About this Research Topic
The goal of this Research Topic is to explore the different avenues for using experimental and computational approaches in synergy in order to accurately characterize structure, dynamics, and ultimately function of biological systems. A wide spatial spectrum of systems will be covered: from ordered and disordered proteins, small molecules interacting with proteins, protein complexes, RNA, DNA, up to entire cells. Molecular simulations at various degrees of resolution and accuracy of the physico-chemical description of the system will be considered: ab-initio, quantum mechanics/molecular mechanics, classical - at both atomistic and coarse-grained levels. The integration of molecular simulations with different types of experimental data will be investigated, including X-ray crystallography, Cryo-electron microscopy and tomography, Nuclear Magnetic Resonance spectroscopy, biochemical measurements, Small Angle X-ray Scattering, and single-molecule Fluorescence Resonance Energy Transfer data.
Computational and experimental approaches to characterize protein structure and dynamics can be used in several different synergistic ways. This Research Topic will explore the following four areas:
• How to use simulations to assist the interpretation of experimental data
• How to use simulations to design and propose novel experiments
• How to use experimental data to validate molecular simulations
• A tighter integration: how to use experimental data to drive and/or refine molecular simulations.
This Research Topic is open to different types of contributions such as Original Research articles in the fields of both method development and applications, Reviews, Perspectives, and all other article types supported by the publisher (please find a full list including descriptions here)
Keywords: molecular simulations, integrative modelling, structural biology, computational biology, molecular dynamics
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.