case in
picking at position 1 in the lined-up case and overall in the
triangle configuration since the cylinders are all close to one
another. The place distractors do not receive any attention since
in each task only the target position was made visible with a disk
in this experiment (see Figure 2).

To gain further insight into the difficulty of the task, we looked
into the number of failed trials across picking tasks. Error rates
were computed for the three pick tasks in the two configurations.
The picking action in the lined-up configuration was successful in
the 71.4% of pick_0 cases, 88.9% for pick_1 trials, and 79.6% for
pick_2. In the triangular configuration, the grasp was successful
in 68.6, 88.6, and 85.2% of cases, for the same picking cases,
respectively. The users could accomplish the task in the vast
majority of the cases, but a significant number of failed grasps
occurred when picking at position 0 in both configurations.

This could be the case for different reasons. In the lined-
up configuration, the 0 position is the rearmost and the one
requiring to stretch the arm until the furthest edge of the table.
However, 3D depth on a 2D plane is badly estimated, especially
in a virtual scene where size cues are more difficult to gauge
and the own body could not be used as reference either. In
the triangle configuration, the 0 position is closer to the user,
yet the other two objects are placed in front of it, requiring
to pick the cylinder from above or—for a right-handed user—
trying to avoid the cylinder in position 1 going around it. The
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FIGURE 4 | Two exemplary trajectories of the hand during the pick-and-place tasks (left: pick in position 2 and place in position 0; right: pick in position 1 and place in

position 1). The movement samples are colored with the currently gazed AoI (see legend). The square markers denote the picking and placing positions: the former

are here denominated and colored as the respective AoIs, for the latter only the current placing target is presented in color (the other targets are in light gray since they

were not visible but their position is shown for reference).

FIGURE 5 | Relative distribution of the time the gaze spent on semantic AoIs across tasks for the lined-up (left) and the triangle arrangement (right). In the pick tasks

the respective picking AoIs (pi_target) are more looked at, in the place tasks the respective placing AoIs (pl_target). The other AOIs were summarized in the pick

distractors (pi_distract, i.e., the cylinders not to be picked up), place distractors (pl_distract, i.e., possible place-down locations other than the target), and the robot

hand (robot).

depth estimation difficulty could yet be ameliorated in a virtual
reality set-up.

A similar pattern emerges also looking at picking times. In this
case, we considered only successful trials since in a failed trial no
grasp or more than one grasp could occur. Looking at Figure 7, it
can be noted again that the rearmost position requires the longest
reaching time. The difference is significant between position 0
and position 2 [Bonferroni corrected Welch’s t-test, t(67.11) =

3.56, p = 0.002] and between position 1 and 2 [t(88.34) =

2.94, p = 0.012]. In the case of the triangular configuration,
also items in position 2 require a more careful movement, since
a right-handed person needs to mind avoiding the cylinder in
position 1 when approaching the cylinder in position 2 with the
open gripper [position 0–1: t(27.24) = 4.02, p = 0.001, position
1-2: t(40.54) = −4.15, p < 0.001].

4. COMPUTATIONAL MODELING AND

RESULTS

4.1. Modeling Intentions With Gaussian

HMMs
Our approach aims at predicting the proximal intention, i.e., the
current action and the involved object. Gaze not only comes with
a specific pattern during action execution but also provides early
cues that indicate parameters of a pick and place task, such as
which object to pick or where to place it down. These parameters
are defined by the proximal intention (Bratman, 1987; Pacherie,
2008). The temporal gaze pattern can be represented with a
Gaussian Hidden Markov Model (see Figure 8). The hidden
states X(t) describe the internal intention process and might
relate to looking at the target object or looking at the placing
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FIGURE 6 | Gaze distribution on a normalized time axis across semantic AoIs. Time = 0 signifies starting of the trial and time = 100 the closing of the gripper on the

object for the pick sequences. This last event represents the start of the normalized time axis for the place sequences, with 100 indicating the end of the trial. (A)

Lined-up arrangement. (B) Triangular arrangement.

FIGURE 7 | Picking times across picking position for the two object configurations. The rearmost position requires a longer reaching time in both configurations, also

due to difficult depth estimation. In the triangle configuration the forefront position on the left (pick_2), besides the rearmost position (pick_0), requires a longer picking

time.

position. However, this is just an assumption, while the hidden
Markov process drives an observable gaze sequence Y(t). The
gaze sequence is described by the sequence of AoI likelihoods
as derived from the multivariate Gaussian distribution (see
section 3). The distribution of these AoI likelihoods at a particular
time is governed by the emission probabilities of the hidden
Markov process given the state of the hidden variable at that
time. This approach is independent of the gaze sequence length,
i.e., observation sampling and execution velocity, as long as the
sequences are scaled linearly.

We defined six intentions to be recognized: three pick-up
intentions (for each of the three cylinders) and three place
intentions (for each of the three placing positions). Hence,
six HMMs have been configured with five internal states. The
observation vector of an HMM comprises eight components: the

AoI likelihoods of the three cylinders, the AoI likelihoods of the
three possible placing positions, the AoI likelihood of the robot,
and the trigger button state of the Vive controller. The transition
and emission parameters were learned by each HMM, which
was fed the respective training sequences (between 19 and 31
observations sequences for each model for a total of 160). These
sequences were all performed by two users. The training was done
offline with data only from the lined-up arrangement and only
successful pick-and-place tasks (no multiple grasp attempts, no
toppling or dropping of the cylinders).

Figure 9 sketches the online intention recognition approach.
At every time step t the observations from the last 1t s are used
to compute the log-probability of these observations under each
of the trained HMMs. The HMMwith the highest log-probability
exceeding a given threshold (κ = 0) is taken as prediction of the
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FIGURE 8 | Gaussian Hidden Markov Models for a Pick-and-Place-Task. Five hidden states X are shown which might represent the perceptual state of the user

looking at the object to be picked, at the robot, at the placing position target, or at the teleoperated robotic hand. Arrows between states represent transition

probabilities: for the sake of legibility here only transitions between adjacent states are shown but actually all states are fully connected. A model is defined for each

pick-object and place-at-location intention. Each model receives as input a sequence of vectors of AoI likelihoods, representing the probability of the object under the

gaze distribution at different time steps. The emissions probabilities defining the probability of each state to emit the observed features are learned from the data and

assumed Gaussian. Each model outputs a likelihood of the corresponding intention after observing the current sequence of features.

FIGURE 9 | The observations made in the last 1t s are used to compute the log-probability of these observations under each of the trained GHMMs. Here, an

example sequence of subtasks with the observations is shown. The feature vectors are color-coded, vertically plotted, and concatenated (generating the bluish bar).

The length 1t of the time window decides on the accuracy and the earliness of the intention predictions.

respective intention. If no model scores over the threshold, no
intention is confidently recognized. The offline training and the
online recognition are implemented in Python with the help of
the hmmlearn-library4.

The performance of this approach is tested on data from
four users (between 17 and 28 observation sequences for each
intention, respectively, for a total of 128 sequences). The testing

4https://hmmlearn.readthedocs.io

data comprised unseen sequences in the lined-up arrangement
from the two users used for training plus sequences from two
additional users. Moreover, testing was done also on sequences
from blocks with triangular arrangement (between 19 and 33
sequences for each intention, for a total of 156).

4.2. Intention Recognition Results
To evaluate the intention recognition performance, we looked
on the one hand at how accurate was the prediction whenever a
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FIGURE 10 | Likelihood of the predicted intention for a trial picking in position

2 and placing in position 0. The black dashed vertical line shows the time of

the grasp event. At any time the likelihood of the currently highest model score

is depicted in the color associated with the respective intention (see legend). If

the highest score is below the threshold κ = 0, no intention is accepted (gray

line).

prediction was indeed available (that is, the proportion of correct
predictions over the overall number of delivered predictions). On
the other hand, as stated in Ellis et al. (2013) and Wang et al.
(2020), there is a trade-off between accuracy and observational
latency. Indeed, the more evidence is accumulated before making
a prediction, the more accurate the prediction is going to be.
Yet, in the case of systems that should act on that prediction, the
earlier this comes the better. To this end, maximizing accuracy
can be at odds with minimizing latency. We looked also at this
kind of latency and call it predictability, because of the way it
is operationalized. Predictability refers to the fraction of action
execution time where an intention is confidently recognized
(regardless of whether right or wrong), defined as the ratio
between the number of action samples for which an intention
estimation is over the threshold κ and the overall number of
samples in the action. At the beginning of a new trial when
the gaze is still wandering between the placing target to check
its color and the pick target, perhaps also checking the pick
distractors, it is most likely that the models cannot deliver a
confident enough prediction. Similarly, in the transport phase,
after checking the successful grasp, the gaze quickly moves from
the pick target to the place target. In this case, the observed time
windowmight contain both samples related to the grasped object
and to the place destination, hence even the highest-scoring
model might deliver a very low likelihood score (under the
threshold). This can be appreciated in the example in Figure 10:
in the beginning of the trial no model reaches a confident enough
likelihood score, but as soon as evidence is accumulated in
favor of a picking action, the winning likelihood oversteps the
threshold. At first, the wrong picking intention is predicted while
later the correct model reaches the highest likelihood. A similar
course is displayed after the grasp event, with the likelihood going
down and then rising again in favor of a placing action.

Figure 11A shows the accuracy and predictability of the
intention recognition when using a time window of 0.9 s for the
lined-up arrangement. On average, the HMM with the best log-
probability being above the given threshold (κ = 0) indicates the
correct intention in 78% of cases (chance level = 16.7%).

Figure 12A highlights the relationship between the time
window 1t, accuracy, and predictability. With a longer time
window both the prediction accuracy and the predictability
decrease. A longer time window has the effect to include
more observation samples belonging to a previous action rather
than the current intention. This is sketched in Figure 9. As a
result, either the log-probability threshold is not exceeded or an
incorrect intention is recognized. There is a maximum accuracy
at a time window of 0.9 s with a predictability of 77%. That
is, after at least 23% of the action execution the right action is
predicted in 78% of cases. Given this earliness, we can speak of
intention recognition.

Figure 12B plots a similar relationship between time window
and performance for the triangle-shaped arrangement. The
optimal time window size here is 1.3 s with an accuracy of 75%
(chance level = 16.7%) and a predictability of 78%. The accuracy
curve seems to be flattened because the action execution times in
this setup come with a larger spread. Especially, picking up the
cylinders at positions 0 and 1 is more challenging and causes a
longer execution time compared to the other sub-tasks in this
triangle setup. This issue is apparent also in Figure 11B with
more distant whiskers and extended boxes for pick_0 and pick_1.

Furthermore, the plots in Figures 11, 12 confirm the
observations described in section 3.4. The gaze behavior seems
to be independent of the spatial arrangement of the objects
in the scene. This fact is very well-represented by the HMMs,
which have been trained only on lined-up arrangement data, but
perform almost as well on the triangle arrangement data.

Moreover, Figure 13 shows the confusion matrices for the
two tested spatial arrangements. It can be appreciated that
when the model delivers a wrong prediction it usually mistakes
neighboring picking or placing locations, but still correctly
identifies the task.

4.3. An Alternative Model: The Semantic

GHMM
Our hypothesis in designing the behavioral experiment and
the model presented above was that the object positions and
configuration would have an effect on the observed sensorimotor
behavior. Yet, both the results of the behavioral analysis (cfr.
Figures 5, 6) and the results of the modeling of separate action-
object intentions show how gaze patterns are pretty similar
across picking positions and configurations and how the models
even generalize well to a new configuration with different
picking positions. This suggests that rather the current motor
primitive (pick or place), represented at a symbolic, semantic
level, determines a prototypical sensorimotor pattern, which
gets further specified by the motor system depending on the
current situation (motor intentions as put forward by Pacherie,
2008). Yet, these further adjustments are at an intra-class level,
preserving the general inter-primitive discriminability. This is
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FIGURE 11 | Accuracy and predictability of online intention recognition for lined-up arrangement and triangle shape arrangement. (A) Lined-up arrangement, 1t = 0.9

s. (B) Triangular arrangement, 1t = 1.3 s.

FIGURE 12 | Relationship between time window (min = 0.1 s, max = 5 s) and

performance measures. Time window and performance are inversely

proportional to each other. A maximum accuracy for a reasonable predictability

is reached at time window 1t = 0.9 s for the lined-up arrangement and 1t =

1.3 s for the triangle arrangement, respectively. (A) Lined-up arrangement. (B)

Triangular arrangement.

probably specifically the case in the simplified context we have
worked with here, where no real grasping is executed but still,
the gripper needs to be placed correctly on the cylinder to allow
a firm grasp or to achieve a stable placing down. The model
proposed above has further the limitation of scalability: if more
pick and place targets were added to the scene, possibly even
dynamically appear or disappear, new models would need to
be instantiated and trained, while also the feature vector to the
models being correspondingly adapted every time. The same
would of course occur if a further action would be added to the
mix, with every possible combination of object and action being
explicitly modeled and trained.

For these reasons, we also devised an alternative, semantic
model to be tested against the first model. In this case, just two
models are instantiated and trained, one for the pick and one for
the place action. The same observations as used in the previous
approach have been translated into a flexible object- and action-
based arrangement of the feature vector fed to each GHMM

model. Thus, the models receive always the same number of
features, regardless of the number of objects in the scene.
Assuming that n objects and m placing options are present in
the scene and that the corresponding AoIs come labeled as either
“pickable” or “placeable” candidates, to get the likelihood that
object i (or at position i) is currently the pick target, the following
vector is fed the pick GHMM:

Ft = {P(AoI = ai|gt),
∑

j 6=i

P(AoI = aj|gt),

m
∑

k=1

P(AoI

= bk|gt), P(AoI = Robot|gt), grasping_statet)} . (2)

and to get instead the likelihood that coaster i (or position
i) is currently the place target, the following vector is fed the
place GHMM:

Ft = {P(AoI = bi|gt),
∑

j 6=i

P(AoI = bj|gt),

n
∑

k=1

P(AoI

= ak|gt), P(AoI = Robot|gt), grasping_statet)} . (3)

The two models were instantiated with four hidden states each
(representing looking at a pick or place target, wandering with
the gaze on any distractor for pick or for place or looking at the
robot hand) and trained and tested with the same data as the first
model. Any time a new sample is available from the AoI analysis,
the two models are submitted n and m differently arranged
feature vectors, respectively, and produce as many likelihood
scores, with the highest-ranking taken as the estimated intention.
This process is exemplified in Figure 14.

Results show that with the semantic models, the accuracy
increases reaching a mean value of 88.0% and of 89.7% for
the lined-up and triangular configuration, respectively (see
Figure 15). On the one hand, the lower number of states (4) used
in the semantic model might have contributed to the increase of
the recognition accuracy. Indeed, although the naïve model uses
one more state than the semantic model and this might fit the
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FIGURE 13 | Normalized confusion matrices for the two picking arrangements. Errors are mostly made mistaking neighboring locations but still classifying the task

correctly.

FIGURE 14 | Gaussian Hidden Markov Models for a Pick-and-Place-Task. Four hidden states x are shown which might represent the perceptual state of the user

looking at the object to be picked, at the robot, at the placing position target, or at the teleoperated robotic hand. Arrows between states represent transition

probabilities: for the sake of legibility here only transitions between adjacent states are shown but actually all states are fully connected. Two models are defined for the

pick and place intentions. Each model receives as input a vector of rearranged AoI likelihoods, with the first element representing the object to be tested for pick

(place), while the second sums up the AoI likelihood of the other pick (place) distractors. The third element sums the features of the other objects relevant for the other

action, while the robot and the grasping state features stay the same.

training data better, a higher number of states can unnecessarily
overcomplicate the model and produce overfitting. On the other
hand, the two semantic models have access to more training data
w.r.t the six naive models: in general they can abstract better
as to what defines a pick or a place action across the different
targets. Considering the normalized confusion matrices depicted
in Figure 16, in this case, no mistake is made between the two
actions: the semantic models seem to be able to better learn the

importance of the grasping state feature in discriminating the two
actions, as further shown in the next subsection.

4.4. Effect of Grasping State on

Performance
Assessing the model performance against a 16.7% chance level
could be misleading since the grasping state constitutes a
powerful binary cue to tell the two actions apart and hence a
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FIGURE 15 | Accuracy and predictability of online intention recognition for lined-up arrangement and triangle shape arrangement in the semantic model. (A) Lined-up

arrangement, 1t = 0.9 s. (B) Triangular arrangement, 1t = 1.3 s.

FIGURE 16 | Normalized confusion matrices from the semantic GHMM for the two used spatial arrangements.

33.3% chance level would be a fairer assessment. For this reason,
both models were trained and tested again without the grasping
state feature. Results with and without this feature are reported in
Tables 1, 2. The accuracy substantially decreases for both models,
but still remains on an above-chance level. The predictability rises
almost at ceiling levels, probably because the models consider at
any time the current fixation as indicative enough of the current
intention, irrespective of its compatibility with the current grasp
state, and outputs the corresponding intention. While on an
overall level the naive and the semantic models achieve a similar
accuracy of above 50%, it can be seen in the confusion matrices in
Figure 17 that the naivemodel somehowmanages to differentiate
between the two different actions while the semantic model
basically classifies most intentions as place intentions. A possible
explanation could be that without the grasping cue or any other
common-sense prior knowledge about picking and placing, the
semantic models can only generally infer an intention to interact
with an object. In this case, the “place” model, which relies
on clearer, longer fixations on one target (see Figure 6), is the
most confident about its predictions, while the “pick” model sees
the gaze likelihood distributed among more objects. The naive
models, on the other hand, which were separately trained on the

single object/locations, manage to retrieve some of the regular
patterns of each single intention. Still, it is reasonable to expect
that with a larger dataset, both models could better learn the
scanpath differences evident in Figure 6 and better discriminate
between the two actions just by means of gaze features.

4.5. Comparison to Active Fixation-Based

Approaches
The specific nature of our setup makes it difficult to compare
our system to other approaches presented in the literature, since
often either natural eye-hand coordination (Haji Fathaliyan et al.,
2018; Wang et al., 2020) or no eye-hand coordination at all
(Huang and Mutlu, 2016) is used for intention recognition (see
section 2). In teleoperation, especially in the context of assistive
technologies, the user is often required to actively fixate the object
of interest for a certain amount of time in order to trigger an
associated action (Wang et al., 2018; Cio et al., 2019; Shafti et al.,
2019). We compare here our system to such approaches, to verify
the advantage of a probabilistic framework over a deterministic,
sensory-driven one. To this end, we computed the classification
performance when considering a fixation as a time window 1t
where the same AoI had consistently the highest likelihood and
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TABLE 1 | Accuracy for the naive and semantic GHMM models with and without the grasping state feature.

Naive model With GS (%) Without GS (%) Semantic model With GS (%) Without GS (%)

Lined-up 78.3 53.5 Lined-up 88.0 54.6

Triangular 75.3 51.5 Triangular 89.7 58.8

TABLE 2 | Predictability for the naive and semantic GHMM models with and without the grasping state feature.

Naive model With GS (%) Without GS (%) Semantic model With GS (%) Without GS (%)

Lined-up 77.1 98.5 Lined-up 70.5 98.5

Triangular 78.2 99.0 Triangular 71.9 99.2

FIGURE 17 | Normalized confusion matrices for the naive (left) and semantic (right) models for both configurations when training and testing the model without the

grasping state feature. The semantic model achieves a slightly higher overall accuracy but fundamentally recognizes highly accurately just the placing intentions.

took as prediction the corresponding intention (e.g., if a0 was
fixated for 1t s the prediction would be “pick at a0”). Note that
this method assumes that each object is associated with only one
action (either pick or place), thus it would not mistake the two
actions. We used 1t of different sizes to compare the fixation
performance to our model (1t = 0.9 for the lined-up, 1t = 1.3
for the triangular configuration), to the approach by Shafti et al.
(2019) (1t = 1.5 s), and to the approach by Wang et al. (2018)
(1t = 2 s). It must be stressed that in our case the users were
not actively fixating the objects to make their intentions legible:
when fixating naturally, it is rarely the case that fixations this
long occur, hence we further tested a shorter window 1t = 0.5.
Accuracy and predictability results are reported in Table 3. Even
if this system reaches an accuracy at times comparable with that
of ourmodel without grasping state feature, still the predictability
is considerably lower. That is, only when a fixation on an object is
ongoing for sufficient time a prediction is available, while most of
the time no intention is predicted. Indeed, considering a shorter
1t = 0.5 produces the best accuracy and predictability scores. In
contrast, our model emits a more reliable prediction earlier in
time and maintains it even when the gaze is not on the target
object since transitions are accounted for.

5. DISCUSSION AND CONCLUSIONS

We presented a study aimed at investigating eye-hand
coordination and gaze-based intention recognition during

teleoperated pick-and-place tasks. The ultimate goal is to transfer
such intention recognition into a shared autonomy architecture.
To this end, in this first study on the one hand data was collected
and analyzed in order to have a baseline characterization of user
behavior in a fully teleoperated modality. On the other hand,
collected data was used to train a model flexible enough to work
with different users and in possibly different settings.

In teleoperation contexts natural eye-hand coordination is
somehow disrupted since action is mediated by an input
controller and executed by a robotic system. This arrangement
upends the internal forward and inverse model predictions and
places a further monitoring load on the visual system. Hence, as
first studies besides this have shown (Aronson andAdmoni, 2018;
Aronson et al., 2018), investigating eye-hand coordination during
teleoperation can shed light on the user’s specific sensorimotor
behavior and needs in such setting, prompting better design
and models for intention recognition in such systems. Still, in
contrast to those studies aimed at assistive applications, we strove
for a more natural control input based on motion tracking.
In this way, we aim to elicit and exploit patterns of eye-hand
coordination similar to those used in real grasping and acting.
The analysis of eye and hand behavior has revealed that, although
participants in most cases managed to successfully operate the
gripper in the pick-and-place task, still some positions required
more grasp attempts and longer reaching times. This is in part
due to the impaired depth estimation on the screen, however, the
difficulty in aligning the gripper with the cylinder in the furthest
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TABLE 3 | Accuracy and predictability of the AoI features considering different fixation times for comparison with the fixation times of 1.5 s used by Shafti et al. (2019) and

of 2 s used by Wang et al. (2018).

Configuration

(fixation time)

Lined-up (1t = 0.5) Triangle (1t = 0.5) Lined-up (1t = 1.5) Triangle (1t = 1.5) Lined-up (1t = 2.0) Triangle (1t = 2.0) Lined-up (1t = 0.9) Triangle (1t = 1.3)

Accuracy 66.0% 62.4% 52.1% 54.3% 42.6% 48.8% 61.0% 56.3%

Predictability 47.0% 53.8% 24.1% 35.0% 16.1% 28.4% 37.0% 37.9%

Since in general shorter fixation times occurred in the trials, also a shorter 0.5 s interval was tested. A further comparison is done using a fixation time equal to the window times used

in our model (1t = {0.9, 1.3s}).

position or in avoiding bumping into cylinder 1 to grasp in
position 2 in the triangular arrangement required extra care and
slowed down the movement. Moreover, while the gaze behavior
showed some similarities with natural eye-hand coordination,
e.g., locating and guiding the hand to the target of the next
proximal intention (Land et al., 1999), we found that both in
the reaching and in the transport phase the robot gripper was
looked at for quite some time, differently from what happens
when grasping with the own hand (Johansson et al., 2001). This
represents an indicator that the participant preferred to visually
monitor the gripper movement in the absence of the usual
proprioceptive coordination and tactile feedback. Furthermore,
the object held in hand was looked at also after the grasping was
triggered, again something that does not happen in natural eye-
hand coordination, since tactile feedback confirms the expected
contact event and successful grasping (Johansson and Flanagan,
2009). In this teleoperation scenario instead, the grasp had to
be confirmed visually, hence the gaze lingered on the picked
object and only after seeing the object moving along with the
hand, moved on to the next distal intention (i.e., the placing
position). Still, this kind of measures offers an insight into
the user experience of the teleoperation task: as long as the
uncertainty about the task execution is high, the gaze is less
anticipative and lingers there where further information needs
to be acquired to carry out the task. Although some of these
issues could be mitigated with longer training, allowing the user
to master the new visuomotor mapping and task (Sailer et al.,
2005), an intention recognition model embedded in a shared
autonomy architecture that could adjust the robot movement
and grasping pose to reliably produce the intended grasp would
shorten these training times. This would allow a more natural
eye-hand coordination and relieve the gaze system of monitoring
every sub-task unfolding and transition with extra care. That
is, an effective shared autonomy system would be validated by
shorter execution times, fewer failed grasp attempts, and more
anticipative gaze behavior with less time spent monitoring the
grasped object and the robot gripper. This would confirm that the
user trusts the robotic partner to correctly infer and assist with
the current intention but that their sense of agency is preserved
since they anticipate the next subtask in their plan (see on this the
discussion in Haji Fathaliyan et al., 2018).

Apart from these considerations, as shown for a different task
(Keshava et al., 2020), we also found that the gaze behavior still
was reliably different across tasks and could be hence learned
and predicted effectively. To this end, a Hidden Markov Model
was first devised for each of the intentions to be recognized. The

normalized likelihoods of the gaze (represented as a Gaussian
distribution) to be on each of the objects in the scene along with
the grasping state were considered as emissions of the HMM.
The system was trained on pick-and-place tasks from two users
and then tested on similar unseen sequences from the two users
plus two other users. Considering a time window of 0.9 s where
emissions are accumulated and then scored by the six GHMMs,
the system achieves a well above chance accuracy across all tasks,
returning a prediction as early as after seeing 22% of the current
action, on average. Here, the concept of predictability, indicating
the portion of the task for which an estimate is available, relates
to that of observational latency. As pointed out in Wang et al.
(2020), even a very accurate prediction is of very low utility if
it is not delivered in time for the system to plan and execute
a supporting operation before the user has carried out the
action themselves. The generalizability of the system was further
tested on a different geometrical configuration of the pick task,
delivering comparable accuracy and predictability. Even more
accurate results were obtained by a second intention recognition
scheme, which modeled the two basic actions (pick and place)
and scored the likelihood of each picking or placing target by
appropriately arranging the features representing the likelihood
of the gaze on the different AoIs. Also, in this case, generalization
was higher with new users and configurations, while practically
no confusion between the two classes was observed. This kind
of model offers also the possibility of scaling up the system to
new picking objects and support surfaces, not previously seen
during training: the dimension of the feature vector fed to the
GHMMs stays in fact constant and the arrangement of the
features determines which object is evaluated as pick/place target.
The amount of gaze distribution captured by other objects of the
same category (which should still be comparatively low compared
to the real target) and by all those of the other category is indeed
considered as two collective features, independent of the number
of present objects or support surfaces.

A test without the binary grasping state feature, yet, showed a
less consistent performance of the semantic model with respect
to the naive model: the semantic model perfectly recognized the
place intentions but mostly misclassified the pick intentions as
place intentions. This might be due to the fact that the semantic
model relies more strongly on the grasping state to determine
the action and uses the gaze data to infer the object of interest,
while the six naive GHMMs better learned the specificity of the
scanpaths in the different conditions.

In any case, considering the similar semantic distributions
of gaze time within equivalent sub-tasks and across spatial
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configurations, these results suggest that there is a certain
invariance in the gaze patterns. These are mainly shaped by the
general sub-task at a higher level. At least in simple manipulation
tasks and object configurations, sequences of gaze glances at
objects are more heavily determined and constrained by the
current subtask structure (pick vs. place), once the target is
specified, rather than by the contingent spatial setup. That is,
also the oculomotor plan subserving and directing the motor
plan seems to reflect the syntactic structure of action (Pastra and
Aloimonos, 2012).

These are promising results for the further development of
our intention recognition system and its embedding in a real-
world shared autonomy scenario. Current and future work is
going to expand both the training and testing sets with multiple
participants as well as considering more and different objects
and tasks. A richer dataset with data from naive participants
would indeed provide a better characterization not only of
the users’ sensorimotor behavior in itself, but it would indeed
allow testing for learning effects within each participant and
individual differences between participants. This would also
help to investigate the co-adaptation process between human
and robotic systems (Gallina et al., 2015). On the one hand,
indeed, visuomotor adaptation to the new environment produces
effective motor learning enabling the user to better handle the
initially unfamiliar sensorimotor mapping. This effect could
override some of the features learned by the intention recognition
framework and should hence be accounted for. On the other
hand, it should be investigated how different users cope on a
sensorimotor level with the same task. This could both help
to understand the generalization limits across users of a pre-
trained model and to identify possibilities for user customization.

Experimenting with amore complex scenario in terms of number
and configuration of objects and support surfaces would very
likely affect the high accuracy observed in this study, yet would
also offer insight into meaningful ways to effectively assist the
user and on ways to tackle the trade-off between accuracy
and observational latency also downstream, at the behavior
control level.
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The ability to make accurate social inferences makes humans able to navigate and act

in their social environment effortlessly. Converging evidence shows that motion is one

of the most informative cues in shaping the perception of social interactions. However,

the scarcity of parameterized generative models for the generation of highly-controlled

stimuli has slowed down both the identification of the most critical motion features and

the understanding of the computational mechanisms underlying their extraction and

processing from rich visual inputs. In this work, we introduce a novel generative model

for the automatic generation of an arbitrarily large number of videos of socially interacting

agents for comprehensive studies of social perception. The proposed framework,

validated with three psychophysical experiments, allows generating as many as 15

distinct interaction classes. The model builds on classical dynamical system models

of biological navigation and is able to generate visual stimuli that are parametrically

controlled and representative of a heterogeneous set of social interaction classes. The

proposed method represents thus an important tool for experiments aimed at unveiling

the computational mechanismsmediating the perception of social interactions. The ability

to generate highly-controlled stimuli makes the model valuable not only to conduct

behavioral and neuroimaging studies, but also to develop and validate neural models

of social inference, and machine vision systems for the automatic recognition of social

interactions. In fact, contrasting human and model responses to a heterogeneous set of

highly-controlled stimuli can help to identify critical computational steps in the processing

of social interaction stimuli.

Keywords: social interactions, generative model, motion cues, social perception, social inference

1. INTRODUCTION

Human and non-human primates are able to recognize the social interactions taking place in
their environment quickly and effortlessly: with a few glances out of the window, we can easily
understand whether two people are following each other, avoiding each other, fighting, or are
engaging in some other form of social behavior. Notably, such interactive behaviors can be
recognized even when the available visual information is poor: for example, when the scene we
are watching is unfolding behind the leaves of a tree, at a considerable distance from us, or in a low-
resolution video. In some of these situations, critical visual cues such as facial expressions might be
completely occluded, yet our ability to make social inference is largely unaffected. Such perceptual
ability is instrumental in allowing us to move in our social environment and flexibly interact with it,
while abiding by the social norms (Troje et al., 2013). Therefore, it constitutes an important social
skill that is worth characterizing and modeling also for the development of social robots.
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Understanding the neural mechanisms underlying the
inference of animacy and social interactions from visual inputs
is a long-standing research challenge (Heider and Simmel, 1944;
Michotte, 1946; Scholl and Tremoulet, 2000; Troje et al., 2013).
Recent work has started identifying some of the responsible
neural circuits (Castelli et al., 2000; Isik et al., 2017; Sliwa and
Freiwald, 2017; Walbrin et al., 2018; Freiwald, 2020). Even
though the detailed computational mechanisms mediating
the formation of social percepts from visual inputs remain
largely unknown, converging evidence has shown that the
observation of biological motion alone is enough for humans
to make accurate social inferences (e.g., Heider and Simmel,
1944; Tremoulet and Feldman, 2000; McAleer and Pollick,
2008; Roether et al., 2009). For example, Heider and Simmel
(1944) demonstrated that humans can reliably decode animacy
and social interactions from strongly impoverished stimuli
consisting of simple geometrical figures moving around in the
two-dimensional plane. Remarkably, despite their highly abstract
nature, the visual stimuli used in this study were perceived as
alive and sometimes even anthropomorphic: the agents were
often considered as endowed with intentions, emotions, and
even personality traits.

Several subsequent studies (e.g., Oatley and Yuill, 1985; Rimé
et al., 1985; Springer et al., 1996; Castelli et al., 2000, 2002)
replicated these findings using similar stimuli and showed that
the inference of social interactions from impoverished stimuli is
a cross-cultural phenomenon (Rimé et al., 1985) that is present
even in 5-year-old preschoolers (Springer et al., 1996). Taken
together, these findings support the view that the perception
of animacy and social interactions might rely on some innate
and automatic processing of low-level kinematic features present
in the visual inputs, rather than on higher-level cognitive
processing (Scholl and Gao, 2013).

The identification of the most critical visual features that
shape these social percepts has also received great attention
(Tremoulet and Feldman, 2000, 2006). For example, influential
work suggested that these percepts are mediated by the detection
of apparent violations of the principle of conservation of energy
(Dittrich and Lea, 1994; Gelman et al., 1995; Csibra, 2008;
Kaduk et al., 2013). Later research proved that also agent’s
orientation, velocity, and acceleration play a major role (Szego
and Rutherford, 2008; Träuble et al., 2014). At the same
time, neuroimaging work has shed light on some of the brain
regions mediating these phenomena: the right posterior superior
temporal sulcus (pSTS—Isik et al., 2017;Walbrin et al., 2018), the
medial prefrontal cortex (mPFC—Castelli et al., 2000; Sliwa and
Freiwald, 2017), and the right temporoparietal junction (TPJ—
Castelli et al., 2000; Saxe and Kanwisher, 2003) are among the
brain regions most frequently reported as being involved in
the perception of social interaction. Interestingly, Schultz and
Bülthoff (2019), recently identified another region—the right
intraparietal sulcus (IPS)—that seems to be exclusively engaged
during the perception of animacy.

Clearly, the success of both behavioral and neuroimaging
social perception studies is tightly linked to the ability to finely
control the visual stimuli that participants are exposed to.
Specifically, such stimuli should ideally be generated through

a process that allows complete parametric control, the creation
of a high number of replicates with sufficient variety, and the
gradual reduction of complexity. Parametric control (e.g., over
agents’ speed) facilitates the identification of brain regions and
individual neurons whose activation covaries with the kinematic
features of agents’ behavior.Variety in classes of social interaction
allows the characterization of the class-specific and general
response properties of such brain regions. Numerosity allows
averaging out response properties that are independent of social
interaction processing. Finally, the ability to control stimulus
complexity allows the generation of impoverished stimuli that
are fundamental to minimize the impact of confounding factors,
inevitably present, for example, in real videos. Similarly, such
properties are also desirable when designing and validating
neural and mechanistic models of human social perceptions:
contrasting human and model responses to a variety of
highly controlled stimuli can help discriminate between the
computational mechanisms that the models capture well from
those that need further refinement. This is especially critical
for state-of-the-art deep learning models (e.g., Yamins et al.,
2014), which can easily have millions of parameters and be prone
to over-fitting.

Currently, no well-established method can generate visual
stimuli for the analysis of social perception that satisfy all of the
above conditions. Because of this, researchers often have to resort
to time-consuming and class-specific, heuristic procedures. A
creative approach to this problem has been the one adopted
by Gordon and Roemmele (2014), where the task of generating
videos was assigned to a set of participants—who were asked to
create their own videos of socially interacting geometrical shapes,
and to label them accordingly. However, typically, researches use
visual stimuli where agents’ trajectories are hand-crafted or hard-
coded (e.g., Heider and Simmel, 1944; Oatley and Yuill, 1985;
Rimé et al., 1985; Springer et al., 1996; Castelli et al., 2000, 2002;
Baker et al., 2009; Gao et al., 2009, 2010; Kaduk et al., 2013;
Träuble et al., 2014; Isik et al., 2017; van Buren et al., 2017;
Walbrin et al., 2018), based on rules (e.g., Kerr and Cohen, 2010;
Pantelis et al., 2014), or derived from real videos (e.g., McAleer
and Pollick, 2008; McAleer et al., 2011; Thurman and Lu, 2014;
Sliwa and Freiwald, 2017; Shu et al., 2018). All of these approaches
suffer from significant limitations. Hand-crafted trajectories need
to be generated de novo for each experimental condition and
are not easily amenable to parametric control. Likewise, the
extraction of trajectories from real videos also comes with its
burdens: real videos need to be recorded, labeled, and heavily
processed to remove unwanted background information. Rule-
based approaches offer an interesting alternative. However, it is
generally difficult to define natural classes of social interactions
using rules akin to those used in Kerr and Cohen (2010) and
Pantelis et al. (2014). Recent work (Schultz and Bülthoff, 2019;
Shu et al., 2019, 2020) has generated visual stimuli using model-
based methods; however, these models can only generate limited
and generic classes of social interaction (namely, cooperative
and obstructive behaviors). Finally, specialized literature on the
collective behavior of humans and animals has produced a wealth
of influential models (Blackwell, 1997; Paris et al., 2007; Luo
et al., 2008; Russell et al., 2017); however, such models can
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also typically account only for simple behaviors (e.g., feeding,
resting, and traveling) and for basic interactions (e.g., avoidance
and following).

To overcome the limitations of the above methods, in this
work, we introduce a dynamical generative model of social
interactions. In stark contrast to previous work, our model is able
to automatically generate an arbitrary number of parameterized
motion trajectories to animate virtual agents with 15 distinct
interactive motion styles; the modeled trajectories include
the six fundamental interaction categories frequently used in
psychophysical experiments (i.e., Chasing, Fighting, Flirting,
Following, Guarding, and Playing—Blythe et al. 1999; Barrett
et al. 2005; McAleer and Pollick 2008) and nine relevant others.
The model controls speed, and motion direction, arguably the
two most critical determinants of social interaction perception
(Tremoulet and Feldman, 2000; Szego and Rutherford, 2008;
Träuble et al., 2014). Finally, we validated the model with
three psychophysical experiments, which demonstrate that
participants are able to consistently attribute the intended
interaction classes to the animations generated with our model.

The rest of the paper is organized as follows. In section
2, we describe the generative model and the experiments we
conducted to validate it. Next, in section 3, we summarize the
experimental results. Finally, in section 4, we (1) explain how our
results validate the developed model, (2) explain how the model
compares to related work, and (3) discuss the main limitations of
our model and future directions.

2. METHODS

2.1. Related Modeling Work
The generative model we introduce in this work builds on
classical models of biological and robotic navigation. In the
classical work by Reichardt and Poggio (1976), the authors
proposed a dynamical model to describe the navigation behavior
of flies intent on chasing moving targets as part of their
mating behavior. The core idea was to consider the moving
targets as attractors of the dynamical system describing the
flies’ trajectories. Subsequently, Schöner and Dose (1992) and
Schöner et al. (1995) used a similar approach to develop a
biomimetic control system for the navigation of autonomous
robots. Critically, such a system was also able to deal with the
presence of obstacles in the environment, which were modeled as
repellors. Extending this system, Fajen and Warren (2003) built
a model of human navigation that was able to closely capture
the trajectories described by their participants as they walked
naturally toward targets while avoiding obstacles on their way.
Specifically, this model was able to describe the dynamics of the
participants’ average heading direction very accurately; however,
their speed was roughly approximated as constant.

Alternative approaches can characterize richer navigation
behaviors by jointly modeling both heading direction and speed
dynamics. This idea was successfully used to control the motion
of both autonomous vehicles (Bicho and Schöner, 1997; Bicho
et al., 2000) and robotic arms (Reimann et al., 2011). Similar
approaches have also been used in computer graphics to model
the navigation of articulated agents (Mukovskiy et al., 2013).

2.2. The Generative Model
Tomodel the interactive behavior of two virtual agents, we define,
for each agent i, a dynamical system of two nonlinear differential
equations. Specifically, the equations describe the dynamics of
the agent’s heading direction φi(t) and instantaneous propagation
speed si(t).

The heading direction dynamics, derived from Fajen and
Warren (2003), are defined by:

φ̈i(t) = −bφ̇i(t)+ A(φi(t),ψ
g
i (t))+ R(φi(t),ψ

o
i (t)) (1)

In this equation, A(φi(t),ψ
g
i (t)) defines the attraction of agent

i to the goal g located along the direction ψ
g
i (t), at a distance

d
g
i (t) from it. Similarly, R(φi(t),ψ

o

i (t)) defines the repulsion of
agent i for the obstacles o = [o1, o2, ..., oNobst

]T located along the
directions ψo

i (t), at a distance d
o

i (t) from it. These two functions
are given by:

A(φi(t),ψ
g
i (t)) = −kg(φi(t)− ψ

g
i (t))(e

−c1d
g
i (t) + c2)

R(φi(t),ψ
o
i (t)) = ko

Nobst
∑

n=1

ron (φi(t))
(2)

The contributions of the individual obstacles to the repulsion
function are given by:

ron (φi(t)) = (φi(t)− ψ
on
i (t))(e−c3|φi(t)−ψ

on
i (t)|)(e−c4d

on
i (t)) (3)

In these equations, kj and cj are constants; on indicates the nth
obstacle. Note that, in general, ψ

on
i (t), which is the direction of

the nth obstacle of the ith agent is time-dependent; for example,
depending on the specific social interaction class it might be a
function of the instantaneous heading direction of other agents.

The propagation speed dynamics are specified by the
following stochastic differential equation:

τ ṡi(t) = −si(t)+ Fi(d
g
i (t))+ kǫi ǫi(t) (4)

where ǫi(t) is Gaussian white noise. The nonlinear function Fi
specifies how the agent’s speed changes as a function of the
distance from its goal:

Fi(d) =
c5

1+ e−ci6(d−ci7)
− ci8e

−kid + ci9 (5)

Critically, we choose this specific functional form because
it provides us with enough flexibility to reproduce several
relevant interaction classes, including the six fundamental
interaction categories traditionally studied in psychophysical
experiments (Blythe et al., 1999; Barrett et al., 2005; McAleer and
Pollick, 2008): Chasing, Fighting, Flirting, Following, Guarding,
and Playing.

To generate the trajectories, we first randomly sample a
series of goal points for the first agent from a two-dimensional
uniform distribution over the 2D plane of action. Such goal
points are commonly referred to as via points. We then use the
instantaneous position of the first agent as goal position for the
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FIGURE 1 | Trajectories of six example social interactions. Color indicates agent identity: agent 1 is represented in blue; agent 2 is represented in red. Color saturation

indicates time: darker colors indicate recent time samples.

Algorithm 1: Pseudocode for trajectory generation

Input: Class-specific parameters θc
Output: Agents’ direction8 and speed S
for each timestep t do

for each agent i do

compute goal direction ψ
g
i (t)

compute distance from goal d
g
i (t)

for each obstacle on do
compute obstacle direction ψ

on
i (t)

compute distance from obstacle d
on
i (t)

end

compute φi(t) integrating Equation (1)
compute si(t) integrating Equation (4)

end

end

/*Note: ψ
g
i (t) and ψ

on
i (t) are either specified a priori or

computed dynamically depending on the agent and social
interaction class. For example, for simple behaviors (e.g.,
chasing) ψ

g
1 (t) and ψ

on
1 (t) are specified a priori, while

ψ
g
2 (t) = φ1(t)*/

second agent. Samples that are too close to the current agent’s
position are rejected. Further details about the implementation
of the generative model are provided in the Algorithm 1 box.
Representative trajectories of six example social interactions are
illustrated in Figure 1. Note that the speed control dynamics are
not influenced by the presence of obstacles, since their effect was
not needed to realistically capture the social interactive behaviors
we chose to model.

2.3. Model Validation
To assess whether our model is able to generate perceptually valid
socially interactive behaviors, we carried out three behavioral
experiments. In these experiments, we asked participants to
categorize videos of interacting agents generated with our
model in a free-choice task (Experiment 1), and in a forced-
choice task (Experiment 2). Finally, we analyzed the semantic
similarities between the labels chosen by the participants
(Experiment 3).

2.3.1. Dataset Generation
To validate our approach, we chose to model the six fundamental
interaction classes (i.e., Chasing, Fighting, Flirting, Following,
Guarding, and Playing; Blythe et al. 1999; Barrett et al. 2005;
McAleer and Pollick 2008), and nine other relevant ones
(i.e., Avoiding, Bumping, Dodging, Frightening, Meeting, Pulling
Pushing, Tug of War, and Walking) resulting in a total of 15
interaction classes. To generate the trajectories corresponding to
these classes, we simulated the model with 15 distinct parameter
sets, which we identified through a simulation-based heuristic
procedure. A list of the most critical parameters is presented in
Table 1. The complete dataset we generated for our experiments
included five random realizations of each interaction class, for a
total of 75 videos. Each random realization is defined by different
via points and noise realizations.

2.3.2. Participants
A total of 39 participants with normal or corrected vision took
part in the experiments: 13 in Experiment 1 (9 females, 4 males),
ten in Experiment 2 (5 females, 5 males), and 16 in Experiment
3 (9 females, 7 males). All participants were college students
attending the University of Tübingen and provided written
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TABLE 1 | Main model parameters.

Interaction class
Agent 1 Agent 2

k kǫ c5 c6 c7 c8 c9 k kǫ c5 c6 c7 c8 c9

Avoiding 0 0 1 1 5 3 0 0 0 0.4 1 0 2.7 0

Bumping 0 0.9 1 0.8 0 0 0 0 1 0.8 10 0 1 0

Chasing 0 0 1 10 7 0 0 0 0 1 1 7 0 0

Dodging 0 0 1 0.5 7 5 0 0 0 3 1 0 0 0

Fighting 0.1 0 1 1 3 1 0 0.1 1 1 1 3 1 0

Flirting 0 0 1 1 5 0 0 0.5 1 0.6 1 2 1 0

Following 0 0 1 10 7 0 0 0 0 1 4 4 0 0

Frightening 0 0 1 1 5 0 0 0 0 1 1 5 0 0.5

Guarding 0 0 1 1 5 0 0 0 0 1 1 3 0 0.5

Meeting 0 0.2 1 2 0 6 0 0.5 1 0.22 3 0 6 0

Playing 0 0 1 1 5 0 0 0 1 1 1 10 0 0.5

Pulling 0 0 1 10 0 2.6 0 0 0 0.9 5 0 2.6 0

Pushing 0 0 1 10 0 2.5 0 0 0 0.1 1 0 0 2.5

Tug of War 0 0.2 1 10 0 6 0 0 0.5 0.9 5 0 0 0.5

Walking 0 0.2 1 10 0 1 0 0 0 0.22 10 0 0 0

informed consent before the experiments. All experiments were
in full compliance with the Declaration of Helsinki. Participants
were naïve to the purpose of the study and were financially
compensated for their participation.

2.3.3. Experiment Setup
In Experiment 1 and Experiment 2, participants sat in a dimly
lit room in front of an LCD monitor (resolution: 1,920 × 1,080,
refresh rate: 60Hz), at a distance of 60cm from it. To ensure that
all participants would observe the stimuli with the same view
parameters and the same distance from the screen, they were
asked to place their heads in a chin-and-forehead rest during
the experimental sessions. The experiments started with a short
familiarization session during which the participants learned to
use the computer interface. Subsequently, the participants were
shown the videos generated with our model. Their task was to
describe the videos by using their own words (Experiment 1) or
by selecting labels among those provided to them (Experiment
2), and to provide animacy ratings through a standard 0–10
Likert scale. To increase the confidence in their answers, we gave
participants the opportunity to re-watch each video up to three
times. The videos were presented in pseudo-randomized order
over five blocks. Five-minute rest breaks were given after each
block. The animated videos always showed two agents moving
in a 2D plane following speed and direction dynamics generated
offline with ourmodel. Critically, unlike in previous work (Blythe
et al., 1999; Barrett et al., 2005), our agents were very simple
geometrical shapes, namely a blue circle and a red rectangle
(as in Tremoulet and Feldman, 2000); this choice ensured
that participants’ perception would not be biased by additional
visual cues beyond the agents’ motion and relative positions. In
Experiment 3, subjects were asked to fill out a questionnaire to
rate the semantic similarity between social interaction classes
(0–10 Likert scale).

2.3.4. Experiment 1
The first experiment was aimed at assessing whether subjects
would perceive the motion of virtual agents generated with
our model as a social interaction. The second goal of this
experiment was the identification of unequivocal labels for the
interaction classes generated with our model. To this end, we
asked participants to watch all the videos in our stimulus set
(section 2.3.1). After watching the videos, subjects were asked
to provide their own interpretations by summarizing what they
had perceived with a few sentences or keywords. Importantly, in
this experiment, to make sure we would not bias the participants’
perceptions, we did not provide them with any labels or other
cues: they had to come up with their own words. In addition,
subjects were asked to provide an animacy rating for each agent.
The most commonly reported keywords were used as ground-
truth interaction labels for the remaining experiments.

To test whether participants assigned different animacy
ratings depending on agent identity and social interaction class,
we fitted a linear mixed-effect model to the animacy ratings,
with Agent and Social Interaction as fixed effects, and Subject as
random effect:

Animacysl = α0 +

Na
∑

i=1

βi · Agent(i, l)

+

Nc
∑

i=1

γi · SocialInteraction(i, l)+ b0s + ǫsl (6)

In this model, Animacysl is the lth animacy rating reported by
subject s, with s = 1, 2, ...,Ns and l = 1, 2, ...,NaNc; Na, Nc,
and Ns are the number of agents, social interaction classes, and
subjects, respectively. Moreover, Agent(i, l) is a dummy variable
that is equal to 1 when the rating l is for agent i, and 0 otherwise.
Similarly, SocialInteraction(i, l) is a dummy variable that is equal
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to 1 when the rating l is for social interaction i, and 0 otherwise.
Finally, b0s is the subject-specific random effect [b0s ∼ N(0, σ 2

b
)]

and ǫsl are the residual error terms [ǫsl ∼ N(0, σ 2)]. Notably, the

model was fitted with a sum-to-zero constrain, that is
∑Na

i=1 βi =

0 and
∑Nc

i=1 γi = 0; therefore, in this model, α0 represents the
overall average animacy rating. All the analyses described in this
and in the next sections were performed in MATLAB R2020a
(The MathWorks, Natick, MA).

2.3.5. Experiment 2
The second experiment was aimed at further studying the social
interaction classes perceived by the participants while watching
our animated videos. To this end, new subjects were exposed to
a subset of the videos in our original dataset. Specifically, for
this experiment we excluded the videos corresponding to the
classes Following, Guarding, and Playing, as these tended either
to be often confused with other classes, or to be labeled with a
broad variety of related terms. Critically, unlike in Experiment
1, after watching the videos, participants were asked to describe
the videos by choosing up to three labels, among those selected
in Experiment 1.

To assess the classification performance, we computed the
confusion matrix M. In this matrix, each element mi,j is the
number of times participants assigned the class j to a video from
class i. Starting fromM, we computed, for each social interaction
class, Recall, Precision, and F1 score. Recall measures the fraction
of videos of class i that are correctly classified, and is defined as

Recalli = mi=j/
∑Nc

j=1mi,j. Precision measures the fraction of

times participants correctly assigned the class j to a video, and

is defined as Precisionj = mi=j/
∑Nc

i=1mi,j. Finally, the F1 score
is the harmonic mean of Precision and Recall; it measures the
overall classification accuracy and is defined as F1 = 2 ·Precision ·
Recall/(Precision+ Recall).

To evaluate whether some classes were more likely to be
confused with each other, we computed, for each pair of classes
(i, j), with i 6= j, the empirical pairwise mislabeling probability,

defined as PMS(i, j) = (mi,j +mj,i)/(
∑Nc

k=1

∑

l 6=kmk,l).
To assess whether participants improved their classification

performance during the experiment, we computed the average
Precision, Recall, and F1 score across social interaction class, as
a function of experimental block; we then fitted linear models to
test whether experimental block explained a significant fraction
of variation in the performance measures defined above.

2.3.6. Experiment 3
The third and last experiment was aimed at assessing whether
there are interpretable semantic similarities among the labels
provided in Experiment 2. Some interaction classes were
misclassified by the participants in Experiment 2. This suggests
that either the generated animated videos are not distinctive
enough or that the classes semantically overlap with each other.
To disambiguate between the two options, we ran a semantic
survey test with a new set of participants. Participants in this
experiment did not watch any video. After providing them with
precise definitions for each social interaction class, we asked them
to indicate the level of semantic similarity for each pair of classes,

by providing rates ranging from 0 to 10. Specifically, using this
scoring system, participants were asked to assign 0 to pairs of
classes perceived as not sharing any semantic similarity, and 10
to those perceived as equivalent classes.

To assess the geometry of the semantic similarity space, we
first transformed all the similarity ratings s into distance ratings
d by computing their complement (i.e., d = 10 − s), and
then rescaled them between 0 and 1. All the resulting semantic
distances collected from participant iwere then stored in amatrix
Di. In this matrix, Di

j,k
= 0 if the classes j and k were considered

as semantically equivalent by subject i; Di
j,k

= 1 if the classes j

and k were considered as semantically unrelated. We then used
non-metric multidimensional scaling (MDS; Shepard, 1962a,b)
to visualize in a 2D space the underlying relational structure
contained in the distance matrix.

To determine whether some groups of classes were
consistently considered as semantically similar, we performed
agglomerative hierarchical clustering on the distance matrix D
using theWard’s linkage method (Ward, 1963), which minimizes
the within-cluster variance. Clusters were then identified using
a simple cut-off method, using as a threshold τ = 0.7 · MWD,
whereMWD is the maximum observed Ward’s distance.

Finally, to estimate whether the semantic similarity between
pairs of classes explained the mislabelings observed in
Experiment 2, we computed the Pearson’s correlation coefficient
(ρ) between the empirical mislabeling probability PMS(j, k)
measured in Experiment 2 and the semantic distance D(j, k).

3. RESULTS

3.1. Experiment 1
As mentioned above, participants in this experiment were
completely free to provide interpretations about the videos
through either labels or short sentences. For each video class, we
pooled together all the definitions and labels, and we considered
the most used term as the ground-truth class label. Figure 2
summarizes the reported labels for six example social interaction
classes. The pie charts show that some classes such as Avoiding
and Fighting tended to be consistently described with very few
labels (i.e., 2 − 3). Other classes such as Dodging were instead
described with more labels (i.e., 6). Regardless of the number
of labels used to describe a social interaction class, these were
generally semantically similar. For example, some classes were
named interchangeably depending on the perspective fromwhich
subjects reported their interpretation about the videos. A typical
example of this issue is the ambiguity between the classes Pulling
and Pushing. On the other hand, some other classes (for instance
Bumping and Pushing) were sometimes misclassified regardless
of the perspective from which subjects might have observed
the videos.

Average animacy ratings are reported in Figure 3A, with
classes sorted in ascending order of average across-agent
animacy. Agents, were consistently perceived as animate [α0 =

53.27%, t(299) = 11.72, p = 2.3·10−26]. This is consistent with the
fact that self-propulsion (Csibra, 2008), goal directedness (van
Buren et al., 2016), being reactive to social contingencies (Dittrich
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FIGURE 2 | Distribution of reported keywords for six example social interactions. Pie charts’ titles indicate the true classes. Individual slices are assigned to all the

keywords reported in Experiment 1 occurring with a frequency >5%. Keywords reported with a frequency <5% are pooled together in the slice Other (in gray). Offset

slices (in green) represent the most frequently reported keywords.

FIGURE 3 | Reported agent animacy. (A) Mean animacy ratings obtained in Experiment 1; error bars represent standard errors; results are rescaled between 0 and

100. Classes are sorted in ascending order by average across-agent animacy rating. The asterisk denotes a significant effect (p < 0.05) of Agent on Animacy

[F(1,299) = 99.98, p = 1.74 · 10−20]. (B) F-statistics of post-hoc tests to assess the difference in animacy ratings between social interaction classes [i.e., F(1,299)]. (C)

Bonferroni adjusted p-values corresponding to the F-statistics reported in (B); black dots represent significant pairwise differences.
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FIGURE 4 | Average classification performance. This figure shows the confusion matrix of the classification experiment (Experiment 2). Rows represent the true

interaction class; columns the interaction class reported by the participants in Experiment 2. Matrix entries mi,j report the number of times participants assigned the

class j to a video from class i. Rows and columns are sorted by decreasing Recall. AV, avoiding; BU, bumping; CH, chasing; DO, dodging; FI, fighting; FL, flirting; FR,

frightening; ME, meeting; PL, pulling; PS, pushing; TG, tug of war; WA, walking.

and Lea, 1994), acceleration (Tremoulet and Feldman, 2000), and
speed (Szego and Rutherford, 2008) are the most prominent cues
for perceived animacy in psychophysical experiments. Moreover,
the blue circle was consistently rated as less animate than the red
rectangle [β1 = −β2 = −8.37%, t(299) = −10, p = 1.74 · 10−20],
consistently with the finding that geometrical figures with a body
axis are perceived as more animate than those without one, such
as circles (Tremoulet and Feldman, 2000).

We further found a significant effect of social interaction on
animacy [F(11,299) = 18.3, p = 8.29 · 10−28]; this suggests
that certain classes of social interactions tended to elicit stronger
animacy percepts than others. To assess which specific pairs
of classes were assigned significantly different animacy rating,
we performed post-hoc F-tests. This analysis revealed that some
classes consistently received higher average animacy ratings: for
example, Fighting received higher animacy ratings than all other
classes [F(1,299) ≥ 24.04, padj ≤ 1.03 · 10−4], with the exception
of Chasing, which was rated similarly [F(1,299) = 5.25, padj = 1].
Analogously, Bumping tended to receive lower animacy ratings
than all other classes [F(1,299) ≥ 12.44, padj ≤ 0.03], with the
exception of Pushing, Frightening, and Flirting, which were rated
similarly [F(1,299) = 8.42, padj ≥ 0.26].We report in Figure 3B all
the post-hoc F-statistics, and in Figure 3C all the corresponding
Bonferroni adjusted p-values.

3.2. Experiment 2
Figure 4 shows the total confusion matrixM of the classification
task. Rows and columns are sorted by decreasing Recall. Avoiding
was the most accurately classified class by our participants
(Recall = 75.4%). However, even the hardest class was
classified with largely above-chance accuracy (Walking: Recall =

53.4%; chance level: 8.3%). Nonetheless, there are obviously
somemisclassifications, especially between Bumping and Pushing
(mBU,PS = 19, mPS,BU = 11), and between Fighting and Chasing
(mFI,CH = 17,mCH,FI = 2). These two kinds of mislabeling alone
accounted for a large fraction of the total number of mislabelings
[PMS(BU, PS) = 9.8%, PMS(FI,CH) = 6.2%].

One possible reason for this misclassification could be the
fact that these labels are semantically intrinsically similar and
even real videos of these types of social interactions could be
mislabeled. This line of reasoning is supported by the fact that
in Experiment 1, Pushing was the second preferred keyword used
to label videos of class Bumping (see Figure 2). Interestingly,
both Precision and Recall (and thus F1 score) significantly
improved across experimental blocks [Precision: t(3) = 19.5,
p = 2.93 · 10−4; Recall: t(3) = 10.8, p = 1.68 · 10−3; see
Figure 5]. This indicates a latent learning of the categorization
of the classes, which is remarkable since no external feedback
about the correctness of the class assignments was provided
during the experiment. Such a learning was particularly evident
for the following often-confused pairs: Tug of War vs. Pulling,
Frightening vs. Avoiding, and Fighting vs. Pushing (not shown).

3.3. Experiment 3
The pairwise semantic distance matrix D is plotted in Figure 6A:
light shades of green indicate semantically close social interaction
classes, while darker shades indicate semantically distant
classes. The two pairs associated with the highest mislabeling
probability in Experiment 2, Bumping-Pushing, and Fighting-
Chasing [PMS(BU, PS) = 9.8%, PMS(FI,CH) = 6.2%] were
generally considered as semantically similar [d(BU, PU) = 0.49,
d(FI,CH) = 0.65]; however, they were not the most similar
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FIGURE 5 | Classification performance across experimental blocks. (A) Average block-wise recall. Results are averaged across subjects and social interactions; error

bars represent standard errors. Insets show the slope of the estimated linear model, the corresponding t-statistic and p-value. (B) Average block-wise precision. (C)

Average block-wise F1 score.

FIGURE 6 | Cluster analysis results. (A) Average semantic distances obtained in Experiment 3. (B) Dendrogram of hierachical clustering; the horizontal line represents

the cut-off threshold used to identify the clusters (i.e., 0.7 ∗MWD, where MWD is the maximum Ward distance). (C) Clusters of social interactions plotted in low

dimensional distance-preserving 2D space identified with Multidimensional Scaling (MDS). (D) Average mislabeling probability (Experiment 2) as a function of semantic

distance (Experiment 3); inset reports the Pearson’s correlation coefficient, the corresponding t-statistic and p-value. AV, avoiding; BU, bumping; CH, chasing; DO,

dodging; FI, fighting; FL, flirting; FR, frightening; ME, meeting; PL, pulling; PS, pushing; TG, tug of war; WA, walking.

pairs. Rather, the three most semantically similar pairs were
Pulling-Tug of War, Avoiding-Dodging, and Bumping-Fighting
[d(PU,TG) = 0.23, d(AV ,DO) = 0.27, d(BU, FI) = 0.32].

Nevertheless, regardless of this apparent discrepancy for these
few extreme examples, mislabeling probability PMS(i, j) and
semantic distance d(i, j) were significantly anti-correlated [ρ =
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−0.58, t(64) = −5.7, p = 3.24 · 10−7; Figure 6D]; this suggests
that the more semantically similar two social interaction classes
are, the more likely they are of being confused in a video
labeling task.

Multidimensional scaling (MDS) provides a compact 2D
visualization of the semantic similarity space (Figure 6C). Since
MDS is inherently spatial, items that were rated as being highly
similar are spatially close to each other in the final map. The
map effectively shows which classes of social interactions are
semantically similar and which are not. For example, let us
consider the hypothetical groups G1 ={Tug of War, Pulling} and
G2 ={Frightening, Avoiding, Dodging}. Participants recognized
that Tug of War and Pulling involve similar interactions between
the agents, and that these interactions are different from those
occurring in the classes Frightening, Avoiding, and Dodging. For
this reason, participants tended to assign high pairwise similarity
scores to intra-group pairs, and low to inter-group pairs. This
pattern of scoring is captured by MDS and evident in the
resulting map (Figure 6C).

The agglomerative hierarchical cluster analysis on the distance
matrix D (Figure 6B) confirms this intuition and identifies four
distinct semantic clusters; such clusters are visualized in the
MDS map with four different symbols (Figure 6C). This analysis
supports the conclusion that misclassified labels tend to belong
to the same semantic cluster. While not all misclassifications can
be explained by semantic similarity, many confusions can be
accounted for by this factor. For example, Pushing vs. Bumping,
Walking vs.Meeting, Avoiding vs. Dodging.

To summarize, our analysis of semantic similarity shows that
many of the labeling confusions observed in Experiment 2 can be
explained by the semantic similarity of the class labels.

4. DISCUSSION

In this work, we introduced a novel framework for the
automatic generation of videos of socially interacting virtual
agents. The underlying model is a nonlinear dynamical system
that specifies heading direction and forward speed of the
agents. Our model is able to generate as many as 15 different
interaction classes, defined by different parameter sets. We
validated our model with three different behavioral experiments,
in which participants were able to consistently identify the
intended interaction classes. Our model is thus suitable for
the automatic generation of animations of socially interacting
agents. Furthermore, the generation process is also amenable
to full parametric control. This feature allows the creation
of highly-controlled and arbitrarily-large datasets for in-depth
psychophysical and electrophysiological characterization of the
perception of social interactions. The model thus overcomes
the major limitations that come with hand-crafted, hard-coded,
rule-based, and real-video-based approaches (1) to visual stimuli
generation. Importantly, the generative nature of the model,
makes it a valuable tool also for the development of mechanistic
and neural decodermodels of social perception: model responses
to the heterogeneous set of highly-controlled social stimuli here

introduced can be rigorously tested for the development of more
accurate and brain-like decoder models that replicate human
behavioral and neural responses. Recent work (Shu et al., 2018,
2019, 2020), aimed at building a mechanistic model of social
inference, used a similar approach.

Shu et al. (2019, 2020) also proposed generative models of
social interactions. Unlike the ones proposed in these studies,
the generative model introduced in this work does not directly
lend itself to the study of the interactions between intuitive
physics and social inferences (Battaglia et al., 2013). However,
substantial evidence suggests that physical and social judgments
aremediated by different brain regions (Isik et al., 2017; Sliwa and
Freiwald, 2017). More importantly, our model is not limited to
describing cooperative and obstructive behaviors and thus seems
better suited to study more general social interaction classes.

The identification of suitable parameters for the classes
modeled in this work was not automatic: it was conducted
using a simulation-based heuristic procedure. This is an obvious
limitation of our work. Nevertheless, once the parameters are
available, they can be used to automatically generate arbitrary
numbers of coupled trajectories for each interaction class (by
randomly sampling initial conditions, via-points, and noise).
With this procedure, we were able to find suitable parameters
for only 15 specific interaction classes. However, to the best
of our knowledge, no other method is able to automatically
generate more than a handful of individual or socially-interactive
behaviors (Blackwell, 1997; Paris et al., 2007; Luo et al., 2008;
Russell et al., 2017; Shu et al., 2019, 2020). Future work will extend
the range of modeled classes by using system identification
methods (e.g., Schön et al., 2011; Gao et al., 2018; Gonçalves et al.,
2020) to automatically extractmodel parameters from preexisting
trajectories—extracted, for example, from real videos.

Another possible limitation of our work is that all our
participants were recruited from a German university; while
this might, in theory, represent a biased sample, previous
studies (Rimé et al., 1985) suggest that the perception of
social interactions from impoverished stimuli is a phenomenon
that is highly stable across cultures. Specifically, these authors
showed that African, European, and Northern American
participants provided similar interpretations to animated videos
of geometrical shapes. This suggests that our findings would
not have significantly changed if we had recruited a more
heterogeneous sample.

In this work, we used the trajectories generated by our
model to animate simple geometrical figures. The resulting
abstract visual stimuli can be directly applied to characterize
the kinematic features underlying the inference of social
interactions. However, the trajectories can also be used as
a basis for richer visual stimuli. For example, in ongoing
work, we have been developing methods to link the speed and
direction dynamics generated by the model to articulating
movements of three-dimensional animal models. This
approach allows the generation of highly controlled and
realistic videos of interacting animals, which can be used
to study social interaction perception in the corresponding
animal models with ecologically valid stimuli. Furthermore,
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contrasting the neural responses to impoverished and
realistic visual stimuli can help identify the brain regions
and neural computations mediating the extraction of the
relevant kinematic features and the subsequent construction of
social percepts.

Finally, even though the proposed model is mainly aimed to
provide a tool to facilitate the design of in-depth psychophysical
and electrophysiological studies of social interaction perception,
we speculate that it can also be helpful in the development
of machine vision systems for the automatic detection of
social interactions. Specifically, the development of effective
modern machine vision systems tends to be heavily dependent
on the availability of large numbers of appropriately-labeled
videos of social interactions (Rodríguez-Moreno et al., 2019;
Stergiou and Poppe, 2019). A popular approach to this
problem is to use clips extracted from already existing
(YouTube) videos and movies. However, one of the reasons
why feature-based (e.g. Kumar and John, 2016; Sehgal, 2018)
and especially deep-neural-network-based (e.g., Karpathy et al.,
2014; Carreira and Zisserman, 2017; Gupta et al., 2018) vision
systems require big data is that they need to learn to ignore
irrelevant information that is inevitably present in real videos.
Therefore, we hypothesize that pre-training such systems with
stylized videos of socially interacting agents—such as the
very same generated by our model or appropriate avatar-
based extensions—might greatly reduce their training time
and possibly improve their performance. Future work will test
this hypothesis.

To sum up, this work introduced a novel generative
model of social interactions. The results of our psychophysical
experiments suggest that the model is suitable for the automatic
generation of arbitrarily-numerous and highly-controlled videos
of socially interacting agents for comprehensive studies of
animacy and social interaction perception. Our model can also
be potentially used to create large, noise-free, and annotated
datasets that can facilitate the development of mechanistic
and neural models of social perception, as well as the design
of machine vision systems for the automatic recognition of
human interactions.
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Robots start to play a role in our social landscape, and they are progressively becoming

responsive, both physically and socially. It begs the question of how humans react to and

interact with robots in a coordinated manner and what the neural underpinnings of such

behavior are. This exploratory study aims to understand the differences in human-human

and human-robot interactions at a behavioral level and from a neurophysiological

perspective. For this purpose, we adapted a collaborative dynamical paradigm from the

literature. We asked 12 participants to hold two corners of a tablet while collaboratively

guiding a ball around a circular track either with another participant or a robot. In irregular

intervals, the ball was perturbed outward creating an artificial error in the behavior, which

required corrective measures to return to the circular track again. Concurrently, we

recorded electroencephalography (EEG). In the behavioral data, we found an increased

velocity and positional error of the ball from the track in the human-human condition vs.

human-robot condition. For the EEG data, we computed event-related potentials. We

found a significant difference between human and robot partners driven by significant

clusters at fronto-central electrodes. The amplitudes were stronger with a robot partner,

suggesting a different neural processing. All in all, our exploratory study suggests that

coordinating with robots affects action monitoring related processing. In the investigated

paradigm, human participants treat errors during human-robot interaction differently

from those made during interactions with other humans. These results can improve

communication between humans and robot with the use of neural activity in real-time.

Keywords: human-robot interaction, social neuroscience, joint action, ERP, EEG, embodied cognition, action

monitoring

1. INTRODUCTION

We constantly interact with other humans, animals, andmachines in our daily lives. Many everyday
activities involve more than one actor at once, and groups of interacting co-actors have different
size. Especially, interactions between two humans (so-called dyadic interactions) are the most
prevalent in social settings (Peperkoorn et al., 2020). During such situations, we spend most of
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our time trying to coordinate our behavior and actions with other
humans. Until recently, human cognition was mostly studied in
non-interactive and single participant conditions. However, due
to novel conceptual and empirical developments, we are now
able to bring dyads instead of single participants to our labs
(Schilbach et al., 2013). This approach is called Second-person
neuroscience (Schilbach et al., 2013; Redcay and Schilbach,
2019). It suggests that we need to study the social aspect of
our cognition with paradigms that include real-time interactions
between participants instead of the passive observation of socially
relevant stimuli (Redcay and Schilbach, 2019). Such an approach
can reveal a new perspective on human social cognition.

Coordination between members of a dyad is achieved by
joint actions (Sebanz and Knoblich, 2021). There are different
aspects of coordination that facilitate achieving common goals
between co-actors. Firstly, Loehr et al. (2013) showed in pairs
of pianists performing solo and duets that monitoring of our
actions, our partner’s actions, and our joint actions is required
to coordinate successfully. Second, being familiar with each
co-actors individual contributions in the dyad helps to form
predictions about the partner’s actions, which further improves
coordination (Wolf et al., 2018). Third, recently proposed
action-based communication serves as a fundamental block of
coordination (Pezzulo et al., 2013). In comparison to verbal
communication, this low-level sensorimotor communication is
implicit and faster. Experiments by Vesper et al. (2017) serve
as examples of sensorimotor communication in the temporal
dimension. Their results have shown that participants adjusted
their actions to communicate task-relevant information. Fourth,
while both co-actors are engaged in a constant flow of perceptual
information, they create coupled predictions about each other’s
actions that are necessary to achieve fruitful coordination
(Sebanz and Knoblich, 2021). Curioni et al. (2019b) investigated
coordination tasks with incongruent demands between partners,
and their results suggested the benefits of reciprocal information
flow between participants. In sum, there are different aspects
of human cognition that allow for the maintenance of
dyadic coordination: Action monitoring, predictions based on
familiarity of partner’s actions, action-based communication, and
reciprocal information flow.

So far, most dyadic interaction studies investigated the
coordination between human co-actors (Sebanz et al., 2006;
Vesper et al., 2010). However, in recent years we are more and
more surrounded by robotic co-actors (Ben-Ari and Mondada,
2018). Furthermore, there are many different predictions for
the future of robotics, but all point into the same direction:
there will be more robots among us (Stone et al., 2016;
Diamond, 2020; Wiederhold, 2021). In line with this, humanoid
robots are getting progressively better at socially relevant tasks
(Campa, 2016). It is thought that these social robots will
be used in many different fields of our everyday life in the
upcoming years (Enz et al., 2011). One of the main challenges
in robotics is creating robots that can dynamically interact
with humans and read human emotions (Yang et al., 2018).
Concerning these changes in our environment, a new research
line has emerged and already substantially contributed to our
understanding of human-robot interactions (Sheridan, 2016). As

many different scientists are slowly approaching this topic, the
field of human-robot interaction until now focused on human
thoughts, feelings, and behavior toward the robots (Broadbent,
2017). Studying these specific aspects is essential and further,
we believe that the scientific community has to investigate real-
life interactions between humans and robots in order to fully
understand the dynamics that underlie this field. Therefore, we
propose to use both human and robot partners in experimental
paradigms as this will help to close the gap in understanding
dyadic interactions.

There are different tools and methods to study the social
brain and behavior (Krakauer et al., 2017): EEG (Luck and
Hillyard, 1994), fMRI (Eisenberger, 2003), MEG (Baillet, 2017),
and fNIRS (Ferrari and Quaresima, 2012). From this list,
Electroencephalography (EEG) stands out as particularly useful
for studying dynamical interactions, as it not only aligns with
the temporal resolution of social interactions, but also allows
for free movement and thereby allows for dynamic interactions.
This temporal resolution allows studying brain processes with
milliseconds precision. One of the methods that are classically
used within EEG research are event-related potentials (ERPs)
(Luck and Hillyard, 1994). ERPs are suitable to study different
components of brain processes while they evolve over time.
The classic study by Miltner et al. (1997) showed different
brain signatures for correctly and incorrectly performed trials at
around 200-300 milliseconds after the feedback about an action
was perceived. This brain component was named Feedback
related negativity (FRN). In similar studies, van Schie et al.
(2004) showed that the FRN is sensitive not only to our own
actions but also those of others. Czeszumski et al. (2019) further
extended this finding to different social contexts (cooperation
and competition). Thus, EEG and specifically ERPs have been
proven valuable tools to investigate the physiological basis of
social interactions.

Therefore, we have a good understanding of EEG-based
markers of action monitoring. Nonetheless, it is only in recent
years that human behavior and its neural basis are studied
together with robotic partners (Wykowska et al., 2016; Cheng
et al., 2020). Based on more than 20 years of research on action
monitoring in humans, similar ERP components (E/FRN) were
expected to be elicited in human-robot paradigms. Namely,
the difference between brain responses to correct and incorrect
actions of a robotic arm was found (Iturrate et al., 2015; Kim
et al., 2017). Furthermore, these differences in midfrontal
ERP components were used to improve co-adaptation between
human and robot behavior in turn-taking tasks (Salazar-Gomez
et al., 2017; Ehrlich and Cheng, 2018, 2019a,b; Iwane et al.,
2019), and real-world driving (Zhang et al., 2015; Chavarriaga
et al., 2018). Such EEG based interfaces highlight the importance
of studying the neural basis of human-robot interactions. The
results confirm that similar brain mechanisms are involved when
we observe actions of the robot. Yet, little is known about action
monitoring in dynamic situations with non-human, robotic
partners. The goal of this study was to test whether the same
neural mechanisms are present when we interact with robots in
a dynamic paradigm and if there are differences between human
and robotic partners.
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To answer these questions, we adapted a dynamic dyadic
interaction paradigm for human-robot interactions. We chose
the paradigm from Hwang et al. (2018) and Trendafilov et al.
(2020), in which two human participants had to manipulate a
virtual ball on a circular elliptic target displayed on a tablet and
received audio feedback of the ball’s movement. Participants used
their fingers to move the tablet and manipulate the position of
the ball. We changed the paradigm, by adapting the tablet to
enable coordination with the robot and to fit the requirements
for EEG measurements. On the one hand, this paradigm allows
for coordination similar to a real-life situation; on the other hand,
it allows for the analysis of neural underpinnings of cognitive
functions required for coordination. In this study, we specifically
focused on the aspect of action monitoring with human and
robot partners. Thus, to extend our knowledge the present study
investigates action monitoring in a dynamic interaction task
between humans and robots. Additionally, based on the results
from Hwang et al. (2018) we decided to test whether auditory
feedback about actions (sonification) influences coordinated
behavior and cognitive processes. Taken together, this study tries
to approach a novel problem with interdisciplinary methods and
sheds new light on the neural processes involved in dynamic
human-robot interactions.

2. METHODS

2.1. Participants
We recruited 16 participants (7 female, mean age = 25.31 ±

1.92 years) from KTH Stockholm Royal Institute of Technology.
We had to exclude two dyads from further analysis, one due
to measurement errors in the robot control and one due
to excessive movements from participants which led to large
artifacts in the EEG data, leaving data from 12 participants in
6 recording sessions. Participants had normal or corrected-to-
normal vision and no history of neurological or psychological
impairments. They received course credits for their participation
in the study. Before each experimental session, subjects gave their
informed consent in writing. Once we obtained their informed
consent, we briefed them on the experimental setup and task.
All instructions and questionnaires were administered to the
participants in English. The Swedish Ethical Review Authority
(Etikprövningsnämnden) approved the study.

2.2. Task and Apparatus
During each recording session, participants performed the task
in four blocks of 10 min each, twice with a human partner
and twice with the robot. Further, each dyad (partner human
or robot) performed the task with or without auditory feedback
(sonification on or sonification off). The task was based on
a tablet game where the dyads cooperated with each other to
balance a ball on a circular track as they simultaneously moved it
in counter-clockwise direction (Hwang et al., 2018) (Figure 1). At
random intervals, we added perturbations that radially dispersed
the position of the ball away from the current position. In order
to reduce the subjects’ expectations of the occurrence of the
perturbations, we sampled its rate of occurrence from a Poisson
distribution with λ = 4 s.

FIGURE 1 | Schematic of game design on the tablet. (1) Circular track, (2) ball,

(3) flashing rectangle indicating experimental events (covered by luminance

sensor), (4) text box for experiment monitoring (only used by experimenter).

The experimental task was implemented on an Apple IPad Air
tablet (v2, 2048× 1536 pixel resolution, refresh rate 60Hz) using
Objective-C for iOS. During the task, subjects saw a red ball of
76.8 pixel radius on a circular track with a radius of 256 pixels and
a thickness of 42.67 pixels. The ball position was represented as
the horizontal and vertical coordinates with respect to the center
of the circular track (0,0). The tablet was mounted on a metal
frame of size 540 × 900 mm. We further added a square of size
100× 100 pixels that was used as a signal source for, and covered
by, a luminance sensor.The luminance sensor is a light-sensitive
diode that converts light into electrical current. We changed the
color of a small patch on the tablet for the different events in
the experiment (start of the experiment, start of a perturbation,
end of the experiment) over which the luminance sensor was
placed. Figure 1 shows all the visual components displayed to
the participants (the text box on the left side was used by the
experimenter to monitor the experiment status).

During the periods with another human partner, we asked
the participants to not verbally interact with each other. During
the task, they sat face-to-face at 1m distance as they held
handles connected to the short end of the frame. Similarly, while
performing the task with the robot, subjects held the short end of
frame while the other end of the frame was clamped to the grip
effectors of the robot. Figure 2 shows the physical setup of the
subjects and the robot during the experiment.

For the periods involving sonification, the position and
angular velocity of the ball were sonified. The auditory feedback
was created by a Gaussian noise generator with a band-pass
filter (cut-off frequency: ±25Hz). The horizontal and vertical
coordinates of the ball modulated the pitch of the auditory
feedback, while its angular velocity modulated the loudness. The
sonification procedure was implemented using the specifications
provided in Hwang et al. (2018).

Lastly, we used a self-manufactured luminance sensor that
synchronized the experimental events (experiment start and end,
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FIGURE 2 | Experimental setup. Participants performed the experiment with another participant (A) or a robot partner (B). In each condition they played a tablet

game by balancing a virtual ball on a circular track while moving it in the counter-clockwise direction.

and perturbation) between the tablet and the EEG amplifier. We
changed the luminance source color from black to white to mark
the start of the trials, white to black to mark the end of the trials.
During a session the patch was white, except at the frame where
the perturbation happened, which was marked with gray (RGB=

134, 134, 134).

2.3. Robot Control
We used the YuMi robot (ABB, Västerås, Sweden) shown in
Figure 2 for our experiments.We implemented a Cartesian space
controller based on the original joint-level velocity controllers
provided by the manufacturer. The robot had direct access to the
tablet data and no active sensing was necessary. Starting the robot
at the joint position depicted in the Figure 2, we send Cartesian
space velocity commands to both arms at 10Hz. The Cartesian
controller was designed such that the X, Y positions of both end-
effectors are kept constant during an execution, and only the Z
position of the end-effectors are adjusted to move the ball. We
denote the left and right end-effector velocity commands in the
z axis by vz

l
and vzr and the current X, Y position of the ball

on the game by (bx, by), respectively. We first obtain the angle
θ corresponding to the current position of the ball in the polar
coordinate system by θ = arctan(by, bx). Then, we obtain the

next target angle θ̂ = θ + π/12 to let the ball move in the
counterclockwise direction. The next target X,Y positions of the

ball are found as b̂x = Gp(R× cos(θ̂)− bx), b̂y = Gp(R× sin(θ̂)−
by), where R is the radius of the circle on the IPad game and
Gp = 0.1 is a constant gain. The velocity commands in the z

axis are then found as vz
l
= −Gv(b̂x − αx) − Gv(b̂y − αy), v

z
r =

Gv(b̂x − αx)−Gv(b̂y − αy), where, αx,αy are gravity acceleration
in the X, Y directions measured by the IPad, and Gv = 0.5 is a
constant gain. The command velocities are then clipped to have
an absolute value less than 0.02 m/s, and the clipped values are
sent to the Cartesian velocity controller.

2.4. Experimental Protocol
We prepared both participants for the EEG recording together,
which took around 45 min to complete. Once the subjects
were ready to start the experiment, we led them to a room
that housed the robot. Depending on the dyad combination,
we provided oral instructions about the task and clarified any
remaining questions. For human-human dyads, we started the

task on the tablet with either of the sonification conditions
depending on the experiment session. To counterbalance the
sonification and partner sequence for the combinations of
dyads (human-human or human-robot), we permuted the
combinations. Each experimental session was sequenced based
on this permutation. We also counter-balanced the sonification
during the task, so that every even numbered experiment
session started with the sonification condition for all the dyad
combinations. For the human-robot dyads, we first reset the
limbs of the robot to its initial conditions and then started the
task on the tablet. After each block, the participants were given
a short break and then repeated the task with the alternate
sonification condition. The whole experimental session lasted for
about 4 h.

2.5. EEG Data Acquisition
We recorded the EEG using two 64-Ag/AgCl electrode systems
(ANTNeuro, Enschede, Netherlands), and two REFA8 amplifiers
(TMSi, Enschede, Netherlands) at a sampling rate of 1,024 Hz.
The EEG cap consists of 64 electrodes placed according to
the extended international 10/20 system (Waveguard, eemagine,
Berlin, Germany). We placed the ground electrode on the collar-
bone. We manually adjusted the impedance of each electrode to
be below 10k� before each session. The recording reference was
the average reference, which, only in the single-brain recordings,
was later programatically re-referenced to Cz. During human-
human interactions, two brains were recorded simultaneously
with the separate amplifiers, synchronized through the ANT-link
(Synfi, TMSi, Enschede, Netherlands). VEOGs were recorded
with two additional electrodes, one placed below and one above
the eye.

2.6. Pre-processing
The analysis of the EEG data was performed in MATLAB 2016b
and the behavioral analyses in Python 3.7.

We preprocessed the data using the EEGLAB toolbox
(v2019.0) (Delorme and Makeig, 2004). As a first step before
preprocessing, we programmatically extracted the trigger events
from the luminance sensor and added them to the recorded data.
Then, the data from each condition was downsampled to 512Hz,
followed by referencing all datasets to Cz electrode. We then
high-pass filtered the dataset at 0.1Hz and then low-pass filtered it
at 120Hz in order to not unnecessarily discard gamma frequency
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activity (6 dB cutoff at 0.5Hz, 1Hz transition bandwidth,
FIRFILT, EEGLAB plugin, Widmann et al., 2015). Following
this, we manually removed channels that showed strong drift
behavior or excessive noise (mean: 7, SD: 2.7, range: 1–13). We
manually inspected the continuous data stream and rejected the
portions which exhibited strong muscle artifacts or jumps. To
remove further noise from eye and muscle movements, we used
independent component analysis (ICA) based on the AMICA
algorithm (Palmer et al., 2008). Before performing ICA, we
applied a high-pass filter to the data at 2Hz cut-off to improve
the ICA decomposition (Dimigen, 2020). We visually inspected
the resulting components in combination with using ICLabel
(Pion-Tonachini et al., 2019) classifier. IClabel was run on
epoched data, 200 ms before and 500ms after the perturbation.
Based on the categorization provided by ICLabel, and a visual
inspection of the time course, spectra, and topography, we
marked ICs corresponding to eye, heart and muscle movements
for rejection (mean: 26.5, SD: 5.2, range: 18–44). We copied
the ICA decomposition weights to the cleaned, continuous data
and rejected the artifactual components. Finally, using spherical
interpolation, we interpolated the missing channels based on
activity recorded from the neighboring channels.

2.7. Behavioral Analysis
To understand the behavioral differences for the factors partner
and sonification, we used measures of mean angular velocity
and mean error produced. These behavioral differences indicate
how well the partners coordinated with each other. Furthermore,
as the velocity and position of the ball were sonified, these
measures are indicative of the effect of sonification on the dyadic
performance. We first calculated the instantaneous angular
position θ (in degrees) of the ball using the horizontal and vertical
(X, Y) positions of the ball on the tablet as follows:

θt =
180

π
∗ arctan

yt

xt
(1)

We used the atan2 function to take into account the X, Y position
in the negative coordinate axes. θt values were transformed from
[−π ,π] to range [0, 2π]. Next, we computed the instantaneous
angular velocity ω of the ball using the following formula where t
is the sample time-point:

ω =
1θ

1t
(2)

We, subsequently, calculated the mean ω for each participant for
the four different conditions. Next, We calculated the error as
the difference of the instantaneous radial distance between the
radius of the track and the ball’s current position measured as the
distance from the track’s center as follows:

errort =

√

x2t + y2t − Radiustrack (3)

2.8. Deconvolution and EEG Analysis
Even though the perturbations were sampled from a Poisson
distribution with λ = 4, the corresponding neural responses

might overlap in time and bias the evoked potentials (Ehinger
and Dimigen, 2019; Dimigen and Ehinger, 2021). Further,
experimental block onset and offset typically elicit very strong
ERPs overlapping with the perturbations. Finally, we see
clear, systematic differences in the behavior depending on the
condition (e.g., higher velocity with a human partner), which
could lead to spurious effects in the ERPs. We further added
eccentricity (distance from the circles midpoint), in order to
control for the ball’s trajectory. In order to control both temporal
overlap and covariate confounds, we used linear deconvolution
based on time-regression as implemented in the unfold toolbox
v1.0 (Ehinger and Dimigen, 2019). Consequently, we modeled
the effects of the partner (human or robot), the sonification (off
= 0, on= 1) and their interaction as binary, categorical variables,
the eccentricity and the velocity were coded using B-spline basis
functions and the angular position using a set of circular B-
splines. The block on- and offsets were modeled as intercept only
models. The complete model can be described by the Wilkinson
notation below (Wilkinson and Rogers, 1973).

perturbation ERP ∼ 1+ partner + sonification+ partner : sonification

+ circularspline(angular position, 8)

+spline(eccentricity, 5)

+ spline(velocity, 5)

block onset ERP ∼ 1

block offset ERP ∼ 1

This model was applied on the average referenced continuous
EEG data, and each event was modeled in the time range of−500
to 700 ms with respect to the event onset. We collected a mean
value of 640 trials per subject.

Similar to the two-stage mass univariate approach, we
calculated the t-value over subjects for each of the resulting
regression coefficients (similar to difference waves between two
conditions) for all electrodes and time points (time-range of
−500 to 700 ms). That is, for the purpose of comparison of two
conditions, they are preferable as they avoid confounds by other
factors. The multiple comparison problem was corrected using a
permutation based test with threshold-free cluster enhancement
(TFCE) (Mensen and Khatami, 2013; Ehinger et al., 2015) with
10,000 permutations(default parameters E = 0.5 and H = 2).
We used the eegvis toolbox (Ehinger, 2018) to visualize all evoked
response potentials.

3. RESULTS

3.1. Behavioral
In this study, humans played a collaborative game either with
other humans or with robots. We further added sonification of
the ball’s movement as a supplementary auditory feedback to the
participants. Figure 3 shows the raw positions of the ball overlaid
for all subjects and the partner and sonification conditions.
The behavior we analyse here, is the mean velocity of the ball
during each session and the mean deviation of the ball from the
circular track. These measures indicate how fast the participants
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FIGURE 3 | Distribution of ball positions. (A) Ball positions on the tablet with a human (red) and robot (blue) partner. (B) Ball positions on the tablet for sonified (green)

and not sonified movements (orange). The black circle represents optimal trajectory. It can be seen that participants deviated more with a human partner. No such

difference is visible for a change in the sonification.

performed the task and how much error they produced, both a
proxy of the success of the collaboration.

We calculated the mean angular velocity (ω) for each
participant for the four different conditions (Figure 4A). To
test the statistical significance of these findings, we computed
a 2 × 2 factorial repeated measures ANOVA with the factors
partner and sonification. The ANOVA showed a significant main
effect of partner, F(1, 11) = 87.09, p < .0001 where subjects
exhibited a mean angular velocity of 265.20 degrees/second and
SD ±0.28.29 with a human partner, conversely, with a robot
partner subjects showed a mean angular velocity of 159.23
degrees/second ±29.40. The ANOVA did not reveal a significant
main effect of sonification, F(1, 11) = 1.00, p = 0.33, with mean
angular velocity 210.06 degrees/second ±65.51 with sonification
off and the mean angular velocity was 214.36 degrees/second
±62.53 with sonification on. There was no significant interaction
of factors partner and sonification, F(1, 11) = 0.04, p = 0.83.
Hence, we can conclude that participants were faster at moving
the ball on the circular track while performing the task with a
human partner.

Next, we analyzed the mean error produced by participants
during a session. Figure 4B shows the mean error across
participants for the four different conditions. To statistically
assess these differences, we performed a 2 × 2 factorial repeated
measures ANOVA with factors partner and sonification. The
ANOVA revealed significant main effect for partner F(1, 11) =

42.61, p < 0.0001 where subjects had amean error of 0.04±SD =

0.012 while performing with a human partner, conversely, they
had amean error of 0.01±0.012 while cooperating with the robot.
We did not find a significant main effect of sonification F(1, 11) =
1.75, p = 0.21 where subjects had a mean error of 0.032 ± 0.017
with the sonification off and mean error of 0.033 ± 0.018 with
sonification on. There was no significant interaction of factors
partner and sonification, F(1, 11) = 0.51, p = 0.48. We can
conclude that subjects made larger errors while performing the
task with a human partner compared to the robot partner.

Lastly, we were interested in the correlation between
the behavioral measures we analyzed. Figure 4C shows the
correlation of mean error and mean velocity for the partner and
sonification conditions. For human partner with sonification off
the Pearson correlation showed a correlation coefficient ρ =

0.98, p < 0.001 and for sonification on ρ = 0.89, p < 0.001. For
robot partner with sonification off ρ = 0.97, p < 0.001 and with
sonification on ρ = 0.97, p < 0.001. These results show that the
mean error and mean velocity were positively correlated during
the task.

3.2. EEG
Next, we look at the overlap- and behavior-corrected brain
activity during the task. Using a overlap-corrected time
regression approach, we investigate the main effect and
interaction ERPs from the 2 × 2 design, while adjusting
for eccentricity, velocity and position of the ball (see section
2 for details). For the effect of the behavioral data on
the ERP, please see the Supplementary Material. We only
report ERPs time-locked to perturbation events. Descriptively,
in electrode Cz (Figure 5A), we see the typical pattern of
a positive deflection, followed by a negative and a second
positive deflection after the perturbation onset. We did not
have a specific hypothesis to a predefined component and
analyzed all electrodes and time points simultaneously. The
TFCE analysis reveals two clusters for the main effect of
the factor of partner (Figure 5B). The first cluster is likely
to represent the activity between 230 and 270 ms with its
maximum amplitude being −2.8µV at electrode FC1 (median
p: 0.025, minimal p: 0.018). The second cluster most likely
represents the time range of 515–605 ms with a peak at
−1.2µV at electrode FC2 (median p: 0.026, minimal p: 0.002).
Both clusters are found in the central region. No significant
clusters were found for neither the factor sonification nor the
interaction term.
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FIGURE 4 | Behavioral differences between conditions partner and sonification. (A) Differences in mean angular velocity across different participants. The error bars

indicate standard error of mean. (B) Differences in mean error across different participants. The error bars indicate standard error of mean. Panel (C) shows the

correlation of mean error and mean velocity for partner and sonification conditions.

These results show that we find differences in the participants’
ERPs with respect to their current partner independently of their
differences in behavior: When interacting with a robot partner
the ERPwill have a stronger amplitude indicating a systematically
different processing.

4. DISCUSSION

Our experiment investigated neural correlates of action

monitoring in a dynamic collaboration task that involves
two co-actors. Participants performed the task with another

human and robot partner while we measured EEG signals.
Co-actors tried to keep a virtual ball on the circle displayed on

a tablet; they used their hands (human arm or robotic arm)

to manipulate independent orientation axes of the tablet. We
perturbed the ball to investigate neural action monitoring
processes of the participants. We found fronto-central ERP
components at around 200–300 ms after the ball was perturbed.
The components were stronger for human and robot partner
compared to interactions with another human. These results
suggest that the dynamic processing of our actions is influenced
by whether we collaborate with a robot or a human.

The behavioral measures of our participants’ actions were
different between human and robot partners. We focused our
analysis on two aspects of collaboration: The speed which is
represented by the ball’s velocity and the accuracy as indicated
by the mean error. Our results suggest that participants perform
slower when paired with the robot and achieve higher accuracy
(ball closer to the circular track). There is a trade-off relation
between these factors; this is why we discuss them together
(Figure 4C). One simple explanation could be that the robot’s
control were themselves slow and prone to error. The human
participants might have restrained themselves and thereby
executed artificially slow movements. Another interpretation of
why our participants slow down (and increased accuracy) while
performing with the robot is that they had less trust in the robot

than a human partner. This is in line with past research that
suggests that level of trust changes during real-time interactions
with robots (Desai et al., 2013) and that, in general, trust
levels are different for human and robot partners (Lewis et al.,
2018). Another interpretation for slower movements is that it
is challenging to create a model of a partner’s actions during a
joint collaborative task with a robot. Based on work suggesting
that we represent others’ actions as our own (Sebanz et al., 2003),
it is possible that in the case of interacting with a robot we
need more time to create such representations. There is much
space for interpretations why having a robot partner triggered
slowermovements; however, we would like to point that themain
goal of our study was to investigate neural correlates of different
partners, and behavioral responses were collected to exclude their
influence on neural responses (see section 2.8 for details).

After adjusting for behavioral differences in the EEG analysis,
we see that robot partners affect neural correlates of action
monitoring differently in comparison to a human partner. We
found that between 200-300 ms after the perturbation event
disturbing the collaboration, the EEG amplitudes differ at the
fronto-central sites. The literature on single participants at these
electrodes and time window suggests that it is when and where
monitoring our errors or feedback about our actions unravels
(Miltner et al., 1997; Cavanagh et al., 2009). Similarly, when
it comes to neural activity involved in action monitoring in
dyadic situations, the same activations play a role (van Schie
et al., 2004; Czeszumski et al., 2019). If the error is committed
by the participant and can be inferred from his action (e.g.,
making a typo), the brain component involved is called Error-
related negativity, with more negative activation for erroneous
actions than correct ones (Yeung et al., 2004). In case of behavior
that needs feedback to understand the consequences of the
action (for example, gambling task), it is called Feedback related
negativity (Hajcak et al., 2006). In comparison to these classic,
static, and passive experiments, we had real-time collaboration
between two participants, and we observed similar component
peaking around 200-300 ms after the perturbation happened.
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FIGURE 5 | EEG results. (A) ERP at electrode Cz. The red lines show the activation when interacting with a human partner, while blue lines indicate a robot partner.

The solid line are the ERP when the sonification was off, while the dashed line represent sonification on. Below, are the topographies for the grand average (mean over

all conditions). (B) Clustering results for the different factors (red line and dot represents electrode Cz). Top: Effect of partner. The analysis finds two clusters in the

central area (black dots and segments). One is likely due to a difference at around 230–270 ms, while the second one is present later (around 510–600 ms). These

results indicate that the ERP will have a smaller amplitude when interacting with a human partner. Middle: Effect of sonification. No cluster was found here. Bottom:

Interaction. No cluster was found here.

Our participants were not informed about the perturbations, so
they could have been treated as participants’ own or the partner’s
error. Therefore, we suggest that the neural activation we
observe in our study resembles classic components. Our finding
that robotic partners modulate action monitoring corroborates
recent study (Hinz et al., 2021). However, there is a crucial
difference between both studies: Participants in Hinz et al.
(2021) study performed a task sequentially (turn-taking), while
in our study, participants interacted with each other in real-
life. Both studies point in the same direction. Robot partners
modulate neural activity. We speculate that differences in the
amplitudes of the ERP for robotic and human partners may
arise from differences in how we represent actions of artificial
and human-like agents. Such differences might involve partly

non-overlapping neuronal substrates with different visibility to
EEG recordings. Furthermore, the perceived options to optimize
performance in the joint interaction by adjusting to the behavior
of the partner might differ. Such differences can elicit different
neural patterns that we are able to measure with EEG.

Our results suggest that robot partners can modulate neural
activity in a dyadic experiment. Concerning that there is not
many studies that focused on neural underpinnings of human-
robot interactions, the results we present here have a value
for research topics in the field of join-action. They are a
first exploratory step toward a theoretical and methodological
foundation. We showed the feasibility of conducting a human-
robot interaction study while measuring EEG from the human
participant in a dynamical paradigm. With full experimental

Frontiers in Neurorobotics | www.frontiersin.org 8 August 2021 | Volume 15 | Article 686010131

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Czeszumski et al. HRI EEG

control, we explored neural correlations of human-robot
interactions in an ecologically valid setup (Matusz et al., 2019;
Czeszumski et al., 2020; Nastase et al., 2020). There is vast
literature on the topic of joint actions between humans and
robot partners (Curioni et al., 2019a; Schellen et al., 2021; Wahn
and Kingstone, 2021). Neural markers of action monitoring
during human-robot interactions were studied in turn-taking
tasks and utilized for brain-computer interfaces to improve
communication between robots and humans (Ehrlich and
Cheng, 2018, 2019a,b). Our study shows that it is possible
to conduct studies with non-human agents collaborating with
humans in real-time and measure brain activity and that the
neural basis of action monitoring is affected by the robot partner.

Lastly, we observed small differences between human and
robot partners at later time points (between 500-600 ms after the
perturbation) around the midline electrodes. These differences
are difficult to interpret. The topography suggest similar source
as the component discussed above. However, based on time we
speculate it could be P3b component. Huberth et al. (2019)
reported similar component in study that investigated self and
other (human vs. computer) generated actions in pianists. They
found that P3b component was present only for self generated
actions, suggesting greater monitoring of self generated actions.
It is important to highlight that in our study, participant had
to dynamically perform the task, while in the Huberth et al.
(2019) study participants took turns to perform joint actions.
What is similar is that they had to generate actions to achieve a
common joint goal (Vesper et al., 2010). It is possible that the late
effect we found in our experiment has the same function (greater
monitoring of self generated actions). However, in comparison to
the earlier effect (200–300 ms after the perturbation), the size of
the effect in our study is small. Therefore, we have to be careful
with interpretations. Future researcher with bigger sample size
can help to understand the function of late ERP components in
joint actions with robots.

4.1. Limitations
The exploratory aspect of investigating neural underpinnings of
human-robot interactions pose many challenges and questions.
In the present study, we tried our best to reconcile all of
them. However, there are limitations that have to be addressed.
First, our sample size was small in terms of number of
dyads. However, it was not small in terms of recordings and
total amount of gathered data. Thus, the effects reported are
significant. Second we did not perform statistic al analyses with
a predefined hypothesis. Instead, we performed an exploratory
analysis that encompasses all electrodes and time points. It is
important to understand that it is the first study of its kind.
Therefore, it has to be replicated and evaluated by future research
(Pavlov et al., 2021). Third our results could be dependent
on the robot used in the study. We suggest that different
types of robots (less/more humanoid) could modulate action
monitoring differently. The robot used in the present study
was clearly not-humanoid. Participants could clearly recognize
it as a robot and devoid of typical human traits that are often
used in communication/collaboration. Nonetheless, using this
robot helped us to maximize the difference between conditions.
Additionally, our claim is supported by research on a different

level of trust depending on the appearance of humanoid robots
(Haring et al., 2013; van Pinxteren et al., 2019). Therefore,
it would interesting to perform a similar experiment and
compare the results with a more human-like robot. Fourth,
as discussed below, our robot did not have a model of the
human actor. By this, the robot’s behavior helped to boost the
characteristic differences between the player’s partners. Fifth, our
statistical analysis does not take the dyadic dependency into
account, possibly biasing the estimated model parameters of the
human-human condition downward. In the future, study with
a bigger sample size, could answer the question whether dyadic
dependencies play a role in the effects reported in our study.
Sixth, even though participants were asked to keep their eyes
on the center of the circular track, we did not control for eye-
movements in this study, which could result in biased viewing-
behavior on the tablet. However, we adjusted for ball position
while modeling the ERPs, which is likely to be a proxy for
current eye position and also remove eye movement and blink
related ICs. Furthermore, the game required constant attention
and engagement, so it was assured that participants did not
look away from the tablet and the ball. Additionally, we are
interested in the EEG signal related to the behavior, rather than
the visual stimulus. All in all, we addressed the limitations, and
are convinced that they do not impede the interpretations of our
results as presented in next paragraphs.

5. CONCLUSIONS

Taken together, this study explored and described event-related
potentials related to action monitoring in humans collaborating
with other humans or robots. We used a dynamic real-time
collaborative task and found that around 200–300 ms after our
actions are disturbed, our brain activity is modulated by the
type of partner. Our results corroborate previous research on
the neural basis of human-robot interactions. Furthermore, we
show the feasibility of conducting research on collaboration
between human and non-human partners with EEG. The results
of our study suggest that non-human partners modulate how we
perceive and evaluate joint actions. It is crucial that we found
the differences between human and robotic partners during a
dynamical coordination task, as it can have implications on
the future of human-robot interactions and brain-computer
interfaces. We speculate that our findings could improve already
existing interfaces that use recognition of errors in real-time. It
could be especially useful in situations when robots and humans
have multiple interactions and it is important to distinguish
between different partners. Further research into the origin of
the observed differences might elucidate the neuronal substrate
of understanding the behavior of a partner during joint action.
Such research and application could further facilitate interactions
between humans and robots in many environments.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: https://osf.io/s6zbm/.

Frontiers in Neurorobotics | www.frontiersin.org 9 August 2021 | Volume 15 | Article 686010132

https://osf.io/s6zbm/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Czeszumski et al. HRI EEG

ETHICS STATEMENT

The studies involving human participants were reviewed
and approved by The Swedish Ethical Review Authority
(Etikprövningsnämnden). The patients/participants provided
their written informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

PK, DK, and MB: conceived the study. AC, ALG, AK, and PK:
designed the study. AG and MB: programmed the tablet and
the robot. AC, ALG, AK, AG, and MT data collection. ALG
and AK: major data analysis. AC, TK, BE, and PK: minor data
analysis. AC, ALG, and AK: initial draft of the manuscript. AC,
ALG, AK, AG, BE, MB, and PK: revision and finalizing the
manuscript. All authors contributed to the article and approved
the submitted version.

FUNDING

We gratefully acknowledge the support by the European
Commission Horizon H2020-FETPROACT-2014 641321-
socSMCs, Deutsche Forschungsgemeinschaft (DFG) funded

Research Training Group Situated Cognition (GRK 2185/1),
Niedersächsischen Innovationsförderprogramms für Forschung
und Entwicklung in Unternehmen (NBank)—EyeTrax, the
German Federal Ministry of Education and Research funded
project ErgoVR-16SV8052 and the DFG Open Access Publishing
Fund of Osnabrück University. We acknowledge the support
of Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy—EXC
2075—390740016 for BE.

ACKNOWLEDGMENTS

We would like to thank all partners in the socSMC consortium.
Especially, we thank Alfred O. Effenberg and Tong-Hun Hwang
for providing the sonification algorithm, and the help with
implementing it.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnbot.
2021.686010/full#supplementary-material

REFERENCES

Baillet, S. (2017). Magnetoencephalography for brain electrophysiology and

imaging. Nat. Neurosci. 20, 327–339. doi: 10.1038/nn.4504

Ben-Ari, M., and Mondada, F. (2018). Robots and Their Applications. Cham:

Springer International Publishing. doi: 10.1007/978-3-319-62533-1_1

Broadbent, E. (2017). Interactions with robots: the truths we reveal about ourselves.

Annu. Rev. Psychol. 68, 627–652. doi: 10.1146/annurev-psych-010416-

043958

Campa, R. (2016). The rise of social robots: a review of the recent literature. J. Evol.

Technol. 26, 106–113.

Cavanagh, J. F., Cohen, M. X., and Allen, J. J. B. (2009). Prelude to

and resolution of an error: EEG phase synchrony reveals cognitive

control dynamics during action monitoring. J. Neurosci. 29, 98–105.

doi: 10.1523/JNEUROSCI.4137-08.2009
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This paper proposes a novel system for managing visual attention in social robots. This

system is based on a client/server approach that allows integration with a cognitive

architecture controlling the robot. The core of this architecture is a distributed knowledge

graph, in which the perceptual needs are expressed by the presence of arcs to stimuli

that need to be perceived. The attention server sendsmotion commands to the actuators

of the robot, while the attention clients send requests through the common knowledge

representation. The common knowledge graph is shared by all levels of the architecture.

This system has been implemented on ROS and tested on a social robot to verify the

validity of the approach and was used to solve the tests proposed in RoboCup @ Home

and SciROc robotic competitions. The tests have been used to quantitatively compare

the proposal to traditional visual attention mechanisms.

Keywords: visual attention, cognitive architectures, social robots, object-based visual attention, robotic cognition,

robot vision

1. INTRODUCTION

Mobile social robots incorporate a myriad of sensors and actuators (Kanda and Ishiguro, 2017),
for example sonar and LIDAR sensors for obstacle detection, autonomous location and navigation,
microphones and speakers for human-robot interaction, and more and more commonly, different
types of cameras. Unlike other sensors, the portion of the space that cameras can perceive is limited
by their field of vision, which is usually quite narrow compared to the entire space surrounding
the robot. Besides, the design of most mobile social robots resembles human morphology. Even
those non-humanoid robots place cameras on the robot’s head, which is attached to the body by an
articulated neck. These actuated cameras overcome the limitations of the narrow field of vision but
need to implement an attention management system because it is not possible to simultaneously
cover the entire space around the robot. Even if many cameras could be placed in the robot, along
with enough computer power to analyze the images, the cognitive system would need to focus
on the more relevant elements detected using an attention-managing system. For the sake of this
paper, the problem faced is to define where the attention systems have to direct the camera a mobile
service robot according to the perceptual needs thereof.

Visual attention systems based on fixed patterns for scanning a scene were the first approaches
made, but they have proven to not be very efficient, and more sophisticated approaches, such as
the one proposed in this paper, are required (Nguyen et al., 2018). Another aspect to take into
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account in the evolution of visual attention systems is the
integration into complex robotic software architectures which are
in charge of selecting the most adequate behavior to fulfill the
robot’s task. This integration requires the attention system to be
modular, parametrizable, and able to share a common way of
representing information.

In a previous work, Agüero et al. (2012), a method
for managing visual attention, integrated in the cognitive
architecture, was initially proposed. In that seminal work,
cognitive behaviors indicate their perceptual needs, and the
attention system organizes these needs according to their
salience. The new approach presented in this paper differs from
that work in that the attention system does not arbitrate among
behavioral needs, but among elements to be perceived that are
indicated by the planning system at the highest level of the
cognitive architecture. In order to do so, the system relies on a
centralized repository of information that has been implemented
as a “knowledge graph.” The robot stores all relevant internal and
external knowledge in this repository. The graph contains nodes
that represent the elements of the environment, and arcs that
indicate the relationships, symbolic or geometric, among them.

The software design of the proposed attention system is
modular, allowing specialization in the way different types of
stimuli are dealt with. Modularity has been achieved using a
client-server systems. This approach is also scalable, meaning
that it can be easily expanded with more types of stimuli by
adding separate clients. Monolithic approaches to the visual
attention systems make them much more difficult to extend.

This implementation has been validated in the
RoboCup@Home1 and European Robotics League2

competitions, which consist of a set of tests which take place in
a simulated domestic environment. The performance of each
robot is evaluated for tasks focused on assistance or collaboration
with humans, which is an excellent way to contrast different
research approaches. For all the tasks in these competitions,
robots need to visually perceive the scene. Some tasks require
the robot to look at a person’s face while talking with them or
to follow them around a house. For other tasks, the robot must
search for objects on a table, or check if it is carrying the correct
objects on its tray. All of the task in the competitions require
a challenging management of visual attention. In particular,
guaranteeing that no interest point remains unattended for a
long period of time is one of the most relevant requirements; the
time for answering questions about the environment is limited,
and the total time for accomplishing the task is also limited. We
consider that the maximum time that an interest point remains
unattended is the most relevant parameter when comparing
different solutions.

In summary, the main contribution made in this paper is the
design of the visual attention system. This system is integrated
into the cognitive architecture through the knowledge graph,
where visual perception requirements are expressed through the
creation of arcs between nodes that indicate these requirements.

1http://www.robocupathome.org/
2https://www.eu-robotics.net/robotics_league/

The remainder of the paper is structured as follows: In section
2 we review the state of the art of visual attention systems, and
how different cognitive architectures address their integration. In
section 3 we describe the proposed cognitive architecture. Next,
we describe the visual attention system. In section 5 real examples
of its operation are presented. Finally, in section 6, conclusions
are drawn and future work is discussed.

2. STATE OF THE ART

Visual attention management systems have been a recurrent
research topic in mobile robotics. Historically, there have
been different approaches to this problem, from basic ones,
where segmentation was directly used to focus the attention
of the robot, as in Scheier (1997), to ones using methods
borrowed from other scientific fields, such as psychology and
ethology. For instance, Butko and Movellan (2009) proposed
a method of driving a robot that scans scenes based on the
model of visual searches in humans. This method predicts
scanpaths to maximize the long-term information about the
location of the target of interest. In Meger et al. (2008) a
combination of a peripheral-foveal vision system, and the
attention system that combines bottom-up visual saliency with
structure from vision allowed the “Curious George” robot
to build a semantic map of the region explored, thereby
labeling objects.

The use of visual attention in social robots is widespread.
For instance, Kismet (Breazeal and Scassellati, 1999) the famous
robotic head which popularized the “affective computing”
paradigm, included an attention system capable of directing the
robot’s eyes toward the areas of interest of an image. These areas
of interest, or high salience, were calculated by combining several
filters (face detection, color, and movement), which allowed the
robot to pay attention to different scene elements. These are
the basic questions (Treue, 2003),: where, what and how such as
how to recognize a point of interest, and why it is needed it for
scene understanding.

The WABIAN humanoid robot (Hashimoto et al., 2002) was
also equipped with an active vision system that directed its gaze
toward people, based on images and sound. The work of Wolfe
(1994), studying how to determine relevant areas in images,
inspired these approaches. This concept of salience is addressed
in a multitude of works (Itti et al., 1998; Harel et al., 2006; Hou
and Zhang, 2007; Goferman et al., 2012; Grotz et al., 2017),
although most focus on which parts of the image are relevant,
without spatial information beyond the image. The salience-
based approach was previously explored by the authors of this
paper, as described in Garcıa et al. (2010), and is still present in
the current proposal.

In Bachiller et al. (2008), “Regions of Interest” are used in an
image to determine where to direct the camera of a robot. In
this case, the robot’s active tasks determine the attention zones.
Recent works (Stefanov et al., 2019) combine bio-inspiredmodels
with Neural Networks to obtain saliency maps, as opposed to
spatial areas of the environment. Our approach is not based on
the detection of exciting areas in images, but rather areas of
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space where to direct the robot’s camera. We enrich the image-
processing with 3-D information. Our attentive system never
works on image coordinates but orients itself on the real world.
Another relevant difference is that our system is intended to avoid
that any interest point identified by the cognitive level could
remain unattended for long periods of time.

Integrating the attention system into the cognitive
architecture is one of the major problems when using it as
a social robot. Some of the systems already mentioned are
effective in managing visual attention but are hardly integratable
into cognitive architectures.

In Agüero et al. (2012), the authors had proposed a method
of visual attention management applied to humanoid robots
integrated within the cognitive architecture base on salience. The
term salience ceases to be used only for areas of an image and
applies to points in space. The salience indicates the need to
look at them and increases proportionally to the need to see
them. Current behaviors determine this need. In this work, a
subsumption architecture (Brooks, 1986), developed for soccer
robots (Martin et al., 2010), integrates the attention system. The
different execution units that form the behaviors indicate their
perceptual needs, and it is the attention system that merges these
needs through salience. The current proposal differs from this
work in that the attention system does not arbitrate between
behavioral needs, but between elements to be perceived by a
single behavior.

Cortex is another cognitive architecture, closely related to our
own. Its attention system described in Manso et al. (2018) has
some similarities to our proposal. The main difference is that
Cortex indicates where to find items, instead of determining
search points. The system thereby determines which areas of the
environment can contain it, thus directing the robot’s gaze there.
Although similar in many aspects, the system presented in this
paper solves the problem of scanning an area and seeing what
can be found in it.

iCub robot (Ruesch et al., 2008) applies the concept of
EgoSphere, originally by Kawamura et al. (2005). This sphere
stores the orientation of the perceived elements to the robot.
Saliency and spatial information (angles only) determine the
orientation of the robot head. In this case, salience applies to
the areas of the self-sphere relevant to the robot. A highly-
valued contribution of this approach is sensory fusion. The
attention system also adds auditory information to modify the
salience of specific areas. Our proposed system is also able to
perform advanced spatial reasoning, not limiting the angle of
visual stimulation.

Visual attention can be influenced by other sensors. For
instance, in Aliasghari et al. (2020), visual attention is used
in a social robot to control where the gaze is directed within
the context of a group conversation. In order to make this
decision, the system uses other stimuli, such as where the
people are, where the sound comes from, hand movements,
and pointing gestures. It also uses some concepts of proxemic.
For instance, it is more natural to look at people who are
closer than those further away from the beholder. These
stimuli are incorporated into a logical control unit with

long-and short-term memory. This control unit decides the
neck’s movement.

3. THE COGNITIVE ARCHITECTURE FOR

SOCIAL ROBOTS

The cognitive architecture, in which the proposed attention
system is integrated, is organized in concentric layers, named
tiers, as shown in Figure 1. A more detailed description of the
architecture can be found inMartin et al. (2020). Describing from
the outermost layer to the innermost layer, which can also be
considered as a bottom-up description:

• Tier 5 represents the baremetal, the robot hardware and the
programming interfaces of the basic controllers of sensors and
actuators.
• Tier 4 interacts directly with these controllers to offer a

higher level of abstraction in defining the robot’s basic skills,
such as navigating to a place, picking up an object, talking with
a person, wandering, detecting objects, etc. The innermost
layers use the skills in this layer as primitives.
• Tier 3 is the operational level of the robot. These operations

are defined as actions. An action uses different skills from tier
4 to accomplish a unit task, e.g., getting the robot to move
from one room to another using the skill of navigation. In
addition, the robot should take into account whether the door
is open, using its perceptual and probably attention skills as
well. If the door is closed, the robot will use its manipulation
skills to open it and enter the destination room. The actions’
implementation defines how the skills are named and which
specific parameters (metric destination point, position of the
element to manipulate, phrase to speak, etc.) are used. Actions,
loops, branches, and sequences can be used to define the
control logic for achieving the task.
• Tier 2 is the task manager level where plans (ordered

executions of actions) are generated. It is based on a symbolic
planner which uses PDDL to define what types, symbolic
predicates, and actions are used to solve a problem. This
knowledge base is accessible by other tiers.
• Tier 1 manages the high-level mission of the robot. This

level is built using hierarchical state machines which define
the different stages of the robot mission at a high level
of abstraction. Transitions between states are implemented
by consulting predicates in the knowledge base, and the
goals to be solved by the planner in Tier 2 are defined
in the states.

Tiers 1 and 2 mainly use symbolic information for facing the
process of information abstraction, while Tiers 3 and 4 use sub-
symbolic information, mainly sensor readings. When a state
machine at Tier 1 establishes a goal, the planner at Tier 2 creates a
plan using the content of its knowledge base. This plan is built as
a sequence of domain actions. The planner delivers the actions at
Tier 3 one at a time. Each time an action indicates that it has been
successfully completed, the next one is delivered until the plan
finishes. If an action ends with an error, it forces a replanning.
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FIGURE 1 | Layered cognitive architecture shown as concentric tiers. The innermost layers (Tier 1) control the mission using a state machine, setting the goals to be

achieved by the planning layer (Tier 2). This layer activates the actions that are part of the plan (in Tier 3). Actions can use skills (at Tier 4) to carry out their task. These

skills can be perceptual or acting, directly sending information to the actuators, or receiving information from the sensors.

As mentioned previously, Tier 3 contains the implementation
of the actions defined in the PDDL domain at Tier 2. This level is
the bridge between both paradigms. The planner activates actions
according to the generated plan. When activated, the planner
passes the parameters to the actions (instances of a type). Usually,
the action must translate symbols into specific data. For example,
a move action could receive kitchen as a parameter. The action
must then obtain the metric coordinate corresponding to the
kitchen symbol and send it to the navigation module.

In order to manage the information between layers the
Knowledge Graph is defined. It stores all the information relevant
to the operation of the robot, and is accessible from all the Tiers.
This shared representation of data disengages some components
from others, especially among different layers. For instance, an
action in Tier 3 uses the result of computing a skill in Tier 4
by reading it from the knowledge graph. Tier 1 can also use the
symbolic information contained in the graph.

The elements of the knowledge graph are nodes and labeled
arcs. The nodes represent instances of a specific type. The
arches can contain a text, or they can provide a geometric
transformation. The visual attention requirements are expressed
as arcs of a special type “want_see,” as explained in the next

section, where the knowledge graph of Figure 2 is depicted in
more detail.

The relationship between the symbolic information at Tier 2
and the global knowledge graph is based on a synchronization
process. This process adds nodes to the knowledge graph when
the symbolic knowledge base creates instances of a relevant type.
It also creates arches when the symbolic knowledge base inserts a
relevant predicate. If the predicate has two arguments of related
types, the arc connects two nodes with a text corresponding to the
predicate. If the predicate has only one argument it is represented
as a self arc (need_check arc in Figure 2). Updates only go one
way, from the symbolic knowledge base to the graph. Updates
from the graph to the symbolic knowledge base are not permitted.

ROSPlan (Cashmore et al., 2015) is the planner used in Tier2
and a BICA (Martín et al., 2016) framework was used for the
implementation of the actions and skills, as BICA components.
A BICA component is an independent process which can
declare that it depends on other BICA components. When a
BICA component is activated, it automatically activates all its
dependencies. When all components which enable a dependency
are deactivated, the dependency is deactivated. This mechanism
is a simple way to save computation time when the results of
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FIGURE 2 | Knowledge Graph representing the internal and external knowledge of the robot. Ellipses represent nodes with an ID and a type. Black lines are text arcs

and blue lines are geometric arcs.

certain computations are not being used, and permits different
compositions of skills as shown in Figure 2.

4. THE ATTENTION SYSTEM

The attention system is integrated into the cognitive architecture
as a skill in Tier 4. It can be activated by actions in Tier 3 which
require attention to different stimuli. Actions set perceptual needs
in the knowledge graph by creating wants_see arcs from one
robot node to another, as shown by the red arrow in the left
part of Figure 3. Other skills in Tier 4 can also add arches
requesting attention, as well as in the innermost tiers if it is
considered necessary.

The attention mechanism is built as a client-server system, as
shown by the orange boxes in Figure 3. The three clients in the
figure send attention points to the attention server. The attention
server sends motion commands to the robot’s actuators in order
to direct the camera to a position in the space. Its main task is to
select the next pose to look at among all the requests received and
the length of time to maintain that position in the robot’s field of
view. The attention clients make requests to the server by sending
attention points.

Each attention point sent to the server is labeled with the
stimulus type and the id to perceive. A client can communicate
to the server that it no longer requires attending to a specific
type and/or instance. The server then removes these points from
its list.

There are as many clients as types of stimulus to deal with.
If the robot wants to perceive a table, it can mean that it is
interested in either scanning the entire surface, or in determining

the existence of the table itself. Different clients should be built
for each one. For example, if interested in the objects on the
table, the attention points will cover the table’s surface, apart from
assuming that the table is a static element of the environment. If
the robot wants to perceive a small object, there will be a single
attention point in the center of the object, if already detected. If
the object has not been detected yet, the points will be placed
where it is more likely that the object could be. Each type of
stimulus requires a custom client specialized in perceiving it
adequately. For example, while perceiving a person, it can be
enough to look at his face, but these are dynamic points.

Attention clients scrutinize the Knowledge graph in case their
participation is required, that is, they look for the existence of
wants_see arcs from one node to an element of the type that
this clientmanages. If so, it generates a set of attention points with
geometric information that indicates where to direct the robot’s
camera to perceive the stimulus.

In the case of Figure 3, there are nodes of types robot, table,
and person. There are also geometric and symbolic arches. Several
processes, named [stimulus]_attention_client one
for each type of node which the robot can pay attention to, are
shown in the center. Each one is aware of the changes in the
graph. In this case, table_attention_client should be
active because there is an arc from a node of type robot to a node
of type table. When active, table_attention_client
sends a set of attention_points in the frame of Table_1
to check.

Furthermore, the attention_server receives the
attention points of all the clients and iterates among each one of
them. The attention_server maintains a list with all the
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FIGURE 3 | Attention system architecture. The attention clients (orange rectangles in the center) observe the graph (left) looking for “want_see” edges. Each client is

specialized in one type of goal node for the “want_see” edge. When any of them activates, it sends the attention points to the attention_server (right). The

attention_server sends motion commands directly to the neck motors.

attention points received. For each point, it transforms it into a
coordinate related to the axes of the robot, and generates a pan
and a tilt that it sends to the motors of the robot’s neck, visiting
each point for a few seconds.

The attention module is not responsible for image detection,
only for looking there. If an action requires detecting objects on a
table, this action must activate both the attention and the module
that perceives the objects in the image.When an object is detected
in the image, this is written down in the graph, thereby allowing
eliminating the corresponding attention arcs from the action.

Attention clients send the points of attention of each one of
the elements to attend to (small circles of Figure 3) to the server.
Messages sent to the server contain the class and identifier of
the element. In addition, they contain a vector of 3D points.
For each point, we specify the reference axis (frame_id) of
its coordinates.

The attention server receives the set of new points, NP , sent
by the clients. The server stores the points received in a list.
Each point, p, on the list P that the server stores contains the
following fields:

• point_id: The attention server must be able to attend to
requests to eliminate points of attention, either by specifying
an entire class or just one instance of a class. This field contains
an identifier class.instance_id.n, where n is the i-th
point of attention of one of the elements. In this way, it is easy
to determine the points that belong to each class and instance.
• point: The point coordinates, stamped with its frame_id and

time.
• tilt and pan: The axes of reference of the points can move

with regard to the robot. That means that points could be
coordinates of a global map, and the robot could be moving,
or points could be coordinates of the robot arm, and the robot
could be moving its arm.
• epoch. Attention cannot be paid to one point again until

the rest of the points have been attended to. Epoch represents

Algorithm 1 Attention Server algorithm.

1: while robot_operation do

2: for all pi ∈ NP do

3: p
epoch
i = p

epoch
j , where pj = last(P)

4: P ← pi
5: end for

6: for all pi ∈ P do

7: paux1 = RT4×4(p
frame
i → pan_frame) ∗ pi

8: paux2 = RT4×4(p
frame
i → tilt_frame) ∗ pi

9: p
pan
i = arctan(p

y
aux1, p

x
aux1))

10: ptilti = arctan(pzaux2, p
x
aux2))

11: end for

12: sort(P)
13: repeat

14: p = first(P)
15: pepoch = pepoch+1

16: until is_in_fovea(p)
17: pan_t = ppan

18: tilt_t = ptilt

19: send_command_to_neck(pant , tiltt)
20: tflight = flight_time(pant−1, pant , tiltt−1, tiltt)
21: tin_point = 1.0 s
22: wait(tflight + tin_point)
23: end while

the current iteration of the attention system. Attentions
server does not attend to a point if there is another point
with a lower epoch value. Each point attended increases its
epoch by one.

The attention server calculates the pan and tilt values to send
to the robot’s neck actuators, calculated from P. pant−1 is the
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FIGURE 4 | Left image: Experimental setup. Right image: Laptop screen showing the objects being perceived (left part of the screen and their spatial location).

FIGURE 5 | Visual debugging of detections (left upper image), knowledge graph (left bottom figure), attention points (green circles), and attending point (red arrow) in

right part of the figure.

current pan value, and pant is the new pan value to send to the
actuators.

This algorithm is summarized in Algorithm 1 and is based on
these three rules:

1. The robot cannot handle an attention
point again until after handling the other
attention points.

2. The next attention point is the point that implies the least head
movement.

3. If the next attention point is already in the fovea, it is
considered handled.

In more detail, the algorithm works as follows:

• Lines 2-5 show how the server incorporates the new
points NP received from clients to the list P of
attention points.
• Lines 6-11 recalculate the pan and tilt of each point

before sorting. Many points could be defined in
frames that have changed with regard to the robot’s
neck. If we define points in map frame, their new
pan/tilt values depend on the robot displacement and
the localization.

• Line 12 sorts P using the operator “<” defined as:

pi < pj =











if p
epoch
i < p

epoch
j ,

or

if p
epoch
i = p

epoch
j and j(pi) < j(pj)

where,

j(p) = |ppan − pant−1| + |p
tilt − tiltt−1|

From now on, the most appropriate points to pay attention to
are at the top of the list.
• Lines 13–16 select the point p to attend on the 13–16. Starting

at the beginning of the list, we take the first one that is not in
the fovea.
• p point contains the new pan and tilt values. After sending

them to the actuators, the waiting time before sending other
values to the actuators must be calculated. This waiting time
depends on two time periods. The first one is the duration of
positioning in the new pan/tilt values (line 20). The second
one is the time in which the robot maintains attention to a
point. It is convenient for the robot to stop at a point for a
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FIGURE 6 | Evolution during the entire time of the experiment (X-axis) as a percentage of time (Y-axis) that there is any attention point in the fovea (central part of the

image). Each line represents a different algorithm, comparing our contribution (Optimized) with respect to the two usual algorithms of attention (Simple scanning and

Round robin).

FIGURE 7 | Evolution during the entire time of the experiment (X- axis) vs. the time in seconds (Y-axis) that it takes each algorithm to visit all the attention points.

short moment. The image could be moving or degenerating its
processing. We consider a second to be an appropriate value.

Our attention system’s design allows us to efficiently attend to
visual stimuli (objects, people, areas, etc.) since it personalizes
the attention for each stimulus type. The system is also
scalable: a new kind of stimulus to attend to requires
only creating an attention client that defines the points of
attention in the stimulus’s reference axis. In the next section
we will show the experiments carried out to validate our
proposal, a simple way to save computation time when
the results of certain computations are not being used and

which allows different compositions of skills as shown in
Figure 2.

5. EXPERIMENTAL VALIDATION

This section describes the experiments carried out with a real
robot to evaluate the validity of our proposal. The main feature
of an attention system is attending to the relevant areas of robot
operation. In order to determine what the advantages of the
proposed system are, two other classical approaches have also
been implemented:
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FIGURE 8 | Evolution during the entire time of the experiment (X-axis) of the accumulated neck rotation, in radians (Y-axis), that it takes each algorithm to visit all the

attention points.

1. Slow scan across the environment around the robot. This
mechanism would be activated whenever the robot wants to
perceive something, moving the robot’s neck in a fixed pattern.

2. Selection of the point of attention, pi, from the list P using
round-robin without ordering the points to optimize the
movement of the robot’s neck.

The metrics used to compare this proposal vs. these other two
approaches are:

• The percentage of time that the robot is attending relevant
areas.
• The time to cover all relevant areas.
• The amount of energy used to cover all relevant areas.

The correctness of the detections has not been included as
criterion for the experimentation because it depends on other
modules in charge of perception. Neither has a quantitative
analysis of the integration of the attention system in the cognitive
architecture been included because this analysis can only be done
qualitatively. In our system was validated by integrating it into
the software of the SciRoc Robotics competition.

The SciRoc competition environment Figure 4 was
reproduced for the evaluation. It simulates a restaurant in
which the robot should check how many persons are sitting at
the tables and which objects are on the tables. The robot is in
front of one of the tables (mesa_1), and to its left there is another
table (mesa_2). There are several objects to be detected on the
tables, and two people sitting, one at each table. The setup of this
experiment can be seen in this video 3.

The robot knows a priori its relative position to the table. This
information is introduced in the knowledge graph (Figure 5).
A table_attention_client was implemented which establishes 10

3https://youtu.be/IyCyx_HfdrE

FIGURE 9 | Attention points (green circles) corresponding to the setup for the

second experiment, with the position of the robot (denoted by the axes of its

actuators). In this case, the attention points were located on three tables.

points of attention per table: 6 on the surface and 4 in positions
where there could be people. Attention points can be seen in
Figure 5 depicted as green circles.

A skill that adds “want_see” arcs in the graph from the robot
to the tables was specifically designed for this setup. Every 30 s,
the “want_see” arc is added to or deleted from table_2 (mesa_2
in the figure). When both arches are active, there are two points
of attention on each table. Initially, we activate attention for two
tables, so there are 20 attention points. At time 30, we remove an
arc, so the robot is attending to only one table, and there are 10
points’ the cycle loop restarts at time 60.

The attention mechanisms were compared with two
alternatives previously mentioned:
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TABLE 1 | Results of the second experiment, showing the time (in seconds) to deal with an attention point, and the number of points attended.

1 Table 2 Tables 3 Tables

Opt RR Scan Opt RR Scan Opt RR Scan

Mean 6.38 s 5.95 s 9.44 s 9.11 s 6.70 s 12.01 s 9.42 s 7.69 s 14.50 s

Stdev 4.40 s 6.90 s 7.76 s 5.71 s 6.84 s 0.83 s 5.47 s 7.69 s 13.20 s

Median 3.99 s 3.09 s 6.29 s 7.94 s 4.29 s 6.19 s 8.99 s 4.69 s 6.20 s

Max 18.89 s 28.49 s 31.09 s 28,39 s 37.39 s 37.89 s 25.69 s 50.09 s 41.39 s

Points 131 134 90 192 265 135 285 345 191

• Round Robin: the robot evaluates attention points in the order
in which they are stored on the server, which can be expressed
as a new operator <

′ defined as:

pi <
′ pj if p

epoch
i < p

epoch
j

• Scan: The robot continuously moves its neck to cover the
robot’s environment. This approach was optimized so that it
only scans the areas where there are points of attention. Before
scanning, it calculates the range of pan/tilt angles based on the
current points of attention.

Figure 6 shows the accumulated percentage of time that the
robot has any attention point in the fovea. The fovea is the
central area of the image, half the size of the total image. The
marks on the lines of each approach indicate when each epoch is
completed. As expected, the Scan approach is significantly worse
than the others.

Figure 7 shows the time it takes for each approach to complete
an epoch, that is, to visit each of the points of attention. The
system proposed shows times of around 5 s when there is only
one table active. In the case of two tables, the time only exceeds
15 s once. The Round Robin method takes more than double the
time in virtually all epochs. In any case, these results are much
better than those of the Scan method.

The last indicator is the energy required in each epoch. As it is
difficult to obtain energy measurements, the difference between
the current angle and the commanded angle was measured.
The smaller the displacement of the head, the lower the energy
required to visit a point of attention. Figure 8 shows that the
proposed system is also, by far, the one that preserves the most
energy to complete each epoch.

We carried out a second experiment to measure the time it
takes for each algorithm to return to an attention point. Figure 9
shows the distribution of the points of attentions (green dots) and
the coordinates transformation from the three tables to the robot
using the ROS tf visualization tool. The robot is in front of three
tables, each one with the same attention points. As in the previous
experiment, we consider that the robot deals with a point of
attention when it is in the fovea. An algorithm is considered best
if it does not allow points to be unattended for a long time.

We have carried out multiple runs of the three algorithms
attending one, two and three tables. In each case, we measured
the time that a point of interest is unattended. Each trial lasts 2
min, and the results of the experiment are shown in Table 1.

The table’s analysis reveals that the Round Robin algorithm
yields the best times in the mean and the median. Also, more

points are served in the 2 min that each trial lasts. The numbers
are very similar to the algorithm that optimizes attention,
although it deals with fewer points during these 2 min. Still, the
maximum time a point has waited to be observed is much longer
with the Round Robin algorithm, which is the critical factor that
we tried to minimize with our proposal. The scan algorithm,
which is the baseline in this work, has the worst statistics, showing
that our proposal significantly improves a robot’s attention.

In order to illustrate the criticality of the maximum time
parameter, it has to be noted that in the competitions, the
time that the robot is inactive is very limited. For instance,
the rulebook4 of the RoboCup competition states that 30 s of
inactivity disqualifies a robot. In the same way, the maximum
time for each trial is also limited.

6. CONCLUSIONS

This paper has presented a visual attention system integrated
into a cognitive architecture. This attention system calculates the
head movements necessary to perceive the elements of the robot’s
environment. The cognitive architecture integrates the attention
system as a robot skill. Perceptual needs are expressed in a degree
of knowledge, adding arcs that indicate this. The attention system
is aware of these attention arcs. The way of attending to an
element of the environment depends on the objective of this arc.

The experiments carried out show that the system proposed
improves conventional systems based on scanning the
environment. The robot’s gaze always goes to relevant areas
without wasting time in areas where the searched items cannot
be found. Attention to these areas is always given using the
lowest possible energy and stabilizing the image in a position to
perform the detection with sharp images.

We have tested this approach on a real Tiago robot. We
have proven its validity in one of the tests of the SciRoc
competition. To validate our approach, we have implemented
two representative attention methods. In this experimentation,
we have shown that our approach improves the other methods
according to the maximum time, which is the main factor in this
problem and has been highlighted in Table 1.

Finally, as a further work, we think that the energy consumed
by each method should be analyzed, as well as the relevance of
the order of the points in the RR method, fixed by the designer in
this method.

4http://www.robocupathome.org/rules
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Collaborative robots are currently deployed in professional environments, in collaboration

with professional human operators, helping to strike the right balance between

mechanization and manual intervention in manufacturing processes required by Industry

4.0. In this paper, the contribution of gesture recognition and pose estimation to the

smooth introduction of cobots into an industrial assembly line is described, with a view to

performing actions in parallel with the human operators and enabling interaction between

them. The proposed active vision system uses two RGB-D cameras that record different

points of view of gestures and poses of the operator, to build an external perception layer

for the robot that facilitates spatiotemporal adaptation, in accordance with the human’s

behavior. The use-case of this work is concerned with LCD TV assembly of an appliance

manufacturer, comprising of two parts. The first part of the above-mentioned operation

is assigned to a robot, strengthening the assembly line. The second part is assigned to

a human operator. Gesture recognition, pose estimation, physical interaction, and sonic

notification, create a multimodal human-robot interaction system. Five experiments are

performed, to test if gesture recognition and pose estimation can reduce the cycle time

and range of motion of the operator, respectively. Physical interaction is achieved using

the force sensor of the cobot. Pose estimation through a skeleton-tracking algorithm

provides the cobot with human pose information and makes it spatially adjustable.

Sonic notification is added for the case of unexpected incidents. A real-time gesture

recognition module is implemented through a Deep Learning architecture consisting of

Convolutional layers, trained in an egocentric view and reducing the cycle time of the

routine by almost 20%. This constitutes an added value in this work, as it affords the

potential of recognizing gestures independently of the anthropometric characteristics and

the background. Common metrics derived from the literature are used for the evaluation

of the proposed system. The percentage of spatial adaptation of the cobot is proposed as

a new KPI for a collaborative system and the opinion of the human operator is measured

through a questionnaire that concerns the various affective states of the operator during

the collaboration.

Keywords: human-robot collaboration, gestures, actions, recognition, CNN, egocentric vision, collaborative robot,

pose estimation
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1. INTRODUCTION

Robots were first introduced to industrial environments in
the mid-1950s and consequent advancements in the areas of
perception of humans and of the environment, during the last
few decades, have led to the evolution of a new area of research,
named Human-Robot Interaction (HRI). The International
Federation of Robotics (IFR)1 reports a record of 2.7 million
industrial robots operating in factories around the world, which
indicates an overall increase of 12% for the year 2020 alone.

Until quite recently, conventional automation of Industry 3.0
has been trying to insert more and more robots into production
processes to perform repetitive and hazardous tasks which have
traditionally been performed by humans. The translation to
Industry 4.0, using means such as cyber-physical systems (CPS),
cloud computing and Industrial Internet of Things (IIoT)s, aims
to insert human-robot collaboration (HRC) frameworks into the
manufacturing process. There are different categories of HRI,
depending on the workspace, the aims, the working times of the
robot and the operator.

The current work aims at the development of a Human-
centered Artificial Intelligence perception layer of a robot,
which is inserted in an industrial HRC scenario. Active vision
through gesture recognition and pose estimation enables the
spatiotemporal adaptation of the robot to each user. We focus
on the insertion of a smaller, lightweight robot which facilitates
HRC, without the need for physically separated workspaces.
Different types of interaction are implemented and ultimately the
goal of this paper is to evaluate their impact on both human-robot
collaboration and user experience. On the way to safer and more
effective HRC scenarios, touchless interaction is implemented.

Egocentric computer vision for action/gesture recognition
unleashes great potential for touchless HRI. The proposed human
egocentric system constitutes an initial step in active vision. It is
not affected by some critical issues for active vision as the camera
is unique, on the top of the operator, and moves according to
operator’s head motion. There is no change or motion of the
camera for better field of vision. In addition, occlusion or limited
resolution are improbable as the operator’s actions are executed
in front of her/his body. These actions are communicated to the
robot so as to dynamically adapt its behavior. Therefore, both the
temporal and spatial profile of the motion of the robot depend
on the rhythm and the pose of the human operator, respectively.
From an industrial point of view, the production cycle time
becomes adaptable.

This paper presents a gesture recognition module based on
3D Convolutional Neural Networks (3DCNNs), trained on an
egocentric view, for a natural collaboration between the human
and the robot. Deep Learning (DL) is a field of Machine
Learning (ML) with impressive results in pattern detection,
speech recognition and many more applications and can provide
the necessary robustness that an HRI scenario requires. The two
hypotheses that are tested, are the reduction of cycle time of the
assembly routine through the insertion of gesture recognition,

1https://ifr.org/

as well as the improvement of the handover position via the
implementation of pose estimation.

This paper consists of nine sections in total. Following
the Introduction in section 1, section 2 presents human-robot
interaction that can be achieved either physically or by touchless
means. In section 3, the routine which was implemented,
together with the experiments which are used to evaluate the
contribution of the proposed modules (gesture recognition,
pose estimation, sound notification) are described. In sections
4 and 5, the modules and their respective implementation
methodologies are presented. section 6 describes the way
that the robot performs and presents a variety of metrics
that are commonly used for the evaluation of an HRI
system. In section 7, each type of collaboration is described
and evaluated, while, in section 8, future work perspectives
emerging from the various types of collaboration are examined,
with areas for future research suggested in Conclusion, in
section 9.

2. STATE OF THE ART

Since the initial establishment of robots in industry, the aim has
been to assist humans in their heavy-duty tasks, and to keep
everyone safe at the same time. The limitations of robots, in this
early period, in conjunction with the ever-increasing levels of
safety which have had to be observed in industry, have served
to create a somewhat primitive workplace for industrial robots.
Traditionally, they have been installed in assembly-lines and
have been assigned to undertaking the tasks which are repetitive,
heavy-duty and dangerous for human operators, as described by
Hentout et al. (2019). Regardless of their efficiency and velocity,
the assembly-lines that use this type of robot have been lacking
in flexibility, especially when the presence of a human operator
is required.

Humans, on the other hand, have the flexibility and the
intelligence to consider different approaches to solve a problem
and can choose the best option from among a range of
possibilities. They can then command robots to perform assigned
tasks, since robots can be more precise and more consistent in
performing repetitive and dangerous work. This collaboration
between industrial robots and humans demonstrates that
robots have the capabilities to ensure maximum efficiency
in manufacturing and assembly; however, the evolution of
technology, together with the ongoing automation of traditional
manufacturing and industrial practices, has shown that there are
many tasks which are too complex to be fully executed by robots,
or are too financially burdensome to be fully automated.

This is the reason why the research agenda in the past few
years has focused on creating appropriate industrial working
environments, where robots and human operators can interact
effectively. Nowadays, mixed environments are being created
and industries aim to explore and create the ideal working
environment through combining the cognitive skills of the
human operators (intelligence, flexibility, and ability to act
when confronted with unexpected events) with the ergonomic
advantages of the robots (high precision, repeatability, and
strength) (Prati et al., 2021).
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The creation of mixed industrial environments, where
humans and robots co-exist and work for a common
goal reinforces the necessity of the insertion of cobots in
manufacturing process. IFR in accordance with ISO 8373
describes two different types of robots (industrial and service).
Cobots could be considered to be service robots, since they are
intended to work alongside humans; however, there are different
definitions of cobots, depending on the applications they are
used for. In the beginning, a cobot was defined as “an apparatus
and method for direct physical interaction between a person and
a general purpose manipulator controlled by a computer” (Bicchi
et al., 2008); however, due to the development of the sensors that
cobots use and because of the way they interact with humans,
this definition has evolved.

Active vision is mentioned as the capability of a robot to
actively perceive the environment and obtain useful information
for various tasks (Chen et al., 2011). It is used in plenty of use-
cases such as collaborative robotics (Queralta et al., 2020) and
industrial applications (Muhammad et al., 2017). The workflow
of a typical active vision or perception system, includes view
planning, motion planning, sensor scanning and map updating
(Zeng et al., 2020). After each stage information is collected and
update the status of the robot and its task goal.

In recent research, a cobot is referred to as a robot that has
been designed and built to collaborate with humans (Schmidtler
et al., 2015), or as a robot intended to physically interact
with humans in a shared workspace (Colgate and Peshkin,
2010). For this reason, the discussion has shifted to Human-
Robot Interaction and the way this interaction is achieved in
each application.

2.1. Categories of Human Robot
Interaction
HRI research has attracted the attention of numerous research
domains. For this reason, HRI can be classified into many
categories depending on the criteria that are used. Kopp et al.
(2021) and El Zaatari et al. (2019) distinguish HRI as functioning
on different levels, according to the workspace (separated or
common), the working time/steps (sequential or simultaneous)
and the aims (different or common) of the robot and the human
operator respectively. At the lowest level, human and robot
work alongside each other without a shared workspace (Long
et al., 2018). They have neither common tasks, nor actions, nor
intentions. Traditional industrial robots are used extensively in
such cases. At the second level, however, the human and the robot
share all or part of a workspace, they do not work on a part or
on a machine at the same time. Unhelkar et al. (2020) name this
type of collaboration as sequential, which implies that the human
operator adapts to the rhythm and the orientation of the robot,
since its velocity and its trajectories are pre-defined.

In a few industries, in recent years, humans and robots have
been working on the same part or machine at the same time,
and both are in motion (Cherubini et al., 2016). This level
of interaction is called human-robot co-operation and requires
advanced sensors and technology, like force/torque sensors or
computer vision. Despite the sharing of workspace and aim, the

human operator must adapt to the pre-defined temporal and
spatial profile of the robot. That makes this type of interaction
less natural than interaction between humans and, because of
this, different types of communication and collaboration are
established within the framework of Industry 4.0. Finally, at
the upper level, the robot responds in real-time to the worker’s
motion which is called responsive HRC. The combination of
artificial intelligence and high-tech sensors make robots able to
adapt their rhythm and motion to unpredictable incidents and
the anthropometric characteristics of the operator. The purpose
of this category is the transformation of the robot, from being
more than just a useful machine, to being a real collaborator.

Responsive Human-Robot Collaboration can be classified into
physical (pHRC, Ajoudani et al., 2018) and touchless (tHRC,
Khatib et al., 2017). pHRC can be divided into two different
categories, depending on the intended purpose of the touching.
On the one hand, there are operations which were intended to be
without contact, but where instinctively the operator touches the
robot. On the other hand, there are operations where the operator
presses or touches the robot on purpose and the robot reacts in
a particular way, depending on the amount and the direction of
the operator’s force. In the first case, the robot should perceive
the presence and the velocity of the human operator inside
its workspace and react correspondingly, either by reducing its
velocity or protectively stopping its motion in order to avoid a
collision, as noted by Michalos et al. (2015). In the second case,
Bo et al. (2016) note that the robot can either be used as a tool
which extends the capabilities of the human operator (strength,
precision etc.), or can be taught by demonstration in order to be
able to repeat a certain task precisely.

Long before the outbreak of Covid-19, which has necessitated
social distancing, industries were using technologies that
minimize the need for physical interaction among industrial
workers, enabling device operation at a safe distance2.
Contactless technology is a branch of control technology,
which has as its aim the establishing of communication between
computers/machines and human operators, without the need
for any contact whatsoever. It relies on the interpretation of
human movement and behavior, using ML algorithms and
sensors, namely RGB-D cameras, thermal cameras or Inertia
Measurement Units (IMUs, Zhang et al., 2020). The sensors
and algorithms provide the machines/cobots with commands
or instructions derived from the detection of facial patterns
(Melinte and Vladareanu, 2020), voice translation (Gustavsson
et al., 2017) and gesture recognition (El Makrini et al., 2017).

Contactless technology allows users to control digital or
industrial systems, using their anthropometric characteristics or
motion. It has gained a lot of attention in the gaming and
medical worlds, as well as in other fields, such as the automotive
and cultural industries. Human action recognition is one of
the tools used to achieve contactless communication between a
computer/machine and a human operator, and can be defined
as the conversion of a human/humanoid movement or signal
to a form understandable to a machine. Action recognition

2https://www.intel.com/content/dam/www/public/us/en/documents/pdf/the-

need-for-enabling-touchless-technologies-whitepaper.pdf
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enables the human operator to interrelate with a machine in
an environment characterized by the absence of means for
physical interaction.

2.2. Movement-Based Implicit and Explicit
Interaction
With a view to more natural HRC, the adaptation of robots, in
accordance with the temporal and spatial profile of the human
operator, has evolved into a very meaningful research topic.
Humans can be involved, beyond their traditional offline role, as
they can now interact with a cobot either explicitly or implicitly
(El Zaatari et al., 2019). Explicit interaction, on the one hand, is
what is referred to as direct communication between the robot
and the human. Implicit interaction, on the other, involves an
action (or practical behavior), which represents a message in
itself, rather than a message being conveyed through language,
codified gestures (such as a thumbs-up or nod of the head)
(Gildert et al., 2018) or other non-verbal, sensorimotor forms of
communication to send coordination signals (Pezzulo et al., 2013;
Vesper and Sevdalis, 2020).

Temporal adaptation can be achieved either explicitly or
implicitly. There is research where explicit interaction for
temporal adaptation is achieved through the use of a button3 or a
smartwatch (Michalos et al., 2018), thanks to which the operator
can inform the robot that he/she has executed a task. However,
if judged according to the previously-given definitions of HRI,
this case matches more with human-robot co-operation, as the
insertion of a button makes the interaction less natural. In the
research of Cherubini et al. (2016), force feedback and pointing
gestures are introduced as a means of HRC, in order to adapt
the temporal profile of the robot and create hybrid interaction. In
the present case, a totally implicit interaction is presented from
our previous research (Coupet et al., 2019), which uses gesture
recognition as a means to inform the robot about the percentage
rate of completion of the human gesture, in order for it to
react correspondingly. Such implicit interaction scenarios are
also implemented outside of industrial workspaces, as described
by Gabler et al. (2017) and Vogt et al. (2017).

The spatial adaptation of a robot to an industrial environment
is commonly presented as collision avoidance between the
robot and the human operator who share the same workspace
(Mohammed et al., 2017; Safeea et al., 2019). Apart from
their applications in industry, such adaptations are reported
in other research, such as that of Canal et al. (2018), where
the creation of a daily living assistant is presented. This
research describes a cobot that is able to readjust its trajectories
according to user movements and can thus handle incidents
which are unpredictable. In the context of the present article, a
spatiotemporal adaptation of a cobot, working according to the
desired handover positions and rhythm of a human operator, is
described. The goal of this research is to improve the perception
of robots, using professional gesture recognition in cooperation
with ergonomic parameters, with a view to creating a better and
more natural HRC.

3http://roboticsandautomationnews.com/2017/03/04/bmw-shows-off-its-smart-

factory-technologies-at-its-plants-worldwide/11696/

2.3. Machine Learning for Professional
Gesture Recognition
A significant amount of scientific work aims at making machines
smarter, improving their perception, enabling them to interpret
human behavior, and to learn and react in a way similar to the
human brain. In order to achieve these goals, solid results in
the field of activity and, more specifically, in the field of gesture
recognition are necessary, since this will permit more natural
Human-Robot Collaboration (HRC). Indeed, an essential goal
of the research community is the development of algorithms
that can accurately recognize and understand human actions.
Research on human action recognition focuses mainly on two
strategies; namely, Pose- (Skeleton-) based recognition and
Appearance-based recognition methods.

2.3.1. Pose-Based Methods for Gesture Recognition
The main goal of pose-based methods is gesture recognition
through the extraction of feature vectors which provide input
to the corresponding ML algorithm. Essentially, those features
are a set of coordinates able to describe the pose of a person
and give explicit details about their position within a space.
Pose estimation is usually performed using RGB-D cameras,
such as the Kinect camera4, or optical hand tracking sensors
such as the LeapMotion sensor5, algorithms, and modules such
as Openpose (Cao et al., 2021), Alphapose (Fang et al., 2017),
and Densepose (Güler et al., 2018), that use Deep Learning
architectures themselves, performing either 2D or 3D pose
estimation for both offline and online purposes, for the extraction
of body joints. In general, recovering 3D pose from RGB images
is considered more difficult than 2D pose estimation, due to the
larger 3D pose space and other ambiguities. A number of factors
can cause these ambiguities, such as body occlusions (Cheng
et al., 2019), skin color, clothing, an overloaded background or
quality of lighting (Rahmat et al., 2019).

Stochastic methods, such as Hidden Markov models (HMMs)
(Borghi et al., 2016; Bui et al., 2018) and Random regression
forests (Canavan et al., 2017), as well as DL methods, such as
Recurrent Neural Networks (RNNs) (Shahroudy et al., 2016;
Chalasani et al., 2018) have been used in various implementations
for gesture classification. In the works cited, the aforementioned
ML methods were used for the temporal correlation of the body
features, leading to satisfactory classification results. Yan et al.
(2018), in an attempt to create an algorithm that automatically
learns both the spatial and temporal patterns from data, leading
to a stronger generalization capability of the algorithm, propose
a novel model of dynamic skeletons called Spatial-Temporal
Graph Convolution Networks. Even though satisfactory results
can be achieved, extracting features from data can lead to the loss
of important information. The estimation of the human joints,
and thus the skeletization of the whole body, must not only be
absolutely accurate, but must be able to anticipate estimation
problems caused by any of the factors mentioned previously (i.e.,
lighting, occlusions etc.). Thus, what constitute the challenges
in these methods is not only the way that classification is

4https://en.wikipedia.org/wiki/Kinect
5https://developer.leapmotion.com/
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performed, but also the way in which accurate pose-estimation
is to be accomplished.

2.3.2. Appearance-Based Methods for Gesture

Recognition
In contrast with Pose-based recognition methods, Appearance-
based ones consider visual cues (i.e., color and edges), to reach a
gesture recognition result. Action recognition with these kinds
of methods, can achieve results end-to-end, through mostly
using sensors that extract visual information, such as RGB-D
or thermal cameras. The end-to-end results are obtained by the
hierarchical analysis of the characteristics of the visual input
(edges, lines etc.) and algorithms, such as 3D CNNs (Tran et al.,
2015), two stream fusion networks (Feichtenhofer et al., 2016)
and inflated 3D convolution (I3D) (Carreira and Zisserman,
2017). One could say that the two-stream (RGB and optical
flow) I3D models, based on 2D ConvNet Inflation, were a
breakthrough in this field, as such models made it possible to
learn seamless spatiotemporal feature extractors from videos,
while leveraging successful ImageNet architecture designs and
even their parameters.

There are many cases where the two categories of Pose-
based recognition and Appearance-based recognition methods
have been combined. Song et al. (2016) propose a multi-modal,
multi-stream DL framework for egocentric activity recognition,
using video and sensor data. They extend a multi-stream
CNN to learn spatial and temporal features from egocentric
videos, by using a multi-stream LSTM architecture to learn the
features from multiple sensor streams (accelerometer, gyroscope
etc.). Cao et al. (2017) perform egocentric gesture recognition,
combining traditional CNN architectures with spatiotemporal
transformer modules in order to address problems that arise
from the global camera motion, caused by the spontaneous
head movement of the device wearer. More specifically, a
spatiotemporal transformer module (STTM) is proposed, that is
able to transform 3D feature maps to a canonical view in both
spatial and temporal dimensions. The challenge of capturing and
recognizing images, from an egocentric view, lies in the fact that
we can identify two parallel movements, that of the background
and of the person themselves, and that of the camera that follows
the motion of the head, with the motion of the head not always
aligned to the motion of the rest of the body.

2.3.3. Human-Robot Collaboration With Artificial

Intelligence
Cobots are becoming ever more present in industrial
environments, as an automated solution, enabling industrial
workspaces to become more cost-effective, flexible, and
ergonomic. For this to be accomplished successfully, cobots
need to be equipped with tools that will make them adjust to
the workspace and help the industrial operator, without creating
an extra burden during the work process. These tools include
ML algorithms, such as Markov chains or HMMs, and DL
architectures, such as Convolutional Neural Networks (CNNs),
Recurrent Neural Networks (RNNs) and deep Reinforcement
Learning (RL) for gesture recognition, voice detection, working
environment surveillance, to mention only a few.

Machine learning architectures such as Markov chains or
HMMs are known for their applications in signal processing
and pattern detection. They are used to estimate the probability
of going from one state of a system to another and, therefore,
lead to data classification. The limitation of these methods is
connected to the fact that inserting images as input to be classified
according to their state probabilities, demands preprocessing.
This preprocessing concerns the extraction of features for the
creation of vectors that will constitute the required input.

Many research projects (Liu and Hao, 2019; Sharkawy
et al., 2019; Sharkawy et al., 2020) have used such approaches
to detect a collision based on robot sensor stream data,
or perform continuous gesture recognition (Tao and
Liu, 2013). In order to enable a smooth Human-Robot
collaboration, where the robot is able to synchronize, adapt
its speed and detect any unexpected incident, Coupeté (2016)
implements gesture recognition of professional gestures in
an automotive assembly-line using Discrete HMMs and
inertia sensors to finetune the results. Dröder et al. (2018)
use an ML-enhanced robot control strategy, combining
also a nearest neighbor approach, for obstacle detection
in an HRC scenario. All of the cases mentioned above,
require either the use of specific sensors that provide with-
time-series, or involve time-consuming pre-processing, as
previously discussed.

On the other hand, DL architectures, such as CNNs and
RNNs, are widely used nowadays in finance, robotics and
medicine. Such methods require a large amount of data in order
to be trained properly and, in most cases, require a great deal of
computational power and time. However, in some DL methods,
such as CNNs, preprocessing is not necessary, ensuring there is
no loss of information.

El-Shamouty et al. (2020), in trying to minimize the risk of
accidents in HRC scenarios, propose a deep RL framework that
encodes all the task and safety requirements of the scenario into
RL settings, and also takes into account components such as
the behavior of the human operator. Liu and Hao (2019) work
on a scenario of multimodal CNNs and use a Leap Motion
sensor for hand motion detection, as well as voice and body
posture recognition. Amin et al. (2020) aim to upgrade safety
and security in an HRC scenario, by using a combination of
human action recognition and tactile perception in order to
distinguish between intentional and incidental interactions if
physical contact between human operators and cobots takes
place. A Panda robot, along with a 3D-CNN for human
action recognition and a 1D-CNN for contact-type detection,
was deployed.

Most of the methods presented above are focused on specific
factors (safety, accident prevention, fast response from a cobot in
an HRC laboratory-implemented scenario), without considering
all the limitations, as well as the spatiotemporal variations that
might occur in a real-life scenario. Different users of the same
set-up have different anthropometric characteristics and different
behaviors when asked to perform the same action. The aim in
the present work, however, is also to examine the contribution of
an egocentric gesture recognition module with a Deep Learning
architecture in an HRC industrial scenario.
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FIGURE 1 | Evolution of Human-Robot Interaction (HRI) toward natural collaboration through human-centered Artificial Intelligence.

Figure 1 illustrates the potential of Human-centered AI
in contributing toward a more natural HRC. The more
anthropocentric the information that is extracted, the richer the
perception of the robot is. The more its perception is enriched,
the more it can predict human actions. In order for the robot to
collaborate with the human, it has to understand not only its tasks
but also human actions and intentions. At the beginning (level 0),
the introduction of traditional industrial robots is the baseline,
and the most common case in industry currently. There is no
interaction between the robot and the operator and the robot
completes a task very quickly and precisely. The first step toward
interaction (level 1) was achieved by giving the robot information
about the human’s presence inside its workspace. Both spatial and
temporal profiles remain constant and predefined, but when it
perceives that an operator is inside its workspace, it reacts either
by protectively stopping its motion or by reducing its velocity.
Moreover, the human action and gesture recognition (level
2), converts the temporal profile to dynamic, adapting to the
operator’s rhythm. In the present research, the development of a
dynamic spatiotemporal HRC framework is presented, receiving
the human’s actions and poses as input parameters (level 3).

3. PILOT SCENARIO

The use-case that was used for this research was derived from
industry and, in particular, from Arçelik’s TV assembly factory.
In the actual assembly line, the task is executed manually by two
different operators. The first operator has the task of picking
up the electronic cards and placing them on the TV panel. The
electronic cards are divided into two different types: the power
supply (PSU) and themain board (chassis), that are located in two
different boxes next to the conveyor belt. The second operator
is responsible for the screwing of the cards onto the TV. The

insertion of a temporal and spatial adjustable cobot, which can
perform the first part of the operation, is proposed.

Factories in the Industry 4.0 era need the high efficiency and
repeatability of the robots, together with the flexibility and variety
of products that a human operator can provide. The parallel
operation of a cobot and an operator on an assembly line was
examined. The experiments were as follows:

1. Physical Interaction
2. Physical Interaction and Spatial adaptation (Operator’s

pose estimation)
3. Physical Interaction, Spatial adaptation (Operator’s pose

estimation), and Sound notification
4. Physical Interaction and Gesture recognition
5. Combination of spatiotemporal adaptation and

sound feedback

Initially, the operator interacts with the robot only physically
(pHRC). This is accomplished through a Force Sensor (FS)
which is placed on the robotic arm, just above the end-effector
(Gripper). Every time the operator finishes with a task, s/he
presses the FS in order to inform the robot and make it advance
to the next position. The operator presses the FS to start the
routine. When the robot grasps the card, it brings the card to
a particular position. Then, the operator presses the FS again to
release the card and the robot advances to a waiting position. The
operator decides if the card is functional or not and presses the
FS accordingly. If the FS is pressed on the horizontal axis, the
card is not functional and the robotic arm returns to take the next
card from the same box. If otherwise, and the card is functional,
the operator presses the FS at the vertical axis, as always, and the
robotic arm continues and grasps a card from the second box.
When the operator takes the first card, s/he places it on the TV
board and s/he screws it in place. The same procedure is followed
also for the second card and when it is well-positioned on the TV,
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the operator presses the FS to inform the robot that the routine
is finished.

The physical interaction that has just been described is
complemented with a pose estimationmodule, during the second
experiment. The robotic arm does not place the cards in a
particular position, as previously, but instead is spatially adapted
to the anthropometric characteristics of each operator. This
procedure improves the pose of the operator ergonomically. The
skeleton of the operator is extracted, and the position and velocity
of each wrist is recorded. When the human’s hand is motionless
and in a position which is reachable for the robot, the robotic arm
records it and approaches it holding the card. A natural HRC
also demands the exchange of information. Thus, for the third
experiment, a sonic notification is inserted. This notification is
activated when the operator asks for the card at a position that is
not reachable for the robot.

Gesture recognition is implemented in the fourth experiment.
Physical interaction is used only for the release of the card.
Each card is delivered to a particular position, with the aim of
evaluating the added value of the gesture recognition module
in the HRC scenario. The camera that records the operator’s
gestures is placed on the operator’s helmet, thus offering an
egocentric view. The final experiment brings all of the 4 modules
together. Physical interaction is used for the release of the card,
pose estimation for the spatial adaptation of the robotic arm,
with sound notification and gesture recognition used in the ways
previously referred to. The aim of the final experiment is the
evaluation of all the modalities together, in order to see what the
positive contribution is for the human operator.

Through the execution of the aforementioned five
experiments, this research aims to evaluate the dynamic
temporal profile that is achieved through the implementation
of gesture recognition and the dynamic spatial profile that is
achieved through the implementation of pose estimation. In
addition, every experiment is executed twice, in order to indicate
the compliance of the robot to unpredicted incidents (actions
not corresponding with the work sequence). In Figure 2, the
architecture of the system is presented. Physical interaction
demands that the operator stop his/her task in order to inform
the robotic arm about the work sequence. The cycle time is
therefore expected to increase. The insertion of pose estimation
is expected to improve the handover position of the card for
each user; however, it will necessarily increase the cycle time
because of the path calculation for the position of the operator’s
hand. Sonic notification is supposed to decrease the average
cycle time, as each operator knows where to place the hand in
order to ask for the card. Adding gesture recognition will reduce
the cycle time as the operator interacts more implicitly with the
robotic arm in comparison with other types of interaction. Thus,
it is expected that experiments that contain gesture recognition
will improve the naturalness of the HRC scenario, with users’
responses gathered via questionnaires. The hypotheses that are
extracted from the above expectations are the following:

H1: Can gesture recognition facilitate the temporal adaptation
of the robot for reducing the cycle time in assembly lines?

H2: Can human pose estimation facilitate the spatial adaptation
of the robot for reducing the range of motion of the operator
and improving the handover position?

4. POSE ESTIMATION OF HANDOVER
POSITION FOR ROBOTIC ARM

During the execution of the experiments “Pose Estimation”,
“Sonic Notification”, and “Combination”, pose estimation is
used as a mean of interaction between human and robot.
The OpenPose6 framework is used for the skeleton extraction
of the operator. This framework detects the body key points
on RGB images and concludes with the extraction of 2D
positions for each body joint, using DL architectures. Pose
estimation, in the context of these experiments, was used
both to estimate the position of the operator’s right hand
and to calculate its velocity. The coordinates of the right
wrist, as extracted from the framework, are used. The camera
that is used for the pose estimation is placed parallel to the
operator, next to the conveyor belt. The framework extracts
the position of the wrist in the image frame counted in
pixels (X,Y) and an estimation of the distance on the Z
axis is counted in meters. The procedure of providing the
robot with the coordinates of the operator’s wrist consists of
two steps:

1. The first step is the conversion of the camera pixels to meters.
Initially, the Intel-RealSense RGB-D camera is positioned so
that the X and Y axes of the camera are parallel to the X and
Z axes of the robot, accordingly. Using the parameters of the
RGB-D camera that was used (focal length, principal point
and distortion coefficients) it was possible to convert pixels to
meters for each different depth value. The equations that were
used are the following:

x =
(X − cx) ∗ z

fx
y =

(Y − cy) ∗ z

fy
(1)

Where cx, cy is the central - principal point of the
camera (956, 538) and fx, fy is the focal point of the
camera (973, 973). The camera that was used has no
distortion coefficient.

2. As the position of the operator’s wrist was defined in meters
for the coordinate system (CS) of the camera (XC, YC, ZC),
the second step was the transformation of this CS to the robot
CS. For this transformation, the homogeneous transformation
matrix was used. For the X axis there is only transfer for d1, for
the Y axis there is rotation of 90o and transfer for d2, and for
the Z axis there is rotation of 90o and transfer for d3. Using
the direction cosines of the initial point of camera CS to robot
CS, the homogeneous transformation matrix is calculated and

6https://github.com/CMU-Perceptual-Computing-Lab/openpose
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FIGURE 2 | Architecture of the system.
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Figure 3 shows the experimental setup during the
execution of the experiments. Figure 3i presents the
view of the camera that is used for the pose estimation.
The skeleton that is executed through OpenPose during
the 2nd, 3rd, and 5th experiment is demonstrated. In the
meantime in Figure 3ii the egocentric view that is used
for gesture recognition during the 4th and 5th experiment
is presented.

5. EGOCENTRIC GESTURE RECOGNITION
USING 3DCNNS

For the temporal adaptation of the cobot to the behavior of
the human operator, a gesture recognition module was used
in the experiments “Gesture Recognition” and “Combination”,
which are described in detail below. Briefly, the gestures and
postures of different human operators, during the TV assembly
routine in an assembly line, were captured with a GoPro RGB
camera, segmented and used for the training of a Deep Neural

network with Convolutional Layers. The goal of this module
was the exploration of the contribution of gesture recognition
to an HRC professional scenario. The initial step for this
module was the creation of a collaboration protocol between
the human operator and the cobot. The parts of the use-case
described that included decision-making, were assigned to the
human operator, and those that did not, were assigned to the
cobot. The gesture recognition results were sent as IDs to
the cobot, which interpreted them and acted according to the
defined protocol.

5.1. Network Architecture
The DL method used for egocentric gesture recognition in
this work was 3D Convolutional Neural Networks (3DCNNs).
3DCNNs are the 3D equivalent of 2DCNNs, taking as input
a 3D volume or a sequence of 2D frames. Image sequences
with a size of c×l×h×w were used, where c was the number
of channels, l was length in number of frames, h and w were
the height and width of the frame, respectively. We also refer
to 3D convolution and pooling kernel size by d × k × k,
where d was kernel temporal depth and k was kernel spatial
size. All image frames were resized to 84 × 48, so the input
dimensions were finally 5 × 84 × 48 × 3. The network used
had 6 convolution layers and 3 pooling layers, 1 fully-connected
layer and a softmax loss layer to predict action labels. The number
of filters for 4 convolution layers from 1 to 6 were 32, 32, 64,
64, 64, and 64, respectively. All convolution kernels had a size
of 3 × 3 × 3, where d = 3, k = 3. All of these convolution
layers were applied with appropriate padding (both spatial and
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FIGURE 3 | (i) View of the experimental setup from the camera that is used for pose estimation. (ii) Egocentric view of the experimental setup from the camera that is

placed on the head of the user.

FIGURE 4 | Presentation of the TV assembly dataset, consisting of 11 classes in total, 6 gestures, and 5 postures.

temporal) and stride 1; thus, there was no change in terms of
the size from the input to the output of these convolution layers.
The standard ReLu activation function was used. All pooling
layers were max pooling, with kernel size 3 × 3 × 3. The
fully-connected layers had 512 outputs and dropout was not
used. The output of the network was a softmax with 11 nodes,
like the number of the gesture and pose classes. This network
proved to be the most effective, in terms of recognition accuracy,
after many experiments with network parameters and layers
were performed.

5.2. Industrial Dataset and Gestural
Vocabulary
The performance of 3DCNNs was evaluated by recording
an egocentric dataset, inspired by an industrial TV assembly
scenario. The main routine in assembling a TV is separated into

sub-tasks, performed by either a human operator or a robotic
arm. The objects that are involved in the assembly routine are a
TV frame and two TV cards, one green and one gold. The human
operator only performs gestures to interact with the robotic arm,
while physical interaction (activation of the force torque sensor)

is used only for the TV cards to be released by the gripper of
the cobot.

The dataset includes RGB sequences of images recorded

at a resolution of 848 × 480 and 20 frames per second,
presenting 13 users performing six different gestures that
correspond to six different commands. These commands, given
to the robotic agent by the human operator, along with five
postures that were captured during the TV assembly routine,
consist of a total of 11 classes, which are used as input to
the classification algorithm. The gestural vocabulary is given
in Figure 4.
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FIGURE 5 | Work-flow of the HRC system.

Gestures are performed in a predefined working space, with
a conveyor between the robotic agent and the human operator.
A GoPro camera7 is mounted with a headband on the head of
the operator, providing an egocentric view of the TV assembly
process. There are two main challenges connected to capturing
a dataset from an egocentric view. The first challenge concerns
the “double” movement of the hands and the head. The hands of
the operator move during the execution of the gesture, while the
camera moves along with the head, and is therefore not always
in accordance with the hands. The second challenge concerns
the fact that due to the short distance, from the camera to the
hands, and the field-of-view the camera has, the hands are usually
prominent in the frame, but can also be partly, or even totally, out
of the field-of-view.

More specifically, during the performance of the TV assembly
scenario, the operator performs Gesture 1 (G1) to indicate the
start of the assembly routine to the cobot. The cobot goes above
the box with the TV cards, then toward the green card, takes it
and hands it to the operator, who checks the card for functionality
problems. In cases where this particular card is not functional
(e.g., is broken, or has a missing part) the human operator
performs Gesture 10 (G10) to notify the cobot, which in turn
fetches the next green card. The operator verifies that the new
green card functions and performs Gesture 2 (G2) to confirm
the functionality of the card to the cobot. The operator places the
green card (Posture G3) on the TV frame and starts screwing it
in place (Posture G4). At the same time, the cobot approaches
the gold card and gives it to the operator, as soon as the screwing
procedure with the green card has finished. The operator then
performs Gesture 8 or 11 (G8 or G11), depending on whether the
gold card is functional or not. The above steps are repeated until
the two cards are placed appropriately on the TV frame, and the
TV is assembled. Finally, the human operator performs Gesture 6
(G6) to confirm the end of the assembly routine, until a new one
starts again with Gesture 1 (G1). The captured gestures have the
same duration, on average, apart from G4 and G5, during which
the operator screws the green and the gold cards respectively.

7https://gopro.com/en/fr/shop/cameras/hero9-black/

CHDHX-901-master.html?gclsrc=aw.ds&&gclid=

Cj0KCQiAjKqABhDLARIsABbJrGnysxveH64ikG8aUbTJACoVucx259TEujqz_

3cDlwFAZuE5Yhgi5zKoaAmbHEALw_wcB

To ensure the safety of the human operator, errors must be
avoided; thus, two control layers were employed in decision-
making. The recognized gesture ID was taken into consideration
only if the same recognition accuracy result, with a probability
of 100%, was extracted for twenty consecutive frames. The time
between the capture of the frame, up to the correct classification
of a gesture, was between 0 and 800 ms, thus leading to the
conclusion that no important latency was observed during the
performance of the HRC scenario. The extracted recognition
result was transformed to an ID from 1 to 11 and the result was
then sent to the cobot, through the use of a UDP communication
protocol. At this point, the second layer of security was added.
The thought behind this specific layer was based on the idea of
a specific sequence performed during assembling a TV, without
any important variations to be taken into consideration. Thus,
the received accuracy result was checked by the cobot and was
accepted only in cases where it corresponded with the expected
gesture ID that was defined according to the work-flow and the
scenario presented in Figure 5.

5.3. Gesture Recognition Results
For the evaluation of the performance of the gesture recognition
algorithm and the proposed methodology, the metrics of
accuracy and f − score were calculated. The f − score metric
is derived by a combination of the metrics recall and precision.
Those metrics are defined as shown below:

precision =
#(true_positives)

#(true_positives)+ #(false_positives)
(3)

recall =
#(true_positives)

#(true_positives)+ #(false_negatives)
(4)

f − score = 2
precision ∗ recall

precision+ recall
(5)

Concerning the accuracy, if ŷi is the predicted value of the i-th
sample and yi is the corresponding true value, then the fraction
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of correct predictions over nsamples is defined as:

accuracy(y, ŷ) =
1

nsamples

nsamples−1
∑

i=0

1(ŷi = yi) (6)

The network presented was initially trained on the TV assembly
custom dataset that was created as part of this work. The dataset
was split into training and validation sets with a ratio of 80:20.
The network was trained from scratch with a batch size of 32
frames and an Adam optimizer for 40 epochs. The accuracy
results for offline gesture recognition, with a sliding window of
5 frames can be found in Table 1.

After performing the same experiment, using only new users
to whose gestures the recognition module was not trained
(Table 1), it was observed that the network possibly needed to
be trained to a larger amount of data in order to be able to
distinguish the differences between the hands of the operator
for each gesture. For this to be achieved, an egocentric gestural
dataset, that was created during the work of Chalasani et al.
(2018), was used for transfer learning. The dataset consisted of
10 classes of gestures captured in an egocentric view in front of a
green background. The specific dataset included three iterations
per user, for 22 users in total. Even though the size of this dataset
cannot be considered appropriate for transfer learning, it had the
advantage of being easily customized and turned into a larger
dataset. In order for this to be achieved, around 100 images
that provided a view of the TV assembly background (TV frame
and TV cards), from different angles, were recorded. The green
background of the original dataset was removed and replaced by
a custom background, leading to a new, larger dataset, to be used
for transfer learning. The process involved in the preparation of
this dataset is shown in Figure 6.

To reach the final number of layers to be frozen, several
experiments were performed. It was noticed that freezing
network layers did not improve the recognition accuracy results,
so after the initial training of the network with the improved
dataset from Chalasani et al. (2018), the network was retrained,
using the egocentric TV assembly dataset. The 80:20 approach
was used again, and the stratification parameter was deployed
to split it in such a way that the proportion of values, in the
training set, would be the same as the proportion of values in
the test set, leading to a balanced proportion in the classes within
each. The recognition accuracy results, along with the f-score,
with both the 80:20 approach and the testing of the network with
completely new users, are shown in Table 1. Two diagrams of the
accuracy and loss for an experiment using transfer learning to
perform gesture recognition, with 40 epochs in total, with the
80:20 method is shown in Figure 7 for the visualization of the
convergence of the training and testing phases.

It was thus observed that transfer learning led to an
improvement of 11% in the accuracy results, in cases where new
users were introduced to the dataset, which is rather significant.
After running the same experiment, using early stopping, the
accuracy increased to 98.5%. Also, in Figure 8, the confusion
matrices are presented with only new users in the testing set

TABLE 1 | Recognition accuracy and f-score with and without transfer learning.

Accuracy (%) F-score (%)

Test with

no new users

No transfer learning 99.8 99.8

Transfer learning 99.9 99.8

Test with

new users

No transfer learning 84.68 60

Transfer learning,

40 epochs
95.7 97.2

Transfer learning,

early stopping
98.5 98.6

without the use of transfer learning (above) and with transfer
learning (below).

In the two confusion matrices presented, a significant total
improvement of 11% is observed, as already mentioned. More
specifically, for each gesture, in the case where transfer learning
was not used, G1 and G2 were not recognized correctly at all,
while when transfer learning is used, the recognition level rises to
100%. Even if these gestures are considered as simple and rather
static, transfer learning was required for the 3DCNN network to
be able to perform accurate recognition. Concerning G5 (Screw
gold card) and G9 (Place gold card), satisfactory results can be
observed even without transfer learning, which can be explained
by the fact that these two classes have the characteristic of the
introduction of the gold card, which makes them much more
discrete for the network than G1, G2, G3, G4, and G10.

We can indeed foresee that when the learning base
contains examples of an operator’s gestures, his/her future
gestures will be better recognized by the system. However,
since the implementation of 3DCNNs is a method with high
computational time demands, one of the goals of this work is to
examine if the proposed gesture recognition module can be used
in the assembly-plant directly, without any further training. At
the same time, we had to ask ourselves howmany iterations of the
same operator were necessary in order to have an improvement
in the recognition rate. InTable 2 and Figure 9, the improvement
rates in recognition accuracy are presented in the cases where 1, 3,
6, or 9 iterations of the test user were added in the training phase.
The baseline for these experiments is the result extracted when
there are no iterations for this operator in the training set. At that
point, a recognition accuracy of 95.76% was achieved, leading
to the conclusion that, indeed, the proposed gesture recognition
module could be used in an assembly line, without the need for
it to be trained with samples from each new human operator.
The rest of the results extracted provide an idea of what can be
deemed a sufficient amount of data to be used in the training
phase for the desired recognition results. In this particular case, it
was the number of 3 sets that gave the best results and reached an
accuracy level of up to 99.8%.

Other experiments performed using the same network
architecture, but with a TV assembly dataset recorded not from
an egocentric, but from a top view, provided results that reached
up to 96% with an 80–20 approach. Thus, the results with only
new users in the test set were much lower than the ones provided
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FIGURE 6 | Preparation process of the dataset used for transfer learning.

FIGURE 7 | Accuracy and loss diagrams of the experiment with transfer

learning, trained for 40 epochs in total.

in this work. This result enforces the added value of an egocentric
dataset, as in the top-view it was observed that in many frames,
important information for the gesture recognition module was
either occluded or out of the frame.

The results presented are compared to the work of Coupeté
et al. (2016) that used a Hidden Markov Models gesture
recognition engine, in a HRC assembly scenario. The authors
in this work, deployed Nearest Neighbors (k-NNs), geodesic
distances, as well as Hidden Markov Models, to perform gesture

recognition, reaching recognition accuracy results of 85%, with
a split of the training and testing data using the 80:20 method,
while when testing with unknown operators, the accuracy results
concluded to an accuracy of 80% in total. The method presented
in this specific paper, outperforms the recognition results of
Coupeté et al. (2016), showing very satisfying results.

6. CONTROL OF THE ROBOT AND
EVALUATION OF HRC SCENARIO

The cobot used in this scenario was the UR38 robotic arm from
Universal Robots. The external parts that were used for grasping
the cards and for the introduction of physical interaction were
from ROBOTIQ (gripper: 2F-1409 & force torque sensor: FT-
300-S10). For the control of the robotic arm, Robot Operating
System (ROS) was used. Official ROS packages were used, in this
instance, both for the control of the robotic arm (UR311) and for
the control of external parts (gripper & force sensor12).

As mentioned previously, during the execution of every
experiment, there were two different types of robot goal points.
First of all, there were the predefined points, like the waiting
position or the handover position in the experiments “Physical
Interaction” and “Gesture Recognition”. On the other hand, when
pose estimation was inserted, goal points that were estimated
on-the-fly were sent to the robot. ROS provides plenty of
libraries for the control of the robot. One of them, named
ActionLib was used to allow the motion of the robot through
a series of predefined poses. To be more specific, it takes a
series of robot poses to form a ROS action. To achieve tasks
using actions, the notion of a goal that can be sent to an
ActionServer by an ActionClient is introduced. The goal is a
PoseStamed message that contains information about where the
robot should move within its environment. For each position,
it computes the inverse kinematics solution to find the joint
angles corresponding to the end effector position. Through
this procedure, it creates a smooth trajectory and passes it to
the drivers of the robot for execution. For experiments with

8https://www.universal-robots.com/products/ur3-robot/
9https://robotiq.com/products/ft-300-force-torque-sensor
10https://robotiq.com/products/2f85-140-adaptive-robot-gripper
11https://github.com/UniversalRobots/Universal_Robots_ROS_Driver
12https://github.com/ros-industrial/robotiq
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FIGURE 8 | Confusion matrices with only new users in the test set. Without transfer learning (top) and with transfer learning (bottom).
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TABLE 2 | Contribution of the number of sets from the new user in improving

recognition accuracy.

Number of added sets

Improvement rates

of recognition

1 3 6 9

+2.2% +1.9% +0% +0.2%

pose estimation MoveIt13, a motion planning framework named
Open Motion Planning Library (OMPL) was used. From the
aforementioned pose estimation procedure, the position of the
operator’s hand was perceivable and was sent to the robot in the
Cartesian space. Therefore, for the specific motion of the robot,
the Cartesian path was computed using the MoveIt framework,
with specific constraints (same orientation of end effector and
safety restriction of velocity). Cartesian planning supports a type
of constraint that keeps the robot end effector upright, in order
to reduce the possibility of injuring the operator. Cartesian path
planning, through the MoveIt framework, satisfied the use-case
constraints, as the end effector moved along a straight line, using
waypoints interpolation.

Common metrics derived from the literature were used for
the evaluation of the proposed Human-Robot Interaction (HRI)
system as a whole, the effectiveness of the cobot, and the
opinion of the human operators about the Human-Robot (HR)
interaction. The evaluation of the system as a whole was able
to be measured by specific metrics, such as the efficiency of the
robotic arm. This included the time it took for the cobot to move,
in relation to the time that the whole routine needed. Had this
been extremely small, then this would have revealed that the
specific cobot could be used in two assembly lines in parallel,
thus speeding up the production process. The evaluation of the
effectiveness of the robot was able to be measured by metrics
such as neglect tolerance (NT), which is concerned with the
amount of time that a human can ignore a cobot, and also robot
attention demand (RAD), which measures the attention that the
cobot demands from the operator, depending on the degree of
Interaction Effort (IE) that is expected from the user. The smaller
this number is, the more realistic the interaction between the
human and the cobot is.

The NASA Task Load Index (TLX)14, is widely used as
a subjective workload assessment tool, which rates perceived
workload (both mental and physical) in order to assess a task.
A version adapted to the specific use case was implemented,
in order to evaluate the workload of the task of screwing of
electronic cards on a frame. In addition, for every experiment,
users were questioned about the relationship that was developed
between the robotic arm and them. Finally, users responded
concerning which experiment provided the most natural and
realistic collaboration.

13https://moveit.ros.org/
14https://humansystems.arc.nasa.gov/groups/tlx/

7. RESULTS

Every experiment was executed twice by 14 operators (the
group consists of 4 women and 10 men, aged from 23 to
44 with little and medium experience of the execution of
TV assembly). During each execution, the operator followed a
particular sequence of actions. Initially, s/he asked for the first
green card. The robotic arm brought it and the operator checked
to see whether the card was functional or not. S/he informed
the robotic arm, concerning the functionality of the card, and it
reacted accordingly. When the operator had a functional card,
s/he started screwing it in place. When the operator was finished,
s/he asked for the second card and the robotic arm brought it.
The same sequence of actions was executed until both cards were
screwed onto the TV panel.

In the first execution of each experiment, for each operator,
the first card of both types (green and gold) was deliberately
not functional. As mentioned before, the operator had to inform
the robotic arm about the functionality of the electronic cards,
depending on the type of interaction that was used in each
experiment. In the second execution, every card (of both types)
delivered was functional. The purpose of these two types of
experiments was to present the adaptation of the robotic arm
with a predicted interruption in the procedure. The cycle time
for each experiment is presented in Figure 10 by a whisker plot
showing and comparing distributions. Experiments with non-
functional cards of both kinds are referred to as Form A and
the ones with both cards functional are referred to as Form B. A
one-way ANOVA for experiments of Form B revealed that there
is not a statistically significant difference in cycle time between
different types of interaction [F(between groups df, within groups
df) = [0,29], p = [0,88]]. This can be justified as the time of
interaction is small and the main parameter that affects the
cycle time is the duration of card-screwing operation. However,
the questionnaires, which are presented later, proved that the
insertion of gesture recognition and pose estimation improves
the sense of collaboration and reduce the motion of every user.
A second one-way ANOVA test for experiments of Form A is
executed and confirms that cycle time changes significantly for
different types of interaction (F = [10,71], p = [9,91e-06]). During
the execution of the experiments of Form A, the completion of
the routine, when gesture recognition was implemented, lasted
20% less than the experiment “Physical Interaction” and about
13% less than the experiments where pose estimation was used.

Figure 10 presents the adaptation of the average cycle time
of the routine, depending on the sequence followed. The
cycle time of the routine is dynamic and from Figure 10 one
more interesting result appears. The fastest execution of the
routine takes place when gesture recognition is used as the
means of interaction between the operator and the robotic
arm. Furthermore, it is important to mention that in Figure 10,
the gap between the cycle time of the experiments of Form
A and B appears to be about 20% less in the experiment
“Gesture Recognition”. This metric is an indication that the
implementation of gesture recognition in this HRC scenario can
reduce the cycle time of the routine, even though predicted or
unpredicted incidents occur.
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FIGURE 9 | Performance improvement according to the number of gesture examples that are added in the training set and provided by a given user.

FIGURE 10 | Dynamic cycle time depending on the sequence. Form A: Experiments where the first card of each kind is non-functional. Form B: Experiments where

every card is functional.

Figure 11 presents the average timeline of execution of each
experiment of Form A. The purpose of this figure is the
presentation of the task of each participant in this collaboration
and the way that they interact. By way of comparison of
each of the interaction types used, the response time for
each interaction is given. Response time, in order to facilitate

this comparison, is defined as the time from the beginning
of the motion of the operator up to the moment that the
robot starts moving. The average response time of Physical
Interaction (PI) in all experiments is 1.63 s, as compared
with 2.87 s, which is the response time for Pose Estimation.
Gesture recognition is located between these two and amounts
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FIGURE 11 | Average timeline of each experiment (Form A).

to 2.01 s. Despite the fact that PI seems to display the best
response time, in Figure 11 the average cycle time of the
experiment “Physical Interaction” seems to be greater. This

can be explained by the fact that the robot interacts more
implicitly and less explicitly (i.e., through direct commands from
the operator).
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In the experiment “Physical Interaction”, the operator has to
stop his routine and inform the robot about his current action
(by pressing the button) which is replaced by recognition of
professional gestures and pose estimation in later experiments.
These two modules make the execution of the experiment faster.
In the case of the experiments “Pose Estimation” and “Sonic
Notification”, the information about the completion of screwing
each card is provided to the robotic arm by the position of
the operator’s hand (the operator lets go of the screwdriver)
and in the case of gesture recognition, the robotic arm is
constantly provided with information about the actions that are
being executed by the operator. In every experiment, there is a
particular sequence of actions that is followed by the operator,
which is a safeguard for the smooth execution of the routine.

In Table 3, the metrics that are used for the evaluation of
the HRC scenario are presented. Initially, the efficiency of the
robot (i.e., the percentage of time that the robot moves while
running a program-routine) is measured. During the execution
of experiment 1 and 4, the handover position is predefined
and the time that the robot moves during the execution of the
experiment doesn’t change (it is represented by an * symbol
in Table 3). The control box of the robotic arm certifies that
while the robotic arm is in motion, the power demanded is
approximately 100 W, whereas during the time that the robotic
arm remains motionless, it is about 75 W. Thus, this metric
informs the operator concerning the time during which the robot
is moving and, therefore, concerning the power demands of the
robot. As the cycle time of the routine of the experiment “Gesture
Recognition” is lower and the efficiency of the robot remains at the
same level, the motion time of the robot is less, compared to the
other experiments. However, by adding the gesture recognition
module to within the scenario, and thus a new computer that
exploits its GPU to almost its maximum capacity, as well as a
camera that provides streaming in real-time, this increases the
total power demand by 60 W. As the routine for the whole
TV assembly scenario using gesture recognition lasts 136 s, this
means an increase of 2.28 Wh for every TV assembled.

Neglect Tolerance (NT) and Interaction Effort (IE), that were
mentioned previously, are also presented in Table 3 with their
standard deviation in parenthesis. Robot Attention Demand
(RAD) is calculated using the following equation:

RAD =
IE

NT + IE
(7)

This metric provides us with information about how many times
the operator has paid attention to the robot and has provided it
with commands concerning the next step of the routine. As NT
contains the time when the screwing of cards is executed, RAD
is a metric that depends on the rhythm of each operator. The
greater the value of NT is, the less rich information the robot
receives about the human’s actions and intentions. Moreover,
the larger the RAD, the more the robot is able to understand
and adapt to its partner. The average, as presented in Table 3

and its standard deviation in parenthesis, shows that RAD is
stable among the last four experiments, despite the fact that NT
is significantly smaller during the experiments in which gesture

recognition is implemented. The reason that RAD is smaller
during the execution of the experiment “Physical Interaction” is
that theNT is greater, as the operator interacts only explicitly with
the robotic arm.

During the execution of the experiments without spatial
adaptation (SA), the operator receives the cards from a particular
handover position (PHP). The KPI that is proposed in equation
8 indicates the percentage of robot spatial adaptation in the
case of every operator. For the calculation of the KPI, the
distance from the waiting point (WP), to the particular handover
position for the experiments that is stable, is compared to
the adaptable handover position (AHP) for the experiments in
which pose estimation is implemented. Distances are measured
in centimeters. The higher the adaptation rate, the greater the
effort that was demanded of the operator during the experiments,
without spatial adjustment. As Table 4 shows, operators 3 and
12 asked for the card to be brought closer to the particular
handover position and as a result the robotic arm had to adapt
less than for the other operators. This KPI could also be useful
for discovering the position that each individual user prefers as
the handover position.

SA(%) =
‖AHP −WP‖ − ‖PHP −WP‖

‖PHP −WP‖
(8)

Where SA: spatial adaptation, AHP: adapted handover position,
WP: waiting point and PHP: particular handover position.

Human factors (or ergonomics) are defined by ISO 26800
as the “scientific discipline concerned with the understanding
of interactions among human and other elements of a system,
and the profession that applies theory, principles, data, and
methods to design in order to optimize human well-being and
overall system performance”. In order to achieve an optimal
level of collaboration, it is essential to take into account the
opinion of the human involved in operations with the robot.
To evaluate the execution of the experiments users responded
to two different questionnaires. Initially the workload of the TV
assembling task was estimated through the NASA-TLX. This tool
consists of a questionnaire with six items for evaluation: mental
demand, physical demand, temporal demand, effort, frustration
and performance.

11 out of 14 participants replied that the task they undertook
was neither physically nor mentally demanding. In addition,
none of the them felt that the pace of the task was hurried. Thus,
the reason that a cobot is used to substitute a human operator
for this task is the need for repeatability and the fact that a
cobot can not only repeat the same task many times, but can
perform the task precisely and fast. Every participant was able
to accomplish all the experiments and responded that they did
not find it difficult to interact with the robot and understand its
reactions. Due to the inexperience of some users, some errors
occurred during the execution of the experiments; however, this
did not affect the accomplishment of the task, as the robotic arm
was following a particular sequence of actions.

In addition, the participants were asked to categorize the type
of HRI of each experiment and to characterize the relationship
between the robot and the operator during the execution of each
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TABLE 3 | Average of HRC metrics for each experiment. Neglect Tolerance (s), Interaction effort (s), Robot Attention Demand (RAD), and Efficiency of the robot(%) (*no

spatial adaptation).

Neglect tolerance Interaction effort RAD Efficiency of the robot

Physical interaction 118.9 (σ : 5.4) 15.5 (σ : 3.2) 0.12 (σ : 0.001) 23*

Pose estimation 90.6 (σ : 3.8) 27.6 (σ : 4.1) 0.23 (σ : 0.001) 31 (σ : 0.3)

Sound notification 88.8 (σ : 4.1) 30.9 (σ : 4.7) 0.26 (σ : 0.002) 30 (σ : 0.8)

Gesture recognition 61.4 (σ : 3.2) 23.1 (σ : 2.6) 0.27 (σ : 0.001) 28*

Combination 88.1 (σ : 3.6) 30.0 (σ : 4.0) 0.25 (σ : 0.001) 29 (σ : 0.4)

TABLE 4 | Spatial adaptation (%) of each operator.

Operators 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Spatial adaptation 40.2 33.9 19.6 45.6 36.5 40.2 41.9 39.5 27.5 28.9 33.1 21.5 39.2 23.9

experiment. In section 2.1, the categories of HRI are analyzed
(Coexistance, Synchronized Cooperation and Collaboration). In
the first part of Figure 12, the types, from among which the
participants chose the category of HRI, are presented. The
majority of the respondents thought that the implementation
of gesture recognition in the experiment “Gesture Recognition”
and “Combination” strengthened the sense of collaboration, while
they felt that the first three experiments belonged to the category
of synchronized cooperation. All the participants considered that
with only “Physical Interaction”, the robotic arm was simply
following the human operator, which led to slower execution
of the task. Finally, as was mentioned before, the aim of this
research is to convert the robot from a useful machine to a
real collaborator. When only physical interaction was used (1st
experiment) most of the users felt that the robot had a supporting
role. However, 9 out of 14 participants declared that the insertion
of “Pose estimation” or “Gesture Recognition” made them feel that
their contribution to the task was equal to that of the robot.

8. DISCUSSION

The proposed methodology and the experiments concerning
the contribution of different modalities to an HRC scenario,
concludes by showing great potential for the future. Both
hypotheses that were defined at the beginning of this work, are
evaluated. Through the experiments performed, it was validated
that on what concerns the temporal adaptation of the robotic
arm, the insertion of gesture recognition reduces the cycle time
of the routine of every operator (by 20% on average), adding a
relatively small increase in energy consumption by the system.
The second hypothesis was concerned with the implementation
of pose estimation in order to achieve the spatial adaptation
of the robotic arm. According to the results collected, the
hypotheses presented are both valid. For 9 of the 14 operators,
the percentage of spatial adaptation is more than 30%, which
shows the importance of this modality regarding reducing the
operator’s effort.

Concerning the different modalities, gesture recognition
is proved to be capable of accelerating an assembly line

and of providing the human operator with a sense of
true cooperation with the cobot and not just coexistence.
Meanwhile, pose estimation offers the prospect of converting
the cobot to a partner who adapts to every operator. A
significant observation for pose estimation is that robot
attention demand is increasing while the average motion time
of the robot decreases in contrast to physical interaction.
The argument given above proves that the cobot possesses
more information about the human operator and as a
result it moves less during the routine, as it can predict
human’s motions.

In both gesture recognition and pose estimation modules,
the response time is satisfactory, within a challenging task, that
facilitates the spatiotemporal adaptation. A great improvement
in the accuracy of gesture recognition was noted after the
implementation of transfer learning, proving that the initial
amount of acquired data was not sufficient, even after a
few sessions of recording. 3DCNNs have to be robust and
extract confident results, even in real-time, with operators
that the network has not been trained with. Egocentric
gesture recognition might be a challenging task, but it can
lead to impressive results, independent of anthropometric
characteristics and clothing. The most important observation
that the gestural module provided, was the fact that it can
be used in a real-life assembly line with great results, without
retraining the network each time that a new human operator
was introduced to it. Even though handling data from an
egocentric point of view was a challenging task in order
for an accurate classification to be performed, and for the
safety of the human operator to be ensured, it provided great
potential for the future. Apart from this, the TV assembly
dataset created can be enriched with more classes in an
egocentric view from different professional environments, in
order for the proposed approach to respond to different
professional setups.

The operator’s sense of collaboration with the cobot
improved significantly because of the sonic notification. It
could be enriched with many different kinds of messages;
however, due to the fact that this use-case is intended for
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FIGURE 12 | (i) Categories of Human-Robot Interaction, (ii) Relationship between robot and human operator.

an industrial environment, simplicity has to be preserved.
Furthermore, the existence of many different sonic notifications
could create comprehension problems in the case of many
parallel assembly lines. The questionnaire validated the fact
that the task was neither mentally nor physically demanding.
The reason that it was used for this research was its
repetitiveness, because robots tend to take over the dull,
dirty, dangerous and dear (i.e., costly) tasks from humans,
otherwise known as the 4 Ds of robotization. Finally, according
to the answers of the participants, the implementation of
pose estimation made them feel that they participated equally
with the robot in the routine of TV assembly, while gesture
recognition enhanced the sense of collaboration in contrast to
synchronized cooperation.

9. CONCLUSION AND FUTURE WORK

In this paper, an HRC scenario is defined and different
modalities are evaluated concerning the cycle time of the
execution of a TV assembly routine and the naturalness
of this collaboration, according to the human operators.
The insertion of gesture recognition accelerates the
execution of the proposed routine by about 20%, reducing,
in parallel, the effort required of the operator, in order
to perform.

In this research, a new KPI regarding spatial adaptation
is proposed and shows that the insertion of a cobot with a
dynamic spatial profile that adjusted to the operators, changes
the handover position of the experiment by up to 40%.
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The ergonomic parameters of a task can be analyzed and
the robot adjusts its motion not only to avoid collisions
with the operator, but also in order to ergonomically
improve the pose of the operator during the execution of
their task.

Moreover, this paper opens up potential for investigating
industrial HRC scenarios and proposing intelligent and efficient
solutions on the road to Industry 4.0. This research could
have been enriched with experiments executed by professional
users from the industry; however, due to the conditions
imposed by Covid-19 restrictions, this was impossible. Our
future work will be focused on the upgrading of the robot’s
perception of the user and their environment, with an
aim to improving their collaboration. To this end, the
way that the robot can make best use of pose estimation
is investigated. Finally, the fact that the robot is able
to perceive through pose estimation, and to follow the
position and every action of the operator in real time,
undoubtedly improves their collaboration and further facilitates
the insertion of robots in common industrial work-spaces with
human operators.
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One of the fundamental prerequisites for effective collaborations between interactive

partners is the mutual sharing of the attentional focus on the same perceptual events.

This is referred to as joint attention. In psychological, cognitive, and social sciences, its

defining elements have been widely pinpointed. Also the field of human-robot interaction

has extensively exploited joint attention which has been identified as a fundamental

prerequisite for proficient human-robot collaborations. However, joint attention between

robots and human partners is often encoded in prefixed robot behaviours that do not

fully address the dynamics of interactive scenarios. We provide autonomous attentional

behaviour for robotics based on a multi-sensory perception that robustly relocates

the focus of attention on the same targets the human partner attends. Further, we

investigated how such joint attention between a human and a robot partner improvedwith

a new biologically-inspiredmemory-based attention component. We assessed themodel

with the humanoid robot iCub involved in performing a joint task with a human partner in a

real-world unstructured scenario. The model showed a robust performance on capturing

the stimulation, making a localisation decision in the right time frame, and then executing

the right action. We then compared the attention performance of the robot against the

human performance when stimulated from the same source across different modalities

(audio-visual and audio only). The comparison showed that the model is behaving with

temporal dynamics compatible with those of humans. This provides an effective solution

for memory-based joint attention in real-world unstructured environments. Further, we

analyzed the localisation performances (reaction time and accuracy), the results showed

that the robot performed better in an audio-visual condition than an audio only condition.

The performance of the robot in the audio-visual condition was relatively comparable

with the behaviour of the human participants whereas it was less efficient in audio-only

localisation. After a detailed analysis of the internal components of the architecture, we

conclude that the differences in performance are due to egonoise which significantly

affects the audio-only localisation performance.

Keywords: joint attention, multisensory integration, memory, decision-making, computational neuroscience,

human robot interaction, active perception, biological motion control
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1. INTRODUCTION

Robots approach a stage of technological advancement at which
they will become a frequent partner in our daily lives. At this stage
they regularly interact and engage in collaborative tasks with us.
Humans and robots have to coordinate their actions in a shared
environment in order to efficiently collaborate in these diverse
scenarios. While humans are good at coordinating perception

and action planning with their movements to achieve a common
goal, such complex coordination is still an open challenge in
robotics. When we collaborate with another human partner we
recruit typical perceptual and action coordination skills. One of

the most important coordination skills we use is joint attention
as a fundamental mechanism to coordinate our actions (Schnier
et al., 2011).

Joint attention can be defined as a shared attentional focus on

the same perceptual events between multiple individuals (Reddy,
2005). It is used to coordinate between each of the agents toward
a common object or event. Thus joint attention occurs as an
emergent condition when a salient event captures the attention of
both partners without a priori negotiation of the attentive target.
For example, when two people are discussing a painting they
are jointly seeing, the shared perception of the same painting
allows them to exchange information about the same object.
Joint attention is a natural phenomenon that we experience every
day and can be triggered by different means: environmental-
based (e.g., the appearance of a visual-auditory salient object in
the environment) and social-based (e.g., eye-gazing, pointing,
or other verbal or non-verbal indications) events (Mundy and
Acra, 2006). Mastering correct joint attention with a partner
is an important skill that facilitates collaborative interactions.
It allows us to share our focus with another partner, enabling
us to reason on a common basis. However joint attention not
only must be correctly shared between interactants, but the
timing of the focus shift also has to be comparable between
the human and robot. Jointly shifting attention to the correct
location is not necessarily useful if the timing fails to match
human timing, as the interaction will fall out-of-sync. Joint
attention has been studied extensively in humans, for its role in
the development of children (Moore et al., 2014), in language
acquisition (Tomasello and Farrar, 1986) and also as a way to
identify autism (Bruinsma et al., 2004). Most of the studies on
joint attention have been carried out in controlled environments,
due to its complex nature and the diversity of scenarios under
which it can occur. Current studies in joint attention between
a human and an artificial system have mostly focused either on
the human or the artificial agent performance. The assessment
of combined performance (including mutual influence) across
all the agents involved in the task is not common. A thorough
assessment of both human attention and the attention of artificial
agents would be relevant to the research community. In fact,
research evidence shows frequently that both agents influence
each other in joint collaborative tasks (Vannucci et al., 2017).

In cognitive architectures that take into account joint
attention processes in order to create rich collaborative
behaviours, other functionalities such as working memory might
participate in attentional refocusing. Such components provide

correct and accurate attention-timing and more importantly
promote the intelligent behaviour of an attentive capable robotic
agent. The influence that workingmemory has on the attentional
mechanism is relevant (Mayer et al., 2007; Shipstead et al.,
2014; Oberauer, 2019) but is rarely addressed in cognitive
architectures for collaborative robots. Workingmemory has been
defined as short-term memory used in order to proactively
reinterpret the information in order to better operate in the
environment (Miyake and Shah, 1999; Oberauer, 2019). Different
computational models of attention for artificial agents have been
proposed (Nagai et al., 2003; Triesch et al., 2006; Ognibene and
Demiris, 2013) to respond to visual (Itti and Koch, 2001) and
auditory stimuli (Treisman, 1996). However, these models do not
fully consider the potential role of working memory related to
the process of attentional focus redeployment. Some attention
systems have been designed and evaluated to specifically address
the context of collaboration between the human and the
physically present robot partner (Admoni and Scassellati, 2017)
but the potential role of memory remains only partially explored.
In this work, we intend to endow the robot with the ability
to rely on working memory, to reinterpret the information
acquired in previous instances and states in order to better attend
to the environment. Different possible computational models
of working memory have been provided in different cognitive
studies (Repovš and Baddeley, 2006) and in robotics applications
(Phillips and Noelle, 2005). Inspired by these previous works,we
provided the robot with a simple implementation of working
memory that improves the attentive performance of the cognitive
architecture for the humanoid robot iCub (Metta et al., 2008).
The implementation engage the working memory component in
a bio inspired decision making process.

Thus, we propose and evaluate the performance of a
computational cognitive architecture for memory-based multi-
sensory joint attention. Our goal with this study is to validate
emergent joint attention guided by our cognitive framework.
The architecture includes a multi-sensory attentional model,
a working memory, a decision-making element, and an
action executor (motor controller) to solve audio-visual stimuli
localisation with human-like performance. We implemented a
bio-inspired decision-making strategy (Murphy et al., 2016) for
multi-sensory integration that will take into consideration both
cognitive models of attention and the processing of working
memory. We aimed at studying how the cognitive architecture
responds in collaborative tasks between the iCub robot (Metta
et al., 2008) and a human partner. We address the concept
of joint attention emerging from a biologically-inspired multi-
sensory selective attentional process defined as the selection
of the relevant stimulus while ignoring irrelevant stimuli in
the current environmental state (Nothdurft, 1991). With the
goal of endowing an artificial agent with the ability to attend
salient objects as humans do (accurate in location estimation and
with optimal timing), we can promote emergent memory-based
joint attention in collaborative scenarios. To evaluate the joint
attention performance during unconstrained interaction and to
exploit mutual influence between the parts, we compared human
performance with the robot performance in a task in which both
agents are exposed to the same salient audio or audio-visual
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stimuli. In particular, we focused on decision making as our main
contribution, and we then addressed perceptual performance
(localisation accuracy and reaction time) during the task. Our
main testing and performance analysis is structured around three
main hypotheses: H1-Memory-based Decision Making Process:
The memory-based cognitive architecture is able to attend to
multi-sensory stimulation and correctly take a decision based
on the localisation process; H2-audio-visual vs. Audio only: The
stimulus localisation accuracy and reaction time of the robot in
audio visual task is better than in audio only tasks; H3-Robot
Performance: The performance (accuracy and reaction time) of
the robot will be as good as the performance of the human
participants in localising the stimulus.

In section 2, we give a high-level description of the cognitive
architecture and we describe the details of all the different
components developed for each cognitive architecture layer
(section 2.1). Then, section 2.2 describes the experimental design
that tests the performance of the cognitive architecture. In section
3, we describe the results of the experimental session, and in
section 4 we discuss the main results, drawing at the same
time, some conclusions on the performance of the proposed
cognitive architecture.

2. MATERIALS AND METHODS

2.1. The Cognitive Architecture
We designed the cognitive architecture (see Figure 1) with three
main goals in mind. The first goal was to build a multi-modal
(audio-visual) attention computational system to facilitate joint
attention between a robot and a human during an interactive
task. The second goal was to address the accuracy-time trade-
off in decision making inspired by human behaviour. The third
goal was to improve the attention, decision-making, and action
execution cycle by including a working memory component.
The first goal relates to the audio-visual perception component
while, the second goal concerns the decision making process.
Finally, the third one addresses the role of workingmemory in the
decision making process The cognitive architecture is composed
of four main building blocks. In this section, we will explain
in details the four blocks (Audio-Visual Perception, Decision
Making, Working Memory, and Action Execution). The details
will include the biological inspiration, the overall process, and the
connections between the different blocks.

The perception block uses early features from both of the
sensory inputs (the audio and the vision) to trigger the start of the
decisionmaking process. The decisionmaking processmodulates
perception to meet the task requirements and further sends
commands to the motor control for action execution. Finally, the
memory governs the entire process and is shared between all of
the units. We will also explain the technical implementation for
each component of the cognitive architecture after mentioned
the overall functionalities of the component. Figure 2 outlines
the structure and connections of our model’s modules. Starting
with the middleware, a software infrastructure that supports the
integration of different cognitive modules, we used YARP Metta
et al. (2010) (Yet Another Robot Platform) as our base. It is
a multi-language middleware designed for robotic platforms.

It is based on building multiple programs that run together
in parallel and connect with peer-to-peer communication. We
implemented our YARP modules using the C++ and python
programming languages.

2.1.1. Audio-Visual Perception
To facilitate attending to auditory stimulus, we built the audio
attention component based on an existing bio-inspired Bayesian
audio localisation model (Kothig et al., 2019). The auditory
attention component redirects the attention of the robot toward
salient auditory signals. The system is based on the biological
basis of how humans perform sound localisation. Humans use
different cues to localise sound sources: the interaural time
difference (ITD) and interaural level difference (ILD). Both
are differently recruited by the auditory system to derive the
direction of sound arrival. In our implementation we focused
on the ITD cue as the principal computational method since
there is a robust literature that uses ITD for sound localisation
in artificial systems (Argentieri et al., 2015). The general idea
behind ITD is to infer the direction of a sound from the
difference in time of arrival (TOA) between the two ears.
Different approaches have been proposed in robotics to compute
the TOA, the most common one is based on correlation
metrics (Hosangadi, 2019). This approach performs well but
is sensitive to noise and reverberation, which is problematic,
especially in presence of ego noise produced by robots. Other
biological systems in nature use ITD cues to localise sound
by employing either banks of coincidence detectors connected
by delay lines, as in the avian brainstem (Jeffress, 1948), or
more complex phase-tuned mechanisms as in the mammalian
brainstem (Grothe et al., 2010). The audio localisation model
used in this research modelled the spectral decomposition of
the human basilar membrane with a Gammatone filterbank and
model delay-tuned units in the auditory pathway as banks of
narrow-band delay-and-sum beamformers. To further deal with
the spatial ambiguities associated with interaural cues (Blauert,
1997), the model uses a Bayesian regression model that infers
the location of the sound source using the previous results of
the spatial localisation values. As a result the location is reliably
estimated in robot’s allocentric coordinate frame as a probability
distribution of sound source locations across azimuthal angles.
This probability distribution is used to create an allocentric
saliency map of the sound locations.

Another important aspect of attention is selective visual
attention which allows an agent to focus on salient points
in a visual scene. It acts as a filter, discarding non-essential
information and retaining only important information for
further higher cognitive processing. Itti and Koch (Itti and
Koch, 2001) proposed a computational model of selective visual
attention based on Treisman’s (Treisman and Gelade, 1980)
Feature Integration model of human visual attention. This model
uses bottom-up flows of information, which are combined into
a unified saliency map (Itti and Koch, 2001). In the Feature
Integration model (Treisman and Gelade, 1980; Ruesch et al.,
2008), the bottom-up information is processed to extract visual
features such as edges, intensity, motion, and chrominance. High
saliency within one of these low-visual feature maps allows the
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FIGURE 1 | Over all cognitive architecture with all the main layers.

model to orient the focus of an agent toward salient points such as
colourful objects, geometric forms, or moving objects. Following
this idea, in this work, we used the PROVISION attention model

developed for the iCub robotic platform (Rea et al., 2014).
PROVISION is an implementation of the attention model of Itti
and Koch for the robot iCub (Itti and Koch, 2001). It provides
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FIGURE 2 | Detailed representation of the system implementation architecture.

a modular tool for bottom-up attention, PROVISION integrates
the different visual features with a weighted linear combination,
enabling the ability to tune the importance of a particular visual

stimuli, for example, forcing the attention toward a bright object
by putting more weight on the intensity value. For the audio
visual model, we had to implement an integration algorithm
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where both visual attention and audio attention are aligned and
have the same representation. This integration is designed to be
processed in the integration and high level processing component
of the audio-visual perception block. In this component of the
architecture the auditory attention is integrated together with the
visual attention system. We remapped the allocentric auditory
map into a visual egocentric saliency map. Themap is then added
as a feature to the linear combination of the attention system
(already developed in the visual attention PROVISION model
Rea et al., 2014). The sound then reinforces the visual saliency
map at the corresponding azimuthal location only if the source of
sound is located within the field of view. The aim of this process
is to provide a unified multi-sensory saliency map which enables
identification of salient points from both auditory and visual
signals. After sensory integration, the output of the integration
process is a saliency integrated map. Next, the saliency selection
process happens, in which the system selects the point the model
needs to attend to. As found in other attention models (Ognibene
and Baldassare, 2015; Baldassarre et al., 2019), we moved from
the cyclical selective attention systems which are typically used
in robots to a temporally asynchronous method for selective
attention.We therefore implemented the temporal asynchronous
attention at salient changes in the landscape of the perceptual
sensors. This allows the system to resemble the asynchronous
attentional redeployment of humans. This selection is performed
on the integrated scene and based on a time variant threshold
which is defined based on a confidence-urgency trade off from the
decision making block. When the selection process is finished,
the selected point is then processed by the decisionmaking block.
This is where the Audio-Visual Perception block is connected to
the decision making block. It is also connected to the working
memory, in order to update the perceptual states in the memory
for a better memory based decision making process. In this
process a confidence-urgency trade off is performed based on
the state time and the stimulation states. More details concerning
the decision making block will be discussed in the following part
(Decision Making).

Another added component in the audio-visual perception is
the integration of prior knowledge for audio perception. The
prior knowledge is the spatial locations of possible stimulation
sources. This knowledge influences the perceptual abilities of the
robot. This process is inspired by biological evidence about the
importance of the prior knowledge in decreasing cognitive load,
improving learning abilities, and improving perception (Cook,
2006; De Lange et al., 2018).

In Figure 2, the PROVISION model is highlighted with a
yellow background colour and the audio Bayesian model is
highlighted in a green background colour. The following part
of this section is explaining in details the implementation of the
added components to the audio-visual perception block which
was mentioned above in brief.

2.1.1.1. Trigger, and Prior Knowledge Integration
In order to overcome false positives coming from ambient sound
in the environment, we integrated a power detection algorithm
along with our sound localisation system as a relevant attentive
mechanism in human audition (Rohl and Uppenkamp, 2012).

We aimed to test the reliability of the sound power as an early
informative feature. We added the calculations of the sound
power in an early stage (audio prepossessing module) of the
audio input. Using a fixed threshold on the total power for both
audio channels, the system can determine whether the audio
signal is high enough to be considered a valid sound or is just
ambient noise. The threshold is autonomously extracted from
the environment. The instantaneous sound power is used as
an input to the trigger block. The trigger module receives the
audio power processed by the audio prepossessingmodule. Based
on a defined threshold for the instantaneous power, the trigger
outputs signal to a higher level audio perception module (Prior
Knowledge integration & saliency transformation) and also to
the decision making block. Additionally, it updates the working
memory which will be explained in a separate section.

Moving to the prior knowledge integration and saliency
transformation module, we define two aspects of prior
information for the audio stimulation. The first aspect is the
possible locations of the stimulation. As the current audio system
only considers the azimuth angle, this information is in a form of
two lists. The first list is of angles describing where in azimuthal
space the audio stimulation might be occurring and the second
list is the spatial resolution of the angles, which reflects the size
of the stimulation source. Thus for each stimulation source
in the scene, we express the location in azimuthal allocentric
angles from the robot’s head axis as (X degrees ± resolution).
These angles and their resolutions are the only locations that
are considered from the allocentric probability map and the
rest are ignored. The allocentric probability map is the output
of the audio localisation model, which is a set of 360 values
that represent the probability of the sound source’s location at
any arrival angle around the robot. These probabilistic values
correspond to the 360 degrees centralised around the head axis.
After considering the prior defined locations only, the resulting
map is normalised to keep the Bayesian representation in the
form of a probability distribution. By integrating this prior
knowledge, we force the model to only focus on pre-biased
defined locations. The second prior for the audio stimulation is
the stimulation audio power. It is used to identify the threshold
level of the sensitivity of the trigger. The trigger gives a high
output if the audio power exceeded the threshold, which is the
defined stimulation power level. Conversely, the trigger gives
a low output if the audio power is less than this threshold.
This signal is used to activate the transmission of the Bayesian
map after adding the priors to the next stages. Otherwise,
the transmitted map is a zero map. The trigger supports the
prior knowledge module with the trigger signal to activate and
deactivate the map transmission.

The next process is saliency transformation. The input of
this process is the resultant Bayesian map after adding both
priors (the stimulation activation level and the sources angles).
The whole map is then multiplied by a total audio power
and a scale factor. The audio power multiplication gives more
importance to high stimulation than low stimulation (both
are above the threshold level) and the scale factor transforms
from Bayesian values (0–1) to the values of the monocular
image (0–255).
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2.1.1.2. Audio Egocentric
The input of this module is an allocentric audiomap, created after
biasing the possible locations of audio sources. The allocentric
map is 360 values for the 360 degrees of the azimuth plane.
On the other hand, the visual attention system is egocentric
with a retinotopic reference. The camera moves as well as the
head of the robot, and based on these movements the robot
sees different parts in the space. The aim of this module is to
align the allocentric output of the spatial auditory system with
the egocentric spatial vision. To integrate the audio to the visual
attention system we had to perform this alignment. To achieve
this task, the module needs to know the current state of the
locations of both the head and camera in the azimuth direction.
The process of extracting the egocentric map is based on the
current locations on the camera and head in azimuthal direction
and the camera parameters. The camera parameters specify the
width of the area of vision, while the location states of the camera
and the head specify the middle value in the area of vision range.
Knowing the middle angular value and the angular width of
the sound source, the module computes the starting and ending
degree angles which then are extracted from the allocentric map.
This is the first stage of the audio egocentric module which has an
output of a subset from the allocentric saliency map of the audio.
The second stage involves scaling these values vertically and
horizontally to be in equal size with the frame size of the visual
image. The horizontal scaling assumes that the audio source is
from the horizontal level in the scene as we only consider the
azimuth plane in the audio localisation module. The output of
the scaling stage is now ready to be integrated as a feature in the
PROVISION attention system with a defined weight in the linear
combination part.

2.1.1.3. Attention Manager
The attention manager is a central control module. It is
responsible for analysing the combined scene from the output
of the linear combination block of attention. The analysis is
basically computing a confidence level. We propose a novel
approach of recognising the unique target point of the scene
to avoid continuous movement between different points. It is a
measurement of the confidence level of uniqueness for the most
salient point of the scene. We called this measure gamma value
(Ŵ). The gamma value (Ŵ) represents how much the most salient
point differs from the average salience across the scene. If the
(Ŵ) value exceeds a threshold, then this point is identified as
unique point of attentional interest. We call it a “hot point.” Ŵ is
computed by calculating how far is the saliency of the maximum
point from the triple of the standard deviation:

Ŵ = max_value−mean_value− 3σ (1)

Where σ is the standard deviation of the combined saliency
image. The Ŵ value gives information about the confidence level
of uniqueness. Higher values are more likely to be a unique
target whereas low values mean that in the scene there are
multiple salient points with similar level of saliency. When a
unique target is recognised [(Ŵ) value is greater than the current
confidence threshold], it sends the selected point to the next

connected elements in the architecture which is the decision
making controller in the decision making block.

Additionally, the attention manager block receives
manipulation commands for the threshold value from the
decision-making layer. The threshold here represents the level
of the confidence in which action is required. Therefore, the
attention manager here can be presented as a trigger that
acquires an action execution process for that current scene
from the decision making block. Also, the module is able
to fully control the process of suspending and resuming the
attention process as well as the linear combination parameters.
To summarise this part, the attention manager presents the main
control unit of attention. It has the ability to change the attention
parameter. It receives commands from other parts in the system,
and finally it communicates with the other parts of the system
and sends combined information about the current scene.

2.1.2. Decision Making
From research theories elaborated on in the previous decade,
visual processing in humans and animals triggers a decision-
making mechanism in the form of a higher-level process, relying
on the extraction of low-level features and properties from visual
input (Vanrullen and Thorpe, 2001). This process is meant to
evaluate the perceptual output properties and their relevance to
the current goal and expectations.

Decision-making processes inspired by time-invariant
models have been adopted for decades by the computational
neuroscience community (Ratcliff and Smith, 2004). These
models are based on a decision-making signal, which is triggered
by a fixed threshold. The process integrates confidence over time
and once the confidence reaches the fixed threshold, the decision
is made and the signal is executed. Recent studies, Murphy et al.
(2016), Ditterich (2006), Churchland et al. (2008), and Saaty
(2007) have shown that the time dependency of the decision
making process and the urgency of signals are invoked by
humans. These findings show that humans may make decisions
with different levels of confidence based on urgency. The more
urgent the decision, the less confidence may be accepted. This
urgency-based process allows humans to adopt time-variant
pressure to execute actions (execution pressure) as a time-variant
variable. The first study also showed the existence of neural gain
modulation for urgency generation in humans, which implies
the existence of a modulation signals. These signals are initiated
to express urgency and modulate the confidence level.

Inspired by the biological evidence of the time-variant
decision making processes, we propose a model for the multi-
sensory decision-making process that recruits a time-variant
decision-making signal. The model performs four main tasks.
The first one is tracking the changes in the working memory
to detect the state change of the stimulation. The second task
is threshold manipulation based on the urgency. This second
process is the main element which addresses the time-variant
feature of the decision making block. The third task is analysing
the relevance of the received spatial location within a predefined
task by the experimenter. The experimenter should define the
relevant working area and the required information to perform
the projection. The last task is sending the action execution
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signal to the action execution block based on the required
actions which are also defined by the experimenter. These tasks
are defined within three parallel processes. The first process
aims to respond to the signal coming from the audio visual
perception block that shows the presence of the stimulation
and that the urgency of taking a decision should start. The
second process is to predict the spatial location of the source
of the stimulation from the 2D response of the audio visual
perception. Finally, the third one is evaluating the relevance of
this stimulation based on its 3D location. The first process works
as the urgency trigger which starts a modulation signal for the
threshold value of the confidence level for the localisation task.
Once the confidence exceeds the threshold, and based on the
defined task, the evaluation of the signal starts. If it is relevant
to the task then the action is executed.

2.1.2.1. Decision Making Controller
The decision-making controller block is the module responsible
to control the flow of decisions, manipulate the threshold
of the confidence level in the attention manager, analyse the
salient perception output based on the context and finally send
the request to the action execution system. The control flow
consists of two parallel processes. Each process has events that
trigger behaviours. The aims of the first process is receiving
the salient hot point from the attention manager, analysing
the relevance of this point based on the task information, and
finally sending action execution commands if it fulfills the
action requirements. The second process is responsible for the
control flow and manipulation of the threshold. The following
part will explain the events and the behaviours for both of
the processes.

In the first process, we have three events that set and reset
behaviours. The first event is a trigger event from the audio
stimulation. This event sets the decreasing threshold behaviour
which sends commands to the attention manager to subtract a
defined decreasing rate from the current threshold value. This
signal is an urgency signal to the perception block. The second
event is the action execution. If the action is executed, the action
state in the working memory is set and the decreasing threshold
behaviour is reset. The final event is the off trigger of the
stimulation. This event sends a resetting signal to the attention
manager to reset the threshold and to the action execution block
to return the robot to the home position. The resetting signals
have two different delays. The threshold reset signal is sent after
0.5 s after the off trigger of the stimulation. The home reset
signal is sent after 4 s from the off trigger of the stimulation.
These delays are chosen to maintain the stability of the system.
The setting and resetting flags for the action, thresholds, and the
stimulation are saved and recalled in the working memory which
will be explained in the next section.

In the second process, there is only one event, which is
receiving a salient hot point under the condition of the idle
state. This event starts the evaluation of this point in the task
context. The evaluation is the relevance of the 3D projection of
this point to the predefined working area in the environment.
Knowing the 2D coordinates of the hot point received from the
attention manager and the equation of the plane of the working

area, we calculate the 3D location in the environment. Based on
the defined task, the decision is made whether to do the action or
not, and which action to do based on the projected 3D location
of the hot point. If the action is done then the action execution
event is triggered.

As explained here the processes are parallel. However, they are
interconnected, and both are dependent on each other. So the
second process is only running when the robot is in the idle mode
and the mode of the robot is controlled by the second process.
And in the first process, there is a behaviour that is triggered
by the second process which is action execution when the mode
is changed by the second process. Following the assumption of
ignoring the vertical component in the audio stimulation, we
implement a function to force the vertical component of the 2D
hot point to meet the location of the stimulation sources. This
is done by estimating the vertical component given the current
head altitude angle and the vertical field of vision. The robot
identifies the stimulation source by calculating the distances
between the projected 3D location and all the stimulation source.
The source corresponding to the minimum distance is the
winning location. Finally, the decision-making block sends an
action execution command with information about the localised
stimulation source to execute an action.

There is stored information related to the task and
environment. This means that in this block, the task is defined
with its requirement. The task is a defined action under a
certain stimulation condition. The task related information is
information about the stimulation conditions, the starting level
of confidence of the stimulation, the modulation rate which
defines the urgency-accuracy trade off, and finally the required
action when the conditions are applied. On the other hand, the
environment related information in the action execution layer
is a higher level information. It includes the locations of the
relevant stimulation sources, the working plane, and the action
execution parameters. This information helps the robot to project
the action from the 2D egocentric frame of the vision to the 3D
world and execute it in a proper way. More information related
to this section will be explained in the experimental setup section
of the paper.

2.1.3. Working Memory
The concept of working memory has emerged in psychology
literature as a broad set of mechanisms that explain this
accumulation of perceptual information over time. Psychology
researchers have shown the relationship between attention
and working memory (Schweizer and Moosbrugger, 2004;
Phillips and Noelle, 2005). They have shown the irreplaceable
role of working memory in solving cognitive problems by
maintaining some essential information for certain tasks that
involve monitoring the environment. Based on this information,
we added a working memory element in our model to endow
the robot with this ability. The working memory in our
model maintains essential environmental and internal states
for understanding the current scenario and for executing the
correct action in the defined task. In our working memory
model there are two main memory components. The first one
is the stimulation states and the second one is the actions
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states. The stimulation states define whether the stimulation
is currently on or off and track it, whereas the actions
states define whether the robot is executing the action or has
finished the execution or still hasn’t executed it for the current
active stimulation.

As shown in the Figure 2 the working memory block is
bidirectionally connected to both the decision making and
perception components. In our implementation, we developed
a state working memory. It stores the states of the stimulation,
action, and confidence level to enable better interaction with
the environment. The stimulation states define whether the
stimulation is currently on or off and track it (for both vision
and audio). The audio stimulation state is set based on the
audio trigger, while the visual stimulation state is defined by
the gamma value of the scene. If the gamma value exceeds
the threshold, there is a visual stimulation. The attention
manager block is responsible for maintaining the stimulation
state. Whereas the actions states define whether the robot is
executing the action or has finished the execution or still hasn’t
executed it for the current active stimulation. The decision
making controller maintains the state of the action execution
as well as the confidence threshold. The attention manager
and the decision making blocks are recalling these states in
their processes. The working memory block ensures a stable
robotic behaviour for attention, decision making, and action
execution cycle.

Another aspect of the working memory system is the
habituation process. It is a perceptual stage necessary for the
humanoid robot iCub to memorise the specific conditions
of the environment, as well as details about the human
partner. Habituation is a well-studied process in psychology
and neuroscience. It is the simplest form of learning (Rankin
et al., 2009). It is defined as the process of learning how to
filter out irrelevant stimulation and focus only on the important
stimulation. (Groves and Thompson, 1970; Wagner, 1979). It is
an important biological process for an effective learning. In this
work we implement a simple form of habituation which allows
the robot to learn the baseline sensorial characteristics of the
environment and of the human partner in order to properly
compensate during the task.

From the implementation point of view, the cognitive
architecture comprises of a habituation signal that is sent to
the decision-making block. This signal changes the current
task to calculate some parameters from the scene in a defined
time period. This signal also informs the process that the
stimulation will be presented, and it is required to see the
effect of this stimulation and memorise it. When this signal is
received, the decision-making block starts to analyse the scene
and records the changes. More specifically the Ŵ value changes.
After the defined time period for the habituation process, the
initial threshold of the confidence is set by the maximum Ŵ

value during the habituation process, minus a fixed value as
a sensitivity zone. The initial threshold value is one of the
relevant details in the human robot collaboration with the
human partner. In particular, this threshold changes based on
the visual environment, which includes the presence of the
human subject.

2.1.4. Action Execution
The action execution block receives commands from the decision
making block and then executes these commands by performing
whole-body motor execution of a required action. The action is
previously learned by the robot. The motor action execution is
expecting an allocentric location in the working environment. By
providing a reasonable assumption about the task, its context,
and working area, we were able to define the attentive plane in
a geometrical representation. Applying projection on this plane
we estimate the allocentric representation of the required point.
Based on the task, we assess the spatial relevance of this point and
check if this point relies on the predefined working area of the
current task. The implemented module for the action execution
is called attention action linker.

2.1.4.1. Attention Action Linker
The attention action linker interprets the decision and executes
the motor commands. The decision-making layer gives the
command to the action execution layer with the result of the
decision task. The linker also controls the motor action by
enabling or by disabling it. The actions are predefined in the
current task. In corresponding to the stimulation source there
are two actions, the gaze action, and the point action. This part
of the architecture is more task oriented. In this module, the
response actions of the robot are defined based on the stimulus
location. Themain goal of putting this module in the architecture
is to enable taking actions after finishing the perception process
and making an attentional decision. In the Experimental part we
will talk about the Implemented actions for the defined task in
the experiment.

2.1.5. Incremental Approach
To sum up, our main contribution is the integration of:
perceptual processes, working memory and its rule in attention,
time-variant decision making, and finally the action execution
into a complete cognitive architecture. Delving deeper into the
details, the audio-visual perception has four main contributions.
The first one is adding new modules on the top of the audio
Bayesian localisation model to create an audio salient based
allocentric attention representation. Secondly, the multi-sensory
integration, by embedding the audio saliency map as another
feature map in the linear combination of the PROVISION
model. The third contribution, is the implementation of the
asynchronous selection of the saliency. The last contribution in
the perception block is the integration of the prior knowledge
into the audio attention component to improve the localisation
abilities of the robot.

For the decision making block, our contribution relies on
the computational implementation of the time-variant threshold
manipulation which addresses the confidence-urgency trade off
in perceptual decisions. Our final contribution is the integration
of working memory in the cognitive architecture, which is
inspired by human cognition.

2.2. The Experimental Setup
We test our hypothesis by performing a joint human-robot
attentional task in an unstructured environment. The rationale
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behind the design of this experiment is the facilitation of the
decision making process evaluation, the performance of the
system in different stimulation modes (audio-visual vs. audio
only), and finally, the comparison between human and robot
performances. Figure 3 shows the experimental setup. The robot
is facing the human participant. In between, there is a table
that has the stimulation board and a keyboard in front of
the human participant. The stimulation board is approximately
centralised between the robot and the human with 57 centimeters
distance to both. The height of the chair where the participant
sits is configured so that the human is on the same level as
the robot. This height places the stimulation board within an
optimal location for the field of vision for both the robot and
the participant.

2.2.1. Participants
We conducted the experiment with 21 healthy participants
(female: 14, male: 9) aged between 26 and 43 years old, with
an average age equal to 30.5 ± 4. All participants voluntarily
participated and signed an ethical and information consent
approved by an ethical committee at San Martino Hospital in
Genoa, Italy. All the participants work within the institution with
no direct involvement to the research.

2.2.2. Stimulation
We built a stimulation setup which consists of four identical
boxes. The boxes are placed horizontally on the same line. We
noted the names of the boxes with respect to the robot’s frame
of reference: (FL) for the far left box, (ML) for the middle left
box, (MR) for the middle right box, and (FR) for the far right
box. Each box can produce both audio stimuli and visual stimuli.
The visual stimuli are produced by a smart bulb. The smart
bulb emits up to 800 luminous flux. We use red colour with the
maximum luminous. The audio stimuli are produced by a three
watt Bluetooth speaker. Both the bulb and speakers are embedded
inside the box. The top layer of each box has holes where the light
and sound waves can prppagate through, but that hide the smart
bulb. The width of the box is 9 cm. The boxes are placed with
15 centimeter separation distance (center to center). Therefore,
the distance that separates the boxes is 6 cm. We placed the
stimulation boxes in this configuration with the given spacing
to make sure that all boxes are within the direct field of view
(the view with a zero yaw angle for the face) of both the robot
and the human participant. Additionally, we made the task more
challenging byminimising the distance between the boxes. As it is
proven that human perception matches sound sources and visual
sources for angles as large as 30 degrees apart (Jack and Thurlow,
1973). we selected a long distance as half of 30 degrees and a short
distance as one fourth of these 30 degrees. This drove our choice
for the configuration setup. We use a complex tone with a 1 KHz
fundamental frequency and 3 harmonics for audio stimulation.
The visual stimuli is a red light emitted from a smart bulb. The
choice of the complex frequency and the red colour is because of
their high saliency compared to other colours for the vision, and
simple tone for the audio. This was chosen to ease detection for
both the human and robot.

2.2.3. Task Description
The task for both the human and the robot is to identify the
active stimulation box and react as quickly as possible. There are
two types of activation for the stimulation boxes. The first type
is audio only stimuli and the second type is audio-visual stimuli.
Only one box can be activated at a time. The stimuli are activated
for a fixed time (10 s). The time between rounds is also fixed
at 10 s. The stimulation trials were distributed equally over the
four boxes. So, each box was turned on 25% of all trials. Also,
the stimulation types were distributed equally. 50% of the trials
were auditory-only and the other 50% are audio-visual. Each box
was activated for 8 trials, 4 of them were audio-only and the
other 4 were audio-visual. The sequence of trials and the type of
stimulation were randomised, but fixed across participants.

In the implementation section, we mentioned that the user
defines the task for the robot and gives to the system the required
information for the task and its environment. Therefore, we
defined the task on the top of the attention system. The task
is to localise the stimulation from a set of defined sources
located horizontally in front of the robot. After localising the
location, the robot should execute gaze action (to look to the
stimulation source) and point action (to point with the arms
to the stimulation source. We provided the robot with the
environment related info which are the working plane where the
stimulation sources are located, and the working area on this
plane. Additionally, we informed the robot that the stimulation
sources are in that defined area in space. Consequently any
localised stimulation within this area is considered as relevant
to the task. If the localised stimulation is outside this area,
then the robot ignores it as it is irrelevant stimulation. Extra
environment information was added to the robot here, including
the stimulation sources count and location. After localising the
3D location of stimulation, the robot should identify the source
of this stimulation from the defined set of sources. To sum up, the
task is stimulation localisation which is estimated in the decision
making layer. This task divided into 2 stages, the first stage is
localising the stimulation within the 2D frame and the second
stage is to check the relevance of this stimulation when the 2D
location is projected into the 3D world. If it is relevant, then the
robot will execute the action. The next section is describing the
defined actions for the robot and also for the human participant.

2.2.4. Human/Robot Reaction
We placed a keyboard in front of the human participant. On
this keyboard, eight buttons were highlighted in four groups.
Each group consisted of two side by side buttons. The human
participants were requested to react as fast as possible by pressing
any of the two buttons within the buttons group, which correlated
to the activated stimulation box. We decided to use two buttons
in the keyboard to increase the pressing area in order to simplify
the action and minimise the execution time. On the other hand,
we defined two actions associated with each localised stimulation
box. The first action is a pointing action using the arm, the hand,
and the fingers while the second action is a gaze action using
the head and the cameras (eyes) of the robot. For the right side
boxes the robot will point to the selected box (FR,MR) using
its right hand. Similarly, the left hand is used for the left side
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FIGURE 3 | Experiment setup showing the positioning of the robot and the participant. Also, the four stimulation boxes and their locations. Far left “FL,” Middle left

“ML,” Middle right “MR,” and Far right “FR.”

boxes (FL,ML). For the gaze action, movements in head and
the cameras are involved. The reaching action is biological and
human-like movement that recruits not only the entire upper
body of the humanoid robot iCub, but also the control of head
and gaze of the robot. The gaze action brings the fixation point
(line of sight) on the target with optimal coordination of the 6
degrees of freedom of head and eyes. The pointing with the index
finger of the most opportune hand brings the robot to assume
a new posture in less than 2 s. The coordination between head
movement and upper body movement is designed in detail and
makes the whole body movement look natural and human-like.
It is possible that the human participant‘s attention is biased by
this movement, but this is useful information in order to estimate
the human-robot mutual influence in joint tasks.

2.2.5. Measurements and Rounds
The robot and the human do the task together at the same
time. Before the first trial for each subject, we introduced the
visual stimulation for the robot and the human. The robot
performed the habituation process with the starting signal
during this stimulation introduction period. Our first aim was
comparing the performance of the robot vs. the performance of
the human participants in terms of both accuracy and reaction
time. In general, we were also interested in measuring how
much one participant influences the other in human-robot
collaboration. In order to measure accuracy and reaction time for
the human participant we recorded the pressed keys and their
correspondence to the target as well as the reaction time. For
the robot accuracy and reaction time, we recorded the action
execution commands of the robot and the internal triggering
commands of these actions as relevant information about the
timing and selected location. Additionally, we aimed to analyse
all components of the decision making processes. Thus, we

recorded the threshold profile (indicating the urgency to act)
as well as the integrated scene analysis which includes the Ŵ

value (indicating the confidence on target localisation process)
during the whole trial. The second aim was to understand the
behaviour of the human participants considering the presence
of the robot. Specifically, in this experiment we focused on
gaze behaviour. We recorded the gaze data during the whole
experiment using Tobii pro glasses. This data includes the 2D
gaze location within the field of view of the camera and the
gaze event (Fixation/Saccade). This is the main data from the
eye tracker that we focused on. For better analysis we developed
a program to ensure synchronisation between the eye tracker
time stamp and the time stamp from our system. The idea of the
program is to send a timestamp instance from our system to the
Tobii pro glasses, and in the analysis stage we map the timestamp
of the eye tracker to our system’s timestamp. The synchronisation
process ensures the transfer of the trials’ information to the gaze
data. The trials’ information mainly include the current state of
the stimulation, the active box, the starting time of the trial, and
the type of the stimulation.

3. RESULTS

We primarily focused on assessment of the performance of
the memory-based cognitive architecture for joint attention. To
perform an extensive evaluation of the system, we subdivided
the analysis into two main sections. The first section is
analysis related exclusively to the performance of the cognitive
architecture. This includes the evaluation of the whole system
dynamics which is mainly the decision making process and the
overall performance (localisation accuracy and reaction time)
by comparing it with human performance in a similar attentive
challenge. The second parts of the results is a detailed analysis
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FIGURE 4 | Confidence threshold profile across the whole trial time (20 s) for both audio-visual and audio only trials.

of the gaze patterns. Given a thorough description of how
the focus of attention was jointly redeployed, we focused our
secondary analysis on the gaze patterns of both the robot and
human participants. Such gaze behaviours are a direct result
of attentional processing but more importantly tend to cause
mutual influence between the robot and human. Humans tend
to look where their partner directs their gaze (Frischen et al.,
2007). Also, it is an important component in joint attention (Yu
and Smith, 2013). So, the actions of the robot which are the
gaze movement and pointing might influence the attention of
the human toward a specific location. On the other hand, the
gaze action of the human changes the visual features of the scene
while the head moves. Consequently, this creates changes in the
saliency map of the robot which might change its behaviour, and
this what we want to analyse.

3.1. The Performance Analysis
3.1.1. The Memory Based Decision Making Process
We evaluated the memory-based decision-making process to
report how the cognitive architecture makes the decision to
act, averaged across all trials. The process is based on working
memory, the confidence measure and the decision threshold
(the threshold in which if the confidence reached, the agent will
make a decision) as core factors of the decision-making process.
The cognitive system makes the decision to act in presence of
the event of crossing between the confidence measure and the
threshold curve. Therefore, we analysed the decision-making
behaviour to assess the effect of working memory as well as
the performance of the confidence measure and the decision
threshold, which are core factors of the decision-making process.

Adding working memory allowed the robot to track the
stimulation state of the trial (presence of a stimulation), and the
state of his own action (whether the action is done, or in progress,
or not yet executed). This has a clear advantage with respect
other work done in the recent past (Gonzalez-Billandon et al.,
2019). Once the robot executed an action for a certain stimulus, it
could realise that the task is done and there is no need to execute

the action again until the current stimulus stops. This represents
its internal working memory of the active motor actions. When
the stimulus stops the working memory is updated, allowing
the robot to reset and wait for another stimulus. Thanks to this
mechanism the robot was successfully able to execute the action
on the right time frame (after the stimulus turned on and before it
turned off) in 95.8% of the trials.The working memory stabilises
the action cycle and also allows the execution of the action based
on meaningful environmental and internal states. This leads
us to accept the first hypothesis, “The memory-based cognitive
architecture is able to attend to multi-sensory stimulation and
correctly make a decision based on the localisation process.”

Moving to the analysis of the confidence measure and the
threshold manipulation, Figure 4 shows the average threshold
profile with audio-only trials in blue and audio-visual trials in
orange. The initial threshold is different for each participant.
This is due to the habituation process, as the system memorises
a different initial threshold for each participant. The process
runs at the beginning of the experiment for each participant,
because this initial threshold is dependent on the visual features
of the environment including the human participant in the
field of view. Thanks to the working memory, the robot retains
important information of its task and this contextualisation
is not only related to the environment. The starting time of
the threshold modulation process is based on detecting the
existence of the stimulation. Thus, the exact starting time of
the modulation signal is different from one trial to another.
Similarly, the confidence incremental process defines the action
execution time together with the threshold decision. Therefore,
the linear decreasing rate creates a curved, averaged response.
After execution of the action, the decision making process slows
down the threshold decreasing rate and this creates the flat
part of the curve observed in Figure 5. In the audio-visual
condition, the threshold decreasing rate slows down earlier. This
is because the action is typically executed earlier due to the greater
level of confidence in target localisation. After the multi-sensory
stimulation stops (experimentally fixed in time after 10 s from
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FIGURE 5 | Gamma measure (Ŵ) and the threshold profiles in one of the trials across the whole trial time (20 s). The crossing occurs around 5 s.

the beginning of the stimulation), the threshold resets again to
the initial value. In this exact moment, in the audio-only trials,
the threshold starts from a lower value. This reflects the lower
confidence and consequently the longer response time to take a
decision to act. On the other hand, by looking at the Ŵ measure
in Figure 6, we observe that the Ŵ function in audio-visual
trials (orange curve) produces a spike almost instantaneously
after the beginning of the stimulation. This is due to the visual
saliency of the stimulation, which provides a strong, unique
visual stimulation in the field of view. In the audio-only trials the
Ŵ function shows that the confidence decreases at the beginning
as causal effect of proactive sensing (the robot tries to eliminate
the effect of the environment noise) and it starts to increase (after
approximately 6 s in average) till the stimulation ends. When
the threshold profile and the Ŵ measure cross one each other,
the cognitive system makes a decision that triggers the action of
pointing to the target stimulus.

It is also important to describe the decision-making process
in detail by presenting an example trial. Figure 5 shows a single
trial taken from one participant. Once the simulation starts,
the threshold of confidence starts to decrease in time with a
decreasing factor from the initial value (the parameter is specific
to the participant, computed during calibration, and kept in
memory by the system). The level of confidence indicated by
the Ŵ function and the threshold profile progresses in time
under their proper temporal dynamics until the Ŵ value and
the threshold cross each other. At this point, the cognitive
architecture makes a decision and acts, by consequently pointing
to the estimated source of stimulation. Once the stimulation ends
(after 10 s from its beginning) the system waits 0.5 s and then
resets the threshold to the initial value. The starting and stopping
of the trial stimulation are autonomously detected by system
based on the audio power in the audio signals received by both
the microphones as presented here in Figure 7. The reset of the
threshold profile to the original value occurs exactly 0.5 seconds
after the end of stimulation is detected.

3.1.2. The Overall Performance (Accuracy and

Reaction Time)
To assess the performance of the robot, we compared the

attention system of the robot with human performance in
response to the same multi-sensory stimulation and mutual
sensorial influence. We analysed the overall performance based

on (a) the reaction time and (b) accuracy as the primary source of

evaluation. In particular, we characterised the performance based
on the two stimulus typologies: audio-only stimulus or audio-

visual stimulus. Figure 8 shows the measure of the reaction time
and accuracy for both the robot and the human participants,
averaged across all the trials/participants. The bars in orange
indicate the performance of the robot and the blue bars indicate
the performance of the human participant. The participant
and robot‘s choice is considered wrong if the identified box
wasn’t the active box or if the action didn’t execute. Looking
into the accuracy for each of the stimulus types separately, the
robot records similar performance to the human in audio-visual
attention tasks. The robot autonomously identified the source
of the stimulation with 89% average accuracy. On the other
hand, the robot performed with 43% average accuracy in the
audio-only trials. The audio-only trials weremore challenging for
humans as well. To assess performance, we performed multiple
t-tests to compare the behaviour of the human in the audio-
visual task vs. audio only task, and similarly for the robot. The
results of all the tests that demonstrated significant differences
are the following:

• Human audio-visual reaction time vs. human audio only
reaction time : t(40) =−3.7527, p < 0.01.

• Human audio-visual accuracy vs. audio only accuracy: t(40) =
2.1436, p= 0.0382.

• Robot audio-visual reaction time vs. robot audio only reaction
time: t(40) =−9.6, p < 0.01.

• Robot audio-visual accuracy vs. robot audio only accuracy:
t(40) = 12.2, p < 0.01.
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FIGURE 6 | Confidence profile (gamma measure Ŵ) across the whole trial time (20 s) for both audio-visual and audio only trials.

FIGURE 7 | Audio power profile across the whole trial time (20 s) during all the trials.

FIGURE 8 | Overall performance across the different types of stimulation for both the robot and the human participants. (A) Accuracy. (B) Reaction time.
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So there are significant differences of both reaction time and
accuracy between the audio-visual condition and audio only
condition for the human participants and also for the robot.
The differences in the case of the robot were all significant (p <

0.01). As the average accuracy value for audio-visual is higher,
and the reaction time is lower compared to the audio only task
(shown in Figure 8), we accept our second hypothesis that “The
stimulus localisation accuracy and reaction time of the robot in
the audio-visual task is better than in the audio only tasks.”

We also performed t tests to compare the performance
(reaction time and accuracy) of the robot vs. the performance of
the human in the localisation task. The statistical tests showed
significant differences between both performances as follows:

• Human audio-visual reaction time vs. Robot audio-visual
reaction: t(40) =−4.99, p < 0.01.

• Human audio-visual accuracy vs. Robot audio-visual accuracy
: t(40) = 4.06, p < 0.01.

• Human audio only reaction time vs. robot audio only reaction
time: t(40) =−9.7, p < 0.01.

• Human audio only accuracy vs. robot audio only accuracy:
t(40) = 14.9, p < 0.01.

Thus, we reject our third hypotheses The performance (accuracy
and reaction time) of the robot will be as good as the performance
of the human participants in localising the stimulus.

We did further statistical investigations using Wilcoxon
signed ranked test (Rey and Neuhäuser, 2011) to test how
different the performance of the robot was compared to the
human. We found that the accuracy drop in the audio-visual
condition is statistically less than 20% of the human accuracy.
Also, the difference in reaction time of the robot in the audio-
visual condition compared to the reaction time of the human is
less than 1 s which is 70% of the increase in human reaction time.
For the audio only condition, the difference was much bigger
than the audio-visual condition. The differences in the audio-
visual condition are comparable considering the complexity of
the system and processing speed of the machine. The audio
only condition is more complex compared to the audio-visual
condition for both the human and the robot. However, the
complexity of the audio-only localisation task does not entirely
explain the considerable gap. To understand the reasons of
this performance drop, we more thorougly investigated the
conditions of wrong actions. The results are shown in Table 1.
There are two conditions in which we consider the behaviour of
the robot to be worse. The first condition is when the action is
executed but the identification of the active box was wrong and
is annotated with (wrong identification). The second condition
occurs if the action never executed during the on time of the trial
and we annotate this behaviour as (no action). For the human,
all the wrong action trials were due to wrong identification.
For the robot, the first condition occurred most of the time
(89% of the total failures). On the other hand, there were two
causes for no action failures. The first cause is when the robot
executes an action in the off time of the stimulation due to some
confusion from visual features in the scene. More specifically, it
was observed that for some participants the robot got confused
from the hand of the participant, indicating once again how

mutual influence impacts attentive tasks. The hand worked as
visual stimulation and the robot identified the closest box to
the hand as a source of stimulation during the off time. If the
robot executed an action during the off time, the robot does
not reset the exception event before the end of stimulation of
the next trial. The consequence of this is a (no action) failure
for the trial next to the off time when the robot executed the
action. This actually happened very few times (15 times) across
all trials, which consists of 6% of the total failures. This is 60%
of the second type of robot failures (No action failure). The
remaining 40% of the no action failures are due to low confidence
level. The robot did not execute an action few times because the
confidence value (Ŵ value) never reached the threshold during
the on time of the trial. This type of failure only forms 4% of the
total failures.

Based on these analyses, the major cause of failure is wrong
identification. Therefore, it is also important to analyse in
detail the attentive process in time. More specifically, the audio
components need to be analyzed, because the difference in
performance lies in the temporal response of the attention
system. So, in the next section we analyse the temporal responses
of the audio probabilities, which are the base of the localisation
process during the audio only condition.

3.1.3. Detailed Analysis of the Audio-Only Trials

(Probability Profile)
Since the behaviour of the decisionmaking process does not show
erroneous behaviour, but instead the decision is made in the right
time frame with a reasonable level of confidence, we believe that
the reason for the worse performance in audio-only trials is to be
found in the localisation process. As shown by a more detailed
analysis for audio-only trials, the localisation process is based on
the level of confidence that each box is the target, in other words
the probability that each one of the four locations is the target.
Such probability changes over time for each potential location of
a stimulation source. In the audio-only condition, the probability
profile is extracted from the Bayesian map, which is the output of
the audio localisation system. The temporally detailed analysis of
the probability profile is carried out during the 20 s time frame
of the trials. During the first 10 s, the auditory stimulation is
generated by the target box only.

Figures 9, 10 show the probability profiles for the 4 locations
of the stimulation sources when the active box is the far left one
and the middle left one respectively. The response is averaged
across all trials. The first relevant point of these figure is that
the shape of the curves are similar for the boxes located on
the same side, independently from the location of the source of
stimulation. In other words the probability profile over time of
the far-right is similar to the one middle right and similarly the
probability profile of the far left is similar to the middle left. Such
results indicate that there are differences for time progression
of the probability profile between the left and right boxes from
the location where the robot is standing. Such difference has an
impact on the localisation of the sound target since the certainty
of sound location changes over time differently between the left
and right boxes. Similar difficulty from one side over the other
was actually reported by most of the participants. Another aspect
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TABLE 1 | Robot’s failure types percentages.

Failure Percentage from total failures (%)

Type 1 Wrong identification 89.4

Type 2
No action (Wrong action type in previous trial) 60% 6.4

No action (low confidence) 40% 4.2

FIGURE 9 | Audio probabilities profile for the trials that the far left box (FL in red colour) was activated.

FIGURE 10 | Audio probabilities profile for the trials that the middle left box (ML in green colour) was activated.

that might have an impact on the localisation of the source of
sound is that the probability profile of the sound sources from
the same side evolve similarly. This makes the discrimination
task complex for the robot, but also for the human participant.
It was challenging for them to identify which box between the
2 boxes in the same side is the stimulation source in audio-only
trials. The similarity between human robot participant in same-
side during sound discrimination suggests that the Bayesian
modelling implemented in the cognitive architecture shares some
similarities with human behaviour.

Another relevant point relates to the temporal profile of the
probabilities for the different salient locations. The probability
corresponding to the right location increases with time as long
as the stimulus is active, (in the first 10 s) which is the right and

required behaviour. However, the probabilities of corresponding
matches between the source of sound and different locations
do not always start from zero and equal values. This indicates
that before the activation of the stimulation, the localisation
system believes that one location is more likely to produce sound
than another location. Each probability goes to an initial value
that is not equal to zero and also not equal to other location’s
probabilities. Our speculation explains the presence of these two
phenomena as the result of acoustic noise in the environment.
The acoustic noise equally affects the performance of the robot
and of the human participant. It would be wise to remove
the constant acoustic noise in the environment to eliminate its
effect on the Bayesian map probabilities first, and then integrate
evidence from the actual stimulation over time.
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The final consideration regards the time the system requires
to make the right decision. From both graphs, we observe that
it takes in approximately 7.5 s for the far left box to be the box
with the highest probability and 6.5 s for the middle left box. For
the boxes located on the right side of the robot, the value for the
middle right is similar and is approximately 7 s. For the far left
box, the system struggles due to the noise, the probability for the
far left never reaches the maximum when the box was activated
within the on time frame (10 s). The decision-making process
is tuned with some parameters to react faster than the required
time. So the average reaction time of the robot for audio-only
stimulus was measured to be around 4.34 s (STD: 1 s), definitely
faster than the time necessary for the temporal probability profile
to converge on the correct stimulation. Thus, we note that the
attentive system can localise the target with a higher accuracy if
the decision making process is allowed a longer reaction time.
However given enough time, the auditory localisation process is
always correct and the probability of the correct target always
exceeds the probability of the others. For example, the audio
probability profile for the far left box is the highest after 7.5 s. For
the middle left box the audio probability profile for the middle
left target is the highest after 6.5 s. Such fine refinement is actually
doable in the cognitive architecture proposed, since by adjusting
the tuning parameter we can refine the decision-making process
and adjust the decreasing rate of the threshold.

In conclusion, we assessed that the task results are also difficult
for the human participants according to an interview in the
debriefing phase of the experiment. Another relevant observation
in regards to the numerous comments of many participants
indicates the change in the auditory landscape as the most
meaningful cue to localise the target. The suggestion convinced
us to looked in the change rate of the confidence level for the
different possible targets. In the Figures 11, 12, we show the
change rate of the confidence probabilities for the four locations
for the trial respectively when the target is FL and ML. We
noticed that the attentive system can localise the target correctly
in a shorter time if decision making process analyzes the change
rate of the confidence probability instead of the confidence
probability. For example, for the target in FL (see Figure 11) the
correct detection of the target can occur as early as approximately
3.0 s, and for the target in ML (see Figure 12) the correction
detection the target can occur as early as at approximately 2.5s.

3.2. The Behavioural Gaze Analysis of the

Human and the Robot
The behavioural analysis of the human participants gives us
a relevant insight on the mutual influence between the two
partners. The behavioural analysis relies on data from the eye
tracker. We were able to record the gaze data of the human
participants. The gaze data is the 2D location of the gaze and the
gaze event. The gaze events can be one of two types: fixation and
saccade.We aimed to count the fixation events on the stimulation
boxes and also on the robot’s face during each trial. So, we had to
define where the 2D location is projected in the 3D world. We
are interested in 5 regions (the 4 stimulation boxes, the robot’s
head, and other areas). The eye tracker gives the 2D location of

the gaze in the camera frame, which changes when the participant
moves their head with respect to the world. In order to cluster
the fixation events based on the 2D location into 6 clusters, we
had to transfer the 2D location from the camera moving frame to
a global fixed frame. We achieved this by extracting a reference
point in the scene which always exists and then we track this
point. This point works as a reference point and all interested
regions are defined with respect to this point.

From the 21 subjects of the experiment, we could extract the
gaze data perfectly from all 12 of them. Three subjects were
moving their head very rapidly, and due to this the process
of extracting the reference was not accurate enough. The gaze
data of 5 participants weren’t accurate enough to be considered
because the eye tracker failed to calibrate their eyes. So in this
section we only consider the data of the 12 subjects for which
the calibration was accurate and the reference extraction process
was sufficient. The robot behaviour in this experiment consists
of its actions, which are the gaze movement toward the selected
box and the pointing action with the arm. Figure 13 is showing
the fixation distribution in trials. It is divided into 4 panels based
on the location of the simulation. (FL, ML, MR, and FR for top
left, top right, bottom left, and bottom right panel respectively).
The y axis shows the fixation counts. The x axis here is the five
defined regions of interest (4 stimulation boxes and the robot’s
head). We also categorise it based on the stimulation type: audio
only in blue and audio-visual in orange. Similarly, Figure 14
shows the gaze of the robot. The robot only does one fixation
event during each trial, which is the action of the task. So, the
graph also represents the action distribution of the robot. The
fixation counts on the active stimulation box is marked with a
red rectangle surrounding the bars of this location in each of the
panels for both the robot and the human participants. We divide
our findings into two parts. The first part is for audio only trials
and the second part is for audio-visual trials.

The first observed information is that in audio-visual trials
the participants do fixation events on the active stimulation box
more than other boxes in FL, ML, and MR trials. But in trials
during which FR box was active, the participants domore fixation
events on MR box on average. This drive us toward the second
observation. Looking into the robot’s gaze behaviour, we found
that in the FR trials, the robot was confused toward the MR box
and sometimes performs gaze actions toward the MR box instead
of FR. The next three observations are in the audio-only trials.
In the FL trials the robot mostly was driven toward the ML box.
This records the highest average in comparison with the other
boxes. Similarly, the participants also do more fixation events on
the ML box, even more the correct active box which is FL. The
second observation in audio only trials are in the ML trials. In
these trials both the robot and the participants do fixation events
on the correct box more than other boxes. Thirdly, in MR trials
the confusion of the robot was between the right box (MR) and
the ML box. But it is less than the confusion in FL trials. On the
other hand the participants’ gaze record the highest count on the
right box (MR) and the second highest is the ML box. Finally, it
is clearly shown that the participants also spend time looking to
robot’s head in all trials for all conditions.
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FIGURE 11 | Derivative of the audio probabilities profile for the trials that the far left box (FL in red colour) was activated.

FIGURE 12 | The derivative of the audio probabilities profile for the trials that the middle left box (ML in green colour) was activated.

4. DISCUSSION

Joint attention is a fundamental component for better

collaboration in real-world scenarios, such as in industrial
environments where the robot and the human worker have

to be aware of the products being manufactured (indicated by
machinery through visual and audio features). They will be

able to coordinate their actions and activities when initiated

through their joint attention directed to the same target. The
proposed biologically inspired cognitive framework, based on
a multi-sensory attention system and supported by memory,
constitutes the computational model used to evaluate emergent
joint attention between the human participant and the artificial
agent. The study had three main hypotheses. H1-Memory-
based Decision Making process: The memory-based cognitive
architecture is able to attend to multi-sensory stimulation and
correctly make a decision based on the localisation process,
H2-Audio-visual vs. Audio-only: The stimulus localisation
accuracy and reaction time of the robot in the audio visual
condition will perform better than in the audio only condition.

H3-Robot performance: The performance of the robot will be as
good as the performance of human participants. To answer the
hypothesis we designed a multi-sensory task, and presented the
task to the human participant and the robot. The setup includes
stimulation boxes, which are a general model for real-world
applications. Thus, we were able to compare the performance of
the robot with the performance of a human participant in the
same task which is an important aspect defining the quality of
the interaction. The comparison focuses on the assessment of
both agents in terms of the execution of the same localisation
task with the same response time. The rationale behind the
co-assessment of both the participants is that we intend to assess
the performance of the robot and the human to measure how
much they can coordinate in the joint task and to also measure
the mutual influence between the robot and the participant.

The statistical analyses resulted on accepting the first two
hypotheses (H1-Memory-based decision making process: The
memory-based cognitive architecture is able to attend to multi-
sensory stimulation and correctly make a decision based on the
localisation process and H2-Audio-visual vs. Audio-only: The
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FIGURE 13 | The gaze behaviour of the human.

stimulus localisation accuracy and reaction time of the robot in
audio visual task in better than in audio only tasks). and rejecting
the last one H3-Robot performance: The performance (accuracy
and reaction time) of the robot will be as good as the performance
of the human participants in localising the stimulus.

However, further statistical analyses showed that the
performance of the robot in the audio-visual condition is
comparable, as the accuracy drop was less than 20% of the
human accuracy and the reaction time differences were less
than 1 s which is less than 170% of the human reaction time.
These values are acceptable considering the machine processing
speed of such complex computational processes. Indeed the
cognitive system is less reactive in audio-only stimulation and
only partially influenced in the different internal processes by
the presence of the human partner. Although the audio only
condition is in general a challenge for both the human and the
robot participant, the analysis showed that the main cause of the
performance drop in the audio only condition is the false audio
localisation, which is caused by the acoustic egocentric noise.

Furthermore, we performed a more detailed analysis of the
cognitive processes, and we realised that the decision-making
process is robustly designed to swiftly guide the system to
make a decision with excessively fast temporal dynamics. On

the contrary, the auditory attention system requires longer
time periods to make the Bayesian network converge, and thus
localise the auditory target. Whereas the auditory localisation
process is correct in inferring the location, also in presence
of environmental noise (typical in robotic applications), the
temporal dynamics of the system require longer periods for the
processing of the auditory stimulation. However, the specific
inefficiency is of simple resolution for two reasons that we intend
to verify in future work. First, the specific modular structure
of the developed cognitive architecture and its parametric
configuration is designed to allow for fast re-adaptation of the
decision-making process. As one possibility, by reducing the
urgency to act parameter in the decision-making process, we
can allow more time for the Bayesian network to converge, and
consequently, we can guarantee improved accuracy. However,
although the specific solution improves the accuracy it does
not guarantee a faster reaction time. Secondly, thanks to the
margin for faster response during auditory localisation, the
process allows us to provide more auditory evidence for Bayesian
integration in the same time interval. Faster processing of
auditory stimulation is expected to improve the reaction time of
the auditory localisation system and make it more similar to the
reaction time of human participants.
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FIGURE 14 | The gaze behaviour of the robot.

Undoubtedly, the temporal dynamics of how auditory
evidence is integrated is a very important aspect. We noticed in
human participants that changes in the auditory landscape are
more meaningful for target localisation than a static auditory
landscape. The same process based on changes in the Bayesian
network facilitates the process of inference over the stimuli
localisation. The importance of relative changes in the auditory
landscape, together with the importance of proactively creating
such changes in the auditory landscape (self-programmed head
movements) is a promising area of study, and we are planning to
exploit it further in future work. Nevertheless, even without these
improvements, the cognitive architecture has been demonstrated
to be effective, and it shows a natural and robust joint attentive
behaviour for Human-Robot interactive tasks. Furthermore, for a
thorough understanding of behaviour related to mutual presence
and its mutual influence, we also analysed the gaze behaviour of
the human participants. The results showed that in the conditions
in which the robot confused the location of the active box, the
human participants tended to do more fixation events on the
wrong box, suggested by the wrong behaviour of the robot.
Also, the participants spend time looking at the head of the
robot during the experiment, which shows how the human
participant and the robot mutually influence each other in similar

interactive tasks. This brings us to conclude that the behaviour
of the robot may reinforce the gaze of the human toward the
robot‘s chosen box. This is reinforced by the robot’s behaviour
which is both built on the directed gaze and the pointing
actions. In the future, we intend to investigate this aspect further
with more statistical evidence, and we intend to know whether
this hypothesis of the mutual reinforcement is confirmed and
what exactly drives it: whether the gaze or the pointing or a
combination of both have a stronger effect on the human partner.
Finally, we believe that the proposed system paves the way to
human-robot collaboration, since coordinated joint attention is
proven to facilitate coordination between the interacting parts.
Such an optimal mechanism of coordination is considered one
of the main facilitation mechanisms in multi-partner interaction
tasks. We also showed that the robot affects the gaze behaviour
of the participants. Furthermore, with this cognitive architecture,
we demonstrate the importance of implementing a complete
cognitive architecture (including working memory) in order to
attend to salient targets in the environments as humans do.
By sharing the same attentional focus redeployment mechanism
with the human partner we provide effective joint attention
that essentially emerges from environmental stimulation and
reinforces natural human-robot collaboration.
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