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Editorial on the Research Topic

Experiments and Simulations: A Pas de Deux to Unravel Biological Function

Understanding the molecular mechanisms used by biological systems to perform their functions is
often essential to rationally target associated diseases. In many cases, the determination of the three-
dimensional structure of these systems provides precious insights. However, it is more often the
interplay between structural and dynamical properties that determines the behavior of complex
systems (Henzler-Wildman and Kern, 2007; Orozco, 2014). While both experimental and
computational methods are invaluable tools to study protein structure and dynamics, limitations
in each individual technique can hamper their predictive capabilities (Schneidman-Duhovny et al.,
2014). On one hand, determining structural models solely from experimental data is challenging as
these data often come from time and ensemble-averaged measurements over conformationally
heterogeneous states, provide sparse and sometimes ambiguous information, and are always subject
to random and systematic errors. On the other hand, structural models determined by computational
approaches such as protein structure prediction methods and/or molecular dynamics (MD) are
limited by the inaccuracies of the force fields used as well as by the challenge of exhaustively sampling
the conformational landscape of complex systems (Bonomi et al., 2017). Combining experiments
and simulations is therefore a successful strategy to overcome the limitations of the individual
approaches and to accurately characterize the behavior of biological systems (Bottaro and Lindorff-
Larsen, 2018; Rout and Sali, 2019).

The goal of this Research Topic is to present some representative examples of synergistic use of
experimental and computational techniques aimed at accurately characterizing the structure, dynamics,
and ultimately function of biological systems. This Research Topic of 14 articles explores different areas of
experimental-computational integration: the use of computational approaches to assist the interpretation
of existing experimental data or to predict the outcome of newmeasurements, the experimental validation
of computational predictions, and the incorporation of experimental data to drive and/or refine molecular
simulations. A wide spatial spectrum of systems will be covered, encompassing ordered and disordered
peptides and proteins, small-molecules interacting with proteins, protein complexes, nucleic acids, and
entire cells. The integration of molecular simulations with different types of experimental data will be
illustrated, including cryo-electron microscopy (cryo-EM) and tomography, super-resolution microscopy,
Nuclear Magnetic Resonance (NMR) spectroscopy, biochemical, and Small Angle X-ray Scattering
(SAXS) data.
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One of the areas of research in which computationally
approaches, and particularly MD simulations, have
traditionally been used to complement experimental
measurements is the prediction and/or rationalization of the
effect of mutations on the structure and dynamics of
biological systems. Crnjar et al. use MD simulations to shed
light into the effect of a single-point mutation in the outer lipid-
facing helix (M4) of the 5-HT3A pentameric ligand-gated ion
channels. The mutation of a tyrosine (Y441) in this area has been
experimentally shown to inhibit the function of the receptor. The
MD simulations reported in this paper reveal a network of
interactions that connects Y441 to the ion channel
hydrophobic gate on helix M2, thus rationalizing the effect of
the mutation that has experimentally been observed. Ochoa et al.
build a set of scoring matrices using structural observables
extracted from MD simulations to predict the effect of single-
point mutations on peptide binders to the Major
Histocompatibility Complex (MHC) class II receptors. The
method developed integrates sequence, structural and
dynamical information and can be used to guide the design of
novel peptide binders to the MHC class II receptors.

Another area in which molecular simulations can complement
experiments is the characterization of conformations that are
often difficult to observe directly, such as short-lived
conformational states and disordered motifs. Nierzwicki and
Palermo illustrate the case of the CRISPR-Cas9 genome
editing machinery, of which the catalytically active structure
has been predicted by MD simulations and subsequently
validated by high-resolution cryo-EM data. This paper also
provides an overview of computational approaches that can be
used to refine both single-structure models and conformational
ensembles given a cryo-EM map. Lambrughi et al. use enhanced-
sampling MD simulations to study the Ubiquitin Interacting
Motif (UIM), a conserved, highly-dynamic segment used by
several multi-domain proteins to interact with ubiquitin.
While existing X-ray data could not capture the structural
heterogeneity of UIM, the MD ensembles revealed an
equilibrium between ordered and disordered states, in
agreement with NMR chemical shifts data.

Computational techniques have become over the years an
invaluable tool in the drug discovery field (Brogi et al., 2020). In
this Research Topic, De Felice et al. present an in silico approach
named “Computational Profiling for GPCRs” that repurposes a
GPCR-binding ligand for a different GPCR. The method is tested
on 3 different GPCR receptors and validated using docking
calculations and pharmacological data. Sgrignani and Cavalli
use computational docking and molecular simulations to
investigate the mode of binding of bromhexine to the
transmembrane serine protease TMPRSS2, an enzyme involved
in the activation of several coronaviruses, including SARS-CoV-2.
Their analysis reveals the existence of an allosteric pocket
involved in the binding of bromhexine to TMPRSS2 and in its
inhibition. Finally,Prerovská et al. perform MD simulations to
predict the structure of the complex formed by β-D-galactosyl
Yariv reagent and oligo β-D-(1→3)-galactan and ultimately to
shed light into the structural basis of arabinogalactan protein
precipitation by Yariv.

Over the last decade, a novel class of methods that incorporate
experimental information into molecular simulations has
flourished. These so-called integrative or hybrid modeling
approaches use experimental data to either guide or refine a
posteriori (Rangan et al., 2018) molecular simulations in order to
determine individual structural models or conformational
ensembles consistent with the available information. These
techniques are often based on 1) Bayesian frameworks to
properly balance the information provided by different types
of experiments with prior, physico-chemical knowledge of the
system; and 2) the Maximum Entropy Principle to resolve the
ambiguity of determining conformational distributions based on
the knowledge of ensemble-averaged experimental observations
(Ravera et al., 2016; Bonomi et al., 2017; Bottaro and Lindorff-
Larsen, 2018; Cesari et al., 2018). In this Research Topics, six
examples of this type of hybrid computational-experimental
approaches are illustrated.

The papers by Ahmed et al., Spill et al., and Paissoni et al.
present different ways to characterize conformational ensembles
of dynamic systems by integrating MD simulations with SAXS
data. Ahmed et al. use the refinement Bayesian/Maximum
Entropy (BME) technique to determine structural ensembles
of α-synuclein starting from MD simulations performed with
different force fields. Spill et al. propose a Bayesian weighting
approach for SAXS data coupled with a selection of an ensemble
of minimal size to characterize the conformational heterogeneity
of a tandem of domains from the protein PTPN4. Paissoni et al.
perform an exhaustive analysis of the statistical precision of the
metainference technique coupled with metadynamics using as
test system the chignolin peptide. Voelz et al. present a review of
the features, advantages over other integrative approaches, and
shortcomings of their Bayesian Inference of Conformational
Populations (BICePs) method. Gaalswyk et al. illustrate how
their Modeling Employing Limited Data (MELD) approach
can be used to determine protein structural ensembles using
sparse NMR data combined with physical modeling. Finally,
Vakili and Habeck introduce a Bayesian technique to address
the problem of reconstructing, in tomography, a 3D structure
from 2D views along unknown random directions.

The majority of applications of combined computational-
experimental techniques presented in this Research Topic
involve biological systems ranging in size, from small
molecules to protein complexes. However, integrative
approaches can in principle be applied to larger spatial scales,
provided that appropriate experimental data are available. One
illustrative example presented here is the work of Bianchi et al. In
this paper, the authors combine single molecule super-resolution
microscopy in cells with computational modeling to study how a
small RNA (SgrS) regulates glucose-phosphate stress, or “sugar
shock” in E. coli. Their stochastic simulations guided by the in cell
experimental data enable the description of the cellular
heterogeneity observed in the E. coli sugar shock response
network.

To summarize, this Research Topic demonstrates how a
synergistic use of experiments and simulations can be a
powerful strategy to study structure, dynamics, and function
of biological systems across a variety of spatial and temporal
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scales. These successes have been made possible by the
continuous improvements in both experimental and
computational techniques, the development of open-source
software and web-servers for integrative studies (Rout and Sali,
2019), the dissemination of protocols in open-source notebooks
and public repositories (The PLUMED Consortium, 2019), and
the availability of raw data and structural models on public
databases, such as the PDB-Dev1(Burley et al., 2017). There is
a bright future ahead for integrative studies, especially these days,
when a new class of methods based on artificial intelligence, such

as DeepMind’s AlphaFold (Jumper et al., 2021) and RoseTTA
fold (Baek et al., 2021), has joined the game and already taken it
by storm, reaching accuracy in structure prediction comparable
to experimental techniques.
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Small RNAs (sRNAs) play a crucial role in the regulation of bacterial gene expression

by silencing the translation of target mRNAs. SgrS is an sRNA that relieves

glucose-phosphate stress, or “sugar shock” in E. coli. The power of single cell

measurements is their ability to obtain population level statistics that illustrate cell-to-cell

variation. Here, we utilize single molecule super-resolution microscopy in single E. coli

cells coupled with stochastic modeling to analyze glucose-phosphate stress regulation

by SgrS. We present a kinetic model that captures the combined effects of transcriptional

regulation, gene replication and chaperonemediated RNA silencing in the SgrS regulatory

network. This more complete kinetic description, simulated stochastically, recapitulates

experimentally observed cellular heterogeneity and characterizes the binding of SgrS to

the chaperone protein Hfq as a slow process that not only stabilizes SgrS but also may

be critical in restructuring the sRNA to facilitate association with its target ptsG mRNA.

Keywords: stochastic biology, cell simulations, small RNA, single-molecule techniques, super-resolution

microscopy, gene regulatory networks, cellular stress response

1. INTRODUCTION

The ability of living cells to modulate their gene expression in response to changing environmental
conditions is critical to their growth and continued development. Many bacteria use the
phosphoenolpyruvate phosphotransferase (PTS) system to transport and phosphorylate incoming
sugars to prepare them for subsequent glycolytic metabolism. The uptake of phosphosugars
must be balanced with their breakdown in order to prevent metabolic stress. In E. coli, a
stress response induced by unbalanced glucose-phosphate transport and metabolism or “sugar
shock,” is referred to as glucose-phosphate stress response. A primary activity of this stress
response is RNA silencing of ptsG, a gene coding for the glucose transport protein of the
same name (also known as EIICBGlc in E. coli), by the small RNA (sRNA) SgrS. Small
RNAs are usually non-coding RNA molecules that act by base pairing with target messengers
to regulate translation or mRNA stability and have been observed across all domains of
life (Babski et al., 2014). sgrS is upregulated by a transcriptional activator (SgrR) when the
cell is under a state of glucose-phosphate stress. SgrS regulates ptsG post-transcriptionally
by a mechanism where SgrS binds to ptsG messenger RNA (mRNA) and prevents

8
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its translation to protein by blocking access of the ribosome
to the mRNA (Vanderpool and Gottesman, 2004; Maki et al.,
2010). This also enhances the co-degradation of ptsGmRNA and
SgrS via enzymes responsible for the removal of bulk RNA
such as ribonuclease E (RNase E) (Kawamoto et al., 2006; Maki
et al., 2010). This co-degradation reduces the number of PtsG
sugar transporter proteins that are produced and thus reduces
the impact of glucose-phosphate stress, since fewer transport
proteins are available to bring sugar into the cell.

SgrS and ptsG mRNA associate via complementary base
pairing that occludes the ribosome binding site on the mRNA.
Recently, this mechanism has been analyzed in conjunction with
binding of the Sm-like chaperone protein Hfq to SgrS, which has
been proposed to stabilize the sRNA, and facilitate the interaction
between the sRNA and its mRNA target (Ishikawa et al., 2012).
Hfq also promotes SgrS–dependent regulation of other targets
involved in sugar shock such as manXYZ, and yigL in E. coli. In
this study, we focus only on the primary regulatory target ptsG
mRNA and do not consider the other targets of the SgrS regulon,
which are described in Bobrovskyy et al. (2019).

Previous experimental and theoretical work (Jones et al.,
2014; Peterson et al., 2015) has demonstrated the necessity
of accounting for gene replication over the course of the cell
cycle in order to capture the population variation observed in
messenger RNA abundance. The additional noise emanating
from transcription at multiple gene loci manifests itself in
the broad mRNA copy number distributions observed in a
population of cells. The aforementioned work also demonstrated
that including the effect of gene regulation by transcription
factors can be critical in order to appropriately describe stochastic
dynamics. The effect of transcriptional regulation is apparent
in the SgrS–ptsG mRNA system, where the expression of SgrS
is maintained by the regulator SgrR, which activates sgrS and
autorepresses its own expression during glucose-phosphate stress
conditions (Vanderpool and Gottesman, 2004, 2007).

Recently, Fei et al. (2015) presented a deterministic kinetic
model of the SgrS mediated regulation of ptsG mRNA in E. coli.
Using single-molecule fluorescence experiments (smFISH and
STORM), SgrS and ptsG mRNA copy numbers in cells were
measured, which produced distributions of RNA at various time
points after the induction of sugar stress across a population of
fast-growing E. coli. However, it is important to note that both
the ptsG mRNA and the SgrS regulating it are present in low
copy number (a few to tens of particles) and therefore exhibit
intrinsically noisy behavior in both their gene expression and
regulatory behaviors. For this reason it is most appropriate to
treat the regulatory processes via stochastic simulation in order to
quantify the variation that is observed across a population of cells,
which has been demonstrated previously (Elowitz et al., 2002;
Raser, 2005; Earnest et al., 2018).

Here, we have developed a stochastic model, to our knowledge
the first of its kind for an RNA silencing network, that captures
the mRNA and sRNA distributions experimentally observed in
a population of hundreds of E. coli cells. The stochastic model
additionally incorporates the following features that extend
the platform given by Fei et al. (2015): (1) accounting for
gene replication, (2) transcriptional gene regulation of sgrS by

its activator SgrR and (3) explicit representation of the SgrS
stabilization via the Hfq chaperone protein. This model robustly
describes experimentally observed RNA distributions, closely
matching regulatory dynamics from immediately after induction
until a steady state is reached 20 min later. We also utilize
this model to analyze the effects of the size of the pool of Hfq
chaperone protein available to SgrS, to decouple the rate of Hfq
stabilization of SgrS and its subsequent activity in enhancing
association to the target, ptsG mRNA, and to study the effect
of an sgrS point mutation in the SgrS-Hfq binding region on
regulatory dynamics.

2. MATERIALS AND METHODS

2.1. Model and Computational Methods
The previous kinetic model for SgrS regulation of ptsG
mRNA (Fei et al., 2015) utilized simple mass-action kinetics to
describe the target search process andmodeled gene expression as
a constitutive process, with RNA species originating from a single
gene copy. Despite its simplicity, this model captures average
regulatory network behavior and also gives insight into many
of the parameters required for the more descriptive stochastic
model that is the focus of this work. For example, since an overall
binding rate for SgrS to ptsG mRNA was established in Fei et al.
(2015) we are now able to complexify themodel by the addition of
the chaperone protein Hfq, which allowed us to predict (by fitting
to the experimental data) the size of the pool of Hfq available to
stabilize SgrS and the rate at which it binds the sRNA (separate
from its association to ptsGmRNA).

The kinetic model was implemented and solved stochastically
as a well-mixed Chemical Master Equation (CME) in the Lattice
Microbes (LM) simulation software suite (Peterson et al., 2013;
Roberts et al., 2013; Hallock et al., 2014; Hallock and Luthey-
Schulten, 2016). The corresponding rate constants (Table 1) were
adapted from the kinetic model described in Figure 1. One
important feature added to the model is the explicit presence
of the chaperone protein Hfq, which has been shown to
both stabilize SgrS (substantially increasing its half-life) and to
facilitate the association of SgrS to ptsG mRNA (Vanderpool
and Gottesman, 2004; Hopkins et al., 2011; Wagner, 2013;
Santiago-Frangos and Woodson, 2018). In order to capture the
cell-to-cell heterogeneity due to the small number of particles
(e.g., gene copies) involved in transcription, it is critical to
account for transcriptional regulation of the genes involved in the
glucose-phosphate stress response. For this reason, we include
the transcriptional activation of sgrS by the transcription factor
SgrR, which has been shown to upregulate sgrS expression in
the presence of αMG (the unmetabolizable inducer used in place
of glucose for our experiments) (Vanderpool and Gottesman,
2004, 2007). Regulation of ptsG by the transcriptional repressor
Mlc was not included in the model since repression is relieved
in the presence of glucoside sugars. With αMG present, Mlc is
sequestered at the membrane by binding the EIIB subunit of
the PtsG transporter protein complex (Lee, 2000; Seitz et al.,
2003; Nam et al., 2008), relieving repression and resulting in
high levels of ptsG transcriptional activity (Balasubramanian and
Vanderpool, 2013). Since the decay time of PtsG proteins is
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TABLE 1 | The list of parameters used for the kinetic model.

Parameter Value Unit Source

kt,p 0.12 ± 0.01 s−1 Experimentally measured

βp (3.7 ± 0.5) × 10−3 s−1 Experimentally measured

kon,Ds (3.0 ± 0.1)× 10−2 s−1 Fit

koff ,Ds (9.5 ± 0.1)× 10−3 s−1 Fit

kt,s 0.33 ± 0.01 s−1 Fit

kds 0.022 ± 0.002 s−1 1hfq decay rate of SgrS

kbind 0.063a ± 0.014 s−1 Fit

kunbind 0.0018 ± 0.0004 s−1 SgrS decay rate

kon (3.1± 0.2)× 10−4 molec−1s−1 Fei et al., 2015

koff 0.22 ± 0.02 s−1 Fei et al., 2015

kcat 0.3 ± 0.1 s−1 Fei et al., 2015

% high, low gene state sgrS 25 ± 12, 75 ± 12 % Fit

% high, low gene state ptsG 46 ± 20, 54 ± 20 % Fit

Hfq pool size (available to SgrS Regulon) 250 ± 167 molec Fit

The% in each gene state refers to percentage of the cellular population with the gene being in a low or high gene copy state as described in section 2.1.1. (a) kbind is given as a Pseudo

first order rate accounting for the average expected pool size of Hfq participating in SgrS stabilization and enhancement (250). When converted to the corresponding bulk second order

rate with 250 Hfq present kbind agrees well with the range of Hfq binding rates measured for other sRNA reviewed in Santiago-Frangos and Woodson (2018) and discussed further in

section 3. Confirmation of kon and koff as the same values given in Fei et al. (2015) is discussed in section 2.2. Calculation and analysis of parameter uncertainty values by Markov Chain

Monte Carlo analysis is discussed in Supplementary Section 6.

FIGURE 1 | Schematic of the kinetic model as described in the text. The RNA species are transcribed from a sampled genome state with sgrS capable of switching

between an “ON” and “OFF” state. Explicitly represented Hfq can bind and unbind with SgrS, and then the Hfq–SgrS complex binds (and potentially unbinds)

with ptsG mRNA. All RNA degradation events are carried out by the enzyme RNase E. See Figure 4 for the kinetic equations described above.

expected to be approximately on the order of 8 h (Maier et al.,
2011), much longer than the timescale of mRNA decay, Mlc
repressors are likely still sequestered by the transporters at the
membrane 20 min post-induction and have little effect on the
SgrS regulatory process. Rates for the association of the Hfq-SgrS
complex to ptsG mRNA (kon) and the dissociation of the Hfq-
SgrS-ptsG mRNA complex (koff ) were obtained from Fei et al.
(2015), which did not include Hfq explicitly but provides the
corresponding association and dissociation reaction rates. The
value for the co-degradation rate of SgrS and ptsG mRNA from
the Hfq-SgrS-ptsG mRNA complex by RNase E (kcat) is also

obtained from Fei et al. (2015) (see section 2.2 for confirmation
of kon, koff , and kcat values).

2.1.1. Calculation of Gene Copy Number
Finally, and critically, in order to appropriately capture
regulatory effects on gene expression of SgrS and ptsG mRNA,
it is important to account for gene duplication, as we have
previously shown (Peterson et al., 2015). As illustrated by Jones
et al. (2014) since the time to replicate the E. coli genome
(approximately 40 min, Cooper and Helmstetter, 1968) is longer
than the fast-growing E. coli cell division time of 20min (or the 35
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FIGURE 2 | The gene location for SgrS and ptsG mRNA relative to the origin of replication (oriC) are shown on the circular genome of the E. coli cells used for this

study. As it is closer to the origin of replication sgrS (cyan) is likely to be present in higher gene copy number than ptsG (orange), which is farther away from the oriC.

min observed in our experiments), the cell has nested replication
forks that are already replicating the genomes of daughter and
granddaughter cells prior to cell division. In particular, genes
close to the origin of replication are likely to have multiple
copies present over much of the cell cycle. This phenomenon
has been shown previously for genes near the origin in E. coli by
both isotopic labeling of nucleotides and imaging of fluorescent
chromosome markers (Cooper and Helmstetter, 1968; Youngren
et al., 2014). Due to the position of sgrS (only 6◦ away along the
circular chromosome) very near to the origin of replication, it is
likely that multiple gene copies are accessible for transcription
over the course of the cell cycle. About half-way between the
origin and terminus of replication (at approximately 90◦) ptsG is
also likely to have multiple gene copies present at some point
over the course of the cell cycle, although at lower copy number
than sgrS. Figure 2 depicts the two genes and their location along
the circular E. coli genome.

The experimentally measured cells were unsynchronized
and should have multiple replication forks present over the
course of the 20 min post-induction, our measurement window.
To account for gene duplication effects in a population of
unsynchronized cells, we sample the percentage of the cellular
population in either a low or high gene state, which corresponds
to the expected distribution of the number of genes present
over the course of the cell cycle after induction. In this way, we
effectively flip a coin to decide whether a simulation replicate
corresponding to an individual experimentally imaged E. coli cell
has 2 copies (low gene state) or 4 copies (high gene state) of
sgrS and similarly 1 or 2 copies of ptsG. This allows us to account
for the effect of gene duplication in generating mRNA noise

over the heterogeneous population of hundreds of E. coli cells
that were observed experimentally. We assume that all gene
copies are transcribed independently from one another and at
the same rate, a notion that Wang et al. (2019) has recently
examined in E. coli under various growth conditions. Under
similar growth conditions to ours [MOPS glucose-based medium
with a doubling time of 35 min (see section 2.2)], the data
from Wang et al. (2019) suggest that transcription does appear
to be independent and uncorrelated between copies of the
same gene.

Figure 3 illustrates the reasoning for the specific choices
of high and low state gene copy numbers for ptsG and
sgrS in an E. coli cell growing faster than the expected time
necessary for replication (approximately 40 min, compared to
an experimentally observed generation time of approximately 35
min) (Cooper and Helmstetter, 1968; Youngren et al., 2014).

Stochastic simulations were performed by sampling the CME
for the model given in Figure 1 with the widely used Gillespie
Direct Method of the Stochastic Simulation Algorithm (SSA),
which is implemented in the publicly available Lattice Microbes
(LM) software suite (version 2.3 was used) and its python
interface pyLM (Peterson et al., 2013; Roberts et al., 2013;
Hallock et al., 2014; Hallock and Luthey-Schulten, 2016). We ran
2,000 replicate simulations for 25 min after αMG induction of
glucose-phosphate stress in order to match the corresponding
20 min smFISH-STORM experiments. Initial conditions for
basal SgrS (1–3 copies) and ptsG mRNA (30–40 copies) copy
number were sampled from the experimentally measured
distributions and rounded to the nearest integer particle
number (a necessity for stochastic representation). Simulations
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FIGURE 3 | A simplified depiction of possible cellular states throughout a single DNA replication cycle. Each cell shows a snapshot of the gene state of a cell given its

progression through the DNA replication and cell division cycle. Due to the difference in lengths of the cell division cycle (∼35 min) and DNA replication cycle (∼40

min), DNA replication and cell division are not completely in sync. Multiple replication forks (red dots) can form on the genome in order to ensure DNA is duplicated

properly in these fast-growing cells. As a result, genes closer to the origin such as sgrS (blue) are duplicated in the same timeframe that replication is initiated (resulting

in 2 or 4 gene copies), while genes closer to the terminus such as ptsG (orange) are replicated later in the C period, the period when a majority of DNA is duplicated

(resulting in 1 or 2 gene copies). The black arrows denote the start of a cycle.

were computed on a local cluster containing AMD Opteron
Interlagos cores.

2.1.2. SgrS Regulatory Network Kinetic Model
The kinetic model describing the reactions characterizing
the E. coli glucose-phosphate response network by
the small RNA SgrS is given in Figure 4. Simulation
files are available in Jupyter Notebook format to be
simulated via the Lattice Microbes (LM) Software Package
at http://faculty.scs.illinois.edu/schulten/research/sgrs-2020/.

2.2. Experimental Methods and Materials
Wild type E. coli cells (DJ480) were grown overnight at 37 ◦C,
250 rpm in LB Broth. The SgrS U224G mutant was grown
in LB Broth with 50 µg/ml spectinomycin (Spec) (Sigma-
Aldrich). The next day, overnight cultures were diluted 100-
fold into MOPS EZ rich defined medium with 0.2% glucose
and the cells were grown until OD600 reached 0.15–0.25. α-
methyl D-glucopyranoside (αMG) (Sigma Aldrich) was then
added to provoke glucose-phosphate stress and induce SgrS
expression response. Specific volumes of liquid were removed
from the culture at 0, 2, 4, 6, 8, 10, 15, and 20 min after
induction and mixed with formaldehyde (Fisher Scientific) to a
final concentration of 4% for cell fixation prior to single molecule
experiments. See Supplementary Table 1 for a description of the
cellular strains utilized for these experiments.

Following fixation, the cells were incubated and
washed, before being permeabilized with 70% ethanol,
to allow for fluorescence in situ hybridization (FISH).
Stellaris Probe Designer was used to design the
smFISH oligonucleotide probes that were ordered from
Biosearch Technologies (https://www.biosearchtech.com/).
See Supplementary Table 2 for a table of the probes used in
this work. Each sRNA was labeled with 9 Alexa Fluor 647
probes while each ptsG mRNA was labeled with 28 CF 568
probes. The labeled RNA molecules were then imaged via
the super-resolution technique STORM (Stochastic Optical
Reconstruction Microscopy). A density-based clustering analysis
algorithm (DBSCAN) (Daszykowski et al., 2001) was utilized
to calculate RNA copy numbers. The algorithm used was the
same as previously published (Fei et al., 2015), but the Nps and
Eps values were updated for the SgrS and ptsG mRNA images,
since CF 568 was used instead of Alexa Fluor 568 and a 405 nm
laser was used to reactivate the dyes. The SgrS (9 probes labeled
with AlexaFluor 647) images were clustered using Nps = 3
and Eps = 15 and the ptsG mRNA (28 probes labeled with CF
568) images were clustered using Nps = 10 and Eps = 25 and
these numbers were empirically chosen. A MATLAB code was
used for cluster analysis.

The raw data was acquired using the Python-based acquisition
software and it was analyzed using a data analysis algorithm
which was based on work previously published by Babcock
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FIGURE 4 | Kinetic Equations of the SgrS regulatory network. Don,p1,2 refers to the gene (or DNA) for ptsG in 1 (low state) or 2 (high state) copies

and Don,s2,4 corresponds to the gene for sgrS in 2 (low state) or 4 (high state) copies. Don,s corresponds to sgrS when it is in the “ON” state due to activated or solute

bound transcriptional activator SgrR being bound (Vanderpool and Gottesman, 2007). kds corresponds to the experimentally measured degradation rate of SgrS

when cellular Hfq is not present and kunbind corresponds to the experimentally measured degradation of SgrS when Hfq was present.

et al. (2013). The peak identification and fitting were performed
using the method described previously (Fei et al., 2015). The
z-stabilization was done by the CRISP system and the horizontal
drift was calculated using Fast Fourier Transformation (FFT)
on the reconstructed images of subsets of the super-resolution
image, comparing the center of the transformed images and
corrected using linear interpolation.

The ptsG mRNA degradation rates were calculated
via a rifampicin-chase experiment. The wild type
(DJ480) E. coli cells and 1hfq mutant strain SA1816
[DJ480, laclg, tetR, spec, 1hfq::kan] cells were grown in LB
Broth with the respective antibiotics at 37 ◦C, 250 rpm overnight.
They were used to calculate the RNA degradation rates. The
1hfq::kan allele was moved to create strain SA1816 constructed
by P1 transduction (Miller, 1972). When the OD600 reached
0.15–0.25, rifampicin (Sigma-Aldrich) was added to cultures to
a final concentration of 500 µg/ml. The cells were labeled by
smFISH probes and analyzed by the same process described
above, taking the time of rifampicin addition or αMG removal as
the 0 time point. Aliquots were taken after 0, 2, 4, 6, 8, 10, 15, and
20 min (0, 2, 4, 6, and 8 min for 1Hfq strains). For the purpose
of background subtraction, 1SgrS and 1ptsG mRNA strains
were grown, labeled with probes and imaged in the same manner
to be used for the measurement of the background signal due

to the non-specific binding of Alexa Fluor 647 and CF 568. The
natural logs of the RNA copy numbers were plotted against time
and the slope of the linear fitting was used to calculate the RNA
lifetime and then the degradation rates. SgrS degradation rates
were obtained from Fei et al. (2015), where they were measured
by stopping the transcription of sgrS by removing αMG from
the media and then were imaged and analyzed to calculate
the degradation rates in the same manner as was described
for ptsG mRNA. The values for kcat , kon, and koff for WT
cells were confirmed to be within the errors reported for the
values given in (Fei et al., 2015) by fitting to the experimentally
measured RNA counts with the simplified model given in that
work. The transcription rate of ptsG was determined using
kt.p = βp× [p]0, [as described in Fei et al. (2015)], where [p]0 was
the average initial level of ptsG mRNA before stress induction.
The transcription rate obtained was unchanged between the
wild-type and the U224G mutant cells.

3. RESULTS

Figure 5 demonstrates the ability of our newly developed kinetic
model to capture the average cellular copy number of SgrS and
ptsGmRNA over the course of the 20 min period post-induction.
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FIGURE 5 | Average time trace and interquartile range (IQR) of (A) labeled SgrS and (B) ptsG mRNA from both 85–169 cells from smFISH experiments (red, circled

line) and 2,000 replicates from kinetic model simulations (blue, solid line). The kinetic model shows strong agreement, especially at long times (10–20 min) after

induction and captures overall response behavior. An available pool of 250 Hfq and the kinetic parameters given in Table 1 were utilized. Results considering both

lower and higher available Hfq pools are discussed in Supplementary Figure 1.

The overlap of the interquartile range (IQR) of both the
experimental and simulated cellular populations demonstrates
the agreement over a variety of cells [at different gene states (i.e.,
high/low copy number), and RNA expression levels].

The ability of our improved kinetic model to capture
population-level statistics of single cell copy number
distributions of SgrS and ptsG mRNA is demonstrated in
Figure 6. Kernel Density Estimates (KDE), which are used
to estimate the probability densities of distributions of
approximately 100–200 experimentally measured cells and
2,000 simulated cells are displayed, along with dashed vertical
lines giving the average RNA copy numbers observed. KDEs
were utilized to provide a reasonable comparison to the
experimental values despite the fact that there were a relatively
low number of cells measured at each time point (approximately
100–200) compared to the number of replicates required
for appropriate stochastic simulation (2,000) (Histograms of
experimental RNA counts measured before KDE imposition
are given in Supplementary Figure 7). The distributions
obtained from both experiment and the kinetic model show
strong agreement (especially in the case of ptsG mRNA), which
can be seen quantitatively by the starred line showing the
Kullback–Leibler Divergence (KL Divergence) in Figure 7.
The KL Divergence (Equation 2), which was minimized to

fit to experimental RNA distributions over all time points,
is a statistical measure used to characterize the difference
between a probability distribution (the KDE of simulated
cells) and a reference distribution (the KDE of experimentally
measured cells).

The parameters obtained from the fitting process give
some insight into the role of stabilization by Hfq in the
SgrS-ptsG mRNA target search process and the role of
transcriptional regulation by SgrR in the regulatory network.
The pseudo first order rate of Hfq binding to SgrS (kbind) is
0.063 ± 0.014 s−1, while the degradation rate of SgrS (kds),
obtained from 1hfq strain experiments (described in section
2.2), is 0.022 ± 0.002 s−1. The available Hfq pool size of
250 ± 167 predicted by fitting to the kinetic model seems
reasonable in that average proteomics values have been found to
be on the order 1,500 (Taniguchi et al., 2010; Santiago-Frangos
and Woodson, 2018) and unique sRNAs have been shown to
be bound to 10 to 1,000 copies of Hfq in E. coli (Melamed
et al., 2020) (Further discussion of range of Hfq copy number
is given in Supplementary Section 1). Additionally, the
aforementioned SgrS-Hfq binding rate kbind corresponds well
to experimentally measured in vitro values for sRNA-Hfq
binding for sRNA of its approximate size (Fender et al., 2010;
Hopkins et al., 2011; Santiago-Frangos and Woodson, 2018).
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FIGURE 6 | Distributions of (A) Wild-Type SgrS (top) and (B) ptsG mRNA (bottom) at various time points from 0 to 20 min post-induction. Data from smFISH-STORM

experiments (red, 100–200 cells per time point) and stochastic simulations (blue, 2,000 cells per time point) are shown as kernel density estimates. The effect of

number of cell replicates is studied further in Supplementary Figure 3. Average copy number at each time point is are displayed with dashed vertical lines.

If the pseudo first order rate for kbind reported in Table 1 is
converted to a bulk second order rate by incorporating
the Hfq concentration at the predicted available pool size
of 250, we obtain a binding rate of 1.5 × 105 M−1 s−1.
This value (on the order of 1–3 105 M−1 s−1 within the
uncertainty reported in Table 1) agrees better with the reported
value of approximately (Santiago-Frangos and Woodson,
2018) 106 M−1 s−1 for long RNAs binding to Hfq (Lease and
Woodson, 2004; Fender et al., 2010) than 108 M−1 s−1 reported
for short, unstructured RNAs binding to Hfq (Hopkins et al.,
2011). Since SgrS is a relatively long sRNA (sRNA have typically
been found to be between 37 and 300 nt Wang et al., 2015a with
a length of 227 nucleotides, the slow sRNA-Hfq binding rate
obtained by fitting seems appropriate. This type of slow sRNA
association process has been suggested to be characterized by
RNA restructuring (by which Hfq remodels sRNA regions in
order to make its secondary structure more accessible for target
mRNA base pairing) (Antal et al., 2004; Soper and Woodson,
2008; Soper et al., 2011; Bordeau and Felden, 2014), which has
been proposed to occur for SgrS (Maki et al., 2010). kbind is
also much greater than the Hfq-SgrS unbinding rate (kunbind)
of 0.0018 ± 0.0004 s−1 which was obtained from fitting to
the degradation rate of SgrS in a cell where Hfq was expressed
(distinct from the 1hfq rate) by assuming that Hfq-SgrS
unbinding is the rate-limiting step in the degradation of free SgrS
represented in Figure 4 (Rxn 2.2). These results seem reasonable
in that SgrS should associate with Hfq at a rate comparable to
its degradation as well as that SgrS-Hfq binding should happen

at a significantly higher rate than their dissociation for sRNA
chaperone stabilization by Hfq to be effective.

The kinetic values for transcriptional regulation by the
activator SgrR also seem reasonable with a kon,Ds of 3.0 ×

10−2 s−1 and a koff ,Ds of 9.5 × 10−3 s−1. The gene switching
parameters correspond to sgrS activation via SgrR binding
occurring approximately 30 s after initiation of induction,
with all sgrS genes assumed to start in the “OFF” state (the
effect of starting genes in the “OFF” vs. the “ON” state is
analyzed in Supplementary Figure 2). This seems reasonable
since SgrS sRNA moves from a basal level of a few copies to
greater than 40 copies on average in 2 min time (Figure 5).
The fact that kon,Ds is 3 times greater than koff ,Ds means that
activation happens more frequently than deactivation from
unbinding of SgrR. This relative behavior is somewhat expected
as sugar shock has been induced and SgrR is believed to
be transformed to its active conformation as a transcription
factor for sgrS by binding to a small molecule at its C-
terminus (Vanderpool and Gottesman, 2004, 2007). While the
available evidence suggests that the activity of SgrR due to
solute binding rather than sgrR expression affects activation
of sgrS, it has been demonstrated that SgrR is negatively
autoregulated (Vanderpool and Gottesman, 2007) which may
lead to a ceiling on the level of sgrS activation that can occur
even after glucose-phosphate stress is fully induced. Thus, we
incorporate constant rates of kon,Ds and koff ,Ds for sgrS activation
in our model, instead of a time variant rate constant for
either parameter.
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FIGURE 7 | Statistical analysis of the agreement of (A,C) SgrS sRNA and (B,D) ptsG mRNA copy number between experiment and theory on both (A,B) an average

(Relative Error) and (C,D) distribution (Kullback–Leibler: KL Divergence) level. KL Divergence values for the model with no Hfq stabilization nor Gene Duplication are

not shown as the values obtained are at 1.0, corresponding to significant disagreement in that model variant and experiment. GeneDup refers to a model with Gene

Duplication for both SgrS and ptsG implemented and Reg refers to a model with transcriptional regulation of SgrS by SgrR in place. The green line (with star markers)

indicates the full kinetic model used for this study, which provides the best fit to both average and population level data for both SgrS and ptsG mRNA.

3.1. Comparison of Goodness of Fit Based
on Model Complexity
To illustrate the improvement of the kinetic model to
describe cellular populations, we compare simulation results
sequentially as each level of complexity (i.e., transcriptional
regulation by SgrR, gene replication, and stabilization by the
chaperone protein Hfq) is added to the original reduced
model presented in Fei et al. (2015). Figure 7 demonstrates
the improvement in descriptiveness at both an average

and population level with progression to a more fine-
grained kinetic model. The relative error (Equation 1) of
the average copy number of SgrS and ptsG mRNA gives
the capability of the model to reproduce experiments on

an average level, while the Kullback-Leibler Divergence (KL
Divergence) (Equation 2) shows the agreement between the

experimentally observed and simulation distributions of RNA
copy numbers at a series of times from 0 to 20 min
post induction.
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The Relative Error used to illustrate the agreement between
the experimentally measured average RNA copy number and the
theoretical value is given by:

η =

∣

∣

∣

∣

Expavg − Simavg

Expavg

∣

∣

∣

∣

(1)

where Expavg is the experimentally measured average RNA copy
number at a given time point and Simavg is the simulated average
RNA copy number at the same time point.

The KL Divergence used to compare agreement between
experimental and simulated distributions is given by:

DKL (P||Q) =
∑

i

P(i) log
P(i)

Q(i)
(2)

where P(i) is the continuous probability distribution given by the
Gaussian KDE of the experimental copy number distribution of
RNA (SgrS or ptsG mRNA) and Q(i) is the analogous simulated
RNA copy number distribution.

It is clear that the decrease in the KL
Divergence (Figures 7C,D), describing the ability of the
kinetic model to accurately describe cell-to-cell variation, is
most substantial in the final model presented in this work (star
markers). Accounting for transcriptional regulation by SgrR,
ongoing gene replication, and the stabilizing effect of Hfq allows
for a more faithful description of the noise observed in a cellular
population in the process of sugar shock response.

3.2. Characterizing the Effects of SgrS
Point Mutation on Association to Hfq and
ptsG mRNA
The stochastic model we have presented can also be utilized to
characterize the effects of sgrS point mutations on the regulatory
network as a whole. The polyU tail region of sgrS comprising
the final 8 residues of the 5’ end (all of which are uridine in
the sRNA) has previously been shown to be an important site
for Hfq recruitment (Otaka et al., 2011). When the polyU tail is
truncated or similarly disrupted, there is a noticeable decrease
in SgrS regulatory efficiency. With this in mind, we used the
previously defined kinetic model (See Figure 4) to characterize
the effect of a point mutation resulting in a U to G change
in SgrS at position 224 (in the polyU tail region, hereafter
referred to as U224G) of the sRNA on regulatory kinetics.
This point mutation is well downstream of the seed region
(nucleotides 168–187) where SgrS-ptsG mRNA base pairing
occurs (Maki et al., 2010; Bobrovskyy and Vanderpool, 2014) so
it should not directly interfere with sRNA-mRNA interactions.
It is also important to consider the possible structural effects
arising from polyU tail mutation. Through in silico folding with
the RNA structure prediction tool mFold (Zuker, 2003), we
confirmed that the stability of the U224G with a 1G of
−17.60 kcal/mol is unchanged from the predicted wild-type
value of−17.60 kcal/mol, and also indicated that sRNA structure
is conserved Supplementary Figure 5) and the measured wild-
type 1Hfq degradation rate (see section 2.2) is appropriate

for use in fitting the U224G mutant data (as a rate for
Figure 1, rxn 2.2).

We then fit to the experimentally measured SgrS and
ptsG mRNA distributions using the previously determined
kinetic model (Given in Figure 1 and Table 1). A robust
fit describing both average behavior as well as population
level variation (Figure 8, Supplementary Figure 4) was achieved
primarily by modulating the rates of SgrS to Hfq binding and
unbinding (kbind and kunbind) and the ptsG mRNA annealing
rates kon and koff (which were also free parameters in this
treatment) to a much lesser extent, which further demonstrates
the role of the polyU tail in Hfq chaperone recruitment. The
changes in the kinetic parameters of the model used to fit mutant
U224G relative to the wild-type cells (WT) illustrate that the
effects of this mutation on SgrS-Hfq association are much larger,
relative to the subsequent annealing of SgrS to its target ptsG
mRNA (Table 2) (Further discussion of mutant U224 structure
is given in Supplementary Section 4).

The 48% decrease in the SgrS-Hfq binding rate kbind and
66% increase in the unbinding rate of the sRNA and chaperone
complex kunbind highlight the effects of polyU tail disruption, and
support previous conclusions that this is an important site for
Hfq stabilization of SgrS (Otaka et al., 2011), and the regulatory
efficiency of the network as a whole. The smaller relative changes
in the Hfq-SgrS-ptsG mRNA annealing rates kon and koff by
32% and 22% respectively may be due to altered interactions
with Hfq that impair Hfq–dependent annealing of SgrS and ptsG
mRNA (Supplementary Section 4). In light of the previously
discussed slow SgrS–Hfq association process, it is reasonable that
RNA restructuring of Hfq may be disrupted by mutation U224G,
thus leading to slower and weaker annealing to ptsGmRNA. One
possible explanation for the disturbance of regulation in mutant
U224G is the disruption of orderly transcription termination (the
polyU tail is at the 3’ end of sgrS). Such readthrough transcription
has previously been ascribed to decrease the efficiency of SgrS
binding to Hfq (Morita et al., 2015, 2017). Even considering
values near the ceiling of the uncertainties reported in Table 2 it
seems clear that both kbind and kon decrease and that both kunbind
and koff increase due to the disruption of the polyU tail at U224G,
highlighting the importance of Hfq in both stabilizing SgrS and
in promoting the association of SgrS to ptsGmRNA.

4. DISCUSSION

The construction of a stochastic kinetic model including gene
replication, transcriptional regulation, and the role of the Hfq
chaperone protein demonstrates the utility of combining single
cell experiments with stochastic modeling. The SgrS Regulatory
Network is a noisy system characterized by small numbers of
sRNA and mRNA, as well as gene copy numbers that vary
from cell-to-cell. This leads to the population level heterogeneity
that can then be used to parameterize a kinetic model for
analysis of the role of specific molecular actors, such as the
chaperone Hfq, and the effects of point mutation on sRNA
silencing of mRNA.
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FIGURE 8 | For U224G mutant cells, average time trace and interquartile range (IQR) of (A) labeled SgrS and (B) ptsG mRNA from both 83–110 cells from smFISH

experiments (red, circled line) and 2,000 replicates from kinetic model simulations (blue, solid line). The kinetic model shows strong agreement, especially at long times

(10–20 min) after induction and captures overall response behavior. An available pool of 250 Hfq and the kinetic parameters given in Table 1 were utilized, other than

changes to SgrS-Hfq binding and unbinding rates and ptsG mRNA annealing and dissociation rates given in Table 2.

The average number of Hfq hexamers present in an E. coli cell
has been reported to be on the order of 1,400–10,000
(2–15 µM) (Taniguchi et al., 2010; Mancuso et al., 2012;
Wiśniewski and Rakus, 2014; Wang et al., 2015b; Santiago-
Frangos and Woodson, 2018). It is worth noting that an
extensive microfluidic-based, single-cell proteomics study that
analyzed over 4,000 individual E. coli cells grown in similar
media conditions as our study (Taniguchi et al., 2010) found a
mean Hfq level of 1500. Additional immunoprecipitation and
sequencing studies (by RIL-Seq) have shown the number of
various individual mRNAs and sRNAs being bound to Hfq to
range from 10 to 1,000 in E. coli (Melamed et al., 2020). Thus, our
prediction (from fitting) that a pool of approximately 250 ± 167
Hfq (approximately 0.5 µM) are available to bind with SgrS
sRNA at any time in the simulation of sugar shock regulation
seems reasonable.

In addition, our approach allowed us to characterize the rate
of Hfq-SgrS association compared to values reported for Hfq
stabilization of other regulatory sRNAs. If the pseudo first order
Hfq binding rate kbind reported in Table 1 is converted to a bulk
second order rate we obtain a binding rate of 1.5× 105 M−1 s−1

which agrees reasonably well with the reported value (Santiago-
Frangos and Woodson, 2018) of approximately 106 M−1 s−1 for
long RNAs binding to Hfq (Lease and Woodson, 2004; Fender

et al., 2010) (compared to the value of to 108 M−1 s−1 for
short, unstructured RNAs binding to Hfq Hopkins et al., 2011).
SgrS is a relatively long sRNA with a length of 227 nucleotides
(sRNAs have been observed with 37-300 nt Wang et al., 2015a),
therefore the slow sRNA-Hfq binding process that we describe
does seem likely. We suggest that this could be due to RNA
restructuring of SgrS (Antal et al., 2004; Soper and Woodson,
2008; Maki et al., 2010; Soper et al., 2011; Bordeau and Felden,
2014) by Hfq in order to promote binding with ptsG mRNA.
It is thought that cellular sRNA and mRNA are present in
large excess over Hfq (Wagner, 2013), so nearly all cellular Hfq
hexamers are thought to be bound to RNA. Since cellular mRNA
in E. coli are found to be on the order of approximately 2,000–
8,000 copies (Bartholomäus et al., 2016) (much greater than
the highest measured SgrS sRNA value of 200) the available
Hfq pool size that we present is representative of the relative
competitiveness (and time-dependent cycling) of SgrS for Hfq
relative to the other particles that interact with the chaperone.

The study of mutant U224G shows the importance of Hfq
stabilization in the SgrS regulatory network as a whole and
seems to corroborate previous findings (Otaka et al., 2011) that
highlight the importance of the polyU tail for Hfq association
with SgrS. The substantial decrease of the Hfq-SgrS binding rate
and increase in the related unbinding rate relative to the ptsG
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TABLE 2 | The list of kinetic parameters for SgrS-Hfq association

(kbind and kunbind ) and annealing with ptsG mRNA (kon and koff ) for wild-type (WT)

cells as well as SgrS mutant U224G (Reactions in Figure 4).

Parameter Mutant Value %Difference

from WT

kbind
U224G 0.033 ± 0.010 s−1 −48%

WT 0.063 ± 0.014 s−1

kunbind
U224G 0.003 ± 0.002 s−1 +66%

WT 0.0018 ± 0.0004 s−1

kon
U224G (2.1 ± 1.0)× 10−4 molec−1s−1 −32%

WT (3.1± 0.2)× 10−4 molec−1s−1

koff
U224G 0.27 ± 0.11 s−1 +22%

WT 0.22 ± 0.02 s−1

The substantial differences between WT and U224G for the values of kbind and

kunbind demonstrate the disruption of Hfq binding that accompanies the mutation in

the polyU tail, which has been observed previously (Otaka et al., 2011). The smaller

relative changes in the ptsG mRNA annealing rates may be due to disruption of RNA

restructuring (Antal et al., 2004; Soper and Woodson, 2008; Soper et al., 2011; Bordeau

and Felden, 2014) of SgrS by Hfq that hampers association to the mRNA target.

Calculation and analysis of parameter uncertainty values by Markov Chain Monte Carlo

analysis is discussed in Supplementary Section 6.

mRNA annealing rates further down the network obtained from
fitting confirms this point (Table 2). The changes in the SgrS-ptsG
mRNA annealing rates kon and koff seem to support conclusions
from the wild-type cells that Hfq-SgrS binding may result in
some restructuring of the sRNA that makes this a slow process.
This may explain the lower efficiency in ptsG mRNA association
observed in mutant U224G, since Hfq cannot bind SgrS as
effectively due to mutation at the polyU tail. Therefore, the
predicted restructuring of SgrS by Hfq necessary to facilitate ptsG
mRNA association is also hampered, resulting in slower and less
stable mRNA binding (a decrease in kon and an increase in koff ).

While this work is useful in describing the role of Hfq in
the SgrS regulatory network and in capturing the stochastic
nature of regulation over a population of replicating cells, it does
not consider certain cellular processes that may affect network
dynamics. First, the various other SgrS mRNA targets that may
be present in a living E. coli cell under certain growth conditions
may affect the SgrS pool available to regulate ptsG mRNA.
In addition, other factors such as sRNA recycling (i.e., SgrS
not being co-degraded with its target mRNA) (Soper et al.,
2011; Santiago-Frangos and Woodson, 2018), which have been
proposed for some sRNA and are now under study for
SgrS, were not included, but can be incorporated into the
model. Also, the process of spatial target search (via RNA
and protein diffusion) of SgrS-Hfq for ptsG mRNA and RNase
E (which may be localized in ribonucleoprotein bodies Al-Husini
et al., 2018 or near the membrane Moffitt et al., 2016) for
the entire protein-RNA complex as it seeks to degrade the
RNA is not explicitly considered in our model (as it a well-
stirred model). The potential of binding of the SgrS to ptsG
mRNA as soon as the sRNA binding site on the mRNA is
transcribed [i.e., co-transcriptional regulation which has been
posited previously by Chen et al. (2019)], may be of interest
to add to the model, since the model assumes only post-
transcriptional binding of ptsGmRNA to the SgrS-Hfq complex.

A further experiment that would be useful in the study of these
processes would be an RIL-Seq experiment (Melamed et al.,
2020) that quantifies the interactions of Hfq with other RNA
(such as yigL or manX) relative to its interactions with SgrS, to
better understand the pool of Hfq available for the SgrS stress
response network.

In conclusion, by incorporating gene replication, stabilization
by the chaperone protein Hfq, and transcriptional gene
regulation of sgrS we have developed a kinetic model capable of
describing the cellular heterogeneity observed in the E. coli sugar
shock response network. Stochastic simulation of the kinetic
model allows us to take full advantage of the single-molecule
fluorescence data that illustrates cell-to-cell variability in a
collection of hundreds of cells. While the post-transcriptional
regulation and silencing of ptsG mRNA by the sRNA is the
critical feature, accounting for gene replication, transcriptional
regulation, and stabilization gives a more robust picture of the
regulatory network as a whole. In addition, complexifying the
model highlights the importance of stabilization by Hfq and
chaperone proteins in general in RNA silencing networks and
allowed for a prediction of the rate of association of SgrS and
Hfq (as a slow process, characterized by restructuring), the
effective available Hfq pool size for the SgrS regulon under sugar
stress conditions, as well as an analysis of an SgrS point mutation
in one of the presumedHfq bindingmodules (the polyU tail). The
model presented in this work establishes a framework for models
analyzing other sRNA mediated gene regulatory networks, and
can be extended to spatially-resolved models describing SgrS
target search kinetics.
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Impact of Structural Observables
From Simulations to Predict the Effect
of Single-Point Mutations in MHC
Class II Peptide Binders
Rodrigo Ochoa1,2, Roman A. Laskowski2, Janet M. Thornton2 and Pilar Cossio1,3*

1Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia UdeA, Medellin, Colombia, 2European
Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, United Kingdom, 3Department of
Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany

The prediction of peptide binders to Major Histocompatibility Complex (MHC) class II
receptors is of great interest to study autoimmune diseases and for vaccine development.
Most approaches predict the affinities using sequence-based models trained on
experimental data and multiple alignments from known peptide substrates. However,
detecting activity differences caused by single-point mutations is a challenging task. In this
work, we used interactions calculated from simulations to build scoringmatrices for quickly
estimating binding differences by single-point mutations. We modelled a set of 837
peptides bound to an MHC class II allele, and optimized the sampling of the
conformations using the Rosetta backrub method by comparing the results to
molecular dynamics simulations. From the dynamic trajectories of each complex, we
averaged and compared structural observables for each amino acid at each position of the
9°mer peptide core region. With this information, we generated the scoring-matrices to
predict the sign of the binding differences. We then compared the performance of the best
scoring-matrix to different computational methodologies that range in computational
costs. Overall, the prediction of the activity differences caused by single mutated
peptides was lower than 60% for all the methods. However, the developed scoring-
matrix in combination with existing methods reports an increase in the performance, up to
86% with a scoring method that uses molecular dynamics.

Keywords: MHC class II, single-point mutation, structural bioinformatics, simulations, binding

INTRODUCTION

The Major Histocompatibility Complex (MHC) class II is a key receptor responsible for recognizing
fragments of proteins belonging to external pathogens, as well as recognizing human proteins that
can boost the emergence of autoimmune events and immunological processes (Wieczorek et al.,
2017). The structures of multiple MHC class II alleles have been elucidated. They are composed of α
and β chains split into four sub-units, two of them forming a groove where the peptides bind
(Bjorkman, 2015) (see Supplementary Figure S1). The peptides contain a core region, which is a
fragment of nine amino acids responsible to stabilize the peptide-MHC class II interaction. The
peptide-core binds in four key pockets of the receptor that are formed between the α and β chains
(Unanue et al., 2016). The available structures of MHC class II bound to peptides provide
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information about the binding poses, which are commonly in a
polyproline II-like extended conformation (Bermúdez et al.,
2014). Understanding the preference of amino acids for
certain positions is relevant to comprehending how epitopes
can trigger adaptive immune responses (Unanue et al., 2016).
Moreover, this structural information allows us to study the
physicochemical interactions within key pockets in the binding
groove, which is crucial to stabilizing the complexes (Yeturu et al.,
2010).

These structural insights are usually not included in the
prediction tools of peptides binding to the MHC class II. The
lack of structural and dynamical representations of the
complexes, as well as the demand on computational resources,
are some of the limitations (Zhang et al., 2010). Instead,
researchers have focused on generating profiles and motifs of
sequences using information from bioactivity datasets (Wang
et al., 2008). The main purpose of these tools is to rank peptide-
binders by their predicted affinities, and associate the values to a
potential immunological response. Among the available
approaches, the most common ones are machine learning
models trained with a diverse set of peptides bound to
different MHC class II alleles (Andreatta et al., 2015; Peters
et al., 2020). Some other researchers have focused on creating
position-specific scoring matrices that can be implemented to
select peptide candidates through simple bioinformatics
pipelines, and to predict which core region of the peptide is
responsible for the interaction with the main pockets of the
receptor (Rapin et al., 2008). The available tools cover a
diverse set of MHC class II alleles, providing clues for
researchers working on the design of vaccines and
immunotherapies (Nandy and Basak, 2016).

One particular challenge about the binding predictions is to
evaluate affinity differences for single-point mutations on the
peptide. Efforts have been focused to understand the impact of
suchmutations in the context of protein function, participation in
molecular pathways and changes in their physico-chemical
properties (Bogan and Thorn, 1998; Tokuriki et al., 2007;
Hopf et al., 2017). From a structural perspective, coordinates
can be used as input to predict the side chain conformations of the
mutated amino acids, and assess their impact from a stability or
binding perspective (Li et al., 2014). In the case of MHC class II,
sequence-based strategies can be implemented to predict these
activity differences, but structural and dynamical insights about
the mechanisms behind these modifications are also relevant
(Kuhlman and Bradley, 2019; Aranha et al., 2020). Many of these
methods rely on energy evaluations to check differences in terms
of solvent exposure, generation of hydrogen bonds, electrostatics
contributions, backbone and side chain flexibility, and weak
interactions such as van der Waals (Sammond et al., 2007;
Slutzki et al., 2015; Barlow et al., 2018). Understanding the
main drivers of these affinity differences is relevant for the
design and discovery of novel peptide binders.

Methods using structural and dynamical information can be
implemented to assess the role of the peptide/receptor
conformations in the binding affinity and stability (Antunes
et al., 2018; Lanzarotti et al., 2018). For MHC class II, the
crystal structures show that peptides tend to bind in similar

conformations for the available alleles (Wieczorek et al., 2016).
Therefore, these structures can be used as templates to model
other peptides bound to the receptor, and enable the study of how
modifications can affect the binding from a physicochemical
perspective (Ochoa et al., 2019). These models can be
subjected to conformational sampling to analyze the
fluctuations of the complexes in equilibrium (Ferrante et al.,
2015) and score the most favourable conformations (Cossio et al.,
2012; Sarti et al., 2013).

Among the sampling approaches, molecular dynamics (MD)
has proved to be a useful way of studying the conformational
space of peptides bound to MHC class II structures (Omasits
et al., 2008; Ochoa et al., 2019). However, the scalability is limited
by the required computational resources if large sets of peptides
are analyzed. One option is to implement Monte Carlo
algorithms to obtain representative structures of the complexes
in equilibrium (King and Bradley, 2010). This is the case of the
backrub method from Rosetta, where the backbone flexibility is
modelled based on observations from high-resolution crystal
structures (Smith and Kortemme, 2008). The movements are
mainly backbone rotations around the axes of Cα atoms that are
accepted using a Metropolis criterion based on the minimization
of a bond-angle penalty imposed by the chosen force fields (Smith
and Kortemme, 2010). The trajectories provide information on
the system’s intrinsic flexibility, solvent accessibility and the main
interactions (e.g., hydrogen bonds, non-bonded contacts) formed
by the amino acids.

In this work, we evaluated how two kinds of molecular
interactions can aid in the prediction of the affinity-differences
for single modifications in the core region of a set of MHC class II
peptide binders. For this purpose, we created a set of scoring
matrices, as is typically done using sequence analysis, but here
derived from structural observables from simulations of a large
set of peptides/MHC class II complexes. The matrices allow the
estimation of binding differences caused by single-point
mutations, and complement current state-of-the-art methods
to improve the predictions. We modelled a large set of
peptides with binding data available for one representative
MHC class II allele. Then, we sampled the conformational
space using the backrub method optimized to reproduce the
finite-temperature ensemble from molecular dynamics
simulations. Hydrogen bonds and contact interactions were
used to calculate the scoring-matrices SM-HB and SM-C,
respectively, from the structural descriptors per core position
in the peptide. The magnitude and stability of these observables
were associated to binding differences of single-modified
peptides.

In addition, five other approaches, having a wide range of
computational costs, as well as accuracy, were assessed to predict
the binding differences. Specifically, two sequence-based methods
were implemented, which involve the use of a motif matrix to
predict the most probable amino acids of the peptide core regions,
and a machine learning tool used to predict binding affinities for
this system. The third and fourth methods are a previously
benchmarked structural/dynamical approach using an MD/
scoring and backrub/scoring combination to rank peptides
bound to the MHC class II (Ochoa et al., 2019). Finally, a
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Molecular Mechanics-Poisson Boltzmann Surface Area (MM-
PBSA) approach is used to calculate average energies per peptide
based on the MD trajectories obtained in the previous strategy. In
general, the predictions had an accuracy below 60% for all the
methods, but combining the best scoring-matrix SM-HB (i.e., the
one generated from the hydrogen bonds) with the existing
methods improves the performance.

MATERIALS AND METHODS

In the following, we first explain how we build the scoring-
matrices based on the structural observables. Then, we describe
how to evaluate their impact on activity differences caused by
single-point mutations on the peptide binders. This is followed by
a description of the additional methods used for comparison and
their combination with the developed structural scoring-
matrices.

Structural Scoring-Matrices From
Simulations
To evaluate the impact of structural interactions, we created a set
of scoring matrices based on hydrogen bonds (SM-HB) and
contacts (SM-C) generated between the peptide core region
and residues of the MHC class II binding site. For that
purpose, we first optimized the conformational sampling of
MHC class II structures using the Rosetta backrub method
(Davis et al., 2006) in comparison to MD simulations. Then,
we modelled a large dataset of known peptide binders of the same
MHC class II allele, and with the observables we generated the
scoring matrices. A detailed explanation is presented below.

Conformational Sampling Optimization
Before checking the role of the structural interactions, we assessed
the conformational sampling of theMonte Carlo backrubmethod
in Rosetta in comparison to MD simulations to explore
conformations of crystal structures of peptides bound to MHC
class II alleles. We selected a set of 10 peptide-MHC class II
crystal structures from the Protein Data Bank (PDB) (Berman
et al., 2000) of the most widely studied allele, DRB1*01:01 (see
Supplementary Text for details about the structure selection). We
used this benchmark to compare molecular dynamics (MD) and
Monte Carlo backrub simulations.

Molecular dynamics: Each crystal structure was subjected to
MD simulations of 20 nanoseconds (ns) with previous
minimization and NVT/NPT equilibration phases, using
GROMACS v5.1 (Hess et al., 2008). The main MD parameters
are described in the Supplementary Text. A temperature of 350 K
was chosen to perform the simulations, allowing a fast
exploration of the conformational space. Since we are
interested only in the peptide-receptor interactions, all the
protein atoms located at a distance greater than 12 Å from
any peptide atom were restrained.

Backrub Monte Carlo: The same crystal structures were
subjected to Metropolis Monte Carlo simulations using the
backrub algorithm (Davis et al., 2006) available in

RosettaCommons version 2016.32 (www.rosettacommons.org).
A total of 50,000 Monte Carlo trials were run per complex using
two kT values: 0.35 and 1.2. Cα atoms were chosen as pivots for all
the protein and peptide residues. The minimum backrub segment
size in atoms was 3, and the maximum segment was 64. The
probabilities for sampling side chain and backbone torsions were
set at the default values. The simulations were run over a single
core for each complex. An optimal backrub parameter setup was
selected in order to reproduce the equilibrium ensemble
from MD.

Structural observables
Several structural observables were used to characterize the
conformations from the different simulations:

Side chain dihedrals: The side chain dihedrals χ1 and χ2 were
monitored for all the amino acids belonging to the peptide, and
the distributions were compared to that obtained from MD. The
Kullback-Leibler divergence metric (Hershey and Olsen, 2007)
was implemented to compare the distributions.

Main chain hydrogen bonds: We monitored interactions
made by the amino acids of the peptide core region with the
receptor. Specifically, we calculated the number of potential
hydrogen bonds made by the backbone atoms using the
HBPLUS program (McDonald and Thornton, 1994).

Contacts: We also calculated the number of non-bonded
contacts with a threshold of 4 Å between the atoms of the
peptide and those of the receptor using Biopython modules
(Cock et al., 2009).

The latter two observables were also used to calculate the
structural descriptors for creating the scoring-matrices.

Modelling and Simulations of a Large Dataset of
Peptides Bound to MHC Class II
After establishing the best backrub simulation setup, a set of
peptides with available binding data for different MHC class II
alleles was modelled and simulated to calculate scoring-matrices
from the chosen structural descriptors.

First, we selected as a representative structure of the allele
DRB1*01:01 and the crystal structure with PDB id 1T5X, which is
co-crystallized with a peptide that we used as template to model
peptide binders with bioactivity information available. For the
peptides, we used a public dataset containing 44,541 measured
affinities covering 26 MHC class II alleles (Wang et al., 2010). We
selected a total of 837 15 mer peptides for the allele DRB1*01:01
after applying the filter below, with activities from 1 to 10,000 nM.
The filter was the prediction of the 9 mer core region of each
selected peptide using two methods. The first was based on
available motifs derived from a position-specific scoring matrix
published for several MHC class II alleles (Rapin et al., 2008). The
sequences were analyzed over windows of nine amino acids,
where each fragment was scored to obtain a ranked list of
fragments with probabilities of being the core region of the
peptide interacting with the MHC class II receptor. For the
second method, we implemented the NetMHCIIpan-4.0 tool,
which has as its main goal the prediction of affinities for peptides
bound to MHC class II molecules, and also the prediction of the
9°mer core regions of the peptide sequences (Andreatta et al.,
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2015). A peptide was selected when both methods predicted
identical core regions with the highest scores. As a final step,
we aligned the predicted core region with the core from the
peptide template. If, after the alignment, we needed to add more
than two amino acids for either flanking region (N or
C-terminal), the peptide was discarded.

We modelled the selected peptides by iterative single
substitutions of the peptide template sequence. The mutations
were performed with the package fixbb from Rosetta (Loffler
et al., 2017), which was compared in a previous study to other
available mutation protocols (Ochoa et al., 2018). The method
selects the most probable rotamer from a dictionary of backbone-
dependent conformations. After each mutation, the side chain
atoms were relaxed with the backbone fixed. The modelling of
additional amino acids in the flanking region, when required, was
done with the Remodel package from RosettaCommons (Huang
et al., 2011), where the new amino acid was subjected to the
prediction of the rotamer with relaxation of the side chains.

For each peptide, the backrub simulation from Rosetta was
applied with kT � 1.2 (Smith and Kortemme, 2008) as found to
be optimal (see the Results). Each Monte Carlo simulation had
200,000 trials. We obtained 2,000 frames per simulation, and the
previously described interactions (see Methods Structural
observables) were calculated per amino acid in all the core
positions for each frame. We did the same under three other
scenarios: (i) using the last 1,000, (ii) using the 1,000 frames with
best energy-scores [i.e., backrub scoring function (Alford et al.,
2017)], and (iii) using the single frame with the lowest energy. A
summary of the modelling and sampling strategies is shown on
Figure 1.

Definition of the Scoring-Matrices
We calculated averages of the observables per amino acid in each
position of the core to define scoring-matrices of the structural
descriptors. The averages covered the number of amino acids

available in the dataset per position in the core region. For each
position in the core region, we calculated a vector with 20 indices
(one per each natural amino acid) using the average of the
observable from the backrub trajectory. At the ith core
position for amino acid type j, the average observable O is
defined as

Oij � 1
Nf

∑
α

∑
f

oαfij , (1)

where o is the observable, f is the frame number, Nf is the total
number of frames and α indexes the simulation run (having one
simulation for each binding-peptide from the dataset). In the case
of using just one frame from the backrub trajectory, only the
average across the simulation is calculated. If an amino acid type
is not found at a given position for a certain run, the observable is
taken as zero. We note that the amino acid distribution is not
homogeneous but it is given by the natural-occurring frequencies
found in the dataset. These intrinsic frequencies are implicitly
taken into account in Eq. 1. This allows us to improve the
available motifs of peptides binding to MHC class II alleles by
adding weights due to the structural observables.

The Scoring-Matrix for a Given Observable
is Defined as

Eij � −ln Oij

∑jOij
(2)

which provides a scoring-energy for each amino acid (j) in each
core position (i).

To visualize the frequency contribution of each amino acid on
the peptide library and the scoring-matrices, logoplots were
generated using the WebLogo3 server (Crooks et al., 2004).

FIGURE 1 | (left) Examples of a peptide bound to an MHC class II receptor and conformations from the Backrub Rosetta simulations. (right) Schematic
representation of the methodological steps that involve creation of the scoring-matrices. First, an MD vs. Backrub comparison was performed to define the best Backrub
setup. Then, the modelling and sampling of a set of known peptide binders was performed to obtain the observables for building the scoring-matrices.
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Assessment of Single-point Mutation
Activity Predictions
The obtained scoring-matrices, SM-HB and SM-C, were
compared to other methods based on their capability to
predict single-point mutation activity differences. The test
consisted of predicting the sign of the experimental ΔΔG for
each pair of peptides differing by single-point mutations in the
peptide core region. A total of 112 peptides forming 56 pairs were
selected and not used to calculate the scoring-matrices from the
descriptors. One requirement to select the pairs of peptides is the
prediction of identical core regions with high reliability, based on
the same criteria used to model the peptides (see Modelling and
simulations of a large dataset of peptides bound to MHC class II).

Additional Methodologies for Comparison
Five additional methods were used to compare and complement
the results with the scoring-matrices. These methods are:

A sequence motif reported for allele DRB1*01:01 was used to
compare the probabilities of finding an amino acid in the core
region (Rapin et al., 2008). The higher the value in the matrix
indicates a higher probability. The difference in probabilities was
used to compare the differences in affinity.

The tool NetMHCIIpan was used to predict a numerical
affinity per peptide. The sign of the predicted difference is
compared to the sign of the experimental values for assessing
the performance.

A hybrid MD/scoring approach was also used to predict the
sign of the activity difference using structural models of the
peptides based on a previously published protocol (Ochoa
et al., 2019). In summary, each peptide was subjected to MD
simulations of 10 ns using the same MD setup as explained
previously. Each frame of the last half of the trajectory was scored
using six different scoring functions: Haddock (Dominguez et al.,
2003), Vina (Trott and Olson, 2009), a combination of DFIRE
and GOAP (DFIRE-GOAP) (Yang and Zhou, 2008; Zhou and
Skolnick, 2011), Pisa (Krissinel and Henrick, 2007), FireDock
(Andrusier et al., 2007), and the BMF-BLUUES scoring
combination (Berrera et al., 2003; Fogolari et al., 2012). If
three or more scoring functions predicted the sign of the score
differences equal to the sign of the experimental activity
differences, it was counted as a match to assess the performance.

A hybrid backrub/scoring approach as explained in the
previous strategy, using 50,000 Monte Carlo trials per run
with a kT of 1.2. The backrub trajectory was scored using the
same scoring functions and consensus criterion to match the sign
of the activity difference.

Finally, as the most exhaustive approach, we calculated
average energies per peptide complex using the MM-PBSA
methodology. For that purpose we used the g_mmpbsa plugin
(Kumari et al., 2014) to calculate the solvated and non-solvated
terms using as input the MD trajectories of 10 ns calculated in the
third strategy.

Combination With the Structural Scoring-Matrices
To improve the performances, we combined the previous
approaches with the scoring-matrices results. Specifically, we
evaluated if using the scoring-matrices together with other

methods can increase the number of predictions after checking
by pairs if either of the two methods predicts correctly the sign of
the mutation activity difference. This analysis works as a
conditional “or” to evaluate how many cases can be covered
using more than one method, and subsequently observe how
many predictions match the experimental data.

RESULTS

To evaluate the impact of interactions in affinity changes caused
by single-point mutations in MHC class II peptide binders, a set
of scoring-matrices was calculated to assign probabilities for each
type of amino acid in each position of the peptide core region. The
matrices are created using the main chain hydrogen bonds (SM-
HB), and the non-bonded contacts (SM-C) obtained from
trajectories of peptides in complex with the MHC class II
allele. To optimize the sampling, we first compared the
Backrub approach to the results from MD simulations, in
order to guarantee enough conformational exploration with
computationally efficiency.

Optimization of the Structural
Scoring-Matrices
Backrub Simulation Optimization
We optimized the kT parameter used in backrub Rosetta
simulations in comparison to finite temperature MD
simulations. We used as benchmark a set of 10 peptide-MHC
class II structures of allele DRB1*01:01, available in the PDB (see
Supplementary Text, Supplementary Table S1; Supplementary
Figure S2). After subjecting the crystal complexes to both
sampling methods, the trajectories were analyzed based on
several structural observables for different kT . First, we
calculated the distributions of the χ1 and χ2 for each amino
acid of the peptide. Examples comparing the results of MD to
backrub sampling using kT � 0.35 and kT � 1.2 are shown in
Figure 2 for two amino acids. Supplementary Table S1 shows
how many amino acids were sampled similarly between the
backrub and MD configurations using the side chain-dihedral
distributions (see Supplementary Text and Supplementary
Figure S3 for details and additional validations). We find that
using the backrub simulations with kT � 1.2 is suitable to
efficiently explore the side chain dihedrals in comparison to MD.

We then calculated the average of the number contacts and the
number of hydrogen bonds created by the main chain atoms
(Table 2) for the amino acids located in the core region and for
both sampling methodologies (using the optimal kT for backrub
Rosetta). The fractional error calculated using standard deviation

TABLE 1 | Percentage of amino acids per backrub configuration (kT � 0.35 and
kT � 1.2) for each side chain dihedral that sampled the conformational space
similarly to MD simulations among all the 10 MHC class II crystal structures

Side chain dihedrals kT = 0.35 (%) kT = 1.2 (%)

χ1 19.2 80.8
χ2 12.9 87.1

Frontiers in Molecular Biosciences | www.frontiersin.org March 2021 | Volume 8 | Article 6365625

Ochoa et al. Impact of Interactions in MHCII-Binders

26

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


of the simulations is also shown in Table 2. We find that the
averages for the backrub method are slightly lower than those for
MD but within error estimates. Correlations of the values are
shown in Supplementary Figure S4. The impact of the selected
structural descriptors will be discussed in later sections.

Scoring-Matrices From Optimized Backrub
Simulations
We selected a total of 837 15-mer peptides from the chosen
bioactivity dataset (Nielsen et al., 2010) after filtering, as described
in the Methods. The peptides were simulated with backrub using

kT � 1.2. The number of hydrogen bonds made by the main
chain, and number of non-bonded contacts were calculated from
the structure in the trajectories. These observables were averaged
and used to calculate the scoring-matrices SM-HB and SM-C per
amino acid in the core region according to the equations in the
Methods.

These scoring-matrices incorporate the frequency of the
structural descriptors obtained from all the sampled peptides,
as well as the amino acid distribution of the peptide library. In
Figure 3, we show the frequency of the amino acid distribution in
the set of 837 peptides (Figure 3A) and the motif of the peptide
core region obtained from the SM-HB as observable (Figure 3B).
The motif for the SM-C is available in the Supplementary
Figure S5.

Assessment of the Scoring-Matrices to
Predict MHC II- Peptide Activity Differences
We first assessed if the scoring-matrices are able to predict
correctly the sign of activity differences by single-point
mutations on the peptide core region. The 56 pairs of peptides
differing in single amino acids are reported in the Supplementary
Table S2 with the corresponding experimental activities per
peptide, and the difference values. This information was
obtained from the bioactivity dataset (Wang et al., 2010),
which follows experimental gold-standard protocols for
binding measurements to MHC receptors, in comparison to
other techniques (Kastritis and Bonvin, 2010). We note that
this set of peptides was not included during the creation of
the scoring-matrices.

FIGURE 2 | Comparison of χ1 and χ2 distributions for amino acid Leu9 from the peptide bound to MHC class II (PKYVKQNTLKLAT PDB id: 1fyt). (A) Last 10 ns of
MD, (B) Backrub using kT � 0.35, and (C) Backrub using kT � 1.2. The same analysis was done for amino acid Arg15 of another peptide (AAYSDQATPLLLSPR PDB id
1t5x). (D) Last 10 ns of MD, (E) Backrub using kT � 0.35, and (F) Backrub using kT � 1.2.

TABLE 2 | Average and fractional error of the number of contacts and hydrogen
bonds (HB) made by the main chain atoms of the peptide-core amino acids
bound to MHC class II, and sampled with MD or backrub (BR) using kT � 1.2. The
fractional error was calculated using the standard deviation from the simulations
for each peptide core position. The last row shows an average value for all the
structures.

PDB MD contacts BR contacts MD HB BR HB

1fyt 147.9 ± 12.5 148.1 ± 9.8 8.7 ± 1.1 7.4 ± 1.1
1klg 112.6 ± 9.9 104.0 ± 7.8 8.5 ± 1.1 8.3 ± 1.2
1sje 130.3 ± 10.5 104.5 ± 7.3 10.5 ± 0.9 8.6 ± 1.1
1sjh 115.1 ± 10.6 107.8 ± 9.9 8.4 ± 1.1 9.9 ± 1.0
1t5x 135.4 ± 11.8 72.5 ± 10.1 7.8 ± 1.0 3.7 ± 1.0
2fse 126.1 ± 13.0 96.8 ± 8.9 8.9 ± 1.1 6.4 ± 0.8
3pgd 129.9 ± 13.5 133.3 ± 9.4 9.2 ± 1.1 8.7 ± 0.7
4aen 114.6 ± 11.3 99.0 ± 7.6 8.2 ± 1.2 7.4 ± 1.1
4i5b 134.8 ± 10.8 126.5 ± 9.6 8.9 ± 1.2 8.1 ± 1.1
4ov5 161.1 ± 13.8 133.9 ± 11.0 10.2 ± 1.2 8.5 ± 0.7
Average 130.7 ± 11.8 112.6 ± 9.2 8.9 ± 1.1 7.7 ± 1.0
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The prediction results were assessed using the SM-HB and
SM-C matrices with a different number and type of frames
selected from the backrub trajectories. Specifically, the
matrices were obtained using all the frames, the last half of
the frames, half frames with best energy-scores and the single
best energy frame after optimization (see Methods). A summary
of the performances to predict the sign of the activity differences
is shown in Table 3.

We find that, in general, the observable with the highest
number of correct predictions is the SM-HB, in comparison
with the SM-C. In particular, for the SM-HB, the best
performance was 58.9% using half of the frames with the best
predicted energies based on the Rosetta scoring function
(henceforth SM-HB-BE with “BE” for best energies). To
complement the analysis, we calculated the scoring-matrices
six times by dividing the original 837 peptide set into six
independent sets. With these matrices, we calculated the mean
and standard deviation of the number of matches against the
experimental data (see Supplementary Table S3). In agreement

with the results shown in Table 3, we found that the selected SM-
HB-BE has the best performance.

Prediction of Activity Differences for
Methods That Range in Computational
Costs
We compared the best structural scoring matrix (SM-HB-BE), to
five previously benchmarked approaches to rank MHC class II
peptide binders based on their predicted affinities, or based on the
probabilities of finding certain amino acids in the peptide
sequence (Figure 3C). These methods differ in the theory and,
importantly, in their computational cost. In the case of the
sequence-based methods, these are able to predict affinities in
just a few minutes, but they largely depend on the chemical space
of the training data to be successful. The structure/dynamics-
based methods range from days to weeks in computational costs.
The latter do not rely on training datasets but on physical,
chemical and dynamical properties. To assess these diverse

FIGURE 3 | Information used to model peptides bound to the structure of the MHC class II allele DRB1*0101. (A) Logo representing the frequency of the amino
acids within the 837 15-mer peptides that were modelled bound to the MHC class II structure. The larger the height of the letter the more relevant the amino acid is for
improving binding. (B) Logo representing the probability of the amino acids at each position of the core region based on the number of hydrogen bondsmade by themain
chain. The colors represent categories of the amino acids based on physicochemical properties: blue (positive charged), red (negative charged), green (small),
fucsia (asparagine) and black (aliphatic). (C) Prediction of the sign of the experimental binding differences, for a set of 56 peptides with single substitutions, using the
scoring-matrix (SM-HB-BE) in combination with the state-of-the-art methodologies.

TABLE 3 | Prediction of the sign of the experimental activity differences by single-point mutations of the peptide core amino acids using the scoring-matrix calculated based
on the hydrogen bonds made by main chain atoms (SM-HB) and the number of non-bonded contacts (SM-C). The comparisons include data for the four strategies to
extract information from the 2,000 backrub frames.

Strategy Matches for SM-HB (%) Matches for SM-C (%)

All the frames 0.553 0.501
Last half frames 0.518 0.464
Half frames with best energies 0.589 0.501
Best energy frame 0.464 0.518
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methodologies, we tested them to predict the sign of activity
differences by single-point mutations as explained in Methods,
and compared their computational cost by running them on an
Intel Xeon 24-core server with NVIDIA Titan X GPU
acceleration (Table 4). In addition, a bootstrapping approach
with 50 replicas was ran using randomly, and with repetitions,
any pair from the total 56 pairs mutated peptides, in order to
obtain a standard deviation of the match for each strategy.

We found that SM-HB-BE has a similar but slightly better
match than the main state-of-the-art method (NetMHCIIpan)
and the structural MD/scoring and backrub/scoring approaches,
but with lower computational times. In the case ofMM-PBSA, the
results are similar to the backrub/scoring method, but with a
computational performance that is 150 times larger than the most
efficient sequence-basedmethod (which is inconvenient for large-
scale analysis). Based on the results, it is possible to use some of
these structural descriptors to pre-select mutations in the core
region that could improve the binding affinity requiring low
computational costs. We note that the implementation of the
scoring-matrices is highly efficient due to its usage as sequence-
based descriptors of a particular peptide. The same happens with
the sequence-based matrix and the machine learning method. In
this sense, using the backrub trajectories to calculate consensus
average scores is the most efficient alternative, based on time
differences between a few hours to weeks taken by the backrub
method and MD simulations (Table 4).

We also studied if for certain mutations their activity
differences are more difficult to predict. We found that those
involving arginine and charged amino acids are more challenging.
In addition, amino acids changing drastically in size can misguide
the predictions for the majority of the methods. A list of the cases
where most of the methods fail is shown in Supplementary Table
S4. Overall, these results indicate that predicting the activity
differences of single-point mutations of peptides bound to MHC
class II is challenging, even using extensive calculations such as
MM-PBSA.

Combining Structural Scoring-Matrices
With Alternative Methodologies Improves
the Affinity Difference Prediction
Because there is still room to improve the affinity-difference
prediction, we combined the results of each additional method
with the SM-HB-BE. The combination consists on checking if
either of the two methods predicts a positive mutation, if so then
the mutation has a match with the experimental data. This allow
us to verify which method complements better with the selected
scoring-matrix (Table 5). We also included the standard
deviations of the matches by following the same bootstrapping
approach explained in the previous section.

We found that combining SM-HB-BE with the MD/scoring
approach can predict correctly 85.7% of the mutations included
in the study, followed by a 78.6% using the backrub/scoring and
the MM-PBSA methodologies. As seen, the best results are found
after combining the scoring-matrices with structure/dynamic-
based strategies, but such combination can be done with the
backrub/scoring approach that is more computationally efficient

(Table 4). In any case, the calculated scoring-matrices can
improve information about the frequency of amino acids in
core positions using motif representations, and overall the
performance is higher than using the sequence-based matrices
available in the literature (Rapin et al., 2008).

DISCUSSION

We evaluated the role of structural observables from simulations
for predicting activity differences caused by single-point
mutation of MHC class II peptide binders. A scoring-matrix
derived from counting the number of hydrogen bonds formed by
the main chain atoms using the best Rosetta energies (SM-HB-
BE), can significantly improve the prediction of these differences
if combined with other sequence or simulation-based
methodologies.

To deal with the number of modelled peptides, we required
running an efficient methodology for sampling the
conformations as closely as possible to their equilibrium
ensemble. After optimizing the Monte Carlo backrub
parameters, we obtained similar conformations to those
explored by MD simulations. We note that the MD simulation
time was chosen based on previous assessments for exploring well
the conformations around the mutated complex, which is around
20 ns for this system (Ochoa et al., 2019; Ochoa et al., 2020). The
backrub method tends to perform a similar exploration of the
formation of certain contacts and hydrogen bonds, mostly those
created by the core region of the peptide. Moreover, the RMSD
values between conformations from MD vs backrub are
indistinguishable from those of MD vs MD. However, we note
that the method is unable to reproduce completely the landscape
explored by MD, which can be a limitation. This is why starting
from a crystallized bound-conformation is critical for providing
more reliable poses of the modelled peptides. Regarding the
computational time, the backrub method can sample a similar
number of frames as MD in just a few hours, in comparison to
days required for MD in high-computing infrastructures
(Table 4). This facilitates the analysis of a large set of peptides

TABLE 4 |Match values and bootstrapping standard deviations for the prediction
of the sign of the experimental activity differences by single-point mutations of
the peptide core amino acids for five state-of-the-art methodologies and the SM-
HB-BE (i.e., scoring matrix from hydrogen bonds using half of the conformations
with best energies). In addition, we include the computational costs, in days,
for running the methods with the 56 pairs of mutated peptides. The strategies
are the sequence motif matrix, the machine learning tool NetMHCIIpan, the
MD/scoring and backrub/scoring approaches, and the MM-PBSA
calculations (see Methods).

Complementary
strategy

Matched
predictions

Computational cost
(days)

Sequence matrix 0.393 ± 0.067 0.05
NetMHCIIpan 0.536 ± 0.079 0.1
Backrub/scoring 0.536 ± 0.067 2
MD/scoring 0.571 ± 0.071 15
MM-PBSA 0.518 ± 0.062 15
SM-HB-BE scoring matrix 0.589 ± 0.065 0.05
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for this MHC class II allele, and others with structures available in
public databases.

The peptide were selected based on criteria that facilitate the
initial modelling of the rotamers (Ochoa et al., 2018), and the
inclusion, in some cases, of additional flanking amino acids.
Moreover, these peptides have available experimental binding
data. Therefore, the new descriptors contain intrinsic information
about the distribution of amino acids based on binding
information, implying that our structural insights are
complementing the known sequence-based motifs (Menconi
et al., 2008; Andreatta et al., 2012). This is relevant because
our protocol does not start from scratch. Instead, its main goal is
to exploit the current knowledge of the system, and provide better
metrics for the understanding of the MHC class II binding using
simulations.

The calculated observables can be compared to the reported
MHC class II promiscuity in terms of the intrinsic stability of the
interactions between the peptide and the MHC class II binding
groove. We found, for example, that the hydrogen bonds created
by the main chain atoms are one of the most important structural
observables. This claim has also been proposed in other studies,
motivated by the stability of the peptide-bound conformation in
spite of being completely linear, which is crucial in the molecular
editing processes within the antigen presentation pathways
(Painter et al., 2008; Yaneva et al., 2010; Ferrante et al., 2015).
Therefore, simulating the dynamics of the complex can bring
novel insights into the binding nature, and allows us to predict
activity differences caused by single-point substitutions on the
peptide sequence.

CONCLUSION

Simulations provide structural insights for creating simple
scoring-matrices that complement available methods to better
predict the effect of single-mutations on the binding of peptides
to MHC class II molecules. Integrating sequence, structural and
dynamical information is useful to progress in the
immunoinformatics field, not only for MHC class II
structures, but also for other key components within the
immune response pathways.

Moreover, the methodology can contribute to the
identification of epitopes for certain alleles using structural
and dynamical information. In fact, the method can be
expanded to calculate descriptors for other peptide-binding

complexes, to design of novel epitopes by single-point
substitutions, and to understand the impact of antigen
mutations in the immune system, for example, using structural
interactions with the T-cell receptors, having direct consequence
in vaccine design (Purcell et al., 2007). The descriptors can also
help to, possibly, discriminate at a reasonable level between good
binders and non-binders. However, a better discrimination
requires combining multiple methods, or implement more
exhaustive approaches to capture the chemical contributions of
the peptide residues through more explicit free energy
calculations (Wieczorek et al., 2016; Huang et al., 2017).
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Single-particle cryogenic electron microscopy (cryo-EM) has revolutionized the field of the
structural biology, providing an access to the atomic resolution structures of large
biomolecular complexes in their near-native environment. Today’s cryo-EM maps can
frequently reach the atomic-level resolution, while often containing a range of resolutions,
with conformationally variable regions obtained at 6 Å or worse. Low resolution density
maps obtained for protein flexible domains, as well as the ensemble of coexisting
conformational states arising from cryo-EM, poses new challenges and opportunities
for Molecular Dynamics (MD) simulations. With the ability to describe the biomolecular
dynamics at the atomic level, MD can extend the capabilities of cryo-EM, capturing the
conformational variability and predicting biologically relevant short-lived conformational
states. Here, we report about the state-of-the-art MD procedures that are currently used to
refine, reconstruct and interpret cryo-EM maps. We show the capability of MD to predict
short-lived conformational states, finding remarkable confirmation by cryo-EM structures
subsequently solved. This has been the case of the CRISPR-Cas9 genome editing
machinery, whose catalytically active structure has been predicted through both long-
time scale MD and enhanced sampling techniques 2 years earlier than cryo-EM. In
summary, this contribution remarks the ability of MD to complement cryo-EM,
describing conformational landscapes and relating structural transitions to function,
ultimately discerning relevant short-lived conformational states and providing
mechanistic knowledge of biological function.

Keywords: molecular dynamics, enhanced sampling, cryo-EM, CRISPR-Cas9, structure prediction

STATE-OF-THE-ART CRYO-EM MODELLING THROUGH
MOLECULAR DYNAMICS

Single-particle cryogenic electron microscopy (cryo-EM) has revolutionized the field of structural
biology, providing an access to the atomic resolution structures of large biomolecular complexes in
their near-native environment (Nogales, 2015). The number of macromolecular structures
determined by cryo-EM is rapidly increasing, indeed, it is predicted that by 2024 the number of
yearly released structures will be higher for cryo-EM than for X-ray crystallography (Callaway, 2020).
The cryo-EM technique comprises of three consecutive steps. At first, the sample is frozen over
millisecond time scales, what results in both the formation of amorphous ice and in capturing the
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biomacromolecule in its near-native conformation through
quick undercooling of the sample. The term “near-native”
refers to the fact that during cryofixation, limited
conformational transitions can result in some non-native
conformations within the structural ensemble. Given the
timescale of cryofixation (i.e., milliseconds), these
transitions should be limited. Next, a number of two-
dimensional (2D) electron microscopy (EM) images of the
biomacromolecule are collected and, finally, these 2D images
are combined into a three-dimensional electrostatic potential
map of the biomacromolecule(Guo and Jiang, 2014;
Kontziampasis et al., 2019; Cianfrocco and Kellogg, 2020).
Today’s cryo-EM maps can frequently reach the atomic-level
resolution, while often containing a range of resolutions, with
conformationally variable regions obtained at 6 Å or worse.
The latter can also arise from several other factors, such as
radiation damage and image alignment errors. Moreover,
considering also that the atomic form factors of cryo-EM
maps represent the atomic electrostatic potential, negatively
charged moieties might be depleted or not visible, as they
scatter electrons more efficiently (Marques et al., 2019). Recent
advances in post-processing cryo-EM images also allowed to
identify multiple conformational states of the biological
complexes (Jin et al., 2019) or even to describe the
conformational variability of their single subunits (Bai
et al., 2015). These advancements and opportunities
introduced by single-particle cryo-EM are paving the way
for an explosion of computational methods aimed at
processing, refining and interpreting cryo-EM data (Dodd
et al., 2020; Fraser et al., 2020; Kim et al., 2020; Palermo
et al., 2020).

Molecular dynamics (MD) simulations are known to be
powerful in describing in detail the intrinsic dynamics of
biomolecules and the energetics that underlie conformational

transitions (Karplus and McCammon, 2002). This is why MD
simulations are an excellent tool to examine hypotheses posed by
the experimental findings of cryo-EM studies. It is also apparent
that both techniques can mutually benefit from cooperation,
where MD can unveil the atomic details of conformational
changes and refine the structure for low resolution regions of
cryo-EM maps (Kirmizialtin et al., 2015), while cryo-EM can not
only provide the structure of biomolecules (Nogales, 2015), but
also describe its near-native conformational ensemble in solution
(Jin et al., 2019).

The initial approaches combining MD and cryo-EM methods
used MD as a fitting scheme to predict the structure of a
biomolecule, using the low-resolution EM map to constrain
the protein conformation. For this purposes, two commonly
used packages are the MD Flexible Fitting (MDFF) (Trabuco
et al., 2008) and the Situs (Kovacs et al., 2018) codes, where the
first one guides MD simulation toward the cryo-EM density
biasing the MD potential energy form to reduce the gradient
of the experimental electronic density, while the second one
minimizes the discrepancy between the map derived from the
MD model and the original cryo-EM map. Hybrid approaches
harnessing docking algorithms have also been developed, such as
including a rigid fitting stage followed by a refinement based on
MD (Topf et al., 2008), or introducing a coarse-grained force field
to allow flexibility during the docking search (de Vries and
Zacharias ATTRACT-, 2012). MD-based methods were shown
to successfully refine the structure of both isolated proteins (e.g.,
lactoferrin) and large protein assemblies (up to ribosomes)
(Trabuco et al., 2008). Unfortunately, one of the prominent
challenges for these methods is structure overfitting to the
cryo-EM map, where the derived potential can lead to
unphysical conformations of the biomolecule (Trabuco et al.,
2009). However, such inconveniences can be overcame by
combining a series of restraints derived from the experimental
density with enhanced sampling MD techniques, as shown for
membrane transporter Escherichia coli efflux-multidrug
resistance E (EmrE) (Ovchinnikov et al., 2018). In that study,
map-restrained Self-guided Langevin dynamics (Wu et al., 2013)
was used with a series of heating and cooling cycles of the EmrE
protein during MD run. Such approach allowed to relax both the
conformation of the protein backbone and side chains and
eventually led to a substantial improvement of the MD
structure with respect to cryo-EM map. Enhanced sampling
simulations in the structure refinement are also used in more
advanced MDFF schemes, namely Cascade MDFF and
Resolution Exchange MDFF (Singharoy et al., 2016). The
former approach is based on simulated annealing (Brünger,
1988), where the structure is fitted sequentially to maps with
higher resolution. In the latter, the Hamiltonian replica-
exchange simulations (Sugita et al., 2000) are used, where in
each replica the potential affecting the system is derived from
the flexible fitting to the projections of the cryo-EM maps that
change from low to high resolution. In this way the system is
allowed to relax conformationally in low resolution replicas,
while the conformations that are both relaxed in the force field
and fit well to the cryo-EM maps are preferred to exchange into
the high-resolution replicas. Multiple replicas were also used in

GRAPHICAL ABSTRACT | Molecular Dynamics (MD) is shown to
predict the cryo-EM structure of the active CRISPR-Cas9 system with an
RMSD between the cryo-EM structure and the MD ensemble of <2.5 Å.
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a metainference method, where the restraining force arising
from the difference between MD structures and the cryo-EM
map is generated in an ensemble-averaged manner(Bonomi
et al., 2018; Eshun-Wilson et al., 2019). Such an approach
has already been shown to be fruitful in the case of NMR
restraints, where the average chemical shifts or coupling
constants were not necessarily representative of an
heterogenous conformational ensemble present in solution
(Camilloni et al., 2012). In the context of cryo-EM, this
allows exploring the relevant heterogenous regions of the free
energy landscape, while still remaining in agreement with the
cryo-EM findings. The most recent approach, implemented in
Gromacs 2020 (Igaev et al., 2019), uses a gradient of similarity
between a density obtained from MD structure and the
experimental density to compute the forces. This approach
allows to use a variety of similarity measurements (inner
product, relative entropy or cross-correlation the of the

densities), enabling to adjust the density-based restraining
method. Hence, one can restrain the system without
enforcing the trajectory (which could lead to unphysical
conformations), which helps reducing the impact of
experimental artifacts (Marques et al., 2019) on the
conformational dynamics of the simulated biomolecule. The
method has been successfully used to unveil the origins of the
SARS-CoV-2 spike protein flexibility, allowing to identify the
three flexible hinges within the protein (Turoňová et al., 2020).
Overall, these examples show how MD simulations guided by
cryo-EM data allow for both the structure refinement the
interpretation the experimental maps.

Post-processing of MD trajectories to compare the obtained
structures with original cryo-EM maps can also be obtained
through a variety of visualisation tools, such as e.g., Chimera
(Pettersen et al., 2004) that allows for the fitting of experimental
and MD derived density maps, also providing a measure for the

FIGURE 1 | (A)Conformational activation of the HNH domain and structural adaptation of the REC domain during ∼16 μs of continuous MD simulations performed
on the Anton-2 supercomputer (Palermo et al., 2018). (B–D) Time evolution of the distances: (B) between H840 and the cleavage site, indicating the docking of HNH at
the DNA target strand; (C) between E60 and D273 and (D) between S960 and S701, indicating the opening of the REC2 and REC3 domains. Horizontal bars are used to
indicate the value of the three distances in the X-ray structure of the pre-activated state (PDBid: 5F9R at 3.40 Å resolution (Jiang et al., 2016), starting configuration
for MD) and in the structure obtained via cryo-EM (PDBid: 6O0Y at 3.37 Å resolution) (Zhu et al., 2019). Transparent bars indicate the distance range assumed obtained
through single molecule Förster Resonance Energy Transfer experiments. Reprinted with permission from Palermo et al. (2018). Copyright 2018 Cambridge University
Press. https://doi.org/10.1017/S0033583518000070.
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fitting quality between densities. The recently released GROmaps
tool (Briones et al., 2019) allows to compute the time-averaged
MD density map and does expand a set of tools to compare the
computed map with the original cryo-EM results. This method in
principle can be combined with augmented Markov models
(Olsson et al., 2017), where the cryo-EM map could be used
as an experimental observable to reweight the simulation
ensembles. Such approach increases the credibility of the
comparison between cryo-EM maps and MD outcomes
without biasing the simulation runs.

CAPTURING TRANSITIONS AND
SHORT-LIVED CONFORMATIONAL
STATES
MD can also aid cryo-EM experiments by predicting the structure
of short-lived conformational states that are both essential for the
biomolecular complexes activity and are hard to capture with cryo-
EM because of their transient nature. A prominent example is the
prediction of the active conformation of the CRISPR-Cas9
(clustered regularly interspaced short palindromic repeat and
associated Cas9 proteins) system, which recently emerged as a
forefront tool for genome editing (Doudna and Charpentier, 2014).
At the molecular level, CRISPR-Cas9 is a large ribonucleoprotein
complex, which uses RNA-guided Cas9 endonuclease to recognize
and cleave matching sequences of DNA. Biophysical studies have
indicated that the catalytic HNH domain is characterized by a
“striking plasticity,” (Jiang et al., 2016; Palermo et al., 2016), which
governs the enzymatic function. This high flexibility, however,
initially hampered a definitive characterization of the catalytically
competent state through cryo-EM and X-ray crystallography. Early
attempts to define the structure of the catalytically active CRISPR-
Cas9 employed extensive MD simulations (Palermo et al., 2017;
Zuo and Liu, 2017; Palermo et al., 2018). The first effort to
determine the structural transitions leading to the active state
have been performed using the Gaussian accelerated MD
(GaMD) method (Wang et al., 2021) that enables unconstrained
enhanced sampling capturing displacements over micro- (μs) to
millisecond (ms) timescales, which is of difficult reach through
conventional MD. This approach described the activated state
(Palermo et al., 2017). Building on this initial study, the Anton-
2 supercomputer has been employed to perform unbiased runs of
the complex and to determine the continuous dynamics of HNH
over multiple μs (Palermo et al., 2018). This characterized the
dynamical docking of HNH at the cleavage site, predicting an
active conformation that confirmed the initial model obtained
through GaMD (Figure 1).

This theoretical structure enabled to initiate in-depth studies
of the catalysis (Palermo, 2019; Casalino et al., 2020), the allostery
(Palermo et al., 2017; East et al., 2020; Nierzwicki et al., 2020) and
the system’s specificity (Mitchell et al., 2020; Ricci et al., 2019),
when no structural information on the active state was available.
This helped obtaining information to improve the enzyme
catalytic efficiency and to reduce off-target effects, which is a
key goal for biomedical applications (Fu et al., 2013). The
experimental determination of the catalytically competent state

through cryo-EM occurred 2 years after the theoretical model
(Zhu et al., 2019), reporting a remarkable agreement with the
predicted model (the average RMSD between the cryo-EM
structure and the MD ensemble of 2.47 ± 0.14 Å, computed
considering the HNH domain and the six nucleotides at the
cleavage site). Molecular simulations using Anton-2 further
indicated that the recognition regions (REC) of the Cas9
protein would undergo a remarkable opening to allow the
process of HNH activation (Figure 1), noting also concerted
dynamics of the REC-HNHdomains (Palermo et al., 2018). These
coordinated domain motions were also observed through cryo-
EM, revealing their functional role for DNA cleavage (Zhu et al.,
2019). Furthermore, a recent single-molecule study probing the
conformational dynamics of Cas9 in the post-catalytic state
highlighted rapid conformational fluctuations of HNH (Wang
et al., 2021), as observed through MD. These results highlight the
consistency of the simulations with experimental observations
and suggest that state-of-the-art MD can capture short-lived
conformational states of biomolecules, which are of difficult
reach through structural biophysics techniques.

SUMMARY AND PERSPECTIVES

Here, we highlighted how MD simulations combined with cryo-
EM data can provide a deep understanding of key
conformational steps that govern the function of
biomacromolecules. MD can be used not only to refine cryo-
EM structures, especially the low-resolution regions, but also to
facilitate interpretation of the experimental findings. Novel MD
analysis tools allow also to compute the time-averaged cryo-EM
maps from MD trajectories, enabling a reasonable comparison
between conformational ensembles determined experimentally
and computationally. This overcomes the limitations of
comparing single structures, lacking of dynamical
information. Finally, MD simulations alone were also shown
to be a powerful predicting tool, that allows to characterize the
short-lived conformational states of biomolecules hard to
capture through cryo-EM.

Ultimately, the rapid development of methods that combine
cryo-EM data withMDwill further increase the reliability of MD-
guided predictions. One can expect that the rigorous comparison
between cryo-EM and MD conformational ensembles can be an
additional source of the data that can be used to improve the
currently available simulation methods. Molecular simulations
can also be guided to a conformational ensemble defined as a
cryo-EM map rather than a specific structure. This can improve
the description of the free energy landscape associated with
conformational changes of proteins and nucleic acids, as the
cryo-EM map can be used as a reference for the conformational
ensemble. Such approach, based on Multi-Map variable method,
was very recently released for NAMD (Vant et al., 2020). The
initial results for both the steered-MD simulations and free
energy methods are encouraging, with the free energy profiles
for the conformational transitions comparable to those
determined using high-resolution structures as a reference.
Overall, non-stop development of cryo-EM–based MD

Frontiers in Molecular Biosciences | www.frontiersin.org April 2021 | Volume 8 | Article 6412084

Nierzwicki and Palermo Molecular Dynamics to Predict Cryo-EM

36

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


methods opens novel opportunities for the precise description of
biomolecular dynamics.
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The inherent flexibility of intrinsically disordered proteins (IDPs) makes it difficult to
interpret experimental data using structural models. On the other hand, molecular
dynamics simulations of IDPs often suffer from force-field inaccuracies, and long
simulation times or enhanced sampling methods are needed to obtain converged
ensembles. Here, we apply metainference and Bayesian/Maximum Entropy reweighting
approaches to integrate prior knowledge of the system with experimental data, while also
dealing with various sources of errors and the inherent conformational heterogeneity of
IDPs. We have measured new SAXS data on the protein α-synuclein, and integrate this
with simulations performed using different force fields. We find that if the force field gives
rise to ensembles that are much more compact than what is implied by the SAXS data it
is difficult to recover a reasonable ensemble. On the other hand, we show that when the
simulated ensemble is reasonable, we can obtain an ensemble that is consistent with the
SAXS data, but also with NMR diffusion and paramagnetic relaxation enhancement data.

Keywords: small-angle X-ray scattering, molecular dynamics simulation, NMR, protein, intrinsically disordered
protein

INTRODUCTION

Intrinsically Disordered Proteins (IDPs) play important roles in a wide range of biological processes
including cell signaling and regulation (Uversky et al., 2005; Das et al., 2015; Snead and Eliezer,
2019), and their malfunction or aggregation is linked to neurodegenerative diseases such as
Alzheimer’s and Parkinson’s disease. A key, defining property of IDPs is that they do not adopt
well-defined, permanent secondary and tertiary structures under native conditions, and their
conformational properties are thus best described in statistical terms.

Due to the dynamic nature of IDPs and their inherent conformational heterogeneity,
IDPs are not easily amenable to high-resolution characterization solely through experimental
measurements. To characterize their structural and dynamic properties it is often necessary to
integrate various biophysical experiments, and particularly nuclear magnetic resonance (NMR)
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spectroscopy (Dyson and Wright, 2001), small angle X-
ray scattering (SAXS) (Bernado and Svergun, 2012), circular
dichroism (Chemes et al., 2012), and single-molecule Förster
resonance energy transfer (sm-FRET) (LeBlanc et al., 2018)
have been widely used to characterize the structural properties
of IDPs. For instance, pulsed-field-gradient NMR diffusion
and SAXS experiments are especially useful to quantify the
level of compaction of the IDP. Techniques such as sm-FRET
and NMR paramagnetic relaxation enhancement (PRE) provide
distance information between different residues or regions of the
IDP (Dedmon et al., 2005; Eliezer, 2009). Nevertheless, since
most experimental methods only convey ensemble-averaged
information and are also affected by random and systematic
errors, it is difficult to directly extract information on the
underlying heterogeneous ensemble of the IDP. To address this
problem, theoretical and computational models can be used to
extract detailed structural information from these experiments.

Molecular dynamics (MD) simulations that use physics-based
force fields may provide high-resolution temporal and spatial
information about the structure and dynamics of IDPs. Extensive
sampling of a force field with MD simulations can thus be used
to generate conformational ensemble of the IDP. The quality
of the results, however, depends heavily on the accuracy of
the force field employed. For example, it has been shown that
many earlier generations of force fields produce overly compact
conformations for many IDPs (Piana et al., 2015). It appears that
these force fields fail to accurately describe the solvation of the
protein by underestimating protein-water interactions (Sun and
Kollman, 1995; Nerenberg et al., 2012; Best et al., 2014; Piana
et al., 2015). Recently, however, significant advancements have
been made to improve force field accuracy and correct the bias
toward overly compact conformations (Best et al., 2014; Piana
et al., 2015; Song et al., 2017; Robustelli et al., 2018). Adding
to these issues, the large conformational phase space of IDPs,
requires extensive sampling of the protein in order to generate
converged ensembles. To achieve sufficient sampling, and push
the sampling capacity of MD simulations, one often employs
enhanced sampling methods such as metadynamics (Barducci
et al., 2008) or parallel-tempering replica exchange (Sugita and
Okamoto, 1999). Notably, force field and sampling problems are
expected to be more severe for longer IDPs.

An approach to address the challenges of force-field accuracy
is to combine experimental and theoretical information in order
to obtain conformational ensembles of IDPs that agree with
experimental measurements. In this way, the simulations are
used as a tool to interpret experimental measurements. A number
of different approaches have been described and can, roughly,
be divided into two different classes in which the experimental
data is either (i) used for on-the-fly restraining of a simulation
to experimental data, or (ii) post-processing ensembles generated
by simulations to match experimental data by reweighting or
selection methods. Many different such methods exist, and we
refer to recent reviews for additional details (Cesari et al., 2018;
Orioli et al., 2020).

Because the conformational ensembles are broad and the
experimental data often have low information content and
may be noisy, Bayesian inference methods (Box and Tiao,

2011) and the maximum entropy principle (Jaynes, 1957) have
emerged as particularly successful frameworks for studying
IDPs. In these frameworks, an ensemble generated using a
prior model is minimally modified to match the experimentally
observed data better. An extension of these frameworks for
integrative structural ensemble determination is Metainference
Metadynamics (M&M) (Bonomi et al., 2016a), that combines
multi-replica all-atom molecular dynamics simulations with
ensemble averaged experimental data (Bonomi et al., 2016b). In
the M&M approach, the metainference (Bonomi et al., 2016a)
part is a Bayesian inferencemethod that allows for the integration
of experimental information with prior knowledge of the system
from, e.g., physics-based force fields, while also dealing with
uncertainty and errors as well as conformationally heterogeneous
systems. In addition, metainference can be combined with
metadynamics (Laio and Parrinello, 2002; Bonomi et al., 2016b)
to accelerate sampling further. A related Maximum Entropy
approach has also been applied to determine an ensemble
of configurations from SAXS data but using a more refined
and potentially accurate method for taking solvent effects into
account (Hermann and Hub, 2019). While the above approaches
apply the bias on the fly, other Bayesian formalisms takes as input
simulations that were generated without taking the experimental
data into account, and subsequently updates this using statistical
reweighting. Such approaches include our Bayesian/Maximum
Entropy (BME) protocol (Bottaro et al., 2020), as well as related
methods (Hummer and Köfinger, 2015).

Here, we combined ensemble-averaged experimental SAXS
data with MD simulations with the aim to achieve structural
ensembles of the system which are in agreement with the
experimental data. We did so using both metainference and
BME. In particular, we used BME to refine ensembles that had
previously been generated using MD simulations (Piana et al.,
2015; Robustelli et al., 2018), while metainference was applied
to restrain experimental SAXS data during MD simulations with
an implicit solvent model (Bottaro et al., 2013). We used the
intrinsically disordered protein α-synuclein (αSN) protein as a
model, as this protein has been studied extensively by various
experimental methods including SAXS and NMRmeasurements,
and because of the availability of long MD trajectories generated
from a range of force fields and water models. αSN is a 140-
residue long IDP that is primarily expressed in the brain and
in its monomeric state is known to be disordered and populate
multiple conformational states. αSN aggregation into amyloid
fibrils is linked to Parkinson’s disease and dementia with Lewy
bodies (Spillantini and Goedert, 2000; Ulusoy and Di Monte,
2013).

We assessed the quality of existing ensembles before
refinement, and the ability of metainference and BME methods
to improve them through incorporation of experimental SAXS
data, by comparing with independent measurements of the level
of compaction (through the hydrodynamic radius, Rh, as probed
by NMR) and previously measured paramagnetic relaxation
enhancement data (Dedmon et al., 2005). We find that the
inclusion of a SAXS-restraint in the M&M simulation resulted
in the generation of a reliable and heterogenous conformational
ensemble that also improved the agreement with the NMR
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diffusion data. The BME reweighting improved the agreement
with the experimental data when we applied the approach to
simulations with the TIP4P-D water model. For simulations
using the TIP3P water model, which were substantially more
compact, it was difficult to find a suitably large ensemble
compatible with the experimental SAXS data. Together, our
result provide insight into how and when experimental SAXS
data can be used to refine ensembles of IDPs, and the role
played by the force field as a ‘prior’ in these Bayesian/Maximum
entropy approaches.

METHODS AND MATERIALS

Experimental Data
Human αSN for SAXS experiments was expressed, purified,
and lyophylized as previously described (van Maarschalkerweerd
et al., 2014). Prior to SAXS data collection, the lyophilized powder
was dissolved in PBS (20 mM Na2HPO4, 150 mM NaCl, pH
7.4) and filtered through a 0.22 µm filter to remove larger
aggregates. The final sample concentration before SEC-SAXS
was determined by A280 to be 4.5 mg/mL using an extinction
coefficient of 5960 M−1 cm−1. SAXS data was collected as SEC-
SAXS data on beamline P12 (Blanchet et al., 2015) operated by
EMBL Hamburg at the PETRA III storage ring (DESY, Hamburg,
Germany). 50 µL 4.5 mg/mL αSN in PBS buffer (20 mM
Na2HPO4, 150 mM NaCl, pH 7.4) was injected on a Superdex
200inc 5/150 GL column with a flowrate of 0.4 mL/min. The
column was pre-equilibrated with the running buffer (PBS with
2% (v/v) glycerol). SAXS data were collected at 20 ◦C, with
continuous exposure of 1 s per frame throughout the SEC elution.
Data processing was done using CHROMIXS (Panjkovich and
Svergun, 2018), averaging sample data from the frames in the
monomeric peak and subtracting the buffer signal taken from
the flow-through prior to the sample elution to obtain the final
scattering profile (Supplementary Figure 1).

We purified αSN for NMR experiments as previously
described (Skaanning et al., 2020). Translational diffusion
constants for αSN (50µM with 2% (v/v) glycerol) and 1,4-
dioxane (0.2% v/v; as internal reference) were determined by
fitting peak intensity decay from diffusion ordered spectroscopy
experiments (Wu et al., 1995), using the Stejskal-Tanner equation
as described (Prestel et al., 2018). Spectra (a total of 64 scans) were
obtained over a gradient strength of 2 to 98%, with a diffusion
time (1) of 200 ms and gradient length (δ) of 3 ms. Diffusion
constants were used to estimate the hydrodynamic radius for
αSN described (Wilkins et al., 1999; Skaanning et al., 2020)
(Supplementary Figure 2).

We used previously measured PRE data obtained by
measuring intensity ratios with spin-labels added at five different
positions (residue: 24, 42, 62, 87, and 103) (Dedmon et al., 2005).

Bayesian/Maximum Entropy Reweighting
of Unbiased MD Simulations
We used previously generated ensembles of αSN obtained by
long-timescale MD simulations with different force fields from
the CHARMM and Amber families (here abbreviated by C and
A, respectively) and water models (Piana et al., 2015; Robustelli

et al., 2018) (Table 1). The published simulation using Amber
ff99SB-disp (Robustelli et al., 2018) was later found to be affected
by interactions with its periodic image and has here been replaced
by a 73 µs long simulation performed using the same setup but
in a 160Å box and available directly from D. E. Shaw Research.

We used our Bayesian/Maximum Entropy (BME) protocol
(Ahmed et al., 2020; Bottaro et al., 2020) to reweight the initial
force field ensembles (Table 1) with the experimental SAXS data,
thus obtaining ensembles that are in closer agreement to the
experimental data. Briefly described, the BME approach is based
on a combined Bayesian/Maximum entropy framework, that
enables one to refine a simulation using experimental data while
also taking into account the potential noise in the data and
in the so-called forward model used to calculate observables
for the ensemble. The purpose of the reweighting is to derive
a new set of weights for each configuration in a previously
generated ensemble so that the reweighted ensemble satisfies the
following two criteria: (i) it matches the experimental data better
than the original ensemble and (ii) it achieves this improved
agreement by a minimal perturbation of the original ensemble.
The BME reweighting approach seeks to update the weights, wj,
by minimizing the function:

L (w1 . . .wn) =
1

2
χ2 (w1 . . .wn)− θSrel (w1 . . .wn) (1)

Here, χ2 quantifies the agreement between the experimental
data and the corresponding observable calculated from the

reweighted ensemble. Srel = −
∑n

j wj log
(

wj/w
0
j

)

measures

the deviation between the original ensemble weights, w0
j , in

our case taken as 1/n, and the reweighted ensemble weights.
Finally, the hyperparameter θ tunes the balance between the
two terms, and needs to be determined, by evaluating the
compromise between the two terms in Equation (1) (Orioli
et al., 2020). Reweighting and analysis scripts are available at
github.com/KULL-Centre/papers/blob/master/2021/aSYN-ahme
d-et-al/.

Metainference Metadynamics
We conducted a SAXS-restrained MD simulation using the
metainference metadynamics (M&M) method, where we
employed the parallel-bias (PBMetaD) flavor of well-tempered
metadynamics (Pfaendtner and Bonomi, 2015) in combination
with the multiple-walkers scheme (Raiteri et al., 2006). During
the M&M simulation, the SAXS back-calculation step utilizes a
hybrid-resolution approach, where the SAXS data is calculated
on-the-fly using “Martini beads” that are superimposed on the
all-atom structures using PLUMED (Bonomi and Camilloni,
2017; Paissoni et al., 2019, 2020; Jussupow et al., 2020). The
approach is particularly efficient as the SAXS back-calculation
is calculated using the Debye equation from a coarse-grained
model and the excess of electron density in the hydration shell
is neglected (Niebling et al., 2014; Paissoni et al., 2020). We
note here that the Martini model is only used for calculating the
SAXS data, and the simulations are performed using an all-atom,
implicit solvent model as detailed below.
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TABLE 1 | Ensembles analyzed and refined.

Force field Water model Time(µs) Rg Force field(Å) Rg Reweighted(Å) Rh Force field(Å) Rh Reweighted(Å)

A12 TIP3P 5 15.4 ± 0.1 19 ± 1 20.8 ± 0.1 23.0 ± 0.1

A99SB-ILDN TIP3P 5 15.3 ± 0.2 16.0 ± 0.3 20.6 ± 0.3 21.3 ± 0.3

C22* TIP3P 6 17.1 ± 0.4 23 ± 1 22.2 ± 0.3 26.1 ± 0.5

A99SB-ILDN TIP4P-EW 5 17.9 ± 0.8 24 ± 1 22.8 ± 0.6 26.4 ± 0.6

C22* TIP4P-D 20 23.3 ± 0.6 29.3 ± 0.9 26.7 ± 0.3 29.6 ± 0.4

A99SB-ILDN TIP4P-D 11 25.7 ± 0.1 31 ± 1 27.2 ± 0.6 30 ± 1

A12 TIP4P-D 11 29.7 ± 0.5 34.1 ± 0.3 29.7 ± 0.2 32 ± 0.5

A03ws TIP4P/2005 20 30 ± 2 34.3 ± 0.6 29.1 ± 1.1 32 ± 1

A99SB-disp 1 73 26 ± 1 31.9 ± 0.6 27.7 ± 0.5 30.8 ± 0.4

CHARMM362 EEF1-SB 3.23 46 ± 4 35.4 ± 0.5 38 ± 3 33.1 ± 0.5

Experiment 35.5 ± 0.5 28.6 ± 0.7

1 A99SB-disp uses a modified version of the TIP4P-D water model.
2 CHARMM36 with EEF1-SB was only used for the metainference metadynamics simulations; here “force field” and “reweighted” refers to two different simulations with and without

the experimental bias, respectively. 3 Metadynamics simulation time.

We used GROMACS 2018.1 (Abraham et al., 2015) with
PLUMED version 2.4 (Tribello et al., 2014) to perform theM&M
simulations. We used the CHARMM36 force field (Best et al.,
2012) with the EEF1-SB implicit solvent model (Bottaro et al.,
2013). We used a previously generated structure of αSN bound
to micelles (Ulmer et al., 2005) as starting point for an initial
100-ns long high temperature (500 K) simulation, from which
we extracted 64 starting conformations for the multi-replica
M&M simulation. Charged amino acids were neutralized in line
with the parameterization of the EEF1 model (Lazaridis and
Karplus, 1999; Bottaro et al., 2013), leaving a neutral molecule,
and performed a minimization to a maximum force of 100
kJ/mol/nm. The system was further equilibrated for 20 ns per
replica with the metainference bias.

We performed production simulations in the NVT ensemble
using Langevin dynamics (Goga et al., 2012) with a friction
coefficient of 0.5 ps−1 at T = 310 K, and a timestep of 2 fs. The
Coulomb interactions were evaluated with a distance dependent
dielectric constant of ǫ = 15r (Lazaridis and Karplus, 1999;
Bottaro et al., 2013) and a cut-off at 9 Å. Constraints were applied
on the hydrogens with the LINCS algorithm (Hess et al., 1997).
For the production simulations the sampling of each replica
was enhanced by PBMetaD along with twelve collective variables
(CVs) consisting of the radius of gyration and 11 AlphaRMSD
CVs to enhance sampling of local backbone conformations
(Tribello et al., 2014).

Gaussians were deposited every 200 steps with a height of 0.1
kJ/mol/ps, and the σ values were set to 0.2 nm for CVrg and 0.010
for all AlphaRMSD CVs, respectively. We rescaled the height of
the Gaussians using the well-tempered scheme with a bias-factor
of 20 (Barducci et al., 2008).

Because calculation of the SAXS data is limiting in these
simulations, we re-binned the experimental SAXS data to a set
of 19 SAXS intensities at different scattering vectors, ranging
between 0.01 Å−1 and 0.20 Å−1. Metainference was applied every
10 steps of the simulation. We used a Gaussian noise model,
that applies a single Gaussian per SAXS data-point. The scaling
factor between experimental and calculated SAXS intensities was

sampled with a flat prior between 0.5 and 2.0 (Löhr et al., 2017).
We averaged the estimated metainference weights over a time
window of 200 steps; this is done to avoid large fluctuations
and prevent numerical instabilities due to too high instantaneous
forces (Löhr et al., 2017). The Plumed input file is available in the
PLUMED-NEST database (Bonomi et al., 2019) (plumID:21.003;
www.plumed-nest.org/eggs/21/003/).

Paramagnetic Relaxation Enhancement
Paramagnetic Relaxation Enhancement (PRE) via nitroxide spin-
labels has been used extensively to study long-range interactions
within IDPs. The measured PRE depends in particular on the
distance between a paramagnetic centre and protein nuclei, in
this case backbone amides. Because the PRE originates from a
dipolar interaction, the observed PRE depends on r−6, and is
thus particularly sensitive to transient, short distances. Because
simulations were performed without the spin-labels, and because
multiple spin-labels were used to probe the structural ensemble of
αSN, we used a post-processing approach to estimate the location
of the unpaired electron on the nitroxide label. In particular,
we used DEER-PREdict (Tesei et al., 2020), which is based on a
Rotamer Library Approach to place spin labels on the protein,
to estimate PRE rates. We calculated and compared results from
five paramagnetic labeling positions (residue: 24, 42, 62, 87, 103)
in αSN (Dedmon et al., 2005). Additional details are available
in the Supplementary Information and in the DEER-PREdict
paper (Tesei et al., 2020).

RESULTS AND DISCUSSION

Using αSN as an example, we compared conformational
ensembles generated either directly using molecular dynamics
simulations with a molecular mechanics force field, or the
same ensemble refined using SAXS data. We also analyzed the
results of an approach (M&M) that performs this refinement
during the simulation. We thus performed (i) a SAXS-restrained
multi-replica simulations using metainference metadynamics
and (ii) a reference simulation both using CHARMM36 force
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field (Best et al., 2012) used with the EEF1-SB implicit solvent
model (Bottaro et al., 2013). Both simulations consisted of 64
replicas, with one simulation using metainference to enforce
the agreement with experimental SAXS data, whereas a second,
reference simulation did not use experimental restraints and thus
sampled the force field only. We also analyzed nine previously
published multi-µs MD simulations which had been generated
using different combinations of proteins force fields and water
models (Piana et al., 2015; Robustelli et al., 2018) from the
AMBER (Hornak et al., 2006; Best and Hummer, 2009; Lindorff-
Larsen et al., 2010; Robustelli et al., 2018) and CHARMM (Piana
et al., 2011) families in combination with either standard TIP3P
(Jorgensen, 1981), TIP4P-EW (Horn et al., 2004), TIP4P/2005
(Abascal and Vega, 2005), or the TIP4P-D (Piana et al., 2015)
water model. Table 1 summarizes the simulations and below
we refer to the prior (not refined) ensemble as the “force
field” ensemble and the posterior (refined) ensemble as the
“reweighted” ensemble.

Force Field Accuracy and Sampling
Before the refinement procedure we calculated SAXS intensity
curves from each structure in the ensembles using PEPSI-SAXS
(Grudinin et al., 2017). We also calculated the Rg from the
protein coordinates and used them to estimate the hydrodynamic
radius (Rh) for each conformation using a previously described
empirical relationship (Nygaard et al., 2017; Ahmed et al., 2020)
(Table 1). The experimental Rg = 35.5 Å was obtained through
Guinier analysis of the experimental SAXS curve (see Methods),
while the experimental Rh = 29.0 Å was obtained through NMR
diffusion measurements (Table 1).

In line with previous observations (Piana et al., 2015;
Robustelli et al., 2018), the ensembles show very different levels
of compaction depending on the force field and, in particular,
water model used (Table 1 and Figure 1). When paired with
the TIP3P water model, both the Amber or CHARMM force
fields produce very compact conformations and show poor
agreement with the experimental value of Rg . On the other hand,
when paired with the recently parameterized TIP4P-D water
model the force fields give rise to more expanded structures
and match the experimental values of Rg and Rh considerably
better. The ensemble generated using CHARMM36 with the
EEF1-SB implicit solvent model on the other-hand produce
more expanded structures (Table 1). Of particular relevance to
the reweighting described below it is worth noting how the
compact ensembles either do not sample any, or at most very
few, structures that are expanded as the average Rg observed in
experiment (Figure 1). This observation already suggests that it
will be difficult robustly to derive ensembles that are in agreement
with the SAXS data as this in particular is sensitive to the Rg .

Ensemble Refinement Using SAXS Data
In the following section we exemplify the BME refinement
against the SAXS data using two representative combinations
of force field and water models, specifically A12 paired with
either the TIP3P or the TIP4P-D water model (Figure 2).
We also present the results obtained from “on-the-fly” SAXS-
restrained simulation with M&M which we compared to an

unrestrained simulation with otherwise identical simulation
settings (see Methods). Note that while the Rg values for
the simulations were calculated using protein coordinates, the
experimental value also includes potential contributions from the
solvent. The refinement, analysis and plots for the remaining
force fields are shown in the supplementary information
(Supplementary Figures 4–10).

The BME procedure works by assigning weights to a
previously generated ensemble so as to fit the experimental data
better. For BME to successfully reweight an ensemble it is thus
required that the initial prior ensemble contains themost relevant
conformational states of the protein, such that the ensemble that
gives rise to the experimental data is a sub-ensemble of the initial
prior ensemble. Consequently, if the sampling is incomplete or
the unbiased ensemble is very far away from the true ensemble,
it may not be possible to reweight the ensemble to reach a
satisfactory agreement with the experiments. An indication that
this is occurring is that BME will effectively down-weight most of
the structures in the prior ensemble and the posterior ensemble
will be dominated by a few structures with large weights. This
can in turn be quantified by calculating the (effective) fraction
of structures, φeff = exp(Srel), that contribute to the ensemble
(Orioli et al., 2020), so that when φeff ≈ 1 most of the structures
are retained, whereas φeff ≈ 0 indicates a few structures with very
large weights

In the BME reweighting the confidence in the prior ensemble
with respect to the experimental data can be tuned by the hyper-
parameter θ (Equation 1). One usually does not know the optimal
value for θ beforehand. Here, we choose θ by performing an L-
curve analysis (Hansen and O’Leary, 1993; Orioli et al., 2020)
in which we plot the χ2

red
value (quantifying the difference

between experiments and calculated value) as a function of φeff ,
for different values of θ and choose a value corresponding to
the “elbow” region (blue region in Figures 2A,B). The L-curve
analysis for the A12 force field paired with TIP4P-D water model,
lead us to choose θ = 1, 000, after which the ensemble retains
88% of the initial structures in the final reweighted ensemble,
and show much better agreement with the experimental data,
indicative by a low χ2

red
(Figure 2A). In contrast, the analysis

for the TIP3P water model, after reweighting with θ = 6, 000,
show that only 12% of the initial structures are used in the final
reweighted ensemble in order to achieve significant improved
agreement with the experimental data (Figure 2B). Even at
a lower θ value there is still a large discrepancy between
experimental and calculated SAXS data (χ2

red
= 17 at θ = 500).

This is a clear example of a poor prior ensemble, which is caused
by insufficient overlap between the force field ensemble and that
probed by experiment. In fact, the highest value observed (Rg

=23 Å) is significantly lower than the experimental value (black).
As a consequence, BME ‘throws out’ most of the structures from
the initial force field ensemble, and the final reweighted ensemble
mainly consist of a few highly weighted structures (Figure 2D).

The ensemble generated with the TIP4P-D water model
(Figure 2C) contains structures that span a greater range of
Rg values, both above and below the experimental value. After
refinement, the reweighted ensemble is shifted to give greater
weight to more expanded structures and bringing the average Rg
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FIGURE 1 | Radius of gyration during simulations with different force fields and water models. As representative examples we show the time-evolution of the radius of
gyration for simulations of αSN performed with the A12 force field (orange), C22* (blue), and A12 (green) with the TIP4P-D, TIP4P-D, and TIP3P water model,
respectively. The experimental value (black) was obtained from a Guinier analysis of the SAXS data. The orange and blue curves have been smoothed to ease
visualization. The insert shows probability densities and averages of Rg. Representative structures with different degrees of compaction are also shown. The length of
the simulations is 11, 20, and 5 µs, respectively, but are shown here on a normalized timescale to make comparisons easier.

substantially closer to the value estimated from the SAXS data.
We note here that we do not fit the Rg value but rather the
SAXS data. Because the experimental value of Rg (obtained from
a Guinier analyses of the data) contains a contribution from the
solvent we do not expect a perfect agreement with the average Rg
calculated from the protein coordinates (Henriques et al., 2018).
Indeed, this is one of the reasons whywe fit the SAXS data directly
rather than the Rg .

The effect of reweighting of the two ensembles can also be
seen on the distributions of Rh (Figures 2E,F). Similar to Rg
distributions, the TIP4P-D ensemble is shifted to give greater
weight to more expanded structures (Figure 2E). As was also
evident from the distribution of Rg , the more compact TIP3P
ensemble gives rise to a very noisy distribution, because the
reweighted ensemble predominantly consists of a few highly
weighted structures (Figure 2F). To illustrate the consequences
of reweighting we also compared the calculated SAXS data
from the initial force field and reweighted ensembles to the
experimental scattering data (Figures 2G,H). As expected, the
refined ensembles show better agreement with experiments, in
particular for the A12 paired with TIP4P-D. As agreement
between experimental and calculated data is the target for BME
this observation again just illustrates that the BME method is
indeed optimizing agreement.

We repeated these analyses for the remaining combinations
of force fields and water models (Supplementary Figures 4–10)
and summarize the results by assessing how well the ensembles
reproduce Rg and Rh before and after refinement (Figure 3). We

note that the improvement of the Rg observed is due to the use of
SAXS data in the refinement, as SAXS intensity curve inherently
contains information of the Rg , and that improved agreement
with the Rg is thus a sign of the BME approach working rather
than a validation of the ensemble.

To evaluate the effectiveness of the SAXS-restrained M&M
simulation we monitored the agreement between the back-
calculated and the experimental data over the simulation time by
monitoring their correlation rather than the χ2 (Paissoni et al.,
2020). Both the SAXS-restrained and the unrestrained reference
simulation show a high correlation between back-calculated
and experimental data (> 0.98) (Supplementary Figure 3A).
As expected, the agreement improves substantially when
the experimental data is used as a bias in the metainference
simulations, confirming the effectiveness of the inclusion
of experimental SAXS data (Supplementary Figure 3A).
Likewise, the average Rg , Rh and the back-calculated SAXS
intensity data show improved agreement with the experimental
data in the metainference produced ensemble (Figure 3 and
Supplementary Figure 3).

In total our analyses show that it is possible to refine MD
simulations against SAXS data, though the extent to which
agreement can be reached depends on the quality of the
input ensemble. For the most compact ensembles we are able
to increase the average compaction by fitting to the data,
though the average Rg and Rh are still substantially below the
experimental values. While the SAXS data (and thus Rg) were
used as target values, we also cross-validated with Rh which
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FIGURE 2 | Refinement of two ensembles using BME with SAXS data. SAXS refinement of an ensemble sampled with A12 and either (left) the TIP4P-D water model
or (right) the TIP3P water model. (A,B) In the L-curve analysis to select the parameter θ we plot χ2 against φeff . θ balances the prior (force field) and the experimental
data, φeff is the effective number of frames used in the final reweighted ensemble. A value of θ is selected from the region marked in blue. We here used θ = 1,000 and

(Continued)
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FIGURE 2 | θ = 6,000 for the TIP4P-D ensemble and TIP3P ensemble, respectively. Probability distribution of (C,D) Rg and (E,F) Rh for the prior (red) and reweighted
(blue) ensembles. Solid vertical lines represent the ensemble averaged Rg and Rh. The experimental values are shown in black. The error of the distributions and on
the averages (shown as shades) were estimated by block averaging. (G,H) Calculated SAXS intensities from the prior ensemble and the reweighted ensembles are
compared to the experimental SAXS data.

FIGURE 3 | Radius of gyration and hydrodynamic radius calculated from the initial force field ensemble (red) and the experimentally refined ensembles (blue).
Experimental values from SAXS (Rg = 35.5Å) and NMR (Rh = 29.0Å) are shown as horizontal lines with the shaded area indicating the error of the experimental values.

was not used in the fitting. Here, the picture is less clear.
Overall, for the more compact ensembles, fitting the SAXS
data lead to improved prediction of Rh. For other ensembles,
such as A12 with TIP4P-D, that show good agreement with Rh
before reweighting, the agreement became slightly worse after
reweighting. Finally, for the most expanded ensemble obtained
with CHARMM36/EEF1-SB, agreement with Rh improved after
biasing with the SAXS data. As discussed further below, the
approach that we use to estimate Rh from the ensembles is
approximate and requires further assessment before these small
differences can be interpreted in detail.

Validation With PRE Data
PRE experiments probe the population-weighted average of the
distance (as r−6) between a paramagnetic centre and protein
nuclei and, given the r−6 dependency, is sensitive to the shorter
distances even if the populations are small. Here, we compare
previously published PREs from spin-labeled αSN (Dedmon
et al., 2005) and back-calculated PRE intensity ratios from
five labeling sites, for each of the force fields in Table 1,
before and after refinement (see also Supporting Information).
PRE intensity-ratio profiles from a more expanded ensemble

generated using A12 with TIP4P-D (Figure 4A) and a more
compact one generated with A12 with TIP3P (Figure 4B)
show clear differences in agreement with experiments before
refinement with the SAXS data.

BME refinement leads only to small changes in the
calculated PRE data for A12/TIP4P-D, whereas the selection
of more expanded structures, by applying BME to the
ensemble generated with A12/TIP3P, leads to more substantial
changes as quantified for example by calculating the RMSD
between simulation and experimental data (Figures 4C,D). We
performed similar calculations and analyses for all ensembles
(Supplementary Figures 11–18) and summarize the overall
RMSD before and after BME (Figure 4E). For the force fields
paired with TIP3P in particular, we observe many of the long-
range contacts diminish after reweighting. These results suggest
that the reweighting decreases contributions from structures
that are too compact, and that the final reweighted ensemble
contains more extended structures. In the TIP4P-D ensembles
we still observe that some long-range contacts persist even after
reweighting and the better agreement is not alone achieved
at the cost of a complete elimination of long-range contacts;
nevertheless, the improvements of the PREs are generally small
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FIGURE 4 | Comparing ensembles to PRE data. We calculated the PRE intensity ratios both from the prior (red) and the reweighted (blue) ensembles and compared
to the experimental data (gray). As representative examples we again show results with the A12 protein force field combined with either (A) TIP4P-D or (B) TIP3P
water models, and where the location of the spin label probe is denoted in each plot. Experimental intensity ratios slightly exceeding the value 1 were set to 1 in these
plots. (C,D) We also calculated the RMSD between the experimental and calculated intensity ratios for each probe and the two force fields both before and after
reweighting. (E) Finally, we calculated the RMSD between experiment and calculated values over all probe position for and all force fields in Table 1.

for these ensembles, and in the case of the metainference
ensemble we even observe a small worsening of the agreement.

Comparison of Ensembles
An important question is whether and how much ensembles
become more similar to one another after reweighting using
experimental data. Clearly, the properties of the final ensembles
reflect information both in the prior and in the experimental
data. Previously we and others have shown that experimental data
make ensembles more similar to one another (Lindorff-Larsen
and Ferkinghoff-Borg, 2009; Camilloni et al., 2012; Tiberti et al.,
2015; Larsen et al., 2020), though the extent to which this occurs
depends on how the ensembles are compared.

The results described above suggest that the description
of the level of compaction indeed becomes more similar after

reweighting, and this is reflected also in more similar distribution
of the radius of gyration (Supplementary Figure 19).
Nevertheless, it is also clear that differences remain, in
particular when the prior gives a very poor description of the
data. A more complex situation arises when the ensembles are
compared using properties that are only little correlated with
those probed by the SAXS experiments, such as for example local
(secondary) structure. We therefore used STRIDE (Frishman
and Argos, 1995) to calculate the secondary structure in all
ensembles, both before and after reweighting with the SAXS
data (Supplementary Figures 19, 20). As also previously shown
(Robustelli et al., 2018) there is little transient helical structure
in these simulations, though with some variation across force
fields. Previous analyses suggest that compaction and secondary
structure are only weakly coupled in disordered proteins
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(Piana et al., 2012; Crehuet et al., 2019; Zerze et al., 2019), and
indeed we in general find that reweighting against the SAXS
data only has a modest effect on the secondary structure. The
M&M simulations, however, do not follow this pattern, but
we note here that in contrast to the other simulations, these
are two independent simulations. In summary, these analyses
demonstrate that inclusion of experimental restraints make
ensembles more similar in some properties, but not necessarily
in others. Reweighting against a set of experimental data will thus
only affect properties that affect, or are otherwise coupled to, the
experimental data. As argued previously (Crehuet et al., 2019),
this also means that cross-validation is only useful when using
types of experiments that probe related molecular properties.

CONCLUSIONS

We have employed “on-the-fly” or “post-facto” integration
of MD simulations and SAXS data αSN to derive structural
ensembles that are in improved agreement with experiments.
These approaches take their outset in a Bayesian framework,
and thus the results of the posterior distribution may depend
on the choice of the prior. Our results clearly show, in line
with previous observations (Larsen et al., 2020), that if the
prior distribution is a poor model for the experimental data,
reweighting becomes noisy. Despite this we find that fitting
against SAXS data generally improved or had no effect on the
agreement with NMR data (Rh and PREs) that were not target of
the optimization. Thus, the inclusion of a SAXS-restraint in the
metainference simulation and the BME refinement showed that
both methods were able to generate a reliable and heterogenous
ensemble that maintained good agreement with independent
experimental data. We nevertheless also find that the prior used
in such protocols are important, and that more robust analyses
are obtained with the best priors.

Our results also reflect an important point when including
experimental data to refine ensembles, namely that the ensembles
will only be affected along degrees of freedom that are sensitive to
the experiments (or vice versa). Thus, as shown by our analyses,
while the level of compaction (p(Rg)) becomes more similar
after inclusion of the SAXS data, this is not the case for the
description of the secondary structure. In order to improve the
description of both global and local structure one thus needs
to include data sensitive to both properties, either individually
(such as SAXS and chemical shifts) or combined such as residual
dipolar couplings.

Our calculations of Rh and PREs suggest that when the
ensembles are “far” away from the experimental data, then
improvements driven by the SAXS refinement lead to clear
improvements in independent parameters. For ensembles that
show better agreement between with the SAXS data to begin
with, the picture is less clear. While we on average observe
improvements, they are often modest. While some of this is likely
because the ensembles are already in reasonably good agreement
with the experiment, we also suggest that we are observing the
limitations of the forward models for calculating SAXS, Rh and

PREs. In particular, we suggest that more research is needed on
comparing the accuracy and domains of applicability of existing
methods for calculating Rh (Kirkwood and Riseman, 1948; de la
Torre et al., 2000; Nygaard et al., 2017; Fleming and Fleming,
2018). Methods for calculating SAXS data (Henriques et al., 2018;
Hub, 2018), however, also require choices to be made for how to
deal with solvent effects, and calculations of PREs rely on models
and parameters to describe effects of dynamics (Tesei et al.,
2020). In all cases, further work is needed to make it possible to
extract as much as possible information from the data, such as for
example the independent information about the moments of the
Rg-distribution contained within the SAXS and NMR diffusion
measurements (Choy et al., 2002; Ahmed et al., 2020).

Thus, we conclude that in order to obtain improved
descriptions of the conformational ensembles of disordered
proteins, work is needed in several areas. First, improved force
fields and sampling methods give rise to better initial estimates
that require less (or no) reweighting. Second, refinement should
ideally use data from experiments that are sensitive to as many
conformational properties as possible, and at least those that
probe the properties of interest. Finally, improved and consistent
forward models are required to use this data to provide better
models for intrinsically disordered proteins. Importantly, these
different aspects work in synergy as accurate prior ensembles
are more robust toward reweighting, and that accurate forward
models make it possible to extract more information from the
experimental data.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be
found in online repositories. The names of the
repository/repositories and accession number(s) can be found at:
https://github.com/KULL-Centre/papers/blob/master/2021/aSY
N-ahmed-et-al/, https://www.plumed-nest.org/eggs/21/003/.

AUTHOR CONTRIBUTIONS

MCA analyzed and performed MD simulations, analyzed the
data, wrote the first draft, and made figures. LKS purified αSN,
and performed and analyzed SAXS data together with AEL. AJ
and CC developed the simulation procedure with MCA, and
aided in metainference simulations. EAN purified αSN, and
performed and analyzed NMR data together with BBK. KL-L
designed the research, supervised MCA, analyzed the data, and
revised the article. All authors contributed to the article and
approved the submitted version.

FUNDING

We acknowledge support by a grant from the Lundbeck
Foundation to the BRAINSTRUC Structural Biology Initiative
(R155-2015-2666). The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of
the manuscript.

Frontiers in Molecular Biosciences | www.frontiersin.org 10 April 2021 | Volume 8 | Article 65433348

https://github.com/KULL-Centre/papers/blob/master/2021/aSYN-ahmed-et-al/
https://github.com/KULL-Centre/papers/blob/master/2021/aSYN-ahmed-et-al/
https://www.plumed-nest.org/eggs/21/003/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Ahmed et al. Refinement of Ensembles Against SAXS Data

ACKNOWLEDGMENTS

We thank A. Kikhney and C. Jeffries for assistance during data
collection at the P12 SAXS beamline. We thank D. E. Shaw
Research for sharing the molecular dynamics trajectories.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmolb.
2021.654333/full#supplementary-material

REFERENCES

Abascal, J. L., and Vega, C. (2005). A general purpose model for the condensed

phases of water: Tip4p/2005. J. Chem. Phys. 123:234505. doi: 10.1063/1.2121687

Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B.,

et al. (2015). Gromacs: high performance molecular simulations through

multi-level parallelism from laptops to supercomputers. SoftwareX 1, 19–25.

doi: 10.1016/j.softx.2015.06.001

Ahmed, M. C., Crehuet, R., and Lindorff-Larsen, K. (2020). Computing,

analyzing, and comparing the radius of gyration and hydrodynamic radius in

conformational ensembles of intrinsically disordered proteins. Methods Mol.

Biol. 2141, 429–445. doi: 10.1007/978-1-0716-0524-0_21

Barducci, A., Bussi, G., and Parrinello, M. (2008). Well-tempered metadynamics:

a smoothly converging and tunable free-energy method. Phys. Rev. Lett.

100:020603. doi: 10.1103/PhysRevLett.100.020603

Bernado, P., and Svergun, D. I. (2012). Structural analysis of intrinsically

disordered proteins by small-angle X-ray scattering. Mol. Biosyst. 8, 151–167.

doi: 10.1039/C1MB05275F

Best, R. B., and Hummer, G. (2009). Optimized molecular dynamics force fields

applied to the helix-coil transition of polypeptides. J. Phys. Chem. B 113,

9004–9015. doi: 10.1021/jp901540t

Best, R. B., Zheng, W., and Mittal, J. (2014). Balanced protein-water interactions

improve properties of disordered proteins and non-specific protein association.

J. Chem. Theory Comput. 10, 5113–5124. doi: 10.1021/ct500569b

Best, R. B., Zhu, X., Shim, J., Lopes, P. E., Mittal, J., Feig, M., et al. (2012).

Optimization of the additive charmm all-atom protein force field targeting

improved sampling of the backbone φ, ψ and side-chain χ1 and χ2 dihedral

angles. J. Chem. Theory Comput. 8, 3257–3273. doi: 10.1021/ct300400x

Blanchet, C. E., Spilotros, A., Schwemmer, F., Graewert, M. A., Kikhney, A.,

Jeffries, C. M., et al. (2015). Versatile sample environments and automation for

biological solution X-ray scattering experiments at the P12 beamline (PETRA

III, DESY). J. Appl. Crystallogr. 48, 431–443. doi: 10.1107/S160057671500254X

Bonomi, M., Bussi, G., Camilloni, C., and Tribello, G. A. (2019). Promoting

transparency and reproducibility in enhanced molecular simulations. Nat.

Methods 16, 670–673. doi: 10.1038/s41592-019-0506-8

Bonomi, M., and Camilloni, C. (2017). Integrative structural and

dynamical biology with PLUMED-ISDB. Bioinformatics 33, 3999–4000.

doi: 10.1093/bioinformatics/btx529

Bonomi, M., Camilloni, C., Cavalli, A., and Vendruscolo, M. (2016a).

Metainference: a bayesian inference method for heterogeneous systems. Sci.

Adv. 2:e1501177. doi: 10.1126/sciadv.1501177

Bonomi, M., Camilloni, C., and Vendruscolo, M. (2016b). Metadynamic

metainference: enhanced sampling of the metainference ensemble

using metadynamics. Sci. Rep. 6:31232. doi: 10.1038/srep3

1232

Bottaro, S., Bengtsen, T., and Lindorff-Larsen, K. (2020). Integrating

molecular simulation and experimental data: a bayesian/maximum

entropy reweighting approach. Methods Mol. Biol. 2112, 219–240.

doi: 10.1007/978-1-0716-0270-6_15

Bottaro, S., Lindorff-Larsen, K., and Best, R. B. (2013). Variational optimization

of an all-atom implicit solvent force field to match explicit solvent simulation

data. J. Chem. Theory Comput. 9, 5641–5652. doi: 10.1021/ct400730n

Box, G. E., and Tiao, G. C. (2011). Bayesian Inference in Statistical Analysis, Vol.

40. Hoboken, NJ: John Wiley & Sons.

Camilloni, C., Robustelli, P., Simone, A. D., Cavalli, A., and Vendruscolo, M.

(2012). Characterization of the conformational equilibrium between the two

major substates of rnase a using NMR chemical shifts. J. Am. Chem. Soc. 134,

3968–3971. doi: 10.1021/ja210951z

Cesari, A., Reißer, S., and Bussi, G. (2018). Using the maximum entropy

principle to combine simulations and solution experiments. Computation 6:15.

doi: 10.3390/computation6010015

Chemes, L. B., Alonso, L. G., Noval, M. G., and de Prat-Gay, G. (2012). Circular

dichroism techniques for the analysis of intrinsically disordered proteins and

domains.Methods Mol. Biol. 895, 387–404. doi: 10.1007/978-1-61779-927-3_22

Choy, W.-Y., Mulder, F. A., Crowhurst, K. A., Muhandiram, D., Millett, I. S.,

Doniach, S., et al. (2002). Distribution of molecular size within an unfolded

state ensemble using small-angle X-ray scattering and pulse field gradient NMR

techniques. J. Mol. Biol. 316, 101–112. doi: 10.1006/jmbi.2001.5328

Crehuet, R., Buigues, P. J., Salvatella, X., and Lindorff-Larsen, K. (2019). Bayesian-

maximum-entropy reweighting of IDP ensembles based on NMR chemical

shifts. Entropy 21:898. doi: 10.3390/e21090898

Das, R. K., Ruff, K. M., and Pappu, R. V. (2015). Relating sequence encoded

information to form and function of intrinsically disordered proteins. Curr.

Opin. Struct. Biol. 32, 102–112. doi: 10.1016/j.sbi.2015.03.008

de la Torre, J. G., Huertas, M. L., and Carrasco, B. (2000). Calculation

of hydrodynamic properties of globular proteins from their atomic-level

structure. Biophys. J. 78, 719–730. doi: 10.1016/S0006-3495(00)76630-6

Dedmon, M. M., Lindorff-Larsen, K., Christodoulou, J., Vendruscolo, M., and

Dobson, C. M. (2005). Mapping long-range interactions in α-synuclein using

spin-label NMR and ensemble molecular dynamics simulations. J. Am. Chem.

Soc. 127, 476–477. doi: 10.1021/ja044834j

Dyson, H. J., and Wright, P. E. (2001). Nuclear magnetic resonance methods for

elucidation of structure and dynamics in disordered states. Methods Enzymol.

339, 258–270. doi: 10.1016/S0076-6879(01)39317-5

Eliezer, D. (2009). Biophysical characterization of intrinsically disordered proteins.

Curr. Opin. Struct. Biol. 19, 23–30. doi: 10.1016/j.sbi.2008.12.004

Fleming, P. J., and Fleming, K. G. (2018). Hullrad: fast calculations of folded and

disordered protein and nucleic acid hydrodynamic properties. Biophys. J. 114,

856–869. doi: 10.1016/j.bpj.2018.01.002

Frishman, D., and Argos, P. (1995). Knowledge-based protein secondary structure

assignment. Proteins 23, 566–579. doi: 10.1002/prot.340230412

Goga, N., Rzepiela, A., De Vries, A., Marrink, S., and Berendsen, H. (2012).

Efficient algorithms for Langevin and DPD dynamics. J. Chem. Theory Comput.

8, 3637–3649. doi: 10.1021/ct3000876

Grudinin, S., Garkavenko, M., and Kazennov, A. (2017). PEPSI-SAXS: an adaptive

method for rapid and accurate computation of small-angle X-ray scattering

profiles. Acta Crystallogr. D 73, 449–464. doi: 10.1107/S2059798317005745

Hansen, P. C., and O’Leary, D. P. (1993). The use of the L-curve in the

regularization of discrete ill-posed problems. SIAM J. Sci. Comput. 14,

1487–1503. doi: 10.1137/0914086

Henriques, J., Arleth, L., Lindorff-Larsen, K., and Skepö, M. (2018). On

the calculation of SAXS profiles of folded and intrinsically disordered

proteins from computer simulations. J. Mol. Biol. 430, 2521–2539.

doi: 10.1016/j.jmb.2018.03.002

Hermann, M. R., and Hub, J. S. (2019). SAXS-restrained ensemble

simulations of intrinsically disordered proteins with commitment to the

principle of maximum entropy. J. Chem. Theory Comput. 15, 5103–5115.

doi: 10.1021/acs.jctc.9b00338

Hess, B., Bekker, H., Berendsen, H. J., and Fraaije, J. G. (1997). Lincs: a linear

constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472.

doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H

Horn, H.W., Swope,W. C., Pitera, J.W.,Madura, J. D., Dick, T. J., Hura, G. L., et al.

(2004). Development of an improved four-site water model for biomolecular

simulations: Tip4p-ew. J. Chem. Phys. 120, 9665–9678. doi: 10.1063/1.1683075

Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., and Simmerling,

C. (2006). Comparison of multiple amber force fields and development

Frontiers in Molecular Biosciences | www.frontiersin.org 11 April 2021 | Volume 8 | Article 65433349

https://www.frontiersin.org/articles/10.3389/fmolb.2021.654333/full#supplementary-material
https://doi.org/10.1063/1.2121687
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1007/978-1-0716-0524-0_21
https://doi.org/10.1103/PhysRevLett.100.020603
https://doi.org/10.1039/C1MB05275F
https://doi.org/10.1021/jp901540t
https://doi.org/10.1021/ct500569b
https://doi.org/10.1021/ct300400x
https://doi.org/10.1107/S160057671500254X
https://doi.org/10.1038/s41592-019-0506-8
https://doi.org/10.1093/bioinformatics/btx529
https://doi.org/10.1126/sciadv.1501177
https://doi.org/10.1038/srep31232
https://doi.org/10.1007/978-1-0716-0270-6_15
https://doi.org/10.1021/ct400730n
https://doi.org/10.1021/ja210951z
https://doi.org/10.3390/computation6010015
https://doi.org/10.1007/978-1-61779-927-3_22
https://doi.org/10.1006/jmbi.2001.5328
https://doi.org/10.3390/e21090898
https://doi.org/10.1016/j.sbi.2015.03.008
https://doi.org/10.1016/S0006-3495(00)76630-6
https://doi.org/10.1021/ja044834j
https://doi.org/10.1016/S0076-6879(01)39317-5
https://doi.org/10.1016/j.sbi.2008.12.004
https://doi.org/10.1016/j.bpj.2018.01.002
https://doi.org/10.1002/prot.340230412
https://doi.org/10.1021/ct3000876
https://doi.org/10.1107/S2059798317005745
https://doi.org/10.1137/0914086
https://doi.org/10.1016/j.jmb.2018.03.002
https://doi.org/10.1021/acs.jctc.9b00338
https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
https://doi.org/10.1063/1.1683075
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Ahmed et al. Refinement of Ensembles Against SAXS Data

of improved protein backbone parameters. Proteins 65, 712–725.

doi: 10.1002/prot.21123

Hub, J. S. (2018). Interpreting solution X-ray scattering data using molecular

simulations. Curr. Opin. Struct. Biol. 49, 18–26. doi: 10.1016/j.sbi.2017.11.002

Hummer, G., and Köfinger, J. (2015). Bayesian ensemble refinement by

replica simulations and reweighting. J. Chem. Phys. 143, 12B634_1.

doi: 10.1063/1.4937786

Jaynes, E. T. (1957). Information theory and statistical mechanics. Phys. Rev.

106:620. doi: 10.1103/PhysRev.106.620

Jorgensen, W. L. (1981). Quantum and statistical mechanical studies of liquids.

10. Transferable intermolecular potential functions for water, alcohols,

and ethers. application to liquid water. J. Am. Chem. Soc. 103, 335–340.

doi: 10.1021/ja00392a016

Jussupow, A., Messias, A. C., Stehle, R., Geerlof, A., Solbak, S. M., Paissoni,

C., et al. (2020). The dynamics of linear polyubiquitin. Sci. Adv. 6:eabc3786.

doi: 10.1126/sciadv.abc3786

Kirkwood, J. G., and Riseman, J. (1948). The intrinsic viscosities and diffusion

constants of flexible macromolecules in solution. J. Chem. Phys. 16, 565–573.

doi: 10.1063/1.1746947

Laio, A., and Parrinello, M. (2002). Escaping free-energy minima. Proc. Natl. Acad.

Sci. U.S.A. 99, 12562–12566. doi: 10.1073/pnas.202427399

Larsen, A. H., Wang, Y., Bottaro, S., Grudinin, S., Arleth, L., and Lindorff-Larsen,

K. (2020). Combining molecular dynamics simulations with small-angle X-ray

and neutron scattering data to study multi-domain proteins in solution. PLoS

Comput. Biol. 16:e1007870. doi: 10.1371/journal.pcbi.1007870

Lazaridis, T., and Karplus, M. (1999). Effective energy

function for proteins in solution. Proteins 35, 133–152.

doi: 10.1002/(SICI)1097-0134(19990501)35:2<133::AID-PROT1>3.0.CO;2-N

LeBlanc, S., Kulkarni, P., and Weninger, K. (2018). Single molecule FRET: a

powerful tool to study intrinsically disordered proteins. Biomolecules 8:140.

doi: 10.3390/biom8040140

Lindorff-Larsen, K., and Ferkinghoff-Borg, J. (2009). Similarity measures for

protein ensembles. PLoS ONE 4:e4203. doi: 10.1371/journal.pone.0004203

Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J. L., Dror, R.

O., et al. (2010). Improved side-chain torsion potentials for the amber FF99SB

protein force field. Proteins 78, 1950–1958. doi: 10.1002/prot.22711

Löhr, T., Jussupow, A., and Camilloni, C. (2017). Metadynamic metainference:

convergence towards force field independent structural ensembles of a

disordered peptide. J. Chem. Phys. 146:165102. doi: 10.1063/1.4981211

Nerenberg, P. S., Jo, B., So, C., Tripathy, A., and Head-Gordon, T. (2012).

Optimizing solute-water van derWaals interactions to reproduce solvation free

energies. J. Phys. Chem. B 116, 4524–4534. doi: 10.1021/jp2118373

Niebling, S., Björling, A., and Westenhoff, S. (2014). Martini bead form factors for

the analysis of time-resolved X-ray scattering of proteins. J. Appl. Crystallogr.

47, 1190–1198. doi: 10.1107/S1600576714009959

Nygaard, M., Kragelund, B. B., Papaleo, E., and Lindorff-Larsen, K. (2017). An

efficient method for estimating the hydrodynamic radius of disordered protein

conformations. Biophys. J. 113, 550–557. doi: 10.1016/j.bpj.2017.06.042

Orioli, S., Larsen, A. H., Bottaro, S., and Lindorff-Larsen, K. (2020).

How to learn from inconsistencies: integrating molecular simulations

with experimental data. Prog. Mol. Biol. Transl. Sci. 170, 123–176.

doi: 10.1016/bs.pmbts.2019.12.006

Paissoni, C., Jussupow, A., and Camilloni, C. (2019). Martini bead form

factors for nucleic acids and their application in the refinement of protein-

nucleic acid complexes against SAXS data. J. Appl. Crystallogr. 52, 394–402.

doi: 10.1107/S1600576719002450

Paissoni, C., Jussupow, A., and Camilloni, C. (2020). Determination of

protein structural ensembles by hybrid-resolution SAXS restrained

molecular dynamics. J. Chem. Theory Comput. 16, 2825–2834.

doi: 10.1021/acs.jctc.9b01181

Panjkovich, A., and Svergun, D. I. (2018). Chromixs: automatic and interactive

analysis of chromatography-coupled small angle X-ray scattering data.

Bioinformatics 34, 1944–1946. doi: 10.1093/bioinformatics/btx846

Pfaendtner, J., and Bonomi, M. (2015). Efficient sampling of high-dimensional

free-energy landscapes with parallel bias metadynamics. J. Chem. Theory

Comput. 11, 5062–5067. doi: 10.1021/acs.jctc.5b00846

Piana, S., Donchev, A. G., Robustelli, P., and Shaw, D. E. (2015). Water

dispersion interactions strongly influence simulated structural properties of

disordered protein states. J. Phys. Chem. B 119, 5113–5123. doi: 10.1021/jp50

8971m

Piana, S., Lindorff-Larsen, K., Dirks, R. M., Salmon, J. K., Dror, R. O., and

Shaw, D. E. (2012). Evaluating the effects of cutoffs and treatment of long-

range electrostatics in protein folding simulations. PLoS ONE 7:e39918.

doi: 10.1371/journal.pone.0039918

Piana, S., Lindorff-Larsen, K., and Shaw, D. E. (2011). How robust are protein

folding simulations with respect to force field parameterization? Biophys. J. 100,

L47–L49. doi: 10.1016/j.bpj.2011.03.051

Prestel, A., Bugge, K., Staby, L., Hendus-Altenburger, R., and Kragelund, B. B.

(2018). Characterization of dynamic IDP complexes by NMR spectroscopy.

Methods Enzymol. 611, 193–226. doi: 10.1016/bs.mie.2018.08.026

Raiteri, P., Laio, A., Gervasio, F. L., Micheletti, C., and Parrinello, M. (2006).

Efficient reconstruction of complex free energy landscapes by multiple walkers

metadynamics. J. Phys. Chem. B 110, 3533–3539. doi: 10.1021/jp054359r

Robustelli, P., Piana, S., and Shaw, D. E. (2018). Developing a molecular dynamics

force field for both folded and disordered protein states. Proc. Natl. Acad. Sci.

U.S.A. 115, E4758–E4766. doi: 10.1073/pnas.1800690115

Skaanning, L. K., Santoro, A., Skamris, T., Martinsen, J. H., D’Ursi, A.

M., Bucciarelli, S., et al. (2020). The non-fibrillating N-terminal of α-

synuclein binds and co-fibrillates with heparin. Biomolecules 10:1192.

doi: 10.3390/biom10081192

Snead, D., and Eliezer, D. (2019). Intrinsically disordered proteins in

synaptic vesicle trafficking and release. J. Biol. Chem. 294, 3325–3342.

doi: 10.1074/jbc.REV118.006493

Song, D., Luo, R., and Chen, H.-F. (2017). The idp-specific force field FF14IDPSFF

improves the conformer sampling of intrinsically disordered proteins. J. Chem.

Inform. Model. 57, 1166–1178. doi: 10.1021/acs.jcim.7b00135

Spillantini, M. G., and Goedert, M. (2000). The α-synucleinopathies: Parkinson’s

disease, dementia with lewy bodies, and multiple system atrophy. Ann. N. Y.

Acad. Sci. 920, 16–27. doi: 10.1111/j.1749-6632.2000.tb06900.x

Sugita, Y., and Okamoto, Y. (1999). Replica-exchange molecular

dynamics method for protein folding. Chem. Phys. Lett. 314, 141–151.

doi: 10.1016/S0009-2614(99)01123-9

Sun, Y., and Kollman, P. A. (1995). Hydrophobic solvation of methane and

nonbond parameters of the TIP3P water model. J. Comput. Chem. 16,

1164–1169. doi: 10.1002/jcc.540160910

Tesei, G., Martins, J. M., Kunze, M. B., Wang, Y., Crehuet, R., and Lindorff-

Larsen, K. (2020). Deer-predict: software for efficient calculation of spin-

labeling EPR and NMR data from conformational ensembles. bioRxiv.

doi: 10.1101/2020.08.09.243030

Tiberti, M., Papaleo, E., Bengtsen, T., Boomsma, W., and Lindorff-Larsen, K.

(2015). Encore: software for quantitative ensemble comparison. PLoS Comput.

Biol. 11:e1004415. doi: 10.1371/journal.pcbi.1004415

Tribello, G. A., Bonomi, M., Branduardi, D., Camilloni, C., and Bussi, G. (2014).

PLUMED 2: new feathers for an old bird. Comput. Phys. Commun. 185,

604–613. doi: 10.1016/j.cpc.2013.09.018

Ulmer, T. S., Bax, A., Cole, N. B., and Nussbaum, R. L. (2005). Structure and

dynamics of Micelle-bound human α-synuclein. J. Biol. Chem. 280, 9595–9603.

doi: 10.1074/jbc.M411805200

Ulusoy, A., and Di Monte, D. A. (2013). α-Synuclein elevation in human

neurodegenerative diseases: experimental, pathogenetic, and therapeutic

implications.Mol. Neurobiol. 47, 484–494. doi: 10.1007/s12035-012-8329-y

Uversky, V. N., Oldfield, C. J., and Dunker, A. K. (2005). Showing your ID: intrinsic

disorder as an ID for recognition, regulation and cell signaling. J. Mol. Recognit.

18, 343–384. doi: 10.1002/jmr.747

van Maarschalkerweerd, A., Vetri, V., Langkilde, A. E., Foderà, V., and

Vestergaard, B. (2014). Protein/lipid coaggregates are formed during

α-synuclein-induced disruption of lipid bilayers. Biomacromolecules 15,

3643–3654. doi: 10.1021/bm500937p

Wilkins, D. K., Grimshaw, S. B., Receveur, V., Dobson, C. M., Jones, J.

A., and Smith, L. J. (1999). Hydrodynamic radii of native and denatured

proteins measured by pulse field gradient nmr techniques. Biochemistry 38,

16424–16431. doi: 10.1021/bi991765q

Wu, D., Chen, A., and Johnson, C. S. (1995). An improved diffusion-

ordered spectroscopy experiment incorporating bipolar-gradient

pulses. J. Magn. Reson. A 115, 260–264. doi: 10.1006/jmra.1995.

1176

Frontiers in Molecular Biosciences | www.frontiersin.org 12 April 2021 | Volume 8 | Article 65433350

https://doi.org/10.1002/prot.21123
https://doi.org/10.1016/j.sbi.2017.11.002
https://doi.org/10.1063/1.4937786
https://doi.org/10.1103/PhysRev.106.620
https://doi.org/10.1021/ja00392a016
https://doi.org/10.1126/sciadv.abc3786
https://doi.org/10.1063/1.1746947
https://doi.org/10.1073/pnas.202427399
https://doi.org/10.1371/journal.pcbi.1007870
https://doi.org/10.1002/(SICI)1097-0134(19990501)35:2<133::AID-PROT1>3.0.CO;2-N
https://doi.org/10.3390/biom8040140
https://doi.org/10.1371/journal.pone.0004203
https://doi.org/10.1002/prot.22711
https://doi.org/10.1063/1.4981211
https://doi.org/10.1021/jp2118373
https://doi.org/10.1107/S1600576714009959
https://doi.org/10.1016/j.bpj.2017.06.042
https://doi.org/10.1016/bs.pmbts.2019.12.006
https://doi.org/10.1107/S1600576719002450
https://doi.org/10.1021/acs.jctc.9b01181
https://doi.org/10.1093/bioinformatics/btx846
https://doi.org/10.1021/acs.jctc.5b00846
https://doi.org/10.1021/jp508971m
https://doi.org/10.1371/journal.pone.0039918
https://doi.org/10.1016/j.bpj.2011.03.051
https://doi.org/10.1016/bs.mie.2018.08.026
https://doi.org/10.1021/jp054359r
https://doi.org/10.1073/pnas.1800690115
https://doi.org/10.3390/biom10081192
https://doi.org/10.1074/jbc.REV118.006493
https://doi.org/10.1021/acs.jcim.7b00135
https://doi.org/10.1111/j.1749-6632.2000.tb06900.x
https://doi.org/10.1016/S0009-2614(99)01123-9
https://doi.org/10.1002/jcc.540160910
https://doi.org/10.1101/2020.08.09.243030
https://doi.org/10.1371/journal.pcbi.1004415
https://doi.org/10.1016/j.cpc.2013.09.018
https://doi.org/10.1074/jbc.M411805200
https://doi.org/10.1007/s12035-012-8329-y
https://doi.org/10.1002/jmr.747
https://doi.org/10.1021/bm500937p
https://doi.org/10.1021/bi991765q
https://doi.org/10.1006/jmra.1995.1176
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Ahmed et al. Refinement of Ensembles Against SAXS Data

Zerze, G. H., Zheng, W., Best, R. B., and Mittal, J. (2019). Evolution of all-atom

protein force fields to improve local and global properties. J. Phys. Chem. Lett.

10, 2227–2234. doi: 10.1021/acs.jpclett.9b00850

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Ahmed, Skaanning, Jussupow, Newcombe, Kragelund, Camilloni,

Langkilde and Lindorff-Larsen. This is an open-access article distributed under the

terms of the Creative Commons Attribution License (CC BY). The use, distribution

or reproduction in other forums is permitted, provided the original author(s) and

the copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Molecular Biosciences | www.frontiersin.org 13 April 2021 | Volume 8 | Article 65433351

https://doi.org/10.1021/acs.jpclett.9b00850
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-08-666626 April 26, 2021 Time: 16:21 # 1

ORIGINAL RESEARCH
published: 30 April 2021

doi: 10.3389/fmolb.2021.666626

Edited by:
Massimiliano Bonomi,

Institut Pasteur, France

Reviewed by:
Therese E. Malliavin,

Institut Pasteur, France
Matteo Masetti,

University of Bologna, Italy

*Correspondence:
Jacopo Sgrignani

jacopo.sgrignani@irb.usi.ch
Andrea Cavalli

andrea.cavalli@irb.usi.ch

Specialty section:
This article was submitted to

Biological Modeling and Simulation,
a section of the journal

Frontiers in Molecular Biosciences

Received: 10 February 2021
Accepted: 01 April 2021
Published: 30 April 2021

Citation:
Sgrignani J and Cavalli A (2021)
Computational Identification of a

Putative Allosteric Binding Pocket
in TMPRSS2.

Front. Mol. Biosci. 8:666626.
doi: 10.3389/fmolb.2021.666626

Computational Identification of a
Putative Allosteric Binding Pocket in
TMPRSS2
Jacopo Sgrignani1* and Andrea Cavalli1,2*

1 Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland, 2 Swiss Institute
of Bioinformatics, Lausanne, Switzerland

Camostat, nafamostat, and bromhexine are inhibitors of the transmembrane serine
protease TMPRSS2. The inhibition of TMPRSS2 has been shown to prevent the
viral infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and
other viruses. However, while camostat and nafamostat inhibit TMPRSS2 by forming
a covalent adduct, the mode of action of bromhexine remains unclear. TMPRSS2
is autocatalytically activated from its inactive form, zymogen, through a proteolytic
cleavage that promotes the binding of Ile256 to a putative allosteric pocket (A-
pocket). Computer simulations, reported here, indicate that Ile256 binding induces a
conformational change in the catalytic site, thus providing the atomistic rationale to the
activation process of the enzyme. Furthermore, computational docking and molecular
dynamics simulations indicate that bromhexine competes with the N-terminal Ile256 for
the same binding site, making it a potential allosteric inhibitor. Taken together, these
findings provide the atomistic basis for the development of more selective and potent
TMPRSS2 inhibitors.

Keywords: TMPRSS2 protein, molecular modeling, allosteric pocket, docking, MD simulation

INTRODUCTION

Since the early days of the pandemic coronavirus disease 2019 (COVID-19) started from the
Chinese city of Wuhan, Hubei province, in December 2019, many reports highlighted the crucial
role of transmembrane serine protease 2 (TMPRSS2) in the spread and progression of the viral
infection (Hoffmann et al., 2020; Sungnak et al., 2020). TMPRSS2 has been identified as one of
the proteases responsible for the proteolytic priming of SARS-CoV-2 spike protein which leads
to the release of the fusion peptide. In addition to that, TMPRSS2 has been put in relation
with the spread of other viruses, such as influenza A viruses, severe acute respiratory syndrome
coronavirus 2 (SARS-CoV), and Middle East respiratory syndrome coronavirus (MERS-CoV), and
it has been studied as a potential therapeutic target for prostate cancer therapy (Lucas et al., 2014;
Shen et al., 2017). Finally, as TMPRSS2 expression is regulated by the androgen receptor, it has
been hypothesized that its crucial role in the viral infection might help explain why males have
more frequently severe complications and a worse clinical outcome than females and if androgen
deprivation therapy (ADT) can have a protective effect against SARS-CoV-2 infection (Montopoli
et al., 2020). These observations stimulated intense investigations, and the number of papers with
the TMPRSS2 keyword in the title indexed in PubMed during 2020 raised from an average of
80–100/year to 601.
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TMPRSS2 is a membrane protein belonging to the type II
transmembrane serine protease (TTSP) family. It is functionally
classified as a trypsin-like protease (TLP). Like other serine
proteases, TMPRSS2 cleaves peptide bonds that are present after
positively charged residues (lysine or arginine), and its enzymatic
activity depends on the presence of a catalytic triad formed by
His296, Asp345, and Ser441. The catalytic selectivity is achieved
with the presence of a negatively charged Asp residue at the
bottom of a cavity usually indicated as “S1 specificity pocket”
(Laporte and Naesens, 2017; Singh et al., 2020).

Structurally, TPMRSS2 is characterized by the presence of
a cytoplasmic N-terminal domain, a transmembrane helical
domain, and three extracellular domains: low-density lipoprotein
(LDL)-receptor class A domain, scavenger receptor cysteine-rich
(SRCR) domain, and the peptidase S1 domain, also called serine
protease domain (SPD) (Figure 1A).

An autocatalytic cleavage between Arg255 and Ile256 activates
the 492-residue long TMPRSS2 zymogen. This modification
enables the binding of Ile256 into a putative allosteric pocket
(A-pocket), which induces a conformational rearrangement of
the catalytic site (Bertram et al., 2010). After the cleavage,
membrane TLPs, such as TMPRSS2, remain bound to the
transmembrane N-terminal domains by a conserved disulfide
bond, although a small fraction of the protein can be detected
into the extracellular milieu (Szabo et al., 2003; Pászti-Gere et al.,
2016; Shen et al., 2017).

Two different species are reported in the literature, one with
a mass of ∼55 kDa that corresponds to the full-length protein
and one of ∼30 kDa which represents the SPD released in the
extracellular space if the disulfide bond is not formed (Afar et al.,
2001; Chen et al., 2010).

To date, no atomistic structure of the entire TMPRSS2, or the
SPD, is available. However, important information can be derived
from the structure of homologous proteins such as matriptase,
DESC1, and several kallikreins.

Several inhibitors of TMPRSS2 have been identified in
the last years. These include organic compounds such as
camostat, nafamostat, and bromhexine (BH) (Figure 1B) and
peptidomimetics (Meyer et al., 2013; Lucas et al., 2014; Shen
et al., 2017; Bestle et al., 2020; Hoffmann et al., 2020; Zang
et al., 2020). Of particular note is BH, a component of widely
used medicaments against respiratory disorders characterized
by viscid or excessive mucus. In fact, following the report of a
selective TMPRSS2 inhibition by Lucas et al. (2014), the use of BH
for the prevention and therapy of the SARS-CoV-2 infection has
been hypothesized (Depfenhart et al., 2020; Habtemariam et al.,
2020; Maggio and Corsini, 2020). However, to date, only a limited
number of clinical trials have been carried out, and their results
remain inconclusive (Ansarin et al., 2020; Li et al., 2020).

In this work, we used computational and experimental
methods, such as homology modeling, molecular docking,
molecular dynamics (MD), and microscale thermophoresis
(MST), to investigate the structure and dynamics of TMPRSS2
and clarify its activation mechanism and the interaction with
various inhibitors at an atomistic level of details. We focused,
in particular, on the differences in the mode of action of
camostat/nafamostat and BH. In fact, while camostat and

nafamostat inhibit TMPRSS2 by forming a covalent adduct, the
mode of action of BH remains unclear.

Besides the generation of a reliable model of the TMPRSS2
catalytic domain, the results of our investigations confirmed
that both camostat and nafamostat are competitive inhibitors
efficiently binding the active site. Contrarily, they indicated that
the binding of BH to the active site is unlikely, leading us to the
identification of a putative allosteric binding pocket.

MATERIALS AND METHODS

Homology Modeling
An atomistic model of the SPD of TMPRSS2 (UniProt code
O15393), covering residues from Ile256 to Gly492, was generated
by homology modeling. The most suitable templates were
identified using the SWISS-MODEL webserver (Waterhouse
et al., 2018). This search provided three templates [Protein Data
Bank (PDB) codes: 5F8T, 5CE1, and 6O1G], having a sufficient
degree of similarity (between 38 and 41%), thus well-suited
for an accurate model generation (Xiang, 2006; Cavasotto and
Phatak, 2009; Sgrignani et al., 2018). The alignment between
the target sequence and the templates was performed using the
Prime-STA algorithm, included in the Schrodinger suite for
molecular modeling (Schrodinger Suite 2020-1). This algorithm,
in addition to the sequence alignment, considers secondary
structure matching, providing better alignments also in poorly
conserved regions. Next, 10 models were generated for each of the
three templates using PRIME, keeping small ligand molecules,
such as piperidine-1-carboximidamide (PC1), 2-[6-(1-
hydroxycyclohexyl)pyridin-2-yl]-1H-indole-5-carboximidamide
(HCP), and N-[(6-amino-2,4-dimethylpyridin-3-yl)methyl]-
1-({4-[(1H-pyrazol-1-yl)methyl]phenyl}methyl)-1H-pyrazole-
4-carboxamide (7SD) (Figure 1), bound to the protein active
site in the templates 5F8T, 5CE1, and 6O1G, to preserve their
respective conformations.

Finally, the models (subsequently indicated as M-5F8T, M-
5CE1, and M-6O1G) with the lowest OPLS3e (Harder et al.,
2016) potential energy after minimization were selected for the
subsequent calculations.

Molecular Dynamics Simulations
Atomistic models were prepared for MD simulation with the
following protocol: (1) the PROPKA program was used to
assign the residue protonation state at a reference pH of 7.4
(Olsson et al., 2011) and (2) the structures were solvated in
a box of water with a minimal distance from the protein
surface of 10 Å. A proper number of counterions were added
to the systems to ensure charge neutrality. All the non-solvent
molecules were parametrized using the OPLS3 (Harder et al.,
2016) force field, while TIP3P model (Jorgensen et al., 1983) was
used for water molecules.

Before the MD production runs, the following simulation
protocol was used to equilibrate the systems: (1) Brownian
dynamics was run for 100 ps in an NVT ensemble (T = 10 K)
applying harmonic restraints on solute heavy atoms (force
constant 50 kcal/mol/Å2); (2) NVT (T = 10 K) MD simulation
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FIGURE 1 | (A) Schematics of the structure of TMPRSS2. (B) Small molecules with inhibitory activity on TMPRSS2 reported in the literature and small molecules or
fragments co-crystallized in the S1 specificity pocket in the templates used for homology modeling.

of 12 ps in NVT ensemble conserving the same restraints applied
in (1); (3) NPT (T = 300 K and P = 1 atm) MD simulation (12
ps) conserving the same restraints applied in (1); and (4) NPT
(T = 300 K and P = 1 atm) MD simulation (24 ps) without
restraints. The pressure and the temperature were fixed at 300 K
and 1 atm by the Martyna–Tobias–Klein barostat (Martyna et al.,
1994) and the Nosé–Hoover chain thermostat (Martyna et al.,
1992), respectively. All the simulations were run using GPU
accelerated DESMOND code. A summary of the simulations run
in this work is reported in Table 1.

Root mean square deviation (RMSD), root mean square
fluctuation (RMSF), and radius of gyration (Rg) analysis were
computed using Maestro (Schrodinger Suite 2020-1). Cluster
analysis was performed with the program TTClust (Tubiana
et al., 2018), focusing on residues belonging to the catalytic
site, namely, Cys281, Thr293, Ala294, Ala295, His296, Cys297,
Val298, Glu299, Tyr337, Asp338, Ser339, Lys342, Asn343,
Ans344, Asp345, Ile346, Ala347, Met424, Cys437, Gln438,
Asp440, Ser441, Asp458, Thr459, Ser460, Trp461, and Phe480.
Contrarily, the analysis of the loop that regulates the access to the
S1 specificity pocket was performed considering all the residues
between Gly462 and Val473. The optimal number of clusters
was automatically determined using the “elbow” method with
k-means (Tibshirani et al., 2001).

Computational Docking of TMPRSS2
Ligands
Computational docking was performed using the software
GLIDE (Friesner et al., 2004). The analysis of the structural
parameters and the analysis of MD simulations (see section

“Results and Discussion”) indicated M-5FT8 as having a higher
quality and more stable among the generated models.

In analogy to the previous studies (Amaro et al., 2008, 2018;
Sgrignani et al., 2009), to account for target flexibility, snapshots
from MD simulations of M-5FT8 were selected using the
previously described cluster analysis. In particular, four snapshots
were selected from the simulations run with positively charged
His296 and four from the simulations with His296 protonated on
the ε nitrogen (see also section “Results and Discussion”).

The grids for docking were centered in the geometric center
of all the atoms of the three residues forming the catalytic triads
(His296, Asp345, and Ser441). A distinct grid file was generated
for all selected snapshots.

Contrarily, for the docking of BH in the putative site
predicted by Sitemap, the grid was centered using the
corresponding sitepoints. In this context, sitepoints are points
in a grid, contiguous, or bridged by short gaps in exposed
regions, that define the shape of a putative binding site
(Halgren, 2007).

All docking calculations were performed using the standard
precision (SP) protocol and GlideScore. Furthermore, docking
was performed on all selected snapshots, and, finally, the pose
with the best GlideScore, together with the receptor, was saved
for the analysis and MD simulations.

The structures of the small molecule ligands were prepared
with LIGPREP. In the case of BH, the results indicated
a protonation of the ternary amino group; therefore, both
enantiomeric molecules (S and R) were considered in docking
calculations, but only the complex with best GlideScore was used
in MD simulations.
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TABLE 1 | Summary of the performed molecular dynamics.

Description of
the system

Number of independent
simulations

Simulation
length (ns)

Ligand

M-5F8T 3 + 3 (His296 protonated
on the ε nitrogen)

250

M-5CE1 3 250

M-6O1G 3 250

M-5F8T 1 + 1 (His296 protonated
on the ε nitrogen) for both
camostat and nafamostat

500 Camostat and
nafamostat

M-5F8T 3 2 × 1,000
1 × 500 (the

complex
decomposed)

BH in Site_1

M-5F8T 1 100 BH in Site_2

Apo-C-M-5F8T 1 1,000

Apo-M-5F8T 1 1,000

C-M-5F8T 3 500 (R)-BH in the
A-pocket

C-M-5F8T 3 500 (S)-BH in the
A-pocket

C-M-5F8T 3 500 (R)-BH in the
A-pocket (IFD

docking)

C-M-5F8T 3 500 (S)-BH in the
A-pocket (IFD

docking)

The models from different templates were indicated as M-5F8T, M-5CE1, and
M-6O1G. The suffix C indicates the models where the first two residues (Ile256
and Val257) were deleted.

Docking of BH in the A-pocket (see section “Results
and Discussion” for a definition) was performed using a
representative structure of the open and closed conformations
(Figures 2B–E) sampled during the MD simulations of C-M-
5F8T (see section “Results and Discussion”). In this case,
the grid was centered in the COG of the residues Ile381,
Ser382, Gly383, Gly385, Ala386, Thr387, Glu388, Asn398,
Ala399, Ala400 Asn433, Val434, Asp435, Ser436, Cys437, Asp440,
Cys465, and Ala466.

The results of these calculations showed a better GlideScore
for the complex in the closed conformation (∼−3.0 kcal/mol vs.
∼ −4.8 kcal/mol for open and closed conformations). However,
also in this case, the complex with the best GlideScore dissociated
during MD simulations.

Regarding this point, it is important to notice that in M-
5F8T, the S-pocket is occupied by a small aminoacidic tail. It is,
therefore, reasonable to assume that a side chain rearrangement
is needed to accommodate different ligands.

Consequently, the docking was performed again using the
induced-fit docking (IFD) protocol of GLIDE, with default
input parameters. In particular, only the orientations of the
side chains of the residues within a distance of 5 Å from
the ligand were optimized. Finally, the complex with the
lowest IFD score [a specific score that combines GlideScore,
Glide_Ecoul energy, and Prime protein conformation energy
(Sherman et al., 2006)] was selected as the best model and used
in MD simulations.

Prediction of Putative Allosteric Binding
Sites
Several algorithms to detect allosteric pockets in proteins have
been developed in the last years (Halgren, 2007, 2009; Yu et al.,
2010; Panjkovich and Daura, 2014; Kozakov et al., 2015; Jiménez
et al., 2017; Xu et al., 2018; Guarnera and Berezovsky, 2019).
Sitemap, proposed by Halgren in 2007 (Halgren, 2007, 2009) and
implemented in the Schrodinger suite for molecular modeling,
is among the most widely used. Furthermore, it provides a clear
assessment of the druggability of the identified pockets.

Consequently, we used this algorithm to investigate the
presence of allosteric pockets in both M-5FT8 and C-M-5F8T. All
the calculations were performed using default values provided by
the Maestro interface (Schrodinger Suite 2020-1). In addition to
that, to validate these results, the same structures were analyzed
also with other algorithms (PARS, Deepsite, and FTMap), using
the respective webservers1,2,3.

MST Experiments for the TMPRSS2/BH
Binding
The binding affinity between TMPRSS2 and BH was measured
by MST. Recombinant human TMPRSS2 (106-492aa, 6xHisTag)
was acquired from Cusabio (CSB-YP023924HU) and labeled
using a His-tag-specific dye (Monolith His-Tag Labeling Kit
RED-tris-NTA (MO-L018), NanoTemper R© Technologies GmbH,
München, Germany), according to manufacturer instructions.
A fixed concentration of the labeled TMPRSS2 (5 nM) was
mixed with 16 1:1 serial dilution of BH. MST measurements
were performed using premium-coated capillary tubes on a
NanoTemper instrument.

BH was first dissolved in DMSO at a 5 mM concentration. In
all subsequent experiments, both protein and BH were dissolved
in Dulbecco’s Phosphate-Buffered Saline (PBS; D8537, Sigma
Aldrich, Saint Louis, MO, United States).

Two independent experiments were performed to compute
the Kd values. Data were analyzed with the NanoTemper
analysis software MO.Affinity Analysis (v. 2.3). Kd values were
obtained fitting compound concentration-dependent changes in
normalized fluorescence (Fnorm).

RESULTS AND DISCUSSION

Homology Modeling of the Serine
Protease Domain of TMPRSS2
Considering its relevance for both the drug design and the
enzymatic function, we focused our attention on the TMPRSS2
SPD (Ile256 to Gly492).

A search performed with the SWISS MODEL webserver
identified three very similar structures (Figure 3 and Table 2)
as suitable templates to generate TMPRSS2 models: (1) two
structures of the human plasma kallikrein (PK), a serine

1http://bioinf.uab.cat/cgi-bin/pars-cgi/pars.pl
2https://playmolecule.org/deepsite
3http://ftmap.bu.edu/login.php
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FIGURE 2 | Results of the MST experiments (A). Structures and schemes of the interactions of the S-BH (B,C) and R-BH (D,E) in complex with C-M-5F8T as
resulted from IFD calculations. The protein surface is colored according to the electrostatic potential. The unit of electrostatic potential is kbT/e where kb, T, and e are
the Boltzmann’s constant, absolute temperature, and the charge of an electron, respectively. The 1Gpred values reported in the picture are the GlideScore values
obtained from docking calculations. IFD, induced-fit docking; MST, microscale thermophoresis.
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FIGURE 3 | (A) Structural alignment between the three selected templates 5F8T (red), 5CE1 (blue), and 6O1G (yellow). Details of the catalytic sites of the PK
structures deposited with the PDB code 5F8T (B) and 6O1G (C) and of the HP structure deposited with the code 5CE1 (D). (E–G) Sequence alignments between
the three templates and the SPD of TMPRSS2. Identical residues are colored in red; conserved residues (according to the BLOSUM62 scoring matrix) are colored in
orange. Abbreviations: PDB, Protein Data Bank; SPD, serine protease domain.

protease that cleaves high-molecular-weight kininogen (HMWK)
to generate bradykinin (BK) (Schmaier, 2013) [PDB codes: 5F8T
and 6O1G (Partridge et al., 2019), resolution 1.75 and 2.50 Å]
and (2) the structure of hepsin (HP), a membrane-bound serine
protease able to catalyze protein cleavage after basic amino-
acid residues (PDB code: 5CE1, resolution 2.50 Å). In fact, the
pairwise RMSD computed using the Cα atoms and the program
ALMOST (Fu et al., 2014) is smaller than 0.5 Å.

The sequences of the three selected templates were aligned to
TMPRSS2 using the PRIME-STA procedure (Figures 3E–G), and
10 models were generated starting from each template. Finally,
the model with the lowest potential energy was selected from
the three different groups. As expected, all the three models
were very similar, with a pairwise Cα − RMSD below 0.5 Å.
Furthermore, visual inspection of the three structures confirmed

the similarity between all models, with the exception of the region
between Tyr322 and Ser333. In fact, while in the two models
derived from PK structures (M-5F8T and M-6O1G), this region

TABLE 2 | Summary of the sequence–sequence alignment between the sequence
of the serine protease domain of TMPRSS2 and the three selected templates.

Template PDB code Score Identities (%) Positives (%) Gaps (%)

5F8T 1,218 41 59 2

5CE1 1,152 39 55 5

6O1G 1,185 41 57 4

The score is the BLAST bit score. Identities is the percentage of residues that
are identical between the sequences. Positives is the percentage of residues that
are positive matches according to the similarity matrix (BLOSUM62). Gaps is the
percentage of gaps in both the query and homolog as returned by BLAST.
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is a β-sheet, in the model form HP structure (M-5CE1), it is
modeled as a long loop. This is not surprising because in the
sequence–sequence alignment between HP and TMPRSS2 used
for model generation, this region is characterized by the insertion
of three amino acids.

The quality of the models was evaluated with the Protein
Structure Quality viewer implemented in Maestro, computing
structural parameters widely used in the evaluation of homology
models (Sgrignani et al., 2009) and by the PROSA-Web
server (Wiederstein and Sippl, 2007; Table 3). This analysis
did not show any critical points for all generated models.
Nevertheless, the number of violations of the allowed regions
in the Ramachandran plot, and other violations from the ideal
structural parameters were higher for the models generated
using 5CE1 and 6O1G.

Molecular Dynamics Simulations of the
TMPRSS2 Models
Aimed to (1) understand the overall stability of the generated
models, (2) to detect problematic or poorly modeled regions, and
(3) to generate an ensemble of protein conformation for docking
(Amaro et al., 2008; Sgrignani et al., 2009), we performed three
250 ns long MD simulations for each of the selected models.
PROPKA calculations with the model from 5F8T indicated
a positively charged catalytic histidine (His296) as the most
probable state. However, considering that the same residue was
predicted as His-εin the other two models and that this specific
protonation state would be required to start the enzymatic
reaction (Ishida and Kato, 2003), we simulated this specific
residue in both protonation states.

The simulation outputs were analyzed using consolidated
observables such as RMSD, Rg, and the per-residue RMSF
(Figure 4). This analysis highlighted a higher stability of M-
5F8T with respect to M-5CE1 and M-6O1G. In particular, the
simulations of M-5F8T always converged to a maximum RMSD
of <3 Å from the starting model and Rg values similar to
the starting one. Contrarily, M-5CE1 and M-6O1G showed
continuously increasing RMSD and Rg profiles, suggesting that
these models are less stable.

The RMSF profiles of M-5F8T and M-6O1G did not show
anything relevant, substantially confirming the stability of M-
5F8T. Contrarily, in M-5CE1, the protein region between
positions 320 and 350, which contains the Tyr322 and Ser333
loop discussed before, was characterized by high RMSF values.

Small molecules in the catalytic site (PC1, HPC, 7SD, Figure 1)
of the templates were preserved in the TMPRSS2 models, as the

behavior of these molecules during MD simulations provides
important hints about their quality and suitability to bind drugs.
In the case of M-5F8T, the PC1 molecule remained in the S1
specificity pocket through a salt-bridge with Asp435 (Figure 5A).
A similar behavior was also observed in the MD simulations
of M-5CE1 (Figure 5B) for HCP. Contrarily, P4C rapidly
dissociated from M-6O1G in all the simulations, probably
because of the lack of a positively charged group docking the
molecule to the S1 specificity pocket.

The good structural parameters (Table 3), the higher stability
with respect to the M-5CE1 and M-6O1G (Figure 4), and the
stable binding observed for PC1 in all the performed simulations
suggested M-5F8T as the most reliable TMPRSS2 model. We,
therefore, analyzed this model more deeply, focusing on the
geometry of the catalytic triad (Asp345, His296, and Ser441). The
analysis of distances between the three residues (Figures 5C–F)
showed that this region of the protein remained stable during all
the performed simulations. However, the system with a charged
His296 adopted a conformation more similar to the starting
model in which the Cγ@Asp345-Cγ@His296 and Cβ@Ser441-
Cγ@His296 distances are 5.1 and 4.4 Å, respectively.

Docking of Camostat and Nafamostat to
TMPRSS2
As in the MD simulations, docking of camostat and nafamostat
in M-5F8T was performed with His296 in two protonation states,
that is, positively charged and protonated on ε.

The outcomes of these calculations (Figure 6) indicated
that camostat adopts a similar binding mode irrespectively to
the His296 protonation state. In particular, camostat places its
guanidine group in the S1 specificity pocket where it forms a salt
bridge with Asp435 orienting the other part of the molecule in
the same direction.

Nafamostat is characterized by the presence of a guanidine
group and one its isoster. Therefore, while one of these is
placed in the S1 specificity pocket, the other forms different
interactions depending on the His296 protonation state. In fact,
in the model with ε protonated His296, the guanidine moiety
forms a salt bridge with Glu299. On the contrary, in the model
with the positively charged His296, the isosteric group directly
binds Asp345, that is one of the members of the catalytic
triad (Figure 6).

Interestingly, the binding score is not affected by the His296
protonation state. However, the predicted score is lower for
nafamostat than camostat, which is in a qualitative agreement
with literature that reports an IC50 value for nafamostat 10 times
lower than for camostat (Yamamoto et al., 2016).

TABLE 3 | Results of the structure quality evaluation.

Model name Ramachandran
violation

RMS bond
dev.

RMS angle
dev.

Backbone Sidechains Peptide
planar dev.

Sidechains
planar dev.

Torsion planar
dev.

Z-score

M-5F8T 9 0.020 2.21 5 17 5.80 0.007 1.13 −6.82

M-5CE1 15 0.022 2.27 11 25 6.36 0.008 1.18 −7.12

M-6O1G 19 0.021 3.05 18 23 6.65 0.010 1.45 −6.47

Z-score is a measure of the overall model quality, and it was calculated by the Prosa-webserver (Wiederstein and Sippl, 2007). All the other parameters were calculated
by Protein Structure Quality viewer implemented in the Schrodinger suite for molecular modeling.
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FIGURE 4 | Analysis of the MD simulations of M-5F8T (A–C), M-5F8T-His296 neutral (D–F), M-5CE1 (G–I), and M-6O1G (J–L). The data from the three distinct
simulations are depicted in different colors. RMSD, radius of gyration (Rg), and RMSF were calculated considering backbone atoms. RMSD, root mean square
deviation; RMSF, root mean square fluctuation.

Bromhexine Binding to TMPRSS2
Investigated by Microscale
Thermophoresis
There have been discordant reports on the ability of BH to
inhibit TMPRSS2. In fact, while the results of Lucas et al.
(2014) appeared robust and convincing, a recent investigation by
Hall and coworkers (Shrimp et al., 2020) concluded that BH is
completely inactive as a TMPRSS2 inhibitor.

It is, however, important to consider that TMPRSS2 is
a membrane protein with a peculiar and poorly understood
activation mechanism. The purification of the active form of
the enzyme, necessary for the inhibition tests, is thus extremely
difficult. Furthermore, we noted that the protein quantity used
in TMPRSS2 enzymatic assay is rarely reported (Meyer et al.,
2013; Lucas et al., 2014), and that when reported (Shrimp et al.,
2020), it extremely high (1 µM) with respect to the 1–2 nM
concentrations used for other similar proteases (Hammamy et al.,
2013; Ivanova et al., 2017). This suggests that the active species
could be only a small fraction of the total protein, making it more
difficult to observe a non-covalent weaker inhibition as that of
BH. Thus, to better understand the existence and the strength of
a BH/TMPRSS2 complex, we performed MST experiments.

MST is a recently developed biophysical technique that
enables the investigation of molecular complexes measuring
changes, upon binding, of the migration of target proteins in a
laser-induced thermal gradient (Jerabek-Willemsen et al., 2011,
2014; Fassi et al., 2019).

The results of the MST experiments confirmed the
BH/TMPRSS2 interaction with a Kd of 24± 13 µM (Figure 2A).

Modeling the Interaction Between BH
and TMPRSS2
Motivated by literature data (Lucas et al., 2014) and by the results
of our MST experiments, we used computational methods to
investigate the BH/TMPRSS2 interaction at an atomistic level.

A closer look at the chemical structure of BH revealed
that it cannot form a covalent bond with the protein
and, therefore, should have a different inhibition mechanism
compared to camostat and nafamostat. We, therefore, performed
docking calculations considering the catalytic site as a putative
BH binding site. However, when simulated by MD, the
ligand–protein complexes dissociated after few nanoseconds
suggesting a low reliability of the obtained structures. This
observation was validated by performing several simulations
starting from slightly different initial poses of BH in the
catalytic site obtained using runs with different grids (data not
shown): inevitably, the BH-TMPRSS2 complex dissociates in
few nanoseconds.

In their 2007 review, Laporte and Naesens (Laporte and
Naesens, 2017) suggested that, because of its selectivity for
TMPRSS2 over matriptase, trypsin, or thrombin, BH could exert
its inhibitory effect binding to an allosteric site.

To better explore this hypothesis, we analyzed our models
with Sitemap (Halgren, 2007, 2009), a computational tool already
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FIGURE 5 | Representative conformations of the MD of M-5F8T (A) and M-5CE1 (B) with a focus on the interactions of PC1 and HPC with the S1 specificity pocket.
The unit of electrostatic potential is kbT/e where kb, T, and e are the Boltzmann’s constant, absolute temperature, and the charge of an electron, respectively.
Histogram analysis of the Cγ@Asp345-Cγ@His296 and Cβ@Ser441-Cγ@His296 distances in the MD simulations of M-5F8T with His296-ε (C,D) and His296
positively charged (E,F). MD, molecular dynamics.

applied to the identification of allosteric sites (Sgrignani et al.,
2014; Kots et al., 2017; Sanchez-Martin et al., 2020).

This analysis highlighted the existence of two putative drug
binding sites (M-5F8T_site_1 and M-5F8T_site_2), for which a
SiteScore value of >0.8 was obtained (Table 4). To note, while

Site_1 describes a zone quite far from the active site, Site_2
includes also a part of the active sites Ser441 and His296.

In recent years, several algorithms for the prediction of
putative allosteric sites (see also section “Materials and Methods”)
have been developed. Therefore, to obtain a more comprehensive
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FIGURE 6 | Structure of the complexes between TMPRSS2 and camostat (A,B) or nafamostat (C,D). The pictures in the right and left columns refer to the docking
calculation ran on M-5F8T considering His296 in its positively charged state or protonated on the ε nitrogen, respectively. The protein surface is colored in the
function of the electrostatic potential according to the shown bar. The unit of electrostatic potential is kbT/e where kb, T, and e are the Boltzmann’s constant, absolute
temperature, and the charge of an electron, respectively. The 1Gpred values reported in the picture are the GlideScore values obtained from docking calculations.

analysis, we carried out the same calculation using three
additional algorithms (PARS, Deepsite, and FTMap). All these
calculations confirmed the existence of Site_1, while Site_2 was
identified by PARS and FTMap but not Deepsite.

Next, we docked BH in M-5F8T_site_1 and M-5F8T_site_2
and performed MD simulations of the complexes. While the
simulations with BH bound to M-5F8T_site_2 resulted in a
complex dissociating in the first 100 ns, the complex between BH
and TMPRSS2 bound to M-5F8T_site_1 and remained stable for
∼1 µs. In fact, the drug remained close to the protein although it
did not find a stable binding mode. Consequently, we performed
two additional MD simulations to clarify this point. In the first
control simulation, the ligand dissociated in the first 500 ns, while
the second control simulation BH remained close to the protein
surface without finding a stable binding mode, as in the first run.
It should be also noted that in these simulations, while close to
the protein surface, BH has a distance of∼30 Å from the catalytic
triad, making it difficult to imagine a direct effect on the catalytic
activity from that position.

Summarizing the results of our simulations indicated that
M-5F8T_site_1 and M-5F8T_site_2 are unsuitable to bind BH,
leaving unsolved the question about the position of the BH
allosteric site.

We, therefore, explored the possibility of the existence of a
hidden allosteric site.

The Role in Protein Activity of Free
Isoleucine at the N-Terminal Side
The essential role for the enzymatic activity of the free
isoleucine at the N-terminal side of TLPs has been
previously reported (Stubbs et al., 1998; Huber, 2013;
Meyer et al., 2013).

From visual inspection of M-5F8T, it can be seen that the
N-terminal fragment of the protein occupies a negatively charged
cavity (subsequently A-pocket, Figure 7) where the positively
charged amino group of the N-terminal Ile256 forms a salt bridge
with Asp440. Interestingly, Asp440 is contiguous to Ser441,
one of the members of the catalytic triads, but oriented in a
different direction.

To investigate the importance of this structural feature (i.e.,
the presence of free isoleucine at N-terminal site) for TMPRSS2,
we generated a model of the enzyme deleting the first two residues
at N-terminal (Ile256 and Val257) from M-5F8T (this model is
subsequently indicated as C-M-5F8T) and performed an MD
simulation for 1 µs.
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FIGURE 7 | (A) Structure of the negatively charged cavity that hosts the N-terminal tail of the catalytically active TMPRSS2. The protein surface is colored by the
electrostatic potential value calculated by the APBS plugin implemented in Pymol-2.3.4. The unit of electrostatic potential is kbT/e where kb, T, and e are the
Boltzmann’s constant, absolute temperature, and the charge of an electron, respectively. (B) Scheme of the interactions between the N-terminal end and its binding
site on the TMPRSS2 structure. (C) Conformations of the loop Gly462-Val473 in the representative structures from the identified clusters. The conformations from
the simulation of apo-M-5F8T are shown in blue while those from the simulation of C-M-5F8T in red. (D) Comparison between the loop conformation assumed in the
cluster3 of the C-M-5F8T MD (in red) and that of cluster3 of the M-5F8T MD (in blue). (E) Distribution of the C-M-5F8T conformations over the identified clusters.
(F) Distribution of the M-5F8T conformations over the identified clusters. (G) Time evolution of the clusters obtained from the C-M-5F8T MD simulation. MD,
molecular dynamics.
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FIGURE 8 | Visual summary of all the possible binding sites investigated in this study. The M-5F8T-C model is represented with different orientations to make clearer
the reciprocal positions of the sites.

Next, we compared the outputs of this simulation with an
identical simulation of M-5F8T in its apo form.

Given its importance for the substrate recognition in TLPs and
its structural proximity to the binding site, we first focused our
analysis on the effect of the presence/absence of Ile256-Val257
on the structure of the S1 specificity pocket. Visual inspection
of M-5F8T suggested that the Gly462-Val473 loop could regulate
the access of the substrates to the S1 specificity pocket. We,
therefore, analyzed the effects of the N-terminal truncation on the
conformation of this protein region. Interestingly, we observed
(Figure 7C) that, while in the simulation of the M-5F8T, the
loop conserves a conformation similar to that adopted in the
starting model; in the second part of the C-M-5F8T simulation,
it moves closer to the catalytic triad (Figure 7D) occupying
a position that should reduce the efficiency of both substrate
recognition and catalysis.

Taken together, these observations strongly suggest that the
binding of the N-terminal tail into the A-pocket (Figures 7A,B, 8)
is important to stabilize the structure of the TMPRSS2 active site
and, in particular, of the S1 specificity pocket.

Is the A-Pocket Relevant for Drug
Design?
Considering the importance, highlighted by the previously
discussed simulations, of the binding of the N-terminal tail into
the A-pocket for the stability of the catalytic site, we performed
some analysis to explore its druggability.

To this end, we first used Sitemap to analyze the C-M-5F8T
model. This analysis showed that the cavity was made accessible
by the deletion of the first two residues of M-5F8T and was highly
suitable for drug binding, with a value of Sitescore of 0.93 over
1.00, where a druggable cavity should have SiteScore > 0.80.

TABLE 4 | Results of the Sitemap analysis carried out on M-5F8T.

Title SiteScore Dscore Volume (Å3) Residues

M-5F8T_site_3 0.924 0.656 68.9 262, 263, 264, 265, 266,
267, 268, 270, 271, 272,
311, 312, 313, 314, 315,
316, 360, 384, 397

M-5F8T_site_2 0.892 0.907 201.3 274, 275, 277, 278, 279,
280, 281, 296, 300, 301,
302, 307, 308, 317, 384,
385, 386, 390, 391, 392,
393, 438, 439, 441

M-5F8T_site_1 0.863 0.872 279.2 369, 370, 371, 372, 373,
374, 376, 377, 403, 404,
405, 406, 407, 409, 413,
421, 422, 424, 425, 428,
429, 430, 469, 471, 476,
478, 479

M-5F8T_site_4 0.738 0.395 50.7 367, 368, 371, 372, 373,
375, 376, 447, 449, 454.
456, 478

M-5F8T_site_5 0.655 0.608 96.7 271, 291, 310, 311, 312,
325, 326, 327, 351, 355
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Next, we investigated if this pocket could be a suitable site
for the BH binding.

Preliminary calculations (see section “Materials and
Methods”) showed that the cavity was optimized for the binding
of the N-terminal tail and not for the binding of a small molecule.
We, therefore, first computed the optimal BH/TMPRSS2 binding
pose using the IFD protocol implemented in Glide, followed by
three MD independent simulations of 500 ns each.

The results of the docking calculations indicated the both (S)-
and (R)-BH bind the A-pocket with a similar predicted affinity
(−6.9 and−6.3 kcal/mol, respectively, Figures 2B–E).

From the structural point of view, both the molecules place
the ring bearing the two bromine atoms in a cavity delimited
by Gly363, Ile381, Ser382, Trp384, and Asp440. Moreover, the
amino group in position 5 of the same ring establishes h-bond
interactions with Asp440 and Gly383 in the case of (S)-BH and
with Asn390 and Glu260 for (R)-BH. In both the structures,
the positively charged amino group of BH electrostatically
interacts with Glu260.

All MD simulations confirmed the stability of the complexes
obtained from docking, with BH bound into the A-pocket for the
entire simulation time.

Finally, we also performed a cluster analysis to verify the
conformation of the Gly462-Val473 loop, which regulates the
access to the S1 specificity pocket. This analysis (Supplementary
Figure 1) clearly showed that the loop conserves a closed
conformation in all the representative structures extracted from
the simulations of (S)- and (R)-BH inside the A-pocket.

CONCLUSION

TMPRSS2 is an exceptional and intriguing protein (Thunders
and Delahunt, 2020), whose precise physiological function
remains unknown. Despite this, it has been linked with several
human diseases, such as prostate cancer, and has been shown to
play a key role in viral infections.

In particular, the SPD of TMPRSS2 is critical for the priming
of SARS-Cov-2 spike protein. This prompted us to investigate the
interaction between TMPRSS2 various known drugs, using both
computational and experimental methods.

While in the case of camostat and nafamostat, our
computational studies confirmed that these two molecules
bind to the active site of TMPRSS2 and form molecular
adducts competent for the formation of covalent complexes;

in the case of BH, our studies indicated that a competitive
inhibition was unlikely.

On the other side, MST experiments confirmed a
BH/TMPRSS2 interaction, leading us to ponder the hypothesis of
an allosteric binding. We, therefore, used computer simulations
to validate this hypothesis. The MD simulation confirmed that
similar to other TLPs, the binding of a free isoleucine residue
in the A-pocket is crucial to stabilize the catalytically competent
active site conformation. Moreover, our calculations indicated
that this cavity (Figure 8), fully accessible in the TMPRSS2
zymogen, is suitable to host BH or other more potent drugs that
could be identified by virtual screening.

The study presented here provides further understanding of
how the catalytic activity of TMPRSS2 can be modulated and new
ways to develop more selective and potent antiviral treatments for
current and future pandemics.
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Pentameric ligand-gated ion channels (pLGICs) mediate fast synaptic transmission and

are crucial drug targets. Their gating mechanism is triggered by ligand binding in

the extracellular domain that culminates in the opening of a hydrophobic gate in the

transmembrane domain. This domain is made of four α-helices (M1 to M4). Recently the

outer lipid-facing helix (M4) has been shown to be key to receptor function, however its

role in channel opening is still poorly understood. It could act through its neighboring

helices (M1/M3), or via the M4 tip interacting with the pivotal Cys-loop in the extracellular

domain. Mutation of a single M4 tyrosine (Y441) to alanine renders one pLGIC—the

5-HT3A receptor—unable to function despite robust ligand binding. Using Y441A as

a proxy for M4 function, we here predict likely paths of Y441 action using molecular

dynamics, and test these predictions with functional assays of mutant receptors in HEK

cells and Xenopus oocytes using fluorescent membrane potential sensitive dye and

two-electrode voltage clamp respectively. We show that Y441 does not act via the M4 tip

or Cys-loop, but instead connects radially through M1 to a residue near the ion channel

hydrophobic gate on the pore-lining helix M2. This demonstrates the active role of the

M4 helix in channel opening.

Keywords: pentameric ligand-gated ion channels, 5-HT3 receptors, Cys-loop receptors, mutagenesis, molecular

dynamics, M4 helix

1. INTRODUCTION

Pentameric ligand-gated ion channels (pLGICs) are neuroreceptors involved in fast synaptic
transmission underlying the physiological processes of muscle action, gut activity, and neurological
function. They are present throughout the central and peripheral nervous systems, and mediate the
action of biologically active compounds including nicotine, alcohol, andmany anesthetics (Nemecz
et al., 2016). Their wide range of functions makes them an attractive therapeutic target, if we can
understand and modulate their structure and function.

While the transmission of the mechanical signal triggered by agonist binding that culminates
in channel opening is not yet fully understood, significant advances can be achieved by means of
mutagenesis experiments to pinpoint key residues/mechanisms as well as molecular simulations
(Crnjar et al., 2019b), especially because an increasing number of high-resolution structures are

67

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2021.644720
http://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2021.644720&domain=pdf&date_stamp=2021-04-30
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles
https://creativecommons.org/licenses/by/4.0/
mailto:carla.molteni@kcl.ac.uk
https://doi.org/10.3389/fmolb.2021.644720
https://www.frontiersin.org/articles/10.3389/fmolb.2021.644720/full


Crnjar et al. M4 Affects Channel Function Radially

now available in a variety of states (Hilf and Dutzler, 2008;
Bocquet et al., 2009; Althoff et al., 2014; Hassaine et al., 2014;
Miller and Aricescu, 2014; Sauguet et al., 2014; Du et al., 2015;
Huang et al., 2015; Kudryashev et al., 2016; Nys et al., 2016; Basak
et al., 2018a,b; Polovinkin et al., 2018; Zhu et al., 2018).

PLGICs are made up of five subunits, with a predominantly β-
sheet extracellular domain (ECD), an α-helical transmembrane
domain (TMD, containing the ion-permeable pore), and often an
intracellular domain (ICD) (Figure 1). Neurotransmitters bind at
the interface between subunits in the ECD, causing the channel
(over 60 Å away) to open, allowing ions into the cell (Lemoine
et al., 2012; Nemecz et al., 2016). The TMD is made up of four
α-helices, (M1 to M4), with M2 lining the channel pore, M1
and M3 in a second concentric circle, and finally M4 facing the
lipid membrane (Figure 1C). While this helix is fundamentally
an amphipathic barrier to the hydrophobic lipid environment,
there is growing evidence that the M4 helix plays a key role
in pLGIC function: mutations in the M4 helices of mammalian
pLGICs have been shown to reduce or inhibit channel opening
(Cory-Wright et al., 2018; Tang et al., 2018; Mesoy et al., 2019), or
promote channel function (da Costa Couto et al., 2020) although
the exact mechanism is not yet clear.

There are two main proposed mechanisms for M4 affecting
channel opening. One mechanism, first outlined by Da Costa
et al. (DaCosta and Baenziger, 2009) proposes that the C-terminal
end of the M4 helix, which sits at the level of the ECD-TMD
interface, is required for the signal transduction through that
interface via interactions with the Cys-loop. Loss of the M4
tip or of M4 binding to the rest of the TMD would disrupt

FIGURE 1 | (A) Model of the open structure of the 5-HT3A receptor (PDB ID 6DG8, Basak et al., 2018a) embedded in a lipid membrane. The five subunits are colored

in red, yellow, green, blue and orange. (B) One subunit of the 5-HT3A receptor; M1: yellow, M2: blue, M3: red, M4: purple, Cys-loop: orange. The atoms of 5-HT and

residue Y441 are shown as spheres. The two possible paths of Y441A action are shown in light blue (radial) and red (vertical). (C) View orthogonal to the channel axis

of the transmembrane domain of the 5-HT3A receptor.

this interface. This would not affect ligand binding, but would
prevent the channel opening signal from reaching the TMD,
resulting in what has been described as an uncoupled receptor.
In this case, mutations that alter the pinning of M4 to the rest of
the channel could disrupt M4/Cys-loop interactions in what we
term a “vertically”-propagating chain of events (i.e., propagating
along a direction parallel to the protein axis). This model is
structurally appealing, and supported by the fact that allosteric
modulation has been shown to propagate from M4 tip residues
to the Cys-loop in the cationic α4β2 nicotinic acetylcholine
receptor (nAChR) (Alcaino et al., 2017).

The other mechanism would involve residues of theM4 acting
directly on M1/M3, i.e., “radially,” and this signal propagating
to affect channel opening, e.g., by interactions with M2. A
naturally occurring M4 mutation (C418W) in the Torpedo
nAChR which alters channel function has been shown to be
energetically coupled to two M1 residues (S226 and T229)
(Domville and Baenziger, 2018). The same work also shows that
the C418W mutations does not affect interactions of the M4 C-
terminal domain (CTD) with the Cys-loop, supporting the radial
mechanism proposal.

In addition to functional characterization showing the
involvement of M4 in channel activity, the M4 of the
neuromuscular nAChR has been calculated to move as a
unit approximately halfway through receptor activation, further
supporting its possible role in connecting ligand binding (the
first event of activation) to channel opening (Mitra et al., 2004).
Together this experimental and theoretical work highlights an
intriguing role for the M4 helix in coupling channel opening to
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ligand binding, which could be influenced by mutations and by
the lipid membrane (e.g., its composition, thickness, or fluidity).

Among pLGICs, the 5-HT3A receptor (5-HT3AR) constitutes
a unique case when it comes to the mechanism of action of the
M4 helix. Alanine mutation of a single tyrosine (Y441), located
approximately at the center of the M4 (Figure 1B) prevents
receptor activation but not ligand binding. Of the other 26 M4
residues tested (434-461), 24 can be changed to alanine with little
or no detectable effect on channel function (the remaining two
abolish receptor expression, so their effect on function is unclear)
(Mesoy et al., 2019). We take this to mean that Y441-dependent
coupling can be taken as a proxy for the coupling mediated by
the entire M4 helix in this channel. Here we use the uncoupling
Y441A mutation to probe the role and function of the 5-HT3AR
M4 helix by comparing it to the wild-type (WT) in molecular
dynamics (MD) simulations, testing proposed mechanisms by
mutagenesis and functional assays.

2. MATERIALS AND METHODS

2.1. Molecular Biology
The mouse 5-HT3A cDNA (Q6J1J7) in pcDNA3.1 (for HEK cell
transfection) or pGEMHE (for RNA production) was modified
byQuikChange site-directedmutagenesis (Agilent Technologies)
to create point mutants (verified by sequencing).

2.2. Cell Culture
Human embryonic kidney (HEK) 293 cells were maintained at
37oC at 5% CO2 in a humidified atmosphere, in Dulbecco’s
Modified Eagle’s Medium/Nutrient Mix F12 (1:1) (Invitrogen,
Paisley, UK) with GlutaMAX TM and 10% fetal bovine serum
(GE Healthcare) (DMEM/FBS) and passaged when confluent.
Five micrograms of WT or mutant 5-HT3A DNA and 30 µl
polyethyleneamine (Polysciences) incubated for 10 min in 1
mL DMEM was added to 60% confluent HEK293 cells for
transfection, and cells grown for 2 days before assays.

2.3. FlexStation
As described previously (Price and Lummis, 2005) cells were
incubated for 45 min with fluorescent membrane potential-
sensitive dye (Membrane Potential Blue kit, Molecular Devices)
diluted in Flex buffer (10 mM HEPES, 115 mM NaCl, 1 mM
KCl, 1 mM CaCl2, 1 mM MgCl2, and 10 mM glucose, pH 7.4),
and subsequently assayed at room temperature for 180 s, with
readings every 2 s. 5-HT was added to each well after 20 s.
Concentration-response curves were generated by iterative fitting
in GraphPad Prism 7 (after normalization to max 1F) with the
equation y = a + b−a

1+10(nH(logEC50-x))
where y is the fluorescent

response, x is log[5-HT] (log of the concentration of ligand), a is
the minimum response, b is the maximum response, and nH is
the Hill slope.

2.4. Radioligand Binding
This was performed as previously described. Lummis and
Thompson (2013) Briefly receptors in crude HEK293
cell membranes were labeled with the 5-HT3R antagonist
[3H]GR65630 by incubation in 0.5 mL 10 mM HEPES buffer

pH 7.5 for 1 h on ice, using 1 µM quipazine to determine
non-specific binding. Data were analyzed in GraphPad Prism by
iterative curve fitting.

2.5. Two-Electrode Voltage Clamp
Xenopus laevis oocytes from EcoCyte Biosciences (Austin
Texas) were injected with 100 pg cRNA (generated with the
ThermoFisher mMESSAGE mMACHINE T7 transcription kit)
and left in injection media [88 mM NaCl, 2.4 mM NaHCO3,
1 mM KCl, 0.82 mM MgSO4 ·7H20, 5 mM Tris-HCl, 0.33
mM Ca(NO3)2·4H2O, 0.41 mM CaCl2·2H2O, 2.51 mM sodium
pyruvate, 0.12 mg/ml theophylline, 0.05 mg/ml gentamicin, pH
7.5] at 16oC for 24 h. Recording was performed at 22oC on a
Roboocyte (Multichannel systems, Reulingeen, Germany), using
calcium-free ND96 buffer (96 mM NaCl, 2 mM KCl, 1 mM
MgCl2, 5 mM HEPES, pH 7.5) and 5-HT solutions applied by
a computer-controlled perfusion system. The holding potential
was −60 mV, using glass microelectrodes with a resistance of
approximately 1 M� backfilled with 3M KCl.

2.6. Model and Molecular Dynamics
Simulations
A model of the 5-HT3AR was built based on the cryo-EM
open structure resolved by Basak et al. at 3.89 Å resolution
(pdb entry: 6DG8, Basak et al., 2018a) (Figure 1A). The open
structure was chosen in part because we assumed that the M4
helices would play their role late in the overall chain of receptor
activation (i.e., subsequent to ligand binding), and therefore the
effect of mutating Y441A would be better observed in a receptor
conformation that is at the end and not the start of the activation
process. Additionally, there was experimental evidence that WT
and Y441A-containing receptors showed differences with regard
to the open state (the WT can attain this state but the mutant
receptor does not; Mesoy et al., 2019), suggesting that the open
state was more likely to reveal functional differences between the
two receptors.

This structure comprises the TMD, the ECD, and part of
the ICD: the highly flexible residues 333–396 in the ICD
were not resolved experimentally. This unstructured region
was not reconstructed, considering not only its considerable
length (which would result in a large solvation box), but also
its likely lack of influence on the M4 helices. Conversely, the
experimentally resolved and structured part of the ICD (the MA
helices) was included, as the M4 movements may in principle be
affected by the MAs.

The model was protonated at neutral pH, and embedded
in a 6:7:7 cholesterol-POPC-POPE lipid membrane (with lipids
randomly distributed) using the CHARMM-GUI web-based
membrane builder (Jo et al., 2008), resulting in a membrane
area of about 124 by 127 Å. The 6:7:7 concentration was chosen
to resemble HEK cells membrane composition, resulting in a
cholesterol/phospholipid ratio of 0.42, closer to the value of 0.48
in HEK cells (Dawaliby et al., 2016) than to that of 0.6–0.7
in oocytes (Opekarová and Tanner, 2003). This ratio has been
used for simulations of membranes with cholesterol (6), POPC
(7) and a third lipid (7) for the study of serotonin receptors
(Shan et al., 2012; Crnjar and Molteni, 2020; Guros et al., 2020).
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Mixed membranes containing POPC and POPE (together with
cholesterol), have also been studied in the past (Elmore and
Dougherty, 2003; Mahmood et al., 2013; Cao et al., 2015; Patra
et al., 2015; Heusser et al., 2018; Oakes and Domene, 2019; Guros
et al., 2020). The presence of cholesterol is important as this
lipid is present in high concentration in brain cells membranes
(Pfrieger, 2003; Chan et al., 2012), and a mixed membrane may
prove important for a cooperative modulation of the effects of the
Y441A mutation.

The system was then solvated in an orthorhombic supercell,
with 52,477 TIP3P water molecules and 0.15 M of Na+ and Cl−

ions to reproduce physiological conditions, together with 5 Cl−

counterions to counterbalance the positive charge of the five
bound 5-HT molecules. The total number of ions was 162 for
Na+, and 142 for Cl−. PyMOL (Schrödinger, LLC, 2015) was used
to turn the five Y441 into alanines, resulting in amutated receptor
(MR) model. In total the WTR model contained 226,082 atoms
and the MR model contained 226,027 atoms.

The systems were simulated with the NAMD 2.13 molecular
dynamics package (Phillips et al., 2005), the AMBER ff14SB
(Maier et al., 2015) and LIPID14 force-field (Dickson et al.,
2014). The five 5-HTs in the binding pockets were parameterized
as described in the Supplementary Material. The simulation
time step was 2 fs, and the bonds containing hydrogen were
constrained with the SHAKE algorithm. Particle Mesh Ewald was
employed for the electrostatic interactions and a cut off of 10 Å
was used for the non-bonded interactions.

At the beginning, the WTR and MR models underwent a
minimization procedure, a slow heating and a partially restrained
equilibration (with the protein α carbons and the 5-HT rings
restrained while the lipids were free to diffuse). The equilibration
of lipid membranes requires long time windows since their
diffusion occurs over times of the order of tens to hundreds
of nanoseconds (Kandt et al., 2007; Smith et al., 2018). Thus,
the equilibration stage, performed within the isothermal-isobaric
(NPT) ensemble, lasted around 150 ns in total, while slowly
releasing the chosen restraints. Supplementary Table 1 reports
the full equilibration procedure followed.

After the equilibration, production runs were performed for
both models, with 1.0 kcal/molÅ2 restraints on M2, MA, MX
α carbons. These restraints were kept during the production,
since care must be taken in order to prevent the collapse of
open structures of pLGICs, including the possible closure of the
channel (Dämgen and Biggin, 2020). Past simulations on this
very receptor (Crnjar and Molteni, 2020; Guros et al., 2020)
without any restraints applied highlighted how the RMSD of
the M4 can go up to 4 Å. This is similar to what was found in
our simulations, thus proving that the chosen restraints do not
affect the section from residue 441 and above. Moreover, residue
425 is far outside the membrane within the ICD, as shown by
Supplementary Figure 4.

The production was carried out within the isothermal-isobaric
(NPT) ensemble for each model at a temperature of 310 K,
which is above gel transition temperature for all lipid species
(Silvius, 1982; Kraske and Mountcastle, 2001), and at a pressure
of 1 atm. Temperature was controlled by means of a Langevin
thermostat with a collision frequency of 1.0 ps−1, and pressure

was controlled by means of a Langevin piston barostat with an
oscillation period of 200 fs and a damping time constant of 100 fs.

For both WTR and MR, two replicas of 250 ns each were
simulated, referred to in the following as R0 and R1. This choice
was made as a consequence of the stochastic nature of the
Langevin dynamics, which would result in different trajectories
in different replicas, particularly affecting the diffusion of lipid
molecules, to whom the outermost M4 helices are exposed. Most
of the analysis described in the following were performed over
the conjunction of the time windows 50-to-250 ns of both R0
and R1 (R01-400). In fact, to improve statistics when performing
simulations, long runs or multiple replicas would give qualitative
similar results for time- and subunit-averaged quantities (Crnjar
and Molteni, 2020). Moreover, the pentameric nature of this
pLGIC allows for a simultaneous five-fold sampling of whatever
phenomenon occurs within one subunit. For both R0 and R1,
the first 50 ns of simulations were excluded from statistics
collection in order to mitigate for the use of the same initial
geometry and allow for independent equilibration (50 ns being
the time window after which the protein RMSD flattens, as
shown in Supplementary Figure 1). The analysis of quantities
which needed to be expressed as functions of time, or that would
be dependent on the order of the union of R0 and R1, were
performed separately for R0 and for R1.

Trajectories were sampled every 50 ps, and analyzed with the
Cpptraj (Roe and Cheatham, 2013) and MDAnalysis (Michaud-
Agrawal et al., 2011; Gowers et al., 2016) software. Hydrogen
bonds were defined by using a donor-acceptor distance smaller
than 3.5 Å and a donor-hydrogen-acceptor angle larger than
120◦. These values have been used in several previous works on
pLGICs (Melis et al., 2008; McCormack et al., 2010; Comitani
et al., 2014, 2015, 2016; Crnjar et al., 2019a,b), and are the defaults
of analysis software such asMDAnalysis (Michaud-Agrawal et al.,
2011; Gowers et al., 2016). A generic contact between any two
given atoms (of two different residues) was considered here when
their distance was shorter than a cutoff of 3.5 Å as in previous
studies (Deol et al., 2004).

Aromatic interactions were calculated by considering
distances and angles involving the vector normal to best-
fit-plane to a given single aromatic ring (for residues with
multiple aromatic rings, such as tryptophan, we consider the
rings separately and then sum the interactions frequencies).
π-π interactions consider a ring-ring distance less than 6.0 Å,
and normals angle smaller than 45◦ or greater than 135◦. The
distance was chosen in order to be 1 Å larger than the optimal
one predicted for benzene dimers (Sinnokrot et al., 2002).
Anion-π interactions considered a ring-charged atom distance
smaller than 5.0 Å, and an angle between ring normal and ring
center-to-negative atom distance smaller than 40◦ or greater
than 140◦ (Lucas et al., 2016).

3. RESULTS

3.1. Vertical Mechanism
We found no difference between the WT and mutant simulation
either at or above residue 441 on M4 from examining the
local dynamical fluctuations of M4 by evaluating the root mean
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square fluctuations (RMSF) of each residue (Figure 2). This was
calculated over R01-400 with respect to the post-equilibration
positions, for the backbone atoms of those residues, and averaged
over each of the five subunits. The errors were calculated
as maximum semidifferences (half of the difference between
maximum and minimum value).

Residue 425 (the last residue of theMAhelix) was restrained in
both simulations, so we did not consider nearby similarities valid.
Around residue 441, the fluctuations were around 1–2 Å in both
WTR and MR; on average the dynamics of residue 441 did not
seem to be affected by removing the side chain. The fluctuations
increased (as did the variation across subunits) toward the top of
the helix. The M4 tip is located at the interface with the solvent in
the extracellular region, at the same level of the edge of the outer
lipid leaflet (Supplementary Figure 4), and is therefore allowed
to move more freely. These comments hold true for both the
WTR and the MR, which show little difference in the dynamics.

The top of the M4 helix therefore appears not to depend on
the properties of residue 441. To confirm this, we investigated
other factors. Firstly, to better estimate the effect of residue
441 dynamics upwards along the M4, we calculated the time-
averaged dynamical correlation of this residue with respect to
two representative amino-acids: Y448 andW459 (Figure 3). Both
are structurally important; mutation of either residue abolishes
cell surface expression (Mesoy et al., 2019). Y448 is an integral
inwards-facing residue near Y441, and W459 is a good candidate
for potential interactions with the Cys-loop, making it an
interesting marker of M4 tip behavior. The dynamical correlation
Cij between two atoms i and j is defined (Hunenberger et al.,
1995) as:

Cij =
〈Eri Erj〉 − 〈Eri〉〈Erj〉

√

(〈Eri
2
〉 − 〈Eri〉2)(〈Erj

2
〉 − 〈Erj〉2)

(1)

Cij may take any value between 0 and 1: values close to 1 indicate
that the two residuesmove consistently in the same direction over
time, acting like a rigid body, while values close to 0 imply that the
dynamics of these residues never display any correlation.

The correlations between residues 441 and 448/459 appear
to be subunit- and replica-specific, although the 441-448
correlations are consistently higher than the 441–459 ones (as
expected due to residue 448 being closer than 459 to 441). While
for the pair 441–448 they reach values up to 0.8 (with an average
of 0.69± 0.07), for the pair 441–459 they never surpass 0.6 (with
an average of 0.24 ± 0.13), implying that 441 is not notably
correlated with the top of the M4.

Secondly, we investigated the time- and subunit-averaged
interactions (hydrogen bonds, π-π interactions and anion-π
interactions) of selected M4 residues, evaluated over R01-400
(Figures 4, 5). Errors were calculated via error propagation from
the five standard deviations of data over time for each of the
single subunits.

Figure 4 confirms that W459 is the only M4 tip residue that
forms hydrogen bonds (although with low frequency) with the
Cys-loop (residues 135 to 149). No major differences are noted
between WTR and MR in either hydrogen bonds nor aromatic
interactions, except for the fact that the removal of the 441 side
chain upon mutation prevents it from forming interactions with
its neighbors.

FIGURE 2 | RMSF of backbone atoms of the M4 amino acids, calculated for R01-400 for the WTR (blue) and the MR (yellow).
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FIGURE 3 | (A) Average dynamic correlation of residue 441 backbone atoms with those of residues 448 and 459, for the WTR (blue) and the MR (yellow) in the two

replicas R0 and R1. Subscripts denote the five subunits. (B) Position of residues 441, 448, and 459 in the protein.

FIGURE 4 | Hydrogen bonds of M4 tip residues (I458, W459, H460, Y461, S462), calculated over R01-400 for the WTR (blue) and the MR (yellow).

FIGURE 5 | π-π interactions (F438-F424,441-F242,Y448-Y286,W456-F144,W459-F144) and anion-π interactions (441-D238) of different amino-acids of M4,

calculated over R01-400 for the WTR (blue) and the MR (yellow).
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FIGURE 6 | (A,B) Typical fluorescent responses (F in arbitrary units, AU) to addition of 5-HT at 20 s to HEK293 cells expressing 5-HT3A receptors, using a membrane

potential sensitive dye. (A) WT, (B) C290A. (C) 5-HT concentration-response curves of mutant receptors in HEK293 cells. For D238A F is compared to WT Fmax.

Data is mean ± standard error of the mean (SEM), n ≥ 3. (D) Molecular dynamics snapshot showing Y441 in the M4 helix together with possible interaction partners.

M1: yellow, M3: red, M4: purple.

3.2. Radial Mechanism
The radial mechanism was first investigated experimentally. We
characterized WT and mutant 5-HT3A receptors expressed in
HEK293 cells by measuring responses of a membrane potential-
sensitive dye on addition of 5-HT (Figures 6A–C). This gave a
WT EC50 of 0.17 µM (pEC50 of 6.76 ± 0.01) and a Hill slope
of 3.7 ± 0.3, which is comparable to previous work (Lochner
and Lummis, 2010). The WT level of ligand binding at the cell
surface was measured with [3H]GR65630, giving a Kd of 0.18
± 0.03 nM, similar to previous work e.g., (Hovius et al., 2002),
and a Bmax of 1.2 ± 0.8 pmol/mg protein (Table 1). Mutants
that did not respond in the functional assay are marked as non
functional (NF).

Alaninemutations of all residues of interest near Y441 showed
that only D238A had a comparable effect to Y441A (Figure 6 and
Table 1). Neither Y441A nor D238A responded to application of
5-HT, though they both had high levels of [3H] GR65630 binding
sites (Mesoy et al., 2019 andTable 1). Their proximity and similar
phenotypes on mutation indicate that D238 could be part of the
mechanism of Y441 supporting channel function.

To further elucidate the role of the Y441-D238 interaction, we
investigated the wider effects of Y441A through D238. In the MD
simulations, the time- and subunit-averaged hydrogen bonds of
D238 and Y441 with any other residue belonging to the M1, M2,
M3, and M4 helices were calculated over R01-400 (Figure 7) for
both the WTR and the MR. Error bars were calculated via error
propagation from the five standard deviations of time-data for
each of the single subunits.

TABLE 1 | Mutant receptors in HEK293 cells.

Mutant EC50

(µM)

pEC50 (M) nH Kd (nM) Bmax (pmol/mg

protein)

WT 0.17 6.76 ± 0.01 3.7 ± 0.3 0.18 ± 0.03 1.2 ± 0.8

M235A 0.06 7.21 ± 0.05 2.8 ± 0.9 0.70 ± 0.09 2.4 ± 0.4

D238A NF 0.50 ± 0.07 1.8 ± 0.4

F242A 0.31 6.51 ± 0.02 3.8 ± 0.8

C290A 0.02 7.79 ± 0.05 1.2 ± 0.2 0.85 ± 0.10 3.8 ± 0.3

S297A 0.46 6.34 ± 0.03 3.5 ± 0.8

Kd ± Bmax measured by saturation binding. Values are mean and SEM, n ≥ 3.

No major differences were observed between the two models,
except for the notable lack of hydrogen bonds between residues
441 and 238 in the MR. However, one interesting fact emerges:
both residues 238 and 441 are able to make interactions with
K255, a lysine that belongs to the M2 helix. This residue is near
L260, the hydrophobic gate of the 5-HT3R (Hassaine et al., 2014;
Aryal et al., 2015). The K255 side chain stretches betweenM1 and
M3 and points toward the middle of the four TMD helices, with
its terminal nitrogen at a convenient position for the formation
of hydrogen bonds with residues in the region (Figure 8A).

Residue 441 is within reach of the K255 side chain, so
direct hydrogen bonds between these two residues are possible,
however they only occurred for a tiny fraction of the simulation
time. Conversely, D238 terminal oxygens formed hydrogen
bonds for longer.
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FIGURE 7 | Hydrogen bonds of residue 441 (left) and D238 (right) with any other protein residue, calculated over R01-400 for the WTR (blue) and the MR (yellow).

FIGURE 8 | (A) Molecular dynamics snapshots showing how Y441 might help maintain the hydrogen bonding between D238 and K255 in the WTR, while in the MR

these two residues are less likely to form interactions. M1: yellow, M2: blue, M4: purple. (B) Distributions of the distance between Cγ of D238 and the terminal

nitrogen of K255, in the two models. Thick lines: averages; shaded area: error.

The distribution over time and subunits of the distance
between the Cγ of D238 and the terminal nitrogen of K255
revealed two peaks in both the WTR and the MR (Figure 8B).
Errors were calculated via error propagation from the ten
standard deviations of data over time for each of the single
subunits and for the two replicas R0 and R1. One peak was found
at about 7.5 Å for the MR and at about 5.5 Å for the WTR, and
shows how the absence of Y441 side chain allows for D238 to be
farther away from K255 with respect to the WTR. Another peak
was observed around 3.5 Å for both the WTR and the MR, and
was much higher for the WTR than for the MR: this indicates

that a hydrogen bond may be formed between K255 and D238,
which was observed for longer times in the WTR. In the WTR,
the distance between Cγ of D238 and the side chain oxygen of
Y441 is 4.8± 0.4 Å.

To investigate this putative interaction we assayed the effects
of mutating K255 in HEK293 cells. K255A is indistinguishable
fromWT, indicating that K255 is not required for correct channel
function. Intriguingly however, K255L is entirely non-responsive
to ligand, even though it is expressed, as shown by radioligand
binding (Table 2). This indicates that K255 may be part of the
same interaction chain as Y441 and D238.
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3.3. Rescue of Non-functional Receptors
We decided to further probe the most interesting mutants
in a different expression system, Xenopus oocytes, using two-
electrode voltage clamp.

Expressing WT 5-HT3A in Xenopus oocytes gave an EC50 of
1.7 µM (pEC50 = 5.76 ± 0.05) and a Hill slope of 1.8 ± 0.3
(Figure 9 and Table 3), similar to previous work (Lummis et al.,
2016).

On expression in Xenopus oocytes, both Y441A and K255L
(which were non-responsive in HEK cells (Mesoy et al., 2019,
Table 2)) gave WT-like responses (Figure 9 and Table 3). This
demonstrates that Y441, which is required for channel function
in HEK293 cells, is not in Xenopus oocytes. For the mutants that
did function in HEK cells, we observed two different patterns

TABLE 2 | Mutant receptors in HEK293 cells.

Mutant EC50

(µM)

pEC50 nH Kd (nM) Bmax (pmol/mg

protein)

WT 0.17 6.76 ± 0.01 3.6 ± 0.3 0.18 ± 0.03 1.2 ± 0.8

K255A 0.52 6.29± 0.02 2.6± 0.1

K255L NF 0.17± 0.02 0.4 ± 0.2

K255Q 0.11 6.95± 0.02 1.9± 0.2

K255E 0.26 6.59± 0.02 4.4± 1.4

K255C 0.30 6.52± 0.03 2.3± 0.6

Kd and Bmax measured by saturation binding. Values are mean and SEM, n ≥ 3.

FIGURE 9 | Concentration-response curves of 5-HT3A receptors in Xenopus

oocytes. Data is mean ± SEM, n≥3. Inset: typical current recordings at 3 µM

5-HT; scale bars are 20 s and 2 µA.

TABLE 3 | Mutant receptors in Xenopus oocytes.

Mutant EC50 (µM) pEC50 nH

WT 1.7 5.76 ± 0.05 1.8 ± 0.3

Y441A 1.0 5.98 ± 0.10 1.0 ± 0.1

D238A NF

K255A 3.3 5.48 ± 0.06 1.9 ± 0.5

K255L 1.8 5.74 ± 0.05 1.4 ± 0.2

K255Q 1.2 5.93 ± 0.04 2.1 ± 0.4

C290A 4.0 5.40 ± 0.15 0.5 ± 0.1

Values are mean and SEM, n ≥ 3.

in oocytes. While K255A showed similar shifts relative to WT
in both expression systems, C290A was more sensitive to ligand
than WT in HEK cells but less sensitive in Xenopus oocytes
(Figure 10).

To assess the impact of lipid composition on channel function,
we investigated the effects of lipids on Y441 and nearby residues
in the simulated WTR and MR. The two models make use of the
same lipid composition (POPC, POPE and cholesterol), but the
local lipid environment around each of the five subunits differs
due to varied lipid diffusion during the simulation. We found
no difference between the two models in any of the measures
described below (distributions of lipids around Y441, relative
positions of lipids within the membrane with respect to Y441,
and hydrogen bonds formed with residues 441 and/or 238).

In order to evaluate the fitness of residue 441 to give rise to a
valid lipid binding site, we first evaluated the proximity lifetime
distributions of lipids around this residue, for the two replicas
(R0 and R1) separately as this quantity strictly depends over
the specific replica. The results are reported for phospholipids
and cholesterol in Figure 11. POPC and POPE are grouped
together, since 441 is at the level of phospholipid tails, which
are indistinguishable for POPC and POPE. For this calculation,
we considered multiple time windows, shifted by 5 ns, and
evaluated averages and standard deviations for each 5 ns time
period. The statistics available for each residence time decreases
for larger times.

These distributions are characterized by very fast decays.
While cholesterol only exhibits one binding event for around 15
ns in R1 for theWTR, phospholipids display some binding events
up to 25 ns. However, no event is seen for any binding duration
beyond this value, meaning that possibly all interactions at the
level of residue 441 are relatively weak.

We calculated the z component (where z is the parallel
direction to the protein axis) of the distance of center of mass
of lipids selections from the center of mass of the five 441
residues, shown in Supplementary Figure 5. Residue 441 is at
the same height as the center of mass of cholesterol molecules
and phospholipid tails of the lower (inner) leaflet. Phospholipid

FIGURE 10 | pEC50 relative to WT for mutants expressed in HEK293 cells and

Xenopus oocytes, from Tables 1–3. Data is mean ± SEM, n ≥ 3; values less

than 1 indicate loss-of-function, and values greater than 1 indicate

gain-of-function.
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FIGURE 11 | Proximity lifetime distributions of any phospholipid (top) and of any cholesterol (bottom) in close proximity to residue 441 in the WTR (blue) and in the

MR (yellow) for replicas R0 (left) and R1 (right). The results are shown for residence times larger than 5 ns.

tails may disrupt interactions between residue 441 and D238, and
could intercalate within the subunit (Crnjar and Molteni, 2020).
Phospholipid heads are on average quite far from residue 441,
but might still form sporadic hydrogen bonds with this residue or
with D238. Cholesterol could form π-π interactions with the side
chain of residue 441 when present (i.e., in the WTR), sporadic
hydrogen bonds with either residue 441 or D238, or conversely
could intercalate within the subunit (possibly aided by the lack
of the side chain of residue 441 in the MR). A previous in-silico
study observed cholesterol interacting with Y441 by means of
π-π interactions as well as hydrogen bonds (Guros et al., 2020).

The hydrogen bonds formed between residue 441 (or D238)
and lipids, calculated over R01-400 for the two models, are
displayed in Supplementary Table 2 and depicted in Figure 12.

Only isolated and weak hydrogen bonds were observed
between lipids and residues 441 and 238. While their average
values are low (or even zero), their effects are still interesting.
In the WTR, subunit 5 (Figure 12A), a POPE molecule formed
hydrogen bonds with both Y441 and D238, pulling D238 away
from K255. In the MR, a cholesterol molecule was observed
making hydrogen bonds in subunit 1 that pushed D238 outward
and away from K255 (Figure 12B1), but this did not result in a
pulling of D238 at other timepoints (Figure 12B2). Similarly, a
POPE molecule in subunit 1 engaged in hydrogen bonds with
D238 that did not prevent it from also interacting with K255
(Figure 12C), but another POPE, in subunit 5, instead pulled
D238 outward when interacting with it (Figure 12D). Overall,
no lipid interactions in this region were observed to promote
or inhibit intrasubunit interactions at the level of Y441, nor to
prefer any particular conformation or interaction over any other,

although further work beyond the scope of this study is required
to confirm this, e.g., by using coarse-grained methods, in order
to produce a larger statistics of possible lipid interactions with or
near Y441.

4. DISCUSSION AND CONCLUSIONS

The aim of this work was to probe the effects of the M4 helix
in 5-HT3AR function using the non-functional Y441A mutation.
Our data suggest that Y441 connects to K255 on the pore-lining
M2 helix via the M1 residue D238, and that this interaction is
necessary for receptor function in HEK cells but not in Xenopus
oocytes. We found no indications that Y441 or Y441A-mediated
uncoupling affect the M4 tip or the Cys-loop.

4.1. Vertical Mechanism of Connection
In our simulations of both the WTR and the MR, the C-
terminal domain appeared to move independently of residue
441 (Figure 2), indicating that Y441A does not act through
large-scale shifts in M4 movement. We further confirmed
the independence of the CTD from the Y441 by dynamical
correlation measurements (Figure 3), and found no differences
in hydrogen bonds from residues other than 441 between the two
models (Figures 4, 7). From this we conclude that despite the
structural appeal and the early indications pointing to a vertical
mechanism of action, M4-mediated coupling does not occur via
interactions of the M4 tip with the Cys-loop, as the CTD of M4
is unaffected by the mutation that disconnects channel opening
from ligand binding.
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FIGURE 12 | Snapshots from the MD simulations showing some of the lipids that form hydrogen bonds with residues 441 and/or 238 in the WTR (A) and MR (B–D).

These are discussed in the text. M1: yellow, M2: blue, M4: purple.

4.2. Radial Mechanism of Connection
The possibility of a radial mechanism of connection from M4
to the channel pore is appealing: substitution of a sufficiently
different residue for Y441, D238, or K255 individually abolished
receptor function but not ligand binding in HEK293 cells (Mesoy
et al., 2019, Tables 1, 2). However, these substitutions are not
equal. The aromatic group of Y441 must be key to its function,
as Y441F has WT-like function where Y441A does not. Likewise
some specific property of D238 is required for correct channel
function, as evidenced by the lack of function of D238A. K255
is subtly different: the data suggest the residue at this position
must be polar or charged if it is large: K255E, C, and Q are all
functional, but K255L—bulky and uncharged—results in non-
functional receptors. However, a large polar residue is not strictly
required here, as evidenced by the WT-like function of K255A.

We propose that a major requirement of residue 255 may
be to allow the displacement of M2 on channel opening. The
movement of M2 on channel opening in 5-HT3A has been
described as a rotation and outward displacement (Basak et al.,
2018b). Polovinkin et al. show an outward movement of M2
(Polovinkin et al., 2018), especially the lower half, as well as
a rotation to clear the restricting L9’ (L260) residues from the
center of the pore. We propose that residue 255 requires a
polar character here to allow this outward movement if the
residue is large (hence K255L blocking channel opening), perhaps
involving the observed hydrogen bond to D238 (Figure 7).
However mutation of K255 to a small residue like alanine
may also allow outward movement of this helix, explaining the
mutation pattern here.

Conversely the removal by alanine mutation of either Y441 or
D238 abolishes channel function. This, too, may be related to the
movement of M2 on channel opening (and hence explain why
these mutations prevent it). Figure 2C in Basak et al. (2018b) and
the “morph” videos in Polovinkin et al. (2018) show particularly
well the movement of M1 andM4 on channel opening—outward
and, for M4, upward. It seems likely that Y441 and D238 may
be required for this movement of their respective helices, and
that this helical movement is required for the outward channel-
opening movement of M2 discussed above.

While each residue may act individually, it is also striking that
these three residues in close proximity give the same functional
phenotype on mutation. A Y441-D238 interaction in particular
is likely to be required for channel function, though a hydrogen
bond is not (as Y441F is WT-like). K255 is not specifically
required, though a large non-polar residue at this location is
disruptive. While K255A does function, the requirement for
any larger residue at position 255 to have some polarity—
be it a positive charge, a negative charge, or only a polar
group—does point intriguingly toward the hydrogen bond noted
with D238 (Figure 7). Determining precisely which of these
residues interact and how will be key to understanding the wider
mechanism of channel opening in 5-HT3R receptors.

4.3. Rescue of Non-functional Receptors
The stark difference between the uncoupled state of Y441A and
K255L in HEK293 cells and their WT-like behavior in Xenopus
oocytes is intriguing. Putting this in the context of the literature,
a wider pattern emerges where mutations in cationic pLGICs M4
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helices that affect EC50 are slightly beneficial in Xenopus oocytes,
but detrimental in HEK293 cells:

Many (11 out of 24) alanine mutations in the α7 nAChR M4
helix improve function in oocytes (da Costa Couto et al., 2020).
In contrast, several (8 out of 27) alanine mutations in the α4β2
nAChR M4 helix abolish function (but not ligand binding) when
expressed in HEK293 cells (Mesoy and Lummis, 2021). Looking
only at the C-terminal end of the M4 helix, it seems that while it
can be deleted without ablating function in both ELIC (Hénault
et al., 2015) and the Torpedo nAChR (Tobimatsu et al., 1987),
deletion or alanine mutation of individual C-terminal residues
abolish function in the 5-HT3AR and in the α4β2 nAChR (Pons
et al., 2004; Butler et al., 2009; Mesoy et al., 2019; Mesoy and
Lummis, 2021). However we note that the ELIC and nAChR
studies were performed in Xenopus oocytes, and the other four in
HEK293 cells, indicating that the requirement for the C-terminal
domain may be more a function of the expression system than of
the specific channel. An exception to this pattern is that alanine
mutations in the M4 of the α subunit of the muscle nAChR
expressed in oocytes show both gains and losses of function
(Thompson et al., 2020). We note that these mutations are only
present in 2 out of 5 subunits per channel, and what would
happen in a muscle AChR with all 5 positions mutated is as
yet unknown.

This variation in channel function of M4 mutants between
expression systems has not been observed in anionic or bacterial
channels. In anionic channels, alanine mutations (especially of
aromatic residues) are generally detrimental to channel function,
regardless of expression system (Haeger et al., 2010; Cory-Wright
et al., 2018; Tang et al., 2018). Mutations in M4 have opposite
effects in two bacterial pLGICs assayed in the same system
(Xenopus oocytes): Many (15 out of 25) alanine mutations in the
GLIC M4 are detrimental to channel function, while a majority
(26 out of 31) of alanine mutations in the ELIC M4 improve
channel function (Hénault et al., 2015).

We suggest that there exists a functional mechanism in
cationic pLGICs requiring the M4 helix (including the C-
terminus) which is necessary in HEK cells but not in Xenopus
oocytes. If so, firstly conclusions about M4 function from studies
in Xenopus oocytes cannot be extended to other expression
systems, specifically not HEK cells, and vice versa. Secondly,
this would indicate that some factor is either present in oocytes
that can rescue these mutants, or present in HEKs that inhibits
them. Due to the locations of these mutations in the lipid
bilayer, we suggest that this is unlikely to be an intracellular
factor or a post-translational modification. The proximity of
these mutations to the lipid bilayer, along with the wide range
of previously characterized lipid-uncoupled receptors, points
us to the hypothesis that some element of the lipid bilayer
of Xenopus oocytes is able to compensate for the absence of
Y441. A speculative but attractive option, given the sensitivity
of pLGIC activity to the local lipid environment, is that the
Xenopus “rescue” factor could be cholesterol. Adding cholesterol
(and/or negatively charged phospholipids) to reconstituted
membranes promotes pLGIC function (Fong and McNamee,
1986; Baenziger et al., 2000). The importance of cholesterol
in particular is highlighted by the fact that increasing the

percentage of cholesterol in a reconstituted membrane increases
the number of nAChRs that open on agonist binding (Rankin
et al., 1997).

With regards to our simulations, an inhibitory factor in
HEK cells would not necessarily be visible; indeed observed
interactions and binding events depend on the local lipid
environment around each of the five subunits and can only
provide a hint of the role of the involved lipid species. Care must
also be taken when comparing experiments and simulations,
since the former were carried out at room temperature
and the latter at body temperature (in order to keep the
modeled membrane above the gel transition temperature of all
lipids present).

We cannot as yet, however, rule out an endogenous or
exogenous factor which does not act on Y441 itself. From
our simulations, we were able to conclude that only sporadic
lipid binding events or interactions with D238 occurred at the
level of Y441 (Figure 11), and that no promotion/inhibition
of the radial mechanism was unambiguously observed by lipid
molecules. Given that the cholesterol content has been shown to
increase the chances of any lipid binding event in the 5-HT3AR
receptor (Crnjar and Molteni, 2020), we can speculate that
the oocyte membrane, with higher cholesterol content, could
promote additional binding events near residue 441.

In conclusion, we have thoroughly investigated the role of
a point mutation (Y441A) in the 5-HT3AR M4 helix, using
it as a proxy for the role and function of the entire helix in
coupling ligand binding to channel opening, using both in-silico
techniques and experiments in two different expression systems.
We showed that Y441-mediated coupling involves D238 on M1
and K255 onM2, creating a radial chain from the channel pore to
the lipid-facing M4. No effect is propagated vertically from Y441
toward the M4 tip or the Cys-loop, leading us to conclude that
Y441-mediated coupling specifically, and M4-mediated coupling
in general does not depend on M4/Cys-loop interactions.

Finally, we speculate that the rescue of uncoupled mutants
in Xenopus oocytes may be due to the lipid composition of
the oocytes, and suggest cholesterol as a potential candidate
for rescuing receptors that are non-functional yet expressed in
HEK cells.
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G protein-coupled receptors (GPCRs) are the largest human membrane receptor family
regulating a wide range of cell signaling. For this reason, GPCRs are highly desirable
drug targets, with approximately 40% of prescribed medicines targeting a member
of this receptor family. The structural homology of GPCRs and the broad spectrum
of applications of GPCR-acting drugs suggest an investigation of the cross-activity
of a drug toward different GPCR receptors with the aim of rationalizing drug side
effects, designing more selective and less toxic compounds, and possibly proposing
off-label therapeutic applications. Herein, we present an original in silico approach
named “Computational Profiling for GPCRs” (CPG), which is able to represent, in
a one-dimensional (1D) string, the physico-chemical properties of a ligand–GPCR
binding interaction and, through a tailored alignment algorithm, repurpose the ligand
for a different GPCR. We show three case studies where docking calculations and
pharmacological data confirm the drug repurposing findings obtained through CPG
on 5-hydroxytryptamine receptor 2B, beta-2 adrenergic receptor, and M2 muscarinic
acetylcholine receptor. The CPG code is released as a user-friendly graphical user
interface with numerous options that make CPG a powerful tool to assist the drug design
of GPCR ligands.

Keywords: GPCR, drug repurposing, molecular docking, drug design, drug repositioning, protein sequence profile
alignment

INTRODUCTION

G protein-coupled receptors (GPCRs) are integral membrane proteins involved in the transduction
of a wide range of signals from outside the cell to the cellular interior. They represent the largest and
most pharmacologically relevant protein family—∼4% of the protein-coding genome (Fredriksson
et al., 2003; Zhang et al., 2006). From a structural point of view, in spite of low sequence homology,
all GPCRs share a common barrel tertiary structure composed of seven trans-membrane α-helices
(TM1-7). Furthermore, some GPCRs have an additional α-helix (H8) at the C-terminal (Yeagle
and Albert, 2007). The orthosteric binding site of endogenous ligands is typically located in
the upper, extracellular part of the receptor, underneath the extracellular loop 2 (ECL2). At the
intracellular level, GPCRs interact with the G-protein heterotrimer complex (Gαβγ) through a
process allosterically modulated by ligand-induced conformational changes that activate a specific
signal cascade based on the type of the interacting Gα-protein (Gs, Gi, Go, Gq/11, G12/13)
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(Zhang et al., 2006; Katritch et al., 2013). Through such
mechanisms, GPCRs respond to a large variety of stimuli,
regulating relevant processes including pain, immune response,
inflammation, mood regulation, blood pressure regulation,
neurotransmission, and many others (Katritch et al., 2013;
Venkatakrishnan et al., 2013; Gacasan et al., 2017). As
a consequence, GPCRs are the most prominent molecular
targets in drug design, targeted by ∼40% of prescribed
drugs (25 of the 100 top-selling) (Thomsen et al., 2005;
Rask-Andersen et al., 2011).

In this framework, elucidating the cross-activity of a drug
toward diverse GPCRs aids in rationalizing its side effects,
proposing off-label therapeutic applications (clinical use for a
disease different from that the drug was designed for), and
designing novel, more selective GPCRs ligands. With this in
mind, we have developed an original in silico approach named
“Computational Profiling for GPCRs” (CPG), which takes into
account both the GPCR sequence and the ligand-GPCR binding
interactions to repurpose compounds meant to target one specific
GPCR as novel ligands for a different GPCR receptor. Drug
repurposing is a fast and safe drug discovery approach that has
been successfully employed to identify drugs on the market—
therefore considered safe—as new ligands for a molecular target
different from the original one (Pushpakom et al., 2019). Our
approach is made possible due to the conservative nature of
the GPCR tertiary structure and the orthosteric binding site
location. In particular, our method (i) “translates” the ligand–
protein interaction patterns into a one-dimensional (1D) profile;
(ii) aligns the 1D strings coming from different GPCR–ligand
complexes; and, finally, (iii) selects the most similar ones to
identify drug candidates for drug repurposing. The CPG is
designed as a graphical user interface (GUI), integrated into
the worldwide-used Visual Molecular Dynamics (VMD) software
(Humphrey et al., 1996).

Using CPG, the user is able to process ligand–GPCR
complexes obtained from the Protein Data Bank (PDB, Berman
et al., 2007) or molecular binding simulations and achieve a fast
determination of ligand-GPCR binding similarities. While the
workflow of CPG can be applied to any ligand in the identification
of potential off-targets, it reveals its potency when employed with
market-approved drugs. Indeed, it repurposes a drug for a GPCR
different from its original one, thus paving the way to possible
off-label therapeutic applications, alternative from that originally
intended. At the same time, by identifying a novel GPCR target
for the drug, CPG may help to rationalize the unexplained side
effects of the drug. Finally, data regarding the similarity between
different drug–GPCR complexes generated by CPG are useful to
guide the development of novel, more selective GPCR ligands. As
proof of concept, three case studies are presented.

MATERIALS AND METHODS

Computational Profiling for GPCRs
Alignment Tool
The CPG tool is a user-friendly GUI, written in the Tcl/Tk coding
language. To improve its ease of use, the software has been

released as a plug-in for VMD. CPG has been designed to extract
information from PDB files of ligand–GPCR binary complexes.
Details of the CPG tool are reported below, where points (A), (B),
and (C) refer to the labels given in Figure 1.

(A) By taking the primary protein sequence and identifying
the ligand-interacting residues (in a range of 4 Å from the
ligand), information regarding the binding site of the protein
is obtained. The binding site information generated by the
CPG tool includes which residues are part of the binding
site and their positions in the GPCR primary sequence (in
the form of their resID number). A fundamental feature of
CPG is its ability to convert the aforementioned data into a
protein profile. That is to say, the residue list of the protein
can be mutated into two available profiling systems, i.e., the
“8 Digit Profile” (8DP) and the “10 Digit Profile” (10DP).
Both are based on the physio-chemical properties of the amino
acids, grouping them following different approaches. In the
8DP system, the amino acids are divided into four groups,
i.e., “hydrophobic,” “hydrophilic,” “negatively charged,” and
“positively charged,” to which we assigned an integer number
(0, 1, 2, and 3, respectively). Consequently, we obtained a
1D array representing the GPCR primary sequence. At the
same time, the integer number is increased by a value of 4
for the residues involved in the ligand-binding site (4 for the
hydrophobic group, 5 for the hydrophilic, 6 for negatively
charged, and 7 for positively charged). As a result, by exploiting
only eight symbols, we can easily distinguish the ligand-
interacting amino acids and their physio-chemical properties
from the rest of the residues not interacting with the ligand.
The 10DP system follows a similar fashion; however, we further
split the hydrophobic group into “aliphatic” and “aromatic”
subgroups, resulting in values ranging from 0 to 4 and 5 to 9
for general and binding site residues, respectively.
(B) The second important property of CPG is its ability to
map the protein profile onto the GPCR topology, dividing it
according to which helix of the GPCR each profiled residue
belongs to. The data can be generated for a “target” and
“reference” protein as chosen by the user, obtaining seven
1D arrays for each macromolecule. Once the desired pair
of proteins has been selected, a local pairwise Levenshtein
algorithm-based alignment is performed, in order to find the
best matches between each corresponding helix. As shown in
Figure 1, it is possible to choose different alignment scoring
methods employing values extracted from the BLOSUM62
(Pietrokovski et al., 1996; Choudhuri, 2014) or the GPCRtm
(Rios et al., 2015) substitution matrix, both of which have
been adapted for the 8DP and 10DP groups. Furthermore,
user-defined custom values may also be employed. Finally,
the "MISS" and the "GAP" fields should be filled with non-
positive values.
Alignments based on 8DP and 10DP can be visualized in
Figure 1B, where three different outputs are reported for both
the target and the reference proteins. In detail, it displays the
alignment score for each helix, the total score based on the sum
of the scores of the individual helices, and, lastly, a normalized
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FIGURE 1 | Schematic representation of CPG GUI. On the left, a GPCR is displayed as coded by CPG, where each TM helix is colored according to the following
the scheme; TM1, yellow; TM2, orange; TM3, magenta; TM4, purple; TM5, blue; TM6, green; TM7, cyan. Residues unused for the profiling calculation have been
colored in gray. The ligand has been colored in dark green, whereas its surrounding amino acids (cut-off 4 Å) are colored according to their atom types. On the right,
the main window of the CPG is displayed, where (A) includes the primary protein sequence and binding site information, (B) the alignment results, and (C) the 8 and
10 Digit Profile scores assigned to the binding site residues for each helix of the target and reference proteins.

score which is expressed as:

N = T/R

where T is the target protein total score (the alignment score
with the target protein against the reference protein), and R is
the reference protein total score (a self-alignment score value
of the reference protein). The normalization of the alignment
score is important inasmuch as it considers the length of the
aligned strings, thus taking into account different volumes in
the binding pocket occupied by the ligands. The value of the
normalized alignment score of the pairwise alignment between
the target and the reference GPCR indicates a likelihood of
repositioning one or both ligands in the reciprocal receptors.
(C) As described in point (B), the profiled binding site residues
are divided according to each helix. The CPG tool provides a
graphical visualization of the 8DP and 10DP scores attributed
to each of the binding site residues of the 7 α-helices of the
target and reference GPCRs.

A more detailed explanation of the CGP methodology
including the alignment procedure and the scoring functions is
provided in Supplementary Information, where we also report a
tutorial for the use of CPG.

Docking Calculation
We investigated the binding of ligands to repurposed GPCRs
by means of molecular docking calculations. This computational
technique is widely used to elucidate the ligand-binding mode
in various molecular targets, including GPCRs (Anzini et al.,
2008, 2011; Nuti et al., 2010; Limongelli, 2020). In particular,

we performed cross-docking calculations by docking two ligands
in their reciprocal receptor. These calculations were performed
on selected pairs of ligand–GPCR complexes that have a CPG
score higher than 0.5 and involve seemly pharmacologically
unrelated GPCRs.

Molecular docking calculations were carried out using the
AutoDock4.2.6 software package (AD4, Morris et al., 2009; Forli
et al., 2016). Protonation states of protein residues and ligands
were set at pH 7.0. Ligand and receptor structures were prepared
and converted to AutoDock format files using AutoDockTools,
and the Gesteiger-Marsili partial charges were then assigned.
Grid points of 40 × 40 × 40 with a 0.375 Å spacing were
calculated around the binding cavity using AD4. Thus, 100
separate docking calculations were performed for each run.
Each docking run consisted of 2.5 million energy evaluations
using the Lamarckian genetic algorithm local search (GALS)
method. Otherwise, default docking parameters were applied.
Docking conformations were clustered on the basis of their
RMSD (tolerance = 1.5 Å). The analysis on the best binding poses
was performed employing the “Drug Discovery Tool” (DDT,
Aureli et al., 2019), a GUI recently developed in our group that
enables a fast, yet accurate analysis of the docking calculation.

RESULTS

The CPG algorithm is based on protein profiling, a powerful
bioinformatics technique that applies a dimensionality reduction
process in which multiple properties of amino acid sequences
are described by a mono-dimensional information string. By
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exploiting such a representation, it is possible to perform fast
alignments between diverse proteins based on the chemical
similarities of their amino acids. In such a way, it is possible
to employ a scoring method based on the conservation of
protein residues. For the present study, we set up two scoring
functions, namely, 8DP and 10DP, that exploit two well-known
scoring matrices: (i) BLOSUM62 (Pietrokovski et al., 1996),
which is a generalized scoring method for all proteins; and
(ii) GPCRtm (Rios et al., 2015), which has been specifically
developed for Class A GPCRs. In detail, we used CPG to
generate alignment score tables based on the pairwise alignments
of the 55 GPCR pdb files available in the PDB databank.
Each score was computed by employing a specific scoring
function, reporting a final normalized value. In particular,
the 8DP algorithm converts each amino acid into an integer
number, following the scheme hydrophobic = 0, hydrophilic = 1,
negatively charged = 2, and positively charged = 3. CPG
then discriminates the residues interacting with the ligand by
increasing their numerical value by 4. 10DP follows a similar
rationale, further dividing the hydrophobic group into two
subgroups, “aliphatic” and “aromatic.” In 10DP, the profiling
scheme is aliphatic = 0, aromatic = 1, hydrophilic = 2, negatively
charged = 3, and positively charged = 4, while the score of
the ligand-interacting residues is increased by 5. Exploiting two
different profiling systems allows us to take into account the
impact of π–π interactions, which is explicitly accounted for
in the 10DP scheme (see “Materials and methods” section and
Supplementary Information for details). A step-by-step tutorial
to guide the reader in the use of CPG is provided in the
Supplementary Information.

The scoring matrices reported in Supplementary Tables 1, 2
were employed to determine the likelihood of drug repositioning
considering the alignment between two different ligand–GPCR
complexes, where a threshold value of 0.5 for the normalized
alignment score was considered. In particular, we found ∼600
complexes that fulfill this condition, most of them obtained
from different pdb complexes of the same GPCR, as expected.
However, ∼10% of the top-ranked hits regarded complexes
of different GPCRs. Among these, three pairs of drug–GPCR
complexes, for a total of six systems, were further investigated
with the aim of assessing the CPG prediction. In detail, we
evaluated the GPCR cross-activity of the drug by means of cross-
docking calculations in the newly identified GPCR target and by
analyzing the available data on its pharmacological activity. The
investigated pairs of complexes are (i) the 5-hydroxytryptamine
receptor 2B with the ligand alprenolol and the beta-2 adrenergic
receptor with the ligand lisuride; (ii) the 5-hydroxytryptamine
receptor 2B with the ligand timolol and the beta-2 adrenergic
receptor with the ligand lysergic acid diethylamide (LSD); and
(iii) the M2 muscarinic acetylcholine receptor with the ligand
ICI-118,551 and the beta-2 adrenergic receptor with the ligand
quinuclidinyl benzilate (QNB). The results are discussed in detail
in the following paragraphs.

Lisuride–5HT2B and Alprenolol–ADRB2
The first case study regards the 5-hydroxytryptamine receptor
2B (also known as the serotonin receptor 2B, hereafter

5HT2B, Hensler, 2012) bound to lisuride (Figure 2A), one of
its marketed antagonists, and the beta-2 adrenergic receptor
(hereafter ADRB2, Rascol et al., 2007) in complex with its
antagonist alprenolol (Figure 2B).

Binding Mode in the Native GPCR
In the x-ray structure of the complex 5HT2B–lisuride (PDB ID
6DRX, McCorvy et al., 2018), the ligand forms a salt bridge
and a H-bond with Asp135, while its indole ring is placed
in a pocket shaped by several hydrophobic/aromatic residues
(Figure 2C). Here, the ligand engages π–π stacking interactions
with Phe217, Phe340, and Phe341, and van der Waals interactions
with Val136 and Val366. Finally, the indole ring of the lisuride
can also form a π-mediated H-bond with Asn344. In the second
complex formed by ADRB2 bound to alprenolol (PDB ID 3NYA,
Wacker et al., 2010), protonated amine function of the ligand
H-bonds with Asn312, also engaging a salt bridge interaction with
Asp113 (Figure 2D). In addition, the hydroxy group of the ligand
forms H-bonds with Asp113 and Asn312. On the contrary, the
aromatic ring of the alprenolol interacts with Val114, Tyr199,
Phe289, and Phe290 through π–π stacking and van der Waals
interactions. Finally, the ortho-allyl group of the alprenolol is
placed in a competent position to form a π-mediated electron
transfer interaction with Asn293.

Employing CPG, we found that the lisuride–5HT2B and
alprenolol–ADRB2 complexes show a 10DP alignment score of
0.54, higher than the threshold value 0.5 (Table 1), suggesting that
lisuride and alprenolol could be repurposed as novel ligands for
their reciprocal GPCRs.

Binding Mode in the Repurposed GPCR
In order to assess the CPG prediction and validate this
hypothesis, we performed cross-docking calculations in which
lisuride was studied in the ADRB2 structure, while alprenolol
was studied in the 5HT2B structure (see “Materials and
methods” section for docking details). The docking results
confirmed the ability of these two ligands to cross-bind their
reciprocal GPCR, showing binding modes stabilized by a series
of favorable interactions (see Figure 2E and Table 2). In
particular, in the most populated binding pose of alprenolol in
5HT2B, the ligand forms a salt bridge interaction with Asp135,
which resembles that established with Asp113 in ADRB2. An
additional H-bond is formed between the hydroxyl group of
the alprenolol and Asp113, while the isopropyl moiety of the
ligand engages hydrophobic contacts with Val366 and Trp131.
On the contrary, the aromatic ring of the alprenolol is located
in a hydrophobic pocket remarkably similar to that present in
ADRB2 (Figures 2D,E). Here, the ligand forms π–π stacking
interactions with Phe217, Phe340, and Phe341, and van der
Waals contact with Val136. In addition, the allyl π-electrons of
the alprenolol are involved in electron transfer interaction with
Asn344 as similarly engaged with Asn293 in ADRB2. In the case
of the binding of lisuride in ADRB2, considering the bulkiness of
the ligand we performed a flexible docking calculation to allow
conformational flexibility of the Asp113 side chain.

In the most populated binding pose, the ligand forms strong
interactions with the receptor like the salt bridge and the H-bond
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FIGURE 2 | Schematic depictions of lisuride and alprenolol and their respective binding sites inside 5HT2B and ADRB2. (A) Chemical structure of lisuride at
physiological pH. (B) Chemical structure of alprenolol at physiological pH. (C) Lisuride–5HT2B crystallographic binding mode. (D) Alprenolol–ADRB2 crystallographic
binding mode. (E) Centroid of the most populated cluster family coming from the docking calculation between 5HT2B 3D structure and alprenolol. (F) Centroid of
the most populated cluster family coming from the flexible docking calculation between ADRB2 and lisuride. Lisuride and alprenolol have been colored in tan. The
surrounding residues are labeled using both primary sequence and Ballesteros–Weinstein numbering. The helices and the marked residues have been depicted
according to the CGP color scheme, with TM2 in orange, TM3 in magenta, TM4 in purple, TM5 in blue, TM6 in green, and the TM7 in cyan.
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TABLE 1 | The alignment scores computed for the PDB sequence 6DRX and 3NYA using a miss and gap score of −2.

Target protein Reference protein 8DP BLOSUM
min:−0.84
max: 0.73

8DP GPCRtm
min:−0.83
max: 0.75

10DP BLOSUM
min:−0.77
max: 0.66

10P GPCRtm
min: −0.97
max: 0.66

5HT2B/H8G
(PDB ID: 6DRX)

ADRB2/JTZ
(PDB ID: 3NYA)

0.39 0.4 0.54 0.46

ADRB2/JTZ
(PDB ID: 3NYA)

5HT2B/H8G
(PDB ID: 6DRX)

0.36 0.37 0.52 0.43

The highest and lowest values for each profiling scoring function obtained by aligning all the diverse GPCRs available in the PDB databank are also reported.

TABLE 2 | The cross-docking calculation scores of the 5HT2B receptor with
alprenolol and the ADRB2 receptor with lisuride.

Protein Ligand Mean binding
energy (docking

score)

Runs in cluster Number of
clusters

5HT2B JTZ −6.58 62/100 3

ADRB2 H8G −10.78 100/100 1

with Asp113, reproducing the same interactions established
with Asp135 in 5HT2B. A further H-bond formed by the
ligand’s urea oxygen with Tyr308 stabilizes the binding mode.
In addition, while the two ethyl groups form hydrophobic
contacts with Trp109, the aromatic moiety engages π-π stacking
and Van der Waals interactions with Tyr199, Phe289, Phe290,
and Val114. Finally, the indole ring of the lisuride forms a
π-mediated H-bond with Asn293 as similarly done with Asn344
in ADRB2. A detailed list of the interactions established by
lisuride and alprenolol with 5HT2B and ADRB2 is reported in
Supplementary Table 4.

Lisuride and Alprenolol Pharmacology
In order to assess the repurposing of lisuride and alprenolol
as ligands of ADRB2 and 5HT2B, respectively, we thoroughly
studied their pharmacological profiles. Lisuride is an ergot
derivative, administered for the treatment of Parkinson’s disease,
depression, and migraines (Gopinathan et al., 1981; Egan et al.,
1998; Hofmann et al., 2006). The mechanism of action of lisuride
is due to its agonist activity on several serotonin receptor subtypes
(5HT1A, 5HT1B, 5HT1D, 5HT2A, 5HT2B, and 5HT2C) (Egan
et al., 1998), as well as on the dopamine receptors D1, D2, D3,
D4, and D5 (Hildebrand et al., 1987). It should be underlined
that lisuride has already undergone a drug repositioning process
where it has been repurposed for the suppression of lactation as
it lowers serum prolactin levels (Van Dam and Rolland, 1981).

Alprenolol is a beta-adrenergic antagonist with anti-
arrhythmic effects, being able to bind ADRB1, ADRB2, and
ADRB3 (Himori et al., 1977). The activity of alprenolol is
given by the inhibition of the activity of the beta-adrenergic
receptor’s natural ligands epinephrine and norepinephrine.
As a consequence, alprenolol induces a reduction in heart
rate (Wasserman et al., 1970). Alprenolol also has an anti-
hypertensive effect by inhibiting the production of renin,
thus acting on the renin–angiotensin–aldosterone system
(RAAS) by lowering angiotensin II and aldosterone production,
which leads to the reduction of vasoconstriction and water

retention (Himori et al., 1977). While it has been reported that
alprenolol can also bind to the 5HT1A receptor, so far there
is no evidence that it is also able to bind the 5HT2B receptor.
In particular, the pharmacological activity of alprenolol on the
5-hydroxytryptamine (5-HT)-induced hyperactivity response
has been studied as early as 1978 (Costain and Green, 1978);
however, the spectrum of its molecular targets is still unexplored.
The activity of alprenolol toward 5HT2B might explain the
relevant side effects of this drug, such as the gastrointestinal
ones (Amjad et al., 2017). This might be due to the presence
of adrenergic receptors in the gastrointestinal tract, as well as
5HT2B, which is a ubiquitous GPCR also expressed in the liver
and the intestine (Papadimas et al., 2012). On the contrary,
5HT1A is poorly expressed in the gastrointestinal tract, being
mostly located on the lymph nodes, the thymus, and the spleen.
Elucidating the different GPCRs targeted by alprenolol might
lead to a better understanding of the adsorption of the body and
the toxicity of this drug. To this end, the results of our study
highlight a potential activity of alprenolol on 5HT2B and lisuride
on ADRB2, suggesting to further investigate the molecular
interaction of these drugs with the two receptors with the scope
to rationalize toxicity and propose novel, repurposed clinical
applications for these two drugs.

Lysergic Acid Diethylamide–5HT2B and
Timolol–ADRB2
The second case study regards 5HT2B and ADRB2 in complex
with lysergic acid diethylamide (hereafter LSD) (Figure 3A) and
timolol (Figure 3B), respectively.

Binding Mode in the Native GPCR
The 5HT2B x-ray structure (PDB ID 5TVN, Wacker et al., 2017)
in complex with LSD (Figure 3C) shows a salt bridge interaction
between the charged amine of the LSD and Asp135 and π–π

stacking–hydrophobic interactions between the aromatic moiety
of the ligand and Phe217, Phe340, Phe341, and Val136. The
diethylamide function of the LSD forms additional van der Waals
contacts with Trp131 and Val366 that further stabilize the binding
pose. The second system is ADRB2 in complex with timolol
(PDB ID 3D4S, Hanson et al., 2008; Figure 3D). Here, a network
of H-bonds stabilizes the binding mode. In detail, the sulphur
atom of the timolol’s thiadiazole H-bonds with Thr118, while
the oxygen of timolol’s morpholine ring engages a H-bond with
Asn293. On the contrary, the protonated amine group of the
LSD forms a salt bridge interaction with Asp113 and a H-bond
with Asn312. The same residues also establish H-bonds with
the hydroxyl group of the ligand. Finally, π–π stacking and
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FIGURE 3 | Schematic depictions of LSD and timolol and their binding modes inside the 5HT2B and ADRB2 receptors. (A) Chemical structure of LSD at
physiological pH. (B) Chemical structure of timolol at physiological pH. (C) LSD–5HT2B crystallographic binding mode. (D) Timolol–ADRB2 crystallographic binding
mode. (E) Centroid of the most populated cluster family coming from the docking calculation between 5HT2B and timolol. (F) Centroid of the most populated cluster
family coming from the docking calculation of the ADRB2 3D structure and LSD. LSD and timolol have been colored in tan. The surrounding residues are labeled
using both primary sequence and Ballesteros–Weinstein numbering. The helices and the marked residues have been depicted according to the CGP color scheme,
with TM2 in orange, TM3 in magenta, TM4 in purple, TM5 in blue, TM6 in green, and TM7 in cyan.
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TABLE 3 | The alignment scores computed for the PDB sequence 5TVN and 3D4S using a miss and gap score of −2.

Target protein Reference protein 8DP BLOSUM
min:−0.84
max: 0.73

8DP GPCRtm
min:−0.83
max: 0.75

10DP BLOSUM
min:−0.77
max: 0.66

10P GPCRtm
min: −0.97
max: 0.66

5HT2B/7LD
(PDB ID: 5TVN)

ADRB2/TIM
(PDB ID: 3D4S)

0.63 0.64 0.47 0.43

ADRB2/TIM
(PDB ID: 3D4S)

5HT2B/7LD
(PDB ID: 5TVN)

0.61 0.61 0.52 0.43

The highest and lowest values for each profiling scoring function obtained by aligning all the diverse GPCRs available in the PDB databank are also reported.

hydrophobic interactions are made by the thiadiazole moiety
of the timolol and the terminal tert-butyl group with Phe290,
Phe289, and Trp109.

The above two systems have high CPG alignment scores,
especially in the case of the 8DP scoring function (Table 3). This
scoring function weighs the hydrophilic interactions between the
ligand and the GPCR more than the 10DP one, thus assigning a
higher score to binding modes characterized by polar contacts—
H-bonds and salt bridges—like those present in these two
complexes. In order to assess the CPG prediction of cross-affinity
of LSD and timolol in their reciprocal GPCR, cross-docking
calculations of timolol in 5HT2B and LSD in ADRB2 were
performed, and the results are discussed as follows (Table 4).

Binding Mode in the Repurposed GPCR
In the most recurring docking pose of timolol in 5HT2B, the
charged amine of the ligand forms a salt bridge with Asp135
as similarly done with Asp113 in ADRB2 (Figure 3E). Three
additional H-bonds further stabilize the timolol binding mode
such as those formed by its hydroxyl group with Asp135, its
morpholine ring with Asn344, and its thiadiazole sulfur atom
with Thr140. Finally, π–π stacking and hydrophobic interactions
are formed by the thiadiazole moiety with Phe340 and by
the terminal tert-butyl group of the ligand with Phe341 and
Val366, respectively.

In Figure 3F, we show the cross-docking result of LSD
in ADRB2. Here, the ligand occupies the binding pocket
establishing π–π stacking and van der Waals interactions with
the surrounding residues Phe290 and Val114. The anchor point of
the ligand binding is the typical salt bridge made by the charged
amine of the LSD with Asp113, whereas the amine of the indole
ring of the ligand can form a H-bond with Thr118. Finally,
hydrophobic contacts are engaged by the diethylamide group of
the ligand with Trp109 and Phe289. It is worth noting that most
of these interactions are also present in the timolol-binding mode,
showing remarkable strength and similarity in the interaction
with ADRB2 for these two drugs. This finding fully agrees with
the high binding affinity of LSD to ADRB2 resulted from the
docking calculations and reported in Table 4. As before, we report
the full list of the interactions formed by LSD and timolol with
5HT2B and ADRB2 in Supplementary Table 5.

Timolol Pharmacology
When evaluating the possibility of repositioning timolol, it
should be noted that timolol is a drug used as eye drops
that targets the beta-1 and beta-2 adrenergic receptors which

TABLE 4 | The cross-docking calculation scores of the 5HT2B receptor with
timolol and the ADRB2 receptor with LSD.

Protein Ligand Mean binding
energy (docking

score)

Runs in cluster Number of
clusters

5HT2B TIM −7.96 58/100 5

ADRB2 7LD −10.55 100/100 1

results in a decrease in eye pressure (e.g., caused by glaucoma,
Sambhara and Aref, 2014). Furthermore, timolol has also been
used for the treatment of hypertension. From a pharmacological
point of view, timolol is an antagonist for the beta-adrenergic
receptor. One of the most common side effects of timolol is
the onset of depression; however, the understanding of such
a side effect is yet unknown (Nolan, 1982). Prompted by the
CPG results and supported by the cross-docking calculations,
we propose timolol as the ligand of the serotonin receptor
5-HT2B similar to LSD. The activity of timolol on 5HT2B,
working as off-target, might explain the neurological disorders
caused by the use of this drug. This represents an example
of how to use CPG in the investigation of drug side effects
by evaluating drug off-target activity through its repositioning
toward a novel GPCR. This step is valuable, especially in the
early stages of drug development, to assess whether the newly
designed drug can bind off-targets that might cause undesirable
side effects.

Quinuclidinyl Benzilate–ACM2 and
ICI-118,551–ADRB2
As the third case study, we investigated the M2 muscarinic
acetylcholine receptor (hereafter ACM2) bound to the antagonist
quinuclidinyl benzilate (QNB, Figure 4A, Shirakawa et al., 1987)
and the ADRB2 receptor in complex with the antagonist ICI-
118,551 (JRZ, Figure 4B; see Table 5).

Binding Mode in the Native GPCR
In the x-ray structure of the QNB–ACM2 complex (PDB ID
3UON, Haga et al., 2012; Figure 4C), the ligand engages a
salt bridge through the charged amine group with Asp103,
whereas its carbonyl and hydroxyl groups form two H-bonds
with Asn404. The azabicyclooctan moiety of the ligand is
placed in a hydrophobic pocket surrounded by aromatic
residues like Trp400, Tyr403, and Tyr426, while one of its
two aromatic rings forms π–π stacking interactions with
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FIGURE 4 | Schematic depictions of the chemical structures of quinuclidinyl benzilate and ICI-118,551 and their binding modes inside the ACM2 and ADRB2
receptors, respectively. (A) Chemical structure of quinuclidinyl benzilate at physiological pH. (B) Chemical structure of ICI-118,551 at physiological pH.
(C) Quinuclidinyl benzilate–ACM2 crystallographic binding mode. (D) ICI-118,551–ADRB2 crystallographic binding mode. (E) Centroid of the most populated cluster
family coming from the docking calculation of ICI-118,551 in the ACM2 receptor. (F) Centroid of the most populated cluster family coming from the docking
calculation between ADRB2 and quinuclidinyl benzilate. Quinuclidinyl benzilate and ICI-118,551 have been colored in tan. The surrounding residues are labeled using
both primary sequence and Ballesteros–Weinstein numbering. The helices and the marked residues have been depicted according to the CGP color scheme, with
TM2 in orange, TM3 in magenta, TM4 in purple, TM5 in blue, TM6 in green, and TM7 in cyan.

Tyr104 and Trp155. In the crystallographic ADRB2 in complex
with JRZ (PDB ID 3NY8, Wacker et al., 2010; Figure 4D),
the charged amine and hydroxyl groups of the ligand form
three H-bonds with Asn312 and Asp113, while the indanyl

moiety engages hydrophobic interactions with Val114, Tyr199,
and Phe290. The high CPG alignment score for the above
two drug–GPCR complexes prompted us to further assess
through docking calculations the capability of JRZ and QNB

Frontiers in Molecular Biosciences | www.frontiersin.org 9 May 2021 | Volume 8 | Article 67305390

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-08-673053 May 3, 2021 Time: 17:2 # 10

de Felice et al. Computational Profiling for GPCRs

TABLE 5 | The alignment scores computed for the PDB sequence 3UON against 3NY8 using a miss and gap score of −2.

Target protein Reference protein 8DP BLOSUM
min:−0.84
max: 0.73

8DP GPCRtm
min:−0.83
max: 0.75

10DP BLOSUM
min:−0.77
max: 0.66

10P GPCRtm
min: −0.97
max: 0.66

ACM2/QNB
(PDB ID: 3UON)

ADRB2/JRZ
(PDB ID: 3NY8)

0.61 0.62 0.59 0.54

ADRB2/JRZ
(PDB ID: 3NY8)

ACM2/QNB
(PDB ID: 3UON)

0.47 0.49 0.43 0.42

The highest and lowest values for each profiling scoring function obtained by aligning all the diverse GPCRs available in the PDB databank are also reported.

to interact with their reciprocal receptors ACM2 and ADRB2,
respectively (Table 5).

Binding Mode in the Repurposed GPCR
The ligand JRZ shows a strong affinity for ACM2 with a
remarkable docking score of −9.43 for the most populated
binding mode (Table 6). In this pose (Figure 4E), the charged
amine group of JRZ forms a salt bridge with Asp103, mimicking
that made by QNB (Figure 4C). The hydroxyl group of the ligand
engages two H-bonds with Tyr104 and Tyr403, while the indanyl
moiety establishes π–π interactions with aromatic residues like
Trp155, Phe195, and Trp400.

Regarding QNB in ADRB2 (Figure 4F), docking calculations
show a strong interaction between the ligand and this GPCR
with a low docking score (Table 6). The best and most populated
docking pose shows the ligand interacting with the typical salt
bridge interaction with Asp113, as seen in the case of the
JRZ–ADRB2 binary complex (Figure 4D). In addition, while
the ligand interaction with Asn312 is lost if compared with
JRZ, a new H-bond is formed between the hydroxyl group of
the QNB and Tyr308. Interestingly, the two aromatic rings of
QNB contribute to further stabilize the binding mode through
hydrophobic and π–π stacking interactions with Val114, Tyr199,
Phe289, Phe290, and via a π-mediated H-bond with Asn293.
As done for the previously discussed systems, the full list of
the interactions established by QNB and JRZ with ACM2 and
ADRB2 is reported in Supplementary Table 6.

ICI-118,551 Pharmacology
ICI-118,551 is an ADRB2 antagonist widely used in research
for its 100-fold higher selective inhibition of ADRB2 with
respect to ADRB1 and ADRB3. A recent work (Kashihara
et al., 2014) has reported that administrating to mice an ADRB
agonist, isoproterenol, together with ICI-118,551 gives similar
pharmacological effects compared to mice administrated with
a combination of isoproterenol and atropine, a well-known
ACM2 antagonist. The authors explained this finding based on

TABLE 6 | The cross-docking calculation scores of the ACM2 receptor with JRZ
and the ADRB2 receptor with QNB.

Protein Ligand Mean binding
energy (docking

score)

Runs in cluster Number of
clusters

ACM2 JRZ −9.43 50/100 3

ADRB2 QNB −9.91 72/100 3

the common intracellular pathways shared by adrenergic and
cholinergic signaling. However, our results pave the way to a
new hypothesis that the similar pharmacological outcome of ICI-
118,551 and atropine might be due to their common affinity
toward the ACM2 receptor, an intriguing perspective that is
worthy of further investigations.

DISCUSSION

The pharmacological relevance of GPCRs is highlighted by the
fact that almost 40% of prescribed drugs target this receptor
family (Rask-Andersen et al., 2011). The structural conservation
in these membrane proteins allows for the relatively systematic
profiling of their binding sites because the helices of GPCRs
form a “barrel” structure composed of seven helices connecting
the extracellular and intracellular spaces. The GPCRs do this
by binding to a variety of ligands (small molecules, peptides,
and even other proteins), which can be either exogenous or
endogenous. A profiling methodology called Computational
Profiling GPCRs (CPG) has been proposed here, which combines
the primary structure of a GPCR with three-dimensional (3D)
information when the receptor is complexed with a ligand, thus
making the extraction of valuable data relating to the ligand–
GPCR binding affinity possible. In particular, by converting the
protein sequence into a 1D string of values representing the
chemico-physical properties of the amino acids and the ligand–
receptor binding interactions, a pairwise alignment of the GPCR-
binding sites can be done in a simplified manner. A proper
alignment driven by scoring methods based on the conservation
of protein residues enables the detection of possible drug
repositioning with important consequences in our understanding
of drug pharmacology and side effects.

The profiling and aligning of ligand–GPCRs complexes were
carried out using CPG on the available crystal structures.
Our results show that there are promiscuous ligands that
might be able to bind different GPCRs. As proof of concept,
we have reported and discussed in detail three case studies
that are: (i) lisuride–5HT2B and alprenolol–ADRB2; (ii) LSD–
5HT2B and timolol–ADRB2; and (iii) quinuclidinyl benzilate–
ACM2 and ICI-118,551–ADRB2. The CPG algorithm reported
these systems among the top-scored ones, thus suggesting the
repurposing of these drugs for their reciprocal receptor. We
validated the CPG results by molecular docking calculations
and provided a pharmacological basis with the data available in
the literature. We showed that CPG can be useful to propose
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novel, repurposed clinical applications for the investigated
drugs and for the rationalization of drug side effects by
evaluating their off-target activity through repositioning toward
a novel GPCR. The latter is a valuable process, especially in
the early stages of drug development, to assess whether the
newly designed drug can bind off-targets that might cause
undesirable side effects. Certainly, further investigations, for
instance, using binding free-energy calculations (Limongelli et al.,
2013; Comitani et al., 2016; Moraca et al., 2017; Brotzakis et al.,
2018; Yuan et al., 2018; D’Annessa et al., 2019; Raniolo and
Limongelli, 2020) and in vitro experiments are necessary to
properly assess the binding affinity and the pharmacological
activities of the investigated ligands. Particularly, in GPCRs where
ligand binding involves parts of the receptor endowed with
conformational flexibility like the extracellular loops, molecular-
binding simulations should be performed using methodologies
as molecular dynamics that are more efficacious than docking
in taking into account receptor flexibility and ligand-induced
fit effects, thus providing a reliable validation of the CPG
predictions. We point out that when preparing the ligand–GPCR
complex for the validation simulations, receptor and ligand
properties like the protonation state of specific residues or ligand
functional groups, might be not immediately apparent from the
sequence and structural data and need to be carefully considered
by the investigator.

We note that CPG results rely on the type and quality of input
data including the class of the GPCR, the chemical structure
of the ligand, the similarity of the ligand-binding site, and
the resolution of the ligand–GPCR complex structure. In this
regard, one might observe that aminergic class A GPCRs are
typically reported among the top-scored systems. This finding is
not surprising considering that they are the most representative
GPCR subgroup in the PDB databank, which is used as data
source of ligand–GPCR complexes in CPG. Furthermore, one
of the substitution matrices used in our study, GPCRtm, was
developed based on sequences of class A GPCRs, thus performing
better in scoring alignments of this GPCR subgroup. However,
CPG is designed to work with any GPCR, and we expect that it
will provide useful results even for GPCRs of the other classes
as more receptor structures will be resolved, and alignment
scoring functions optimized for the other classes of GPCRs
will be available.

In addition, there is still room for improvement of the
methodology. Namely, due to the employment of aligning
procedures based only on generalized physio-chemical
properties, the spatial information on the ligand–receptor
interaction is lost as well as the binding cavity accessible volume.
This means that in some instances, the alignment score may
seem promising; however, the residues at the binding site might
not be in a proper position to allow ligand binding. In such a
case, a practical solution is to compute how the alignment score
changes as a function of the gap penalty applied. Based on our
experience, the less the score changes using different gap penalty
values, the more the size of the ligands under examination are
similar. Therefore, by looking at the global alignment of all
the helices, not merely at each individual helix separately, a
greater understanding of binding site similarities is achieved.

This procedure can improve the accuracy and the specificity of
the methodology (fewer false positives).

CONCLUSION

In conclusion, CPG has proved to be an appealing tool to rapidly
investigate drug repurposing for GPCRs. Our tool performs
particularly well with aminergic class A GPCRs since they are
the most representative GPCR structures in the PDB databank,
and they were also employed to develop one of the alignment
scoring functions used in our study. We report the full list of
GPCRs repurposed ligand candidates identified in our study in
Supplementary Table 3. This represents a useful data source
for investigations on the pharmacological activities of these
compounds. A future extension of our methodology, including
profiling of binding sites for apo GPCRs, is desirable as it would
pave the way for applications of CPG not only in GPCR drug
repurposing but also in de novo drug discovery pipelines. More
than 800 GPCRs have been identified by sequence analysis on
the human genome; however, only a comparatively low number
of them have been targeted (Sriram and Insel, 2018). Due to
their pharmacological relevance, there is clearly the urgency of
finding methods that are able to speed up the identification of lead
compounds, which then can finally undergo a lead optimization
process. In addition, having a reliable dimensionality-reduced
description of the drug–GPCR molecular interaction, especially
in 1D string, represents a precious tool in the employment of
machine learning approaches in drug development as expected in
the near future. Our CPG is a promising methodology that points
exactly in this direction.
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Bayesian Inference of Conformational Populations (BICePs) is an algorithm developed to

reconcile simulated ensembles with sparse experimental measurements. The Bayesian

framework of BICePs enables population reweighting as a post-simulation processing

step, with several advantages over existing methods, including the proper use of

reference potentials, and the estimation of a Bayes factor-like quantity called the BICePs

score for model selection. Here, we summarize the theory underlying this method in

context with related algorithms, review the history of BICePs applications to date, and

discuss current shortcomings along with future plans for improvement.

Keywords: Bayesian inference, conformational populations, MCMC, cyclic peptides, peptoids, peptidomimetics,

HDX protection factors, molecular simulation

1. INTRODUCTION

Bayesian Inference of Conformational Populations (BICePs) is an algorithm developed to reconcile
simulated ensembles with sparse experimental measurements. The inputs to BICePs are: (1) a set of
discrete conformational states and corresponding populations predicted from a theoretical prior,
and (2) a set of experimental observables. The primary output of BICePs are estimates of reweighted
conformational populations that balances the information from theory and experiment using a
Bayesian framework.

The Bayesian Inference of Conformational Populations (BICePs) algorithm arose from a need
to predict conformational ensembles of organic molecules with significant structural heterogeneity
in solution, such as natural product macrocycles and peptidomimetics. Specifically, we aimed
to develop an approach that leaned more heavily on high-quality theory/simulation-based
conformational ensembles, to be later reconciled with potentially sparse experimental observables.

Existing methods for this purpose, such as NAMFIS (NMR Analysis of Molecular Flexibility
in Solution, Cicero et al., 1995) and DISCON (Distribution of in-solution conformations,
Atasoylu et al., 2010) were used primarily by the organic chemistry community in the context
of NMR refinement. While these methods do estimate populations of conformational states,
they are essentially a kind of “maximum parsimony” method, where all possible solution-state
conformations are enumerated in order to find a small number of structures compatible with
NMR-based constraints. Such approaches are less useful for simulated structural ensembles, for
which ensemble-averaged observables should be restrained, in a way that can sufficiently account
for uncertainties in experimental measurements.

Another class of algorithms, categorized as “maximum entropy” approaches (Pitera and
Chodera, 2012; Bonomi et al., 2017; Orioli et al., 2020) focus primarily on using bias potentials
to enforce constraints on an experimental observable throughout the course of a molecular
simulation. While this can be approximated efficiently in practice by restraining replica-averaged
observables (Vendruscolo et al., 2003; Best and Vendruscolo, 2006) it must be modified to account
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for experimental uncertainty, a problemmore recently addressed
by the Metainference algorithm of Bonomi and Vendruscolo
(Bonomi et al., 2016a,b) which employs Bayesian inference.

In contrast to this approach, we sought a method that
could reweight a discrete set of conformational populations as a
“post-processing” step, after a simulation was performed. Such
post-hoc reweighting would nicely complement Markov State
Model approaches for biomolecular simulation, which require
partitioning of trajectory data into discrete conformational
states. Another reason to develop a reweighting approach was
the growing problem of bespoke force field parameterization
for peptidomimetics. A reweighting approach could enable a
sufficiently accurate general force field [e.g., GAFF Wang et al.,
2004] to generate an initial model of conformational populations
that could then be further refined against experimental data.

BICePs was modeled closely after the Inferential Structural
Determination (ISD) algorithm of Rieping, Habeck, and Nilges
(Rieping et al., 2005). Like BICePs, ISD is a Bayesian approach
where simulated conformational populations are used as the
Bayesian prior, and experimental restraints form the likelihood
function. The full posterior distribution of conformational states
and model parameters is then sampled using a Monte Carlo
algorithm (Habeck et al., 2006). But as we soon discovered
when developing BICePs, not all experimental restraints impart
the same amount of information, and BICePs makes critical
improvements over ISD by accounting for this fact.

The information gained upon obtaining a measurement is
relative to the prior information we possess. For example,
suppose we want to use Bayesian inference to refine the
conformational distribution of a linear peptide, given an
experimental distance measurement between two residues. The
measurement is highly informative if the the residues are distant
in sequence, but non-informative if the residues are close in
sequence. To account for a more diverse range of informative
experimental restraints, BICePs implements reference potentials,
which are discussed more fully in the Theory section.

As a consequence of better accounting for the information
content of experimental restraints, BICePs is able to calculate a
Bayes factor-like quantity, that we call the BICePs score, that can
be used for model selection. The BICePs score is highly useful: it
is a number that can report the extent to which a conformational
ensemble is consistent with experimental data. Not only can
this be used to show that reweighted populations are more
consistent with experimental data, it can also be used to rank
different simulated ensembles by their accuracy in reproducing
experimental observables (Ge and Voelz, 2018). While there
are still some improvements to BICePs needed to use this for
automated force field validation (see Discussion), the BICePs
score is highly useful, and we expect it will continue to provide
attractive incentive to use this algorithm.

In the remainder of this review, we will first discuss the theory
underlying the BICePs algorithm, and describe some of the
ways we implement this theory to sample the Bayesian posterior
distribution of conformational state and model parameters. We
then provide a case-by-case review of past examples where
BICePs has been applied to model conformational distributions.
Finally, we discuss some of the shortcomings of BICePs and

ongoing challenges we hope to address with future improvements
to BICePs.

2. THEORY

2.1. Bayesian Inference
The goal of BICePs is to model a posterior distribution P(X|D)
of conformational states X, given some experimental data D.
This posterior probability is proportional to a product of (1) a
likelihood function Q(D|X) representing experimental restraints,
and (2) a prior distribution P(X).

P(X|D) ∝ Q(D|X)P(X) (1)

The prior distribution, P(X), represents prior knowledge about
the populations of conformational states X derived from
theoretical modeling. This distribution can computed directly
from a molecular simulation, or come from any number of
theoretical models of the conformational free energy landscape
(e.g., from QM calculations).

The likelihood function, Q(D|X), reflects how well a given
conformation X agrees with experimental measurements. It is
assumed to obey a normally-distributed error model of the form:

Q(D|X, σ ) =
∏

j

1
√
2πσ 2

exp

(

−

[

rj(X)− r
exp
j

]2
/2σ 2

)

. (2)

Here, the data D comprise a set of experimental observables
indexed by j = 1, ...,Nj. The rj(X) represent observables
back-calculated from the theoretical model (ensemble-averaged
over states within X), and r

exp
j represent the experimental

values of each observable. In Equation (2), we assume that
each experimental observable has the same uncertainty σ . In
practice, different types of observables rj can be assigned specific
uncertainties σj, although this is usually done in groups (different
values of σj for sets of NOE distances, J-coupling constants, etc.)
for the sake of computational efficiency. There are of coursemany
situations where experimental uncertainty can vary even within
different sets measurements, which can be addressed by defining
custom restraint groups.

The likelihood function Q(D|X) can be thought of as the
quantity that reweights the prior estimate of the population P(X).
Conformational states X that better agree with the experimental
measurements get higher weights. An important distinction to
note: as BICePs is currently formulated, the likelihood function
Q(D|X) compares the experimental value r

exp
j to the back-

calculated observable rj(X) of a single conformational state X,
rather than an ensemble-averaged back-calculated observable
〈rj〉 =

∑

X rj(X)P(X). Consequently, the error model parameter
σ reflects both uncertainty in the experimental measurements
and heterogeneity in the conformational ensemble. Errors in the
forward model rj(X) are included in σ , and in many cases may
dominate the experimental errors (chemical shifts being the most
dramatic example).

As for choosing values of the uncertainty parameter(s) σ , these
uncertainties are usually not known a priori, and must be treated
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as a so-called nuisance parameter, which can be modeled using
some prior model P(σ ):

P(X, σ |D) ∝ Q(D|X, σ )P(X)P(σ ) (3)

While we don’t know the exact value of σ , we treat P(σ ) as
non-informative Jeffreys prior [P(σ ) ∼ 1/σ ], and include
this parameter in the posterior in order to sample the joint
distribution of (X, σ ). Then P(X|D) can then be obtained as the
marginal distribution

∫

P(X, σ |D)dσ . In the case where estimates
of the errors from experiments are known, a limited range of
possible σ values can be imposed.

Because the likelihood function enforces restraints on
individual conformational states (not ensemble-averages),
P(X|D) represents an “uncertainty ensemble” rather than a
“statistical ensemble” of conformational populations, to use the
language of Bonomi et al. (2017). However, it is quite useful
think of P(X|D) as conformational populations, as we show in
the examples below. For example, if P(X|D) gives equal values for
two conformational states, then BICePs predicts they are equally
consistent with the experimental data. While BICePs doesn’t
explicitly predict a mixture of two conformations, by maximum
ignorance (i.e., MaxEnt) we would infer equal populations in the
conformational ensemble. Future improvements to BICePs will
address this by constraining ensemble averages across multiple
replicas (see Discussion).

2.2. Reference Potentials
While the likelihood function Q(D|X) weights the
conformational space X, the actual restraints exist in some
restraint space r, a low-dimensional projection of the state
space of X. As a result, we need to introduce a reference
potential Qref(r) that reflects the distribution of observables r

in the absence of any experimental measurements. With this
modification, Equation (1) becomes:

P(X|D) ∝

[

Q(r(X)|D)

Q ref (r(X))

]

P(X). (4)

The negative logarithm of the bracketed weighting function,
− ln[Q(r|D)/Qref(r)], can be thought of as equivalent to a
potential of mean force (Hamelryck et al., 2010; Olsson et al.,
2011, 2013). With a proper reference potential, the relative
information content of each restraint becomes meaningful. In
our previous work, we have shown that using BICePs with proper
reference potentials can be essential for obtaining accurate results
(Voelz and Zhou, 2014; Ge and Voelz, 2018).

As an example of why reference potentials are needed,
consider experimental measurements of interresidue distances in
a protein. A distance measurement of 5 Å for a pair of residue
indices (i, i + 2) is essentially non-informative, since we already
know these residues are close in sequence along the polypeptide
chain, while a distance measurement of 5 Å for (i, i + 50) is
highly informative. The ratio Q(r(X)|D)/Q ref (r(X)) is needed to
correctly characterize the change in our state of knowledge.

The choice of what reference potential to use in a particular
situation is subject to some interpretation. Since BICePs is

designed to be used with sparse and/or noisy experimental data,
the likelihood function Q(D|X) typically enforces experimental
restraints smoothly over broad ranges of values. Similarly,
reference potentials should be sufficiently smooth and broad,
to avoid regions of restraint space with unrealistically small
values of Qref(r), which may in turn produce artificially inflated
weights for certain conformations. For this reason, we advocate
the use of conservative reference potentials, which do not make
unnecessary assumptions about the underlying distribution of a
given observable in the absence of experimental information.

We currently support three kinds of reference potentials
in our software implementation of BICePs: (1) uniform (non-
informative), (2) exponential, and (3) Gaussian. An exponential
reference potential is the least-informative distribution if only
the first moment of Qref (the mean, 〈r〉) is known. A Gaussian
distribution is the least-informative distribution if only the first
and second moments are known (〈r〉 and 〈r2〉).

As an interesting example, consider the reference potential
used for a set of interproton distances measured in an NMR
study of a 14-membered macrocycle, a situation we considered in
Voelz and Zhou (2014). In the absence of all other information,
our reference information is that the space of molecular
conformations are 14-membered rings. At the very least, the
the distribution of interproton distances must be non-negative,
and bounded from above. To get an idea of the empirical
distribution of possible interproton distances, we examined all
input conformations to BICePs, regardless of their energy, and
found no clear pattern other than a well-definedmean. Therefore,
we chose an exponential function as the reference potential. In
practice, the reference potential was fairly flat, since the average
interproton distance had a mean near 4 Å, and a maximum near
5 Å.

2.3. Sampling the Posterior Using MCMC
Markov Chain Monte Carlo (MCMC) is used to sample the
posterior distribution ofX and σ , with− ln P(X, σ |D) used an the
effective energy function. The energy function can be obtained
as the negative logarithm of the posterior probability given in
Equation (3):

− ln P(X, σ |D) =
(

Nj + 1
)

ln σ + χ2(X)/2σ 2 − lnQref

+
(

Nj/2
)

ln 2π − ln P(X). (5)

The quantity χ2(X) is the sum of squared errors, computed as

χ2(X) =
∑

j

wj

(

rj(X)− r
exp
j

)2
(6)

where wj is a weight parameter designated for equivalent
observables (For example: wj = 1/3 is used for hydrogens in a
methyl group).

The Metropolis-Hastings algorithm is used to perform
MCMC sampling of the energy function defined in Equation (5),
yielding an estimate of the full posterior distribution P(X, σ |D).
The most probable values of σ can be obtained by the marginal
distribution P(σ |D) =

∫

P(X, σ |D)dX, and the state populations
are estimated as P(X|D) =

∫

P(X, σ |D)dσ (Figure 1).
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FIGURE 1 | An example of BICePs output for albocycline (Liang et al., 2018). (A) A comparison of conformational state populations pi (exp) inferred using only

experimental restraints, vs. BICePs populations pi (sim + exp) inferred using a combination of the simulation-based prior and experimental restraints. States on the

lower right are highly compatible with experimental restraints, but are conformationally strained according the simulation model. Conformational states near the top of

the graph are both reasonably compatible with experimental restraints, and highly-populated according to the simulation model. States labeled in green correspond

closely to the two crystal isoforms of albocycline. (B) The marginal posterior distribution of σnoe, the uncertainty parameter for NOE distance restraints. (C) The

marginal posterior distribution of σJ, the uncertainty parameter for J-coupling constants. (D) The marginal posterior distribution of γ , the scaling parameter for the

NOE distances, remains near 1.0 throughout the MCMC sampling.

2.3.1. Enhanced Sampling of the Posterior
Accurate BICePs results require sufficiently converged sampling
of the entire (X, σ ) landscape. To achieve enhanced sampling
of P(X, σ |D), we use a free energy perturbation (FEP) method,
where posterior sampling for a series of models with priors
Pλ(X) ∼ [P(X)]λ, where 0 ≤ λ ≤ 1. The λ value serves to linearly
scale the− ln P(X) term in Equation (5). The expanded ensemble
of posterior distributions Pλ(X, σ |D) thus spans a range of prior
information: When λ = 0, the prior Pλ(X) prior is uniform, and
there is no information from theoretical modeling included in
the sampling. When λ = 1, all the information from theoretical
modeling is included in the sampling.

In the current implementation of BICePs, MCMC is
performed in parallel for a fixed number of λ values ranging
from 0 to 1. The multistate Bennett acceptance ratio (MBAR)
free energy estimator (Shirts and Chodera, 2008) is then used
to integrate samples from each ensemble to make statistically
optimal estimates of all Pλ(X|D).

2.4. The BICePs Score
The quality of a model k that uses a prior P(k)(X) from theoretical
modeling can be assessed by the posterior likelihood Z(k) of
model k:

Z(k) =

∫

P(k)(X, σ |D)dXdσ =

∫

P(k)(X)Q(X)dX. (7)

One way to think of Z(k) is as an integral over the entire
input space (including nuisance parameters) of the model.
Another way, however, is to think of Z(k) as an overlap integral
between the prior P(k)(X) and a likelihood function Q(X) =
∫

[Q(r(X)|D, σ )/Qref(r(X))]P(σ )dσ . This integral reaches the

maximum when P(k)(X) most closely matches the likelihood
distribution Q(X) specified by the experimental restraints.

Suppose we have two models (1) and (2) with priors P(1)

and P(2), and we want to know which one is more consistent
with experimental measurements. In Bayesian statistics, the
comparison is often made using the ratio of posterior model
probabilities, Z(1)/Z(2), also called the Bayes factor.

In BICePs, we consider a free energy-like quantity, called the
BICePs score:

f (k) = − ln
Z(k)

Z0
, (8)

which compares a model probability Z(k) to a standard reference
Z0 where no theoretical information is used (i.e., a model using
the prior Pλ(X) where λ = 0). The use of this standard reference
is useful in several ways. For one, if the BICePs score f (k) is
positive for a given model k, it means that the theoretical model is
worse than a totally uninformative prior–the theoretical model is
somehow inconsistent with experiment. More importantly, since
the BICePs score f (k) is always computed against an absolute
reference, it is a scalar quantity that can be used to perform
model selection. The BICePs score therefore can be very useful
for automatic model selection; for example, molecular simulation
force field validation and parameterization (Ge and Voelz, 2018).

Unlike maximum-likelihood approaches, The BICePs score
has the advantage of avoiding overfitting to a particular set of
experimental observable values, especially when the data are
sparse and/or noisy. Consider an alternative approach where
the values of σj that maximize the posterior are identified for
two different models and used to compute χ2 values for model
selection. The χ2 values only compare the models at particular
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points in parameter space, while the BICePs score considers the
total evidence integrated over all of parameter space.

3. APPLICATIONS OF BICEPS

Applications of BICePs to date fall into two main categories:
studies of small molecules like peptides and peptidomimetics,
and studies of larger proteins like apomyoglobin (Figure 2).

3.1. Modeling Macrolide Antibiotics
The first application of BICePs, described in the seminal article
that first introduced the algorithm, was to determine the
solution-state conformational populations of the 14-membered
macrolide antibiotic cineromycin B (Voelz and Zhou, 2014).
Knowledge of solution-state structure is essential to identify
potential targets of natural products, and to rationally design new
kinds macrolide antibiotics.

A combination of theoretical modeling and sparse
experimental NMR observables were used as input to BICePs.
The theoretical modeling was performed in two steps. First,
implicit solvent replica-exchange molecular dynamics (REMD)
simulation in GAFF was performed to exhaustively sample the
conformational landscape. The resulting sampling was then
clustered into 100 discrete states. Next, each cluster center
was subjected to QM minimization and single-point energy
calculation at the B3LYP/6-3111G(2d,p)//HF/6-31G(d) level of
theory. State populations were considered to be Boltzmann-
distributed according to the computed QM energies. The sparse
experimental constraints consisted of 13 interproton NOEs and
five vicinal 3JHH coupling constants.

For this system, BICePs predicted a nearly equal mixture of
two main conformational populations, each closely similar in
structure to the two crystal isoforms found for albocycline, the O-
methylated analog of cineromycin B. This work also showed the

importance of the reference potentials in producing more correct
posterior models.

In subsequent work, BICePs predicted a similar (nearly
equal) mixture of solution-state populations for albocycline,
using 12 NOE distance restraints and seven dihedral restraints
from vicinal 3JHH coupling constants (Chatare and Andrade,
2017). This information helped inform molecular simulation
and computational docking studies of albocycline binding to
MurA, an enzyme involved in peptidoglycan biosynthesis, a
potential new target for Methicillin-resistant Staphylococcus
aureus (MRSA) infection (Liang et al., 2018).

3.2. Modeling Peptoid Foldamers
Peptoids (N-substituted oligoglycines) are a class of sequence-
specific peptidomimetics that can be easily synthesized, and fold
into unique structural scaffolds (Sun and Zuckermann, 2013).
While the peptoid backbone is achiral and lacks hydrogen bond
donors, rational design of N-substituents can control the amide
cis/trans populations and secondary structure. An important
goal for molecular modeling and simulation of these systems is
to accurately predict solution-state conformational populations.
Reliable methods to do this would enable the computational
design of preorganized peptoid structural scaffolds to function
as new bio-inspired materials or therapeutics (Voelz et al., 2011;
Butterfoss et al., 2012; Kang et al., 2017; Schneider et al., 2018;
Gimenez et al., 2019).

A particular challenge in simulating peptoids is the lack of
accurate force fields. Unlike peptides, the chemical diversity of
N-substituents is practically limitless, with each new peptoid
residue requiring custom parameterization. BICePs can help
avoid this by using a general-purpose force field to generate a
prior conformational distribution, to be further refined against
experimental data.

An example of this approach was pursued by Mukherjee et al.
to model the solution-state conformational populations of an

FIGURE 2 | A timeline of BICePs application.
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(S)-N-(1-phenylethyl) glycine pentamer, (Nspe)5, whose bulky
chiral N-subtituents help this sequence fold into a right-handed
cis-amide helix (Mukherjee et al., 2015). Disagreement between
ab initio dihedral scans of the Nspe residue and the results of
GAFF simulations motivated the development of an improved
backbone potential, GAFF-φ, to better model the right-handed
(negative φ-angle) preference of Nspe oligomers in solution.

BICePs was used to reweight GAFF and GAFF-φ predictions
using sparse experimental restraints derived from previously
published NMR studies: NOE distances (Armand et al., 1998)
and cis/trans amide equilibria (Kct ∼ 2.5). BICePs scores for
bothGAFF andGAFF-φ were negative, suggesting themodels are
compatible with experiment. However, the GAFF-φ model was
found to have a likelihood of 1.5 times that of the GAFF model,
indicating it to be superior. Indeed, GAFF-φ predicted a much
higher cis-amide helix population for (Nspe)5, consistent with
previous NMR refinement and circular dichroismmeasurements.

By reweighting pre-defined conformational states, BICePs also
provides a convenient methodology to avoid costly sampling.
Unlike peptides, peptoids can populate both cis and trans amide
conformations. Amides have large isomerization barriers in most
force fields, typically requiring enhanced sampling methods like
REMD to sample the full conformational landscape of peptoids.
Thus, the “post-processing” aspect of BICePs can help to avoid
the costly alternative of having to perform slow-to-converge
simulations in the presence of restraints.

More recently, this approach was used to determine the
solution-state structure and ion-binding mechanism of cyclic
peptoid-spiroligomer hexamer macrocycles (Hurley et al., 2021).
Northrup et al. found that particular sequences of alternating
Q-proline and peptoid residues are able to bind metal cations,
forming highly preorganized structures in the process (Northrup
et al., 2020). To model this process, the BICePs algorithm was
used to reconcile conformational populations from implicit-
solvent REMD simulations in GAFF, against sparse experimental
ROESY correlations. While GAFF simulations predict a range
of macrocycle conformations with an overall preference for cis-
amide backbones, the reweighted populations had a preference
for trans amides, with the most populated conformation having
five of six amides in the trans state. This conformation was
then used to initiate more accurate explicit-solvent simulations
of macrocycles in the presence of K+ and Na+ cations, in
which several direct-binding events–coupled with a transition
to an all-trans state–were observed. In validation of this model,
the authors were able to correctly rank the ion-, solvent-
, and sequence-dependence of cation-binding in agreement
with experiment. Interestingly, a racemic crystal structure
obtained for a peptoid-spiroligomer macrocycle in the absence
of bound cation contains a mixture of cis and trans backbone
amide, underscoring the need for an integrated modeling
approach using BICePs to determine cation bound macrocycle
conformations in solution.

3.3. Modeling Linear and Cyclic Peptides
Like peptoid foldamers, both cyclic and linear peptides can form
preorganized structures in solution, and BICePs can be a valuable
tool to help computationally model and design sequences
with desirable solution-state properties. Wakefield et al. (2015)

simulated 18 cyclic RGD peptides studied extensively by the
Kessler group using NMR, including the anticancer drug
candidate cilengitide, cyclo(RGDf-[N-Me]V), which targets
integrin αVβ3 (Dechantsreiter et al., 1999; Mas-Moruno et al.,
2010). BICePs was used to validate excellent agreement
between simulations and experimental NOE distances. The
results reproduce the highly preorganized solution conformation
of cilengitide, which has the highest affinity to integrin.
Estimated differences in conformational entropy suggested that
N-methylation provided about 0.5 kcal mol−1 of stabilization,
and rigid non-natural amino acid mimics can provide even
more preorganzation.

Ge and Voelz (2018) explored how the BICePs score could
be used for force field validation and parameterization. Using a
2D lattice model as a toy system, they first demonstrated that
BICePs was able to select the correct value of an interaction
energy parameter given ensemble-averaged experimental
distance measurements. The toy model was used to study the
sensitivity of the results to the choice of reference potential,
the number of conformational clusters used in the calculations,
and the robustness of the calculation to experimental noise
and measurement sparsity. In this work, the authors introduce
support for chemical shift modeling in BICePs, which they use
as experimental restraints to refine conformational populations
of designed β-hairpin TrpLoop2 peptides in a number of force
fields (Ge et al., 2017). BICePs results show unambiguously that
explicit-solvent simulations in AMBER ff99-ildn-nmr (Li and
Brüschweiler, 2010; Lindorff-Larsen et al., 2010) yield models
most consistent with the experimental data. While this work
suggests that BICePs is up to the task of model selection in the
context of all-atom simulations, it also reveals several challenges
that need to be overcome to perform these calculations reliably
(see Discussion).

3.4. Reconciling Models of Globular
Proteins With Experimental HDX Data
Recent work by Wan et al. expands the scope of BICePs—
both in terms of system size and sampling complexity—by
introducing support for yet another experimental observable:
hydrogen/deuterium exchange (HDX) protection factors (Wan
et al., 2020). HDX protection factors are challenging to enforce
in molecular simulations, because they are dynamical restraints,
corresponding to the relative rates of local unfolding events,
where solvent exposure of backbone amides leads to exchange.
For BICePs to refine structural ensembles using HDX protection
factors, it requires a structural proxy that correlates with local
unfolding, which the authors capture using the simple model:

ln PFi = βc〈Nc〉i + βh〈Nh〉i + β0. (9)

In this model, the logarithm of the protection factor for residue
i is predicted by the ensemble average number of heavy-atom
contacts 〈Nc〉i and hydrogen bonds 〈Nh〉i.

The free parameters in this model, λ (the β parameters and
others defining how contacts and hydrogen bonds are tallied),
are first determined using Bayesian inference, by training on
two ultralong simulation trajectories of ubiquitin and bovine
pancreatic trypsin inhibitor (BPTI), each well-studied systems
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with published experimental protection factors. The result is
not a set of optimal (maximum-likelihood) parameters λ∗,
but rather the full posterior distribution of parameters P(λ),
which is imported into the likelihood model for BICePs (More
details can be found at https://github.com/vvoelz/HDX-forward-
model). All parameters are then treated as nuisance parameters
that are sampled in the BICePs posterior distribution.

To test this approach, Wan et al. applied the modified BICePs
method to apomyoglobin, which has a disordered helix F and
C-terminal portion of helix H in the absence of heme at pH
6. NMR studies provide no structural information for these
regions, but HDX protection factors and chemical shifts are
available. To model the structural ensemble of these regions, a
series of simulations were performed at different temperatures
and different bias potentials to encourage local unfolding. The
resulting trajectory data was used to construct several competing
multi-ensemble Markov Models (MEMMs) (Wu et al., 2016),
where each could be evaluated using the BICePs score. The
best-scoring model predicts a mixture of two predominant
conformational states, one with a partially disordered yet
compact helix F and other having a more disordered and exposed
helix F, consistent with slow chemical exchange for helix F.
Using the populations of these states predicted by BICePs, back-
calculation of the HDX protection factors results in values that
correlate well the experimental values (R2 = 0.72).

4. DISCUSSION

In the future, we expect that BICePs will play an increasingly
important role in molecular simulation-based prediction and
design, for several reasons. First, unlike many similar algorithms
for Bayesian inference, which enforce restraints during the course
of a molecular simulation, BICePs can be implemented as a post-
processing step. This means the algorithm should be considerably
easier to implement and utilize across many applications.

Second, the ability to “tune” predictions of force fields using
sparse experimental restraints can eliminate the need for custom
parameterization, which can widen the scope of applications
that can be addressed by general-purpose force fields. This is
evidenced by the many examples of peptidomimetic and peptoid
modeling we have described above. A further avenue, made
possible by Markov state models (Prinz et al., 2011; Bowman
et al., 2013), is to obtain reweighted predictions of equilibrium
populations from BICePs to infer improved kinetic properties,
through maximum caliber (MaxCal) approaches, for instance
(Dixit et al., 2015; Wan et al., 2016; Ghosh et al., 2020).

Third, the BICePs score provides an unambiguous metric to
rank model quality and perform model selection. As discussed
above, this makes objective force field evaluation possible.
Given a standard test set of molecular systems and associated
corpus of experimental observables, BICePs could be a uniquely
suitable Bayesian approach for systematically benchmarking
and/or parameterizing new potentials. Similarly, the BICePs
score could help quantify the progress toward an objective in
adaptive sampling.

For BICePs to achieve the status of indispensable tool, there
are several practical shortcomings and improvements that we are
working to address.

4.1. Future Algorithmic Improvements
4.1.1. Replica Averaging
One conceptual problem with BICePs and related methods
like ISD is that the likelihood function compares individual
conformational states to ensemble-averaged experimental
observables. As result, the uncertainty parameter σ reflects
a combination of both agreement with the experimental
measurements and heterogeneity in the conformational
ensemble (Bonomi et al., 2016a). A better comparison–and
one that will result in lower uncertainty in most cases–is a
likelihood function that compares a predicted ensemble-average
to experimental observables. A simple way to achieve this,
implemented currently in algorithms, such as Metainference
(Löhr et al., 2019), is to use a forward model that incorporates
the average of multiple MCMC replicas. In the limit of large
numbers of replicas, such a likelihood function results in the
least-biased, maximum entropy (MaxEnt) posterior distribution
given ensemble-averaged experimental constraints (Pitera and
Chodera, 2012; Cavalli et al., 2013; Roux and Weare, 2013;
Hummer and Köfinger, 2015; Bonomi et al., 2016a; Xu, 2019).

One issue we believe replica averaging will improve is the
performance of BICePs when used with many experimental
restraints. This will increase the impact of BICePs by enabling
its application to larger systems with many structural
measurements. When modeling peptides with many NOE
distance restraints (as in Ge et al., 2017; Ge and Voelz, 2018),
we have noticed that while BICePs is able to correctly predict
solution-state structures, it can overestimate the posterior
populations of folded states. This occurs because particular
conformational states that satisfy multiple restraints are highly
rewarded by the likelihood function. This behavior is akin to the
many constraint-based NMR structural refinement algorithms
which seek to generate ensembles of structures that satisfy all
or most distance constraints. A similar artifact was found by
Ge et al. (2020) when evaluating MSM models of a series of
cyclic β-hairpin peptides against structural NMR observables
measured by Danelius et al. (2016).

In the replica-averaging section of the Discussion, we discuss
this fairly extensively. The issue is not the system *size* per
se (we have successfully applied BICePs to apomyglobin, a
large globular protein, for example) but large numbers of
experimental restraints, which become problematic because the
likelihood function currently uses a forward model for individual
states rather than ensemble-averages. In light of the reviewer’s
comments, we have added to this in our revised manuscript:

With replica averaging, direct comparison (via the BICePs
score) between predictions from BICePs and constraint-based
algorithms like NAMFIS (Cicero et al., 1995) should yield more
favorable results.

4.1.2. Hamiltonian Replica Exchange
As mentioned in the Theory section, better estimations of
conformational populations and more accurate BICePs scores
are achieved by implementing a free energy perturbation-like
framework, in which parallel MCMC trajectories are perfomed
for a series of theoretical priors scaled by λ ∈ [0, 1]. An issue that
arises from this approach is the inability to sample all states in
a reasonably low number of iterations, especially when λ = 1.
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To enhance the sampling of all the states (across all the λ-
ensembles), we aim to implement Hamiltonian replica exchange
in future versions of BICePs, an approach previously pioneered
with ISD (Habeck et al., 2005). In this approach, parallel MCMC
trajectories are coupled so that exchanges of conformational
states across λ-ensembles are attempted at regular intervals and
accepted according to the Metropolis criterion.

4.2. Support for More Experimental
Observables and Reference Potentials
Another area of improvement we are working on is the
incorporation of more experimental observables, and support
for users to be able to extend BICePs by adding custom
experimental restraints and reference potentials with relative
ease. Our most recent addition to the roster of supported
experimental observables is HDX protection factors, ln PFi.
Custom experimental restraints will require a user to write a
derived class and a few simple methods to parse input data files,
compute a sum of squared errors, and specify the posterior− ln P
(i.e., the energy function).

Small angle X-ray scattering (SAXS) has proven to be very
useful for determining molecular shape and resolving structural
dynamics over large range of biomolecular sizes (Bonomi et al.,
2017). In the future, we hope to support SAXS observables
as experimental restraints, joining the ranks of other Bayesian
inference algorithms that can utilize such data (Antonov et al.,
2016; Bonomi and Camilloni, 2017; Shevchuk and Hub, 2017;
Potrzebowski et al., 2018). One issue to consider is how best
to enforce uncertainties when mixed with other types of data,
since SAXS experiments typically have a large number of not
fully independent measurements. Here a Bayesian approach
that can automatically “tune” uncertainties might be particularly
powerful.

5. CONCLUSION

We have reviewed the theory and application of BICePs, an
algorithm for Bayesian Inference of Conformational Populations,
that has several advantages over similar methods. In BICePs,

reweighting of populations can be performed as a post-
processing step, with proper reference potentials. A review of
previous applications demonstrates the utility of BICePs for
improving the predictions of general-purpose force fields for
modeling and designing peptidomimetics. A unique feature of
the algorithm is the BICePs score, which can be used for objective,
systematic model selection.

Since the first inception of the BICePs algorithm (Voelz
and Zhou, 2014) (which we call “BICePs 1.0”) many
modifications have been implemented, including support
for more experimental observables, such as chemical shifts and
HDX protection factors, and improved analysis and visualization.
We have officially released the improved algorithm (BICePs
2.0) at https://github.com/vvoelz/biceps. This latest version is
designed to lower the barriers for researchers to use and extended
the BICePs algorithm.
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Bayesian Random Tomography of
Particle Systems
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Random tomography is a common problem in imaging science and refers to the task of
reconstructing a three-dimensional volume from two-dimensional projection images
acquired in unknown random directions. We present a Bayesian approach to random
tomography. At the center of our approach is a meshless representation of the unknown
volume as amixture of spherical Gaussians. EachGaussian can be interpreted as a particle
such that the unknown volume is represented by a particle cloud. The particle
representation allows us to speed up the computation of projection images and to
represent a large variety of structures accurately and efficiently. We develop Markov
chain Monte Carlo algorithms to infer the particle positions as well as the unknown
orientations. Posterior sampling is challenging due to the high dimensionality and
multimodality of the posterior distribution. We tackle these challenges by using
Hamiltonian Monte Carlo and a global rotational sampling strategy. We test the
approach on various simulated and real datasets.

Keywords: 3D Reconstruction, random tomography, cryo-EM, bayesian inference, coarse-grained modeling,
markov chain Monte Carlo, inferential structure determination

1 INTRODUCTION

Many different imaging techniques acquire two-dimensional (2D) projection data of an unknown
three-dimensional (3D) object. If the projection directions are known, tomographic reconstruction
methods can be used to recover the 3D structure of the object (Natterer, 2001). An additional
complication arises, if the projection directions are unknown. This imaging modality is of particular
relevance to single-particle cryo-electron microscopy (cryo-EM). In recent years, cryo-EM has
emerged as a powerful technique to determine the structure of large biomolecular assemblies at near
atomic resolution (Frank, 2006). In cryo-EM, many copies of the particle of interest are first applied
to a carbon grid and then plunge-frozen to prevent the formation of ice crystals. The frozen randomly
orientated particles are imaged with electrons resulting in thousands to millions of noisy projection
images. Similar reconstruction problems arise in cryo-electron tomography as well as single-particle
diffraction experiments at free-electron lasers (von Ardenne et al., 2018). A completely different field
of application is in situmicroscopy of various specimens such as mesoscopic organisms (Levis et al.,
2018).

The reconstruction problem common to all of these imaging methods is to recover a 3D
volume from 2D images acquired in random projection directions and has been termed random
tomography (Panaretos, 2009). Since the projection directions are unknown, we have to estimate
them in the course of the reconstruction. Moreover, to avoid model bias, the desired
reconstruction method should not rely on an initial guess of the volume (ab initio
reconstruction).
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Various ab initio reconstruction methods have been proposed
(Bendory et al., 2020) including maximum likelihood via
expectation maximization (Scheres et al., 2007) and maximum
a posteriori (MAP) estimation (Jaitly et al., 2010; Scheres, 2010,
2012a), regularized maximum likelihood (Scheres, 2012b),
stochastic gradient descent (Punjani et al., 2017), common
lines (Vainshtein and Goncharov, 1986; Van Heel, 1987;
Penczek et al., 1996; Elmlund et al., 2008; Singer and
Shkolnisky, 2011; Elmlund and Elmlund, 2012; Lyumkis et al.,
2013), the method of moments (Kam, 1980; Levin et al., 2018),
random-model methods (Yan et al., 2007; Sanz-Garcia et al.,
2010), methods using stochastic hill climbing (Elmlund et al.,
2013) or nonlinear dimensionality reduction (Vargas et al., 2014)
and frequency marching (Barnett et al., 2017).

These approaches typically reconstruct the unknown volume
by solving an optimization problem. However, optimization
approaches do not offer any uncertainty quantification.
Another drawback is that many reconstruction algorithms are
iterative procedures that critically depend on the initialization,
which counteracts the idea of achieving an unbiased ab initio
reconstruction. Moreover, most algorithms employ a number of
ad hoc parameters that need to be tuned by the user and impact
the final result in a way that is not always obvious.

Our goal is to develop a fully Bayesian approach to 3D
reconstruction using a meaningful model of the unknown
structure (including a physically realistic prior) and utilizing
sampling algorithms for parameter estimation and uncertainty
quantification. In our previous work (Joubert and Habeck, 2015),
we already took the first step towards this goal. We considered the
reconstruction problem in random tomography as a density
estimation problem utilizing a mixture of Gaussians. With the
help of conjugate priors and the introduction of latent assignment
variables, we could derive analytical updates for a Gibbs sampler
that infers the unknown rotations and component means.

However, there are various problems with our previous Gibbs
sampling approach. First, Gibbs sampling suffers from slow
convergence and depends strongly on the initial conditions.
Therefore, to locate the posterior mode many restarts of the
Gibbs sampler from varying initial conditions are necessary.
Second, our Gibbs sampling algorithm is restricted to a
Poissonian likelihood. The Poisson model is limited in that it
ignores the effect of the point spread function and correlations in
the noise. Third, the prior over the component means (particle
positions) is chosen to be a conjugate, zero-centered Gaussian
distribution, which is not realistic for biomolecular structures,
because it ignores excluded-volume effects.

Here, we overcome these limitations by developing a more
general probabilistic model for particle systems and their
projection images. We no longer aim to develop analytical
updates for the Gibbs sampler, but use of Markov chain
Monte Carlo (MCMC) algorithms to infer both the particle
positions as well as the unknown rotations. Sampling
conformations of the particle system for fixed rotations can be
achieved with Hamiltonian Monte Carlo (HMC). To sample the
rotations, we use a Metropolis-Hastings algorithm that explores
the unit quaternions parameterizing the unknown projection
directions. Since Metropolis-Hastings samples a probability

distribution only locally, we occasionally run a global sampling
step that is computationally more expensive. Using simulated and
real experimental data, we demonstrate that our Bayesian
approach to random tomography is capable of estimating
physically plausible coarse-grained models.

2 PROBABILISTIC MODEL AND
POSTERIOR SAMPLING

We aim to reconstruct a 3D volume f (r) for r ∈ R3 and
f : R31R+. We do not observe f (r) directly but only
projection images

g(u) � ∫


f (RTr) dz � ∫


f (θ⊥u + θz) dz �: X θ[ f ](u) (1)

where R ∈ SO(3) is a 3D rotation matrix whose last row θ ∈ R3 is
a unit vector pointing into the projection direction, and θ⊥ ∈ R3×2
is the matrix whose columns span the plane orthogonal to θ such
that RT � [θ⊥, θ]. Throughout this article, u ∈ R2 denotes a
position in the projection image, and r ∈ R3 a position in the
volume. The integral transform XR[f ] (Eq. 1) is known as the
X-ray transform or John transform (Natterer, 2001). In 2D, the
X-ray transform is identical to the Radon transform. The
reconstruction problem in random tomography is to estimate
f (r) from N random projection directions θn, or equivalently Rn,
such that

gn(u) � X θn[ f ](u) + n(u), n � 1, . . . ,N (2)

where n(u) is the noise.

2.1 Kernel Expansion of Images and
Volumes
The standard discretization of images and volumes is based
on pixels and voxels placed on regular 2D and 3D grids.
Instead, we expand images and volumes into sums of basis
functions that can be centered at irregular positions (as in
meshless methods). We use a radial basis function (RBF)
kernel ϕ such that the kernel expansion of the volume
becomes

f (r) � ∑
K

k�1
wk ϕ(r − xk) (3)

where K is the number of basis functions, ‖ · ‖ is the Euclidean
norm, wk a coefficient or weight (if wk > 0) and xk ∈ R3 a position
vector that determines the center of the kth kernel. We can
represent members of a reproducing kernel Hilbert space using
this expansion. RBF representations are widely used in machine
learning (Schölkopf and Smola, 2002), image processing (Takeda
et al., 2007) and numerical applications (Schaback and
Wendland, 2006).

A physical interpretation of the kernel representation is that
we model the object as a collection of K particles at positions xk
with mass wk > 0. The model (3) can then be interpreted as the
blurred version of a particle system:
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f (r) � ⎛⎝ϕp∑
K

k�1
wkδxk⎞⎠(r) (4)

where δxk is the delta function centered a xk and the particle
density,∑

k
wkδxk, is blurred by a convolution (denoted by p) with the

RBF kernel. The particle locations and weights {(xk,wk); k �
1, . . . ,K} can also be viewed as a weighted point cloud. The
component means xk could be fixed to a regular 3D grid. But
we will consider particle systems that are not tied to a grid and
can be distributed in an irregular fashion (similar to meshless
or meshfree methods used in numerical analysis). Typically,
the particle system is a coarse-grained representation of
the unknown structure rather than an atomic-resolution
representation. Therefore, 3D reconstruction from 2D
projection data provides a pseudo-atomic representation
whose resolution depends on the number of particles K
(Figure 1 for an illustration).

One motivation for our choice of the volume representation
(Eq. 3) are its efficient transformation properties. Rigid
transformations of f (r) involve a shift by the translation
vector t and a reorientation brought about by the rotation
matrix R. Under the RBF expansion these transformations
reduce to rigid transformations of the particle positions:

f (r)1R,t f (RT(r − t)) � ∑
k

wk ϕ(r − Rxk − t) � ∑
k

wk ϕ(r − xk′) (5)

where xk′ � Rxk + t.
There are many options for ϕ(r). We will restrict ourselves to

Gaussian RBF kernels. The d-dimensional spherical Gaussian is
defined by

ϕd(r; x, σ
2) :� 1

(2πσ2)d/2 exp{ − 1
2σ2

����r − x
����2 } (6)

where σ > 0 is the bandwidth of the kernel. The volume
representation that we will use throughout this paper is a
mixture of K spherical Gaussians:

f (r) � ∑
K

k�1
wk ϕ3(r; xk, σ

2) (7)

This representation is very common in statistics, in particular
in density estimation where xk are observed samples resulting
in a kernel density estimate of an unknown probability
density function. Indeed, our original motivation (Joubert
and Habeck, 2015) to choose this representation of f (r) was
mainly driven by viewing 3D reconstruction from random
projections as an instance of a density estimation problem.
Other examples for uses of (Gaussian) particle
representations in cryo-EM data analysis such as denoising
or the analysis of continuous conformational changes have
been proposed by Jin et al. (2014); Jonić et al. (2016); Jonić
and Sorzano (2016).

A convenient property of the spherical Gaussian kernel is its
behavior under the X-ray transform (Eq. 1):

X θ[ϕd](u) � ∫


ϕd(θ
⊥u + θz; x, σ2 ) dz � ϕd−1(u;PRx, σ

2) (8)

where again R � [θ⊥, θ]T ∈ SO(3) and the 2 × 3 projection
matrix P is

P � ( 1 0 0
0 1 0

) (9)

Spherical Gaussians are closed under the X-ray transform, and
the projected volume (7) is again a K component mixture of
spherical Gaussians

X θ[ f ](u) � ∑
K

k�1
wk ϕ2(u;PRxk, σ

2) (10)

with centers xk′ � PRxk ∈ R2. This fact motivates us to also
represent the input images as mixtures of spherical Gaussians
in 2D (see Representation of Projection Images by Point Clouds
for a concrete application).

FIGURE 1 | Coarse-grained representation of GroEL/GroES using a varying number of particles (left) atomic structure (PDB code 1aon). Panels (middle left) to
(right) show coarse-grained models using K � 50, 300, and 1000 particles.
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2.2 Probabilistic Model
The unknown parameters of our model are the particle positions
xk and weights wk as well as the unknown rotation matrices Rn.
Since we interpret the Gaussian components as particles of equal
mass, we fix the weights: wk � K−1, such that the main inference
parameters are xk and Rn.

2.2.1 Likelihoods
We tested two probabilistic models for the input data. The first
model uses the input images {gn; n � 1, . . . ,N} directly. For each
image, the intensities are gnm � gn(unm) at pixel positions unm
where m � 1, . . . ,Mn with Mn being the number of pixels in the
nth image. Typically, the number of pixels Mn is identical for all
projection images.

A simple image model is to assume pixelwise identically and
independently distributed Gaussian noise in the image formation
(2), such that the likelihood of the nth image is

Pr(gn
∣∣∣∣x,Rn, tn, cn, αn, τn) � (

τn
2π

)
Mn/2

exp
⎧⎨
⎩ − τn

2
∑
Mn

m�1
⎡⎣gnm − αn − cn∑

k

ϕ2(unm;PRnxk + tn, σ
2)⎤⎦

2⎫⎬
⎭

(11)

where τn > 0 is the precision of the image, and αn, cn are an offset
and a scaling factor (the constant weight wk � 1/K has been
absorbed by the scaling factor cn). The two-dimensional
translation tn accounts for a shift of the image. These three to
five nuisance parameters per image (depending on whether shifts
tn are fitted or not) need to be estimated in addition to the particle
positions x � {xk; k � 1, . . . ,K} and the rotations
R � {Rn; n � 1, . . . ,N}. Model (11) is an idealized image
formation model. It ignores important effects such as the CTF
or correlated noise that are highly relevant for cryo-EM
applications.

The second model also uses a kernel expansion of the input
image motivated by the fact that ideally, according to our image
model, the projection image should also be a mixture of spherical
Gaussians (Eq. 10). In a preprocessing step, we fit a point cloud
Yn � {ynm ∈ R2;m � 1, . . . ,Mn} to the nth input image gn such
that

gn(u) ≈ αn + cn ∑
Mn

m�1
ϕ2(u; ynm, σ

2
n) (12)

Typically, we choose Mn � M but this is not a requirement.
Again, model (12) does not account for the CTF or other
important effects in cryo-EM image formation. In each
projection direction, the 2D point cloud can be blurred to
a different degree captured by the width σn. The
Supplementary Material details how projection images
can be converted to point clouds; Representation of
projection images by point clouds in Results shows a
practical example for further illustration.

As in Joubert and Habeck (2015), we model the 2D point
clouds as samples from the projected 3D volume:

Pr(Yn|x,Rn, tn, σn) � ∏
Mn

m�1

1
K

∑
K

k�1
ϕ2(ynm;PRnxk + tn, σ

2
n) (13)

In the following, we will denote all nuisance parameters, i.e. all
parameters except particle positions and rotations, collectively
by ξ. In case of the image likelihood (11), we have
ξ � {(αn, cn, τn, tn); n � 1, . . . ,N}. In case of the point cloud
likelihood (Eq. 13), we have ξ � {(σn, tn); n � 1, . . . ,N}.
Moreover, we will denote both likelihoods as Pr(D|x,R, ξ)
where D are the data (projection images or 2D point clouds).

2.2.2 Priors
After incorporating our prior beliefs about the model parameters,
we are able to derive the posterior distribution by invoking Bayes’
theorem:

Pr(x,R, ξ|D) � Pr(D|x,R, ξ)Pr(x,R, ξ)
Pr(D) (14)

where Pr(x,R, ξ) is the prior which we assume to factor into

Pr(x,R, ξ) � Pr(x)Pr(R)Pr(ξ) (15)

The normalization factor Pr(D) is the model evidence, which
can be ignored if we are only interested in parameter estimation.

We use standard priors for the nuisance parameters: Jeffreys
priors for precisions τn and 1/σ2n. The prior for the scaling factors
and offsets are flat. Note that these priors are improper (i.e., not
normalizable). Since we are only interested in parameter
estimation, this does not pose a problem. The priors for the
scaling factor and offset could be improved. For example, cryo-
EM images are often normalized such that the mean intensity is
zero and the standard deviation is one. It is possible to express this
information as a prior on the offset and scaling factor. The
Supplementary Material provides more details about these
priors. For the image shifts tn, a zero-centered two-
dimensional Gaussian distribution is a reasonable choice.

Typically, biomolecules orient themselves randomly in the ice
layer that is imaged by cryo-EM. Therefore, we choose a uniform
distribution over SO(3):

Pr(R) � ∏
N

n�1
Pr(Rn)∝ 1 (16)

These priors are proper, because the rotation group is
compact.

In our previous work (Joubert and Habeck, 2015), we used a
zero-centered Gaussian prior for all particle positions xk to ensure
that prior and likelihood are conjugate, which enabled the
derivation of closed-form updates for the component means.
However, this prior is very unrealistic, if we think of the Gaussian
basis functions as massive particles that should not occupy the
same region in space (excluded volume), but rather repel each
other. Since the packing of biomolecular structures is reminiscent
of fluids (Liang and Dill, 2001), the prior should favor particle
configurations that show similar packing characteristics. To
model repulsive interactions between particles, we use a
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Boltzmann distribution over the positions xk involving a soft
repulsive interaction potential E(x):

Pr(x1, . . . , xK)∝ exp{−βE(x1, . . . , xK)} (17)

Furthermore, the particles are confined to a box with soft
boundaries (Habeck, 2017). Pairs of particles repel each other if
the distance is smaller than the particle diameter 2Rwhere R is the
effective particle radius. We choose a quartic repulsion which is
commonly used in NMR structure calculation:

E(x1, . . . , xK) � ∑
k<k′

[
∣∣∣∣
∣∣∣∣xk − xk′

∣∣∣∣
∣∣∣∣≤ 2R]⎛⎝1 −

����xk − xk′
����

2R
⎞⎟⎠

4

(18)

where [·] is the Iverson bracket. Given the total number of atoms
L of the system, the particle radius can be predicted for a desired
number of particles K by using the relation

R ≈ 0.92 (L/K)0.42 Å. (19)

Using a configurational temperature estimator (Mechelke and
Habeck, 2013), the inverse temperature is estimated to β ≈ 175.
The estimates for R and β are based on an analysis of several
biomolecular structures at different levels of coarse graining. See
Supplementary Material for details.

Since the excluded-volume term (Eq. 18) is purely repulsive,
we add a radius of gyration term such that the overall prior for
particle positions is

Pr(x1, . . . , xK)∝ exp{−βE(x1, . . . , xK)} exp{−αRg(x)} (20)

where Rg(x) is the radius of gyration of the coarse-grained
structure x and α a positive constant. The radius of gyration
term imposes a weak preference for compact structures and
prevents configurations with isolated particles that do not
contact another particle. In our experiments, we set α � 10 Å;
in principle, we could estimate α by using techniques similar to
those used in the estimation of β. But since α does not have a
strong impact on the final structure, we restricted ourselves to a
single fixed value for α.

2.3 Inference
Bayesian random tomography employs MCMC sampling from
the posterior distribution (14). We use a Gibbs sampling strategy
(Geman and Geman, 1984) where each group of parameters, the
particle positions x, the rotations R and the nuisance parameters
ξ, is updated separately while clamping the other parameters to
their current values. To update the nuisance parameters, we use
standard samplers for generating Gamma variates and normally
distributed random variables (more details can be found in the
Supplementary Material). However, the conditional posteriors of
the particle positions x and the rotations R are not of a standard
form and need to be updated with more sophisticated algorithms.

2.3.1 Sampling Particle Positions With Hamiltonian
Monte Carlo
To sample the particle positions, we use Hamiltonian Monte
Carlo (HMC) (Neal, 2011). The conditional posterior distribution
over particle positions is

Pr(x|R, ξ,D)∝Pr(D|x,R, ξ) Pr(x)
In HMC, −logPr(x|R, ξ,D) defines a potential energy over

configuration space that is composed of an attractive term
−logPr(D|x,R, ξ) matching particle positions to the projection
data, and a repulsive contribution −logPr(x) stemming from the
excluded-volume term (18). For fixed rotations and nuisance
parameters, the particle positions undergo Hamiltonian
dynamics following the gradient of −Pr(x|R, ξ,D) during a
short leapfrog integration. The resulting configuration is
accepted or rejected according to the Metropolis criterion.

2.3.2 Sampling Rotational Parameters With
Metropolis-Hastings
A challenging problem is to estimate the rotations. Because the
projection images are statistically independent of each other, the
problem decomposes into N subproblems:

Pr(Rn|x, ξ,D)∝

exp
⎧⎨
⎩ −τn

2
∑
Mn

m�1
⎡⎣gnm − αn − cn ∑

K

k�1
ϕ2(unm;PRnxk + tn, σ

2)⎤⎦
2⎫⎬
⎭

(21)

if projection images gn are fitted directly, or

Pr(Rn|x, ξ,D)∝ ∏
Mn

m�1
∑
K

k�1
ϕ2(ynm;PRnxk + tn, σ

2
n) (22)

if we fit 2D point clouds. In Joubert and Habeck (2015), we
introduced assignment variables such that the conditional
posterior (22) is replaced by the matrix von Mises-Fisher
distribution, which can be simulated in a straightforward
fashion (Habeck, 2009). However, because the assignment
variables are highly coupled to the other parameters, this
strategy converges only slowly to the next local minimum.
Moreover, there is no flexibility regarding the likelihood function.

We use the Metropolis-Hastings (MH) algorithm (Liu, 2001)
to estimate the rotation matrices. We parameterize rotation
matrices using unit quaternions (Horn, 1987) and propose
new quaternions by adding a random perturbation that is
sampled from a uniform distribution. We run 10 MH steps to
update the quaternions representing each projection direction in
every Gibbs sampling iteration and adapt the step-size
automatically: Upon acceptance, the step-size increases by
multiplying it with a factor of 1.02; in case of rejection, the
step-sizes decreases by a factor of 0.98. This rule results in an
acceptance rate of approximately 50%. We use this sampling
algorithm to simulate both types of conditional posteriors (21)
and (22).

2.3.3 Global Sampling of Rotational
Parameters
Since the MH algorithm achieves only local sampling of
probability distributions, we occasionally scan all rotations
systematically. The unit quaternions are elements of the 3-
sphere, the unit sphere embedded in the four-dimensional
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space. To evenly cover rotation space, we discretize the 3-sphere
using the 600-cell (Coxeter, 1973). The 600-cell is composed of
even sized tetrahedra whose corners lie on the unit sphere. By
projecting the center of a tetrahedron onto the unit sphere we
obtain a unit quaternion parameterizing a valid rotation matrix.
Due to the degeneracy of the quaternions we only have to
consider the upper half of the 4D sphere that is covered by
330 tetrahedra at the coarsest level of discretization. To obtain a
finer tessellation of SO(3), we can split each tetrahedron into
eight tetrahedra whose corners again lie on the 4D unit sphere. By
default, we use a frequency of 0.1 to run a global rotation scan.
The conditional posterior is evaluated for all rotations and then
sampled from the discrete distribution.

The source code and scripts for reproducing the tests are
available at github.com/michaelhabeck/bayesian-random-
tomography.

3 RESULTS

3.1 Sampling Tests
To test MCMC strategies for inferring particle positions and
rotations, we use the structure of the GroEL/GroES complex. This
system has been studied extensively with cryo-EM. Since our
focus is mainly on algorithmic aspects, we first use simulated data
that exactly follow our probabilistic model. To generate input
point clouds in 2D, we use the crystal structure of GroEL/GroES
(PDB code 1aon; 58,674 atom coordinates in total). The 2D point
clouds are generated by projecting the 3D positions of every 10th
Carbon-alpha atom (802 points in total) along 35 random
directions into 2D. We also generated corresponding
projection images by blurring the point clouds with a
Gaussian filter of width 5 Å.

3.1.1 Sampling Particle Positions and Precisions With
Fixed Rotations
We first studied the performance of sampling particle positions
by fixing the rotations to the correct values and sampling only the
particle positions and the precisions of the projection data. HMC

sampling of particle positions started from a random initial
configuration for K ranging between 50 and 1,000 particles. In
all of our HMC experiments, the number of leapfrog steps was set
to 10, whereas the step-size was adjusted automatically. The
precisions 1/σ2n follow Gamma distributions and can be
sampled directly.

Figure 2A shows the evolution of the log likelihood achieved
by the particle system during HMC. After roughly 200 to 500
HMC steps (depending on K), the particle cloud reproduces the
input data well, which is reflected in high values of the log
likelihood. The sampled particle configurations are very
similar to the true structure at the same level of coarse
graining. Successful sampling of Pr(x|R, ξ,D) with HMC is
observed reliably for many different initial particle
configurations.

It is clear that an increasing number of particles K results in a
higher goodness of fit, which is obvious from Figures 2A,B
showing the average standard deviation σn of the point cloud
likelihood (Eq. 13) as a function of particle radius: A higher
number of particles K results in more flexible models that result in
a better goodness of fit and higher precision. These findings
indicate that HMC is highly suited to sample particle
configurations.

Figure 2C shows the accuracy of the coarse-grained models
inferred from the projection data with HMC. The accuracy is
quantified by the root mean square deviation (RMSD) between
corresponding positions in a reference structure and a coarse-
grained model. Here, our reference structure is the atomic
structure of GroEL/ES reduced to the positions of
8,015 Carbon-alpha atoms listed in the PDB entry 1aon. To
compare this structure with a coarse-grained model, positions in
the atomic structure are assigned to positions in the coarse-
grained model that are closest in 3D space. There are two factors
that contribute to this measure of accuracy: the level of coarse
graining as well as the performance of posterior sampling based
on the 2D projection data. To disentangle both contributions, we
also show the accuracy between the crystal structure and its
coarse-grained versions (obtained with the DP-means algorithm
by Kulis and Jordan (2012); also see the Supplementary Material).

FIGURE 2 |HMC sampling of particle positions with fixed rotations for a simulated data set of GroEL/ES. A Evolution of the log likelihood during HMC sampling. The
larger the number of particlesK, the higher is the final log likelihood. Increasing darkness indicates larger number of particles. Line annotations also indicate the number of
particles. B Average standard deviation (computed over all 35 input point clouds) vs. the size of the particle R. C RMSD between Carbon-alpha positions of the crystal
structure and the coarse-grainedmodels inferred with HMC. As a reference, the RMSD between the Carbon-alpha positions and the coarse-grained versions of the
crystal structures is shown as red curve.
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This curve shows that coarse-grained models of GroEL/ES using
1,000 particles achieve an accuracy of about 4.6 Å, whereas an
ultra coarse-grained model based on only 50 particles is on
average 15.5 Å away from any Carbon-alpha atom in the
crystal structure. For very high levels of coarse graining (small
K), the models inferred with HMC reach the maximum accuracy
that is possible at this level of coarse graining. With increasing
number of particles K, the gap in accuracy widens but is still
similar to the maximum attainable value. For example, with K �
1000 the model obtained with HMC achieves an RMSD of 5.7 Å,
whereas the coarse grained model obtained directly from the
crystal structure achieves an accuracy of 4.6 Å.

If we estimate particle configurations from projection images
instead of point clouds, we obtain similar results. Supplementary
Figure S4 shows the log likelihood and cross-correlation
coefficients obtained with different numbers of particles, again
ranging between 50 and 1,000. The evolution of the log likelihood
indicates that the HMC sampler seems to converge even faster
compared to a simulation based on point cloud data: within
20–150 HMC steps the log likelihood plateaus. The accuracy of
the structure after 500 HMC steps is similar to or better than the
accuracy of the particle models fitted against 2D point clouds and
almost reaches the accuracy of the coarse-grained models derived
from the crystal structure. Supplementary Figure S5 shows FSC
curves for all 3D models. For the same number of particles, the
FSC curves are similar with a slight preference for the image-
based models when using larger numbers of particles. The
resolution ranges from 12.2 Å (50 particles) to 4.5 Å (1,000
particles). Supplementary Table S1 shows resolution estimates
for all models.

3.1.2 Sampling Rotational Parameters and Precisions
With Fixed Particle Positions
To test our rotational sampling approach, we fixed the particle
positions to an ultra coarse-grained structure (K � 200) of
GroEL/ES. Although each rotation can be updated
independently of the other rotations, and each conditional
posterior (given either by Eqs. 21 or 22) is only a four-

dimensional probability distribution over the quaternions, the
sampling problem is still challenging due to its multimodality.
Since Metropolis-Hastings (MH) is a local sampling algorithm, it
tends to become trapped in subordinate modes of the conditional
posterior, which are typical for rigid registration problems. As a
result, running MH on the conditional posteriors is not sufficient
to reliably recover the rotation matrices.

Figure 3A shows the cross-correlation coefficients for the 35
projection images obtained with global rotational sampling in
comparison with MH runs starting from 30 random rotations.
Global rotational sampling was based on the first two
discretizations of the 3-hemisphere using 330 and 2,640
quaternions, respectively. The number of local sampling
attempts was set to 30 so as to match the speed of global
sampling at the finer level. That is, the coarse sampling based
on 330 quaternions is approximately 8 times faster than the 30
local sampling trials. As evidenced by Figure 3A, global sampling
is capable of finding rotation matrices that yield high cross-
correlation coefficients, whereas MH alone fails to do so in a
systematic fashion. Figure 3B shows the Frobenius distances
(ranging from 0 to a maximum of 2

%
2

√
) between the true rotation

matrix and the estimated rotation matrices. Again, global
rotational sampling achieves more accurate rotations, whereas
the distances scatter largely for the local MH trials. These findings
suggest that global rotational sampling is indispensable for
Bayesian random tomography in agreement with our previous
findings (Joubert and Habeck, 2015) where we had to resort to
repeated Gibbs sampling runs.

Before we study sampling of the full posterior distribution (all
parameters R, x and ξ are unknown), we will first outline how
experimental projection images can be converted to 2D point
clouds that are suitable for our approach to random tomography.

3.2 Representation of Projection Images by
Point Clouds
Experimental projection data are typically presented as projection
images rather than point clouds. In this subsection, we discuss

FIGURE 3 | Global vs. local sampling of orientational parameters. Shown are the cross-correlation coefficients (panel A) and Frobenius distances (panel B) for
each of the 35 input directions achieved with local sampling based on the MH algorithm and global sampling using a regular discretization of the 3-hemisphere. The blue
curve shows the results obtained with the coarsest covering based on 330 unit quaternions; the red curve shows the results obtained with a finer covering (2,460
quaternions). The box plots show the variability within 30 trials of MH starting from random rotations.
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how to convert 2D projection images to 2D point clouds that are
suitable for our Bayesian random tomography approach. We
discuss this for a cryo-EM data set, but similar techniques are also
applicable to other data, as we will demonstrate later.

The projection properties of mixtures of spherical Gaussians
(Eq. 10) suggest to also represent the projection image as a
mixture of Gaussians. Our model can only capture nonnegative
intensities. Therefore, we first have to choose a suitable threshold
θ above which image intensities are considered real signal. The
threshold will be used to construct a binary mask: the intensities
of pixels that are part of the mask will be shifted by θ such that
their shifted intensities are nonnegative; the intensities of pixels
that are not part of the mask will be set to zero (i.e., they will be
ignored in the construction of the point cloud). A simple choice of
θ for class averages from cryo-EM is the median intensity, but a
different choice might be more suitable for other types of images.

An example of the thresholding procedure is shown in
Figure 4B for a class average showing the projection of the 80S
ribosome (shown in Figure 4A). Black pixels indicate pixels with
intensity above the median. By looking at the mask, it is clear that
only the central pixels forming a connected component carry signal.

Next, we identify pixels that form connected components.
Again this applies to cryo-EM images; other types of images
might require a different treatment to construct a suitable mask.
To identify signal pixels that form a connected component, we
convert the thresholded image to an undirected graph G � (V, E)
where the pixels with intensities above the threshold are the
vertices V � {um; g(um)> θ,m � 1, . . . ,M}. Edges are introduced

between all pairs of pixels that are nearest neighbors on the 2D
square lattice, i.e. their Euclidean distance is smaller than or equal
to one pixel:

E � {(i, j) ∈ {1, . . . , |ν|}2; ‖ ui − uj ‖ ≤ 1}.

As shown in Figure 4C, multiple connected components are
typically found in the masked pixels. Since cryo-EM class
averages are often centered, we pick the connected component
whose center of mass is closest to the image center. The selected
pixels including their intensity (shifted by θ) are shown in
Figure 4D.

To obtain a particle-based representation of the central
connected component, we run the Expectation Maximization
algorithm (details in Supplementary Material). Figure 4E shows
the estimated point cloud using 1,000 particles. The estimated
standard deviation of the Gaussian is 1.34 pixels. The density
generated by the 2D particles is shown in Figure 4 and correlates
highly with the original image and the masked image.
Supplementary Figure S1 shows more examples of class
averages represented as 2D point clouds.

3.3 3D Reconstruction by Sampling the Full
Posterior Distribution
We applied Bayesian random tomography to three real datasets,
two cryo-EM datasets and one dataset from stochastic
microscopy experiments visualizing marine microorganisms.

FIGURE 4 | Representation of projection images by 2D point clouds (A) Class average of the 80S ribosome (B) Mask obtained by thresholding image intensities
greater than themedian intensity. Black pixels are part of themask (C)Clustering of pixels that are part of themask. Pixels that form a connected component are grouped
together and shown in different grayscale colors (D) Pixels that form themost central connected components with shifted image intensities (E) 2D point cloud composed
of 1,000 particles obtained by running the Expectation Maximization algorithm (F)Model image according to Eq. 10. The cross-correlation coefficient between the
model and the original image is 95.8%. If only pixels are considered that are part of the mask indicating the central connected component, the cross-correlation
coefficient increases to 99.6%.
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In these applications, we sampled the joint posterior distribution
of all unknown parameters, particle positions xk, rotations Rn and
nuisance parameters ξ, with the MCMC techniques discussed
above. We started our reconstruction simulations from spherical
random structures and random rotations and did not observe any
dependence on the initial values.

The first dataset is comprised of 400 2D class averages of the
80S ribosome computed with SIMPLE2 (Elmlund and Elmlund,
2012) from cryo-EM micrographs (EMPIAR-10028); the size of
the images is 80 × 80 pixels, the pixel size is 2.68 Å. The class
averages are part of a SIMPLE2 tutorial and publicly available
at https://simplecryoem.com/SIMPLE3.0/old_pages/2.5/data/

FIGURE5 | 2D projections of the 80S ribosome. First row: point clouds derived from class averages. Each projection image is represented by 1,000 points. Second
row: 2D projections of the coarse-grained model calculated with Bayesian random tomography based on 2D point clouds. Third row: Class averages. Bottom row: 2D
projections of the coarse-grained model calculated with Bayesian random tomography based on class averages.

FIGURE 6 | 3D models of the 80S ribosome (Left) 1,000 particle model inferred with Bayesian random tomography (Right) Initial model computed with PRIME.
The particles are sorted such that spatially close particles have similar indices. By using Pymol’s chainbow command, we can then visualize the particle models such that
substructures are better visible.
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simple2.5tutorials.tgz. Figure 4 and Supplementary Figure S1
show some example images and the 2D point clouds that were
generated with the procedure outlined in subsection 3.2. Class
averages were converted to 2D point clouds each composed of
1,000 points. Because the dataset is highly redundant, we only
used the first 50 class averages and point clouds in the posterior
simulations.

We used K � 200 and K � 1000 particles with a radius of R �
16.4 and R � 8.4 Å, respectively to fit the ribosome point clouds.
We ran 500 iterations of Gibbs sampling with the global strategy
for the rotational parameters and HMC for the particle positions.
Figure 5 shows five input point clouds and the projected model
after convergence. We observe a good agreement between the
experimental point clouds and the model point clouds with an
RMSD ranging between 6.4 Å and 9.8 Å and an average
of 7.7 ± 0.7 Å.

We also compared our 3D coarse-grained model of the 80S
ribosome with a structure obtained with PRIME (Elmlund et al.,
2008). To simplify the comparison, we converted the density map
obtained with PRIME to a structure made up of 1,000 particles.
The indices of the particle models were ordered such that spatially
close particles have similar particle indices (which can be
achieved, for example, by solving a traveling salesman problem
using the matrix of inter-particle distances as input). Both
structures show similar features (Figure 6); an FSC analysis
reveals a resolution of 15.5 Å using the 0.143 criterion
(Supplementary Figure S6).

We also ran simulations based on the first 50 class averages
rather than 2D point clouds using 200 up to 12,000 particles.
Again, we ran 500 steps of Gibbs sampling where the rotational

parameters were updated globally with a frequency of 0.1.
Projections of the 200 particle model are shown in the bottom
rows of Figure 5. The cross-correlation coefficient between the
class averages and the model images ranges between a minimum
andmaximum value of 90%–96%with an average of 94 ± 1%. For
comparison, we also report the RMSDs to the particle clouds
which range between 6.1 Å and 13.1 Å and an average
of 8.3 ± 3.0 Å.

Using the last 100 particle configurations, we also generated
density maps for each simulation and compared them to the
high-resolution reconstruction EMD-2660 (Wong et al., 2014).
The density maps are shown in Figure 7. To assess the quality of
the particle models, we computed the FSC between the high-
resolution map and the model maps (Supplementary Figure S6).
Based on the 0.143 criterion, the resolution of the particle models
ranges from 23.6 Å (200 particles) to 10.6 Å (12,000 particles).
For comparison, the reconstruction obtained with SIMPLE
reaches a resolution of 6.2 Å based on 200 class averages.
More details about the quality of the reconstruction and
computation times can be found in the Supplementary
Material (Supplementary Tables S2, S3).

The posterior samples can be also used to assess the
uncertainty of the particle models in the form of structural
error bars. To carry out uncertainty quantification, the particle
models first need to be superimposed and a correspondence
between particles across different samples has to be
established. We solve these two tasks by using the Iterative
Closed Point (ICP) method followed by a linear assignment
step where particle distances between superimpose clouds are
used as a cost. Supplementary Figure S7 shows an example for

FIGURE 7 | Density maps of the 80S ribosome obtained with Bayesian random tomography using 50 class averages as input. Top row: 200, 1,000, 2000 particles
(left to right). Bottom row: 4,000, 8,000, 12,000 particles (left to right).
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structures based on 200 and 2000 particles. The distribution of
uncertainties is inhomogeneous. Highly uncertain particles tend
localize on the surface of the 200-particle model. The 2000-
particle model shows smaller variations in the uncertainty of
particle positions. So the large variations in the uncertainties of
the 200-particle model might also be caused by the small number
of particles.

The second cryo-EM dataset comprises 16 class averages of
beta-galactosidase. These images are part of a RELION tutorial
and available at ftp://ftp.mrc-lmb.cam.ac.uk/pub/scheres/
relion31_tutorial_precalculated_results.tar.gz. The class average
based on the data from EMPIAR-10204. The size of the images is
60 × 60 pixels, the pixel size is 3.54 Å. In this test, we inferred the
structure from the images directly using likelihood (11) without
converting the class averages to 2D point clouds.

Similar to the ribosome simulations we used 500 steps of Gibbs
sampling with occasional global sampling of the rotational
parameters to infer the coarse-grained structure of beta-
galactosidase. We inferred structural models for systems with
100 up to 2000 particles.

The top row of Figure 8 shows the first eight class averages
that were used as an input for particle-based random
tomography. The bottom row shows the projection images of
a model composed of 500 particles that was obtained with
sampling the full posterior distribution. Starting from a

random initial structure and rotations, our sampling algorithm
estimates a model structure and orientations that reproduce the
experimental images closely with cross-correlation coefficients
ranging between 94.7% and 97.5% and an average of
95.9 ± 0.01%.

We compared the structure inferred with Bayesian random
tomography against a high-resolution crystal structure (PDB
code 1jz8) and a near-atomic cryo-EM reconstruction (EMD-
5995). To enable this comparison, we converted the PDB
structure to a 3D point cloud composed of 2000 particles.
Correspondences between particles in our model and the
model based on the crystal structure were established as in the
calculation of the RMSD. Figure 9 shows both models. The
RMSD between our particle model and the Carbon-alpha
atoms of the high-resolution structure 1jz8 is 3.4 Å. For
comparison, we also report the RMSD between 1jz8 and its
coarse-grained version (shown on the right of Figure 9) which
is 2.4 Å. Bayesian random tomography achieves a similar
accuracy by inferring a 3D model from the class averages as
direct coarse graining of the high-resolution structure.
Supplementary Figure S8 shows density maps for all of the
five simulations. By comparison with the high-resolution
reconstruction (EMD-5995) we assess the resolution of the
models to range between 25 Å (100 particles) and 11.5 Å
(2000 particles). For comparison, the initial model from

FIGURE 8 | 2D projections of beta-galactosidase. Top row: eight (out of 16) projection images (RELION class averages). Bottom row: Projection images
calculated with Bayesian random tomography using 500 particles.

FIGURE 9 | 3D models of beta-galactosidase (Left) 2000 particle model inferred with Bayesian random tomography (Right) Coarse-grained model of the atomic
structure (PDB code 1jz8).
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RELION achieves a resolution of 9.8 Å (Supplementary Figure
S9 shows the corresponding FSC curves).

To assess the impact of the Boltzmann prior (Eq. 17), we ran
two posterior simulations using 200 and 1,000 particles with the
inverse temperature set to zero (i.e. the repulsive inter-particle
energy is switched off). The quality of the reconstructed density
map is largely unaffected by this change. For the 200 particles
model, the average cross-correlation with Boltzmann prior is
94.7 ± 1.1%; without the Boltzmann prior we have 95.7 ± 0.9%.
For the 1,000 particles model, these averages are 95.5 ± 1.5%
(with Boltzmann prior) and 95.9 ± 1.5% (without Boltzmann
prior). A comparison of the FSC curves obtained with and
without Boltzmann prior confirms this finding
(Supplementary Figure S11). The estimated resolution of the
200-particle model is 20.5 (19.4) Å with (without) Boltzmann
prior; the 1000-particle model achieves a resolution of 12.0 (11.6)
Å with (without) Boltzmann prior.

However, the Boltzmann prior has a strong effect on the
packing of particles as assessed by the radial distribution
functions (Supplementary Figure S11). With Boltzmann
prior, the radial distribution shows a prominent peak close to
the particle diameter, which is indicative of local order similar to a
fluid. Without the Boltzmann prior, this peak disappears and we
observe an enrichment of very short distances indicating a
physically unrealistic particle packing. If our goal is to
reconstruct a single 3D density from a homogeneous dataset,
introducing the Boltzmann prior is not harmful, but dispensable.

Turning the argument around, we find that the Boltzmann prior
is compatible with the data and does not result in a severe loss of
fitting quality. We expect that the prior will become essential in
more advanced 3D reconstruction tasks, in particular when facing
conformational heterogeneity.

Finally, we applied our random tomography approach to a
dataset that shows structures on length scales that are much larger
than the length scales imaged in cryo-EM. Following the work by
Levis et al. (2018), we downloaded in situ microscopy images of
the marine plankton species Pyramimonas Longicauda; the data
are available at https://darchive.mblwhoilibrary.org/handle/1912/
7341. These mesoscopic organisms are transparent and therefore
allow for 3D reconstruction from 2D microscopic images. Since
the organism seems to be quasi symmetric, we selected out of the
121 projection images recorded in 2013, 16 representative images.
The selected images cover most of the views that are present in the
dataset.

The intensity of microscopic images gn is proportional to the
transmissivity, which is related to the optical density of the object
via an exponential transform. Therefore, to convert the images to
2D point clouds, we use the expectation maximization approach
(see Supplementary Material) with weights proportional to
−log gn > 0, since gn ∈ (0, 1). The six out of the 16 selected
images and their point cloud representations are shown in
Figure 10. Each microscopic image was converted to 2D cloud
composed of 1,000 points.

The fact that the magnification can vary from image to image
requires that we extend the likelihood for 2D point clouds (13)
(also Supplementary Equations S1, S2 in the Supplementary
Material). These variations are accounted for by an additional
factor that scales the coordinates of the projected model so as to
match the 2D point cloud derived from the microscopic image.
Moreover, we need to account for shifts in the image plane. These
extensions increase the number of unknown parameters per
image from four to eight: four quaternions parameterizing the
unknown orientation, two translation parameters accounting for
a shift, a scaling factor compensating variations in the
magnification and a precision.

Inference of a 3D particle model proceeded as before. We
estimated a model composed of 100 particles from the 16 2D
point clouds starting from a random structure and random
rotations (the initial values for the scaling factors and

FIGURE 10 | Stochastic microscopy images of a plankton species. Top row: six (out of 16) projection images. Middle row: 2D point clouds representing the
image data. Bottom row: 2D projections of the particle model calculated with Bayesian random tomography.

FIGURE 11 | 3Dmodel of Pyramimonas Longicauda using 100 particles
inferred from the point clouds shown in Figure 10.
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translations were one and zero, respectively). Figure 11 shows a
3D model of the plankton species inferred with Bayesian random
tomography.

4 DISCUSSION

We outlined a Bayesian approach to random tomography, the
problem of reconstructing a 3D structure from 2D views along
unknown random directions. At the core of our approach is a
representation of 3D volumes using a radial basis function kernel
whose centers are our main inference parameters. We interpret
the kernel centers as particle positions and use an excluded-
volume prior to ensure that estimated particle configurations
show a physically plausible packing. We demonstrated that
coarse-grained models can be inferred from projection data
(images or point clouds) with MCMC algorithms such as
HMC and global sampling of the rotations.

In cryo-EM applications, our approach can be used to generate
an initial model that can be refined further. So far, we tested the
method only an class averages that displayed a high SNR. In
future applications, we plan to explore the use of Bayesian random
tomography from raw cryo-EM images and include the effect of the
CTF into our model. Another route for extending the approach is
account for conformational heterogeneity, which is one of the major
bottlenecks in cryo-EM data processing. An interesting approach to
characterize conformational variability in the presence of continuous
flexibility has been proposed recently by Chen and Ludtke (2021)
who use an autoencoder network with a Gaussian mixture model to
represent conformational changes in a low dimensional latent space.

In all applications discussed in this paper, the number of
particles K was fixed. An interesting question for future research
is to estimate the number of particles based on the projection

data. This might also provide a new way of measuring the
resolution of the input data.
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How to Determine Accurate
Conformational Ensembles by
Metadynamics Metainference:
A Chignolin Study Case
Cristina Paissoni* and Carlo Camilloni *

Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy

The reliability and usefulness of molecular dynamics simulations of equilibrium processes
rests on their statistical precision and their capability to generate conformational
ensembles in agreement with available experimental knowledge. Metadynamics
Metainference (M&M), coupling molecular dynamics with the enhanced sampling ability
of Metadynamics and with the ability to integrate experimental information of
Metainference, can in principle achieve both goals. Here we show that three different
Metadynamics setups provide converged estimate of the populations of the three-states
populated by a model peptide. Errors are estimated correctly by block averaging, but
higher precision is obtained by performing independent replicates. One effect of
Metadynamics is that of dramatically decreasing the number of effective frames
resulting from the simulations and this is relevant for M&M where the number of
replicas should be large enough to capture the conformational heterogeneity behind
the experimental data. Our simulations allow also us to propose that monitoring the relative
error associated with conformational averaging can help to determine the minimum
number of replicas to be simulated in the context of M&M simulations. Altogether our
data provides useful indication on how to generate sound conformational ensemble in
agreement with experimental data.

Keywords: molecular dynamics, metadynamics, metainference, statistical error, conformational ensembles

INTRODUCTION

Molecular dynamics simulations (MD) are a powerful tool to study at high resolution the dynamics
of biomolecules in solution, yet they rely on the quality of the physical model used to describe
molecules (i.e., the force field) as well as on the computing power needed to acquire longer and longer
trajectories that is better and better statistics (Bottaro and Lindorff-Larsen, 2018; Grossfield et al.,
2019). Force fields have been dramatically improving in the last years and computing power is always
increasing allowing to study more and more complex systems (Best et al., 2014; Huang et al., 2017;
Robustelli et al., 2018). To further improve the extent of the sampling and the accuracy of the physical
model, enhanced sampling techniques (Sugita and Okamoto, 1999; Laio and Parrinello, 2002) as well
as techniques to integrate experimental data in MD have been developed (Fennen et al., 1995;
Bonomi et al., 2016; Köfinger et al., 2019). Reviewing the vast literature on both topics is outside the
scope and space of the present work and excellent reviews are available (Spiwok et al., 2015; Allison,
2017; Bonomi et al., 2017; Bottaro and Lindorff-Larsen, 2018; Camilloni and Pietrucci, 2018; Bernetti
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et al., 2020). Among these methods we have contributed to
develop Metadynamics Metainference (M&M) (Bonomi et al.,
2016a) that is a combination of Metadynamics (Laio and
Parrinello, 2002), a popular enhanced sampling technique, and
Metainference (Bonomi et al., 2016), a Bayesian scheme that
allows for the integration of equilibrium experimental
observables as restraints over multiple replicas of a simulation.
M&M has been applied to combine different experimental
observables and to work on a large variety of systems (Löhr
et al., 2017; Eshun-Wilson et al., 2019; Heller et al., 2020;
Jussupow et al., 2020).

In this work we aim to understand how Metadynamics should
be ideally coupled to Metainference in order to guarantee optimal
statistical precision and experimental accuracy. Multiple MetaD
variants are available and M&M has always been coupled with
Parallel Bias Metadynamics (PBMetaD), a variant specifically
designed to enhance the sampling along many one-
dimensional collective variables (CVs) (Pfaendtner and
Bonomi, 2015). In particular we identified three key questions:
1) how reliable are the error estimates resulting from
Metadynamics simulations when using a standard technique as
block averaging (Flyvbjerg and Petersen, 1989); 2) how does
multiple-walkers PBMetaD compare to conventional multiple-
walkers MetaD and what are their pros-and-cons; 3) how do the
two approaches combine with Metainference to achieve at the
same time an optimal sampling and an optimal integration of
experimental data? Of note, the first two questions apply not only

to M&M but to the sound application of enhanced sampling
techniques. To answer these questions, we investigated
thoroughly the conformational space of chignolin (Figure 1), a
10 residues peptide that can populate three states and whose
complexity, while not comparable to that of full-length proteins,
is definitely greater than the widely used alanine dipeptide in
vacuum (Kührová et al., 2012). In doing so we introduced a
scheme to combine simple CVs into more complex ones with the
aim of discriminating some identified reference states. By
performing PBMetaD simulations with many simple CVs
(PB20), PBMetaD simulations with less, optimally combined,
CVs (PB4); as well as MetaD simulations with the same optimally
combined CVs (ME2), all in triplicate (Table 1), we show that, 1)
block-averaging provides a robust estimate of statistical errors; 2)
PBMetaD and MetaD dramatically decrease the effective number
of frames collected by MD and this effect is worse in MetaD. This
second effect is very relevant in combining Metadynamics with
Metainference because it decreases the number of effective
replicas that can actually contribute to the estimation of the
conformational heterogeneity associated with experimental
observables. To test this effect, we then performed (Table 1)
M&M simulations using either PBMetaD orMetaD and 10 or 100
replicas. To avoid effects related to the quality of the experimental
data and the forward model, synthetic SAXS data have been
obtained using as a reference a 40 μs long simulated tempering
simulation of chignolin by Piana et al., 2020. Our results indicate
that the minimum number of replicas in M&M simulations can
be set by monitoring the relative error associated with the
averaging of back calculated observables, and that this number
is affected not only by the system and the calculated observable
but also by the details of the Metadynamics setup.

MATERIALS AND METHODS

Molecular Dynamics Simulations of
Chignolin
Simulations of chignolin were performed using GROMACS 2019
(Abraham et al., 2015) and PLUMED 2 (Tribello et al., 2014). In
the first round of simulations the DES-amber force field (Piana
et al., 2020) was used in combination with the tip4p water model
with increased dispersion (Piana et al., 2015). A starting model of
CLN025 chignolin was taken from PDB 5AWL (Honda et al.,
2008) and solvated with 2,553 water molecules in a dodecahedron
box initially 1.4 nm larger than the protein in each direction. The
system was neutralized with a salt concentration of 100 mM
NaCl. After an initial energy minimization to a maximum
force of 100 kJ/mol/nm, the solute was equilibrated under
NVT condition at the temperature of 340 K for 50 ps using
the Berendsen thermostat (Berendsen et al., 1984); then
Berendsen barostat was used to equilibrate the system in the
NPT ensemble to the target pressure of 1 atm for 200 ps,
maintaining the temperature at 340 K with the Bussi
thermostat (Bussi et al., 2007). The equilibration phase was
followed by an initial MD simulation of 250 ns, from which a
pool of conformations was extracted to be used as starting models
for the subsequent runs (run 1). Starting points for replicates run

FIGURE 1 | Representation of the three main chignolin minima
corresponding to the folded (Min 1), misfolded (Min 2) and unfolded (Min 3)
states.
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2 and run 3, where instead extracted from run 1 thus resulting in
very different initial conditions. The production runs were all
performed in the NPT ensemble, maintaining temperature and
pressure at the values of 340 K and 1 atm respectively, using the
Bussi thermostat (Bussi et al., 2007) and the Parrinello-Rahman
barostat (Parrinello and Rahman, 1981). Electrostatic was treated
by using the particle mesh Ewald scheme (Essmann et al., 1995)
with a short-range cutoff of 0.9 nm and a Fourier grid spacing of
0.12 nm; van der Waals interaction cutoff was set to 0.9 nm. For
these simulations the hydrogen mass repartitioning scheme
(Hopkins et al., 2015) was used to reduce the computational
cost: the mass of heavy atoms was repartitioned into the bonded
hydrogen atoms using the heavyh flag in the pdb2gmx tool; the
LINCS algorithm (Hess et al., 1997) was used to constraint all
bonds, eventually allowing to use a time step of 5 fs.

Using this set-up, we ran three different Metadynamics
simulations, each performed in triplicates (named run 1, run
2, run 3, starting from different set of conformations). These are:

1. PB20: in which PBMetaD was employed and 20 CVs were
biased. These include the phi/psi dihedral angles of the 10
amino acids composing chignolin (18 CVs), the gyration
radius and the antiparallel beta sheet-content.

2. PB4: in which PBMetaD was employed biasing 4 CVs,
comprising the gyration radius, the antiparallel beta sheet-
content and 2 CVs optimized based on the knowledge of the
folded, misfolded and unfolded chignolin conformations
(named back and cmap, and based on a combination of
backbone dihedral angle and of contacts between groups of
atoms, see next section).

3. ME2: in whichMetaD was employed using 2 CVs, the gyration
radius and the optimized cmap collective variable.

All the simulations were performed adopting the multiple-
walker scheme (Raiteri et al., 2006), simulating 10 replicas (or
walkers): each replica was evolved for 1 µs, resulting in a 10 μs
sampling per each simulation. Metadynamics was used in its well-
tempered version (Barducci et al., 2008), where Gaussians with an
initial height of 0.5 kJ/mol were deposited every 1 ps using a bias
factor of 10. For all the CVs, the width of the Gaussians was
determined with the dynamically adapted geometry-based
Gaussian approach (Branduardi et al., 2012), using 0.015 nm

as the extent of Cartesian space covered by a variable to estimate
CVs fluctuations, and setting a minimum value for the width
specific for each CV (0.03 rad for the dihedral angles, 0.004 nm
for the gyration radius, 0.02 for the antiparallel beta sheet-
content, 0.01 and 0.001 for the back and cmap optimized CVs).

Each simulation was analyzed by creating a concatenated
trajectory and reweighting each frame by using the final
Metadynamics bias potential, assuming a constant bias during
the entire course of the simulation (Branduardi et al., 2012). To
assess the convergence of the simulations and the associated
statistical errors we used block-average analysis (Flyvbjerg and
Petersen, 1989; Bussi and Tribello, 2019). According to this
technique, the trajectory is split into a set of NB blocks of
equal length. By comparing the averages of a given quantity
from each block we can calculate the error bar on our estimate of
that quantity: for large enough blocks the averages should not be
time correlated so that the estimate of the error converges. As our
blocks could be characterized by different weights, this must be
taken into account in the estimation of the error as described in
(Invernizzi et al., 2020). Given Wb the weight of the block b,
obtained as the sum of the weights of the frames
composing the block, the statistical error on the observable

O is: errO �
������������������

1
(NBeff −1)

∑NB

b�1 Wb [Ôb−Ô]2

∑NB

b�1 Wb

√

, where NBeff �

(∑NB
b�1Wb)2/∑NB

b�1W2
b is the effective block size, the sums run

on the number of blocks NB, Ôb is the average computed over
the frames of block b and Ô is the average computed over all the
frames, which corresponds to the average computed over the
block averages, i.e. Ô � ∑NB

b�1 Wb Ôb/∑NB
b�1 Wb. As pointed out in

(Invernizzi et al., 2020) when the weights of the blocks are
unbalanced, using NB instead of NBeff can significantly
underestimate the uncertainty.

Optimized Collective Variables
PBMetaD can in principle bias many CVs using one-dimensional
Gaussians (Pfaendtner and Bonomi, 2015), but often these CVs
are simple in nature (like dihedrals or distances) thus losing the
complex correlations that may be at play in slow reaction
coordinates. Finding optimal CVs is a complex problem that
requires the previous knowledge not only of the different states

TABLE 1 | Summary of the simulations performed or analyzed in this work.

Name Replicates #Replicas Enhanced sampling technique #CV Force field Replica length (total) μs Color code

Referencea 1 1 Simulated tempering NA DES-amber 40 Dark grey
PB20 3 10 PBMetaD 20 DES-amber 1 (30) Blues
PB4 3 10 PBMetaD 4 DES-amber 1 (30) Greens
ME2 3 10 MetaD 2 DES-amber 1 (30) Violets
Prior 1 10 PBMetaD 4 99sb-ildn 1 (10) Light grey
PB4(10r) 1 10 PBMetaD 4 99sb-ildn + M&M 0.5 (5) Cyan
ME2 (10r) 1 10 MetaD 2 99sb-ildn + M&M 0.5 (5) Yellow
PB4(100r) 1 100 PBMetaD 4 99sb-ildn + M&M 0.5 (50) Blue
ME2 (100r) 1 100 MetaD 2 99sb-ildn + M&M 0.5 (50) Orange

For each simulation are reported: the number of replicates, the replicas (or walkers), the enhanced sampling technique employed, the number of CVs, the force field, the length of each
replica (and the total simulation time) and the color code associated to the simulation in the figures.
aThis simulation was performed by Piana et al. (2020).
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but also of the pathways connecting them. Example of methods
using reactive pathways to estimate optimal CVs include TICA,
SGOOP and machine learning approaches (Tiwary and Berne,
2016; McCarty and Parrinello, 2017; Sultan and Pande, 2017,
2018; Wang and Tiwary, 2020). Instead of learning from reactive
pathways one can instead try to only maximize the discrimination
of the different states as implemented in HLDA (Mendels et al.,
2018). One possible limitation of this latter approach, which has
the clear advantage of being more affordable for large and
complex systems, is that a CV that optimally discriminate
states may not correspond to an efficient reaction coordinate.
Here we propose a simple method to generate a novel
CV(a,φ) � ∑N

i�1aiφi, where a is a normalized vector of size N,
starting from N input simple collective variables φ (e.g., these
could be the backbone dihedral angles, or the C⍺-C⍺ contacts).
CV(a,φ) while trying to discriminate two or more states, tries
also to 1) discard as few of the input CVs φ as possible by keeping
the weights a of the combined CVs as uniform as possible; and 2)
keep the width of the minima comparable. This latter property is
relevant for methods like Metadynamics that uses Gaussians. To
achieve these properties the optimal value a is obtained by
minimizing the following scoring function (here given for two
states indicated as 1 and 2):

ψ(a) � − <CV1 > − <CV2 >
2(σ2

CV1
+ σ2CV2

)
+max(σCV1, σCV2)
min(σCV1, σCV2)

+∑N

i�1a
2
i ln

a2i
1/N

where the first term maximizes the discrimination among states,
the second keeps the width of the minima comparable, the last
keeps the parameters as uniform as possible.

This approach is then applied to optimize two CVs, back and
cmap, as the combination of chignolin backbone dihedral angles
and the contacts among the center of the backbone of i − i + 3
aminoacids, respectively. The CVs are first calculated for the three
states as observed in the preliminary 250 ns long simulation
(Supplementary Figure S1) and then their combination is
obtained as described above. The distribution of the values for
the cmap CV before and after optimization is reported in
Supplementary Figure S1.

Metainference
Metainference is a technique based on Bayesian inference and
replica-averaging modeling (Rieping, 2005; Cavalli et al., 2013;
Bonomi et al., 2016). Following the replica-averaging modeling
strategies, multiple replicas of the system are simulated in parallel
and the quantities to be restrained against experimental data are
back-calculated as averages over the replicas, thus taking into
account the effects of conformational averaging. Bayesian
inference allows to modulate the strength of the restraints
estimating, along with the model, statistical errors, which
include random and systematic errors as well as inaccuracies
of the forward model.

In the case of Gaussian noise, the Metainference
energy is described by (Löhr et al., 2017):
EMI � EFF + kBT

2 ∑Nd
i�1∑

NR
r�1[di − λ〈 fi(X)〉]2/(σBr,i)2 + (σSEMi )2 + Eσ ,

where EFF is the force field energy, kB is the Boltzmann constant,
T the temperature, d the set of Nd experimental data, f(X) is the

forward model used to back-calculate the observable from
conformation X, fi(X) indicates the average over the NR
replicas for observable i, σBr,i is an uncertainty parameter that
describes random and systematic errors, σSEMi is the standard
error of the mean related to conformational averaging, λ is an
optional scaling parameter and Eσ is an energy term that accounts
for normalization of the data likelihood and error priors. In
Metainference Monte Carlo sampling is used to sample both the
uncertainty σBr,i (which depends on both the replica and the
observable) and optionally the scaling parameter λ.

Metainference can be combined with Metadynamics (M&M)
to accelerate the exploration of the conformational space
(Bonomi et al., 2016; Löhr et al., 2017). In M&M the replicas
share the Metadynamics bias potential as in the case of multiple-
walkers method (Raiteri et al., 2006). Depending on the
bias potential VG each replica r has a different weight that can
be approximated on the fly as wr ∼ eVG(CV(Xr))/kBT , with CV(Xr)
representing the set of selected CVs, functions of the microscopic
coordinates X. Therefore, these weights must be taken into
account when calculating the experimental averages and the
standard error of the mean σSEMi , that are computed as: fi(X) �

∑NR
r�1 wrfi(Xr)/∑NR

r�1 wr and σSEMi �
����������������������

1
(NReff −1)

∑NR

r�1 wr [fi(Xr)−〈fi(X)〉]2

∑NR

r�1 wr

√

,

with NReff � (∑NR
r�1wr)2/∑NR

r�1w2
r representing the number of

effective replicas. In order to reduce the noise resulting from the
instantaneous fluctuations of the bias, the weight of each replica is
calculated via a moving average of the bias over a given number of
MD steps (set by the keyword AVERAGING). Also, to reduce the
oscillations of σSEMi we used the maximum value of σSEMi over the
same time window defined by AVERAGING keyword. Finally, we
automatically determined the maximum values that can be sampled
for σBr,i as max(σBr,i) � σSEMi

���
NR

√
, with NR being the number of

replicas (this option can be set in plumed using the keyword
OPTSIGMAMEAN � SEM_MAX).

Small-Angle X-Ray Scattering
(SAXS)-Driven Molecular Dynamics
Simulations
Synthetic SAXS intensities, to be used as target for the restraints
in our simulations, were calculated from a reference 40 μs long
MD trajectory, performed with the DES-amber forcefield and
provided by Piana et al. 2020. From this simulation a set of 24
representative SAXS intensities at different scattering angles,
ranging between 0.01 and 1.39 Å−1 and equally spaced, were
calculated with PLUMED using atomistic structure factors and
considering only the trajectory frames with temperature close to
340 K (Paissoni et al., 2019; Paissoni et al., 2020). While we know
that this range is not representative of a realistic SAXS
experiment, considering the small dimension of the protein we
decided to use such a large range to include higher resolution
details. SAXS restraints were applied every 2 MD steps and
atomic scattering factors were used to back-calculate the 24
SAXS intensities. The SEM_MAX option was used to
automatically estimate both the σSEMi as well as the maximum
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value of σBr,i for the M&M simulations; the window averaging for
the estimation of the weights was performed on a time window of
1 ps to match the frequency of deposition of Metadynamics hills.

For the set of SAXS-driven simulations we used as prior the
amber99sb-ildn (Lindorff-Larsen et al., 2010) force field with the tip3p
water model (Mark and Nilsson, 2001). The systemwas prepared and
equilibrated as described above and a set of starting conformationswas
generated from a 1 μs long plain MD simulation. We performed five
Metadynamics simulations (Table 1): one unrestrained, prior,
amber99sb-ildn simulation, using the PB4 setup with 10 replicas;
two simulations, PB4 (10r) and PB4 (100r), with the PB4 setup plus
SAXS restraints using either 10 or 100 replicas; two simulations, ME2
(10r) andME2 (100r), with theME2 setup plus SAXS restraints, using
either 10 or 100 replicas. The unrestrained prior simulation evolved for
1 μs per replica, while the SAXS driven simulations evolved for 500 ns
per replica.

The input files for all the simulations of this work are
deposited in PLUMED-NEST (The PLUMED Consortium,
2019) as plumID:21.014.

RESULTS

Metadynamics and M&M simulations, using either PBMetaD or
conventional MetaD, were performed to understand: 1) the
statistical precision achievable by different Metadynamics setups;
2) the role played by enhanced sampling in the integration of
experimental information in MD simulation by Metainference.

Assessing the Statistical Precision of
Metadynamics Simulations
PBMetaD or conventional MetaD, was used to simulate the
folding and unfolding of chignolin close to the transition

temperature and to compute the free energy and the
equilibrium population related to its three main
conformational states (Figure 1). In particular we focused our
attention on the ability to correctly estimate the errors associated
to these calculations. Estimating statistical errors in enhanced
sampling MD of large systems is a relevant problem because of
their high computational cost. Previous works have already noted
the importance of running multiple replicates, alternatively
block-averaging can be used to estimate errors taking into
accounts the time-correlated nature of MD. Here we compare
statistical errors estimated from replicates with those resulting
from block-averaging. In Figure 2 we rebuilt a free-energy profile
as function of an unbiased collective variable, the RMSD
(computed over the main chain plus the Cβ atoms) with
respect to a reference folded state of chignolin, and we
estimated the population of three minima: folded (Min 1,
RMSD ≤1.9 Å), misfolded (Min 2, 1.9 Å ≤ RMSD ≤3.0 Å) and
unfolded (Min 3, RMSD >3.0 Å, see Figure 1). The error of each
simulation is estimated using block-averaging. Furthermore,
averages and errors are obtained by the triplicates, where the
average free energy of bin b is computed as Fb � −kBT log(pb)
and the associated errors are estimated as errFb � 1�

3
√ kBT

σpb
pb
, with

pb being the average probability of the bin computed over the
triplicates and σpb its standard deviation.

Qualitatively, the resulting free energies display a good overlap
both within the triplicates and when comparing the three
simulation setups (Figure 2). Major deviations are mainly
located in the high energy regions (>2kBT). Nevertheless, we
note that the variability among simulations strongly affect the
population of the three minima, leading to differences for the
foldedminimum from less than 10% for PB4 simulations to ∼20%
for ME2 simulations. The populations estimated by averaging
over the replicates are more precise and in quantitative agreement
among the three simulation setups stressing once again the

FIGURE 2 | The RMSD free energies (top panels) and the population of the three main chignolin minima (bottom panels) are represented for different sets of
simulations (PB20 in blues, PB4 in greens, ME2 in violets shades). The different shades indicate each of the runs of the triplicates and the errors are estimated via block-
average analysis. In the rightest panels are reported the averages computed over the triplicates for each set of simulations; here the errors are determined as standard
errors over the triplicates as described in the main text. In all the pictures the free energies are shifted to set their minimum to 0.
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importance of running independent simulations. Reassuringly,
errors calculated by block-averages (comparing the free-energy
obtained from blocks of lengths in the range 30 ns–1 µs), correctly
estimate the variability observed within the triplicates (Figure 2),
with ME2 simulations showing the largest error in the set. Free-
energies and errors estimated as a function of the other biased and
unbiased CVs (Supplementary Figures S2, S3) display a
consistent behavior. Furthermore, we compared our results
with a reference 40 μs long simulated tempering simulation
published in Piana et al. (2020), showing that the populations
of the minima are quantitatively in agreement with those
obtained averaging over our replicates (Supplementary
Figure S4).

To rationalize the higher variability observed in ME2
simulations with respect to the PB20 and PB4 simulations, we
calculated the number of transitions between the folded and
unfolded state as well as the effective statistics, i.e., the fraction of
frames actually contributing to our statistical observations (cf.
Table 2). While the number of transitions per microsecond is
slightly lower in ME2 with respect to PB20 and PB4, the effective
number of frames is surprisingly low for all simulations and
dramatically so for ME2 (Table 2). This is likely due to the wider
exploration of the conformational space by MetaD, that spends
more time in high free-energy regions, thus reducing the fraction
of frames that actually populate the most relevant conformations
(see also Supplementary Figure S5). This reminds us that
enhanced sampling is not a free lunch: indeed, while favoring
the exploration of a wider conformational space, it reduces the
statistical precision of the low free-energy regions reconstruction.
A similar observation can explain the difference in the effective
frames observed between PB20 and PB4. To improve the statistics
one possibility is to fine tune and decrease the bias factor
employed for well-tempered Metadynamics (here it was 10 for
all setups, a very common value for simulations of biological
molecules) and thus focus the sampling only within regions of
interest.

Metadynamics Metainference: Enhanced
Sampling and Conformational Averaging
The poor statistics characterizing our Metadynamics simulations,
and ME2 in particular, raises issues about their combination with
Metainference, in particular when the experimental data to be
integrated represent averages over multiple conformational
states. To test this effect, we performed 4 M&M simulations
with the amber99sb-ildn force field, using as restraints synthetic
SAXS data derived from reference 40 μs long DES-amber
trajectory. The choice of SAXS is due to the ability of this
technique to capture the overall size and shape of the
molecules, thus being particularly sensitive to the equilibrium
between the different conformational states (see Supplementary
Figure S6); herein the use of synthetic data allows to avoid
experimental and forward model errors and to focus on the
effect of Metadynamics on the number of effective replicas.

We firstly performed a prior 10 replicas PB4 simulation, with
the amber99sb-ildn force field, verifying that the resulting
conformational ensemble and the back-calculated SAXS
profiles are significantly far from the reference DES-amber
simulation (Supplementary Figures S7, S8). Then we tested
four different SAXS-restrained M&M setup, either using PB4
or ME2 with 10 or 100 replicas (Table 1). The inclusion of SAXS
restraints improve, as expected, the agreement with the input
scattering profile Iref . We found that the relative error of the

calculated SAXS intensity, defined as Rfactor �
∣∣∣∣∣∣∣∣
I−Iref
Iref

∣∣∣∣∣∣∣∣ × 100, is in

the range 0.4–1.0% (Supplementary Figure S9), representing a
significant improvement with respect to the prior amber99sb-ildn
simulations (Rfactor � 6.7%, Supplementary Figure S8). Also, we
observe that in all the cases the input profile is well in agreement
with the one back calculated from the simulations within the
error estimated by Metainference (Supplementary Figure S9).
Nevertheless, it is worth noting that the estimated errors differ in
the four simulations as it will be discuss later, thus slightly
impacting the extent of the agreement with the input data:
i.e., larger errors result in slightly worse agreement as in ME2
(10r), while smaller errors lead to better agreement as in PB4
(100r).

Next, for each of the four simulations we monitored the
number of effective replicas as a function of the simulations
time. With the same number of actual replicas, the PB4 setup
displayed more effective replicas than ME2 (Figure 3): the
average NReff in PB4 (10r) was two times larger, 4.3, than in
ME2 (10r), 2.0, and it was more than three times larger in PB4
(100r) than in the ME2 (100r) setup (NReff of 35 vs. 10). This
difference impacts on the resulting conformational ensemble
(Figure 4; Supplementary Figure S10). A striking effect is
seen for the ME2 (10r) simulation (NReff � 2.0), in which the
inclusion of SAXS data caused a strong distortion of the original
ensemble leading to the formation of a newmain minimum and a
clear deviation from the target also in the low free-energy regions.
This is consequence of the fact that, in time, we are forcing
approximatelyNReff � 2.0 conformations to fit SAXS data that can
only be explained by larger conformational ensembles.
Importantly, the reconstructed ensembles become increasingly
close to the target for larger values of NReff, with the best

TABLE 2 | For each replicate of the PB20, PB4, andME2 simulations are reported:
1) the number of transitions per microsecond from the folded (F) to the
unfolded (U) state and vice versa; 2) the percentage of the effective frames, NFeff,
over the total number of frames (NF).

Transition per μs NFeff/NF (%)

U -> F F -> U

PB20 Run 1 2.2 ± 0.4 2.8 ± 0.3 37%
Run 2 2.2 ± 0.4 1.9 ± 0.3 39%
Run 3 1.9 ± 0.3 1.8 ± 0.3 39%
Average 2.1 ± 0.1 2.2 ± 0.3 38 ± 0 1%

PB4 Run 1 2.0 ± 0.4 2.8 ± 0.5 22%
Run 2 2.1 ± 0.4 1.8 ± 0.4 20%
Run 3 2.2 ± 0.4 2.5 ± 0.5 26%
Average 2.1 ± 0.1 2.4 ± 0.3 23 ± 0 2%

ME2 Run 1 1.6 ± 0.6 2.4 ± 0.5 2.7
Run 2 1.2 ± 0.4 1.3 ± 0.4 4.1
Run 3 1.1 ± 0.3 1.4 ± 0.4 3.0
Average 1.3 ± 0.2 1.7 ± 0.4 3.3 ± 0.4%

NFeff is computed as: NFeff � (∑NF
i�1wi)2/∑NF

i�1w2
i , where wi is the weight associated to

each frame. The average and the standard error over the triplicates are also reported.
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agreement obtained for PB4 (100r) (NReff � 35). We observe that
this does not mean that PB4 allows a better agreement than ME2
in general, but it suggests that to obtain a comparable agreement
more replicas are needed when using the ME2 setup.

The number of effective replicas also affect the model errors
sampled by Metainference. As expected, we observed a direct
effect on σSEMi (Supplementary Figure S11), where less effective
replicas resulted in larger errors: indeed σSEMi represents the
uncertainty related to conformational averaging, which is
consequence of the fact that we are using a small number of
conformations (NReff) to back calculate experimental data, that
are ideally obtained as averages over an infinite number of
conformations. We also noted an indirect effect on σBr,i, where
again fewer effective replicas resulted in larger errors
(Supplementary Figure S11). This is likely due to a better
agreement with input data for larger NReff allowed by the
larger number of conformations on which averaging is

performed. Overall, this implies smaller model errors for
simulations with higher number of effective replicas, where the
total model error is computed as σ2r,i � σSEM2

i + σB2r,i . σ
SEM
i sets the

lower limit for the model error and measures the impact of
conformational averaging for the ith data point. We suggest that
the relative error σSEMi /di, where di is the ith experimental data, can
indicate whether the number of effective replicas (and consequently
the number of simulated replicas) is sufficient to capture the
conformational variability needed to correctly interpret the
corresponding data (Supplementary Figure S11). Our results
suggest that a relative error lower than 5–10% could be sufficient
to achieve a reasonable agreement with the target ensemble. We also
note that the relative errors provide information about the sensitivity
of different data points to conformational averaging.

These results underlie the importance of using a sufficient
large number of replicas in M&M simulations, taking particular
care of the number of effective frames in time, which depends on
the enhanced sampling technique used, including the employed
CVs, the investigated system as well as the specific experimental
observable.

CONCLUSION

Reliability of MD simulations depends on their statistical
precision and experimental accuracy. M&M aims to achieve
both by coupling enhanced sampling and Bayesian Inference.
Here, we assessed the performance of different MetaD setups,
optionally coupled with Metainference, using as test system
chignolin. Chignolin is a 10 residues peptide that is able to
populate three different conformational states with diverse
degrees of compactness and folding thus representing a simple
but realistic test case.

FIGURE 4 | The RMSD free energies (top panels) and the population of the three main chignolin minima (bottom panels) are represented for different simulations
(PB4 or ME2, with either 10 or 100 replicas). The results from the prior simulation, performed with the amber 99sb-ildn force field and no SAXS restraints, are represented
in light grey. The results from the reference simulation, performed with the DES-amber force field and whose back-calculated SAXS intensities were used as target, are
represented in dark grey. The errors are estimated via block-average analysis; the free energies are shifted to set their minimum to 0.

FIGURE 3 | Number of effective replicas as a function of the simulation
time for PB4 (10r), ME2 (10r), PB4 (100r) andME2 (100r) simulations. The dots
represent the value at the exact time, while the straight lines indicate the
cumulative averages.
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In order to assess the statistical precision achievable by diverse
enhanced sampling simulations we run three independent
replicates for three different Metadynamics setups, either
employing PBMetaD or traditional MetaD coupled with
multiple walkers and using different combinations of CVs. We
showed that block averaging is a robust technique to estimate
statistical error, being always a slight overestimation of the
standard error computed from the comparison of the
triplicates. Still, we observed quite strong deviations in the
population values when compared among replicates,
suggesting that quantitative conclusions should be drawn with
care from a single simulation. Importantly, when using averages
calculated over the triplicates, we found an optimal agreement
among the different setups, both concerning the free-energies and
the population estimates. This quantitative agreement is
maintained also with an independent reference simulation
(Piana et al., 2020), performed with simulated annealing.
Thus, as long as the simulations are well converged and
possibly properties are evaluated as averages over independent
copies of the simulations, the choice of the enhanced sampling
technique does not influence the overall results. These
observations support the idea that performing replicates, even
if expensive, should become a more common practice, in
particular when statistical precision is a core message.

Experimental accuracy can be obtained by Metainference via
the introduction of restraints toward a set of experimental data.
Different issues could affect the success of Metainference
simulations, including the quality and quantity of experimental
data (Löhr et al., 2017) and the quality of the forward model, as
also discussed in this special issue (Ahmed et al., 2021). Here, we
highlighted how the combination of MetaD and Metainference
(M&M) could create an additional issue related to the number of
effective replicas. In Metainference, to restrain the simulation, the
experimental data are compared with the same back-calculated
observables, averaged over the replicas: this is done to account for
the conformational heterogeneity of the system. Nevertheless, the
coupling with MetaD, while helping in accelerating the sampling
and achieving better statistical precision, could reduce the
number of effective replicas (NReff) on which this averaging is
performed. Indeed, MetaD modulates the relative weights of the
replicas, where some of them are found in low-energy areas (high
probability) and other are in high energy regions (low relative
weight). In this work, by performing M&M simulations with
either PBMetaD or traditional MetaD setup and using 10 or 100
replicas, we showed how the number of effective replicas is
extremely relevant for the reconstruction of conformational
ensembles. A too small NReff leads to distortions of the prior
ensemble that are very far from the desired target. To keep this

effect under control we suggest monitoring the relative error
caused by σSEMi . The latter represents the statistical error we
introduce when trying to capture the conformational
heterogeneity underlying an experimental observable with a
finite number of replicas. Also, we showed that in the context
of M&M, PBMetaD could be preferred to traditional MetaD, as it
results in a milder reduction in the number of actual replicas.
Indeed, the number of replicas should be high enough to capture
the conformational heterogeneity of the system as detected by an
experimental observable while also compensating to the loss of
effective frames resulting from the combination of Metainference
with Metadynamics.

Concluding, enhanced sampling techniques and integrative
techniques can generate precise and accurate conformational
ensembles. Here we showed that well established enhanced
sampling techniques provide robust results in particular when
performing multiple independent simulations. Moreover, we
improve our understanding of Metainference by suggesting
how to optimally chose the number of simulated replicas
needed to describe correctly the conformational heterogeneity
of an ensemble.
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Small-angle X-ray scattering (SAXS) experiments are important in structural biology
because they are solution methods, and do not require crystallization of protein
complexes. Structure determination from SAXS data, however, poses some difficulties.
Computation of a SAXS profile from a protein model is expensive in CPU time. Hence,
rather than directly refining against the data, most computational methods generate a
large number of conformers and then filter the structures based on how well they satisfy
the SAXS data. To address this issue in an efficient manner, we propose here a Bayesian
model for SAXS data and use it to directly drive a Monte Carlo simulation. We show that
the automatic weighting of SAXS data is the key to finding optimal structures efficiently.
Another key problem with obtaining structures from SAXS data is that proteins are
often flexible and the data represents an average over a structural ensemble. To
address this issue, we first characterize the stability of the best model with extensive
molecular dynamics simulations. We analyse the resulting trajectories further to
characterize a dynamic structural ensemble satisfying the SAXS data. The combination
of methods is applied to a tandem of domains from the protein PTPN4, which
are connected by an unstructured linker. We show that the SAXS data contain
information that supports and extends other experimental findings. We also show that
the conformation obtained by the Bayesian analysis is stable, but that a minor
conformation is present. We propose a mechanism in which the linker may maintain
PTPN4 in an inhibited enzymatic state.

Keywords: SAXS, bayesian scoring, automatic weighting, inferential structure determination, PTPN4, allosteric
regulation, conformational dynamics

1 INTRODUCTION

Integrative structural biology uses multiple techniques to determine three-dimensional structures of
large, potentially flexible complexes of biological macromolecules. Typically, structures of the
individual components (e.g., individual domains or proteins) are known but the overall
arrangement of the components is to be determined. Despite their relatively low information
content, Small Angle Scattering [Small Angle X-ray Scattering (SAXS), or Small Angle Neutron
Scattering (SANS)] experiments play an important role, since they are performed in solution, and can
provide crucial conformational information on the arrangement of individual components.
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In order to incorporate SAXS data, many approaches generate
poses of the components and then use the experimental data to
filter solutions by means of a χ2 criterion [e.g., Mareuil et al.
(2007); Yang et al. (2010); Rozycki et al. (2011)]. For a larger
number of degrees of freedom, or when a large conformational
space needs to be covered, this becomes computationally
intensive, and one might miss structures that satisfy the data.
Preferentially, one would like to employ methods that can use the
data directly as restraints to drive the structure calculation, since
they should converge faster to conformations satisfying the data.
In methods that refine directly against the data, definite choices
on unmeasurable model parameters must be made before the
minimization. Examples for such parameters are the scale factor
between the experimental and the back-calculated data, and the
quality or consistency of the data, which has a relationship to the
weight on the data employed during the calculation (data with
lower quality should get a lower weight). Yet, the optimal weight
one should put on the data is never known beforehand. These
parameter choices have important consequences, and even more
so if SAXS data are to be used together with other data, for which
similar problems exist.

Whenmodeling structures from experimental data, appropriate
relative weighting is of particular importance. In crystallography,
for example, the free R-value Brünger (1992) is often used to find
suitable values for unknown parameters such as the weight on the
experimental data. This becomes rapidly cumbersome if more than
one value needs to be optimized, and it is hardly an option for data
with low information content such as SAXS or SANS.

A more powerful and statistically more accurate solution to
this problem can be obtained in the context of a Bayesian treatment
of the structure determination problem. We previously developed
the Bayesian framework we called “Inferential Structure
Determination” (ISD) and applied it to Nuclear Magnetic
Resonance (NMR) data Rieping et al. (2005). We showed that
the Bayesian formalism converges better than standard
minimization strategies Rieping et al. (2005). We also showed
that an optimal weight on a χ2 type experimental term can be
obtained from a 3D structure and the dataHabeck et al. (2006), and
that this weight can be optimized simultaneously with the structure
Nilges et al. (2008), Bernard et al. (2011). More recently, we
extended the concept of ISD and Bayesian weight optimization
to the treatment of cross-linking mass spectrometry data Ferber
et al. (2016) and electron microscopy Bonomi et al. (2019).

In this paper, we develop a Bayesian framework for the
analysis of SAXS data. This model allows us to automatically
weight the SAXS data based on its agreement with other
structural modeling terms. The modeling is performed in
several stages, adding additional detail at each stage, starting
with rigid body motions of protein domains, and subsequently
adding and sampling conformations of the linker and the termini.
This is followed by extensive unbiased molecular dynamics (MD)
simulation starting from the optimal structure. We apply the new
formalism and modelling strategy to the determination of the
structure of the tandem domain of the protein PTPN4. This is a
good test case since, due to its flexible linker, several
conformations may be simultaneously present and influence
the measured SAXS data, which hampered previous attempts

to obtain useful insights with more standard approaches to
interpret SAXS data obtained for this protein.

The protein PTPN4 belongs to the non-receptor protein
tyrosine phosphatase (PTP) family. It is involved in various
biological processes such as T-cell signalling, learning, spatial
memory and cerebellar synaptic plasticity Kina et al. (2007),
Kohda et al. (2013), Young et al. (2008). PTPN4 also regulates cell
proliferation and presents an anti-apoptotic function Gu et al.
(1996), Préhaud et al. (2010), Zhou et al. (2013), Zhang et al.
(2019). PTPN4 is a large modular protein containing a
N-terminal FERM (Band 4.1, Ezrin, radixin, and Moesin)
domain, a PDZ (PSD-95/Dlg/ZO-1) domain and a C-terminal
catalytic tyrosine phosphatase domain. The phosphatase is
cleaved in the cell, leading to enzyme activation and its active
form consists of the PDZ and PTP domains connected by a linker
Gu and Majerus (1996). We previously demonstrated that the
catalytic activity of the PTP domain is inhibited by the PDZ
domain, while the binding of a ligand to the PDZ releases this
auto-inhibition and activates the phosphatase Maisonneuve et al.
(2014). A biochemical study suggests that this mechanism of
regulation of PTPN4 allows for the specific dephosphorylation of
cellular partners such as the mitogen-activated protein kinase
(MAPK) p38c recruited through the PDZ domain of the
phosphatase Maisonneuve et al. (2016). The importance of the
PDZ domain for PTPN4 is further supported by the fact that the
G protein of an attenuated rabies virus strain target this domain
to deregulates PTPN4 phosphatase function and ultimately
causes neuronal cell death Préhaud et al. (2010), Babault et al.
(2011), Caillet-Saguy et al. (2015).

However, the structural mechanism by which the PDZ domain
modulates the activity of the phosphatase domain remains
elusive. We showed that a conserved hydrophobic patch in the
linker connecting the PDZ and the PTP domains is involved in
the communication between the two domains and participates in
the phosphatase’s regulation Caillet-Saguy et al. (2017). NMR and
SAXS characterization of the PDZ-PTP domains of PTPN4
showed that the tandem adopts a compact conformation
compatible with inter-domain interactions. However, no
interaction was detected by NMR between the phosphatase
domain and either the PDZ domain or the unstructured and
flexible linker Maisonneuve et al. (2014). This suggests that the
compact conformation of the PDZ-PTP domains is stabilized by
fuzzy intramolecular interactions. Interestingly, ligand binding to
the PDZ domain disrupts the transient interactions of the PDZ
domain and the linker with the phosphatase domain. Ligand
binding to the PDZ induces dynamic rearrangements of the two
domains, resulting in the activation of the phosphatase domain
Maisonneuve et al. (2014).

The Bayesian SAXS treatment generates a model of the
conformations adopted by the PDZ, linker and phosphatase of
PTPN4. This model allows us to propose a mechanism by which
the linker can regulate the PTPN4 activity. The structure we
obtain is based on the implicit assumption that an ensemble
covering a small volume of conformational space can explain the
SAXS data. We therefore used the MD simulations to investigate
the conformational dynamics of PTPN4 and showed that the
proposed preferential relative orientation of the two domains and
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the linker is stable and corresponds best to the SAXS data.
However, the simulations sample other orientations of two
domains and the linker, albeit with a worse fit to the SAXS
data. By using machine learning and a genetic algorithm we test
combinations of structures from the MD trajectories and obtain a
dynamic model of PTPN4 that optimally fits the SAXS data.

2 RESULTS

2.1 Bayesian Small Angle X-ray Scattering
Restraint Term
In Bayesian modeling Rieping et al. (2005), one directly evaluates
Bayes’ equation

p(X, σ, ξ|B,D)∝ p(X|B)p(σ)p(ξ)p(D|X, σ, ξ) (1)

where X is the 3D structure, σ is a parameter quantifying the
deviation of the back-calculated data from the experimental data,
and ξ stands for any other unknown parameters that one needs to
model the data from the structure. B is the background
information that we have on the structure, which allows us to
evaluate the probability of a structure in absence of experimental
data, for example, a molecular dynamics force field. To evaluate
the discrepancy of the calculated data from the experimental data,
we need a forward model m(X) to calculate the intensities I �
m(X) from a structure X. We used the FoXS model Schneidman-
Duhovny et al. (2013), which has, in addition to a scale factor c,
two parameters c1 and c2, where c1 is the scaling of the atomic
radius used to adjust the total excluded volume of the atoms, and
c2 is used to adjust the difference between the density of the
hydration layer and the bulk water.

As derived in detail in the Appendix, the negative log
likelihood is

−log p(I∣∣∣∣X, c, c1, c2, σ2) � M
2σ2

χ2 +M log(σ) (2)

χ2 ≡
1
M

∑
i�1

M

(
I(qi) − cm(X, qi, c1, c2)

s(qi)
)

2

(3)

where I is the experimental intensity,M is the number of points in
the SAXS profile, qi is the momentum transfer q � (4πsin(θ))/λ,
with scattering angle θ and X-ray beam wavelength λ. s(qi) is the
experimental uncertainty of the SAXS profile at qi estimated from
merging multiple experimental profiles.

2.2 Application to Protein Tyrosine
Phosphatase Non-Receptor 4
To illustrate the Bayesian SAXS score, we perform exhaustive
sampling of the conformational space of the PDZ and PTP
domains of PTPN4, which for simplicity we call PTPN4. The
PDZ (92 residues) and PTP (275 residues) domains are connected
by a linker of 34 residues, and flanked by N-terminal (13 residues)
and C-terminal (13 residues) sequences. The structures of
individual domains are known Babault et al. (2011), Barr et al.
(2009). However, the linker and the termini are highly flexible as
monitored by NMR Maisonneuve et al. (2014). They thus

prevented the determination by X-ray crystallography of the
overall organization of the two domains of PTPN4 tethered by
the linker.

To efficiently characterize the structural conformation of
PTPN4 by a Bayesian SAXS score, we subdivided the problem
into three subsequent stages (Figure 1). First, the linker and
the termini were removed and the conformational space
was explored with rigid body movements of the folded
domains. Second, linker and termini were added, while
keeping the domains fixed. Third, the whole structure was
further refined with rigid body movements for the two
domains and flexible backbones for the linker and the termini.
In all three stages, we used Eqs. 2,3 to incorporate the SAXS
profile of PTPN4. Volume exclusion was used to produce
physically realistic structures.

2.2.1 Rigid Body Docking
We started with 64 parallel simulations by placing the PDZ
domain randomly around the PTP domain (without the linker
and termini), avoiding physical contact between the two
proteins (Figures 2A,B). The simulations rapidly converged
to two distinct sets of conformations in which the PDZ domain
(Figure 2C) is located on either of the two most distant points of
the phosphatase domain, each subdivided in two further
conformations (Figures 2D,E). In these conformations, the
α2-helix of the PDZ domain is roughly aligned with the
main axis of the phosphatase domain. This indicates a
preferred orientation of the PDZ domain relative to the PTP
domain.

To analyse the trajectories, we trained a self-organizing map
(SOM) Bouvier et al. (2015). The subdivision of the two distinct
sets of conformations into two further sets is clearly visible in the
SOM, making it possible to define a total of four clusters
(Figure 3A). Each cluster corresponds to one of the four
possible combinations of position of the PDZ domain, and
orientation of the α2-helix of the PDZ domain, with respect to
the main axis of the phosphatase domain.

2.2.2 Linker Construction
We then extracted a clash-free conformation displaying the
lowest χ2 for each of the neurons of the SOM (Figure 3A). For
every selected structure, we generated an average of 1,224
conformations for the linker and the termini sequences (see
Methods). A Bayesian SAXS score was calculated for each of
these structures. Depending on the pose, the linker raised or
lowered the Bayesian SAXS score (Figure 3B). For each
neuron we retained the structure with linker and termini
displaying the lowest χ2 (Figure 3B). Interestingly, the
models with the lowest Bayesian SAXS scores are located in
the two left clusters of the SOM corresponding to PDZ
domains exclusively located on the side of the PTP β-sheet
(Figure 2E). These clusters differ in a rotation of the PDZ by
180°. In these conformations, the attachment points of the
linker to the PTP domain are located on the opposite side
from where the PDZ domain is positioned. This implies that
the linker passes over the surface of the phosphatase to reach
the PDZ domain.
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2.2.3 Monte-Carlo Refinement
To further improve the sampling of the conformational space of
the linker and termini, we performed an exhaustive refinement of
the best structures of each neuron of the SOM map. We used a
Monte-Carlo algorithm to sample the linker conformations in the
dihedral angles of the linker and termini. As previously, we used
only the Bayesian SAXS scoring term and volume exclusion to
calculate the energy. This approach allowed the added residues
and the domains to adjust jointly to the SAXS profile. The χ2

significantly improved compared to the previous step for all
clusters (Figure 3C), and values lowered by 36% on average to
a range between 3 and 18. However, the trend in the four clusters
remained the same. The structures with the lowest χ2 scores after
Monte-Carlo simulations belong to the cluster in the upper left
corner of the self-organizing map as previously observed in the
step of linker construction (Figure 3C). This indicates that the

linker passes over the surface of the phosphatase for the structures
which are in best agreement with the SAXS data.

The 10 conformations with the best final χ2 after Monte-Carlo
simulations, ranging from 2.5 to 2.9 are presented in Figure 4. In
these 10 conformations, the linker is wrapped around the
phosphatase domain and passes in close proximity to the
catalytic site of the phosphatase domain. Interestingly, a
conserved sequence in the linker (shown in green), involved in
the allosteric regulation of PTPN4 Caillet-Saguy et al. (2017), is
facing both the β5-loop-β6 region and theWPD loop, a conserved
catalytic motif. This observation suggests a possible effect of the
linker on these two regions.

2.2.4 Influence of the Weight Adjustment
During the calculations, the weight of the Bayesian SAXS score
adjusted substantially (Figure 5). From the initial rigid body

FIGURE 1 | The workflow of the method. The main steps of the algorithm are depicted: rigid body docking, linker construction, Monte Carlo simulations, and
Molecular Dynamics (MD) simulations. The Small-angle X-ray scattering (SAXS) data is used to derive the first three steps.

FIGURE 2 | Starting and final conformations of the 64 rigid body simulations. PDZ in blue, PTP in red. (A) Starting conformations (full PDZ). (B) Starting
conformations (only α2-helix for PDZ). (C) PDZ, with α2-helix in blue. (D) Final conformations (full PDZ). (E) Final conformations (only α2-helix for PDZ).
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docking to the best structure after refinement, the weight was
multiplied by 17. This means that the SAXS data was given
17 times more importance at the end of the procedure compared
to the beginning. To see why this matters, we performed 20 linker
refinement simulations with a fixed weight for the SAXS restraint,
varying from 10−4–102 and compared it to 10 simulations using
the Bayesian SAXS restraint. We then examined the χ2 along the
simulation step, for all replicates (Figure 6). All Bayesian SAXS
simulations consistently reach low χ2 values. In contrast, two
limiting cases emerge in the fixed-weight simulations. When the
weight is very large, agreement to the SAXS data is substantial,
and the simulation quickly finds a local SAXS restraint minimum.
Sometimes, conformers with can be obtained, but more often less

optimal basins are targeted, with χ2 ∼ 10 in this example. The
Monte Carlo acceptance rate then drops to zero, and the
simulation stops exploring new conformations. In contrast,
when the weight is very small, the SAXS score has little
influence. The simulation can scan conformational space
easily, but it has no chance of finding structures in good
agreement with the SAXS data.

2.3 Stability of the Optimal Conformation
2.3.1 Molecular Dynamics Simulations and
Conformational Clustering
To further assess the stability of the optimal conformation
obtained from the Bayesian analysis, we performed three MD

FIGURE 3 | Self-organizing maps (SOMs) of the three calculation stages. (A) Final conformations of the rigid body docking stage, coloured by χ2. Only SOM
neurons with at least one structure are shown throughout. For each cluster, an example structure shows the relative orientation of the PDZ with respect to the
phosphatase domain. (B) Best χ2 for each docking pose with linker added. (C) Average χ2 of minimized linker conformations.
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simulations of 200 ns starting from the model with lowest χ2 �
2.48 (Figure 7). Initially, the relative position of the two domains
fluctuates, but it converges in each case to a more compact
structure with direct and stable interactions between the two
domains after a maximum of 75 ns. This behaviour is reflected in
the analysis of the distances between the two domains (Figure 8),
showing an initial increase of the distances (∼ 9–18 Å) followed
by gradual reduction of distances (∼ −10 Å), with respect to the
initial conformation.

To better characterize the observed conformational transitions
along the MD simulations of PTPN4, we clustered the set of
conformations with the Self Organizing Maps (SOM) method

already used above Bouvier et al. (2015). A total of 60 clusters
were retrieved from a pool of 60,000 conformations (Figure 9).
We then projected the χ2 values, the changes of distances between
the two domains and the simulation time on the SOM map
(Figures 9A–C). The analysis of the two maps suggested four
groups of clusters, where G2 had the highest χ2 and maximum
increase of distances, and G4 the lowest χ2 andminimum changes
of distances. Figures 9D–G shows one representative
conformation per cluster, clearly indicating four distinct
relative positions of the PDZ with respect to the PTP. These
four conformations satisfy the SAXS data to a very different
degree, indicated by the color in the SOM maps and in the

FIGURE 4 | Last frame of the top 10 simulations, aligned on the PTP domain. PTP: red; PTP loop and catalytic cytosine [H (851)CSAGIGRT (859)]: yellow; WPD
loop [W (818)PDHGVP(824)]: purple; β5-loop-β6 region [T (754)QVERGRV (761)]: cyan; C-terminus, N-terminus and linker: grey; highly conserved linker region [E (617)
PDFQYIP(624)]: green; PDZ: blue. (A) Top view depicts catalytic site in vicinity to the linker. (B) Bottom view adopts same orientation as Figure 3. (C) Linker view shows
conformational variability of linker.
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FIGURE 5 | The adjustment of the Bayesian SAXS score. (A) χ2 and (B) SAXS restraint weight of a composite simulation, starting from rigid body steps (blue),
followed by linker modelling (yellow, pointed to by arrows), and ending with Monte Carlo flexible refinement (red).

FIGURE 6 | χ2 score as a function of simulation step, for the 64 rigid body simulations with Bayesian SAXS score (left), and for 20 simulations with a fixed weight
(different in each simulation) and the same, random, starting structure (right).

FIGURE 7 | The cartoon representation of starting conformation for the MD simulations. PDZ is colored in blue and PTP in red.
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conformations shown (each group is colored according to their
average χ2 value from dark violet for the minimum values to dark
green for the maximum values). The analysis of the PTPN4
conformational changes revealed the existence of four distinct
conformational states for the PDZ with respect to the PTP, one of
which is close to the Bayesian SAXS restraint model and has a low
χ2.

To investigate overall convergence of the simulations, we
analyzed the number of conformations from different
replicates in each group (Figure 9H). The three replicates
cover rather different conformational space. The groups G1,
G2, and G3 contain conformations from only one replicate.
Interestingly, only G4, which is the closest one to the starting
conformation and has the lowest χ2 scores, contains

conformations from all the three replicates. The further
analysis of the clusters along the simulation time (Figure 9C)
showed that G4 contains trajectories appearing at the beginning
of the simulations, and the G1-G3 are visited subsequently.
Interestingly, the position of the linker with respect to the
PTP, remained unchanged in all the clusters as can be seen in
Figures 9D–G. In order to further investigate the conformational
changes of the linker, we measured the distances between the
center of mass of the conserved linker region (E617-P624) and i)
the PTP domain and ii) the catalytic site of the PTP domain (the
β5-loop-β6 region and the WPD loop) along the three replicates
of the MD simulations (Figures 8B,C). The variation of distances
are within the range of 1 Å, therefore suggesting the rather stable
position of the linker with respect to the PTP domain.

FIGURE 8 | The distances along the MD simulations.(A) The changes of distances between the two domains and the average values over the final 125 ns of the
simulations are reported for each replicate. The distance between the center of mass of the conserved linker region [E (617)PDFQYIP(624)] and the center of mass of (B)
the PTP domain and (C) the catalytic site of the PTP domain are depicted for each replicate.
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2.3.2 Selection of Minimal Small Angle X-ray
Scattering Ensemble
The above analysis assumes that a single structure or an
ensemble covering a small part of conformational space
represents the SAXS data. The sampling of conformational
space by the free MD trajectories enabled us to try to
investigate if more disperse ensembles fit the SAXS data
better. For this, we used a method based on the genetic
algorithm (GA) that was developed for a similar problem
Delhommel et al. (2017). This method searches for the
minimal subset of conformations minimizing the error
between the experimental data and computed data from the
MD simulations. The χ2 values obtained after fitting were
reduced from 6.03 to 2.79 for an ensemble size of three.
Increasing the ensemble beyond three did not reduce the χ2

further (Figure 10A). We clustered the weighted conformations

obtained in all the ensembles according to the four
conformational groups identified by the SOM analysis (G1,
G2, G3, and G4). Figure 10B shows the ratio of
conformations that belong to each group for each ensemble
size, averaged over the 5 GA runs. The ratios of the
conformations belonging to the four groups are similar for
different ensemble sizes, where G4 is always most
represented with a weight of about 70%, while G1 has about
30% of the weight. The experimental and fitted profiles (for the
ensemble size of three) are compared (Figure 10C, shown in
black and cyan, respectively), and the conformations obtained
for the ensemble size three are shown in Figure 10D. We
conclude that the SAXS data are best represented by two
major conformations, an open and a closed states. The open
state has the highest weight (70%) and is similar to the initial
conformation obtained by the Bayesian method.

FIGURE 9 | Cluster analysis of PTPN4 from the MD simulations. The self-organizing map of the PTPN4 conformations colored by (A) χ2, (B) changes of distances
between the center of mass of the PDZ and PTP domains, and (C) simulations time (ns) of the replicates. The clusters are numbered on the maps from 1 to 60, and
divided into four groups (G1-G4). One representative conformation is shown for the clusters that are forming the four groups G1, G2, G3 and G4 in (D–G), respectively.
The PTP is colored in red and the four identified groups of PDZ clusters in difference shades of green and purple, reflecting their average χ2 values. (H) The number
of conformations from different replicates (r1, r2, and r3) are reported for each group.
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3 DISCUSSION

3.1 Automatic Weight Adjustment
In general, and also in the Bayesian formalism, the SAXS scoring
term is based on χ2 (Eq. 3), here multiplied by a weight M/2σ2.
Commonly, the weight on the scoring term is based on some
heuristics, for example the number of independent data points
Shevchuk and Hub (2017). Experience shows that this weight is
not easy to set and can require adjustment during the
simulation, in particular when χ2 is expressed with SAXS
intensities (as opposed to their logarithms) Chen and Hub
(2015). In the context of the Bayesian formalism, the weight
is set by changing σ. This parameter does not only depend on the
quality and consistency of the experimental data but also on the
forward model used. The nuisance parameter σ evidently scales
the experimental errors with a constant factor, and it is
unknown before the calculation. It is the hallmark of the
Bayesian formalism that this parameter is treated as an
unknown, at the same level as the coordinates. σ, and in
consequence the weight, is adjusted during the calculation,
without making any additional assumptions on the values it
can take. To do this, we use the second term on the right hand
side of Eq. 2, Mlog(σ). In absence of this term proportional to
the logarithm of σ, the trivial minimum of the score would be
reached when σ diverges and the weight becomes zero. This
automatic weighting modulates the effect of χ2 on the final
scoring term. This treatment is analogous to what we introduced

for NMR data, electron microscopy data Habeck et al. (2006),
Nilges et al. (2008), Bernard et al. (2011) and cross-linking mass
spectrometry data Ferber et al. (2016).

3.2 Influence of the Weight Adjustment
As an illustration, suppose structure determination is performed
with a bad guess for the initial structure. In this case, χ2 will be
large. Adjustment of the weight will drive σ towards larger
values, and the weight becomes smaller. σ acts to reset the scale
of the restraint. Notice however that its update is less frequent
than that of χ2. That way, structures are sampled with χ2 values
around σ2, which is then slowly lowered to increase stringency
on the restraint. σ2 acts as an annealing parameter. As long as
the structure is in strong disagreement with SAXS data, the
weight of the Bayesian SAXS score will be small. This behaviour
allows other terms of the force field to dominate, and
conformational exploration can happen unhindered by an
irrelevant SAXS term. If exploration leads to a structure with
a smaller χ2, the weight will increase. The SAXS term therefore
becomes more discriminant, guiding the calculation to propose
structures which match the SAXS profile more closely. Bayesian
formulation of SAXS structure determination therefore
transforms a rugged energy landscape into a funnel-shaped
landscape Dill and Chan, 1997.

Note that, the σ is being adjusted on the fly, and the maximum
likelihood estimate of σ is approximately χ2 (Supplementary
Equation S4). Therefore, the proper quantity to look at isM/2σ2

FIGURE 10 | Extracting a minimum subset of conformations from the MD simulations, that describes best the SAXS data using a genetic algorithm. (A)
Improvement of the χ2 with respect to the ensemble size in the genetic algorithm selection. (B) The conformations are clustered in four categories according to the
clustering obtained using SOM; conformations in the groups G1, G2, G3, and G4 are colored in olive, green, yellow-green and purple bars, respectively. The proportion
of each group is represented for each ensemble size. (C) Back-calculated SAXS profile using the genetic algorithm derived from the ensemble size of three (in blue)
and the experimental profile (in black), with the χ2 � 2.79. (D) Representative ensemble of PTPN4 superimposed on PTP showing the PDZ in G1 conformation (olive and
khaki) or in G4 conformation (purple) with the proportion of each conformer.
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(see Figure. 5B), which is a function of the degrees of freedom in
the curve (Spill, 2013) (Section 2.4.8.3, pp 171). In case of
multiple datasets, it is therefore crucial that each has their
own σ.

3.3 Fixed Weight vs. Bayesian Automatic
Weighting
The optimal weight, at which the simulation has reasonable
acceptance rates and makes good use of SAXS information, is a
priori unknown. It is the purpose of the Bayesian SAXS restraint to
determine this optimal weight. As shown in Supplementary
Equation S4 (see Supplementary Material), the number of SAXS
data points and the overall agreement of data and structures will
greatly influence the optimal weight. Therefore, it is expected that it
will be different for each SAXS dataset, but also for each simulation
setting, for example depending on which force field is used.

3.4 Log Score vs. Linear Score
An equivalent form for the Bayesian score without any additional
parameter σ can be derived by an operation called
marginalization (Supplementary Equation S5, Supplementary
Material). As shown for NMR data Habeck et al. (2006), this form
is equivalent to the weighted χ2 term, but does not need automatic
weight adjustment, because it incorporates the behavior described
above. Its form is simply the logarithm of the traditional χ2. Using
the logarithm of the χ2 lowers the score penalty for large values of
χ2, while keeping its effect similar to the standard χ2 formulation
when it is close to one. Interestingly, it has been observed by Chen
and Hub (2015) that a χ2 formulation using the logarithm of the
intensities does not require much adjustments of the weight.
While they apply the logarithm on the individual intensities and
not the χ2 as a whole, the effect of lowering the impact of large
discrepancies remains. When using a χ2 on linear scale (as
proposed here), the authors observe the need to adjust this
weight specifically in the beginning of the simulation. That is,
when discrepancies in the low-q and high diffusion intensity
region of the SAXS curve are likely to occur, and contribute most
to the scoring. Applying a logarithm on the first part of the SAXS
curve is therefore what probably alleviates the need to adjust the
weight. In contrast, we have employed a χ2 on a linear scale
(including error bars, Eq. 3) because the SAXSmeasurements and
noise scale linearly. The logarithm is applied afterwards, for
scoring purposes.

3.5 A Point on Exhaustivity
The calculations presented here attempted to sample a large part
of the conformational space of this two-domain system, since the
energy landscape can be expected to be rugged. We showed that
the energy surface is less rugged when using automatically
adapted weights. The strength of this Bayesian restraint is that,
regardless of the initial conformation, the calculations converge
to low χ2 structures. This is particularly beneficial when computer
resources are limited. In our PTPN4 example, one in every four
simulations ends up in the basin with the lowest χ2 conformers.

3.6 Protein Tyrosine Phosphatase
Non-Receptor 4
Using the novel Bayesian SAXS restraint, we have shown a
conserved sequence in the linker of PTPN4, involved in the
allosteric regulation of PTPN4 Caillet-Saguy et al. (2017), is
facing both the β5-loop-β6 region and the WPD loop. The β5-
loop-β6 region is thought to participate in defining substrate
specificity Andersen et al. (2001). The WPD loop is well-known
to be important for the phosphatase catalysis. The WPD loop
switches from an open to close position upon substrate binding
and adopts a catalytically active close conformation Barr et al.
(2009). Previous experimental evidence showed that the linker
participates in the control of the catalytic activity of the
phosphatase domain Maisonneuve et al. (2014).

Mutations of a conserved hydrophobic patch in the linker
suggested that the linker modulates the WPD loop open/closed
conformations Caillet-Saguy et al. (2017). The close proximity of
the linker with the β5-loop-β6 region and theWPD loop observed
in our simulations further supports and reinforces the current
model in which the linker of PTPN4 could regulate the
phosphatase activity of PTPN4 by modulating the WPD loop
closure.

3.7 Ensemble Modelling
The focus of this study is to illustrate the power and utility of the
Bayesian SAXS score. The setup was deliberately simple, to
emphasize to what degree the final conformations were driven
by the data. Emphasis was also on calculation efficiency, and the
molecule was deliberately described in the simplest terms by
excluding volume, rigid bodies for the two domains, and rigid
covalent geometry. The experimental data was limited to SAXS
data up to q< 0.37Å−1. The SAXS data do not contain any
information on specific interactions between the linker and the
surface of the PTP domain. In our models the linker wraps
around the PTP domain but does not directly contact the
domain. This is consistent with the fact that there is no
experimental NMR data that indicates a specific contact, but
does not explain the sequence conservation in the linker and on
the surface of the PTP domain. The tandem of PDZ-PTP
domains in PTPN4 may be the location of continuous
conformational changes due to the fuzzy nature of the
intramolecular interactions that stabilize the spatial
organization of the two domains Maisonneuve et al. (2014,
2016), Caillet-Saguy et al. (2017). This is further confirmed by
the analysis of conformations generated by MD simulations
starting from the top model, where four distinct groups of
conformations are identified (Figure 9). The flexible and
unstructured linker is most likely in transient interactions
with the PTP domain as monitored by NMR (R2 relaxation
rate, Maisonneuve et al. (2014) Figure 5B). In our calculations,
the models with low-χ2 (the upper left cluster in Figure 3C)
present conformations of the linker that covers almost half of
the PTP domain. This conformation of the linker with respect to
the PTP domain remains rather stable along the MD
simulations.
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The conformations we obtain can serve as the basis of more
detailed simulations with state of the art ensemble methods
Potrzebowski et al. (2018), Shrestha et al. (2019), Paissoni

et al. (2020). For a system of rather moderate size as the
PTPN4 tandem (52 kDa), one could obviously directly refine
against the data in a complete force field Shevchuk and Hub

FIGURE 11 | The root mean square deviations and fluctuations of each MD simulation. The RMSD over backbone atoms (Cα, C, N, O) measured from the initial
structure are shown for the (A) PDZ and (B)PTP domains. The residue RMSF over backbone atoms (Cα, C, N, O)measured with respect to the average conformation are
depicted for the (C) PDZ and (D) PTP domains, over the last 150 ns of each replicate. The average and standard deviation values are reported for every replicate.
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(2017). This would not allow for as extensive searching of
conformational space as it was performed in this work. The
aim of the current calculation protocol is to sample large relevant
parts of conformational space efficiently, a task that is difficult to
perform for large fully solvated molecules. An adaptation of the
Bayesian SAXS restraint with automated weighting as described
here could be useful also in this context. We note that such
adaptation however, would not address the issue of multiple
conformations representing the SAXS data. In this study we
proposed a method to overcome this problem by first
concentrating on obtaining the dominate conformational
ensemble in a largely simplified force field without explicit
solvent, and then further exploring a larger ensemble by a
free, fully solvated simulation, and finally obtaining an
optimal, small ensemble by combining different conformations
from these simulations. While the best conformer obtained by
Bayesian SAXS restraint has χ2 � 2.48, our approach allowed us to
reveal an ensemble of three structures capturing two different
states of PTPN4 with a fitted χ2 of 2.79. Interestingly, while for
several of the proteins studied with the CHARMM36m force
field, the resulting structures are more compact than indicated by
experiment (unless protein-water interactions are increased)
Huang et al. (2017), our analysis highlights both compact and
open states for PTPN4.

4 MATERIALS AND METHODS

4.1 Protein Production and Data Collection
The PDZ-PTPC/S construct, harboring the mutant C852S,
hereafter referred to as PTPN4, was expressed and purified as
previously described Maisonneuve et al. (2014). SAXS
experiments were carried out as previously described except
that the protein concentration used for SAXS experiments was
75 μM Maisonneuve et al. (2014).

4.2 Rigid Body Docking
In the first stage, we used IMP Russel et al. (2012) to perform rigid
body docking of the PDB structures of PTP (PDB code 2I75;
residues 638–913) and PDZ (PDB code 3NFK chain B; residues
512–604). 64 different simulations were performed with 500 steps
each. Initial orientations of PDZ with respect to PTP cover a wide
range of orientations both around the PTP and of the PDZ itself
(see Figure 2). Energy terms were the SAXS restraint
(Supplementary Equation S7) and a quadratic volume
exclusion term. The FoXS model was used on heavy atoms
Schneidman-Duhovny et al. (2013). Each step consisted in
alternating 100 Monte Carlo rotation/translation moves
(510− 2rad/Å) of PDZ with respect to PTP, and optimizing c1,
c2, σ and c. σ and c were optimized by setting them to their
maximum posterior (Supplementary Equation S4 and Spill et al.
(2014)). c1 is constrained to be between 0.95 and 1.05, while c2 is
constrained between −2 and 4. c1 and c2 are jointly optimized by a
two-dimensional grid search, as follows. First, a 11 × 11 grid of
values is tried on the admissible range of c1 and c2. Then, the pair
with the lowest score is used as the center of a new 11 × 11 grid,
whose total size covers that of four cells of the previous grid. The

same procedure yields a refined estimate of c1 and c2. This pair is
in turn used in a second round of refinement, for which another
11 × 11 grid is generated with half the gridsize of the previous
round, yielding the final estimate of c1 and c2. Importantly, before
each evaluation of the score at a given c1 and c2 pair, σ and c are
set to their maximum posterior estimates.

4.3 Rigid Body Self Organizing Map
A 50 × 50 SOMBouvier et al. (2015), Spill et al. (2013) was trained
on the last 200 frames of each of the 64 simulations. Specifically,
we used descriptors with seven dimensions, extracted from the
structures as follows. The coordinates of all 12,800 structures
were recalculated in a reference frame in which the center of mass
of PTP is at the origin, and its orientation is constant across the
structures. The first three dimensions of the descriptors are the
center of mass of PDZ in this reference frame, while the last four
are the quaternions of the rotation of PDZ with respect to PTP.
The metric used to compare a neuron n and a descriptor m is a
weighted sum between euclidean distance between the center of
masses and geodesic distance between the quaternions Huynh
(2009).

d(n,m) �

�����������

∑
3

i�1
(ni −mi)2

√√

+ 2dmax

π
arccos

∣∣∣∣∣∣∣∣∣∣∣∣∣
∑
7

i�4
nimi

∣∣∣∣∣∣∣∣∣∣∣∣∣
(4)

where dmax is the length of the largest space diagonal of the
bounding box of the descriptor’s first three coordinates. Neurons
were updated by interpolation either in Cartesian space (first
three coordinates) or in quaternion space, e.g., on the unit 4-
sphere (last four coordinates).

4.4 Linker Modeling
In the second stage, we added linkers to our models. Due to the
particular choice of the format of the SOM descriptors, a 3D
structure can be reconstructed from the coordinates of the trained
neurons. 1,999 clash-free structures could be extracted from the
SOM neurons in such a way.

Missing residues were added with IMP Russel et al. (2012) so
that the modeled part of the protein spanned residues 496–926.
The termini were assigned random ϕ/ψ dihedral angles in such a
way that no clash was caused.

The linker was generated in two steps. First, Cα atoms were
placed on a path that connects the two endpoints without passing
through either PTP or PDZ. The Cα linker was then minimized
with a harmonic distance restraint between consecutive Cα atoms
(target distance D � 3.86Å) and an excluded volume restraint to
avoid interpenetration. Cα atoms within the linker had a normal
diameter D while other atoms had diameter 2D to push the linker
outside of the protein during initial minimization. 1,000 steps of
steepest descent were followed by 1,000 steps of conjugate
gradient.

Second, all atoms were placed around their corresponding Cα

at random in a sphere of diameter D. CHARMM bonded
restraints were enforced MacKerell et al. (1998), and 250 steps
of steepest descent were performed, followed by 1,000 steps of
conjugate gradient. Then, volume exclusion was turned on, with
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standard CHARMM radii, and followed by the same 250 + 1,000
steps of minimization.

On average, this step resulted in 1,224 structures per pose, or a
total of 2,461,844 structures.

4.5 Monte Carlo Refinement
For each of the 1,999 rigid body poses, the structure with linkers
which had the best Bayesian SAXS score was used as starting
conformation for a Monte Carlo refinement simulation. Each
simulation consisted of 2,000 steps, each of which was an
alternation between 10 Monte Carlo moves and optimization
of σ and c. Each Monte Carlo move was made in internal
coordinates, and consisted in a Gaussian perturbation of the
backbone dihedrals of residues 496–511, 606–636, and 914–926.
The standard deviation of the Gaussian was 5 × 10− 2rad for the
termini and 5 × 10− 3rad for the linker.

4.6 Fixed-Weight Small-angle X-ray
scattering Simulations
To compare fixed-weight and self-adjusting simulations, we used
a similar setup. 20 fixed-weight simulations were performed with
a SAXS restraint with a weight spaced logarithmically from 10− 4
to 102. 10 simulations using the Bayesian SAXS score described
here were performed for comparison. The starting structure was
always identical, and consisted of a random orientation of PDZ
with respect to PTP, with linkers and termini added. Each
simulation was performed for 5,000 steps.

4.7 Molecular Dynamics Simulations
We selected the top PTPN4 conformation determined using the
Bayesian SAXS score, i.e., the one with the lowest χ2 score (2.48).
This conformation was used as the starting structure for the
molecular dynamics simulations (7). MD simulations were
performed with NAMD2.13 Phillips et al. (2005) using
CHARMM36m force field parameter set Huang et al. (2017): i)
hydrogen atoms were added, ii) the solute was hydrated with a
cuboid box of explicit TIP3P water molecules Jorgensen et al. (1983)
with a buffering distance up to 10 Å, iii) 10 Na+counter-ions were
added to neutralise the system, leading to a total system size
of 150,730 atoms. The following minimization procedure was
applied: i) 10,000 steps of minimization of the water molecules
keeping protein atoms fixed, ii) 10,000 steps of minimization
keeping only protein backbone fixed to allow protein side chains
to relax, iii) 10,000 steps of minimization without any constraint
on the system. Heating of the system to the target temperature of
310 K was performed at constant volume using the Berendsen
thermostat Berendsen et al. (1984). Thereafter, the system was
equilibrated for 100 ps at constant volume (NVT) and for further
100 ps using a Langevin piston (NPT) Loncharich et al. (1992) to
maintain the pressure. The production was realised in the NPT
ensemble. The time step was set to 2.0 fs. The temperature was
kept at 310 K and pressure at 1 bar using the Langevin piston
coupling algorithm. The SHAKE algorithm was used to freeze
bonds involving hydrogen atoms, allowing for an integration
time step of 2.0 fs. The Particle Mesh Ewald method Darden
et al. (1993) was employed to treat long-range electrostatics. The

coordinates of the system were written every 10 ps. We performed
three replicates of 200 ns, with different initial velocities. To assess
the stability of each replicate, the root mean square deviation
(RMSD) and fluctuation (RMSF) were recorded along each MD
simulation (Figure 11). We also measured the distances along the
simulations between the center of mass of the two domains in each
replicate (Figure 8).

4.8 Back Calculated Small-angle X-ray
scattering Profiles
For every conformation of the MD simulations, the theoretical
scattering profiles were calculated using CRYSOL from the
ATSAS 2.8.3 software suite Svergun et al. (1995), with the
default parameters. Their corresponding χ2 values were
measured using the following equation:

χ2 � 1
M

∑
M

i�1
(
Icalc(i) − Iexp(i)

σexp(i) )
2

(5)

whereM is the number of points in SAXS profile, Icalc is the back
calculated intensity, Iexp and σexp are the experimental intensity
and error, respectively.

4.9 Genetic Algorithm
We followed a similar procedure as in Delhommel et al. (2017), in
which 1,000 steps of GA were performed, the number of
generated ensemble was set to 1,000 with a cross over
frequency of 0.8 and a mutation frequency of one. We
performed the GA for different ensemble sizes: 1, 3, 5, 30, and
100. In addition, the GA was repeated five times for every
ensemble size and average values were reported.
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Structural Basis of the Function of
Yariv Reagent—An Important Tool to
Study Arabinogalactan Proteins
Tereza Přerovská1, Anna Pavlů 1,2, Dzianis Hancharyk2, Anna Rodionova2, Anna Vavříková2

and Vojtěch Spiwok1*

1Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czechia, 2Department of
Informatics and Chemistry, University of Chemistry and Technology, Prague, Czechia

Arabinogalactan proteins are very abundant, heavily glycosylated plant cell wall proteins.
They are intensively studied because of their crucial role in plant development as well as
their function in plant defence. Research of these biomacromolecules is complicated by
the lack of tools for their analysis and characterisation due to their extreme heterogeneity.
One of the few available tools for detection, isolation, characterisation, and functional
studies of arabinogalactan proteins is Yariv reagents. Yariv reagent is a synthetic aromatic
glycoconjugate originally prepared as an antigen for immunization. Later, it was found that
this compound can precipitate arabinogalactan proteins, namely, their ß-D-(1→3)-galactan
structures. Even though this compound has been intensively used for decades, the
structural basis of arabinogalactan protein precipitation by Yariv is not known. Multiple
biophysical studies have been published, but none of them attempted to elucidate the
three-dimensional structure of the Yariv-galactan complex. Here we use a series of
molecular dynamics simulations of systems containing one or multiple molecules of ß-
D-galactosyl Yariv reagent with or without oligo ß-D-(1→3)-galactan to predict the structure
of the complex. According to our model of Yariv-galactan complexes, Yariv reagent forms
stacked oligomers stabilized by π-π and CH/π interactions. These oligomers may contain
irregularities. Galactan structures crosslink these Yariv oligomers. The results were
compared with studies in literature.

Keywords: arabinogalactan proteins (AGPs), Yariv phenylglycoside, molecular dynamics simulation, noncovalent
interactions, glycochemistry

INTRODUCTION

Arabinogalactan proteins (AGPs) represent an extremely heterogeneous group of plant cell wall
proteoglycans, which together with moderately glycosylated extensins and minimally glycosylated
proline-rich proteins belong to the superfamily of hydroxyproline-rich glycoproteins (HRGPs,
Showalter et al., 2010). A general feature of all HRGP members is the presence of hydroxylated
proline residues, which is a prerequisite for their further glycosylation (Gorres and Raines, 2010;
Nguema-Ona et al., 2014). Despite the increasing amount of discovered chimeric or hybrid AGPs,
the general characteristics of AGPs were defined over the years. Among them belong the high
amounts of Pro, Ala, Ser, and Thr (altogether known as PAST) regularly arranged in Ala-Pro, Ser-
Pro and Thr-Pro dipeptide motifs, which governs AGP specificO-glycosylation (Tan et al., 2003; Ma
et al., 2017). Commonly, the carbohydrate moiety consists of β-D-(1,3)-galactan backbone with β-D-
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(1,6)-galactan side chains, which are often further substituted by
arabinose, rhamnose, fucose, or glucuronic acid (Ellis et al., 2010;
Knoch et al., 2014; Ma et al., 2018). Moreover, AGPs contain
signal sequences directing them to the extracellular location and
often can be found anchored to the plasma membrane by the
glycosylphosphatidylinositol (GPI) anchor (Seifert and Roberts,
2007). AGPs are being extensively studied especially in higher
plants because they have been shown to play an essential role in
plant growth, development, reproduction, signaling, and stress
responses (Nguema-Ona et al., 2012, Nguema-Ona et al., 2013;
Lamport and Várnai 2013; Olmos et al., 2017; Ma et al., 2018; Su
and Higashiyama 2018; Seifert 2020).

There are various tools to study these proteins including
monoclonal antibodies, β-Yariv reagents, specific degradation
of AGP sugar chains, chemical synthesis, and bioinformatics
approach (Su and Higashiyama, 2018). While bioinformatics
offers quick and high-throughput analysis, the results reflect
only the differences in the protein backbone and no
information regarding their glycosylation, the most important
part in terms of their function, can be obtained in such a way
(Showalter et al., 2010; Johnson et al., 2017; Ma et al., 2017). From
the experimental point of view, immunolabeling with antibodies
or the use of β-Yariv reagents is the most commonly used
(Nguema-Ona et al., 2012). Compared to the monoclonal
antibodies, the β-Yariv reagents are able (in addition to the
visualization of AGPs) also to perturb their function, which is
widely exploited in AGP functional studies (Willats and Knox,
1996; Tang et al., 2006; Nguema-Ona et al., 2007; Yu and Zhao,
2012; Olmos et al., 2017; Su and Higashiyama, 2018; Castilleux
et al., 2020).

Yariv reagents (Figure 1) are synthetic phenylglycosides,
which were formerly developed as protein-free precipitatory
antigens for determining the content of sugar-binding proteins
and their purification (Yariv et al., 1962). Nevertheless, later,
certain types of β-Yariv reagents (β-D-glucosyl and β-D-
galactosyl) were demonstrated to selectively bind to AGPs
(Yariv et al., 1967; Nothnagel 1997). Thus, the ability to bind
β-Yariv reagents is also considered a characteristic feature of
AGPs. Despite their wide use and attempts to resolve their mode
of action, their target structure as well as the mechanism

remained elusive for decades (Nothnagel, 1997). Only recently,
the target structure has been at least partially clarified. Kitazawa
et al. (2013) proved that β-D-galactosyl Yariv reagent interacts
with the β-(1,3)-galactan backbone, which has to be longer than
five residues for the interaction to occur. Moreover, Sato et al.
(2018) showed that the extent of β-(1,6)-galactan substitution
affects the Yariv reagent binding ability. Interestingly, the Yariv
reagent self-aggregates in the aqueous solution up to
approximately 305 units (Nothnagel, 1997; Paulsen et al.,
2014). The size of aggregates influences the interaction with
AGPs, when the AGP precipitation is known to take place in
a solution with ionic strength corresponding to 1%NaCl in which
the number of aggregated molecules is approximately 185. On the
other hand, 10% NaCl inhibited the precipitation, and the
aggregate comprised approximately 125 units (Nothnagel,
1997; Paulsen et al., 2014).

Unfortunately, the mechanism of action still remains largely
understudied andmore studies are needed to fully understand the
nature and functionality of Yariv reagents. To elucidate the
structure of Yariv-galactan complexes, we carried out a series
of molecular dynamics simulations of systems containing Yariv
reagent (namely β-D-galactosyl Yariv, further referred to as Yariv)
and/or galactan oligosaccharides in explicitly modeled water. The
protein part of AGP was not modeled because it has been shown
that Yariv recognizes the carbohydrate part of AGPs (Kitazawa
et al., 2013). Galactan trisaccharide was chosen as a minimal
model oligosaccharide (Figure 1). This choice was driven by the
fact that Yariv is selective for 1→3 linked oligomers, for which a
trisaccharide is the smallest representative. Another
oligosaccharide studied in this study is hexassacharide
(Figure 1) because it was shown that oligosaccharides with
more than five units form stable complexes with the Yariv
reagent (Kitazawa et al., 2013).

MATERIALS AND METHODS

All simulations were done in Gromacs package version 2018
(Abraham et al., 2015). Galactooligosaccharides were modeled
using the Glycam 06j-1 force field (Kirschner et al., 2008). Yariv

FIGURE 1 | Chemical structure of Yariv reagent and oligosaccharides studied in this study.
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compound was modeled by a manually combined Glycam and
General Amber Force Field (Wang et al., 2004). Acpype (Sousa da
Silva and Vranken, 2012) was used to convert AMBER files to
Gromacs files. Galactose units were modeled by Glycam
nonbonded and bonded parameters, except for partial atomic
charges. Non-saccharidic part of Yariv compound was modeled
by General Amber Force Field in AMBER tools version 16
(Salomon-Ferrer et al., 2013) non-bonded and bonded
parameters, except for partial atomic charges. Parameters for
the connection between both parts were taken from the analogous
parameters of glycoside linkage in Glycam. Partial atomic charges
were calculated by an Antechamber routine utilizing the
semiempirical AM1-BCC method (Jakalian et al., 2000).
Gromacs topology of all studied molecules is available via
Zenodo (see below).

Systems containing different molecular assemblies were
solvated by TIP3P water molecules (Jorgensen et al., 1983).
Next, it was minimized by the steepest descent algorithm and
equilibrated by 1 ns simulation in a NPT ensemble and 1 ns
simulation in a NVT ensemble. This was followed by a 100 ns
production simulation. Simulation step was set to 2 fs and all
bonds to hydrogens were constrained by the LINCS algorithm
(Hess et al., 1997). Electrostatic interactions were modeled by
the Particle-Mesh Ewald (PME) (Darden et al., 1993) method
with the cutoff set to 1 nm. Temperature and pressure was
maintained by Parrinello-Bussi (Bussi et al., 2007) and
Parrinello-Raman (Parrinello and Rahman, 1981) algorithm,
respectively.

Simulations were analysed using in-house scripts in Python
with MDTraj library (McGibbon et al., 2015). Simulation inputs
and results (input files for simulations, trajectories without water
molecules) are available via Zenodo (DOI: 10.5281/zenodo.
4767970).

RESULTS AND DISCUSSION

To elucidate the structural organisation of complexes of Yariv
reagent with β-D-(1→3)-galactan molecules, we carried out
simulations of, in total, 48 systems containing various
numbers of Yariv reagent molecules (Y) and carbohydrate
molecules. Carbohydrate molecules included trisaccharide (T,
β-D-Gal-β-D-(1→3)-Gal-β-D-(1→3)-Gal), or hexasaccharide (H,
β-D-Gal-β-D-(1→3)-Gal-β-D-(1→3)-β-D-Gal-β-D-(1→3)-Gal-
β-D-(1→3)-β-D-Gal-β-D-(1→3)-Gal). They are further referred to
as Y2 for a system with two molecules of Yariv reagent, YT for a
system with Yariv reagent and trisaccharide, etc. Initial structures
of the systems were assembled manually. In summary, simulated
systems included Y2, YT, YH, Y4, Y4T, and Y4H, all in eight
replicas.

Our initial simulations (data not shown) showed that
noncovalent interactions between a Yariv molecule and a
carbohydrate and especially between two Yariv molecules are
relatively strong. It would be necessary to run very long
simulations to observe relevant structural transitions.
Therefore, to map possible modes of interactions between
Yariv and carbohydrates we carried out a series of short

(100 ns) simulations starting from different initial structures.
We believe such simulations are more representative than few
long simulations due to long lifetimes of complexes. Initial
coordinates were built manually to represent wide diversity in
terms of initial distances and orientations of molecules.

First, we were interested in the interactions between two Yariv
molecules. The simulated systems of Yariv dimers contained
2073–2083 water molecules. This corresponds to a
concentration of Yariv reagent equal to 53–54 mmol/L (approx
28 g/L). This is approximately 30 times higher than
concentrations used in precipitation experiments of
arabinogalactans, however, in simulations the interactions
between Yariv reagent molecules are limited by periodic
boundary conditions.

The first Yariv molecule of all snapshots was fitted onto the
first snapshot to eliminate its translational and rotational
motions. This was possible due to relatively high rigidity of
the Yariv molecule (conjugated diazenyl groups).
Coordinates of the second molecule were analysed in
terms of free-energy-like function. 3D histograms of all
carbon atoms of the second Yariv molecule were calculated
with 1 Å × 1 Å × 1 Å bins. Next, these values were converted
to free-energy-like functions as:

Ai � −kTlogPi

where Pi is the histogram count, k is Boltzmann constant, and T is
the temperature in Kelvin. Finally, the value of the global
minimum was subtracted. The difference between a free
energy and the free-energy-like function used in this study is
in the fact that the free energy depicts probability of finding a
molecule at a certain point, whereas the free-energy-like function
depicts the probability of finding any carbon atom at a certain
point. The advantage of the free-energy-like function is in its
higher resolution. The resulting free-energy-like functions are
depicted in Figure 2.

Yariv reagent formed stable and almost perfectly parallel
dimers (Figure 2). Two Yariv reagent molecules interact by
π-π stacking via all four aromatic moieties, despite different
initial monomer orientations. These interactions are relatively
strong, but still reversible as indicated by replica seven. In this
simulation replica, we observed that the second Yariv molecule
(initially at the bottom, depicted as a free-energy-like function in
Figure 2) migrated to the top face of the first Yariv molecule
(depicted as atoms in Figure 2). Interestingly, assemblies
stabilized by CH/π interactions between the carbohydrate part
of one Yariv molecule and the aromatic ring in the second
molecule were rare. This can be explained by the fact that
galactose forms aromatic CH/π interactions in carbohydrate-
protein complexes via its C-H bonds on carbons C3, C4, C5,
and C6. Such complexes are not parallel. In contrast, glucose
forms parallel aromatic CH/π complexes in carbohydrate-protein
complexes via C-H bonds on carbon atoms C1, C3, and C5 or C2,
C4, and C6. In conclusion, Yariv forms dimers that are parallel
and stabilized predominantly by π-π stacking between its
aromatic moieties. This assembly is relatively stable,
nevertheless rearrangements of the assembly are possible in
sub-microsecond time scales.

Frontiers in Molecular Biosciences | www.frontiersin.org June 2021 | Volume 8 | Article 6828583
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The second series of simulations studied assemblies of a single
Yariv reagent with a single trisaccharide or hexasaccharide.
Similarly to Y2, also these results were analysed in terms of
free-energy-like functions (Figure 3). Similarly to Yariv dimers,
the complexes of Yariv reagent with oligosaccharides were stable.
We observed the migration of trisaccharide from the bottom to
the top face of Yariv in five of eight 100-ns-long simulations.
Galactooligosaccharides with β-(1→3) linkage are characterized
by approximately 120° angle between three adjacent
monosaccharide units. They are perfectly aligned with the
orientation of aromatic rings (peripheral-central-peripheral) in
a Yariv reagent molecule. Yariv-galactooligosaccharide
complexes were stabilized by carbohydrate-aromatic CH/π
interactions (Spiwok, 2017). Free-energy-like functions of YT
complexes were triangular. This can be explained by the
formation of three possible complexes in which the three
adjacent monosaccharide units interact either with peripheral1-
central-peripheral2, peripheral2-central-peripheral3, or
peripheral3-central-peripheral1 aromatic rings. Fast
interconversion between these complexes determines the
triangular free-energy-like functions of YT complexes.

Complexes of Yariv reagent with hexasaccharide (YH) were
comparably strong as YT. Free-energy-like functions were mostly
boomerang-shaped (five of eight simulations). This can be
explained by the fact that the interconversion between

complexes was much slower compared to YT and one
assembly was predominant.

Assemblies with more than two molecules included Y4, Y4T,
and Y4H. The complexes formed in these systems were
visualized as structures after 100 ns (Figures 4–6). These
complexes were formed very quickly (<20 ns) and they were
stable in terms of topology along 100 ns simulations. These
figures show that Yariv reagent molecules were arranged in
parallel, however, these assemblies were not perfectly parallel
and contained numerous irregularities. Yariv molecules
interacted predominantly via π-π stacking of their aromatic
molecules. There were also CH/π interactions between the
carbohydrate part of one Yariv molecule and an aromatic
ring of another molecule. Furthermore, there were CH/π
interactions in which aromatic rings were playing both
roles—donors and acceptors.

Complexes of multiple Yariv molecules with a saccharide
(Figures 5, 6) combined the properties of Yariv tetramers and
binary complexes described above. The complexes were formed
by a parallel assembly of Yariv molecules with irregularities from
a perfectly parallel shape. A molecule of tri- or hexasaccharide
was sitting on top of the Yariv molecule which was most exposed
to the solvent. Binding of saccharides onto Yariv was slightly
different from that in binary complexes. This can be explained by
the fact that there are irregularities in the parallel shape of Yariv

FIGURE 2 | Interactions in Yariv reagent dimer (Y2). One molecule of Yariv was fitted to the initial coordinates. Coordinates of the secondmolecule were analysed in
terms of a free-energy-like function. This function is depicted as isosurfaces at 5 or 10 kJ/mol (relative to the global minimum).
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tetramers. These irregularities expose more aromatic groups for
interaction with a saccharide and give saccharides more freedom.

One exception was the Y4H complex formed in the replica
eight. In this case the oligosaccharide molecule docked into the
groove formed by two peripheral and one central aromatic
moieties of parallely stacked Yariv tetramer. This complex is

stabilized by numerous hydrogen bonds. This assembly can be
seen as an alternative model of Yariv-oligosaccharide
interactions.

It is important to assess the accuracy of the simulations in this
study. This accuracy is determined by the accuracy of molecular
mechanics potentials (force fields) and by the completeness of

FIGURE 3 | Interactions of Yariv reagent with trisaccharide (YT) and hexasaccharide (YH). The molecule of Yariv was fitted to the initial coordinates. Coordinates of
the saccharide molecule were analysed in terms of a free-energy-like function. This function is depicted as isosurfaces at 5 kJ/mol (relative to the global minimum).

FIGURE 4 | Assemblies Y4 (non-hydrogen atoms) after 100 ns shown in two different orientations rotated by 90°. They are colored by atom ID in the system.
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sampling. The studied complexes were dominated by π-π and
CH/π interactions. Comparison of quantum chemical and
molecular mechanical energies of sample π-π (Sponer et al.,
2006) or CH/π (Spiwok et al., 2005) complexes has shown
that these interactions are relatively accurately modeled by the
available molecular mechanics force fields. Another issue in
carbohydrate modeling is ring puckering. Hexopyranoses may
exist in the chair as well as in the boat or skew-boat conformers.
The chair structure is predominant for β-D-galactose units. Visual
inspection of trajectories revealed that carbohydrates stayed in
the chair conformation as expected.

Finally, molecular dynamics simulation suffers limited time
scales due to its computational complexity. Here we used
multiple replicas of simulated systems differing in the initial
structure of the systems rather than running a few long
simulations. This was motivated by the necessity to map
possible interaction patterns.

Our model of complexes of Yariv reagent with β-(1→3)-
galactans is depicted in Figure 7A as a schematic view. It is

our speculation of the structure of large Yarive-polysaccharide
complexes based on the results of our simulations. Yariv forms
parallel stacked oligomers. The sizes of these oligomers may vary,
but we expect their size in tens or hundreds of units. In
simulations of Yariv dimers, we observed a trend of rotation
of its units, i.e., one unit is rotated by a few degrees. This rotation
seems to be asymmetric (right handed). We speculate that this
may explain the helical chirality of Yariv aggregates that has been
observed by circular dichroism (Hoshing et al., 2020).

These stacked oligomers are not perfect and contain
irregularities. This is probably the reason Yariv reagent and its
complexes resisted the application of conventional experimental
methods. Some experimental methods of structure elucidation,
such as crystallography, require strong periodicity of the studied
system. Irregularities in oligomeric structures provide more
accessible aromatic rings as platforms for interaction with
carbohydrates.

An assembly that cannot be ruled out as a model of Yariv-
oligosaccharide interaction is the one formed in the eighth replica

FIGURE 5 | Assemblies Y4T (non-hydrogen atoms) after 100 ns shown in two different orientations rotated by 90°. They are colored by atom ID in the system (Yariv
molecules are blue to orange, saccharides are in red).

FIGURE 6 | Assemblies Y4H (non-hydrogen atoms) after 100 ns shown in two different orientations rotated by 90°. They are colored by atom ID in the system (Yariv
molecules are blue to orange, saccharides are in red).
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Přerovská et al. Simulations of Carbohydrate—Yariv Complexes

150

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


of Y4H simulation (Figure 6 and Figure 7B in detail). We plan to
study this assembly in future.

The selectivity of Yariv reagent towards 1→3-linked oligo- and
polysaccharides may be explained by the fact that the three
adjacent aromatic rings in Yariv and three adjacent
monosaccharide units in 1→3-linked oligosaccharide are bent
by 120°. For example, in 1→4-linked glycans, the orientation is
linear (not bent) and such oligo- or polysaccharide would bind to
the Yariv reagent very weakly.

The fact that Yariv complexes are stabilized mostly by π-π and
CH/π interactions is in good agreement with the fact that Yariv
assemblies are resistant to high ionic strength (Nothnagel, 1997;
Paulsen et al., 2014). These interactions are mediated by the
hydrophobic parts of both molecules, namely, by aromatic rings
and C-H-rich patches of carbohydrates. Due to this, many
researchers present these interactions as hydrophobic. It was
not a subject of this work to determine whether these
interactions are physical attractive interactions or a result of
solvation and desolvation. The nature of, for example, CH/π
interactions remains a question of debate (physical van der Waals
vs. hydrophobic) (Spiwok, 2017).

In conclusion, simulations of systems containing the Yariv
reagent with model oligosaccharides provide predictions of main
interaction types and structural arrangements in these complexes.
We understand that our models are based on simplified systems
and short time scales, nevertheless, we believe they can inspire
other researchers studying the Yariv reagent to design new

biophysical experiments or Yariv derivatives to complete our
picture of the function of this useful reagent.
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Ubiquitin Interacting Motifs: Duality
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Ubiquitin is a small protein at the heart of many cellular processes, and several different
protein domains are known to recognize and bind ubiquitin. A commonmotif for interaction
with ubiquitin is the Ubiquitin Interacting Motif (UIM), characterized by a conserved
sequence signature and often found in multi-domain proteins. Multi-domain proteins
with intrinsically disordered regions mediate interactions with multiple partners,
orchestrating diverse pathways. Short linear motifs for binding are often embedded in
these disordered regions and play crucial roles in modulating protein function. In this work,
we investigated the structural propensities of UIMs using molecular dynamics simulations
and NMR chemical shifts. Despite the structural portrait depicted by X-crystallography of
stable helical structures, we show that UIMs feature both helical and intrinsically disordered
conformations. Our results shed light on a new class of disordered UIMs. This group is here
exemplified by the C-terminal domain of one isoform of ataxin-3 and a group of ubiquitin-
specific proteases. Intriguingly, UIMs not only bind ubiquitin. They can be a recruitment
point for other interactors, such as parkin and the heat shock protein Hsc70-4. Disordered
UIMs can provide versatility and new functions to the client proteins, opening new
directions for research on their interactome.

Keywords: molecular dynamics, peptide arrays, ubiquitin, short linear motifs, moonlight functions, intrinsic disorder

INTRODUCTION

Protein biochemistry relied for a long time on the paradigm that a protein’s function is tied to its
three-dimensional structure. Over the past 20 years, several proteins or regions in proteins that do
not fit within the structure-function paradigm have been reported (Wright and Dyson, 1999; Chen
and Kriwacki, 2018; Milles et al., 2018). They are known as intrinsically disordered proteins (IDPs) or
regions (IDRs). IDPs and IDRs lack stable tertiary contacts, are highly dynamic, pliable, and typically
do not exhibit stable secondary structures. Proteins containing IDRs constitute 30–44% of eukaryotic
proteomes (Perdigão et al., 2015). They attain multiple and chameleon conformations for
interactions with different partners (Wright and Dyson, 2014; Bugge et al., 2020). Consequently,
the modulation of the structural landscape of an IDP can result in opposing actions on different— or
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even the same — binding partners, making them elusive, but
attractive targets to study (Metallo, 2010; Flock et al., 2014). IDPs
and IDRs can also be involved in allosteric mechanisms with key
roles in many processes, including modulation of protein-protein
interactions and catalytic activities of enzymes (Ma et al., 2011; Li
et al., 2017; Berlow et al., 2018; Guarnera and Berezovsky, 2019;
Tee et al., 2020).

IDPs and IDRs often interact with binding partners through
short stretches of conserved residues, called short linear motifs
(SLiMs), embedded in otherwise non-conserved regions (Davey
et al., 2012; Van Der Lee et al., 2014). The occurrence of two or
more SLiMs in the same IDP/IDR can increase the interaction
strength via avidity by multivalent interactions (Van Roey et al.,
2014; Fung et al., 2018). Although individual SLiMs are short and
mostly participate in transient interactions, they are essential to
protein binding specificity and function (Bugge et al., 2020;
Kumar et al., 2020).

Some functional motifs of proteins that were traditionally
defined as helical elements have been recently reclassified as
disordered SLiMs, such as the Bcl-2 Homology 3 motifs
(Hinds et al., 2007; Aouacheria et al., 2015). Another well-
known functional motif traditionally considered to have a high
helical propensity (Scott et al., 2015) is the so-called Ubiquitin
Interacting Motif (UIM) or ‘LALAL-motif’. UIMs are motifs of
approximately 20 residues and were described for the first time in
the 26S proteasome subunit PSD4/RPN-10 to bind ubiquitin

(Young et al., 1998; Hofmann and Falquet, 2001), now
representing the archetypal UIM in the families of ubiquitin
binding domains (Scott et al., 2015). UIMs can be found, often in
tandem or triplets, in a multitude of proteins involved in
ubiquitination, ubiquitin metabolism, or that interact with
ubiquitin-like modifiers (Buchberger, 2002). UIM binding
partners are not limited to ubiquitin. As an example,
ubiquitin-like proteins involved in autophagy feature an
interface to recruit UIMs (Marshall et al., 2019; Sora et al.,
2020). The UIM consensus motif is X-Ac-Ac-Ac-X-Φ-X-X-
Ala-Φ-X-X-Ser-X-X-Ac-X, where Φ represents any
hydrophobic residues (often Leu or Ile), Ac represents an
acidic residue (Glu, Asp), and X loosely conserved positions
(Hofmann and Falquet, 2001; Scott et al., 2015).

Among different UIMs, we focused our attention on the
poorly characterized UIM within the C-terminus (residues
306–361) of the human ataxin-3 (AT-3). AT-3 is a multi-
domain polyglutamine deubiquitinating enzyme used as a
model system to study polyglutamine neurodegenerative
diseases (Burnett et al., 2003; Carvalho et al., 2018; Invernizzi
et al., 2012). AT-3 contains two UIM regions (UIM1 and UIM2)
in the central part of the protein, surrounded by disordered
regions (Burnett et al., 2003; Invernizzi et al., 2013; Masino
et al., 2003; Sicorello et al., 2018, 2021). AT-3 also undergoes
alternative splicing, and its isoforms differ in the C-terminus
(Harris et al., 2010). Among the main isoforms, one isoform

FIGURE 1 | The C-terminus of the UIM3 isoform of ataxin-3 is predicted disordered and includes a UIM. (A) The figure illustrates the amino acid sequence of AT-
3306-361. The blue box indicates UIM3 of AT-3 (residues E336-T350). (B) The panel shows the residue-wise prediction of the S2 order parameter in AT-3306-361 from
DynaMine (purple). The dashed lines show the thresholds of S2 predicted scores to classify residues as ordered (S2 ≥ 0.75), context-dependent (0.65 < S2 < 0.75), and
disordered (S2 ≤ 0.65). (C) The panel shows the residue-wise prediction of disorder propensity in AT-3306-361 from the Multilayered Fusion-based Disorder
predictor v. 2.00 (MFDp2, green), and SPOT-Disorder2 (SPOTdis.2, yellow) predictors. The dashed line shows the threshold of disorder probability to classify the
residues as disordered ( ≥ 0.5) and ordered ( < 0.5). (D) The plot shows the residue-wise prediction of secondary structure propensity (Coil orange, Helix violet, Strand
teal) from PSI-PRED. The dashed line shows the threshold of secondary structure probability for each structural class to classify the residues as coil, helix or strand ( ≥
0.5). The light blue box indicates UIM3. The predictors report AT-3306-361 as a mainly disordered tract with propensity to order and helical structures in proximity of UIM3.
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contains a third UIM, called UIM3 (Figure 1A (Goto et al., 1997;
Bettencourt et al., 2010). The UIM3-containing isoform is widely
expressed and appears to be the predominant form in the human
brain (Ichikawa et al., 2001; Harris et al., 2010). Furthermore, AT-
3 UIMs are involved in multivalent binding to the Ubl domain of
the E3 ubiquitin ligase parkin (Bai et al., 2013; Aguirre et al.,
2018). It has also been suggested that the three UIMs of AT-3
interact with the heat shock protein Hsc70-4 in Drosophila
melanogaster (Johnson et al., 2020).

Recent advances in all-atom molecular dynamics (MD)
simulations in terms of enhanced sampling (Abrams and
Bussi, 2013; Spiwok et al., 2015; Bonomi et al., 2017; Sugita
et al., 2019; Bussi and Laio, 2020) and physical models for
disordered proteins (Best, 2017; Huang and MacKerell, 2018)
offer a possibility to unveil heterogeneous conformational
ensembles at the atomic level. The presence of multiple UIMs
in the disordered C-terminus of AT-3 that are involved in the
binding of different interaction partners makes this protein a
good model to investigate the structural propensities of UIM
using molecular dynamics simulations and chemical shifts
from NMR.

We here report a study on the structural propensity and
dynamics of the C-terminus of the UIM3-containing isoform
of AT-3 (residues 306–361, AT-3306-361). We used two different
methods to enhance the sampling of the MD simulations based
on temperature exchange or bias along with selected collective
variables. We also employed three different force fields (available
at the time we performed the simulations) suitable to study
disordered/unfolded states of proteins (Best and Mittal, 2010;
Knott and Best, 2012; Lindorff-Larsen et al., 2012; Best et al.,
2014). The simulation results for AT-3306-361 were then been
compared to NMR data for other UIMs in solution (Sgourakis
et al., 2010; Lim et al., 2011; Lange et al., 2012; Anamika et al.,
2014; Shi et al., 2014; Wen et al., 2014; Sicorello et al., 2018) or to
NMR data recorded in this work. In addition, we validated the
simulations against previously published NMR chemical shifts of
a construct of AT-3 including UIM3 (Bai et al., 2013).

We find that UIM-containing regions can account for both
stable helical conformations and more disordered ones, which, in
turn, are the more pliable toward a wider range of interactors
beyond ubiquitin itself. Thus, our study provides a broader view
on the ubiquinome through uncovering an enhanced structural
heterogeneity within the groups of UIMs.

MATERIALS AND METHODS

Bioinformatic Analysis
For the sequence-based prediction of secondary structure
propensity, we used the PSIPRED predictor (Jones, 1999). We
performed disorder prediction from the amino acid sequence,
using DynaMine (Cilia et al., 2013), Multilayered Fusion-based
Disorder predictor v. 2.00 (MFDp2, (Mizianty et al., 2013), and
SPOT-Disorder2 (Hanson et al., 2019). MFDp2 is a meta-method
that combines disorder probabilities predicted at residue- and
sequence-level byMFDp and DisCon, respectively, and uses post-
processing filters and sequence alignment. SPOT-Disorder2

combines long short-term memory with deep bidirectional
neural networks to capture non-local and long-range
interactions, integrating information from evolutionary profiles
of aligned sequences. DynaMine allows high-quality predictions
of protein backbone dynamics using an accurate NMR data set for
training.

Replica-Exchange Molecular Dynamics
Simulations
REMD simulations were performed by GROMACS (Groninger
MAchine for Chemical Simulation) using a conformation of the
C-terminus of AT-3 (56 residues, 306–361, AT-3306-361) initially
generated with Crystallography and NMR System version 1.3
(Brunger, 2007) as the starting structure. We further imposed a
helical structure for the region E336-T357, according to the
secondary structure prediction by PSIPRED, using
MODELLER 9.14 (Eswar et al., 2007). In particular, we
selected the model that lacked intermolecular side-chain
contacts (defined as intramolecular contacts at a distance in
sequence over three residues).

The models were soaked in a dodecahedron box of water
molecules with periodic boundary conditions, with a minimal
distance for the protein atoms from the box edges of at least 14 Å.
We applied the Particle-Mesh Ewaldmethod (Darden et al., 1993)
with a 1.2 Å grid spacing. Van der Waals and Coulomb
interactions were truncated at 12 Å. Na+ and Cl− counterions
were added to the system to neutralize the overall charge and to
simulate a physiological ionic strength (i.e., 150 mM).

Each system was initially relaxed by 10,000 steps of energy
minimization by the steepest descent method. The optimization
step was followed by 50 ps of solvent equilibration at 300 K, while
restraining the protein atomic positions using a harmonic
potential. The systems were subsequently simulated for five ns
at 300 K at a constant pressure of 1 bar (NPT ensemble) with
coupling constants of 5 and 10 ps, respectively. From the NPT
trajectories, we selected a conformation with the volume close to
the average volume of the trajectory and used as the starting point
for the subsequent NVT preparatory step at 300 K for 20 ns. The
64 initial conformations for REMD simulations were selected
from different points (between 10 and 20 ns) along the NVT
trajectory using the v-rescale thermostat (Bussi et al., 2007).
Other details are reported in the parameter files in the GitHub
repository.

In the temperature REMD scheme a number of different
copies (replicas) of the system were simulated in parallel at
different temperatures and exchanges of configurations are
attempted periodically between pairs of replicas. The
advantage of this method is that if the trajectory is
temporarily trapped in a local minimum can exchange with a
replica at a higher temperature and cross high-energy barriers.
We carried out REMD simulations using 64 replicas, each replica
for 50 ns for a collective simulation time of 3.2 μs. Each replica
was run at a different temperature in the range 299–360 K. We
selected the temperature spacing between each neighboring
replica to ensure an exchange probability higher than 0.2. The
replica-exchanges were attempted every ten ps.
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Well-Tempered-Metadynamics Simulations
TheWT-metaD (Barducci et al., 2008) simulations were performed
using GROMACS and the open-source, community-developed
PLUMED library (Bonomi et al., 2009; PLUMED Consortium,
2019). In the WT-metaD simulations, the sampling of the free
energy surface is enhanced by adding a history-dependent
potential to a set of collective variables (CVs). Similar
approaches have been applied to simulations of other
intrinsically disordered proteins and peptides (Do et al., 2014;
Palazzesi et al., 2015). We employed two CVs in our simulations,
i.e., 1) the Cα radius of gyration, and 2) alphabeta, a CV that
measures the similarity of each ψ dihedral angle of AT-3306-361 to a
reference value of 0.7854 rad, which corresponds to a-helix.
Gaussian potentials with an initial height of 0.12 kcal/mol were
added to the time-dependent potential every two ps. We used an
initial bias factor of four for rescaling the Gaussian height following
the WT-metaD scheme. In addition, we used Gaussian widths of
0.2 and one for each CV, respectively. We collected one-μs WT-
metaD simulations. We used an extended and disordered
conformation of the peptide generated by Profasi (Irbäck and
Mohanty, 2006) as the initial structure for the WT-metaD
simulations.

Force Fields andWater Models Employed in
the REMD and WT-metaD Simulations
For the REMD simulations, we employed four different
combinations of protein force fields and water models in our
simulations: 1) Amber ff03w [ff03w (Best and Mittal, 2010)] with
TIP4P/2005 (Abascal and Vega, 2005), 2) Amber ff03ws [ff03ws
(Best et al., 2014)] with TIP4P/2005, in which the protein–water
pair interactions have been modified to improve the description
of disordered proteins, 3) CHARMM22* (Piana et al., 2011) with
TIP3P (CHARMM22*1) (Jorgensen et al., 1983) or 4) TIPS3P
(CHARMM22*2) (MacKerell, et al., 1998). WT-metaD was
carried out only for ff03w, ff03ws, and CHARMM22*2.

Analyses of the Simulations
The replica at 304 K was used for the analysis. To study the
temperature distributions, we converted each replica to be
continuous to the simulation time to follow each replica through
the temperature space. We used DSSP (Kabsch and Sander, 1983)
to estimate the helical content. We used MDAnalysis (Michaud-
Agrawal et al., 2011) to calculate the root mean square deviation
(RMSD) of UIM3 of AT-3306-361 with respect to the starting helical
conformation. We considered the Cβ atom of A343 and the
backbone (Cα, C, O, N) atoms of the residues E336-T350 of
UIM3 for rigid body superposition and the RMSD calculation.

For the WT-metaD simulations, we reconstructed the one-
dimensional free energy landscape from the deposited bias
during the simulation with a stride value of 10,000. We extracted
four ensembles of structures of AT-3306-361 from the CHARMM22*2
metadynamics trajectory with alphabeta values in the ranges of 1)
9–17, 2) 18–23, 3) 24–30, and 4) 31–34, respectively. On these
ensembles, we estimated the propensity to helical structures using
the DSSP dictionary (Kabsch and Sander, 1983) and including
a-helix, π-helix and 3.10 helix in the analyses. We applied the

MDplot R/CRAN package (Margreitter and Oostenbrink, 2017) to
calculate a residue-wise persistence degree of helical secondary
structures. On the ensembles selected from the CHARMM22*2
metadynamics trajectory, we used MDAnalysis to calculate the
RMSD of UIM3 of AT-3306-361 (residues 336–350) with respect
to: 1) the starting structure of AT-3306-361 used for the REMD
simulations, 2) the experimental structure of yeast vps27 UIM1
[residue E259-E273, PDB entry 1Q0W (Swanson et al., 2003)],
human proteasome subunit S5a UIM1 [residue A212-E226, PDB
entry 1YX5 (Wang et al., 2005)] and UIM2 [residue E283-G297,
PDB entry 1YX6 (Wang et al., 2005)], and mouse RAP80 UIM1
[residues E81-E95, PDB entry 3A1Q (Sato et al., 2009)] in complex
with ubiquitin. We used the same subset of atoms for structural
alignment and RMSD calculations, i.e., the Cβ atom of A343 and the
backbone (Cα, C, O, N) atoms of residues E336-T350 of AT-3306-361.

Comparison to the Available Chemical
Shifts of AT-3306-361
To evaluate the REMD ensembles, we calculated the backbone
chemical shifts as a function of the simulation time using PPM (Li
and Brüschweiler, 2012) and compared them to the available
NMR backbone chemical shifts for a construct of AT-3 including
UIM3 [residues 194–361 (Bai et al., 2013)]. To compare the
calculated backbone chemical shifts with the experimental ones,
we used a reduced χ2 metric as previously described (Papaleo
et al., 2018), using the Python package delta_cs (Sora et al., 2021).
The reduced χ2 relates the squared deviation between the
predicted and experimental value and normalized by the
variance of the chemical shift predictor for each type of
chemical shift and the total number of chemical shifts. Lower
values of χ2red metric indicate a better agreement between
experimental and calculated chemical shifts.

Protein Purification
We produced recombinant yeast ubiquitin in E. coli strain BL21
using a pMCSG7vector. Ubiquitin was expressed as a 6X histidine
(6His)-TEV N-tagged fusion protein by the addition of 1 mM
IPTG and incubation 5 h at 37°C. Cells were harvested,
resuspended in a lysis buffer (50 mM Tris pH 8.0, 150 mM
NaCl, 10 mM imidazole) plus protease inhibitor mixture
(Roche), and disrupted by sonication. 6His-TEV-Ubiquitin
was affinity purified with Ni Sepharose 6Fast Flow (GE
Healthcare) and eluted with 20 mM Na2HPO4.2H2O, 0.5M
NaCl, 500 mM imidazole, pH7.4.

For the construct of human AT-3 including residues 182–291
(AT-3182–291) we cloned it in frame with glutathione S-transferase
(GST) in a pGEX-6P-1 (GE Healthcare LifeSciences, Little
Chalfont, England) plasmid and expressed in E. coli BL21
Codon Plus strain (Stratagene, La Jolla, CA, United States) in
auto-inducing growth minimal medium (Tyler et al., 2005). For
the production of 15N labeled proteins, we included 15NH4Cl or
(15NH4)4SO4 1 g/l as the sole nitrogen source. For 15N13C labeled
proteins, we added 15NH4Cl 1 g/l or (15NH4)4SO4 1 g/l and
substituted the carbon source with a solution of 0.4%
13C-glucose. Cells were harvested, resuspended in a lysis buffer
(50 mM KH2PO4, 50 mM Na2HPO4, 300 mM NaCl, pH 7.4) to
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which DNAse (10 μg/ml, Sigma-Aldrich, St. Louis, MO,
United States) and PMSF (1 mM) were added and then
disrupted by sonication. We purified the soluble protein
fractions by affinity chromatography with Glutathione
Sepharose four Fast Flow resin (GE Healthcare Bio-Sciences,
Uppsala, Sweden) and subsequently in-site cleaved with 60
units of PreScission Protease (HRV 3C Protease Sino
Biological inc., Beijing, P.R.China) per ml of resin. We then
further purified the eluted samples by size-exclusion
chromatography on a Superdex 75 10/300 GL column (GE
Healthcare LifeSciences, Little Chalfont, England) in PBS
buffer, pH 7.4, 150 mM NaCl.

Peptide Array
We purchased peptide arrays from Intavis and modified the
procedures for blocking and probing the arrays from (Frank
and Dubel, 2006). Briefly, the peptide array was re-hydrated
through incubation in 100% ethanol and transferred in TBS
(137 mM NaCl, 2.7 mM KCl, and 50 mM Tris, pH 7.0) for
5 min at room temperature. The blocking was performed by

incubating the membrane 4°C overnight in TBS with 5% nonfat
dry milk (MBS). Membranes were then incubated with 10 ml
MBS with 2 mg/ml of 6His-TEV-Ubiquitin for 3 h at room
temperature. The peptide array was then rinsed with a
blocking buffer and then incubated with anti-6His antibody
(Sigma Aldrich C6594) diluted 1:1,000 in the blocking buffer
for 2 h at room temperature. The membrane was washed in
Tween TBS 3 times and then incubated 1 h at room temperature
with the secondary antibody (anti-mouse AP from Immunstar kit
170–5010).

NMR Spectroscopy of AT-3182-291
NMR samples were prepared by dissolving the purified protein in
90% PBS buffer, pH 7.4, 150 mM NaCl and 10% D2O with4,4-
dimethyl-4-silapentane-1-sulfonic acid (DSS) added as internal
calibration standard. Protein concentrations were from 0.5 to
1 mM in a volume of 400 μl. Assignment of backbone chemical
shifts was performed on a 0.5 mM 13C, 15N AT-3182-291 sample
and 1H, 15N-HSQC spectrum and the following triple resonance
spectra were recorded, HNCA, HN(CO)CA, HNCO, HN(CA)

FIGURE 2 | AT-3306-361 in the free state assumes both helical and non-helical conformations. The panels show the per-residue helical content of each replica at
304 K from the REMD simulations of the AT-3306-361 for each combination of protein force fields and water models: (A) CHARMM22*-TIP3P (CHARMM22*1, green), (B)
CHARMM22*-TIPS3P (CHARMM22*2, pink), (C) Amber ff03w-TIP4P/2005 (ff03w, orange), and (D) Amber ff03ws-TIP4P/2005 (ff03ws, blue). The residues of UIM3
(residues 336–350) are highlighted by the black bars. The REMD simulations with ff03w and ff03ws show high helical content for UIM3 while the CHARMM22*2
simulation reports more disordered and heterogeneous conformations of UIM3.
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CO, CBCA(CO)NH, CBCANH, CC(CO)NH and H(CCO)NH
(all pulse programs from Agilent BioPack) at 25 °C on a Varian
Unity Inova 750 and 800 Mhz instruments. NMR data were
processed by NMRPipe (Delaglio et al., 1995) and analyzed
using CCPNMR (Skinner et al., 2016). The chemical shift
assignment for AT-3182-291 is deposited in the Biological
Magnetic Resonance Bank (BMRB) with entry 50888.

Prediction of Secondary Structural
Propensity From NMR Chemical Shifts
We downloaded NMR chemical shift data from the Biological
Magnetic Resonance Bank (BMRB) for STAM1 [BMRB entry
17065 (Lim et al., 2011)], STAM2 [BMRB entry 18403 (Lange
et al., 2012)], vps27 [BMRB entry 16114 (Sgourakis et al., 2010)],
USP25 [including UIM1 and UIM2, BMRB entry 19111 (Shi
et al., 2014)], RAP80 ([including UIM1 and UIM2, BMRB entry
19774 (Anamika et al., 2014)], USP28 [BMRB entries 18560 and
19077 (Wen et al., 2014)], and AT-3 [including UIM1, UIM2, and
UIM3, BMRB entry 27380 (Sicorello et al., 2018)]. Furthermore,
we included in the analyses the chemical shifts for AT-3182-291
(including UIM1 and UIM2 of AT-3) from experiments
performed in this study, along with previously published data
for an AT-3 construct including the UIM3 residues 194–361 (Bai
et al., 2013). We used the backbone chemical shifts from these
NMR sets to predict the secondary structure propensity by δ2D
(Camilloni et al., 2012).

Helical Wheel Projections
We calculated the helical wheel projections of UIMs of the
selected proteins by the freely available NetWheels web-based
application (Mól et al., 2018).

RESULTS

Conformational Ensemble of AT-3306-361 in
Solution
We used NMR data for AT-3 UIM3 from a previous publication
(including residues 194–361) (Bai et al., 2013). MD simulations of
such a long and disordered region are challenging, due to several
conformational transitions to sample and a large number of
degrees of freedom involved. We thus focused on a shorter
construct for MD simulations, i.e., AT-3306-361.

We employed two different methods to characterize the
conformational ensemble of AT-3306-361 in solution,
i.e., REMD and WT-metaD. These methods provide the
possibility to enhance the sampling of the conformational
space in MD simulations while keeping a description of both
the protein and the solvent at the atomic level. We also evaluated
the influence of different force-field descriptions for both the
protein and the solvent: Amber ff03w-TIP4P/2005, Amber
ff03ws-TIP4P/2005, CHARMM22*-TIP3P, CHARMM22*-
TIPS3P (indicated as ff03w, ff03ws, CHARMM22*1, and
CHARMM22*2, respectively) to assess the reproducibility of
the result and identify force-field dependent properties. These
approaches enabled us 1) to address if AT-3306-361 is stable or not
in a helical conformation in solution, 2) to estimate the
population of the helical conformations and compare them to
the available experimental information on a variant of AT-3
(residues 194–361) characterized by NMR and on other known
UIMs that have been similarly studied by solution NMR (see
Materials and Methods) or recorded by us in this work ( AT-3182-
291), 3) to identify conformations that resemble ubiquitin-bound
states in the ensemble of the free AT-3306-361 region through the
comparison of our ensembles to the experimentally known
ubiquitin-bound UIM structures of other proteins.

Low Structural Propensity and
Heterogeneous Helical Formation in the
Free State of AT-3306-361 Domain in Solution
UIMs are thought to assume an α-helical structure also in the
absence of ubiquitin binding (Hofmann and Falquet, 2001; Scott
et al., 2015). Nevertheless, many investigations on UIMs focus on
characterizing the binding with ubiquitin, making it unclear if
UIMs present transient propensity to disordered conformations
in their free state, a typical trait of SLiMs (Davey et al., 2012; Van
Roey et al., 2012, 2014). In AT-3306-361, UIM3 spans residues
E336-T350 [(Donaldson et al., 2003), Figure 1A]. To identify
inherent structural properties, we used four sequence-based
methods to predict disorder or secondary structure propensity
(Nielsen and Mulder, 2019). Overall, the predictors showed a
disordered state for the AT-3306-361 region with propensity to
order and helicity around UIM3 (Figures 1B–D).

We subsequently modeled this region as an α-helix in the
starting structure for the REMD simulations. In the REMD
simulations, the UIM3 region assumed both helical and non-
helical conformations (Figure 2). The REMD simulations with
ff03w and ff03ws showed higher helical content for UIM3 (∼60%

FIGURE 3 | The ensemble of AT-3306-361 from the CHARMM22*2 REMD
simulation better resembles the experimental chemical shifts. The plot shows
the comparison between experimental Cα chemical shifts and calculated Cα
chemical shifts from the REMD simulations. Similar results have been
achieved using the other backbone (N, HN, C, O, Hα) and Cβ chemical shifts.
Among the protein force fields and water models tested in this study, the
CHARMM22*2 REMD simulation shows a better agreement with the
experimental NMR measurements.
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and 56%, respectively) than with CHARMM22*1, and
CHARMM22*2 (∼31% and 25%, respectively) (Figure 2). In
the case of CHARMM22*2 simulation, we observed a more
disordered ensemble for UIM3, with helical content < 20% in
the region Q341-L348.

An NMR backbone chemical shift assignment for AT-3306-
361is available (Bai et al., 2013). We used this set of experimental
data to evaluate the REMD structural ensembles. In particular,
we calculated backbone chemical shifts as a function of the
simulation time and compared these to the experimental values.
The calculated chemical shifts from our simulations converged
after only 5 ns of REMD simulations (Figure 3). They are in
agreement with the experimental values with low χ2red values of
CHARMM22* simulations, but not in the ff03w/ff03ws
simulations (Figure 3). In ff03w/ff03ws, the simulations
converged to structures that are unlikely to resemble the
ones observed by solution NMR, probably due to the high
helicity sampled by these trajectories.

The differences in the sampling of helical structures in the
REMD simulations with different force fields could be ascribed to
either force field differences or limitation of the conformational
sampling. Since we started from an α-helical conformation the
simulation time might not have been sufficient, even with the
temperature replica-exchange, to allow the protein to
exhaustively explore the conformational space in the different
force-field simulations. Thus, to be able to discriminate between
these two scenarios, we applied another method for enhanced
sampling, based on metadynamics. In particular, we carried out
simulations with WT-metaD, which should allow a more
extensive exploration of the conformational space by using
the Cα radius of gyration and alphabeta as collective
variables (CVs) to bias the systems. Alphabeta is a collective
variable in which we measured similarity for all ψ dihedral
angles of the peptide to the ψ dihedral angles of an ideal α-helix

(Figure 4). It is a suitable CV to enhance the sampling of
disordered regions which might have local propensity for helical
structures (Granata et al., 2015). The alphabeta estimated by the
three different force fields were different with the
CHARMM22*2 simulation providing more disordered
conformations (i.e., alphabeta between 8 and 15 residues in
Figure 4). As also observed in the REMD simulations, the ff03w
ensemble was characterized by a higher helical content,
suggesting that the difference observed is not necessarily
related to limitations in the sampling or initial conformation,
but to differences in force field parameters. In this context,
overstabilization of helical conformations with ff03w has been
observed also in other studies (Huang andMackerell, 2014). The
modification of the ff03ws force field with more balanced
interactions between the protein and the solvent (Best et al.,
2014) partially mitigates this effect, providing an ensemble of
structures with a lower helical propensity, including also
disordered states corresponding to the ones observed for
CHARMM22*2 (Figure 4).

The transition between more ordered and disordered states is
favored in the description provided by CHARMM22*2 (with
difference in free energy of 1.5 kcal/mol). In the ff03ws
simulation, the two states were separated by a barrier of more
than 8 kcal/mol. The intrinsic preference for helical
conformations of ff03w/ff03ws is likely to make the sampling
of disordered states more challenging even with an enhanced
sampling approach. The high energy barriers observed are thus
likely to be due to limitations of the sampling. Longer simulations
or other enhanced sampling approaches could help to obtain free
energy profiles with a larger number of order to disorder
transitions for this peptide and ff0ws (Bussi and Laio, 2020).

In summary, AT-3306-361 is characterized by a disordered
ensemble, which is better described by CHARMM22*2 among
the force fields tested in this study. The UIM3 region of AT-3306-

FIGURE 4 | AT-3306-361 is characterized by a disordered ensemble with a low structural propensity and heterogeneous helical states. (A) The plot shows the one-
dimensional free energy profile associated with the collective variable alphabeta for the ff03w (orange), ff03ws (blue), and CHARMM22*2 (pink) metadynamics
simulations. (B) The plot shows the distribution of alphabeta values expressed as a percentage, i.e., alphabeta values divided by the total number of torsional angles
considered. Ff03w and ff03ws show overstabilization of helical conformations while CHARMM22*2 better describes the disordered ensemble of AT-3306-361 in the
free state.
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361 can interconvert between more disordered and partially
helical states.

Bound-Like Conformations in the Unbound
AT-3306-361 Ensemble in Solution
Both ordered and disordered proteins often sample bound-like
states that could be important for their binding, which may
sometimes occur via a mechanism known as conformational
selection (Davey, 2019). We, therefore, asked if this was also
the case for UIM3 of AT-3306-361. To this end, we compared
conformations from the CHARMM22*2 WT-metaD simulation
with the starting structure of AT-3306-361 for the REMD
simulations, in which UIM3 is modeled as a well-folded
a-helix (Figure 5). We identify partially folded states of UIM3
(around 3 Å of RMSD), characterized by helical conformations in
the N-terminal region of the motif (residues 336–344) (Figure 5)
and alphabeta values in the range of 24-30 and 31–34 residues
(Supplementary Figure S1). We observed that the region with
the highest propensity to fold to helix corresponds to the UIM3

region (residues 336–344). This accounts for approximately 20%
of the structures from the entire WT-MetaD. We also observed a
minor helical propensity in other regions of the peptide,
especially around residues 320–334 (less than 10% of the
structures from the metaD).

We performed the same RMSD analysis on the replicas at
304 K from the REMD simulations (Supplementary Figure S2).
In contrast with the results from WT-metaD, the REMD
simulations tend to show a group of fully helical
conformations of UIM3 (which are a minority of the frames
in the CHARMM22*2 simulations, i.e. ∼ 3% of the frames)
(Supplementary Figure S2). These analyses suggest that the
REMD simulations provide a limited sampling and they are
still biased by the initial helical conformation of UIM3. We
thus relied on the WT-metaD results for the following analyses.

To identify the presence of bound-like states, we then
compared the partially helical conformations of UIM3 of AT-
3306-361 from the CHARMM22*2 WT-metaD simulation with the
experimental structures of ubiquitin in complex with UIMs from
other proteins (Figure 6).

FIGURE 5 | UIM3 of AT-3306-361 interconverts between disordered conformations and partially helical states in the free ensemble. The central panel shows the
mono-dimensional free energy profile associated with alphabeta for CHARMM22*2 (pink) metadynamics simulation. The four side panels show the RMSD calculations of
UIM3 structures from the CHARMM22*2 metadynamics trajectory, using as a reference the starting structure of AT-3306-361 for the REMD simulations, in which UIM3 is
modeled as an α-helix. We used the Cβ atom of A343 and the backbone (Cα, C, O, N) atoms of the residues E336-T350 of UIM3 for rigid body superposition and
the RMSD calculation. We calculated the RMSD of four ensembles of structures of UIM3 with alphabeta values in the ranges of: i) 9–17 (black), ii) 18–23 (purple), iii) 24–30
(red), and iv) 31–34 (yellow), respectively. The cartoon representations show the structures of UIM3 with the lowest RMSD in each of the four subsets. We identify partially
helical states of UIM3 associated with alphabeta values in the range of 24-30 and 31–34.
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UIMs are generally in folded helical conformations when
bound to ubiquitin (Fisher et al., 2003; Swanson et al., 2003).
We identified states of UIM3 partially resembling the bound
conformations of other UIMs, characterized by RMSD around
3 Å with respect to the experimental complexes (Figure 6).

Disordered UIMs With Low Helical
Propensity: A More General Class of UIMs
To discriminate if the low occurrence of a helical conformation in
solution is a distinctive trait of UIM3 or amore common property
of other UIMs, we searched the NMR database BMRB for
chemical shift data on other UIMs in solution. We identified
nine sets of released chemical shifts for AT-3 (including UIM1,
UIM2, and UIM3), STAM1, STAM2, USP28, USP25, and RAP80
(holding two UIMs each) (Supplementary Figure S3). We also
used a set of chemical shifts of VPS27 UIM1 in fusion with
ubiquitin (Supplementary Figure S3). In addition, we recorded
NMR experiments to collect backbone and side-chain chemical
shifts for UIM1 and UIM2 of AT-3 in solution, using AT-3182-291.
From the chemical shifts, we predicted the secondary structural
propensity by δ2D (Figure 7A and Supplementary Figure S3).
We observed UIMs with high helical content, such as UIM1 and
UIM2 of AT-3, UIM1 and UIM2 of RAP80, and UIM1 of USP25
(average δ2D helix population higher than 0.3), and low helical
content, as in the case of UIM3 of AT-3 and UIM2 of USP25
(average δ2D helix population lower than 0.1). USP28 has also a
lower helical content compared to other UIMs suggesting a
heterogeneous ensemble of conformations. We observe a lower
helical content in the case of VPS27 UIM in fusion with ubiquitin,

possibly suggesting that in the bound state some UIMs could
retain disorder. Our NMR data of AT-3182-291 are in agreement
with previously published sets of chemical shifts of AT-3,
showing high helical content for UIM1 and UIM2 (average
δ2D helix population above 0.3 for UIM1 and 0.4 for UIM2
in all datasets) (Supplementary Figure S3). Furthermore, our
analysis on the two sets of chemical shifts of UIM3 shows low
helical content for both of them (average δ2D helix population
under 0.1 for each set) (Figure 7A and Supplementary Figure
S3), confirming the presence of disordered conformations.

Our results overall indicate that UIMs in the unbound state
can span not only fully-formed helical conformations but also
rather disordered counterparts. Moreover, a peptide SPOT arrays
in which we studied the interaction of some representative UIMs
with recombinant yeast ubiquitin shows that both disordered
UIMs (AT-3 UIM3 and USP25 UIM1 and 2) and helical UIMs
(STAM1, STAM2 and, AT-3 UIM1) interact with ubiquitin
(Supplementary Figure S4). Thus, as all other UIMs tested
are folded in the unbound state, these data suggest that a
disordered UIM is not a barrier to bind ubiquitin.

To address if different classes of UIMs can be derived based on
sequence and disorder, we compared the UIM3 sequence to other
known UIMs and with the consensus sequence deposited in the
Pfam database (entry PF02809) (Figure 7B). The 336–350 region
of the C-terminus of AT-3 presents the typical signature of a UIM
with conserved residues, such as L340, A343, S347, acidic residues
in the N-terminal part of the motif (E336-D338), and the pattern
of hydrophobic residues (Figure 7B). Moreover, in comparison
to other UIMs, we should notice that suboptimal residues for
helical formation are observed in the UIM3 sequence in

FIGURE 6 | UIM3 of AT-3306-361 samples states partially resembling ubiquitin-bound conformations. The plots show the RMSD calculations of UIM3 of AT-3306-361
from the CHARMM22*2 metadynamics trajectory, using as a reference the experimental structure of the UIMs of other proteins in complex with ubiquitin (A) VPS27 UIM
(PDB entry 1Q0W, blue), (B) S5a UIM1 (PDB entry 1YX5, teal), (C) S5a UIM2 (PDB entry 1YX6, green), (D) RAP80 UIM1 (PDB entry 3A1Q, yellow). We calculated RMSD
for the ensembles of structures of UIM3 with alphabeta values in the range of 31-34. The cartoon representations show the structures of the experimental
complexes, with the ubiquitin monomers shown as gray cartoons. The white cartoon representation shows the conformations of UIM3 (residues 336–350) from the
CHARMM22*2 metadynamics simulation with the lowest RMSD to each experimental structure.
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FIGURE 7 | UIMs in the free state can vary from highly helical conformations to disordered counterparts. (A) Helical content for the UIMs predicted from chemical
shifts by δ2D.We used nine sets of released chemical shifts of UIMs in the free state in solution from the BMRB database, including AT-3 UIM3, STAM1UIM, STAM2UIM,
USP28 UIM, USP25 UIM1, and UIM2, and RAP80 UIM1 and UIM2. We also used a set of released chemical shifts of VPS27 UIM1 in fusion with the ubiquitin. In addition,
we used the NMR chemical shifts that we recorded for AT-3182-291 UIM1 and UIM2. We highlighted in gray the residues for which there are not enough chemical
shifts to run the prediction with δ2D. UIMs have a wide range of predicted helical content. (B) Consensus sequence for UIMs in the PFAM database. (C) Helical wheel
representation of AT-3 UIM1, UIM2, and UIM3, and of USP25 UIM1 and UIM2.
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comparison to other UIMs. For example, V344 and T345 are both
at low helix propensity (Nick Pace and Martin Scholtz, 1998) and
are localized in the region of UIM3 where the helix tend to break
in some of the simulation frames (see above). Furthermore,
USP25 has a valine replacing the invariant alanine of the
motif and an insertion of an arginine in the N-terminal region
of the motif which might alter the helical pattern.

To further identify if this is a common signature to other
disordered UIMs, we carried out a helical wheel analysis of AT-3
UIM1, UIM2, UIM3, and of UIMs previously investigated
(USP25 UIM1 and UIM2 Figure 7C). The analysis shows that
when UIM3 assumes a helical conformation T345 is located on
the face of the helix with one of the acidic residues (i.e., E337) that
is conserved in UIMs. Moreover, T350 is located at the same face
of the helix as A343 and S347; two residues that are strictly
conserved in all UIMs since they are involved in the interaction
with ubiquitin (Fisher et al., 2003). For the disordered UIM2 of
USP25, a similar valine and isoleucine, two beta-branched amino
acids, break the helicity. This means that disordered UIMs may
carry similar sequence properties that allow for their
identification. Our analysis and simulations overall suggest
that the location of suboptimal residues, especially threonine
and valine, coul be related to the low propensity to populate stable
helical conformations in solution. A search based on regular
expression with the motif x-[ED]-[ED]-[ED]-x-[AILVFWMP]-x-
x(1,2)-[AVP]-[VPL]-[EDVNTCGPH]-x-S-x-x-[EDTVNCGPH]-x
against the sequences associated with the Pfam entry PF02809
highlights other 1,614 hits in 626 sequences of UIMs with
likelihood to be (partially) disordered in the unbound state
(against 172 hits found in a randomized dataset from Uniprot).
Among the disordered UIM candidates we find UBP37 from
different species (residues 704–720), which feature patterns
similar to USP25. The motif search suggests that disordered
UIM could be a common class of SLiMs (see Supplementary
Text S5).

DISCUSSION

We focused on the structural characterization of the
conformational ensemble of a functional motif that has been
classically defined for its helical conformation and originally
associated with the binding of ubiquitin; the Ubiquitin
Interacting Motif (UIM). We showed that the motifs could be
more degenerate and account for both helical and more disordered
members, a diversity that has functional implications. With an
approach integrating simulations and experimental biophysical
data, we showed that a C-terminal UIM of AT-3 is embedded
in an intrinsically disordered region, bearing a predominantly
disordered UIM of which a small fraction of the ensemble has
helical propensity in the N-terminal region. An unbound ensemble
as the one depicted by WT-metaD might suggest that a
combination of conformational selection (i.e., pre-formed
regions of the UIM in helical conformation) and folding upon
binding could be in place for UIM3. The occurrence of one or the
other mechanism might also depend on the nature of the client
protein and help to confer UIM3 promiscuity toward different

partners of interaction, an effect that can be further tuned by post-
translational modifications. These mechanisms will require future
investigations in which kinetics can be accounted for.

We also discovered that the disordered nature of UIM3, and
low helical propensity in the free state, is not an isolated example,
as shown by the analysis of the NMR data of USP25 UIM2,
USP28 UIM, and VPS27 UIM1.

In our work, all the UIMs tested for binding with ubiquitin are
either folded or disordered in the unbound state. These data suggest
that a disordered UIM is not a barrier to bind ubiquitin. NMR
measurements on UIM3 still suggest that the binding could be of
lower affinity than what observed for helical UIMs (Bai et al., 2013),
supporting a more pliable partner toward a different range of client
proteins, at the cost of larger entropy loss in binding ubiquitin.

UIMs not only bind ubiquitin but can also be interfaces to
recruit other proteins, such as the case of UIM and parkin.
Proteins including disordered UIMs can have additional
diversity in their protein-protein interactions and cellular
functions. For example, it has been suggested by mass-
spectrometry and co-immunoprecipitation assays that AT-3
isoforms differ in their interaction with other proteins
(Weishäupl et al., 2019). Post-translational modifications are
likely to add an extra level of regulation, and they could
modulate the helical propensity of disordered UIMs and their
preferences for binding partners, as seen for other IDRs (Mylona
et al., 2016; Hendus-Altenburger et al., 2017; Csizmok and
Forman-Kay, 2018; Marceau et al., 2019). For example, UIM3
is sumoylated at K356 and this enhances affinity for the binding
to ATPase p97 to transfer proteins for proteasomal degradation
(Almeida et al., 2015). Further experimental and computational
studies of these disordered UIMs here identified and their post-
translational regulation or the study of UIM from other proteins
could contribute to clarify the structural and sequence features of
disordered and folded UIMs, along with their connection with
certain binding partners and biological functions.

Our analysis and simulations overall suggest that the location
of suboptimal residues for helix formation, especially beta-
branched residues as threonine, valine and isoleucine could
play a role in gearing the low propensity of UIMs to populate
stable helical conformations in solution and provide a gateway to
multispecificity.

UIMs are not the only example of such structural duality.
Some regions of proteins that were traditionally defined as helical
elements, due to their conformation in the bound states, have
been reclassified as disordered SLiMs, as in the case of the Bcl-2
Homology 3 motifs (Hinds et al., 2007; Aouacheria et al., 2015).
The presence of this emerging higher structural variability into
different classes of SLiMs is a shift in our view of functional
protein regions that can account for both helical and more
disordered counterparts. A better understanding of the
structural diversity within each class of functional motifs could
open new directions to understand biomolecular interactions and
their specificity or flexibility toward multiple partners of
interaction. SLiMs with disorder propensity and a more
versatile interface could enhance the pool of functions of a
certain protein, for example increasing the number of
potential binding partners, allowing the protein to act at the
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cross-road among different biological processes, or allow for a
fine regulation by post-translational modifications.
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Sicorello, A., Różycki, B., Konarev, P. V., Svergun, D. I., and Pastore, A. (2021).
Capturing the Conformational Ensemble of the Mixed Folded Polyglutamine
Protein Ataxin-3. Structure. 29, 70–81. doi:10.1016/j.str.2020.09.010

Skinner, S. P., Fogh, R. H., Boucher, W., Ragan, T. J., Mureddu, L. G., and Vuister,
G. W. (2016). CcpNmr AnalysisAssign: a Flexible Platform for Integrated NMR
Analysis. J. Biomol. NMR. 66, 111–124. doi:10.1007/s10858-016-0060-y

Sora, V., Kumar, M., Maiani, E., Lambrughi, M., Tiberti, M., and Papaleo, E. (2020).
Structure and Dynamics in the ATG8 Family from Experimental to
Computational Techniques. Front. Cel Dev. Biol. 8, 1–28. doi:10.3389/fcell.
2020.00420

Sora, V., Sanchez, D., and Papaleo, E. (2021). Bcl-xL Dynamics under the Lens of
Protein Structure Networks. J. Phys. Chem. B. 125, 4308–4320. doi:10.1021/acs.
jpcb.0c11562

Spiwok, V., Sucur, Z., and Hosek, P. (2015). Enhanced Sampling Techniques in
Biomolecular Simulations. Biotechnol. Adv. 33, 1130–1140. doi:10.1016/j.
biotechadv.2014.11.011

Sugita, Y., Kamiya, M., Oshima, H., and Re, S. (2019). Replica-Exchange Methods
for Biomolecular Simulations. Methods Mol. Biol. 2022, 155–177. doi:10.1007/
978-1-4939-9608-7_7

Swanson, K. A., Kang, R. S., Stamenova, S. D., Hicke, L., and Radhakrishnan, I.
(2003). Solution Structure of Vps27 UIM-Ubiquitin Complex Important for
Endosomal Sorting and Receptor Downregulation. EMBO J. 22, 4597–4606.
doi:10.1093/emboj/cdg471

Tee, W.-V., Guarnera, E., and Berezovsky, I. N. (2020). Disorder Driven Allosteric
Control of Protein Activity. Curr. Res. Struct. Biol. 2, 191–203. doi:10.1016/j.
crstbi.2020.09.001

Tyler, R. C., Sreenath, H. K., Singh, S., Aceti, D. J., Bingman, C. A., Markley, J. L.,
et al. (2005). Auto-induction Medium for the Production of [U-15N]- and [U-
13C, U-15n]-Labeled Proteins for NMR Screening and Structure
Determination. Protein Expr. Purif. 40, 268–278. doi:10.1016/j.pep.2004.12.024

Van Der Lee, R., Buljan, M., Lang, B., Weatheritt, R. J., Daughdrill, G. W., Dunker,
A. K., et al. (2014). Classification of Intrinsically Disordered Regions and
Proteins. Chem. Rev. 114, 6589–6631. doi:10.1021/cr400525m

Van Roey, K., Gibson, T. J., and Davey, N. E. (2012). Motif Switches: Decision-
Making in Cell Regulation. Curr. Opin. Struct. Biol. 22, 378–385. doi:10.1016/j.
sbi.2012.03.004

Van Roey, K., Uyar, B., Weatheritt, R. J., Dinkel, H., Seiler, M., Budd, A., et al.
(2014). Short Linear Motifs: Ubiquitous and Functionally Diverse Protein
Interaction Modules Directing Cell Regulation. Chem. Rev. 114, 6733–6778.
doi:10.1021/cr400585q

Wang, Q., Young, P., and Walters, K. J. (2005). Structure of S5a Bound to
Monoubiquitin Provides a Model for Polyubiquitin Recognition. J. Mol.
Biol. 348, 727–739. doi:10.1016/j.jmb.2005.03.007

Weishäupl, D., Schneider, J., Peixoto Pinheiro, B., Ruess, C., Dold, S. M., von
Zweydorf, F., et al. (2019). Physiological and Pathophysiological Characteristics
of Ataxin-3 Isoforms. J. Biol. Chem. 294, 644–661. doi:10.1074/jbc.RA118.
005801

Wen, Y., Cui, R., Zhang, H., and Zhang, N. (2014). 1H, 13C and 15N Backbone and
Side-Chain Resonance Assignments of the N-Terminal Ubiquitin-Binding
Domains of the Human Deubiquitinase Usp28. Biomol. NMR Assign. 8,
251–254. doi:10.1007/s12104-013-9494-2

Wright, P. E., and Dyson, H. J. (2014). Intrinsically Disordered Proteins in Cellular
Signalling and Regulation. Nat. Rev. Mol. Cel Biol. 16, 18–29. doi:10.1038/
nrm3920

Wright, P. E., and Dyson, H. J. (1999). Intrinsically Unstructured Proteins: Re-
assessing the Protein Structure-Function Paradigm. J. Mol. Biol. 293, 321–331.
doi:10.1006/jmbi.1999.3110

Young, P., Deveraux, Q., Beal, R. E., Pickart, C. M., and Rechsteiner, M. (1998).
Characterization of Two Polyubiquitin Binding Sites in the 26 S Protease
Subunit 5a. J. Biol. Chem. 273, 5461–5467. doi:10.1074/jbc.273.10.5461

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Lambrughi, Maiani, Aykac Fas, Shaw, Kragelund, Lindorff-
Larsen, Teilum, Invernizzi and Papaleo. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Molecular Biosciences | www.frontiersin.org June 2021 | Volume 8 | Article 67623514

Lambrughi et al. Disorder in Ubiquitin Interacting Motifs

166

https://doi.org/10.1016/S0014-5793(03)00748-8
https://doi.org/10.1016/S0014-5793(03)00748-8
https://doi.org/10.1016/j.cbpa.2010.06.169
https://doi.org/10.1002/jcc.21787
https://doi.org/10.1016/j.pnmrs.2018.07.001
https://doi.org/10.4161/idp.24428
https://doi.org/10.1101/416347
https://doi.org/10.1126/science.aad1872
https://doi.org/10.1016/s0006-3495(98)77529-0
https://doi.org/10.1038/s41598-019-41644-w
https://doi.org/10.1021/ct500718s
https://doi.org/10.7717/peerj.5125
https://doi.org/10.1073/pnas.1508380112
https://doi.org/10.1016/j.bpj.2011.03.051
https://doi.org/10.1057/palcomms.2015.1310.1038/s41592-019-0506-8
https://doi.org/10.1057/palcomms.2015.1310.1038/s41592-019-0506-8
https://doi.org/10.1038/emboj.2009.160
https://doi.org/10.1038/emboj.2009.160
https://doi.org/10.1002/pmic.201400341
https://doi.org/10.1016/j.jmb.2009.12.052
https://doi.org/10.1007/s12104-013-9495-1
https://doi.org/10.1016/j.bpj.2018.05.029
https://doi.org/10.1016/j.str.2020.09.010
https://doi.org/10.1007/s10858-016-0060-y
https://doi.org/10.3389/fcell.2020.00420
https://doi.org/10.3389/fcell.2020.00420
https://doi.org/10.1021/acs.jpcb.0c11562
https://doi.org/10.1021/acs.jpcb.0c11562
https://doi.org/10.1016/j.biotechadv.2014.11.011
https://doi.org/10.1016/j.biotechadv.2014.11.011
https://doi.org/10.1007/978-1-4939-9608-7_7
https://doi.org/10.1007/978-1-4939-9608-7_7
https://doi.org/10.1093/emboj/cdg471
https://doi.org/10.1016/j.crstbi.2020.09.001
https://doi.org/10.1016/j.crstbi.2020.09.001
https://doi.org/10.1016/j.pep.2004.12.024
https://doi.org/10.1021/cr400525m
https://doi.org/10.1016/j.sbi.2012.03.004
https://doi.org/10.1016/j.sbi.2012.03.004
https://doi.org/10.1021/cr400585q
https://doi.org/10.1016/j.jmb.2005.03.007
https://doi.org/10.1074/jbc.RA118.005801
https://doi.org/10.1074/jbc.RA118.005801
https://doi.org/10.1007/s12104-013-9494-2
https://doi.org/10.1038/nrm3920
https://doi.org/10.1038/nrm3920
https://doi.org/10.1006/jmbi.1999.3110
https://doi.org/10.1074/jbc.273.10.5461
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


An Integrative Approach to Determine
3D Protein Structures Using Sparse
Paramagnetic NMR Data and Physical
Modeling
Kari Gaalswyk1†, Zhihong Liu2†, Hans J. Vogel2 and Justin L. MacCallum1*

1Department of Chemistry, University of Calgary, Calgary, AB, Canada, 2Department of Biological Sciences, University of Calgary,
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Paramagnetic nuclear magnetic resonance (NMR) methods have emerged as powerful
tools for structure determination of large, sparsely protonated proteins. However traditional
applications face several challenges, including a need for large datasets to offset the
sparsity of restraints, the difficulty in accounting for the conformational heterogeneity of the
spin-label, and noisy experimental data. Here we propose an integrative approach to
structure determination combining sparse paramagnetic NMR with physical modelling to
infer approximate protein structural ensembles. We use calmodulin in complex with the
smooth muscle myosin light chain kinase peptide as a model system. Despite acquiring
data from samples labeled only at the backbone amide positions, we are able to produce
an ensemble with an average RMSD of ∼2.8 Å from a reference X-ray crystal structure. Our
approach requires only backbone chemical shifts and measurements of the paramagnetic
relaxation enhancement and residual dipolar couplings that can be obtained from sparsely
labeled samples.

Keywords: paramagnetic relaxation enhancement, NMR, modeling, protein structure, integrative structural biology,
calmodulin

INTRODUCTION

Protein nuclear magnetic resonance (NMR) spectroscopy has played an important role in
biomolecular structure determination. To date more than 13,000 NMR structures have been
deposited in the Protein Data Bank [PDB (Berman et al., 2000)], accounting for about 7.5
percent of all available protein structures (PDB Statistics, 2021). The vast majority of the
deposited NMR solution structures are determined for smaller proteins or independently-folded
isolated protein domains (Tugarinov et al., 2004). Without special stable isotopic labelling
techniques, NMR methods struggle with structure determination of proteins larger than
∼25 kDa as the slow molecular tumbling results in rapid relaxation, leading to poor
resolution and spectral quality (Kay, 2016). The most commonly used method to overcome
this challenge is to combine transverse relaxation optimized spectroscopy (TROSY) (Pervushin
et al., 1997) with site-specific protonation in an otherwise perdeuterated background (Tugarinov
et al., 2006), although there are many alternatives, e.g., Tugarinov et al. (2004) and Ruschak and
Kay (2010). While such site-specific isotope labelling can dramatically increase the spectral
quality and interpretability, the overall perdeuteration results in protons being sparsely
distributed within the structure.
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The overwhelming majority of solution NMR structures in the
PDB are based around Nuclear Overhauser Effect Spectroscopy
(NOESY), which provides information about through-space
interactions between protons that can be used to derive
distance restraints for 3D structure determination. For the
homonuclear NOE to be detectable, however, the protons
must be within about 6 Å or closer, which can pose a
substantial challenge for sparsely-labelled samples due to the
lack of proton pairs that are in close proximity within the folded
protein structure (Gardner and Kay, 1998).

This phenomenon is particularly acute for samples that are
labelled with protons only on the exchangeable backbone amide
positions, as the amide protons within an alpha helix are typically
too far away from amide protons in other secondary structure
elements to produce a detectable NOE. Consequently, labelling of
only the amide protons of alpha-helical proteins leads to a
restraint network that is too sparse to calculate a 3D structure.
Other site-specific labelling schemes can supplement amide
labelling, leading to a denser restraint network (Goto and Kay,
2000). Site-specific labelling of the terminal methyl groups of
isoleucine, leucine, and valine (ILV-labeling) is particularly
common (Tugarinov et al., 2006), but several alternatives and
complementary labeling methods exist, e.g., Kainosho and
Güntert (2009), Otten et al. (2010), and Gifford et al. (2011).
While these additional labelling schemes can increase the density
of the restraint network, they often come at the cost of increased
complexity and the need to synthesize or purchase expensive
precursors that are required to generate the isotope-labelled
samples.

Paramagnetic NMR methods have emerged as potentially
viable alternatives, capable of providing valuable information
about electron-nucleus distances up to ∼20–30 Å (Koehler and
Meiler, 2011; Pilla et al., 2017). Paramagnetic relaxation
enhancement (PRE) experiments have been performed with
native metalloproteins and proteins modified with covalent
paramagnetic tags such as nitroxide spin labels and metal
chelates (Bertini et al., 2005; Clore and Iwahara, 2009; Keizers
and Ubbink, 2011). These techniques can be used to extend the
scope of NMR methods to larger, more complex systems by
providing long-range distances when short-range NOEs are
unavailable or limited. Due to the long-range nature of
paramagnetic relaxation enhancement, PRE experiments can
provide valuable distance restraints even in sparsely labelled
perdeuterated protein samples.

The utility of a distance restraint generally depends on two
factors (Sullivan et al., 2003; Sullivan and Kuntz, 2004). First,
restraints with short spatial distances are more valuable than
those with long spatial distances because there are many more
ways for two particles to be far apart than close together. Thus, a
short-distance restraint provides more information than a long
one. Second, this effect is more substantial for restraints involving
residues that are more distant in the sequence. Thus, the most
valuable restraints involve residues distant in sequence but close
together in space. NOESY experiments provide powerful short
spatial distance restraints (<6Å) but can miss many crucial long
sequence distance restraints due to distribution of the isotope
labels. In contrast, PRE experiments will yield more distance

restraints due to the paramagnetic relaxation enhancement
effect’s long-range nature. Many of these restraints will be of
limited utility due to their long spatial distances; however, the
collective effect of all of these long spatial distance restraints with
the remaining short spatial distance (<12 Å) restraints can still be
potent. As an aside, PRE methods have also become a popular
approach to explore lowly populated transient protein states
(Iwahara and Clore, 2006).

Using PRE data for 3D protein structure determination
presents several challenges. First, each experiment only
provides information about the spatial proximity of a given
proton to a single site labelled with a paramagnetic tag.
Adequately determining the 3D structure requires multiple
experiments with different tag locations, increasing both
experimental time and cost. Second, each experiment provides
only a limited amount of information (Battiste andWagner, 2000;
Gottstein et al., 2012). Although a single experiment provides
information about the spatial proximity of each residue to the
paramagnetic tag, much of this information is redundant. For
example, if a residue is close to the tag, then neighbouring
residues in the sequence are also likely to be close.
Furthermore, information that a residue is close to the tag
provides a far more powerful structural constraint than
information that a residue is distant from the tag, but the
latter occurrence is far more frequent. Third, the derived
distances can be imprecise due to intermolecular interactions,
secondary metal-binding sites, and diamagnetic contamination
(Clore and Iwahara, 2009). Fourth, heterogeneity and dynamics
(Clore et al., 1990; Ryabov and Fushman, 2007; Bertini et al.,
2012) can complicate the interpretation of PRE data. Relaxation
can be strongly affected by conformational heterogeneity due to
the inverse sixth power relationship between the PRE and the
electron-nucleus distance; i.e., a minor structural population with
a strong paramagnetic effect can have a significant impact on the
measured data (Clore and Iwahara, 2009). Finally, the effects of
spin diffusion due to dipole-dipole coupling can limit the
accuracy of the measured PRE data (Vlasie et al., 2007; Vlasie
et al., 2008; Bellomo et al., 2021). These challenges have slowed
the widespread adoption of PRE-based methods for structure
determination in favour of traditional NOE-based approaches.

Residual dipolar coupling (RDC) measurements are a
common supplemental data source to PRE and NOE-based
experiments. RDC measurements are carried out on systems
where the protein is weakly aligned relative to the external
magnetic field. Rather than reporting on distances, RDCs
report on the angles between bonded atoms (typically
backbone N-H bond vectors) and the external magnetic field,
which provides valuable orientational information that
complements distance information from PRE or NOE
experiments (Prestegard et al., 2004). RDCs have been used
for structure refinement and as restraints in de novo structure
prediction software (Banci et al., 1998; Raman et al., 2010;
Prestegard et al., 2014). While many protein structures based
on RDC measurements have been reported, molecular modeling
and low temperature annealing procedures are often used to
derive and refine the 3D structures (Chou et al., 2000; Lipsitz and
Tjandra, 2004; Huang and Vogel, 2012). Clearly there is room for
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more unbiased approaches to incorporate such RDC data into
protein structure calculations.

Integrative approaches to structure determination (Ward
et al., 2013) have emerged as practical tools for converting
NMR and other experimental data into useful structural
models. For example, PRE and RDC measurements have been
used to drive molecular docking studies (van Dijk et al., 2005;
Gelis et al., 2007; Gochin et al., 2011), as restraints in molecular
dynamics simulations to generate ensembles of conformers
(Dedmon et al., 2005; Asciutto et al., 2011), or they have been
incorporated into Rosetta scoring functions (Lange et al., 2012;
Kuenze et al., 2019). We recently demonstrated the structure
determination of a small protein using PRE measurements in
solid-state NMR (Perez et al., 2019). However, integrative
methods are not without their own set of challenges. Even the
most sophisticated methods can still struggle as the data becomes
sparse, ambiguous, or unreliable, and considerable method
development is often required to treat a new type of
experimental data in order to correctly account for its
characteristics, e.g., the conformational heterogeneity of spin-
labels in PRE measurements (Iwahara et al., 2004; Anthis et al.,
2011; Andrałojć et al., 2017).

Here, we show that these challenges can be overcome by using
a sophisticated integrative structural biology approach called
Modeling Employing Limited Data (MELD) (MacCallum
et al., 2015). MELD combines experimental data from multiple
sources with physical modelling to overcome the challenges of
sparse, ambiguous, and difficult to interpret experimental data
to infer accurate protein structural ensembles. We combine
PRE and RDC measurements with secondary structure
predictions based on backbone chemical shifts. We use
MELD to infer the structure of Calmodulin in complex with
the 20-residue smooth muscle myosin light chain kinase
peptide (169 residues total). Calmodulin was selected for
this exploratory work as it has an almost completely helical
structure where the absence of inter-helical close contacts
between amide protons makes 3D structure determination
by NOE-based approaches difficult. Calmodulin-peptide
complex have previously been used as models for integrative
approaches using sparse NMR data (Andrałojć et al., 2014;
Carlon et al., 2019). We show that MELD can identify
conformations within 3 Å of a reference X-ray crystal
structure using only sparse paramagnetic NMR restraints
and RDCs from amide protons in combination with
backbone chemical shifts, while successfully addressing
conformational heterogeneity and noise in the NMR data.

EXPERIMENTAL METHODS

Calmodulin–Peptide Complex as a Model
System
In this work, we illustrate our approach for the protein
calmodulin in complex with the smooth muscle Myosin Light
Chain Kinase (smMLCK) peptide. Throughout, we will use a
previously solved crystal structure of this complex [PDB ID: 1cdl
(Meador et al., 1992)] as a reference.

Overview of Labeling Strategy
In previous studies, specific nitroxide spin-labeled target peptides
that bind to calmodulin were used; in this manner it was possible
to map out the orientation of the peptide with respect to the
protein (Zhang et al., 1995; Yuan et al., 2004). In this work, we
collected PRE data for a total of ten spin-labelled protein sites
(Figure 1). Nine of the sites on the protein were chosen to be
solvent-exposed and within secondary structure elements by
manual inspection of predicted secondary structure and
solvent exposure. The remaining site, C149, was a single-
residue extension of the C-terminus. To better simulate the
process for a system without a previously determined
structure, the protein’s known structure was not used in
choosing the spin-labelled sites. Indeed, we learned later that
several of the selected sites provided little useful information
because they are either distant from the rest of the protein or they
provided information that is mostly redundant with that obtained
from other labeling sites.

To simulate the limited availability of isotopically labelled
peptide, either due to cost or difficulty of production, only four of
the ten spin-label data sets (chosen randomly) were collected with
isotopically labelled peptide. The remaining six data sets were
collected without labelled peptide, which results in the peptide
being present but unlabeled and undetectable in the 1H, 15N
HSQC NMR experiments.

Protein Production
The ten single-cysteine point calmodulin (CaM) mutants (S17C,
T34C, N42C, N53C, R86C, T110C, T117C, E127C, Q143C, 149C)
were made by standard site-directed mutagenesis methods for
attachment of the thiol-specific nitroxide spin label (1-oxyl-
2,2,5,5-tetramethyl-δ-3-pyrroline-3-methyl)

FIGURE 1 | We carried out PRE experiments with ten different label
sites. In each experiment, Calmodulin was MTSL-labeled at a different
position. Spin labels were generally located in predicted surface-exposed
sites within secondary structures. Spin labels are shown in green as
virtual sites (see text), and their corresponding cysteine mutation linkage site is
shown in black (PDB 1cdl).
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methanethiosulfonate (MTSL, Toronto Research Chemicals).
Correctness of the mutations was confirmed by DNA
sequencing. Calmodulin contains no Cys residues, so highly
site-specific labeling can be obtained in this manner. MTSL is
a relatively compact, yet highly reactive molecule compared to
other commercially available nitroxide spin-labels that have been
used to modify Cys residues; its shorter more rigid structure
would be an advantage for the PRE studies [for discussion see for
example (Guo et al., 2008; Fawzi et al., 2011)]. 13C and
15N-labeled CaM was expressed in M9 minimal medium with
99.9% 15NH4Cl and 13C6-glucose (0.5 gr/L and 3 gr/L,
respectively; Cambridge Isotopes Laboratories) as isotope
sources. Proteins were expressed and purified as described
previously (Liu and Vogel, 2012; Ishida et al., 2016).

We followed a standard protocol for attaching the nitroxide
spin-label to each single-cysteine CaM mutants with the spin-
labelling reagent MTSL (Battiste and Wagner, 2000). To prepare
the CaM/smMLCK complex sample, a 1.2-fold excess of either
unlabeled or labelled peptide was mixed with each CaM mutant
protein. All preparations were divided into two NMR samples.
One sample was reduced to inactivate the spin-label by adding a
3-fold excess of ascorbic acid.

Peptide Production
A construct with a 6xHis-KSI (D38A) fusion-protein tag was
generated for smMLCK peptide expression in Escherichia coli
(Jaroniec et al., 2005; Ishida and Vogel, 2010). The ketosteroid
isomerase (KSI) coding sequence generates an insoluble protein,
and this directs the protein-peptide fusion directly into inclusion
bodies, where they are protected from proteolytic cleavage
(Hwang et al., 2014). A linkage sequence “GGGGSSDP” with
the Asp-Pro acid cleavage site was designed between the KSI
protein and the sequence of the smMLCK peptide. The entire
6xHis-KSI-GGGGSSDP-smMLCKp gene sequence was inserted
between the NdeI and XhoI sites of the pET15b(+) plasmid
(Novagen), which was subsequently transferred into
BL21(DE3) E. coli cells for protein expression. The cells were
grown in either LB media (for unlabeled peptide) or minimal M9
media (containing 13C6-glucose and

15NH4Cl isotope to produce
isotope-labeled peptide) and they were induced at OD600 � 0.6
with 1 mM IPTG for 4 h at 37°C. A cell lysate was prepared as
previously described. The insoluble fusion protein was separated
after one hour of centrifugation (18,000 rpm) and then
resuspended in 6 M guanidine hydrochloride. Impurities were
removed before the insoluble proteins can be extracted with metal
chelate chromatography on a nickel affinity column. After
extensive dialysis with double distilled H2O, the precipitated
insoluble protein was collected and the Asp-Pro bond was
cleaved in 10% formic acid at 80°C for 90 min (Hwang et al.,
2014). The protein-peptide mixture was flash frozen with liquid
nitrogen and lyophilized. Insoluble proteins and other impurities
were removed after the lyophilized mixture was resuspended in a
20 mM Tris-HCl buffer (pH � 8.0). Finally, the unlabeled and
isotope-labeled smMLCK peptides were purified with reverse-
phase HPLC (COSMOSIL 5C18-AR-300, Nacalai United States).
All purified peptides were lyophilized and stored at −20°C for
further use. The final peptide sequence after cleaving is

PARRKWQKTGHAVRAIGRLSS. The N-terminal proline is
not observable in the NMR experiments and was not included
in modeling with MELD.

Chemical Shift Assignments
All NMR experiments were carried out on a 600 MHz Bruker
AVANCE spectrometer with a field strength of 14.1 T. Backbone
resonance assignments for the protein and the bound peptide
were confirmed with the following 3D experiments: HNCO,
HNCA, HNCOCA, HNCACB, and CBCA(CO)NH, as
described previously (Liu and Vogel, 2012). All data were
processed using NMRPipe (Delaglio et al., 1995) and analyzed
with the program NMRView (Johnson and Blevins, 1994). All
chemical shifts from these experiments were used to obtain
backbone torsion angles from the program TALOS+
(Cornilescu et al., 1998; Shen et al., 2009). Secondary structure
elements as identified through the assigned chemical shifts were
as expected based on the known structure.

Paramagnetic Relaxation Enhancement
Measurements
Two 1H, 15N HSQC spectra were obtained for each spin-label
construct. Each system contained each 15N-labeled protein and
either unlabeled or 15N-labeled peptide, depending on the spin-
label site (S17C, N53C, T127C, and 149C had isotopically labeled
peptide). One HSQCwas collected with active spin-label, whereas
the other HSQC was collected with reduced, inactivated spin-
label. The distances between the spin-label and the affected nuclei
were calculated using the two-time point method (Iwahara et al.,
2007).

Residual Dipolar Coupling Measurements
Finally, to supplement the PRE experiments, we obtained RDC
measurements for the amide groups in the complex with a sample
where both the protein and peptide are isotopically labelled.
Residual dipolar couplings (RDC) were measured for the
CaM/smMLCK complex sample in a partially aligned media,
which contains 2 mM bis-Tris (pH � 7.0), 300 mM KCl and
16 mg/ml Pf1 bacteriophage (Asla Biotech Ltd.). The IPAP-
HSQC experiment was used for the RDC measurements
(Ottiger et al., 1998). In these experiments the effects of
dipole-dipole cross-correlated relaxation can impact the
accuracy of 1JNH splitting measured from the spectra
introducing a small residual bias in the RDCs. While these
systematic errors can be eliminated by using a selectively-
decoupled sequence (Yao et al., 2009), the errors are small
relative to the magnitude of the measured RDCs and are
expected to have a minimal effect on structure determination
(Yao et al., 2009). Our work uses only a single RDC alignment.
Notably, a mutant of Calmodulin is capable of selective binding to
lanthanides, which provides a strategy for the measurement of
multiple RDCs (Bertini et al., 2009). A quantitative assessment of
protein mobility/heterogeneity by RDC would require the use of
multiple alignments (Barbieri et al., 2002; Tolman, 2002;
Bouvignies et al., 2006; Higman et al., 2011; Guerry et al.,
2013; Andrałojć et al., 2015). However, as discussed further
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below, it is not currently possible to conduct such an analysis with
the MELD approach, as MELD compares individual structures,
rather than ensembles of structures, to the experimental data.

COMPUTATIONAL APPROACH

Overview of Modeling Employing Limited
Data Approach
Here, we employ MELD, a physics-based Bayesian approach for
structural determination to infer the ensemble of structures most
consistent with the known physics of protein structure and
experimental data (MacCallum et al., 2015; Perez et al., 2015).
MELD uses a Bayesian framework to combine a physics-based
prior distribution with a data likelihood function to make
statistically consistent inferences about conformations that
explain the experimental data.

MELD uses Bayes’ theorem:

p(x|D)∝ p(x)p(D|x), (1)

where x represents the atomic coordinates and D represents
the data. The physics-based prior, p(x), specifies which
structures are more likely a priori and determines the
distribution of structures in the absence of data. In the
present study the physics-based prior is given by the Amber
ff14SB force field (Maier et al., 2015) with a grid-based torsion
potential (Perez et al., 2015) and the OBC generalized-Born
implicit solvent model (Onufriev et al., 2004). The likelihood
function, p(D|x), captures the compatibility between the data
and some structure x. In MELD, the likelihood function takes
the form of a unique restraint function (MacCallum et al.,
2015), explained in more detail below. The goal of Bayesian
inference is to compute the posterior distribution, p(x|D),
which is the most statistically consistent inference given the
prior, likelihood, and data.

As discussed in the Results section below, the term
ensemble is highly overloaded in structural biology and
care is required in interpretation. MELD belongs to the
class of methods where a single structure, rather than
entire ensemble of structures, is considered in the
likelihood function, such that each member of the
ensemble individually agrees with the experimental data.
Any conformational heterogeneity (e.g., flexible loops) may
represent true intrinsic heterogeneity, but may also simply
reflect a lack of data. As such, MELD produces a form of
uncertainty ensemble in the terminology of Bonomi
et al., 2017.

Overview of Experimental Data
The input to our approach is: 1) the protein sequence, 2)
TALOS+ secondary structure predictions derived from
backbone chemical shifts (Cornilescu et al., 1998; Shen
et al., 2009; MacCallum et al., 2015), 3) distance restraints
derived from PRE measurements, and 4) orientational
restraints derived from RDC measurements. We have

recently demonstrated the success of a similar approach for
PRE measurements in solid-state NMR (Perez et al., 2019).

PRE data is often both noisy and sparse (Kim et al., 2014),
which makes structural inference challenging. Despite collecting
data for ten spin-label positions, we can derive only a few distance
restraints that are short in spatial distance (in this case, we define
short as <12�A) (Figure 2). Of these short spatial distances, only a
small number correspond to residues that are distant in sequence,
which would provide the most information about folding
(Gottstein et al., 2012). Furthermore, as stated previously, to
simulate the limited availability of isotopically labelled peptide,
only four of ten datasets (S17C, N53C, T127C, and 149C) had
labelled peptide, and there are no short distance PREs between
the peptide and the protein. This leaves the peptide’s correct
placement to be dictated by longer, less informative spatial
distance restraints and the physical model, which makes
accurate inference more challenging.

Deriving Distances From Paramagnetic
Relaxation Enhancement Data
Our first step was to develop a consistent method to convert
ensemble-averaged PRE measurements into distance
restraints. PRE data were turned into approximate distances
using the Solomon-Bloembergen equations following the
standard approach (Battiste and Wagner, 2000; Iwahara
et al., 2007).

For nitroxides, Curie-spin relaxation is negligible and the
transverse relaxation enhancement, Γ2, is dominated by direct
dipole-dipole interactions (Clore and Iwahara, 2009). In this case,
Γ2 is related to the distance between the paramagnetic center and
the observed nucleus, r:

Γ2 � K
r6
[4τc + 3τc

1 + ω2
Hτ2c

]

where ωH is the Larmor frequency of the proton, and τc is the
correlation time for the electron-nuclear interaction defined as
τc � (τ−1r + τ−1s )−1 where τr is the rotational correlation time,
and τs is the electron relaxation time. Previous experiments (Lee
et al., 2002) have determined that τc ≈ 9.5 ns for Calmodulin in
complex with smMLCK peptide at 25°C. For nitroxides, the
electron relaxation time is long (Iwahara et al., 2007)
(τs > 10−7s), so the rotational correlation time dominates and
τc ≈ τr ≈ 9.5 ns. K is given by:

K � 1
15

(
μ0
4π

)
2

c21g
2μ2BS(S + 1)

where µ0 is the permeability of vacuum, γ1 is the nuclear
gyromagnetic ratio, g is the electronic g factor, µB is the Bohr
magneton, and S is the electron spin quantum number. Γ2 can be
estimated using a two-point time measurement (Iwahara et al.,
2007):

Γ2 � R2,para − R2,dia � 1
ΔT ln

Idia(Tb)Ipara(Ta)
Idia(Ta)Ipara(Tb)
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where ΔT is a time delay chosen to minimize the error in Γ2, and
Idia and Ipara are the peak intensities for the diamagnetic and
paramagnetic samples, respectively (Iwahara et al., 2007). In this
work, we use ΔT � 20ms.

Incorporating Paramagnetic Relaxation
Enhancement Information Into Modeling
Employing Limited Data Calculations
The distances derived from PRE data correspond to ensemble
averages with an r−6 weighting, but in MELD (and most other
structure determination software), restraints are applied to single
structures rather than ensembles. To account for conformational
heterogeneity of both the protein and the flexible spin-label, the
PRE-derived distances are turned into flat bottomed harmonic
restraints that allow for a range of distances without penalty. This
approach is a tradeoff that ensures that individual structures are not
erroneously over-restrained but this can allow discrepancies between
themeasured andmodelled ensemble averages. Our aim is to produce
an approximately correct ensemble starting from an extended chain. If
desired, the resulting ensemble can be further refined using a variety of
ensemble approaches (Boomsma et al., 2014; Hummer and Köfinger,
2015; Bonomi et al., 2016; Gaalswyk et al., 2018).

We divided the data into short,medium, and long distances with
corresponding upper and lower bounds (Table 1). Short and long
distances are difficult to quantify with precision because the peak is
either completely broadened for residues close to the spin-label or

barely changes intensity for those that are far away. These distances
are turned into broad restraints that either start from zero or extend
to infinity for short and long, respectively. Medium distances
correspond to peak intensity changes that can be quantified more
precisely and are turned into restraints centered around the
predicted value. All distances include a buffer of ±5 Å of the
measured distance to account for the flexibility of the spin-label
and noise in the experimental data (Perez et al., 2019).

Due to noise in the experimental data, partially overlapping
peaks, and instantaneous fluctuations in both the protein
structure and the position of the spin label, we observed that
restraints are sometimes violated even with a ±5 Å buffer. To
mitigate this issue, we used MELD’s unique ability to require that
only a certain fraction of the restraints must be satisfied by each
structure. We set this active fraction to 0.9. Essentially, as long as 90
percent of the restraints are satisfied, the resulting restraint energy
will be zero. We treat the remaining restraints as being derived from
spurious data, so they are entirely ignored. Every timestep, MELD
decides which restraints are active based on the current structure.
Further details can be found in the SI and inMacCallum et al. (2015).

In our approach, the various hyperparameters (boundaries
between short/medium/long, size of buffer, active fraction) are
fixed. One potential improvement would be to place a hyperprior
on these values and infer them using an extended Bayesian
approach like Inferential Structure Determination (Rieping
et al., 2005). This would allow the data and physical model to
determine the most likely values of these hyperparameters, rather

FIGURE 2 | Summary of short distances from the reference crystal structure and inferred from the PRE data. The protein and peptide backbones are represented in
a half-circle where the colour depends on the secondary structural element (black—helix, dark grey—extended, light grey—loop). The spin-label locations are shown in
blue. A red dot indicates the experiment was performedwith labelled peptide. Short distances [ (I, j) pairs where |i − j|>4 and rCαij < 7.6 Å] derived from the crystal structure
are shown as grey arcs. Short distances (rlabel−NHij <12Å) derived from the PRE data are shown in green. Note that C149 is a single-residue extension of calmodulin,
which is 148 residues long.

TABLE 1 | Distance bounds for calculated PRE distances, r.

PRE distance range (Å) Restraint upper bound (Å) Restraint lower bound (Å)

Short r ≤ 12 17 0.0
Medium 12 < r < 20 r + 5 r − 5
Long r ≥ 20 ∞ 15

Ranges are chosen based on the nature of the PRE and include a +/− 5 Å buffer to account for heterogeneity and flexibility.
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than requiring their specification a priori. As MELD does not
currently support inference of hyperparameters, we chose the
simpler approach of setting a wide buffer and lower active
fraction, which potentially sacrifices a small amount of
information.

The spin-label was modeled using virtual sites (Banci et al.,
1996) following the approach of Islam and Roux (Islam et al.,
2013; Islam and Roux, 2015). These virtual sites represent the
spin-label as a non-interacting dummy particle to simplify the
simulation without losing relevant information for structural
refinement. These simplified dummy nitroxide spin-labels are
parameterized to match the spin-labels’ 3D spatial distribution
and dynamics in all-atom simulations. The virtual sites are non-
interacting, allowing us to account for all ten spin labels in a single
simulation without the risk of interactions between them.

Secondary structure restraints were derived from TALOS+
(Cornilescu et al., 1998; Shen et al., 2009) and used to restraint
MELD simulations as previously described (MacCallum et al.,
2015). Our approach works by first breaking the protein into
overlapping 5-residue fragments. If 4/5 of the residues in the
fragment are predicted to be helical or extended, then the
fragment is restrained using a combination of torsion and
distance restraints (MacCallum et al., 2015). All secondary
structure restraints are then combined into a collection with
an active fraction of 0.95, which allows 5 percent of fragments to
differ from their predicted secondary structure.

Incorporation of Residual Dipolar Coupling
Information Into Modeling Employing
Limited Data
The traditional approach to incorporate RDCs into simulations is
based on solving for the optimal alignment tensor, which requires
solving a system of equations every time step using singular value
decomposition (SVD) or related methods, which can be
computationally intensive (Losonczi et al., 1999). We found this
to be particularly problematic in the GPU-accelerated framework of
MELD, where this traditional approach led to a 300 percent increase
in run time (data not shown), primarily due to the extreme speed of
the rest of the force/energy calculations and the challenge of
efficiently parallelizing SVDs for small systems of equations on a
GPU. To mitigate this issue, we instead followed the approach in
Habeck, Nilges, and Riepling (Habeck et al., 2008), which we
implemented using an OpenMM CustomCentroidBondForce
(Eastman et al., 2017). In our implementation, the alignment
tensor elements are encoded in two non-interacting dummy
particles coupled to the rest of the system through an additional
energy term. This approach has two benefits. First, it is dramatically
faster than the standard approach on GPUs, with negligible cost
compared to the calculation of the non-bonded forces. Second, this
approach accounts for uncertainty and produces a joint distribution
of alignment tensors and structures, providing a Bayesian posterior
estimate of the conformational ensemble that better reflects
uncertainty. A full explanation of our implementation can be
found in the SI. To account for uncertainty in the experimental
data and to avoid erroneously over-restraining individual structures
to the ensemble average data, we use a flat-bottomed restraint where

the energy is zero if the computed RDC is within 1.5 Hz of the
measured value. Another approach that avoids the need to solve for
the alignment tensor is given in Camilloni and Vendruscolo (2015).

RESULTS AND DISCUSSION

Interpretation of Modeling Employing
Limited Data-Computed Ensembles
The term “ensemble” is highly overloaded in structural biology,
with a variety of meanings in different contexts (Bonomi et al.,
2017; Andralojc and Ravera, 2018; Gaalswyk et al., 2018). Care
must be taken to ensure correct interpretation.

MELD samples from a well-defined conformational ensemble
(Gaalswyk et al., 2018), specifically the Bayesian posterior
distribution given by Eq. 1. Interpretation of this ensemble is
straightforward: it is the statistically consistent posterior
distribution inferred from the prior, likelihood, and data. How
should one select or report structures from this ensemble? The
approach we take here is simply to report all structures, as this
fully captures the heterogeneity of the distribution. If there is a
limit to the number of structures reported, one simple, correct
approach is to select a subset of structures at random.
Alternatively, one could cluster the structures and report the
cluster medoids and populations along with some measure of the
variance of structures within the cluster. A variety of approaches
are supported by the PDB-Dev archival system which is being
developed for structural models obtained using integrative
modeling (Vallat et al., 2018). However, we note that since
MELD samples structures with the correct posterior
probabilities, it is incorrect to further select structures based
on other criteria, such as selecting the lowest energy structures.

A second consideration in ensemble interpretation is the
nature of the likelihood function. The experimental
measurements are averages over a thermodynamic ensemble.
The most correct modeling approach is to use a likelihood
function that considers an entire ensemble of models, ensuring
that the predicted average quantities match their corresponding
experimental measurements (Bonomi et al., 2017; Andralojc and
Ravera, 2018; Gaalswyk et al., 2018). This is an ill-defined inverse
problem (Bonomi et al., 2017; Andralojc and Ravera, 2018), so
regularization is required, typically in the form of physical
modelling and entropy maximization (Bonomi et al., 2017;
Andralojc and Ravera, 2018; Gaalswyk et al., 2018). While
conceptually appealing, ensemble likelihood methods are
complex with high computational requirements. Alternatively,
most methods in structural biology, including the MELD
approach described here, use single-structure likelihoods
(Boomsma et al., 2014). These methods are overly restrictive,
as they require eachmember of the ensemble to be consistent with
the data to within some tolerance. In the current approach, we use
relatively wide tolerances, but this still does not guarantee that
that the computed ensemble accurately models the true
distribution.

The primary issue is that for a given set of experimental
measurements, there are many possible ensembles that could
produce it. The ensemble that MELD generates ensures that each
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structure is in reasonable agreement with the data and allows for a
reasonable degree of flexibility. However, the MELD average
might not precisely match the experimental measurement due
to the use of wide tolerances. Furthermore, the true ensemble
could be “broader” than the one generated by MELD—the true
ensemble could have many structures that are individually in
poor agreement with the data, while still having the same
ensemble average, see Figure 1 of Gaalswyk et al. (2018) for a
simple illustration. In the terminology of Bonomi et al. (2017),
MELD produces an uncertainty ensemble, where heterogeneity in
the calculated ensemble could represent true heterogeneity in the
system or could simply reflect a lack of data for some part of the
protein. The single-structure approach is likely reasonable when
the true ensemble has only a modest amount of heterogeneity,
e.g., small fluctuations around an average structure, but could be
expected to break down for highly heterogenous systems, e.g.,
systems containing intrinsically disordered regions.

Although we do not pursue it here, a promising approach
would be to use a method like MELD to compute an initial
approximate ensemble that could then be used as a starting
point for ensemble approaches (Boomsma et al., 2014;
Hummer and Köfinger, 2015; Bonomi et al., 2016; Gaalswyk
et al., 2018).

The Accuracy of Inference Depends on the
Protocol Used
To determine how the experimental data should be
incorporated, we performed several simulations varying in
their set up (Trial1–Trial4). We explored various ways of
combining the restraints into collections (Table 2). In MELD,
at every timestep, the restraints in a collection are sorted by
energy, and the active fraction with the lowest energy are
“active” and contribute their forces and energy to the system,
while the remainder are “inactive” and ignored. The division
of restraints into collections matters because it determines
how MELD decides which restraints are active and which are
ignored. For example, Trial1 combines all of the restraints
into a single collection. In this case with an active fraction of
0.9, MELD can freely ignore any 10 percent of the restraints,
which could be, for example, ignoring one of the ten spin
labels entirely. Trial2 separates the restraints by spin-label
and into short,medium, and long-distance ranges, resulting in
30 collections. Now MELD can only ignore 10 percent from
each spin label/distance combination, while the remaining
90% will be active. Trial3 extends Trial2 by adding the RDC
restraints. Trial1–Trail3 start from an extended
conformation generated by the tleap tool from the
AmberTools suite (Case et al., 2021). Trial4 follows the
same protocol as Trial3 but starts from the reference
crystal structure as a control.

For each trial, we ran a 2.5 µs replica exchange simulation
using 48 replicas. The temperature and the force constant for each
restraint collection varied across replicas (see SI for details). The
last 0.5 µs of the lowest replica was used for analysis.

Using Only Paramagnetic Relaxation
Enhancement-Derived Information Leads to
Modest Structural Quality
We compare the trials using kernel density estimation plots
(KDE; see Supporting Information for details) of the backbone
root mean square deviation (RMSD) to the reference structure
[PDB: 1cdl (Meador et al., 1992)], excluding the flexible tails at
the N and C terminals of the protein which are not present in the
reference (Figure 3).

Trial1 is the most straightforward approach and combines
all of the data into a single collection. Many of the structures
have relatively low RMSD to the reference (<4Å), which is

TABLE 2 | Grouping of restraints for simulations and description of individual trials.

Trial Number of collections Description

Trial 1 1 All PRE restraints in a single collection
Trial 2 3 × 10 � 30 PRE restraints are combined by spin-label position and distance (Short, Medium Long) into 30 collections.
Trial 3 3 × 10 � 30 PRE restraints are combined by spin-label position and distance (short, medium long) into 30 collections.

RDC restraints are included.
Trial 4 3 × 10 � 30 PRE restraints are combined by spin-label position and distance (short, medium long) into 30 collections.

RDC restraints are included.
Simulation starts from native crystal structure.

PRE restraints have a force constant of 250 kJ mol−1 nm−2. RDC restraints have a force constant of 0.5 kJ mol−1 Hz−2.

FIGURE 3 | Increasing complexity of how restraints are incorporated
results in better sampling. Kernel Density Estimate (KDE) plot of backbone
RMSD to the reference structure. The last 0.5 µs were analyzed. Flexible tails
at the N- and C-termini of the protein were excluded.

Frontiers in Molecular Biosciences | www.frontiersin.org August 2021 | Volume 8 | Article 6762688

Gaalswyk et al. Integrative Sparse Paramagnetic NMR

174

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


promising considering the rather limited experimental data,
but there are also structures with much higher RMSDs of
∼5 Å and ∼7.5 Å RMSD. There are various explanations for
these high RMSD conformations, but perhaps the simplest is
that this way of grouping all restraints into a single collection
allows MELD to ignore short spatial distance restraints that
would otherwise eliminate these conformations. As
previously stated, the utility of a restraint depends on its
spatial distance. Shorter distances provide highly
constraining information. However, this highly
constraining nature means that these restraints are more
difficult to form, leading MELD ignore them in favour of
more easily satisfied restraints.

To test this hypothesis, in Trial2, we further subdivided the
restraints by separating the short, medium, and long restraints
from each dataset into separate collections, resulting in 30 total
collections.

The resulting RMSD distribution is centered at a modest
RMSD of ∼4 Å, which is slightly worse than the mode from
Trial1. However, this method of combining restraints into
collections has wholly eliminated the high RMSD
conformations.

Although the RMSDs obtained are only modest (∼4 Å), these
results were obtained with a very sparse dataset with only one
spin-label per 17 amino acids. This equates to 6.4 total restraints
per residue, and only 0.8 short-distance restraints per residue. For
context, NOE-based structures from fully protonated samples
typically have >15 NOE restraints per residue, all with short
distances.

Based on visual examination, several of our spin-label sites
appear to give restraints that are largely uninformative, either
because they are far from the remainder of the protein (e.g.,
R86C) or because they are mostly redundant with other spin-
label positions (e.g., T110C), see Figures 1, 2. Our results could
be improved with a more judicious choice of the 10 label sites,
but it is unclear how to do this without pre-existing knowledge
of the structure. The results could likely be improved further
by adding additional spin-label sites using the calculated
structural ensemble to optimize probe location, although we
do not pursue this here. Such an iterative strategy could be a
viable approach to improve model accuracy but comes at an
additional experimental cost. More rigid spin-labels (Fawzi
et al., 2011) could also improve results, as MTSL still displays
significant conformational heterogeneity that results in less
precise distance restraints.

Residual Dipolar Couplings Provide
Complementary Information That Improves
Accuracy
Despite collecting data for 10 different spin-label sites, few yielded
informative short spatial distance, high sequence distance
restraints (Figure 2), limiting the models’ achievable accuracy
to relatively modest RMSDs of around 4 Å. Rather than collect
additional PRE data, we instead chose to explore the utility of
combining PRE information with residual dipolar couplings
(RDCs) measured for the amide groups.

Residual dipolar couplings provide information about the
orientation of amide NH bonds complementary to the distance
information from PRE experiments. In Trial3, we combined
PRE information (using the same strategy as Trial2) with RDC
data. The inclusion of RDC data led to a substantial
improvement in the RMSD (Figure 3). The RMSD ranges
from approximately 1.6–4.0 Å with an average RMSD of 2.8 Å,
including both Calmodulin and the smMLCK peptide
(Figure 4). This improvement of RMSD upon inclusion of
RDC data is consistent with previous studies showing that
RDC data provides valuable information on the relative
orientation of the two lobes of calmodulin (Mal et al., 2002;
Gifford et al., 2011).

RDCs provide information about how the amides are oriented,
which, when combined with secondary structure restraints
(derived from the measured backbone chemical shifts) and
distance restraints (derived from PREs), serves to dramatically
limit the possible structures that simultaneously agree with the
experimental data and the physical model.

To assess the potential quality of sidechain packing, we
examined the single best structure obtained during our
simulations, which has an RMSD of 1.6 Å (Supplementary
Figure S1). For this “best” structure, the RMSD for sidechain
heavy atoms is 2.1 Å for all sidechains and 1.4 Å for core
sidechains. This is notable as there are no restraints on the
side chains themselves, only between the spin labels and the
backbone amide protons. This packing phenomenon with MELD
has been noted previously and can be attributed to the accuracy of
the physical model (Perez et al., 2019). However, we note that the

FIGURE 4 | Superposition of a typical model (green) from the Trial3
ensemble with the reference structure (white). Peptide is shown in dark green
and grey respectively. The superposition was over residues 4–146 of
calmodulin plus the peptide. The backbone RMSD of this structure is
2.8 Å, which is near the mean of the ensemble. Structures with RMSDs as low
as 1.6 Å are sampled.
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sidechain and backbone RMSDs are generally correlated, and this
structure has a lower backbone RMSD than average, so the
average side chain RMSDs will be higher than these figures.

Despite Limited Data, the Peptide Is
Routinely Placed Correctly
As noted previously, the experimental data contained no short
distance PREs to the peptide, so placement of the peptide is
dependent on a combination of medium and long restraints with
the physical model. Furthermore, only 4 of 10 experiments
contained labelled peptide, with the peptide undetected in the
remaining experiments. Nevertheless, the combination of
available data and the physical model was still able to
routinely position the peptide correctly (the peptide is
included in the RMSD calculations shown in Figure 3). The
structure of calmodulin depends on the peptide and its binding
(Barbato et al., 1992; Ikura et al., 1992), so correct placement of
the peptide is critical.

The Individual Lobes Are Better Defined
Than the Complex
Calmodulin consists of two lobes connected by a flexible linker
that becomes structured upon peptide binding (Barbato et al.,
1992). Examination of each lobe individually shows that our
modeled ensembles are tightly clustered (Figure 5), indicating
that most of the heterogeneity in our calculated ensemble arises
from the relative motion of the two lobes. If we consider the
RMSD of each lobe to the reference individually, the results are
consistently lower than for the whole protein (Figure 6). The
RMSD of the C-lobe to the reference structure is ∼2.1 Å
(Figure 6B), which is consistent with typical RMSDs for small
globular proteins seen in MD simulations. The results for the
N-lobe are similar. The resulting heterogeneity in the relative
orientation of the two domains should be interpreted with
caution, due to the use of a single-structure likelihood, as
discussed above.

A previous study (Carlon et al., 2019) examining the joint
X-ray/NMR refinement of Calmodulin in complex with the

FIGURE 5 | The domains have tightly clustered ensembles. Superpositions of (A)C-lobe (residues 82–149) and (B)N-lobe (residues 1–76) of Calmodulin for Trial3.
Every 100th frame from the last 0.5 microseconds is shown, coloured from N-terminus (red) to C-terminus (blue).

FIGURE 6 | Simulations from extended and native show similar distributions. We show a comparison of the same protocol started from either an extended chain
(Trial3, blue) or from the reference crystal structure (Trial4, orange). Each panel shows the backbone RMSD compared to the reference crystal structure. We compare:
(A) the full-length protein, as well as the (B) N-, and (C) C-lobes.
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Death-Associated Protein kinase (DAPk) peptide revealed poor
agreement between X-ray andNMR data due to large interprotein
contacts in the crystal that stabilize a conformation that is in poor
agreement with the solution NMR data. The crystal structure of
the full-length DAPk protein in complex with Calmodulin lacks
these contacts and is in much better agreement with the NMR
data. These results highlight the need for caution when
comparing structures determined by X-ray crystallography and
NMR, particularly in cases where flexibility can be expected.

A study of 109 pairs of NMR and crystal structures (Sikic et al.,
2010) showed that typical C⍺ RMSDs range from ∼0.5 to 4 Å with
a mean of ∼2.0 Å when using the DALI (Holm and Sander, 1993)
alignment. The typical variability of models within a given NMR
ensemble was similar (Sikic et al., 2010). Our results for the
individual lobes of calmodulin give similar average RMSDs,
indicating that our approach is producing results comparable
to typical NMR structures using NOEs and fully protonated
samples despite the substantial sparsity in our data. Our
results for the full-length complex produce a slightly higher
average RMSD, which reflects heterogeneity in the exact
relative placement of the two lobes.

To further test our predictions’ quality, we also ran
calculations using the same protocol as Trial3 but starting
from the reference crystal structure rather than from an
extended chain (Figure 6), which sets a bound on the possible
accuracy that could be obtained. The resulting RMSD
distributions are similar to our predictions. This indicates that
given: 1) the available experimental data, 2) potential limitations
of the physical model used, 3) the use of a single-structure rather
than ensemble likelihood, and 4) the challenges of comparing
with a static crystal structure, the results obtained using MELD
are essentially as good as they could be.

Computational Requirements
Each calculation was over 48 replicas for 2.5 µs, which required
approximately 6 days on 48 GTX 1080Ti GPUs. However,
examination of the RMSD over time (Supplementary Figure
S2) shows that the simulations appear to be converged after
∼500 ns. In hindsight, the simulation length could have been
reduced to 1 µs without a loss in quality, which would reduce
simulation time to 2.5 days. While computationally expensive,
our approach is readily feasible with access to advanced research
computing or cloud computing resources.

CONCLUSION

Our approach can generate accurate protein structures starting from
an extended chain using backbone chemical shifts in combination
with PRE and RDC measurements from backbone amide labeled
samples. We demonstrate this on a relatively large, complex system

with only one spin label per 17 residues. This gives an average of 6.4
PRE restraints per residue of which less than 0.8 per residue are
short-distance, compared to the >15 short-distance restraints per
residue that are typical in NOE-based structure determination. Our
approach is able to routinely identify dominant conformations
within 3 Å of the reference crystal structure for calmodulin in
complex with a peptide and correctly places the peptide despite a
lack of information relating the peptide to the protein. These results
approach the quality of gold-standard, fully protonated NMR
structures based on NOEs, but were obtained from a far sparser
dataset usingmethods that aremore applicable to large proteins. The
inclusion of RDCs highlights their value in structure determination
with minimal PRE-derived distance restraints. These results
showcase the importance of spin label location and the effect it
has on the value of the resulting restraints. We show that MELD
can accurately account for challenges related to conformational
heterogeneity and noise and achieve moderate side chain
packing. These results also highlight the capabilities of
integrative approaches when experimental information is
limited.
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